

The Theory
and Practice
of Reliable
System Design

DANIEL P SIEWIOREK
ROBERT S. SWARZ

DIGITAL PRESS

Copyright © 1982 by Digital Equipment Corporation.

All rights reserved. Reproduction of this book, in part or in whole, is strictly prohibited. For copy infor-
mation write Digital Press, Educational Services, Digital Equipment Corporation, Bedford, Massachu-
setts 01730.

Printed in U.S.A.
109 87 6 5 4 3 2

Documentation number EY-AX016-DP
ISBN 0-932376-13-4

Library of Congress Cataloging in Publication Data

Siewiorek, Daniel P. ‘
The theory and practice of reliable system design.

Bibliography: p.

Includes index.

1. Electronic digital computers—Reliability.
2. Fault-tolerant computing. I. Swarz, Robert.

I1. Title.
QA76.5.S538 001.64 81-9696
ISBN 0-932376-13-4 AACR2

Trademarks appear on p. 749.

CREDITS
Figures 5-12, 5-13, 5-14, 5-15

Jacob A. Abraham and Daniel P. Siewiorek, “An Algorithm for the Accurate Reliability Evaluation of
Triple Modular Redundancy Networks,” IEEE TRANSACTIONS ON COMPUTERS (July 1974).
Copyright © 1974 IEEE. Reprinted by permission.

Figure 3-68

D.G. Armstrong, “A General Method of Applying Error Correction to Synchronous Digital Systems,”
THE BELL SYSTEM TECHNICAL JOURNAL, vol. 40, p. 580. Copyright © 1961, American Tele-
phone and Telegraph Company. Reprinted by permission.

Credits are continued on p. 751 and are considered part of the copyright page.

To Karon and Lonnie

Contents

Preface xxi

PART I THE THEORY OF RELIABLE SYSTEM DESIGN 1

1 Fundamental Concepts 3

The Importance of Reliability 3
Levels in a Digital System 4
Stages in System Life 5
Attributes of Fault-Tolerant Computing and Their Definitions 6
Availability 7
Reliability 7
The Manufacturing Stage 7
Design Maturity Testing 7
Incoming Inspection -8
Process Maturity Testing 11
The Operational Life Stage 12
Cost of Ownership 14
Universe of Models 15
The Designable Parameters 16
References 16

2 Faults and Their Manifestations 17

Introduction 17

Fault Manifestations 19
Physical Defects 19
Logic-Level Fault Classes 26
System-Level Abstractions 26

Fault Distributions 30
Probability Review 30

Matching Sampled Data to Math Distributions 33
Maximum Likelihood Estimators 33
Maximum Likelihood Estimation of Weibull Parameters 34
Linear Regression Analysis 34
Confidence Intervals 34
Goodness-of-Fit Tests 35

Distributions for Permanent Faults: The MIL-HDBK-217 Model 37
Life-Cycle Testing and Field Data 37
Analysis of Permanent Failure Data: Estimating the Distribution and

Its Parameters 44
Automated Failure Rate Calculation 49

vii

viii

CONTENTS

Distributions for Transients and System Errors 51
Data Collection 51
Graphical Data Analysis 53
Confidence Intervals for the Parameters 56
Goodness-of-Fit Tests 56

Summary 57

References 61

Problems 61

Reliability and Availability Techniques Steven A. Elkind 63

Fault-Avoidance Techniques 67
Environmental Changes 68
Quality Changes 71
Component Integration Level 75 .
Fault-Detection Techniques 77
Duplication 79
Error-Detection Codes 84
Self-Checking, Fault-Secure, and Fail-Safe Logic 104
Watchdog Timers and Timeouts 110
Consistency and Capability Checking 112
Masking Redundancy 113
N-Modular Redundancy with Voting 114
Error-Correcting Codes 122
Masking Logic 133
Dynamic Redundancy 140
Reconfigurable Duplication 141
Reconfigurable NMR 145
Backup Sparing 154
Graceful Degradation 158
Reconfiguration 160
Recovery 169
Summary 175
References 175
Problems 176

Maintainability and Testing Techniques 183

Production 184
Parametric Testing 185
Acceptance Testing 185
Design for Testability 191

Field Operation 196

References 200

Problems 200

Evaluation Criteria Stephen McConnel and Daniel P. Siewiorek

Survey of Evaluation Criteria 202
Hardware Evaluation 202
Software Evaluation 206

201

PART Il

CONTENTS

Modeling Techniques 211
Combinatorial Modeling 211
Markov Models 246
System Availability Models 275
Modeling Performance Impact of Redundancy 281
Trade-Off Analysis in System Design 285
Design Example: The PDP-8/e 286
Analyses of the Example 291
Summary 296
References 296
Problems 297

Financial Considerations 303

Introduction and Fundamental Concepts 303
Definitions 303
Sources of Maintenance Costs 304
Cost of Customer Ownership 306
Field Service Overview and Cost Models 308
Maintenance Cost Models 309
Life-Cycle Cost (LCC) Models 311
LCC Model with Generalized Data Elements 314
Conclusions 317
References 320
Problems 321

THE PRACTICE OF RELIABLE SYSTEM DESIGN 323

C.vmp 325

Commercial Computers 325
DEC 325

IBM 326

UNIVAC 326
High-Availability Systems 330
Tandem 330

ESS Processors 332
Pluribus 335

Spacecraft and Avionic Systems 337
FTMP and SIFT 342
References 344

C.vmp: A Voted Multiprocessor Daniel P Siewiorek, Vittal Kini,
Henry Mashburn, Stephen McConnel, and Michael Tsao 345
Design Goals 345
System Architecture 346

Actual System Configuration 346

Voter Modes of Operation 348

Peripheral Devices 350

ix

b3 CONTENTS

Issues of Processor Synchronization 350
Dynamic Voting Control 350
Bus Control Signal Synchronization 351
System Clock 353

Performance Measurements 354
Processor Execution/Memory Fetch Time 354
Disk Access Time 355

Operational Experiences 357
Operating History 357
C.vimp System Reliability 357
On-Line Maintenance 359

References 360

8 RAMP in the VAX Family: VAX-11/780 and VAX-11/750 361

The VAX Architecture 361
Archetypical VAX-11 Implementation 367
The VAX-11/780 Implementation 370
Internal Processor Registers 372
ID Bus Registers 377
Main Memory Registers 379
Console Subsystem 381
Micro- and Macrodiagnostics 384
The VAX-11/750 Implementation 386
Design Evolution ~ 386
RAMP Features 395
Processor Registers 397
Main Memory Registers 398
Diagnostics and Repair 402
Summary 404
References 404

9 Recovery through Programming System/360—System 370
Donald L. Droulette 409

Introduction 409

The Recovery Management Objective 410
Functional Recovery 411
System Recovery 411
System-Supported Restart 411
System Repair 411

User Personnel Involvement 411

Summary Description of Facilities 412

1/0 Device/Unit Recovery Facilities 413
IBM Standard Error Recovery Procedures 413
Optional User-Written Routines 413
On-Line Test System 414

10

1

CONTENTS

Channel-Check Handler (CCH) 414
I/O Recovery Management Support 415
APR 415
DDR 416
CPUJProcessor Storage Recovery Facilities 417
Machine-Check Handler (MCH) 417
System Environment Recording (SEROQ and SERI1) 418
System Associated Recovery Facilities 418
System Restart 418
Checkpoint/Restart 418
Error Record Retrieval Facilities 418
Environment Record Editing and Printing Utility 419
System Environment Recording, Editing and Printing Program 419
RMS/65 Relationship to the Operating System 419
System/370 Considerations 419
Conclusion 421
Reference Materials 421

Availability, Reliability, and Maintainability Aspects of the SPERRY
UNIVAC1100/60 L. A. Boone, H. L. Liebergot, and R. M. Sedmak 423

Abstract 423
Introduction 423
ARM Philosophy for 1100/60 424
ARM in Previous SPERRY UNIVAC 1100 Series Systems 424
ARM in the 1100/60—General Approach 424
Detailed ARM Implementation 425
System Characteristics 425
Fault Detection 427
Error Correction 428
Fault Isolation 428
Error Recovery 429
Fault Injection 431
Maintenance 432
ARM Evaluation 432
Summary 433
References 433

A Fault-Tolerant Computing System James A. Katzman 435

Abstract 435

Introduction 435
System Organization 438

System Packaging 439
Interconnections 440

Processor Module Organization 440
The CPU 441

xi

xii CONTENTS

Main Memory 441
The Dynabus 444
The Input/Output Channel 447
[/O System Organization 447
Dual-Port Controllers 447
Controller Buffer Considerations 450
Disc Controller Considerations 450
NonStop 1/0 System Considerations 451
Power, Packaging, On-Line Maintenance 451
Further Packaging and On-Line Maintenance Considerations 452
Summary 452

A “NonStop” Operating System Joel £ Bartlett 453

Abstract 453
Background 453
System Overview 453
System Design Goals 454
Integrated Hardware/Software Design 454
Operating System Design Goals 454
Operating System Structure 455
Processes 455
Messages 456
Process-Pairs 456
System Processes 458
Application Process Interface 459
Initialization and Processor Reload 459
Operating System Error Detection 459
Acknowledgments 460
References 460

12 Fault-Tolerant Design of Local ESS Processors W N. Toy 461

Abstract 461

Introduction 461

Allocation and Causes of System Downtime 462
Hardware Reliability 462
Software Deficiencies 462
Recovery Deficiencies 463
Procedural Errors 463

Duplex Architecture 463

Fault Simulation Techniques 465

First Generation ESS Processors 466
No. 1 ESS Processor 466
Operational Results of No. 1 ESS 469
No. 2 ESS Processor 470

Second Generation of ESS Processors 472
No. 1A Processor 472

13

CONTENTS

No. 34 Processor 474
Maintenance Design of No. 3A Processor 476
General Systems Description 476
General Processor Description 477
Detection Techniques 478
Recovery Techniques 487
Diagnostic Hardware 491
Repair 493
Hardware Implementation 494
Summary 495
Acknowledgment 496
References 496

Pluribus—An Operational Fault-Tolerant Multiprocessor David Katsuki,
Eric S. Elsam, William F Mann, Eric S. Roberts, John G. Robinson,
F. Stanley Skowronski, and Eric W. Wolf 497

Abstract 497
Introduction 497
Pluribus System Architecture 499
Major Design Decisions 499
System Overview 500
Physical System Structure 502
Redundancy 507
The Pluribus Operating System 507
General Responsibility of the Operating System 508
Hierarchical Structure of the STAGE System 508
Establishing Communication 509
The Consensus Mechanism 510
Application-Dependent Checking 511
An Example of Application Reliability 512
Advantages of the Pluribus Approach to Fault-Tolerance 513
Recent Field Experience 513
Pluribus System Maintainability 516
Reporting Facilities 517
Remote Diagnosis and Repair 517
Partitioning 518
Reloading and Down-Line Loading 518
Maintenance Experience 518
Other Applications and Extensions 519
Message Systems 519
Real-Time Signal Processing 520
General-Purpose Timesharing Sytems 520
Reservation Systems 520
Process Control 520
Acknowledgment 521
References 521

xiii

Xiv CONTENTS

14 The STAR (Self-Testing And Repairing) Computer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer Design - Algirdas AviZienis,
George C. Gilley, Francis P Mathur, David A. Rennels, John A. Rohr,
and David K. Rubin 523

Abstract 523
Introduction: Chronology and Rationale 523
Architecture of the STAR Computer 525
Methods of Fault Tolerance 525
Hardware System Organization 526
Standard Operation 527
Computer Words: Formats and Encoding 528
Control Error Detection 529
Properties of Functional Units 530
The Test and Repair Processor (TARP) and Recovery Mode 530
Comparative Reliability Analysis 532
STAR Computer Software System 535
Extension of STAR Techniques to Peripheral Systems 536
Design of the TOPS Control Computer 537
Current Research 538
Acknowledgment 538
References 539

15 Automatic Fault Protection in the Voyager Spacecraft C. P Jones 541

Abstract 541
Introduction 541
The Mission 541
The Spacecraft 542
Achieving Reliability 542
Automatic Fault Protection Design 544
Requirements 544
Implementation of the Requirements in Hardware 544
Implementation of the Requirements in Software 545
Command Computer Subsystem Functional Description 546
CCS Routine Structure 547
Fault-Protection Software 547
Fault Protectionin CCS 548
Design Validation 554
In-Flight Experience 556
Failures and Degraded Performance 556 '
Environmental Factors 556
Sequence Errors 556
Conclusions and Recommendations 557
Acknowledgment 557
Reference 557

16 SIFT: Design and Analysis of a Fault-Tolerant Computer for

17

Aircraft Control John H. Wensley, Leslie Lamport, Jack Goldberg,
Milton W. Green, Karl N. Levitt, P M. Melliar-Smith, Robert E. Shostak,
and Charles B. Weinstock 559

Abstract 559

Introduction 559
Motivation 560
Background 560

SIFT Concept of Fault Tolerance 561
System Overview 561
Fault Isolation 562
Fault Masking 563
Scheduling 563 .
Processor Synchronization 564
Reliability Prediction 567

The SIFT Hardware 568

The Software System 572
The Application Software 572
The SIFT Executive Software 572
Fault Detection 576
The Simulator 577

The Proof of Correctness 577
Concepts 577
Models 578
The Reliability Model 579
The Allocation Model 579
Future Work 581

Conclusions 582

Appendix: Sample Special Specification 582
Notes 583

Acknowledgment 584

References 584

FTMP—A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft
Albert L. Hopkins, Jr, T. Basil Smith, 1ll, and Jaynarayan H. Lala 585

Abstract 585
Introduction 586
Background and Context 586
Rationale of the FTMP Approach 587
Theory of the FTMP 588
Nominal Organization 588
Redundant Organization 590
Synchronization 593
Malfunction Management 594

CONTENTS

Xy

xvi

CONTENTS

18

Description of an Engineering Prototype of the FTMP 598
The Redundant Bus Structure 602
LRU Interfacing to the Bus System 602
System Control Units 603
The Principal Fault-Containment Region 603
Primary Power 607
Survival and Dispatch Probability Models for the FTMP 607
Survival Probability Models 607
Impact of Intermittent Faults 612
Dispatch Reliability of the FTMP Computer 615
Experimental Results 616
Fault Diagnostic Capabilities 617
Software Experience 617
Conclusion 619
Critical Areas of the FTMP Design 619
Summary 619
Acknowledgments 620
References 620

Design Methodology for High Reliability Systems: The Intel 432®
Daniel P Siewiorek and David Johnson 621

A Design Methodology for 2 High Reliability System 621
Define System Objectives 621
Limit the Scope 623
Define the Layers of Fault Handling 623
Define Reconfiguration and Repair Boundaries 625
Design the Fault-Handling Mechanisms 626
Identify the Hardcore 626
The Impact of Technology 626
The Intel 432 Detection Mechanisms 627
Define System Objectives 627
Limit the Scope 627
Define Layers of Fault Handling 628
Define Reconfiguration and Repair Boundaries 628
Design the Fault-Handling Mechanisms 630
Identify the Hardcore 633
The Intel 432 Error Isolation and Reporting Mechanisms 634
Summary 636 :
Reference 636

APPENDIXES 637
Coding for Error Control D. T. Tang and R. T. Chien 639

Abstract 639

Basic Definitions 640
Redundancy 640
Source Codes 640

CONTENTS xvii

Block Codes 640
Binary Codes 640
Errors in Digital Data Channels 640
Transmission and Storage 640
Source Encoding 641
Modulation and Demodulation 641
Error Sources 642
Error Statistics 642
Storage 642
Channel Models 642
Mathematical Structures in Coding 643
Linear Separable Codes 643
Polynomial Cyclic Codes 644
General Requirements for Encoding and Decoding 644
Error Syndromes 644
Conditional Maximum Likelihood Decoding 645
Maximum Likelihood Decoding 645
Minimum Distance Decoding 645
Linear Switching Circuits and Shift Registers 646
Polynomials in Delay Operator D 646
Encoders and Decoders 648
Functional Classes of Error-Control Codes 650
Coding Strategy 651
Error Detection 651
Partial Correction 652
Erasures 653
Adaptive Coding Schemes 653
Sequential Decoding 654
Some Error-Control Applications 654
Data Communications 654
Data Storage 654
Auxiliary Storage 655
Digital Cypress Error Control 655
Concluding Remarks 655
Appendix 1: Structure of Linear Codes 656
Appendix 2: Structure of Polynomial Codes 657
Appendix 3: Methods for Finding Generator Polynomials 658
Single-Error-Correcting Codes 658
Burst-Error-Correcting Codes 658
Independent-Error-Correcting Codes 659
BCH Codes 659
Examples 659
Multiple-Burst-Correcting Codes 660
Reed-Solomon Codes 661
Example Decoders 661
Appendix 4: Specialized Error-Control Codes 662
Interleaved Codes 662

xviii

CONTENTS

N-Dimensional Codes 663
Shortened Codes 663
Threshold-Logic-Decodable Codes 663
Self-Orthogonal Decoding Example 664
Synchronization Codes 665
Convolutional Codes 665
Constant-Weight Codes 667
Arithmetic Codes 667
Appendix 5: Cyclic Redundancy Checking 668
References 669

Arithmetic Error Codes: Cost and Effectiveness Studies for Application in
Digital System Design Algirdas AviZienis 671

Abstract 671
Methodology of Code Evaluation 671
Scope of the Problem 671
The Criteria of Cost 672
The Criteria of Effectiveness 673
Classes of Logic Faults 674
Fault Effects in Binary Arithmetic Processors 675
Basic Faults in Parallel Arithmetic 675
Repeated-Use Faults in Binary Processors 677
Low-Cost Radix-2 Arithmetic Codes 678
Implementation of Arithmetic Error Codes 678
The Low-Cost Checking Algorithm 679
Fault-Effectiveness: One-Use Faults 680
Fault-Effectiveness: Determinate Repeated-Use Faults 680
Fault-Effectiveness: Indeterminate Repeated-Use Faults 681
Repeated-Use Faults in Residue Codes 682
Multiple Arithmetic Error Codes 683
Multiple Low-Cost Codes 683
“Hybrid-Cost” Forms of Multiple Codes 685
Acknowledgment 686
References 686

Recent Developments in the Theory and Practice of Testable Logic Design
R. G. Bennetts and R. V. Scott 687

Abstract 687
Introduction 687
Theoretical Developments 688
Combinational Circuits 688
Sequential Circuits 696
Iterative Arrays 702
Practical Aspects of Testable Logic Design 703
Guideline 1: Give the tester access to internal circuit board nodes 70
Guideline 2: As a general rule, avoid logically redundant circuits 70

CONTENTS

Guideline 3: Make faults as easy to locate as possible 705
Guideline 4: Use synchronous (clocked) circuitry whenever
possible 706
Guideline 5: Take precautions to isolate the clock from the logic 706
Guideline 6: Make it possible to initialize sequential circuits prior to
testing 706
Guideline 7: Take into account the operational characteristics of the
tester to be used for a particular board 706
Guideline 8: Take test economics into consideration when developing a
new logic design 706

Concluding Remarks 707

Acknowledgment 708

References 708

Summary of MIL-HDBK-217B Reliability Model 709
Summary of MIL-HDBK-217C Reliability Model 715

217C Model 715
217C Notice 1 Model 716
Reference 719

References 721
Contributing Authors 749
Trademarks 749
Credits 751

Index 753

Xix

Preface

system reliability has been a major concern since the beginning of the electronic
ligital computer age. The earliest computers were constructed of components such
1s relays and vacuum tubes that would fail to operate correctly as often as once
svery hundred thousand or million cycles. This error rate was far too large to en-
wure correct completion of even modest calculations requiring tens of millions of
yperating cycles. The Bell relay computer (c. 1944) performed a computation
wice and compared results; it also employed error-detecting codes. The first com-
nercial computer, the UNIVAC I (c. 1951), utilized extensive parity checking and
wo arithmetic logic units (ALUs) in a match-and-compare mode. Today, interest
n reliability pervades the computer industry, from large mainframe manufacturers
o semiconductor fabricators, who produce not only reliability-specific chips (such
1s for error-correcting codes) but also entire systems (such as the Intel 432).

Computer designers have to be students of reliability, and so do computer sys-
em users. Our dependence on computing systems has grown so great that it is be-
soming difficult or impossible to return to less sophisticated mechanisms. When an
urline seat selection computer ‘““crashes,” for example, the airline can no longer
‘evert to assigning seats from a manual checklist; since the addition of roundtrip
*heck-in service, there is no way of telling which seats have been assigned to pas-
engers who have not yet checked in without consulting the computer. The last
‘esort is a free-for-all rush for seats. The computer system user must be able to
inderstand the advantages and limitations of the state-of-the-art in reliability de-
ign; determine the impact of those advantages and limitations upon the applica-
ion or computation at hand; and specify the requirements for the system’s
eliability so that the application or computation can be successfully completed.

The literature on reliability has been slow to evolve. During the 1950s reliability
vas the domain of industry, and the quality of the design often depended on the
sleverness of an individual engineer. Notable exceptions are the work of Shannon
1948] and Hamming [1950] on communication through noisy (hence error-
nducing) channels, and of Moore and Shannon [1956] and von Neumann [1956]
n redundancy that survives component failures. Shannon and Hamming inaugu-
ated the field of coding theory, a cornerstone in contemporary systems design.
vioore, Shannon, and von Neumann laid the foundation for development and
nathematical evaluation of redundancy techniques.

During the 1960s the design of reliable systems received systematic treatment in
ndustry. Bell Telephone Laboratories designed and built an Electronic Switching
system (ESS), with a goal of only two hours down-time in 40 years [Downing, No-
vak, and Tuomenoksa, 1964]. The IBM System/360 computer family had exten-
ive serviceability features [Carter et al., 1964]. Reliable design also found
ncreasing use in the aerospace industry, and a triplicated computer helped man
and on the moon [Cooper and Chow, 1976; Dickinson, Jackson, and Randa, 1964].
"he volume of literature also increased. In 1962 a Symposium on Redundancy

xXi

X Xii

PREFACE

Table P-1. Proposed structure for undergraduate course.

Chapters Remarks

1
Fundamental Concepts

2
Faults and Their
Manifestations

3

Reliability and A suitable subset such as one branch of the taxonomy (i.e.,
Availability fault avoidance, fault detection, masking redundancy,
Techniques dynamic redundancy)

4

Maintainability and
Testing Techniques

5
Evaluation Criteria Through to, but not including, Markov models

6
Financial Considerations

7
C.vmp As time permits, augment by other examples

18
Intel 432

Techniques held in Washington, D.C. led to the first comprehensive book on the
topic [Wilcox and Mann, 1962]. Later, Pierce [1965] published a book generaliz
ing and analyzing the Quadded Redundancy technique proposed by Tryon and re-
ported in Wilcox and Mann {1962]. A community of reliability theoreticians anc
practitioners was developing.

During the 1970s interest in system reliability expanded explosively. Companies
were formed whose major product was a reliable system (such as Tandem). Due tc
the effort of Algirdas Avizienis and other pioneers, a Technical Committee or
Fault Tolerant Computing (TCFTC) was formulated within the Institute of Elec
trical and Electronic Engineers (IEEE). Every year since 1971, the TCFTC has
held an International Symposium on Fault-Tolerant Computing. The time is ripc
for a book on the design of reliable computing structures.

This book has three audiences. The first is the advanced undergraduate studen
interested in reliable design; as prerequisites, this student should have had course:
in introductory programming, computer organization, digital design, and probabil
ity. Part I of the book, selected chapters of Part 11, and end-of-chapter problem:
are sufficient for a quarter- or semester-length course like that suggested in Tabl
P-1.

The second audience is the graduate student seeking a second course in reliablc
design, perhaps as a prelude to engaging in research. The more advanced portion

ible P-2. Proposed structure for graduate course.

hapters Augmentation

undamental Concepts

aults and Their Ross [1972] and/or Shooman [1968] for random variables,
[anifestations statistical parameter estimation

ARINC [1964] for data collection and analysis

eliability and Appendix A, Peterson and Weldon [1972] for coding theory

Zaﬁla‘b]llty Sellers, Hsiao, and Bearnson [1968b] for error detection

gehmques techniques
Proceedings of Annual IEEE International Symposium on
Fault-Tolerant Computing
Special issues of the IEEE Transactions on Computers on
Fault-Tolerant Computing (e.g., Nov 1971, March 1973,
July 1974, May 1975, June 1976, June 1980, July 1982)
Special issues of Computer on Fault-Tolerant Computing
(e.g., March 1980)

[aintainability and Breuer and Friedman [1976] for testing

esting Techniques Proceedings of Cherry Hill Test Conference
Special issues of Computer on Testing (e.g., Oct. 1979)
ARINC [1964] for maintenance analysis

valuation Criteria Ross [1972], Howard [1971], Shooman [1968], Craig
[1964] for Markov models and their solutions

inancial Considerations Phister [1979]

art 11 Oct. 1978 special issue of the Proceedings of the IEEE.

f Part I and the system examples of Part II should be augmented by other books
nd current research literature as suggested in Table P-2. A project, such as design
f a dual system with a factor of 20 greater Mean-Time-To-Failure, while minimiz-
ig Life-Cycle Costs, would help to crystallize the material for students. An exten-
ve bibliography provides access to the literature.

The third audience is the practicing engineer. A major goal of this book is to
rovide enough concepts to enable the practicing engineer to incorporate compre-
ensive reliability techniques into his or her next design. Part I provides a taxon-
my of reliability techniques and the mathematical models to evaluate them.
)esign techniques are illustrated through the series of articles in Part I, which
escribe actual implementations of reliable computers. These articles were written
y the system designers. The final chapter provides a methodology for reliable sys-

PREFACE

X xiii

XXiv

PREFACE

tem design and illustrates how this methodology can be applied in an actual desigr
situation (the Intel 432).

The book is divided into two parts. Part I deals with the theory and Part II with
the practice of reliable design. The appendixes provide detailed information or
coding theory, design for testability, and the MIL-HDBK-217 component reliabil-
ity model.

The authors wish to express deep gratitude to many colleagues in the fault:
tolerant computing community. Without their contributions and assistance this
book could not have been written. We are especially grateful to the authors of the
papers who shared their design insights with us. Special thanks go to Sudhir Bhag:
wani and Justin Rattner for assistance with Chapter 18. John Shebell provided ma-
terial and insight for Chapter 6.

Xavier Castillo and Vittal Kini provided material on mathematical modeling anc
computer aids, respectively. Ashok Ingle assisted in an earlier draft and providec
several problems at the end of chapters. Comments from several reviewers and stu-
dents were particularly helpful.

Special thanks are due to colleagues at both Carnegie-Mellon University anc
Digital Equipment Corporation (DEC) for providing an environment conducive tc
generating and testing ideas. The entire staff of Digital Press provided excellent
support for a timely production.

This book would not have been possible without the patience and diligence of
Mrs. Dorothy Josephson, who typed and retyped the many drafts of the
manuscript.

Dan Siewiorek
Bob Swar:

REFERENCES*

ARINC [1964]; Breuer and Friedman [1967]; Carter et al. [1964]; Cooper anc
Chow [1976]; Craig [1964]; Dickinson, Jackson, and Randa, [1964]; Downing, No
wak, and Tuomenoksa [1964]; Hamming [1950]; Howard [1971]; Moore and Shan
non [1956}]; Peterson and Weldon [1972]; Phister [1979]; Pierce [1965]; Ros:
[1972]; Sellers, Hsiao, and Bearnson [1968b]; Shannon [1948]; Shooman [1968]
von Neumann [1956]; Wilcox and Mann [1962].

* For full citations of the shortened references at the end of each chapter, see References at the back o
the book.

THE THEORY OF RELIABLE SYSTEM

DESIGN

Yart I of this book presents the many disciplines required to construct a reliable
omputing system. Chapter 1 explains the motivation for reliable systems and
rrovides the theoretical framework for their design, fabrication, and mainte-
ance. First we consider the motivation for interest in fault-tolerant systems.
Vext we present the hierarchical levels into which a computer system is
ustomarily divided to enable the engineer to deal with it efficiently and
ffectively; we also explain the reasons for introducing divisions into the life cycle
f a computer system. After defining several terms and metrics important to
ault-tolerant computing, Chapter 1 provides a detailed discussion of two stages
n a system’s life: manufacturing and operation. Last, the chapter explains some
f the mathematical models used in the design of a computer system and specifies
he parameters that are under the engineer’s control.

Chapter 2 discusses faults in a computer system: failure mechanisms, fault
1anifestations at several levels in the structural hierarchy (physical, logical, and
ystem), fault prediction, and fault measurement. A review of applicable proba-
ility theory is presented as an aid to understanding the mathematics of the
arious fault distributions. Common techniques for matching empirical data to
ault distributions, such as the maximum likelihood estimator, linear regression,
nd the chi-square goodness-of-fit test are discussed.

Chapter 2 introduces methods for estimating permanent failure rates, including
1e MIL-HDBK-217 procedure, a widely used mathematical model of permanent
aults in electronic equipment, and the life-cycle testing and data analysis
pproaches. It then addresses the problem of finding an appropriate distribution
or transient errors by analyzing field data from four mainframe time-sharing
omputers operated by Carnegie-Mellon University.

Chapter 3 deals with reliability techniques, that is, ways to improve the mean
me to failures. A comprehensive taxonomy of reliability and availability
:chniques is presented. There is also a catalog of techniques, along with
valuation criteria.

Chapter 4 deals with maintainability techniques, that is, ways to improve the
1ean time to repair of a failed computer system. It provides a taxonomy of
:sting and maintenance techniques and describes ways to detect and correct
surces of errors at each stage of a computer’s life cycle. Specific strategies are
iscussed for testing during the manufacturing phase. Several logic-level accept-
nce tests are explained, such as exclusive-OR testing, signature analysis,
oolean difference, path sensitization, and the D-algorithm. The chapter also
itroduces a discipline, called design for testability, which attempts to define
roperties of easy-to-test systems.

PART

2

THE THEORY OF RELIABLE SYSTEM DESIGN

How can a reliable or maintainable design be mathematically evaluated? That
is, if a system is supposed to be down no more than two hours in 40 years, how
can one avoid waiting that long to confirm success? Chapter 5 defines a host of
evaluation criteria, establishes the underlying mathematics, and presents deter-
ministic models and simulation techniques. Simple series-parallel models are
introduced as a method for evaluating the reliability of nonredundant systems
and systems with standby sparing. Next, several types of combinatorial (failure-
to-exhaustion) models are described. The chapter also introduces ways of
reducing nonseries, nonparallel models to more tractable forms.

Chapter 5 continues with Markov models, which define various system states
and express the probability of going from one state to another. In these models,
the probability depends only on the present state and is independent of how the
present state was reached. After describing several other simulation and model-
ing techniques, the chapter culminates in a case study of an effort to make a more
reliable version of the PDP-8/e, using the techniques defined in Chapter 3.

Finally, Chapter 6 is concerned with the financial considerations inherent in
the design, purchase, and operation of a computer system. The discussion adopts
two major viewpoints: that of the maintenance provider and that of the system’s
owner/operator. An explanation of the various sources of maintenance costs,
such as labor and material, is followed by an overview of the field service
business. Several maintenance cost models are suggested, along with a method
for assessing the value of maintainability features. The chapter describes two of
the many ways of modeling the life-cycle costs of owning and operating a
computer system; these cost models are essential to the system designer in
understanding the financial motivations of the customer.

-undamental Concepts

HE IMPORTANCE OF
ELIABILITY

listorically, reliable computers have been lim-
ed to military, industrial, aerospace, and com-
lunications applications in which the conse-
uence of computer failure is significant eco-
omic impact and/or loss of life. Reliability is of
itical importance wherever a computer mal-
inction could have catastrophic results, as in
ie space shuttle, aircraft flight-control systems,
yspital patient monitors,” and power system
mtrol. Reliability techniques have become of
creasing interest to general purpose computer
stems because of several recent trends, a few of
hich are listed below:

Harsher Environments. With the advent of
icroprocessors, computer systems have moved
>m the clean environments of computer rooms
industrial environments. The cooling air con-
ins more particulate matter. Temperature and
midity vary widely and are frequently subject
spontaneous changes. The primary power
pply fluctuates, and there is electromagnetic
terference.

Novice Users. As computers proliferate, the
oical user knows less about proper operation of
¢ system. Consequently, the system has to be
le to tolerate more inadvertent user abuse.

Increasing Repair Costs. As hardware costs
ntinue to decline and labor costs escalate, a
or cannot afford frequent calls for field service.
yure 1-1 depicts the relation between cost of
mership and the addition of reliability, main-
nability, and availability features. Note that as
rdware costs increase, service costs decrease
e to fewer and shorter field service calls.

4 THE THEORY OF RELIABLE SYSTEM DESIGN

A
Cost of ownership
& cost of |- — = AN m——=T" L
“ ownership .
Acquisition cost
Service cost

Reliability and maintainability features

Figure 1-1. Cost of ownership as a function of

reliability and maintainability.

Larger Systems. As systems become larger,
there are more components that can fail. Be-
cause the overall failure rate is directly related to
the sum of the failure rates of individual compo-
nents, fault-tolerant designs may be required to
keep the overall system failure rate at an accept-
able level.

The increased interest in fault tolerance has
already had an impact on the industrial world.
Manufacturers of large mainframe computers,
such as IBM, Univac, and Amdahl, use redun-
dancy both for improving reliability and for
assisting field service personnel in fault isolation.
Minicomputer manufacturers have also been in-
corporating fault-tolerant features, such as Ham-
ming error-correcting codes in memory. Special
Large Scale Integration (LSI) chips have been
introduced to perform cyclic redundancy coding
and decoding. Some companies, such as Tan-
dem, have been formed solely to market fault-
tolerant computers.

LEVELS IN A DIGITAL SYSTEM®

Digital computer systems are enormously com-
plex. To make them more comprehensible it is
necessary to divide the system into several levels.

* This discussion is adapted from D. Siewiorek, G. Bell, and
A. Newell, Computer Structures: Principles and Examples,
(New York, McGraw-Hill, 1981).

PMS

One can then proceed upward from the most
primitive level to the highest conceptual level
through a series of abstractions. Each abstrac-
tion contains only information important to its
level and suppresses unnecessary information
about lower ones. Because system designers uti-
lize the hierarchical concept to manage the com-
plexity of a digital system, the levels frequently
coincide with the system’s physical boundaries.
Table 1-1 describes a typical set of levels for a
digital computer.

Table 1-1.
computers.

Levels of abstraction for digital

Level Sublevel Components

Processors
Memories
Switches
Controllers
Transducers
Data operators
Links

Software

Program High-level

language
ISP Memory state
Processor state

Effective address
calculation

Instruction decode
Instruction execution

Logic Register

transfer

Data paths
Registers
Data operators
Control
Hardwired

Sequential logic
machines

Microprogramming
Microsequencer
Microstore

(Table continues on next page

lable 1-1—Continued

Level Sublevel Components

Switching
circuit

Sequential
Flip-fiops
Latches
Delays
Combinatorial
Gates
Encoders/Decoders
Data operators

“ircuit Resistors
Capacitors
Inductors
Power sources
Diodes

Transistors

Circuit Level. The circuit level consists of
uch components as resistors, capacitors, induc-
ors, and power sources. The metrics of system
ehavior include voltage, current, flux, and
harge. The circuit level is not the lowest possible
wvel at which to describe a digital system. Var-
us electromagnetic and quantum mechanical
henomena underlie circuit theory, and the oper-
tion of electromechanical system devices (such
s disks) requires more than circuit theory to
lodel their operation.

Logic Level. The logic level is unique to
gital systems. The switching-circuit sublevel is
ymposed of such things as gates and data
serators built out of gates. The logic level is
rther subdivided into combinatorial and se-
1ential logic circuits, the fundamental differ-
tice being the absence of memory elements in
ymbinatorial circuits.

A register is a digital device that remembers
e state of a set of binary digits. The Register
-ansfer (RT) sublevel deals with the next higher

FUNDAMENTAL CONCEPTS 5

level of abstraction, namely, registers and func-
tional transfers of information among registers.
RT sublevels frequently are further subdivided
into a data part and a control part. The data part
is composed of registers, operators, and data
paths. The control part provides the time-de-
pendent stimuli that cause transfers between
registers to take place.

In some computers, the control part is imple-
mented as a hard-wired state-machine. With the
availability of low-cost Read-Only Memories
(ROMs), microprogramming is now a more pop-
ular way to implement the control function.

Program Level. The program level is unique
to digital computers. At this level a sequence of
instructions in the device is interpreted and
causes action upon a data structure. This is the
Instruction Set Processor (ISP) sublevel. The ISP
description is used in turn to create software
components that are easily manipulated by pro-
grammers—the high-level-language sublevel. The
result is software, such as operating systems, run-

‘time systems, application programs, and applica-

tion systems.

PMS Level. Finally, the various elements—
input/output devices, memories, mass storage,
communications, and processors—are intercon-
nected to form a complete system.

STAGES IN SYSTEM LIFE

Not only are system levels important for describ-
ing a digital computer; a time dimension is also
required. At what point a technique or method-
ology is applied during the life cycle of a system
may be more important than at what physical
level.

From a user’s viewpoint, a digital system can
be treated as a “black box™” that produces out--
puts in response to input stimuli. Table 1-2 lists
the numerous stages in the life of the box as it
progresses from concept to final implementation.
These stages include specification of input/out-
put relationships, logic design, prototype debug-

6 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 1-2. Stages in the development of a system.

Error Detection

Stage Error Sources Techniques
Specification Algorithm Simulation
and design design
Formal Consistency
* specifications checks
Prototype Algorithm Stimulus/
design response testing
Wiring and
assembly
Timing
Component
failure
Manufacture Wiring and System testing
assembly
Component Diagnostics
failure
Installation Assembly System testing
Component Diagnostics
failure
Operational life Component Diagnostics
failure

Operator errors

Environmental
fluctuations

ging, manufacturing, installation, and field oper-
ation. Deviations from intended behavior, or
errors, can occur at any stage as a result of
incomplete specifications, incorrect implementa-
tion of a specification into a logic design, and
assembly mistakes during prototyping or manu-
facturing.

During the system’s operational life, errors can
result from change in the physical state or dam-

age to hardware. Physical changes may be trig-:

gered by environmental factors such as fluctua-
tions in temperature or power supply voltage,
static discharge, and even alpha particle emis-
sions. Inconsistent states can also be caused by

- operator errors and by design errors in hardware

or software.

Design errors, whether in hardware or soft-
ware, are those caused by improper translation
of a concept into an operational realization.
Closely tied to the human creative process, de-
sign errors are difficult to predict. Gathering
statistical information about the phenomenon is
difficult because each design error occurs only
once per system. The rapid rate of development
in hardware technology constantly changes the
set of design trade-offs, further complicating the
study of hardware design errors. In the last five
years there has been some progress in the use of
redundancy—using additional resources beyond
the minimum required to perform the task suc-
cessfully—to control software design errors.

Any source of error can appear at any stage;
however, it is usually assumed that certain
sources of error predominate at particular stages.
Furthermore, error-detection techniques can be
tailored to the manifestation of fault sources.
Thus, at each stage of system life there is a
primary methodology for detecting errors. In the
following discussion, the student of systems re-
liability must keep in mind the question, “At
what level and at what stage of the system
development does the subject matter apply?”
The two dimensions of physical level and tempo-
ral stage serve as a framework to relate otherwise
mutually exclusive factors. Later a third dimen-
sion, cost, will be considered.

ATTRIBUTES OF FAULT-TOLERANT
COMPUTING AND THEIR
DEFINITIONS

Fault-tolerant computing is the correct executior
of a specified algorithm in the presence of de
fects. The effect of defects can be overcome br
the use of redundancy. This redundancy can b
either temporal (repeated executions) or physice
(replicated hardware or software).

As in all systems design, system specifications
constrain the design space and thus the design
techniques that can be used. At the highest level
of specification, fault-tolerant systems are cate-
gorized as either highly available or highly reli-
able.

\vailability

"he availability of a system as a function of
ime, A(7), is the probability that the system is
iperational at the instant of time, ¢. If the limit
f this function exists as ¢ goes to infinity, it
xpresses the expected fraction of time that the
ystem is available to perform useful computa-
ons. Activities such as preventive maintenance
nd repair reduce the time that the system is
vailable to the user. Availability is typically
sed as a figure of merit in systems in which
:rvice can be delayed or denied for short peri-
ds without serious consequences.

eliability

he reliability of a system as a function of time,
(¢), is the conditional probability that the sys-
m has survived the interval [0, 7], given that it
as operational at time ¢+ = 0. Reliability is used
» describe systems in which repair cannot take
ace (as in satellite computers) or in which the
ymputer is serving a critical function and can-
»t be lost even for the duration of a repair (as
flight computers on aircraft) or in -which the
pair is prohibitively expensive. In general, it is
ore difficult to build a highly reliable comput-
g system than a highly available one because of
e more stringent requirements imposed by the
liability definition. An even more stringent
finition than R(f), sometimes used in aero-
ace applications, is the maximum number of
lures anywhere in the system that the system
n tolerate and still function correctly.

FUNDAMENTAL CONCEPTS 7

Two important stages in the development of a
system will be discussed next: the manufacturing
stage and the operational life stage. A third
important stage, design, is the subject of the
remaining chapters in Part I.

THE MANUFACTURING STAGE

A careless manufacturing process can make even
the most careful design useless. The manufactur-
ing stage begins with the final portion of the
prototype stage in a process called Design Matu-
rity Testing.

Design Maturity Testing

A Design Maturity Test (DMT) estimates the
Mean Time To Failure (MTTF) for a new prod-
uct before it is committed to volume manufac-
turing. The DMT is conducted to isolate and
correct repetitive systemic problems that, if left
in the design, would result in higher service costs
and customer dissatisfaction.

The DMT is accomplished by operating a set
of sample devices for a prolonged time (typically
six to eight units for two to four months) to
simulate actual field operation. In cases in which
the duty cycle of the equipment is less than 100
percent, the duty cycle under test may be in-
creased to 100 percent to accelerate testing. As
failures are observed and recorded, they are
classified according to such factors as failure
mode, time, or environmental cause. Similar
failures are then ranked in groups by decreasing
frequency of occurrence.

This procedure establishes priorities for elimi-
nating the causes. After the fundamental cause
of the failure is found and corrective design
action is taken, the operation of the modified or
repaired test samples provides a closed-loop
evaluation of the efficacy of the change. Repeat-
ing the procedure improves the design of the test
samples until their estimated MTTF meets the

8 THE THEORY OF RELIABLE SYSTEM DESIGN

Reject

Continue testing

Failures

0 16
Unit test hours

Figure 1-2. Reliability Demonstration Chart for
monitoring the progress of a Design Maturity Test.

specifications with a certain statistical confi-
dence.

The progress of the test can be monitored with
a chart prepared in advance for the product
under test, shown in Figure 1-2 [von Alven,
1964], which provides an objective criterion for
judging the MTTF of a product with a predeter-
mined statistical risk. The construction of the
chart is determined by four parameters:

+ Specified MTTF, ©,

+ Minimum acceptable MTTF, ©,

+ Consumer’s risk, a. This is the probability that a
product with an MTTF lower than ©, will be
accepted.

+ Producer’s risk, B. This is the probability that a
product with an MTTF higher than 0, will be
rejected.

A ratio of 0 to ®; between 1.5 and 2 to 1 is
typically used. Consumers’ and producers’ risks
are commonly taken to be 20 percent. Operating
time in unit hours is the abscissa, and number of
failures is the ordinate. The resultant perform-
ance line is a staircase that moves up and to the
right as test experience accumulates. The chart is
divided into three areas: accept, reject, or con-
tinue testing. When the performance line crosses
into the accept region, the test samples” MTTF is
at least equal to the minimum acceptable MTTF
(with the predetermined risk of error), and the
design should be accepted.

If the performance line crosses into the reject
region, the MTTF of the design is probably
lower than the acceptable minimum with its
corresponding probability of error; testing
should be suspended until the design has been
sufficiently improved and it can reasonably be
expected to pass the test.

Incoming Inspection

Figure 1-3 depicts typical steps in the volume
manufacturing process. Note the alternating pat-
tern of test/inspect and fabrication [Foley, 1979].
Incoming inspection is an attempt to cull weak
or defective components prior to assembly into
subsystems. All semiconductor processes yield a
certain number of defective devices. Even after
the semiconductor manufacturer has detected
and removed these defective devices, failures wil
continue to occur for a time known as the
“infant mortality period.” This period is typical
ly 20 weeks or less, during which the rate o
failures continues to decline. At the end of thi:
period, failures tend to stabilize at a constan
rate for a long time, sometimes 25 years or more
Ultimately the failure rate begins to rise again, i1
a period known as wear-out. This variation 01
failure rate as a function of time is illustrated b’
the bathtub-shaped curve shown in Figure 1-4.
Over the years, with the accumulation of expe
rience in the manufacture of semiconducto
components, the failure rate per logic device ha
steadily declined. Figure 1-5 depicts the numbe
of failures per million hours for bipolar techno
ogy as a function of the number of gates on
chip. The curves Mil Model 217A were derive
from 1965 data. The curves Mil Model 217B (se
Appendix D) and Mil Model 217C (see Apper
dix E) were generated from a 1974 reliabili
prediction model. Actual failure data are als
plotted to calibrate the 217B and 217C model
The curve Field data was derived from a yea
long reliability study of a sample of video term
nals [Harrahy, 1977]. The curve Life cycle da
was derived from elevated temperature testing -

I

Incoming
component
inspection
Printed
circuit
board
fabrication
Backplane Board P::inte:tti
assembly assembly [bard test
Board
Backplane inspection
test and functional
test
System
assembly
System
test

|

igure 1-3. Typical steps in the manufacture of a
ligital system. (© 1979 IEEE.)

‘hips, followed by application of a mathematical
nodel that translated the failure rates to ambient
emperatures [Siewiorek et al., 1978b]. Finally,
he improvement in the 3,000-gate Motorola
AC6800 is plotted [Queyssac, 1979].

Two trends are noteworthy. First, there is
10re than an order of magnitude decrease in
ailure rate per gate. Plots of failure per bit of
ipolar random access memory indicate that the
iilure rates per gate and per bit are comparable
or comparable levels of integration.

Obviously, the chip failure rate is a function of

FUNDAMENTAL CONCEPTS 9

Wear-out

Infant Normal
mortality lifetime period
period

Failure rate

Approximately 5 to 25
20 weeks years
Time

Figure 1—4. Bathtub curve depicting component
failure rate as a function of time.

chip complexity and is not a constant. Failure
rate per function (gate or bit) decreases by one
order of magnitude over two orders of magni-
tude of gate complexity and two to three orders
of magnitude of memory complexity. The failure
rate decreases in direct proportion to increases in
complexity.

The second trend is that the MIL-
HDBK-217B model predicted an increase in
failure rate per function beyond about 200-gate
complexity, presumably because of the immatu-
rity of the fabrication process at that scale of
integration at that time."

Now consider a system composed of a con-
stant number of semiconductor chips. Because
the chips double in density every one to two
years, the number of functions, £, in the system is
proportional to changes in time, Az

fmzﬂl

where ¢ is time in years. The failure rate per
function, from Figure 1-5, is proportional to the

* The switch from a polynomial to an exponential function
in number of gates occurs at 100 in 217B and 1,000 in 217C.
This reflects the improvements in the fabrication process
over time. See Appendixes D and E.

10 THE THEORY OF RELIABLE SYSTEM DESIGN

Mil Model 217A
(1965a)

Mil Model 217A
I(1965b)

0.1

~ Life cycle data
NQ_ (elevated temperature and

2
= O temperature translated)
>q<.a Mil Model 217B
= Field data (1974)
% 0,01 (ambient temperature)
g
2
o
v Motorola MC 6800
5 o (1974)
£ o (1975)
Mil Model 217C
0.001 (1979)

o (1976)

® (1977)
0.0001 L | 1 L L | I) L I ORI |

1 10 100 1000 10,000

Number of gates

Figure 1-5.

square root of the number of functions per chip:
r o fl/ 2

Hence

r o 2AI/2
and the Mean Time To Failure (MTTF) is

1
MTTF « 7 W
This implies that over a 10-year period a system
with the same number of semiconductor chips

has increased its logic complexity by a factor of

Failure rate per gate as a function of chip complexity for bipolar technology.

1,024 and decreased its MTTF by a factor of 32.
Hence, system reliability has not kept pace with
system complexity. Complex, high-performance
machines are on the verge of becoming virtually
unusable. For example, when the Los Alamos
Scientific Laboratory evaluated the reliability of
its CRAY-1 over a 6-month period, the mean
time to failure was found to be four hours
[Keller, 1976]. The average repair time was only
about 25 minutes, due to the skilled on-site
maintenance crew. Even so, this represented the
loss of about 100 billion potential machine oper-
ations [Avizienis, 1978]. Gains in system reli-

ability cannot be attained from improved com-
ponent reliability alone. Redundancy must be
introduced. Redundancy techniques are the sub-
ject of Chapter 3.

The cost of component failure depends upon
the level at which the failure is detected: the
higher the level, the more expensive the repair.
Fault detection at the semiconductor component
level minimizes cost. Fault detection at the next
highest level, the board, has been estimated at
$5; at the system test level, $50; and at the field
service level, $500 [Russel, 1980]. The level at
which a computer manufacturer detects initial
and infant mortality failures is a function of the
incoming test program chosen.

Even relatively low semiconductor failure
rates can cause substantial board yield problems,
aggravated by the density of the board. Consider
a board with forty semiconductor devices that
have an initial failure rate of 1 percent:

Probability board not defective = (0.99)%
= 0.669

The benefits of an incoming inspection program
can be easily quantified. The value of culling bad
semiconductor components before they are in-
serted into the board is the most easily measured
benefit. Board/system test savings, inventory re-
duction, and service personnel savings depend
on the particular strategy used. To calculate the

' The same semiconductor evolution that has led to in-
creased reliability per gate or bit has also introduced new
failure modes. The smaller dimensions of semiconductor
devices have decreased the amount of energy required to
change the state of a memory bit.

The loss of memory information caused by the decay of
radioactive trace elements in packaging material has been
documented. Studies show that even in sheltered environ-
ments such as well-conditioned computer rooms, soft errors
are 20 to 50 times more prevalent than hard failures. Soft
errors also exhibit clustering (a high probability that, once
one error has occurred, another will occur soon), workload
dependence (the heavier the system workload, the more
likely an error), and common failure modes (more than one
system, or portion of a system, affected simultaneously).
Semiconductor failure rates and failure modes are dis-
cussed in detail in Chapter 2.

FUNDAMENTAL CONCEPTS 11

value of removing defective components at in-
coming inspection, multiply the number of bad
parts found by the cost of detecting, isolating,
and repairing failures at higher levels of integra-
tion. The following formula estimates the total
savings:

D = 5B + 508 + 500F

where
D = dollar savings,
B = number of failures at board test
level,
S = number of failures at system test
level, and
F = number of failures in the field.

This formula can be translated into annual sav-
ings by considering total component volume and
mean failure rate data:

Potential annual savings
= annual component volume X
[(% initial failures)
(% failures detected at board level X $5
+ % failures detected at system level X $50)
+(% infancy failures)
(% failures detected at system level X $50
+ % failures detected in the field X $500)]
Typical savings for 100 percent incoming inspec-
tion can be estimated and compared with the
cost of the Automatic Test Equipment (ATE)
required to carry out such testing. Figure 1-6
(from [Russell, 1980]) shows the potential annual
savings as a function of annual component vol-

umes. A family of curves is shown for overall
failure rates of 0.8, 1.2, 2.0, and 4.0 percent.

Process Maturity Testing

The term process includes all manufacturing
steps to acquire parts, assemble, fabricate, in-

12 THE THEORY OF RELIABLE SYSTEM DESIGN

1,000 ; :) ;
i 112% /| |
35 ! ! ATE !
£ i 20% total costs
¢ 100 4-—~~--- e 7 et ettty B
e {T——- TNy iy ==
= | |
T e IR 4. 4 S Lecme -
£ 4.0% ! ! :
5 101 A A== 7ot
3 1 ! Facility yearly
! .
(=] | ' o[lxeratlng ccl)st
" 0.8% Total failures !
i — 1 1
10 100 1,000 10,000
Yearly component volume in thousands
Figure 1-6. Savings from screening and testing as

a function of defective component rate and annual
device volume.

spect, and test a product during volume produc-
tion. The rationale for Process Maturity Testing
(PMT) is that newly manufactured products
contain some latent defects built in by the proc-
ess that produced them.

A large number of units, about the first 120 off
the production line, are operated for 96 hours,

often in lot sizes convenient to the particular

production process. They are operated (burned
in) in a manner that simulates the normal pro-
duction process environment as closely as pos-
sible. If the burn-in and production process
environments differ significantly, appropriate
test results must be adjusted accordingly.

Infant mortality characteristics may fluctuate
significantly throughout the test lot. The com-
posite of these individual failure characteristics is
considered the “normal infancy” for the device.

The end of the burn-in period for production
equipment is determined by the normal infancy
curve thus derived from the PMT. The objective
is to ship products of consistently good quality
and acceptable MTTF after a minimum burn-in
period. Typical production burn-in times are 20
to 40 hours.

PMT is used to identify several classes of
failures. Infancy failures are problems generally
caused by parts that were defective from the time
they were received. In largely solid-state devices,
component problems will remain in this category
until identified and controlled by either incom-
ing inspection or changes implemented by the
component vendor.

Manufacturing/inspection failures are gener-
ally failures repaired by readjustments or re-
touching, such as a part damaged by the assem-
bly process or defects that bypassed the normal
incoming test procedures.

Engineering failures are recurrent problems in
the design that have not yet been corrected or
new problems not yet resolved because of lack of
experience.

Residual failures are problems that have not
yet recurred and for which there is no corrective
action except to repair when they occur. These
are the truly random failures.

Experience has shown that the three major
recurring problems usually account for 75 per-
cent of all failures. It is reasonable to expect that
the correction of the top four to six recurring
problems will yield a tenfold improvement in
MTTF.

THE OPERATIONAL LIFE STAGE

Maintenance and repair during the field opera-
tional stage are the customer’s primary contacts
with system reliability. In the early days of
computers, repairing a downed system was an
art. Diagnostics that were halted or trapped
when executing certain instructions did give
clues to the location of the failure but did not
pinpoint the failing Field Replaceable Unit
(FRU). To identify the failing FRU, technicians
swapped circuit boards one by one with “known
good boards” in the hope of eventually restoring
the system to proper operation. In time, diagnos-
tic techniques became better able to identify the
specific failed FRU before swapping any boards;

Alerts field service office

FUNDAMENTAL CONCEPTS 13

Passes on failure data

:_ Digital | Diagnosis Center (DDC)ﬁI
! [
Calls for DDC Alerts Informs Local Lo
Cust service service |engineer en [i)nDeeCrin office field di:%l:;ﬂ:ﬁt

ustomer | response ggroup 5 | service groups

I group | office

| I

' |

|

] Host computers !

| !

I IR R J

Performs auto-test

Performs failure analysis

Dispatches appropriate field service engineer and part

Passes on on-going improvements

Figure 1-7. Overview of DEC’s Remote Diagnosis Network.

then the failed board could rapidly be replaced
with a good one.

Unfortunately, as on-site repair time is de-
creased by better diagnosis, travel time to the site
becomes a limiting factor. At today’s labor and
transportation rates, the cost of travel time fre-
quently exceeds the cost of the actual repair.
Return trips, because the failed FRU was identi-
fied but the field service engineer had no replace-
ment along, are very cost inefficient. Alternative
service strategies have developed in response to
these factors, such as customer carry-in service
for small computers and service vans that carry
enough sets of spare parts to permit long absenc-
es from the branch field service office.

A good example of a current field service
approach is Digital Equipment Corporation’s
Digital Diagnosis Center (DDC). An overview of
the network operation is shown in Figure 1-7.
When customers detect or suspect a computer
malfunction, they call a special telephone re-
sponse line that is attended 24 hours a day, seven
days a week. The heart of the DDC is a dual

PDP-11/70 configuration with auto-dial equip-
ment. Once attached to the customer’s failing
computer (typically within 15 minutes), the DDC
host system directs the diagnosis process based
on results produced by the system under test. A
configuration file is kept on each system sup-
ported. The DDC host executes the appropriate
diagnostic “scripts,” which simulate the thought
processes of an on-site field service engineer.
Each script executes a diagnostic sequence that
can be modified according to the error responses
generated by the computer being tested.

At the same time, the remote diagnosis spe-
cialist puts the local field service office on alert
for a probable call. When initial diagnostic re-
sults are available, an engineer in the DDC
reviews them and may then initiate further auto-
matic tests or take direct control of the system
under test.

When the analysis is complete, the problem
will be described to the local field service branch
office, which then dispatches the right person
with the right part to the site. The on-site field

14 THE THEORY OF RELIABLE SYSTEM DESIGN

engineer replaces the predetermined failed part
and verifies the resolution of the problem. Final
results of the corrective action are transmitted to
the DDC to update the system’s maintenance
log. Information about problem areas in various
computer systems is passed on to the engineering
development groups for improvements in the
future.

COST OF OWNERSHIP

The third dimension of the reliability framework,
in addition to physical and temporal stage is
cost. The cost of a computer system is not
limited to initial purchase; significant costs recur
during the life of a system. As a result, computer
owners frequently develop mathematical models
that enable them to make optimal decisions,
minimizing the total cost of ownership.” Follow-
ing is a description of some of the more signifi-
cant costs:

Purchase Price. The purchase price of a com-
puter, though significant, can represent less than
half the cost of ownership, computed on the
basis of net present value. The purchase price
usually includes system hardware, documenta-
tion, software license fees, training, and installa-
tion. The potential owner of a computer always
has renting and leasing alternatives to consider,
which can sometimes be advantageous in terms
of cash flow or net present value.

Site Preparation. Many computers require
special .operating environments. This may in-
clude special air conditioning, with closely con-
trolled temperature, humidity, and airborne par-
ticulate matter size and density. A large computer
may also require a raised floor for cabling. The
main power supply may require a separate trans-
former with three-phase service and Radio Fre-
quency Interference (RFI) filters. In some instal-

* These financial considerations are discussed in detail in
Chapter 6.

lations, an Uninterruptible Power Supply (UPS)
is essential to increase system availability or
prevent loss of data.

Maintenance. All computers require some de-
gree of preventive and corrective maintenance.
The user usually has the option of purchasing a
field service contract at a fixed price or paying
for field sarvice on a time-and-materials basis.
The maintenance can come from the computer
manufacturer, Original Equipment Manufactur-
er (OEM), a third party, or may be performed by
the customer. The trade-offs inherent in deci-
sions about when and how often to perform
preventive maintenance also affect cost of own-
ership.

Supplies. A computer system requires paper
for the printers, disks and tapes for the mass
storage devices, and other periodically replaced
material. Very significant, too, is the power re-
quired to run the computer. With ever-escalating
energy costs, supplying power to a computer for
its operational lifetime can be one of the most
significant expenses associated with ownership.

Cost of Downtime. Depending on the applica-
tion of the system, the cost of downtime can be
trivial or crucial. In a system that aequires
revenue, for example, the cost of downtime can
far exceed the actual purchase price. This param-
eter requires careful evaluation by the potential
customer.

Consider a system that has only an initial cost,
I, and a failure rate A. The cost, C, of owning this
system for n years can be expressed as:
n
c=1+3 b
i=1 (1 + D)
where
S; = the cost of one corrective main-
tenance call in year i
P, = the expected number of failures
during year i, and
D = the discount rate.

‘Reliability and
maintainability
features

Reliable
design

Development
plan

Marketing
plan

Service
cost

Sales
forecasts

FUNDAMENTAL CONCEPTS 15

Business
plan

Customer
satisfaction

Cost,
Maintenance r performance,
plan MTTF,
MTIR,
etc.

Figure 1-8. Major activities in the design and marketing of a computer system.

The discount rate expresses the value of mon-
ey in terms of time. For example, if you need
$100 in two years and can get 10 percent annual
interest in a savmgs account, you need to put
away only $100/1.1> = $82.65 today. Here 10
percent represents the discount rate.

Assume that the failure rate is constant over
the period in question. Then

S;
€= I+Pz§1 (1+ D)
Further assume that the system has a five-year
life, that a service call costs $300, and that the
discount rate is 20 percent. Expressing A in
failures per million hours and noting the fact
that there are 8,760 hours in a year results in:

8760\ 2, 1
100 2

C=1+(300)— 2 12y

= I+ 7.86A

Consider a system that costs $21,000 and has a
failure rate of 6,500 per million hours (equivalent
to a Mean Time To Failure of 154 hours). Its
cost of ownership, using the assumptions above,
is $72,090. Now consider another system that

costs more to purchase, $27,500, but is more
reliable. Its failure rate is 4,400, or an MTTF of
227 hours. Its cost of ownership is $62,084.
Although the second system is 31 percent more
expensive to purchase, its 47 percent increase in
reliability results in a 14 percent reduction in
five-year cost of ownership.

UNIVERSE OF MODELS

 Figure 1-8 depicts the major activities in the

design and marketing of a computer system.
Each activity has a model that can be used for
predictive and evaluation purposes. The goal of
all these activities is to produce a system which
fulfills its intended use, thereby satisfying the
customer. Customer satisfaction is a complex
function of system cost, performance, reliability,
and maintainability.

Once the need for a system is established,
usually by technological or market pressures, a
design is developed. Enhanced reliability usually
involves some degree of hardware redundancy,
and maintainability improvements usually in-
volve the addition of self-testing circuits, both of

16 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 1-3. Parameters a designer can control,
their impact on system design goals, and typical
techniques used to achieve these goals.

Designable Example
Parameters Goals Techniques
Hard Failures
MTTF Tolerate Replication
MTTR Isolate Detection
Transient Faults-
MTTC Tolerate Detection/Retry

which increase the design effort and the product
cost. The goal should be to minimize the cost of
ownership.

Ideally, sales forecasts are expressed as a func-
tion of selling price. Thus, the cost of hardware
affects the sales forecasts and the business
plan. Reliability (MTTF) and maintainability
(MTTR) influence the field service plan. The
sales forecasts affect both the field service and
‘business plans. Coupled with the MTTEF,
MTTR, and sales forecasts, the field service plan
produces the service costs, which further affect
the business plan. Finally, the business plan
determines the marketing, manufacturing, and
field service strategies. Thus, all the components
interact with and influence one another, and a
modeling process underlies each component. Be-
cause financial plans vary greatly according to
markets, and indeed between companies in the
same market, this book focuses on evaluating
reliability (see Chapter 5).

THE DESIGNABLE PARAMETERS

The designer influences reliability (MTTF),
availability, and maintainability (MTTR) pa-
rameters in the model space of Figure 1-8. Table
1-3 illustrates the implication of these parameters
on the system design.

With increased customer interest in fault toler-
ance and constantly decreasing hardware costs,
there is a significant trend to implement more
fault tolerance in hardware. Hardware error tol-
erance has many advantages:

- Simplifies recovery for software and user applica-

tions

Saves time

Provides transparency to the user

- Increases probability of successful recovery, given
early detection

+ Decreases MTTR

Increases MTTF, MTTE (Mean Time To Error),

and MTTC (Mean Time To Crash)

- Simplifies software recovery and reduces depend-
ence on implementation

« Error detection logic can help isolate design errors
so that future implementations are even more reli-
able.

The goal of this book is to provide methodolo-
gies for designing and evaluating the use of
MTTF, MTTE, MTTC, and MTTR improve-
ment techniques in computer systems.

REFERENCES

Avizienis [1978]; Foley [1979]; Harrahy [1977]; Keller
[1976]; Queyssac [1979]; Russel [1980]; Siewiorek et
al. [1978b]; Siewiorek, Bell, and Newell [1982]; von
Alven [1964].

Faults and Their Manifestations

INTRODUCTION

Designing a fault-tolerant system requires find-
ing a way to prevent the logical fault that arises
from a physical failure from causing an error.
Figure 2-1 depicts the possible sources of an
error. The following apply [Avizienis, 1975]:

Failure. Physical change in hardware.

Fault. Erroneous state of hardware or software
resulting from failures of components, physical inte-
ference from the environment, operator error, or
incorrect design.

Error. Manifestation of a fault within a program or
data structure. The error may occur some distance
from the fault site.

Permanent. Describes a failure, fault, or error that
is continuous and stable. In hardware, permanent
failure reflects an irreversible physical change. The
word hard is used interchangeably with permanent.
Intermittent. Describes a fault or error that is only
occasionally present due to unstable hardware or
varying hardware or software states (for example, as
a function of load or activity).

Transient. Describes a fault or error resulting from
temporary environmental conditions. The word soft
is used interchangeably with transient.

«

A fault can be caused by a physical failure, an
nadequacy in the design of the system, an
:nvironmental influence, or the operator of the
iystem. ‘A permanent failure may lead to a
»ermanent fault. Intermittent faults can be
:aused by unstable, marginally stable, or incor-
ect designs. Environmental conditions can lead
o transient faults. All these faults can cause
rrors. Incorrect designs and operator mistakes
an lead directly to errors.

The distinction between intermittent and tran-
ient faults is not always made in the literature
Kamal, 1975; Tasar and Tasar, 1977]. The di-

17

18 THE THEORY OF RELIABLE SYSTEM DESIGN

Permanent Permanent
failure / fault
Incorrect
design
\ Intermittent
Unstable / fault
or Error
marginal
hardware
Unstable Transient
environment fault
Operator
mistake
Figure 2-1. Sources of errors.

viding line is the applicability of repair [Breuer,
1973; Kamal and Page, 1974; Losq, 1978; Savir,
1978]. Faults resulting from physical conditions
of the hardware, incorrect hardware or software
design, or unstable but repeated environmental
conditions are potentially detectable and repair-
able by replacement or redesign; faults due to
temporary environmental conditions, however,
are incapable of repair because the hardware is
physically undamaged. It is this attribute of
transient faults that magnifies their importance.
Even in the absence of all physical defects,

including those manifested as intermittent faults,
errors will still occur.

Transient and intermittent faults are already a
major source of errors in systems. An early study
for the U.S. Air Force [Roth et al, 1967a]
showed that 80 percent of the electronic failures
in computers are intermittent. Another study by
IBM [Ball and Hardie, 1967] indicated that
“intermittents comprised over 90% of field fail-
ures.” Table 2-1 depicts the ratio of measured
Mean Time Between Errors (MTBE) to Mean
Time To Failure (MTTF) for several systems
[Siewiorek et al, 1978a; Morganti, 1978;
McConnel, Siewiorek, and Tsao, 1979]. The last
row of this table is the estimate of permanent
and transient failure rates for a one-megaword,
37-bit memory composed of 4K MOS RAMs
[Geilhufe, 1979; Ohm, 1979). In this case, tran-
sient errors are caused by alpha particles emitted
by the decay of trace radioactive particles in the
semiconductor packaging materials. As they pass
through the semiconductor material, alpha par-
ticles create sufficient hole-electron pairs to add
charge to or remove charge from bit cells. By
exposing MOS RAMs to artificial alpha particle
sources, the operational life error rate can be
determined as a function of RAM density (Fig-
ure 2-2), voltage, and cycle time [Brodsky, 1980].

Transient errors have also been observed in
microprocessor chips [Brodsky, 1980]. Transient

Table 2-1. Ratios of transient to permanent errors.
Processor Processor MTBE/

System/Technology Mechanism MTBE MTTF MTTF
CMUA PDP-10, ECL Parity 44 hrs. 800-1,600 hrs. 0.03-0.06
Cm* LSI-11, NMOS Diagnostics 128 hrs. 4,200 hrs. 0.03
C.vmp TMR LSI-11 Crash 97-328 hrs. 4,900 hrs. 0.02-0.07
Telettra, TTL Mismatch 80-170 hrs. 1,300 hrs. 0.06-0.13
1M x 37 RAM, MOS (Parity) 106 hrs. 1,450 hrs. 0.07

10.0 -
E Actual
3
_s 1.0} -
© + Predicted
28 1
S -}
§ § 0.1}
= N
¢
2
= 0.01
(=]
=
0.001 L]

FAULTS AND THEIR MANIFESTATIONS 19

4K 16K 64K

Memory size in bits

Figure 2-2. Measured soft error rates vs. dynamic RAM densities. (© 1979 IEEE.)

errors will become even more of a problem in the
future with shrinking device dimensions, lower
energy levels for indicating logical values, and
higher-speed operation.

To design and evaluate the reliability and
availability of systems requires a fault model
How do faults manifest themselves as errors? Do
the arrival times of faults (or errors) fit a proba-
bility distribution? If so, what are the parameters
of that distribution? This chapter attempts to
answer these questions.

FAULT MANIFESTATIONS
Physical Defects

Physical defects are the lowest level in the hier-
archy of failures. There are numerous ways in
which a semiconductor chip can fail. Some fail-
ures result from defects in the manufacturing
process. Others are due to stress during normal
operation. The Reliability Analysis Center
(RAC) of the Rome Air Development Center

(RADC) collects reliability data from govern-
ment and industry on all phases of component
development, assembly, testing, and field opera-
tion. The data are summarized in publications
dealing with digital ICs, hybrid circuits, linear/
interface devices, memory/LSI, discrete transis-
tors/diodes, and nonelectronic parts.

Summary data are provided on device fall-out
rates (the percent that fail initial screening),
accelerated life testing (performed at high tem-
peratures), and field operation. Analysis indi-
cates the effect of package type, logic family,
complexity, temperature, . environment, and
screening class on failure rates. Detailed infor-
mation, listed in Table 2-2, is also given on each
individual test of a device.

Tables 2-3 through 2-7 illustrate some failures
observed in the RAC data as a function of
technology [Rickers, 1976; Klein, 1976]. Many of
the defects are related to manufacture and as-
sembly; others develop as a result of aging. To
eliminate as many of these defects as possible
before board insertion, various screening tests
are employed to stress devices and promote early

20 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-2. Typical data reported in RAC detailed

test information.

Device function

Test type
Life
Environmental/screening

Technology
Bipolar
MOS
MOS, silicon gate
CMOS

Device complexity
Manufacturer/part number

Package material/type
Ceramic
Ceramic-metal
Epoxy
Silicone
Phenolic
CAN
DIP
Flat-pack

Number of pins

Screening class
MIL-STD-883 class B
MIL-STD-883 class C
Selected screening
Previously subjected to burn-in
Previously subjected to environmental test
Commercial off-the-shelf

Rated operatiénal temperature

Ending date of test

Source of data
Part-level environmental test

Equipment-level reliability demonstration test

Equipment-level checkout and burn-in
Part-level burn-in
Part-level life test

Test type
Accelerated life (operating)
Autoclave
Bond strength
Burn-in
Constant acceleration
Electrical parameter measurement
Leak
Electrical measurement (functional)
High pressure
Humidity life (nonoperating)
Intermittent life
Lead fatigue
Mechanical shock
Moisture resistance
Dynamic operation life
Operating life (equipment-level)
Power cycle
Reverse bias life .
" Humidity life with reverse bias
Salt atmosphere
Solderability
Electrical measurement (static parameters)
Storage life
Temperature, vibration, and power cycle
Temperature cycle
Thermal shock
Varied frequency vibration
Visual inspection
Wearout life test
X-ray .

Stress level
Ambient temperature
Number of cycles
Minimum and maximum stresses

Number of devices tested

Total number of device hours

Number of failed devices

Description of failures

FAULTS AND THEIR MANIFESTATIONS

Table 2-3. Die-related malfunction summary for LS| device technologies.

Bipolar MOS CMOS
Failure No. No. No.
Classification Devices % Devices % Devices %
Surface 29 29.00% 78 45.09% 1 20.00%
Contamination 1 1.00 41 23.70 1 20.00
Inversion/channeling | 15 15.00 1 .58
Leakage 13 13.00 36 20.81
Oxide defects 14 14.00 43 24.86 2 40.00
Pinholes
Gate oxide 32 18.50 2 40.00
Field oxide 12 12.00 1 .58
NOC
Oxide fault/
breakdown 2 2.00 10 5.78
Diffusion defects | 1.00 17 9.83
Diffusion anomaly 3 1.74
Diffusion spike
Masking fault 1 1.00 14 8.09
Metalization defects 21 21.00 3 1.74
Open 3 3.00 1 .58
Short 16 16.00 1 .58
Pitted/corroded 1 .58
Smeared/scratched 2 2.00
NOC
Bond defects 5 5.00 7 4.05
Misplaced
Multiple bond
Smeared/overbonded
Lifted 4 4.00 7 4.05
Broken 1 1.00
Intermetallic
compound
Interconnection defects | 29 29.00 7 4.05
Open 6 347
Short 28 28.00 1 .58
Missing

(Table continues on next page)

21

22

THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-3—Continued

Bipolar MOS CMOS
Failure No. No. No.
Classification Devices % Devices % Devices %
Broken wire 1 1.00
Die (mechanical) 3 1.74 2 40.00
Cracked/chipped 1 .58
Die attach bond
defect 2 1.16 2 40.00
Degraded input cktry 1 1.00 15 8.64
Excessive leakage 1 1.00 13 7.48
Short 2 1.16
Table 2—4. Die-related failure modes: SSI, MSI, LSI CMOS.
SS1 MSI LSI
CMOS CMOS CMOS
Failure No. No. No.
Classification Devices % Devices % Devices %
Surface defects 26 37% 31 37% 8 50%
Contamination 22 31 22 27 8 50
Foreign material/
stray particles 2 2
Inversion/channeling 5 6
Surface leakage 2 2
Bulk defects 2 10 12 0 0
Crystal imperfections 1 9 11
Cracked, chipped die 1 1 1
Oxide defects 27 39 21 25 6 38
Gate oxide pinholes 8 1 2 2 5 31

Field oxide pinholes
Oxide fault

1 6

(Table continues on next page)

FAULTS AND THEIR MANIFESTATIONS 23

Table 2-4—Continued

WY} MSI LS]
CMOS CMOS CMOS

Failure No. No. No.
Classification Devices % Devices % Devices %

Oxide shoft/
breakdown 17 24 17 21

Glassivation defect 2 2 1 1

Diffusion defects 8 11 2 2 0 0
Diffusion anomaly

Diffusion spike/
piped junct.

Isolation defect
Mask fault 8 11 2 2

Metalization defects 4 7 8 10 2 12
Open at oxide step 2 3

Open at contact
window

Open/not specified 1 2 4 5 2 13

Short/interlevel
metal

Short/not specified 1 I
Pitted/corroded
Smeared/scratched 1 2 3 4

Electromigration

Input output circuit 3 4 12 14 0 0
defects

Excessive input

leakage 8 10

Input circuit short 3 4 2 2

Excessive output

leakage

Output circuit short 2 2

Total 70 84 16

24 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-5. Die-related defect summary: SSI, MSI,
LSI CMOS.

General Defect No.

Classification Malfunctions Relative Percent

Surface 65 38% Oxide (32%)

Bulk 12 7

Oxide 54 32

Diffusion 10 6 Surface (38%)
Metalization 14 8

Input/output

circuit 15 9

Table 2-6. Die-related failure modes: SSI, MSI, LS| standard TTL.

SS1 8TD MSI STD LSI STD
TTL TTL TTL
Failure No. No. No.
Classification . Devices % Devices % Devices %
Surface defects 51 20% 10 11% 5 8%
Contamination ’ 29 1 5 6 2 3
Foreign material/
stray particles 7 3 4 5 1
Inversion/channeling 11 4 1 2
Surface leakage 4 2
Bulk defects 24 9 5 6 0 0
Crystal imperfections 2 1 3
Cracked, chipped die 22 8 2 2
Oxide defects 27 10 10 11 22 33
Gate oxide pinholes
Field oxide pinholes 8 3 6 7 12 18
Oxide fault 19 7 3
Oxide short/
breakdown 5
Passivation defect 1 0 2
Diffusion defects 19 7 13 15 0 0
Diffusion anomaly 4 2 9 10
Diffusion spike/
piped junction 3 1 2 2
Isolation defect 1 0

(Table continues on next page)

FAULTS AND THEIR MANIFESTATIONS 25

Table 2-6—Continued
S§S81 STD MSI STD LSI STD
TTL TTL TTL
Failure No. ' No. No.
Classification Devices % | Devices % Devices %
Mask fault 11 4 2 2
Metalization defects 136 52 38 43 39 59
Open at oxide step
Open at contact
window 85 33 4 5
Open/not specified 13 5 10 11 11 17
Short/interlayer
metal 8 3 7 8 9 13
Short/not specified 22 8 15 17 17 26
Pitted/corroded 2
Smeared/scratched 1 2 2 2 3
Electromigration
Input/output circuit
defects 5 2 12 14 0 0
Excessive input
leakage 1 0 6 7
Input circuit short 2 1
Excessive output
leakage 1 1
Output circuit short 2 1 1 1
Total 262 88 66

Table 2-7. Die-related defect summary: SSI, MSi,

LSI standard TTL. §

4
General Defect No.)
Classification Malfunctions Relative Percent

Surface (16%)
Surface 66 16%
(2] [,
Bulk 29 7 Input/output
X circuit (4%)

Oxide 59 14 Metalization (51%)
Diffusion 32 8
Metalization 213 51
Input/output

circuit 17 4

26 THE THEORY OF RELIABLE SYSTEM DESIGN

failure. The majority of the test types in Table
2-2 are electrical, mechanical, or environmental
screens. Table 2-8 illustrates how tests can be
constructed to uncover multiple defect types.
Because screening consumes time, money, and
resources, how much screening is used is a major
decision. The optimum amount is a function of
screening costs, device costs, fall-out rate, and
cost of device failure in an assembled system.

Logic-Level Fault Classes

To determine the effect of failures on logic
functions, physical data such as those given in
the previous section must be used to generate
circuit-level fault classes, which in turn are used
to formulate logic-level fault classes. The ab-
straction process prevents proliferation of de-
tails. The following logic-level fault models have
been used successfully as abstractions of the
physical defect mechanisms:

Stuck-at. Logical values in lines, gates, pins, and
the like are permanently constrained to a value of 1
(s-a-1) or 0 (s-a-0).

Bridging. Two or more adjacent signal lines are
physically shorted together. In some logic families
this introduces an additional “wired-AND” or
“wired-OR” function.

Short or Open. These correspond to missing (open)
or additional (short) connections.

Unidirectional. Due to the geometric nature of cir-
cuits, some single failures can effect multiple signal
lines. An open circuit in a memory-select line may
cause a word to be incorrectly read as all 1s. The
multiple bits in error are all in the same logical
direction (that is, correct Os have been transformed
into incorrect 1s).

Faults have two other important properties:
extent and value. The extent of a fault may be an
independent occurrence (local) affecting a single
logical variable, or correlated with other simulta-
neous occurrences (related) because of the densi-
ty of logic elements or the failure of a common
element. The fault value may be determinate
(such as s-a-1) or indeterminate (for example,
varies between logical 0 and 1).

System-Level Abstractions

The manifestations of intermittent and transient
faults and of incorrect hardware and software
design are much harder to determine than per-
manent faults. The permanent fault models often
can be applied to intermittents; however, be-
cause the fault is present only temporarily and
because most contemporary computer systems
do not have substantial on-line error detection,
the normal manifestations of an intermittent are
at the system level (such as system crash or I/O
channel retry). Transient faults and incorrect
designs do not have a well-defined, bounded,
basic fault model. Transients are a combination
of local phenomena (such as ground loops, static
electricity discharges, power lines, and thermal
distributions) and universal phenomena (such as
cosmic rays, alpha particles, power supply char-
acteristics, and mechanical design). Even if mod-
els could be developed for transients and incor-
rect designs, they would quickly become obsolete
because of the rapid changes in technology.

Consider now the types of system-level mani-
festations that might be expected from intermit-
tent faults, transient faults, and incorrect design.
The experience reported below, derived from an
extensive study of system crashes on C.mmp, a
multiprocessor in which 16 processors converse
with 16 memories through a crosspoint switch,
indicate that system-level fault behavior is com-
plex. There is a large gap between logic-level
fault models and system-level manifestations.
Much work remains to be done before an accept-
able system level model can be developed.”

Memory parity failures have, with rare excep-
tion, been the most common failure mode, ac-
counting for 50-100 percent of the system crashes.
Most are transient, but permanent errors occur
with regularity. Often the memory failure rate
had largely determined the Mean-Time-To-
Crash (MTTC).

* The remainder of this section is excerpted and adaptec
from Siewiorek et al., 1978a.

Table 2-8. Screening test summary.

Screening Tests

Wafer probe
Wafer inspection
Precap inspection
Stabilization bake
Thermal cycling
Thermal shock
Hermeticity
Centrifuge
Mechanical shock
Vibration
Burn-in
Radiographic
External visual

Scanning Electron Microscope

>

> o>
E I S

E

SNOILVLSHAINVIA dIdHL ANV SL1NVd

x4

28 THE THEORY OF RELIABLE SYSTEM DESIGN

It is always difficult to locate the source of
transient failures. Transient failures have been
an especially large problem on C.mmp, since
there are few trace points in most data paths.
Not including powerful debugging aids in the
logical design has continuously hampered devel-
opment. There was little that could be done for
the processors, but aids could have been incor-
porated in all the custom-built logic. A similar
weakness became evident in the software: often
information about a failure was lost by the
operating system, making recording of the condi-
tions for transients unreliable.

A transient failure that has eluded solutions is
the problem of “false NXMs.” The processor
reports a nonexistent memory (NXM) exception,
but subsequent analysis shows that the memory
is responding, and the instruction, registers, and
index words are well-formed. No exception
should have resulted. Timing problems are sus-
pected, but there is insufficient information
available to isolate the failure.

Other long-standing transient failures are
stack operation problems. This usually appears
as an incorrect execution of subroutine call/
return instructions or interrupt entry/exit mis-
takes. The most common form of the error is
having one too many (or few) words pushed (or
popped) from the stack. The transient is rela-
tively rare, and no method of recovering from it
has been developed.

A pleasant surprise is the reliability of the
crosspoint switch; however, an early problem
required considerable effort to fix. Certain condi-
tions, characterized by a memory access not
completed by the UNIBUS master, could cause
the switch to deadlock, due to lack of a time-out
circuit in the memory port control logic. Any
other processor attempting to access the dead-
locked memory port would block until manually
cleared. This situation was often caused by
poorly designed 1/O controllers that recovered
from errors by simply aborting the current ac-
cess, with no regard for proper termination of
UNIBUS or crosspoint switch protocols. While

the known cases that caused deadlocked mem-

ory ports were isolated and individually reme-

died, the most important result was an apprecia-

tion of the design principle of mutual suspicion.

The crosspoint switch should never trust that an

operation started will necessarily be completed;
it must be prepared to time-out, clear itself, and

report a failure condition to the requesting pro-

Cessor.

The interprocessor bus is as unreliable as the
crosspoint switch is trustworthy. The reliability is
so poor that, if a cheap and highly effective
method of software recovery hadn’t been found,
the bus would be nearly unusable. The mode of
failure is transient loss of interprocessor inter-
rupts and changing interrupt level.

The data presented below were culled from the
crash reports produced by the C.mmp’s operat-
ing system’s suspect/monitor crash logging sys-
tem. These dumps must often be manually ana-
lyzed to determine the reason for the crash.
Sometimes, the reason cannot be found; always,
the analysis is error-prone. The crash records
were never intended as a precise reliability meas-
ure. Rather, they are a programmer’s and engi-
neer’s tool to isolate trouble spots in the system.
With this caveat in mind, the data may be
discussed.

A failure causing a crash may be the result of

" either hardware or software failure. Of the five

symptoms listed in Table 2-9, only parity failures
are necessarily caused by hardware. All the
others may be brought about by either, and
analysis is required to determine the actual
cause. The cause of most failures can be deter-
mined, but a substantial number of crashes of
unknown origin remain. Figure 2-3 restates the
data from Table 2-9 to show the contribution of
each of the five classes of errors.

The error frequency of software-related errors
is strongly related to the introduction of new
features. Being new and relatively untested, new
features are likely to have previously undetected
faults. Once the feature is installed, any errors
due to it are usually found and corrected very

Table 2-9. A summary of eight months of C.mmp crash data.

July (1) Aug. (2) Sept. (3) Oct. (4) Nov. (5) Dec. (6) Jan. (7) Feb. (8)
Date 1977 1977 1977 1977 1977 1977 1978 1978
Uptime (hrs.) 516.6 610.5 513.8 701.9 538.8 595.6 600.2 478.5
MTBF (hrs.) 5.9 7.6 29 9.4 8.7 16.5 154 . 7.3
Crashes
User 32 55 38 27 34 18 15 30
Nonuser 87 80 175 75 62 36 39 66
Crash Type
Software 20 7 35 33 34 » 11 7 16
Unknown 32 40 14 4 9 7 8 3
Hardware 35 33 126 38 18 18 24 47
Crash Symptom
System error 24 10 47 46 31 11 9 15
IInst™ 1 0 3 3 0 2 0 0
No response 13 33 34 3 4 4 10 10
NXM 14 13 32 4 9 5 2 14
Parity 32 24 57 17 18 14 18 21

*

MTBF = (Uptime)/(nonuser crashes)
** IllInst = Illegal Instruction

SNOILVLSHIINVIW JIFHL ANV SLINV4

30 THE THEORY OF RELIABLE SYSTEM DESIGN

.------- Total system crashes

Non-user caused crashes

—-—— Hardware and non-determined crashes
e Parity + NXM 4+ no response crashes
Parity error caused crashes

240
220 -
200
180
160 -
140
120
100

Number of system crashes

8 &8 & 8

1 1 [| 1 1 1]

0 1 2 3 4 5 6 7 8
Eight months period—from July (1), 1977
through February (8), 1978

Figure 2-3. C.mmp reliability: distribution of

crashes.

quickly. Therefore, the trend is bursts of errors,
with any particular error becoming less frequent
as time passes. The four months with high soft-
ware error counts all follow this trend, even
though new faults kept the counts high for
several consecutive months.

FAULT DISTRIBUTIONS
Probability Review

Before asking whether the arrival times of faults
fit a probability distribution, we must review
some probability theory. Central to the study of
probability is the notion of randomness. A phe-
nomenon is considered random if its future

behavior is not exactly predictable. Tossing a
pair of dice or measuring the time between alpha
particle emissions by a radioactive sample are
experiments that involve random phenomena. In
many cases it is more interesting to know the
value of a number associated with the experi-
ment under observation rather than the actual
outcome. Thus, there must be a function that
associates a number with every possible outcome
of an experiment. Such a function is called a
random variable. The time between any two
failures of an electronic component, the number
of jobs processed by a computer center in one
day, or the time to the next crash of a time-
sharing system are examples of random varia-
bles.

For each random variable, X, its Cumulative
Distribution Function (CDF), F(x), is defined as

F(x) = P[X < x] 1)

That is, F(x) is the probability that the event X
is less than or equal to x. If X is a discrete
random variable, all its possible values {x;,x;,
X3,...) can be put into one-to-one correspond-
ence with the positive integers. The probability
mass function (pmf), f(x), is then defined as

f(x) = P[X = x])

If X is a continuous random variable, its proba-
bility density function (pdf), f(x), is defined as

dF
f) =2 3)
such that, in general
b
P <x<b]=faf(X)dx @)

The two most important parameters used to
describe or summarize the properties of a ran-
dom variable, X, are the mean or expected value
E{X} and the variance o%. If X is discrete

EX} =2 xf(x;) = x.f(xp)
N (5)

+xpf(xp) + -

while if X is continuous

E(x) = [xf(x)ax 6)
The variance is defined as
o} = E{(x - E{x})") (7)

The mean acts as a kind of summary of what we
expect from a random variable, and the variance
measures the deviations of a random variable
from its mean. The standard deviation oy (the
square root of the variance) is also used to
measure the variability of a random variable
about its mean.

Two more functions are of particular interest
in reliability theory. If the random variable un-
der study is the time, 7, to the next failure of a
system or component the Reliability Function,
R(1), is defined as

R(t) =1 — F(2) (8)

= P[T > 1])

R(z) is thus the probability of not observing any
failure before time z.
Finally, the hazard function, z(¢), is defined as

f(2)

2() = T=FQ) (10)

With renewal processes techniques it can be
shown that z(¢ — 7)At is the conditional probabil-
ity that the nth failure occurs in the infinitesimal
nterval [¢,7 + Af) given that the (n — 1)st point
sceurs at time 7 [Snyder, 1975]. Hence, the units
of z(¢) are failures/unit time, and z(¢) provides a
lescription of how the instantaneous probability
>f failure evolves in time.

Exponential Distribution

[he exponential distribution is the one most
:ommonly encountered in reliability models.
Che probability density function (pdf), Cumula-
ive Distribution Function (CDF), reliability
unction, and hazard (failure rate) function of

FAULTS AND THEIR MANIFESTATIONS 31

the exponential distribution are shown in Equa-
tions 11 through 14 (for A > 0):

pdf = f(z) = Ae™V (11)

CDF=F(@)=1-¢™ (12)
Reliability = R(r) = e (13)
Hazard function = z(z) = A (14)

The parameter A is sometimes referred to as
the failure rate because (in reliability theory) it
describes the rate at which failures occur in time.

The failure rate, A, is usually assumed to be a
constant. In reality, A is usually a function of
time as depicted in the bathtub-shaped curve in
Figure 1-4. During early life there is a higher
failure rate, called infant mortality, due to the
failure of weaker components. Often these infant
mortalities result from a defect or stress intro-
duced in the manufacturing process. Once the
infant mortalities are eliminated, the system set-
tles into operational life, in which the failure rate
is approximately constant. The system then ap-
proaches wearout, in which time and use (such as
mechanical stress due to temperature cycling, ion
or metal migration) cause the failure rate to
increase. For most cases we will assume a con-
stant failure rate. For the exponential distribu-
tion, the mean is 1/A and the standard deviation
is 1/A.

Weibull Distribution

The Weibull distribution has two parameters: a
(the shape parameter) and A (the scale parame-
ter). The probability density function, cumula-
tive distribution function, reliability function,
and hazard (failure rate) function of the Weibull
distribution are shown in Equations 15 through
18 (fora > 0, A > 0):

pdf = f() = aAA)* ™" (15)
CDF = F() = 1 — ™" (16)
Reliability = R(f) = e~™)" (17)

32 THE THEORY OF RELIABLE SYSTEM DESIGN

Hazard function = z(f) = aA(A)*™' (18)

Note that the values of all these functions de-
pend on time only through the product of the
scale factor and time, Az.

Because the failure rate is given by (A7)*, the
shape parameter directly influences the failure
rate:

« if a < 1, the failure rate is decreasing with time;

« if @ = 1, the failure rate is constant with time,
resulting in an exponential distribution; and

« if a > 1, the failure rate is increasing with time.
(a = 2 is the special case of a linearly increasing
failure rate, known as the Rayleigh distribution.)

For the Weibull distribution, the mean (denot-
ed by p where p = E{x}) and standard deviation
(denoted by ¢ where ¢ = 0,) are defined as
follows in terms of a and A: }

p=T(a+1)/a)/A (19)
o = [T((a + 2)/a) = T*((a + 1)/2)]"?/A (20)

where the gamma function, I'(w), is given by

1% w1
fo p“" " exp(—p)dp.

The influence of the Weibull parameters on
the mean of the distribution is illustrated in
Figure 2-4. The maximum likelihood estimates of
the Weibull parameters for the recorded data are
indicated in the graph (see the section Distribu-
tions for Transients and System Errors below).
With only the mean and standard deviation
available, the Weibull failure rate can be deter-
mined to be decreasing, constant, or increasing
as follows:

+if p < o, the failure rate is decreasing;
« if p = o, the failure rate is constant;
- if u > o, the failure rate is increasing.

Geometric Distribution

If ¢ takes only the discrete times O, 1, 2, .. ., then
replacing exp[—A] by ¢ and ¢ by »n obtains the
discrete time geometric distribution correspond-
ing to the continuous time exponential distribu-

tion. The probability mass function, (pmf), cu-
mulative distribution function, and reliability
function of the geometric distribution are shown
in Equations 21 through 23 (for 0 < ¢ < 1):

pmf = f(n) = ¢" — ¢"*) = ¢"(1 - q) (1)
CDF = F(n) =1- 4" (22)
Reliability = R(n) = q" (23)

The mean, p, and standard deviation, o, of the
geometric distribution are defined as follows in
terms of ¢:

(24)
(25)

p=1/(1-4q)
o=4¢"Y(1-29q)

Discrete Weibull Distribution

Like the geometric distribution deriving from the
exponential distribution, the discrete Weibull
distribution is obtained from the Weibull distri-
bution by substituting ¢ for exp[—A*] and # for ¢
[Nakagawa and Osaki, 1975]. The probability
mass function, cumulative distribution function,
reliability function, and hazard function of the
discrete Weibull distribution are shown in Equa-
tions 26 through 29 (for 0 < g < 1):

pmf = f(n) = ¢™(1 — g"* V") (26)
CDF = F(n) = 1— g™ 27)
Reliability = R(n) = ¢™ (28)

Hazard function = z(n) = 1 — g+~ (29)

The mean, p, of the discrete Weibull function is
given by

0

z ¢ (30)
k=0
It is very difficult to derive a closed-form
formula for this sum for any ¢ and «. In this
book, the geometric distribution and the discrete
Weibull distribution are used only to approxi-
mate the exponential and Weibull distributions,
respectively.

FAULTS AND THEIR MANIFESTATIONS 33

0.250 -
0.225 |
0.200 Mean = 5.0 hours
0175
0.150
[}
°
£
£ 0125
i
o /—Mean = 10.0 hours
0.100 PDP-10 reload
o]
0.075 TOPSC reload
Mean = 25.0 hours
0.050 - = 50.0 hours
= 100.0 hours
0.025 | /~Mean = 200.0 hours
PDP-10 parity / /
6.000 I L | - I)
0.00 0.25 0.50 0.75 1.00 1.25 1.50
' Alpha

Figure 2—4. Means of Weibull distributions.

MATCHING SAMPLED DATA TO

MATH DISTRIBUTIONS

Maximum Likelihood Estimators

After the decision to characterize the failures of
a given system or component with a particular
distribution, the problem is to determine (esti-
mate) the values of the parameters of the distri-
bution from experimental data. One of the sim-
plest methods of estimation is that of maximum
likelihood [Melsa and Cohen, 1978]. Let X, be a
vector of observed data and let be a vector of
unknown parameters. If P(%,|0) is the probabil-
tty of observing X, given the parameters 6, the
maximum likelihood estimation of 8, 8,,; , is the
value of @ for which P(x,|0) is maximum, that is

‘or any value of 4.

Assume, for example, that the time to failure is
described by an exponential distribution. The
vector 7 = (7,7,...,Ty) is a collection of ob-
served times to failure and is needed to compute
the maximum likelihood value of A in the expo-
nential distribution. The function P(7|\) is given
by

P(FM))\e—)*r. X)\e—)\‘fz X oo X >\e>\TN (32)
5

A 7+NinA
i=1 (33)

= e

The function in Equation 33 will be at a maxi-
mum for A = A;,; . Maximizing the above func-
tion is equivalent to minimizing the function

34 THE THEORY OF RELiABLE SYSTEM DESIGN

N
fA =X 7—-NinA
i=1
Differentiating with respect to A and setting the
derivative equal to zero obtains the following
value of A:

N

Amr =

M=

T

i=1

which is equal to the inverse of the sample mean
time to failure.

Maximum Likelihood Estimation
of Weibull Parameters

The Maximum Likelihood Estimators (MLE)
ays and Ay, for the Weibull distribution satisfy
the following equations {Thoman, Bain, and
Antle, 1969]:

N
(Nap) + El In (Xy)
. (34)

N N
= nvx(Z xmoam) /(£ g
J= =1

N
()™ = N/ 2 X0 (35)
j=1
Once the value of the shape parameter is known,
Equation 35 can be used to calculate the scale
parameter A, . Equation 34 can be used to

derive a difference equation in the form

ayy,,, = Function (aMLl_,XN)

A quickly converging solution can be found by
using the Newton-Raphson method [Thoman,
Bain, and Antle, 1969]. The linear estimate of
ay; found by the linear regression analysis
described below is useful as an initial value for
the iterative solution process.

Linear Regression Analysis

Due to the computational complexity of obtain-
ing the MLE values, graphical linear regression

analysis of the cumulative distribution function
is often used to fit data to the Weibull function
[Berger and Lawrence, 1974]. This technique is
based on the transformation of the Weibull
cumulative distribution function (Equation 16)
into a linear function of /n (2):

In{in [1/(1 — FO)]} = aln (1) + « in (\) (36)

If the data are from a Weibull distribution, the
plot should approximate a straight line. The line
is fitted to the data by applying the method of
least squares to the transformed points [Miller
and Freund, 1965]. The slope of the straight line
is an estimate of «, and the Y-intercept divided
by the slope is an estimate of In(}A). The value of
the function F(¢) is estimated by

F) = (j—05)/N (37)

If nothing else, the results of linear regression
analysis are useful as an indication of the desir-
ability of performing the more involved analyses.

Confidence Intervals

Point estimates such as those obtained by linear
regression or maximum likelihood estimation are
only approximations and rarely match the values
they are intended to estimate. Because of this,
interval estimates are often desirable. These are
intervals that can be asserted with some certainty
to contain the actual value of the parameter
under consideration. The most common applica-
tion of this idea is expressed in “confidence
intervals.” For 0 < p < 1, a p-level confidence
interval is a range within which the actual value
of the estimated parameter would fall with prob-
ability p, if the experiment were repeated many
times. That is, to say that a certain range of
values is a 0.90 confidence interval for a param-
eter is to say that in repeated sampling, 90
percent of the confidence intervals so construct-
ed would contain the actual parameter values
[Miller and Freund, 1965].

Goodness-of-Fit Tests

After a distribution has been chosen to describe
the probabilistic behavior of failures of some
system and its parameters have been estimated,
a Goodness-of-Fit Test can give quantitative
information about the likelihood that the system
is actually following that distribution.

In a Chi-Square Goodness-of-Fit Test, each
observed value of a random variable is assigned
to one of k categories, Cj, ..., C,. Given the
total number of observed values, the expected
number of observations in each category is com-
puted according to the hypothetical distribution.
Let O; and E; be respectively the number of
observed and expected observations in category
i. The x? (chi-square) statistic is given by

X2 _ § (Oi - Ei)z

=1 E

The number of degrees of freedom of this x>
statistic is m = k — n — 1, where n is the num-
ber of parameters that have been estimated from
the same experimental data that are being used
in the test. A level of significance, a, must be
chosen such that the probability that a chi-
square random variable with m degrees of free-
dom will exceed xﬁ is a. (The values of x2 can be
‘ound in such tables as Pear, 1954.) If x> > x2,
‘he hypothesis that the failures are properly
characterized by the hypothetical distribution
nust be rejected. Otherwise, the hypothesis is
iccepted. Finally, it should be noted that all the
E; must be equal to at least 5. To make each
E;, > 5, it may be necessary to pool categories. A
‘easonable level of confidence is 0.05.

“xample 1

Data are collected from the file system of a time-
haring system about the times between transient
rrors in eight disk drives in an effort to discover
vhether the time between transient errors fol-
ows an exponential distribution. The estimated
alue of A is 0.1344 (time units in minutes)

FAULTS AND THEIR MANIFESTATIONS 35

corresponding to a MTBF of about seven min-
utes.

The total number of observed errors is 877 in
a five-day interval. Table 2-10 shows both the
data’s division into categories and the expected
number of errors in each category according to
an exponential distribution. For instance, the
first row in the table means that 548 errors were
observed with times between errors of 0-5 min-
utes, while an exponential distribution with A
= 0.1344 gives the.expected number of errors in
that range as 429.20 (given that the total number
of failures is 877). The remaining categories have
to be pooled until no E; is smaller than 5. The
result of this operation is shown in Table 2-11.

The number of degrees of freedom is m =
8 — 1 — 1 = 6 because there are eight different

Table 2-10. Data from transient errors in a time-
sharing file system.

Category O; E;
0-5 548 429.20
5-10 148 219.15
10-15 63 111.89
15-20 35 57.13
20-25 28 29.17
25-30 18 14.89
30-35 12 7.60
35-40 6 3.88
40-45 3 1.98
45-50 1 1.01
50-55 3 0.5178
55-60 2 0.2639
60-65 1 0.1347
65-70 1 0.06881
70-75 1 0.03514
75-80 1 0.01794
80-85 1 0.009160
85-90 1 0.004690
90-95 1 0.002395
95-100 1 0.001215
100-105 1 0.000627

36 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-11. Combining categories from Table
2-10.

Table 2-12. Time between crashes for a time-
sharing system during one month of operation.

The times between crashes of a time-sharing
system (see Table 2-12) have been recorded for
one month of system operation. The goal is to
find whether the distribution of time between
crashes follows a Weibull distribution. The max-
imum likelihood estimates of the Weibull param-
eters are A = 0.0888, and a = 0.98 (time units
in hours) corresponding to a time between crash-
es of about 11 hours. Table 2-12 gives the
observed counts in several ranges of time be-
tween crashes.

After the pooling of categories so that no E is
smaller than 5, Table 2-13 is obtained.

The number of degrees of freedomism = 9 —
2 =1 = 6. For a x* random variable with six
degrees of freedom, X(2).05 = 12.592. Because x>
< x24s. the hypothesis that the distribution of
the time to crash is a Weibull is accepted.

Another Goodness-of-Fit statistical test is the
Kolmogorov-Smirnov. The Kolmogorov-Smir-

Category O E; (0; — E)*JE; Category (hours) 0,
0-5 548 429.20 32.88 0-1 6
5-10 148 219.15 23.10 1-2 3

10-15 63 111.89 21.36 2-3 5

15-20 35 57.13 8.57 34 2

20-25 28 29.17 0.04 4-5 7

25-30 18 14.89 0.64 5-6 3

3035 12 7.60 2.53 6-7 1

35-00 25 7.93 36.74 7-8 1

Total x> = 125.86 59 3
9-10 4

10-11- 2

11-12 1

A 12-14 2

categories and one parameter (A) has been esti- 14-15 2

mated from the data. For six degrees of freedom, 15-16 1

X(2).05 = 12.592. Since x> > X(2).05’ the hypothesis 16-17 1

that the time between errors has an exponential 17-18 3

distribution must be rejected. 18-21 1

21-24 4

. 24-29 1

Example 2 29-38 3

38-75 2

Table 2-13. Combining categories from Table

2-12.

Category

(hours) 0; E; (0, - E)/E;
0-2 9 9.97 0.09
2-4 7 8.17 0.16
4-6 12 6.79 3.97
6-8 2 5.67 2.37
8-11 9 6.80 0.70
11-15 5 6.66 041 .
15-20 5 5.61 0.06
20-28 6 5.14 0.14
280 5 5.13 0003

Total x* = 795

nov test has been developed for known parame-
ters or for exponential distribution [Lilliefors,
1969). If the parameters of the distribution are
estimated from the experimental data or the
distribution is not exponential, the Kolmogorov-
Smirnov test may give extremely conservative
results.

DISTRIBUTIONS FOR
PERMANENT FAULTS:
THE MIL-HDBK-217 MODEL"

The Reliability Analysis Center has extensively
studied statistics on electronic component fail-
ures. The data have led to development of a
widely used reliability model of chip failures, the
MIL-HDBK-217. A more detailed explanation
of the model is found in Appendixes D and E.

For MIL-HDBK-217B, the reliability function
is assumed to be an exponential with the failure
rate for a single chip taking the form:

N = map(Cymr + Cymg) mp

where

7; = a learning factor based on the
maturity of the fabrication
process; it assumes a value of 1
or 10;

my = a quality factor based on incom-
ing screening of components;
values range from 1 to 150;

7r = a temperature factor based on
the ambient operating temper-
ature and the type of semicon-
ductor process; values range
from 0.1 to 1000;

g = an environmental factor based
on the operating environment;
values range from 0.2 to 10;
and

Gy, Cynp = complexity factors, based on the

number of gates (for random
logic) or bits (for memory) in
the component, and the num-
ber of pins.

" This section was adapted from Siewiorek et al., 1978a.

FAULTS AND THEIR MANIFESTATIONS 37

With the rapid rate of technological advance,
new component types are continually being in-
troduced. In addition, because the learning curve
for any component type changes as field experi-
ence accumulates, there is some question of the
accuracy of MIL-HDBK-217B, particularly with
regard to newer technologies such as MOS
RAMs and ROMs.

Typical component failure rates are in the
range of 0.1-1.0 per million hours. Thus, tens of
millions of component hours are required to gain
statistically significant results. Two separate ap-
proaches can be used to gather sufficient data for
comparison with the MIL-HDBK-217B model:
life-cycle testing of components, and analyzing
field repair information. The following subsec-
tions summarize typical results from each of
these approaches.

Life-Cycle Testing and Field Data

Life-cycle testing involves a small number of
components in a controlled environment. Fre-
quently, temperature is elevated to accelerate
failure mechanisms. A translation factor is then
used to equate one hour at elevated temperature
to a number of hours at ambient. The translation
factor is usually derived from the Arrhenius
equation:

R = Ae E/kT

where

reaction rate constant,

a constant,

activation energy in electron-
volts,

Boltzmann’s constant, and
absolute temperature.

R
Il

N >
n

These accelerating factors are often extrapolated
into regions (such as ambient temperature oper-
ations) where there are very few corroborating
data. Because of the exponential in the Arrhen-
ius equation, accelerating factors can become
quite large.

38 THE THEORY OF RELIABLE SYSTEM DESIGN

In addition, there is little consensus on the
appropriate activation energy. Activation ener-
gies of 0.23-1.92 eV have been used. The temper-
ature factor of MIL-HDBK-217B assumes an
activation energy of 0.41 eV, whereas MIL-
STD-883A (used to qualify components for
procurement) assumes 1.02 eV.

Consider conversion from 125°C to 50°C. The
ratio of the MIL-STD-883A acceleration factor
to the MIL-HDBK-217B acceleration factor is
62. This means a factor of 62 difference in
predicted failure rate, A, from the same life-cycle
test data. Figure 2-5 depicts the various acceler-
ation factor models.

Furthermore, the Arrhenius equation assumes
only one activation energy, and the acceleration
factor is assumed to be a uniform function of
temperature. Assuming a . straight line (on a
semilog scale) can result in substantial errors.
Figure 2-6, from Signetics, illustrates the nonli-
near behavior.

Consider three test points, 150°C, 125°C, and
85°C. Drawing a best-fit straight line through
these points in Figure 2-6 on the 1970 curve
yields a rate of about 0.0002 at 25°C, whereas
the 25°C observed point is 0.0013, too low by a
factor of 7. The same three points on the 1975
curve suggest a failure rate of 0.06 instead of
0.0017, too high by a factor of 35.

With the MIL-HDBK-217B model, high tem-
perature testing calibrates only the temperature
portion. The environmental effects of aging and
mechanical stress are not measured, even though
- these effects can range from 10 percent (at high
temperature) to 70 percent (at low temperature)
of the predicted failure rate.

One last problem with using high-temperature
life-cycle testing is that semiconductor manufac-
turers usually lump test data by process (bipolar,
MOS), thus hindering comparison with the MIL-
HDBK-217B complexity factors.

Given the problems listed above, data from
several field sources were combined, using cer-
tain assumptions to establish commonality. First,
data for chips with a low-level complexity (that

is, SSI, MSI) will be discussed. These data repre-
sent over 3 billion hours of operation (of which
137 million were at high temperatures). The data
sources were:

.

RADC: A list of life-cycle test data as a function
of device complexity. Most were from high-temper-
ature testmg Some data about test temperatures
were missing.

Signetics: High-temperature testing with data
lumped by process; some individual test data by
component number, but usually a small number of
component-hours. An activation energy of 0.41 eV is
assumed and calibrated by experiment for bipolar
component temperature translation.

Sanders Associates: Analysis of field data.

Figure 2-7 was made using a transistor junc-
tion temperature of 50°C, a temperature-acceler-
ating factor corresponding to 0.41 el activation
energy, and adding in the MIL-HDBK-217B
predicted environmental portion. The RADC
data are raw and were not temperature translat-
ed because a significant percentage did not have
a test temperature recorded. The two anomalous
points in the RADC data (at 20 and 58 gates)
should be treated as suspect because they had
the least number of test hours—Iless than a
million.

The temperature-translated data in Figure 2-7
track the MIL-HDBK-217B model generally
within a factor of 2; the Sanders Associates data
were in close agreement.

The Reliability Analysis Center (RAC) of the
Rome Air Development Center (RADC) has
also collected field failure rate data. Figure 2-8
depicts 50 collections of field data representing
SSI and MSI complexity devices from various
screening classes and operating in various envi-
ronments [Nickolls, 1979]. Altogether 0.921
x 10° device operating hours and 328 failures are
represented. For most of the data collections, no
failures were observed; hence only an upper 80
percent confidence limit can be plotted. For
those data sets with observed failures, both the
upper 80 percent and lower 20 percent confi-

FAULTS AND THEIR MANIFESTATIONS

Degrees Centigrade

300 250 200 175 150 125 85
100,000% 2 i ; 20 25
1 OH—T-1@) !
! I H A ! ! ! 1
60,000)(T | 4‘\ T ‘ | T T |
| (] ! % T
| | | |
N | |
| . | Il (6 |
20,000% | e S ©) | |
. \ d |
| | | { | . |
0 H L { - s i
10,000% ; Ir : ‘3)1.‘ . AN 3 ?r
6,000% (—— T | N "\ \ - T ——
| | ! \= l 4 } ;
| I \ K |
) l Lol NS ! L '
2,000% Ny t T —t t I |
I3 .
2 1,000X Jr S '[+ : | + v
9] + S } *‘ 4
= 600X |+ @(I-c] I | et
=t 1 T |
5 } +\ @ : NN [j\ B |
5 200 [AN (AN | [I
< x ‘ | NG AN IE ,
g | N NN \ 1R |
< 100% - ; . S M —H— 4
60X . HEASNY LN | - .
R N TN N\ L
i T L RN ™ \ X .
e SRR TN T T
20% —+ | | 3 I] | N\ \ A
!]] HIE T | L I B
I ! R S S NS s]
10% | | I | e dy PN N Py s |
] I ! NS N -
r T 3 :
6x : ll t I S N \5 N X -
i i p— -+ ' “f3 SR T
| | ! fe N d
! | N | NN
2X I] T I 1 T Y
Y A\
| I |] I I] | i g
1x Lt | i I | { { T
17 1.8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Temperature -————————
P °Kelvin x 1073
NOTES:
1. Calculated from the Signetics Failure Rate vs. and bipolar ECL devices in the normal modes
Temperature Graph in [Signetics, 1975]. Signet- of operation.
ics uses acceleration factors of 15 (for +85°C), 4, Calculated from MIL-STD-883A, 15 November
100 (foor +150°C), 200 (foor 175°C), 350 (for 1974. Figures 1005-4 and 1015-1 by extrapolat-
+200°C), 970 (for +250°C) and 2100 (for ing the time temperature regression graph from
+300°C) to relate to +25°C equivalent am- +78°C back to +25°C. The MIL-STD-883A
bient temperature. The +25°C to +125°C graph is the Bell Telephone Laboratories graph
segment of the graph is based primarily on (Specification A-8-689143, 16 January 1974, etc)
operating Mf:: data. The segment of the graph and as such applies to storage and operating T,
above +125°C is based on high temperature values and primarily surface inversion failure
storage data. The graph equates to an “activa- mechanisms. The graph equates to an “activa-
tion energy” £, = 0.4leV. tion energy” £, = 1.02eV.
2. Calculated from MIL-HDBK-217B, 20 Septem- 5. This curved graph is the resuit of plotting the
ber, 1974. Table 2.1.5.4. for 7 T; vs T; values. The “rule of thumb’ that failure rates (hence accel-
graph equates to an “activation energy” £, = eration factors) double for every + A 10°C.
0.41eV and is applicable to all bipolar digital | . ilabl si .
(except ECL) in the normal mode of operation. 6. All competitor data (avai able to ignetics) pro-
duced graphs falling within these two bounda-
3. Calculated from MIL-HDBK-2178, 20 Septem- ries, The two boundaries equate to “activation

ber,1974. Table 2.1.5.4. for « T; vs. T; values. The
graph equates to an "activation energy” £, =
0.70eV and is applicable to all MOS, all linear,

energies” E, = 0.23eV (for lower graph) and E,
= 1.92eV (for the top graph).

Figure 2-5. Failure rate acceleration factor vs. temperature graphs: Signetics and others.

39

.

40 THE THEORY OF RELIABLE SYSTEM DESIGN

Degrees Centigrade

300 200 175 150 125 85 25
10 — t t H +
1 I i N !
N N !
| IR i
Z.Qi ; L1 i]
o l B !
I = e e e :
0.6 , H 1 3
2 ! NI f i
2 N
e 02 3 Y o g
8 0.1 : t < N
® 1 T N\ N
- 0.06 } T N
5 | H N | AN
2 I 1 [\ |
S o002 | IR |
. | ! TN N |
§ | : | \ i NG N |
S 001y] t = ~1 t
& i 11 H N X T
PR T TN 1968
s | B | 1 N1975\ [
%] | . 1 Pt
= 0.002 N T
3 H IR R | O
‘s]] |] ™
S 0.001 L] ' } 1970~ 2
] T T T
0.0006 + 4 }
T T 1 ,l
[oty ! | |
0.0002 1 .
| b | | | |
0.0001 L1 | | | | | I
17 1.8 19 20 21 22 23 24 25 26 27 28 29 3.0 3.1 32 33 34

Temperature

1

°Kelvin X 1073

1968 1970 1975
Cat. | Both(e)| Cat. | Both(a)[cat. Both ()

HTSL 300°C | 21 21 21 21 21 21
HTSL 200°C | 0.22 0.48 0.20 0.46 0.2 0.46
HTSL 175°C | 01 0.29 020 028 02 0.28
HTSL 150°C | 032 0.40 0.182 0.20 0.155 024
HTSL & HTOL 125°C | 0.088 0.117 0101 0125 0.110 0.147
HTOL 85°C | 0.022 0.022 0.013 0.013 0104 0.160
HTOL 25°C | -0.0029 | 00038 | 00011 | 00013 | 0.0013 0.0017

NOTE:

1. The graphs were constructed to aid in the
analysis and dramatization of the effect of the
constituent parts of the failure rate equation.
All tabulated failure rates were obtained from

[Signetics, 1975] by combining life test data for
like temperatures. Note that life test results of
various die process technologies were indis-
criminately summed together for this study.

Figure 2-6. Assessed failure rate vs. temperature graphs from 1963 to 1975 for

catastrophic plus degradational failures.

— Mil Hdbk 2178 Model, T =50°C,
quality factor = 16
------- Signetics data with temperature translation
—=—= RADC data - unknown temperature
------- Sanders field data
Fairchild data

20

16
14
12 b
10 + /
0.8 | /

0.6 |-

T
o
=%
w)
T
s ©
=%
S E
- O
o o
5 A
F-3-]
Epv
g:
o
~c
Ee
g2
v=
SE
‘R
ke

04 |t/

0.0 | I 1 1 1)
0 10 20 30 40 50 60

Number of gates

Figure 2~7. Data from life-cycle testing.
(© 1978 IEEE.)

dence limits were calculated. The MIL-
HDBK-217B calculated values in general made
issumptions leading to optimistic predictions;
'or example, data from multiple sources operat-
ng in the 26-50°C junction temperature range
vere treated as one source operating at 26°C.
{ence the region where the predicted failure rate
s greater than the observed failure rate has been
xaggerated. Of the 50 data collections, 17 (34
rercent) have predicted failure rates greater than
wbserved, 7 (14 percent) have predicted failure
ates equal to observed, and 26 (52 percent) have
redicted failure rates less than observed. Of the
7 data collections with observed failures, 8 (47

FAULTS AND THEIR MANIFESTATIONS 41

percent) had a predicted failure rate greater than
that observed, and 2 (12 percent) a predicted
failure rate less than that observed. Even given
the difficulty in gathering enough data to gener-
ate statistically meaningful comparisons, the
MIL-HDBK-217B model for older technologies,
such as TTL, SSI, and MSI, appears relatively
accurate in absolute terms (i.e., within a factor of
two of observed data). For comparisons between
designs, then, the MIL model is more than
adequate for established technologies.

Now consider chips of LSI complexity, espe-
cially RAMs, and ROMs. The RAM and ROM
data, which are less extensive, are reproduced in
Table 2-14 along with a few points of MOS data.
The Signetics data were temperature-translated
to 50°C. The total failure rate and temperature-
dependent portion are listed separately to permit
comparison with high-temperature translated
test data. The Signetics data with a < symbol
are upper bounds in cases in which no failures
were observed.

For bipolar RAMs and ROMSs, the MIL-
HDBK-217B model for total failure rate tracks
within a factor of two and is generally pessimis-
tic. The temperature portion tracks less precisely.
It should be noted that the majority of these data
are from one source (Signetics).

For MOS RAMs, ROMs, and random logic
there are even fewer data, but they clearly indi-
cate that the MIL-HDBK-217B model is a factor
of 16-64 pessimistic. Because the MIL-
HDBK-217B model, published in 1974, was pro-
bably developed on 1972 data, MOS technology
was probably insufficiently mature when the
model was developed. :

Many parameters can be altered in MIL-
HDBK-217B to take into account process matu-
rity. For example, the complexity factor could be
modified with time because, as the process ma-
tures, more complex components are feasible. A
general rule is that memory doubles in complex-
ity every 1-1.5 years. To make the state-of-the-
art portion of the curve in 1977 correspond to
that in 1972, the complexity axis (number of bits)

42 THE THEORY OF RELIABLE SYSTEM DESIGN

10+1
Observed > Predicted
v
\ v
v v VIV v

100 -
z %, (4571
2 v
.g v v w v
> v
=]
~
ke
< v T I
T 101} M v v
2 g
2 T <
3
°
: { v 1
7]
2 P L
O 102}

Predicted > Observed
103 I 1 i
103 1072 1077 100 10+

Predicted failure rate (F/10° hours)

Upper 80% confidence
limit

Point estimate

Lower 20% confidence
limit

Y Upper 80% confidence limit
where no failures were
reported (lower 20% limit
nonexistent)

Figure 2-8. Digital-TTL integrated circuit observed vs. MIL-HDBK-217B pre- _
dicted failure rates of SSI (1-10 gates) and MSI (11-25 gates) complexity.

should be divided by 2* = 16 (that is, a com-
plexity derating factor of 16). This modified
MIL-HDBK-217B model is shown in the last
column of Table 2-14. The modified MIL-
HDBK-217B model does poorly on bipolar com-
ponents but is within a factor of three on MOS
components.

Figure 2-9 compares 32 collections of field
data on RAM failures with the failure rate
predicted by the MIL-HDBK-217C model
[Klein, 1979]. Of the 23 data collections with

observed failures, 17 (74 percent) have a predict-
ed failure rate greater than observed, 5 (22
percent) have predicted failure rates equal to
observed, and only 1 (4 percent) has a predicted
failure rate less than observed. Thirteen (57
percent) of the data collections have observed
failure rates more than a factor of 10 less than
predicted. Eleven of the 13 data sets are 1K and
4K MOS RAMs. The 217B/217C models are
extremely pessimistic on predicting LSI—espe-
cially MOS LSI—failure rates.

Table 2=14. ROM, RAM, and LS! life-cycle test data.

Failure Rate from
MIL Std 217B per
Million Hours
Reduced by a Factor

Failure Rate from
MIL Std 217B per
Million Hours
Reduced by a

Failure Rate
Observed per Million

Failure Rate from
MIL Std 217B per

Hours Million Hours of 16 in Bits Factor of 64 in Bits
Part Temperature Temperature Temperature
Description Source portion Total portion Total portion Total Total
Bipolar RAMs
256 bits Sanders .
Associates — 1.28 — 0.635 — 0.113 —
256 bits “Signetics 0.078 0.398 0.313 0.635 0.059 0.113 —
576 bits *Signetics <0.544 <0.797 0.511 1.000 0.096 0.173 —
1K bits *Signetics 0.068 0.852 0.723 1.51 0.267 0.136 —
Bipolar ROMs
256 bits *Signetics <0.44 <0.668 0.179 0.363 0.034 0.064 —
1K bits *Signetics 0.211 0.659 0414 0.865 0.078 0.153 —
2K bits *Signetics 1.75 245 0.629 1.33 0.118 0.236 —
4K bits *Signetics 0.053 1.173 0.955 2.06 0.179 0.364 —
Schottky PROMs
256 bits **RAC 0.073 0.265 0.179 0.363 0.034 0.064 —
1K bits “RAC 1.14 1.588 0.414 0.865 0.078 0.153 —
MOS RAMs
1K bits Sanders
Associates — 0.194 — 2.504 — 0.454 0.193
MOS ROMs
1K bits Sanders
Associates — 0.078 — 1.433 — 0.26 0.111
MOS Random Logic
8080 Micro-
processor "RAC — 0.418 — o — 0.616 0.293

* Temperature translation to 50°C
** Reliability Analysis Center, RADC

SNOILVISHAINVIA dIdHL ANV S1INVd

34

44 THE THEORY OF RELIABLE SYSTEM DESIGN

100
Observed > Predicted
- 100 |
E
e
=
é I
< 2
Y
- v
o
- 1.00
v
E A
-
%
2
¥
2
© o0
Predicted > Observed v
0.01 1 1 1
0.01 0.10 1.00 10.0 100

Predicted failure rate (F/10° hours)

Upper 80% confidence
limit

Point estimate

Lower 20% confidence
limit

V¥ Upper 80% confidence limit
where no failures were
reported (lower 20% limit
nonexistent)

Figure 2-9. Random access memory (RAM) observed failure rates vs. MIL-

HDBK-217C predicted failure rates.

Analysis of Permanent Failure
Data: Estimating the Distribution
and Its Parameters

Information about total systems can be analyzed
and then broken down into failure rate by com-
ponents. The major difficulties in this approach
are lack of control over the environments of the
systems and incomplete data. Various systems
have different configurations and are subjected
to different operating environments, tempera-
tures, and duty cycles. In addition, current repair

practices do not lend themselves to component-
level data analysis. Typically, a field engineer
will fix a system by board replacement. The
boards are then sent to a repair depot, where
they lose their identities and where repair actions
are often not recorded. Furthermore, the repair
activity may induce additional or future failures
when the boards return to the field.

With careful planning and documentation,
however, these difficulties can be overcome. In
one case, permanent failure data from the Cm*
multiprocessor were collected and the Mean

Time To Failure (MTTF) was calculated assum-
ing that failures were independent [Bellis, 1978].
The MTTF was obtained by dividing the total
time by the total errors. Because of the small
number of failures per module, a concept called
“module time” was introduced. Module time
allows data from all modules to be combined. If
there are £ modules running during a period of
time, then
k
module time = _21 L
=

where ¢; is the amount of time the ith module was
working. Assuming that all modules of a type are
identical, then the failures that were recorded in
real time can be transferred to a “typical” mod-
ule in module time. Table 2-15 depicts the mod-
ule time data for Cm*. The complexity in chips
referenced in the table is a measure of the actual
utilization of chips per module. In the DEC
LSI-11, the actual number of chip sockets used is
76, of which 72 contain digital ICs. The number
of chips used is recorded as 68, which implies
that the unused functions add up to 4 chips.

The next step was to determine the failure
distribution from the data. There are two basic
approaches. The first is to determine the instan-

FAULTS AND THEIR MANIFESTATIONS 45

taneous failure rate or hazard function, which
indicates the failure distribution. The second
method is to use statistical tests to differentiate
between distributions.

The following equation is used for plotting a
piecewise linear graph of the hazard function:

() = (0=l + 89) ()

The number of survivors at any time is given by
n(7). The choice of Ar is not specified and is
occasionally chosen to end just after each failure.
Another method of choosing the size of At, that
smooths out the curve, is to divide the total time
into equal intervals. The number of intervals is
given by the following equation [Sturges, 1926]:

k=1+33 lOglOM

where k is the number of intervals and M is the
number of failures. This latter method was used
for plotting data on the modules.

Data for these hazard calculations are com-
monly obtained through life tests. The data
obtained from Cm* differed from those of a life
test in that, when a failure was detected in a
module, the module was repaired and put back
into operation. Thus, some components in the

Table 2-15. Failure data on Cm#*,
Complexity #of Total Time Total MTTF

Module (Chips) Modules (Hours) Failure (Hours)
K.bus 138 3 36696 8 4587
P.map 106 3 37416 12 3118
M.micro 116 6 68328 4 17082

- M.data 142 3 37080 o2 18540
L.inc 116 3 22608 0 —
LSI-11 68 14 163200 10 16320
S.local : 126 10 120720 5 24144
4K memory 56 21 260568 5 52003.6
16K memory 104 10 122280 5 24456
Slu 28 17 223248 5 44649.6
Power board 6 16 195456 3 65152
Refresh 14 16 162912 0 -

Source: [Siewiorek et al., 1978a].

46 THE THEORY OF RELIABLE SYSTEM DESIGN

module were starting their operational life,
whereas others were in intermediate stages. A
second difference is that various modules had
different amounts of operating time. Due to the
few failures detected and the small number of
modules being tested, all the failure data must be
used. To accommodate the data on Cm*, a
replacement assumption is necessary.

The replacement assumption postulates that a
repaired module can be considered new. The
concept of module time described above is then
used along with this assumption to make effec-
tive use of the small amount of data available.
For example, consider the case of some set of
modules, {M;}. Each time some M, fails, it is
repaired and considered new in accordance with
the replacement assumption. The ith incarnation
of M, can be considered a new “virtual” module,
M; ;, which has a lifetime of 7 ; until it fails and
is in turn reincarnated as the new virtual module
M, ;. Thus, at any given time, the set of virtual
modules {M; ;} is such that each member of the
set either has suffered an incapacitating failure
or has not failed at all. Module time for this set
is then given by:

t, = 2 L
L)

A “typical” virtual module of the set {M;} is then
assumed to have been in use for time ¢,, and to
have suffered the same number of failures as the
set {M,}, taken as a whole. The hazard function
expression previously mentioned is then rede-
fined as follows:

F(t,t + Af)/n(2)
z(1) = —
where F(t,¢ + At) is the number of failures be-
tween time ¢ and time ¢ + Az, For these cases,
n(z) is always equal to one, that is, the “typical”
module.

There were only enough data on the modules
to construct four rough hazard functions. Figure
2-10 shows the modules known as the P.map,
K.bus, LSI-11, and the total system.

1 Interval = 309.8 days
3 -
3E _1__I
T T T T
P.map
2)
Interval = 382.25 days
3 ______
B :': ———— -
1 T T %
K.bus
3) Interval = 1700 days
4L
2
1 -
1 I T
LSI-11
4) 10}
S ___] -3
1
6 l
s g =
|
Interval = 50.6 days :
i
1
|
t
§
T

T T T T T
Cm* system

Figure 2-10. Hazard curves for P.map, K.bus,
LSI-11, and the Cm* system. (© 1978 IEEE.)

The graph of the P.map exhibits a decreasing
hazard function. This indicates a problem with
infant mortality; 9 of the 12 failures on the
P.map were attributed to one chip type, the
74373. The K.bus displays a constant or slightly
decreasing hazard function. Assuming it to be
constant, its value would be around two failures
per 382.25 days, which corresponds to an MTTF

of about 191 days. The LSI-11 curve indicates a
constant hazard function of 2.5 failures per 1,700
days, or an MTTF of 680 days. The final hazard
function depicted is that of the system using all
the modules. It is plotted using the first 304 days
after commissioning all modules. Over this peri-
od, an MTTF of 155.2 hours is indicated.

The MTTFs presented in Table 2-15 were
calculated by dividing the total time by the
number of failures. In the case of a constant
hazard rate, the MTTF was calculated by divid-
ing the length of an interval by the average
number of failures per interval. That these two
calculations are equivalent can be seen from:

MTTF for constant hazard rate
= (length of interval)/(average
failures per interval)
= (length of interval)/(total
failures)/(number of intervals)
= (total time)/(total failures)
= MTTF from Table 2-15

The results presented have been inconclusive. in
predicting the failure distribution. An exponen-

FAULTS AND THEIR MANIFESTATIONS 47

tial distribution is plausible, but a better test for
the data is needed. To accomplish this, the data
should be refitted to a generalized distribution
that has the exponential as a special case, such as
the Weibull. Table 2-16 presents the maximum
likelihood estimate for a and the 95 percent and
68 percent confidence intervals on a for the
various modules.

The data in Table 2-16 indicate a wide spread
in the maximum likelihood estimates of &, but in
all but two cases, « = 1 is enclosed in the 95
percent confidence interval. The 68 percent con-
fidence interval is able to enclose a = 1 for only
half the modules. This means that, although an
exponential failure distribution is plausible, ac-
tual data present enough variation that the im-
pact of an exponential failure assumption on the
system should be examined. It should be empha-
sized that the parameters above were estimated
using a small number of data points.

Table 2-17 gives the Maximum Likelihood
Estimator (MLE) of A and its 50 percent confi-
dence interval assuming the failure distributions
are exponential. Again, it should be emphasized
that this analysis has been based on a small
number of failures.

Table 2-16. Estimated parameters of the Weibull from failure data.

95% Confidence 68% Confidence

Interval on Interval on
Module . a ala + 1.96 \/o*(a)) ala * \/0?(a))
K.bus 0.721 030 : 1.15 0.50 : 0.94
P.map 0.537 029 : 0.79 041 : 0.66
M.micro 1.264 023 : 230 0.73 : 1.79
M.data 0.344 00 : 0.79 0.12 : 057
LSI-11 0915 041 : 142 0.66 : 1.17
S.local 0.584 0.1 : 1.07 0.34 : 0.83
4K memory 1.320 028 : 236 079 : 1.85
16K memory 1.945 0.40 : 3.50 1.15 : 2.74
Slu 1.348 0.25 : 3.08 0.79 : 191
Power board 1.295 0.0 : 267 0.59 : 2.00

Source: [Siewiorek et al., 1978a].

48 THE THEORY OF RELIABLE SYSTEM DESIGN

.Table 2-17. Calculated failure rates from data on Cm*.

A MTTF .50% Confidence Interval

Module (Fail/10°Hr) (Hours) (on MTTF)

K.bus 218 4587 33978 : 61674
P.map 320.7 3118 2461.6 : 3938.5
M.micro 58.5 17082 10932.5 : 26953.9
M.data 53.9 18540 9459.2 : 38625.0
L.inc — — -

LSI-11 61.3 16320 12553.9 : 21058.1
S.local 414 24144 16313.5 : 35822.0
4K memory 19.2 52113.6 352119 : 773199
16K memory 409 24456 16524.3 : 36284.9
Slu 224 44649.6 30168.7 : 66245.7
Power board 15.3 65152 38324.7 : 113307.8
Refresh — — —

Source: [Siewiorek et al., 1978a].

Four variants of the MIL-HDBK-217B model
were selected for comparison with actual data:
quality factors of 16 and 150, and LSI chip
complexity deratings of 1 and 16. The predicted
failure rates are shown in Table 2-18. The results
of comparing the data with various parameter
changes are shown in Table 2-19. They consist of

the observed failure rate, the best-fitting variant
of the MIL-HDBK-217B model examined, and
its associated failure rate prediction. This table
indicates that the modules tend toward a derat-
ing of the complexity of MOS chips by a factor
of 16. This result coincides with the conclusion
from life-cycle test data mentioned earlier.

Table 2-18. Predicted failure rates for Cm* components.

Quality Factor/Derating Factor

Complexity

Module (Chips) 16/16 16/1 150/1 150/16
K.bus 138 44.1 533 499.3 413

P.map 106 35.6 39.6 371.7 3337
M.micro 116 26.6 128.3 1203 249.2
M.data 142 354 146.5 1373.8 3324
L.inc 116 35.5 75.1 704.6 3328
LSI-11 68 29.9 379350.8 35568289.0 280.3
S.local 126 274 31.8 2984 256.8
4K memory 56 23.1 99.8 936 216.9
16K memory 104 74.1 380.9 3571.1 694.7
Slu 28 4.7 8.7 81.6 439
Power board 6 0.97 0.97 9.1 9.1
Refresh 14 2.6 2.6 24.9 249

Source: [Siewiorek et al., 1978a).

Table 2-19. Results of maximum likelihood ratio
test.

Failure Predicted
Module Rate Best Fit Failure Rate
K.bus 218 Q=150/16 413
P.map 3207 Q= 150/16 3337
M.micro 585 Q= 16/16 26.6
M.data - 539 Q= 16/16 354
L.inc —
LSI-11 613 Q= 16/16 29.9
S.local 414 Q= 16/1 31.8
4K memory 192 Q= 16/16 23.1
16K memory 409 Q = 16/16 74.1
Slu 24 Q0 =150/16 439
Power board 153 Q = 150/16 9.1
Refresh —

Source: [Siewiorek et al., 1978a].

The data on the P.map indicate a quality
factor of 150, with a derating factor of 16. As
was noted above, 9 of the 12 failures were
attributed to a single chip type. There are seven
of these chips in each of the three P.maps. The
MIL-HDBK-217B model predicts that 6.7 per-
cent of failures for the P.map will be due to this
chip. The failure rate observed for the 74373s in
the P.map was 9 failures in 37,416 hours, or 240.5
failures per million hours (fpmh). This corre-
sponds to a quality factor for the 74373s of 516,
which suggests a possible bad batch of chips.
Using only the other failures to calculate a
failure rate results in 80.2 fpmh. This corre-
sponds to a quality factor of 36, which is indeed
between 150 and 16.

The S.local module is best fit by a quality
factor of 16. If a derating of 16 is assumed, then
the quality factor for the S.local lies between 150
and 16. In fact, all but the memory boards (just
under 16) and the power boards (just over 150)
lie within the range of 16 to 150. In general,
industrially produced components indicate a
quality factor close to 16.

FAULTS AND THEIR MANIFESTATIONS 49

The expected failure rate for a system com-
posed of all the modules using their best fit
prediction from Table 2-19 is 5360.5 fpmh. This
is equivalent to an MTTF of 186.5 hours, which
may be compared to the MTTF of 155.2 hours
derived from the hazard curve in Figure 2-10.

MIL-HDBK-217 is constantly being updated,
and a version called MIL-HDBK-217C is now
available. It is described in more detail in Ap-
pendix E.

AUTOMATED FAILURE RATE
CALCULATION

Two computer programs, AUTOFAIL and
FAIL (for MIL-HDBK-217B and MIL-
HDBK-217C, respectively), have been written
[Elkind, 1980a] that simplify the procedure of
computing a system’s failure rate. A system may

" be described to the programs in the form of a list

of chips and/or subsystems, which can be like-
wise recursively nested. Table 2-20 is the input
description of the DEC LSI-11 microcomputer.
Parameters such as the various MIL-HDBK-217
factors can be modified to obtain a sensitivity
analysis. The format of this file is:

[Module name
Body]

where Body is a listing of all the component
chips and submodules. A chip is identified by an
integer specifying the number of chips of this
type used or by an integer followed by an F,
specifying the number of functions (such as
NAND-gates) of this chip type that were used.
This is then followed by a comma and the name
of the chip. Submodules are constructed on the
same format as modules.

Table 2-21 is a listing of the output for the
LSI-11 produced by AUTOFAIL. The top line
presents the values of the various derating fac-
tors used. The model parameters are on the
following line. The failure rates for the LSI-11

50 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-20.

LSI-11 input file for AUTOFAIL, FAIL.

[LSI=11

[SPECIAL .FUNCTIONS

2F ,DMB641

3F,7474

1,7442

5F, 7404

1F,7400]
{BUS.ARBITRATION.LOGIC

1F, 7400

1F ,DM8837

3F,7474

1F ,DM8641]
CINTERRUPT .CONTROL .AND .RESET. LOGIC

4F 7404

4F,7474

2F ,DM8641

2F, 7400

5F , DMB837

1F, 7405

1F.74174]
[CLOCK.PULSE . GENERATOR

1F , 7400

1F, 74140

2F,7474

1F, 74139

6F ,7404

4F ,MH0026]
[ROM.CHIPS

3 ,CP1631B]
[DATA.CHIP

1 ,CP16118]

[CONTROL .CHIP
1 ,CP1621B]

[BUS.DRIVERS.AND.RECEIVERS

4 ,74257

4 ,DM8641

1F,DM8641

4F,7411

2F ,7405]
[MEMORY

16,MK4096]

[BUS.1/0.CONTROL.LOGIC

1F,7497
7F,7400
7F ,7404
2F,7411
aF ,7474
5F,7410
5F ,DM8641
1F,DM8837

]
[1/0.BUS.MEM.READ.DATA.MUX

4F,7475
2F , 74257
3F,7410
3F,7400
2F,74140
2F,7405
2F,74107]
[FAST.DIN.MUX
1F, 74257
1F, 7400
1F,7404]]

Source: [Siewiorek et al., 1978a].

Table 2-21. Output from AUTOFAIL for LSI-11.

1sill.rel(x330ds73) LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q= 16.000 L = 1.000 T = 25.000

MODULE FAILURE RATE PERCENTAGE

LSI11 ‘ 29.893 100.000
SPECIAL .FUNCTIONS .669 2.237
BUS.ARBITRATION.LOGIC .350 1.172
INTERRUPT .CONTROL . AND .RESET.LOGIC .776 2.596
CLOCK . PULSE . GENERATOR .851 2.847
ROM.CHIPS 3.413 11.416
DATA.CHIP 1.160 3.880
CONTROL .CHIP 1.160 3.880
BUS.DRIVERS .AND.RECEIVERS 1.588 5.314
MEMORY 16.991 56.837
BUS.1/0.CONTROL.LOGIC 1.500 5.019
1/0.BUS .MEM.READ . DATA .MUX 1.195 3.999
FAST.DIN.MUX .241 .805

of chips = 68.917 # of gates

TYPE

SSI
MSI
LSI
ROM
RAM
MOS
BIP

7145.083 # of bits = 99328.000

OF CHIPS FAILURE RATES PERCENTAGE
37.250 4.899 16.387
10.667 2.272 7.600

2.000 2.320 7.760
3.000 3.413 11.416
16.000 16.991 56.837
21.000 22.723 76.013
47.917 C7.171 23.987

Source: [Siewiorek et al., 1978a].

and the submodules are shown with the percent-
age of the failure rate for each module that is
attributed to each submodule. In the case of
partially used chips, AUTOFAIL prorates the
chip failure rate by the fraction of the total
number of functions used. It is sometimes desir-
able to examine the behavior of a particular chip
or chip type. The lower table provides this ability
by listing the number of chips, failure rates, and
percentages for the different chip types.

The parameters of the MIL-HDBK-217 model
can be varied by subsystem or even chip type, so
that variations in ambient temperature (such as a
board near a power supply) or technology (such
as a new chip for which all parameters are not
known) can be modeled. At the chip level, it is
also possible to modify the number of devices on
a chip to gauge the effect of the size of the new
chip type on the design. Furthermore, individual
chip type or entire chip class (RAM, MOS, LSI)
can be arbitrarily assigned any complexity derat-
ing factors in order to test the sensitivity of the
system failure rate as a function of the unknown
parameter.

DISTRIBUTIONS FOR
TRANSIENTS AND SYSTEM
ERRORS

Data Collection
PDP-10

The main source of transient data error for this
study [McConnel, 1980} is a set of four main-
Tame time-sharing computers operated by Car-
1egie-Mellon University. One is a large DECsys-
em-10 (PDP-10) that supports research in the
“omputer Science Department. The other three
ire DECSYSTEM-20s used by the university’s
Computation Center for administrative and edu-
:ational needs. Memory sizes on these machines
ange from 256 Kwords to 1 Mword, and disk

FAULTS AND THEIR MANIFESTATIONS 51

storage capacity ranges between 528 and 1,600
Mbytes.

The core of the PDP-10 error-reporting system
is the on-line error log file maintained by the
TOPS-10 and TOPS-20 operating systems. En-
tries are made in this file for a variety of reasons,
most notably system reloads and memory and
I/O errors [DEC, 1978]. Each entry contains the
date and time at which the error occurred, the
processor serial number, and the type of error or
other condition being reported.

To facilitate statistical analysis of transient
errors on PDP-10s, a program named SEADS
(Statistical Error Analysis Data Summary) has
been written. It derives interarrival times and
time-of-day distributions from the system error
log files. The outputs generated include the fol-
lowing:

- Lower-bound estimates of system availabilities, in
total and for each file processed;

« Graphs of the time-of-day distribution of entries,

divided into 48 half-hour segments;

Graphs of the distributions of interarrival times for

all entries in total, for each entry individually, and

for arbitrary sets of entries; and

- Data files containing the time-of-day distributions
and the lists of interarrival times and error types.

Examples of the first three types of outputs are
shown in Table 2-22 and Figures 2-11 and 2-12.

LSI-11

In addition to the PDP-10 system error log files,
data were also collected from Cm* and C.vmp,
an experimental triplicated microprocessor. The
data for Cm* were collected by recording tran-
sient errors detected by failures in one of the
several diagnostic programs executed contin-
uously on idle processors. The data for C.vmp
were collected by recording all crashes not
traced to hard failures. Both these systems are
described fully in the literature [Siewiorek, Cane-
pa, and Clark, 1977; Siewiorek et al, 1978a;
Swan, Fuller, and Siewiorek, 1977].

52 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-22. Sample file/availability output from SEADS.

SEADS VERSION 3A(100) ERROR FILE ANALYSIS

COUNT OF BAD TIME ERRORS: O

TOTAL NUMBER OF ENTRIES FOR ALL INPUT FILES: 16445
TIME SPAN: 1542 HRS., FROM: 17-Feb-79 5:03:11 TO: 18-May-79 11:30:59
APPROXIMATE SYSTEM AVAILABILITY: 0.877

/
SYSTEM #2149 NUMBER OF ENTRIES: 344
TIME SPAN: 170 HRS., FROM: 17-Feb-79 5:03:11 TO: 18-Feb-79 7:30:06
APPROXIMATE SYSTEM AVAILABILITY: 0.987

SYSTEM #2227 NUMBER OF ENTRIES: 2045
TIME SPAN: 150 HRS., FROM: 24-Feb-79 22:22:08 T0: 3-Mar-79 5:09:59
APPROXIMATE SYSTEM AVAILABILITY: 0.947

SYSTEM #2326 NUMBER OF ENTRIES: 1149
TIME SPAN: 140 HRS., FROM: 3-Mar-79 5:43:04 TO: 9-Mar-79 1:55:27
APPROXIMATE SYSTEM AVAILABILITY: 0.894

SYSTEM #1080 NUMBER OF ENTRIES: 12907
TIME SPAN: 1081 HRS., FROM: 3-Apr-79 10:01:24 T0: 18-May-79 11:30:59
APPROXIMATE SYSTEM AVAILABILITY: 0.847

Source: [McConnel, Siewiorek, Tsao, 1979].

Events recorded TOPS20 bughlt-bugchk
Massbus device error
System reloaded Front end device report
Non-reload monitor error Front end reloaded
CPU NXM error Processor parity trap
Data channel error Processor parity interrupt
Disk unit error NETCON started
Magtape statistics Network down-line load
KL10 data parity interrupt Network up-line dump
KL10 data parity trap Network line stats
TOPS20 system reloaded DNe64 statistics
Distribution by time of day (0:00-23:30)
Maximum value: 4782 Scale factor: 157 Number of entries: 88258

4,553
4,239
3,925
3,611
3,297
2,983
2,669
2,355
2,041
1,727
1,413
1,099

785

471

157

01 23 4 56 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23
Figure 2-11. Sample time-of-day distribution output from SEADS.

Source: [McConnel, Siewiorek, Tsao, 1979].

Distribution of interarrival times

FAULTS AND THEIR MANIFESTATIONS 53

Smallest allowed interarrival time is 0.00 sec.

Minimum value: 0.00 sec.
Mean time: 10.99 hours
Maximum value: 103

Maximum value: 4.66 days
Standard deviation: 15.78 hours
Scale factor: 3

Time interval: 3.00 hours
Mode “bucket #: 1
Number of entries: 240

111
105]
%9
93
87
81
75
69
63
57
51
45
39
33
27
2
15
9

S

| n

5 10 15 20

25 30 35 40 45 50

Figure 2-12. Sample interarrival time distribution output from SEADS.

Graphical Data Analysis”

The interarrival data can be plotted as a histo-
gram to form an approximation of the probabil-
ity density function of transient errors. This is
useful in deciding initially on which distributions
to study. The obvious skew toward the low end
for all the data collected on these systems indi-
cate that the Weibull distribution should be
used.

System reloads were chosen as being likely due
to transient errors, because reloads are common-
ly caused by crashes, and in systems with stable
hardware and matured software, the most fre-
quent cause of crashes appears to be transient
eITOTS.

The data generated by SEADS make it clear
that the PDP-10 systems frequently recorded

" This section is adapted from McConnel, Siewiorek, and
Tsao, 1979.

several errors for one fault. To mask out the
effects of this, error entries within five minutes of
a previous entry were counted as a part of the
previous fault. The software allowed any choice
for the threshold, facilitating examination of the
sensitivity of the data to threshold values.
(Threshold values of one minute and ten minutes
were also tried without changing the results
presented here.)

Two groups of system reload data are present-
ed, one from the individual system (TOPSC) that
had the most complete data, the second from all
four systems. Figures 2-13 and 2-14 show histo-
grams of the distributions of the interarrival
times for system reloads on TOPSC and for all
four systems, overlaid with the MLE Weibull
probability density function. Figures 2-15 and
2-16 show the plots of the TOPSC and overall
PDP-10 reload data using the transformation of
the Weibull into a linear distribution given by
Equation 36.

54

THE THEORY OF RELIABLE SYSTEM DESIGN

Probability density value

Probability density value

014

0.10

0.08

0.06

0.04

0.00

MLE Weibull

Time (hrs)

Figure 2-13. Distribution of TOPSC system reloads.

014

0.10 i

0.08 it

0.06 i

0.04 §

0.02 |-

MLE Weibull

dnoi). | A 1 1 1

0.00
0

Figure 2-14. Distribution of PDP-10 system reloads.

50 100 150 200 250 300 350
Time (brs)

FAULTS AND THEIR MANIFESTATIONS 55

7
s (
273
ke
[=]
o -
7 3
/ 2
!/ 2
j—Actual data E‘ ‘5!‘
! £
\
- —6-

Figure 2-15. Weibull plot of TOPSC system reloads.

Linear regression fit to data

Ln of data (hrs.)

K]
~
H
/ .
/ e
[i
| K
,<—Actual = L
data 2 -5
£
2
2 -6}
=
=
-7
-8~

Figure 2-16. Weibull plot of PDP-10 system reloads.

56 THE THEORY OF RELIABLE SYSTEM DESIGN

0.027
0.024
0.021H
0.018
0.015

0.012 F

Probability density value

0.009

T

0.006

0.000 I

MLE Weibull

N0 |

1

0 200 400 600

800 1000 1200 1400 1600

Time (hrs)

Figure 2-17. Distribution of PDP-10 parity interrupts.

The second class of events likely to reflect
transient errors in the PDP-10 data was the
memory parity error interrupt. Except in the case
of failing devices that cause intermittent, and
finally permanent, faults, these are always the
result of transient faults in the memory system.
Figures 2-17 and 2-18 show the interarrival dis-
tribution and the Weibull plot of the data. In this
case, because too few data points were collected
from any one of the four systems to be statisti-
cally significant, only the total data for all four
systems are shown.

Figures 2-19 and 2-20 show the adjusted histo-
grams of the interarrivals for Cm* and C.vmp,
respectively. Figures 2-21 and 2-22 are plots of
the interarrival data for each system’s transient
errors, drawn according to the linearizing trans-
formation of Equation 36. The linearity of the
data shows that the samples follow a Weibull
distribution.

Confidence Intervals for the
Parameters

Table 2-23 lists some general statistics about the
interarrival times for the five sets of data:
TOPSC reloads, PDP-10 reloads, PDP-10 parity
errors, C.vmp crashes, and Cm* transient errors.
In all cases, the mean is less than the standard
deviation, indicating a decreasing failure rate.

Confidence intervals of 90 percent for « and A
were generated for the last three sets using
methods developed in Thoman, Bain, and Antle
[1969]. The values are listed in Table 2-24. Note
that the range of values for a does not include
1.0 (the exponential distribution) for any of the
three sets of data.

Goodness-of-Fit Tests

To confirm the impression from the Weibull
plots that the data collected on transient errors

FAULTS AND THEIR MANIFESTATIONS 57

Linear regression fit to data

/
/
!
I

|
FN
T

Actual—s|
data |
|
|

Transformed Weibull CDF scale
1
1%,
i

-6 =
Figure 2-18.

or the various systems are in fact Weibull, a chi-
quare goodness-of-fit test was performed on
:ach of the five sets of data. The results are given
n Table 2-25. The high P-levels for each set of
lata show very good fits to the Weibull distribu-
ion.

To complete the testing procedure, a chi-
juare test was done for each of the five sets of
ata, assuming an exponential distribution. The
omparison of these results is shown in Table
-26. Although the exponential hypothesis fits
1e data fairly well in a few cases, the Weibull
ts better in every case.

UMMARY

yurces of errors were traced to their origins in
irdware, software, environment, design, and
iman mistakes. The predominance of transient
1d intermittent faults was demonstrated. Error

Ln of data (hrs.)

Weibull plot of PDP-10 parity interrupts.

manifestations were discussed at both the com-
ponent and the system level. The mathematics
governing the two major statistical fault distribu-
tions (exponential and Weibull) were introduced,
along with maximum likelihood, regression, con-
fidence interval, and goodness-of-fit tests.

Permanent faults were shown to follow an
exponential distribution with the failure rate
parameter, A, predictable by the MIL-
HDBK-217 model. Some pitfalls in accelerated
temperature testing were illustrated.

Transients and system-level error manifesta-
tions (observed over 17,700 hours) follow a
Weibull distribution across a wide range of sys-
tem size and redundancy.

The mathematical techniques introduced in
the analysis of permanent and transient faults
can be used by the interested reader to confirm
fault distributions and/or estimate parameters of
the fault distributions for more accurate reliabil-
ity evaluation.

58

THE THEORY OF RELIABLE SYSTEM DESIGN

Probability density value

Probability density value

0.036

0.032

0.028

0.024

0.020

0.016

0.012

0.008

0.004

0.000

MLE Weibull
S
N I8 ")
0 100 200 300 400 500

Time (hrs)

Figure 2-19. Distribution of Cm* transient errors.

0.0275

0.0250

0.0225

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

r

H

H

—

0.0000
0

1

\ MLE Weibull

ML 0L L

600 800 1000
Time (hrs)

Figure 2-20. Distribution of C.vmp crashes.

w

Transformed Weibull CDF scale
— N

FAULTS AND THEIR MANIFESTATIONS

Linear regression fit to data

| —]]
-2 -1 0 7
Ln of data (hrs.)
-1
-2
Vi
e
/ -4
!
Actual —sf
data | -5 L_
I
—6 L-
Figure 2-21. Weibull plot of Cm* transient errors.
2 r~
Linear regression fit to data _
T
L 1 1 ! L e]
-2 -1 0 1 2 3 / 4 5 6 7

-2

\\Transformed Weibull CDF scale
&

—4

-5
Figure

Actual data

2-22. Weibull plot of C.vmp crashes.

59

60

THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-23. Statistics for transient

errors.

TOPSC PDP-10 PDP-10

Reload Reload Parity Cm* C.omp’
Time (hrs) 2646 8576 8596 4222 4921
Errors 195 636 74 103 50
Interarrivals 196 640 78 104 51
M 13.5 134 1102 406 96.5 (328)
o 16.5 246 2449 598 167.8 (471)
a (Linear) 0.864 0.684 0.500 0.834 0.711
a (MLE) 0.826 0.639 0.481 0.779 0.654
A (Linear) 0.0843 0.109 0.0206 0.0294 0.0149
A (MLE) 0.0826 0.106 0.0203 0.0288 0.0146

*

Note that the pessimistic value discussed in [Siewiorek et al., 1978a] is used throughout for C.vmp

. because there were too few interarrivals in the optimistic value (shown in parentheses for the mean

and standard deviation) to be statistically significant.

Source: [McConnel, Siewiorek, Tsao, 1979).

Table 2-24. 90% confidence intervals for alpha and lambda.

PDP-10 Parity Cm* C.ump
[o04 > "‘high] [0.421,0.566] [0.693,0.893] [0.558,0.806]
A ow Ahigh] [0.0134,0.0307] [0.0231,0.0359] [0.0099,0.0214]
Source: [McConnel, Siewiorek, Tsao, 1979].

Table 2-25. Chi-square goodness-of-fit test statistics.

TOPSC PDP-I0 PDP-10

Reload Reload Parity Cm* C.ump
Q 23.36 6.40 6.72 9.46 3.71
Degrees of freedom d 34 5 11 17 7
P-level 0.90 0.25 0.80 0.90 0.80
Xtd 23.95 6.63 6.99 10.08 3.82

Source: [McConnel, Siewiorek, Tsao, 1979].

FAULTS AND THEIR MANIFESTATIONS 61

Table 2-26. Chi-square test of exponential distribution.

TOPSC PDP-10 PDP-10

Reload Reload Parity Cm* C.omp
Q 30.61 252.55 79.95 15.14 18.35
Degrees of freedom d 30 6 12 13 7
Level of significance p 0.40 0.00 0.00 0.25 0.01
Xpd 31.32 © © 15.98 18.48

Source: [McConnel, Siewiorek, Tsao, 1979].

REFERENCES

Ball and Hardie [1967]; Bellis [1978]; Berger and
Lawrence [1974]; Breuer [1973]; Brodsky [1980]; DEC
{1978]; Elkind [1980a]; Geilhufe [1979}; Kamal [1975];
Kamal and Page [1974]; Klein [1976]; Lilliefors
[1969]; Losq [1978]; McConnel [1980]); McConnel,
Siewiorek, and Tsao [1979]; Melsa and Cohen [1978];
Miller and Freund [1965]; Morganti [1978}; Morganti,
Coppadoro, and Ceru [1978]; Nakagawa and Osaki
[1975]; Nicholls [1979]; Ohm [1979]; Pear [1954];
Rickers [1976]; Roth et al. [1967a]; Savir [1978];
Siewiorek, Canepa, and Clark [1977]; Siewiorek et al.
[1978a); Signetics [1975]; Snyder [1975]; Sturges
[1926]; Swan, Fuller, and Siewiorek [1977]; Tasar and
Tasar [1977]; Thoman, Bain, and Antle [1969].

PROBLEMS

1. The reliability function, R(t¢), describes the
probability of not observing any failure before
time ¢. Another reliability metric sometimes

used to compare the reliabilities of two alternate
designs is the Mission Time Improvement
(MTT). It is the ratio of the times at which the
two system reliability functions decay below
some specified value, say 0.9. Compute MTI
(A, Ap) for a.) an exponential distribution,
and b.) a Weibull distribution with a constant
shape parameter.

. Using the data in Table 2-10, make the trans-

formation suggested in Equation 36 and estimate
the Weibull parameters, A and «, by making a
least-squares fit to the transformed data. Test
the hypothesis that the data follow this distribu-
tion. Assume that failures occur at the end point
of each interval.

. Consider an MOS RAM, with @m; = 1, my = 16,

o = 25, and mg = 1. Plot the failure rate, A, as a
function of number of bits according to MIL-
HDBK-217B. (See Appendix D.)

Reliability and Availability Techniques

Steven A. Elkind

This chapter presents a spectrum of techniques
available to the designer of reliable digital sys-
tems. The spectrum spans the range of tech-
niques derived to deal with the problem of
building computers from unreliable components.
Although the emphasis is on techniques that deal
with hard (component) failures, most of the
techniques are also effective against transient
and intermittent faults.*

There are two approaches to increased reli-
ability: fault avoidance (fault intolerance) and
fault tolerance. Fault avoidance results from
conservative design practices such as the use of
high-reliability components, component burn-in,
and careful signal path routing. The goal of fault
avoidance is to reduce the possibility of a failure.
Even with the most careful fault avoidance,
however, failures will eventually occur and result
in system failure (hence the name fault intoler-
ance). In fault-tolerant designs redundancy is
used to provide the information needed to negate
the effects of failures. The redundancy is mani-
fested in one of two ways: extra time or extra
components. One form of time redundancy in-
volves extra executions of the same calculation,
perhaps by different methods. Comparisons or
other operations on the multiple results (identical
when no errors are present) provide the basis for
subsequent action. Time redundancy is usually
provided by software and thus is not within the
scope of this chapter. Component redundancy is
the use of extra gates, memory cells, bus lines,

* In the reliability and fault tolerance literature, the terms
fault and failure are sometimes used interchangeably. In
coding theory literature, failure and error are used inter-
changeably. These practices are followed in parts of this
chapter, in deference to common usage.

63

64 THE THEORY OF RELIABLE SYSTEM DESIGN

functional modules, and the like to supply the
extra information needed to guard against the
effect of failures.

A redundant system may go through as many
as 10 stages in response to the occurrence of a
failure. These stages—fault confinement, fault
detection, fault masking, retry, diagnosis, recon-
figuration, recovery, restart, repair, and reinte-
gration—are explained in the following text.
Designing a redundant system involves the selec-
tion of a coordinated failure response that com-
bines some or all of these steps. The ordering
above corresponds roughly to the normal chro-
nology of the steps, although the actual timing
may be different in some instances.

+ Fault confinement. When faults occur, it is desir-
able to limit the scope of their effects. Fault confine-
ment is the step of limiting the spread of fault effects
to one area of the system, thereby preventing con-
tamination of other areas. Fault confinement can be
achieved through liberal use of fault-detection cir-
cuits, consistency checks before performing a func-
tion (“mutual suspicion”), and multiple requests/
confirmations before performing a function. These
techniques may be applied in both hardware and
software.

« Fault detection. Most failures eventually result in

logical faults. Many techniques are available to

detect faults, such as parity, consistency checking,
and protocol violation. Unfortunately these tech-
niques cannot be perfect, and an arbitrary period of
time may pass before detection occurs. This time is
called fault latency. Fault-detection techniques are
of two major classes: off-line detection and on-line
detection. With off-line detection, the device is not
able to perform useful work while under test. Diag-
nostic programs, for example, run in a stand-alone
fashion even if executed on idle devices or multi-
plexed with the operations software. Thus, off-line
detection assures integrity before and possibly at
intervals during operation, but not during the entire
time of operation. On-line detection, on the other
hand, provides a real-time detection capability, for it
is performed concurrently with useful work. On-line
techniques include parity detection and duplication.

Fault masking. Fault-masking techniques hide the

effects of failures. In a sense, the redundant informa-

tion outweighs the incorrect information. In its pure
form, masking provides no detection. However,
many fault-masking techniques can be extended to

.

.

provide on-line detection as well. Otherwise, off-line
detection techniques are needed to discover failures.
Majority voting is an example of fault masking.
Retry. In many cases a second attempt at an
operation may be successful. This is particularly true
of a transient fault that causes no physical damage.
Diagnosis. If the fault detection technique does not
provide information about the failure location and/
or properties, a diagnostic step may be required.
Reconfiguration. If a fault is detected and a perma-
nent failure located, the system may be able to
reconfigure its components to replace the failed
component or to isolate it from the rest of the
system. The component may be replaced by backup
spares. Alternatively, it may simply be switched off
and the system capability degraded; this process is
called graceful degradation.

Recovery. After detection and (if necessary) recon-
figuration, the effects of errors must be eliminated.
Normally the system operation is backed up to some
point in its processing that preceded the fault detec-
tion, and operation recommences from this point.
This form of recovery, often called rollback, usually
entails strategies using backup files, checkpointing,
and journalling. In recovery, error latency becomes
an important issue because the rollback must go far
enough to avoid the effects of undetected errors that
occurred before the detected one.

Restart. Recovery may not be possible if too much
information is damaged by an error, or if the system
is not designed for recovery. A “hot” restart, a
resumption of all operations from the point of fault
detection, is possible only if no damage has oc-
curred. A “warm” restart implies that only some of
the processes can be resumed without loss. A “cold”
restart corresponds to a complete reload of the
system, with no processes surviving.

Repair. The component diagnosed as failed is re-
placed. As with detection, repair can be either on-
line or off-line. In off-line repair, either the failed
component is not necessary for system operation, or
the entire system must be brought down to perform
the diagnosis and repair. In on-line repair, the
component may be replaced immediately by a back-
up spare in a procedure equivalent to reconfigura-
tion or operation may continue without the compo-
nent, as is the case with masking redundancy or
graceful degradation. In either case of on-line repair,
the failed component may be physically replaced or
repaired without interrupting system operation.
Reintegration. After the physical replacement of a
component the repaired module must be reintegrat-
ed into the system. For on-line repair, reintegration
must be accomplished without interrupting system
operation.

RELIABILITY AND AVAILABILITY TECHNIQUES 65

Figure 3-1 depicts one scenario that illustrates
some of the concepts above. The time line illus-
trates the stages in fault handling for a nonfault-
tolerant system, whereas fault-tolerant systems
automate one or more of these stages. Upon
detection, the system is brought down, diag-
nosed, and manually reconfigured to allow a
restart. Before operation recommences, the soft-
ware process must first be rolled back to a point
before the errors occurred, and then restarted.
Finally, after the failed module is repaired and
put back on line, the system is halted temporarily
to allow the module to be reintegrated into the
system. Figure 3-1 also illustrates some of the
reliability measurement concepts discussed in
Chapter 5: the Mean Time To Failure (MTTF),
Mean Time To Detection (MTTD, sometimes
called error latency), Mean Time To Repair
(MTTR), and Availability.

Taking these system-failure response stages
into account, the spectrum of fault-tolerance
techniques can be divided into three major class-
es: fault detection, masking redundancy, and
dynamic redundancy. Figure 3-2 proposes a tax-
onomy of system-failure response strategies.
Fault detection provides no tolerance to faults,
but gives warning when they occur. It is used in
many small systems such as micro- and mini-

MTTF

computers, some of which may incorporate sim-
ple on-line detection mechanisms. This branch
does not represent fault tolerance in the strictest
sense: even though faults are detected they can-
not be tolerated (except for retry upon tran-
sient faults).

Masking redundancy, also called static redun-
dancy, tolerates failures but gives no warning of
them. It is used in such systems as computers
with error-correcting code memories, or with
majority-voted redundancy in a fixed configura-
tion (that is, the logical connections between
circuit elements remain constant).

The rightmost branch of the figure covers
those systems whose configuration can be dy-
namically changed in response to a fault, or in
which masking redundancy, supplemented by
on-line fault detection, allows on-line repair.
Examples are multiprocessor systems which can
degrade gracefully in response to processing ele-
ment failures, and triplicated systems which in-
clude disagreement detection in the voter and
are designed for on-line repair.

The range in cost of fault-tolerant techniques
is almost a continuum in terms of percentage of
redundancy. Figure 3-3 depicts three regions of
hardware redundancy, each corresponding to
one of the three major areas of the fault-toler-

iv VT
! |
! I
System System System |
available | \ available available | .
i g i~ *]
! i i | { | [
{ I | | | I I
| | | | | | i
: ! MTTD) MTTR ! » : || : :
I i | (S | I |
| | | | | | | { |
[| | I I | I | |
| i | | I | 1 | |
| | | | | | | | |
I ! 1 ! ! ! | | 1
} i ; Il I ; Il] ; [/\’ 1 ‘i
Fault occurs Error 2 Detection Reconfiguration Restart ! Reintegration | Error
Error 1 ...Errori Diagnosis Recovery Repair Fault occurs

Figure 3-1.

Scenario for on-line detection and off-line repair. The measures

MTTF, MTTD, and MTTR are the average times to failure, to detection, and to

repair.

66 THE THEORY OF RELIABLE SYSTEM DESIGN

System
fault
tolerance
Fault Masking Dynamic
detection redundancy redundancy
Masking On-line
detection/masking
Off-line On-line Off-line On-line Reconfiguration Retry On-line
detection detection detection detection repair
Off-line Off-line Ofi-line Off-line Recovery
repair repair repair repair |
Off-line On-line
repair repair

Figure 3-2. Taxonomy of system fault-tolerance strategies.

ance technique spectrum. Even though most
techniques in each area fit within these regions,
individual techniques may fall well outside them.

Because it is mainly a straightforward applica-
tion of conservative design practices, fault avoid-
ance is only covered briefly in this chapter.
However, it is important to note that most
successful designs use a balanced combination of
both fault avoidance and fault tolerance. The
final design is the result of trade-offs among cost,
performance, and reliability. Cost, performance,
and reliability goals are usually incompatible to

some degree, and their relative importance de-
pends upon the ultimate application of the final
product. For example, some fault-tolerance tech-
niques may find little application in cost-sensi-
tive commercial computing systems but may be
required for long-term space missions.

A summary of the techniques covered in this
chapter is shown in Table 3-1. The reliability
techniques spectrum is broken up into four ma-
jor regions: fault avoidance, fault detection,
masking redundancy, and dynamic redundancy.
The last three divisions derive from Figure 3-2.

Fault Dynamic Masking
detection redundancy redundancy
region region region
0 100 200 300

Redundancy (percent)

Figure 3-3. Cost range of fault-tolerance techniques (in terms of the redun-
dancy required).

RELIABILITY AND AVAILABILITY TECHNIQUES 67

Table 3-1. Classification of reliability techniques.

Region Technique

Fault avoidance Environment modification
Quality changes

Component integration
level

Fault detection Duplication

Error detection codes
M-of-N codes
Parity
Checksums
Arithmetic codes
Cyclic codes

Self-checking and fail-safe
logic

Watch-dog timers and
timeouts

Consistency and capability
checks

NMR /voting

Error correcting codes
Hamming SEC/DED
Other codes

Masking logic

Masking redundancy

Interwoven logic

Coded-state machines

Dynamic redundancy Reconfigurable duplication
Reconfigurable NMR
Backup sparing

Graceful degradation
Reconfiguration

Recovery

This division is not exact. Some basic techniques
have properties pertaining to more than one
region and some, while they should be consid-
ered basic techniques in their own right, require
concurrent use of other techniques (for example,
failure detection is needed to invoke replacement
of a broken module with a spare). Nevertheless,

the discussion of each technique below treats
each as a basic entity. Whenever possible, a
measure of the technique’s effectiveness is pro-
vided (such as coverage and/or reliability formu-
la). The application of the technique to different
areas of digital design is illustrated, often with
examples from specific systems. The illustrations
cannot be comprehensive due to lack of space;
often the techniques have been applied to design
areas other than those mentioned.

Table 3-1 is not complete but covers most of
the major techniques now in use. In many cases
the technique set forth is only a representative
from a class of similar techniques; space limita-
tions preclude covering them all. In this event,
references are given for other techniques in the
same class.

FAULT-AVOIDANCE TECHNIOUVIES

One method of increasing computer reliability is
to lessen the possibility of failures. This method
is called fault avoidance. If fault avoidance alone
cannot economically meet system design goals,
fault-detection and/or fault-tolerance techniques
must be used. Some fault-avoidance techniques
are intended to decrease the possibility of tran-
sient faults. Careful signal routing, shielding,
cabinet grounding, and input-line static filters
are examples of techniques that effectively in-
crease the signal-to-noise ratio. Other techniques
are useful against both hard and transient faults.
A design rule that limits the fanout of gates to a
small number, for example, decreases power
dissipation (decreasing thermal effects, and thus
hard failures). Fanout limitation also increases
the effective noise margin at the inputs of subse-
quent gates and thus decreases the possibility of
a transient fault. Another concern is the avoid-
ance of human errors through such measures as
labeling and documentation. In addition, the
possibility of assembly errors should be mini-
mized. For example, many manufacturers pro-
duce printed circuit boards and connectors that
are shaped in such a way that they cannot be
plugged in backward or into the wrong slots.

68 THE THEORY OF RELIABLE SYSTEM DESIGN

A= mmg(Cimp + Cym)
A = failure rate, failures per million hours
(fpmh)
a; = learning curve factor
mo= quality factor
C,, G, = complexity factors
wr= temperature factor
7= environment factor

Figure 3-4. MIL-HDBK-217B failure rate
calculation’ for integrated circuits.

This section presents three techniques for
avoiding hard failures. The goal is to obtain a
smaller system failure rate as determined by one
of the MIL-217 models (Chapter 2). Figure 3-4
shows the formula for the failure rate of an
integrated circuit in the MIL-217B model. Fault
avoidance can be obtained by manipulating fac-
tors that affect the failure rate. The subsections
below cover possible changes in environment,
quality, and complexity factors.

Environmental Changes

Two of the parameters in the formula of Figure
3-4 are related to the operating environment. The
first is oz, which is specified for general classes of
environmental conditions. Table 3-2 gives some
examples of the MIL-217B environment factor.
Ground benign environment implies air-condi-
tioned computer rooms; ground fixed implies
office or factory floor installations. Conditions
(and mg values) between the extremes provided
by MIL-217B can be estimated. For the full set
of standard 7 values, see Appendix D. Usually
the operating environment is beyond the de-
signer’s control and thus is not a means of
affecting system reliability.

The other parameter affected by the environ-
ment is 7y, which is a function of junction
temperature. The junction temperature is a result
of several factors: ambient air temperature, heat
transfer from chip to package and package to air,
and the heat created by the power consumed on
the chip. Junction temperature can be modified

Table 3-2. Examples of =, environment
parameter.
Environment @ Description

Nearly zero environmental
stress with optimum
engineering operation and
maintenance.

Ground benign 0.2

Space, flight Earth orbital....[No] access

for maintenance. ...

Conditions less than ideal to
include installation in
permanent racks with
adequate cooling air,
maintenance by military
personnel, and possible
installation in unheated

Ground fixed 1.0

buildings.
Airborne 4.0 Typical cockpit conditions
inhabited without environmental

extremes of pressure,
temperature, and vibration.

Severe conditions . . . related to
missile launch and . .. space
vehicle boost into orbit. . .
reentry and landing....

Missile, launch 10.0

Source: MIL-HDBK-217B [U. S. Department of Defense,
1976]

by changing power dissipation, heat sinking of
boards and chips, and controlling air tempera-
ture and air flow. Power dissipation is controlla-
ble to some extent by fan-out limitation. In gate
array and master slice technologies, power dissi-
pation can be controlled during chip design.
Heat sinking may be necessary for selected de-
vices, and is sometimes even used for all ICs in a
given design.

Complex, expensive fluid cooling systems
(such as Freon cooling) have occasionally found
use in systems that require high power dissipa-
tion ECL logic and high component densities. In
these systems, such as high-speed scientific com-
puters, the cooling design is as much of a chal-
lenge as the logic design. The CRAY-1 com-

RELIABILITY AND AVAILABILITY TECHNIQUES 69

JARIA

Logic boards

LT

T
Power supplies
I I]

N <\
E’__]_J { 1]
- | [
Blowers
Front view

Front Rear
-~
T
o 1] 4]
Fi
ot I R
/ L { |
3 |
\ A
7~
N —» Exhaust
N
Side view

Figure 3-5. Cooling system design for the DEC VAX-11/780 cabinet.

puter, for example, has heat-conductive surfaces
integral to each module and uses Freon to keep
the machine running at reasonable temperatures
[Russel, 1978].

In most cases, a cabinet ventilation system is
sufficient. Fans can be installed to increase air
flow through the cabinet and lower cabinet air
temperature. Fans also increase air flow across
the circuit boards, improving heat transfer from
the component packages to the air. Careful de-
sign of the cabinet itself is also important in
improving air flow and heat transfer.

One problem often encountered is “hot spots”
on circuit boards. These result when heat-pro-
ducing components reside on the lee side (or
airflow shadow) of other components. Hot spots
can be designed out of a system. For example,

the Texas Instruments ASC (Advanced Scientific

Computer) uses air cooling, unlike most high-
performance machines. Its designers carefully
studied the properties of cooling air flow and
found that empty spaces on the PC board in-
creased board-level air turbulence. The turbu-
lence caused nonuniform heat transfer, and hot
spots resulted. The outcome of this research was
the addition of dummy packages in spaces where
no actual ICs were used.

The VAX-11/780 provides a good example of
cabinet design for improved cooling (Figure 3-5).
To minimize the air temperature near the circuit
boards, the power supplies are placed at the
bottom of the cabinet, away from the logic
boards. The blower system provides filtered air
drawn from outside the cabinet. The air is routed
down across the circuit boards in such a way that
it passes over only one board before being
exhausted to the outside.

The cost of potential ventilation schemes must
be weighed against potential gains in reliability.
A PDP-8/e computer will be used to provide an
example of the range of improvement available
through temperature modification. Figure 3-6
shows an AUTOFALIL failure rate analysis of the
PDP-8/e design assuming an expected ambient
(package) temperature of 50° C.* This assump-
tion is reasonable with normal room tempera-
tures and no ventilation other than convection

*In this chapter, AUTOFAIL analyses use the complexity
factor modification discussed in Chapter 2. For LSI, RAM,
and ROM devices, the gate (bit) count is divided by 16
before calculating the MIL-217B complexity factors (C,
and C, in Figure 3-4).

70 THE THEORY OF RELIABLE SYSTEM DESIGN

PDP8E .REL
E= 1.000

MK4096 Q =
MODULE

PDPSE
PROCESSOR
DATA.PART
REGISTERS
ADDER.ETC.
PATH. SHUNTING -
BUS.CONNECT.OPEN.COLL
CONTROL .LOGIC
KM8.MEM.EXT.TIM.SHR
16K.MEMORY
MEMORY .CHIPS
CONTROL
BUS.CONN. OC

285.083

LSI=
Q=
16.000

16.000
16.000

ROM=
L =

of chips = # of gates =

16.000
1.000

RAM=
T =

16.000
50.000

FAILURE RATE

281.261
36.559
16.989
7.119
2.065
7.805
1.048
18.522
9.546
- 235.156
232.487
2.276
.393

2830.000 # of bits =

PERCENTAGE

100.000
12.998
46.471
41.903
12.153
45.944
2.867
50.663
3.394
83.608
98.865
.968
.167

196608.000

Figure 3-6. AUTOFAIL analysis of PDP-8/e system with no cooling; in-cabinet

temperature of 50°C.

PDP8E.REL
E =

MK4096
MODULE

PDP8E
PROCESSOR
DATA.PART
REGISTERS
ADDER.ETC.
PATH . SHUNTING
BUS.CONNECT.OPEN.COLL
CONTROL .LOGIC
KM8 MEM.EXT.TIM.SHR
16K.MEMORY
MEMORY .CHIPS
CONTROL
BUS.CONN. OC

285.083

LSI=
1.000 Q=
Q= 16.000

16.000 ROM=
16.000 L=

of chips = # of gates =

16.000 RAM=
1.000 T=

16.000
40.000

FAILURE RATE -

167.218
32.111
14.592
5.903
1.756
6.933
.966
16.553
8.509
126.598
124.186
2.050
.362

2830.000 # of bits =

PERCENTAGE

100.000
19.203
45.443
40.454
12.034
47.511
3.007
51.549
5.089
75.708
98.095
1.619
.286

196608.000

Figure 3—7. AUTOFAIL analysis of PDP-8/e system with fans installed in
cabinet; in-cabinet temperature of 40°C.

PDP8E .REL LSI=

E = 1.000 Q=
MK4096 Q = 16.000
HODULE

PDPSE
PROCESSOR
DATA.PART
REGISTERS
ADDER.ETC.
PATH . SHUNTING
BUS.CONNECT.OPEN.COLL
CONTROL . LOGIC
KM8.MEM.EXT. TIM.SHR
16K MEMORY
MEMORY . CHIPS
CONTROL
BUS.CONN. 0C

285.083

16.000 ROM=
16.000 L=

of chips = # of gates =

16.000 RAM=
1.000 T -=

16.000
30.000

FAILURE RATE

106.742
29.064
12.944
5.055
1.543
6.346
.910
15.209
7.802
69.876
67.637
1.898
.341

2830.000 # of bits =

PERCENTAGE

100.000
27.228
44,537
39.054
11.917
49.029
3.132
52.331
7.310
65,462
96.796
2.716
.489

196608.000

Figure 3-8. AUTOFAIL analysis of PDP-8/e system with cabinet ventilation
system; in-cabinet temperature of 30°C.

RELIABILITY AND AVAILABILITY TECHNIQUES 7

currents within the cabinet. The system failure
rate is 281 failures per million hours (fpmh),
which is equivalent to a Mean Time To Failure
(MTTF) of 3,555 hours.

Figure 3-7 shows the effect of placing a few
small fans in the cabinet. If the increased circu-
lation can lower the cabinet temperature by 10
degrees, the failure rate drops to 167 fpmh, a
decrease of 41 percent. The MTTF increases to
5,980 hours, an increase of 68 percent.* Figure
3-8 shows the effect of using a better ventilating
system, perhaps including ducting, blowers, and
filters, which is capable of a 20-degree reduction
in temperature. This modification more than
doubles the MTTF of the system. The failure
rate analyses have ignored the cooling system
(fan) failure rates because there are usually mul-
tiple fans, and the failure of only one fan will not
cause immediate system failure.

Thus, it is possible to obtain reliability im-
provement through an effective ventilation sys-
tem and changes in cabinet design. Noisy fans
may be considered undesirable in certain envi-
ronments such as an office. A quieter (and more
expensive) system is possible but cooling is often
left to convection, and the MTTF loss is ab-
sorbed in exchange for a more saleable product.

Quality Changes

Using higher-quality components is an obvious
strategy for improving reliability. The simplest
implementation is to buy high-reliability (“hi-
rel”) components directly from the manufactur-
er. However, such components may be expensive
(usually twice as much as commercial grade)
and/or may have long procurement lead times.
There are two possible solutions to these prob-
lems. The first is in-house screening and burn-in.
The second is specification of hi-rel components
for only those areas of a design where they are
most economically effective.

The use of higher quality components is re-

* Note that this example does not quite fit the old rule of
thumb that a 10-degree temperature drop increases the
MTTF by a factor of 2.

flected in the parameter 7, (quality factor) of
Figure 3-4. Table 3-3 lists some of the standard
quality factors for integrated circuits in
MIL-217B. A complete list is in Appendix D.

The quality level of a component is deter-
mined partly by packaging method and materi-
als, such as a hermetically vs. nonhermetically
sealed package and ceramic vs. plastic package
material. Another major factor for determining
the quality level is the screening done during and
after component manufacture. Not all the prop-
erties required of military-grade components
make sense in a commercial environment. For
example, hermetic package seals are often re-
quired for MIL-spec components, so that when
the device is unpowered moisture will not con-
dense inside the component. Many commercial
systems are left on all the time or operate in low-
humidity environments, eliminating the need for
perfectly hermetic packages. MIL-spec compo-
nents also undergo high-G acceleration screen-
ing in centrifuges. Most commercial systems will
not be subject to G-stresses such as acceleration
and impact.

Table 3-3. Examples of 7, quality factor.

Class 'qu Description

Procured in full accordance
with MIL-M-38510, Class C
requirements. [Parts falling in
this or higher classifications are
commonly referred to as “mil-
spec” or “hi-rel” components.]

C 16

D-1 150 Commercial (or non-mil
standard) part, hermetically
sealed, with no screening
beyond the manufacturer’s
regular quality assurance

practices.

Commercial (or nonmil
standard) part, packaged or
sealed with organic materials.
(e.g., epoxy, silicone, or
phenolic).

Souri:e: MIL-HDBK-217B [U.S. Department of Defense
1976

72 THE THEORY OF RELIABLE SYSTEM DESIGN

L Process to die mount and bond 1

:
L Visual pre-cap §|

| Stabilization bake (24 hrs @ 150°C) |

I Temperature cycling]

I Centrifuge I

!

Visual inspection l

1

Fine leak I

!

Gross leak j

Y

Final electrical test I

:

| Group A lot acceptance 1

mEnEnlE

L Finished goods stock I

' !

I Inventory process control]

}

[Preparation for delivery

Process control and monitoring
Inspection of die, bonds, etc., for flaws
High temperature, no electrical stress
Cycling between temperature extremes

Resistance to mechanical stress

Look for missing leads, broken packages,

damaged lids

Check for package sealing with pressure

chamber

Check package seal

Check for meeting data sheet specs

Conformance to electrical specs

within 10%

I Final visual inspection

Figure 3-9. Texas Instruments MACH-IV procurement specification for class C

level component processing.

Some component users may wish to do their
own screening, avoiding some of the harsher
military environmental tests that the component
manufacturer must perform (and charge for) on
MIL-rated devices. Figure 3-9 diagrams the
Texas Instruments Class C qualification process
for integrated circuits [Texas Instruments, 1976].
Table 2-8 lists a set of the possible screening
tests. Some of these tests are discussed below;
others were considered in Chapter 2.

In manufacture, visual inspection of the wafer
is possible before it is cut into dies. The manu-
facturer can also visually inspect the chip and
bonds before sealing the package. The compo-
nent buyer can do the same by opening and
inspecting sample components. Electrical tests
can be performed. Each wafer often has a special
test pattern or transistor upon which probes can
be placed to test the values of various character-

istic parameters. Individual circuits on the wafer
may also be tested. Electrical testing after pack-
aging checks both the silicon circuit and the pin
bonding. Stress testing may also be employed.
Overvoltage, vibration, heat, humidity, and other
stresses are applied to the component, followed
by electrical tests to determine resistance to the
stresses.

The manufacturer often performs additional
processing on components subsequent to manu-
facture and testing. The most common is compo-
nent burn-in. This is accomplished by continual
simulated operation of all the components, pos-
sibly at higher-than-normal temperatures. Slight
overvoltages are sometimes applied at signal and
power inputs. The purpose of burn-in is to
eliminate weak components. The beginning, or
infant mortality, phase of the bathtub curve of
Figure 1-4 is traversed during burn-in. Finally,

RELIABILITY AND AVAILABILITY TECHNIQUES 73

entire assemblies or systems can be burned-in
before shipment. This last procedure has the
advantage of eliminating incompatibilities be-
tween components that have passed testing, but
whose parameters combine to result in poor or
improper operation (often a cause of intermittent
faults).

The final value of m, is determined by the
types and frequency of testing and processing.
Tests can be performed with varying thorough-
ness: for each component, for sample compo-
nents from each manufacturing lot, or for peri-
odic samples every few lots. Additional tests may
be performed if higher-quality components are
needed for special applications. Lower quality-
factor components (i.e., higher) are the result
of less stringent testing and processing, or are
components that failed testing for higher stan-
dards but still meet lower-quality grade specifica-
tions.

Research at Carnegie-Mellon University has
shown that an average component 7 of 16 is not
unusual for a manufacturer of commercial sys-
tems [Siewiorek et al., 1978b]. The components
in the study were primarily plastic package DIPs.
This 7, is obtained through in-house screening
and burn-in of components and systems. DEC,
for example, rejects 2.5 percent of its incoming
components, with the result that only 0.04 per-
cent of the screened components fail during
subsequent system manufacturing steps [DEC,
1975c]. In addition, some IC manufacturers offer
class C-grade components in their standard
product lines.

Another benefit of screening beyond function-
al testing is the reduction of manufacture and
warranty costs. Replacement costs for a compo-
nent increase by about an order of magnitude for
each step during the manufacture and warranty
periods. Craig [1980] reports that the typical cost
for screening out a bad IC is 50¢. Repair of the
board resulting from a bad chip costs about $5
on the plant floor; diagnosis and repair of the
same failure in an assembled system costs $50.
During the warranty period, when the system is

in the field where sophisticated, special test set-
ups are not available, the same repair costs the
manufacturer $500 (and might cost the customer
$5,000 in lost revenue and time). If only 0.5
percent of the components used are bad or weak,
a system with 1,000 components has a
(1 — 0.995'%%) or 99.3 percent chance that repair
will be necessary during the assembly process
(so-called rework) or the warranty period be-
cause of a component that could have been
screened out. Alternatively, an average of five
such repair incidents could be expected for each
system in addition to incidents resulting from
normal failures (those due to components that
would survive screening). This is because the
expected number of weak components in a sys-
tem is 1000 X 0.005.

The manufacturer of the Vidar/TRW 2900B
subscriber billing system incorporates testing
and screening for increased component reli-
ability [McDonald, 1976]. The testing and in-
spection flow in use in 1976 is shown in Figure
3-10. The component sampling consisted of a
DC parametric test followed by a test for inter-
mittent lead bonding failures. If more than 5
percent of an incoming lot of ICs failed the DC
test or more than 0.1 percent failed the bonding
test, the lot was rejected. This form of compo-
nent acceptance is called Acceptable Quality
Level testing (AQL). Next, a 100 percent DC
parametric test screened all components. In the
burn-in phase, an assembled board had to oper-
ate for at least 24 error-free hours at 50° C
before it was removed from the test. In 1977 the
screening tests for the 2900B changed, partly
because of changes in chip technologies
[McDonald and McCracken, 1977]. The testing
and inspection flow remained the same, but
component burn-in was added. The data in
Table 3-4, gathered during this later period, show
the effectiveness of the component burn-in after
incoming AQL testing.

Reconsider the PDP-8/e analysis in Figure
3-7, in which the quality factor for all compo-
nents is 16. The AUTOFAIL analysis shows that

74

Start

THE THEORY OF RELIABLE SYSTEM DESIGN

Component Component
sample screen I
Board Visual
assembly inspection
PCB
PCB build |] continuity _--——1
test
Analog and
digital board
PCB = Printed circuit board test (external
test jigs)
Using system built-in self-testing 1
System
\\ \\ assembly
. Burn-in
Field QA Acceptance . System
data audit testing [* | Ship 48;%2(? rs test

Figure 3—10. Reliability enhancement in Vidar/TRW 2900B subscriber billing

system. (© 1976 IEEE.)

the 4K-bit memory chips have a total failure rate
of 124 fpmh, accounting for 74 percent of the
system failure rate (76 percent of the PDP-8
failure rate is in the memory, and 98 percent of
that is due to the RAM chips). An improvement

Table 3—4. Vidar/TRW 2900B burn-in test results.

Quantity Quantity Percent
Device Processed Defective Defective
Linear 123,212 5,011 4.07%
TTL standard 316,909 3,735 1.18
TTL low power 379,959 4,982 1.31
Schottky 7,058 130 1.84
Low power 86,244 1,670 1.94
Schottky
CMOS 56,293 1,240 2.20
Misc. 63,666 1,833 2.88
Total 1,033,341 18,601 1.80

Source: McDonald and McCracken, 1977

in the quality of this component alone should
result in a major increase in overall reliability. If
4K-bit memory chips with a 7, of 10 can be
obtained (MIL-STD quality class B-2), either by
purchase or by in-house screening and burn-in,
the system failure rate drops to 121 fpmh, a 28
percent improvement in the system’s failure rate
and a 39 percent increase in MTTF. Figure 3-11
shows the AUTOFAIL analysis of this modified
design.

Finally, consider the possibility of burning-in
all PDP-8/e systems before shipment. The burn-
in time is made long enough to improve the
quality factor of all components by, say, 2 points
(Amy = =2). The my of the hi-rel RAMs is
assumed not to be affected, since additional
burn-in of these will have little effect. As shown
by the AUTOFAIL analysis in Figure 3-12, the
system failure rate drops to 115 fpmh, a net
improvement in system failure rate of 31 percent
and in MTTF of 45 percent over the design of
Figure 3-7 (for which m, = 16 for all compo-
nents, including the RAM chips).

RELIABILITY AND AVAILABILITY TECHNIQUES 75
PDPSE .REL LSI= 16.000 ROM= 16.000 RAM= 16.000
E= 1.000 Q= 16.000 L = 1.000 T = 40.000
MK40%6 Q = 10.000
MODULE FAILURE RATE PERCENTAGE
POPSE 120.648 100.000
PROCESSOR 32.111 26.615
DATA.PART 14.592 45,443
REGISTERS 5.903 40.454
ADDER.ETC. 1.756 12.034
PATH. SHUNTING 6.933 47.511
BUS.CONNECT.OPEN.COLL .966 3.007
CONTROL .LOGIC 16.553 51.549
KM8.MEM.EXT.TIM.SHR 8.509 7.053
16K .MEMORY 80.028 66.332
MEMORY .CHIPS 77.616 96.986
CONTROL 2.050 2.561
BUS.CONN.OC .362 .452
of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000
Figure 3-11. AUTOFAIL analysis of PDP-8/e system with hi-rel RAM chips in
memory.

PDPSE.REL LSI= 16.000 ROM= 16.000 RAM= 16.000
E = 1.000 Q= 14.000 L = 1.000 T = 40.000
MK4096 Q = 10.000
MODULE FAILURE RATE PERCENTAGE
PDPSE 115.279 100.000
PROCESSOR 28.097 24.375
DATA.PART 12.768 45.443
REGISTERS 5.165 40.454
ADDER.ETC. 1.537 12.034
PATH. SHUNTING 6.066 47.511
BUS.CONNECT.OPEN.COLL .845 3.007
CONTROL.LOGIC 14,484 51.549
KM8.MEM.EXT. TIM. SHR 7.446 6.459
16K .MEMORY 79.727 69.166
MEMORY .CHIPS 77.616 97.353
CONTROL 1.794 2.250
BUS.CONN.OC .317 .397
of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000

Figure 3-12. AUTOFAIL analysis of PDP-8/e system with hi-rel RAM chips and

preshipment burn-in.

Component Integration Level

LSI component technology possesses many well-
known advantages. The cost of a single chip is
usually less than that of the set of standard SSI/
MSI components needed to implement the same
function. Fewer chips means fewer solder joints,

less board space, and thus lower costs in board
manufacture and assembly. Normally, power
consumption is lower and performance benefits
from shorter signal paths. In sum, more func-
tionality can fit into less space, consume less
power, operate at least as fast, and cost little or
no more.

76 THE THEORY OF RELIABLE SYSTEM DESIGN

Higher integration levels yield another benefit:
increased reliability. In the MIL-217B model, the
failure rate of a component does not increase
linearly with its complexity (measured in gates or
bits on the chip). The complexity factors C1 and
C2 (Figure 3-4) follow a power-law relationship
with the number of gates. This relationship is
reflected in Figure 1-5, which plots the failure
rate as a function of gates. The individual gate
failure rate decreases as the gate count per
package goes up. As a result, total system failure
rate decreases as the level of integration in-
creases. Thus reliability becomes an additional
factor in the decision to use LSI components
where possible. Figure 3-13 demonstrates the
effect of larger-scale integration. Each module in
the AUTOFAIL analysis contains 256 gates.
Changes in integration level from 4 to 256 gates
per package result in module failure rates rang-
ing from 7.3 fpmh to 0.4 fpmh, or a range of 18
to 1.

Standard LSI circuits are often not available
in the exact functionality a design requires.
There are alternative solutions to adapt the de-
sign to fit the available components. One of these
is to fabricate a custom: LSI chip. An increasing

number of systems manufacturers are developing
in-house LSI circuit design and production capa-
bilities. Large volume requirements may make
outside design and manufacture worthwhile.
Conversely, if only a small volume of custom ICs
is required, the manufacturing process may not
have the opportunity to stabilize and traverse the
learning curve. The result is that the custom chip
may be more unreliable than the equivalent SSI/
MSI circuit (7, is 10 instead of 1). The learning
curve problem is avoided in the gate array and
transistor array approaches to customized LSI
circuits. These and other technologies are pro-
grammable either in manufacture (such as by a
final metalization step) or in the field (such as
electrically alterable ROMs and FPLAs).
Another solution to the custom LSI problem is
to design a microcoded machine. Microcoded
design brings many different benefits, including
flexibility (ease of modification), design regulari-
ty, and debugging ease. ROMs, a relatively inex-
pensive form of custom LSI, can replace large
amounts of random SSI/MSI circuitry. Micro-
coded designs bring potential reliability benefits
other than lower component failure rates. Their
regularity of structure makes microcoded ma-

INTDEM.REL LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q= 16.000 L = 1.000 T = 30.000 B

MODULE FAILURE RATE PERCENTAGE

MODULES. OF .256.GATES 20.516 100.000
CHIP.4.GATES 7.282 35.494
CHIP.8.GATES 4.785 23.324
CHIP.16.GATES 3.161 15.407
CHIP.32.GATES 2.479 12.084
CHIP.64.GATES 1.709 8.328
CHIP.128.GATES .701 3.417
CHIP.256.GATES .399 1.947

of chips = 127.000 # of gates = 1792.000 # of bits = .000

Figure 3-13. AUTOFAIL analysis of modules containing 256 gates. Each module
is made with ICs having identical gate counts. The first (CHIP.4.GATES) is made
with SSI circuits with 4 gates per chip. The last (CHIP.256.GATES) is made with
one LS| circuit containing all 256 gates. The number in the module name
denotes the gate count for each chip used in the module.

RELIABILITY AND AVAILABILITY TECHNIQUES 77

chines particularly amenable to many of the
reliability techniques presented in later sections.

Consider a PDP-8 design based on the
AMD-2901 bit-slice microprocessor chip [Sie-
wiorek, Bell, and Newell, 1982]. This design is
only a partial one: I/O and Omnibus facilities
are not included. Nevertheless, it provides an
indication of the potential savings resulting from
increased integration levels via the microcode
ROMs. The failure rate for this design is 136
fpmh (Figure 3-14), only 81 percent of the design
of Figure 3-7. System MTTF is 7,358 hours, up
23 percent from 5,980 hours. The LSI processor
MTTF is about 107,000 hours; the SSI/MSI
processor and KM8 memory extension unit that
it replaces have a total MTTF of about 25,000
hours, an improvement of more than 325 per-
cent.

Table 3-5 summarizes all the PDP-8/e exam-
ples used in the discussion of fault-avoidance
techniques, showing the effect of the various
approaches (temperature, quality, and integra-
tion). The table also includes a few designs not
discussed earlier that demonstrate the combina-
tion of more than one approach. Note that a 5.5

8BS.REL LSI= 16.000 ROM=

E = 1.000 Q= 16.000 L =

MK4096 Q = 16.000

MODULE

PDP8.BIT.SLICED
PROCESSOR
MICROSTORE
MICROSEQUENCER
DATA.PATHS
LINK.BIT
COND .CODE.MUX
SKIP.GENERATE
CONSTANT .MASK
MISC.
16K .MEMORY
MEMORY .CHIPS
CONTROL
BUS.CONN.OC
97.000

of chips = # of gates =

2545.500

to 1 MTTF improvement is attained solely
through fault-intolerant techniques.

FAULT-DETECTION TECHNIQUES

Fault-avoidance techniques attempt to decrease
the possibility of failures. Fault detection, dis-
cussed in this section, and the techniques dis-
cussed in subsequent sections deal with the inev-
itability of failures. The key to these techniques
is redundancy: extra information or resources
beyond those needed during normal system
operation.

Most of this section is devoted to techniques
useful in detecting failures, or more exactly,
detecting the faults and errors that are caused by
failures. Action following such detection can
range from ignoring the failure, to retries, to
switching in replacement parts. In some real-
time applications, for example, occasional erro-
neous results can be ignored (that is, not used).
In many cases a retry can be successful, particu-
larly with transient or intermittent faults. Final-
ly, attempts at correction or reconfiguration and
rollback are possible. Some of those possibilities

16.000 RAM= 16.000
1.000 T= 40.000
FAILURE RATE PERCENTAGE
135.908 100.000
9.310 6.850
4.259 45,741
1.009 10.839
3.452 37.077
.604 17.484
.689 19.957
.483 13.987
.082 2.363
.590 6.342
126.598 93.150
124.186 98.095
2.050 1.619
.362 .286

of bits = 202880.000

Figure 3-14. AUTOFAIL analysis of PDP-8/e with AMD2901/2910 chip set.

78 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3-5. Summary of PDP-8/e fault-avoidance designs.

Analysis Temp. RAM MTTF

Figure (°0) o T A (fomh) (hours) Notes

3-6 50 16 16 281.26 3,555 Base design, no cooling

3-7 40 16 16 167.22 5,980 Fans installed

3-8 30 16 16 106.74 9,369 Cabinet ventilation system

3-11 40 16 10 120.65 8,288 Fans installed, hi-rel RAM chips

3-12 40 14 10 115.28 8,675 Fans installed, hi-rel RAM chips, system
burn-in

N/A 30 14 10 76.49 13,074 Cabinet ventilation system, hi-re]l RAM
chips, system burn-in

3-14 40 16 16 135.91 7,358 Fans installed, LSI bit-slice chips and
ROMS used in CPU

N/A 30 14 10 51.15 19,550 Cabinet ventillation system, LSI bit-slice

chips and ROMS used in CPU, hi-rel
RAM chips, system burn-in

are considered in the section on Dynamic Re-
dundancy.

Reliability functions, R(¢), and the measures
derived from them are not very useful in consid-
erations of the effectiveness of failure-detection
and fail-safe techniques. The redundant hard-
ware actually contributes to a reduced R(f) when
corrective action does not follow detection. The
concept of coverage, however, provides the view
of reliability required when discussing detection
techniques. This section uses two measurements
of coverage.* The first, called general coverage,
is more qualitative. Usually general coverage
specifies the classes of failures that are detecta-
ble, and may include failure detection percent-
ages for different classes of failures. The second
form of coverage is more explicit. It is the
probability that a failure (any failure) is detect-
ed, and is denoted by C. C can be determined
from the general coverage specifications by using

* The issues involving coverage measurement are discussed
in detail in Chapter 5.

the average of the coverages for all possible
classes of failures, weighted by the probability of
occurrence of each fault class. Thus C is more
difficult to obtain, since the relative probabilities
are implementation-dependent and indeed may
not be known. In many instances, simplifying
assumptions are employed for the possible fail-
ure modes and probabilities. For these reasons,
the technique discussions below will always have
the general coverage measure, and when possi-
ble, the explicit coverage C. ‘
Cost and performance effects of reliability
techniques are also important. Dollar costs are
impossible to give here. Even explicit costs in
numbers of chips will often be hard to predict
without knowing details of specific implementa-
tions. The same is true of performance effects, as
shown by the single error-correcting-code mem-
ory example in Chapter 5. Diagnosability is yet
another important issue when considering fault-
detection and fail-safe techniques. Diagnosabil-
ity is usually considered in terms of diagnostic
resolution, that is, the size of the region to which

RELIABILITY AND AVAILABILITY TECHNIQUES 79

the fault can be isolated. In many systems diag-
nostic resolution to the Field-Replacable Unit
(FRU) is considered necessary. When fault de-
tection techniques are used in conjunction with
fault-tolerant techniques (see the section on Dy-
namic Redundancy), the diagnostic resolution
may become crucially important. Diagnostic res-
olution is a function of implementation and is
difficult to determine accurately without specific
details. Thus, while cost, performance, and diag-
nosability are considered in the discussions be-
low, the information given will often be vague.

Duplication

Conceptually, duplication is the simplest fault
detection technique. Two identical copies are
employed. When a failure occurs, the two copies
are no longer identical and a simple comparison
detects the fault. The simplicity, low cost, and
low performance impact of the comparison tech-
nique are particularly attractive. Duplication is
applicable to all areas and levels of computer
design and thus is widely used.

Duplication successfully detects all single
faults except that of the comparison element. In
some cases, particularly for memories or multiple
line output circuits, failures in both copies are
detected as long as at least one failure results in
a nonoverlapping failure. An example of non-
overlapping failure is a duplicated eight-bit
word. If the first copy has a failure in bit position
0 and the second copy has failures in bit posi-
tions 0 and 5, the failures in bit position 0 will
not be detected if they result in identical errors.
The bit position 5 failure, however, is nonover-
lapping and will be detected. Identical faults
from the identical modules are not detectable
because both copies are in agreement. Thus, in
many cases physical division and/or separation
of the modules is a necessity.

There are many variants on duplication. Some
combine duplication with other techniques, re-
sulting in increased coverage over some classes

of faults, or in fault tolerance (such as reconfig-
uration, error correction). Several such combina-
tions are covered in the section on Dynamic
Redundancy.

One method for increasing coverage is the
“swap-and-compare” technique used on the
C.mmp multiprocessor [Siewiorek et al., 1978a].
Initially used for important data structures in
memory, the technique can also be applied to
other areas of a computer. Figure 3-15 illustrates
the concept. There are two copies of a word, but
one copy has its two bytes reversed. Error check-
ing involves swapping the bytes of one copy
prior to comparison. In addition to covering all
single, nonoverlapping failures, swap-and-com-
pare provides coverage of most identical failures
affecting both copies (such as bit-plane failure).

In duplication, both copies may be subject to
identical failures (common-mode failures), par-
ticularly if both have an identical design error or
if both reside on the same IC chip. Sedmak and
Liebergot [1980] propose the use of complemen-
tary functions to solve this problem for VLSI IC
chips (Figure 3-16). This approach is similar in
concept to dual-diversity reception of radio sig-
nals, in which the same signal is received by two
different antennae and receivers. One copy of the
logic is the logical dual of the other copy.
Common failure modes would probably cause
different error effects, resulting in detection and
thus coverage of these modes. A similar solution
is to use both “on-set” and “off-set” realizations

/—Bil-slice failure

Byte A Copy 1

Byte B Copy 2

|
t
]
|
|
1
|
I
f
[

Figure 3-15. Swap-and-compare check scheme
for critical data structures in C.mmp.

80 THE THEORY OF RELIABLE SYSTEM DESIGN

Output control
and data lines

with code Encoded error signals
No (Ne)
l [Error multiplexing
Comparator Comparator and encoding logic
check 1 check n
Output check QOutput check
| code generation code generation
Functional logi ! Duplicate
unctional logic Input clock complementary
check logic N
——
Input power
comparators
—
Input code
check 1
Input code
check M
No @ Ne) (Np) (e
Data and control Redundant Clock
input lines power inputs
inputs

a. Generalized VLSI chip.

Figure 3-16. Proposed use of duplicate circuits on one VLSI chip. Complemen-
tary implementations improve resistance to common mode failures.

(© 1980 IEEE.)

for the two copies [Tohma and Aoyagi, 1971].
The on-set is the set of input and state variables
that result in logical one outputs. The off-set
results in logical zero outputs.

Duplicate information may already be present
in a circuit so that the amount of additional
redundancy needed may be small. An example is
a possible internal modification to the Advanced

Micro Devices Am2901 bit-slice ALU chip. In
the chip are functional units that compute
A+ B, AB, and 4 & B (this last is part of the
adder). Because 4 & B = (4 + B) & (AB), the
two sets of signals can be used to check each
other. In this case, the only additional elements
needed to utilize the duplicate information
would be two XOR gates (one to form one of the

RELIABILITY AND AVAILABILITY TECHNIQUES 81

Functional circuit

Fi~[(A+ B)e Gl

FF
Er
Truth Table
Inputs Outputs
A B, G F G
L L L H L
L L H H L
L H L H L
L H H L H
H L L H L
H L H L H
H H L H L
H H H L H

Duplicate complementary circuit

G|~[(~Ae~B)+ (~ ()]

FF
EL
~A ~B ~C I
Key
Symbol Meaning
~ NOT
L4 LOGICAL AND
+ LOGICAL INCLUSIVE OR
subscript t Time period t
subscript t — 1 Time period t — 1
Ep Enable on low to high
transition of clock
E Enable on high to low

T transition of clock

b. Example of functional versus duplicate complementary circuits.

Figure 3-16 —Continued

duplicate signals, the other to compare the two
signals).

Duplication can also be carried out at the bus
level. The Sperry Univac 1100/60 (see Chapter
10) uses comparison at the bus level for its
instruction processors [Boone, Liebergot, and
Sedmak, 1980]. The processor is split into two
36-bit subprocessors. Each subprocessor is dupli-
cated, and only one of the two duplicates drives
the master data bus during any one microcycle.
The other drives the duplicate data bus (Figure
3-17). Both copies operate in the same way upon
the same data. At the end of the microcycle the
results are compared. A disagreement causes
interruption of operations. Univac’s implementa-
tion of this scheme produced a performance
increase as a result of splitting driven loads
between the two subprocessors.

Comparing module outputs .is not the only
way to apply duplication. The Bell ESS-1 pro-
cessor demonstrates duplication at the system
level, but comparison is performed at the regis-
ter-transfer level [Toy, 1978]. Certain key values
within each of the dual central control units
(CCs) are compared by matchers residing within
each CC. Only one CC is on line at a time; the
other is running in microcycle lockstep. The
oscillator in the on-line CC drives the clock
circuits in both. The matcher immediately de-
tects any divergence in operation. This level of
duplication decreases error latency, increases
coverage, and has the side effect of making
system diagnosis easier and quicker. Each of the
matching circuits compares 24 bits from each CC
during the 5.5 usec machine cycle. Each CC has
two matchers, and each matcher has access to six

82 THE THEORY OF RELIABLE SYSTEM DESIGN

To fault handling logic

Comparator
Duplicate data bus
Main data bus
Master Duplicate Master Duplicate
subprocessor subprocessor subprocessor subprocessor
1 1 2

Figure 3—17. Duplication at bus level in Sperry/Univac 1100/60.

24-bit sets of internal nodes (Figure 3-18). The
processing performed during the machine cycle
determines which set is checked, and a mismatch
generates an interrupt. A diagnostic program is
run to locate the faulty CC, which is then
removed from service for repair.

The cost of duplication is twice that of an
equivalent simplex system, plus the cost of the
comparison element. Performance degradation
can result from at least two sources. The first is
lack of synchronization between the compared
signals, which could be remedied by either a
common clock or a delay period before compar-
ison. Some delay would result in any event from
the inevitable variance in propagation times and
other parameters in the circuits of both copies.
The other source of degradation is the propaga-
tion and decision time required by the compari-
son element. Normally, the performance loss due
to these factors is small enough not to detract
from the benefits of duplication.

At a cost in performance, expenses can be
halved by using the same hardware to perform
duplicate operations, one following the other in
time. This time redundancy at least doubles

execution time. It also is more susceptible to
nondetection of faults because the same hard-
ware, with the same problem, is used for both
operations. Transient faults would not be a prob-
lem, but hard failures would be. Hard-failure
coverage could be increased somewhat by carry-
ing out the operation with a different ordering or
algorithm, using as many different resources as
possible. Although a single failed ALU would
probably give bad results both times, the results
would differ for most failures and still result in a
mismatch and failure detection. For examiple, a
string of additions could be performed twice in
different order, or could be done the second time
by forming and adding the two’s complements
and negating the result.

One frequently perceived problem of duplica-
tion (and some other redundancy techniques) is
incomplete use of resources. A duplicated com-
puter, for example, is actually two processors
performing the same task in parallel, with a loss
of half the available computing power. As a
result, in some designs only part of the proces-
sing is done in parallel by both copies, and
checking is performed for only the portion of

RELIABILITY AND AVAILABILITY TECHNIQUES

—_—

-—

} To other CC

Decoder

functions

Other inputs
Aux. storage AL

register r N

Data buffer DRO ARO

register

e

Masked

Match

'

To interrupt source

bus

Program Add.

register

Points matched routinely

Buffer ORD
word register

.

-—

} To other CC
Index adder

order reg,.

Other inputs
A

Unmasked

bus

DR1 AR1

Sequencer

_‘

state FFs

Match

Decoder T
functions
To interrupt source

Test

connector

Figure 3-18. Bell ESS-1 CC match access.

83

84 THE THEORY OF RELIABLE SYSTEM DESIGN

processing still performed in duplicate. All other
processing is performed on only one processor or
the other. In this case, duplication is usually at
the task level and the comparison is performed
between the intermediate and/or final results of
the two task instantiations. The yield is increased
utilization of the hardware; the disadvantages
are decreased coverage and increased error la-
tency. Careful design, however, can minimize
these disadvantages, and in many instances the
remaining coverage is more than sufficient.

- Another source of performance degradation
with processors duplicated in this fashion is the
bus bandwidth consumed by interprocess com-
munication. While this is an expected overhead
in multiprocessing architectures, the problem is
increased by the bandwidth needed for duplica-
tion. One possible solution can be found in the
Tandem Computer.* The Tandem design at-
tacks this problem with its Dynabus, a high-
speed interprocessor bus used solely for interpro-
cessor communication. All I/O and memory
accesses are handled through a more conven-
tional bus.

Duplication, like all other reliability tech-
niques, involves the classic dilemma of “who
shall watch over the guardians?” In the case of
duplication, failure in the matching equipment
results either in no error-detection or in an
occasional or permanent false indication of er-
ror. This problem can be alleviated with addi-
tional cost, complexity, and/or performance deg-
radation, as the matching circuit is made more
reliable using some of the techniques in the
following sections. The problem, however, can
never be completely solved. There are decreasing
returns to adding more and more redundancy.
Eventually the redundancy becomes a liability
too large to accept in cost, performance, or even
reduced net system reliability. This point is dem-
onstrated in Chapter 5, which contains an exam-
ple of an extensive PDP-8/e redesign.

* The Tandem computer does not use duplication as a means
of error detection. However, the Dynabus design could
prove useful in a system where duplication is used.

Error-Detection Codes

Error-detection codes are systematic applica-
tions of redundancy to information. The concept
of codes is simple: for the set of all possible
combinations of symbols, only a subset of them
represents valid information (Figure 3-19). The
valid set is called the set of code words. In
essence, many redundancy techniques can be
considered coding techniques. Duplication, for
example, can be considered a code whose valid
elements are words consisting of two identical
symbols. Error detection with codes consists of
determining whether an input is a valid code
word. Most of the codes of concern to a com-
puter system designer are binary codes, in which
the code words are made from a combination of
1s and Os.

One of the key concepts in determining code
properties is Hamming distance. The Hamming
distance between two words is the number of bit
positions in which they differ. The minimum
distance, d, of a code is the minimum Hamming
distance found between any two code words.
Figure 3-20 shows the space of three-bit words.
Each edge of the cube represents a distance-1
transition between adjacent words in the space.
Consider a code taken from this space, in which
all code words have an odd number of 1s. These
are the boxed words in the figure. The minimum
distance between code words is 2, and any
distance-1 transition results in a noncode word.

Valid
representations

Set of
code words

C

Set of
all possible words / possible

representations

Figure 3-19. An example code space. The set of
invalid representations (noncode words) is W—C.

RELIABILITY AND AVAILABILITY TECHNIQUES 85

m

110

Figure 3-20. The 3-bit word space.

The distance-1 transitions from code words re-
present single-bit errors. Thus, for this code
(called odd parity) any single error is detectable.
The nonboxed points of this set form another
code (even parity) with the same coverage of
single failures. For both codes, any distance-2
transition (double error) results in another code
word, and is thus a nondetectable error.

Another code is formed by joining a 2-bit
value with its complement. This code is called
the CD code because the second half is the
complemented duplicate of the first half. The set
of valid code words is D = {0011,0110, 1001,
1100}. This code has a minimum distance of 2.
Detection for this code consists of a check to see
whether the 4-bit input is an element of D, or
equivalently, not an element of D’.

Figure 3-21 illustrates the 4-bit word space
containing this code. The CD code words are
marked by &. Each arc in the figure is a dis-
tance-1 transition, that is, a single bit flip. Be-
tween 1100 and 1001 at least 2 bit flips (errors)
must occur. Between 1100 and 0011 4 bit flips
must occur to produce the wrong code word.
Some of the intermediate paths consist entirely
of noncode words. Thus, the code will detect any
single-bit error, but some double errors will go
undetected because they result in another code
word (the wrong one). Herein lies a key to code
performance: the use of a code with a minimum
distance, d, allows detection of any ¢ errors,

101

@ [TT00]|
*//‘Q
// \

0010

Figure 3-21. Expanded word space cube with 1 bit
added to the word size. Boxed words are even-
parity words, @ marks a code word in a 2/4 m-of-n
code, and & marks code words from the comple-
mented duplication code used as an example in the
text. The unmarked words are odd-parity code
words.

where ¢ < d. Duplication can be considered a
code with d = 2, triplication (three copies) a
code with d = 3, and, in general, replication
with n copies a code with d = n.

Minimum distance is not the only characteris-
tic needed to evaluate a code’s performance. The
CD code of Figure 3-21, for example, is a
variation on duplication in which the extra copy
is the complemen'trof the original. This design
gives protection against all multiple adjacent
unidirectional faults. For example, if the code is
used for a register that resides on one ICchip, a
failure of the chip that results in the grounding
of some or all outputs would be detected. Simple
duplication provides no protection against unidi-
rectional faults. In both cases, however, the
minimum distance for the code is 2.

86 THE THEORY OF RELIABLE SYSTEM DESIGN

Two other distance-2 codes are shown in Fig-
ure 3-21. The first, called the 2/4 (2-of-4) code,
consists of all the words (marked by @) contain-
ing exactly two 1s. This code requires slightly less
redundancy than the CD code because it allows
six code words out of the code space instead of
the CD code’s four. Although the 2/4 code
detects all adjacent unidirectional errors it de-
tects fewer distance-2 errors than the CD code.
The other code is an even-parity code (boxed
words). This code has the least redundancy, for
it allows eight code words out of the code space.
However, it has no coverage of distance-2 errors
and will detect only some multiple adjacent
unidirectional errors. In particular, it will not
detect a unidirectional failure affecting all bits.
The odd-parity code (all the unmarked points
in Figure 3-21) has the same drawbacks as even

parity, except that it will detect both the all-Os
failure mode and the all-1s failure mode.

Table 3-6 summarizes the properties of the
four codes shown in Figure 3-21. These four
codes constitute the spectrum of code choices for
a 4-bit code word.

Other error-detection codes, though not as
simple as replication, are generally better in at
least some respects. Most require less redundan-
cy to achieve the same minimum distance. For
many codes, decoding is eased because the code
word consists of two parts: the original value,
and the code bits that are simply appended to
make 1t a code word. Such a code is called a
separable code. In linear separable codes, each
check bit is calculated as a linear combination of
some of the data bits. Parity-check codes are
linear separable codes for which each check bit

Table 3-6. Properties of the codes shown in Figure 3-21.

Bits in Code
Code Word Words

Distance Coverage

CD 4 4

2/4 4 6

Even 4 8
parity

0Odd 4 8
parity

2 Any single bit error
66% of double-bit errors

Any multiple adjacent
unidirectional error

2 Any single-bit error
33% of double-bit errors

Any multiple adjacent
unidirectional error

2 Any single-bit error
No double-bit error

Not all multiple adjacent
unidirectional errors

Not all-Os or all-1s errors

2 Any single-bit error
No double-bit errors

Not all multiple adjacent
unidirectional errors

All-Os and all-1s errors

RELIABILITY AND AVAILABILITY TECHNIQUES 87

can be calculated as the parity bit (sum mod-
ulo-2) of some subset of the data bits. Parity-
check codes can be encoded and decoded using
parity generation and parity-check matrices (for
details, see Appendix A by Tang and Chien.)

In discussion of codes the term (r, k) code is
often used. In this expression » is the number of
bits in the entire code word, while k£ is the
number of data bits. Thus in an (n, k) separable
code there are (n — k) bits concatenated with the
data bits to form the code words.

Some codes can be modified, extended, or
combined with other codes or redundancy tech-
niques to increase coverage. For example, a
distance-d code can be modified by a further
restriction on the valid code words, such as using

a subset of code words which contains a high

percentage with a minimum distance greater
than 4. Often, however, increased effectiveness
may not be reflected in the minimum distance, as
in the examples of Figure 3-21, where the CD
code is a subset of the 2/4 code, and the 2/4 code
is in turn a subset of the even-parity code.

If some fault classes are more probable than
others, the code choice is affected. The CD code
example of Figure 3-21 detects not only single
faults but also all adjacent unidirectional faults
up to and including the entire word.

In addition to the minimum distance and
error-detection properties of a code, the cost of
the extra information needed (the redundancy)
must be considered. Another factor is the diffi-
culty of error detection and decoding. The actual
value to be communicated is first encoded, or
transformed into a valid code word. Upon re-
ceipt it must be checked for validity. For nonsep-
arable codes the received quantity must also be
decoded, or transformed back into its original
form, before it can be used.

A final issue is the intended application of the
code. Most codes, for example, will not be
invariant or closed with respect to data opera-
tions. In the simple addition of code words the
result may or may not be another code word, or
may not be the correct code word. Conversely,
there are codes that are invariant with respect to
some set of operations, or for which there exist

simple algorithms for generating the code word
that should result from the operation (short of
the process of decode, operate, encode). Further-
more, some codes can be decoded efficiently in a
serial fashion, bit by bit in a shift register, but
may be difficult to decode in a parallel fashion.
These serial-decodable codes are used in applica-
tions that employ serial data streams.

Codes can also be used for failure detection in
random logic. In such an application all internal
logic states or signals must be represented as
members of a code. This topic is treated below in
the section Self-Checking, Fault-Secure, and
Fail-Safe Logic.

This subsection presents a representative sam-
ple of the more common error-detection codes.
The references [Tang and Chien, 1969;* Peter-
son and Weldon, 1972; Rao, 1974; MacWilliams
and Sloane, 1978] provide more complete treat-
ment of the subject.

M-of-N Codes

An m-of-n code (m/n code) consists of n-bit code
words in which m (and only m) bits are ones.
Thus, there are ,C,, code words.** For example,
the 2/4 code has 4C,, or six possible code words.
The set of code words for the 2/4 code is
{1100, 1010, 1001,0101,0011,0110}. This code
detects all single and unidirectional faults. The
basic concept for the m-of-n codes is simple, but
they have several disadvantages. One is that
circuitry for parallel detection and decoding is
complex, whereas a serial decoder can be made
by simply using a counter for the one-bits.
Another problem is that they often require a
large amount of redundancy. For example, in the
case of k data bits with all 2 values possible,
then at least k extra coding bits are needed if the
code is to be separable, as in the example of
Figure 3-22 (that is, detection is necessary, de-

* The paper by Tang and Chien is included as Appendix A.

** C,, is a shorthand expression for the number of unique
combinations of n things taken m at a time. A verbal
shorthand for this term is “a choose m.”

88 THE THEORY OF RELIABLE SYSTEM DESIGN

Inputs

Control
module

— Output control lines (4)

Al

Valid output control line signal sets: 1010 1110
1100 1011
1001 0111
0011 1101

Figure 3-22. Four-output control module and val-
id output line states.

coding is not). Less redundancy can be used at
the cost of adding a decoder and encoder. For
example, if there are four data bits (k = 4) a 3/6
code could be used in place of a separable 4/8

code, since only 16 code words are needed. The

3/6 code has 20 code words and less redundancy
than a 4/8 code, which has 70 code words. If
there are ,C,, code words and only ¢ < ,C,, of
them are to be allowed , there is less coverage of
multiple faults unless the erroneous code words
are also detected. In the 3/6 code example there
are four unused code words that could pass

undetected as errors, and in the 4/8 code there

Output control lines (4)

would be 54 undetectable unused code words.
One common use for m/n codes is in control
circuitry. To produce a separable m/n coding,
extra lines are used in addition to the output
control lines. The redundancy lies in extra logic
for encoding (determining the value of the extra
lines) and in the detection logic. In some cases
extra lines are not needed or can be reduced in
number. For instance, the number of set lines
may be less than or equal to some maximum
number. Consider a control module with four
output lines whose possible output states are
shown in Figure 3-22. Either two or three lines
are set at any one time, and the addition of a
single line can produce a 3/5 separably coded
output. Figure 3-23 shows the implementation of
this scheme, including a TTL error detector.
Because the control line states (0110, 0101) are
not valid, the demultiplexer (demux) outputs for
5 and 6 are not included in the. circuit even
though such a code word is a valid 3/5 code
word. The logic that generates the redundant
signal provides fault detection only for signals
from which it is independent. Thus, the logic for
the fifth line would normally not use the other

To controlled
module(s)

e Redundant output line

a. 3/5 Code control line generation

—
Control b
Inputs module ——¢C
—d
3/5 Code
line generate
7,11, 13, 14
Outputs
a
tc’__ } Inputs
d— 3,9,10,12
4-16
Demux

Demux outputs

are active low
e————-‘ >o—

r

B v

b. 3/5 Code control line checker

Figure 3-23. 3/5 code used to check control module output lines

function.

and

RELIABILITY AND AVAILABILITY TECHNIQUES

89

Microprogram store

Binary-coded address

Parity

/

4/8 Code control

Figure 3-24. 4/8 coding in Bell ESS-3A microstore.

four module outputs as its inputs. Otherwise, the
only coverage afforded is over corruption of the
signals on the wires, not over the logic that
generates them.

The Bell ESS-3a uses an m-of-n code in its
microstore. The TO and FROM control fields in
the microword are each encoded in a 4/8 code
and are interlaced with the address field (Figure
3-24). This arrangement gives coverage of multi-
ple adjacent unidirectional errors and all even
numbers of bit failures in the address field as
well. This would not be the case if the address
were kept separated, for it is covered only by a
single-parity bit. More complete details of the
scheme, including decoding/detection imple-
mentation, are given in Toy [1978] (Chapter 12).
In a paper written about the microstore alone,
Cook et al. [1973] present a detailed examina-
‘tion of its design.

Parity Codes

If a given group of bits has an even number of
Is, it is defined as having even parity. If the
number of Is is odd, the group has odd parity.
Parity codes involve the addition of an extra bit
to each group of bits so that the resulting word
has even parity or odd parity, depending on the
implementation. Parity codes are linear separa-
ble codes and give on-line detection of errors.
For a b-bit group of bits, the (even) parity can
be generated by using a b-input XOR gate.

Because large XOR gates are not available as
standard logic functions, the parity can be gen-
erated using a b-input tree of 2-input XOR gates
or one of the standard parity-generation chips
(such as the 74190, which encodes an 8-bit input,
decodes a 9-bit input, and can be used in a
modular fashion for longer words). Parity codes
are suitable for. serial detection and encoding,
needing only a single memory cell and a single
XOR gate to perform the modulo-2 addition of
the bits in the word. The choice between even
and odd parity depends upon the prevalent
failure mode. Even parity gives detection of the
all-1s failure mode if the parity group (data bits
and parity bit) is an odd number of bits long, but
not for an even number of bits. Even parity does
not detect the all-Os failure mode. Odd parity
detects the all-Os failure mode for parity groups
of all lengths, and the all-1s failure for parity
groups an even number of bits long. Several
variants of parity encoding are discussed below;
Figure 3-25 illustrates some of these.

With bit-per-word parity, one parity bit is
appended to the entire data word. It is one of the
least expensive forms of error detection, because
it requires a minimum of redundancy in terms of
information transferred, and one parity tree can
be used for both encoding and detection if
information is both transmitted and received. In
addition to the extra bits and parity tree, other
hardware is needed for such uses as setting parity
error detection status bits and allowing wrong

90 THE THEORY OF RELIABLE SYSTEM DESIGN

D

Bit-per-word parity

| PI Bit-per-byte parity

/
JI /

\ .
I I l I P | P LL] Interlaced parity, | = 3
A\ A\ /

nnn“ Chip-wide parity, 4-bit wide chips

Chip parity,
4 data chips

I

L LT T [elelele]

—

Figure 3-25.

parity to be written for maintenance (testing)
purposes. Bit-per-word parity codes detect all
single-bit errors and all errors that involve an
odd number of bits. The all-1s and all-Os failure
coverage is as discussed above, with the entire
code word becoming the parity group. The costs
of bit-per-word parity for a b bit word are 1/b
redundancy in data, a b-bit parity tree encoder,
a (b + 1)-bit parity tree decoder (in some cases a

%(_J

\

Five parity schemes.

single encoder/decoder tree is possible), and a
logic delay of approximately I'log,(b + 1)1* gate
levels in the encoding and detection operations.

In bit-per-byte parity, an extra bit is added to
each byte of data. Alternating even and odd
parity in the bytes of the data word gives im-

* The ceiling symbol, I 1, means round the value up to the
next highest integer.

RELIABILITY AND AVAILABILITY TECHNIQUES 91

proved coverage, since both wordwide stuck-at-1
and wordwide stuck-at-0 failure modes are cov-
ered. The wordwide failure mode is a common
result of timing and select-line errors. Also, the
bit-per-byte code detects all single- or odd-num-
ber errors in each byte. Thus, as long as at least
one byte contains an odd number of failures,
many more kinds of multiple errors in a word are
detectable. The diagnostic resolution is also im-
proved over bit-per-word parity, because fewer
data bits are covered by each parity bit. Encod-
ing and detection are faster because the parity
trees have fewer inputs and thus fewer gate levels
of delay. The extra costs are more parity trees
and a redundancy of 1/m where there are m bits
per byte. The C.mmp multiprocessor used this
technique for its shared memory [Siewiorek et
al., 1978a}.

In interlaced parity, / parity bits are appended
to the data word. Each parity bit is associated
with a group of (b/i) bits, and is generated by
forming the parity over every ith bit, starting in
a different bit position for each parity bit. The
encoded word thus has i separate parity groups.
Interlaced parity covers single bit errors in each
group, as well as all multiple errors in which at
least one group has an odd number of errors. If
the parity sense (odd/even) is alternated from
group to group, the code covers a large number
of unidirectional failures. Thus interlaced parity
would be particularly useful for buses, where the
shorting-together of signal lines is a common

failure mode, as well as for whole-chip failures of

memory and bus transceiver chips. These failures
are sure to be detected relatively quickly. The
diagnostic resolution of interlaced parity is to the
parity group in error. As for bit-per-byte parity,
the speed of detection and encoding is increased
as a result of the smaller parity tree sizes. The
costs are an i/b redundancy, and i parity trees of
(Tb/i1+1) bits for detection.

Chip-wide parity, proposed for memories in
which each word is spread over (I b/w1)w-bit wide
chips [McKevitt, 1972], is actually a special case
of interlaced parity. There are w parity bits
appended to each data word, and they reside on

their own w-bit wide memory chip. Each parity
bit is the parity over the same bit position on all
the other chips. When single-bit wide chips are
used, chip-wide parity is the same as duplication.
The coverage is the same as for interlaced parity,
with the additional property that any single-chip
failure is detectable (as long as at least one bit is
in error). This technique is also applicable to
many other areas of digital system design in
which blocks of signals (control, data) are to be
protected.

Another way of detecting single-chip failures
is to use a parity bit for each chip. The chip
parity bits are stored separately from the chips
they cover. The advantage of this technique,
called chip parity, is that a parity error detection
immediately locates the failed chip. Chip parity
thus has a more useful diagnostic resolution than
chip-wide parity. However, if data bit values are
uniformly distributed and the 0-to-1 and 1-to-0
failure modes are equally likely, chip parity has
only a 0.5 probability of detecting failure of an
entire chip (for a given data word). This is
because there is a 0.5 probability that the parity
bit is the correct one for the erroneous data on
the chip. Chip-wide parity, on the other hand,
has a (I — (0.5)") probability of detection in the
same situation, given w-bit wide chips. The cost
of chip parity is (b/w) extra bits per word and
(Tb/wl)(w + 1)-bit parity trees.

Table 3-7 summarizes the properties of the five
basic parity techniques described above.

The same single-chip failure coverage and
diagnostic resolution that chip parity provides
can be obtained with less redundancy by using a
variant of the Hamming single-error correcting
(SEC) codes (discussed in the following section
on Error-Correcting Codes). Assume there are m
w-bit wide chips for a data word, and that
¢; (i = 1,2,...,m) is the parity of the ith chip.
The addition of n parity bits, where

2> m+n

can be used to give detection of any single-chip
failure and diagnostic resolution to the failed
chip or parity bit. The parity check bits are

92 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3—7. Properties of the basic parity techniques.
Bit ,
Redun- Parity Trees

Technique dancy Number Size Delay Coverage

Bit-per- 1/b 1 a=>b+1 Mog,al All single-bit errors

word All odd-bit errors

Bit-per- 1/m b/m a=m+1 MNog, al All single-bit errors

byte All errors with an odd number in at
least one byte

Interlaced i/b i a =Tb/i1+1 Mlog,al All single-bit errors
All errors with an odd number in at
least one parity group
Large number of adjacent multiple
unidirectional errors

Chip-wide w/b w a =Tb/wl+l llog, al All single-bit errors

- All errors with an odd number in at

least one parity group
Large number of adjacent multiple
unidirectional errors
Any single chip failure

Chip 1/w I b/w a=w+1 Mlog, al All single-bit errors

All errors with an odd number on at
least one chip

50 percent of single-chip failures
Points to failed chip for single errors

formed similarly to the Hamming SEC code bits.
The difference is that the check bits are formed
from the ¢’s (chip parities) instead of from
individual data bits as in the SEC code. The full
technique will not be given here, and an example
used instead. This example is a 32-bit-wide
microstore made from four 8-bit-wide chips.
Three parity bits are used, and are computed as:

D=0y @y

D =De3 Doy

P3=C®c; Dy
After a microword has been read, the parity
check bits are ‘computed and XORed with the

stored parity bits. If any of the resultant bits are
nonzero, the three bits (p; p, p;) form an indica-

tion (called the syndrome) that is uniquely asso-
ciated with a particular chip or parity bit in error
(001, 010, 100 for parity bits 1, 2, and 3, respec-
tively, and 011, 101, 110, 111 for data chips 1, 2,
3, and 4, respectively). The cost for this scheme
is n extra bits per word, n parity trees with
(Tlogy(m + n)1) inputs, and m parity trees with
w inputs if w-bit wide chips are used. The
coding/decoding circuitry is greater than for
chip parity, but the decrease in redundant bits
can be significant, especially for large memories.

- On the other hand, coverage of multiple chip

failures is much lower, and in the case of multi-
ple chip failures the syndrome may point to a
nonfaulty chip if it is nonzero.

Parity techniques have been used in many
systems, most often for main memory and less

RELIABILITY AND AVAILABILITY TECHNIQUES 93

often for buses. The UNIBUS on PDP-11s, for
example, does not have parity but defines two
extra signal wires for reporting memory or pe-
ripheral device parity errors. One wire carries the
parity error signal; the other is a parity enabling
signal, necessary because not all bus devices and
memories use parity checking. The PDP-11/60
has parity on its writable control store (WCS),
main memory, and cache. The WCS has 3 parity
bits in each word, one for each 16-bit segment of
the 48-bit word. The cache has 3 parity bits, one
for the tag field and one for each of the data
bytes. Starting with the 1108, all of the Univac
1100-series systems use parity. The 1108 had
parity in main memory and on the processor
general registers. As the 1100 series matured,
parity was expanded to more parts of the systems
(see Chapter 10). Finally, the VAX-11 systems,
detailed in Chapter 8, make extensive use of
parity.

Standard LSI chips are being used increas-
ingly in systems design. However, they are not
usually designed for the external application of
error-detection codes to check for proper chip
operation. Data transformations occur internally
for which codes are not invariant. In some cases,
however, partial checking can be accomplished

ALU

without resorting to duplication, as in the DEC-
system 2020 processor. A parity code is used on
the bus that feeds an Am2901 bit-sliced ALU. As
the data are gated into the 2901 the bus monitor
checks them for proper parity. If the data are
merely being read into the 2901 register file, their
parity bit is simultaneously stored in an external
register (Figure 3-26). The external register has
two bits associated with each register in the
2901: the parity bit, and a “parity valid” bit,
which remains set as long as no data transforma-
tions are performed on the contents of the corre-
sponding internal register. The parity-valid bit
value is determined by the control signals for the
2901. When the data are brought out to the bus
from the 2901, their parity is generated before
they are placed on the bus. If the parity-valid bit
is still set, the stored parity is used to verify that
the data have no errors. This scheme provides
fault detection for the 2901 register file, internal
data paths, and the parts of the ALU used to
move data internally without transformation.
Even though parity (and other) codes are not
invariant with respect to data transformations, it
is possible to use parity as a check on the data
operation. This is possible when, given the inputs
to the operation, the parity of the result of the

b control lines

ALU chip (e.g., Am2901)

p.v

ctl.

Register
file

ALU FX

Parity generate/check

Parity bit from bus

!

Bus (with parity)

Figure 3-26. Use of parity to detect errors during nontransformation opera-

tions in LSl ALU chips in the DEC 2020.

94 THE THEORY OF RELIABLE SYSTEM DESIGN

transformation can be predicted. Chinal [1977]
proposes a high-speed parity prediction circuit
-for binary adders. Khodadad-Mostashiry [1979]
presents a general method for predicting the
parity of any transformation, and in particular,
bit-sliced functional circuits. The resulting pre-
diction circuit, however, is often much more
complex than the circuit it checks.

Parity can be used to detect addressing faults
in a memory by storing the parity of the address
and data with the memory word. On access, the
stored parity is compared with that of the data
and address used. If the parity is wrong, either
the word retrieved is incorrect, the word re-
trieved was stored in the wrong place, or the
wrong word was retrieved. In this way all single-
bit addressing errors as well as data errors are
detected.

In many applications of redundancy tech-
niques the redundancy needed may already be
partially or wholly present. The 3/5-coded con-
trol module mentioned in the previous section is
an example. An example concerning parity is a
host-to-LSI-11 network for a system containing
several LSI-11s. This network allows direct host
communication with the individual LSI-11s. The
bus for the network has a data field and a 3-bit
opcode field (Figure 3-27). There are two unused
opcodes (011 and 111). If an opcode starting in
01 is used for data writes and in 11 for data
reads, the third bit could carry the parity of the
data field. Since it is predicted that 90 percent of
the bus transactions will be data reads and
writes, this scheme would give bit-per-word par-
ity protection on 90 percent of the bus activity
without any extra bus wires.

Finally, in a design analysis for the use of
parity on a processor-memory bus, three alterna-
tives were considered. The first was simple (17,
16) parity. The second was the same (17, 16)
parity with a modification that performs a cumu-

" lative parity check of the entire two-way bus
transaction. The address sent to the memory has
an appended parity bit. The parity appended to
the returned data word is formed as the mod-

Bus{1:8)
Bus(9:11)

Data

Function

000 Write address

001 Write network CSR
010 Write data

011 Unused

100 Read device characteristics (polling)
101 Read CSR

110 Read data

111 Unused

Strobe

Acknowledge

Bus{(12)
Bus{13)

Figure 3-27. Network bus signals for host-to-
LSI-11 command bus.

ulo-2 sum of the received address parity bit, the
computed parity of the received address, and the
parity of the memory word itself. This scheme
provides detection of a failure in the memory
parity checker. The third alternative was an
interlaced (18, 16) parity (i = 2) with alternated
parity senses, modified as above to provide a
cumulative parity check on the bus transaction.
Table 3-8 shows the coverage of several different
failure classes for this scheme. From the table it
can be determined that the cumulative (17,16)
parity is better than the simple (17,16) parity
because it detects a large number of memory
unit parity generate/check errors, and that the
(18, 16) cumulative parity provides the best cov-
erage of the three.

Checksums

One of the least expensive methods of fault
detection is checksumming. The checksum for a
block of s words is formed by adding together all
of the words in the block modulo-n, where 7 is
arbitrary. The block of s words and its checksum
together constitute a code word in a linear
separable code. The number of bits in the sum is
usually limited. This quantity is then compared
with the checksum formed and stored when the
block was last transmitted. In memories, the
checksum must be stored along with the data
block. If any word within the block is modified,
the checksum must also be modified at the same

RELIABILITY AND AVAILABILITY TECHNIQUES 95

Table 3-8. Percentage of coverage of processor-memory bus failures.

Coverage
(17,16) (17.16) (18,16)

Error Type Parity Cumulative Cumulative
Hard failure:

Bus all 1 50% 50% 100%

Bus all 0 50 50 100

Bus half 1 0 Near 100

Bus half 0 0 0 Near 100
Wire-or:

2 wires 100 100 100

3 wires 0 0 88

4 wires 0 0 100

5 wires 0 0 0
Single bit* 100 100 100
Double bit

Adjacent 0 0 100

Random 0 0 Near 100
Triple bit 100 100 100
Quadruple bit

Two pairs adjacent 0 0 0

Two adjacent 0 0 Near 100

Three adjacent 0 0 100

Four adjacent 0 0 50

Random 0 0 0
Parity generate and check

Stuck-at-ok 0 100 . 100

Stuck-at-1 50 50 Near 100

Stuck-at-0 50 50 Near 100

*One bit value, not a failed wire

time. The stored checksum is normally kept
physically separate from the data block to limit
the effect of a catastrophic failure on the fault-
detecting capability.

Although checksumming is inexpensive in
terms of excess information, it has three disad-
vantages. First, it is best suited to applications in

which data are handled in large, contiguous
blocks, such as buses that carry data in blocks,
sequential storage, and block-transfer peripher-
als.

Second, checksumming in memories takes a
long time to detect faults even when reading a
single word, for s words must be read and added,

96 THE THEORY OF RELIABLE SYSTEM DESIGN

Memory array

Checksum storage

w/s blocks e
Error
F———
|
|
|
|
: System Register
I - N)
N I Y
Blockof } }—————————= Added hardware:
s words Adder
Accumulator
———————————— Comparator

w/s-word checksum store
Control circuitry

Figure 3-28. Memory with checksum error detection.

and the sum compared with the stored value.
Thus, checksumming is not suited to on-line
checking when reading from memories. If the
technique is used in a writable store, the check-
sum must be updated on each write by reading
the old data and checksum, subtracting the old
data, adding the new data, and finally storing
both the data and the updated checksum.

This cumbersome procedure, however, may
not be a problem when writing is infrequent or
when updating is performed in parallel with
subsequent system operations not involving the
memory. The memory checksum (and checksum
update on writes) may be performed by dedicat-
ed hardware without interference to the rest of
the system (Figure 3-28). The checksum can also
be performed by the ALU or other system
component, which will cause a degradation of
the system’s throughput. The Xerox Alto, for
example, uses the processor ALU to perform the
checksums for its disk, thus allowing the disk
controller to be less complex. In this case, if it
takes ¢, seconds to perform a checksum for one
block, and on the average a block of memory is
checked every T, seconds, the system perfor-

mance is degraded by (z,/T.). The additional
degradation due to a checksum update time of 7,
when writes are performed .every T, seconds is,
on the average, (z,/T,).

Though cumbersome for random access writ-
able stores, checksumming is very applicable to
read-only memory, which can be checked by a
background process. The Pluribus system (see
Chapter 13) uses checksum error detection on
both shared-code storage and local-code storage
[Ornstein et al., 1975]. Another application
would be microstore checks performed by dedi-
cated hardware or console processors. Finally,
critical data structures and program code could
occasionally be verified through software-imple-
mented checksumming.

The third disadvantage of checksumming is
low diagnostic resolution. In memories, the de-
tected fault could be in the block of s words, the
stored checksum, or the checking circuitry. In
data transmission, the fault could be in the data
source, the transmission medium, or the check-
ing circuitry.

Four checksumming techniques are presented
below. The first is a single-precision checksum.

RELIABILITY AND AVAILABILITY TECHNIQUES 97

Table 3-9. Probability of detection for different errors with single-precision

checksum.
Error Types Coverage Ratio Condition
Single device-multiple word
-Single column 1 i<z-—logys
(1-27%) i =2z—logys
(1=27(1+ ,C,y)) i =z — (logys) + 1
(1 =270 4 27%) Otherwise

-Multiple adjacent columns 1

(1 _ 2—(:—[) + 2—-(‘3‘)

Multiple device

i< z—(logys) — ¢
Otherwise

-Single word 1
-Multiple word adjacent columns (1-27%) i<z—(logys) —c¢
(1—27671) Otherwise

The second is an extended-precision (extended-
word-length) checksum. The third, called the
Honeywell checksum, is a modified double-pre-
cision technique. More complete information on
these can be found in Jack et al. [1975], from
which much of the discussion below was ab-
stracted. The last technique is called a low-cost
residue code, which gives better coverage than
the single-precision checksum for about the same
cost.

In single-precision checksumming the memory
is divided into blocks of s words. Each word has
z bits. The checksum is a z-bit word that is the
modulo-(27) sum of the s words in the block. The
memory redundancy for this system is
(1/(s + 1)). Errors in any one column will cause
either the corresponding checksum bit or the
carry to the adjacent column to be in error.
Thus, for the most significant column the error
coverage afforded by the information contained
in the carry is lost. The bit positions nearby pose
the same problem in lesser degrees, depending
on their distance from the most significant bit.
Thus, error coverage varies for each bit position,
with the best coverage available for errors in the
least significant bit. As the size of the block that
the checksum guards increases, coverage de-

creases. Thus, coverage is a function of the block
size and the column(s) in error.

Table 3-9 summarizes the results for different
error conditions. The derivations can be found in
Jack et al. [1975]. In the table, ¢ is the number of
columns in error, i is the lowest-order column
that has an error, s is the number of words that
a checksum guards, and z is the number of bits
in the checksum (the least significant bit is
column 0). Unidirectional errors were assumed-
in the derivation. It is also assumed that multi-
ple-word failures extend over all words in the
memory block (such as one entire column). If
this is not the case, s should be replaced by the
number of words in the block with failures. The
formulas for multiple adjacent-column faults
and multiple device*—multiple word faults also
hold approximately for nonadjacent failures in
their carry range; that is, the carry from the
column of the least significant bit faults will
affect the result of the column holding the other
failure. The coverage improves if the faults are
not within carry range. Note that in the case of

* Multiple device faults can be either a single fault affecting
multiple devices (such as a stuck address line) or multiple
independent faults on several devices.

98 THE THEORY OF RELIABLE SYSTEM DESIGN

multiple column failures, i is the number of the
least significant failed column.

If the checksum being formed is A bits longer
than the memory word length, the coverage is
greater than that afforded by the single-precision
checksum. This form of checksum is called the
extended-precision checksum. In particular, if
s < 24 then the coverage for all columns is the
same as for the lowest-order column in the
single-precision checksum, because there can be
no overflow and thus no loss of information in
the carry bits from the higher-order columns.
The probability of detecting any type of error is
thus 100 percent.

The Honeywell checksum is a modified dou-
ble-precision checksum technique in which suc-
cessive pairs of memory words in a block are
concatenated. The checksum is formed by com-
bining double-length quantities to form a dou-
ble-length word. Thus any single-column error in
memory will affect two columns in the checksum
being formed. Overflow can still cause loss of
carry-bit information. Provided that s < 2(””,
the coverage formulas in Table 3-10 apply to the
Honeywell checksum.

Table 3-11 shows an example using the formu-
las from Table 3-9. An analysis is made of a 32-
word X 16-bit read-only memory made from 32-
X 4-bit ROM chips. The probability of successful
error detection is calculated for each column (or
chip), assuming that column (chip) is failed.
These intermediate results are combined to pro-
vide the coverage for a single column (chip)
failure anywhere in the memory.

A modification of the single-precision check-
sum with an end-around carry adder is termed a
low-cost residue code. The end-around carry
retains the information normally lost with the
most significant carry bit; it resuits in modulo-m
addition where m = 2% — 1 for a b-bit adder.
This technique [Usas, 1978] provides about the
same single-word coverage as the single-preci-
sion checksum. The coverage for double-bit er-
rors is slightly better, and is much better for
unidirectional errors in one column or two adja-

cent columns. The number of possible undetect-
able 2- and 3-bit errors is:
U, = sb(s — 1)
Us = s?b(s — 1)
where s is the block length.
When one column or two adjacent columns

have unidirectional errors, the total number of
possible undetectable errors is:

Ujeot = bU and Uy, = (b — 1)2N - 2U)

for b > 2 and
forb >3

where

U=2 sCik(2b-1))

(DG s

1<i<Q 0<k<R,
T =i -1 +s—4i—1,
P =s/2" 1),

Q = 3s/(2° — 1), and

R, = i(2° - 1)/A.

1

With these formulas, Usas showed the low-cost
residue code to be superior to the single-preci-
sion checksum.

Arithmetic Codes

An arithmetic code, A, has the property that
A(b * ¢) = A(b) * A(c) where b and ¢ are non-
coded operands, * is one of a set of arithmetic
operations (such as addition and multiplication),
and A(x) is the arithmetic code word for x. Thus,
the set of code words in A4 is closed with respect
to a specific set of arithmetic operations. Such a
code can be used to detect or correct errors and
to check the results of arithmetic operations.*
Some operations (such as logical operations),

* Other codes are not invariant with respect to arithmetic
operations. For some separable linear codes other than
arithmetic codes, the check symbol portion of the result can
be produced by a prediction circuit. Usually such circuits
are complex. Wakerly [1978] details check symbol predic-
tion for parity-check codes and checksum codes.

RELIABILITY AND AVAILABILITY TECHNIQUES 99

"able 3-10. Probability of detection of errors through Honeywell checksum.

srror Types - Coverage Ratio

Condition

iingle word 1
vlultiple word

Single column 1
(1 _ 2—(s+l))

(1 =271+, ,C)
(] _ 2—(z—i+(s/2)) + 2—.&'))

Multiple column 1

(l _ 2—(z—i+(cs/2)) + 2vcs)

i <z —logy(s/2)
i=z—log(s/2)

i =z — (logy(s/2)) + 1
Otherwise

1<z~ (logy(s/2)) — ¢
Otherwise

rable 3-11.
nade of 32 X 4-bit chips.

Sample calculation using the formulas of Table 3-9 in an analysis of a 32-word X 16-bit ROM

Probability of Net Probability

[ype of Error Detection, of Error
“ailure Column Each Column Detection
jsingle column 0,1,2,...10 1 11/16
11 ~ 1 1/16
12 0.860 0.860/16
13 0.875 0.875/16
14 0.75 0.75/16
15 0.5 0.5/16
0.937
dne whole chip i 0.4 1 2/4
8 0.996 0.996/4
12 0938 0.938/4
0.983

1owever, cannot be checked by arithmetic codes
ind must be performed on unencoded operands.
[he discussion below is just an introduction to
he topic of arithmetic codes; Appendix B, a
»aper by Avizienis [1971], examines in detail the
hree classes of arithmetic codes presented brief-
y here: AN, residue-m, and inverse residue-m
irithmetic codes. Other references on arithmetic
:odes are Rao [1974]; Sellers, Hsiao, and Bearn-
on [1968b]; and Avizienis [1973].

The simplest arithmetic codes are the AN
codes. These codes are formed by multiplying
the data word by a number that is not a power
of the radix of the representation (such as two
for binary). The redundancy is determined by
the multiplier chosen, called the modulus. AN
codes are invariant with respect to unsigned
arithmetic. If the code chosen has 4 = 29 — 1
and a length that is a multiple of a bits, it is also
invariant (using one’s-complement algorithms)

100 THE THEORY OF RELIABLE SYSTEM DESIGN

n-bit data word

l 2,4] a5]

“yr

Twg ‘——I

Addend 1

m
s
Carry b

| |

[P0 [b0]

Code word

Figure 3-29. Simple encoder for 3N single-error-
detecting arithmetic code.

with respect to the operations of addition and
left and right arithmetic shifting. Additionally,
complementation and sign detection are the
same [Avizienis, 1973]. An example of a single-
error detecting AN code is the 3N code. An n-bit
word is encoded simply by multiplying by 3. This
adds at most 2 bits of redundancy and can be
encoded quickly and inexpensively in parallel
with an (n + 1)-bit adder (Figure 3-29). Error
checking is performed by confirming that the
received word is evenly divisible by 3, and can be

accomplished with a relatively simple combina-
tional logic decoder. Although there is one more
bit than in bit-per-word parity for roughly the
same coverage, the operation of other system
functions (such as ALU and address calcula-
tions) can be checked. The hardware cost is a
(2/n) X 100 percent memory element increase,
an (n + 1)-bit adder for encoding, a combina-
tional decoding circuit, and extra control cir-
cuitry. The delay on reads results from a small
number of gate delays, and on writes from the
delay of the adder. Avizienis [1973] presents
algorithms for operations involving AN codes,
and discusses in detail the design of a 15N code
arithmetic processing unit used in an early ver-
sion of the JPL STAR computer (see Chapter
14).

Residue codes are a class of separable arith-
metic codes. The residue of a data word N is
defined as R(N) = N mod m. The code word is
formed by concatenating N with R(N) to pro-
duce N|R (the vertical bar denotes concatenta-
tion). The received word N'|R’ is checked by
comparing R(N’) with R’. If they are equal, no
error has occurred. Figure 3-30 is a block dia-
gram of a residue-code arithmetic unit. A variant
of the residue-m code is the inverse residue-m
code. The separate check quantity, Q, is formed
as Q = m — (N mod m). The inverse residue
code has greater coverage of repeated-use faults
than does the residue code. A repeated-use fault
occurs when a chain of operations is performed
sequentially on the same faulty hardware before

NT«N2 >

R(N1 » N2)

Residue
generator

R(N1+ N2)

N1 >
Arithmetic
R]| | fonction
N2 >
R(N?2)
Result
residue
| ——| generator

Figure 3-30. Block diagram of an arithmetic unit using a separable residue

~arithmetic code.

RELIABILITY AND AVAILABILITY TECHNIQUES 101

checking is performed. For example, iterative
operations such as multiplication and division
are subject to repeated-use faults. Both the resi-
due-m and inverse residue-m codes can be used
with either one’s-complement or two’s-comple-
ment arithmetic. The JPL STAR computer, dis-
cussed in Chapter 14 [Avizienis et al., 1971], uses
an inverse residue-15 code. Elsewhere, Avizienis
[1973] describes the adaptation of two’s-comple-
ment arithmetic for use with an inverse residue
code.

In both the AN and residue codes, the detec-
tion operations can be complex, except when the
check moduli (4 for AN codes, m for residue-m
codes) are of the form 2 — 1. The check opera-
tion in this case can be performed using an a-bit
adder with end-around carry, serially adding a-
bit bytes of the data word (or code word for AN
codes) [Avizienis, 1971, 1973]. In effect, this
operation performs the division of the word by
the check modulus. The operation can also be
implemented in a faster, parallel fashion. Arith-
metic codes with check moduli of this form are
called low-cost arithmetic codes.

Cyclic Codes

In cyclic codes, any cyclic (end-around) shift of
a code word produces another code word. Cyclic

codes are easily implemented using linear-feed-
back shift registers, which are made from XOR
gates and memory elements. These codes find
frequent (though not exclusive) use in serial
applications such as sequential-access devices
(tapes, bubble memories, and disks) as well as
data links. Sometimes encoding is performed
independently and in parallel over several serial-
bit streams, as for the multiple-wire buses shown
in Figure 3-31. The bits of each byte are trans-
mitted simultaneously. The CRC (Cyclic Redun-
dancy Check) check bits for each bit stream are
generated for the duration of the block transmis-
sion and are appended to the end of the block.

The (n,k) cyclic codes can detect all single
errors in a code word, all burst errors (multiple
adjacent faults) of length » < (n — k), and many
other patterns of errors, depending on the partic-
ular code. A cyclic code is uniquely and com-
pletely characterized by its generator polynomial
G(X), a polynomial of degree (n — k) or greater,
with the coefficients either 0 or 1 for a binary
code. Appendix A provides a complete discus-
sion of cyclic codes and other polynomial-based
codes.

Given the check polynomial G(X) for an (n, k)
separable code, a linear-feedback shift register
encoder/decoder can be easily derived.* The
block check register (BCR) will contain the
check bits at the end of the encoding process,-

Multiple-wire
serial data link

——-LC‘RC generator l——’\/—ﬂc checker l——v

Bit serial

Bit-serial

data —-—ERC generator l—’\/—-l CRC checker I—— data

streams

streams

——[CRC generator f—'\,———lﬂc checker '———-—

A—-lﬁRC generator I—\/——l CRC checker |—>

| —
Byte-serial
data stream

Figure 3-31.

——
Byte-serial
data stream

Use of cyclic codes for byte-serial bus data transfers (i.e., the bits

of each byte are transmitted simultaneously). The CRC check bits are generated
for each bit stream during the block transmission and are appended at the end

of the block.

102 THE THEORY OF RELIABLE SYSTEM DESIGN

Lﬁﬁﬁ%ﬁ Lm ABOEBK DL@?[J
Input data stream——

Generator polynomial G(X) = X2 + X" + X3 + X2 + X + 1
Figure 3-32. Block Check Register (BCR) for CRC-12 cyclic code.

during which the data bits have been simulta-
neously transmitted and fed to the input of the
BCR. The BCR is an r-bit shift register, where
r = (n — k), the degree of G(x). In Figure 3-32,
the register shifts to the right, and its memory
cells are labeled (r — 1), (r — 2), ..., 1, 0, from
left to right. The shift register is broken to the
~ right of each cell i, where i = (r — j) andj is the
degree of a nonzero term in G(X). At each of
these points an XOR gate is inserted, and the
gate output connected to the input of the cell on
‘the right side of the break. The output of the gate
to the right of cell 0 is connected to the input of
the leftmost memory cell (cell » — 1) and to one
of the inputs of each of the other gates. The
remaining input of each gate is connected to the
output of the memory cell to the left. The second
input of the rightmost gate is connected to the
serial data input. The result is a feedback path,
whose value is the XOR of BCR bit 0 and the
current data bit. Figure 3-32 shows the BCR for
a cyclic code with

GX)=X2+x"+ X3+ X2+ X+ 1.

This code, called CRC-12, is often used with 6-
bit bytes of data because the check bits fit evenly
into two 6-bit bytes. The XOR gates are placed
to the right of the five shift .register cells,
{12 = 12),(12 — 11),(12 = 3),(12-2),(12 - 1)}

*The following discussion is based in part on the CRC
chapter in McNamara [1977). The shift registers described
here vary slightly in form from those in Appendix A.

or {0,1,9,10,11}. The output of the rightmost
XOR gate is fed back into the register via the
other XOR gates.

In operation the BCR is preloaded with an
initial value (normally all Os). The data are
simultaneously transmitted and fed to the data
input of the BCR. When the output of the data-
input XOR gate has stabilized, the shift register
is clocked. Once the last data bit has been
transmitted, the BCR contains the check bits of
the code word. The contents of the BCR are then
transmitted starting with the rightmost bit, but
without feedback.

Figure 3-33 shows a CRC-12 BCR operation
with a 12-bit data word. The same BCR is used
at the receiving end. The input stream is fed to
the BCR input in the same way, with the data
bits going to both the BCR and the destination.
The BCR is preloaded with the same value as
that used in the transmitting BCR. The received
check bits are input to the BCR following the
data bits. When preloading involves all Os, the
result in the receiver BCR should be 0.

CRC-12 is a (12 + k,k) code that provides
error detection of all burst errors of length 12 or
less. The data length is arbitrary. Thus, redun-
dancy and coverage probability change with the
data length. CRC-16 is a (16 + k, k) code based
on the generator polynomial

GX)=Xx%+xP+x2+1.

CRC-CCITT is another (16 + k, k) code, with

GX)=X"Y+Xx24+Xx5+1.

RELIABILITY AND AVAILABILITY TECHNIQUES 103

Feedback
Shift BCR Input (input XOR
_clock contents data bit bit 0)
0 0000 0000000 0
1 1
1 1111 0000000 1
0 1
2 1000 1000000 1
0 1
31011 0100000 1
1 0
4 0101 1010000 0
0 0
5 0010 1101000 0
0 0
6 0001 0110100 0
0 0
7 0000 1011010 0
0 0
8 0000 0101101 0
0 0
9 0000 0010110 1
0 1
0 1111 0001011 1
0 1
1M 1000 1000101 0
1 1
12 1017 0100010 0

Transmitted data bits: 100000001001 (right-most bit first)
Transmitted check bits: 101101000100 (right-most bit first)

Figure 3-33: BCR calculation of check bits for
CRC-12 and a 12-bit data word.

Both CRC-16 and CRC-CCITT provide detec-
tion for all burst errors 16 bits long or less, and
99 percent of bursts greater than 16 bits. CRC-16
is used by the DDCMP and Bisync protocols,
while CRC-CCITT is used by the ANSI X.25,
HDLC, and SDLC protocols. These (16 + k, k)
codes are normally used when the data are in 8-
bit bytes because the check bits consume exactly
2 bytes; however, k can be any arbitrary length.
Figure 3-34 shows a BCR for CRC-CCITT.
IBM’s SDLC (Synchronous Data Link Con-
trol) data communications protocol uses the
CRC-CCITT cyclic code with a small variation:
the BCR is preloaded with all 1s instead of all Os.
At the end of the data transmission the BCR
contents are complemented (logical comple-
ment) before being transmitted. This scheme
allows detection of extra or missing Os at the

beginning and end of the data fields, which are
of variable length. At the receiver, the BCR
result must equal FOB8,,.

CRC encoders/decoders are available as inte-
grated circuit chips. An example is the Fairchild
F6856 Synchronous Protocol Communications
Controller chip, which provides communications
protocol handling for microprocessor systems
[Kole, 1980]. Embedded on the chip is a CRC
encoder/decoder. The chip is designed to handle
CRC-12, CRC-16, CRC-CCITT, and several
other CRC codes. In addition, the internal BCR
can be preset optionally with all Os or all Is.
Another available integrated circuit is the Signet-
ics 2653 intelligent bus monitor, analyzed in
depth in Weissberger [1980]. In addition to its
other functions, the circuit provides CRC check-
ing and generation.

CRC checks are often performed in software
to detect errors in critical data structures and
programs. An algorithm for doing this, shown in
Figure 3-35, is essentially a software implemen-
tation of a linear feedback shift register. A
processor register is used as a shift register, and
the XOR feedback gates are replaced by a CRC
constant, which is XORed with the register. The
CRC constant is formed by finding the numbers,
i, for which i = ((r — 1) — j), where j is the
degree of a nonzero term in G(X) (except for the
X" term). The bits i of the CRC constant are ls,
and the rest are Os. The bits are labeled (r — 1)
for the leftmost (most significant) bit, to 0 for the
least significant bit. The constant for CRC-
CCITT is 84084, and is O0F01,, for CRC-12. This
algorithm would be useful, for example, when a
separate maintenance or console processor per-
forms occasional checking for microstore cor-
ruption via a CRC check.

The Interdata 8/32 uses the algorithm of Fig-
ure 3-35 in its microcoded CRC instruction
[Interdata, 1975]. The Interdata 8/32 CRC in-
struction works for either CRC-12 or CRC-16,
with any arbitrary preloading of the check char-
acter. Each invocation of the CRC instruction
adds only one data byte to the CRC check
character, so that it must be invoked for each

104 THE THEORY OF RELIABLE SYSTEM DESIGN

EQBED

10]9]8]7]6[5]4

Input data stream —»

G(X) = X" + X2 4 x5 +1

Figure 3-34.

byte in the data field. The Interdata 8/32 Auto-
driver Channel, used for direct memory-periph-
eral 1/O, can be commanded to perform this
operation automatically on incoming or outgo-
ing blocks of data. The VAX-11/780 has a CRC
instruction that performs CRC checking or en-
coding for up to 64K 8-bit bytes in memory.
G(X) can be any check generator polynomial of
degree 32 or less [DEC, 1977]. The VAX uses the
algorithm and constants as described above.

Cyclic codes can also be encoded and decoded
in parallel for nonserial applications. Like other
linear codes, they can be processed with matrix
techniques. An example of parity-check matrices
can be found in the section on Hamming codes.
For more details on forming the parity-check
and parity-generation matrices for cyclic codes,
see Appendix A.

Self-Checking, Fault-Secure, and
Fail-Safe Logic

Although duplication and codes are general so-
lutions to fault detection, both techniques are
vulnerable to single-point failures in the compar-
ison element (duplication) or the decoder/detec-
tor element (codes). These single points of failure
can be eliminated through self-checking, fault-
secure, and fail-safe logic design. These logic
design techniques can be used for general-pur-

BCR for CRC-CCITT cyclic code.

pose logic design as well as for comparators and
checkers. Due to space limitations the following
discussion can only serve as an introduction to
the topic of self-checking and fail-safe logic. The
field is large and many different approaches have
been used. Wakerly [1978] has written an excel-
lent text on self-checking logic. Several papers on
various aspects of self-checking and fail-safe
logic design are listed at the end of this section
for further reference.

Self-checking circuit design is based on the
premise that the circuit inputs are already encod-
ed in some code, and that the circuit outputs are
also to be encoded. The inputs and outputs are
not necessarily in the same code. The following
definitions from Anderson [1971] and Anderson
and Metze [1973] are based on this premise.

Self-Testing Property. A circuit is self-testing if, for
every fault from a prescribed set, the circuit produces
a noncode output for at least one code input.

Fault-Secure Property. A circuit is fault-secure if, for
every fault from a prescribed set, the circuit never
produces an incorrect code output for code inputs.

Totally Self-Checking (TSC) Property. A circuit is
totally self-checking if it is both self-testing and fault-
secure.

Thus, to be self-testing, the circuit must expe-
rience a set of inputs during normal operation

RELIABILITY AND AVAILABILITY TECHNIQUES

register temp <(r-1):0> ;

variable ber <(r-1):0> ;

variable flag <0> ;

variable input <(b-1):0> ;

Tnteger variable counter ;

ogical variable new.code.word ;
constant bcr.preload <(r--1):0>=00..016 5

constant crc.constant <(r-1):0> = XX..XX16 ;

begin

if new.code.word then bcr «— ber.preload ;
Temp — 0 ;

temp <(b-1):0> «— input ;

temp — temp XOR ber

for counter —~ 0 to (r-1) do

begin
flag — temp <0> ;
shift.right (temp) ;
if (flag =

end ;

ber — temp
end ;

h degree G(X) ;
'w111 hold block check character ;

tinput data byte ;

lwould be FFFF16 for SDLC ;

! 840816 for CRC-CCITT

0F0116 for CRC-12 ;

! this algorithm updates the block check character
for a new data byte. new.code.word is TRUE only if
a new CRC computation is to be commenced, i.e., if
this is the first byte in a CRC code word. ;

105

! shift temp right one, shifting O into temp <r-1> ;
1) then temp — temp XOR crc.constant ;

! ber now contains current check characters ;

Figure 3-35. An algorithm for computation of CRC check bits using processor registers.

that tests for all faults in the prescribed set. If
such a set of inputs is not assured, the circuit is
self-testing only for the faults that are tested.
This same restriction applies to TSC circuits.
These three properties are illustrated by a TSC
comparison element (derived from the TSC com-
parison element in Wakerly [1978]). A dual-rail
signal is a coded signal whose two bits are always
complementary. This is equivalent to the 1/2
code. The comparison element checks for the
equality of the two dual-rail signals at its inputs,
and outputs a dual-rail signal (01 or 10) only if
the inputs are both equal and properly encoded;
otherwise it outputs a noncode word, either 00 or
11. In addition, the comparison element is self-
testing for any internal single fault, and is thus
TSC as long as all four possible sets of code
inputs appear during normal operation. Figure
3-36 shows the logic circuit for the comparison
:zlement, while Table 3-12 shows an analysis of
the possible single stuck-at-faults and the inputs
that test for them. An input signal tests a fault in

the circuit if the output is a noncode word. To
test for all faults in the set (m, n, o, p: stuck-at-1),
all four possible input signal sets must appear.
As a result, all four signal sets must appear at the
circuit input during normal operation. Converse-
ly, it can be seen that there is no stuck-at fault
which is not tested by at least one of these-
signals. Thus, the comparator is self-testing (giv-
en a guarantee of all four signal sets appearing).
Finally, further examination of Table 3-12 shows
that under stuck-at faults at a, b, ¢, or d, the
outputs are either noncode words or the correct
code word (i.e., the code word that would appear
in normal operation). Since these stuck-at faults
produce a condition equivalent to having non-
code inputs, the circuit is shown to be fault
secure as well. Since the circuit is both fault
secure and self-testing, it is TSC. Note that since
stuck-at faults of signals a, b, ¢, and d are
equivalent to faults in the input signals, these
conditions show the response of a nonfaulty
comparator to faulty (noncode) inputs.

106

82 -+ a €
| f
|
B1 : b 8
|
A, B are dual-rail I h
signals : i
A2—1€ .
))
| k
ld
Al : i
'\
Figure 3-36.

Some operations are not amenable to the use
of codes, and full duplication 1is the least redun-
dant form of checking that can be used. To
check the logical operations AND and OR, for
example, duplication can be used with a TSC
comparator. Wakerly [1974] has proposed par-
tially self-checking logic as a less expensive alter-
native:

Partially Self-Checking (PSC) Property. A circuit is
partially self-checking if it is self-testing for a set N of
normal inputs and a set F, of faults, and is fault-secure
for a set I (a nonnull subset of N) and a set F,.

In normal operation of a PSC circuit, all faults
from F are tested. In addition, for a subset I of
the normal inputs, no incorrect code output can

THE THEORY OF RELIABLE SYSTEM DESIGN

I
l
m |
|
LR Q@
n I
i
I Checker output
I dual-rail signal
o I
I
, !
] 1
|
I
P [
1
|

Logic circuit of basic TSC comparison element.

be produced by a fault in the set K. Thus, PSC
logic provides eventual detection of a fault at the
cost of introducing fault latency (undetected
faults produced prior to fault detection). The

~ benefit is a redundancy cost lower than that of

duplication.

Fail-safe techniques, on the other hand, are
not concerned with the detection of faults per se.
Thus, they can result in an even lower redundan-
cy cost.

Fail-Safe Property. A circuit is fail-safe if, for every
fault from a prescribed set, any input produces a
“safe” output, that is, one of a preferred set of
erroneous outputs.

A traffic light with a fail-safe output of stuck-

Table 3-12. TSC dual-rail comparator responses to stuck-at-faults.

Inputs Normal Outputs C2C1 Resulting from Single Stuck-at-1 Faults

B2Bl1 A24A1 Output a b ¢ d e f g h i j k ! m n o p q r
01 01 10 11 10 11 10 10 10 10 10 10 11 11 10 10 60 10 10 10 11
01 10 01 11 01 01 11 11 01 OF 11 0O1F O1 01 O1 01 01 00 O1 11 Ol
10 01 01 01 11 11 01 01 11 11 01 01 O1 01 O1 O1 Of O1 00 11 O1
10 10 10 i0 11 10 11 10 10 10 10 11 10 10 11 00 10 10 10 10 1M
Inputs Qutputs C2CI1 Resulting from Single Stuck-at-0 Faults

— Normal

B2B1 A2A1 OQutput a b ¢ d e f g h i j kK I m n o p q r
01 01 10 10 00 10 00 10 10 00 00 10 10 10 10 10 10 11 11 00 10
01 10 01 01 00 00 01 01 O1 O1 01 00 00 O1 Ol 11 11 O1 O1 Ol 00
10 01 01 00 01 01 60 01 01 Ol O1 O1 O1 00 00 11 11 01 O1 O1 00
10 10 10 00 10 00 10 00 00 10 10 10 10 10 10 10 10 11 11 00 10

RELIABILITY AND AVAILABILITY TECHNIQUES 107

Inputs in T TSC functional
Code A :| circuit

Outputs in
code B

TSC checker

Error indication in
Code C

Figure 3-37. A TSC network made from TSC elements.

at-red on all sides is a good example of a fail-safe
system [Mine and Koga, 1967]. Stuck-at-red is
the most desirable failed state because all drivers
approaching the intersection must stop, and may
proceed only after realizing the light is broken.
This state causes the least possible harm, for any
driver will enter the intersection with extreme
caution and at a low speed.

In the remainder of this section general mod-
els will be presented for TSC and PSC networks.
Some specific examples of TSC and PSC net-
works are included. The examples cover only a
subset of the possibilities of these techniques,
and references for more are given at the end of
the section. Fail-safe techniques will not be
treated any further although several references
are included at the end of the section.

Figure 3-37 shows a general model for a TSC
network proposed by Anderson [1971], consist-
ing of both a TSC functional circuit and a TSC
checker. The advantage of this network over the
TSC functional circuit alone is that a correct
checker output from the network guarantees that
the network functional output is correct.

Conceptually, the simplest form of a TSC
functional circuit is duplication, in which two
copies of the function are used. Together, their
total inputs and outputs are coded (duplication).
As stated before, for some functions duplication
may be the least redundant coding alternative
for achieving TSC. The only other component of
a duplication-based TSC network is the TSC
comparator, which performs the checking of the
functional outputs. The most economical form of

checker complements one set of the functional
unit outputs before routing it to the comparison
element [Anderson, 1971]. In this case a checker
for an arbitrary number of inputs can use the
two-signal input dual-rail comparator of Figure
3-36 as the basic element. These elements are
assembled in tree fashion, as shown in Figure
3-38, using log, n two-input dual-rail signal com-
parators. Figure 3-39 shows the entire TSC du-
plication network scheme. To qualify for the self-
testing property each checker basic module must
receive the four input signals mentioned above.
It is not necessary, however, to apply all possible
combinations of dual-rail signals to the entire
checker to test it completely. Anderson [1971]
has shown that for every size comparator built as

Y Dual-rail signals for comparison —

W
=1 174 0ol LTl T

e
Y I Ty

I

Error signal

Figure 3-38. Assembly of n-input dual-rail signal
comparison checker from basic two-input elements.

108 THE THEORY OF RELIABLE SYSTEM DESIGN

Duplicate
outputs

il

TSC comparator I

|
-I_ .
—{—- Functional
| unit
I
. copy A
Duplicate |
inputs I
Functional
1 unit
L
, copy B
I
|
|
!
|
| |
b

___i___i _______ 1

Error signal

Figure 3-39. TSC network based on duplication as a code.

a tree of the basic dual-rail checker modules, at
least one set of four tree input signals will ensure
complete self-testing for any single fault in the
checker. If the four signal sets are assured of
appearing during normal operation, the network
is TSC.

The same comparison checker can be used to
make a TSC separable-code error detector [Ash-
jaee and Reddy, 1976; Wakerly, 1978]. The
inputs to the checker are the received check
character and a locally generated check charac-
ter, as shown in Figure 3-40. Wakerly [1978]
provides the proof of the TSC property for this
detector. As in the duplication scheme, the self-
test property of the comparison checker must be
assured by having the check characters that
appear include a set of four characters that tests
for all possible faults in the checker. For (n, k)
codes in which all 20" %) possible combinations
of the check bits appear, this is no problem.
Other codes, however, may present more diffi-
culty. The residue-3 arithmetic code check char-
acter, for example, has only three possible values
(00, 01, and 10); thus, all four signals necessary
for self-testing do not appear and the checker
cannot be TSC.

Wakerly [1974] has proposed models for three
types of partially self-checking networks, shown
in Figure 3-41. All three have two modes of
operation: secure or insecure. In the secure

mode, used during operation with code inputs
that map into code outputs, the network is TSC.
The insecure mode, invoked by fixing the error
outputs to a nonerror indication, is used when a
noncode output from the functional circuit is the
correct function of the inputs. An example
would be the AND and OR functions of an
ALU operating on residue-m-coded inputs. In
the insecure mode the PSC network is neither
self-testing nor fault secure.

Received code word (to be checked)

Check
character Data
Check character
Inverters generator

=

TSC compare

l l Error signal

Figure 3-40. TSC detector for separable codes,
based on a TSC comparator.

RELIABILITY AND AVAILABILITY TECHNIQUES

Inputs in —]

code A

TSC functional
circuit

Outputs in -

code B

Secure/insecure mode switch

Inputs in — 1 TSC functional
: circuit

code A

T

\TSC checker /

i Error signal

Data

Check symbol /

Inverters

~

Secure/insecure mode switch

Inputs in ~ | TSC functional
circuit

code A

v

Check symbol
generator

&

TSC compare

| I

i Error signal

) Outputs in

code B

Data

) Outputs in

Check symbol /

C.

Figure 3—41. Types of PSC networks. a.) Type 1.

Inverters

TSC Check character >

code B

_\/

TSC compare

l l Error signal

Check symbol
generator

b.) Type 2.

C

.} Type 3.

109

110 THE THEORY OF RELIABLE SYSTEM DESIGN

The Type 1 PSC network is the simplest. Its
disadvantage is that the outputs are necessarily
noncode outputs in the insecure operating mode.
The Type 2 PSC network solves this problem by
reencoding outputs during insecure operation;
thus, all outputs are coded outputs unless there
are faults in the encoder. However, there is no
guarantee that the code outputs are the correct
outputs during insecure operation. A Type 3
PSC network causes less delay than a Type 2
network on secure mode outputs, by using a bus
switch for the check character. During secure
operations, the Type 2 network does not output
the check character until it has been regenerated
locally; the Type 3 network immediately gates
the check symbol from the functional circuit.
Both Types 2 and 3 have the same delay during
insecure operations. One drawback of the Type
3 scheme is that a faulty output during secure
mode may be used before the error is detected by
the checker.

Figure 3-42 shows an example of a PSC net-
work due to Wakerly [1974]. It shows an ALU
made with 4-bit 74181 adder chips, and with
inputs coded in the distance-2 residue-15 code. A
single stuck-at fault in one of the 74181s will
produce a detectable error during addition or
subtraction. Hence, this ALU network is fault-
secure for the operations of addition and sub-
traction for all single stuck-at faults. In addition,
the circuit is fault secure for the other circuit
functions for which the residue-15 code is invari-
ant: A, B, A’, B',0,and 1. The 74181 can be
shown to be self-testing for all single faults
provided that all of the following- operations
occur during normal use:

1. Addition and subtraction (tests carry logic)

2. The set of operations A XOR B and (4 XOR B) or
the set 4, B, A’, B, or some other combination of
operations that tests for all possible single faults in
the logic function circuitry

3. At least one arithmetic and one logic function, to
test the carry enable logic

If all these operations are assured to occur, the
ALU network is TSC for one’s-complement ad-
dition and subtraction, 4, B, A’, B, 0, and 1. If

the other 74181 functions are used, the network
is operating in an insecure mode and is only
partially self-checking. The circuit in Figure 3-42
is a Type 2 PSC network: the necessary reencod-
er for outputs during the insecure mode of
operation is already present in the TSC checker.

Wakerly’s comprehensive text on self-checking
logic [1978] contains many examples, including a
paper design of a self-checking processor. Algo-
rithms for the design of TSC m/n code checkers
are developed in Anderson and Metze [1973] for
m/2m codes and in Marouf and Friedman [1977]
for any m/n code. The Bell ESS-3a uses a TSC
4/8 code detector described in Toy [1978] (or see
Chapter 12) and in Cook et al. [1973]. Algo-
rithms for the design of self-checking sequential
circuits are developed in Carter and Schneider
[1968), Osman and Weiss [1973], Diaz, Geffroy,
and Courvoisier [1974], Ozgunner [1977], and
Pradhan [1978a, 1978b]. Other references are
Ashjaee and Reddy [1976] on TSC checkers for
separable codes, Marouf and Friedman [1978b]
for TSC checkers for Berger codes, Wakerly
[1974] for PSC networks, Smith and Metze [1978]
for strongly fault-secure networks, and Crouzet
and Landrault [1980] for a study of the applica-
tion of self-checking techniques to a 4-bit micro-
processor on a chip.

A good introduction to fail-safe logic can be
found in Mine and Koga [1967] and Tokura,
Kasami, and Hashimoto [1971]. Fail-safe se-
quential machines are developed in Sawin [1975],
Diaz, Geffroy, and Courvoisier [1974], Patterson
and Metze [1974], Tohma [1974], and Mukai and
Tohma [1974]. Diaz, Azema, and Ayache [1979]
present a unified overview of both seif-checking
and fail-safe design schemes.

Watchdog Timers and Timeouts

Watchdog timers are a simple and inexpensive
means of keeping track of proper process func-
tion. A timer is maintained as a process separate
from the one it checks. If the timer is not reset
before it expires, the corresponding process has
probably failed in some way; the assumption is

RELIABILITY AND AVAILABILITY TECHNIQUES 111

L 74181 74181 74181
Cn+1 Chn—1Cn+1 Cn—Cn+1

74181 J L 74181 -,
Cpl— Cn Cn

Cn+1 Cn41

Inputs

Outputs

Invert _If Check character generate

TSC compare

!

Figure 3—42.
PSC network).

that any failure or corruption of the checked
orocess will cause it to miss resetting its watch-
log. On the other hand, coverage is limited
secause data and results are not checked. All the
imer provides is an indication of possible pro-
cess failure. The process may be only partially
‘ailed and produce errors, yet still be able to
reset its timer. The coverage may be improved if
the checked process has to exercise a large
proportion of its internal components in order to
reset its watchdog.

The watchdog timer concept can be imple-
mented in software or hardware. The process it
guards can be a software or hardware process. In
fact, the computing process and the timer could
be running on the same hardware. In this and
most other cases, at least one other process
monitors the timer, or is interruptible by it, to
handle possible failure situations.

Pluribus [Ornstein et al., 1975] (or see Chapter
13), a reliable multiprocessor designed primarily
for use as a switching node for the ARPANET,
makes extensive use of both hardware and soft-
ware watchdog timers. These timers have time
spans of from 5 psec to 2 minutes. Subsystems
that are monitored by timers go through a cycle
of a known length. Part of each cycle is a
complete self-consistency check. Failure to reset

l Error signal

Partially self-checking ALU for residue-15 coded operands (Type 2

the timer is seen as an indication that the subsys-
tem has failed in such a way that it cannot
recover by itself. Message buffers, for example,
have 2-minute watchdog timers that are reset
each time the buffer is returned to the free list of
unused buffers. If the timer runs out, the buffer
is forced back to the free list by the process
which the timer alerts upon expiring. Another
timer in each processor interrupts the processor
every 1/15 second if not reset. This timer pre-
vents subsystems from waiting forever for a
resource that is erroneously allocated and thus
will not be released. A final example of the timer
is the bus arbiter. If there is no bus activity for 1
second, the bus arbiter resets all the processors.
This is useful, for example, when all processors
execute a spurious halt command that somehow
gets planted in the common program store. In
this case, the 60-Hz processor timers cannot help
because a halted processor will not respond to
interrupts. PLURIBUS also has several other
timers not mentioned above.

The VAX-11/780 is a more commercially-
oriented system that makes use of a watchdog
timer. The console processor monitors the micro-
machine activity. If the micromachine does not
strobe an interrupt line to the LSI-11 console
processor at least every 200 usec, the console

112 THE THEORY OF RELIABLE SYSTEM DESIGN

processor will try to determine the reason for the
failure.

Bus timeouts are also based on the principle
that some operations should take no more than a
certain maximum time to complete. Time limits
are set for certain responses required by the bus
protocol. Thus, when one device (e.g., master)
requires a response from another device (e.g.,
slave), a failure to respond in time indicates a
possible failure. Timeouts are different from
watchdog timers in that they provide a finer
check of control flow.

Timeout detection is provided on the buses of
most computers, including the PDP-11 UNI-
BUS. During the interrupt request/bus grant
sequence a timeout is generated if the requesting
device does not respond to the bus grant signal
in 5-10 psec. Similarly, during data transfers a
10-20 psec timeout detection occurs if the slave
device does not respond to the bus master’s
synchronization signal. The UNIBUS bus speci-
fications [DEC, 1979] does not specify the exact
response to these timeout detections; the re-
sponse depends on the particular PDP-11 model.
Generally, however, the processor response is a
trap to a bus timeout handling routine.

Consistency and Capability
Checking

Consistency checking is a simple fault-detection
technique that often requires minimal hardware
redundancy. A consistency check is performed
by verifying that the intermediate or final results
are reasonable, either on an absolute basis (fixed
test) or as a simple function of the inputs used to
derive the result. One form of consistency check
is a range check: confirming that a computed
value is in a valid range. For example, a comput-
ed probability must lie between 0 and 1. The
range can be narrowed further if a priori proba-
bilities are known. Weekly paychecks should
have positive denominations and should not
exceed some maximum value (such as a function
of normal and overtime pay rates and the 168

hours in the week). Similarly, commercial air-
craft altitude sensors should indicate elevations
between Death Valley and 45,000 feet.

Most computers use some form of consistency
checking. Address checking, opcode checking,
and arithmetic operation checking are the most
common. In its usual form, address checking
consists of verifying that the address to be ac-
cessed exists. DEC PDP-11s provide an NXM
(nonexistent memory) trap for this purpose. Fur-
ther coverage may be provided by assuring that
the address for a write is actually a RAM and
not a ROM location, and that an 1/O address is
consistent with the operation to be performed.
Checking for a valid opcode occurs before in-
struction execution commences. Without this
check it 1s possible to perform undefined and
(usually) undesirable operation sequences in the
CPU. For example, programmers of some micro-
processors occasionally utilize undocumented
opcodes with unique actions. This use of unde-
fined processor features is undesirable because of
possible unknown side effects. Underflow and
overflow checking of binary arithmetic, a form of
range checking, is provided in most computers,
either in hardware or in program run-time sys-
tems.

Another form of consistency checking is to
utilize a memory in which the parity bit on any
word can be arbitrarily set for either parity sense
(odd or even). In practice, data words would use
odd parity and instruction words even parity. In
addition to parity errors, addressing errors and
programming errors are likely to be discovered.
Examples are data words accidentally accessed
during instruction fetch and program code er-
roneously overwritten with data. When an ad-
dressing and a parity error occur simultaneously,
however, there is a chance that they will comple-
ment each other with no error detection result-
ing.

Capability checking is also a form of fault
detection. Usually it is part of the operating
system, although it may be realized as a hard-
ware mechanism. In this concept, access to ob-
jects is limited to users with the proper authori-

RELIABILITY AND AVAILABILITY TECHNIQUES 113

zation. Objects include memory segments and
I/O devices; users might be processes or even
independent physical processors in a system.
Further functionality is provided by allowing
multiple levels of access privileges for different
user/object combinations, such as execute only,
read only, and read/write privilege levels in a
disk system. One common means of checking
access privileges is through the memory-mapping
mechanism of virtual address machines. An ex-
ample is the virtual address generation mecha-
nism for Cm*, shown in Figure 3-43 [Swan,
Fuller, and Siewiorek, 1977a]. A Capability in
Cm* consists of a 3-bit field specifying access
rights and a 16-bit field containing the segment
name. During the address translation, the access
rights are checked against the operation to be
performed. If the operation is not permitted, an
error trap is forced.

Capability checking provides more than fault
detection: it also provides some fault isolation by
locking out corrupted users. For example, it
should prevent a bad process from erroneously
overwriting portions of memory to which it has
no legal access. More information on capability
checking can be found in texts on operating
systems design.

Another method of capability checking is the
use of passwords. The Pluribus system (see
Chapter 13) incorporates password protection. A

Window register

OP Cap. index

processor that does not reset its watchdog timer
will be restarted by an outside process. To pre-
vent spurious resets, the resetting process must
give the proper password before it can initiate a
reset. A Boeing duplicated processor system used
password protection for a similar purpose in its
reconfiguration hardware; the goal was to pre-
vent spurious reconfiguration of the system
[Wachter, 1975].

MASKING REDUNDANCY

Fault-detection techniques supply warnings of
faulty results. They may also provide diagnostic
capabilities, with a resolution of some finite
number of possible failure locations (such as a
device or set of devices causing the fault). How-
ever, the use of fault-detection techniques alone
does not provide actual tolerance of faults. Fault
masking, on the other hand, employs redundan-
cy which provides fault tolerance by either iso-
lating or correcting fault effects before they
reach module outputs. Fault masking is a “stat-
ic” form of redundancy [Short, 1968; Avizienis,
1977]: the logical interconnection of the circuit
elements remains fixed, and no intervention oc-
curs from elements outside the module. Thus,
when the masking redundancy is exhausted by
faults in the module, any further faults will cause
errors at the output.

Read/write /

Capability
Rights Segment name
—
/
716
Rights check -
/
712

16 Bit, processor generated address

28 Bit, system-wide virtual address

Figure 3-43. Virtual address calculation with capability checking in Cm*.

114 THE THEORY OF RELIABLE SYSTEM DESIGN

Notification of fault occurrence is implicit in
fault detection. In its pure form, fault masking
does not provide fault detection: the effects of
faults are automatically neutralized without noti-
fication of their occurrence. Pure fault masking
thus gives no warning of a deteriorating hard-
ware state until enough faults have accumulated
to cause an error. As a result, most fault-masking
techniques are extended to provide fault detec-
tion as well. The additional redundancy needed
for this purpose is usually minor. In the case of
a few fault-masking techniques, however, fault
detection is either impossible or too costly. The
following presentations of fault-masking tech-

"niques discuss fault-detection extensions where
applicable.

Like fault detection, fault masking can be used
in combination with other techniques in a dy-
namic redundancy scheme. For example, fault
masking may be used until its redundancy is
exhausted, after which spares may be switched in
to renew the redundancy. This possibility and
others are the subject of the section on Dynamic
Redundancy.

Because fault masking provides fault toler-
ance, the reliability function becomes a meaning-
ful measurement of technique effectiveness. This
section provides simple reliability models for the
techniques it presents. More detailed models are
usually possible, and provide more accurate in-
formation. More detailed reliability models are
the subject of Chapter 5.

N-Modular Redundancy with
Voting

Duplication with output comparison was consid-
ered as a fault-detection technique in the section
on Duplication above. If a third copy of thr
functional circuit is added, enough redundant
information is available to allow fault masking
of a failure in any one of the three copies. This
is accomplished by means of a majority (two-
out-of-three) vote on the circuit outputs. The
groundwork for the triple modular redundancy
(TMR) technique was first laid by von Neumann

Module
A

Module Voter
B output

Figure 3-44. Basic Triple Modular Redundancy
(TMR) configuration.

Input

Module
C

[1956]. He proposed a configuration employing
independently computed copies of a signal, with
“restoring organs” placed between logical opera-
tions.

Figure 3-44 illustrates the basic concept. The
reliability of the configuration shown is

R = Ru : (an + 3Rr2n(1 - Rm))
=R, (3Rr2n - ZRSI)

where R, and R,, are the reliabilities of the voter
and a single copy of the triplicated module,
respectively. The concept can be extended to
include N copies with majority voting at the
outputs. The resulting technique is called N-
modular redundancy, or NMR. Normally N is
made an odd number to avoid the uncertain
state in which the output vote is a tie. The
reliability of an NMR configuration similar to
that of Figure 3-44 is

(1)

LN/2]))
R =R,- 20 NCi ' RinNﬂ) ’ (l - Rm)l @)
i
The derivations of equations 1 and 2 are given in
Chapter 5. The cost of N-modular redundancy is
N times the basic hardware cost, plus the cost of
the voter. The voter causes a delay in signal
propagation, leading to a decrease in perfor-
mance. Additional performance-cost overhead
results from the necessity to synchronize the
multiple copies (this problem is discussed later in
this section).
The two reliability formulas above are the
simplest models possible. In most cases they will

RELIABILITY AND AVAILABILITY TECHNIQUES 115

Input

Output

Figure 3—45. Cascading of TMR modules.

be pessimistic; that is, some failures in two or
more copies may occur in such a way that an
error is avoided. Such failures are called com-
pensating failures. For example, consider a mod-
ule output failed stuck-at-1 in a TMR network.
If the same line fails on another copy, there is no
error caused if it fails stuck-at-0. In this case,
whichever value the remaining nonfaulty line
takes on, it has another to match it and the
correct voted output results. Another possibility
is nonoverlapping failures, such as a failure in
memory location 123 on one memory module
and a failure in memory location 67 on another.
Although these failures are on two different
copies, they do not act together in the voting
process to cause an error. Models of TMR
systems that take compensating failures into
account are discussed in detail in Chapter 5.
A complex system can be partitioned into
smaller subsystems, each of which can be trans-
formed into an NMR configuration. Figure 3-45
shows a system transformed into a cascaded
series of TMR modules. The reliability of this
configuration is
n
IT R,

i=l1

(3R}, —2R})

Figure 3—46.
network of Figure 3-45.

' .(}
=)~

The use of TMR voters to remove smgle points of failure from the

The advantage of partitioning is that the result-
ing design can withstand more failures than the
equivalent configuration with only one large
triplicated module. However, subdivision cannot
be extended to arbitrarily small modules, be-
cause voter unreliability ultimately overrides any
potential reliability gains.

The TMR configurations shown so far have
single points of failure: the voters. In the circuit
of Figure 3-44 the only solution is to make the
voter more reliable through a fault-avoidance
and/or fault-tolerance technique. In the circuit
of Figure 3-45, however, all but one of the single
points of failure can be removed by triplicating
the voters themselves, as illustrated in Figure
3-46. If a triplicated output is desired, all single
points of failure are removed. The reliability of
the configuration shown in Figure 3-46 is

R, - (3R,2,,[- 2R,3,,1)
n 2 3
. »Hz (3R, R,)" — 2R, R,)}
=

If the last voter is also triplicated, R, in the

above formula is replaced by

3R2 — 2R; .

116

If functional considerations allow, the circuitry
can be broken into modules, and voters can be
located so as to maximize reliability. Gurzi
[1965] has shown that for nonredundant voter
configurations (Figure 3-45), reliability is maxi-
mized when Rm/ = R; that is, when the function-
al modules have identical reliabilities. If all the
voters have reliability R,, the maximum system
reliability is attained when the functional break-
down is such that

1
R=G e

2R

where a = m

3)

The upper limit of reliability gain in this case is

TMR network reliability
Nonredundant network reliability

_ (BR*-2R)"R}

< (9/8)"R]

THE THEORY OF RELIABLE SYSTEM DESIGN

The graph of Figure 3-47 can be used to arrive
at the optimum partitions graphically. If R, and
R fall within the parabola, the TMR network is
more reliable than the equivalent nonredundant
network. The solid line is the optimum decision
curve of Equation 3.

Figure 3-48 shows the decision boundaries for
configurations similar to Figure 3-46, with tripli-
cated voters. In this case, R, = R (i =2,
3,...,n),and R, = R-R,. The two solid lines
indicate a trade-off between R and R, The
optimum falls between the two lines. In this case,
the maximum reliability improvement is also

R
F—— < (9/8)'R!

nonredundant

Finally, the nonredundant voter scheme is better
than the TMR voter scheme if

3

k< 21+ R,)

R" More complex TMR networks are possible.
1.00 —
\
0.98 - \
\
\
0.96 \ TMR more reliable
\ I
Z \ I/
z \
£ 094 \ /
T /
5 \ /
3 \ /
% 02k \ /
o \
\ .
\
0.90 - AN Optimum modaule reliability
N
~
~ —— Minimum module reliability
0.88 Nonredundant more
reliable
| | | | | 1
0.50 0.60° 0.70 0.80 0.90 1.00

R, Module reliability

Figure 3—47.

Decision regions for single voter TMR. (© 1965 IEEE.)

RELIABILITY AND AVAILABILITY TECHNIQUES 117

Bounds on optimum module
reliability region

— — — Minimum module reliability

1.00 — \
\
\
0.98 |- \
\
\

0.9 |- \ TMR more reliable
- \
= \
= \
® 0.94 - \
x \
2 \\
o 092 \

\
\\
0.90 |- N
N
Nonredundant more_
0.88 reliable
>l_/\ 1 1 1 | 1

0.50 0.60 0.70 0.80

R, Module reliability

0.90 1.00

Figure 348. Decision regions for triplicated voter TMR. (© 1965 IEEE.)

Figure 3-49 shows a nonredundant network and
a TMR equivalent. The reliability of such net-
works is more difficult to determine accurately;
Chapter 5 discusses reliability evaluation of com-
plex TMR structures.

In digital systems, majority voting is normally
performed on a bit-by-bit basis. The majority
function for a single-bit line can be performed by
a 1-bit adder. The triplicated outputs are fed into
the adder data and carry-in inputs; the carry-out
output is the majority-voted result (see Figure
3-50). For a module with n output lines, the
TMR implementation has three modules and »
single-bit voters. Threshold logic [Hampel and
Winder, 1971] has also been used for voting. In
threshold logic, the output is 1 only if at least a
minimum number (the threshold) of inputs are 1.

While voting can be applied at any level in the
digital system hierarchy, the voter is almost
always made up of single-bit majority elements.
Although it has been proposed [Brown, Tierney,

and Wasserman, 1961], majority voting at the
gate level has had little actual use. At the module
level, many designs have incorporated triple
modular redundancy. The Saturn IB and Saturn
V on-board computers both incorporated TMR
modules [Cooper and Chow, 1976}. The Saturn V
computer logic was divided into seven modules,
each with approximately ten voted outputs. Trip-
licated voters were used between the modules in
this design [Dickinson, Jackson, and Randa,
1964). The Test and Repair Processor (TARP) of
the JPL-STAR (see Chapter 14) is an ultrarelia-
ble hard core that controls system configuration.
The TARP is triplicated with a majority vote at
its outputs. (The TARP is actually hybrid redun-
dant. See the section below on hybrid redun-
dancy and other dynamic redundancy variants
of N-modular redundancy.) The Fault Tolerant
Spaceborn Computer (FTSC) [Stiffler, 1976; Av-
izienis, 1978] is another aerospace computer. Its
Configuration Control Unit (CCU) is triplicated.

118 THE THEORY OF RELIABLE SYSTEM DESIGN

Outputs

s

‘a. Nonredundant network

S=O
Kl

2]

=0y

AT
-~ [s}

Outputs

- X

b. TMR equivalent

Figure 3—49. TMR applied to more complex networks.

Unlike the STAR’s TARP, however, the CCU
output voting is performed locally at each desti-
nation. -

Voting is also possible at the bus level. C.vmp
(Computer-voted multiprocessor) is implement-
ed with off-the-shelf DEC LSI-11 components
[Siewiorek, Canepa, and Clark, 1977a]. A single
voter module divides the LSI-11 bus in two and

TMR input signal x Carry out - Vots?gn(;:ltxpul
X¥A— el Carryin
Xg——of a
XC—»f b >

Figure 3-50. Logic signal voting with a one-bit

adder.

employs special bidirectional voters on the bidi-
rectional bus lines. As Figure 3-51 shows, the
three processors and three memories reside on
different sides of the voter. Triplicated floppy
disk drives reside on the memory side of the
voter. Chapter 7 analyzes the design of C.vmp in
detail. FTMP (Fault Tolerant Multiprocessor)
uses triplication with voting [Smith and Hopkins,
1978; Hopkins, Smith, and Lala, 1978; and
Chapter 17]. Its processors and memories are
configured in groups of three to form bus triads
and memory triads. Each module in a triad
operates in synchronization with the other two,
and voting is used to mask the effects of a failed
module.

Finally, voting can be applied at the software
level. For example, a single processor could be

RELIABILITY AND AVAILABILITY TECHNIQUES 119

)

Pc

Processors

Figure 3-51.

made less susceptible to transient and/or pro-
gramming errors by performing a task three
times and voting on the result. Making the
algorithm different for each execution producing
the results to be voted on may result in some
protection against hard failures. Chen and Aviz-
ienis [1978] formalized this concept and gave it
the name N-version programming. The SIFT
(Software Implemented Fault Tolerance) com-
puter uses software voting in a different way (see
Chapter 16): each processor uses a two-out-of-
three vote on data from other processors execut-
ing the same task to obtain a correct version for
further operations.

As with duplication, synchronization of the
multiple copies in N modular redundancy is
necessary to prevent false outputs. Figure 3-52
illustrates one of the problems that can result
without proper synchronization. The signal line
in question carries pulses of fixed duration and is
used in a master-slave protocol. The first set of

Bus A

Bus B

Flopch

Bus C

Memories

Basic structure of C.vmp.

pulses occurs soon enough for the simple voter of
Figure 3-50 to provide a valid signal. The second
set of signals caused a voted output that may be
too short for proper operation of the slave logic.
The slave may never respond, resulting in a
timeout at the master. If the slave device is
triplicated, the different copies may respond dif-
ferently to the runt pulse, resulting in divergent
slave behavior, and ultimately, loss of slave
synchronization. In the third set of puises, even
though the voted master request pulse is valid,
the lagging master may not be ready to receive
the reply when it is transmitted. In this case the
operation of the lagging processor may diverge
from that of the other two, leading to a loss of
master synchronization.

The problem of synchronization is often
solved by using a common clock. Unless the
clock is fault tolerant, however, a single point of
failure exists. Another solution is the synchroniz-
ing voter shown in Figure 3-53a. Incoming re-

I — —

N 1 1

c 1L 1 I 1
v I

Figure 3—-52. Triplicated request line using a pulse signalling convention.

120

THE THEORY OF RELIABLE SYSTEM DESIGN

“Hi”

D Q):
7474 1
Fas
SET
A 5 ik
7 LCIR b Q
i 7474
ne b
D Q v shot CLR
-
7474 ?
I
B N ar
D Q
7474 £
s £ One Y e v
C CLR shot
1/410104 Module 1
= |k
1/410104 8.000 MHz S AmPlifier
P 1/410104
VoI | I___‘ | ——
D L=
1/410104 Crystal
1K
Voter 10 uf

T 5.2

Voltage comparator

Module 2

Module 3

Clock 1

Clock 2

Clock 3

Figure 3-53. a.) Synchronized voter for pulse signals [McConnel and Siewiorek -
1981]. b.) Fully synchronized TMR clock [Davies and Wakerly 1978]. (© 1981,

1978 IEEE.)

RELIABILITY AND AVAILABILITY TECHNIQUES 121

quest pulses are latched. If pulses are received
from two lines, the voter waits for a time for the
lagging master to catch up. If the third pulse
comes before the waiting period is over, the
voted pulse is sent out immediately, minimizing
delay. The one-shot at the output ensures a voted
pulse signal of the proper duration. The prob-
lems and solutions of synchronization in C.vmp
are discussed at length in Chapter 7. More
detailed consideration of the problems of syn-
chronization and voting can be found in Davies
and Wakerly [1978] and McConnel and Siewio-
rek [1981]. Davies and Wakerly also discuss the
design of a fully synchronized TMR clock, in
which synchronization is achieved by inserting a
voter into the feedback path of each of the three
crystal oscillators (Figure 3-53b).

Fault detection in N-modular redundancy can
be provided by a disagreement detector that
usually operates in parallel with the voter. The
disagreement detector is an important element in
NMR systems that are reconfigurable. Even in
nonreconfigurable systems they act as an aid in
diagnosis and can be used to warn of a deterio-
rating hardware state as the redundancy is ex-
hausted. C.vmp, JPL-STAR, and FTMP are
among the systems that use disagreement detec-
tors.

In the earlier consideration of software tripli-
cation, it was mentioned that using three differ-
ent implementations of the same process pro-
vides protection from software design errors as
well as hard failures. A scheme based on a
similar principle has been proposed for protec-
tion against both hardware design errors and
inadequacies in component screening [Platteter,
1980]. Because only a tiny fraction of a micro-
processor’s possible states can be tested in the
few seconds normally allowed in electrical
screening tests, complete confidence in a com-
plex LSI chip is almost impossible. Three micro-
processors are employed in a TMR configura-
tion; each is from a different source but imple-
ments the same architecture (such as 8080As
from three different manufacturers). All three
share the same clock and inputs, and thus oper-

ate synchronously in lockstep. When employed
with a disagreement detector to report faults in
any of the chips, this strategy can also be used
for more thorough testing of components over a
long test period.

As mentioned earlier in the section on Dupli-
cation, when a computing element is replicated
for voting only a fraction of the available com-
puting power is utilized because all copies are
performing the same task. As with duplication,
the solution is to use the multiple processors for
independent tasks and invoke the voting mode
only when necessary. Voting might occur period-
ically for critical tasks to ensure that all pro-
cessors are running properly and/or when there
is some indication of a possible malfunction
(such as power supply flicker, processor self-test
warning, or memory parity error). System perfor-
mance benefits from such a scheme, at the cost
of increased susceptibility to uncorrected (and
undetected) errors during operation in indepen-
dent mode. C.vmp is an example of a TMR
system that can trade off performance for reli-
ability. C.vmp can switch between voting and
independent modes under program control, per-
mitting use as a three-processor multiple pro-
cessor in independent mode. Although this fea-
ture has not been used in C.vimp in an actual
application, it has been used in SIFT, which also
has this capability.

One problem with triplication is the occasional
occurrence of common-mode transient faults.
One possible solution is to deliberately skew the
synchronization of the programs running in the
three processors, but the data on common-mode
phenomena are incomplete. C.vimp is currently
being used to gather statistics on transient faults,
to help determine what provisions are needed to
tolerate transient faults.

Finally, voting on analog signals is a particu-
larly important topic to designers of control and
data collection systems that require ultrareliable
sensors. Using multiple analog-to-digital con-
verters and performing bit-by-bit voting on their
digital outputs is not satisfactory, because the
least significant bits are almost certain not to

122 THE THEORY OF RELIABLE SYSTEM DESIGN

+F

Positive Negative
half

half

O—y
€ e,
e, +E
€
e3 €2]
° €3 €
—O0 €3
+ F
€3
€3 €, .I
i
3
o
—F

Figure 3-54. Pseudo voting by selection of a median analog signal.

agree even when everything is working properly.
The normal approach is to perform “voting” in
the analog domain instead. One possibility is to
take the mean instantaneous value (average the
three signals); averaging is the method used for
the redundant sensor inputs in the NASA Air-
borne Advanced Reconfigurable Computer Sys-
tems [McCluskey and Ogus, 1977]. The average
could also be weighted by a priori probabilities
of sensor reliability and accuracy. Another pos-
sibility is to take the mean of the two most
similar signals [Klaassen and Van Peppen,
1977a). Figure 3-54 illustrates yet another
scheme, called pseudo voting [Dennis, 1974],
which chooses the median of the three signals.
Thus, if the three sensors had outputs of 1.0, 2.5,
and 2.8 volts at a given instant, the median 2.5
volt value would be used. This approach has the
advantage of being simple to implement. More
complete treatment of analog voting, including
methods and accuracy analysis, can be found in
Dennis [1974], and Klaassen and Van Peppen
[1977a, 1977b].

Error-Correcting Codes

Error-correcting codes (ECC codes) are the most
commonly used means of masking redundancy.
In particular, a large proportion of current pri-

mary memory designs use Hamming single-er-
ror-correcting (SEC) codes. There are several
reasons for the popularity of SEC coded memo-
ries. First, they are inexpensive in terms of both
cost and performance overhead. The redun-
dancy of SEC codes is only 10 to 40 percent,
depending on the design. Decoding and encod-
ing delays are relatively minuscule. Second, the
increasingly dense RAM chips in use are more
prone to soft (transient) faults, such as memory-
cell charge loss caused by alpha-particles and
cosmic-rays. Third, random access memories
constitute an increasingly larger part of digital
systems and currently contribute as much as 60
to 70 percent of system failure rates. Finally, LSI
SEC code correction/detection chips have be-
come available, reducing both the dollar and
performance costs of employing SEC codes.
Other error-correction codes with different
characteristics are available. Some provide mul-
tiple-error correction but may prove economical
only in special applications, because the redun-
dancy and decoding delay of multiple error
correcting codes increase dramatically with er-
ror-correcting ability. Some error codes are well
suited for specific applications in which the code
properties can be used to advantage and the
code limitations make little or no difference.
Serial decoding, for example, is usually much

RELIABILITY AND AVAILABILITY TECHNIQUES 123

less expensive than parallel decoding. Serial de-
coding can be used when data are transmitted
serially or when performance is not as critical. In
such an application an efficient multiple-error-
correcting code can be employed that requires
less redundancy but whose complexity would be
prohibitive in a parallel decoder. In other situa-
tions, limitations on possible failure modes may
be used to advantage. For example, in many
applications multiple errors will almost always
appear closely grouped in space or time (so-
called burst errors). In these cases, special codes
called burst-error-correction codes may be em-
ployed. Finally, there are error-correcting codes
that are invariant with respect to certain arith-
metic operations, and hence are suitable for use
in checking arithmetic processors. Some of these
codes are an extension of the arithmetic error-
detection codes mentioned previously.

The concepts introduced in the section on
Error-Detection Codes also apply to error-cor-
rection codes. The minimum distance of a code
determines its error-correction/detection abili-
ties. For example, the code C=(0010, 0101) is
contained in the space of 4-bit words illustrated
in Figure 3-21 and has a minimum distance of 3.
This code can detect any single or double error.
It can instead be used to correct any single error,
since a word with a single error will be closer to
the code word it derives from than to the other
code word. In general, a code with distance 4 can
corrrect any pattern of up to ¢ errors, where
(2t + 1) < d* All ECC codes can be used to
provide error detection, error correction, or both
correction and detection. There is, however, a
trade-off between detection and correction capa-
bilities. In general, a distance-d code can correct
up to ¢ errors and detect an additional p errors,
where 2t +p + 1) < d.

The most important class of error-correcting
codes is the linear error-correction codes. Linear
error-correction codes can be described in terms

* N modular redundancy can be considered an application
of an (¥, 1) distance-N code.

of their parity-check matrices (PCMs). The PCM
for an (n, k) linear code is an (n — k) by n matrix
whose elements are Os and 1s (for binary codes).
Each column corresponds to a bit in the code
word, and each row corresponds to a check bit.
If the n-element column vector r represents the
received code word, and the parity check matrix
is H, the decoding operation is represented by
the matrix operation

H-r=s

s is an (n — k)-element row vector called the
syndrome. Most codes are formed by the n-
element column vectors with 0 syndromes, or
expressed more rigorously, the code is the null
space of H. Note that the all-Os word is always a
code word when the null space of the PCM
forms the code. Codes that are formed by the
null space of a PCM are often called parity-
check codes. If the PCM is binary, the syndrome
can be calculated using (n — k) binary trees.
Each tree corresponds to a different row of the
PCM, with its inputs specified by the bit posi-
tions in the row that are Is.

Now consider the set of n column vectors
e; i = 1,2,...,n), where the vector has a single
1 located in position i. If f is the code word
transmitted, a received word with a single error
in position i can be represented by

r=f+ei

If m errors are present in the bit locations
specified by the set E, the received word can be
represented by

r=1+ 2 e
ie E

The decoding operation for r is thus

Hr=H-f+H- (Ze)=H- (Je¢)=¢
ieE ieE

Note that

Ee,'

ieE

is the same as the all-Os code word with m errors.

124 THE THEORY OF RELIABLE SYSTEM DESIGN

For t-error correcting codes, the syndrome s’ is
unique for each pattern of ¢ or fewer errors, and
can thus be used to correct the errors present if
m < 1. If t < m < d(for a distance-d code), the
syndrome indicates that an uncorrectable error
has occurred. The actual correction operation
based on s varies for different codes, particularly
if the code is used for special error classes (such
as b-bit burst errors, where b < (n — k)/2).
Thus, the explanation of the correction operation
is best left to the references cited later. The
correction operations for the Hamming SEC
codes and the orthogonal Latin square codes,
however, are relatively simple and are explained
below.

As for error-detection codes, distance is not
the only consideration in the properties of error-
correction codes. In many applications, toler-
ance of special classes of failures is often impor-
tant, and codes have been derived to tolerate
unidirectional errors, burst errors, and multiple
adjacent unidirectional errors. In addition, the
properties of the error sources in a given situa-
tion may be used to advantage. For example, in
most communications channels, errors occur in a
completely random fashion. In digital circuits,
however, once a bit value is in error, there is a
high probability that errors will continue to

occur in that bit (such as hard or intermittent
failures of memory cells, sense amps, and bus
lines). This form of error (sometimes called an
erasure) can be put to use if a history of error
locations is kept [Ingle and Siewiorek, 1973a].
Consider a bus with a single-parity bit in which
a particular bit line is known to be failed. If the
possibility of additional failures and transient
faults can be ignored, any parity error that
occurs must be caused by the bad bit line. Thus,
the error location is known and the error can be
corrected. In memories a history may be unnec-
essary, because erasures caused by failed bits in
a memory word can be found by writing and
reading an arbitrary word and its complement
into the memory location. XORing of the two
retrieved values determines the position of stuck-
at failures.

An algorithm which allows correction of up to
(d — 2) errors using a distance-d code is given in
Figure 3-55 [Ingle and Siewiorek, 1973a). This
algorithm assumes that only one new error can
occur before it is discovered (that is, for a
received word with a errors in it, @ — 1 of them
are in already known erasure positions), and that
at most (d — 2) erasures exist. The algorithm
uses the code itself to correct only single errors
at a time. During a given iteration, the algorithm

pick a new permutation of i of the known failure locations

temp = r corrected using s {change only one bit Tocation);

if s = 0 then ; ! errors corrected successfully ;

‘update history of failed bit locations if there is
a new failure location indicated ;

k = number of known failures (<d-2) ;
i=0;
r = received word ;
$ = syndrome ;
for i = 0 to k do
begin
for j = 1to kci do
begin
and change the corresponding bits of r ;
form s
if s # 0 then
begin
reform S using temp ;
~ begin
EXIT
end ;
end ;
end ;
end;

signal (uncorrectable error) ; ! a nonzero s could not be found using the

known failure locations ;

Figure 3-55. Proposed algorithm to correct up to d—2 errors in a distance-d
code, using knowledge of erasures present.

RELIABILITY AND AVAILABILITY TECHNIQUES 125

changes the bit values in locations specified by
some subset of the known erasures, forms a new
single error correction syndrome, and then per-
forms the single-bit correction specified by the
syndrome. Next it forms a new syndrome from
the corrected word to determine if the correction
just performed (the combination of erasure posi-
tions and single error correction) was valid.
Thus, if a (d — 1)st error occurs during use of
this algorithm, it is mistakenly corrected to a
code word that is at a distance 4 from the correct
word and only distance-l from the received
word. Figure 3-56 shows a table-lookup imple-
mentation of this scheme. Note that the erasure-
correction algorithm of Figure 3-55 can be
greatly simplified when used with a distance-3
(single-error-correcting) or distance-4 (single-er-
ror-correcting/double-error-detecting) code.

Presumably, the (d — 1)st error can be cor-
rected if, when there are (d — 2) erasures, it is
assumed at the beginning of the correction pro-
cess that at least one error exists in an erasure
position. The algorithm of Figure 3-55 is
changed by incrementing / from 1 instead of O
when k = d — 1. This modification means, how-
ever, that a single error occurring in a nonerasure
position will cause an error if d — 1 erasures are
known, even if it is the only bit in error. Stiffler
[1978] proposed a corrector design based on an
algorithm similar to Figure 3-55. The design can be
varied to correct up to any e errors, e < d, and
detect an additional p errors, e < (e + p) < d.

With the addition of erasure correction, con-
sideration must include the possibility of tran-
sient and soft errors and the ways in which they
affect the validity of the schemes just presented.
If an error history is being maintained, there is
the problem of ensuring that the recorded era-
sure locations are due to hard failures instead of
transient errors; otherwise, the storage space
may quickly become saturated with spurious
erasure locations.

The following subsections present samples of
several kinds of ECC codes. Except for the
Hamming codes, this coverage is neither detailed
nor complete. Peterson and Weldon [1972], Ber-
lekamp [1968], MacWilliams and Sloane [1978],

Data in

Syndrome Table

calculator
Data Kn()wr.| failed

bits
Update
Error vector

XOR

!

Corrected data

Figure 3-56. Proposed table look-up implementa-
tion of the error correction algorithm of Figure 3-55.

and Lin [1970] are excellent general references
on coding theory as it applies to digital systems.
A paper by Tang and Chien [1969], reproduced
in Appendix A, provides a good introduction to
coding theory, and should be read in conjunction
with this section. An article by Pradhan and
Stiffler [1980] is a general discussion of error
codes: their properties, applications, limitations,
and possible ways to overcome these limitations.
The article also contains an extensive bibliogra-
phy on codes and code applications. A book by
Rao [1974] is a complete treatment of arithmetic
error codes. Finally, new codes, modifications of
old ones, and more efficient ways of employing
codes are constantly being introduced. The
IEEE Transactions on Computers, the IBM Jour-
nal of Research and Development, and the pro-
ceedings of the annual Fault Tolerant Comput-
ing Symposiums (published by the IEEE) are
good sources for papers on coding theory and
applications.

Hamming SEC Codes

As mentioned before, Hamming SEC codes are
the most commonly encountered codes in com-
puter systems. For k data bits, an (n,k) Ham-
ming code requires ¢ additional check bits, where

2°>c+k+1

126

THE THEORY OF RELIABLE SYSTEM DESIGN

Data bits Check bits d,
d
2
d dy dy di 1 o g ds Syndrome
111010011-[555]
1011010(“'123
0 1 1 1 0 0 1 !
(5] Received
a data word
S;,=dod,ddy®
S$;=dod;0d;8 ¢,
S;=d,©d;0d,® ¢

a. Parity-check matrix and syndrome formation for a (7,4) Hamming SEC code.

Data bits Check bits Syndrome
Code word Zero syndrome
(no error) 1 1 1 0 1 0 0 000 <imp|ies no err()r)
One error Matches d.

1 1 1 1 0 0 11 4

(box) 1 0 < column)
Matches d;
Two errors column—results
(boxes) @ 1 0 L 0 L in erroneous

correction

b. Received code words and their syndromes for zero, one, and two errors.

G o d
1 0 1
0o 1 1
0 0 0

G dy dy dg
0 1 0 1
0o 0 1 1
1 1 1 1

¢. Parity-check matrix for (7,4) Hamming code for which syndrome is the binary-coded position

of the bit in error.

Figure 3-57. Hamming SEC code examples.

Thus, n = ¢ + k. These codes are separable.
They are best described in terms of their parity-
check matrices. Figure 3-57a shows the parity-
check matrix for a (7,4) Hamming SEC code. A
received code word is decoded by forming the
dot product of the matrix and the code word
column vector as shown, using modulo-2 addi-
tion. The result is a c-bit vector called the

syndrome. If the syndrome is all Os, no correct-
able error is present. If a single error occurs, the
syndrome matches the column in the check
matrix corresponding to the bit in error. A
multiple error results in a false syndrome that is
indistinguishable from the syndrome for one or
no errors; thus, Hamming SEC codes have a
minimum distance of 3. Figure 3-57b shows a

RELIABILITY AND AVAILABILITY TECHNIQUES

d, dy dy dy ¢4 ¢
Tt 1 1 1 1 1
11 1 0 0 1
1 0 1 1 0 0
o 1 1 1 0 0

= S — Il

127

= [51525554]

_;Qo..ag

(&

LQ_

a. Parity-check matrix for (8,4) Hamming SEC/DED code.

Number of Received
errors data bits
dy d, dy d,
Zero 1 1 1 0
One 1 [0] 1 oo
Two 1 [6] 1 0

Received

check bits Syndrome
G G G €4 S1 08, S S
0 1 0 0 0 0 0 O
0 1 0 O T 1 0 1
0 1 0 o 1 1 1

b. Received words and their syndromes.

Figure 3-58. Hamming SEC/DED code examples.

code word and its syndrome for O, 1, and 2
errors.

As stated previously, a syndrome generator for
this code can be made using ¢ parity trees, with
the inputs for each tree the code-word bits with
Is in the row corresponding to the syndrome bit.
Encoding for this code uses the same set of
parity trees, with the check-bit inputs corre-
sponding to the check bit being generated held at
0. This matrix is not unique for a (7,4) Hamming
SEC code; any 4 by 7 matrix will work as long
as no two columns are alike, none is all Os, and,
for easier encoding, the columns corresponding
to the ¢ check bits contain only a single | in
each.

The most common form of parity-check ma-
trix is of the form shown in Figure 3-57¢, origin-
ally proposed by Hamming [1950]. Each column
of this matrix contains the binary-coded repre-
sentation of the column number containing
it (columns are numbered starting with 1).
The check bits are located in bit positions

21i=0,1,2,...,(n — k — 1)). Thus, the syn-
drome in the event of an error is actually the
binary-coded number of the bit position in error.
This may allow a simpler design for the circuitry
that uses the syndrome to perform the correction.

Because a nonzero syndrome is an indication
of an error, a small amount of extra circuitry will
provide a means of error notification, and thus,
error detection. In addition, a small increase in
the size of the code word can result in improved
error-detection capabilities. Most implementa-
tions of the Hamming codes use an extra check
bit, which allows detection of all double errors.
This check bit is usually the parity of all the
other check and data bits in the code word (even
parity sense). The check matrix is changed by
adding both an extra check-bit column with a
single 1 and a row of all Is that corresponds to
the extra overall parity bit. A PCM for an (8,4)
Hamming SEC/DED (single-error-correcting/
double-error-detecting) code is shown in Figure
3-58a. A nonzero syndrome not matching any

128 THE THEORY OF RELIABLE SYSTEM DESIGN

column indicates a double (or greater) error. In
the case of this (8,4) code, the last three syn-
drome bits point to the column number in error
(numbered starting with 0) as long as the first bit
is 1. If the first bit is a 0 and any of the others
nonzero, a double or greater error has occurred. If
all the bits are 0, there is no error. This is
demonstrated in Figure 3-58b, which shows the
syndromes for a received word with 0, 1, and 2
errors.

These codes do not detect the all-Os failure
mode, for the all-Os word is a code word. In the
many hardware designs prone to an all-Os failure
mode (such as through a power failure in a
memory array or a failure in a select circuit), this
problem can be overcome by a modified Ham-
ming code. The code of Figure 3-58, for example,
could be modified by using the odd instead of
even parity sense for the overall parity-check bit.
Pradhan and Stiffler [1980] give an example of a
modified Hamming code that detects multiple
unidirectional failures short of the all-1s or all-Os
failure.

It is possible to obtain a Hamming code with
a lower amount of redundancy, by concatenat-
ing several data words and coding the resultant
longer word. The (8,4) code above used for a
4-bit data word has 100 percent redundancy. If
eight data words are concatenated, the resulting
32 bits of data can be protected by using a
(39,32) Hamming SEC/DED code with only 22
percent redundancy. There is a greater possibili-
ty of a fatal error because the single-bit-correc-
tion ability is now distributed over five times as
many bits. Also, the parity trees needed for
decoding have more gate levels and thus a longer
delay. Finally, if this is a RAM, on writes the old
code word must be retrieved, the old data byte
replaced by the new one, and the new code word
formed and stored. These increases, however, are
often balanced by the much lower redundancy
(and cost) needed. An example of this approach
is the SEC/DED memory option for the
PDP-11/60, whose 16-bit data words are stored
in 39-bit code words.

Some subsets of Hamming codes have useful
special properties. Hsiao [1970] describes a set of
SEC/DED codes that are equivalent to conven-
tional Hamming codes, in that they require the
same number of check bits. These codes, called
optimal odd-weight column codes, use a parity-
check matrix in which the number of ls is
minimal. Each column has an odd number of Is,
and the number of 1s in each row is as close to
the average number per row as possible. The
result is a minimum number of inputs to the
syndrome generation parity trees, which means
the syndrome generator has fewer components
and fewer gate-level delays. The conventional
Hamming SEC/DED codes, in contrast, require
an n-input tree for the overall parity check. Thus,
the codes described by Hsiao result in better
cost, reliability, and performance.

There are other possibilities for improving the
implementation of Hamming SEC/DED codes.
Carter, Duke, and Jessep [1973] propose an
efficient method of decoding called lookaside
correction. In this scheme, the SEC/DED code
word is translated to a byte-parity encoded
word. The code employed is a special subset of
SEC/DED codes called rotational codes. These
codes also have a minimum number of 1s in the
check matrix. Carter, Duke, and Jessep show
that a received code word with a correctable
error translates to a byte-parity encoded word
with a detectable parity error. Thus, detection of
byte-parity errors indicates that error correction
is necessary with the received code word; other-
wise, the data is ready for transmission on a
byte-parity encoded bus. With no error present,
the translation-and-check operation is faster
than the decoding and recoding (into byte-parity
code) operation required in a conventional Ham-
ming code implementation.

In the earlier section on parity codes, a mem-
ory design was suggested wherein the parity bit
stored with the memory word was the parity of
the combined data word and address. The Intel
432 (see Chapter 18) employs a similar scheme
based on the Hamming codes. The check bits

RELIABILITY AND AVAILABILITY TECHNIQUES 129

stored are for the concatenation of the data and
address, and thus provide protection against
both data and addressing faults.

An erasure correction technique similar to that
of Figure 3-55 is used in a prototype memory
described by Carter and McCarthy [1976]. This
design uses a subset of Hamming SEC/DED
distance-4 codes called maintenance codes, in
which the data word W and its bit-wise comple-
ment W’ have identical check bits. The memory
also utilizes the fact that hard stuck-at-a failures
can be discovered by writing and reading back
both a word and its complement, then XORing
the results to learn the location of the failures
(pointed to by set bits in the result). (Stuck-at-a
means a bit is stuck at either 1 or 0.) As shown
before, this information can be used to correct
up to d — 2 errors in a word, or in this case, two
errors. The memory can detect permanent triple
faults and recover from all permanent double
faults. Black, Sundberg, and Walker [1977] de-
scribe a spacecraft computer memory that can
correct single errors and erasures.

In the final variation of the Hamming SEC/
DED code given here, any single-byte error can
be corrected and any double-byte error detected.
This is accomplished (assuming 8-bit bytes) by
using 8 Hamming codes in parallel in the same
fashion as for interlaced parity (described in the
section on Parity Codes above.)* Thus, for a 64-
bit data word with 8-bit bytes, each Hamming
syndrome is formed using every eighth bit. In
essence, 8 13-bit Hamming code words are being
evaluated in parallel. The redundancy is 63 per-
cent. If 16-bit bytes are used, the number of
parallel code words is 4 (22 bits each), with a 38
percent redundancy. Even though this scheme is
easy to implement using readily available stan-
dard-support ICs (discussed below), other codes
to be discussed later provide similar fault-mask-
ing capability but require lower redundancy.

* In fact, assuming b-bit bytes, this scheme can correct any
pattern of errors spanning at most b adjacent bits, even if
the pattern transcends a byte boundary. Such a pattern is
known as a b-bit burst error.

If a Hamming code is employed purely for
masking purposes (that is, there is no error
notification if the error is correctable), deteriora-
tion of the hardware may be present but un-
known to the system maintainer. Furthermore, it
is desirable to be able to test the encoding/
decoding hardware. Thus, most implementations
of Hamming-coded memory systems include the
ability to write noncode words and to read
memory words without the correction being per-
formed. This provision aids in the diagnosis of
memory problems.

Reliability and performance modeling of
Hamming (and other) SEC codes is deferred to
Chapter 5, where the topic is covered in depth.

A great many commercial computers, over a
large range of sizes and performance, use Ham-
ming SEC codes for main memory. Among these
are several models of the IBM 360/370 series, the
PDP-11/60 (as an option), the VAX-11/780 and
VAX-11/750, some models of the PDP-10 and
DECsystem 20, the Univac 1100/60, the Xerox
Alto, and the Bell ESS-1. In addition, many
manufacturers of plug-compatible aftermarket
memories offer SEC add-on memory for various
computers. Hamming SEC codes see usage in
other areas of computer design, particularly
buses. The IBM STRETCH, for example, used
SEC/DED codes on both its memory and pro-

‘cessor-memory bus, with encoding/decoding

performed on the processor end of the bus.
Finally, several semiconductor manufacturers
are now supplying LSI support chips for SEC
code memories. Among these are the Advanced
Micro Devices Am2960 and AmZ8160, the Mo-
torola MC68540, and the Fujitsu MBI412A.
Most of these use modified Hamming SEC/DED
codes. The MBI1412A, for example, is an 8-bit
(data) slice that can also be stacked for data
words of 2, 4, or 8 bytes. The Am2960 and
AmZ8160 are 16 bits wide but can be used for
data words of 2, 4, or 8 bytes. The MC68540 is a
16-bit wide unit to be used for data words of 1,
2, or 4 bytes and also detects the all-Os and all-1s
failure mode.

130 THE THEORY OF RELIABLE SYSTEM DESIGN

Other Error-Correction Codes

Although Hamming SEC/DED codes are the
most commonly used codes in computers, there
are several others, many of which are effective
against particular classes of errors. For example,
Tang and Chien [1969] (see Appendix A) discuss
classes of cyclic codes for correcting single er-
rors, burst errors, multiple independent errors,
and multiple-character (i.e., byte) errors. This
section briefly presents a few other codes as an
indication of the abundant possibilities that
codes offer.

Burst-error-correction codes are uniquely
suited to some applications in digital systems. A
b-bit burst error is an error pattern that spans b
bits in a word. Another form of multiple error is
a b-adjacent error, in which the errors occur
within specific b-bit boundaries, such as byte
boundaries. b-adjacent error correction is partic-
ularly useful in designs organized as several
parallel byte-wide modules, as in Figure 3-59. In
such designs, a single failure can affect an entire
block of signal lines. In a memory of (h X b)-bit
words organized as h b-bit-wide memory chips,
for example, a failure of the addressing logic in
one chip would cause the simultaneous failure of
b adjacent bits. The interlaced multiple Ham-

ming code of the previous subsection can correct-

b-adjacent errors. Other codes provide similar
protection with less redundancy, such as those
formed from binary-coded characters instead of
individual bits. Thus, for characters of b bits,
there are 2° possible characters. The PCM ele-
ments are b-bit characters instead of Os and Is
and the parity-check summations are performed
over the characters in the code word, modulo-2°.
Thus, the error detection/correction characteris-
tics are in terms of b-bit characters, and the
codes are effective against b-adjacent errors.
Since b-adjacent errors are a subset of b-bit burst
errors, burst error codes are also effective. Exam-
ples of this class of codes are the Reed-Solomon
cyclic codes [Peterson and Weldon, 1972; Tang
and Chien, 1969]. Also, codes specifically for b-
adjacent errors can be derived from burst error

NET
T

N N

<

(=2
W

=

Inputs

h -« b output lines

Figure 3-59. Circuit design of parallel byte-wide
modules.

codes. In addition to the general references cited
earlier, other papers on b-adjacent error correc-
tion are Bossen [1970], Reddy [1978], Srinivasan
[1971b], Bhatt and Kinney [1978], Hong and
Patel [1972], Fujiwara and Kawakami [1977],
Carter and Wadia [1980], and Kaneda and Fuji-
wara [1980].

Unidirectional errors are a common hazard in
digital systems. In this type of error, the signal
lines in error have all made the same transition,
that is, 0-to-1. or 1-t0-0, but not both. These
errors may or may not be adjacent. On an open
collector bus, for example, a gating circuit failed
in the on state can cause multiple signals to be
gated onto the bus. The signal lines affected will
carry the wire-or of the desired and spurious
signals, resulting in unidirectional 0O-to-1 errors.
Other possible causes of unidirectional failures

“are power failures, shorts, and loss of charge in

memory cells. The all-Os and all-1s failure modes
mentioned previously are a case of multiple
adjacent unidirectional failures. If multiple uni-
directional errors are likely to occur in an appli-
cation requiring an error-correcting code, the
best code to use is one that at least detects such
failures. Pradhan [1980] has developed a class of
separable random-error-correcting codes that
also detect any number of unidirectional errors.

When k data bits are needed, there is often no
(n,k) code with the desired properties. Thus,

RELIABILITY AND AVAILABILITY TECHNIQUES 131

many of the codes used instead are shortened
versions, such as an (n, k') code shortened to an
(n — i,k” — i) code, where k" = k + i. This can
be accomplished by assuming that / of the data
bits are always 0. The resultant PCM is that of
the (n,k’) code, with the i columns correspond-
ing to the always-0 data bits deleted. Often the
columns to be deleted can be chosen to minimize
the decoder complexity. Most implementations
of Hamming codes are examples of shortened
codes. Consider a (21,16) Hamming SEC code.
According to the criteria for Hamming codes,
the 5 check bits will provide SEC protection for
up to 26 data bits. Thus, any (21,16) Hamming
code is actually a shortened (31,26) Hamming
code.

Hsiao, Bossen, and Chien [1970] state that
usually, the less redundancy a code has relative
to its error-correction ability, the greater are the
complexity, delay, and cost of the decoder. From
this principle they derive a class of codes in
which a systematic addition of redundancy adds
-error-correction ability. In particular, their or-
thogonal Latin square codes are (m? + 2tm, m*)
codes that can correct any ¢ errors (¢ <
(m + 1)/2). Thus, the code length grows linearly
with ¢ for a given data length. These codes are
decodable quickly in parallel using simple major-
ity logic-decoding [Peterson and Weldon, 1972;
Tang and Chien, 1969)]. The parity-check matri-
ces are easy to construct. The high redundancies
result in parity-check matrices with few lIs, re-
sulting in simple (minimal) decoding circuitry.
Finally, the systematic nature of the matrix
allows modular additions to the decoder for
increased error-correction ability. Needed for
each bit are r modules, each containing 2 m-bit
parity trees, and a (2¢ + 1)-bit majority voter.
Figure 3-60 shows the PCMs and one of the bit-
correction slices for the (15,9) and (21,9) single-
and double-error-correcting Latin square codes.
For 9 data bits, double-error correction is the
maximum attainable with this class of codes.

Product codes are the result of the simultane-
ous application of two codes in a particular
fashion. (Tang and Chien [1969] refer to these

codes as N-dimensional codes; see Appendix A.)
Figure 3-61 illustrates the concept. If the two
codes used have minimum distance 4, and d,, the
product code formed by them has weight d, d, .
This concept can be extended to N dimensions
(N codes applied simultaneously). One product
code, often used on tapes and other serial de-
vices, is the result of using single-bit parity along
both the horizontal and vertical axes. Because
parity is a distance-2 code, the result is a dis-
tance-4 code. In practice, a single error produces
a parity error detected by both vertical and
horizontal parity. The intersection of these two
parity errors points to the bit in error (see Figure
3-62). Furthermore, it can be seen that any
double error is detectable. This code is applica-
ble to random-access memories as well as to
serial applications, and can result in less redun-
dancy than a comparable Hamming SEC/DED
code. The section on Single-Error-Correcting
Memory Models in Chapter 5 examines the use
of the code in detail and compares its reliability,
cost, and performance with the Hamming SEC/
DED code.

AN arithmetic error-detection codes were dis-
cussed earlier. With a sufficiently large modulus
A, an AN code is capable of error correction.
Table 3-13, from Kautz [1962], lists the check
modulus, maximum data length, and code word
length for a number of possible single-error-
correcting AN codes. In practice, these codes are. .
decoded like the error-detection AN codes: divi-
sion by the check modulus. If the remainder of
the division (the residue) is 0, there is no error. A
single-bit error in the rth bit position results in a
residue of (+2” modulo A). Kautz suggests that
the correction be performed by table lookup
using the residue. Because none of the AN codes
of Table 3-13 are low-cost check moduli (see the
previous section on Arithmetic Codes), the divi-
sion operation to obtain the residue is complex.
Rao [1972] presents a modification of AN codes
that allows for more efficient decoding. There are
other arithmetic error-correcting codes. Error
correction using residue-number-system (RNS)
codes is the subject of several papers [Watson

132 THE THEORY OF RELIABLE SYSTEM DESIGN

m?=9
2tm = 6 (15,9) Single error correction
dy dy dy dy dy ds dy d; dg ¢ @ G € G G
1 1 1 1 -
1 1 1 1
1 1 1 1
1 1 1 1 -
1 1 1 1
1 1 1 1
,___/___d0
- " d
N Majority /” d12
do_ voter N Cq
N\ e
dg }
Ca
a. (15,9) Single-error correction
m?=9
2tm = 12 (21,9) Double error correction
do di dy d3 dy ds dg d; dy ¢ & G ¢ o Ce' G G G Cp €11 Cqp
1 1 1 1 |
1T 1 1 1 }
1 11 1 [A
1 1 1 1 I
1 1 1 1 :
1 1 1 1 }
i TTYTTTRTTTTTTTTTTTTTT 1
1 1 1 1 T
1 1 1 1
1 1 1 1
1 T 1 1
L 1 1 1 1 |
/——_—do
. Majority -d,
dy—{ Voter X —gz
€1
7 d3
de
Cq
ds
e b
\j (&
Submatrix A is identical to the SEC parity check matrix, < g: 1
and the corresponding parity tree is also unchanged. \ C1o J

b. (21,9) Double-error correction.

Figure 3-60. Latin square code parity-check matrix with one bit-slice of
decoder for nine data bits. Decoding is performed by a majority vote among the
received value of a data bit and two values calculated for it from the other
received bits. a.) Single-error correction. b.) Double-error correction.

RELIABILITY AND AVAILABILITY TECHNIQUES 133

: Row
Data bits | check
L _d__bits
Column check |Checks on

bits { check bits

Figure 3-61. Product code resulting from combi-
nation of two linear codes. The check bits in the
lower right-hand corner may be formed either as
row checks on the column check bits or vice versa.
Either way, they will be consistent.

and Hastings, 1966; Mandelbaum, 1972a; Barsi
and Maestrini, 1973, 1974]. The paper by Wat-
son and Hastings also describes the design of a
microprogrammed general-purpose computer
that utilizes RNS coding. A paper by Rao [1970]
discusses biresidue error-correcting codes, a class
of separable codes. Neumann and Rao [1975]
explore the application of arithmetic codes to
byte-sliced arithmetic processors. Finally, Rao
[1974] has written a textbook on arithmetic error
coding.

Table 3-13. Single-error-correcting AN codes.
Check Maximum Data Code Word
Modulus Length Length
A k n

13 2 6

19 4 9

23 6 11

29 9 14

37 12 18

47 17 23

53 20 26

59 23 29

61 24 30

67 26 33

71 28 35

79 32 39

83 34 41
101 42 50
103 43 51

Source: Kautz [1962]

1100711001110
10110000001

l ,
101 10f0]1 11100 Parity
111110101011 eror
11,1000 1 11111

arity error

Figure 3-62.
codes.

Product code using two even-parity

Reliability models for a code depend upon the
frequency and types of errors that occur, as well
as on the properties of the code. Thus, no general
model can be presented here. However, a model
is given for an (n,k) r-random-error correcting
code, when single errors occur randomly (in
random locations, and not in bursts). The reli-
ability of a single code word, given bit reliability
Ry, is:

t
Rword = ’;:0 nCiRZ_l(l - Rb),

More detailed modeling is the subject of Chapter
5.

Masking Logic

Discussion of the two previous masking tech-
niques did not include fault masking at the gate
level of digital design. NMR with voting is used
almost exclusively for modules or for functional
partitions of designs. Coding is normally applied
when some regular strucure is present, as in
memories or buses. Thus, in both NMR and
coding applications a single restoring organ (vot-
er, decoder/corrector) normally protects a set of
hardware that is much more complex and error
prone than the restoring organ itself. In fact, the
increased regularity of control logic obtained
through the use of PLAs and microcode tech-
niques means that error-coding techniques can
have an important impact on system reliability.
However, some random logic always remains

134 THE THEORY OF RELIABLE SYSTEM DESIGN

that cannot be protected through the straightfor-
ward application of error codes.

This section discusses techniques other than
module replication that have been devised for
random logic. These techniques perform restora-
tion at the gate level or, for sequential machines,
at the state level, usually with a massive use of
redundant gates. Because of their high cost, few
of the techniques have seen actual use. The
discussion is divided into two parts: the first
concerns gate-level masking; the second deals
with the application of error codes to the states
of finite-state machines.

Interwoven Logic

Several techniques have been proposed for gate-
level fault masking. All employ redundant inputs
to each gate. Among these are von Neumann’s
original work on circuits with interspersed restor-
ing organs, quadded logic [Tryon, 1962; Jensen,
1963], and radial logic [Klaschka, 1969]. Pierce
[1965] combined these variant schemes into a
general theory of what he termed interwoven
logic. Some of the basic precepts of interwoven
logic are briefly presented here, based largely
upon Pierce [1965]. Armstrong [1961] proposed
an entirely different technique for fault-tolerant
combinational logic, presented in the next sec-
tion.

Faults in logic circuitry are considered to be
limited to stuck-at-a (where a = 0, 1) faults on
gate outputs, gate inputs, or input lines to the
network. The effect on the logic depends on the
value of the fault and the type of gate whose
inputs are affected. Consider a NAND gate. If
one of its inputs is stuck-at-0, its output is forced
to be 1 regardless of the gate’s other inputs. On
the other hand, a stuck-at-1 input does not force
the output to 0 unless the other inputs are also 1.
Thus, two types of faults exist; critical faults,
which by themselves force a certain gate output,
and subcritical faults, which alone will not cause
a gate output error. Table 3-14 lists some com-

Table 3-14. Critical and subcritical input faults
for some common logic gates.

Subcritical
Gate Type Critical Faults Faults
AND 1-0 0—->1
OR 0—->1 1-0
NOT 0—-1,1—-0 None
NAND 1-0 01
Majority None 0—-1L1—-0

mon gates and their critical and subcritical input
faults. In a network of AND gates a critical fault
is propagated through the network: a critical
input fault on a gate in one layer forces an
output error that is critical to the subsequent
layers of AND gates. If, however, the network is
composed of alternating layers of AND and OR
gates, a critical fault may be stopped within two
layers: a critical input fault to one layer results
in an output error that is a subcritical input fault
in the following layer. Similarly, an all-NAND
(or all-NOR) gate network may stop a critical
fault within two layers. Finally, majority-logic
faults may be stopped after only one layer be-
cause there are no possible critical faults.

Interwoven logic makes use of the properties
of subcritical and critical faults by assuring that
the effects of up to ¢ faults in any layer are
masked by subsequent layers; ¢ is design-depen-
dent, and the circuit so designed is called
t-fault tolerant. Fault tolerance is accomplished
by using redundant gates with redundant inputs.
The interconnections between logic layers are
interwoven so that critical faults at one stage are
masked out in subsequent stages, through the
mixing of faulty and good replicated signals.
Figure 3-63 illustrates this masking action and a
necessary condition: the interweaving pattern
must vary from layer to layer. Without this
variation, the fault will propagate.*

* The inputs to the interwoven logic circuit must also be
independently replicated if the circuit is to tolerate input
faults.

RELIABILITY AND AVAILABILITY TECHNIQUES

X—
Y —

D
w.

a. Nonredundant circuit

L UUU

YYY Y

- -

0

7 10 fault
1

,(f 0 — 1 fault

b. Fault-tolerent interwoven circuit

Figure 3-63. Fault tolerance via interwoven logic.

Z

135

136 THE THEORY OF RELIABLE SYSTEM DESIGN

Using the principles of critical and subcritical
faults, interweaving, and weave-pattern varia-
tion, Pierce developed a general theory of imple-
menting interwoven logic. To correct any ¢ criti-
cal errors, the redundancy in gates must be
R=(+ 1)2 = B2, and each gate must have B
times the inputs needed for the corresponding
gate in the nonredundant realization. At least
three different interweaving patterns are needed
if the circuit has feedback (such as flip-flops or
loops). A pattern consists of B groupings. If the
redundant copies of a gate are numbered from 1
to R, each of the B groupings contains a unique
set of B different numbers; there are no overlaps
between groups. Finally, each group in a pattern
must have elements drawn from at least B differ-

ent groups in any of the other patterns, as Table -

3-15 shows for t = 1, 2, and 3. In the table, a
grouping, such as (a, b,.c) for ¢+ = 2, implies that
the output from a gate, a, is connected to an
input on each of the gates a, b, and ¢ in the next
layer; the same applies for the outputs of gates b

Table 3-15. Groupings (g;) for interweaving
patterns for t = 1,2, and 3.

Single-Fault Tolerant
t=1,B=2R=4

gl = (1’2)(3’4)
8 = (174)(2>3)
g3 = (173)(2’4)

Double-Fault Tolerant
t=2,B=3R=9

gl = (1’2’3)(4’5y6)(7’8s9)
2 = (1,4,7)(2,5,8)(3,6,9)
g3 = (]’ 698)(59733)(952,4)

Friple-Fault Tolerant
=3,B=4R=16
g = (1,2,3,4)(5,6,7,8)(9, 10, 11, 12)(13, 14, 15, 16)
g = (1,5,9,13)(2,6,10,14)(3,7,11,15)
(3,8,12,16)
g = (1,6,12,15)(2,5,11,16)(3,8,9, 14)
(3,7,10,12)

Source: Pierce [1965]

and c. In Figure 3-63, the grouping g, of the
single-fault tolerant groupings was used for the X
inputs, while the grouping g, was used for the
inputs to the second level of gates. A critical O-
to-1 input fault to one layer is masked out by the
next layer; thus, the input fault in signal X does
not cause an error in -output Z. If the same
interweaving pattern had been used in both
layers, the fault would have been propagated.

The need for a shorthand notation of inter-
woven logic is demonstrated in Figure 3-63, in
which a simple nonredundant two-gate logic
function is transformed into a complex tangle of
gates and interconnections. Figure 3-64 illus-
trates the notation to be used. A symbol for
replicated gates is formed by using a double line
for the gate symbol edge. The term g; inside the
symbol indicates the weaving pattern that is to
be used in connecting the replicated gates to the
previous layer.

The gate in Figure 3-64 is a gate used in
quadded logic, where t = 1, B = 2, and R = 4;
however, the notation can also be generalized to
higher redundancy. Quadded logic was first in-
troduced by Tryon [1962] for use with AND,
OR, and NOT logic. There are two problems
with the use of this family of logic gates if two-
level correction is to be assured at all times.
First, the AND and OR logic levels must be
strictly alternated. Second, because the NOT
gate (inverter) has only one input and no subcri-
tical faults, it does not provide any fault mask-
ing. Also, when a NOT is placed between AND
and OR layers, the effect is to make the two
layers it joins identical, since what would nor-
mally be a subcritical output fault is inverted
into a critical input error. The two difficulties can
be overcome in part by rearrangement of the
logic function, and in part by the insertion of
identity-AND or -OR gates (one leg fixed at 1
and 0, respectively) where appropriate. Figure
3-66b demonstrates this approach with a quad-
ded logic implementation of Figure 3-65b. Re-
quiring alternating AND/OR gate levels is not a
problem when NOR [Jensen, 1963] gates or
NAND gates are used in implementing quadded

RELIABILITY AND AVAILABILITY TECHNIQUES 137

mDS

a. Symbol for quadded gate with inputs
woven with pattern g;.

X
X12_E 7z
Y11—y1—2_ 1
Xj—
Xp— X3 X21: z
X3 yn Y] :
Xg4—

Yi— X31
) =
Y3- Y32

Vs -

b. Expansion of quadded gate into four physical
gates, with inputs x;, and yj.

8i

l'k 81| & | 8
ni1 1 1
121 2) 43
211 1| 2 2
212|314
3113 21
320 4| 313
41 3 1|2
2|4 ala

c. Table of interweaving patterns g;, and the
relation for each pattern between the inputs
to gate j(xy and y;) and the output gate
number (kﬁ of the previous stage.

Figure 3—64. Weaving notation.

logic. Figures 3-65a and 3-66a show NAND and
quadded NAND gate realizations of the same
circuit. Finally, the principles of two-layer mask-
ing also apply to single-layer fault-correcting
technologies such as majority gate logic.

Radial logic [Klaschka, 1969] is a variation of
interwoven logic that offers single-fault tolerance
with a gate redundancy factor of only 2. This is
possible if the gates used fail in a nonsymmetric
(fail-safe) manner. In particular, for radial logic
based on NOR gates, the gates used must be

unlikely to experience 0-to-1 failures at their
outputs. In other words, it is assumed that criti-
cal input faults cannot occur. If this is the case,
the fault is corrected at the next duplicated stage.
Klaschka gave RTL implementations of NOR
gates that are unlikely to have 0-to-1 output
failures.

More recently, Freeman and Metze [1972]
proposed a form of interwoven logic called dot-
ted logic, derived from the use of dotted outputs
of NAND and/or NOR gates (such as utilizing
the wire-or that results from connecting the
outputs of TTL logic open-collector gates). Al-
though gates are implicit at the dotted connec-
tions, the actual gate count as well as the number
of interconnections is greatly reduced.

Finally, Pradhan and Reddy [1974a] propose a
design method using two-level AND and OR
logic that can tolerate subcritical faults both on
its inputs and due to internal failures. As in
radial logic, gates with asymmetric failure modes
are required. In this scheme, the inputs that
result in a logical one output are coded in a
distance-d code. At most, then, duplication of
the inputs is required. Further reductions in
complexity can be achieved through the use of
don’t-care output conditions for some input

~combinations. The resulting design tolerates up

to (d — 1) internal subcritical faults, given a
distance-d coded input. Alternatively, a total of ¢
faults (combined internal and external) can be
tolerated, where (2 + 1 < d).

Reliability modeling of interwoven logic can
be extremely complex, and no models will be
given here. Pierce [1965] developed a complex
method of obtaining a lower limit on the reli-
ability. Jensen [1963] developed a cut-set model
for quadded logic (Chapter 5 discusses reliability
modeling with the use of cut sets). Abraham
[1975] developed a combinatorial procedure for
modeling interwoven logic, as well as an easily
calculable formula for providing a tight lower
limit on the network reliability.

In addition to reliability, there is another
factor to be considered in the employment of
interwoven logic. By the very nature of internal

138

Dt

THE THEORY OF RELIABLE SYSTEM DESIGN

d
a. NAND gates
a
b ——
C *DO—
d [

D

b. AND, OR, and NOT gates

Figure 3-65. Implementations of the togic function f = d(ab +).

R 81
.,_I—D

D

D=

=)

g

g

a. NAND gate implementation

C

8) f

d

by an asterisk).

- AND, OR, NOT gates implementation (note the extra inverter, marked

Figure 3—66. Quadded implementations of the circuit of Figure 3-65.

fault masking, the logic network that results is
difficult or impossible to diagnose. When a fault
occurs, no notice is given unless the outputs are
in error. Even with outputs in error, diagnosis is
difficult without probing the internal signals.
Tryon [1962] suggested a possible solution: re-
moving the power from some of the redundant
gates, thereby forcing their outputs to values that

effectively eliminate them from the network. At
the same time, some of the redundant inputs
must be neutralized.

Coded State Machines

The interwoven logic techniques of the previous
section can be used to implement sequential

RELIABILITY AND AVAILABILITY TECHNIQUES 139

Inputs Outputs >

Combinational
logic

Next state

Current state

Memory: flipflops or delays

igure 3-67. Generic design for a sequential cir-
uit. In asynchronous circuits the memory elements
re replaced by delays.

synchronous or asynchronous) logic. However,
here are other techniques that could result in
ower redundancy and simpler designs. The basic
:oncept, first proposed by Armstrong [1961], is
hat the state of the machine, represented by its
tate variables, can be encoded in an error-
sorrection code. Thus, any fault can be masked
f it causes a correctable error in the state of the
nachine.*

Figure 3-67 shows a generic form for a finite
itate machine. If input errors are ignored, there
ire two sources of error in the machine: the
:ombinational logic and the memory elements.
“igure 3-68 demonstrates Armstrong’s solution
o faults in the combinational logic. The logic

ietwork is split into £ independent units, each-

levoted to producing a subset of p of the output
signals. An additional (n — k) subunits produce
ndependently generated sets of error-code check
sits for the k functional outputs. Thus, the net
>utput of this circuit is p parallel (n, k) coded

* The following discussion primarily concerns synchronous
machines. In asynchronous machines, state assignment
problems occur because of the possibility of races, hazards,
and the like. However, Pradhan and Reddy [1974b] have
extended these principles to asynchronous machines, and
Pradhan [1978b] described a method of realizing fault-
tolerant asynchronous coded-state machines using read-
only memories.

15
Subunit 1 |

k Outputs
; (functional)

Inputs Subunit k

1

Subunit
k + 1 L
p

(n— k)
Outputs
(check)

Subunit n

[

Figure 3-68. Division of logic network into sub-
units for outputs in k independent sets.

signals. If p = 1 the result is a single set of
output signals that forms an (n,k) code word.
Conceptually, the check-bit units are not difficult
to design, for the check-bit functions can be
derived as the XOR of the appropriate output-bit
functions.

Combinational logic of the type illustrated in
Figure 3-68 is used to provide both coded output
signals and coded feedback (next-state) signals
for the machine. The decoder/corrector for the
state signals is placed between the memory ele-
ments and the current state inputs to the combi-
national logic. In this way, faults in both the
combinational logic and the memory elements
can be tolerated. In a companion paper to Arm-
strong’s, Ray-Chaudhuri [1961] developed a class
of minimally redundant codes tailored to this
application.

Armstrong showed that, when coupled with
maintenance (faulty component replacement), a
state machine implemented in this fashion has a
greatly improved reliability over that of the
equivalent nonredundant version. He also stated
that for some large systems this technique yields
a redundancy at least as great as for triplication,
but that for others it may be considerably less.

140 THE THEORY OF RELIABLE SYSTEM DESIGN

The actual redundancy can be determined only
by a detailed design.

Others have worked on this concept since
Armstrong’s paper. Frank and Yau [1966] pro-
posed designing sequential machines using error-
code state assignments. Mandelbaum [1972b]
suggested a scheme in which, given a sequential
machine M, a simpler machine M’ is derived
into which the states of M can be mapped. M’ is
operated independently of M, but with the same
inputs, and supplies the check bits for the state
encoding. Meyer [1971] discussed state assign-
ment and design realization for tolerance of
memory-cell faults. Russo [1965] proposed fault-
tolerant counters with distance-3 coded states.
Reed and Chiang [1970] discussed error-coded
state counters and also offered a synthesis proce-
dure for fault-tolerant sequential circuits. Larsen
and-Reed [1972] presented a synthesis procedure
for fault-tolerant sequential machines. Using an
analysis based on this procedure, they demon-
strated that for a given ability to tolerate faults,
replication is more reliable as well as simpler to
implement. Conversely, they found that for a
fixed complexity (gate count, cost), schemes that
use orthogonal (majority-logic decodable) codes
are more reliable. Osman and Weiss [1973] de-
veloped a technique that can be used to reduce
the redundancy in fault-tolerant logic. In Figure
3-68 it can be seen that considerable redundancy
1s incurred by separate generation of the outputs;
their technique allows some of the circuitry to be
shared between modules generating the output
functions. If this sharing is performed properly
the reliability is not affected and there are con-
siderable savings. Osman and Weiss applied this
technique to triplication and to parity-check
codes.

DYNAMIC REDUNDANCY

Fault-detection techniques provide a means of
flagging the potential presence of errors emanat-
ing from a digital system. In addition, fault
detection offers an increase in system availability

through more rapid failure diagnosis. However,
because it does not provide tolerance, fault de-
tection alone does not improve system reliability
(at least not in terms of the reliability function).
On the other hand, fault-masking techniques
improve system reliability by allowing a system
to operate correctly in the presence of failures.
Also, minor amounts of extra redundancy can
add the benefits of fault detection (error flagging
and rapid diagnosis) to a fault-masking design.
Fault masking in turn is limited by its static
configuration: a system employing a fault-mask-
ing technique cannot heal itself, but only hide its
failures. Eventually, the accumulation of failures
is large enough to saturate the fault-masking
ability, and the entire system fails. In a TMR
system, for example, the failure of a second of
the three modules causes system failure: even
though a good module is still available, the two
failed ones outvote it.

Another approach to increased reliability uti-
lizes redundancy in a dynamic way. Dynamic
redundancy techniques involve the reconfigura-
tion of system components in response to fail-
ures. The reconfiguration prevents failures from
contributing their effects to the system operation.
In many instances reconfiguration amounts to
disconnecting the damaged units from the sys-
tem. If fault masking is used as part of the
dynamic redundancy scheme, the removal of
failed components may be postponed until
enough failures have accumulated to threaten an
impending nonmaskable failure.

Reconfiguration is triggered either by internal
detection of faults in the damaged subunit or by
detection of errors in its output.* Thus, fault-
detection techniques (with or without masking)
form the basis of dynamic redundancy. A sys-
tem’s chance of a successful reconfiguration is

* Reconfiguration can be performed either automatically by
the system itself (on-line repair) or manually by operations
or maintenance personnel (off-line repair). In the first case,
the system experiences a temporary pause before operation
continues; in the second, the halt is longer and may require
complete reinitialization. Hence, on-line repair improves
both reliability and availability, whereas off-line repair
usually only increases the availability. The emphasis in this
section is upon on-line repair.

RELIABILITY AND AVAILABILITY TECHNIQUES 141

greatly dependent on its fault detection ability.
Three issues are involved in the employment of
fault detection in a reconfigurable system. The
first is the confinement of fault effects before
unrecoverable damage occurs; the second is
fault detection; and the third is correct diagnosis
of the failure location, so that the faulty unit—
and only the faulty unit—is marked for remedial
action (removal and/or replacement). Thus the
two fault-detection criteria of coverage and diag-
nosability (see the earlier section on Fault-Detec-
tion Techniques) are important factors in the
choice of a detection technique. Detection cover-
age in particular is commonly used in deriving
the reliability formula of a dynamically redun-
dant system. In modeling dynamically redun-
dant systems, coverage is often generalized to
mean the probability of a successful reconfigura-
tion; successful fault detection then becomes
only one of the factors in determining coverage
along with the probabilities of successful error
confinement and resource switching.

The following subsections present several dy-
namic redundancy techniques that utilize a com-
bination of fault detection, fault masking, and
reconfiguration. The first subsection discusses
methods that use duplication for detection as
well as for fault tolerance; the second treats N-
modular redundancy-based designs. Duplication
and N-modular redundancy-based reconfigura-
tion requires massive amounts of redundancy
solely for error detection (and/or correction).
Other, less redundant forms of fault detection
(correction) can also provide a basis for dynamic
redundancy. The more hardware-efficient detec-
tion techniques (such as parity, ECC codes,
timers) can be used to monitor the health of
individual modules. Such detectors can be lo-
cated either inside or outside the modules they
monitor. They can exist either in hardware or
software. The subsections on Backup Sparing,
Graceful Degradation, and Reconfiguration
present reconfiguration techniques that are
usually based on the less redundant detection
methods. Backup sparing is the provision of
spare units that remain unused until an active
unit fails. In graceful degradation, the function-

ality and/or performance is allowed to degrade
as parts of the system fail and are removed
without replacement. The subsection on recon-
figuration presents miscellaneous dynamic re-
dundancy techniques that do not fit into the
categories provided by the other sections.

The effect of transient errors on the various
reconfiguration techniques is not discussed be-
low. If there is no specific mechanism for deter-
mining that an error is due to a transient, per-
fectly good modules may be switched out when
a transient occurs. Fortunately, there exists a
technique which is common to most of the
reconfiguration methods discussed below. This
technique, called retry, returns the module ini-
tially diagnosed as failed to the system for anoth-
er chance. Detection of an error immediately
after the module is returned to service is a good
indication that the module is in fact defective.

The final subsection on dynamic redundancy
discusses recovery, the actions taken after recon-
figuration to erase failure effects and restore the
state of the system and the process(es) it was
executing before the failure. Recovery is usually
performed by special software, but often requires
some support by hardware mechanisms.

Reconfigurable Duplication

Fault detection by duplication and comparison
was discussed earlier in this chapter. In a static
configuration, a duplicated system does not pro-
vide fault tolerance, for only disagreement can
be determined in the presence of a fault. Two
enhancements to the duplicated system can,
however, produce fault tolerance.* The first en-
hancement needed is the ability to determine
which of the two modules is faulty if a disagree-
ment is detected. The second is the ability to

*In this discussion duplication is considered only as the
basis for fault detection. This form of duplication should
not be confused with “duplication,” in which an extra copy
is presented as a standby spare, and is not used for fault
detection by comparison. The latter form is discussed in
subsequent subsections.

142 THE THEORY OF RELIABLE SYSTEM DESIGN

disconnect the faulty module and at the same
time disable the comparison element. Thus, upon
fault detection (mismatch), diagnosis determines
the faulty copy, which is then removed from
service. The resulting simplex system continues
to function.

Figure 3-69 illustrates the concept of reconfig-
urable duplication. In the figure, only one of the
duplicated units (the active unit) is connected to
the system outputs. The other (standby) unit is
functioning in parallel with the active unit but is
not connected to the outputs. In practice, the
duplicate modules are often resident on the same
bus (or buses), and the switching function is
performed by the bus interface unit in each
module.

When a fault is detected by a mismatch, there
are several means of determining the faulty copy
and switching it out. Four methods are discussed
here. The first is to run a diagnostic program. In
the Bell ESS-2 (Chapter 12), for example, the
active processor runs a self-diagnostic program.

External
hardware

Output from on-line unit

| Outputs |

Unit Unit
A B
(on-line) (off-line)
3 | b
Comparison
signals

—

Compare

Inputs

Figure 3-69. Reconfigurable duplication. A detect-
ed mismatch during comparison of characteristic
signals triggers reconfiguration.

If the diagnostic is failed, control is passed to the
standby processor. The faulty processor is taken
off line to run maintenance programs that facili-
tate its rapid repair. Figure 3-70 shows a block
diagram of the ESS-2 organization.

Another means of identifying the faulty copy
is to include self-checking capabilities in each
module. The joint occurrence of an internally
detected fault and a mismatch provides imme-
diate determination of the faulty copy. The use
of comparison in addition to self-checking pro-
vides more coverage than self-checking alone.
The UDET 7116 telephone switching system
control [Morganti, Coppadoro, and Ceru, 1978],
for example, uses a set of internal hardware
checkers (such as parity or timers) to automati-
cally switch a faulty CPU out of service. The
primary detection mechanism in the UDET
7116, however, is duplication. When a mismatch
occurs with no internal alarm indication, both
CPUs are taken off line and forced to run
diagnostics. The first to successfully complete its
self-diagnosis becomes the active CPU. The Bell
ESS-1, -1A, and -2 processors also use internal
self-checking in conjunction with duplication.
Finally, the internal detection mechanisms can
also be used in conjunction with diagnostic
software.

A third approach to determining the faulty
processor is to use a watchdog timer. In the Bell
ESS-2, for example, the active processor must
reset a timer periodically. If it fails to do so, the
timer automatically invokes a change of control
to the standby processor. Thus, the timer pro-
tects the system when the active processor be-
comes stuck while attempting to perform the
diagnostic after a mismatch has occurred. Tim-
ers are used in another fashion in the Bell
ESS-1A. When the current configuration does
not function, a set of timers is used to force a
sequence of reconfigurations until a working
configuration is found.

The last method of configuration selection is
to use an outside arbiter to control the configu-
ration. In the COMTRAC railroad traffic control

RELIABILITY AND AVAILABILITY TECHNIQUES 143
Peripheral
units
'y Ar
r _____________ Fr— - — e 1
i L 4 | \
] Calt |, .| Central ‘—: =»! Central o Call
: store control L { —p| control [T store
|
|
| N H
| Program } Program
! store 1 store
I Processor Processor
| 0 | 1
' u
[P S g]
P —— Error signals
« Halt off-line
central control
N prvyrer P . .
g Match < Run delec}non
. programs in
Maintenance on-line central
center control

Figure 3-70. Reconfigurable duplication in Bell ESS-2. The two processors run
synchronously; comparison of the call store input registers is performed

constantly.

:omputer [Thara et al., 1978], a mismatch forces
»oth processors to run identical test programs.
The test program exercises the entire processor
n the course of calculating a single constant. If
1 failure is present, there is a high probability
‘hat the calculation will result in a wrong answer.
The results from the two processors are com-
sared with a stored constant by a special con-
roller (called the Dual System Controller, or
DSC), as shown in Figure 3-71a. Based on the
results of the test, the DSC performs the proper
configuration action. Designers at Boeing Aero-
space used a similar concept in a duplication-
based design of a prototype aerospace computer
‘Wachter, 1975]. In the Boeing design, the recon-
figuration control logic can be accessed only by
a “good” machine, that is, one that can success-
fully construct two levels of key words. The key
construction process is designed to make suc-
cessful key construction by a faulty processor
unlikely.

The problems of synchronization with repli-

cated processes has been discussed previously
(see the subsections on Duplication and N-Mod-
ular Redundancy with Voting). Three examples
of different synchronization methods that can be
applied to reconfigurable duplication systems are
presented here. In the first, the duplicated mod-
ules perform in lockstep to a common clock,
synchronized at the microcycle level. This
method is used on the Bell ESS-1, -1A, and -2
processors, as well as the UDET 7116. Compar-
isons in these telephone-switching control pro-
cessors are performed at the end of each clock
period.

The AXE telephone switching control [Oss-
feldt and Jonsson, 1980] uses a different method
of synchronization. Each of its two processors is
formed of asynchronous functional units (e.g.,
microinstruction generator, ALU) that commu-
nicate via an internal bus (CPB), as shown in
Figure 3-72. One of these units is the update and
match unit (UPM), which performs the detection
function. On most microinstructions, data from

144 THE THEORY OF RELIABLE SYSTEM DESIGN

Dual system controller
r—-———""—""—"—""———-= 1
| |
l Constant C |
| |
' |
|
Comp. \ Calc. result Register Register I calc. result
Result of 1 2 Result of

test routine

test routine

J__l

Comparator

Decisi
circu

Interrupting

on
it

Interrupting

sig. to computer

|
Calc. “End” signal

sig. to computer
1
Selector
' |

Calc. “End” signal

a. Organization of the

dual system controller

with respect to configuration control

Figure 3-71.

Synchronization, matching, and reconfiguration in the COM-

TRAC computer. Synchronization and matching are performed at the task

level, [lhara et al., 1978]. (© IEEE 1978.)

the active processor CPB is input to a buffer in
the standby processor’s UPM. The data are held
in the ‘buffer to await comparison with the data
- on the standby processor’s CPB. Synchroniza-
tion of the two processors is performed by the
UPMs, which keep a count of the bus cycles. The
UPM on the faster side periodically brings its
processor back into synchronization by simulat-
ing a busy signal on the control lines of its own
CPB.

A third method of synchronization is used by
the COMTRAC system. Synchronization is
maintained at the program task level. The Dual
System Controller (DSC) is used to ensure that
both processors are performing the same calcula-
tions. When both computers have finished the
calculation, the DSC compares the two results. If
a mismatch occurs, the DSC then invokes the

diagnosis mode discussed earlier. Figure 3-71b
illustrates the procedure.

A simple reliability model for a reconfigurable
duplication system with individual module reli-
ability R,, is:

Ry= (R}, + CR,(1 - R,)R,)
In Equation 4, R, is the reliability of the control,
switching, and matching circuitry. C is the cov-
erage factor, and represents the combined prob-
ability of successful fault detection and reconfig-
uration. A system with reconfigurable duplica-
tion can achieve increased reliability and availa-
bility if a faulty module can be repaired while
the rest of the system remains on line. In such a
case the model of Equation 4 is pessimistic. The
more complex modeling techniques of Chapter 5

RELIABILITY AND AVAILABILITY TECHNIQUES 145

}

}_

Same calc. ends by two computers

!

1and 2

Let two computers write the
calc results in the registers

Wait till the end of
next calculation

:

Compare

Lr:!%\;g<'lezz;ister 1: Register 2

No matching l

Let two computers start the
test routine and write the
results in the registers 1 and 2

:

Single-computer
Mismatch operation by Il

Single-computer
Mismatch operation by |

Compare
Register 1:C
Compare
Register 2:C
Matching

Stop both computers

b. Algorithm for fault detection by comparison,
synchronization, and reconfiguration

Figure 3-71—Continued

(such as Markov modeling) are needed to prop-
erly evaluate a system with repair.

Reconfigurable NMR

One of the drawbacks of N-modular redundancy
with voting (NMR) is that fault masking ability
deteriorates as more copies fail. The faulty mod-
ules eventually outvote the good modules. How-
ever, an NMR system could continue to function
if the known bad modules could be discounted
in the vote. Two methods of reconfiguration
based on NMR realize this potential. The first,
hybrid redundancy, replaces failed modules with

previously unused spares. The second is to mod-
ify the voting process dynamically as the system
deteriorates. The latter method actually encom-
passes a variety of techniques, which can be
loosely classified under the term adaptive voting.
Both hybrid redundancy and adaptive voting
depend upon detection of disagreements and the
ability to determine the identity of the module(s)
not agreeing with the majority.

Hybrid Redundancy

Hybrid redundancy obtains its name from the
fact that it is the wedding of two redundancy

146 THE THEORY OF RELIABLE SYSTEM DESIGN

RPB A
RPB B
CPA CPB
-rCPU 1 | cm?|
i R | | | | rei i
| | | |
i CPB | | cPB |
| | [gec] | | [epc - ‘
I [PTB | i
! SBU [i SBU
i — PTH |- H ptH i
i ALU | | mau| || ALU l
| | BAM ‘ : BAM [—] |
! PCU | l PCU |
! — { +— UPM '
| UPM TG] |
|| ™ L miG | | MG M| |
— —{veu| | : TCU | —
DS [DSH || | | — DSH I Ds
I l 1 TRU | | | TRU |
PS ‘ PSH [— l [PSH L{ b
L
| | | |
i L LIU ‘ LIU |
RS | RSH | : —1 RSH I RS
b b .1
DS Data Store MIG Micro Instr. Generator RPC Regional Processor
PS Program Store PCU Priority Control Unit Controller
RS Reference Store TRU Trace Unit RPI Regional Processor
CPB Central Processor Bus DSH Data Store Handler Interface
RPB Regional Processor Bus LIU Link and Instr. Addr. Unit CM Control Memory
MAU Maintenance Unit PSH Program Store Handler PTB Processor Test Bus
CPU Central Processor Unit UPM Updating and Match Unit UMB Updating and Matching Bus
TCU Table and Counter Unit RSH Reference Store Handler CP Central Processor
ALU Arithmetic Logic Unit SBU Shift and Bit Handling Unit
BAM Maintenance Buffer Unit PTH Processor Test Handler

Figure 3-72. Organization of the duplicated processor in the AXE telephone-
switching control processor. (© 1980 IEEE.)

techniques: N-modular redundancy with voting
(discussed earlier) and backup sparing (discussed
below). Figure 3-73 illustrates the basic concept.
A “core” of N identical modules is in use at any
one time, with their outputs voted upon to
produce the system output. When a disagree-
ment is detected, the module or modules in the

minority are considered to be failed and are
replaced by the equivalent number of spare
modules. Initially the system contains a total of
(N + S) modules. As long as there are never
more than ¢ = L N/2] failed modules in the core
before reconfiguration can take place, the system
can tolerate the failure of P = (¢t + §) of its

RELIABILITY AND AVAILABILITY TECHNIQUES 147

N + s Voter-Switch-Detector (VSD)
functional A
units i N
| M, Il Switch 1
Select Voted
Noutof [: @ = output
(N+95) |
N
[]
Control
lines
[+]
. Disagree-
ment
detector
Myyss
Figure 3—73. Basic organization of a hybrid-

redundant system.

modules. Thus, assuming the rehability of the
modules on standby is the same as for those on-
line, the system reliability is:

P

(N+S—i) i
RsyS = Rvsd i§0 n+sCi Rm l (1 - Rm)l . (5)

R, is the individual module reliability, and R4

is the reliability of the unit comprised of the
voter, switch, and disagreement detector (VSD
unit). Equation 5 is a simple model. It assumes
that, as long as there are spares remaining,
reconfiguration occurs before there are enough
failed modules in the core to outvote the good
modules. The model also does not take compen-
sating failures into acccount. One final factor not
considered is that the standby units may be
unpowered until they are switched in. A module
in an unpowered state will probably have a lower
failure rate; if so, Equation 5 will provide a
pessimistic estimation of the system reliability.
Mathur and Avizienis [1970] derived a reli-
ability model for hybrid redundant systems that
takes the standby failure rates into account.
They then used the model to examine the trade-
offs between N, S, and R,,. The VSD unit is
assumed to be perfect (R,o; = 1). Figure 3-74

demonstrates the use of the model for a hybrid
TMR system with up to six spare modules. In
Figure 3-74a, the standby failure rate is assumed
equal to the active state failure rate, with the

1.00

s I 6 /4) 2/7/{/

0.80 ~
75 Vi
050 / -7 Simplex
0.40 A / 7
7
//s 0
0.20 (MR
7 |
0.00
001 020 040 060 080 1.00
Rm

a. System with standby failure rate equal
to on-line failure rate

1.00

0.80

S iva
A

0.00
0.01 0.20 040 060 080 100

b. System with standby failure rate 10% of
on-line failure rate.

Figure 3-74. Plots of hybrid TMR system reliability
(R} vs. individual module reliability (R,). S is the
number of spares. (© 1970 IEEE.)

result that a system with one spare is more
reliable than a simplex system if R, > 0:23.
Figure 3-74b assumes that the standby failure
rate is only 10 percent of the active failure rate.
The crossover point has shifted, and a system
with one spare is more reliable than the simplex
system if R, > 0.17. Another result of the
model is that for a system with one spare, a
TMR system (N = 3) is more reliable than an
NMR system (N > 3) if R,, < 0.55. For a sys-
tem with two spares, a TMR system is better
than an NMR system if R,, < 0.62.
Examination of Equation 5 shows that hybrid
system reliability is greatly dependent on the

148 THE THEORY OF RELIABLE SYSTEM DESIGN

switch complexity. If every spare can be con-
nected with every voter (total assignment), it can
be seen that as the core size (N) and the number

of spares () grow, the switch complexity grows -

even more rapidly. Eventually, the switch unreli-
ability dominates the reliability of the system,
and the hybrid system becomes less reliable than
a simplex system. Siewiorek and McCluskey
[1973a] demonstrated that total assignment is not
necessary. Assuming a perfect switch, the same
‘reliability is achieved even if only (T N/21+1) of
the voter inputs can be connected to every spare
module. (Note that for N = 3, this is the same as
total assignment.) Because no switch can in

practice be perfect, such a partial connection
strategy tends to be more reliable than the total
assignment strategy; the switch for partial con-
nection is less complex and thus more reliable.
In a companion paper, Siewiorek and McClus-
key [1973b] presented a design for a low-com-
plexity switch. Figure 3-75 shows the iterative
cell array switch for a TMR core. The switch
works in the following fashion. A clock pulse
causes the outputs of the modules to appear, and
the outputs of the N core modules are gated to
the voter inputs. The same clock pulse, suitably
delayed in accordance with the VSD unit propa-
gation delays, loads disagreement signals into the

If I Disagreement
Clock \&/ &/) \Tﬁ/ \ﬁ*f/ detectors
Delay C.FF |+ C.FF }—= C.FF |— C.FF [+ C.FF | Condition flip-flops
Cell Cell Cell Cell Cell | Iterative
1 2 3 5] 4 5 |cell array

4
a :D XVire-OR
> -
D

*——!\f =) Voter

sl

D
M|od]u:|es __D , l_

N7

Interconnection
logic

Figure 3-75. An iterative cell switch for a TMR core and two standby spares.

RELIABILITY AND AVAILABILITY TECHNIQUES 149

condition flip-flops. Based on the condition of its
corresponding module (agree/disagree with the
voted output) and the condition of the iterative
cells to its left (0, 1, 2, or [3 or more] good
modules present), each iterative cell decides
whether to connect its module to the voter, and
if so, to which voter input. Table 3-16 contains
the cell state and output tables for the iterative
cells used in the design of Figure 3-75.

One of the problems with an iterative cell
switch of the form of Figure 3-75 is the propaga-
tion delay through the chain of iterative cells,
particularly for large N and S. Siewiorek and
McCluskey proposed three different solutions to
the problem: carry bypass, carry lookahead, and
redesign of the cell. The first two solutions are
similar to those found in fast adders. The last

Table 3-16. Cell state and output tables for the
iterative cell switch network of Figure 3-75.

Current State G
(number of previous Failed Functional
cells functional) 0 1
A (zero) A B
B (one) B C
C (two) C D
D (three +) D D
Next State
(a) Cell state table
G
Failed Functional
Current State 0 1
A (zero) 000 100
B (one) 000 010
C (two) 000 001
D (three +) 000 000
WWW

lji : Connect module i to voter input j.

(b) Output table

Source: Siewiorek and McCluskey [1973b].

solution, cell redesign, was shown to be the
fastest for (N + S) < 12, while the carry bypass
method was shown to be the least complex.

Finally, the iterative cell switch (or any other
hybrid redundancy switch) was shown to be
simpler if a threshold voter with (N + S) inputs
is used. The threshold is set at (N + 1)/2), and
the switching function is realized merely by using
AND gates to connect modules to the voter
inputs.

Siewiorek and McCluskey [1973b] modeled
the cost and complexity of several different ap-
proaches to designing switches for hybrid redun-
dancy, and found the iterative cell switch to be
generally superior. Ingle and Siewiorek [1973b,
1976] proposed reliability models for various
switch designs. Assuming that switch complexity
grows linearly with N and S (the iterative cell
method approaches this growth), they found that
there is a number of spares for which reliability
is maximized, and beyond which the reliability
decreases. In addition, they found that maxi-
mum reliability for most hybrid TMR systems is
reached with one or two spares. Finally, it was
found that hybrid TMR systems may have lower
mission times than simple TMR systems. Ogus
[1973, 1974] obtained similar results in another
analysis of iterative cell switch reliability.*

Adaptive Voting

Adaptive voting is a technique in which, for
modules i, the voter inputs n; are weighted by the
factors a;. In the pure form of adaptive voting
the decision is based on the sum X, g;n;, using a
threshold detector. The g; are modified over time
by the accumulated history of disagreements and
fault detection. In practical digital systems the a;
are usually zero or one, and the voting may or
may not be performed by a threshold voter.

* A derivation of complexity and reliability models for
hybrid redundancy is presented in Chapter 5.)

150 THE THEORY OF RELIABLE SYSTEM DESIGN

‘Thus, hybrid redundancy can be considered a
form of adaptive voting, with the a; determined
by the switch. Discussed here are two other
proposed forms of adaptive voting techniques:
NMR /simplex and self-purging redundancy.

In NMR/simplex systems [Mathur, 1971a;
Mathur and DeSousa, 1975], the initial configu-
ration is conventional NMR. When one module
fails, it and one other module are removed from
the system, leaving an (N — 2) modular redun-
dancy system. The removal of two modules
preserves the property that all votes are unam-
biguous; no tie is possible. Eventually, the sys-
tem deteriorates to a simplex system. C.vmp (see
Chapter 7) or any other TMR system capable of
independent (nonvoting) mode operation has the
potential of being a TMR/simplex system with
only minor modifications. Upon detection of a
failure, a TMR/simplex version of C.vmp would
go into independent mode operation, with the
on-line processor selected from the two remain-
ing processors. The NMR/simplex concept can
be extended to allow the intermediate step of
duplicate operation (detection with a standby
spare) before the final step of simplex operation
is necessary.

Figure 3-76 illustrates self-purging redundancy
[Losq, 1976].* A comparison of Figures 3-75 and
3-76 shows a similarity between self-purging
redundancy and hybrid redundancy implement-
ed with an iterative cell switch. This is particular-
ly true if the hybrid redundant design incorpo-
rates the threshold voter simplifications men-
tioned previously. In self-purging redundancy,
all P modules are initially connected to the voter,
and are removed only when they disagree with
the voted output. The delayed clock line avoids
spurious resets caused by delay in the voter.
Module retry (in case of transient errors) and

*The switching circuitry in Figure 3-76 is altered from
Losq’s design by the addition of the delayed clock line and
the attached AND gates. This is necessary to avoid spu-
rious flipflop resets due to the propagation delay of the
voter. The AND gates can be eliminated if clocked SR
flipflops are used.

system initialization are accomplished via the
retry line. For hybrid redundancy with a TMR
core, the iterative cell switch for each module
requires 8 gates and a flip-flop, including the
AND gate for gating the module output to the
voter input. (This is for a threshold voter only.
The majority voter iterative cell switch requires
even more gates.) The self-purging switch, on the
other hand, requires only 3 gates and a flipflop
for each module, regardless of the number of
redundant modules in the system. The decreased
complexity of the self-purging redundancy
switch is one reason for its being more reliable
than the hybrid redundancy switch. The other
factor is that a single failure in the self-purging
redundancy switch element attached to one
module will not affect the other switch elements
and modules. In contrast, a failure in an iterative
cell may cause an error that will propagate to
other switch cells via the carry lines.

The threshold for a P-module self-purging
system voter can be as low as 1 if 0-to-1 errors
cannot occur, and as high as (P — 1) if 1-to-0
failures are impossible. If 0-to-1 errors do occur,
the threshold must be higher than 1. This is
particularly true if stuck-at-1 failures can occur
in a switch output. Losq found that in general,
the optimum threshold for a self-purging system
is equivalent to half the number of remaining
good modules. The variable threshold can be
obtained by using a threshold voter with P
weight-2 inputs and P weight-1 inputs (or a
threshold voter with 3P weight-1 inputs). The
weights of the inputs are the weights used when
summing inputs to determine whether the thresh-
old is reached (weighted sum); thus, a weight-2
input counts twice as much as a weight-1 input.
The Q' output of each condition flipflop, shown
unconnected in Figure 3-76b, is connected to a
weight-1 input; the gated module output is con-
nected to a weight-2 input (or two weight-1
inputs).

After deriving an accurate and simple reli-
ability model for self-purging redundancy, Losq

‘demonstrated that if the standby failure rate is

RELIABILITY AND AVAILABILITY TECHNIQUES 151

Initialize
and —~ey

retry
) &4

Clock Delay

]

Ol wr

Voted

M,

@"

tC

— system
output

Figure 3-76. System using self-purging redundancy.

equal to the active failure rate, the self-purging
design is potentially more reliable than the
equivalent hybrid redundant design. Unfortu-
nately, threshold gates are analog circuit ele-
ments; large threshold gates are not available as
standard integrated circuits. As a result, either
threshold voters must be implemented from dis-
crete components or from standard logic gates
and they become prohibitively complex for even
moderate numbers of inputs. Though not consid-

ered in the analysis above, this practical limita-
tion on threshold voters must be taken into
account when considering the use of self-purging
redundancy or any other technique that includes
a threshold voter. For a large number (P) of
redundant modules, a self-purging system re-
quires a complex (thus, less reliable) and expen-
sive threshold voter. In a hybrid system with the
same number of redundant modules, however,
the threshold voter complexity is limited because

152 THE THEORY OF RELIABLE SYSTEM DESIGN

it has only N inputs, not the (N + S) = Pinputs
required for the self-purging system; the hybrid
system may thus be more reliable and less com-
plex than the self-purging system. Table 3-17, in
the section on Reconfiguration, gives some ex-
amples of the relative complexities of the restor-
ing organs for hybrid and self-purging redundan-
cies.

Four examples of actual systems employing
reconfigurable N-modular redundancy tech-
niques are the JPL STAR, the Space Shuttle
computer, FTMP, and SIFT. All except the
Space Shuttle computer are described in detail in
later chapters. The test and repair processor
(TARP) in the JPL STAR spacecraft computer
(Chapter 14) is hybrid redundant. The TARP
must be ultrareliable, because it forms the “hard
core”—the part of the system that must be
functioning to enable the system to be reconfig-
ured. The TARP design uses hybrid TMR with a
threshold voter.

The Space Shuttle computer [Sklaroff, 1976;
AWST, 1981] uses four of its five computers as a
redundant set during critical mission phases, in a
fashion similar to NMR/simplex; the fifth per-
forms noncritical tasks in simplex mode and acts
as a simplex backup for the primary system. The
control outputs of the four primary computers
are voted on at the control actuators. In addi-
tion, each computer listens to the outputs of the
three other computers and compares those sig-
nals with its own via special software. If a
computer detects a disagreement, it signals the
disagreeing computer. The received disagree-
ment detection signals are voted on in the redun-
dancy management circuitry of each computer;
if the vote is positive, the redundancy manage-
ment unit removes its computer from service. Up
to two computer failures can be tolerated in
voting mode operation. After the second failure,
the system converts to a duplex system that can
survive one additonal computer failure by using
-comparison and self-test methods. The fifth com-
puter contains a backup flight software package
written by Rockweil International, while the

package running on the primary computers was
written by IBM. This is in case program bugs are
encountered in the primary software during
flight.

The FTMP computer (Chapter 17) is imple-
mented from a set of processor/cache, memory,
and I/O modules, all interconnected by redun-
dant common serial buses (Figure 3-77a). Com-
putations are performed by triads: three pro-
cessor/caches* and three memories performing
the same operation in voting mode and synchro-
nized at the clock level. Voting is performed in
each memory and each processor/cache at its
interface to the bus. Thus, because most proces-
sing utilizes the cache, voting is not necessarily
performed at every clock cycle, but whenever
data is transferred over the bus. Multiple triads
can operate at the same time, thereby affording
multiprocessing capabilities. Configuration is
controlled by a redundant “bus guardian” in
each module that controls access to the bus.
Upon detection of a module failure, once the
affected triad has completed its current opera-
tion another triad forces reconfiguration of the
affected triad. If sufficient spares are available,
the failed module is replaced. Otherwise, the
triad is broken up and the good modules are
added to the pool of spares.

The SIFT computer (Chapter 16), on the other
hand, is implemented from a set of self-con-
tained computers and redundant buses (Figure
3-77b).** Each computer broadcasts its results,
and software voting is performed in each com-
puter at intermediate points in each NMR task.
Synchronization and reconfiguration are also

* The term cache used in this context is misleading, for the
memory unit attached to the processor does not perform
quite the same function that a cache in a high-performance
computer does. A better term would be local or scratchpad
memory.

** The bus shown in Figure 3-77b is consistent with the
SIFT design in Chapter 16. The current implementation
of SIFT, however, does not use redundant buses. Instead,
a totally connected scheme is used, in which a pair of
unidirectional serial links connects each pair of computers
(one link in each direction).

RELIABILITY AND AVAILABILITY TECHNIQUES 153

Memory Processor
Modules modules
M P
| Interface Redundant buses
access
buses
I T
M P
170 access
units

— — “~ Bus
M I P l — wvo <:———'-\> __| control
[]
1 L]
M P °
F—/ —
L
L]
: ~ o <:>
[]
L‘ Main
—— computers
r 1 L] ||
M P —] vo ®
r > — o /\:L:—J|>

L] - L] I

170
M P
| | computers
p
LJ Redundant 170
M P
b. The SIFT structure
Memory
access
buses

Redundant buses and clock
(processors and memories
grouped in triads)

a. The FTMP structure

Figure 3-77. Block diagrams of the FTMP and SIFT flight control computers
[Rennels, 1980]. (® 1980 IEEE.)

154 THE THEORY OF RELIABLE SYSTEM DESIGN

performed by software. Reconfiguration occurs
through ignoring the broadcasts of known bad
computers and reallocating tasks to nonfaulty
computers. Critical tasks are performed in an
NMR fashion (the redundancy N is variable,
depending on the criticality); noncritical tasks
can be executed by single computers.

Backup Sparing

In hybrid redundancy there is a core of N
modules operating in parallel, with a voter deter-
mining the system output. In addition, there is
initially a set, S, of backup spare modules that
can be switched in to replace failed modules in
the core. The concept of backup spares can also
be combined with redundancy techniques other
than N-modular redundancy. In general, some
means of failure detection is used to trigger the
replacement of a failed on-line unit with a spare.
The detection means can be internal (either
through self-test or the use of self-checking cir-
cuitry), external (such as timer, parity check,
reasonability check), or some combination of
internal and external checks. As with hybrid
redundancy, the switch complexity is an impor-
tant factor. Another concern is the effectiveness
of the failure detection techniques used. In
Chapter 5, a few simple models of standby
sparing reliability are derived. A more general
reliability model of a system with standby spar-
ing is [Bouricius et al., 1971]:

R(t;s,¢,q, M, 1) = R(t; (s — 1),¢,q9,A,)

N ﬂ), I[—R(u; (s —aul), LA p) 6)

. (cse—uue—qX(t—u) du)

where

q = the number of on-line mod-
ules required
s = the initial number of spare
modules
(g + s) = the total number of modules
in the system

¢ = the probability of successful

‘replacement by a spare
(coverage)

A = failure rate of an on-line
module

u = failure rate of a standby
module*

The recursive form of Equation 6 can be
transformed by induction on s:

s
R(t;s,0,q, A p) = e IV 20 Lkl — e)]
k=

where a = (gA/p) + k — 1. This model does not
explicitly include the reliability of the switch,
detection elements, and control circuitry (SDC
unit). If any failure in the SDC unit is assumed
to cause a system failure, the reliability of the
system is:

RSDc(t) - R(t;5,¢,9,\, p).)

If, however, compensating failures can occur (as
with some switch failures; see Chapter 5 for
discussion of modeling compensating failures),
modeling a spares-switching system becomes dif-
ficult. Sometimes the coverage factor (c) is mod-
ified to include the effect of some or all failures
in the SDC unit, thereby retaining the simplicity
of the model of Equation 7. The increased ease
of modeling is gained at the cost of decreased
accuracy.)
One widely used application of spares switch-
ing is in systems that are bit- or byte-sliced (such
as Figure 3-78). Possibilities include memories
physically assembled from a set of bit planes,
and ALUs made from ALU byte slices (such as
the Am2903). Figure 3-79 shows a possible im-
plementation of a byte-sliced system containing
a single spare slice (M4). Initially, all the input

* Spare modules that are unpowered (cold spares) may have
a lower failure rate than on-line modules or powered-up
spare modules (hot spares).

RELIABILITY AND AVAILABILITY TECHNIQUES 155

Inputs

h - b output lines

Figure 3-78. Circuit design of parallel byte-wide
modules.

MUXes are set to connect their right leg inputs
to the modules, and the output MUXes are set to
connect their left leg inputs to the system out-
puts. The MUXes could be replaced by pairs of
open-collector AND gates with outputs tied to-
gether. When a slice fails, the MUXes are reset
so that a bad slice is bypassed in both input and
output data paths. If, for example, module M2
has failed, M2 can be bypassed and M4 switched
in by resetting input MUX 2 to connect its left
leg input to M3, while output MUXes 2 and 3
are reset to select their right leg inputs. Figure
3-79 shows the states of the MUX control lines
during normal operation, and when module M2
is failed. The addition of more spares to the
circuit of Figure 3-79 requires more complex
arrangements. For example, the addition of a
second spare requires replacement of the two-to-
one MUXes by three-to-one MUXes, as well as
more interconnections.

In addition to the inclusion of more spares,
other concerns may affect the design of a spares
switch. The arrangement in Figure 3-79, for
example, will not work for memories in which
the information stored in the nonfailed modules
must remain in the same relational order both
before and after the spare is switched in. In the
example of a failure of module M2, bytes 0 and

1 are in their correct locations, but byte slice 3
now contains the byte slice 2 data, and byte slice 2
is blank. The recovery procedure for this situation
involves restoring the contents of rwo byte slices.
For this reason, an order-preserving switch would
be better. An order-preserving switch allows a re-
configuration that preserves the logical order of
the entire system except for the placement of the
failed module and its replacement. Order-
preserving switches, however, are more complex
than nonorder-preserving switches. For more com-
plex arrangements (such as order-preserving
switches with a large number of spares) an itera-
tive cell-switching network such as that proposed
in Levitt, Green, and Goldberg [1968] could be
used. The section below on Reconfiguration in-
cludes a brief discussion of such switching net-
works and methods of making the networks
themselves fault tolerant.

Bit-slice spares switching is often used for
memories. The data and program stores in the
AXE telephone exchange control computer [Oss-
feldt and Jonsson, 1980], for example, incorpo-
rate both a spare bit plane and a parity bit. Other
designs have combined spares switching with
error-correcting codes. For example, a design by
Carter and McCarthy [1976] combines a (22,16)
single-error-correcting (SEC/DED) code, erasure
correction, and a spare bit plane. A Boeing aero-
space computer [Wachter, 1975], designed for
extended missions without maintenance, uses a
(35,28) SEC code and four spare bit planes, with
two of the spares hot and two cold. The DEC
MF20 memory (for the DECSYSTEM-20) uses a
(44,36) SEC/DED code. In addition, the memory
has a single spare bit for each 8K words of mem-
ory. The spare bit can be switched in to replace
any bit in the 8K words that the system software
has determined to contain a hard failure.

The Saturn V launch vehicle computer [Dick-
inson, Jackson, and Randa, 1964], which uses
TMR for its functional modules, uses a backup
sparing technique for its memory. The Saturn V
memory operates in a duplex mode. The dupli-
cate copy, however, is not used for error detec-

Byte 0 Byte 1 Byte 2 Byte 3

\ wwve / N\ wwota/ N\ wwone /
N/ | N4

Mo M1 MzL_ M3 —_]M4

| — | |
out MUX 1 out MUX 2 out MUX 3

Byte 0 Byte 1 Byte 2 Byte 3
Control input to MUX: 0 (left leg), 1 (right leg)
Normal control line state: (in MUX 0, in MUX 1, in MUX 2) = (1,1, 1)

(out MUX 0, out MUX 1, out MUX 2, out MUX 3) = (0, 0, 0, 0)

Control line state if M2 failed: in MUX = (1,X,0)
out MUX = (0,0,1,1)
X = don’t care

Figure 3-79. Possible implementation of a system made from four byte-slice
modules, with a fifth module added as a spare.

Inputs

Input MUXes

Modules

Output MUXes

Outputs

951

NOISHA WHLSAS 19VITdYd 40 AMOdHL dHL

RELIABILITY AND AVAILABILITY TECHNIQUES 157

Memory Memory Memory
bank bank bank Shadow
0 1 M-1
Computer
system
Memory bus
Figure 3-80. The shadow box memory backup technique proposed by Arulpra-

gasm and Swarz.

tion. Error detection is accomplished by the

parity bit in each memory word and by monitor--

ing of memory-access-line drive current. If an
error is detected in the on-line memory, opera-
tion is transferred to the standby memory with-
out interruption of service or loss of data.

Arulpragasm and Swarz [1980] proposed an-
other spare-switching memory architecture that
is able to preserve data through a failure occur-
rence. The concept, illustrated in Figure 3-80, is
an extension of the principle of product codes
(discussed earlier.) The spare memory box
(called the shadow box) is identical to the other
m memory boxes. However, a word stored at
address i in the shadow box is actually the XOR
of the words stored in the locations i in the on-
line memory boxes. The contents of the shadow
box must be updated every time a word is
written into the memory. In other words, if M,[i]
denotes the contents of location ¢ of the shadow
box, Mj[i] the current contents of the same
location in box j, and Mj’[i] the new contents,
then at every write into location / in memory box
J, the following operation is simultaneously exe-
cuted in the shadow box:

mli) = Mlil @ M1l @ M)

The details of the similar update action required
in a block-code memory are discussed in Chap-
ter 5. If one of the active memory boxes fails, the
shadow box replaces it. The contents of the lost
box can be resurrected by XORing the contents
of the remaining memory boxes with those of the

shadow box. In other words, if memory box k
fails, the following operation is performed:

k-1 m—1
Mlil = Mlile S Mile 'S M)
j=0 J=k+1

In its simplest form, the shadow box method
requires a parity bit in each memory word for
failure detection. Arulpragasm and Swarz also
examined the extension of the shadow box con-
cept with the use of error-correction codes and
multiple spares. Finally, they projected the ef-
fects of the shadow box on system performance
and cost, and found them to be relatively small.

In other applications, the JPL STAR (Chapter
14) uses backup sparing extensively; the configu-
ration is controlled by the hybrid-redundant
TARP (test and repair processor). The MECRA
computer [Maison, 1971] uses backup spares for
its counters and registers. MECRA has 8 Ham-
ming-coded registers and 4 spare registers. Any
of the spares can easily be used to replace any of
the active registers, since both the active and
spare registers are connected to the same internal
bus. The spares switching for the MECRA coun-
ters is implemented in the same manner. In
another application of standby sparing, Lewis
[1979] proposed a design for a fault-tolerant
clock for a TMR system, shown in Figure 3-81.
There are two oscillators, one of which is in
standby mode. When on-line oscillator failure is
detected, the spare replaces it. In addition to the
use of standby sparing for the oscillator, the
additional clock circuitry (such as failure detec-
tion, control, and shaping) is triplicated, with

158

THE THEORY OF RELIABLE SYSTEM DESIGN

Primary o —
OSC input - D cay Switchover | | sl?a?)?ng Local
Secondary 3 logic circuitry [, clocks
OSC input
Failure
signals b
from
other
modules D @
Failure D . conal
monitor Failure signa
to other
modules

>

a. Clock circuitry in one TMR module

Oscillator

>
0>
o>

Used as primary
or secondary
oscillator source

b. One of two oscillators, with a separate output for driving
clock circuitry on each TMR module.

Figure 3-81.
1979.

each copy of the clock circuitry residing in one
functional module. The unique feature of the
clock system is that careful consideration is
given to the avoidance of glitches, runt pulses,
pulse width variation, and missing clock pulses
during the switchover. The goal is to prevent any
anomaly in the clock output that might cause
desynchronization of the TMR system using the
clock.

In the final reference, Losq [1975a] proposed a
model for spare-switching systems using Mar-
kov chain techniques (see Chapter 5) and exam-
ined the effects of fault-detection coverage on
system reliability. He found that for short mis-
sion times a single spare results in the best
reliability; for longer mission times, the optimum
number of spares increases with mission time.
The addition of spares beyond the optimum
number decreases the chances of mission success
(mission reliability). Losq also derived a method
of determining the optimum number of spares.

Fault-tolerant clock for TMR system using standby sparing. © |EEE

Graceful Degradation

The dynamic redundancy techniques discussed
so far have one thing in common: redundant
units are used for error detection, correction,
and/or replacement of failed units. They can
perform no useful work until they have replaced
a failed on-line unit. Graceful degradation tech-
niques, on the other hand, use the redundant
hardware as part of the system’s normal
resources at all times. There are two similar but
distinct graceful degradation perspectives. In the
first, system resources needed to attain a speci-
fied performance are designed so that continued
(though degraded) operation is possible in the
event of failures: degraded operation is prefera-
ble to no operation at all. In the second, extra
resources are added to a system to ensure that,
with a high probability of success, a minimum
performance level can. be maintained in the
presence of failures. The extra resources are also

RELIABILITY AND AVAILABILITY TECHNIQUES 159

used to boost performance above the minimum
requirements; the augmented performance con-
tinues as long as the extra hardware is not used
in overcoming failure effects. The major purpose
of both perspectives is to allow system perfor-
mance to degrade gracefully while compensating
for failures. The distinction between the two
perspectives usually lies in the motivations for
including fault tolerance. The motivation for the
first perspective is the priority of a certain cost/
performance goal, along with some ability to
continue operation in the presence of failures
without regard to performance. A computer in-
tended primarily for time sharing is an example
of such a system. With the second perspective,
the motivation is that any performance below a
certain level is not acceptable; the latter is exem-
plified by real-time control processors for critical
applications (such as aircraft control). In many
gracefully degrading designs, it may be impossi-
ble to classify the design goals according to one
or the other perspective.

The first form of graceful degradation occurs
in a wide variety of commercial uniprocessor
systems.* In many computers, portions of mem-
ory can be removed from the address space if
they contain failures. This is often accomplished
through virtual address mapping facilities in the
hardware and/or operating system software. In
many disk memory subsystems, portions of indi-
vidual disks can be deallocated if they contain
permanent errors. The Univac 1100 operating
systems, for example, make a record of bad
tracks on a disk as soon as they are discovered,
and avoid using bad tracks when writing files
onto disk. The DEC VAX-11/780 performs a
similar function on its disk memory (Chapter 8).
In systems with multiple disk drives, the loss of
one, two, or more drives can be tolerated as long
as the data lost are not essential to system
operation.

* Many commercial systems contain only some of the aspects
of graceful degradation. The chief missing factor is the
ability to tolerate failures; although the systems can operate
in a degraded fashion, they must be manually reconfigured
(that is, the operating system is reinitialized after throwing
a few switches) after the failure causes a system crash.

Cache memories added to a system to improve
performance can be bypassed in the event of
failure. In the VAX-11/780, set-associative-two
mapping in the cache allows the disabling of one
set of the cache when a cache failure is detected
(effectively turning off one half of the cache, and
using the other half as a directly-mapped cache.)
Because the cache is a write-through cache, there
is no data loss involved in turning off half the
cache. The VAX-11/750 has a set-associative-
one cache; thus, it must shut down its entire
cache if a cache failure occurs, and the perfor-
mance degradation is greater than for the
VAX-11/780. The Univac 1100/60 also has the
ability to shut down portions of its cache (Chap-
ter 10).

The Cm* and C.mmp multiprocessor systems
[Siewiorek et al., 1978a, 1978b] are systems for
which it is not possible to specify which of the
graceful degradation perspectives is relevant.
Both Cm* and C.mmp were designed to exploit
the high performance possible with multiproc-
essors. Both machines, however, were also de-
signed to benefit from the high reliability that
results when a multiprocessor system is capable
of degrading gracefully with failures. Cm* and
C.mmp are both capable of withstanding multi-
ple processor and memory failures, and tasks can
be reassigned to other modules. The key to the
performance/reliability properties in multiproc-
essors like Cm* and C.mmp lies more in the
systems and application software than in the
hardware. In other words, the software must be
written to take advantage of the “hooks” that
exist in the hardware to provide graceful degra-
dation possibilities.

The Pluribus multiprocessor (Chapter 13), de-
signed as a modularly expandable interface mes-
sage processor (IMP) for the ARPANET, utilizes
the second perspective of graceful degradation.
Redundant Pluribus systems contain only one
extra processor, which is used to provide extra
throughput. If any processor fails, only the ex-
cess capacity is lost; although the Pluribus sys-
tem throughput is degraded, the system can still
supply the required performance. Likewise, the
SIFT, FTMP, and Tandem computers (Chapters

160 THE THEORY OF RELIABLE SYSTEM DESIGN

16, 17, and 11) are initially capable of exceeding
performance requirements but will allow grace-
ful degradation of capacity as portions of the
system fail. All these systems have a high proba-
" bility of maintaining at least a minimum level of
functionality until the end of a mission (SIFT,
FTMP) or until repairs can be effected (Tan-
dem).

Borgerson and Freitas [1975] developed a reli-
ability model for systems using both backup
spares and graceful degradation. The model is
based on four different fault classes: solitary
faults, space domain faults (e.g., simultaneous
failure of multiple pieces of hardware), time
domain faults (e.g., a second fault occurring
before the first is recovered from), and resource
exhaustion (running out of extra modules). In
using the model to analyze the PRIME grace-
fully degrading computer system [Baskin, Bor-
gerson, and Roberts, 1972], it was found that
solitary and space domain multiple faults were
much more of a factor in system reliability than
were time domain multiple faults or resource
exhaustion.

Evaluation of systems with graceful degrada-
tion involves more factors than does evaluation
of systems using other redundancy techniques.
In gracefully degrading systems, performance
varies widely over time as failures are accumu-
lated but the systems continue to operate. Thus,
the total amount of work done (computation
performed) over a time interval is as important
as a go/no-go reliability determination. Mea-
sures of combined performance and reliability
properties are therefore attracting increasing at-
tention. Proposed measures include probability
distributions of capacity at time 7, mean compu-
tation before failure, and the probability of a
successful completion of a task started at time 7.
Computing resource availability is not the only
factor in such measures; consideration must be
given to additional degradation resulting from
recovery and/or restart of processes executing
when a failure occurs. Performance-related reli-
ability measures are discussed in Chapter 5.

Additionally, recent work on performance/reli-
ability modeling is reported in papers by Losq
[1977], Troy [1977], Beaudry [1978], Meyer
[1978], Gay and Ketelson [1979], Mine and Ha-
tayama [1979}, and Castillo and Siewiorek [1980].
In another paper, Meyer, Furchgort, and Wu
[1980] evaluated the performance and reliability
of the SIFT computer in the air transport appli-
cation for which it is designed.

Reconfiguration

The four previous sections presented four classes
of dynamic redundancy techniques: reconfigura-
ble duplication, reconfigurable NMR, backup
sparing, and graceful degradation. These classes
include the majority of reconfiguration tech-
niques. Many other dynamic redundancy
schemes, however, do not fit neatly into the four
categories discussed. This section presents a sam-
pling of some of these miscellaneous techniques.

The first technique is sift-out redundancy [De-
Sousa and Mathur, 1978], proposed as an alter-
native to hybrid and self-purging redundancy
techniques. With N redundant modules in the
initial configuration, sift-out redundancy can tol-
erate up to (N —2) module failures. This is
comparable to the fault tolerance of hybrid
redundancy with a TMR core and to self-purg-
ing redundancy (voter threshold = 2). The ma-
jor difference in sift-out redundancy is that there
is no actual voting element; the bad module
outputs are eliminated as described below. As a
result, the restoring organ for sift-out redundan-
cy is potentially simpler than that for hybrid and
self-purging redundancies. Figure 3-82 shows the
basic configuration for a system with sift-out
redundancy. The comparator, used to detect
disagreements between all possible pairs of the
functional modules, contains ,C, XOR gates.
Using yC, signal lines, the comparator signals
the detector which pairs are not in agreement.
The detector uses these signals to identify the
fauity module. Included in the detector are N

RELIABILITY AND AVAILABILITY TECHNIQUES 161

Clock

Ris

Dz

< Collector >M

— N lines,
line F; signals
. the failure
1o *** | of module i.
N redundant Ery e
modules, E
operating Comparator |13 Detector
synchronously EE

~nG, lines, each for signaling
the disagreement of a pair
of modules

Figure 3-82. Basic configuration for sift-out redundancy. © |EEE 1978.

memory cells; the ith cell is set when it is
determined that the ith module has failed. The
detector contains N flip-flops and (,C, + N)
NOR gates. Finally, the collector uses the N
detector outputs, each one signaling the state of
a single module (failed/nonfailed), to determine
which module outputs to ignore, or sift out. The
collector requires (N + 1) NOR gates. Figure
3-83 shows the design of a sift-out restoring
organ, with N = 4,

If XOR gate implementation requires X ele-
mental (e.g., NOR) gates, the total complexity of
the sift-out restoring organ is:

(X +1)yGCy + 2N + 1

NOR gates and N flip-flops. If X =1, as as-

sumed previously when comparing iterative cell-

switch hybrid redundancy with self-purging re-

dundancy, the total number of gates required is:
N+ N+ 1

Table 3-17 compares the restoring organ com-

plexities for self-purging redundancy (voter
threshold = 2), hybrid TMR redundancy (with a
threshold gate voter), and sift-out redundancy
for several amounts of redundancy. All the de-
signs are able to tolerate up to (N — 2) module
failures. If the complexity of the threshold voters
(the number of standard logic gates needed to
implement one) is taken into account, it can be
seen that sift-out redundancy requires less total
restoring organ complexity than does hybrid
redundancy for the range of N considered. Fur-
thermore, sift-out redundancy and self-purging
redundancy are roughly equal in terms of restor-
ing organ complexity;* the major difference be-
tween the two techniques is that the self-purging
redundancy scheme is vulnerable to some multi-
ple stuck-at-1 failures, while the collector for sift-
out redundancy (as shown in Figure 3-83) is

* Note that if each XOR gate requires four simpler gates to
implement, sift-out redundancy is much less attractive
because of its heavy use of XOR gates in the comparator.

162 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3-17. Comparison of restoring organ complexity for hybrid TMR, self-

purging, and sift-out redundancy techniques.

Hybrid Self-purging Sift-out
T.V.** Total T.V.X* Total Total
N Gates Gates Gates ff* Gates Gates Gates ff* Gates ff*
4 36 10 46 4 12 10 22 4 21 4
5 45 16 59 5 15 16 31 5 31 5
6 54 23 83 6 18 23 41 6 43 6
* ff = flip-flops

**T.V. gates = approximate number of gates needed to
implement N-input threshold voter with threshold of 2.

Assumptions:
Iterative cell hybrid redundancy, TMR core:
9N gates, N flip-flops, N-input threshold gate
(threshold = 2)

vulnerable to some multiple stuck-at-0 failures.
Unlike the self-purging restoring organ, however,
the collector for sift-out redundancy can be
designed (with little change in complexity) to be
vulnerable to the form of stuck-at failures that
are less likely to occur; that is, if stuck-at-0
failures are less likely than stuck-at-1 failures for
the modules being used, then the collector design
shown in Figure 3-83 should be used. The two
possible collector designs are logical duals of
each other.

Another dynamic redundancy technique is the
memory reconfiguration approach proposed by
Hsiao and Bossen [1975]. Assume a bit-sliced
memory using an SEC/DED code. In the usual
straightforward design, the memory can tolerate
any single-bit failure in a given memory word
but fails if any word contains two or more bit
failures. If, however, the memory cell addressing
function can be performed independently on
each bit slice, reconfiguration of the memory is
possible without using a spare bit slice. This is
accomplished by skewing the address mapping
when a double failure is detected, so that the new
configuration contains at most a single failure in
any word. In other words, the address mapping

~ Self-purging redundancy:

2N gates, N flip-flops, N-input threshold gate
(threshold = 2)

Sift-out redundancy:
N? + N + 1 gates, N flipflops
(threshold = 2)

is changed so that the same address now maps
into a different bit location on each module.
Figure 3-84 illustrates the concept. To get the
maximum reconfiguration ability possible with
this approach, the properties of orthogonal Latin

squares are utilized.* However, if there are 2*

memory words (with & large), using orthogonal
Latin squares of order 2% requires considerable
complexity. Latin squares of a smaller size can
be used instead, with the address skewing per-
formed on blocks of memory cells in the bit
plane. When using order-m Latin squares, the
skewing is performed using only (log, m) bits of
the address. Thus, using order-4 Latin squares as
in Figure 3-84 and skewing by the two most
significant bits in an address results in addresses
skewed in contiguous blocks of 2(6=2) words.

* Definition [Hsiao and Bossen, 1975]: “A Latin square of
order (size) m is an m X m square array of the digits
0,1,...,(m— 1), with each row and column a permuta-
tion of the [m digits]. Two Latin squares are orthogonal if,
when [one] is superimposed on the other, every ordered
pair of elements appears only once.” The four matrices in
Figure 3-84 are the four possible orthogonal Latin squares
of order 4. Figure 3-85 demonstrates the result of super-
imposing the first two Latin squares in Figure 3-84.

D;

D,

Ey
Ey
Es, Retry/reset]
K,
a, Comparator Q; /)y
Ky
Q1 I1
] F
h__.FZ
b
' F.
DD
Q, K, Ja
F1D— Q3 Ky J3
D, J
F, Retry/reset ——
b, Out b. Detector
F3
D,
T
D,
c. Collector

Figure 3-83. Design of restoring organ elements for sift-out redundancy
scheme (Figure 3-82) using four redundant modules, with a fault tolerance of
two module failures. © IEEE 1978.

164 THE THEORY OF RELIABLE SYSTEM DESIGN

Bit planes

Bit location on plane mapped into address

Address 0 1 2 3 SEC code memory
0 0 0 0 0 Initial configuration: two
1 1 1 @ single-bit failures (boxes) and
2 2 2 2 2 a third failure (circle) cause
3 3 3 3 a double (noncorrectable) error
0 0 @ 2 Second configuration:
1 1 0 3 2 with three tolerable
2 2 3 0 single-bit failures, a fourth,
3 3 2 0 noncorrectable failure occurs (circle).
0 0 2 3 | Third configuration:
1 1 3 2 0 the fourth failure is
2 2 0 no longer aligned with
3 3 @ 0 2 any other failure; however,
another configuration is
needed because two old failures are aligned.
0 0 3 Ol 2 Fourth configuration:
1 1 2 0 no double failures
2 2 3 0 exist, but any additional
3 3 0 2 failure is unrecoverable.

Figure 3-84. Orthogonal Latin squares-based memory address skewing used
to reconfigure a bit-sliced SEC code memory.

Hsiao and Bossen suggested a simple imple-
mentation based on linear feedback shift regis-
ters that allows the use of identical modules for
each bit plane. Each module contains a memory
bit slice and its associated addressing circuitry.
The overall design of the Latin squares memory
is less complex and costly than a memory with a
spare bit plane. Finally, Hsiao and Bossen dem-
onstrated the power of the technique by simula-
tion of an 8-megabyte memory using order-8
Latin squares for address skewing. In a popula-

0,0 01 02 03
1,1 1,0 1,3 1,2
2,2 2,3 20 21
33 32 31 30

Figure 3-85. The superimposition of the upper
two order-4 Latin squares of Figure 3-84.

tion of 1,000 memories, 500 failures were as-
sumed to occur over a period of five years. The
simulation found that a successful reconfigura-
tion was possible for 66 percent of the failures
that caused multiple errors.

Through another technique for memory fault
tolerance, the Univac 1100/60 (Chapter 10) is
able to tolerate single-bit stuck-at-« failures in its
microstore. When a parity error is detected in the
microstore, the system maintenance processor
attempts to correct the error by rewriting the
microstore. If the error is due to a failure the
rewriting will not correct the problem, and the
maintenance processor makes one final attempt
at repair. It writes the logical complement of the
microstore contents into the microstore and sets
a special designator to indicate that microwords
must be inverted before use. Complementing the
microstore contents allows toleration of multiple
failures as long as all failures cause a bit to be

RELIABILITY AND AVAILABILITY TECHNIQUES 165

stuck at its inverted value. The 1100/60 uses
another technique for tolerating transient errors.
Whenever an error is detected in the processor,
the machine pauses until a special timer expires.
During the pause, any transient phenomenon
(such as static discharge, power fluctuation) that
may have caused the error should die out with-
out further interference, because the machine is
not operating. The timer is variable for periods
of up to 5 seconds, allowing for adjustment to a
variety of computing environments.

The microstore inversion method could be
extended so that each microstore location has an
extra bit indicating whether the word is inverted
before use. Such an extension would speed up
reconfiguration because only a failed word
would have to be rewritten. The fault tolerance
is also increased, because the chance that multi-
ple failed bits in a microstore would all be stuck
at the same values is small.

Another microstore technique is to use an
extra bit in each word to denote that the contents
are bad. A few blank microstore locations are
included at the end of the memory, and each
word in the main part of the microstore maps
into one (and only one) of the locations using a
fixed mapping. When a word fails, the “re-
mapped” indicator bit is set and a new copy of
the affected word is written into its backup
location (providing it is not already occupied). If
the microstore is not writable, ROM could be
used for all of the microstore except the indicator
bits and the backup locations.

The MECRA computer [Maison, 1971] uses its
main store for microstore as well. A special bit in
each memory word denotes whether the location
is being used for microcode. Recovery from
failure in the microstore consists of simply re-
writing the microcode in another part of memo-
ry. This approach is similar to the graceful
degradation of main memory by memory block
deallocation, discussed in the previous subsec-
tion. In addition, storing the microcode in main
memory means that it can be easily modified.

MECRA utilizes this feature to perform system
reconfiguration, which is done by changing the
microprogram. For example, there is a separate
hardware element for each of the logical opera-
tions AND, OR, XOR, and complementation. If
one of the four logic elements fails, it can be
replaced by any of a variety of combinations of
operations using the remaining logical operators.
The failure of, say, the XOR operator can be
tolerated by employing the AND, OR, and in-
version operators using the relation:

A®B=AB + A'B

The reconfiguration that permits replacement of
the XOR operator is expensive to provide for if
hardwired into the hardware, but is readily ac-
commodated by MECRA’s easy-to-change mi-
crocode.

Another technique has applications in fault-
tolerant interconnection networks. Interconnec-
tion networks between component modules are
needed by many spare-switching and gracefully
degrading systems. The complexity of the switch-
ing network can cause reliability problems. Le-
vitt, Green, and Goldberg [1968] have proposed
some methods for realizing fault-tolerant switch-
ing networks. Consider the situation depicted in
Figure 3-86, in which there are two types of
elements, processors and memories.* The system
can be made gracefully degradable because each
processor can be connected to any memory
through the crossbar switch. Thus, the network is
totally connected; that is, any of the N inputs
can be connected to any of the N outputs (one at
a time). The network also allows all processors
and memories to be utilized simultaneously,
without waiting for a signal path to become free.

* The fault-tolerant switching networks discussed here are
equally employable in other applications needing crossbar
or other types of switching networks, such as multiproc-
essors and telephone systems. For example, the C.mmp
multiprocessor system [Siewiorek et al., 1978a, 1978b] uses
a 16 X 16 crossbar switch to interconnect processor and
memories.

166

THE THEORY OF RELIABLE SYSTEM DESIGN

Crossbar switch

Processor

1 AN

Processor.

2 o

-—e

. ~, ~N, Ny

. "V [a V] ~,
Processor a - b}

N [< E §

-e ~—e¢ °
Memory Memory ves Memory
1 2

Figure 3-86. Totally connected design, in which any processor can be con-
nected to any memory. Shown with each processor i connected to memory .

Networks of this type are termed CPCU(N)

[Complete Permutation—Complete Utilization, N -

X N) networks. CPCU(N) networks can be real-
ized with a crossbar switch, as shown in Figure
3-86. However, the complexity of the network
increases as N2. For large N the design complex-
ity of the network is tremendous, especially when
it also takes into account control and fan-out
problems. Fortunately, a switching network such
as that in Figure 3-86 can be implemented
economically from basic 2 X 2 crossbar switch-
ing cells, in a fasion which trades increased
complexity for decreased performance. Each of
the cell’s two inputs (/;, /) can be connected to
each of the two outputs (Oy, O;). The cell thus
has two operating modes: crossing and bending
(Figure 3-87a and b). Figure 3-88 demonstrates

the use of the basic cell in a CPCU(8) network.
The most efficient procedure for implementing
CPCU(N) networks, based on an iterative imple-
mentation of the network, requires

Nrllogy, N1-208N 4 |

cells. The methods of employing the two-mode
cells for economical and/or high performance
realization of switching networks are discussed
in Levitt, Green, and Goldberg [1968], Kautz,
Levitt, and Waksman [1968], and Waksman
[1968]; many other references are available, in
part because switching networks are important
in telephone systems.

Figure 3-87c shows a possible implementation
of the basic cell in which the crossing mode is
attained by pulsing control input R high with

RELIABILITY AND AVAILABILITY TECHNIQUES

L

0,

a. Crossing mode

0,
b. Bending mode

P—
— [S —]
| |
| % ol +o,
2 |
| |
iy |
| |
N :
ey [] >+
| { ="
4 ——————— J
Iy
¢. Redundantimplementation of basic cell
Figure 3-87. Basic two-input-to-two-output

switching cell for implementing complex switches.

control input P kept low, thereby resetting the
flip-flops. The bending mode is invoked by puls-
ing P high, with inputs / and I, kept high and R
low. The cell of Figure 3-87c could be built with
fewer components, but the circuit shown has one
of the following two fail-safe responses to a
single gate or flip-flop failure:

« Stuck-Functions. The cell is stuck either in bending
mode or crossing mode, with the outputs valid for
that mode.

* Bad-Output. One and only one of the output lines
may contain faulty data.

These fail-safe responses can be used to make
fault-tolerant networks. A CPCU(N) network
that can compensate for any single stuck-at fault
can be implemented from two cascaded net-
works, as shown in Figure 3-89. For example,
both subnetworks could be CPCU(N) networks.

\

167

A fault in one subnetwork could be compensated
for in the other network, with the good network
performing the entire switching function. In this
case, the faulty network is basically performing a
null function: all its gates except the faulty one
are being wasted. There are more efficient meth-
ods of making a single fault-tolerant network.
One uses the same layout of Figure 3-89. In place
of the CPCU(N) network for subnetwork A4, a
less complex subnetwork suffices. A stuck-at
fault in subnetwork B results in an interchange
of the signals on two of the output leads. It is
possible to compensate for it by designing sub-
network A to be capable of interchanging the
signals on any two input leads; such a network is
less complex than a CPCU(N) network. Figure
3-90 shows a network that performs this function
for N = 8. The structure, which can be general-
ized to different N, is called a “double tree”
(TDT(N)) network. A TDT(N) network in gen-
eral requires (3N/2) switch cells. Note that a
stuck-at fault in subnetwork 4 can be compen-
sated for by subnetwork B, because it is
CPCU(N).*

Levitt, Green, and Goldberg [1968] examined
several more techniques for making switching
networks fault tolerant. Among these are single
stuck-at fault-tolerant CPCU(N) networks,
which are slightly more efficient (in terms of the
number of gates needed) than a combination of
nonredundant CPCU(N) and TDT(N) networks.
They also described networks that can tolerate
bad-output faults, and fault-tolerant networks of
the following types (in addition to CPCU(N)
networks):

+ Complete permutation-incomplete utilization

« Incomplete permutation—order preserving
+ Incomplete permutation—nonorder preserving

* Note that only data paths have been discussed here. The
issues of error detection and configuration control logic
have been totally ignored. The circuitry for performing
such functions can be quite complex, especially if the paths
in use at the time of reconfiguration must be left un-
touched. Telephone exchanges, though admittedly more
complex than computer interconnection networks, require
computers to control the switching configuration (such as
Bell ESS-1a).

168 THE THEORY OF RELIABLE SYSTEM DESIGN

— . N h
h
X
X3
Y
Ys
Xa
Xs
¥
¥
X
X\
Y,
xx—" %
Figure 3-88. CPCU(8) switching network implemented from basic cells of
Figure 3-87.
h :1 0,
I Subnetwork 2 Subnetwork
: : A : B . 02
: CPCU(N) Iy CPCU(N) :
y—— Oy

Figure 3-89. A fault-tolerant network, in which the damage due to a single
stuck-at fault in one subnetwork can be compensated for by the other
subnetwork.

' X{
XZ
X3

X4

’ ’ |
Xe

X7 3

Xg

i

OF

Figure 3-90. Compensation network used as subnetwork A (Figure 3-89) for a
CPCU(8) single stuck function fault-tolerant network.

RELIABILITY AND AVAILABILITY TECHNIQUES 169

« “Shorting” (connecting outputs of stage i to inputs
of stage (i + 1), or bypassing (shorting around) stage

G+ 1))

Finally, Shen and Hayes [1980] examined the
fault tolerance of several types of networks that
can be implemented by means of the basic 2 X 2
crossbar cells.

The final reconfiguration technique to be men-
tioned is a memory reconfiguration approach, in
which the memory chips are arranged in a self-
healing network. The technique requires that an
integral switch be built into each memory chip
[Goldberg, Levitt, and Wensley, 1974].

Recovery

Fault masking techniques such as TMR and
error-correcting codes permit uninterrupted sys-
tem operation as long as the masking redundan-
cy is not exhausted. Faults occur but do not
become errors. When only detection is em-
ployed, perhaps combined with reconfiguration,
faults become errors unless some kind of error-
correction ability is added. A duplicated memo-
ry, for example, can continue operation follow-
ing error detection only if:

- both memory copies have been performing the same
operations in parallel, so that an error-free copy of
the information is available in one of the memories;

and
- it is possible to determine which copy contains the
erroneous information.

If these criteria are met, restoration of the mem-
ory state merely requires reconfiguration. In
many systems, however, the correction ability
either does not exist or cannot compensate for
more than a limited number of failures at a time.
When the correction capability is exceeded, the
system state is irretrievably in error. As an
example, consider a Hamming SEC/DED-coded
memory with a spare bit slice; the bit plane is
switched in only after a double error is detected.
The memory is capable of successful operation
after a double failure occurs, but the information

it contained is corrupted beyond the hope of self-
correction. As long as the initial data, program
code, and the information acquired by the pro-
cess prior to a data-corrupting failure are stiil
available (such as from backup copies), the pro-
cess can be restarted from scratch after the spare
bit plane is switched in. The only loss is the
(possibly costly) time expended during the first,
unsuccessful, execution of the process. If, howev-
er, the initial data are corrupted and no backup
copy exists, or if the information acquired during
the first execution is irretrievably lost (such as
real-time sampled data), the process cannot be
successfully restarted from scratch.

Recovery techniques can restore enough of the
system state to allow process execution to recom-
mence without a complete restart, and with little
or no loss of acquired information. Recovery
techniques are usually implemented in software,
but may have some hardware basis as well. The
techniques considered here are all backward
error recovery techniques [Randell, 1975], in

which process execution is restarted at (rolled

back to) some point before the occurrence of the
error. Forward error recovery techniques, in con-
trast, attempt to continue operation with the
system state at hand, even though it may be
faulty. Forward error correction is usually highly
application-dependent, as in the case of a real-
time control system in which an occasional
missed response to a sensor input is tolerable.
Because loss of sensor information due to a
failure is not critical, the system can recover by
skipping its response to the lost sensor input
sample. After reconfiguration, the process pro-
ceeds immediately to deal with the following
sensor input samples. Forward error recovery is
not discussed further here; Randell, Lee, and
Treleaven [1978] consider the topic briefly.

All forms of backward error recovery require
some redundant process-state information to be
recorded as the protected process executes. The
information is used to roll back an interrupted
process to a point for which correct state infor-
mation is known. Three forms of backward error
recovery are considered, ordered by the length of

170 THE THEORY OF RELIABLE SYSTEM DESIGN

rollback required: retry techniques, checkpoint
techniques, and journaling techniques.

Retry techniques are the fastest form of error
recovery, and conceptually the simplest. They
depend upon detection of an error as soon as it
occurs. Immediately after the error is detected,
the necessary repairs are effected. If the error is
transient, repair consists in pausing long enough
for the transient to die away. If there is a hard
failure, the system is reconfigured. The operation
affected by the error is then retried, which neces-
sitates knowing what the system state was imme-
diately before the operation was first attempted.
If the interrupted operation had already irrevo-
cably modified some data the retry will be unsuc-
cessful, especially if the failure itself caused a
spurious (and undiscovered) modification. Retry
techniques are most commonly employed as a
means of tolerating transient errors. One retry
application common to many commercial com-
puters is 1/O operation retry. Disk-read errors,
for example, are common occurrences and are

usually due to transients. Without disk-read retry.

capabilities, system and/or job failures would
occur with distressing frequency. In most mod-
ern disk drives, retry on disk-read error detection
is built into the disk controller itself, removing
the burden of the retry operation from the host
system. Other common retry applications are
retry on memory read errors and bus transaction
retry (for both data and protocol errors).

The Univac 1100/60 (Chapter 10) provides
retry for macroinstructions after a failure. After
a pause that permits transients to die away, a
microroutine is invoked that examines the fault
effects and determines whether the instruction is
retryable. If a retry is possible, the retry micro-
routine restores the contents of the operand and
addressing registers from a special retry memory
provided for the purpose (the retry memory is
updated every time a register is read). The mac-
roinstruction is then refetched and its execution
attempted. If the retry is not possible or if it fails,
the microroutine attempts to transplant the pro-
cess on another processor (assuming a multiproc-
essor configuration is being used). The IBM

System/360 (Chapter 9) also provides extensive
retry capability, performing retries for both CPU
and 1/O operations.

Alternate-Data Retry (ADR), proposed by
Shedletsky [1978a), is a variation of the retry
approach that offers tolerance of hard failures as
well as of transients. The hardware is designed to
be able to perform the same function using
different data representations. Upon error detec-
tion, the same operation is retried using an
alternate data representation; the use of a differ-
ent form for the data is an attempt to ensure that
the same error will not recur even if there is a
hard failure. In particular, Shedletsky explored
the use of C-morphic representations, in which
there are two possible data representations. Each
representation is the bitwise complement of the
other. The design of C-morphic systems that are
capable of ADR combines the elements of error-
detection codes, complemented duplication, and
self-checking circuitry. Shedletsky also applied

~ ADR principles to the design of a simplified

processor. The net hardware cost was slightly
over that of a duplex processor system with only
normal retry capability.

Retry techniques require immediate error de-
tection to be successful and usually require sub-
stantial dedicated hardware. In contrast, check-
point techniques allow some error latency, for
the process is backed up to an earlier point in its
execution. Checkpointing is most often imple-
mented in software and requires little or no extra
hardware. These techniques result from a combi-
nation of checkpointing and rollback. In check-
pointing, some subset of the system state is saved
at specific points (the checkpoints) during pro-
cess execution. The information to be stored is
the subset of system state (data, programs, ma-
chine state) that is necessary to the continued
successful execution and completion of the pro-
cess past the checkpoint, and which is not
backed up by other means. Rollback is part of
the actual recovery process and occurs after the
repair (e.g., by reconfiguration) of the physical
damage which caused the detected error (or after
the transient causing the error dies out). The

RELIABILITY AND AVAILABILITY TECHNIQUES 171
Task
completion A B B’ A’
T - T 7
/
o / 7/
. /
N /
B , /
/ ,/= ,/
S N
f /o /
Sy /o /’
S / -0
/ ’/{II :’/
... / ,‘ 4 ¥
) S0 /
c S/ s
S /
E / /
2 / /
3 /
g / /
k] R /
z / /
. ’ . Checkpoint
b /
/ ;S e A Process A (no errors)
f /// ——-=—. B Process B (no errors)
Xl /" / emmeeaa A’ Process A (with errors)
i ,’I B’ Process B (with errors)
AN
Y : ! : /
Y . . .
T T T T
o | 1 wa) e [@) a) Time—
- Error Error Error Error
Figure 3-91. Scenario of two processes, identical except for checkpoint
frequency.

rollback consists of resetting the system and
process state to the state stored at the latest
checkpoint. Hence the only loss is the computa-
tion time between the checkpoint and the roll-
back, plus any data received during that interval
that cannot be recreated.

Figure 3-91 illustrates graphically some of the
issues involved in checkpointing. First, consider
lines B and B’. Line B shows the progress process
B would make if no errors occurred. Line B’
shows the actual progress of process B as a result
of the error occurrence scenario shown. During
process B execution, checkpoints are reached at
regular intervals (regular in terms of amount of
computation, not time). Point X on line B’
corresponds to an error event. The vertical line
segment XY is the rollback performed upon
error detection. Point Y is the point in the
process immediately following the checkpoint, at
which execution restarts. Although the actual
process execution time 7(B’) is longer than the

ideal time ¢(B), the process does not have to start
from the beginning four times, as it must without
checkpointing. Line 4 represents the progress of
process A in the absence of errors. Process A is
identical to process B except that in order to
achieve faster execution, only one-third the num-
ber of checkpoints are used. The use of fewer
checkpoints lowers the overhead required for
saving system states and allows process 4 to run,
say, 20 percent faster than process B. The actual
performance of process 4 is actually lower, how-
ever, as shown by line A’. The reason is that the
rollbacks were longer for process A than for
process B, and the computation time lost for this
error scenario outweighed process A’s speed ad-
vantage. Thus, it is clear that the correct choice
of checkpoint locations is important. If the
checkpoints are too infrequent for the error rate
encountered, much computation time can be lost
to rollbacks. On the other hand, too frequent
checkpointing results in an unnecessary increase

172 THE THEORY OF RELIABLE SYSTEM DESIGN

1 5 d
Process A —e -
3
Process B - g
b
2 6
Process C —e *—L—X—»
a C e
® Checkpoint
X Error
--> Message passed
Figure 3-92. Cooperating checkpointing pro-

cesses. A failure at point e forces process C to roll
back to checkpoint 6. Because of a message sent by
process C, process A must then be rolled back to
checkpoint 5. Rolling back of the processes in this
fashion eventually requires all three processes to be
rolled back to their initial checkpoints.

in computation time due to the overhead of
saving-system states.

There are other issues in checkpointing design.
One is the selection of checkpoints to minimize
the amount of state information that must be
saved at each checkpoint. A second is deciding
which information must be backed up for proper
assurance of successful rollback. A third situa-
tion arises when multiple concurrent processes
communicate with each other. If one process is
rolled back, any other process receiving data
from it since the checkpoint must also be rolled
back at least that far. This can give rise to a
“domino effect” [Randell, 1975], illustrated in
Figure 3-92, which causes multiple rollbacks
throughout a multiprocess system. Another con-
sideration is avoiding error latency situations in
which the validity of the state saved at the
checkpoint is jeopardized by the possibility of a
previous, undetected error. More detailed exam-
ination of these and other issues is left to other
sources. Chandy and Ramamoorthy [1972] pro-
posed checkpointing strategies that dynamically
insert checkpoints when the expected loss of
computation reaches a certain value. Troy [1978]
proposed a model for interacting processes oper-
ating concurrently. The model, based on Petri
net-like representations, allows a determination
of the rollback actions needed when an error

occurs in one of the processes. Shedletsky
[1978b] dealt with the problem of error latency
when imperfect error detection is present. He
presented a method for determining a rollback
length concomitant with the desired probability
of successful recovery, and demonstrated the
procedure by analyzing an imperfectly self-
checking ALU.

The Tandem computer (Chapter 11) uses
checkpointing extensively. User processes can be
replicated, with the extra copies used for backup
(usually only duplication is used). The operating
system has a checkpointing facility through
which the active process can checkpoint its state
to a backup process. The Fault-Tolerant Space-
borne Computer (FTSC) employs a checkpoint-
ing scheme in which the only information need-
ed to roll back a process is the program counter
contents stored at its last checkpoint [DeAngelis
and Lauro, 1976; O’Brien, 1976; Stiffler, 1976].
The COPRA computer [Meraud, Browaeys, and
Germain, 1976; Meraud et al., 1979] uses check-
points automatically inserted by its assembler;
rollback is microprogrammed and is automati-
cally invoked by detection of an error. Finally,
the JPL STAR (Chapter 14) operating system
also employs checkpointing.

Randell [1975] described an approach to the
design of complex hardware/software systems
using recovery blocks, which combine elements
of checkpointing and backup spares to provide
tolerance of software design faults as well as
recovery from hard failures and transient errors.
Figure 3-93 shows a sample recovery block at the
user level. Recovery blocks are similar in nature
to blocks in ALGOL. The recovery block shown
executes a search for a key in a data structure
and returns the index of the array element that
matches the key. Checkpointing a variable global
to the block occurs only if it is altered within the
block, and is performed automatically just be-
fore the alteration actually takes place. This
backup procedure not only minimizes the
amount of state information backed up, but also
releases the programmer from determining
which variables should be checkpointed, and

RELIABILITY AND AVAILABILITY TECHNIQUES 173

variable tocations.searched ;
Togical variable errorflag ;
ocations.searched := 0
errorflag := false ;

ensure

(keystructure [pointer] = key) or errorflag

by tree.search (pointer, key)
elseby binary.search (pointer, key)
elseby linear.search (pointer, key)

elseby
begin
print ("Not able to find key") ;
pointer := nil ;
errorflag := true ;
end
else error

start of recovery block
acceptance test
primary alternate
second alternate

! third alternate

final alternate

Figure 3-93. Recovery block as seen at program level.

when. Assume that all the search algorithms use
the global variable locations.searched as a counter
during the search, and that upon completion
locations.searched contains the number of loca-
tions searched by the algorithm. The first time
the variable is accessed, its old value (0) is
written into the cache. Upon entry to the block,
the primary alternate—a tree search algorithm in
the case of Figure 3-93—first attempts the de-
sired computation. Once the primary alternate
completes its function, the acceptance test is
used to detect any errors in the result. If the test
is passed, the block is exited. If the test is failed,
or if the primary alternate fails to complete the
computation, the contents of the recovery cache
pertaining to this recovery block are automati-
cally reinstated (in the case of Figure 3-93,
locations.searched is reset to zero) and the second
alternate is initiated. The cycle of execution, test,
rollback, and initiation of the next alternate
continues until either an alternate completes the
computation successfully or there are no more
alternates. If the block runs out of alternates, an
error is signaled to the context containing the
recovery block. Usually, the first alternate is the
most desirable (more efficient, more powerful)
and the desirability of the subsequent alternates
decreases at each level. In Figure 3-93 the binary
search takes longer than the tree search but,
being less complex, may have a lower probability
of failure; the linear search takes even longer (it

is assumed that the data structure is universal;
that is, it supports all three search algorithms.)
The last alternate does not execute the desired
task, but instead prints an error message and
returns an obviously faulty value for the index.

A graphical representation of recovery blocks
is shown in Figure 3-94a; the representation is
used here to briefly illustrate some of the exten-
sions to the recovery block idea that can be
found in Randell [1975]. Figure 3-94b shows that
it is possible to nest recovery blocks. Failure by
exhaustion of alternates in a lower level recovery
block causes the recovery block containing it to
invoke the next alternate. Figure 3-94¢ shows the
extension of recovery blocks to parallel process-
es, with some restrictions on the times at which
messages can be passed between processes. Re-
covery blocks can be used at different levels. of
abstraction in a hierarchical system (in the same
way that there can be a physical computer as
well as multiple levels of virtual machines) as
long as proper care is taken when designing the
interfaces between the levels.

The strength of the acceptance test is impor-
tant to the successful detection of errors. Thus, if
weaker alternates which return false or dummy
results are used, the acceptance test must be
weakened to allow the recovery block to be
exited when they complete. Shrivastava and Ak-
inpelu [1978] proposed a method of avoiding this
trouble by the use of assertion statements in a

174 THE THEORY OF RELIABLE SYSTEM DESIGN

Process.

<—Checkpoint
Recovery block

<«—Acceptance
4 test

a. Graphic notation for a recovery block

|
)

v

b. Nesting of recovery blocks

v v v
c. Multiprocess recovery blocks

Figure 3-94. Use of Randell’s graphical notation to
demonstrate extensions beyond the simple recov-
ery block.

recovery block. Anderson and Lee [1979] consid-
ered means of improving the fault tolerance of
hardware/software interfaces, making them
more recoverable by adding extra levels of ab-
straction. Russell and Tiedeman [1979] examined
message passing among multiple processes with-
in the same recovery block (a “conversation”),
and its requirements on the degree of coupling
between cooperating processes.

A possible practical implementation of recov-
ery blocks would utilize a form of cache mecha-
nism to store the current values of checkpoint
variables about to be altered and to keep track of

the nesting depth of the current recovery block.
Shrivastava and Akinpelu [1978] evaluated the
performance of recovery cache scheme, and
found that the overhead involved was not high.
Lee, Ghani, and Heron [1980] have described an
experimental design of an add-on cache for a
PDP-11 that divides the Unibus between the
processor and memory, and requires no modifi-
cations to the system other than cutting the bus.
Because the cache cannot access the registers in
the processor without modifying the processor
hardware, it can checkpoint only variables stored
in the memory. The projected performance deg-
radation is about the same as in C.vmp (Chapter
7). C.vmp, however, will survive hard processor
failures, whereas the recovery cache PDP-11 will
not. The recovery cache system is about as
complex as a C.vmp-type configuration, but with
full use of recovery blocks it will survive tran-
sient errors and most software design errors.

Of the three backward error recovery tech-
niques discussed here, journaling is the simplest
and least efficient; it requires the longest time to
recover the state attained before an error. In
journaling, a copy of the initial data (database,
disk, file) is stored as the process begins. As the
process executes, it makes a record of all trans-
actions that affect the data. Thus, if the process
fails, its effect can be recreated by running a
copy of the backup data through the transactions
a second time (after any failures have been
repaired). The recovery takes the same amount
of time as the initial attempt. Journaling is better
than completely restarting because it eliminates
the loss of information involved in a restart. The
Bravo editor on the Xerox Alto personal com-
puter uses journaling to recover an editing ses-
sion during which an error causes the computer
to crash [Lampson, 1979]. A special program
called Bravobug is run when the system is re-
started and can be stopped at any point (up to
the point where the error occurred) to recreate
any intermediate states of the edited file. Typi-
cally, a three-hour editing session takes substan-
tially less time to recreate because there are no
human delays involved the second time.

RELIABILITY AND AVAILABILITY TECHNIQUES 175

SUMMARY

The presentation of reliability and availability
techniques in this chapter followed the organiza-
tion of Table 3-1, which provides a logical pro-
gression of techniques from the simplest methods
of fault avoidance to the most complex methods
of dynamic redundancy. However, there are two
elements missing from this development. First,
the major emphasis is on techniques, and not on
the functionality of the system elements they are
used on. This chapter could also have been
organized on the basis of function: memories,
processors, ALUs, operating systems, and so on.
Organization by function would highlight which
techniques work best in each area of system
design and how those techniques can be best
implemented for that design area. However, or-
ganization by technique has the important ad-
vantage of stressing the universality of tech-
niques. Most techniques can be incorporated
into several, if not all, areas of design. Thus,
rather than improving the reliability of isolated
pieces of a system at a time, the designer can
choose to apply a single technique over several
areas. For example, parity error detection can be
applied to a memory, register set, ALU (with
parity prediction), and the connecting data
paths. A single panty checker on each data path,
monitoring each transaction, is sufficient to mon-
itor system health. By using a single technique
for all the pieces, the need for multiple transla-
tors, checkers, and encoders of several different
types has been eliminated.

The other element missing from the organiza-
tion of this chapter is the simultaneous use of
multiple techniques. The development followed
required treating each technique as a separate
entity. Often, two or more reliability improve-
ment techniques can be synergistically combined
to provide vastly improved protection. Examples
of a few such combinations have been briefly
mentioned, such as the shadow box memory.
Many other combinations are possible; their
suitability depends on the application. For this
reason, the evaluation methods and criteria de-

veloped in the following chapters are necessary
to ensure successful use of the techniques pre-
sented in this chapter.

REFERENCES

Abraham [1975]; Anderson [1971]; Anderson and Lee
[1979]; Anderson and Metze [1973]; Ashjaee and
Reddy [1976]; Armstrong [1961]; Avizienis [1971,
1973, 1977, 1978]; Avizienis et al. [1971]; Avrulpra-
gasm and Swarz [1980]; AWST [1981]; Barsi and
Maestrini [1973, 1974]; Baskin, Borgerson, and Ro-
berts [1972]; Beaudry [1978]; Berlekamp [1968]; Bhatt
and Kinney [1978]; Black, Sundberg, and Walker
[1977]; Boone, Liebergot, and Sedmak [1980]; Borger-
son and Freitas [1975]; Bossen [1970]; Bouricius et al.
[1971]; Brown, Tierney, and Wasserman [1961]; Car-
ter, Duke, and Jessup [1973]; Carter and McCarthy
[1976]; Carter and Schneider [1968}; Carter and Wa-
dia [1980]; Castillo and Siewiorek [1980]; Chandy and
Ramamoorthy [1972]; Chen and Avizienis [1978];
Chinal [1977]; Cook et al. [1973]; Cooper and Chow
[1976]; Craig [1980]; Crouzet and Landrault [1980];
Davies and Wakerly [1978]; DeAngelis and Lauro
[1976]; Dennis [1974]; DeSousa and Mathur [1978];
Diaz, Geffroy, and Courvoisier [1974]; Diaz, Azema,
and Ayache [1979]; Dickinson, Jackson, and Randa
[1964]; DEC [1975, 1977, 1979]; Frank and Yau
[1966]; Freeman and Metze [1972]; Fujiwara and
Kawakami [1977}; Gay and Ketelson [1979]; Gold-
berg, Levitt, and Wensley [1974]; Gurzi' [1965]; Ham-
ming [1950]; Hampel and Winder [1971]; Hong and
Patel [1972]; Hopkins, Smith, and Lala [1978]; Hsiao
[1970]; Hsiao and Bossen [1975]; Hsiao, Bossen, and
Chien [1970]; Thara et al. [1978]; Ingle and Siewiorek
[1973a, 1973b, 1976]; Interdata [1975]; Jack et al.
[1975]; Jensen [1963]; Kaneda and Fujiwara [1980];
Kautz [1962]; Kautz, Levitt, and Waksman [1968];
Khodadad-Mostashiry [1979]; Klaassen and Van Pep-
pen [1977a, 1977b]; Klaschka [1969]; Kole [1980];
Lampson [1979]; Larsen and Reed [1972]; Lee, Ghani,
and Heron [1980]; Levitt, Green, and Goldberg
[1968]; Lewis [1979]; Lin [1970]; Losq [1975a, 1975b,
1978]; MacWilliams and Sloane [1978]; Maison
[1971]; Mandelbaum [1972a, 1972b]; Marouf and
Friedman (1977, 1978]; Mathur [1971a); Mathur and
Avizienis [1970]; Mathur and DeSousa [1975];
McCluskey and Ogus [1977]; McConnel and Siewio-
rek [1981]; McDonald [1976]; McDonald and

176 THE THEORY OF RELIABLE SYSTEM DESIGN

McCracken [1977]; McKevitt [1972]; McNamara
[1977]; Meraud, Browaeys, and Germain [1976]; Mer-
aud et al. [1979]; Meyer [1971, 1978]; Meyer, Furch-
gott, and Wu [1980]; Mine and Koga [1967]; Mine
and Hatayama [1979]; Morganti, Coppadoro, and
Ceru [1978]; Mukai and Thoma [1974]; Neumann and
Rao [1975]; O’Brien [1976]; Ogus [1973, 1974]; Orn-
stein et al. [1975]; Osman and Weiss [1973]; Ossfeldt
and ‘Jonsson [1980]; Ozgunner [1977]; Patterson and
Metze [1974]; Peterson and Weldon [1972]; Pierce
[1965]; Platteter [1980]; Pradhan [1978a, 1978b]; Prad-
han and Reddy [1974a, 1974b]; Pradhan and Stiffler
[1980]; Randell {1975]; Randell, Lee, and Treleaven
[1978]; Rao [1970, 1972, 1974]; Ray-Chaudhuri [1961];
Reddy [1978]; Reed and Chiang [1970]; Russel [1978];
Russel and Tiedeman [1979]; Russo [1965]; Sawin
[1975]; Sedmak and Liebergot [1980]; Sellers, Hsiao,
and Bearnson [1968b]; Shedletsky [1978a, 1978b];
Shen and Hayes [1980]; Short [1968]; Shrivastava and
Akinpelu [1978]; Siewiorek, Canepa, and Clark
[1977a]; Siewiorek and McCluskey [1973a, 1973bj;
Siewiorek, Bell, and Newell [1982]; Siewiorek et al.
[1978a, 1978b]; Sklaroff [1976]; Smith and Hopkins
[1978]; Smith and Metze [1978]; Srinivasan [1971b];
Stiffler [1976, 1978]; Swan, Fuller, and Siewiorek
[1977a}; Tang and Chien [1969]; Tohma and Aoyagi
[1971]; Tohma [1974]; Tokura, Kasami, and Hashi-
moto [1971]; Torng [1972]; Toy [1978]; Troy [1977,
1978]; Tryon [1962); Usas [1978]; .von Neumann
[1956]; Wachter [1975]; Wakerly [1974, 1978]; Waks-
man [1968]; Watson and Hastings [1966]; Weissberger
[1980],

PROBLEMS

1. There are 32 data lines on a bus protected by four
interlaced parity bits. Parity bits 1 and 3 are odd
parity and parity bits 2 and 4 are even parity.

a. Sketch the data bus and indicate which lines
are covered by which parity bits.
b. List all fault sets that are detected in one bus

transfer. Illustrate one fault from each set.

on your diagram.

2. Assuming that only transient errors lasting exactly
one operation cycle of the system can occur, the
triple modular redundancy is equivalent to
(choose one)

a. a Hamming single-error-correcting, double-er-
ror-detecting code
b. a simple parity code (odd parity)

c. a repetition code with a complete decoding
algorithm

d. a repetition code with an incomplete decoding
algorithm. :

. A Hamming single-error-correcting code has the

parity-check matrix

11
01
11

H =

-0 O
S = O
S O =
—_—_
S = =

A word [0111011] was received. The word sent
must be (choose one)

a. [0110011]

b. [0111001]

c. [0111010]

d. [0001011].

. Below is a parity matrix for a Hamming code.

d ¢ dy ¢ dy c3 d
01 1 1 0 1 0
¢ 1 0 0 1 0 1 1
1 1.0 0 1 1 O

a. Write the parity equations for the three check
bits.

b. Using these parity equations, encode the data
word d, d,d;d, = 0110.

c. The encoded word 1100001 (d¢;d,c,d;c3dy)
has a single-bit error. Which bit is in error?

d. Assuming that bit failures are independent and
the probability of failure is p, what is the
probability that the encoded data is not decod-
ed correctly?

e. If the receiver and support electronics has a
reliability of k/(1 — p), where k is a constant,
what value of p maximizes the reliability of the
system?

C3

. A binary transmission channel is said to be an

erasure channel if a received bit may be neither a
one nor a zero. Such an error is called an erasure.
To correct up to e erasures, the minimum distance
between any two code words must be (choose one)
a. e

b. e+ 1

c. 2e

d. 2¢e+ 1.

. Which of the following cannot be a code word in

a linear single-error-correcting Hamming code?
a. 0010110
b. 1101100

7.

1.

RELIABILITY AND AVAILABILITY TECHNIQUES

c. 1110110
d. 0110000
e. 1010111

A 3-0f-6 code was modified by adding two check
bits that indicated how many ones the 6 informa-
tion bits have. The number of all possible errone-
ous words that go undetected is (choose one)

20

22

32

42

41.

ceoow

. The arithmetic distance between the two code-

words [100001] and [010011] is (choose one)
a. 1
b. 2
c. 3
d. 4.

. In a 25N + 15 single-error-correcting arithmetic

code, a word [10010011] was received from the
ALU. Therefore, the corrected output of the ALU
is (choose one)

0001011

1011011

0111011

1001100

e. 1110011.

oo

. A biresidue code forms residues modulo 3 and

modulo 7. An erroneous word is ([01111], 2, 0).
Assuming that the check bits are correct, the
corrected information bits are (choose one)

a. [10000]

b. [10001]

c. [01110]

d. [o1101].

In a computing system, memory is one of the chief
sources of failures. When a high degree of data
integrity is desired, the overhead for encoding and
decoding may be tolerated. To correct a single-bit
error (Hamming error) in an 8-bit byte, speed is to
be sacrificed in favor of minimizing the total
storage required for a task. The problem is thus to
maximize the number of code words. Find a
single-error-correcting code of block length eight
with a maximum number of code words. (Hint: A
linear code of block length eight has 16 code words.
A code that is made up of a number of cyclic spaces
has 20 code words but is not the. code that
maximizes the number of code words.)

12.

13.

14.

15.

Input

177

For the double-error-correcting code with the par-
ity-check matrix
[0 0 1 1 1 0 1]
01 00T1T1 1
1 001110
=001 1011
0101101
(1 11000 1]

the syndrome formed was [101110]. This implied
(choose one)

a. no error

b. single error

c. double error

d. more than two errors.

With the same parity-check matrix, if the bits are
numbered 1 through 7 from left to right, a syn-
drome [100111] implies (choose one)

a. a single error in position 3

b. two bit errors in positions 1 and 4

c. two bit errors in positions 1 and 5

d. more than two bit errors.

For a double-error-correcting code of block length
32, the least upper bound on the number of
information bits is (choose one)

24

25

26

27

28.

LS S S

Given the polynomials A(x) = X + land g(x) =
x* 4+ x + 1, the circuit

= DD D

can be used (with proper initial conditions) to
obtain from the incoming polynomial f(x) the
output (choose one)

a. f/gh

b. fh/g

c. fg/h

d. fgh

e. f(g+h).

178 THE THEORY OF RELIABLE SYSTEM DESIGN

16. With the input polynomial x’ + 1 and the circuit the environment is ground fixed, and single-bit
failures are the dominant mode of memory-chip

failures.

DD

the output polynomial will be (choose one)
a. x+1

a. To save on memory chips, a 39-bit SEC/
DED Hamming code is to be used (its
parity-check matrix is given below). Design
the correction/ detection/ encoding tree, hold-
ing register, correction circuit, and other
data path elements shown in the block dia-
gram in Figure 5-16. Use 7400 series TTL

2
2' fc”-:-ll and do not bother with pin numbers (this is
d X+ttt x L. a rough deS1'gn). ~Assume control. circuitry
] o of 10 SSI chips (= 8 gates per chip) and 5
17. A new disk storage unit is to be added to a MSI chips (&~ 15 gates each). Evaluate
PDP-10 system. Because the performance of the this design using the MIL-217 model and
system deteriorates considerably as a result of disk techniques discussed in this chapter.
failures, the new disk should be as reliable as b. Design a block-coded memory with a better
possible. The field was narrowed to two disks, MTTF. Assess the difference in cost in number
D,SI,(RAW anq D SK,CR,C‘ Both store up to 200 of chips (if any). Assume 10 MSI and 15 SSI
mlllloq bytes (eight-bit wide), run at a rate of 3,600 chips for auxiliary circuitry, and design the
1pm with a byte .transfer frequency of]‘2,5 MHz. data-path elements shown in the block-code
Both cost approximately the same. The difference memory diagram in Figure 5-17. Justify your
lies in redundancy techniques. DSKRAW uses a choice of block size.
Read-After-Write (RAW) to detect (and correcF) c. Discuss the relative performance (not reli-
errors in transfer, while DSKCRC uses a cyclic ability) of the two designs, both with and
redundancy code (CRC)' The CRC generates a without errors present. Can the vertical parity
16-bit check word using a generator polynomial words be kept in a separate memory so that
16 12 5 they can be accessed in parallel with the data
] x FrTAH]. on writes? How does this affect the perfor-
on an information frame of any size. Carry out a mance? Discuss the conditions under which
reliability analysis on the two disks and make you would choose each design.
recommendations. 19.a. The 8080 microprocessor chip has approxi-
18. The design goal is an SEC memory for a 16-bit mately 1000 gates. Calculate the failure rates of

Parity-check matrix for 39-bit SEC/DED Hamming code.

minicomputer with memory mapping. The memo-
ry is to be a 128K-word memory, built with 1K-bit
MOS RAMs. Assume that the ambient tempera-
ture is 30° C, components are of quality class C,

L e e e e e e A
00000000000000O0000000000O0COO000O0OOCOT11 1111110
600000000O0OOCGOOCOOOTITTLTIYIDIEIDTIIPLLTITIT1TOO0O0O00O0O0O
0o00000O0OT1T1T111111000000O0OO0OIL!l11111110000000O0
o001 11100001 111000011110000111100001T110
6110011001 10011001100110011001100110010
1010101010101010101010101010101 01010100

this architecture assuming SSI, MSI, and LSI
implementation (40°C ambient).

What is the effect of changing , for the three
implementations above? Changing the ambient

20.

a.

RELIABILITY AND AVAILABILITY TECHNIQUES

temperature from 40°C to 30°C? Compare

these effects over the three different implemen-

tations.

Assume SSI chips cost 20 cents, MSI chips 50

cents, and LSI chips $10; and that screening

weeds out all but 0.2 percent of the weak

components. Also assume that the average

diagnosis and repair cost due to a bad chip is

35 plus the chip cost through the warranty

period. Compare the expected repair costs for

the SSI, MSI, and LSI implementations of the

8080 architecture.

In a memory made with 1K-bit by four-bit-

wide chips, there are 16 data bits and 2K

words. Zero and one bit values are equally

likely. Assume chip failure modes are single-

bit cell (50 percent), single-row all zeros

(20 percent), single-column all zeros (20

percent), and whole-chip all zeros (10 per-

cent). Calculate single error detection cov-

erage for this scheme when the following

detection techniques are used:

i. interlaced parity (i = 4)

ii. chip parity

iii. chip-wide parity

iv. duplication

v. single-precision checksum (assume check-
sum is stored separately, one sum for the
entire memory)

vi. low-cost residue code (checksum stored
separately).

Estimate costs (chip counts) for the memories

above, including check circuitry. Comment on

relative performance overheads.

21. What is the CRC constant for the CRC code used
by AUTODIN II, with G (x) = x32 + x% + x3
+ x4 X X0 xBTS X
+xX+x+12 Design a BCR for this code.

In the multiplexer for parity-coded operands shown
at the top of the next column [Wakerly, 1978],
(S| Sp) = (01) transfers bus 4 to bus T, while
(10) transfers bus B to bus T.

22.

a.

b.

Demonstrate that this circuit is totally self-
checking.

Design a totally self-checking multiplexer net-
work around this TSC multiplexer; that is, the
network serves as a multiplexer with a TSC
error-detection indicator.

23. a.

24. a.

179
-'oj
So

S1———J

by

a4

51———
b+

ap1—
So

tn—1
$4
by

A digital system block diagram is shown on the
next page. Discuss which fault-detection tech-
niques can be used to prevent undetected errors
in this system.

. Discuss the application of TMR with voting

to this system. Consider replication at vari-
ous architectural levels.

Discuss the application of error-correcting
codes to this system in at least five different
segments of the design.

Using the next-state and output-function table
below, design a single-error-correcting coded-
state machine. Compare its cost and reliability
with a TMR implementation of the same ma-
chine. The machine is synchronous, with an
external cloek signal.

Input
State 01 11 10 00
a a/l ¢/0 h/0 e/l nextstate/output
b ¢/l a/l d/1 f£/0
¢ b/l g/o e/1 f/1
d g0 c/0 d/1 e/1
e a/l b/0 ¢/0 /0
f b0 b/l gl h/o
g h/0 h/l b0 g/l
h e/l ¢/l d/1 a/l

180

25. a.

THE THEORY OF RELIABLE SYSTEM DESIGN

Memory

CPU
rtttTTTTTTT MemoryAddress Buffer — |
ALU

|
|
|
|
]
t
|
t
I
|
]
:
i
v [
|
1
|
|
|
i
{
{
I
|
|

R1 Memory data buffer
R2
R3
1 Control
[170 Addr | [1/0 Butter]
Control

Control

170

I Control '— I Control l——
I Buffer | Buffer

| Buffer I Buffer

[I/O Devicel |I/O Devicel

Implement the next-state function in quadded
logic. Compare the cost with a TMR imple-
mentation. Compare maximum clocking
speeds.

Design restoring organs for a redundant mod-

ule with two output lines and a redundancy

factor of 5 (five identical modules) using the

following techniques:

i. NMR/simplex (N = 5)

ii. hybrid TMR

iii. duplication with spares switching (assume
an external diagnostic circuit can correctly
determine which of the two modules is
faulty with probability 0.95, and takes 10
ms to do so)

iv. self-purging redundancy

v. sift-out redundancy

Use standard TTL logic (designs down to pin
number detail are not necessary).

|
1
|
|
1

|
I Control |-— I Control lv— :
|

i

I

I

)

|

|
-

NSRS I ——— L

| 170 Devicel I 1/0 Device I

b. ‘Assume new data are produced synchronously
every 500 ns, that gate complexities for the
function modules are 2,000 gates each, and
that the duplication diagnostic circuit uses 300
gates. Compare the five designs for complexity,
cost, performance, and reliability.

26. Discuss the issues involved in making a multiproc-

28.

essor system such as the Intel 432 (Chapter 18)
gracefully degradable (cost, extra circuitry, perfor-
mance, computation overhead, detection and
diagnostic capability); assume that

a. no modification can be made to the hardware
b. simple alterations can be made to the hardware

Redesign the error-correcting code memory of
Problem 18 to allow it to switch in two spare bit
planes. Evaluate the effect on the memory system
cost, performance, and reliability.

RELIABILITY AND AVAILABILITY TECHNIQUES 181

!9. Select a computer system for which processor and
operating system documentation is available to
you. Analyze the fault tolerance, fault detection,
and recovery techniques and abilities of the hard-
ware/software system. Propose some low-cost im-
provements that might be made.

10. a.

Pick a technique from each of the subsections
in Chapter 3 dealing with error detection, fault
masking, and dynamic redundancy. Use each
independently in the design of the same (logi-

cally) microstore. Rank the designs in terms of
cost, performance, and reliability.

Combine the techniques chosen above in
groups of two (using each technique in only
one pair) and apply them to the same micro-
store above. Rank the designs in terms of cost,
performance, and reliability.

Select four of the techniques above to make the
best possible microstore design. Evaluate the
cost, performance, and reliability of this de-
sign.

Maintainability and Testing Techniques

A significant proportion of maintenance involves
some form of testing, not only to isolate the
failed component but also to ensure that the
repair operation was successful. This chapter
examines maintainability from the perspective of
testing.

Testing can be characterized as a “black box”
experiment. Each black box has an associated set
of input and output terminals. The correct func-
tioning of the black box must be determined by
applying stimuli to the input terminals and ob-
serving responses on the output terminals, called
terminal characteristics. The terminal character-
istics may be electrical (such as a straight-line
relationship between voltage and current for a
resistor), combinational (such as an AND gate),
sequential (such as a counter), or even complex
systems (such as a microprocessor on a chip). As
the functions of the component become more
complex the testing problem becomes critical,
for there is less direct control and less direct
observability of internal behavior. Manipulation
of external inputs must establish a certain condi-
tion in a component deep in the recesses of the
black box, and the outputs of that component
must be propagated to the output terminals.
With increasing system complexity, not only are
there more components, but each component is
also harder to test.

Testing covers multiple activities, not just
maintenance, during the life of a digital system.
Table 4-1, reproduced from Chapter 1, depicts
the stages in the life of a system. During the
specification and design phase the faults of most
concern are logic errors in the algorithms. Dur-
ing prototype development there can be any
number of failures. Logical design errors, wiring
mistakes, or incorrect timing can lead to differ-
ent functional behavior. Failed components can
also cause altered functional behavior. The for-
mer, designated as a logical fault, can be signifi-

183

184 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-1. Stages in the development of a system.

Error Detection

Stage Error Sources Techniques
Specification Algorithm Simulation
and design design
Formal Consistency
specification checks
Prototype Algorithm Stimulus/
design response testing
Wiring and
assembly
Timing
Component
failure
Manufacture Wiring and System testing
assembly
Component Diagnostics
failure
Installation Assembly System testing
Component Diagnostics
failure
Operational Component Diagnostics
field failure
Operator errors
Environmental
factors

cantly more difficult to test than the latter,
termed a structural fault. With logical faults, the
proper algorithm must be ultimately distin-
guished from any arbitrary algorithm. Here test-
ing involves many similarities to proving pro-
grams correct; however, given a correct design,
there are many fewer faulty behaviors due to a
malfunction. The component interconnections
limit the number of realizable faulty behaviors.
In prototype development, the final errors in
the design and proposed implementation are
sought by testing. Physical connectivity may
cause timing errors and coupling between multi-
ple signal lines. Subjecting a small number of
systems to design maturity testing (described in

Chapter 1) establishes baseline failure manifesta-
tions and MTTF.

During manufacturing and installation the
main goal is acceptance testing. At this stage,
problems of design have been resolved, and
testing focuses on mass-produced black boxes.
The faults are primarily structural, but there may
be any number of them resulting from the assem-
bly process.

When an installed system malfunctions, main-
tenance testing is used to isolate and repair
faults. This is perhaps the easiest form of testing,
for at this stage there are usually few structural
faults. Frequently, maintenance tests are run
during system idle time to detect failures and
increase confidence in the correct functioning of
the system. As mentioned in Chapter 1, there is
a significant trend toward remote diagnosis, ei-
ther to pinpoint failures before dispatching field
service personnel or to issue instructions for
customer repair.

At any of the stages of system life, testing can
occur at each level in the system hierarchy
defined in Chapter 1 (circuit, logical, program,
and system). Figure 4-1 classifies the types of
testing typically performed at each stage. The
figure has been simplified by combining the
design/prototype and installation/operational
stages and the logical/instruction set levels.

It is extremely important to understand at
what level and stage a testing technique is aimed.
Chapter 1 briefly discussed system-level testing
at all three stages presented in Figure 4-1. This
chapter focuses on logic-level testing at the pro-
duction and operational stages. Maintainability
techniques for discovering faults during field
operation can frequently also be used to isolate
defects during the production stage.

PRODUCTION

As pointed out in Chapter 1, defects should be
located and eliminated at the earliest possible
stage of production; the cost of a defect in-
creases by a factor of 10 with each inspection
stage that fails to identify it [Hotchkiss, 1979;

MAINTAINABILITY AND TESTING TECHNIQUES 185

s Design maturity Process maturity Synthetic load/

ystem test test remote diagnosis

T’ . .

2 Logic Simulation) Acce.ptal?ce test'/ Diagnostics/

3 incoming inspection built-in test

Circuit Simulation Parametric Margining
Design Production Operational
Stage
Figure 4-1. Testing as a function of system level and time.

Craig, 1980]. Figure 4-2, reproduced here from
Chapter 1, shows the typical steps in the manu-
facturing process.

|

Incoming
component
inspection I
Printed
circuit
board
fabrication
Backplane Board Pr}nt@{l
assembly assembly bg:arrcdutlest
Board
Backplane inspection
test and functional
test
System
assembly
System
test

Figure 4-2. Typical steps in the manufacture of a
digital system. (© 1979 IEEE.)

Parametric Testing

At the circuit level, incoming inspection may
vary from simple electrical parametric and func-
tional tests to stress-tests that force infant mor-
talities. Stress testing can include vibration, over-
voltage, burn-in, and thermal shock (see Chapter
2). The more extensive the testing, the more
costly the incoming inspection. For mass-pro-
duced, low-cost systems, incoming inspection is
often less than 100 percent because only ran-
domly selected lots are tested.

Table 4-2 lists some typical parametric tests
used to determine whether components meet
vendors’ electrical specifications. Figure 4-3 illus-
trates a computer-driven test station for driving
and measuring electrical parameters [Howard
and Nahourai, 1978]. A relay matrix is used to
configure the sources and measuring instruments
to the pin configuration of the unit under test.
Parametric testing is most often done by the IC
manufacturer or by a system house when it
initially qualifies an IC vendor’s process.

Acceptance Testing

The largest body of theory has been developed
for logic-level acceptance testing. Usually single
structural stuck-at-logical-0/1 faults are as-
sumed. A means must be provided for generating
stimulus and checking responses in the Unit
Under Test (UUT). Table 4-3 categorizes the
varied approaches to testing. In general, any

186 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-2. Typical MOS parametric tests.

Gate-oxide breakdown voltage
Drain-to-substrate breakdown voltage
Drain-to-source punchthrough voltage
Gate-to-source threshold voltage

Drain current at 0 gate voltage

Drain current at specified operating voltage
Gate-to-source leakage current
Drain-to-substrate leakage current
Transconductance at specified operating voltage

Drain-source resistance

stimulus generation approach could be used with
any response checking approach; however, cer-
tain stimulus/response approach pairs have been
more widely adopted than others.

The stimulus/response can.be generated off-
chip or on-chip. If off-chip, they may be dynam-
ically generated or precomputed and stored.
Table 4-3 provides the framework for discussion
of the various testing approaches developed.

The simplest form of response checking is to
compare the outputs of the UUT with those of a

known good component (exclusive OR testing).
The input stimuli could be generated by incre-
menting a counter to produce all possible combi-
nations (exhaustive testing). Exhaustive testing is
practical for only the smallest circuits. Williams
and Parker [1979] give an example of an exhaus-
tive test of an LSI circuit with » inputs and m
latches, which requires a minimum of 2"*" tests.
For n = 25and m = 50 there are 27> = 3.8
x 10%? patterns. At 1 microsecond per pattern
the test would require over a billion years.
Alternatively, the stimuli could be generated
randomly (probabilistic testing). In probabilistic
testing, a predetermined number of inputs are
generated and properties of the output observed.
The output properties are then compared with
stored characteristics of the good circuit. This
response checking is termed compact testing
because responses are not stored or checked in
detail; only summary statistics are checked.
Summary statistics include counting the number
of 1s produced and/or the number of transitions.
If the count exceeds a predetermined threshold,
the component is declared functional. The num-
ber, arrived at statistically, is chosen to yield a
specific confidence level [Williams and Parker,

Voltage
source

Serial bus

CPU Control unit

Current
source

Voltmeter

Test station

Relay matrix

Ammeter

Other sources
and
measuring
instruments

Figure 4-3. Block diagram of an automated parametric test system.

MAINTAINABILITY AND TESTING TECHNIQUES 187

fable 4-3. Approaches to stimulus generation
ind response checking.

stimulus Generation Response Checking

ixhaustive Exclusive OR
Random Stored
Compact testing
Transition counting
Signature analysis
stored
Simulation Predicted response
Deductive
Parallel Fault dictionary
Concurrent
Algorithmically
generated
Algebraic
Boolean
difference

Path sensitization
D-algorithm

In-chip On-chip

1979]. A variation of compact testing is signature
inalysis [Nadig, 1977]. In signature analysis, a
iet of known inputs is dynamically applied to the
JUT. The outputs are either displayed for visual
:omparison with a known good pattern or sensed
»y computer for comparison with a stored pat-
ern. If the patterns produced by the most likely

ailures are stored, signature analysis can also be

1sed for fault diagnosis. Often output patterns
wre summarized by feeding the sequence of out-
»uts into Feedback Shift Registers (FSR), such
1s those used in the generation and checking of
ierial codes (see Chapter 3). The FSR output is a
‘unction of all the response bits, no matter how
ong the test sequence may be. Although theoret-
cally appealing, compact testing in practice
1sually provides low fault coverage. In any
:vent, the fault coverage is extremely hard to

estimate. Consequently, effort has focused on the
systematic generation of input stimuli.

Systematic test-set generation starts with a list
of all faults of concern. The fault set usually
consists of all single stuck-at-logical 0/1 faults. A
test for each fault is generated in turn. Once a
fault list and set of tests have been generated, it
is possible to select a minimal set of tests to
detect all faults or to determine which fault is
present [Kautz, 1968].

Tests can be generated by simulation, alge-
braic methods, and path sensitization. In simula-
tion, faults are inserted into the simulation of the
circuit. Both the faulty and the good circuit are
simulated until their outputs differ [Seshu and
Freeman, 1962]. This is primarily a trial-and-
error approach. Faulty behavior may be deduced
from a logic simulator by comparing the simulat-
ed output of each component with the faulted
output. Alternatively, the nonfaulty and several
faulty circuits could be simulated and compared
in parallel. In concurrent simulation, circuit
components are copied and simulated every time
the faulty output differs from the good circuit
[Grason and Nagle, 1980].

For each test, the predicted output is stored
for use in response checking. If the responses of
faulty and good circuits are tabulated into a fault
dictionary, field service personnel can use the
dictionary to diagnose to the field replaceable
unit. Chang, Smith, and Walford [1974] describe
the LAMP system used to create fault dictionar-
ies for the computers used in the Bell System.

An alternative to simulation is algorithmic
generation of the stimulus. One algorithmic ap-
proach is based upon an algebra of differences.
Sellers, Hsiao, and Bearnson [1968a] and Suss-
kind [1972] describe an algebraic approach
called the Boolean Difference. Figure 4-4 illus-
trates a circuit and a minimal test set for all
single stuck-at faults (see Appendix C). Each line
has a separate identification number and can be
stuck-at either logical 0 or 1. The abstract model
makes no assumption about electrical connectiv-
ity; thus, a stuck-at fault on line 5 does not imply

188 THE THEORY OF RELIABLE SYSTEM DESIGN

Y
>)

c ¢D7__D

Test set

Figure 4—4. A circuit for test generation.

Table 44. The D-algorithm definition of elementary gate functions in terms of
the symbol D.

AND OR
Input 1 Input 2 Output Input 1 Input 2 Output
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0
1 D D 1 D 1
D 1 D D 1 1
1 D D] D 1
D 1 D D 1 1
0 D 0 0 D D
D 0 0 D 0 D
0 D 0 0 D D
D 0 0 D 0 D
D D D D D D
D D D D D D
D D 0 D D 1
D D 0 D D 1
Inverter
Input Output

oo~
ool—o

MAINTAINABILITY AND TESTING TECHNIQUES 189

anything about line 3. In practice, certain faults,
such as an open metalization, will comply with
this abstraction while others, such as a short-to-
ground, may cause several lines to be in error.

A test for a fault is one in which the faulty
circuit’s output differs from that of the good
circuit. Consider line 5 stuck-at-1 in Figure 4-4.
The first test, 100, should produce an output of
0. With line 5 stuck-at-1, the output is 1. Hence,
100 is a test for line 5 stuck-at-1 (as well as for
other faults).

The Boolean Difference for a line, i, is defined
as the exclusive-OR of the function with line i
taking on the values of both 1 and 0:

dF A

- = F(XI,X2,...

o X X s e h X))
1

® F(x;,x0, s xi150,%4 1, ...%,)

The Boolean Difference generates all tests
such that a change in the value of x; results in a
change in the value of F. For the example in
Figure 4-4,

dr
dx; — () x4 + xgx7) ® x6x7

Setting dF/dxs = 1 yields all the tests for line 5.
1 = (x4 + xgx7) ® X6X7
= (X, + X)X + X7)x6 %7
+ (0 x4 + x6%7) (X + X7)
= X)X4Xg T X)XqXq
For x; x4X¢ = 110, F = x5, and for x; x4 %; =
110, F = x5. The corresponding input tests are:
ABC = 100 for x5 stuck-at-1 and
ABC = 101 for x5 stuck-at-0.

Path sensitization techniques are essentially an
intelligent form of simulation. In path sensitiza-
tion, all components along a path from the fault
to an output are placed in a state such that the
output changes value only as a function of the

value of the faulty component. To complete the
test, the conditions to sensitize the path are
driven back, by means of consistency checks, to
corresponding conditions on the network inputs.
In all these methods, once a test has been
generated, a post process determines which other
faults in the fault list have also been detected
and eliminates them from the list. In Figure 4-4,
in order to propagate x5 to the output, lines 1
and 4 have to be 1 and line 9 has to be 0. Driving
these values back toward the circuit inputs im-
plies that 4 = 1, B = 0.

The path sensitization approach has been for-
malized in the D-algorithm [Roth, 1966; Roth,
Bouricius, and Schneider, 1967]. A symbol, D, is
defined to be equal to 1 in the good circuit and
to 0 in a bad circuit (D is 0 in the good circuit
and 1 in a bad circuit). Each elementary gate has
its function redefined in terms of the symbol D,
as shown in Table 4-4. First D is placed on the
line for which a test is to be generated, and then
propagated to circuit outputs one step at a time.
An implication step sets values on other circuit
lines required to realize the state specified by the
propagation step. The propagation/implication
cycle is repeated until either D or D is propa-
gated te the circuit outputs. If at least one test
exists, the D-algorithm is guaranteed to find one.

Starting with D on line 5 (line 5 stuck-at-1) of
Figure 4-4, the three propagation steps from line
5 to line 8 to line 10 could be tabulated as shown
in Figure 4-5. The D is propagated through each
elementary gate in turn without regard to the
state of other gates. The implication steps assign
values to other circuit lines. For example, in
order for line 8 to take a value D, lines 1 and 4
must be 1. Line 4 being 1 implies line 2 being 0.
Contradictions (such as a line taking on both a 0
and a 1 value) signal the nonexistence of a test.

In any algorithmic test-generation technique,
once a test for a fault has been found, the list of
faults the test has detected is compared with the
original fault list. Tested faults are thus removed
and the fault list shortened. Significant work has
been done to reduce the length of the original

190

THE THEORY OF RELIABLE SYSTEM DESIGN
Line

Step 12 4 5 6 7 8 9 10
Initial test on Line 5 X x x D x x x x x
Implication on other _ _
gate inputs x X D «x D «x X X X X
Propagate to Line 8 x x D x D x «x D x «x
Implication on other -~ - -~
gate inputs 1 0 D 1 D x X D «x X
Propagate to Line 10 1 0 D 1 D x «x D «x D
Implication on other - B -~
gate inputs 1 0 D 1 D 0 o D o D

a. Forward propagation and implication

A B C|F
1 0 D|D
b. Test

Figure 4-5. The D-algorithm applied to Line 5 stuck-at-1 in Figure 4-4.

fault list by grouping faults into equivalence
classes (that is, members of the class are indistin-
guishable) [McCluskey and Clegg, 1971].

Figure 4-6 shows the relationships among six
faults for a two-input AND gate and their re-
spective test sets. The test set for lines 1, 2, and
3 stuck-at-0 is the same. Hence, these are equiv-
alent faults and it is sufficient to generate a test
for only one of them. Another relationship be-
tween faults is that of dominance. Because the
test set for line 3 stuck-at-1 includes the tests for
lines 1 and 2 stuck-at-1, line 3 stuck-at-1 domi-
nates those two faults. The dominating fault is
automatically tested for if all the dominated
faults are tested. Thus, instead of six faults on
the original fault list for this two-input AND
gate, only three are required: line 3 s-a-0, line 1
s-a-1, and line 2 s-a-1. In general, for elementary
gates of N inputs, only N + 1 faults need to be
on the original fault list instead of the 2(N + 1)
single faults, provided the single-fault assump-
tion is being used. The reduction of fault lists for
multiple faults has also been addressed [Bossen
and Hong, 1971]. Circuits exist, however, for
which a test set for all single structural faults will
not detect certain multiple faults. Fault models
other than s-a-0, s-a-1 have also been used. The

bridging fault, frequently caused by a solder
bridge, is a common fault type in digital system
fabrication [Mei, 1974].

Special fault models developed for memories
look for sensitivity to multiple-bit patterns. Ta-
ble 4-5 lists some of these tests and their com-
plexity as a function of the number of bits.

Test-set generation algorithms based on gate
level and the stuck-at fault model are not appli-
cable to VLSI complexity. Williams and Parker
[1979] have observed that the computer run time
to perform test generation and fault simulation is
related to the number of logic gates by a cubic
law: '

T = kn?

Hence, there have been efforts to test systems at
higher levels of functionality [Breuer and Fried-
man, 1980; Thatte and Abraham, 1978]. The
purpose of functional testing is to validate the
correct functional operation of a digital system
with respect to its functional specification. Ideal-
ly the tests developed are based solely on the
specification and are capable of validating any
implementation that is alleged to perform the
specified function. Functional testing not only

MAINTAINABILITY AND TESTING TECHNIQUES 191

1
—’j} Fault Test
3] { 1 sa0 1

Equivalent 2 s-a-0 n
3 s-a-0 n

Domi d { 1 s-a-1 01
ominate 2 sa- 10

Dominating { 3 s-a-1 01,10,00

Figure 4-6.
among faults.

Equivalence and dominance relations

reduces test-generation complexity, but also, be-
ing free of implementation details, allows one
test set to serve for implementations produced by
multiple vendors. Indeed, manufacturers of LSI
chips will not release the implementation details
of their chips lest they be copied. Thus, the user
of LSI chips who by necessity deals with multiple
sources has no recourse but functional testing.
The literature abounds with surveys on test-set
generation: Breuer and Friedman [1976], Chang,
Manning, and Metze [1970], Friedman and Me-
non [1971], Hennie [1968], and Bennetts and
Lewin [1971] are examples. More recent research
has focused on generating tests and checking
responses directly on the semiconductor chip, so
that chips could test themselves without reliance
on external support. Such self-testing chips could
alleviate both production and operational test-
ing. One approach [Bozorgui-Nesbat and
McCluskey, 1980] partitions the logic into small

Table 4-5. Tests for pattern sensitivities in
memory chips. (The test complexity is given in
terms of the number of memory bits.)

Test Complexity
Checkerboard pattern of Isand N

0s

Walking pattern N3/2
Galloping 1s and 0s (dynamic N?

test)

Ping pong N?

groups for exhaustive testing. A counter on the
group inputs generates all possible input combi-
nations. An FSR on the group’s output is com-
pared with a hard-wired constant to provide the
matching function.

Design for Testability

The discussion so far has focused on the problem
of “Given a circuit, derive a test set for it.” It has
long been recognized that it is easier to derive
test sets for some circuits than for others. At-
tempting to define easy-to-test properties has led
to a new discipline called design for testability.
Table 4-6 lists four stages of testability design.
Each stage has an increasing effect upon the
original design until ultimately a totally new
design is created. Bennetts and Scott [1976] (see
Appendix C) and Grason and Nagle [1980] dis-
cuss in detail techniques for each of these stages.
Only a cursory review will be provided here.
The first stage in testability is developing test
sets for an existing design. The faults assumed
are usually of the single stuck-at structural vari-
ety. The Boolean Difference and D-algorithm are
among the approaches used for combinational
circuits. Sequential circuits are more difficult to
test because of feedback. Approaches for combi-
national circuits have been extended to sequen-
tial circuits by replicating logic and treating the
sequential circuit as a cascade of combinational
circuits. Figure 4-7a depicts a typical sequential
circuit. In Figure 4-7b the combinational logic
has been replicated three times, representing
three transitions in the state of the original
circuit. The inputs in Figure 4-7b actually corre-
spond to a sequence of three inputs to the
original sequential circuit. Note that a single
fault in the original circuit (such as a stuck-at-1
on a next-state line) would correspond to a
multiple fault (a stuck-at-1 on all three copies of
the next-state line) in the expanded circuit. Fur-
thermore, there is no guarantee that the combi-
national logic test generation algorithms can find
a test in three state transitions. The whole proc-

192 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-6.

Stages in design for testability.

Stage

Combinational

Sequential

Test set for unmodified
circuit

Minimum modification to

existing circuit test points

Extensive modification to
existing circuit

Structural faults

Add a small number of

Improve controllability

Extension of combinational
approaches for structural
faults

Functional faults

Add synchronizing sequence
Add distinguishing sequence
Break selected feedback
Make combinational LSSD

Improve observability

New design

Reed-Muller expansion

Fail-safe design

Totally self-checking

circuits

ess may have to be repeated for multiple-state
transitions until a test, if any, can be found. The
increased number of faults to be considered and
the additional complexity of the replicated logic
make sequential circuit testing much more com-
plicated than combinational circuit testing.

Another approach to sequential testing is
based on a fault model that is different from the
structural model. The sequential circuit is repre-
sented as a functional state-table, regardless of
its implementation. Faults are simply changes in
the next state or the output for an entry in the
state table. Single structural faults may exist that
are not representable by a single functional fault,
and vice versa. The testing approach is to derive
a sequence that ensures that each state, and each
transition between states, exist. By assuming that
faults cannot introduce new states, a test se-
quence (on the order of N3 symbols, where N is
the number of states) is generated such that no
sequential machine of fewer states could respond
correctly [Hennie, 1964].

The next stage in testability adds a small
amount of logic to the existing circuit. For
combinational logic this usually takes the form
of insertion of a test point or control point. Test

points are added at critical positions (such as
flip-flop outputs, sources of large fan-out, buses,
deeply buried components) to increase observa-
bility. Control points (flip-flop inputs, large fan-
in points, buses, deeply buried information
paths) are added to increase control.

For sequential circuits, extra pins or logic may
be added to produce synchronizing (set circuit to
a known state) or distinguishing sequences. In
addition, feedback lines may be broken by the
insertion of independently controlled blocking
gates.

The third stage starts with the original circuit
but adds extensive modifications; any amount is
possible, but 5 to 20 percent is typical. If suffi-
cient logic is added, only three tests would be
required for combinational logic circuits [Ben-
netts and Scott, 1976]. Often, however, it is not
possible to make the extensive modifications,
and a more practical approach is required. Table
4-7, from Grason and Nagle [1980], summarizes
the types of added logic that can assist testing of
printed circuit boards.

Test points can utilize pins at the edge of
boards, sockets accessible to plug-in of automat-
ic test equipment, internal posts accessible by

MAINTAINABILITY AND TESTING TECHNIQUES 193
Inputs —f c smbinational [OUtPUts
logic Next state
a.
Input 2 Input 3
Input —+ Combinational [==> I—T Combinational [~ l‘—ﬂ Combinational {—=Output 3
logic Output 1 logic Output 2 logic

Initial 1 . 2 3
state — Next state 1 Next state 2 - Next state 3

b.

Figure 4-7. A sequential circuit replicated three times as a combinational

circuit.

clips, tristate drivers to break or connect a line,
and signal clips placed over an integrated circuit.
Pull-up resistors can be used to isolate power
supplies, providing constant logical values that
allow the line to be forced to the opposite logical
value.

Table 4-7. Design for testability-added hardware
types.

Test points
Edge connectors
Dual In-line Package (DIP) sockets
Terminal posts
Tristate drivers
IC clips
Pull-up resistors
Pin amplification
Input demultiplexers
Output multiplexers
Parity trees
Blocking gates
Control and observation switching
Disconnection structures
Edge connectors
DIP sockets
Tristate drivers
Blocking gates
Test-state register
Power-up reset
Scan-in/scan-out shift registers

A major problem is to provide enough pins for
observing/controlling the circuit. A small num-
ber of output pins can be driven by a multiplexer
so that a large number of internal points can be
sequentially observed. Likewise, a demultiplexer
on a set of inputs can be used to drive a large set
of controllability points. Parity trees can be used
to summarize the state of a large number of
points (like the on-board data reduction used in
signature analysis). Blocking gates can be used to
break feedback in sequential circuits or to parti-
tion a combinational circuit. Lines that are diffi-
cult to control/observe can be multiplexed with
an easily controlled/observed line. In test mode,
the easily controlled/observed line is tied directly
to the difficult line.

Often circuits are easier to test if they are
partitioned into smaller ones. Techniques similar
to test-point addition can be used to partition
(disconnect) the circuit. Circuit test-mode con-
trol information (such as the control of blocking
gates, tristate drivers, multiplexers) may be more
extensive than the number of test points that can
be added. Test-mode information is relatively
static and can often be derived from an on-board
test-state register. Finally, a power-up signal can
often be used to set a predetermined state into
the sequential logic.

194

As mentioned before, many sequential testing
strategies are based upon transforming the se-
quential circuit into a combinational circuit. One
such technique uses scan-in/scan-out shift regis-
ters and is termed Level Sensitive Scan Design
(LSSD) by IBM. Figure 4-8 illustrates the use of
LSSD in the IBM 4341 [Frechette and Tanner,
1979]. Every latch is replaced by a latch pair.
During normal operation the second latch is
invisible. During test mode, the latch pairs are
tied together into a shift register controlled by a
separate clock (in this case provided by a support
processor). The latch pairs partition the logic
into sections composed only of combinational
logic. In test-mode operation the test mode is set,
test input data are shifted in, the normal mode is
set, one system clock pulse is applied, the test
mode is set again, and the result of the test is
shifted out for analysis. LSSD makes the system

THE THEORY OF RELIABLE SYSTEM DESIGN

state almost completely observable and control-
lable. Test set generation is the same as for
combinational logic, for which there already
exist many practical results. Few extra pins are
required and IBM reports the extra logic cost to
be 5 to 20 percent. A major disadvantage is that
stimulus application and response checking is
slow. A variation of LSSD is the Visibility Bus,
which provides observability only in the
VAX-11/780 and VAX-11/750 (see Chapter 8).

Table 4-8 contains suggestions on where to
add hardware while Table 4-9 gives some design
guidelines for testability. Both tables are adapted
from Grason and Nagle [1980].

The final stage in design for testability is to
develop new designs with unique properties.
These designs should have a small test-set size
that is easy to generate. Bennetts and Scott
[1976] (see Appendix C) describe the Reed-

CPU clock —G
Support processor
clocks — A
— B
Scanned data in [}
C; —»
a—b o
utput J
Input i Combinational L,
logic
B
E_-' L - Output J + 1
Input i + 1 L Combinational
C | logic
A L, r
B
|
L, -
Combinational P
logic
Inputi + 2 — 5 A — f)cuatnned data

Figure 4-8. An example of LSSD.

MAINTAINABILITY AND TESTING TECHNIQUES 195

Table 4-8. Design for testability-added hardware location suggestions.

1. Make sequential circuit components such as coun-
ters, shift registers, and control flip-flops initializ-
able. Some ways of providing initializability are to
wire control signals or testpoints to component
clear or preset inputs, or to provide direct-load
capabilities. Do not tie both the set and preset
inputs of flip-flops to a common permanent logic
signal.

2. Make counter chains controllable and observable
in a reasonably short test sequence. For example,
break long counter chains during test mode by
inserting testpoints in the carry-propagate/count-
control lines. This is especially important in the
case of clock countdown circuits that are used to
provide control inputs for the rest of the circuit. In
the latter case it may even be wise to provide
testpoints to bypass the counters entirely during
portions of the test.

3. On-board clock oscillators should be made discon-
nectable during test. This can be done by discon-
necting their output with a testpoint or by socket-
ing them for removal during test.

4.1If one-shois are used, control and observe their
outputs with testpoints.

5.Try to break global feedback loops during test

mode. Blocking gates can be used for this, rather
than more costly testpoints.

6. Use added hardware to partition the circuit into
functionally independent subcircuits for testing.
This is especially important for separating digital
and analog subcircuits. One method is to place
testpoints between subcircuits.

7. Break reconvergent fan-out paths when they inter-
fere with testability.

8. Place testpoints at locations of high fan-out or
high fan-in.

9. Route logic drives of lamps and displays to test-
points so that the tester can check for correct
operation. Make keyboard and switch outputs
accessible to the test machine by breaking with
testpoints.

10. In circuits containing microprocessors and other
LSI devices, use testpoints to enhance controlla-
bility and observability of address buses and data
buses, important control signals such as the reset
and hold inputs to the microprocessor, and bus
tristate control. In particular, the address and data
terminals of RAMs and ROMs should be easily
accessible.

Muller expansion for realizing combinational
circuits. This test-set size and contents are de-
rived by inspection.

Some of the techniques described in Chapter 3
can be used for on-line testing. In particular,
Carter, Wadia, and Jessep [1972] introduce an
algebra for totally self-checking circuits and an
algorithm for producing them from the regular
Boolean description. The physical realization of
these circuits is usually twice as complex as
nonself-checking circuits (roughly comparable to
dual-rail logic or duplication). However, there
are important classes of these checkers that are
only about as complex as the nonredundant
Boolean realization. Anderson and Metze [1973]
explore such a class of check circuits for data
encoded in m-of-n codes (see Chapter 3).

For sequential machines, it is possible to en-

Table 4-9. Design for testability suggestions not
requiring added hardware.

1. Avoid the use of asynchronous sequential circuits.
Edge-triggered D-type flip-flops are preferable to
other types of flip-flops. These are synchronous,
and behave merely as clocked data delays during
testing.

2. Avoid one-shots when possible.
3. Avoid unnecessary wired-OR or wired-AND con-
nections. When these must be used, try to employ

gates from the same IC package to enhance fault
locations.

4. Use elements in the same IC package when de-
signing a series of inverters.

5. Try to assign gates in a feedback loop to the same
IC package.

196 THE THEORY OF RELIABLE SYSTEM DESIGN

code states such that the machine does not make
a mistake. There are two general approaches.
The first constructs the sequential machine such
that any error drives the machine into an error
state from which it cannot escape. Thus, the
machine remains in essentially a do-nothing
state and no further outputs are issued. The
second approach is the so-called fail-safe [Toh-
ma, Ohyama, and Sake, 1971] sequential ma-
chine. One of the two possible outputs is desig-
nated as fail-safe, and the occurrence of that
output is used in such a way that no damage is
done if that output is wrong. The other output
value can always be assumed correct, even in the
presence of a fault. Consider the example of a
traffic light, mentioned in Chapter 3 in the
section on fail-safe logic design. Whenever green
appears it is correct, even if there are internal
failures. When red appears it is either correct or
the result of an internal failure.

Several theoretical models have been devel-
oped for the application of tests to isolate a
faulty subsystem. The goal of these models is to
isolate the faulty component as quickly as possi-
ble [Brule, Johnson, and Kletsky, 1960; Chang,
1965, 1968]. If subsystems are given the capabil-
ity of diagnosing each other, then it becomes
possible to construct a system that could diag-
nose (and perhaps reconfigure) itself automati-
cally; but the application of test sets requires the
setting of inputs and observation of outputs. In
systems with parallel data paths, the “hooks”
necessary to set and observe results are many
bits wide and costly to implement; the number
of these hooks should be kept to a minimum.

Preparata, Metze, and Chien [1967] treat the
case of subsystem interconnection for diagnosis
when each subsystem is completely capable of
testing another subsystem. Kime [1970], combin-
ing the work of Kautz [1968] and Preparata,
Metze, Chien, extends the possible outcomes of
a test (passed, failed) to include the incomplete

test—a test whose output is indeterminate under.

the influence of a fault (that is, it is unknown
whether the test will pass or fail when the fault is
_present). This corresponds to a don’t-know con-

dition. Procedures for determining the diagnostic
resolution of a set of tests are developed. Subse-
quent work by Kime and others treats the cases
in which subsystems are not identical.

FIELD OPERATION

The final phase of system life is in the field. Field
service must respond to both real and customer-
perceived failures. Due to the complex nature of
systems, it is not unusual for the false-alarm rate
to be two to four times higher than the actual
fault rate. Therefore, one goal of design for
maintainability is to decrease the rate of false
alarm.

Another problem is illustrated by the typical
Time-To-Repair (TTR) distribution in Figure
4-9. It is not unusual for 5 percent of calls to
consume 35 percent of the time spent in repair.
This Time-To-Repair “tail” is very costly. Hard
failures are easy to diagnose and repair; more
subtle errors are often due to interactions be-
tween systems components and are also a func-
tion of system load. Diagnostics are unable to
reproduce the events leading up to the error.

When the Time-To-Repair a system has gone
beyond a threshold (typically, 4 hours), a second
person, usually a more experienced trouble-
shooter, can be dispatched to assist in the repair
process. Subsequently, a third and even a fourth
person might be dispatched in an attempt to
limit customer downtime. A more realistic view

-of the cost of repair is the number of labor hours

involved in repair; for example, two people for 1
hour yields 2 labor hours. Figure 4-10 depicts a
typical labor-hour-to-repair (LH) distribution
corresponding to the TTR distribution in Figure
4-9. The tail on the LH due to problem systems
is even more pronounced than the TTR tail
Hence, the second goal of design for maintaina-
bility is to decrease the tails on the TTR (affect-
ing customer downtime) and LH (affecting cost
of maintenance) distributions.

The maintenance philosophy is a function of
the total set of design decisions, including design
choices for fault tolerance and design for testa-

Percent

Percent

MAINTAINABILITY AND TESTING TECHNIQUES
25
"
Mean 4.4 |
20 oy Median 2.0 I
/-Number of calls ‘
1
15 |
|
|
|
10+ -— |
| o |
i-—-' - -/- Repair time |
1__ i
5 I——I -:
| B N, —
| e -
e d H
i 1 1 1 1 1 1] 1]] 1 1] 1 1 1 11 }
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 +
Hours to repair
figure 4-9. Time To Repair (TTR) distribution.
35 —
|
I |
|
30+ :
|
(
251 :
|
Mean 6.3 !
20+ Median 3.0
Number of calls I
|
15+
|
10 - !
-
-ll | Labor ti t i
- —_— - abor time to repair
5 | S . /— S
'—_—l —— — —
! T e TR ,
I ———
1 1 1 1 | 1]]] 1] 1 1] 1] 1 L
0 1 2 3 4 5 6 7 8 9 10 1 1 13 14 15 16 17 18 19 20 +

Labor hours to repair

Figure 4-10. Labor Hour to Repair (LH) distribution.

197

198 THE THEORY OF RELIABLE SYSTEM DESIGN

bility. The great variety of possible combinations
of design choices makes it very difficult to pro-
vide a comprehensive set of guidelines for design
for maintainability. Table 4-10 is an incomplete,
unordered list that may be used to stimulate the
generation of ideas.

Once a suspect subsystem has been identified
(through error detection logic, periodic diagnos-
tics, error reports, and the like), the first consid-
eration is to determine whether a fault is actually
present. Verification should start with the smali-
est set of logic that can perform useful functions.
In a processor, the minimum functionality might
be execution of move constant, compare, and
branch instructions. Functions are verified incre-
mentally.

Each subsystem should be testable as a stand-
alone environment. For example, communica-
tions devices should have a test mode that wraps
the sending port around to a receiving port. The
sending and receiving logic can be tested without
the aid of other subsystems. '

Table 4-10. Suggestions on design for
maintainability.

1. Start small. Verify subsystem operation step by
step, from the minimal logic configuration through
the addition of each incremental function.

2. Provide isolated environments so that each sub-
system is completely exercised without requiring
other subsystems.

3. Provide subsystem self tesfs, including tests of
error-detection circuitry.

4. Provide internal observability and controllability
in subsystems.

5. Provide error reporting and logging.

6. Minimize the need for external test equipment
such as logic state analyzers and probes.

7. Provide a cabinet structure that facilitates repair.

8. Base repair strategies on component replacement,
not on component swap.

9. Provide a supporf processor and remote access for
diagnosis.

Because of the availability of low-cost LSI
technology, most subsystems have at least one
microprocessor. The addition of a microproces-
sor simplifies the design of self-tests for the
subsystem. These tests should include the micro-

-processor (checksumming its memory) as well as

error detection/reporting circuitry that is nor-
mally not exercised.

Suggestions 4 and 5 in Table 4-10 attempt to
provide information that will eliminate lengthy
repairs. The fourth suggestion is to increase
observability and controllability of internal sig-
nals (as with the LSSD and Visibility Bus dis-
cussed under design for testability) and the fifth
suggestion is to provide error logging and report-
ing. Often a diagnostic program cannot recreate
an error event because it does not stress the
system in the same way that the operational
program does. Indeed, often the operational pro-
gram is the best diagnostic. Error logging cap-
tures information about the state of the system at
the time of the error, thus providing clues to the
source of the error. Error logging makes it possi-
ble to perform automatic trend analysis. A pro-
gram can periodically scan the error log looking
for patterns (such as multiple-read retries to one
head of a disk). Trend analysis can be used in all
systems, whether they contain little or extensive
error-detection logic.

Suggestions 6 through 8 are aimed at the
repair process itself. The use of external test
equipment should be minimized or eliminated.
Such test equipment is difficult to transport,
time-consuming to hook up, and may perturb the
system to the point of masking the fault. Even
options such as a diagndstics control store
should be avoided, because its installation
changes the system configuration (perhaps even
necessitating removal of a board to make room).
A very important factor in maintenance is the
selection of a Field-Replaceable Unit (FRU).
Typically FRUs are printed circuit boards or
LSI chips. The physical layout of the system
should provide for easy access and replacement
of the FRUs. If the maintenance strategy calls

MAINTAINABILITY AND TESTING TECHNIQUES 199

for verification with the cabinet open or the
FRU on an extender board, the subsystem
should operate correctly under these conditions
(power should still be applied and timing mar-
gins still met). If on-line repair is mandated, care
should be taken to minimize human error, such
as the switching off of the wrong power supply.
Telettra builds telephone switching equipment
that supports on-line repair [Morganti, 1978].
The power pins on each card are slightly longer
than the signal pins. Furthermore, there is
enough mechanical resistance in card insertion
to allow enough time for capacitors to charge up
and electrical equilibrium to be reached prior to
logic-signal contact with the rest of the system.
On removal, the logic signals are disconnected
prior to power disruption. The cards are keyed to
prevent incorrect orientation or insertion into the
incorrect slot; thus, there are never any ill-
formed logic signals in the system due to the
insertion/removal of a card. In addition, the
processor is logically notified when a card is not
present.

Above all, the repair strategy should be one of
replacement rather than swap. In replacement
the faulty FRU is uniquely identified. FRU
swapping, sometimes called the “shotgun” ap-
proach, removes and substitutes several compo-
nents at a time. Mostly on the basis of guess-
work, components are substituted, sometimes en
masse, until the system again functions properly.
Swapping increases TTR/LH averages and
spare-inventory costs. More spare FRUs are
required because all removed FRUSs are suspect.
The workload on repair facilities is also in-
creased. The swapping strategy was popular in
the early days of computing, but it is no longer
economically justifiable with today’s more com-
plex systems.

The final suggestion in the list is to provide a
support processor to serve as a hub for mainte-
nance activities. When provided with remote
access, the support processor can help eliminate
tails on the TTR and LH distributions and
decrease both. Given an average transit time of

one hour from a field service office to a customer
site and a TTR of two hours, an average field
service engineer can make two repairs per day.
Even if the TTR were halved there would still be
only two repairs per day because of the con-
straint of an eight-hour work day. Thus, savings
can be realized by reducing transit time and
eliminating false alarms through use of remote
diagnosis (RD). As described in Chapter 1, con-
sider a PDP-11/70 system with an RD option.
When a customer perceives a failure, the data
disk is dismounted, a diagnostic disk is mounted,
the RD option is switched to remote and the
customer telephones the PDP-11/70 diagnostic
center, which dials up the target PDP-11/70. The
RD option gives the engineer visibility to the
implementation registers, microsequencer, back-
plane bus, and other internal components. The
engineer can then run and interpret diagnostics
as if on-site. The RD option greatly reduces false
alarms. The experience of the RD center person-
nel tends to ensure that the field engineer is

- dispatched with the appropriate repair kit and

expertise. Multiple trips for additional spare
parts or additional expertise are greatly reduced.
The RD center can also run extensive diagnos-
tics under control of an RD computer when the
customer is not using his computer. For remote
diagnosis to be most effective, the system should
be designed with RD in mind.

The IBM 4341 also uses a support processor to
perform on-line analysis of errors [Frechette and
Tanner, 1979]. The maintenance and support
processor logs environmental factors such as
power-line transients, electrostatic discharge,
and internal machine temperatures. The 4341
processor is implemented using the Level Sensi-
tive Scan Design (LSSD) technique. There are
approximately 5,000 latch pairs in the CPU, 300
of which are used solely to aid fault diagnosis. In
the diagnostic mode, the data latch is transferred
to the scan latch, capturing the state of the
machine for the support processor. The latch
pairs are linked together to form shift registers
called scan rings. The support processor subse-

200 THE THEORY OF RELIABLE SYSTEM DESIGN

quently can serially shift out the scan latch data.
Thus, when the checking circuitry detects an
error dynamically (such as with parity or dupli-
cation), the state of the machine is captured.
There is no need to recreate the failure.

When error notification occurs, the support
processor reads the scan latches, determines the
error type, attempts recovery via retry for tran-
sient errors, records failure information in an
error log on a diskette, and, in the case of hard
faults, invokes error-log analysis microcode,
whose 17,000 bytes analyze the error logs to
identify the faulty FRU.

REFERENCES

Anderson and Metze [1973]; Bennetts and Lewin
[1971]; Bennetts and Scott [1976]; Bossen and Hong
[1971]; Bozorgui-Nesbat and McCluskey [1980];
Breuer and Friedman [1976, 1980]; Brule, Johnson,
and Kletsky [1960]; Carter, Wadia, and Jessep [1972];
Chang [1965, 1968]; Chang, Manning, and Metze
[1970]; Chang, Smith, and Walford [1974]; Craig
[1980]; Frechette and Tanner [1979]; Friedman and
Menon [1971]; Grason and Nagle [1980]; Hennie
[1964, 1968]; Hotchkiss [1979]; Howard and Nahourai
[1978]; Kautz [1968]; Kime [1970]; Lesser and Shed-
letsky [1980]; McCluskey and Clegg [1971]; Mei
[1974); Morganti [1978]; Nadig [1977]; Preparata,
Metze, and Chien [1967]; Roth [1966]; Roth, Bouri-
cius, and Schneider [1967]; Sellers, Hsiao, and Bearn-
son [1968a]; Seshu and Freeman [1962]; Susskind
[1972]; Thatte and Abraham [1978]; Tohma, Ohyama,
and Sake [1971]; Williams and Parker [1979]

PROBLEMS

1. Assume incoming components have a defective

rate of 0.01.

a. Without incoming screening, what is the prob-
ability that a 500-chip system will be defective
after assembly?

b. What fraction of the defective components
would have to be removed by incoming screen-
ing if the probability that the 500-chip system
will not be defective is 0.8?

c. If the cost of screening incoming chips is one-
tenth the cost of loading a defective chip in
the assembled system, at what defect rate
(assuming screening is 100 percent effective)
is incoming screening more cost effective than
no screening?

2. Use the Boolean Difference to find all the tests in
the circuit below for:
Line 2 stuck-at-0
Line 6 stuck-at-0

A _._D1_‘

3

6
2
LBy

7

s

g N~
v 5

3. Use the D-algorithm to find a test for:
A stuck-at-1
Line 7 stuck-at-1
in the circuit of Question 2. What other faults do
these tests also detect?

4. Find a minimal test set for the circuit in Question
2. (Hint: This is a minimal cover problem; see
Kautz [1968] for further information if required.)

5. Create the Reed-Muller implementation for the
circuit in Question 2.

6. Create a controllable version of the circuit (Ap-
pendix C) and list the five required tests (including
control points) for the circuit in Question 2.

7. For the circuit pictured below, generate a test for:
a. Line 8 stuck-at-0
b. Line 1 stuck-at-0
Explain your approach in each case.

A 0 1

4

2 9
B'iD'" . 0 12

11

5

C 6 l\
L8

Evaluation Criteria

Stephen McConnel Daniel P. Siewiorek

Comparing redundancy techniques and making
subsequent design trade-offs require a method of
svaluation. Evaluation criteria are often loosely
-eferred to as reliability. Reliability, however,
;an mean many things. The difficulty arises in
the measurement and interpretation of reli-
ibility. To a businessman, a computer is reliable
when paychecks are printed on time and contain
a0 errors. To a scientist, the computer is reliable
f it has enough computing power available to
orocess experimental numerical data. A space
scientist considers a spacecraft’s on-board com-
suter reliable when the mission (perhaps years in
ength) is successfully completed. Finally, an
wirline on-board control computer is considered
-eliable if it makes no decisions with fatal conse-
juences. The major difference among these users
s the application-dependent interpretation of
what a reliable system does. The great variety of
ipplications has engendered a large number of
-eliability measures, both quantitative and quali-
ative. Often several measures are required to
lescribe a system adequately.

This chapter introduces several criteria for
svaluating the dependability of computing struc-
-ures. The chapter also develops techniques for
nodeling such structures in order to obtain
-easonable predictions for those criteria. These
nodels typically divide a computer into various
substructures that are easier to study than the
wvhole system. There are certain levels at which it
s customary to model systems.

The highest level of modeling is the sysiem
evel, at which the entire system is considered as
1 black box. After statistics are gathered about
svents such as failures of a certain kind, a model

201

202 THE THEORY OF RELIABLE SYSTEM DESIGN

can be suggested to fit the data as closely as
possible. Modeling at this level requires an enor-
mous amount of data.

At the next level, the module level. the system
is subdivided into several modules that have
mutually independent fatlures. The system mod-
el is obtained by a composite of the models for
the modules.

The next lowest level is the gate level. It is
seldom necessary to model a system below the
gate level. However, if the redundancy is intro-
duced at a lower level, the component level of
modeling is required, where components are
such items as transistors, diodes, and resistors.
The failure rate and reliability functions of indi-
vidual components were discussed in Chapter 2.

Modeling is most often performed at the mod-
ule level. Redundant systems are then modeled in
terms of their nonredundant subsystems.

SURVLEY OF EVALUATION
CRITERIA

Hardware Evaluation
Deterministic Model

Table 5-1 lists several evaluation criteria for
system reliability. The simplest is the determinis-
tic model. In this model, the minimum number
of component failures that can be tolerated
without system failure is taken as the figure of
merit for the system. Deterministic modeling can
result in wasted resources and unbalanced sys-
tem design because highly reliable components
must be replicated as many times as the low-
reliability components. The only common use of
the deterministic model in practice is to specify
that no single component failure should cause
the system to fail.

Probabilistic Models

Probabilistic Functions. Thus probabilistic
modeling, based on relative component failure

Table 5-1.
reliability.

Evaluation criteria for system

Deterministic
Survive at least Xk component failures

Probabilistic functions
Hazard (failure rate) function—z(7)
Reliability—R(7)
Mission Time—MT(r)
Repair rate—p
Availability—A(r)

Single parameters (probabilistic)
Mean Time To Failure—MTTF
Mean Time To Repair—MTTR
Mean Time Between Failures—MTBF
Coverage

Comparative measures (probabilistic)
Reliability difference

ility dif Ry (1) = R (1)
Reliability gain 3

Ry (1) /Ry (1

Mission Time Improvement MT(r)/MT(r)

and repair rates, is the most often used. Failure
rates of electronic devices vary with time, as
shown in Figure 1-4. (The theory behind hard-
ware component failure rates was discussed in
Chapter 2.) This time-dependent failure rate is
called a hazard function, denoted as z(r). The
hazard function is sometimes called the hazard
rate or the force of mortality, and is usually
measured in failures per million hours. For a
known distribution,

A pdf
20 = 7=CpF
For electronic components on the normal-life
portion of the bathtub curve, the failure rate is

assumed to be constant. This means that the
exponential hazard function is applicable:

() =\

For the periods of infant mortality and compo-
nent wearout, the Weibull hazard function is
often used:

2(f) = aAA)*!

(As noted in Chapter 2, the exponential function
is equivalent to the Weibull function with «
equal to one.) The Weibull shape parameter «
and the scale parameter A (used in both hazard
functions), are constants specific to a particular
component.

For the nonredundant constant-failure-rate
model, the system hazard function is the sum of
the component failure rates. For the combina-
tion of Weibull processes and for redundant
systems with either model, the relationship is
much more complex.

The hazard function is easy to measure in
ascertaining the operational reliability of physi-
cal systems, because it can be calculated from a
histogram of times between failures.

In keeping with the probabilistic nature of the
concepts of failure rate and hazard function, the
failure of electronic components is assumed to
follow a general Poisson distribution:

+ Probability of one failure during an interval A is
approximately z(f)At.

+ Probability of two or more failures during an inter-

val At is negligible.

Failures are independent.

Defining m(f) = f5 z(x)dx, Ross [1972] has
shown that the probability of k failures in time
[0,t] is given by

e [m(n)*

k!

The expected value (or mean) of the number of
failures in time [0, t] is

o0 e—m(t) m k
p § RSO,

The variance is
Var [k] = E[k?] - (E[k])* = m(1) = E[K]
For a constant failure rate A, m(f) = Az. Thus,
-\t k
Pr {k failures in time [0,7]} = e_k(')_t)_

E[k] = Var[k] = Xt

EVALUATION CRITERIA 203

For the Weibull hazard function z(¢)
= aAA)* ", m(r) = (\1)*. Therefore,

e—(}\()“ ()\t)ka
k!

E[k] = Var [k] = (\)®

Pr {k failures in time [0,¢]} =

The reliability function R(r) of a system is
mathematically defined as the probability that
the system will perform satisfactorily from time
zero to time ¢, given that operation commences
successfully at time zero. It is a monotonically
decreasing function whose initial value is one.
The reliability function can be used to derive
many of the other reliability measures detailed
below.

Given the general Poisson distribution devel-
oped above, the reliability function for a single
component becomes:

R(?) 2 pr {0 failures in time [0, 7]}

= M)

For a constant failure rate, substitute Az for m(z).
Then,

R(t) = e™

If a system does not contain any redundancy—
that is, if every component must function prop-
erly for the system to work—and if component
failures are statistically independent, then the
system reliability is the product of the compo-
nent reliabilities and is thus also exponential.
Furthermore, the failure rate of the system is the
sum of the failure rates of the individual compo-
nents. Therefore,

%M=ﬁRM=ﬁém=g@Q

i=1 i=1

where there are n components.
For the Weibull hazard function, substitute
(A)* for m(z):

R()) = ™"
The Weibull model is more flexible but less

204 THE THEORY OF RELIABLE SYSTEM DESIGN

“tractable than the exponential when large groups
of components are involved. The reliability func-
tion for a group of components is:

R (1) = e [;, O ,,‘.,]

The sum must be performed for each new value
of ¢, resulting in lengthy calculations. It is also
difficult, if not impossible, to integrate analyti-
cally, which affects the other reliability measures
discussed below.

For the general hazard function, recall that
m(t) = fy z(x)dx. Thus,

R([) _ e*j(.)’z(x)d.x

Ry (1) = e [igl% z'(X)dX)]

As noted earlier, the Weibull function is more
accurate than the exponential function for com-
ponents subject to wear and aging (increasing
failure rates) or those that improve with time, as
the weaker members of the population are culled
out (decreasing failure rates). When extremely
accurate reliability predictions are needed, sam-
ple components are tested to find the underlying
distribution (Weibull or otherwise) and the value
of pertinent parameters. This is necessary be-
cause different kinds of components experience
different distributions, as do similar components
from different manufacturing lots or manufac-
turers.

For systems with stringent reliability require-
ments, a different but related measure is some-
times used. The mission time function MT(r)
gives the time at which system reliability falls
below the level r. The mission time function is
particularly well suited for applications with a
minimum lifetime requirement due either to im-
possible or prohibitively expensive repair or to
fixed intervals between maintenance. Such appli-
cations include spacecraft computers, undersea
cable repeaters, and commercial airliner avionics
systems.

The relationship between R(f) and MT(r) is
given by

RIMT(r)]l = r
MTI[R()] = ¢
For a constant failure rate (z(z) = A), the com-

ponent mission time function is easily shown to
be

—Inr

A

A nonredundant system with »n components
therefore has

MT(r) =

—In r

5

MT(r) =

For a more complex hazard function or for a
redundant system, the mission time function is
much more difficult to compute.

In most cases it is possible to repair or replace
failed components, and accurate models of sys-
tem reliability should take this into considera-
tion. Repair activity, however, is not as easily
modeled analytically as failure mechanisms.
Many factors affect the rate at which repair
occurs, including human ability, travel time,
diagnostic capabilities, and parts availability.
Despite the lack of strong theoretical backing,
probabilistic models usually assume a repair rate
analogous to the failure rate discussed already.
For the purposes of this text, the repair rate
function is treated similarly to the hazard (failure
rate) function and generally denoted z,(r). The
form and parameter values of this function can
be measured for existing systems or estimated
from experience with comparable situations. For
a Weibull repair rate function, p is used for the
scale parameter (= A in the failure rate function)
and B for the shape parameter (= « in the failure
rate function). The solution of a reliability model
with both failure and repair rates requires the use
of Markov models, discussed later in this chap-
ter. These models usually assume that repair of a
failed system restores it such that the failure rate
of the repaired system is the same as if no failure
had occurred. In the case of the exponential
model (constant hazard rate) process, this is

completely true. The assumption is less valid for
the Weibull process, but is usually made in order
to provide analytic solutions.

For systems that can be repaired, a new mea-
sure of reliability is often used: the probability
that the system is operational at any given time.
This measure, called availability, is expressed
symbolically as A(f). Availability A(z) differs
from :reliability R(f) in that any number of
system failures can have occurred prior to time ¢,
but the system is available if all those failures
have been repaired. Recall that with reliability
R(?), the system is considered reliable only if no
system failures have occurred prior to that time.
As a result, the availability function has a non-
zero constant (steady-state) term. For a constant
failure rate A and a constant repair rate y, the
steady-state availability can be expressed as

R
Ay = A+

The exact form of the availability function re-
quires the solution of the appropriate Markov

model which will be derived later in the chapter.

Single-Parameter Models. Reliability and
availability equations, even for simple systems
with repair, are often too complex to compre-
hend except (perhaps) in graphic form. There-
fore, single-parameter metrics have been
proposed to summarize these continuous-time
equations.

Mean Time To Failure (MTTF). Measuring the
Mean Time To Failure (MTTF) for components
was discussed in Chapter 2. As for components,
the MTTF of a system is the expected time of the
first system failure in a population of identical
systems given successful startup at time zero. It
assumes a new (perfect) system at time zero. For
the reliability functions used here, the MTTF is
defined as:

MTTF = [* R(t)dr

0

Reliability functions of complex redundant sys-
tems require numeric integration techniques, as

EVALUATION CRITERIA 205

do the Weibull reliability functions because of
their nonintegrability. However, the MTTF is
still relatively easy to determine by means of
numerical integration of the reliability function
on a computer. Although the MTTF, in theory,
applies only to a large population of systems, it
is also useful as a measure for a given design
(population of one).

For an example of MTTF calculation, consid-
er a nonredundant system with » components,
each with individual constant failure rate A;:

MTTF = J:o R(t)dr = fow ef(élx’)’ dt

Hence

MTTF = —
2N
i=1
This direct relationship between MTTF and the
system failure rate is one reason the constant-
failure-rate assumption is often made even when
supporting data are scanty.

Mean Time To Repair (MTTR). The Mean
Time To Repair (MTTR) is often used to mea-
sure the repairability of a system. It is the
expected time for repair of a failed system or
subsystem. MTTR is related to the repair rate
discussed above much as MTTF is related to the
failure rate. As with the repair rate, MTTR is not
easily modeled analytically, and must usually be
measured or estimated.

As indicated for exponential distributions,
MTTF = I/A and MTTR = 1/u. The steady-
state availability, 4 ., defined earlier can be

A4
rewritten in terms of these parameters:

_ MTTF
¥ MTTR + MTTF

A

Mean Time Between Failures (MTBF). The
term Mean Time Between Failures (MTBF) is
often mistakenly used in place of Mean Time To
Failure (MTTF). The MTBF is the mean time
between failures in a system with repair, and is

206 THE THEORY OF RELIABLE SYSTEM DESIGN

thus derived from a combination of repair and
failure processes. The easiest approximation for
MTBF is

MTBF = MTTF + MTTR

This expression should be exact for nonredun-
dant systems, but is only approximate for redun-
dant systems because the interplay of multiple
failures usually causes the repair rate to change.

Coverage. Coverage is a concept serving di-
verse purposes, with two major meanings: quan-
titative and qualitative. The quantitative mean-
ing is used most often in reliability modeling of
redundant systems. In its quantitative sense,
coverage is the probability that the system suc-
cessfully recovers from a specific type of failure.
Quite often, coverage is the probability that a
particular class of fault is successfully detected
before a complete system corruption occurs.
Other typical uses include the probability of
successful takeover by backup systems and non-
corruption of checkpoint (restart) variables.

The qualitative meaning of coverage specifies
the types of errors against which a particular
redundancy scheme guards. For example, the
coverage of Hamming single error-correcting—
double-error-detecting code is correction for all
single-bit errors in a code word and detection of
all double bit errors and some multiple bit errors.
Jack et al. [1975] develop this measure of cover-
age for a variety of both error-detection and
corrrection techniques.

Comparative Measures. A major use of the
evaluation criteria discussed so far is to compare
different systems or different models of the same
system. Such comparisons generally involve ar-
ithmetic differences of the measures or ratios
between the measures. Three common compara-
tive measures are

+ Reliability difference R, (1) — R j4(?)
« Reliability gain R, (¢)/R ;4()
* Mission time improvement, MT, . (r)/MT (r)

new

where Mission Time (MT) is the time the system is
above the reliability, r.

The use of these and similar measures is illustrat-
ed later in the section “Design Example: The
PDP-8/e.”

Software Evaluation

Software reliability assessment is part of the
more general area of software quality assessment
[Mohanly, 1973]. Effective mechanisms for meas-
uring software quality are required because of
the high cost of software development and main-
tenance. Forecasts indicate that by 1985 over 90
percent of the total computing dollars spent
annually will be for software [Horowitz, 1975].
The development of techniques for measuring
software reliability has been motivated mainly
by project managers, who need not only ways of
estimating the manpower needed to develop a
software system with a given level of perfor-
mance but also techniques to determine when
this level of performance has been reached. Most
software reliability models presented to date are
still far from satisfying these two needs in a
general context.

Most models assume that the software failure
rate will be proportional to the number of bugs
or design errors present in the system, without
taking into account that different kinds of errors
may contribute differently to the total failure
rate. Eliminating one significant design error
may double the mean time to failure, whereas
eliminating ten minor implementation errors
(bugs) may have no noticeable effect.

Even assuming that the failure rate is propor-
tional to the number of bugs and design errors in
the system, no model considers the fact that the
failure rate will then be related to the workload
of the system. For example, doubling the work-
load without changing the distribution of input
data to the system may double the failure rate.

Software reliability models can be roughly
grouped in four categories: time .domain, data
domain, axiomatic, and other.

Time Domain Models

Models formulated in the time domain attempt
to relate software reliability (characterized, for
instance, by an MTTF figure under typical work-
load conditions) to the number of bugs present
in the software at a given time during its devel-
opment. Typical of this approach are the models
presented in Shooman [1973], Musa [1975], and
Jelinsky and Moranda [1973]. Removal of imple-
mentation errors should increase MTTF, and
correlation of bug-removal history with the time
evolution of the MTTF value may allow the
prediction of when a given MTTF value will be
reached. The main disadvantages of time do-
main models are that bug correction can gener-
ate more bugs, and that software unreliability
can be due not only to implementation errors but
also to design (specification) errors, characteriza-
tion, and simulation during testing of the typical
workload.

The Shooman model [Shooman 1973] attempts
to estimate the software reliability—that is, the
probability that no software failure will occur
during an operation time interval [0, {}—from an
estimate of the number of errors per machine-
language instruction present in a software system
after T months of debugging. The model as-
sumes that at system integration there are E;
errors present in the system and that the system
is operated continuously by an