

The Theory
and Practice
of Reliable
System Design

DANIEL P. SIEWIOREK

ROBERT S. SWARZ

DIGITAL PRESS

Copyright 1982 by Digital Equipment Corporation.

All rights reserved. Reproduction of this book, in part or in whole, is strictly prohibited. For copy infor­
mation write Digital Press, Educational Services, Digital Equipment Corporation, Bedford, Massachu­
setts 01730.

Printed in U.S.A.
10 9 8 7 6 5 4 3 2

Documentation number EY-AXO 16-DP
ISBN 0-932376-13-4

Library of Congress Cataloging in Publication Data

Siewiorek, Daniel P.
The theory and practice of reliable system design.

Bibliography: p.
Includes index.
I. Electronic digital computers-Reliability.

2. Fault-tolerant computing. I. Swarz, Robert.
II. Title.
QA 76.5.S538 001.64
ISBN 0-932376-13-4

Trademarks appear on p. 749.

CREDITS

Figures 5-12, 5-13, 5-14, 5-15

81-9696
AACR2

Jacob A. Abraham and Daniel P. Siewiorek, "An Algorithm for the Accurate Reliability Evaluation of
Triple Modular Redundancy Networks," IEEE TRANSACTIONS ON COMPUTERS (July 1974).
Copyright @ 1974 I EEE. Reprinted by permission.

Figure 3-68

D.G. Armstrong, "A General Method of Applying Error Correction to Synchronous Digital Systems,"
THE BELL SYSTEM TECHNICAL JOURNAL, vol. 40, p. 580. Copyright © 1961, American Tele­
phone and Telegraph Company. Reprinted by permission.

Credits are continued on p. 751 and are considered part of the copyright page.

To Karon and Lonnie

Contents

Preface XXI

PART I THE THEORY OF RELIABLE SYSTEM DESIGN 1

1 Fundamental Concepts 3

The Importance of Reliability 3
Levels in a Digital System 4
Stages in System Life 5
Attributes of Fault-Tolerant Computing and Their Definitions 6

Availability 7
Reliability 7

The Manufacturing Stage 7
Design Maturity Testing 7
Incoming Inspection 8
Process Maturity Testing 11

The Operational Life Stage 12
Cost of Ownership 14
Universe of Models 15
The Designable Parameters 16
References 16

2 Faults and Their Manifestations 17

Introduction 17
Fault Manifestations 19

Physical Defects 19
Logic-Level Fault Classes 26
System-Level Abstractions 26

Fault Distributions 30
Probability Review 30

Matching Sampled Data to Math Distributions 33
Maximum Likelihood Estimators 33
Maximum Likelihood Estimation of Weibull Parameters 34
Linear Regression Analysis 34
Confidence Intervals 34
Goodness-of-Fit Tests 35

Distributions for Permanent Faults: The MIL-HDBK-217 Model 37
Life-Cycle Testing and Field Data 37
Analysis of Permanent Failure Data: Estimating the Distribution and

Its Parameters 44
Automated Failure Rate Calculation 49

vii

viii CONTENTS

Distributions for Transients and System Errors 51
Data Collection 5 J
Graphical Data Analysis 53
Confidence Intervals for the Parameters 56
Goodness-of-Fit Tests 56

Summary 57
References 61
Problems 61

3 Reliability and Availability Techniques Steven A. Elkind 63
Fault-Avoidance Techniques 67

Environmental Changes 68
Quality Changes 71
Component Integration Level 75.

Fault-Detection Techniques 77
Duplication 79
Error-Detection Codes 84
Self-Checking, Fault-Secure, and Fail-Safe Logic 104
Watchdog Timers and Timeouts 110
Consistency and Capability Checking 112

Masking Redundancy 113
N-Modular Redundancy with Voting 114
Error-Correcting Codes 122
Masking Logic 133

Dynamic Redundancy 140
Reconfigurable Duplication J 41
Reconfigurable NMR 145
Backup Sparing 154
Graceful Degradation 158
Reconfiguration 160
Recovery 169

Summary 175
References 175
Problems 176

4 Maintainability and Testing Techniques 183

Production 184
Parametric Testing 185
Acceptance Testing 185
Designfor Testability 191

Field Operation 196
References 200
Problems 200

5 Evaluation Criteria Stephen McConnel and Daniel P. Siewiorek 201

Survey of Evaluation Criteria 202
Hardware Evaluation 202
Software Evaluation 206

Modeling Techniques 211
Combinatorial Modeling 211
Markov Models 246
System Availability Models 275
Modeling Performance Impact of Redundancy 281

Trade-Off Analysis in System Design 285
Design Example: The PDP-8/e 286
Analyses of the Example 291

Summary 296
References 296
Problems 297

6 Financial Considerations 303

Introduction and Fundamental Concepts 303
Definitions 303
Sources of Maintenance Costs 304
Cost of Customer Ownership 306

Field Service Overview and Cost Models 308
Maintenance Cost Models 309
Life-Cycle Cost (LCC) Models 311
LCC Model with Generalized Data Elements 314

Conclusions 317
References 320
Problems 321

PART II THE PRACTICE OF RELIABLE SYSTEM DESIGN 323

C.vmp 325
Commercial Computers 325

DEC 325
IBM 326
UNIVAC 326

High-Availability Systems 330
Tandem 330
ESS Processors 332
Pluribus 335

Spacecraft and Avionic Systems 337
FTMPandSIFT 342

References 344

7 C. vmp: A Voted Multiprocessor Daniel P. Siewiorek, Vittal Kini,
Henry Mashburn, Stephen McConnel, and Michael Tsao 345

Design Goals 345
System Architecture 346

Actual System Configuration 346
Voter Modes of Operation 348
Peripheral Devices 350

CONTENTS ix

x CONTENTS

Issues of Processor Synchronization 350
Dynamic Voting Control 350
Bus Control Signal Synchronization 351
System Clock 353

Performance Measurements 354
Processor Execution/Memory Fetch Time 354
Disk Access Time 355

Operational Experiences 357
Operating History 357
C. vmp System Reliability 357
On-Line Maintenance 359

References 360

8 RAMP in the VAX Family: VAX-11/780 and VAX-11/750 361

The VAX Architecture 361
Archetypical VAX-II Implementation 367
The VAX-II /780 Implementation 370

Internal Processor Registers 372
I D Bus Registers 377
Main Memory Registers 379
Console Subsystem 381
Micro- and Macrodiagnostics 384

The VAX-II /750 Implementation 386
Design Evolution 386
RAMP Features 395
Processor Registers 397
Main Memory Registers 398
Diagnostics and Repair 402

Summary 404
References 404

9 Recovery through Programming System/360-System 370
Donald L. Droulette 409

Introduction 409
The Recovery Management Objective 410

Functional Recovery 411
System Recovery 411
System-Supported Restart 411
System Repair 411

User Personnel Involvement 411
Summary Description of Facilities 412
I/O Device/Unit Recovery Facilities 413

IBM Standard Error Recovery Procedures 413
Optional User- Written Routines 413
On-Line Test System 414

Channel-Check Handler (CCH) 414
I/O Recovery Management Support 415

APR 415
DDR 416

CPU/Processor Storage Recovery Facilities 417
Machine-Check Handler (MCH) 417
System Environment Recording (SERO and SER1) 418

System Associated Recovery Facilities 418
System Restart 418
Checkpoint/Restart 418

Error Record Retrieval Facilities 418
Environment Record Editing and Printing Utility 419
System Environment Recording, Editing and Printing Program 419

RMS/65 Relationship to the Operating System 419
System/370 Considerations 419
Conclusion 421
Reference Materials 421

10 Availability, Reliability, and Maintainability Aspects of the SPERRY
UNIVAC 1100/60 L. A. Boone, H. L. Liebergot, and R. M. Sedmak 423

Abstract 423
Introduction 423
ARM Philosophy for 1100/60 424

ARM in Previous SPERRY UNIVAC 1100 Series Systems 424
ARM in the 1100/60-General Approach 424

Detailed ARM Implementation 425
System Characteristics 425
Fault Detection 427
Error Correction 428
Fault Isolation 428
Error Recovery 429
Fault Injection 431
Maintenance 432

ARM Evaluation 432
Summary 433
References 433

11 A Fault-Tolerant Computing System James A. Katzman 435

Abstract 435
Introduction 435
System Organization 438

System Packaging 439
Interconnections 440

Processor Module Organization 440
The CPU 441

CONTENTS xi

xii CONTENTS

Main Memory 441
The Dynabus 444
The Input/Output Channel 447

I/O System Organization 447
Dual-Port Controllers 447
Controller Buffer Considerations 450
Disc Controller Considerations 450
NonStop I/O System Considerations 451

Power, Packaging, On-Line Maintenance 451
Further Packaging and On-Line Maintenance Considerations 452

Summary 452

A "NonStop" Operating System Joel F. Bartlett 453

Abstract 453
Background 453

System Overview 453
System Design Goals 454

Integrated Hardware/Software Design 454
Operating System Design Goals 454

Operating System Structure 455
Processes 455
Messages 456
Process-Pairs 456
System Processes 458
Application Process Interface 459
Initialization and Processor Reload 459
Operating System Error Detection 459

Acknowledgments 460
References 460

12 Fault-Tolerant Design of Local ESS Processors W N. Toy 461

Abstract 461
Introduction 461
Allocation and Causes of System Downtime 462

Hardware Reliability 462
Software Deficiencies 462
Recovery Deficiencies 463
Procedural Errors 463

Duplex Architecture 463
Fault Simulation Techniques 465
First Generation ESS Processors 466

No.1 ESS Processor 466
Operational Results of No.1 ESS 469
No.2 ESS Processor 470

Second Generation of ESS Processors 472
No.1 A Processor 472

No. 3A Processor 474
Maintenance Design of No. 3A Processor 476

General Systems Description 476
General Processor Description 477
Detection Techniques 478
Recovery Techniques 487
Diagnostic Hardware 491
Repair 493
Hardware Implementation 494

Summary 495
Acknowledgment 496
References 496

13 Pluribus-An Operational Fault-Tolerant Multiprocessor David Katsuki,
Eric S. E/sam, William F. Mann, Eric S. Roberts, John C. Robinson,
F. Stanley Skowronski, and Eric W Wolf 497

Abstract 497
Introduction 497
Pluribus System Architecture 499

Major Design Decisions 499
System Overview 500
Physical System Structure 502
Redundancy 507

The Pluribus Operating System 507
General Responsibility of the Operating System 508
Hierarchical Structure of the STAGE System 508
Establishing Communication 509
The Consensus Mechanism 510
Application-Dependent Checking 511

An Example of Application Reliability 512
Advantages of the Pluribus Approach to Fault-Tolerance 513
Recent Field Experience 513
Pluribus System Maintainability 516

Reporting Facilities 517
Remote Diagnosis and Repair 517
Partitioning 518
Reloading and Down-Line Loading 518
Maintenance Experience 518

Other Applications and Extensions 519
Message Systems 519
Real-Time Signal Processing 520
General-Purpose Timesharing Sytems 520
Reservation Systems 520
Process Control 520

Acknowledgment 521
References 521

CONTENTS xiii

xiv CONTENTS

14 The STAR (Self-Testing And Repairing) Computer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer Design Algirdas Avizienis,
George C. Gilley, Francis P. Mathur, David A. Rennels, John A. Rohr,
and David K. Rubin 523

Abstract 523
Introduction: Chronology and Rationale 523
Architecture of the STAR Computer 525

Methods of Fault Tolerance 525
Hardware System Organization 526
Standard Operation 527
Computer Words: Formats and Encoding 528
Control Error Detection 529
Properties of Functional Units 530
The Test and Repair Processor (TARP) and Recovery Mode 530

Comparative Reliability Analysis 532
STAR Computer Software System 535
Extension of STAR Techniques to Peripheral Systems 536
Design of the TOPS Control Computer 537
Current Research 538
Acknowledgment 538
References 539

15 Automatic Fault Protection in the Voyager Spacecraft C. P. Jones 541

Abstract 541
Introduction 541

The Mission 541
The Spacecraft 542

Achieving Reliability 542
Automatic Fault Protection Design 544

Requirements 544
Implementation of the Requirements in Hardware 544
Implementation of the Requirements in Software 545

Command Computer Subsystem Functional Description 546
CCS Routine Structure 547

Fault-Protection Software 547
Fault Protection in CCS 548

Design Validation 554
In-Flight Experience 556

Failures and Degraded Performance 556
Environmental Factors 556
Sequence Errors 556

Conclusions and Recommendations 557
Acknowledgment 557
Reference 557

16 SIFT: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control John H. Wensley, Leslie Lamport, Jack Goldberg,
Milton W Green, Karl N. Levitt, P. M. Mel/iar-Smith, Robert E. Shostak,
and Charles B. Weinstock 559

Abstract 559
Introduction 559

Motivation 560
Background 560

SIFT Concept of Fault Tolerance 561
System Overview 561
Fault Isolation 562
Fault Masking 563
Scheduling 563
Processor Synchronization 564
Reliability Prediction 567

The SIFT Hardware 568
The Software System 572

The Application Software 572
The SIFT Executive Software 572
Fault Detection 576
The Simulator 577

The Proof of Correctness 577
Concepts 577
Models 578
The Reliability Model 579
The Allocation Model 579
Future Work 581

Conclusions 582
Appendix: Sample Special Specification 582

Notes 583
Acknowledgment 584
References 584

17 FTMIL-A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft
Albert L. Hopkins, Jr., I Basil Smith, III, and Jaynarayan H. Lala 585

Abstract 585
Introduction 586

Background and Context 586
Rationale of the FTMP Approach 587

Theory of the FTMP 588
NominalOrganization 588
Redundant Organization 590
Synchronization 593
Malfunction Management 594

CONTENTS xv

xvi CONTENTS

Description of an Engineering Prototype of the FTMP 598
The Redundant Bus Structure 602
LRU Interfacing to the Bus System 602
System Control Units 603
The Principal Fault-Containment Region 603
Primary Power 607

Survival and Dispatch Probability Models for the FTMP 607
Survival Probability Models 607
Impact of Intermittent Faults 612
Dispatch Reliability of the FTMP Computer 615

Experimental Results 616
Fault Diagnostic Capabilities 617
Software Experience 617

Conclusion 619
Critical Areas of the FTMP Design 619
Summary 619

Acknowledgments 620
References 620

18 Design Methodology for High Reliability Systems: The Intel 432®
Daniel P. Siewiorek and David Johnson 621

A Design Methodology for a High Reliability System 621
Define System Objectives 621
Limit the Scope 623
Define the Layers of Fault Handling 623
Define Reconfiguration and Repair Boundaries 625
Design the Fault-Handling Mechanisms 626
Identify the Hardcore 626

The Impact of Technology 626
The Intel 432 Detection Mechanisms 627

Define System Objectives 627
Limit the Scope 627
Define Layers of Fault Handling 628
Define Reconfiguration and Repair Boundaries 628
Design the Fault-Handling Mechanisms 630
Identify the Hardcore 633

The Intel 432 Error Isolation and Reporting Mechanisms 634
Summary 636
Reference 636

APPENDIXES 637

A Coding for Error Control D. T. Tang and R. T. Chien 639

Abstract 639
Basic Definitions 640

Redundancy 640
Source Codes 640

Block Codes 640
Binary Codes 640

Errors in Digital Data Channels 640
Transmission and Storage 640
Source Encoding 641
Modulation and Demodulation 641

Error Sources 642
Error Statistics 642
Storage 642
Channel Models 642

Mathematical Structures in Coding 643
Linear Separable Codes 643
Polynomial Cyclic Codes 644

General Requirements for Encoding and Decoding 644
Error Syndromes 644
Conditional Maximum Likelihood Decoding 645
Maximum Likelihood Decoding 645
Minimum Distance Decoding 645

Linear Switching Circuits and Shift Registers 646
Polynomials in Delay Operator D 646

Encoders and Decoders 648
Functional Classes of Error-Control Codes 650
Coding Strategy 651

Error Detection 651
Partial Correction 652
Erasures 653
Adaptive Coding Schemes 653
Sequential Decoding 654

Some Error-Control Applications 654
Data Communications 654
Data Storage 654
Auxiliary Storage 655
Digital Cypress Error Control 655

Concluding Remarks 655
Appendix 1: Structure of Linear Codes 656
Appendix 2: Structure of Polynomial Codes 657
Appendix 3: Methods for Finding Generator Polynomials 658

Single-Error-Correcting Codes 658
Burst-Error-Correcting Codes 658
Independent-Error-Correcting Codes 659
BCH Codes 659
Examples 659
Multiple-Burst-Correcting Codes 660
Reed-Solomon Codes 661
Example Decoders 661

Appendix 4: Specialized Error-Control Codes 662
Interleaved Codes 662

CONTENTS xvii

xviii CONTENTS

N-Dimensional Codes 663
Shortened Codes 663
Threshold-Logic-Decodable Codes 663
Self-Orthogonal Decoding Example 664
Synchronization Codes 665
Convolutional Codes 665
Constant-Weight Codes 667
Arithmetic Codes 667

Appendix 5: Cyclic Redundancy Checking 668
References 669

B Arithmetic Error Codes: Cost and Effectiveness Studies for Application in
Digital.System Design Algirdas Avizienis 671

Abstract 671
Methodology of Code Evaluation 671

Scope of the Problem 671
The Criteria of Cost 672
The Criteria of Effectiveness 673
Classes of Logic Faults 674

Fault Effects in Binary Arithmetic Processors 675
Basic Faults in Parallel Arithmetic 675
Repeated-Use Faults in Binary Processors 677

Low-Cost Radix-2 Arithmetic Codes 678
Implementation of Arithmetic Error Codes 678
The Low-Cost Checking Algorithm 679
Fault-Effectiveness: One-Use Faults 680
Fault..;.Effectiveness: Determinate Repeated-Use Faults 680
Fault-Effectiveness: Indeterminate Repeated-Use Faults 681
~epeated-Use Faults in Residue Codes 682

Multiple Arithmetic Error Codes 683
Multiple Low-Cost Codes 683
"Hybrid-Cost" Forms of Multiple Codes 685

Acknowledgment 686
References 686

C Recent Developments in the Theory and Practice of Testable logic Design
R. C. Bennetts and R. V. Scott 687

Abstract 687
Introduction 687
Theoretical Developments 688

Combinational Circuits 688
Sequential Circuits 696
Iterative Arrays 702

Practical Aspects of Testable Logic Design 703
Guideline 1: Give the tester access to internal circuit board nodes 70
Guideline 2: As a general rule, avoid logically redundant circuits 70

Guideline 3: Makefaults as easy to locate as possible 705
Guideline 4: Use synchronous (clocked) circuitry whenever
possible 706
Guideline 5: Take precautions to isolate the clock from the logic 706
Guideline 6: Make it possible to initialize sequential circuits prior to
testing 706
Guideline 7: Take into account the operational characteristics of the
tester to be used for a particular board 706
Guideline 8: Take test economics into consideration when developing a
new logic design 706

Concluding Remarks 707
Acknowledgment 708
References 708

D Summary of MIL-HDBK-217B Reliability Model 709

E Summary of MIL-HDBK-217C Reliability Model 715

217C Model 715
217C Notice 1 Model 716
Reference 719

References 721

Contributing Authors 749

Trademarks 749

Credits 751

Index 753

CONTENTS xix

Preface

~ystem reliability has been a major concern since the beginning of the electronic
ligital computer age. The earliest computers were constructed of components such
LS relays and vacuum tubes that would fail to operate correctly as often as once
:very hundred thousand or million cycles. This error rate was far too large to en­
:ure correct completion of even modest calculations requiring tens of millions of
>perating cycles. The Bell relay computer (c. 1944) performed a computation
wice and compared results; it also employed error-detecting codes. The first com­
nercial computer, the UNIVAC I (c. 1951), utilized extensive parity checking and
wo arithmetic logic units (ALUs) in a match-and-compare mode. Today, interest
n reliability pervades the computer industry, from large mainframe manufacturers
o semiconductor fabricators, who produce not only reliability-specific chips (such
LS for error-correcting codes) but also entire systems (such as the Intel 432).

Computer designers have to be students of reliability, and so do computer sys­
em users. Our dependence on computing systems has grown so great that it is be­
;oming difficult or impossible to return to less sophisticated mechanisms. When an
Lirline seat selection computer "crashes," for example, the airline can no longer
·evert to assigning seats from a manual checklist; since the addition of roundtrip
;heck-in service, there is no way of telling which seats have been assigned to pas­
,engers who have not yet checked in without consulting the computer. The last
'esort is a free-for-all rush for seats. The computer system user must be able to
mderstand the advantages and limitations of the state-of-the-art in reliability de­
.ign; determine the impact of those advantages and limitations upon the applica­
ion or computation at hand; and specify the requirements for the system's
diability so that the application or computation can be successfully completed.

The literature on reliability has been slow to evolve. During the 1950s reliability
vas the domain of industry, and the quality of the design often depended on the
:leverness of an individual engineer. Notable exceptions are the work of Shannon
1948] and Hamming [1950] on communication through noisy (hence error­
nducing) channels, and of Moore and Shannon [1956] and von Neumann [1956]
m redundancy that sarvives component failures. Shannon and Hamming inaugu­
ated the field of coding theory, a cornerstone in contemporary systems design.
vloore, Shannon, and von Neumann laid the foundation for development and
nathematical evaluation of redundancy techniques.

During the 1960s the design of reliable systems received systematic treatment in
ndustry. Bell Telephone Laboratories designed and built an Electronic Switching
;ystem (ESS), with a goal of only two hours down-time in 40 years [Downing, No­
vak, and Tuomenoksa, 1964]. The IBM System/360 computer family had ext en­
ive serviceability features [Carter et aI., 1964]. Reliable design also found
ncreasing use in the aerospace industry, and a triplicated computer helped man
and on the moon [Cooper and Chow, 1976; Dickinson, Jackson, and Randa, 1964].
~he volume of literature also increased. In 1962 a Symposium on Redundancy

xxi

xxii PREFACE

Table P-l. Proposed structure for undergraduate course.

Chapters Remarks

1
Fundamental Concepts

2
Faults and Their
Manifestations

3
Reliability and
Availability
Techniques

4
Maintainability and
Testing Techniques

5
Evaluation Criteria

6
Financial Considerations

7
C.vmp

18
Intel 432

A suitable subset such as one branch of the taxonomy (i.e.,
fault avoidance, fault detection, masking redundancy,
dynamic redundancy)

Through to, but not including, Markov models

As time permits, augment by other examples

Techniques held in Washington, D;C. led to the first comprehensive book on the
topic [Wilcox and Mann, 1962]. Later, Pierce [1965] published a book generaliz·
ing and analyzing the Quadded Redundancy technique proposed by Tryon and reo
ported in Wilcox and Mann [1962]. A community of reliability theoreticians anc
practitioners was developing.

During the 1970s interest in system reliability expanded explosively. Companie~
were formed whose major product was a reliable system (such as Tandem). Due tc
the effort of Algirdas Avizienis and other pioneers, a Technical Committee or
Fault Tolerant Computing (TCFTC) was formulated within the Institute of Elec'
trical and Electronic Engineers (IEEE). Every year since 1971, the TCFTC ha~
held an International Symposium on Fault-Tolerant Computing. The time is ript
for a book on the design of reliable computing structures.

This book has three audiences. The first is the advanced undergraduate studen
interested in reliable design; as prerequisites, this student should have had course!
in introductory programming, computer organization, digital design, and probabil
ity. Part I of the book, selected chapters of Part II, and end-of-chapter problem:
are sufficient for a quarter- or semester-length course like that suggested in Table
P-l.

The second audience is the graduate student seeking a second course in reliable
design, perhaps as a prelude to engaging in research. The more advanced portion:

lble P-2. Proposed structure for graduate course.

hapters Augmentation

Llndamental Concepts

mlts and Their
fanifestations

eliability and
vailability
echniques

laintainability and
esting Techniques

valuation Criteria

inancial Considerations

art II

Ross [1972] and/or Shooman [1968] for random variables,
statistical parameter estimation

ARINC [1964] for data collection and analysis

Appendix A, Peterson and Weldon [1972] for coding theory

Sellers, Hsiao, and Bearnson [1968b] for error detection
techniques

Proceedings of Annual IEEE International Symposium on
Fault-Tolerant Computing

Special issues of the IEEE Transactions on Computers on
Fault-Tolerant Computing (e.g., Nov 1971, March 1973,
July 1974, May 1975, June 1976, June 1980, July 1982)

Special issues of Computer on Fault-Tolerant Computing
(e.g., March 1980)

Breuer and Friedman [1976] for testing
Proceedings of Cherry Hill Test Conference

Special issues of Computer on Testing (e.g., Oct. 1979)

ARINC [1964] for maintenance analysis

Ross [1972], Howard [1971], Shooman [1968], Craig
[1964] for Markov models and their solutions

Phister [1979]

Oct. 1978 special issue of the Proceedings of the IEEE.

f Part I and the system examples of Part II should be augmented by other books
rld current research literature as suggested in Table P-2. A project, such as design
f a dual system with a factor of 20 greater Mean-Time-To-Failure, while minimiz-
19 Life-Cycle Costs, would help to crystallize the material for students. An exten­
ve bibliography provides access to the literature.
The third audience is the practicing engineer. A major goal of this book is to

rovide enough concepts to enable the practicing engineer to incorporate com pre­
~nsive reliability techniques into his or her next design. Part I provides a taxon­
ny of reliability techniques and the mathematical models to evaluate them.
,esign techniques are illustrated through the series of articles in Part II, which
~scribe actual implementations of reliable computers. These articles were written
y the system designers. The final chapter provides a methodology for reliable sys-

PREFACE xxiii

xxiv PREFACE

tern design and illustrates how this methodology can be applied in an actual desigr
situation (the Intel 432).

The book is divided into two parts. Part I deals with the theory and Part II with
the practice of reliable design. The appendixes provide detailed information or
coding theory, design for testability, and the MIL-HDBK-217 component reliabil­
ity model.

The authors wish to express deep gratitude to many colleagues in the fault­
tolerant computing community. Without their contributions and assistance thi~
book could not have been written. We are especially grateful to the authors of the
papers who shared their design insights with us. Special thanks go to Sudhir Bhag­
wani and Justin Rattner for assistance with Chapter 18. John Shebell provided ma­
terial and insight for Chapter 6.

Xavier Castillo and Vittal Kini provided material on mathematical modeling anc
computer aids, respectively. Ashok Ingle assisted in an earlier draft and providec
several problems at the end of chapters. Comments from several reviewers and stu·
dents were particularly helpful.

Special thanks are due to colleagues at both Carnegie-Mellon University anc
Digital Equipment Corporation (DEC) for providing an environment conducive tc
generating and testing ideas. The entire staff of Digital Press provided excellen1
support for a timely production.

This book would not have been possible without the patience and diligence oj
Mrs. Dorothy Josephson, who typed and retyped the many drafts of th(
manuscrip~.

REFERENCES *

Dan SiewioreA
Bob Swan.

ARINC [1964]; Breuer and Friedman [1967]; Carter et al. [1964]; Cooper anc
Chow [1976]; Craig [1964]; Dickinson, Jackson, and Randa, [1964]; Downing, No
wak, and Tuomenoksa [1964]; Hamming [1950]; Howard [1971]; Moore and Shan
non [1956}; Peterson and Weldon [1972]; Phister [l979}; Pierce [1965]; Ros~

[1972}; Sellers, Hsiao, and Bearnson [1968b}; Shannon [1948]; Shooman [1968]
von Neumann [1956]; Wilcox and Mann [1962].

* For full citations of the shortened references at the end of each chapter, see References at the back 0

the book.

TH E TH EORY OF RE LIABLE SYSTEM
DESIGN
)art I of this book presents the many disciplines required to construct a reliable
omputing system. Chapter 1 explains the motivation for reliable systems and
Irovides the theoretical framework for their design, fabrication, and mainte­
lance. First we consider the motivation for interest in fault-tolerant systems.
-.rext we present the hierarchical levels into which a computer system is
ustomarily divided to enable the engineer to deal with it efficiently and
ffectively; we also explain the reasons for introducing divisions into the life cycle
If a computer system. After defining several terms and metrics important to
ault-tolerant computing, Chapter 1 provides a detailed discussion of two stages
rl a system's life: manufacturing and operation. Last, the chapter explains some
If the mathematical models used in the design of a computer system and specifies
lIe parameters that are under the engineer's control.

Chapter 2 discusses faults in a computer system: failure mechanisms, fault
rlanifestations at several levels in the structural hierarchy (physical, logical, and
ystem), fault prediction, and fault measurement. A review of applicable proba­
lility theory is presented as an aid to understanding the mathematics of the
arious fault distributions. Common techniques for matching empirical data to
:lUlt distributions, such as the maximum likelihood estimator, linear regression,
nd the chi-square goodness-of-fit test are discussed.

Chapter 2 introduces methods for estimating permanent failure rates, including
le MIL-HDBK-217 procedure, a widely used mathematical model of permanent
lultS in electronic equipment, and the life-cycle testing and data analysis
pproaches. It then addresses the problem of finding an appropriate distribution
)r transient errors by analyzing field data from four mainframe time-sharing
omputers operated by Carnegie-Mellon University.

Chapter 3 deals with reliability techniques, that is, ways to improve the mean
me to failures. A comprehensive taxonomy of reliability and availability
~chniques is presented. There is also a catalog of techniques, along with
valuation criteria.

Chapter 4 deals with maintainability techniques, that is, ways to improve the
lean time to repair of a failed computer system. It provides a taxonomy of
~sting and maintenance techniques and describes ways to detect and correct
)urces of errors at each stage of a computer's life cycle. Specific strategies are
iscussed for testing during the manufacturing phase. Several logic-level accept­
nce tests are explained, such as exclusive-OR testing, signature analysis,
oolean difference, path sensitization, and the D-algorithm. The chapter also
ltroduces a discipline, called design for testability, which attempts to define
roperties of easy-to-test systems.

PART

I

2 THE THEORY OF RELIABLE SYSTEM DESIGN

How can a reliable or maintainable design be mathematically evaluated? That
is, if a system is supposed to be down no more than two hours in 40 years, how
can one avoid waiting that long to confirm success? Chapter 5 defines a host of
evaluation criteria, establishes the underlying mathematics, and presents deter­
ministic models and simulation techniques. Simple series-parallel models are
introduced as a method for evaluating the reliability of nonredundant systems
and systems with standby sparing. Next, several types of combinatorial (failure­
to-exhaustion) models are described. The chapter also introduces ways of
reducing nonseries, nonparallel models to more tractable forms.

Chapter 5 continues with Markov models, which define various system states
and express the probability of going from one state to another. In these models,
the probability depends only on the present state and is independent of how the
present state was reached. After describing several other simulation and model­
ing techniques, the chapter culminates in a case study of an effort to make a more
reliable version of the PDP-8/e, using the techniques defined in Chapter 3.

Finally, Chapter 6 is concerned with the financial considerations inherent in
the design, purchase, and operation of a computer system. The discussion adopts
two major viewpoints: that of the maintenance provider arid that of the system's
owner/operator. An explanation of the various sources of maintenance costs,
such as labor and material, is followed by an overview of the field service
business. Several maintenance cost models are suggested, along with a method
for assessing the value of maintainability features. The chapter describes two of
the many ways of modeling the life-cycle costs of owning and operating a
computer system; these cost models are essential to the system designer in
understanding the financial motivations of the customer.

=undamental Concepts

HE IMPORTANCE OF
ELiABILITY

[istorically, reliable computers have been lim­
ed to military, industrial, aerospace, and com­
lUnications applications in which the conse­
llence of computer failure is significant eco­
Jmic impact and/or loss of life. Reliability is of
·itical importance wherever a computer mal­
mction could have catastrophic results, as in
Ie space shuttle, aircraft flight-control systems,
)spital patient monitors, and power system
mtrol. Reliability techniques have become of
creasing interest to general purpose computer
stems because of several recent trends, a few of
h.ich are listed below:

Harsher Environments. With the advent of
icroprocessors, computer systems have moved
)m the clean environments of computer rooms
industrial environments. The cooling air con­

ins more particulate matter. Temperature and
Lmidity vary widely and are frequently subject

spontaneous changes. The primary power
pply fluctuates, and there is electromagnetic
terference.

Novice Users. As computers proliferate, the
:Jical user knows less about proper operation of
;! system. Consequently, the system has to be
Ie to tolerate more inadvertent user abuse.

Increasing Repair Costs. As hardware costs
ntinue to decline and labor costs escalate, a
;!r cannot afford frequent calls for field service.
~ure 1-1 depicts the relation between cost of
'nership and the addition of reliability, main­
nability, and availability features. Note that as
rdware costs increase, service costs decrease
e to fewer and shorter field service calls.

3

11

4 THE THEORY OF RELIABLE SYSTEM DESIGN

Reliability and maintainability features

Figure 1-1. Cost of ownership as a function of
reliability and maintainability.

Larger Systems. As systems become larger,
there are more components that can fail. Be­
cause the overall failure rate is directly related to
the sum of the failure rates of individual compo­
nents, fault-tolerant designs may be required to
keep the overall system failure rate at an accept­
able level.

The increased interest in fault tolerance has
already had an impact on the industrial world.
Manufacturers of large mainframe computers,
such as IBM, Univac, and Amdahl, use redun­
dancy both for improving reliability and for
assisting field service personnel in fault isolation.
Minicomputer manufacturers have also been in­
corporating fault-tolerant features, such as Ham­
ming error-correcting codes in memory. Special
Large Scale Integration (LSI) chips have been
introduced to perform cyclic redundancy coding
and decoding. Some companies, such as Tan­
dem, have been formed solely to market fault­
tolerant computers.

LEVELS IN A DIGITAL SYSTEM*

Digital computer systems are enormously com­
plex. To make them more comprehensible it is
necessary to divide the system into several levels.

• This discussion is adapted from D. Siewiorek, G. Bell, and
A. Newell, Computer Structures: Principles and Examples,
(New York, McGraw-Hill, 1981).

One can then proceed upward from the most
primitive level to the highest conceptual level
through a series of abstractions. Each abstrac­
tion contains only information important to its
level and suppresses unnecessary information
about lower ones. Because system designers uti­
lize the hierarchical concept to manage the com­
plexity of a digital system, the levels frequently
coincide with the system's physical boundaries.
Table 1-1 describes a typical set of levels for a
digital computer.

Table 1-1. Levels of abstraction for digital
computers.

Level Sublevel

·PMS

Program High-level
language

ISP

Logic Register
transfer

Components

Processors

Memories

Switches

Controllers

Transducers

Data operators

Links

Software

Memory state

Processor state

Effective address
calculation

Instruction decode

Instruction execution

Data paths

Registers

Data operators

Control

Hardwired

Sequential logic
machines

Microprogramming

Microsequencer

Microstore

(Table continues on next page

rable l-l-Continued

r...evel Sublevel

:ircuit

Switching
circuit

Components

Sequential

Flip-flops

Latches

Delays

Combinatorial

Gates

Encoders/Decoders

Data operators

Resistors

Capacitors

Inductors

Power sources

Diodes

Transistors

Circuit Level. The circuit level consists of
llch components as resistors, capacitors, induc­
)rs, and power sources. The metrics of system
ehavior include voltage, current, flux, and
b.arge. The circuit level is not the lowest possible
~vel at which to describe a digital system. Var­
ms electromagnetic and quantum mechanical
henomena underlie circuit theory, and the oper­
lion of electromechanical system devices (such
; disks) requires more than circuit theory to
lodel their operation.

Logic Level. The logic level is unique to
.gital systems. The switching-circuit sublevel is
)mposed of such things as gates and data
)erators built out of gates. The logic level is
:rther subdivided into combinatorial and se­
lential logic circuits, the fundamental differ­
lce being the absence of memory elements in
.mbinatorial circuits.
A register is a digital device that remembers
e state of a set of binary digits. The Register
·ansfer (RT) sublevel deals with the next higher

FUNDAMENTAL CONCEPTS 5

level of abstraction, namely, registers and func­
tional transfers of information among registers.
RT sublevels frequently are further subdivided
into a data part and a control part. The data part
is composed of registers, operators, and data
paths. The control part provides the time-de­
pendent stimuli that cause transfers between
registers to take place.

In some computers, the control part is imple­
mented as a hard-wired state-machine. With the
availability of low-cost Read-Only Memories
(ROMs), microprogramming is now a more pop­
ular way to implement the control function.

Program Level. The program level is unique
to digital computers. At this level a sequence of
instructions in the device is interpreted and
causes action upon a data structure. This is the
Instruction Set Processor (ISP) sublevel. The ISP
description is used in turn to create software
components that are easily manipulated by pro­
grammers-the high-level-language sublevel. The
result is software, such as operating systems, run­
time systems, application programs, and applica­
tion systems.

PMS Level. Finally, the various elements­
input/output devices, memories, mass storage,
communications, and processors-are intercon­
nected to form a complete system.

STAGES IN SYSTEM LIFE

Not only are system levels important for describ­
ing a digital computer; a time dimension is also
required. At what point a technique or method­
ology is applied during the life cycle of a system
may be more important than at what physical
level.

From a user's viewpoint, a digital system can
be treated as a "black box" that produces out­
puts in response to input stimuli. Table 1-2 lists
the numerous stages in the life of the box as it
progresses from concept to final implementation.
These stages include specification of input/out­
put relationships, logic design, prototype debug-

6 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 1-2. Stages in the development of a system.

Stage Error Sources

Specification Algorithm
and design design

Formal
specifications

Prototype Algorithm
design

Wiring and
assembly

Timing

Component
failure

Manufacture Wiring and
assembly

Component
failure

Installation Assembly

Component
failure

Operational life Component
failure

Opera tor errors

Environmen tal
fl uctua tions

Error Detection
Techniques

Simulation

Consistency
checks

Stimulus/
response testing

System testing

Diagnostics

System testing

Diagnostics

Diagnostics

ging, manufacturing, installation, and field oper­
ation. Deviations from intended behavior, or
errors, can occur at any stage as a result of
incomplete specifications, incorrect implementa­
tion of a specification into a logic design, and
assembly mistakes during proto typing or manu­
facturing.

During the system's operational life, errors can
result from change in the physical state or dam­
age to hardware. Physical changes may be trig-'
gered by environmental factors such as fluctua­
tions in temperature or power supply voltage,
static discharge, and even alpha particle emis­
sions. Inconsistent states can also be caused by

operator errors and by design errors in hardware
or software.

Design errors, whether in hardware or soft­
ware, are those caused by improper translation
of a concept into an operational realization.
Closely tied to the human creative process, de­
sign errors are difficult to predict. Gathering
statistical information about the phenomenon is
difficult because each design error occurs only
once per system. The rapid rate of development
in hardware technology constantly changes the
set of design trade-offs, further complicating the
study of hardware design errors. In the last five
years there has been some progress in the use of
redundancy-using additional resources beyond
the minimum required to perform the task suc­
cessfully-to control software design errors.

Any source of error can appear at any stage;
however, it is usually assumed that certain
sources of error predominate at particular stages.
Furthermore, error-detection techniques can be
tailored to the manifestation of fault sources.
Thus, at each stage of system life there is a
primary methodology for detecting errors. In the
following discussion, the student of systems re­
liability must keep in mind the question, "At
what level and at what stage of the system
development does the subject matter apply?"
The two dimensions of physical level and tempo­
ral stage serve as a framework to relate otherwise
mutually exclusive factors. Later a third dimen­
sion, cost, will be considered.

ATTRIBUTES OF FAULT-TOLERANT
COMPUTING AND THEIR
DEFINITIONS

Fault-tolerant computing is the correct executi01
of a specified algorithm in the presence of de
fects. The effect of defects can be overcome b:
the use of redundancy. This redundancy can b
either temporal (repeated executions) or physic(l
(replicated hardware or software).

As in all systems design, system specifications
~onstrain the design space and thus the design
techniques that can be used. At the highest level
of specification, fault-tolerant systems are cate­
gorized as either highly available or highly reli­
able.

~vailability

lIe availability of a system as a function of
ime, A(f), is the probability that the system is
perational at the instant of time, f. If the limit
f this function exists as f goes to infinity, it
xpresses the expected fraction of time that the
ystem is available to perform useful computa­
ons. Activities such as preventive maintenance
nd repair reduce the time that the system is
vail able to the user. Availability is typically
sed as a figure of merit in systems in which
!rvice can be delayed or denied for short peri­
ds without serious consequences.

eliability

he reliability of a system as a function of time,
(f), is the conditional probability that the sys­
m has survived the interval [0, f], given that it
as operational at time f = O. Reliability is used
I describe systems in which repair cannot take
ace (as in satellite computers) or in which the
Imputer is serving a critical function and can­
)t be lost even for the duration of a repair (as
fiightcomputers on aircraft) or in which the

pair is prohibitively expensive. In general, it is
ore difficult to build a highly reliable comput­
g system than a highly available one because of
e more stringent requirements imposed by the
liability definition. An even more stringent
finition than R(f), sometimes used in aero­
ace applications, is the maximum number of
lures anywhere in the system that the system
t1 tolerate and still function correctly.

FUNDAMENTAL CONCEPTS 7

Two important stages in the development of a
system will be discussed next: the manufacturing
stage and the operational life stage. A third
important stage, design, is the subject of the
remaining chapters in Part I.

THE MANUFACTURING STAGE

A careless manufacturing process can make even
the most careful design useless. The manufactur­
ing stage begins with the final portion of the
prototype stage in a process called Design Matu­
rity Testing.

Design Maturity Testing

A Design Maturity Test (DMT) estimates the
Mean Time To Failure (MTTF) for a new prod­
uct before it is committed to volume manufac­
turing. The DMT is conducted to isolate and
correct repetitive systemic problems that, if left
in the design, would result in higher service costs
and customer dissatisfaction.

The DMT is accomplished by operating a set
of sample devices for a prolonged time (typically
six to eight units for two to four months) to
simulate actual field operation. In cases in which
the duty cycle of the equipment is less than 100
percent, the duty cycle under test may be in­
creased to 100 percent to accelerate testing. As
failures are observed and recorded, they are
classified according to such factors as failure
mode, time, or environmental cause. Similar
failures are then ranked in groups by decreasing
frequency of occurrence.

This procedure establishes priorities for elimi­
nating the causes. After the fundamental cause
of the failure is found and corrective design
action is taken, the operation of the modified or
repaired test samples provides a closed-loop
evaluation of the efficacy of the change. Repeat­
ing the procedure improves the design of the test
samples until their estimated MTIF meets the

8 THE THEORY OF RELIABLE SYSTEM DESIGN

16
Unit test hours

Figure 1-2. Reliability Demonstration Chart for
monitoring the progress of a Design Maturity Test.

specifications with a certain statistical confi­
dence.

The progress of the test can be monitored with
a chart prepared in advance for the product
under test, shown in Figure 1-2 [von Alven,
1964], which provides an objective criterion for
judging the MTTF of a product with a predeter­
mined statistical risk. The construction of the
chart is determined by four parameters:

• Specified MTIF, 8 0
• Minimum acceptable MTIF, 8 1
• Consumer's risk, a. This is the probability that a

product with an MTTF lower than 8 0 will be
accepted.

• Producer's risk, {3. This is the probability that a
product with an MTTF higher than 8 0 will be
rejected.

A ratio of 8 0 to 8 1 between 1.5 and 2 to 1 is
typically used. Consumers' and producers' risks
are commonly taken to be 20 percent. Operating
time in unit hours is the abscissa, and number of
failures is the ordinate. The resultant perform­
ance line is a staircase that moves up and to the
right as test experience accumulates. The chart is
divided into three areas: accept, reject, or con­
tinue testing. When the performance line crosses
into the accept region, the test samples' MTTF is
at least equal to the minimum acceptable MTTF
(with the predetermined risk of error), and the
design should be accepted.

If the performance line crosses into the reject
region, the MTTF of the design is. probably
lower than the acceptable minimum with its
corresponding probability of error; testing
should be suspended un til the design has been
sufficiently improved and it can reasonably be
expected to pass the test.

Incoming Inspection

Figure 1-3 depicts typical steps in the volume
manufacturing process. Note the alternating pat­
tern of test/inspect and fabrication [Foley, 1979].

Incoming inspection is an attempt to cull weak
or defective components prior to assembly into
subsystems. All semiconductor processes yield a
certain number of defective devices. Even aftel
the semiconductor manufacturer has detectec
and removed these defective devices, failures wit:
continue to occur for a time known as tht
"infant mortality period." This period is typical
ly 20 weeks or less, during which the rate 0

failures continues to decline. At the end of thi:
period, failures tend to stabilize at a constan
rate for a long time, sometimes 25 years or more
Ultimately the failure rate begins to rise again, il
a period known as wear-out. This variation il
failure rate as a function of time is illustrated h
the bathtub-shaped curve shown in Figure 1-4 .

Over the years, with the accumulation of expe
rience in the manufacture of semiconducto
components, the failure rate per logic device ha
steadily declined. Figure 1-5 depicts the numbe
of failures per million hours for bipolar techno·
ogy as a function of the number of gates on
chip. The curves Mil Model 217 A were derive
from 1965 data. The curves Mil Model217B (se
Appendix D) and Mil Model 217C (see Appel
dix E) were generated from a 1974 reliabili1
prediction model. Actual failure data are a15
plotted to calibrate the 217B and 217C model
The curve Field data was derived from a yea
long reliability study of a sample of video term
nals [Harrahy, 1977]. The curve Life cycle da
was derived from elevated temperature testing,

1
Incoming

component
inspection

Printed
circuit
board

fabrication

,
Backplane Board Printed

assembly assembly t- circuit
board test

Backplane
Board

inspection
test and functional

test

System
assembly

System
test

~
igure 1-3. Typical steps in the manufacture of a
ligital system. (© 1979 IEEE.)

:hips, followed by application of a mathematical
nodel that translated the failure rates to ambient
emperatures [Siewiorek et aI., 1978b]. Finally,
he improvement in the 3,OOO-gate Motorola
r1C6800 is plotted [Queyssac, 1979].

Two trends are noteworthy. First, there is
10re than an order of magnitude decrease in
:tilure rate per gate. Plots of failure per bit of
,ipolar random access memory indicate that the
tilure rates per gate and per bit are comparable
)r comparable levels of integration.
Obviously, the chip failure rate is a function of

FUNDAMENTAL CONCEPTS 9

Infant
mortality

period

Normal
lifetime

Wear-out
period

Approximately 5 to 25
20 weeks years

Time

Figure 14. Bathtub curve depicting component
failure rate as a function of time.

chip complexity and is not a constant. Failure
rate per function (gate or bit) decreases by one
order of magnitude over two orders of magni­
tude of gate complexity and two to three orders
of magnitude of memory complexity. The failure
rate decreases in direct proportion to increases in
complexity.

The second trend is that the MIL­
HDBK-217B model predicted an increase in
failure rate per function beyond about 200-gate
complexity, presumably because of the immatu­
rity of the fabrication process at that scale of
integration at that time. *

Now consider a system composed of a con­
stant number of semiconductor chips. Because
the chips double in density everyone to two
years, the number of functions, 1, in the system is
proportional to changes in time, ~t:

f ex:: 2~t

where t is time in years. The failure rate per
function, from Figure 1-5, is proportional to the

* The switch from a polynomial to an exponential function
in number of gates occurs at 100 in 217B and 1,000 in 217C.
This reflects the improvements in the fabrication process
over time. See Appendixes D and E.

10 THE THEORY OF RELIABLE SYSTEM DESIGN

0.1

Mil Model 217A r1
'165b)

life cycle data

4 ...

l'
(elevated temp'erature and
temperature translated)

Field data ~
(ambient temperature)

0.001
Mil Model 217C
(1979)

Mil Model 2178
(1974)

Motorola MC 6800
• (1974)

• (1975)

• (1976)

• (1977)

10 100
Number of gates

1000 10,000

Figure 1-5. Failure rate per gate as a function of chip complexity for bipolar technology,

square root of the number of functions per chip:

r ex: 11/2

Hence

r ex: 2:J.t/2

and the Mean Time To Failure (MTTF) is

1 I
MTTF ex: r ex: 2((j.t/2)

This implies that over a 10-year period a system
with the same number of semiconductor chips
has increased its logic complexity by a factor of

1,024 and decreased its MTTF by a factor of 32.
Hence, system reliability has not kept pace with
system complexity. Complex, high-performance
machines are on the verge of becoming virtually
unusable. For example, when the Los Alamos
Scientific Laboratory evaluated the reliability of
its CRAY-I over a 6-month period, the mean
time to failure was found to be four hours
[Keller, 1976]. The average repair time was only
about 25 minutes, due to the skilled on-site
maintenance crew. Even so, this represented the
loss of about 100 billion potential machine oper­
ations [Avizienis, 1978]. Gains in system reli-

ability cannot be attained from improved com­
ponent reliability alone. Redundancy must be
introduced. Redundancy techniques are the sub­
ject of Chapter 3. *

The cost of component failure depends upon
the level at which the failure is detected: the
higher the level, the more expensive the repair.
Fault detection at the semiconductor component
level minimizes cost. Fault detection at the next
highest level, the board, has been estimated at
$5; at the system test level, $50; and at the field
service level, $500 [Russel, 1980]. The level at
which a computer manufacturer detects initial
and infant mortality failures is a function of the
incoming test program chosen.

Even relatively low semiconductor failure
rates can cause substantial board yield problems,
aggravated by the density of the board. Consider
a board with forty semiconductor devices that
have an initial failure rate of I percent:

Probability board not defective = (0.99)40

= 0.669

The benefits of an incoming inspection program
can be easily quantified. The value of culling bad
semiconductor components before they are in­
serted into the board is the most easily measured
benefit. Board/system test savings, inventory re­
duction, and service personnel savings depend
on the particular strategy used. To calculate the

• The same semiconductor evolution that has led to in­
creased reliability per gate or bit has also introduced new
failure modes. The smaller dimensions of semiconductor
devices have decreased the amount of energy required to
change the state of a memory bit.
The loss of memory information caused by the decay of
radioactive trace elements in packaging material has been
documented. Studies show that even in sheltered environ­
ments such as well-conditioned computer rooms, soft errors
are 20 to 50 times more prevalent than hard failures. Soft
errors also exhibit clustering (a high probability that, once
one error has occurred, another will occur soon), workload
dependence (the heavier the system workload, the more
likely an error), and common failure modes (more than one
system, or portion of a system, affected simultaneously).
Semiconductor failure rates and failure modes are dis­
cussed in detail in Chapter 2.

FUNDAMENTAL CONCEPTS 11

value of removing defective components at in­
coming inspection, mUltiply the number of bad
parts found by the cost of detecting, isolating,
and repairing failures at higher levels of integra­
tion. The following formula estimates the total
savings:

where

D = 5 B + 50S + 500 F

D = dollar savings,
B = number of failures at board test

level,
S = number of failures at system test

level, and
F = number of failures in the field.

This formula can be translated into annual sav­
ings by considering total component volume and
mean failure rate data:

Potential annual savings

= annual component volume X

[(% ini tial failures)

(% failures detected at board level X $5

+ % failures detected at system level X $50)

+(% infancy failures)

(% failures detected at system level X $50

+ % failures detected in the field X $500)]

Typical savings for 100 percent incoming inspec­
tion can be estimated and compared with the
cost of the Automatic Test Equipment (ATE)
required to carry out such testing. Figure 1-6
(from [Russell, 1980]) shows the potential annual
savings as a function of annual component vol­
umes. A family of curves is shown for overall
failure rates of 0.8, 1.2, 2.0, and 4.0 percent.

Process Maturity Testing

The term process includes all manufacturing
steps to acquire parts, assemble, fabricate, in-

12 THE THEORY OF RELIABLE SYSTEM DESIGN

1,000

III
"'C
C
t'\S 100 III
:l
0
;
.=
III

~ 10
'0 c

I
I
I
I
I
I
I
I
I I

-------~--- ---_______ .1. _____ _

: I

i
I
I

ATE :
total costs

--r.::=l::=.t~
I I
I I

- -----L------r-

- +------!~---1--
I ------r--

4.0%:

I Facility yearly
: operating cost

0.8% T~tal failur~s 1

10 100 1,000 10,000

Yearly component volume in thousands

Figure 1-6. Savings from screening and testing as
a function of defective component rate and annual
device volume.

spect, and test a product during volume produc­
tion. The rationale for Process Maturity Testing
(PMT) is that newly manufactured products
contain some latent defects built in by the proc­
ess that produced them.

A large number of units, about the first 120 off
the production line, are operated for 96 hours,
often in lot sizes convenient to the particular
production process. They are operated (burned
in) in a manner that simulates the normal pro­
duction process environment as closely as pos­
sible. If the burn-in and production process
environments differ significantly, appropriate
test results must be adjusted accordingly.

Infant mortality characterist~cs may fluctuate
significantly throughout the test lot. The com­
posite of these individual failure characteristics is
considered the "normal infancy" for the device.

The end of the burn-in period for production
equipment is determined by the normal infancy
curve thus derived from the PMT. The objective
is to ship products of consistently good quality
and acceptable MTTF after a minimum burn-in
period. Typical production burn-in times are 20
to 40 hours.

PMT is used to identify several classes of
failures. Infancy failures are problems generally
caused by parts that were defective from the time
they were received. In largely solid-state devices,
component problems will remain in this category
until identified and controlled by either incom­
ing inspection or changes implemented by the
component vendor.

Manufacturing/inspection failures are gener­
ally failures repaired by readjustments or re­
touching, such as a part damaged by the assem­
bly process or defects that bypassed the normal
incoming test procedures.

Engineering failures are recurrent problems in
the design that have not yet been corrected or
new problems not yet resolved because of lack of
experience.

Residual failures are problems that have not
yet recurred and for which there is no corrective
action except to repair when they occur. These
are the truly random failures.

Experience has shown that the three major
recurring problems usually account for 75 per­
cent of all failures. It is reasonable to expect that
the correction of the top four to six recurring
problems will yield a tenfold improvement in
MTTF.

THE OPERATIONAL LIFE STAGE

Maintenance and repair during the field opera­
tional stage are the customer's primary contacts
with system reliability. In the early days of
computers, repairing a downed system was an
art. Diagnostics that were halted or trapped
when executing certain instructions did give
clues to the location of the failure but did not
pinpoint the failing Field Replaceable Unit
(FRU). To identify the failing FRU, technicians
swapped circuit boards one by one with "known
good boards" in the hope of eventually restoring
the system to proper operation. In time, diagnos­
tic techniques became better able to identify the
specific failed FRU before swapping any boards;

FUNDAMENTAL CONCEPTS 13

Passes on failure data

Alerts field service office

r------------
(0 DC)j I Digital Diagnosis Center

I I
Calls for DOC Alerts

DOC Informs Local Engineering service service engineer office field Customer engineering development
I response I service group groups
I group I office

I I
I I
I I Host computers I I
I I
I I
L _____

~----
_____ J

Performs auto-test

Performs failure analysis

Dispatches appropriate field service engineer and part

Passes on on-going improvements

Figure 1-7. Overview of DEC's Remote Diagnosis Network.

then the failed board could rapidly be replaced
with a good one.

Unfortunately, as on-site repair time is de­
creased by better diagnosis, travel time to the site
becomes a limiting factor. At today's labor and
transportation rates, the cost of travel time fre­
quently exceeds the cost of the actual repair.
Return trips, because the failed FRU was identi­
fied but the field service engineer had no replace­
ment along, are very cost inefficient. Alternative
service strategies have developed in response to
these factors, such as customer carry-in service
for small computers and service vans that carry
enough sets of spare parts to permit long absenc­
es from the branch field service office.

A good example of a current field service
approach is Digital Equipment Corporation's
Digital Diagnosis Center (DDC). An overview of
the network operation is shown in Figure 1-7.
When customers detect or suspect a computer
malfunction, they call a special telephone ·re­
sponse line that is attended 24 hours a day, seven
days a week. The heart of the DDC is a dual

PDP-II/70 configuration with auto-dial equip­
ment. Once attached to the customer's failing
computer (typically within 15 minutes), the DDC
host system directs the diagnosis process based
on results produced by the system under test. A
configuration file is kept on each system sup­
ported. The DDC host executes the appropriate
diagnostic "scripts," which simulate the thought
processes of an on-site field service engineer.
Each script executes a diagnostic sequence that
can be modified according to the error responses
generated by the computer being tested.

At the same time, the remote diagnosis spe­
cialist puts the local field service office on alert
for a probable call. When initial diagnostic re­
sults are available, an engineer in the DDC
reviews them and may then initiate further auto­
matic tests or take direct control of the system
under test.

When the analysis is complete, the problem
will be described to the local field service branch
office, which then dispatches the right person
with the right part to the site. The on-site field

14 THE THEORY OF RELIABLE SYSTEM DESIGN

engineer replaces the predetermined failed part
and verifies the resolution of the problem. Final
results of the corrective action are transmitted to
the DDC to update the system's maintenance
log. Information about problem areas in various
computer systems is passed on to the engineering
development groups for improvements in the
future.

COST OF OWNERSHIP

The third dimension of the reliability framework,
in addition to physical and temporal stage is
cost. The cost of a computer system is not
limited to initial purchase; significant costs recur
during the life of a system. As a result, computer
owners frequently develop mathematical models
that enable them to make optimal decisions,
minimizing the total cost of ownership.* Follow­
ing is a description of some of the more signifi­
cant costs:

Purchase Price. The purchase price of a com­
puter, though significant, can represent less than
half the cost of ownership, computed on the
basis of net present value. The purchase price
usually includes system hardware, documenta­
tion, software license fees, training, and installa­
tion. The potential owner of a computer always
has renting and leasing alternatives to consider,
which can sometimes be advantageous in terms
of cash flow or net present value.

Site Preparation. Many computers' require
special. operating environments. This may in­
clude special air conditioning, with closely con­
trolled temperature, humidity, and airborne par­
ticulate matter size and density. A large computer
may also require a raised floor for cabling. The
main power supply may require a separate trans­
former with three-phase service and Radio Fre­
quency Interference (RFI) filters. In some instal-

• These financial considerations are discussed in detail in
Chapter 6.

lations, an Uninterruptible Power Supply (UPS)
is essential to increa-se system availability or
prevent loss of data.

Maintenance. All computers require some de­
gree of preventive and corrective maintenance.
The user usually has the option of purchasing a
field service contract at a fixed price or paying
for field s~rvice on a time-and-materials basis.
The maintenance can come from the computer
manufacturer, Original Equipment Manufactur­
er (OEM), a third party, or may be performed by
the customer. The trade-offs inherent in deci­
sions about when and how often to perform
preventive maintenance also affect cost of own­
ership.

Supplies. A computer system requires paper
for the printers, disks and tapes for the mass
storage devices, and other periodically replaced
material. Very significant, too, is the power re­
quired to run the computer. With ever-escalating
energy cpsts, supplying power to a computer for
its operational lifetime can be one of the most
significant expenses associated with ownership.

Cost oj Downtime. Depending on the applica­
tion of the system, the cost of downtime can be
trivial or crucial. In a system' that acquires
revenue, for example, the cost of downtime can
far exceed the actual purchase price. This param­
eter requires careful evaluation by the potential
customer.

Consider a system that has only an initial cost,
I, and a failure rate A. The cost, C, of owning this
system for n years can be expressed as:

where

n S.P.
C=I+~ II.

i=l (1 + D)'

Si = the cost of one corrective main­
tenance call in year i

Pi the expected number of failures
during year i, and

D = the discount rate.

Service
cost

FUNDAMENTAL CONCEPTS 15

Cost,
performance,

MTTF,
MTTR,

etc.

Figure 1-8. Major activities in the design and marketing of a computer system.

The discount rate expresses the value of mon­
ey in terms of time. For example, if you need
$100 in two years and can get 10 percent annual
interest in a savings account, you need to put
away only $100/1.1 2

= $82.65 today. Here 10
percent represents the discount rate.

Assume that the failure rate is constant over
the period in question. Then

n s.
C=I+P~ I.

i=l (1 + DY
Further assume that the system has a five-year
life, that a service call costs $300, and that the
discount rate is 20 percent. Expressing)... in
failures per million hours and noting the fact
that there are 8,760 hours in a year results in:

C = I + (300) 8760)", ± _1_.
106

i=l (1.2Y

= 1+7.86)",

Consider a system that costs $21,000 and has a
failure rate of 6,500 per million hours (equivalent
to a Mean Time To Failure of 154 hours). Its
cost of ownership, using the assumptions above,
is $72,090. Now consider another system that

costs more to purchase, $27,500, but is more
reliable. Its failure rate is 4,400, or an MTTF of
227 hours. Its cost of ownership is $62,084.
Although the second system is 31 percent more
expensive to purchase, its 47 percent increase in
reliability results in a 14 percent reduction in
five-year cost of ownership.

UNIVERSE OF MODELS

Figure 1-8 depicts the major actiVIties in the
design and marketing of a computer system.
Each activity has a model that can be used for
predictive and evaluation purposes. The goal of
all these activities is to produce a system which
fulfills its intended use, thereby satisfying the
customer. Customer satisfaction is a complex
function of system cost, performance, reliability,
and maintainability.

Once the need for a system is established,
usually by technological or market pressures, a
design is developed. Enhanced reliability usually
involves some degree of hardware redundancy,
and maintainability improvements usually in­
volve the addition of self-testing circuits, both of

16 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 1-3. Parameters a designer can control,
their impact on system design goals, and typical
techniques used to achieve these goals.

Designable Example
Parameters Goals Techniques

Hard Failures

MTTF Tolerate Replication

MTTR Isolate Detection

Transient Faults

MTTC Tolerate Detection/Retry

which increase the design effort and the product
cost. The goal should be to minimize the cost of
ownership.

Ideally, sales forecasts are expressed as a func­
tion of selling price. Thus, the cost of hardware
affects the sales forecasts and the business
plan. Reliability (MTTF) and maintainability
(MTTR) influence the field service plan. The
sales forecasts affect both the field service and
business plans. Coupled with the MTTF,
MTTR, and sales forecasts, the field service plan
produces the service costs, which further affect
the business plan. Finally, the business plan
determines the marketing, manufacturing, and
field service strategies. Thus, all the components
interact with and influence one another, and a
modeling process underlies each component. Be­
cause financial plans vary greatly according to
markets, and indeed between companies in the
same market, this book focuses on evaluating
reliability (see Chapter 5).

THE DESIGNABLE PARAMETERS

The designer influences reliability (MTTF),
availability, and maintainability (MTTR) pa­
rameters in the model space of Figure 1-8. Table
1-3 illustrates the implication of these parameters
on the system design.

With increased customer interest in fault toler­
ance and constantly decreasing hardware costs,
there is a significant trend to implement more
fault tolerance in hardware. Hardware error tol­
erance has many advantages:

• Simplifies recovery for software and user applica-
tions

• Saves time
• Provides transparency to the user
• Increases probability of successful recovery, given

early detection
• Decreases MTTR
• Increases MTTF, MTTE (Mean Time To Error),

and MITC (Mean Time To Crash)
• Simplifies software recovery and reduces depend­

ence on implementation
• Error detection logic can help isolate design errors

so that future implementations are even more reli­
able.

The goal of this book is to provide methodolo­
gies for designing and evaluating the use of
MTTF, MITE, MTTC, and MTTR improve­
ment techniques in computer systems.

REFERENCES

Avizienis [1978]; Foley [1979]; Harrahy [1977]; Keller
[1976]; Queyssac [1979]; Russel [1980]; Siewiorek et
al. [1978b]; Siewiorek, Bell, and Newell [1982]; von
Alven [1964].

Faults and Their Manifestations

INTRODUCTION

Designing a fault-tolerant system requires find­
ing a way to prevent the logical fault that arises
from a physical failure from causing an error.
Figure 2-1 depicts the possible sources of an
error. The following apply [Avizienis, 1975]:

• Failure. Physical change in hardware.
• Fault. Erroneous state of hardware or software

resulting from failures of components, physical inte­
ference from the environment, operator error, or
incorrect design.

• Error. Manifestation of a fault within a program or
data structure. The error may occur some distance
from the fault site.

• Permanent. Describes a failure, fault, or error that
is continuous and stable. In hardware, permanent
failure reflects an irreversible physical change. The
word hard is used interchangeably with permanent.

• Intermittent. Describes a fault or error that is only
occasionally present due to unstable hardware or
varying hardware or software states (for example, as
a function of load or activity).

· Transient. Describes a fault or error resulting from
temporary environmental conditions. The word soft
is used interchangeably with transient.

A fault can be caused by a physical failure, an
nadequacy in the design of the system, an
!nvironmental influence, or the operator of the
;ystem. A permanent failure may lead to a
)ermanent fault. Intermittent faults can be
:aused by unstable, marginally stable, or incor­
'ect designs. Environmental conditions can lead
o transient faults. All these faults can cause
:rrors. Incorrect designs and operator mistakes
an lead directly to errors.

The distinction between intermittent and tran­
ient faults is not always made in the literature
Kamal, 1975; Tasar and Tasar, 1977]. The di-

17

18 THE THEORY OF RELIABLE SYSTEM DESIGN

Unstable
or Error

marginal
hardware

Figure 2-1. Sources of errors.

viding line is the applicability of repair [Breuer,
1973; Kamal and Page, 1974; Losq, 1978; Savir,
1978]. Faults resulting from physical conditions
of the hardware, incorrect hardware or software
design, or unstable but repeated environmental
conditions are potentially detectable and repair­
able by replacement or redesign; faults due to
temporary environmental conditions, however,
are incapable of repair because the hardware is
physically undamaged. It is this attribute of
transient faults that magnifies their importance.
Even in the absence of all physical defects,

Table 2-1. Ratios of transient to permanent errors.

System/Technology Mechanism

CMUA PDP-lO, ECL Parity

Cm* LSI-II, NMOS Diagnostics

C.vmp TMR LSI-II Crash

T elettra, TTL Mismatch

1M X 37 RAM, MOS (Parity)

including those manifested as intermittent faults,
errors will still occur.

Transient and intermittent faults are already a
major source of errors in systems. An early study
for the U.S. Air Force [Roth et al., 1967a]
showed that 80 percent of the electronic failures
in computers are intermittent. Another study by
IBM [Ball and Hardie, 1967] indicated that
"intermittents comprised over 90% of field fail­
ures." Table 2-1 depicts the ratio of measured
Mean Time Between Errors (MTBE) to Mean
Time To Failure (MTTF) for several systems
[Siewiorek et aI., 1978a; Morganti, 1978;
McConnel, Siewiorek, and Tsao, 1979]. The last
row of this table is the estimate of permanent
and transient failure rates for a one-megaword,
37-bit memory composed of 4K MOS RAMs
[Geilhufe, 1979; Ohm, 1979]. In this case, tran­
sient errors are caused by alpha particles emitted
by the decay of trace radioactive particles in the
semiconductor packaging materials. As they pass
through the semiconductor material, alpha par­
ticles create sufficient hole-electron pairs to add
charge to or remove charge from bit cells. By
exposing MOS RAMs to artificial alpha particle
sources, the operational life error rate can be
determined as a function of RAM density (Fig­
ure 2-2), voltage, and cycle time [Brodsky, 1980].

Transient errors have also been observed in
microprocessor chips [Brodsky, 1980]. Transient

Processor Processor MTBE/
MTBE MTTF MTTF

44 hrs. 800-1,600 hrs. 0.03-0.06

128 hrs. 4,200 hrs. 0.03

97-328 hrs. 4,900 hrs. 0.02-0.07

80-170 hrs. 1,300 hrs. 0.06-0.13

106 hrs. 1,450 hrs. 0.07

FAULTS AND THEIR MANIFESTATIONS 19

10.0 I Actual -:s
0 1.0 ~

t!J
T

v + Predicted
Q.I .;;;:

..1
- Q.I ~"C

~~ 0.1
OT-
t

IoU '" Q.I

.2
] 0.01
0
~

0.001
1 4K 16K 64K

Memory size in bits

Figure 2-2. Measured soft error rates vs. dynamic RAM densities. (© 1979 IEEE.)

errors will become even more of a problem in the
future with shrinking device dimensions, lower
energy levels for indicating logical values, and
higher-speed operation.

To design and evaluate the reliability and
availability of systems requires a fault model.
How do faults manifest themselves as errors? Do
the arrival times of faults (or errors) fit a proba­
bility distribution? If so, what are the parameters
of that distribution? This chapter attempts to
answer these questions.

FAULT MANIFESTATIONS

Physical Defects

Physical defects are the lowest level in the hier­
archy of failures. There are numerous ways in
which a semiconductor chip can fail. Some fail­
ures result from defects in the manufacturing
process. Others are due to stress during normal
operation. The Reliability Analysis Center
(RAC) of the Rome Air Development Center

(RADC) collects reliability data from govern­
ment and industry on all phases of component
development, assembly, testing, and field opera­
tion. The data are summarized in publications
dealing with digital ICs, hybrid circuits, linear/
interface devices, memory/LSI, discrete transis­
tors/diodes, and nonelectronic parts.

Summary data are provided on device fall-out
rates (the percent that fail initial screening),
accelerated life testing (performed at high tem­
peratures), and field operation. Analysis indi­
cates the effect of package type, logic family,
complexity, temperature" environment, and
screening class on failure rates. Detailed infor­
mation, listed in Table 2-2, is also given on each
individual test of a device.

Tables 2-3 through 2-7 illustrate some failures
observed in the RAC data as a function of
technology [Rickers, 1976; Klein, 1976]. Many of
the defects are related to manufacture and as­
sembly; others develop as a result of aging. To
eliminate as many of these defects as possible
before board insertion, various screening tests
are employed to stress devices and promote early

20 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-2. Typical data reported in RAe detailed
test information.

Device function

Test type
Life
Environmen tal/screening

Technology
Bipolar
MOS
MOS, silicon gate
CMOS

Device complexity

Manufacturer/part number

Package material/type
Ceramic
Ceramic-metal
Epoxy
Silicone
Phenolic
CAN
DIP
Flat-pack

Number of pins

Screening class
MIL-STD-883 class B
MIL-STD-883 class C
Selected screening
Previously subjected to burn-in
Previously subjected to environmental test
Commercial off-the-shelf

Rated operational temperature

Ending date of test

Source of data
Part-level environmental test
Equipment-level reliability demonstration test
Equipment-level checkout and burn-in
Part-level burn-in
Part-level life test

Test type
Accelerated life (operating)
Autoclave
Bond strength
Burn-in
Constant acceleration
Electrical parameter measurement
Leak
Electrical measurement (functional)
High pressure
Humidity life (nonoperating)
Intermittent life
Lead fatigue
Mechanical shock
Moisture resistance
Dynamic operation life
Operating life (equipment-level)
Power cycle
Reverse bias life
Humidity life with reverse bias
Salt atmosphere
Solderability
Electrical measurement (static parameters)
Storage life
Temperature, vibration, and power cycle
Temperature cycle
Thermal shock
Varied frequency vibration
Visual inspection
Wearout life test
X-ray .

Stress level
Ambient temperature
Number of cycles
Minimum and maximum stresses

Number of devices tested

Total number of device hours

Number of failed devices

Description of failures

FAULTS AND THEIR MANIFESTATIONS 21

Table 2-3. Die-related malfunction summary for LSI device technologies.

Bipolar MOS CMOS

Failure No. No. No.
Classification Devices % Devices % Devices %

Surface 29 29.00% 78 45.09% 1 20.00%

Contamination 1 1.00 41 23.70 1 20.00

Inversion/channeling 15 15.00 1 .58

Leakage 13 13.00 36 20.81

Oxide defects 14 14.00 43 24.86 2 40.00

Pinholes

Gate oxide 32 18.50 2 40.00

Field oxide 12 12.00 I .58

NOC

Oxide fault/
breakdown 2 2.00 IO 5.78

Diffusion defects I 1.00 17 9.83

Diffusion anomaly 3 1.74

Diffusion spike

Masking fault I 1.00 14 8.09

Metalization defects 21 21.00 3 1.74

Open 3 3.00 1 .58

Short 16 16.00 1 .58

Pi tted/ corroded I .58

Smeared/ scra tched 2 2.00

NOe

Bond defects 5 5.00 7 4.05

Misplaced

Multiple bond

Smeared/over bonded

Lifted 4 4.00 7 4.05

Broken I 1.00

Intermetallic
compound

Interconnection defects 29 29.00 7 4.05

Open 6 3.47

Short 28 28.00 I .58

Missing

(Table continues on next page)

22 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-3-Continued

Bipolar MOS CMOS

Failure No. No. No.
Classification Devices % Devices % Devices %

Broken wire I 1.00

Die (mechanical) 3 1.74 2 40.00

Cracked/chipped I .58

Die attach bond
defect 2 1.16 2 40.00

Degraded input cktry I 1.00 15 8.64

Excessive leakage I 1.00 13 7.48

Short 2 1.16

Table 2-4. Die-related failure modes: 551, MSI, LSI CMOS.

SSI MSI LSI
CMOS CMOS CMOS

Failure No. No. No.
Classification Devices % Devices % Deuices %

Surface defects 26 37% 31 37P1c 8 50O/C

Con tamina tion 22 31 22 27 8 50

Foreign material/
stray particles 2 2 2 2

Inversion/ channeling 2 3 5 6

Surface leakage 2 2

Bulk defects 2 3 10 12 0 0

Crystal imperfections I 2 9 II

Cracked, chipped die 1 2 I 1

Oxide defects 27 39 21 25 6 38

Gate oxide pinholes 8 II 2 2 5 31

Field oxide pinholes

Oxide fault I I I 6

(Table continues on next page)

FAULTS AND THEIR MANIFESTATIONS 23

Table 2-4-Continued

SSI MSI LSI
CMOS CMOS CMOS

Failure No.' No. No.
Classification Devices % Devices % Devices %

Oxide short/
breakdown 17 24 17 21

Glassivation defect 2 2 I I

Diffusion defects 8 II 2 2 0 0

Diffusion anomaly

Diffusion spike/
piped junct.

Isolation defect

Mask fault 8 II 2 2

Metalization defects 4 7 8 10 2 12

Open at oxide step 2 3

Open at contact
window

Open/not specified I 2 4 5 2 13

Short/in terlevel
metal

Short/not specified I I

Pitted/corroded

Smeared/scratched I 2 3 4

Electromigra tion

Input output circuit 3 4 12 14 0 0
defects

Excessive input
leakage 8 10

Input circuit short 3 4 2 2

Excessive output
leakage

Output circuit short 2 2

Total 70 84 16

24 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-5. Die-related defect summary: 551, M51,
L51 CM05.

General Deject No.
Classification Maljunctions Relative Percent

Surface 65 38%

Bulk 12 7

Oxide 54 32

Diffusion 10 6

Metalization 14 8

Input/output
circuit 15 9

Oxide (32%)

Table 2-6. Die-related failure modes: 551, M51, L51 standard TTL.

SSI STD MSI STD
TTL TTL

Failure No. No.
Classification D.evices % Devices %

Surface defects 51 20% 10 1 1 (,7c

!

Con tamina tion 29 11 5 6

Foreign material/
stray particles 7 3 4 5

Inversion/channeling 11 4 1 1

Surface leakage 4 2

Bulk defects 24 9 5 6

Crystal imperfections 2 I 3 3

Cracked, chipped die 22 8 2 2

Oxide defects 27 10 10 II

Gate oxide pinholes

Field oxide pinholes 8 3 6 7

Oxide fault 19 7 3 3

Oxide short/
breakdown

Passivation defect 1 0

Diffusion defects 19 7 13 15

Diffusion anomaly 4 2 9 10

Diffusion spike/
piped junction 3 1 2 2

Isolation defect I 0

Surface (38%)

LSI STD
TTL

No.
Deuicl!s %

5 8(};'

2 3

1 2

2 3

0 0

22 33

12 18

3 4

5 8

2 3

0 0

(Table continues on next page)

Table 2-6-Continued

SSI STD
TTL

Failure No.
Classification Devices

Mask fault II

Metalization defects 136

Open at oxide step

Open at contact
window 85

Open/not specified I3

Short/in terlayer
metal 8

Short/not specified 22

Pitted/corroded 5

Smeared/scratched 3

Electromigra tion

Input/output circuit
defects 5

Excessive input
leakage I

Input circuit short 2

Excessive output
leakage

Output circuit short 2

Total 262

Table 2-7. Die-related defect summary: 551, M51,
L51 standard TTL.

General Defect No.
Classification Malfunctions Relative Percent

Surface 66 16%

Bulk 29 7

Oxide 59 14

Diffusion 32 8

Metalization 213 51

Input/output
circuit 17 4

%

4

52

33

5

3

8

2

I

2

0

1

1

FAULTS AND THEIR MANIFESTATIONS 25

MSI STD LSI STD
TTL TTL

No. No.
Devices % Devices %

2 2

38 43 39 59

4 5

IO II II 17

7 8 9 13
15 17 17 26

2 2 2 3

12 14 0 0

6 7

4 5

I I

1 1

88 66

Metalization (51%)

26 THE THEORY OF RELIABLE SYSTEM DESIGN

failure. The majority of the test types in Table
2-2 are electrical, mechanical, or environmental
screens. Table 2-8 illustrates how tests can be
constructed to uncover multiple defect types.
Because screening consumes time, money, and
resources, how much screening is used is a major
decision. The optimum amount is a function of
screening costs, device costs, fall-out rate, and
cost of device failure in an assembled system.

logic-level Fault Classes

To determine the effect of failures on logic
functions, physical data such as those given in
the previous section must be used to generate
circuit-level fault classes, which in turn are used
to formulate logic-level fault classes. The ab-'
straction process prevents proliferation of de­
tails. The following logic-level fault models have
been used successfully as abstractions of the
physical defect mechanisms:

• Stuck-at. Logical values in lines, gates, pins, and
the like are permanently constrained to a value of I
(s-a-I) or 0 (s-a-O).

• Bridging. Two or more adjacent signal lines are
physically shorted together. In some logic families
this introduces an additional "wired-AND" or
"wired-OR" function.

• Short or Open. These correspond to missing (open)
or additional (short) connections.

• Unidirectional. Due to the geometric nature of cir­
cuits, some single failures can effect multiple signal
lines. An open circuit in a memory-select line may
cause a word to be incorrectly read as all Is. The
multiple bits in error are all in the same logical
direction (that is, correct Os have been transformed
into incorrect Is).

Faults have two other important properties:
extent and value. The extent of a fault may be an
independent occurrence (local) affecting a single
logical variable, or correlated with other simulta­
neous occurrences (related) because of the densi­
ty of logic elements or the failure of a common
element. The fault value may be determinate
(such as s-a-l) or indeterminate (for example,
varies between logical 0 and 1).

System-level Abstractions

The manifestations of intermittent and transient
faults and of incorrect hardware and software
design are much harder to determine than per­
manent faults. The permanent fault models often
can be applied to intermittents; however, be­
cause the fault is present only temporarily and
because most contemporary computer systems
do not have substantial on-line error detection,
the normal manifestations of an intermittent are
at the system level (such as system crash or I/O
channel retry). Transient faults and incorrect
designs do not have a well-defined, bounded,
basic fault model. Transients are a combination
of local phenomena (such as ground loops, static
electricity discharges, power lines, and thermal
distributions) and universal phenomena (such as
cosmic rays, alpha particles, power supply char­
acteristics, and mechanical design). Even if mod­
els could be developed for transients and incor­
rect designs, they would quickly become obsolete
because of the rapid changes in technology.

Consider now the types of system-level mani­
festations that might be expected from intermit­
tent faults, transient faults, and incorrect design.
The experience reported below, derived from an
extensive study of system crashes on C.mmp, a
multiprocessor in which 16 processors converse
with 16 memories through a crosspoint switch,
indicate that system-level fault behavior is com­
plex. There is a large gap between logic-level
fault models and system-level manifestations.
Much work remains to be done before an accept­
able system level model can be developed. *

Memory parity failures have, with rare excep­
tion, been the most common failure mode, ac­
counting for 50-100 percent of the system crashes.
Most are transient, but permanent errors occur
with regularity. Often the memory failure rate
had largely determined the Mean-Time-T 0-

Crash (MTTC).

• The remainder of this section is excerpted and adapte(
from Siewiorek et aI., 1978a.

Table 2-8. Screening test summary.

Screening Tests

Wafer probe

Wafer inspection

Precap inspection

Stabilization bake

Thermal cycling

Thermal shock

Hermeticity

Centrifuge

Mechanical shock

Vibration

Burn-in

Radiographic

External visual

Scanning Electron Microscope

~
"Q.,'"

~Q.,l

~
"Q.,\';

~Q.,l
~ ,<'

~'$ ~ . .s- ~Q.,

.J-"
~ ~'" ,*'" ~,

~Q" C~
Q., ~

,":-

,<' ,*'"
*'" \JQ."

CO\Q" v .~-t:-

~
,*'"

\JQ.,. ,*C'-:

~~ \JQ.,.

C ~

t
-~ ~

'*~ ~ ~Q.,. ,,:§

~ ~
.~~
~
~
~ ~ ~

,Q., .~C

':$!\,; .~-t:-
~' ~ '? .~~

.~~ §
~ ~~

o.~ ~~

f Q.,~
~ " ,~ ,~'"

.~~
~

S~
~

-,":­

*~ ~
~

... ~ . Q.,
~v ~

-t:-~ ~ ~Q.,
,~

~'"
,,~

x

x

x

x

x

x

x

~~ q
~ ~ '? ~~

x x

x

x

x

x

x x

x

~-t:- f
. ~C ~~
q c~~

v -~Q;
. Q, "'\'"
s~ .Q,
~ ~"'

x

x x x

x x x x

x x x x

x x x

x x x

x x

x x

x x

x x x x

x x

x x x

.\,; ,
~

~Q;

x

x

x

.:-, ,r.. ... t ,"
~ ~Q;

x

x x

x x

x

x

x

~::;,
&
~

x

x

x

x

x

x

x

~ ~~
<v~ d}

x

x

x

x

x

x

x

x

"Tl
;I>
C
r
-l r.n
;I>
Z
o
-l
:t
~
;:0

~
;I>
Z
"Tl
tTl
r.n
-l
;I>
-l
(5
Z
r.n

N
.......

28 THE THEORY OF RELIABLE SYSTEM DESIGN

It is always difficult to locate the source of
transient failures. Transient failures have been
an especially large problem on C.mmp, since
there are few trace points in most data paths.
Not including powerful debugging aids in the
logical design has continuously hampered devel­
opment. There was little that could be done for
the processors, but aids could have been incor­
porated in all the custom-built logic. A similar
weakness became evident in the software: often
information about a failure was lost by the
operating system, making recording of the condi­
tions for transients unreliable.

A transient failure that has eluded solutions is
the problem of "false NXMs." The processor
reports a nonexistent memory (NXM) exception,
but subsequent analysis shows that the memory
is responding, and the instruction, registers, and
index words are well-formed. No exception
should have resulted. Timing problems are sus­
pected, but there is insufficient information
available to isolate the failure.

Other long-standing transient failures are
stack operation problems. This usually appears
as an incorrect execution of subroutine calli
return instructions or interrupt entry/exit mis­
takes. The most common form of the error is
having one too many (or few) words pushed (or
popped) from the stack. The transient is rela­
tively rare, and no method of recovering from it
has been developed.

A pleasant surprise is the reliability of the
crosspoint switch; however, an early problem
required considerable effort to fix. Certain condi­
tions, characterized by a memory access not
completed by the UNIBUS master, could cause
the switch to deadlock, due to lack of a time-out
circuit in the memory port control logic. Any
other processor attempting to access the dead­
locked memory port would block until manually
cleared. This situation was often caused by
poorly designed I/O controllers that recovered
from errors by simply aborting the current ac­
cess, with no regard for proper termination of
UNIBUS or crosspoint switch protocols. While

the known cases that caused deadlocked mem­
ory ports were isolated and individually reme­
died, the most important result was an apprecia­
tion of the design principle of mutual suspicion.
The crosspoint switch should never trust that an
operation started will necessarily' be completed;
it must be prepared to time-out, clear itself, and
report a failure condition to the requesting pro­
cessor.

The interprocessor bus is as unreliable as the
crosspoint switch is trustworthy. The reliability is
so poor that, if a cheap and highly effective
method of software recovery hadn't been found,
the bus would be nearly unusable. The mode of
failure is transient loss of interprocessor inter­
rupts and changing interrupt level.

The data presented below were culled from the
crash reports produced by the C.mmp's operat­
ing system's suspect/monitor crash logging sys­
tem. These dumps must often be manually ana­
lyzed to determine the reason for the crash.
Sometimes, the reason cannot be found; always,
the analysis is error-prone. The crash records
were never intended as a precise reliability meas­
ure. Rather, they are a programmer's and engi­
neer's tool to isolate trouble spots in the system.
With this caveat in mind, the data may be
discussed.

A failure causing a crash may be the result of
either hardware or software failure. Of the five
symptoms listed in Table 2-9, only parity failures
are necessarily caused by hardware. All the
others may be brought about py either, and
analysis is required to determine the actual
cause. The cause of most failures can be deter­
mined, but a substantial number of crashes of
unknown origin remain. Figure 2-3 restates the
data from Table 2-9 to show the contribution of
each of the five classes of errors.

The error frequency of software-related errors
is strongly related to the introduction of new
features. Being new and relatively untested, new
features are likely to have previously undetected
faults. Once the feature is installed, any errors
due to it are usually found and corrected very

Table 2-9. A summary of eight months of C.mmp crash data.

July (1) Aug. (2) Sept. (3) Oct. (4) Nov. (5) Dec. (6) Jan. (7) Feb. (8)
Date 1977 1977 1977 1977 1977 1977 1978 1978

Uptime (hrs.) 516.6 610.5 513.8 701.9 538.8 595.6 600.2 478.5
MTBF (hrs.) 5.9 7.6 2.9 9.4 8.7 16.5 15.4 7.3

Crashes

User 32 55 38 27 34 18 15 30
Nonuser 87 80 175 75 62 36 39 66

Crash Type

Software 20 7 35 33 34 11 7 16
Unknown 32 40 14 4 9 7 8 3
Hardware 35 33 126 38 18 18 24 47

~

>
Crash Symptom c:

r
-l

System error 24 10 47 46 31 11 9 15 rJ)

>
IllInst** 0 3 3 0 2 0 0 z

13 33 34 3 4 4 10
0

No response 10 -l

NXM 14 13 32 4 9 5 2 14 J:
tTl

Parity 32 24 57 17 18 14 18 21 :::0

3:
• MTBF = (Uptime)/(nonuser crashes) >

Z
•• IllInst = Illegal Instruction

~
tTl
rJ)

-l
>
-l
(3
Z
rJ)

N
'>C

30 THE THEORY OF RELIABLE SYSTEM DESIGN

. Total system crashes
-- Non-user caused crashes
..- Hardware and non-determined crashes
...... Parity + NXM + no response crashes
-- Parity error caused crashes

240

220

200

III
Q.I

180
.c
III

160 ~
\,.I

E
Q.I

140
ti
~ 120
'0

100 t
.&J
E 80
::::l
Z

60

40

20

....

o 1 234 5 6 7 8
Eight months period-from July (1),1977
through February (8), 1978

Figure 2-3. C.mmp reliability: distribution of
crashes.

quickly. Therefore, the trend is bursts of errors,
with any particular error becoming less frequent
as time passes. The four months with high soft­
ware error counts all follow this trend, even
though new faults kept the counts high for
several consecutive months.

FAULT DISTRIBUTIONS

Probability Review

Before asking whether the arrival times of faults
fit a probability distribution, we must review
some probability theory. Central to the study of
probability is the notion of randomness. A phe­
nomenon is considered random if its future

behavior is not exactly predictable. Tossing a
pair of dice or measuring the time between alpha
particle emissions by a radioactive sample are
experiments that involve random phenomena. In
many cases it is more interesting to know the
value of a number associated with the experi­
ment under observation rather than the actual
outcome. Thus, there must be a function that
associates a number with every possible outcome
of an experiment. Such a function is called a
random variable. The time between any two
failures of an electronic component, the number
of jobs processed by a computer center in one
day, or the time to the next crash of a time­
sharing system are examples of random varia­
bles.

For each random variable, X, its Cumulative
Distribution Function (CDF), F(x), is defined as

F(x) = P[X < x] (1)

That is, F(x) is the probability that the event X
is less than or equal to x. If X is a discrete
random variable, all its possible values {Xl' x2'
x3' ... } can be put into one-to-one correspond­
ence with the positive integers. The probability
mass function (pmf), f(x), is then defined as

f(x) = p[X = x] (2)

If X is a continuous random variable, its proba­
bility density function (pdf), f(x), is defined as

f(x) = dF
dx

such that, in general

(3)

P < x < b] = lab f(x)dx (4)

The two most important parameters used to
describe or summarize the properties of a ran­
dom variable, X, are the mean or expected value
E {X} and the variance a;. If X is discrete

E{X} = L xJ(xi) = x1f(Xl)
~ ~)

+x2f(X2) + ...

while if X is continuous

E{X} = f-: xJ(x)dx (6)

The variance is defined as

a} = E{(x - E{x})2} (7)

The mean acts as a kind of summary or-what we
expect from a random variable, and the variance
measures the deviations of a random variable
from its mean. The standard deviation ax (the
square root of the variance) is also used to
measure the variability of a random variable
about its mean.

Two more functions are of particular interest
in reliability theory. If the random variable un­
der study is the time, T, to the next failure of a
system or component the Reliability Function,
R(t), is defined as

R(t) = I - F(t)

= P[T > t]

(8)

(9)

R(t) is thus the probability of not observing any
failure before time t.

Finally, the hazard function, z(t), is defined as

J(t)
z(t) = I - F(t) (to)

With renewal processes techniques it can be
;;hown that z(t - T)Llt is the conditional probabil­
lty that the nth failure occurs in the infinitesimal
Interval [t, t + Llt) given that the (n - l)st point
)ccurs at time T [Snyder, 1975]. Hence, the units
)f z(t) are failures/unit time, and z(t) ptovides a
iescription of how the instantaneous probability
)f failure evolves in time.

:xponential Distribution

[be exponential distribution is the one most
:ommonly encountered in reliability models.
[be probability density function (pdf), Cumula­
ive Distributio.n Function (CDF), reliability
unction, and hazard (failure rate) function of

FAULTS AND THEIR MANIFESTATIONS 31

the exponential distribution are shown in Equa­
tions 11 through 14 (for A > 0):

pdf = J(t) = Ae-'AI (11)

CDF = F(t) = I - e-At (12)

Reliability = R(t) = e-'AI (13)

Hazard function = z(t) = A (14)

The parameter A is sometimes referred to as
the Jailure rate because (in reliability theory) it
describes the rate at which failures occur in time.

The failure rate, A, is usually assumed to be a
constant. In reality, A is usually a function of
time as depicted in the bathtub-shaped curve in
Figure 1-4. During early life there is a higher
failure rate, called infant mortality, due to the
failure of weaker components. Often these infant
mortalities result from a defect or stress intro­
duced in the manufacturing process. Once the
infant mortalities are eliminated, the system set­
tles into operational life, in which the failure rate
is approximately constant. The system then ap­
proaches wearout, in which time and use (such as
mechanical stress due to temperature cycling, ion
or metal migration) cause the failure rate to
increase. For most cases we will assume a con­
stant failure rate. For the exponential distribu­
tion, the mean is 1/A and the standard deviation
is I/A.

Weibull Distribution

The Weibull distribution has two parameters: a
(the shape parameter) and A (the scale parame­
ter). The probability density function, cumula­
tive distribution function, reliability function,
and hazard (failure rate) function of the Weibull
distribution are shown in Equations 15 through
18 (for a > 0, A > 0):

pdf = J(t) = aA(Att- 1 e-(At)a (15)

CDF = F(t) = 1 - e-(At)a (16)

Reliability = R(t) = e-('At)a (17)

32 THE THEORY OF RELIABLE SYSTEM DESIGN

Hazard function = z(t) = lXA(Atyx-l (18)

Note that the values of all these functions de­
pend on time only through the product of the
scale factor and time, At.

Because the failure rate is given by (AfYX, the
shape parameter directly influences the failure
rate:

• if a < 1, the failure rate is decreasing with time;
• if a = 1, the failure rate is constant with time,

resulting in an exponential distribution; and
• if a > 1, the failure rate is increasing with time.

(a = 2 is the special case of a linearly increasing
failure rate, known as the Rayleigh distribution.)

For the Weibull distribution, the mean (denot­
ed by JL where JL = E{x}) and standard deviation
(denoted by (J where (J = (Jx) are defined as
follows in terms of a and A:

JL = f«a + l)/a)/A (19)

(J = [f«a + 2) fa) - f2«a + 1) /a)]l/2 /A (20)

where the gamma function, few), is given by

foX pw-l exp(-p)dp.

The influence of the Weibull parameters on
the. mean of the distribution is illustrated in
Figure 2-4. The maximum likelihood estimates of
the Weibull parameters for the recorded data are
indicated in the graph (see the section Distribu­
tions for Transients and System Errors below).
With only the mean and standard deviation
available, the Weibull failure rate can be deter­
mined to be decreasing, constant, or increasing
as follows:

• if ,... < <1, the failure rate is decreasing;
• if ,... = <1, the failure rate is constant;
• if u > <1, the failure rate is increasing.

Geometric Distribution

If t takes only the discrete times 0, 1, 2, ... , then
replacing exp[-A] by q and t by n obtains the
discrete time geometric distribution correspond­
ing to the continuous time exponential distribu-

tion. The probability mass function, (pmf), cu­
mulative distribution function, and reliability
function of the geometric distribution are shown
in Equations 21 through 23 (for ° < q < 1):

pmf = fen) = qn - q(n+l) = qn(l - q) (21)

CDF = F(n) = 1 - qn (22)

Reliability = R(n) = qn (23)

The mean, JL, and standard deviation, (J, of the
geometric distribution are defined as follows in
terms of q:

JL = 1/(1 - q)

(J = ql/2/(l - q)

Discrete Weibull Distribution

(24)

(25)

Like the geometric distribution deriving from the
exponential distribution, the discrete Weibull
distribution is obtained from the Weibull distri­
bution by substituting q for exp [-Aa

] and n for t
[Nakagawa and Osaki, 1975]. The probability
mass function, cumulative distribution function,
reliability function, and hazard function of the
discrete Weibull distribution are shown in Equa­
tions 26 through 29 (for ° < q < 1):

pmf = fen) = qn"(l - q(n+l)"-n
a

) (26)

CDF = F(n) = 1 - qn
CX

(27)

Reliability = R(n) = qn" (28)

Hazard function = zen) = I - q(n+l)"-n
a (29)

The mean, JL, of the discrete Weibull function is
given by

(30)

It is very difficult to derive a closed-form
formula for this sum for any q and a. In this
book, the geometric distribution and the discrete
Weibull distribution are used only to approxi­
mate the exponential and Weibull distributions,
respectively.

0.250

0.225

0.200

0.175

0.150

IU
"C
.J:J
E 0.125
IU

....I

0.100

0.075

0.050

0.025

0.000
0.00 0.25

FAULTS AND THEIR MANIFESTATIONS 33

o
PDP-10 reload

o
lOPSe reload

0.50 0.75
Alpha

1.00

;-Mean = 10.0 hours

Mean = 25.0 hours

Mean = 50.0 hours

Mean = 100.0 hours
Mean = 200.0 hours

1.25 1.50

Figure 2-4. Means of Weibull distributions.

MATCHING SAMPLED DATA TO
MATH DISTRIBUTIONS
Maximum Likelihood Estimators
After the decision to characterize the failures of
a given system or component with a particular
distribution, the problem is to determine (esti­
mate) the values of the parameters of the distri­
bution from experimental data. One of the sim­
plest methods of estimation is that of maximum
likelihood [Melsa and Cohen, 1978]. Let xn be a
vector of observed data and let 0 be a vector of
llnknown parameters. If P(xn 10) is the probabil­
lty of observing xn given the parameters 0, the
naximum likelihood estimation of 0, 0MV is the
value of 0 for which P(xn 10) is maximum, that is

P(XnllJML) ~ p(xnIO) (31)

~or any value of 0.

Assume, for example, that the time to failure is
described by an exponential distribution. The
vector 7' = (Tt, T2' .•• ,TN) is a collection of ob­
served times to failure and is needed to compute
the maximum likelihood value of A in the expo­
nential distribution. The function P(7'1 A) is given
by

P(7'IA) = Ae-AT1 X Ae-AT2 X ... X AeATN (32)

N

-A ~ Tj + N In A
j=t (33)

e

The function in Equation 33 will be at a maxi­
mum for A = AML . Maximizing the above func­
tion is equivalent to minimizing the function

34 THE THEORY OF RELIABLE SYSTEM DESIGN

N

J(A) = A ~ Ti - N In A
i=1

Differentiating with respect to A and setting the
derivative equal to zero obtains the following
value of A:

which is equal to the inverse of the sample mean
time to failure.

Maximum Likelihood Estimation
of Wei bull Parameters

The Maximum Likelihood Estimators (MLE)
aML and AML for the Weibull distribution satisfy
the following equations [Thoman, Bain, and
Antle, 1969]:

N

(N/aML) + L In (XML)
)=1

= N X (f XCi...,L X In (x.))/(f X.a\ll)
)= 1 j j)= 1 j

(34)

N

CAMLY1ML = N /)~1 X/Ml. (35)

Once the value of the shape parameter is known,
Equation 35 can be used to calculate the scale
parameter AM L. Equation 34 can be used to
derive a difference equation in the form

aMLi+ 1
= Function (aMLi'XN)

A quickly converging solution can be found by
using the Newton-Raphson method [Thoman,
Bain, and Antle, 1969]. The linear estimate of
aML found by the linear regression analysis
described below is useful as an initial value for
the iterative solution process.

linear Regression Analysis

Due to the computational complexity of obtain­
ing the MLE values, graphical linear regression

analysis of the cumulative distribution function
is often used to fit data to the Wei bull function
[Berger and Lawrence, 1974]. This technique is
based on the transformation of the Weibull
cumulative distribution function (Equation 16)
into a linear function of In (t):

In {In [1/(1- F(t))]} = a In (t) + a In (A) (36)

If the data are from a Weibull distribution, the
plot should approximate a straight line. The line
is fitted to the data by applying the method of
least squares to the transformed points [Miller
and Freund, 1965]. The slope of the straight line
is an estimate of a, and the Y-intercept divided
by the slope is an estimate of In (A). The value of
the function F(t) is estimated by

F(t) = (j - 0.5)/N (37)

If nothing else, the results of linear regression
analysis are useful as an indication of the desir­
ability of performing the more involved analyses.

Confidence Intervals

Point estimates such as those obtained by linear
regression or maximum likelihood estimation are
only approximations and rarely match the values
they are intended to estimate. Because of this,
interval estimates are often desirable. These are
intervals that can be asserted with some certainty
to contain the actual value of the parameter
under consideration. The most common applica­
tion of this idea is expressed in "confidence
intervals." For 0 < p < 1, a p-level confidence
interval is a range within which the actual value
of the estimated parameter would fall with prob­
ability p, if the experiment were repeated many
times. That is, to say that a certain range of
values is a 0.90 confidence interval for a param­
eter is to say that in repeated sampling, 90
percent of the confidence intervals so construct­
ed would contain the actual parameter values
[Miller and Freund, 1965].

Goodness-of-Fit Tests

After a distribution has been chosen to describe
the probabilistic behavior of failures of some
system and its parameters have been estimated,
a Goodness-of-Fit Test can give quantitative
information about the likelihood that the system
is actually following that distribution.

In a Chi-Square Goodness-oj-Fit Test, each
observed value of a random variable is assigned
to one of k categories, C1, ••• , C k' Given the
total number of observed values, the expected
number of observations in each category is com­
puted according to the hypothetical distribution.
Let OJ and E j be respectively the number of
observed and expected observations in category
i. The X2 (chi-square) statistic is given by

2 ~ (OJ-Ei)2
X = £.J

i=l E j

The number of degrees of freedom of this X2
itatistic is m = k - n - 1, where n is the num­
ber of parameters that have been estimated from
the same experimental data that are being used
tn the test. A level of significance, a, must be
~hosen such that the probability that a chi­
iquare random variable with m degrees of free­
:lorn will exceed X~ is a. (The values of X~ can ~e
round in such tables as Pear, 1954.) If X > Xa'
:he hypothesis that the failures are properly
;haracterized by the hypothetical distribution
nust be rejected. Otherwise, the hypothesis is
lccepted. Finally, it should be noted that all the
f,'. must be equal to at least 5. To make each
r/ ~ 5 it may be necessary to pool categories. A CJ1:P' ,

'easonable level of confidence is 0.05.

:xample 1

)ata are collected from the file system of a time­
haring system about the times between tr~nsient
:rrors in eight disk drives in an effort to dIscover
vhether the time between transient errors fol­
ows an exponential distribution. The estimated
'alue of A is 0.1344 (time units in minutes)

FAULTS AND THEIR MANIFESTATIONS 35

corresponding to a MTBF of about seven min­
utes.

The total number of observed errors is 877 in
a five-day interval. Table 2-10 shows both the
data's division into categories and the expected
number of errors in each category according to
an exponential distribution. For instance, the
first row in the table means that 548 errors were
observed with times between errors of 0-5 min­
utes while an exponential distribution with A
= 0.1344 gives the.expected number of errors in
that range as 429.20 (given that the total number
of failures is 877). The remaining categories have
to be pooled until no E j is smaller than 5. The
result of this operation is shown in Table 2-11.

The number of degrees of freedom is m =

8 - 1 - I = 6 because there are eight different

Table 2-10. Data from transient errors in a time­
sharing file system.

Category OJ Ej

0-5 548 429.20

5-10 148 219.15

10-15 63 111.89

15-20 35 57.13

20-25 28 29.17

25-30 18 14.89

30-35 12 7.60

35-40 6 3.88
40-45 3 1.98
45-50 1 1.01
50-55 3 0.5178
55-60 2 0.2639
60-65 0.1347
65-70 0.06881
70-75 0.03514
75-80 0.01794
80-85 0.009160
85-90 0.004690
90-95 0.002395
95-100 0.001215

100-105 0.000627

36 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-11. Combining categories from Table
2-10.

Category OJ E j (OJ - Ej)2/Ej

0-5 548 429.20 32.88
5-10 148 219.15 23.10

10-15 63 111.89 21.36
15-20 35 57.13 8.57
20-25 28 29.17 0.04
25-30 18 14.89 0.64
30-35 12 7.60 2.53
35-00 25 7.93 36.74

Total X 2
= 125.86

categories and one parameter (A) has been esti­
mated from the data. For six degrees of freedom,
X6.05 = 12.592 .. Since X2 > X6.05' the hypothesis
that the time between errors has an exponential
distribution must be rejected.

Example 2

The times between crashes of a time-sharing
system (see Table 2-12) have been recorded for
one month of system operation. The goal is to
find whether the distribution of time between
crashes follows a Weibull distribution. The max­
imum likelihood estimates of the Weibull param­
eters are A = 0.0888, and ex = 0.98 (time units
in hours) corresponding to a time between crash­
es of about 11 hours. Table 2-12 gives the
observed counts in several ranges of time be­
tween crashes.

Mter the pooling of categories so that no Ei is
smaller than 5, Table 2-13 is obtained.

The number of degrees of freedom is m = 9 -
2:. 1 = 6. For a X2 random variable with six
degrees of freedom, X6.05 = 12.592. Because X2
< X5.05' the hypothesis that the distribution of
the time to crash is a Weibull is accepted.

Another Goodness-of-Fit statistical test is the
Kolmogorov-Smimov. The Kolmogorov-Smir-

Table 2-12. Time between crashes for a time­
sharing system during one month of operation.

Category (hours) OJ

0-1 6
1-2 3
2-3 5
3-4 2
4-5 7
5-6 5
6-7
7-8 1
8-9 3
9-10 4

10-11' 2
11-12 1
12-14 2
14-15 2
15-16
16-17 1
17-18 3
18-21
21-24 4
24-29 1
29-38 3
38-75 2

Table 2-13. Combining categories from Table
2-12.

Category
(OJ - Ej)2/Ej (hours) OJ E j

0-2 9 9.97 0.09
2-4 7 8.17 0.16
4-6 12 6.79 3.97
6-8 2 5.67 2.37
8-11 9 6.80 0.70
11-15 5 6.66 0.41 .
15-20 5 5.61 0.06
20-28 6 5.14 0.14
28-00 5 5.13 0.003

Total X2 = 7.95

nov test has been developed for known parame­
ters or for exponential distribution [Lilliefors,
1969]. If the parameters of the distribution are
estimated from the experimental data or the
distribution is not exponential, the Kolmogorov­
Smirnov test may give extremely conservative
results.

DISTRIBUTIONS FOR
PERMANENT FAULTS:
THE MIL-HDBK-217 MODEL*

The Reliability Analysis Center has extensively
studied statistics on electronic component fail­
ures. The data have led to development of a
widely used reliability model of chip failures, the
MIL-HDBK-217. A more detailed explanation
of the model is found in Appendixes D and E.

For MIL-HDBK-217B, the reliability function
is assumed to be an exponential with the failure
rate for a single chip taking the form:

where

A = 'TTL 'TTQ(C1 'TTT + C 2 'TT£) 'TTp

'TTL = a learning factor based on the
maturity of the fabrication
process; it assumes a value of 1
or 10;

'TTQ = a quality factor based on incom­
ing screening of components;
values range from 1 to 150;

'TTT = a temperature factor based on
the ambient operating temper­
~ture and the type of semicon­
ductor process; values range
from 0.1 to 1000;

'TT£ = an environmental factor based
on the operating environment;
values range from 0.2 to 10;
and

C1, C2TTp = complexity factors, based on the
number of gates (for random
logic) or bits (for memory) in
the component, and the num­
ber of pins.

• This section was adapted from Siewiorek et aI., 1978a.

, FAULTSANDTHEIR MANIFESTATIONS 37

With the rapid rate of technological advance,
new component types are continually being in­
troduced. In addition, because the learning curve
for any component type changes as .field experi­
ence accumulates, there is some question of the
accuracy of MIL-HDBK-217B, particularly with
regard to newer technologies such as MOS
RAMs and ROMs.

Typical component failure rates are in the
range of 0.1-1.0 per million hours. Thus, tens of
millions of component hours are required to gain
statistically significant results. Two separate ap­
proaches can be used to gather sufficient data for
comparison with the MIL-HDBK-217B model:
life-cycle testing of components, and analyzing
field repair information. The following subsec­
tions summarize typical results from each of
these approaches.

Life-Cycle Testing and Field Data

Life-cycle testing involves a small number of
components in a controlled environment. Fre­
quently, temperature is elevated to accelerate
failure mechanisms. A translation factor is then
used to equate one hour at elevated temperature
to a number of hours at ambient. The translation
factor is usually derived from ·the Arrhenius
equation:

where
R = reaction rate constant,
A = a constant,
Eo = activation energy in electron­

volts,
K = Boltzmann's constant, and
T = absolute temperature.

These accelerating factors are often extrapolated
into regions (such as ambient temperature oper­
ations) where there are very few corroborating
data. Because of the exponential in the Arrhen­
ius equation, accelerating factors can become
quite large.

38 THE THEORY OF RELIABLE SYSTEM DESIGN

In addition, there is little consensus on the
appropriate activation energy. Activation ener­
gies of 0.23-1.92 e V have been used. The temper­
ature factor of MIL-HDBK-217B assumes an
activation energy of 0.41 e V, whereas MIL­
STD-883A (used to qualify components for
procurement) assumes 1.02 e V.

Consider conversion from 12SoC to SO°C. The
ratio of the MIL-STD-883A acceleration factor
to the MIL-HDBK-217B acceleration factor is
62. This means a factor of 62 difference in
predicted failure rate, A, from the same life-cycle
test data. Figure 2-S depicts the various acceler­
ation factor models.

Furthermore, the Arrhenius equation assumes
only one activation energy, and the acceleration
factor is assumed to be a uniform function of
temperature. Assuming a straight line (on a
semilog scale) can result in substantial errors.
Figure 2-6, from Signetics, illustrates the nonli­
near behavior.

Consider three test points, ISO°C, 12SoC, and
8S0C. Drawing a best-fit straight line through
these points in Figure 2-6 on the 1970 curve
yields a rate of about 0.0002 at 2SoC, whereas
the 2SoC observed point is 0.0013, too low by a
factor of 7. The same three points on the 197 S
curve suggest a failure rate of 0.06 instead of
0.0017, too high by a factor of 3S.

With the MIL-HDBK-217B model, high tem­
perature testing calibrates only the temperature
portion. The environmental effects of aging and
mechanical stress are not measured, even though

. these effects can range from 10 percent (at high
temperature) to 70 percent (at low temperature)
of the predicted failure rate.

One last problem with using high-temperature
life-cycle testing is that semiconductor manufac­
turers usually lump test data by process (bipolar,
MOS), thus hindering comparison with the MIL­
HDBK-217B complexity factors.

Given the problems listed above, data from
several field sources were combined, using cer­
tain assumptions to establish commonality. First,
data for chips with a low-level complexity (that

is, SSI, MSI) will be discussed. These data repre­
sent over 3 billion hours of operation (of which
137 million were at high temperatures). The data
sources were:

• RADC: A list of life-cycle test data as a function
of device complexity. Most were from high-temper­
ature testing. Some data about test temperatures
were missing.

• Signetics: High-temperature testing with data
lumped by process; some individual test data by
component number, but usually a small number of
component-hours. An activation energy of 0.41 e V is
assumed and calibrated by experiment for bipolar
component temperature translation.

• Sanders Associates: Analysis of field data.

Figure 2-7 was made using a transistor junc­
tion temperature of SO°C, a temperature-acceler­
ating factor corresponding to 0.41' eV activation
energy, and adding in the MIL-HDBK-217B
predicted environmental portion. The RADC
data are raw and were not temperature translat­
ed because a significant percentage did not have
a test temperature recorded. The two anomalous
points in the RADC data (at 20 and S8 gates)
should be treated as suspect because they had
the least number of test hours-less than a
million.

The temperature-translated data in Figure 2-7
track the MIL-HDBK-217B model generally
within a factor of 2; the Sanders Associates data
were in close agreement.

The Reliability Analysis Center (RAC) of the
Rome Air Development Center (RADC) has
also collected field failure rate data. Figure 2-8
depicts SO collections of field data representing
SSI and MSI complexity devices from various
screening classes and operating in various envi­
ronments [Nicholls, 1979]. Altogether 0.921
X 109 device operating hours and 328 failures are
represented. For most of the data collections, no
failures were observed; hence only an upper 80
percent confidence limit can be plotted. For
those data sets with observed failures, both the
upper 80 percent and lower 20 percent confi-

.s
1.1

~
r:
0
.~

~
~
1.1
1.1
~

FAULTS AND THEIR MANIFESTATIONS 39

Degrees Centigrade

100,OOOX

60,000 X

300 250 200 175 150 25 125 85 50
...1 (5) 1 I (4)
...1 I I I I I

I I ~ I , I I \. I I : I

20,000 X

10,OOOX

I I I, ~ I \1 I I I
1 I I L 1 I (6) I I
I I I !\ I ;\ I I I
I I I (3)t' I I I I
I II I'" : '- I '. I

6,000 X ! Ii ~~ ~ I '. I

1 II I I ~, ~~ I \ I : I 1

2,000 X

1,OOOX

600 X

I ,
:1

, 'k 1\ I \ I I I (1) I I
"

I
~ I 1

I' ~l I I I I',. I /\1 1 I

! I

~
I -.l I ~I

:=-~& ..,.. 't

...1 "'f!/;-;-"" II , I~ r ' . j

I Ii '<'$ '"
,

I I
II " ..

11\ "J I

200x

100x

I ,
~~ (2) i I

\~, I " t. I j I :-.. f I I I
f I I "" ,I I

'. ~ I '\
,

I
1 I I I ~, I '. '"I _\. I I
i -.L ..l~ ~, II "" ~ "

60X 1 I 1 ' II I r, '. I

I
,

I 1 I ~, ~L, , ~I f

20X

10X

I I (6) I I I, "
, i ~.

~
\1 I

I r··· ... 1 I Ii ~i' J '.
-~ '. I

I I I '.
···t. I N I'. ~ I

1\\ I I , I
I , , ~, I

~ I I ". ,
'j> I I

j :1 1 I ". ! ~ .. , '. 1

6x ~ i I ! II 1 1"-.' '" -.. , '. I
I I I : I : '. " 1', Ir" 1\ ,

2X
I I I

, I r f ".0 ••••••

.. ~ ~~, 1'. ' . I .'\ I II I I I ,
" ~ ... ". I

I I I , l I I I······ . ~ '~··I J l ,I I I ~ : 1 I ':- :1 1X
1.7 1.8 1.9 2.0 2.1 2.2 2.3 2 .. 4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

1

NOTES:
Temperature 0Kelvin x 10-3

1. Calculated from the Signetics failure Rate vs.
Temperature Graph in [Signetics, 1975]. Signet­
ics uses acceleration factors of 15 (for +85°C),
100 (for + 150°C), 200 (for 175°C), 350 (for
+ 200°C), 970 (for + 250°C) and 2100 (for
+ 300°C) to relate to + 25°C equivalent am­
bient temperature. The + 25°C to + 125°C
segment of the graph is based primarily on
operating life data. The segment of the graph
above + 125°C is based on high temperature
storage data. The graph equates to an "activa­
tion energy" Ea = 0.41eV.

2. Calculated from Mll-HDBK-217B, 20 Septem­
ber, 1974. Table 2.1.5.4. for '!T Ti vs Ti values. The
graph equates to an "activation energy" Ea =
0.41eV and is applicable to all bipolar digital
(except ECl) in the normal mode of operation.

3. Calculated from Mll-HDBK-217B, 20 Septem­
ber, 1974. Table 2.1.5.4. for '!T T, vs. Ti values. The
graph equates to an "activation energy" Ea =
0.70eV and is applicable to all MOS, all linear,

and bipolar ECl devices in the normal modes
of operation.

4. Calculated from Mll-STD-883A, 15 November
1974. Figures 1005-4 and 1015-1 by extrapolat­
ing the time temperature regression graph from
+ 78°C back to + 25°C. The Mll-STD-88JA
graph is the Bell Telephone laboratories graph
(Specification A-8-689143, 161anuary 1974, etc)
and as such applies to storage and operating T,
values and primarily surface inversion failure
mechanisms. The graph equates to an "activa­
tion energy" Ed = l.02eV.

5. This curved graph is the result of plotting the
"rule of thumb" that failure rales (hence accel­
eration factors) double for every + t110°C.

6. All compelitor data (available to Signetics) pro­
duced graphs falling within these two bounda­
ries. The two boundaries equate to "activation
energies" Ea = 0.23eV (for lower graph) and Ed
= 1.92eV (for the top graph).

Figure 2-5. Failure rate acceleration factor vs. temperature graphs: Signetics and others.

•
40 THE THEORY OF RELIABLE SYSTEM qESIGN

~
1.1
t:
Q./

~
'E
0
1.1

0<:'
i
@J
III :;
0

..c:

§
'!"'"
......

~
Q./

~
Q./

.2 .;
"'-

Degrees Centigrade

10 300 200 175 150 125 85 25

6 I II I ! I
I I L 1 : 1

2

1.0

I :1 I 1 I !
I

~ I 1 I I

~ Ii I I I I I I
I I I I

..........
0.6 -'- """"100.. It ~ IL 1

I """"r~ : 1 I : I

0.2

0.1

I r' ~ ~ II

I I I ~l i

: II I j. ~~- -- .~ I Ii I I 1\ ..
~

0.06 I II I ~ I ,
I ~ I !

"'""'"
I '" I

0.02

0.01

I I I I II '\ ~
,

I
I ... I
I I I I I ,"1

...........
~ " I

I I I
II' -..

0.006 I I I"""'" ~ I
I I I II I

""'"
~1968

0.002

0.001

I I I I I I ""'" ~75'r-....., II I II

I I I I I l ~9_ II
!

0.0006
I I

~ I

I II I j ! I

0.0002 ! I I I I I I
II I

I I I l I I I
I II i 0.0001

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

1
Temperature I' 3

°Ke vm x 10-

1968

Cat. Both (e)

HTSL 300°C 2.1 2.1
HTSL 200°C 0.22 0.48
HTSL 175°C 0.21 0.29
HTSL 150°C 0.32 0.40
HTSL & HTOL 125°C 0.088 0.117
HTOL 85°C 0.022 0.022
HTOL 25°C 0.0029 0.0038

NOTE:
1. The graphs were constructed to aid in the

analysis and dramatization of the effect of the
constituent parts of the failure rate equation.
AI/ tabulated failure rates were obtained from

1970 1975

Cat. Both (A) Cat. Both (0)

2.1 2.1 2.1 2.1
0.20 0.46 0.2 0.46
0.20 0.28 0.2 0.28
0.182 0.20 0.155 0.24
0.101 0.125 0.110 0.147
0.013 0.013 0.104 0.160
0.0011 0.0013 0.0013 0.0017

[Signetics, 1975] by combining life test data for
like temperatures. Note that life test results of
various die process technologies were indis­
criminately summed together for this study.

Figure 2-6. Assessed failure rate vs. temperature graphs from 1963 to 1975 for
catastrophic plus degradational failures.

__ Mil Hdbk 2178 Model, T = 50°C,
quality factor = 16

....... Signetics data with temperature translation
--- RADC data - unknown temperature
------- Sanders field data
-- Fairchild data

2.0

1.8

Qj 1.6 0.

"'-5 g 1.4 =-z
~ ~ - ...
-~ 1.2 00. ... 0

~-~o 1.0 E ~
:::l :::l
c: 0

-..c: 0.8
~c:
~ 0 -
~:::

~E
0.6

. ;:;
0.4 1.1.

0.2

0.0
0

" / ,
/ ,

/ ,
/ ,:.

f , .:".

Z' If
\~ / \ .:':\, \ ~.
\:.,. : .
I/·.... / \

/
I

I .. '
~

.;-
. /

.. ' I

I

I
I

10 20 30 40 50 60
Number of gates

Figure 2-7. Data from life-cycle testing.
(© 1978 IEEE.)

ience limits were calculated. The MIL­
rIDBK-217B calculated values in general made
lssumptions leading to optimistic predictions;
'or example, data from multiple sources operat­
ng in the 26-50°C junction temperature range
vere treated as one source operating at 26°C.
-fence the region where the predicted failure rate
s greater than the observed failure rate has been
:xaggerated. Of the 50 data collections, 17 (34
lercent) have predicted failure rates greater than
tbserved, 7 (14 percent) have predicted failure
ates equal to observed, and 26 (52 percent) have
tredicted failure rates less than observed. Of the
7 data collections with observed failures, 8 (47

FAULTS ANDTHEIR MANIFESTATIONS 41

percent) had a predicted failure rate greater than
that observed, and 2 (12 percent) a predicted
failure rate less than that observed. Even given
the difficulty in gathering enough data to gener­
ate statistically meaningful comparisons, the
MIL-HDBK-217B model for older technologies,
such as TTL, SSI, and MSI, appears relatively
accurate in absolute terms (i.e., within a factor of
two of observed data). For comparisons between
designs, then, the MIL model is more than
adequate for established technologies.

Now consider chips of LSI complexity, espe­
cially RAMs, and ROMs. The RAM and ROM
data, which are less extensive, are reproduced in
Table 2-14 along with a few points of MaS data.
The Signetics data were temperature-translated
to 50°C. The total failure rate and temperature­
dependent portion are listed separately to permit
comparison with high-temperature translated
test data. The Signetics data with a < symbol
are upper bounds in cases in which no failures
were observed .

For bipolar RAMs and ROMs, the MIL­
HDBK-217B model for total failure rate tracks
within a factor of two and is generally pessimis­
tic. The temperature portion tracks less precisely.
It should be noted that the majority of these data
are from one source (Signetics).

For MOS RAMs, ROMs, and random logic
there are even fewer data, but they clearly indi­
cate that the MIL-HDBK-217B model is a factor
of 16-64 pesslffilstlC. Because the MIL­
HDBK-217B model, published in 1974, was pro­
bably developed on 1972 data, MaS technology
was probably insufficiently mature when the
model was developed.

Many parameters can be altered in MIL­
HDBK-217B to take into account process matu­
rity. For example, the complexity factor could be
modified with time because, as the process ma­
tures, more complex components are feasible. A
general rule is that memory doubles in complex­
ity every 1-1.5 years. To make the state-of-the­
art portion of the curve in 1977 correspond to
that in 1972, the complexity axis (number of bits)

42 THE THEORY OF RELIABLE SYSTEM DESIGN

10+ 1

Observed > Predicted ,T
I~ I~)1 T - 10°

<Il

:5
0 T T

..l: T T
~ T r I ~
......
::, T

Cl.I T
~ 10-1 T
Cl.I

~
]
"'C

Cl.I ...
a:i
<Il
~

0 10-2

Predicted > Observed
10-3~ ________ ~ __________ ~ __________ ~ ________ ~

10-3 100
Predicted failure rate (F /1(f> hours)

Upper 80% confidence
limit

Point estimate

Lower 20% confidence
limit

TUpper 80% confidence limit
where no failures were
reported (lower 20% limit
nonexistent)

Figure 2-8. Digital-TTL integrated circuit observed vs. MIL-HDBK-217B pre- .
dieted failure rates of SSI (1-10 gates) and MSI (11-25 gates) complexity.

should be divided by 24 = 16 (that is, a com­
plexity derating factor of 16). This modified
MIL-HDBK-2l7B model is shown in the last
column of Table 2-14. The modified MIL­
HDBK-217B model does poorly on bipolar com­
ponents but is within a factor of three on MOS
components.

Figure 2-9 compares 32 collections of field
data on RAM failures with the failure rate
predicted by the MIL-HDBK-2l7C model
[Klein, 1979]. Of the 23 data collections with

observed failures, 17 (74 percent) have a predict­
ed failure rate greater than observed, 5 (22
percent) have predicted failure rates equal to
observed, and only 1 (4 percent) has a predicted
failure rate less than observed. Thirteen (57
percent) of the data collections have observed
failure rates more than a factor of 10 less than
predicted. Eleven of the 13 data sets are lK and
4K MOS RAMs. The 217B/217C models are
extremely pessimistic on predicting LSI-espe­
cially MOS LSI-failure rates.

Table 2-14. ROM, RAM, and LSI life-cycle test data.

Failure Rate jrom Failure Rate jrom
MIL Std 217B per MIL Std 217B per

Failure Rate Failure Rate jrom Million Hours Million Hours
Observed per Million MIL Std 217B per Reduced by a Factor Reduced by a
Hours Million Hours oj 16 in Bits Factor oj 64 in Bits

Part Temperature Temperature Temperature
Description Source portion Total portion Total portion Total Total

Bipolar RA M s
256 bits Sanders

Associates l.28 0.635 0.113
256 bits *Signetics 0.078 0.398 0.313 0.635 0.059 0.113
576 bits *Signetics <0.544 <0.797 0.511 l.000 0.096 0.173
lK bits *Signetics 0.068 0.852 0.723 l.51 0.267 0.136

Bipolar ROMs
256 bits *Signetics <0.44 <0.668 0.179 0.363 0.034 0.064
lK bits *Signetics 0.211 0.659 0.414 0.865 0.078 0.153
2K bits *Signetics l.75 2.45 0.629 l.33 0.118 0.236
4K bits *Signetics 0.053 l.173 0.955 2.06 0.179 0.364

Schottky PROMs ."
>-

256 bits uRAe 0.073 0.265 0.179 0.363 0.034 0.064 c
lK bits uRAe l.14 1.588 0.414 0.865 0.078 0.153 l

-l
[j)

MOS RAMs >-z
lK bits Sanders 0

Associates 0.194 2.504 0.454 0.193 -l
:r:

MOS ROMs
tTl

:::0
lK bits Sanders ~

Associates 0.078 1.433 0.26 0.111 >-z
M OS Random Logic ."

tTl
8080 Micro- [j)

uRAe 0.418 0.616 0.293
-l

processor >-
-l

* Temperature translation to 50°C
(5
z

** Reliability Analysis Center, RADC C/)

"'" (.o.j

44 THE THEORY OF RELIABLE SYSTEM DESIGN

100

Observed > Predicted

10.0
'I>

~
0

..s::::

b,. ; ~
~ ..,.
~ 1.00
~

..,.
~

..,. ..,.
~
""0
~

I
;>

~
III

.:;
0 0.10

Predicted > Observed ..,.
0.01 ~ ____ ----l _____ ---L _____ ---L _____ --'

0.01 0.10 1.00 10.0 100

Predicted failure rate (F 11()h hours)

Upper 80% confidence
limit

Point estimate

Lower 20% confidence
limit

..,. Upper 80% confidence limit
where no failures were
reported (lower 20% limit
nonexistent)

Figure 2-9. Random access memory (RAM) observed failure rates vs. MIL­
HDBK-217C predicted failure rates.

Analysis of Permanent Failure
Data: Estimating the Distribution
and Its Parameters

Information about total systems can be analyzed
and then broken down into failure rate by com­
ponents. The major difficulties in this approach
are lack of control over the environments of the
systems and incomplete data. Various systems
have different configurations and are subjected
to different operating environments, tempera­
tures, and duty cycles. In addition, current repair

practices do not lend themselves to component­
level data analysis. Typically, a field engineer
will fix a system by board replacement. The
boards are then sent to a repair depot, where
they lose their identities and where repair actions
are often not recorded. Furthermore, the repair
activity may induce additional or future failures
when the boards return to the field.

With careful planning and documentation,
however, these difficulties can be overcome. In
one case, permanent failure data from the Cm*
multiprocessor were collected and the Mean

Time To Failure (MTTF) was calculated assum­
ing that failures were independent [Bellis, 1978].
The MTTF was obtained by dividing the total
time by the total errors. Because of the small
number of failures per module, a concept called
"module time" was introduced. Module time
allows data from all modules to be combined. If
there are k modules running during a period of
time, then

k

module time = ~ ti
i=l

where ti is the amount of time the ith module was
working. Assuming that all modules of a type are
identical, then the failures that were recorded in
real time can be transferred to a "typical" mod­
ule in module time. Table 2-15 depicts the mod­
ule time data for Cm*. The complexity in chips
referenced in the table is a measure of the actual
utilization of chips per module. In the DEC
LSI-II, the actual number of chip sockets used is
76, of which 72 contain digital ICs. The number
of chips used is recorded as 68, which implies
that the unused functions add up to 4 chips.

The next step was to determine the failure
distribution from the data. There are two basic
approaches. The first is to determine the instan-

Table 2-15. Failure data on Cm*.

Complexity #oJ
Module (Chips) Modules

K.bus 138 3
P.map 106 3
M.micro 116 6
M.data 142 3
L.ine 116 3

LSI-II 68 14
S.loeal 126 10
4K memory 56 21
16K memory 104 10
Slu 28 17
Power board 6 16
Refresh 14 16

Source: [Siewiorek et aI., 1978aJ.

FAULTS AND THEIR MANIFESTATIONS 45

taneous failure rate or hazard function, which
indicates the failure distribution. The second
method is to use statistical tests to differentiate
between distributions.

The following equation is used for plotting a
piecewise linear graph of the hazard function:

()
_ (n(t) - n(t + ~t)) /n(t)

z t - ~t

The number of survivors at any time is given by
n(t). The choice of ~t is not specified and is
occasionally chosen to end just after each failure.
Another method of choosing the size of ~t, that
smooths out the curve, is to divide the total time
into equal intervals. The number of intervals is
given by the following equation [Sturges, 1926]:

k = I + 3.3 10gIOM

where k is the number of intervals and M is the
number of failures. This latter method was used
for plotting data on the modules.

Data for these hazard calculations are com­
monly obtained through life tests. The data
obtained from Cm* differed from those of a life
test in that, when a failure was detected in a
module, the module was repaired and put back
into operation. Thus, some components in the

Total Time Total MTTF
(Hours) Failure (Hours)

36696 8 4587
37416 12 3118
68328 4 17082
37080 2 18540
22608 0

163200 10 16320
120720 5 24144
260568 5 52003.6
122280 5 24456
223248 5 44649.6
195456 3 65152
162912 0

46 THE THEORY OF RELIABLE SYSTEM DESIGN

module were starting their operational life,
whereas others were in intermediate stages. A
second difference is that various modules had
different amounts of operating time. Due to the
few failures detected and the small number of
modules being tested, all the failure data must be
used. To accommodate the data on Cm*, a
replacement assumption is necessary.

The replacement assumption postulates that a
repaired module can be considered new. The
concept of module time described above is then
used along with this assumption to make effec­
tive use of the small amount of data available.
F or example, consider the case of some set of
modules, {~}. Each time some ~ fails, it is
repaired and considered new in accordance with
the replacement assumption. The ith incarnation
of M j can be considered a new "virtual" module,
Mj,j' which has a lifetime of tj,j until it fails and
is in turn reincarnated as the new virtual module
~',j+ 1 • Thus, at any given time, the set of virtual
modules {~.,j} is such that each member of the
set either has suffered an incapacitating failure
or has not failed at all. Module time for this set
is then given by:

t = Lt .. m ., l,}
l,}

A "typical" virtual module of the set {Mj } is then
assumed to have been in use for time tm and to
have suffered the same number of failures as the
set {M;}, taken as a whole. The hazard function
expression previously mentioned is then rede­
fined as follows:

z(t) = F(t, t + tlt) /n(t)
tlt

where F(t, t + tlt) is the number of failures be­
tween time t and time t + tlt. For these cases,
n(t) is always equal to one, that is, the "typical"
module.

There were only enough data on the modules
to construct four rough hazard functions. Figure
2-10 shows the modules known as the P.map,
K.bus, LSI-ll, and the total system.

1)
Interval = 309.8 days

7

3
2

P.map

2)
Interval = 382.25 days

3

K.bus

3)
Interval = 1700 days

4
3
2
1

LSI-11

4) 10

8 -------------
6
5

Interval = 50.6 days

Cm* system

Figure 2-10. Hazard curves for P.map, K.bus,
LSI-11, and the Cm* system. (© 1978 IEEE.)

The graph of the P.map exhibits a decreasing
hazard function. This indicates a problem with
infant mortality; 9 of the 12 failures on the
P.map were attributed to one chip type, the
74373. The K.bus displays a constant or slightly
decreasing hazard function. Assuming it to be
constant, its value would be around two failures
per 382.25 days, which corresponds to an MTTF

of about 191 days. The LSI-II curve indicates. a
constant hazard function of 2.5 failures per 1,700
days, or an MTTF of 680 days. The final hazard
function depicted is that of the system using all
the modules. It is plotted using the first 304 days
after commissioning all modules. Over this peri­
od, an MTTF of 155.2 hours is indicated.

The MTTFs presented in Table 2-15 were
calculated by dividing the total time by the
number of failures. In the case of a constant
hazard rate, the MTTF was calculated by divid­
ing the length of an interval by the average
number of failures per interval. That these two
calculations are equivalent can be seen from:

MTTF for constant hazard rate

= (length of interval) / (average

failures per interval)

= (length of interval) / (total

failures)/(number of intervals)

= (total time) / (total failures)

= MTTF from Table 2-15

The results presented have been inconclusive in
predicting the failure distribution. An exponen-

FAULTS AND THEIR MANIFESTATIONS 47

tial distribution is plausible, but a better test for
the data is needed. To accomplish this, the data
should be refitted to a generalized· distribution
that has the exponential as a special case, such as
the Weibull. Table 2-16 presents the maximum
likelihood estimate for a and the 95 percent and
68 percent confidence intervals on a for the
various modules.

The data in Table 2-16 indicate a wide spread
in the maximum likelihood estimates of a, but in
all but two cases, a = 1 is enclosed in the 95
percent confidence interval. The 68 percent con­
fidence interval is able to enclose a = 1 for only
half the modules. This means that, although an
exponential failure distribution is plausible, ac­
tual data present enough variation that the im­
pact of an exponential failure assumption on the
system should be examined. It should be empha­
sized that the parameters above were estimated
using a small number of data points.

Table 2-17 gives the Maximum Likelihood
Estimator (MLE) of A and its 50 percent confi­
dence interval assuming the failure distributions
are exponential. Again, it should be emphasized
that this analysis has been based on a small
number of failures.

Table 2-16. Estimated parameters of the Weibull from failure data.

95% Confidence 68% Confidence
Interval on Interval on

Module a a(a ± 1.96 ya2(a» a(a ± ya2(a))

K.bus 0.721 0.30 : 1.15 0.50 : 0.94
P.map 0.537 0.29 : 0.79 0.41 : 0.66
M.micro 1.264 0.23 2.30 0.73 : 1.79
M.data 0.344 0.0 0.79 0.12 : 0.57

LSI-ll 0.915 0.41 1.42 0.66 : 1.17
S.local 0.584 0.1 1.07 0.34 : 0.83
4K memory 1.320 0.28 2.36 0.79 : 1.85
16K memory 1.945 0.40 : 3.50 1.15 : 2.74
Slu 1.348 0.25 3.08 0.79 : 1.91
Power board 1.295 0.0 : 2.67 0.59 : 2.00

Source: [Siewiorek et aI., 1978a).

48 THE THEORY OF RELIABLE SYSTEM DESIGN

.Table 2-17. Calculated failure rates from data on Cm* .

A
Module (Fail/106 Hr)

K.bus 218
P.map 320.7
M.miero 58.5
M.data 53.9
L.ine

LSI-ll 61.3
S.loeal 41.4
4K memory 19.2
16K memory 40.9
Slu 22.4
Power board 15.3
Refresh

Source: [Siewiorek et aI., 1978a].

Four variants of the MIL-HDBK-217B model
were selected for comparison with actual data:
quality factors of 16 and 150, and LSI chip
complexity de ratings of 1 and 16. The predicted
failure rates are shown in Table 2-18. The results
of comparing the data with various parameter
changes are shown in Table 2-19. They consist of

MTTF . 50% Confidence Interval
(Hours) (on MTTF)

4587 3397.8 6167.4
3118 2461.6 3938.5

17082 10932.5 26953.9
18540 9459.2 38625.0

16320 12553.9 21058.1
24144 16313.5 35822.0
52113.6 35211.9 77319.9
24456 16524.3 36284.9
44649.6 30168.7 66245.7
65152 38324.7 113307.8

the observed failure rate, the best-fitting variant
of the MIL-HDBK-217B model examined, and
its associated failure rate prediction. This table
indicates that the modules tend toward a derat­
ing of the complexity of MOS chips by a factor
of 16. This result coincides with the conclusion
from life-cycle test data mentioned earlier.

Table 2-18. Predicted failure rates for Cm* components.

Quality Factor/Derating Factor

Complexity
Module (Chips) 16/16 16/1 150/1 150/16

K.bus 138 44.1 53.3 499.3 413
P.map 106 35.6 39.6 371.7 333.7
M.miero 116 26.6 128.3 1203 249.2
M.data 142 35.4 146.5 1373.8 332.4
L.ine 116 35.5 75.1 704.6 332.8

LSI-II 68 29.9 379350.8 35568289.0 280.3
S.loeal 126 27.4 31.8 298.4 256.8
4K memory 56 23.1 99.8 936 216.9
16K memory 104 74.1 380.9 3571.1 694.7
Slu 28 4.7 8.7 81.6 43.9
Power board 6 0.97 0.97 9.1 9.1
Refresh 14 2.6 2.6 24.9 24.9

Source: [Siewiorek et aI., 1978a].

Table 2-19. Results of maximum likelihood ratio
test.

Failure Predicted
Module Rate Best Fit Failure Rate

K.bus 218 Q = 150/16 413
P.map 320.7 Q = 150/16 333.7
M.miero 58.5 Q = 16/16 26.6
M.data 53.9 Q = 16/16 35.4
L.ine

LSI-II 61.3 Q = 16/16 29.9
S.loeal 41.4 Q = 16/1 31.8
4K memory 19.2 Q = 16/16 23.1
16K memory 40.9 Q = 16/16 74.1
Slu 22.4 Q = 150/16 43.9
Power board 15.3 Q = 150/16 9.1
Refresh

Source: [Siewiorek et aI., 1978a).

The data on the P.map indicate a quality
factor of 150, with a derating factor of 16. As
was noted above, 9 of the 12 failures were
attributed to a single chip type. There are seven
of these chips in each of the three P.maps. The
MIL-HDBK-217B model predicts that 6.7 per­
cent of failures for the P.map will be due to this
chip. The failure rate observed for the 74373s in
the P.map was 9 failures in 37,416 hours, or 240.5
failures per million hours (fpmh). This corre­
sponds to a quality factor for the 74373s of 516,
which suggests a possible bad batch of chips.
Using only the other failures to calculate a
failure rate results in 80.2 fpmh. This corre­
sponds to a quality factor of 36, which is indeed
between 150 and 16.

The S.local module is best fit by a quality
factor of 16. If a derating of 16 is assumed, then
the quality factor for the S.locallies between 150
and 16. In fact, all but the memory boards Gust
under 16) and the power boards Gust over 150)
lie within the range of 16 to 150. In general,
industrially produced components indicate a
quality factor close to 16.

FAULTS AND THEIR MANIFESTATIONS 49

The expected failure rate for a system com­
posed of all the modules using their best fit
prediction from Table 2-19 is 5360.5 fpmh. This
is equivalent to an MTTF of 186.5 hours, which
may be compared to the MTTF of 155.2 hours
derived from the hazard curve in Figure 2-10.

MIL-HDBK-217 is constantly being updated,
and a version called MIL-HDBK-217C is now
available. It is described in more detail in Ap­
pendix E.

AUTOMATED FAILURE RATE
CALCULATION

Two computer programs, AUTOFAIL and
FAIL (for MIL-HDBK-217B and MIL­
HDBK-217C, respectively), have been written
[Elkind, 1980a] that simplify the procedure of
computing a system's failure rate. A system may
be described to the programs in the form of a list
of chips and/or subsystems, which can be like­
wise recursively nested. Table 2-20 is the input
description of the DEC LSI-ll microcomputer.
Parameters such as the various MIL-HDBK-217
factors can be modified to obtain a sensitivity
analysis. The format of this file is:

[Module name

Body]

where Body is a listing of all the component
chips and submodules. A chip is identified by an
integer specifying the number of chips of this
type used or by an integer followed by an F,
specifying the number of functions (such as
NAND-gates) of this chip type that were used.
This is then followed by a comma and the name
of the chip. Submodules are constructed on the
same format as modules.

Table 2-21 is a listing of the output for the
LSI-II produced by AUTOF AIL. The top line
presents the values of the various derating fac­
tors used. The model parameters are on the
following line. The failure rates for the LSI-II

50 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-20. LSI-11 input file for AUTOFAIL, FAIL.

[LSI=l1
[SPEC IAL .FUNCTIONS

2F ,DM8641
3F ,7474
1 ,7442
5F,7404
1F,7400]

[BUS .ARB ITRA TI ON. LOG I C
1F.7400
IF ,DM8837
3F,7474
1F,DM8641]

[INTERRUPT .CONTROL .AND .RESET. LOGIC
4F ,7404
4F,7474
2F ,DM8641
2F,7400
5F ,DM8837
1F,7405
1F,74I74]

[CLOCK. PULSE. GENERATOR
1F,7400
IF,74140
2F ,7474
1F,74139
6F ,7404
4F ,MH0026]

[ROM. CHIPS
3 ,CPI631B]

[DATA.CHIP
1 ,CPI611B]

Source: [Siewiorek et aI., 1978a].

Table 2-21. Output from AUTOFAIL for LSI-11.

[CONTROL.CHIP
1 , CP1621B]

[BUS. DR IVERS .AND. RECEI VERS
4 ,74257
4 ,DM8641
1F,DM8641
4F , 7411
2F,7405]

[MEMORY
16,MK4096]

[BUS. I 10 .CONTROL. LOG IC
IF, 7497,
7F,7400
7F ,7404
2F,7411
4F ,7474
5F,7410
5F ,DM8641
IF,DM8837]

[I/O.BUS.MEM.READ.DATA.MUX
4F,7475
2F,74257
3F,7410
3F ,7400
2F , 74140
2F,7405
2F , 74107]

[FAST.DIN.MUX
1F,74257
1F,7400
IF, 7404]]

lsi11.rel(x330ds73) LSI= 16.000 ROM= 16.000 RAM= 16.000

E =

MODULE

1.000 Q= 16.000 L = 1.000 T = 25.000

LSI11
SPECIAL.FUNCTIONS
BUS .ARB ITRATION. LOGIC
INTERRUPT .CONTROL .AND. RESET. LOG IC
CLOCK.PULSE.GENERATOR
ROM.CHIPS
DATA.CHIP
CONTROL-CHIP
BUS.DRIVERS.AND.RECEIVERS
MEMORY
BUS. 1/0 .CONTROL. LOGIC
I/O.BUS.MEM.READ.DATA.MUX
FAST.DIN.MUX

FAILURE RATE

29.893
.669
.350
.776
.851

3.413
1.160
1.160
1.588

16.991
1.500
1.195

.241

PERCENTAGE

100.000
2.237
1.172
2.596
2.847

11.416
3.880
3.880
5.314

56.837
5.019
3.999

.805

of chips = 68.917 # of gates = 7145.083 # of bits = 99328.000

TYPE # OF CHIPS FAILURE RATES PERCENTAGE

SSI
MSI
LSI
ROM
RAM
MOS
BIP

Source: [Siewiorek et aI., 1978a].

37.250
10.667

2.000
3.000

16.000
21.000
47.917

4.899 16.387
2.272 7.600
2.320 7.760
3.413 11.416

16.991 56.837
22.723 76.013

7.171 23.987

and the sub modules are shown with the percent­
age of the failure rate for each module that is
attributed to each submodule. In the case of
partially used chips, AUTOFAIL prorates the
chip failure rate by the fraction of the total
number of functions used. It is sometimes desir­
able to examine the behavior of a particular chip
or chip type. The lower table provides this ability
by listing the number of chips, failure rates, and
percentages for the different chip types.

The parameters of the MIL-HDBK-217 model
can be varied by subsystem or even chip type, so
that variations in ambient temperature (such as a
board near a power supply) or technology (such
as a new chip for which all parameters are not
known) can be modeled. At the chip level, it is
also possible to modify the number of devices on
a chip to gauge the effect of the size of the new
chip type on the design. Furthermore, individual
chip type or entire chip class (RAM, MOS, LSI)
can be arbitrarily assigned any complexity derat­
ing factors in order to test the sensitivity of the
system failure rate as a function of the unknown
parameter.

DISTRIBUTIONS FOR
TRANSIENTS AND SYSTEM
ERRORS

Data Collection

PDP-10

The main source of transient data error for this
;tudy [McConnel, 1980] is a set of four main­
~rame time-sharing computers operated by Car­
legie-Mellon University. One is a large DECsys­
:em-IO (PDP-IO) that supports research in the
:omputer Science Department. The other three
lre DECSYSTEM-20s used by the university's
::omputation Center for administrative and edu­
:ational needs. Memory sizes on these machines
ange from 256 K words to 1 M word, and disk

FAULTS AND THEIR MANIFESTATIONS 51

storage capacity ranges between 528 and 1,600
Mbytes.

The core of the PDP-IO error-reporting system
is the on-line error log file maintained by the
TOPS-IO and TOPS-20 operating systems. En­
tries are made in this file for a variety of reasons,
most notably system reloads and memory and
I/O errors [DEC, 1978]. Each entry contains the
date and time at which the error occurred, the
processor serial !lumber, and the type of error or
other condition being reported.

To facilitate statistical analysis of transient
errors on PDP-lOs, a program named SEADS
(Statistical Error Analysis Data Summary) has
been written. It derives interarrival times and
time-of-day distributions from the system error
log files. The outputs generated include the fol­
lowing:

• Lower-bound estimates of system availabilities, in
total and for each file processed;

• Graphs of the time-of-day distribution of entries,
divided into 48 half-hour segments;

• Graphs of the distributions of interarrival times for
all entries in total, for each entry individually, and
for arbitrary sets of entries; and

• Data files containing the time-of-day distributions
and the lists of interarrival times and error types.

Examples of the first three types of outputs are
shown in Table 2-22 and Figures 2-11 and 2-12.

L51-11

In addition to the PDP-IO system error log files,
data were also collected from Cm* and C.vmp,
an experimental triplicated microprocessor. The
data for Cm* were collected by recording tran­
sient errors detected by failures in one of the
several diagnostic programs executed contin­
uously on idle processors. The data for C.vmp
were collected by recording all crashes not
traced to hard failures. Both these systems are
described fully in the literature [Siewiorek, Cane­
pa, and Clark, 1977; Siewiorek et aI., 1978a;
Swan, Fuller, and Siewiorek, 1977].

52 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-22. Sample file/availability output from SEADS.

SEADS VERSION 3A(lOO) ERROR FILE ANALYSIS

COUNT OF BAD TIME ERRORS: 0

TOTAL NUMBER OF ENTRIES FOR ALL INPUT FILES: 16445
TIME SPAN: 1542 HRS., FROM: 17-Feb-79 5:03:11 TO: 1B-May-79 11:30:59
APPROXIMATE SYSTEM AVAILABILITY: O.B77

I
SYSTEM #2149 NUMBER OF ENTR I ES: 344
TIME SPAN: 170 HRS., FROM: 17-Feb-79 5:03:11 TO: 1B-Feb-79 7:30:06
APPROXIMATE SYSTEM AVAILAB ILITY: 0.9B7

SYSTEM #2227 NUMBER OF ENTRIES: 2045
TIME SPAN: 150 HRS., FROM: 24-Feb-79 22:22:0B TO: 3-Mar-79 5:09:59
APPROXIMATE SYSTEM AVAILABILITY: 0.947

SYSTEM #2326 NUMBER OF ENTRIES: 1149
TIME SPAN: 140 HRS., FROM: 3-Mar-79 5:43:04 TO: 9-Mar-79 1:55:27
APPROXIMATE SYSTEM AVAILABILITY: 0.B94

SYSTEM #10BO NUMBER OF ENTRIES: 12907
TIME SPAN: lOBI HRS., FROM: 3-Apr-79 10:01 :24 TO: 1B-May-79 11: 30: 59
APPROXIMATE SYSTEM AVAILABILITY: 0.B47

Source: [McConnel, Siewiorek, Tsao, 1979].

Events recorded

System reloaded
Non-reload monitor error
CPU NXM error
Data channel error
Disk unit error
Magtape statistics
KL 10 data parity interrupt
KL 10 data parity trap
TOPS20 system reloaded

TOPS20 bughlt-bugchk
Massbus device error
Front end device report
Front end reloaded
Processor parity trap
Processor parity interrupt
NETCON started
Network down-line load
Network up-line dump
Network line stats
DN64 statistics

Distribution by time of day (0:00-23:30)

4,553

4,239

3,925

3,611

3,297

2,983

2,669

2,355

2,041

1,099

785

471

157

Maximum value: 4782 Scale factor: 157 Number of entries: 88258

o 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

Figure 2-11. Sample time-of-day distribution output from SEADS.

Source: [McConnel, Siewiorek, Tsao, 1979].

FAULTS AND THEIR MANIFESTATIONS 53

Distribution of interarrival times
Smallest allowed interarrival time is 0.00 sec.
Minimum value: 0.00 sec. Maximum value: 4.1"16 days Time interval: 3.00 hours

Mode "bucket #": 1
Number of entries: 240

Mean time: 10.99 hours Standard deviation: 15.78 hours
Maximum value: 103 Scale factor: 3

111

105

99

93

87

81

75

69

63

57

51

45

39

33

27

21

15

9

3

5 10 15 20 25 30 35 40 45 50

Figure 2-12. Sample interarrival time distribution output from SEADS.

Graphical Data Analysis*

The interarrival data can be plotted as a histo­
gram to form an approximation of the probabil­
ity density function of transient errors. This is
useful in deciding initially on which distributions
to study. The obvious skew toward the low end
for all the data collected on these systems indi­
cate that the Weibull distribution should be
used.

System reloads were chosen as being likely due
to transient errors, because reloads are common­
ly caused by crashes, and in systems with stable
hardware and matured software, the most fre­
quent cause of crashes appears to be transient
;!rrors.

The data generated by SEADS make it clear
that the PDP-IO systems frequently recorded

, This section is adapted from McConnel, Siewiorek, and
Tsao, 1979.

several errors for one fault. To mask out the
effects of this, error entries within five minutes of
a previous entry were counted as a part of the
previous fault. The software allowed any choice
for the threshold, facilitating examination of the
sensitivity of the data to threshold values.
(Threshold values of one minute and ten minutes
were also tried without changing the results
presented here.)

Two groups of system reload data are present­
ed, one from the individual system (TOPSC) that
had the most complete data, the second from all
four systems. Figures 2-13 and 2-14 show histo­
grams of the distributions of the interarrival
times for system reloads on TOPSC and for all
four systems, overlaid with the MLE Weibull
probability density function. Figures 2-15 and
2-16 show the plots of the TOPSC and overall
PDP-I0 reload data using the transformation of
the Wei bull into a linear distribution given by
Equation 36.

54 THE THEORY OF RELIABLE SYSTEM DESIGN

0.10

QI

::::I
iU
;;.

·f 0.08

s::::
QI

~

~
:Q 0.06
~
~
0
ct

0.04

Time (hrs)

Figure 2-13. Distribution of lOPSe system reloads.

0.14

0.12

0.10

QI

::::I
iU
;;.

.~ 0.08

s::::
QI

~

~
0.06 :Q

~
~
0
ct

MLE Weibull
0.04

0.02

50 100 150 200 250 300 350 400
Time (hrs)

Figure 2-14. Distribution of PDP-10 system reloads.

FAULTS AND THEIR MANIFESTATIONS 55

2

-3 -2 -1 o 4 5
Ln of data (hrs.)

-1

Linear regression fit to data

'/
/14J -3
/-

/ G
./ '"

./
.... 0

U -4
I "'5

/ .c 0a:;
I ~
I "0 -5
r-Actual data I4J

E
I ~ I c
\ ::!

-6 I-

Figure 2-15. Weibull plot of TOPSC system reloads.

3
Linear regression fit to data

2 _--
~-

Ln of data (hrs.)

-2

I4J
-;;
~ -3

I
I 0

u
I "'5 -4
I .c
I

0a:;

,-Actual ~
"0 -5 data I4J
E

~ -6 c
r:!
I-

-7

-8

Figure 2-16. Weibull plot of PDP-10 system reloadso

56 THE THEORY OF RELIABLE SYSTEM DESIGN

0.027

0.024

0.021

0.018
11/
~

"ii
>

.~ 0.015
t:
11/
~

~ 0.012 :c
I'IS

.Q

e
~

0.009

0.006

0.003

400 600 800 1000 1200 1400 1600

Time (hrs)

Figure 2-17. Distribution of PDP-10 parity interrupts.

The second class of events likely to reflect
transient errors in the PDP-I0 data was the
memory parity error interrupt. Except in the case
of failing devices that cause intermittent, and
finally permanent, faults, these are always the
re.sult of transient faults in the memory system.
Flgures 2-17 and 2-18 show the inter arrival dis­
tribution and the Weibull plot of the data. In this
case, because too few data points were collected
from anyone of the four systems to be statisti­
cally significant, only the total data for all four
systems are shown.

Figures 2-19 and 2-20 show the adjusted histo­
grams of the interarrivals for Cm* and C.vmp,
respectively. Figures 2-21 and 2-22 are plots of
the interarrival data for each system's transient
errors, drawn according to the linearizing trans­
formation of Equation 36. The linearity of the
data shows that the samples follow a Wei bull
distribution.

Confidence Intervals for the
Parameters

Table 2-23 lists some general statistics about the
interarrival times for the five sets of data:
TOPSC reloads, PDP-I0 reloads, PDP-IO parity
errors, C.vmp crashes, and Cm* transient errors.
In all cases, the mean is less than the standard
deviation, indicating a decreasing failure rate.

Confidence intervals of 90 percent for a and A
were generated for the last three sets using
methods developed in Thoman, Bain, and Antle
[1969]. The values are listed in Table 2-24. Note
that the range of values for a does not include
1.0 (the exponential distribution) for any of the
three sets of data.

Goodness-of-Fit Tests

To confirm the impression from the Weibull
plots that the data collected on transient errors

FAULTS AND THEIR MANIFESTATIONS 57

2
Linear regression fit to data

Ln of data (hrs.)

-1

--~

-6

Figure 2-18. Weibull plot of PDP-l0 parity interrupts.

or the various systems are in fact Weibull, a chi­
quare goodness-of-fit test was performed on
'ach of the five sets of data. The results are given
tl Table 2-25. The high P-Ievels for each set of
lata show very good fits to the Weibull distribu­
lon.

To complete the testing procedure, a chi­
:J.uare test was done for each of the five sets of
ata, assuming an exponential distribution. The
::>mparison of these results is shown in Table
·26. Although the exponential hypothesis fits
le data fairly well in a few cases, the Weibull
ts better in every case.

UMMARY

)urces of errors were traced to their origins in
udware, software, environment, design, and
lman mistakes. The predominance of transient
Id intermittent faults was demonstrated. Error

manifestations were discussed at both the com­
ponent and the system level. The mathematics
governing the two major statistical fault distribu­
tions (exponential and Weibull) were introduced,
along with maximum likelihood, regression, con­
fidence interval, and goodness-of-fit tests.

Permanent faults were shown to follow an
exponential distribution with the failure rate
parameter, A, predictable by the MIL­
HDBK-217 model. Some pitfalls in accelerated
temperature testing were illustrated.

Transients and system-level error manifesta­
tions (observed over 17,700 hours) follow a
Weibull distribution across a wide range of sys­
tem size and redundancy.

The mathematical techniques introduced in
the analysis of permanent and transient faults
can be used by the interested reader to confirm
fault distributions and/or estimate parameters of
the fault distributions for more accurate reliabil­
ity evaluation.

58 THE THEORY OF RELIABLE SYSTEM DESIGN

0.036

0.032

0.028

0.024
ClI
:::l
-;
~

.~ 0.020
~
ClI

"C

~ 0.016 :c
I'CI

..Q

E
CI.

0.012

0.008

0.004

0.000 L--___ ---.L.J--LL...L.LJ'----L-J'---'===--__ .L.-___ ---' ___ ~.......,

o 100 200 300 400 500

Time (hrs)

Figure 2-19. Distribution of Cm* transient errors.

0.0275

0.0250

0.0225

0.0200

ClI
0.0175 :::l

-;
~

t;
0.0150 .~

~
ClI

"C

~ 0.0125
:c

I'CI
..Q
0

0.0100 £

0.0075

0.0050

0.0025

200 400 600 800
Time (hrs)

1000

Figure 2-20. Distribution of C.vmp crashes.

FAULTS AND THEIR MANIFESTATIONS 59

QJ

~
~

0 3

U

:i Linear regression fit to data
~
.~ 2
~ ---,;l
QJ

E
~
c:
:!
I-

-2 -1 0 6

Ln of data (hrs.)

-1

-2

/'
I
I -4

I
Actual--/
data I

I
-5

-6

Figure 2-21. Weibull plot of Cm* transient errors.

-2 -1

:i
~
.~

~

2

o

~ -2
E

~
c:
:!
I-...... _3

V. I -4

I
I

-5

I
/

............ /\
Actual data

Linear regression fit to data

r--
I

~

I
./

Ln of data (hrs.)

Figure 2-22. Weibull plot of C.vmp crashes.

7

/"

60 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 2-23. Statistics for transient errors.

TOPSC PDP-10 PDP-10
Reload Reload Parity Cm* C.vmp

.
Time (hrs) 2646 8576 8596 4222 4921
Errors 195 636 74 103 50
Interarrivals 196 640 78 104 51
IL 13.5 13.4 110.2 40.6 96.5 (328)
(1 16.5 24.6 244.9 59.8 167.8 (471)

a (Linear) 0.864 0.684 0.500 0.834 0.711
a (MLE) 0.826 0.639 0.481 0.779 0.654
A (Linear) 0.0843 0.109 0.0206 0.0294 0.0149
A (MLE) 0.0826 0.106 0.0203 0.0288 0.0146

• Note that the pessimistic value discussed in [Siewiorek et aI., 1978a] is used throughout for C.vmp
because there were too few interarrivals in the optimistic value (shown in parentheses for the mean
and standard deviation) to be statistically significant.
Source: [McConnel, Siewiorek, Tsao, 1979].

Table 2-24. 90% confidence intervals for alpha and lambda.

[a1ow ' a high]

[A1ow ' Ahigh]

PDP-10 Parity

[0.421,0.566]

[0.0134,0.0307]

Cm*

[0.693,0.893]

[0.0231,0.0359]

Source: [McConnel, Siewiorek, Tsao, 1979].

Table 2-25. Chi-square goodness-of-fit test statistics.

TOPSC PDP-10 PDP-10
Reload Reload Parity

Q 23.36 6.40 6.72

Degrees of freedom d 34 5 11

P-level 0.90 0.25 0.80
2

Xp,d 23.95 6.63 6.99

Source: [McConnel, Siewiorek, Tsao, 1979].

C.vmp

[0.558,0.806]

[0.0099,0.0214]

Cm* C.vmp

9.46 3.71

17 7

0.90 0.80

10.08 3.82

FAULTS AND THEIR MANIFESTATIONS 61

Table 2-26. Chi-square test of exponential distribution.

TOPSC PDP-} 0 PDP-} 0
Reload Reload Parity Cm* C.vmp

Q 30.61 252.55 79.95 15.14 18.35

Degrees of freedom d 30 6 12 13 7

Level of significance p 0.40 0.00 0.00 0.25 0.01
2

Xp,d 31.32 00

Source: [McConnel, Siewiorek, Tsao, 1979].

REFERENCES

Ball and Hardie [1967]; Bellis [1978]; Berger and
Lawrence [1974]; Breuer [1973]; Brodsky [1980]; DEC
[1978]; Elkind [1980a]; Geilhufe [1979]; Kamal [1975];
Kamal and Page [1974]; Klein [1976]; Lilliefors
[1969]; Losq [1978]; McConnel [1980]; McConnel,
Siewiorek, and Tsao [1979]; Melsa and Cohen [1978];
Miller and Freund [1965]; Morganti [1978]; Morganti,
Coppadoro, and Cern [1978]; Nakagawa and Osaki
[1975]; Nicholls [1979]; Ohm [1979]; Pear [1954];
Rickers [1976]; Roth et al. [1967a]; Savir [1978];
Siewiorek, Canepa, and Clark [1977]; Siewiorek et al.
[1978a]; Signetics [1975]; Snyder [1975]; Sturges
[1926]; Swan, Fuller, and Siewiorek [1977]; Tasar and
Tasar [1977]; Thoman, Bain, and Antle [1969].

PROBLEMS

1. The reliability function, R (t) , describes the
probability of not observing any failure before
time t. Another reliability metric sometimes

00 15.98 18.48

used to compare the reliabilities of two alternate
designs is the Mission Time Improvement
(MTI). It is the ratio of the times at which the
two system reliability functions decay below
some specified value, say 0.9. Compute MTI
(Aa , Ab) for a.) an exponential distribution,
and b.) a Weibull distribution with a constant
shape parameter.

2. Using the data in Table 2-10, make the trans­
formation suggested in Equation 36 and estimate
the Weibull parameters, A and a, by making a
least-squares fit to the transformed data. Test
the hypothesis that the data follow this distribu­
tion. Assume that failures occur at the end point
of each interval.

3. Consider an MOS RAM, with 'TTL = 1, 'TTQ = 16,
'TTT = 25, and'TT£ = 1. Plot the failure rate, A, as a
function of number of bits according to MIL­
HDBK-217B. (See Appendix D.)

Reliability and Availability Techniques
Steven A. Elkind

This chapter presents a spectrum of techniques
available to the designer of reliable digital sys­
tems. The spectrum spans the range of tech­
niques derived to deal with the problem of
building computers from unreliable components.
Although the emphasis is on techniques that deal
with hard (component) failures, most of the
techniques are also effective against transient
and intermittent faults. *

There are two approaches to increased reli­
ability: fault avoidance (fault intolerance) and
fault tolerance. Fault avoidance results from
conservative design practices such as the use of
high-reliability components, component burn-in,
and careful signal path routing. The goal of fault
avoidance is to reduce the possibility of a failure.
Even with the most careful fault avoidance,
however, failures will eventually occur and result
in system failure (hence the name fault intoler­
ance). In fault-tolerant designs redundancy is
used to provide the information needed to negate
the effects of failures. The redundancy is mani­
fested in one of two ways: extra time or extra
components. One form of time redundancy in­
volves extra executions of the same calculation,
perhaps by different methods. Comparisons or
other operations on the multiple results (identical
when no errors are present) provide the basis for
subsequent action. Time redundancy is usually
provided by software and thus is not within the
scope of this chapter. Component redundancy is
the use of extra gates, memory cells, bus lines,

* In the reliability and fault tolerance literature, the terms
fault and failure are sometimes used interchangeably. In
coding theory literature, failure and error are used inter­
changeably. These practices are followed in parts of this
chapter, in deference to common usage.

63

64 THE THEORY OF RELIABLE SYSTEM DESIGN

functional modules, and the like to supply the
extra information needed to guard against the
effect of failures.

A redundant system may go through as many
as 10 stages in response to the occurrence of a
failure. These stages-fault confinement, fault
detection, fault masking, retry, diagnosis, recon­
figuration, recovery, restart, repair, and reinte­
gration-are explained in the following text.
Designing a redundant system involves the selec­
tion of a coordinated failure response that com­
bines some or all of these steps. The ordering
above corresponds roughly to the normal chro­
nology of the steps, although the actual timing
may be different in some instances.

• Fault confinement. When faults occur, it is desir­
able to limit the scope of their effects. Fault confine­
ment is the step of limiting the spread of fault effects
to one area of the system, thereby preventing con­
tamination of other areas. Fault confinement can be
achieved through liberal use of fault-detection cir­
cuits, consistency checks before performing a func­
tion ("mutual suspicion"), and multiple requests/
confirmations before performing a function. These
techniques may be applied in both hardware and
software.

• Fault detection. Most failures eventually result in
logical faults. Many techniques are available to
detect faults, such as parity, consistency checking,
and protocol violation. Unfortunately these tech­
niques cannot be perfect, and an arbitrary period of
time may pass before detection occurs. This time is
called fault latency. Fault-detection techniques are
of two major classes: off-line detection and on-line
detection. With off-line detection, the device is not
able to perform useful work while under test. Diag­
nostic programs, for example, run in a stand-alone
fashion even if executed on idle devices or multi­
plexed with the operations software. Thus, off-line
detection assures integrity before and possibly at
intervals during operation, but not during the entire
time of operation. On-line detection, on the other
hand, provides a real-time detection capability, for it
is performed concurrently with useful work. On-line
techniques include parity detection and duplication.

• Fault masking. Fault-masking techniques hide the
effects of failures. In a sense, the redundant informa­
tion outweighs the incorrect information. In its pure
form, masking provides no detection. However,
many fault-masking techniques can be extended to

provide on-line detection as well. Otherwise, off-line
detection techniques are needed to discover failures.
Majority voting is an example of fault masking.

• Retry. In many cases a second attempt at an
operation may be successful. This is particularly true
of a transient fault that causes no physical damage.

• Diagnosis. If the fault detection technique does not
provide information about the failure location and/
or properties, a diagnostic step may be required.

• Reconfiguration. If a fault is detected and a perma­
nent failure located, the system may be able to
reconfigure its components to replace the failed
component or to isolate it from the rest of the
system. The component may be replaced by backup
spares. Alternatively, it may simply be switched off
and the system capability degraded; this process is
called graceful degradation.

• Recovery. After detection and (if necessary) recon­
figuration, the effects of errors must be eliminated.
Normally the system operation is backed up to some
point in its processing that preceded the fault detec­
tion, and operation recommences from this point.
This form of recovery, often called rollback, usually
entails strategies using backup files, checkpointing,
and journalling. In recovery, error latency becomes
an important issue because the rollback must go far
enough to avoid the effects of undetected errors that
occurred before the detected one.

• Restart. Recovery may not be possible if too much
information is damaged by an error, or if the system
is not designed for recovery. A "hot" restart, a
resumption of all operations from the point of fault
detection, is possible only if no damage has oc­
curred. A "warm" restart implies that only some of
the processes can be resumed without loss. A "cold"
restart corresponds to a complete reload of the
system, with no processes surviving.

• Repair. The component diagnosed as failed is re­
placed. As with detection, repair can be either on­
line or off-line. In off-line repair, either the failed
component is not necessary for system operation, or
the entire system must be brought down to perform
the diagnosis and repair. In on-line repair, the
component may be replaced immediately by a back­
up spare in a procedure equivalent to reconfigura­
tion or operation may continue without the compo­
nent, as is the case with masking redundancy or
graceful degradation. In either case of on-line repair,
the failed component may be physically replaced or
repaired without interrupting system operation.

• Reintegration. After the physical replacement of a
component the repaired module must be reintegrat­
ed into the system. For on-line repair, reintegration
must be accomplished without interrupting system
operation.

RELIABILITY AND AVAILABILITY TECHNIQUES 65

Figure 3-1 depicts one scenario that illustrates
some of the concepts above. The time line illus­
trates the stages in fault handling for a nonfault­
tolerant system, whereas fault-tolerant systems
automate one or more of these stages. Upon
detection, the system is brought down, diag­
nosed, and manually reconfigured to allow a
restart. Before operation recommences, the soft­
ware process must first be rolled back to a point
before the errors occurred, and then restarted.
Finally, after the failed module is repaired and
put back on line, the system is halted temporarily
to allow the module to be reintegrated into the
system. Figure 3-1 also illustrates some of the
reliability measurement concepts discussed in
Chapter 5: the Mean Time To Failure (MTTF),
Mean Time To Detection (MTTD, sometimes
called error latency), Mean Time To Repair
(MTTR), and Availability.

Taking these system-failure response stages
into account, the spectrum of fault-tolerance
techniques can be divided into three major class­
es: fault detection, masking redundancy, and
dynamic redundancy. Figure 3-2 proposes a tax­
onomy of system-failure response strategies.
Fault detection provides no tolerance to faults,
but gives warning when they occur. It is used in
many small systems such as micro- and mini-

computers, some of which may incorporate sim­
ple on-line detection mechanisms. This branch
does not represent fault tolerance in the strictest
sense: even though faults are detected they can­
not be tolerated (except for retry upon tran­
sient faults).

Masking redundancy, also called static redun­
dancy, tolerates failures but gives no warning of
them. It is used in such systems as computers
with error-correcting code memories, or with
majority-voted redundancy in a fixed configura­
tion (that is, the logical connections between
circuit elements remain constant).

The rightmost branch of the figure covers
those systems whose configuration can be dy­
namically changed in response to a fault, or in
which masking redundancy, supplemented by
on-line fault detection, allows on-line repair.
Examples are multiprocessor systems which can
degrade gracefully in response to processing ele­
ment failures, and triplicated systems which in­
clude disagreement detection in the voter and
are designed for on-line repair.

The range in cost of fault-tolerant techniques
is almost a continuum in terms of percentage of
redundancy. Figure 3-3 depicts three regions of
hardware redundancy, each corresponding to
one of the three major areas of the fault-toler-

~I. ____ ~------------------------M~TT--F __ --__ --------------__ --___ ~
1
1
I
I

System System
available 1 available

-I :. .:
1 I I
1 I 1
I I 1
I MllD MTTR I I
� •• ------------~ •• fl+.------------------------+I--~.I I
I I I I I
1 I I I I
I I I I 1
I I I I I
I 1 I I I
1 I ! I I

Fault occurs

Error 1 ... Error i

Reconfiguration

Diagnosis Recovery

System
available
~------!-----.;-:
1 I
I I
I I
I I
I I
1 1
I I
I I
I I
I I
I I

Fault occurs

Figure 3-1. Scenario for on-line detection and off-line repair. The measures
MTTF, MTTD, and MTTR are the average times to failure, to detection, and to
repair.

66 THE THEORY OF RELIABLE SYSTEM DESIGN

System
fault

tolerance

Masking On-line
detection / masking

Off-line On-line Off-line On-line Reconfiguration Retry On-line
repair detection detection detection detection

Off-line
repair

Off-line
repair

Off-line
repair

Off-line
repair

Recovery

Off-line
repair

On-line
repair

Figure 3-2. Taxonomy of system fault..:tolerance strategies.

ance technique spectrum. Even though most
techniques in each area fit within these regions,
individual techniques may fall well outside them.

Because it is mainly a straightforward applica­
tion of conservative design practices, fault avoid­
ance is only covered briefly in this chapter.
However, it is important to note that most
successful designs use a balanced combination of
both fault avoidance and fault tolerance. The
final design is the result of trade-offs among cost,
performance, and reliability. Cost, performance,
and reliability goals are usually incompatible to

some degree, and their relative importance de­
pends upon the ultimate application of the final
product. For example, some fault-tolerance tech­
niques may find little application in cost-sensi­
tive commercial computing systems but may be
required for long-term space missions.

A summary of the techniques covered in this
chapter is shown in Table 3-1. The reliability
techniques spectrum is broken up into four ma­
jor regions: fault avoidance, fault detection,
masking redundancy, and dynamic redundancy.
The last three divisions derive from Figure 3-2.

Fault
detection

region

Dynamic
redundancy

region

Masking
redundancy

region

o
-~

100 200

Redundancy (percent)

Figure 3-3. Cost range of fault-tolerance techniques (in terms of the redun­
dancy required).

300

RELIABILITY AND AVAILABILITY TECHNIQUES 67

Table 3-1. Classification of reliability techniques.

Region

Fault avoidance

Fault detection

Masking redundancy

Dynamic redundancy

Technique

Environment modification

Quality changes

Component integration
level

Duplication

Error detection codes

M-of-N codes

Parity

Checksums

Ari thmetic codes

Cyclic codes

Self-checking and fail-safe
logic

Watch-dog timers and
timeouts

Consistency and capability
checks

NMR/voting

Error correcting codes

Hamming SEC/OED

Other codes

Masking logic

Interwoven logic

Coded-state machines

Reconfigurable duplication

Reconfigurable NMR

Backup sparing

Graceful degradation

Reconfigura tion

Recovery

This division is not exact. Some basic techniques
have properties pertaining to more than one
region and some, while they should be consid­
ered basic techniques in their own right, require
concurrent use of other techniques (for example,
failure detection is needed to invoke replacement
of a broken module with a spare). Nevertheless,

the discussion of each technique below treats
each as a basic entity. Whenever possible, a
measure of the technique's effectiveness is pro­
vided (such as coverage and/or reliability formu­
la). The application of the technique to different
areas of digital design is illustrated, often with
examples from specific systems. The illustrations
cannot be comprehensive due to lack of space;
often the techniques have been applied to design
areas other than those mentioned.

Table 3-1 is not complete but covers most of
the major techniques now in use. In many cases
the technique set forth is only a representative
from a class of similar techniques; space limita­
tions preclude covering them all. In this event,
references are given for other techniques in the
same class.

FAULT-AVOIDANCE TECHNlqlj~~

One method of increasing computer reliability is
to lessen the possibility of failures. This method
is called fault avoidance. If fault avoidance alone
cannot economically meet system design goals,
fault-detection and/or fault-tolerance techniques
must be used. Some fault-avoidance techniques
are intended to decrease the possibility of tran­
sient faults. Careful signal routing, shielding,
cabinet grounding, and input-line static filters
are examples of techniques that effectively in­
crease the signal-to-noise ratio. Other techniques
are useful against both hard and transient faults.
A design rule that limits the fanout of gates to a
small number, for example, decreases power
dissipation (decreasing thermal effects, and thus
hard failures). Fanout limitation also increases
the effective noise margin at the inputs of subse­
quent gates and thus decreases the possibility of
a transient fault. Another concern is the avoid­
ance of human errors through such measures as
labeling and documentation. In addition, the
possibility of assembly errors should be mini­
mized. For example, many manufacturers pro­
duce printed circuit boards and connectors that
are shaped in such a way that they cannot be
plugged in backward or into the wrong slots.

68 THE THEORY OF RELIABLE SYSTEM DESIGN

A = 'lTL 'lTQ(C1 'ITT + C2 'ITd
A = failure rate, failures per million hours

(fpmh)
'lTL = learning curve factor

'lTQ = quality factor
C1 , C2 = complexity factors

'lTT= temperature factor
'lTE = environment factor

Figure 3-4. MIL-HDBK-217B failure rate
calculation' for integrated circuits.

This section presents three techniques for
avoiding hard failures. The goal is to obtain a
smaller system failure rate as determined by one
of the MIL-217 models (Chapter 2). Figure 3-4
shows the formula for the failure rate of an
integrated circuit in the MIL-217B model. Fault
avoidance can be obtained by manipulating fac­
tors that affect the failure rate. The subsections
below cover possible changes in environment,
quality, and complexity factors.

Environmental Changes

Two of the parameters in the formula of Figure
3-4 are related to the operating environment. The
first is "ITE' which is specified for general classes of
environmental conditions. Table 3-2 gives some
examples of the MIL-217B environment factor.
Ground benign environment implies air-condi­
tioned computer rooms; ground fixed implies
office or factory floor installations. Conditions
(and "ITE values) between the extremes provided
by MIL-217B can be estimated. For the full set
of standard "ITE values, see Appendix D. Usually
the operating environment is beyond the de­
signer's control and thus is not a means of
affecting system reliability.

The other parameter affected by the environ­
ment is "ITT' which is a function of junction
temperature. The junction temperature is a result
of several factors: ambient air temperature, heat
transfer from chip to package and package to air,
and the heat created by the power consumed on
the chip. Junction temperature can be modified

Table 3-2. Examples of 'lTE, environment
parameter.

Environment 'IT£ Description

Ground benign 0.2 Nearly zero environmental
stress with optimum
engineering operation and
maintenance.

Space, flight

Ground fixed

Airborne
inhabited

0.2 Earth orbital.. .. [No] access
for maintenance

1.0 Conditions less than ideal to
include installation in
permanent racks with
adequate cooling air,
maintenance by military
personnel, and possible
installation in unheated
buildings.

4.0 Typical cockpit conditions
without environmental
extremes of pressure,
temperature, and vibration.

Missile, launch 10.0 Severe conditions ... related to
missile launch and ... space
vehicle boost into orbit ...
reentry and landing

Source: MIL-HDBK-217B [U. S. Department of Defense,
1976]

by changing power dissipation, heat sinking of
boards and chips, and controlling air tempera­
ture and air flow. Power dissipation is controlla­
ble to some extent by fan-out limitation. In gate
array and master slice technologies, power dissi­
pation can be controlled during chip design.
Heat sinking may be necessary for selected de­
vices, and is sometimes even used for all ICs in a
given design.

Complex, expensive fluid cooling systems
(such as Freon cooling) have occasionally found
use in systems that require high power dissipa­
tion ECL logic and high component densities. In
these systems, such as high-speed scientific com­
puters, the cooling design is as much of a chal­
lenge as the logic design. The CRA Y -I com-

1111111 ~1+: ~+f111111111
~ower fUPPlie~

Front view

RELIABILITY AND AVAILABILITY TECHNIQUES 69

Front

Ii "
- ----/ I I I

/ l I ~
Filtered I I ~ I
inlets" I ~-+--+-"""""'-'I
-- /

Side view

Rear

_ Exhaust

Figure 3-5. Cooling system design for the DEC VAX-11 1780 cabinet.

puter, for example, has heat-conductive surfaces
integral to each module and uses Freon to keep
the machine running at reasonable temperatures
[Russel, 1978].

In most cases, a cabinet ventilation system is
sufficient. Fans can be installed to increase air
flow through the cabinet and lower cabinet air
temperature. Fans also increase air flow across
the circuit boards, improving heat transfer from
the component packages to the air. Careful de­
sign of the cabinet itself is also important in
improving air flow and heat transfer.

One problem often encountered is "hot spots"
on circuit boards. These result when heat-pro­
ducing components reside on the lee side (or
airflow shadow) of other components. Hot spots
can be designed out of a system. For example,
the Texas Instruments ASC (Advanced Scientific
Computer) uses air cooling, unlike most high­
performance machines. Its designers carefully
studied the properties· of cooling air flow and
found that empty spaces on the PC board in­
creased board-level air turbulence. The turbu­
lence caused nonuniform heat transfer, and hot
spots resulted. The outcome of this research was
the addition of dummy packages in spaces where
no actual ICs were used.

The V AX-ll/780 provides a good example of
cabinet design for improved cooling (Figure 3-5).
To minimize the air temperature near the circuit
boards, the power supplies are placed at the
bottom of the cabinet, away from the logic
boards. The blower system provides filtered air
drawn from outside the cabinet. The air is routed
down across the circuit boards in such a way that
it passes over only one board before being
exhausted to the outside.

The cost of potential ventilation schemes must
be weighed against potential gains in reliability.
A PDP-8/e computer will be used to provide an
example of the range of improvement available
through temperature modification. Figure 3-6
shows an AUTOFAIL failure rate analysis of the
PDP-8/e design assuming an expected ambient
(package) temperature of 50° C. * This assump­
tion is reasonable with normal room tempera­
tures and no ventilation other than convection

* In this chapter, AUTOF AIL analyses use the complexity
factor modification discussed in Chapter 2. For LSI, RAM,
and ROM devices, the gate (bit) count is divided by 16
before calculating the MIL-217B complexity factors (C)
and Cz in Figure 3-4).

70 THE THEORY OF RELIABLE SYSTEM DESIGN

PDP8E.REL LSI= 16.000 ROM=

E = 1.000 Q = 16.000 L =

MK4096 Q = 16.000
MODULE

PDP8E
PROCESSOR

DATA. PART
REGISTERS
ADDER. ETC.
PATH.SHUNTING

BUS.CONNECT.OPEN.COLL
CONTROL. LOG I C

KM8.MEM.EXT. TIM.SHR
16K.MEMORY

MEMORY.CHIPS
{ONTROL
BUS.CONN.OC

16.000 RAM=

1.000 T =

16.000

50.000

FAILURE RATE

281.261
36.559

16.989
7.119
2.065
7.805

1.048
18.522

9.546
235.156

232.487
2.276

.393

PERCENTAGE

100.000
12.998

46.471
41.903
12.153
45.944

2.867
50.663

3.394
83.608

98.865
.968
.167

of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000

Figure 3-6. AUTOFAIL analysis of PDP-8/e system with no cooling; in-cpbinet
temperature of 50°C.

PDP8E.REL LSI= 16.000

E = 1.000 Q = 16.000

MK4096 Q = 16.000

MODULE

PDP8E
PROCESSOR

DATA. PART
REGISTERS
ADDER. ETC.
PATH.SHUNTING

BUS.CONNECT.OPEN.COLL
CONTROL. LOG I C

KM8.MEM.EXT. TIM.SHR
16K.MEMORY

. MEMORY.CHIPS
CONTROL
BUS.CONN.OC

ROM=

L =

of chi ps = 285.083 # of gates =

16.000
1.000

RAM=

T =

FAILURE RATE

16.000
40.000

167.218
32.111

14.592
5.903
1. 756
6.933

.966
16.553

8.509
126.598

124.186
2.050

.362

PERCENTAGE

100.000
19.203

45.443
40.454
12.034
47.511

3.007
51.549

5.089
75.708

98.095
1.619

.286

2830.000 # of bits = 196608.000

Figure 3-7. AUTOFAIL analysis of PDP-8/e system with fans installed in
cabinet; in-cabinet temperature of 40°C.

PDP8E.REL L,sI= 16.000 ROM=

E = 1.000 Q = 16.000 L =

MK4096 Q = 16.000

MODULE

PDP8E
PROCESSOR

DATA. PART
REGISTERS
ADDER. ETC.
PATH. SHUNTI NG

BUS.CONNECT.OPEN.COLL
CONTROL. LOGIC

KM8.MEM.EXT. TIM.SHR
16K.MEMORY

MEMORY.CHIPS
CONTROL
BUS.CONN.OC

16.000 RAM=

1.000 T =

16.000

30.000

FAILURE RATE

106.742
29.064

12.944
5.055
1.543
6.346

.910
15.209

7.802
69.876

67.637
1.898

.341

PERCENTAGE

100.000
27.228

44.537
39.054
11. 917
49.029

3.132
52.331

7.310
65.462

96.796
2.716

.489

of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000

Figure 3-8. AUTOFAIL analysis of PDP-8/e system with cabinet ventilation
system; in-cabinet temperature of 30°C.

RELIABILITY AND AVAILABILITY TECHNIQUES 71

currents within the cabinet. The system failure
rate is 281 failures per million hours (fpmh),
which is equivalent to a Mean Time To Failure
(MTTF) of 3,555 hours.

Figure 3-7 shows the effect of placing a few
small fans in the cabinet. If the increased circu­
lation can lower the cabinet temperature by 10
degrees, the failure rate drops to 167 fpmh, a
decrease of 41 percent. The MTTF increases to
5,980 hours, an increase of 68 percent. * Figure
3-8 shows the effect of using a better ventilating
system, perhaps including ducting, blowers, and
filters, which is capable of a 20-degree reduction
in temperature. This modification more than
doubles the MTTF of the system. The failure
rate analyses have ignored the cooling system
(fan) failure rates because there are usually mul­
tiple fans, and the failure of only one fan will not
cause immediate system failure.

Thus, it is possible to obtain reliability im­
provement through an effective ventilation sys­
tem and changes in cabinet design. Noisy fans
may be considered undesirable in certain envi­
ronments such as an office. A quieter (and more
expensive) system is possible but cooling is often
left to convection, and the MTTF loss is ab­
sorbed in exchange for a more saleable product.

Quality Changes

Using higher-quality components is an obvious
strategy for improving reliability. The simplest
implementation is to buy high-reliability ("hi­
reI") components directly from the manufactur­
er. However, such components may be expensive
(usually twice as much as commercial grade)
and/or may have long procurement lead times.
There are two possible solutions to these prob­
lems. The first is in-house screening and burn-in.
The second is specification of hi-reI components
for only those areas of a design where they are
most economically effective.

The use of higher quality components is re-

* Note that this example does not quite fit the old rule of
thumb that a lO-degree temperature drop increases the
MTTF by a factor of 2.

flected in the parameter 'lTQ (quality factor) of
Figure 3-4. Table 3-3 lists some of the standard
quality factors for integrated circuits III

MIL-217B. A complete list is in Appendix D.
The quality level of a component is deter­

mined partly by packaging method and materi­
als, such as a hermetically vs. nonhermetically
sealed package and ceramic vs. plastic package
material. Another major factor for determining
the quality level is the screening done during and
after component manufacture. Not all the prop­
erties required of military-grade components
make sense in a commercial environment. For
example, hermetic package seals are often re­
quired for MIL-spec components, so that when
the device is unpowered moisture will not con­
dense inside the component. Many commercial
systems are left on all the time or operate in low­
humidity environments, eliminating the need for
perfectly hermetic packages. MIL-spec compo­
nents also undergo high-G acceleration screen­
ing in centrifuges. Most commercial systems will
not be subject to G-stresses such as acceleration
and impact.

Table 3-3. Examples of 'lTQI quality factor.

Class '1TQ Description

C 16 Procured in full accordance
with MIL-M-38510, Class C
requirements. [Parts falling in
this or higher classifications are
commonly referred to as "mil-
spec" or "hi-reI" components.]

D-l 150 Commercial (or non-mil
standard) part, hermetically
sealed, with no screening
beyond the manufacturer's
regular quality assurance
practices.

D-2 300 Commercial (or non mil
standard) part, packaged or
sealed with organic materials.
(e.g., epoxy, silicone, or
phenolic).

Source: MIL-HDBK-217B [U.S. Department of Defense
1976]

72 THE THEORY OF RELIABLE SYSTEM DESIGN

Process to die mount and bond

Visual pre-cap

Stabilization bake (24 hrs @ 150°C)

Temperature cycling

Gross leak

Final electrical test

Group A lot acceptance

Preparation for delivery

Process control and monitoring

Inspection of die, bonds, etc., for flaws

High temperature, no electrical stress

Cycling between temperature extremes

Resistance to mechanical stress

Look for missing leads, broken packages,
damaged lids

Check for package sealing with pressure
chamber

Check package seal

Check for meeting data sheet specs

Conformance to electrical specs
within 10%

Final visual inspection

Figure 3-9. Texas Instruments MACH-IV procurement specification for class C
level component processing.

Some component users may wish to do their
own screening, avoiding some of the harsher
military environmental tests that the component
manufacturer must perform (and charge for) on
MIL-rated devices. Figure 3-9 diagrams the
Texas Instruments Class C qualification process
for integrated circuits [Texas Instruments, 1976].
Table 2-8 lists a set of the possible screening
tests. Some of these tests are discussed below;
others were considered in Chapter 2.

In manufacture, visual inspection of the wafer
is possible before it is cut into dies. The manu­
facturer can also visually inspect the chip and
bonds before sealing the package. The compo­
nent buyer can do the same by opening and
inspecting sample components. Electrical tests
can be performed. Each wafer often has a special
test pattern or transistor upon which probes can
be placed to test the values of various character-

istic parameters. Individual circuits on the wafer
may also be tested. Electrical testing after pack­
aging checks both the silicon circuit and the pin
bonding. Stress testing may also be employed.
Overvoltage, vibration, heat, humidity, and other
stresses are applied to the component, followed
by electrical tests to determine resistance to the
stresses.

The manufacturer often performs additional
processing on components subsequent to manu­
facture and testing. The most common is compo­
nent burn-in. This is accomplished by continual
simulated operation of all the components, pos­
sibly at higher-than-normal temperatures. Slight
overvoltages are sometimes applied at signal and
power inputs. The purpose of burn-in is to
eliminate weak components. The beginning, or
infant mortality, phase of the bathtub curve of
Figure 1-4 is traversed during burn-in. Finally,

RELIABILITY AND AVAILABILITY TECHNIQUES 73

entire assemblies or systems can be burned-in
before shipment. This last procedure has the
advantage of eliminating incompatibilities be­
tween components that have passed testing, but
whose parameters combine to result in poor or
improper operation (often a cause of intermittent
faults).

The final value of TTQ is determined by the
types and frequency of testing and processing.
Tests can be performed with varying thorough­
ness: for each component, for sample compo­
nents from each manufacturing lot, or for peri­
odic samples every few lots. Additional tests may
be performed if higher-quality components are
needed for special applications. Lower quality­
factor components (i.e., higher 7TQ) are the result
of less stringent testing and processing, or are
components that failed testing for higher stan­
dards but still meet lower-quality grade specifica­
tions.

Research at Carnegie-Mellon University has
shown that an average component TTQ of 16 is not
unusual for a manufacturer of commercial sys­
tems [Siewiorek et aI., 1978b]. The components
in the study were primarily plastic package DIPs.
This TTQ is obtained through in-house screening
and burn-in of components and systems. DEC,
for example, rejects 2.5 percent of its incoming
components, with the result that only 0.04 per­
cent of the screened components fail during
subsequent system manufacturing steps [DEC,
1975c]. In addition, some Ie manufacturers offer
class C-grade components in their standard
product lines.

Another benefit of screening beyond function­
al testing is the reduction of manufacture and
warranty costs. Replacement costs for a compo­
nent increase by about an order of magnitude for
each step during the manufacture and warranty
periods. Craig [1980] reports that the typical cost
For screening out a bad IC is 50¢. Repair of the
board resulting from a bad chip cos"ts about $5
on the plant floor; diagnosis and repair of the
~ame failure in an assembled system costs $50.
During the warranty period, when the system is

in the field where sophisticated, special test set­
ups are not available, the same repair costs the
manufacturer $500 (and might cost the customer
$5,000 in lost revenue and time). If only 0.5
percent of the components used are bad or weak,
a system with 1,000 components has a
(I - 0.99510(0

) or 99.3 percent chance that repair
will be necessary during the assembly process
(so-called rework) or the warranty period be­
cause of a component that could have been
screened out. Alternatively, an average of five
such repair incidents could be expected for each
system in addition to incidents resulting from
normal failures (those due to components that
would survive screening). This is because the
expected number of weak components in a sys­
tem is 1000 X 0.005.

The manufacturer of the Vidar/TRW 2900B
subscriber billing system incorporates testing
and screening for increased component reli­
ability [McDonald, 1976]. The testing and in­
spection flow in use in 1976 is shown in Figure
3-10. The component sampling consisted of a
DC parametric test followed by a test for inter­
mittent lead bonding failures. If more than 5
percent of an incoming lot of ICs failed the DC
test or more than 0.1 percent failed the bonding
test, the lot was rejected. This form of compo­
nent acceptance is called Acceptable Quality
Level testing (AQL). Next, a 100 percent DC
parametric test screened all components. In the
burn-in phase, an assembled board had to oper­
ate for at least 24 error-free hours at 50° C
before it was removed from the test. In 1977 the
screening tests for the 2900B changed, partly
because of changes in chip technologies
[McDonald and McCracken, 1977]. The testing
and inspection flow ~emained the same, but
component burn-in was added. The data in
Table 3-4, gathered during this later period, show
the effectiveness of the component burn-in after
incoming AQL testing.

Reconsider the PDP-8/e analysis in Figure
3-7, in which the quality factor for all compo­
nents is 16. The AUTOFAIL analysis shows that

74 THE THEORY OF RELfABLE SYSTEM DESIGN

Start

Component
I--

Component
sample screen !

Board Visual
assembly f----. inspection

PCB t PCB build I-- continuity
test

Analog and
digital board

PCB = Printed circuit board test (external
test jigs)

Using system built-in self-testing

System

~ ~~
assembly

Field QA Acceptance Burn-in
System

I-- I-- Ship I-- 48-80 hrs I--data audit testing 50°C test

Figure 3-10. Reliability enhancement in Vidar/TRW 29008 subscriber billing
system. (© 1976 IEEE.)

the 4K-bit memory chips have a total failure rate
of 124 fpmh, accounting for 74 percent of the
system failure rate (76 percent of the PDP-8
failure rate is in the memory, and 98 percent of
that is due to the RAM chips). An improvement

Table 3-4. Vidar/TRW 29008 burn-in test results.

Quantity Quantity Percent
Device Processed Defective Defective

Linear 123,212 5,011 4.07%

TTL standard 316,909 3,735 1.18

TTL low power 379,959 4,982 1.31

Schottky 7,058 130 1.84

Low power 86,244 1,670 1.94
Schottky

CMOS 56,293 1,240 2.20

Misc. 63,666 1,833 2.88

Total 1,033,341 18,601 1.80

Source: McDonald and McCracken, 1977

in the quality of this component alone should
result in a major increase in overall reliability. If
4K-bit memory chips with a '7TQ of 10 can be
obtained (MIL-STD quality class B-2), either by
purchase or by in-house screening and burn-in,
the system failure rate drops to 121 fpmh, a 28
percent improvement in the system's failure rate
and a 39 percent increase in MTTF. Figure 3-11
shows the AUTOFAIL analysis of this modified
design.

Finally, consider the possibility of burning-in
all PDP-8/e systems before shipment. The burn­
in time is made long enough to improve the
quality factor of all components by, say, 2 points
(Ll'1TQ = -2). The '1TQ of the hi-reI RAMs is
assumed not to be affected, since additional
burn-in of these will have little effect. As shown
by the AUTOFAIL analysis in Figure 3-12, the
system failure rate drops to 115 fpmh, a net
improvement in system failure rate of 31 percent
and in MTTF of 45 percent over the design of
Figure 3-7 (for which '1TQ = 16 for all compo­
nents, including the RAM chips).

RELIABILITY AND AVAILABILITY TECHNIQUES 75

PDP8E .REl lSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q = 16.000 l =

MK4096 Q = 10.000

MODULE

PDP8E
PROCESSOR

DATA.PART
REGISTERS
ADDER. ETC.
PATH .SHUNTING

BUS .CONNECT. OPEN .COll
CONTROL. lOG I C

KM8.MEM.EXT. TIM.SHR
16K.MEMORY

MEMORY.CHIPS
CONTROL
BUS.CONN.OC

1.000 T = 40.000

FAILURE RATE

120.648
32.111

14.592
5.903
1. 756
6.933

.966
16.553

8.509
80.028

77.616
2.050

.362

PERCENTAGE

100.000
26.615

45.443
40.454
12.034
47.511

3.007
51. 549

7.053
66.332

96.986
2.561

.452

of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000

Figure 3-11. AUTOFAIL analysis of PDP-8/e system with hi-rei RAM chips in
memory.

PDP8E .REl lSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q = 14.000 l =

MK4096 Q = 10.000

MODULE

PDP8E
PROCESSOR

DATA. PART
REGISTERS
ADDER.ETC.
PATH.SHUNTING

BUS .CONNECT. OPEN .COll
CONTROL. lOGIC

KM8.MEM.EXT. TIM.SHR
16K.MEMORY

MEMORY.CHIPS
CONTROL
BUS.CONN.OC

1.000 T = 40.000

FAILURE RATE

115.279
28.097

12.768
5.165
1. 537
6.066

.845
14.484

7.446
79.727

77.616
1.794

.317

PERCENTAGE

100.000
24.375

45.443
40.454
12.034
47.511

3.007
51.549

6.459
69.166

97.353
2.250

.397

of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000

Figure 3-12. AUTOFAIL analysis of PDP-8/e system with hi-rei RAM chips and
preshipment burn-in.

Component Integration Level

LSI component technology possesses many well­
known advantages. The cost of a single chip is
usually less than that of the set of standard SSIj
MSI components needed to implement the same
function. Fewer chips means fewer solder joints,

less board space, and thus lower costs in board
manufacture and assembly. Normally, power
consumption is lower and performance benefits
from shorter signal paths. In sum, more func­
tionality can fit into less space, consume less
power, operate at least as fast, and cost little or
no more.

76 THE THEORY OF RELIABLE SYSTEM DESIGN

Higher integration levels yield another benefit:
increased reliability. In the MIL-217B model, the
failure rate of a component does not increase
linearly with its complexity (measured in gates or
bits on the chip). The complexity factors CI and
C2 (Figure 3-4) follow a power-law relationship
with the number of gates. This relationship is
reflected in Figure 1-5, which plots the failure
rate as a function of gates. The individual gate
failure rate decreases as the gate count per
package goes up. As a result, total system failure
rate decreases as the level of integration in­
creases. Thus reliability becomes an additional
factor in the decision to use LSI components
where possible. Figure 3-13 demonstrates the
effect of larger-scale integration. Each module in
the AUTOFAIL analysis contains 256 gates.
Changes in integration level from 4 to 256 gates
per package result in module failure rates rang­
ing from 7.3 fpmh to 0.4 fpmh, or a range of 18
to 1.

Standard LSI circuits are often not available
in the exact functionality a design requires.
There are alternative solutions to adapt the de­
sign to fit the available components. One of these
is to fabricate a custom· LSI chip. An increasing

number of systems manufacturers are developing
in-house LSI circuit design and production capa­
bilities. Large volume requirements may make
outside design and manufacture worthwhile.
Conversely, if only a small volume of custom ICs
is required, the manufacturing process may not
have the opportunity to stabilize and traverse the
learning curve. The result is that the custom chip
may be more unreliable than the equivalent SSI/
MSI circuit ('TTL is 10 instead of I). The learning
curve problem is avoided in the gate array and
transistor array approaches to customized LSI
circuits. These and other technologies are pro­
grammable either in manufacture (such as by a
final metalization step) or in the field (such as
electrically alterable ROMs and FPLAs).

Another solution to the custom LSI problem is
to design a microcoded machine. Microcoded
design brings many different benefits, including
flexibility (ease of modification), design regulari­
ty, and debugging ease. ROMs, a relatively inex­
pensive form of custom LSI, can replace large
amounts of random SSI/MSI circuitry. Micro­
coded designs bring potential reliability benefits
other than lower component failure rates. Their
regularity of structure makes microcoded ma-

INTDEM.REL LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1. 000 Q = 16. 000 L =

MODULES. OF .256.GATES
CHIP.4.GATES
CHIP.8.GATES
CHIP.16.GATES
CHIP. 32. GATES
CHIP.64.GATES
CHIP .128.GATES
CHIP .256.GATES

1.000 T = 30.000

FAILURE RATE

20.516
7.282
4.785
3.161
2.479
1. 709

.701

.399

of chips = 127.000 # of gates = 1792.000 # of bits = .000

PERCENTAGE

100.000
35.494
23.324
15.407
12.084
8.328
3.417
1.947

Figure 3-13. AUTOFAIL analysis of modules containing 256 gates. Each module
is made with ICs having identical gate counts. The first (CHIPA.GATES) is made
with 551 circuits with 4 gates per chip. The last (CHIP.256.GATES) is made with
one LSI circuit containing all 256 gates. The number in the module name
denotes the gate count for each chip used in the module.

RELIABILITY AND AVAILABILITY TECHNIQUES 77

chines particularly amenable to many of the
reliability techniques presented in later sections.

Consider a PDP-8 design based on the
AMD-2901 bit-slice microprocessor chip [Sie­
wiorek, Bell, and Newell, 1982]. This design is
only a partial one: I/O and Omnibus facilities
are not included. Nevertheless, it provides an
indication of the potential savings resulting from
increased integration levels via the microcode
ROMs. The failure rate for this design is 136
fpmh (Figure 3-14), only 81 percent of the design
of Figure 3-7. System MTTF is 7,358 hours, up
23 percent from 5,980 hours. The LSI processor
MTTF is about 107,000 hours; the SSI/MSI
processor and KM8 memory extension unit that
it replaces have a total MTTF of about 25,000
hours, an improvement of more than 325 per­
cent.

Table 3-5 summarizes all the PDP-8/e exam­
ples used in the discussion of fault-avoidance
techniques, showing the effect of the various
approaches (temperature, quality, and integra­
tion). The table also includes a few designs not
discussed earlier that demonstrate the combina­
tion of more than one approach. Note that a 5.5

to I MTTF improvement is attained solely
through fault-intolerant techniques.

FAULT-DETECTION TECHNIQUES

Fault-avoidance techniques attempt to decrease
the possibility of failures. Fault detection, dis­
cussed in this section, and the techniques dis­
cussed in subsequent sections deal with the inev­
itability of failures. The key to these techniques
is redundancy: extra information or resources
beyond those needed during normal system
operation.

Most of this section is devoted to techniques
useful in detecting failures, or more exactly,
detecting the faults and errors that are caused by
failures. Action following such detection can
range from ignoring the failure, to retries, to
switching in replacement parts. In some real­
time applications, for example, occasional erro­
neous results can be ignored (that is, not used).
In many cases a retry can be successful, particu­
larly with transient or intermittent faults. Final­
ly, attempts at correction or reconfiguration and
rollback are possible. Some of those possibilities

8BS.REL LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q =

MK4096 Q = 16.000

MODULE

PDP8.BIT .SLICED
PROCESSOR

MICROSTORE
MICROSEQUENCER
DATA. PATHS

LINK.BIT
COND .CODE .MUX
SKIP .GENERATE
CONSTANT .MASK

MISC.
16K.MEMORY

MEMORY.CHIPS
CONTROL
BUS.CONN.OC

of chips = 97.000

16.000 L = 1.000 T = 40.000

FAILURE RATE

135.908
9.310

4.259
1.009
3.452

.604

.689

.483

.082
.590
126.598

124.186
2.050

.362

PERCENTAGE

100.000
6.850

45.741
10.839
37.077

17.484
19.957
13.987
2.363

6.342
93.150

98.095
1.619
.286

of gates = 2545.500 # of bi t s = 202880.000

Figure 3-14. AUTOFAIL analysis of PDP-8/e with AMD2901 12910 chip set.

78 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3-5. Summary of PDP-8/e fault-avoidance designs.

Analysis Temp. RAM
Figure (Oc) 'lTQ 'lTQ A (fpmh)

3-6 50 16 16 281.26

3-7 40 16 16 167.22

3-8 30 16 16 106.74

3-11 40 16 10 120.65

3-12 40 14 10 115.28

N/A 30 14 10 76.49

3-14 40 16 16 135.91

N/A 30 14 10 51.15

are considered in the section on Dynamic Re­
dundancy.

Reliability functions, R(t), and the measures
derived from them are not very useful in consid­
erations of the effectiveness of failure-detection
and fail-safe techniques. The redundant hard­
ware actually contributes to a reduced R(t) when
corrective action does not follow detection. The
concept of coverage, however, provides the view
of reliability required when discussing detection
techniques. This section uses two measure men ts
of coverage. * The first, called general coverage,
is more qualitative. Usually general coverage
specifies the classes of failures that are detecta­
ble, and may include failure detection percent­
ages for different classes of failures. The second
form of coverage is more explicit. It is the
probability that a failure (any failure) is detect­
ed, and is denoted by C. C can be determined
from the general coverage specifications by using

* The issues involving coverage measurement are discussed
in detail in Chapter 5.

MTTF
(hours) Notes

3,555 Base design, no cooling

5,980 Fans installed

9,369 Cabinet ventilation system

8,288 Fans installed, hi-rel RAM chips

8,675 Fans installed, hi-reI RAM chips, system
burn-in

13,074 Cabinet ventilation system, hi-reI RAM
chips, system burn-in

7,358 Fans installed, LSI bit-slice chips and
ROMS used in CPU

19,550 Cabinet ventillation system, LSI bit-slice
chips and ROMS used in CPU, hi-rel
RAM chips, system burn-in

the average of the coverages for all possible
classes of failures, weighted by the probability of
occurrence of each fault class. Thus C is more
difficult to obtain, since the relative probabilities
are implementation-dependent and indeed may
not be known. In many instances, simplifying
assumptions are employed for the possible fail­
ure modes and probabilities. For these reasons,
the technique discussions below will always have
the general coverage measure, and when possi­
ble, the explicit coverage C.

Cost and performance effects of reliability
techniques are also important. Dollar costs are
impossible to give here. Even explicit costs in
numbers of chips will often be hard to predict
without knowing details of specific implementa­
tions. The same is true of performance effects, as
shown by the single error-correcting-code mem­
ory example in Chapter 5. Diagnosability is yet
another important issue when considering fault­
detection and fail-safe techniques. Diagnosabil­
ity is usually considered in terms of diagnostic
resolution, that is, the size of the region to which

RELIABILITY AND AVAILABILITY TECHNIQUES 79

the fault can be isolated. In many systems diag­
nostic resolution to the Field-Replacable Unit
(FRU) is considered necessary. When fault de­
tection techniques are used in conjunction with
fault-tolerant techniques (see the section on Dy­
namic Redundancy), the diagnostic resolution
may become crucially important. Diagnostic res­
olution is a function of implementation and is
difficult to determine accurately without specific
details. Thus, while cost, performance, and diag­
nosability are considered in the discussions be­
low, the information given will often be vague.

Duplication

Conceptually, duplication is the simplest fault
detection technique. Two identical copies are
employed. When a failure occurs, the two copies
are no longer identical and a simple comparison
detects the fault. The simplicity, low cost, and
low performance impact of the comparison tech­
nique are particularly attractive. Duplication is
applicable to all areas and levels of computer
design and thus is widely used.

Duplication successfully detects all single
faults except that of the comparison element. In
some cases, particularly for memories or multiple
line output circuits, failures in both copies are
detected as long as at least one failure results in
a nonoverlapping failure. An example of non­
overlapping failure is a duplicated eight-bit
word. If the first copy has a failure in bit position
o and the second copy has failures in bit posi­
tions 0 and 5, the failures in bit position 0 will
not be detected if they result in identical errors.
The bit position 5 failure, however, is nonover­
lapping and will be detected. Identical faults
from the identical modules are not detectable
because both copies are in agreement. Thus, in
many cases physical division and/or separation
of the modules is a necessity.

There are many variants on duplication. Some
combine duplication with other techniques, re­
sulting in increased coverage over some classes

of faults, or in fault tolerance (such as reconfig­
uration, error correction). Several such combina­
tions are covered in the section on Dynamic
Redundancy.

One method for increasing coverage is the
"swap-and-compare" technique used on the
C.mmp multiprocessor [Siewiorek et aI., 1978a].
Initially used for important data structures in
memory, the technique can also be applied to
other areas of a computer. Figure 3-15 illustrates
the concept. There are two copies of a word, but
one copy has its two bytes reversed. Error check­
ing involves swapping the bytes of one copy
prior to comparison. In addition to covering all
single, nonoverlapping failures, swap-and-com­
pare provides coverage of most identical failures
affecting both copies (such as bit-plane failure).

In duplication, both copies may be subject to
identical failures (common-mode failures), par­
ticularly if both have an identical design error or
if both reside on the same IC chip. Sedmak and
Liebergot [1980] propose the use of complemen­
tary functions to solve this problem for VLSI Ie
chips (Figure 3-16). This approach is similar in
concept to dual-diversity reception of radio sig­
nals, in which the same signal is received by two
different antennae and receivers. One copy of the
logic is the logical dual of the other copy.
Common failure modes would probably cause
different error effects, resulting in detection and
thus coverage of these modes. A similar solution
is to use both "on-set" and "off-set" realizations

rBit-slice failure
I I

I I

Copy 1

Copy 2

Figure 3-15. Swap-and-compare check scheme
for critical data structures in c.mmp.

80 THE THEORY OF RELIABLE SYSTEM DESIGN

Output control
and data lines

with code

No

\

I

I Comparator
check 1

--1 T

H Output check
code generation

Functional logic

... \ Comparator
check n

f---

I Input clock
check

Encoded error signals

0f
1

Error multiplexing

I and encoding logic

T

I --i Output check
code generation

I
Duplicate

complementary
logic ,

I Input power

\ comparators

I Input code
check 1

r
/ /

ND Nc

Data and control
input lines

T
I

I

Np NPI~
Redundant Clock

power inputs
inputs

Input code I check M

i f i r r

a. Generalized VlSI chip.

Figure 3-16. Proposed use of duplicate circuits on one VLSI chip. Complemen­
tary implementations improve resistance to common mode failures.
(© 1980 IEEE.)

for the two copies [Tohma and Aoyagi, 1971].
The on-set is the set of input and state variables
that result in logical one outputs. The off-set
results in logical zero outputs.

Duplicate information may already be present
in a circuit so that the amount of additional
redundancy needed may be small. An example is
a possible internal modification to the Advanced

Micro Devices Am2901 bit-slice ALU chip. In
the chip are functional units that compute
A + B, AB, and A E9 B (this last is part of the
adder). Because A E9 B = (A + B) E9 (A B), the
two Isets of signals can be used to check each
other. In this case, the only additional elements
needed to utilize the duplicate information
would be two XOR gates (one to form one of the

RELIABILITY AND AVAILABILITY TECHNIQUES 81

Functional circuit Duplicate complementary circuit

AND

A 8 -A -8

Truth Table Key

Inputs Outputs Symbol Meaning
-~--- -----------

A, 8, C, f, G, NOT

• lOGICAL AND
l l l H l + LOGICAL INCLUSIVE OR
l l H H l subscript t Time period t
l H l H l subscript t - 1 Time period t - 1
l H H l H Es Enable on low to high
H l l H l transition of clock
H l H l H E1- Enable on high to low
H H l H l transition of clock
H H H l H

_b. Example of functional versus duplicate complementary circuits.

Figure 3-16 -Continued

duplicate signals, the other to compare the two
signals}.

Duplication can also be carried out at the bus
level. The Sperry Univac 1100/60 (see Chapter
10) uses comparison at the bus level for its
instruction processors [Boone, Liebergot, and
Sedmak, 1980]. The processor is split into two
36-bit subprocessors. Each subprocessor is dupli­
cated, and only one of the two duplicates drives
the master data bus during anyone microcycle.
The other drives the duplicate data bus (Figure
3-17). Both copies operate in the same way upon
the same data. At the end of the microcycle the
results are compared. A disagreement causes
interruption of operations. Univac's implementa­
tion of this scheme produced a performance
increase as a result of splitting driven loads
between the two subprocessors.

Comparing module outputs is not the only
way to apply duplication. The Bell ESS-I pro­
cessor demonstrates duplication at the system
level, but comparison is performed at the regis­
ter-transfer level [Toy, 1978]. Certain key values
within each of the dual central control units
(CCs) are compared by matchers residing within
each CC. Only one CC is on line at a time; the
other is running in microcycle lockstep. The
oscillator in the on-line CC drives the clock
circuits in both. The matcher immediately de­
tects any divergence in operation. This level of
duplication decreases error latency, increases
coverage, and has the side effect of making
system diagnosis easier and quicker. Each of the
matching circuits compares 24 bits from each CC
during the 5.5 J.tsec machine cycle. Each CC has
two matchers, and each matcher has access to six

82 THE THEORY OF RELIABLE SYSTEM DESIGN

To fault handling logic

r
Comparator

Duplicate data bus

Main data bus

Master
subprocessor

1

Duplicate
subprocessor

1

Master
subprocessor

2

Duplicate
subprocessor

2

Figure 3-17. Duplication at bus level in Sperry/Univac 1100/60.

24-bit sets of internal nodes (Figure 3-18). The
processing performed during the machine cycle
determines which set is checked, and a mismatch
generates an interrupt. A diagnostic program is
run to locate the faulty CC, which is then
removed from service for repair.

The cost of duplication is twice that of an
equivalent simplex system, plus the cost of the
comparison element. Performance degradation
can result from at least two sources. The first is
lack of synchronization between the compared
signals, which could be remedied by either a
common clock or a delay period before compar­
ison. Some delay would result in any event from
the inevitable variance in propagation times and
other parameters in the circuits of both copies.
The other source of degradation is the propaga­
tion and decision time required by the compari­
son element. Normally, the performance loss due
to these factors is small enough not to detract
from the benefits of duplication.

At a cost in performance, expenses can be
halved by using the same hardware to perform
duplicate operations, one following the other in
time. This time redundancy at least doubles

execution time. It also is more susceptible to
nondetection of faults because the same hard­
ware, with the same problem, is used for both
operations. Transient faults would not be a prob­
lem, but hard failures would be. Hard-failure
coverage could be increased somewhat by carry­
ing out the operation with a different ordering or
algorithm, using as many different resources as
possible. Although a single failed ALU would
probably give bad results both times, the results
would differ for most failures and still result in a
mismatch and failure detection. For example, a
string of additions could be performed twice in
different order, or could be done the second time
by forming and adding the two's complements
and negating the result. .

One frequently perceived problem of duplica­
tion (and some other redundancy techniques) is
incomplete use of resources. A duplicated com­
puter, for example, is actually two processors
performing the same task in parallel, with a loss
of half the available computing power. As a
result, in some designs only part of the proces­
sing is done in parallel by both copies, and
checking is performed for only the portion of

RELIABILITY AND AVAILABILITY TECHNIQUES 83

-} To other CC -
Decoder
functions

Aux. storage
Other inputs

A.
register (\

l J
r-----------
I DRO ARO
I Data buffer

I register
I I J
I • • I
! Masked
I bus Match
I
I

• I
I To interrupt source I Program Add.

i register

I
I - Points matched routinely I

: Buffer ORD
i word register

I -
I
I Index adder - } To other CC

I order reg.

I Other inputs
I A.
I {

J" I Unmasked ~. I bus

I DR1 AR1 I
I
I Sequencer I I
I state FFs • • I I
L __________ J

Match

Decoder

• functions
To interrupt source

Test
connector

Figure 3-18. Bell ESS-1 CC match access.

84 THE THEORY OF RELIABLE SYSTEM DESIGN

processing still performed in duplicate. All other
processing is performed on only one processor or
the other. In this case, duplication is usually at
the task level and the comparison is performed
between the intermediate and/or final results of
the two task instantiations. The yield is increased
utilization of the hardware; the disadvantages
are decreased coverage and increased error la­
tency. Careful design, however, can minimize
these disadvantages, and in many instances the
remaining coverage is more than sufficient.

',. Another source of performance degradation
with processors duplicated in this fashion is the
bus bandwidth consumed by interprocess com­
munication. While this is an expected overhead
in multiprocessing architectures, the problem is
i~creased by the bandwidth needed for duplica­
tIon. One possible solution can be found in the
Tandem Computer. * The Tandem design at­
tacks this problem with its Dynabus, a high­
speed interprocessor bus used solely for interpro­
cessor communication. All I/O and memory
accesses are handled through a more conven­
tional bus.

Duplication, like all other reliability tech­
niques, involves the classic dilemma of "who
shall watch over the guardians?" In the case of
duplication, failure in the matching equipment
results either in no error-detection or in an
occasional or permanent false indication of er­
ror. This problem can be alleviated with addi­
tiona~ cost, complexity, and/or performance deg­
radatIon, as the matching circuit is made more
reliable using some of the techniques in the
following sections. The problem, however, can
never be completely solved. There are decreasing
returns to adding more and more redundancy.
Eventually the redundancy becomes a liability
too large to accept in cost, performance, or even­
reduced net system reliability. This point is dem­
onstrated in Chapter 5, which contains an exam­
ple of an extensive PDP-8/e redesign.

* The Tandem computer does not use duplication as a means
of error det~ction. However, the Dynabus design could
prove useful III a system where duplication is used.

Error-Detection Codes

~rror-detection codes are systematic applica­
tIons of re?un~ancy to information. The concept
of codes IS sImple: for the set of all possible
combinations of symbols, only a subset of them
represents valid information (Figure 3-19). The
valid set is called the set of code words. In
essence, many redundancy techniques can be
considered coding techniques. Duplication, for
example, can be considered a code whose valid
elements are words consisting of two identical
symbols. Error detection with codes consists of
determining whether an input is a valid code
word. Most of the codes of concern to a com­
puter system designer are binary codes, in which
the code words are made from a combination of
Is and Os.

One of the key concepts in determining code
p~operties is Hamming distance. The Hamming
dIstance between two words is the number of bit
positions in which they differ. The minimum
distance, d, of a code is the minimum Hamming
distance found between any two code words.
Figure 3-20 shows the space of three-bit words.
Each edge of the cube represents a distance-I
transition between adjacent words in the space.
Consider a code taken from this space, in which
all code words have an odd number of Is. These
are the boxed words in the figure. The minimum
d~stance between code words is 2, and any
dIstance-I transition results in a noncode word.

Valid

representations

~igur.e 3-19. An example code space. The set of
invalid representations (noncode words) is W-c.

RELIABILITY AND AVAILABILITY TECHNIQUES 85

101

Figure 3-20. The 3-bit word space.

The distance-I transitions from code words re­
present single-bit errors. Thus, for this code
(called odd parity) any single error is detectable.
The nonboxed points of this set form another
code (even parity) with the same coverage of
single failures. For both codes, any distance-2
transition (double error) results in another code
word, and is thus a nondetectable error.

Another code is formed by joining a 2-bit
value with its complement. This code is called
the CD code because the second half is the
complemented duplicate of the first half. The set
of valid code words is D = {0011, 0110,1001,
IIOO}. This code has a minimum distance of 2.
Detection for this code consists of a check to see
whether the 4-bit input is an element of D, or
equivalently, not an element of D'.

Figure 3-21 illustrates the 4-bit word space
containing this code. The CD code words are
marked by &. Each arc in the figure is a dis­
tance-I transition, that is, a single bit flip. Be­
tween 1100 and 1001 at least 2 bit flips (errors)
must occur. Between 1100 and 0011 4 bit flips
must occur to produce the wrong code word.
Some of the intermediate paths consist entirely
of noncode words. Thus, the code will detect any
single-bit error, but some double errors will go
undetected because they result in another code
word (the wrong one). Herein lies a key to code
performance: the use of a code with a minimum
distance, d, allows detection of any terrors,

1101

1000

\
~
\
\
\
\
\
\
\
\

1110 \
\
\

\ \
\ \
\ \
\ \
(o101 1@\

\ \

0010

\
\

0111

Figure 3-21. Expanded word space cube with 1 bit
added to the word size. Boxed words are even­
parity words, @ marks a code word in a 2/4 m-of-n
code, and & marks code words from the comple­
mented duplication code used as an example in the
text. The unmarked words are odd-parity code
words.

where t < d. Duplication, can be considered a
code with d = 2, triplication (three copies) 'a
code with d = 3, and, in general, replication
with n copies a code with d = n.

Minimum distance is not the only characteris­
tic needed to evaluate a code's performance. The
CD code of Figure 3-21, for example, is a
variation on duplication in which the extra copy
is the complement of the original. This design
gives protection against all multiple adjacent
unidirectional faults. For example, if the code is
used for a register that resides on one IC chip, a
failure of the chip that results in the grounding
of some or all outputs would be detected. Simple
duplication provides no protection against unidi­
rectional faults. In both cases, however, the
minimum distance for the code is 2.

86 THE THEORY OF RELIABLE SYSTEM DESIGN

Two other distance-2 codes are shown in Fig­
ure 3-21. The first, called the 2/4 (2-of-4) code,
consists of all the words (marked by @) contain­
ing exactly two Is. This code requires slightly less
redundancy than the CD code because it allows
six code words out of the code space instead of
the CD code's four. Although the 2/4 code
detects all adjacent unidirectional errors it de­
tects fewer distance-2 errors than the CD code.
The other code is an even-parity code (boxed
words). This code has the least redundancy, for
it allows eight code words out of the code space.
However, it has no coverage of distance-2 errors
and will detect only some multiple adjacent
unidirectional errors. In particular, it will not
detect a unidirectional failure affecting all bits.
The odd-parity code (all the unmarked points
in Figure 3-21) has the same drawbacks as even

parity, except that it will detect both the all-Os
failure mode and the all-Is failure mode.

Table 3-6 summarizes the properties of the
four codes shown in Figure 3-21. These four
codes constitute the spectrum of code choices for
a 4-bit code word.

Other error-detection codes, though not as
simple as replication, are generally better in at
least some respects. Most require less redundan­
cy to achieve the same minimum distance. For
many codes, decoding is eased because the code
word consists of two parts: the original value,
and the code bits that are simply appended to
make it a code word. Such a code is called a
separable code. In linear separable codes, each
check bit is calculated as a linear combination of
some of the data bits. Parity-check codes are
linear separable codes for which each check bit

Table 3-6. Properties of the codes shown in Figure 3-21.

Bits in Code
Code Word Words Distance Coverage

CD 4 4 2 Any single bit error

66% of double-bit errors

Any multiple adjacent
unidirectional error

2/4 4 6 2 Any single-bit error

33% of double-bit errors

Any multiple adjacent
unidirectional error

Even 4 8 2 Any single-bit error

parity No double-bit error

Not all multiple adjacent
unidirectional errors

Not all-Os or all-Is errors

Odd 4 8 2 Any single-bit error

parity No double-bit errors

Not all multiple adjacent
unidirectional errors

All-Os and all-Is errors

RELIABILITY AND AVAILABILITY TECHNIQUES 87

can be calculated as the parity bit (sum mod­
ulo-2) of some subset of the data bits. Parity­
check codes can be encoded and decoded using
parity generation and parity-check matrices (for
details, see Appendix A by Tang and Chien.)

In discussion of codes the term (n, k) code is
often used. In this expression n is the number of
bits in the entire code word, while k is the
number of data bits. Thus in an (n, k) separable
code there are (n - k) bits concatenated with the
data bits to form the code words.

Some codes can be modified, extended, or
combined with other codes or redundancy tech­
niques to increase coverage. For example, a
distance-d code can be modified by a further
restriction on the valid code words, such as using
a subset of code words which contains a high
percentage with a minimum distance greater
than d. Often, however, increased effectiveness
may not be reflected in the minimum distance, as
in the examples of Figure 3-21, where the CD
code is a subset of the 2/4 code, and the 2/4 code
is in turn a subset of the even-parity code.

If some fault classes are more probable than
others, the code choice is affected. The CD code
example of Figure 3-21 detects not only single
faults but also all adjacent unidirectional faults
up to and including the entire word.

In addition to the minimum distance and
error-detection properties of a code, the cost of
the extra information needed (the redundancy)
must be considered. Another factor is the diffi­
culty of error detection and decoding. The actual
value to be communicated is first encoded, or
transformed into a valid code word. Upon re­
ceipt it must be checked for validity. For nonsep­
arable codes the received quantity must also be
decoded, or transformed back into its original
form, before it can be used.

A final issue is the intended application of the
code. Most codes, for example, will not be
invariant or closed with respect to data opera­
tions. In the simple addition of code words the
result mayor may not be another code word, or
may not be the correct code word. Conversely,
there are codes that are invariant with respect to
some set of operations, or for which there exist.

simple algorithms for generating the code word
that should result from the operation (short of
the process of decode,operate, encode). Further­
more, some codes can be decoded efficiently in a
serial fashion, bit by bit in a shift register, but
may be difficult to decode in a parallel fashion.
These serial-decodable codes are used in applica­
tions that employ serial data streams.

Codes can also be used for failure detection in
random logic. In such an application all internal
logic states or signals must be represented as
members of a code. This topic is treated below in
the section Self-Checking, Fault-Secure, and
Fail-Safe Logic.

This subsection presents a representative sam­
ple of the more common error-detection codes.
The references [Tang and Chien, 1969; * Peter­
son and Weldon, 1972; Rao, 1974; MacWilliams
and Sloane, 1978] provide more complete treat­
ment of the subject.

M-of-N Codes

An m-of-n code (m/n code) consists of n-bit code
words in which m (and only m) bits are ones.
Thus, there are nCm code words. ** For example,
the 2/4 code has 4C2' or six possible code words.
The set of code words for the 2/4 code is
{1100, 10 10, 1001, 0101, 00 11, OlIO} . This code
detects all single and unidirectional faults. The
basic concept for the m-of-n codes is simple, but
they have several disadvantages. One is that
circuitry for parallel detection and decoding is
complex, whereas a serial decoder can be made
by simply using a counter for the one-bits.
Another problem is that they often require a
large amount of redundancy. For example, in the
case of k data bits with all 2k values possible,
then at least k extra coding bits are needed if the
code is to be separable, as in the example of
Figure 3-22 (that is, detection is necessary, de-

* The paper by Tang and Chien is included as Appendix A.

** nCm is a shorthand expression for the number of unique
combinations of n things taken m at a time. A verbal
shorthand for this term is "n choose m."

88 THE THEORY OF RELIABLE SYSTEM DESIGN

Inputs Control
module Output control lines (4)

Valid output control line signal sets: 1010 1110
1100 1011
1001 0111
0011 1101

Figure 3-22. Four-output control module and val­
id output line states.

coding is not). Less redundancy can be ·used at
the cost of adding a decoder and encoder. For
example, if there are four data bits (k = 4) a 3/6
code could be used in place of a separable 4/8
code, since only 16 code words are needed. The
3/6 code has 20 code words and less redundancy
than a 4/8 code, which has 70 code words. If
there are nCm code words and only q < nCm of
them are to be allowed, there is less coverage of
multiple faults unless the erroneous code words
are also detected. In the 3/6 code example there
are four unused code words that could pass
undetected as errors, and in the 4/8 code there

would be 54 undetectable unused code words.
One common use for min codes is in control

circuitry. To produce a separable min coding,
extra lines are used in addition to the output
control lines. The redundancy lies in extra logic
for encoding (determining the value of the extra
lines) and in the detection logic. In some cases
extra lines are not needed or can be reduced in
number. For instance, the number of set lines
may be less than or equal to some maximum
number. Consider a control module with four
output lines whose possible output states are
shown in Figure 3-22. Either two or three lines
are set at anyone time, and the addition of a
single line can produce a 3/5 separably coded
output. Figure 3-23 shows the implementation of
this scheme, including a TTL error detector.
Because the control line states (0110, 0101) are
not valid, the demultiplexer (demux) outputs for
5 and 6 are not included in the circuit even
though such a code word is a valid 3/5 code
word. The logic that generates the redundant
signal provides fault detection only for signals
from which it is independent. Thus, the logic for
~he fifth line would normally not use the other

Control
module

~ . } To controlled
c Output control hnes (4) module(s)
d

3/5 Code
line generate e Redundant output line

a. 3/5 Code control line generation

r-----..., 7, 11, 13, 14

a
b
c
d

Demux outputs
are active low

e--------i

D-

b. 3/5 Code control line checker

Figure 3-23. 3/5 code used to check control module output lines and
function.

RELIABILITY AND AVAILABILITY TECHNIQUES 89

Figure 3-24. 4/8 coding in Bell ESS-3A microstore.

four module outputs as its inputs. Otherwise, the
only coverage afforded is over corruption of the
signals on the wires, not over the logic that
generates them.

The Bell ESS-3a uses an m-of-n code in its
microstore. The TO and FROM control fields in
the microword are each encoded in a 4/8 code
and are interlaced with the address field (Figure
3-24). This arrangement gives coverage of multi­
ple adjacent unidirectional errors and all even
numbers of bit failures in the address field as
well. This would not be the case if the address
were kept separated, for it is covered only by a
single-parity bit. More complete details of the
scheme, including decoding/detection imple­
mentation, are given in Toy [1978] (Chapter 12).
In a paper written about the micros tore alone,
Cook et al. [1973] present a detailed examina­
'tion of its design.

Parity Codes

If a given group of bits has an even number of
Is, it is defined as having even parity. If the
number of Is is odd, the group has odd parity.
Parity codes involve the addition of an extra bit
to each group of bits so that the resulting word
has even parity or odd parity, depending on the
implementation. Parity codes are linear separa­
ble codes and give on-line detection of errors.

For a b-bit group of bits, the (even) parity can
be generated by using a b-input XOR gate.

Because large XOR gates are not available as
standard logic functions, the parity can be gen­
erated using a b-input tree of 2-input XOR gates
or one of the standard parity-generation chips
(such as the 74190, which encodes an 8-bit input,
decodes a 9-bit input, and can be used in a
modular fashion for longer words). Parity codes
are suitable for. serial detection and encoding,
needing only a single memory cell and a single
XOR gate to perform the modulo-2 addition of
the bits in the word. The choice bet~een even
and odd parity depends upon the prevalent
failure mode. Even parity gives detection of the
all-Is failure mode if the parity group (data bits
and parity bit) is an odd number of bits long, but
not for an even number of bits. Even parity does
not detect the all-Os failure mode. Odd parity
detects the all-Os failure mode for parity groups
of all lengths, and the all-Is failure for parity
groups an even number of bits long. Several
variants of parity encoding are discussed below;
Figure 3-25 illustrates some of these.

With bit-per-word parity, one parity bit is
appended to the entire data word. It is one of the
least expensive forms of error detection, because
it requires a minimum of redundancy in terms of
information transferred, and one parity tree can
be used for both encoding and detection if
information is both transmitted and received. In
addition to the extra bits and parity tree, other
hardware is needed for such uses as setting parity
error detection status bits and allowing wrong

90 THE THEORY OF RELIABLE SYSTEM DESIGN

Bit-per-word parity

L---L----I __ ----JI......-...JI_p--l-I_....I...--....I. __ -....I._...J1----'p I Bit-per-byte parity

Interlaced parity, I = 3

\~ ____ ~\ _____ \~ __ ~l

Chip-wide parity, 4-bit wide chips

Chip parity,
4 data chips

Figure 3-25. Five parity schemes.

parity to be written for maintenance (testing)
purposes. Bit-per-word parity codes detect all
single-bit errors and all errors that involve an
odd number of bits. The all-Is and all-Os failure
coverage is as discussed above, with the entire
code word becoming the parity group. The costs
of bit-per-word parity for a b bit word are l/b
redundancy in data, a b-bit parity tree encoder,
a (b + I)-bit parity tree decoder (in some cases a

single encoder/decoder tree is possible), and a
logic delay of approximately rlog2(b + 1)1 * gate
levels in the encoding and detection operations.

In bit-per-byte parity, an extra bit is added to
each byte of data. Alternating even and odd
parity in the bytes of the data word gives im-

* The ceiling symbol, r 1, means round the value up to the
next highest integer.

RELIABILITY AND AVAILABILITY TECHNIQUES 91

proved coverage, since both wordwide stuck-at-l
and wordwide stuck-at-O failure modes are cov­
ered. The wordwide failure mode is a common
result of timing and select-line errors. Also, the
bit-per-byte code detects all single- or odd-num­
ber errors in each byte. Thus, as long as at least
one byte contains an odd number of failures,
many more kinds of multiple errors in a word are
detectable. The diagnostic resolution is also im­
proved over bit-per-word parity, because fewer
data bits are covered by each parity bit. Encod­
ing and detection are faster because the parity
trees have fewer inputs and thus fewer gate levels
of delay. The extra costs are more parity trees
and a redundancy of lim where there are m bits
per byte. The C.mmp multiprocessor used this
technique for its shared memory [Siewiorek et
aI., 1978a].

In interlaced parity, i parity bits are appended
to the data word. Each parity bit is associated
with a group of (b/i) bits, and is generated by
forming the parity over every ith bit, starting in
a different bit position for each parity bit. The
encoded word thus has i separate parity groups.
Interlaced parity covers single bit errors in each
group, as well as all multiple errors in which at
least one group has an odd number of errors. If
the parity sense (odd/even) is alternated from
group to group, the code covers a large number
of unidirectional failures. Thus interlaced parity
would be particularly useful for buses, where the
shorting-together of signal lines is a common
failure mode, as well as for whole-chip failures of
memory and bus transceiver chips. These failures
are sure to be detected relatively quickly. The
diagnostic resolution of interlaced parity is to the
parity group in error. As for bit-per-byte parity,
the speed of detection and encoding is increased
as a result of the smaller parity tree sizes. The
costs are an i/b redundancy, and i parity trees of
(r b/i l + 1) bits for detection.

Chip-wide parity, proposed for memories in
which each word is spread over (r b/wl)w-bit wide
chips [McKevitt, 1972], is actually a special case
of interlaced parity. There are w parity bits
appended to each data word, and they reside on

their own w-bit wide memory chip. Each parity
bit is the parity over the same bit position on all
the other chips. When single-bit wide chips are
used, chip-wide parity is the same as duplication.
The coverage is the same as for interlaced parity,
with the additional property that any single-chip
failure is detectable (as long as at least one bit is
in error). This technique is also applicable to
many other areas of digital system design in
which blocks of signals (control, data) are to be
protected.

Another way of detecting single-chip failures
is to use a parity bit for each chip. The chip
parity bits are stored separately from the chips
they cover. The advantage of this technique,
called chip parity, is that a parity error detection
immediately locates the failed chip. Chip parity
thus has a more useful diagnostic resolution than
chip-wide parity. However, if data bit values are
uniformly distributed and the O-to-l and 1-to-O
failure modes are equally likely, chip parity has
only a 0.5 probability of detecting failure of an
entire chip (for a given data word). This is
because there is a 0.5 probability that the parity
bit is the correct one for the erroneous data on
the chip. Chip-wide parity, on the other hand,
has a (1 - (0.5 t,) probability of detection in the
same situation, given w-bit wide chips. The cost
of chip parity is (b/w) extra bits per word and
(r b/wl)(w + I)-bit parity trees.

Table 3-7 summarizes the properties of the five
basic parity techniques described above.

The same single-chip failure coverage and
diagnostic resolution that chip parity provides
can be obtained with less redundancy by using a
variant of the Hamming single-error correcting
(SEC) codes (discussed in the following section
on Error-Correcting Codes). Assume there are m
w-bit wide chips for a data word, and that
cj (i = 1,2, ... , m) is the parity of the ith chip.
The addition of n parity bits, where

2n > m + n

can be used to give detection of any single-chip
failure and diagnostic resolution to the failed
chip or parity bit. The parity check bits are

92 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3-7. Properties of the basic parity techniques.

Bit Parity Trees
Redun-

Technique dancy Number Size

Bit-per- l/b a=b+l
word

Bit-per- l/m b/m a = m + I
byte

Interlaced i/b a=rb/il+l

Chip-wide w/b w a=rb/wl+1

Chip l/w rb/wl a=w+l

formed similarly to the Hamming SEC code bits.
The difference is that the check bits are formed
from the c/s (chip parities) instead of from
individual data bits as in the SEC code. The full
technique will not be given here, and an example
used instead. This example is a 32-:-bit-wide
microstore made from four 8-bit-wide chips.
Three parity bits are used, and are computed as:

PI = cI ffi c2 ffi c4

P2 = cI ffi c3 ffi c4

P3 = c2 ffi c3 ffi c4

After a micrpword has been read, the parity
check bits are 'computed and XORed with the
~tored parity bits. If any of the resultant bits are
nonzero, the three bits (P3P2PI) form an indica-

Delay Coverage

rlog2 al All single-bit errors
All odd-bit errors

llog2 al All single-bit errors
All errors with an odd number in at
least one byte

llog2 al All single-bit errors

All errors with an odd number in at
least one parity group

Large number of adjacent multiple
unidirectional errors

llog2 al All single-bit errors

All errors with an odd number in at
least one parity group

Large number of adjacent multiple
unidirectional errors

Any single chip failure

llog2 al All single-bit errors

All errors with an odd number on at
least one chip

50 percent of single-chip failures
Points to failed chip for single errors

tion (called the syndrome) that is uniquely asso­
ciated with a particular chip or parity bit in error
(001, 010, 100 for parity bits 1, 2, and 3, respec­
tively, and 011, 101, 110, III for data chips 1, 2,
3, and 4, respectively). The cost for this scheme
is n extra bits per word, n parity trees with
(rIog2(m + n)l) inputs, and m parity trees with
w inputs if w-bit wide chips are used. The
coding/decoding circuitry is greater than for
chip parity, but the decrease in redundant bits
can be significant, especially for large memories.
On the other hand, coverage of multiple chip
failures is much lower, and in the case of multi­
ple chip failures the syndrome may point to a
nonfaulty chip if it is nonzero.

Parity techniques have been used in many
systems, most often for main memory and less

RELIABILITY AND AVAILABILITY TECHNIQUES 93

often for buses. The UNIBUS on PDP-lIs, for
example, does not have parity but defines two
extra signal wires for reporting memory or pe­
ripheral device parity errors. One wire carries the
parity error signal; the other is a parity enabling
signal, necessary because not all bus devices and
memories use parity checking. The PDP-II/60
has parity on its writable control store (WCS),
main memory, and cache. The WCS has 3 parity
bits in each word, one for each 16-bit segment of
the 48-bit word. The cache has 3 parity bits, one
for the tag field and one for each of the data
bytes. Starting with the 1108, all of the Univac
liOO-series systems use parity. The 1108 had
parity in main memory and on the processor
general registers. As the 1100 series matured,
parity was expanded to more parts of the systems
(see Chapter 10). Finally, the VAX-II systems,
detailed in Chapter 8, make extensive use of
parity.

Standard LSI chips are being used increas­
ingly in systems design. However, they are not
usually designed fot the external application of
error-detection codes to check for proper chip
operation. Data transformations occur internally
for which codes are not invariant. In some cases,
however, partial checking can be accomplished

AlU

control lines

without resorting to duplication, as in the DEC­
system 2020 processor. A parity code is used on
the bus that feeds an Am2901 bit-sliced ALU. As
the data are gated into the 2901 the bus monitor
checks them for proper parity. If the data are
merely being read into the 2901 register file, their
parity bit is simultaneously stored in an external
register (Figure 3-26). The external register has
two bits associated with each register in the
2901: the parity bit, and a "parity valid" bit,
which remains set as long as no data transforma­
tions are performed on the contents of the corre­
sponding internal register. The parity-valid bit
value is determined by the control signals for the
2901. When the data are brought out to the bus
from the 2901, their parity is generated before
they are placed on the bus. If the parity-valid bit
is still set, the stored parity is used to verify that
the data have no errors. This scheme provides
fault detection for the 2901 register file, internal
data paths, and the parts of the ALU used to
move data internally without transformation.

Even though parity (and other) codes are not
invariant withrespect to data transformations, it
is possible to use parity as a check on the data
operation. This is possible when, given the inputs
to the operation, the parity of the_ result of the

AlU chip (e.g., Am2901)

Parity bit from bus

Bus (with parity)

Figure 3-26. Use of parity to detect errors during nontransformation opera­
tions in LSI ALU chips in the DEC 2020.

94 THE THEORY OF RELIABLE SYSTEM DESIGN

transformation can be predicted. Chinal [1977]
proposes a high-speed parity prediction circuit
for binary adders. Khodadad-Mostashiry [1979]
presents a general method for predicting the
parity of any transformation, and in particular,
bit-sliced functional circuits. The resulting pre­
diction circuit, however, is often much more
complex than the circuit it checks.

Parity can be used to detect addressing faults
in a memory by storing the parity of the address
and data with the memory word. On access, the
stored parity is compared with that of the data
and address used. If the parity is wrong, either
the word retrieved is incorrect, the word re­
trieved was stored in the wrong place, or the
wrong word was retrieved. In this way all single­
bit addressing errors as well as data errors are
detected.

In many applications of redundancy tech­
niques the redundancy needed may already be
partially or wholly present. The 3/5-coded con­
trol module mentioned in the previous section is
an example. An example concerning parity is a
host-to-LSI-ll network for a system containing
several LSI-II s. This network allows direct host
communication with the individual LSI-lis. The
bus for the network has a data field and a 3-bit
opcode field (Figure 3-27). There are two unused
opcodes (011 and Ill). If an opcode starting in
01 is used for data writes and in II for data
reads, the third bit could carry the parity of the
data field. Since it is predicted that 90 percent of
the bus transactions will be data reads and
writes, this scheme would give bit-per-word par­
ity protection on 90 percent of the bus activity
without any extra bus wires.

Finally, in a design analysis for the use of
parity on a processor-memory bus, three alterna­
tives were considered. The first was simple (17,
16) parity. The second was the same (17, 16)
parity with a modification that performs a cumu­
lative parity check of the entire two-way bus
transaction. The address sent to the memory has
an appended parity bit. The parity appended to
the returned data word is formed as the mod-

Bus<1:8) Data
Bus<9:11) Function

()()() Write address
001 Write network CSR
010 Write data
011 Unused
100 Read device characteristics (polling)
101 Read CSR
110 Read data
111 Unused

Bus(12) Strobe
Bus(13) Acknowledge

Figure 3-27. Network bus signals for host-to­
LSI-11 command bus.

ulo-2 sum of the received address parity bit, the
computed parity of the received address, and the
parity of the memory word itself. This scheme
provides detection of a failure in the memory
parity checker. The third alternative was an
interlaced (18,16) parity (i = 2) with alternated
parity senses, modified as above to provide a
cumulative parity check on the bus transaction.
Table 3-8 shows the coverage of several different
failure classes for this scheme. From the table it
can be determined that the cumulative (17,16)
parity is better than the simple (17,16) parity
because it detects a large number of memory
unit parity generate/check errors, and that the
(18,16) cumulative parity provides the best cov­
erage of the three.

Checksums

One of the least expensive methods of fault
detection is checksumming. The checksum for a
block of s words is formed by adding together all
of the words in the block modulo-n, where n is
arbitrary. The block of s words and its checksum
together constitute a code word in a linear
separable code. The number of bits in the sum is
usually limited. This quantity is then compared
with the checksum formed and stored when the
block was last transmitted. In memories, the
checksum must be stored along with the data
block. If any word within the block is modified,
the checksum must also be modified at the same

RELIABILITY AND AVAILABILITY TECHNIQUES 95

Table 3-8. Percentage of coverage of processor-memory bus failures.

(I 7, 16)
Error Type Parity

Hard failure:

Bus all 1 50%

Bus all 0 50

Bus half 1 0

Bus half 0 0

Wire-or:

2 wires 100

3 wires 0

4 wires 0

5 wires 0

Single bit* 100

Double bit

Adjacent 0

Random 0

Triple bit 100

Quadruple bit

Two pairs adjacent 0

Two adjacent 0

Three adjacent 0

Four adjacent 0

Random 0

Parity generate and check

Stuck-at-ok 0

Stuck-at-l 50

Stuck-at-O 50

·One bit value, not a failed wire

time. The stored checksum is normally kept
physically separate from the data block to limit
the effect of a catastrophic failure on the fault­
detecting capability.

Although checksumming is inexpensive in
terms of excess information, it has three disad­
vantages. First, it is best suited to applications in

Coverage

(17,16) (18,16)
Cumulative Cumulative

50% 100%

50 too
0 Near 100

0 Near 100

100 lOO

0 88

0 100

0 0

100 100

0 100

0 Near 100

100 100

0 0

0 Near 100

0 100

0 50

0 0

100 100

50 Near 100

50 Near 100

which data are handled in large, contiguous
blocks, such as buses that carry data in blocks,
sequential storage, and block-transfer peripher­
als.

Second, checksumming in memories takes a
long time to detect faults even when reading a
single word, for s words must be read and added,

96 THE THEORY OF RELIABLE SYSTEM DESIGN

w/s block

,--­
I
I
I
I

: System

Memory array

s

-

i {~----------~ ~~:;: -~~~~~~~~:::

Checksum storage

:

~Err or

I

r Adder 1
T4 Register I

y

Added hardware:
Adder
Accumulator
Comparator
w / s-word checksum store
Control circuitry

Figure 3-28. Memory with checksum error detection.

and the sum compared with the stored value.
Thus, checksumming is not suited to on-line
checking when reading from memories. If the
technique is used in a writable store, the check­
sum must be updated on each write by reading
the old data and checksum, subtracting the old
data, adding the new data, and finally storing
both the data and the updated checksum.

This cumbersome procedure, however, may
not be a problem when writing is infrequent or
when updating is performed in parallel with
subsequent system operations not involving the
memory. The memory checksum (and checksum
update on writes) may be performed by dedicat­
ed hardware without interference to the rest of
the system (Figure 3-28). The checksum can also
be performed by the ALU or other system
component, which will cause a degradation of
the system's throughput. The Xerox Alto, for
example, uses the processor ALU to perform the
checksums for its disk, thus allowing the disk
controller to be less complex. In this case, if it
takes Ie seconds to perform a checksum for one
block, and on the average a block of memory is
checked every r:: seconds, the system perfor-

mance is degraded by (Ijr::). The additional
degradation due to a checksum update time of I.,...

when writes are performed every ~. seconds is,
on the average, (lwlT:v).

Though cumbersome for random access writ­
able stores, checksumming is very applicable to
read-only memory, which can be checked by a
background process. The Pluribus system (see
Chapter 13) uses checksum error detection on
both shared-code storage and local-code storage
[Ornstein et aI., 1975]. Another application
would be microstore checks performed by dedi­
cated hardware or console processors. Finally,
critical data structures and program code could
occasionally be verified through software-imple­
mented checksumming.

The third disadvantage of checksumming is
low diagnostic resolution. In memories, the de­
tected fault could be in the block of s words, the
stored checksum, or the checking circuitry. In
data transmission, the fault could be in the data
source, the transmission medium, or the check­
ing circuitry.

Four checksumming techniques are presented
below. The first is a single-precision checksum.

RELIABILITY AND AVAILABILITY TECHNIQUES 97

fable 3-9. Probability of detection for different errors with single-precision
:::hecksum.

Error Types Coverage Ratio Condition

Single device-multiple word
-Single column I

(1 - 2-,1')
i < Z - log2s

i = z - log2s

(1 - 2-,1'(1 + ,\Cs/ 2))

(1 - 2-(:-i) + 2-,1')
i = z - (log2 s) + I

Otherwise

-Multiple adjacent columns I
(1 - 2-(:-i) + 2-C.\')

i <; z - (log2 s) - c

Otherwise

Multiple device

-Single word

-Multiple word adjacent columns (1 - 2-(,1') i <; z - (log2 s) - c

Otherwise (1 - 2-(:-i))

The second is an extended-precision (extended­
word-length) checksum. The third, called the
Honeywell checksum, is a modified double-pre­
cision technique. More complete information on
these can be found in Jack et al. [1975], from
which much of the discussion below was ab­
stracted. The last technique is called a low-cost
residue code, which gives better coverage than
the single-precision checksum for about the same
cost.

In single-precision checksumming the memory
is divided into blocks of s words. Each word has
z bits. The checksum is a z-bit word that is the
modulo-(2 Z) sum of the s words in the block. The
memory redundancy for this system is
(l/(s + 1)). Errors in anyone column will cause
either the corresponding checksum bit or the
carry to the adjacent column to be in error.
Thus, for the most significant column the error
coverage afforded by the information contained
in the carry is lost. The bit positions nearby pose
the same problem in lesser degrees, depending
on their' distance from the most significant bit.
Thus, error coverage varies for each bit position,
with the best coverage available for errors in the
least significant bit. As the size of the block that
the checksum guards increases, coverage de-

creases. Thus, coverage is a function of the block
size and the column(s) in error.

Table 3-9 summarizes the results for different
error conditions. The derivations can be found in
Jack et al. [1975]. In the table, c is the number of
columns in error, i is the lowest-order column
that has an error, s is the number of words that
a checksum guards, and z is the number of bits
in the checksum (the least significant bit is
column 0). Unidirectional errors were assumed·
in the derivation. It is also assumed that multi­
ple-word failures extend over all words in the
memory block (such as one entire column). If
this is not the case, s should be replaced by the
number of words in the block with failures. The
formulas for multiple adjacent-column faults
and multiple device*-multiple word faults also
hold approximately for nonadjacent failures in
their carry range; that is, the carry from the
column of the least significant bit faults will
affect the result of the column holding the other
failure. The coverage improves if the faults are
not within carry range. Note that in the case of

• Multiple device faults can be either a single fault affecting
multiple devices (such as a stuck address line) or multiple
independent faults on several devices.

98 THE THEORY OF RELIABLE SYSTEM DESIGN

multiple column failures, i is the number of the
least significant failed column.

If the checksum being formed is A bits longer
than the memory word length, the coverage is
greater than that afforded by the single-precision
checksum. This form of checksum is called the
extended-precision checksum. In particular, if
s < 2A

, then the coverage for all columns is the
same as for the lowest-order column in the
single-precision checksum, because there can be
no overflow and thus no loss of information in
the carry bits from the higher-order columns.
The probability of detecting any type of error is
th us 100 percent.

The Honeywell checksum is a modified dou­
ble-precision checksum technique in which suc­
cessive pairs of memory words in a block are
concatenated. The checksum is formed by com­
bining douDle-length quantities to form a dou­
ble-length word. Thus any single-column error in
memory will affect two columns in the checksum
being formed. Overflow can still cause loss of
carry-bit information. Provided that s < 2(z+ I) ,

the coverage formulas in Table 3-10 apply to the
Honeywell checksum.

Table 3-11 shows an example using the formu­
las from Table 3-9. An analysis is made of a 32-
word X 16-bit read-only memory made from 32-
X 4-bit ROM chips. The probability of successful
error detection is calculated for each column (or
chip), assuming that column (chip) is failed.
These intermediate results are combined to pro­
vide the coverage for a single column (chip)
failure anywhere in the memory.

A modification of the single-precision check­
sum with an end-around carry adder is termed a
low-cost residue code. The end-around carry
retains the information normally lost with the
most significant carry bit; it results in modulo-m
addition where m = 2b - I for a b-bit adder.
This technique [Usas, 1978] provides about the
same single-word coverage as the single-preci­
sion checksum. The coverage for double-bit er­
rors is slightly better, and is much better for
unidirectional errors in one column or two adja-

cent columns. The number of possible undetect­
able 2- and 3-bit errors is:

U2 = sb(s - I)

U3 = s2b(s - I)
for b > 2 and

for b > 3

where s is the block length.
When one column or two adjacent columns

have unidirectional errors, the total number of
possible undetectable errors is:

U\col = bU and U2co1 = (b - 1)(2N - 2U)

where

1j = i (2b - 1) + s - 4i - 1,

P = s/(2b - I),

Q = 3s/(2b
- 1), and

Rj = i(2b
- 1)/4.

With these formulas, Usas showed the low-cost
residue code to be superior to the single-preci­
sion checksum.

Arithmetic Codes

An arithmetic code, A, has the property that
A(b * e) = A(b) * A(e) where band e are non­
coded operands, * is one of a set of arithmetic
operations (such as addition and multiplication),
and A (x) is the arithmetic code word for x. Thus,
the set of code words in A is closed with respect
to a specific set of arithmetic operations. Such a
code can be used to detect or correct errors and
to check the results of arithmetic operations. *
Some operations (such as logical operations),

* Other codes are not invariant with respect to arithmetic
operations. For some separable linear codes other than
arithmetic codes, the check symbol portion of the result can
be produced by a prediction circuit. Usually such circuits
are complex. Wakerly [1978] details check symbol predic­
tion for parity-check codes and checksum codes.

RELIABILITY AND AVAILABILITY TECHNIQUES 99

'able 3-10. Probability of detection of errors through Honeywell checksum.

~rror Types

lingle word

Jultiple word

Single column

Coverage Ratio

(1 - 2-(s+I))

Condition

i < z - log2(S/2)

i = z - log2(S/2)

(I - 2-s (I + s/2Cs/4)) i = z - (log2(s/2)) + 1

Otherwise (1 - 2-(z-i+(s/2)) + 2-.1') ,

Multiple column I
(I - 2-(z-i+(cs/2)) + 2-CS)

1 < z - (log2(s/2)) - c

Otherwise

rable 3-11. Sample calculation using the formulas of Table 3-9 in an analysis of a 32-word X 16-bit ROM
nade of 32 X 4-bit chips.

rype of
r;ailure

iingle column

)ne whole chip

Column

0,1,2, ... 10

II

12

13

14

IS

0,4

8

12

lOwever, cannot be checked by arithmetic codes
md must be performed on unencoded operands.
[he discussion below is just an introduction to
he topic of arithmetic codes; Appendix B, a
)aper by A vizienis [1971], examines in detail the
hree classes of arithmetic codes presented brief­
y here: AN, residue-m, and inverse residue-m
lrithmetic codes. Other references on arithmetic
:odes are Rao [1974]; Sellers, Hsiao, and Bearn­
on [1968b]; and Avizienis [1973].

Probability of Net Probability
Error Detection, of Error
Each Column Detection

1 11116

~I 1116

0.860 0.860116

0.875 0.875/16

0.75 0.75/16

0.5 0.5/16

0.937
1 2/4
0.996 0.996/4
0.938 0.938/4

0.983

The simplest arithmetic codes are the AN
codes. These codes are formed by multiplying
the data word by a number that is not a power
of the radix of the representation (such as two
for binary). The redundancy is determined by
the multiplier chosen, called the modulus. AN
codes are invariant with respect to unsigned
arithmetic. If the code chosen has A = 2G

- 1
and a length that is a multiple of a bits, it is also
invariant (using one's-complement algorithms)

100 THE THEORY OF RELIABLE SYSTEM DESIGN

"0"

n-bit data word

m m
s s s s
b b b b
,'-__ ---J/ ,'-__ ---J/

Addend 1 Addend 2

Carry

Sum
m''-__,,/ I
s s
b b

Code word

"0"

n + 1 bit
adder

Figure 3-29. Simple encoder for 3N single-error­
detecting arithmetic code.

with respect to the operations of addition and
left and right arithmetic shifting. Additionally,
complementation and sign detection are the
same [Avizienis, 1973]. An example of a single­
error detecting AN code is the 3N code. An n-bit
word is encoded simply by mUltiplying by 3. This
adds at most 2 bits of redundancy and can be
encoded quickly and inexpensively in parallel
with an (n + I)-bit adder (Figure 3-29). Error
checking is performed by confirming that the
received word is evenly divisible by 3, and can be

N1

R(N1)

N2

R(N2)

Arithmetic
function
N1 * N2

accomplished with a relatively simple combina­
tional logic decoder. Although there is one more
bit than in bit-per-word parity for roughly the
same coverage, the operation of other system
functions (such as AL U and address calcula­
tions) can be checked. The hardware cost is a
(2In) X 100 percent memory element increase,
an (n + I)-bit adder for encoding, a combina­
tional decoding circuit, and extra control cir­
cuitry. The delay on reads results from a small
number of gate delays, and on writes from the
delay of the adder. Avizienis [1973] presents
algorithms for operations involving AN codes,
and discusses in detail the design of a 15N code
arithmetic processing unit used in an early ver­
sion of the JPL STAR computer (see Chapter
14).

Residue codes are a class of separable arith­
metic codes. The residue of a data word N is
defined as R(N) = N mod m. The code word is
formed by concatenating N with R(N) to pro­
duce NIR (the vertical bar denotes concatenta­
tion). The received word N'I R' is checked by
comparing R(N') with R'. If they are equal, no
error has occurred. Figure 3-30 is a block dia­
gram of a residue-code arithmetic unit. A variant
of the residue-m code is the inverse residue-m
code. The separate check quantity, Q, is formed
as Q = m - (N mod m). The inverse residue
code has greater coverage of repeated-use faults
than does the residue code. A repeated-use fault
occurs when a chain of operations is performed
sequentially on the same faulty hardware before

Result
residue

generator R(N1 * N2)

Figure 3-30. Block diagram of an arithmetic unit using a separable residue
arithmetic code.

RELIABILITY AND AVAILABILITY TECHNIQUES 101

checking is performed. For example, iterative
operations such as multiplication and division
are subject to repeated-use faults. Both the resi­
due-m and inverse residue-m codes can be used
with either one's-complement or two's-comple­
ment arithmetic. The JPL STAR computer, dis­
cussed in Chapter 14 [A vizienis et aI., 1971], uses
an inverse residue-15 code. Elsewhere, Avizienis
[1973] describes the adaptation of two's-comple­
ment arithmetic for use with an inverse residue
code.

In both the AN and residue codes, the detec­
tion operations can be complex, except when the
check moduli (A for AN codes, m for residue-m
codes) are of the form 2a

- 1. The check opera­
tion in this case can be performed using an a-bit
adder with end-around carry, serially adding a­
bit bytes of the data word (or code word for AN
codes) [A vizienis, 1971, 1973]. In effect, this
operation performs the division of the word by
the check modulus. The operation can also be
implemented in a faster, parallel fashion. Arith­
metic codes with check moduli of this form are
called low-cost arithmetic codes.

Cyclic Codes

In cyclic codes, any cyclic (end-around) shift of
a code word produces another code word. Cyclic

codes are easily implemented using linear-feed­
back shift registers, which are made from XOR
gates and memory elements. These codes find
frequent (though not exclusive) use in serial
applications such as sequential-access devices
(tapes, bubble memories, and disks) as well as
data links. Sometimes encoding is performed
independently and in parallel over several serial­
bit streams, as for the multiple-wire buses shown
in Figure 3-31. The bits of each byte are trans­
mitted simultaneously. The CRC (Cyclic Redun­
dancy Check) check bits for each bit stream are
generated for the duration of the block transmis­
sion and are appended to the end of the block.

The (n, k) cyclic codes can detect all single
errors in a code word, all burst errors (multiple
adjacent faults) of length b < (n - k), and many
other patterns of errors, depending on the partic­
ular code. A cyclic code is uniquely and com­
pletely characterized by its generator polynomial
G(X), a polynomial of degree (n - k) or greater,
with the coefficients either 0 or I for a binary
code. Appendix A provides a complete discus­
sion of cyclic codes and other polynomial-based
codes.

Given the check polynomial G(X) for an (n, k)
separable code, a linear-feedback shift register
encoder/decoder can be easily derived.* The
block check register (BCR) will contain the
check bits at the end of the encoding process,·

Multiple-wire
serial data link

--f eRe generator H eRe checker

Bit serial I _ Bit-serial
data --f eRe generator H eRe checker r-- data

streams ----~ streams

--f eRe generator H eRe checker

'----v---'~ eRe generator H eRe checker ~'-----' ____ ...J

Byte-serial
data stream

Byte-serial
data stream

Figure 3-31. Use of cyclic codes for byte-serial bus data transfers (i.e., the bits
of each byte are transmitted simultaneously). The CRC check bits are generated
for each bit stream during the block transmission and are appended at the end
of the block.

102 THE THEORY OF RELIABLE SYSTJ;<:M DESIGN

Input data stream­

Generator polynomial G(X) = X12 + X11 + X3 + X2 + X + 1

Figure 3-32. Block Check Register (BCR) for CRC-12 cyclic code.

during which the data bits have been simulta­
neously transmitted and fed to the input of the
BCR. The BCR is an r-bit shift re-gister, where
r = (n - k), the degree of G(x). In Figure 3-32,
the register shifts to the right, and its memory
cells are labeled (r - 1), (r - 2), ... , I, 0, from
left to right. The shift register is broken to the
right of each cell i, where i = (r - }) and} is the
degree of a nonzero term in G(X). At each of
these points an XOR gate is inserted, and the
gate output connected to the input of the cell on
·the right side of the break. The output of the gate
to the right of cell ° is connected to the input of
the leftmost memory cell (cell r - I) and to one
of the inputs of each of the other gates. The
remaining input of each gate is connected to the
output of the memory cell to the left. The second
input of the rightmost gate is connected to the
serial data input. The result is a feedback path,
whose value is the XOR of BCR bit ° and the
current data bit. Figure 3-32 shows the BCR for
a cyclic code with

G(X) = X I2 + Xii + X 3 + X2 + X + 1.

This code, called CRC-12, is often used with 6-
bit bytes of data because the check bits fit evenly
into two 6-bit bytes. The XOR gates are placed
to the right of the five shift register cells,
{(12 - 12),(12 - 11),(12 - 3),(11-2),(12-1)}

* The following discussion is based in part on the CRC
chapter in McNamara [1977]. The shift registers described
here vary slightly in form from those in Appendix A.

or {O, 1,9,10, II}. The output of the rightmost
XOR gate is fed back into the register via the
other XOR gates.

In operation the BCR is preloaded with an
initial value (normally all Os). The data are
simultaneously transmitted and fed to the data
input of the BCR. When the output of the data­
input XOR gate has stabilized, the shift register
is clocked. Once the last data bit has been
transmitted, the BCR contains the check bits of
the code word. The contents of the BCR are then
transmitted starting with the rightmost bit, but
without feedback.

Figure 3-33 shows a CRC-12 BCR operation
with a 12-bit data word. The same BCR is used
at the receiving end. The input stream is fed to
the BCR input in the same way, with the data
bits going to both the BCR and the destination.
The BCR is preloaded with the same value as
that used in the transmitting BCR. The received
check bits are input to the BCR following the
data bits. When preloading involves all Os, the
result in the receiver BCR should be 0.

CRC-12 is a (12+k,k) code that provides
error detection of all burst errors of length 12 or
less. The data length is arbitrary. Thus, redun­
dancy and coverage probability change with the
data length. CRC-16 is a (16 + k, k) code based
on the generator polynomial

G(X) = X I6 + X I5 + X2 + 1.

CRC-CCITT is another (16 + k, k) code, with

G(X) = X I6 + X I2 + X5 + 1.

RELIABILITY AND AVAILABILITY TECHNIQUES 103

Feedback
Shift HeR Input (input XOR
clock contents data bit bit 0)

0 0000 00000oo 0

1111 00000oo 1
0

2 1000 1 ()()()()()() 1
0

3 1011 0100000 1
1 0

4 0101 101()()()() 0
0 0

5 0010 1101000 0
0 0

6 0001 0110100 0
0 0

7 0000 10110100
0 0

8 0000 0101101 0
0 0

') ()()()() 0010110 1
0

10 1111 0001011 1
0

11 1000 1000101 0

12 1011 0100010 0

Transmitted data bits: 1()()()()()()()1001 (right-most bit first)
Transmitted check bits: 101101000100 (right-most bit first)

Figure 3-33. BCR calculation of check bits for
CRC-12 and a 12-bit data word.

Both CRC-16 and CRC-CCITT provide detec­
tion for all burst errors 16 bits long or less, and
~9 percent of bursts greater than 16 bits. CRC-16
lS used by the OOCMP and Bisync protocols,
while CRC-CCITT is used by the ANSI X.25,
HOLC, and SOLC protocols. These (16 + k, k)
:::odes are normally used when the data are in 8-
bit bytes because the check bits consume exactly
2 bytes; however, k can be any arbitrary length.
Figure 3-34 shows a BCR for CRC-CCITT.

IBM's SOLC (Synchronous Data Link Con­
trol) data communications protocol uses the
CRC-CCITT cyclic code with a small variation:
the BCR is preloaded with all 1 s instead of ap Os.
At the end of the data transmission the BCR
:::ontents are complemented (logical comple­
ment) before being transmitted. This scheme
allows detection of extra or missing Os at the

beginning and end of the data fields, which are
of variable length. At the receiver, the BCR
result must equal FOB816 •

CRC encoders/decoders are available as inte­
grated circuit chips. An example is the Fairchild
F6856 Synchronous Protocol Communications
Controller chip, which provides communications
protocol handling for microprocessor systems
[Kole, 1980]. Embedded on the chip is a CRC
encoder/decoder. The chip is designed to handle
CRC-12, CRC-16, CRC-CCITT, and several
other CRC codes. In addition, the internal BCR
can be preset optionally with all Os or all Is.
Another available integrated circuit is the Signet­
ics 2653 intelligent bus monitor, analyzed in
depth in Weissberger [1980]. In addition to its
other functions, the circuit provides CRC check­
ing and generation.

CRC checks are often performed in software
to detect errors in critical data structures and
programs. An algorithm for doing this, shown in
Figure 3-35, is essentially a software implemen­
tation of a linear feedback shift register. A
processor register is used as a shift register, and
the XOR feedback gates are replaced by a CRC
constant, which is XORed with the register. The
CRC constant is formed by finding the numbers,
i, for which i = «r - 1) - j), where j is the
degree of a nonzero term in G (X) (except for the
X' term). The bits i of the CRC constant are Is,
and the rest are Os. The bits are labeled (r - I)
for the leftmost (most significant) bit, to 0 for the
least significant bit. The constant for CRC­
CCITT is 840816, and is OF01 16 for CRC-12. This
algorithm would be useful, for example, when a
separate maintenance or console processor per­
forms occasional checking for microstore cor­
ruption via a CRC check.

The Interdata 8/32 uses the algorithm of Fig­
ure 3-35 in its microcoded CRC instruction
[Interdata, 1975]. The Interdata 8/32 CRC in­
struction works for either CRC-12 or CRC-16,
with any arbitrary pre loading of the check char­
acter. Each invocation of the CRC instruction
adds only one data byte to the CRC check
character, so that it must be invoked for each

104 THE THEORY OF RELIABLE SYSTEM DESIGN

Input data stream-

G(X) = X16 + X12 + X5 + 1

Figure 3-34. BCR for CRC-COTT cyclic code.

byte in the data field. The Interdata 8/32 Auto­
driver Channel, used for direct memory-periph­
eral I/O, can be commanded to perform this
operation automatically on incoming or outgo­
ing blocks of data. The VAX-ll/780 has a CRC
instruction that performs CRC checking or en­
coding for up to 64K 8-bit bytes in memory.
G(X) can be any check generator polynomial of
degree 32 or less [DEC, 1977]. The VAX uses the
algorithm and constants as described above.

Cyclic codes can also be encoded and decoded
in parallel for nonserial applications. Like other
linear codes, they can be processed with matrix
techniques. An example of parity-check matrices
can be found in the section on Hamming codes.
For more details on forming the parity-check
and parity-generation matrices for cyclic codes,
see Appendix A.

Self-Checking, Fault-Secure, and
Fail-Safe logic

Although duplication and codes are general so­
lutions to fault detection, both techniques are
vulnerable to single-point failures in the compar­
ison element (duplication) or the decoder/detec­
tor element (codes). These single points of failure
can be eliminated through self-checking, fault­
secure, and fail-safe logic design. These logic
design techniques can be used for general-pur-

pose logic design as well as for comparators and
checkers. Due to space limitations the following
discussion can only serve as an introduction to
the topic of self-checking and fail-safe logic. The
field is large and many different approaches have
been used. Wakerly [1978] has written an excel­
lent text on self-checking logic. Several papers on
various aspects of self-checking and fail-safe
logic design are listed at the end of this section
for further reference.

Self-checking circuit design is based on the
premise that the circuit inputs are already encod­
ed in some code, and that the circuit outputs are
also to be encoded. The inputs and outputs are
not necessarily in the same code. The following
definitions from Anderson [1971] and Anderson
and Metze [1973] are based on this premise.

Self-Testing Property. A circuit is self-testing if, for
every fault from a prescribed set, the circuit produces
a noncode output for at least one code input.

Fault-Secure Property. A circuit is fault-secure if, for
every fault from a prescribed set, the circuit never
produces an incorrect code output for code inputs.

Totally Self-Checking (TSC) Property. A circuit is
totally self-checking if it is both self-testing and fault­
secure.

Thus, to be self-testing, the circuit must expe­
rience a set of inputs during normal operation

RELIABI L1TY AND AVAILABILITY TECHNIQUES 105

register temp «r-1):0> ;
varlable bcr «r-1):0> ;
variable flag <0> ;
variable input «b-1):0> ;
lnteger variable counter;
loglcal varlable new.code.word ;
constant bcr.preload «r-1):0>=00 •• 016

constant crc.constant «r-1):0> = XX •• XX 16

!rth degree G(X) ;
twill hold block check character

!input data byte;

!would be FFFF 16 for SOLC

840816 for CRC-CCITT

OFOl 16 for CRC-12 ;

begin ! this algorithm updates the block check character
for a new data byte. new.code.word is TRUE only if
a new CRC computation is to be commenced, i.e., if
this is the first byte in a CRG code word. ;

if new.code.word then bcr - bcr.preload
temp - 0 ; --
temp «b-1):0> - input;
temp - temp XOR bcr ;
for counter ..=-0 to (r-1) do
- begin -

fl ag - temp <0> ;
shift.right (temp) ; ! shift temp right one, shifting 0 into temp <r-1>
if (flag = 1) then temp - temp XOR crc.constant ;

end ;

bcr - temp;
end ;

! bcr now contaihs current check characters ;

Figure 3-35. An algorithm for computation of CRC check bits using processor registers.

that tests for all faults in the prescribed set. If
such a set of inputs is not assured, the circuit is
self-testing only for the faults that are tested.
This same restriction applies to TSC circuits.

These three properties are illustrated by a TSC
comparison element (derived from the TSC com­
parison element in Wakerly [1978]). A dual-rail
signal is a coded signal whose two bits are always
complementary. This is equivalent to the 1/2
code. The comparison element checks for the
equality of the two dual-rail signals at its inputs,
and outputs a dual-rail signal (01 or 10) only if
the inputs ~re both equal and properly encoded;
otherwise it outputs a noncode word, either 00 or
II. In addition, the comparison element is self­
testing for any internal single fault, and is thus
rsc as long as all four possible sets of code
lnputs appear during normal operation. Figure
3-36 shows the logic circuit for the comparison
;!lement, while Table 3-12 shows an analysis of
the possible single stuck-at-faults and the inputs
that test for them. An input signal tests a fault in

the circuit if the output is a noncode word: To
test for all faults in the set (m, n, 0, p: stuck-at-I),
all four possible input signal sets must appear.
As a result, all four signal sets must appear at the
Circuit input during normal operation. Converse­
ly, it can be seen that there is no stuck-at fault
which is not tested by at least one of these·
signals. Thus, the comparator is self-testing (giv­
en a guarantee of all four signal sets appearing).
Finally, further examination of Table 3-12 shows
that under stuck-at faults at a, b, c, or d, the
outputs are either noncode words or the correct
code word (i.e., the code word that would appear
in normal operation). Since these stuck-at faults
produce a condition equivalent to having non­
code inputs, the circuit is shown to be fault
secure as well. Since the circuit is both fault
secure and self-testing, it is TSC. Note that since
stuck-at faults of signals a, b, c, and dare
equivalent to faults in the input signals, these
conditions show the response of a nonfaulty
comparator to faulty (noncode) inputs.

106 THE THEORY OF RELIABLE SYSTEM DESIGN

82 -1---<1..------1

A, B are dual-rail
signals

A2 ----1r-
c
-+--+-_-+-.-I

A 1---1>-d_ _------:-I

)O-!-q ;---C2

Checker output
dual-rail signal

p--+---C1

Figure 3-36. Logic circuit of basic TSC comparison element.

Some operations are not amenable to the use
of codes, and full duplication is the least redun­
dant form of checking that can be used. To
check the logical operations AND and OR, for
example, duplication can be used with a TSC
comparator. Wakerly [1974] has proposed par­
tially self-checking logic as a less expensive alter­
native:

Partially Self-Checking (PSC) Property. A circuit is
partially self-checking if it is self-testing for a set N of
normal inputs and a set F; of faults, and is fault-secure
for a set I (a non null subset of N) and a set F's.

In normal operation of a PSC circuit, all faults
from F; are tested. In addition, for a subset I of
the normal inputs, no incorrect code output can

be produced by a fault in the set F;. Thus, PSC
logic provides eventual detection of a fault at the
cost of introducing fault latency (undetected
faults produced prior to fault detection). The
benefit is a redundancy cost lower than that of
duplication.

Fail-safe techniques, on the other hand, are
not concerned with the detection of faults per se.
Thus, they can result in an even lower redundan­
cy cost.

Fail-Safe Property. A circuit is fail-safe if, for every
fault from a prescribed set, any input produces a
"safe" output, that is, one of a preferred set of
erroneous outputs.

A traffic light with a fail-safe output of stuck-

Table 3-12. TSC dual-rail comparator responses to stuck-at-faults.

Inputs
Nonnal

Outputs C2Cl Resulting from Single Stuck-at-l Faults

B2Bl A2Ai Output a b c d e f g h j k m n 0 p q r

01 01 10 11 10 11 10 10 10 10 10 10 11 11 10 10 00 10 10 10 11
01 10 01 11 01 01 11 11 01 01 11 01 01 01 01 01 01 00 01 11 01
10 01 01 01 11 11 01 01 11 11 01 01 01 01 01 01 01 01 00 11 01
10 10 10 10 11 10 11 10 10 10 10 11 10 10 11 00 10 10 10 10 11

Inputs
Normal

Outputs C2Cl Resulting from Single Stuck-at-O Faults

B2Bl A2Ai Output a b c d e f g h j k m n 0 p q r

01 01 10 10 00 10 00 10 10 00 00 10 10 10 10 10 10 11 11 00 10
01 10 01 01 00 00 01 01 01 01 01 00 00 01 01 11 11 01 01 01 00
10 01 01 00 01 01 00 01 01 01 01 01 01 00 00 11 11 01 01 01 00
10 10 10 00 10 00 10 00 00 10 10 10 10 10 10 10 10 11 11 00 10

RELIABILITY AND AVAILABILITY TECHNIQUES 107

r--------------------------~

I I
I I

Inputs in
Code A

TSC functional
circuit

1'------....
I
I
I
I
I
I

I
I
I
I
I
I
I

Outputs in
code B

L _______________ _ __ _ ____ --l

Error indication in
Code C

Figure 3-37. A TSC network made from TSC elements.

at-red on all sides is a good example of a fail-safe
system [Mine and Koga, 1967]. Stuck-at-red is
the most desirable failed state because all drivers
approaching the intersection must stop, and may
proceed only after realizing the light is broken.
This state causes the least possible harm, for any
driver will enter the intersection with extreme
caution and at a low speed.

In the remainder of this section general mod­
els will be presented for TSC and PSC networks.
Some specific examples of TSC and PSC net­
works are included. The examples cover only a
subset of the possibilities of these techniques,
and references for more are given at the end of
the section. Fail-safe techniques will not be
treated any further although several references
are included at the end of the section.

Figure 3-37 shows a general model for a TSC
network proposed by Anderson [1971], consist­
ing of both a TSC functional circuit and a TSC
checker. The advantage of this network over the
TSC functional circuit alone is that a correct
checker output from the network guarantees that
the network functional output is correct.

Conceptually, the simplest form of a TSC
functional circuit is duplication, in which two
copies of the function are used. Together, their
total inputs and outputs are coded (duplication).
As stated before, for some functions duplication
may be the least redundant coding alternative
for achieving TSC. The only other component of
a duplication-based TSC network is the TSC
comparator, which performs the checking of the
functional outputs. The most economical form of

checker complements one set of the functional
unit outputs before routing it to the comparison
element [Anderson, 1971]. In this case a checker
for an arbitrary number of inputs can use the
two-signal input dual-rail comparator of Figure
3-36 as the basic element. These elements are
assembled in tree fashion, as shown in Figure
3-38, using log2 n two-input dual-rail signal com­
parators. Figure 3-39 shows the entire TSC du­
plication network scheme. To qualify for the self­
testing property each checker basic module must
receive the four input signals mentioned above.
It is not necessary, however, to apply all possible
combinations of dual-rail signals to the entire
checker to test it completely. Anderson [1971]
has shown that for every size comparator built as

/r---- Dual-rail signals for comparison ---___ \

Error signal

Figure 3-38. Assembly of n-input dual-rail signal
comparison checker from basic two-input elements.

108 THE THEORY OF RELIABLE SYSTEM DESIGN

r-----------------------------
Functional

unit
copy A

Duplicate
inputs

Functional
unit

copy B

I Duplicate
I outputs

~~+-----~------r-~

Error signal

Figure 3-39. TSC network based on duplication as a code.

a tree of the basic dual-rail checker modules, at
least one set of four tree input signals will ensure
complete self-testing for any single fault in the
checker. If the four signal sets are assured of
appearing during normal operation, the network
is TSC.

The same comparison checker can be used to
make a TSC separable-code error detector [Ash­
jaee and Reddy, 1976; Wakerly, 1978]. The
inputs to the checker are the received check
character and a locally generated check charac­
ter, as shown in Figure 3-40. Wakerly [1978]
provides the proof of the TSC property for this
detector. As in the duplication scheme, the self­
test property of the comparison checker must be
assured by having the check characters that
appear include a set of four characters that tests
for all possible faults in the checker. For (n, k)
codes in which all 2(n-k) possible combinations
of the check bits appear, this is no problem.
Other codes, however, may present more diffi­
culty. The residue-3 arithmetic code check char­
acter, for example, has only three possible values
(00, 01, and 10); thus, all four signals necessary
for self-testing do not appear and the checker
cannot be TSC.

Wakerly [1974] has proposed models for three
types of partially self-checking networks, shown
in Figure 3-41. All three have two modes of
operation: secure or insecure. In the secure

mode, used during operation with code inputs
that map into code outputs, the network is TSC.
The insecure mode, invoked by fixing the error
outputs to a nonerror indication, is used when a
noncode output from the functional circuit is the
correct function of the inputs. An example
would be the AND and OR functions of an
ALU operating on residue-m-coded inputs. In
the insecure mode the PSC network is neither
self-testing nor fault secure.

Received code word (to be checked)

Figure 3-40. TSC detector for separable codes,
based on a TSC comparator.

a.

Inputs in
code A

Inputs in
code A

b.

c.

RELIABILITY AND AVAILABILITY TECHNIQUES 109

Inputs in
code A

TSC functional
circuit

Secure/insecure mode switch

TSC functional
circuit

Data

CheCkSymbOI~ r-~~~
Inverters/

Secure/insecure mode switch

Data
TSC functional 1-------------.

circuit

Check symbol / -~:.-..­
Inverters/

Error signal

Outputs in '
code B

Outputs in
code B

Outputs in
code B

Figure 3-41. Types of PSC networks. a.) Type 1. b.) Type 2. c.) Type 3.

110 THE THEORY OF RELIABLE SYSTEM DESIGN

The Type 1 PSC network is the simplest. Its
disadvantage is that the outputs are necessarily
noncode outputs in the insecure operating mode.
The Type 2 PSC network solves this problem by
reencoding outputs during insecure operation;
thus, all outputs are coded outputs unless there
are faults in the encoder. However, there is no
guarantee that the code outputs are the correct
outputs during insecure operation. A Type 3
PSC network causes less delay than a Type 2
network on secure mode outputs, by using a bus
switch for the check character. During secure
operations, the Type 2 network does not output
the check character until it has been regenerated
locally; the Type 3 network immediately gates
the check symbol from the functional circuit.
Both Types 2 and 3 have the same delay during
insecure operations. One drawback of the Type
3 scheme is that a faulty output during secure
mode may be used before the error is detected by
the checker.

Figure 3-42 shows an example of a PSC net­
work due to Wakerly [1974]. It shows an ALU
made with 4-bit 74181 adder chips, and with
inputs coded in the distance-2 residue-15 code. A
single stuck-at fault in one of the 74181s will
produce a detectable error during addition or
subtraction. Hence, this ALU network is fault­
secure for the operations of addition and sub­
traction for all single stuck-at faults. In addition,
the circuit is fault secure for the other circuit
functions for which the residue-15 code is invari­
ant: A, B, A', B', 0, and 1. The 74181 can be
shown to be self-testing for all single faults
provided that all of the following· operations
occur during normal use:

I. Addition and subtraction (tests carry logic)
2. The set of operations A XOR B and (A XOR B)' or

the set A, B, A', B', or some other combination of
operations that tests for all possible single faults in
the logic function circuitry

3. At least one arithmetic and one logic function, to
test the carry enable logic

If all these operations are assured to occur, the
ALU network is TSC for one's-complement ad­
dition and subtraction, A, B, A', B', 0, and 1. If

the other 74181 functions are used, the network
is operating in an insecure mode and is only
partially self-checking. The circuit in Figure 3-42
is a Type 2 PSC network: the necessary reencod­
er for outputs during the insecure mode of
operation is already present in the TSC checker.

Wakerly's comprehensive text on self-checking
logic [1978] contains many examples, including a
paper design of a self-checking processor. Algo­
rithms for the design of TSC min code checkers
are developed in Anderson and Metze [1973] for
ml2m codes and in Marouf and Friedman [1977]
for any min code. The Bell ESS-3a uses a TSC
4/8 code detector described in Toy [1978] (or see
Chapter 12) and in Cook et al. [1973]. Algo­
rithms for the design of self-checking sequential
circui ts are developed in Carter and Schneider
[1968], Osman and Weiss [1973], Diaz, Geffroy,
and Courvoisier [1974], Ozgunner [1977], and
Pradhan [1978a, 1978b]. Other references are
Ashjaee and Reddy [1976] on TSC checkers for
separable codes, Marouf and Friedman [1978b]
for TSC checkers for Berger codes, Wakerly
[1974] for PSC networks, Smith and Metze [1978]
for strongly fault-secure networks, and Crouzet
and Landrault [1980] for a study of the applica­
tion of self-checking techniques to a 4-bit micro­
processor on a chip.

A good introduction to fail-safe logic can be
found in Mine and Koga [1967] and Tokura,
Kasami, and Hashimoto [1971]. Fail-safe se­
quential machines are developed in Sawin [1975],
Diaz, Geffroy, and Courvoisier [1974], Patterson
and Metze [1974], Tohma [1974], and Mukai and
Tohma [1974]. Diaz, Azema, and Ayache [1979]
present a unified overview of both self-checking
and fail-safe design schemes.

Watchdog Timers and Timeouts

Watchdog timers are a simple and inexpensive
means of keeping track of proper process func­
tion. A timer is maintained as a process separate
from the one it checks. If the timer is not reset
before it expires, the corresponding process has
probably failed in some way; the assumption is

RELIABILITY AND AVAILABILITY TECHNIQUES 111

L 74181 74181 74181 74181 ~ L 74181
Cn +1 Cn r-- Cn +1 Cn I-- Cn +1 Cn - Cn +1 Cn Cn +1 Cn -

I I I I
Inputs

I Output s

\ Invert / \ L
Check character generate /

C, I
TSC compare

~ ~ Error signal

Figure 3-42. Partially self-checking ALU for residue-15 coded operands (Type 2
PSC network).

that any failure or corruption of the checked
Jrocess will cause it to miss resetting its watch­
jog. On the other hand, coverage is limited
Jecause data and results are not checked. All the
:imer provides is an indication of possible pro­
:ess failure. The process may be only partially
:ailed and produce errors, yet still be able to
reset its timer. The coverage may be improved if
the checked process has to exercise a large
proportion of its internal components in order to
reset its watchdog.

The watchdog timer concept can be imple­
mented in software or hardware. The process it
guards can be a software or hardware process. In
fact, the computing process and the timer could
be running on the same hardware. In this and
most other cases, at least one other process
monitors the timer, or is interruptible by it, to
b.andle possible failure situations.

Pluribus [Ornstein et aI., 1975] (or see Chapter
13), a reliable multiprocessor designed primarily
for use as a switching node for the ARPANET,
makes extensive use of both hardware and soft­
ware watchdog timers. These timers have time
ipans of from 5 JLsec to 2 minutes. Subsystems
that are monitored by timers go through a cycle
)f a known length. Part of each cycle is a
:;omplete self-consistency check. Failure to reset

the timer is seen as an indication that the subsys­
tem has failed in such a way that it cannot
recover by itself. Message buffers, for example,
have 2-minute watchdog timers that are reset
each time the buffer is returned to the free list of
unused buffers. If the timer runs out, the buffer
is forced back to the free list by the process
which the timer alerts upon expiring. Another
timer in each processor interrupts the processor
every 1/15 second if not reset. This timer pre­
vents subsystems from waiting forever for a
resource that is erroneously allocated and thus
will not be released. A final example of the timer
is the bus arbiter. If there is no bus activity for 1
second, the bus arbiter resets all the processors.
This is useful, for example, when all processors
execute a spurious halt command that somehow
gets planted in the common program store. In
this case, the 60-Hz processor timers cannot help
because a halted processor will not respond to
interrupts. PLURIBUS also has several other
timers not mentioned above.

The VAX-ll/780 is a more commercially­
oriented system that makes use of a watchdog
timer. The console processor monitors the micro­
machine activity. If the micromachine does not
strobe an interrupt line to the LSI-II console
processor at least every 200 JLsec, the console

112 THE THEORY OF RELIABLE SYSTEM DESIGN

processor will try to determine the reason for the
failure.

Bus timeouts are also based on the principle
that some operations should take no more than a
certain maximum time to complete. Time limits
are set for certain responses required by the bus
protocol. Thus, when one device (e.g., master)
requires a response from another device (e.g.,
slave), a failure to respond in time indicates a
possible failure. Timeouts are different from
watchdog timers in that they provide a finer
check of control flow.

Timeout detection is provided on the buses of
most computers, including the PDP-II UNI­
BUS. During the interrupt request/bus grant
sequence a timeout is generated if the requesting
device does not respond to the bus grant signal
in 5-10 Ilsec. Similarly, during data transfers a
10-20 Ilsec timeout detection occurs if the slave
device does not respond to the bus master's
synchronization signal. The UNIBUS bus speci­
fications [DEC, 1979] does not specify the exact
response to these timeout detections; the re­
sponse depends on the particular PDP-II model.
Generally, however, the processor response is a
trap to a bus timeout handling routine.

Consistency and Capability
Checking

Consistency checking is a simple fault-detection
technique that often requires minimal hardware
redundancy. A consistency check is performed
by verifying that the intermediate or final results
are reasonable, either on an absolute basis (fixed
test) or as a simple function of the inputs used to
derive the result. One form of consistency check
is a range check: confirming that a computed
value is in a valid range. For example, a comput­
ed probability must lie between 0 and 1. The
range can be narrowed further if a priori proba­
bilities are known. Weekly paychecks should
have positive denominations and should not
exceed some maximum value (such as a function
of normal and overtime pay rates and the 168

hours in the week). Similarly, commercial air­
craft altitude sensors should indicate elevations
between Death Valley and 45,000 feet.

Most computers use some form of consistency
checking. Address checking, opcode checking,
and arithmetic operation checking are the most
common. In its usual form, address checking
consists of verifying that the address to be ac­
cessed exists. DEC PDP-lIs provide an NXM
(nonexistent memory) trap for this purpose. Fur­
ther coverage may be provided by assuring that
the address for a write is actually a RAM and
not a ROM location, and that an I/O address is
consistent with the operation to be performed.
Checking for a valid opcode occurs before in­
struction execution commences. Without this
check it is possible to perform unde-fined and
(usually) undesirable operation sequences in the
CPU. For example, programmers of some micro­
processors occasionally utilize undocumented
opcodes with unique actions. This use of unde­
fined processor features is undesirable because of
possible unknown side effects. Underflow and
overflow checking of binary arithmetic, a form of
range checking, is provided in most computers,
either in hardware or in program run-time sys­
tems.

Another form of consistency checking is to
utilize a memory in which the parity bit on any
word can be arbitrarily set for either parity sense
(odd or even). In practice, data words would use
odd parity and instruction words even parity. In
addition to parity errors, addressing errors and
programming errors are likely to be discovered.
Examples are data words accidentally accessed
during instruction fetch and program code er­
roneously overwritten with data. When an ad­
dressing and a parity error occur simultaneously,
however, there is a chance that they will comple­
ment each other with no error detection result­
ing.

Capability checking is also a form of fault
detection. Usually it is part of the operating
system, although it may be realized as a hard­
ware mechanism. In this concept, access to ob­
jects is limited to users with the proper authori-

RELIABILITY AND AVAILABILITY TECHNIQUES 113

zation. Objects include memory segments and
I/O devices; users might be processes or even
independent physical processors in a system.
Further functionality is provided by allowing
multiple levels of access privileges for different
user/object combinations, such as execute only,
read only, and read/write privilege levels in a
disk system. One common means of checking
access privileges is through the memory-mapping
mechanism of virtual address machines. An ex­
ample is the virtual address generation mecha­
nism for Cm*, shown in Figure 3-43 [Swan,
Fuller, and Siewiorek, 1977 a]. A Capability in
Cm* consists of a 3-bit field specifying access
rights and a 16-bit field containing the segment
name. During the address translation, the access
rights are checked against the operation to be
performed. If the operation is not permitted, an
error trap is forced.

Capability checking provides more than fault
detection: it also provides some fault isolation by
locking out corrupted users. For example, it
should prevent a bad process from erroneously
overwriting portions of memory to which it has
no legal access. More information on capability
checking can be found in texts on operating
systems design.

Another method of capability checking is the
use of passwords. The Pluribus system (see
Chapter 13) incorporates password protection. A

Window register

OP Cap. index

Read/write

processor that does not reset its watchdog timer
will be restarted by an outside process. To pre­
vent spurious resets, the resetting process must
give the proper password before it can initiate a
reset. A Boeing duplicated processor system used
password protection for a similar purpose in its
reconfiguration hardware; the goal was to pre­
vent spurious reconfiguration of the system
[Wachter, 1975].

MASKING REDUNDANCY

Fault-detection techniques supply warnings of
faulty results. They may also provide diagnostic
capabilities, with a resolution of some finite
number of possible failure locations (such as a
device or set of devices causing the fault). How­
ever, the use of fault-detection techniques alone
does not provide actual tolerance of faults. Fault
masking, on the other hand, employs redundan­
cy which provides fault tolerance by either iso­
lating or correcting fault effects before they
reach module outputs. Fault masking is a "stat­
ic" form of redundancy [Short, 1968; Avizienis,
1977]: the logical interconnection of the circuit
elements remains fixed, and no intervention oc­
curs from elements outside the module. Thus,
when the masking redundancy is exhausted by
faults in the module, any further faults will cause
errors at the output.

Capability

Segment name

Rights check

12

16 Bit, processor generated address 28 Bit, system-wide virtual address

Figure 3-43. Virtual address calculation with capability checking in Cm*.

114 THE THEORY OF RELIABLE SYSTEM DESIGN

Notification of fault occurrence is implicit in
fault detection. In its pure form, fault masking
does not provide fault detection: the effects of
faults are automatically neutralized without noti­
fication of their occurrence.· Pure fault masking
thus gives no warning of a deteriorating hard­
ware state until enough faults have accumulated
to cause an error. As a result, most fault-masking
techniques are extended to provide fault detec­
tion as well. The additional redundancy needed
for this purpose is usually minor. In the case of
a few fault-masking techniques, however, fault
detection is either impossible or too costly. The
following presentations of fault-masking tech­
niques discuss fault-detection extensions where
applicable.

Like fault detection, fault masking can be used
in combination with other techniques in a dy­
namic redundancy scheme. For example, fault
masking may be used until its redundancy is
exhausted, after which spares may be switched in
to renew the redundancy. This possibility and
others are the subject of the section on Dynamic
Redundancy.

Because fault masking provides fault toler­
ance, the reliability function becomes a meaning­
ful measurement of technique effectiveness. This
section provides simple reliability models for the
techniques it presents. More detailed models are
usually possible, and provide more accurate in­
formation. More detailed reliability models are
the subject of Chapter 5.

N-Modular Redundancy with
Voting

Duplication with output comparison was consid­
ered as a fault-detection technique in the section
on Duplication above. If a third copy of thr
functional circuit is added, enough redundant
information is available to allow fault masking
of a failure in anyone of the three copies. This
is accomplished by means of a majority (two­
out-of-three) vote on the circuit outputs. The
groundwork for the triple modular redundancy
(TMR) technique was first laid by von Neumann

Input

~ I Module ~ Voter
B output

~
Figure 3-44. Basic Triple Modular Redundancy
(TMR) configuration.

[1956]. He proposed a configuration employing
independently computed copies of a signal, with
"restoring organs" placed between logical opera­
tions.

Figure 3-44 illustrates the basic concept. The
reliability of the configuration shown is

R = Rv' (R! + 3R~(l - Rm»
(1)

= Rt, • (3R~ - 2R~1)

where Rv and Rm are the reliabilities of the voter
and a single copy of the triplicated module,
respectively. The concept can be extended to
include N copies with majority voting at the
outputs. The resulting technique is called N­
modular redundancy, or NMR. Normally N is
made an odd number to avoid the uncertain
state in which the output vote is a tie. The
reliability of an NMR configuration similar to
that of Figure 3-44 is

L NI2 J .

R = Rv' ~ NCi' R~-i) . (1 - Rn)' (2)
i=O

The derivations of equations I and 2 are given in
Chapter 5. The cost of N-modular redundancy is
N times the basic hardware cost, plus the cost of
the voter. The voter causes a delay in signal
propagation, leading to a decrease in perfor­
mance. Additional performance-cost overhead
results from the necessity to synchronize the
multiple copies (this problem is discussed later in
this section).

The two reliability formulas above are the
simplest models possible. In most cases they will

RELIABILITY AND AVAILABILITY TECHNIQUES 115

Input-+___---.I Output

Figure 3-45. Cascading of TMR modules.

be pessimistic; that is, some failures in two or
more copies may occur in such a way that an
error is avoided. Such failures are called com­
pensating failures. For example, consider a mod­
ule output failed stuck-at-l in a TMR network.
If the same line fails on another copy, there is no
error caused if it fails stuck-at-O. In this case,
whichever value the remaining nonfaulty line
takes on, it has another to match it and the
correct voted output results. Another possibility
is nonoverlapping failures, such as a failure in
memory location 123 on one memory module
and a failure in memory location 67 on another.
Although these failures are on two different
copies, they do not act together in the voting
process to cause an error. Models of TMR
systems that take compensating failures into
account are discussed in detail in Chapter 5.

A complex system can be partitioned into
smaller subsystems, each of which can be trans­
formed into an NMR configuration. Figure 3-45
shows a system transformed into a cascaded
series of TMR modules. The reliability of this
configuration is

n

II Rv;· (3R~1; - 2R!)
i=i

Input

The advantage of partitioning is that the result­
ing design can withstand more failures than the
equivalent configuration with only one large
triplicated module. However, subdivision cannot
be extended to arbitrarily small modules, be­
cause voter unreliability ultimately overrides any
poten tial reliability gains.

The TMR configurations shown so far have
single points of failure: the voters. In the circuit
of Figure 3-44 the only solution is to make the
voter more reliable through a fault-avoidance
and/or fault-tolerance technique. In the circuit
of Figure 3-45, however, all but one of the single
points of failure can be removed by triplicating
the voters themselves, as illustrated in Figure
3-46. If a triplicated output is desired, all single
points of failure are removed. The reliability of
the configuration shown in Figure 3-46 is

R" . (3Rm2 - 2Rm3)
"n I I

n 2 3 . II {3(Rm;Rv;_I) - 2(Rm;Rv;_I) }
i=2

If the last voter is also triplicated, RUn in the
above formula is replaced by

3R;1I - 2R:'n·

Output

Figure 3-46. The use of TMR voters to remove single points of failure from the
network of Figure 3-45.

116 THE THEORY OF RELIABLE SYSTEM DESIGN

If functional considerations allow, the circuitry
can be broken into modules, and voters can be
located so as to maximize reliability. Gurzi
[1965] has shown that for non redundant voter
configurations (Figure 3-45), reliability is maxi­
mized when Rm = R; that is, when the function­
al modules ha~e identical reliabilities. If all the
voters have reliability Rv' the maximum system
reliability is attained when the functional break­
down is such that

1
Rv = (3 - 2R)RD:'

2R
where a = 3 - 2 R

(3)

The upper limit of reliability gain in this case is

TMR network reliability
Nonredundant network reliability

= (3R
2

- 2R
3r R~ ~ (9/8)Il.Rfl

Rfl """ ['

1.00

0.98

\
\
\
\

The graph of Figure 3-47 can be used to arrive
at the optimum partitions graphically. If R

L
, and

R fall within the parabola, the TMR network is
more reliable than the equivalent nonredundant
network. The solid line is the optimum decision
curve of Equation 3.

Figure 3-48 shows the decision boundaries for
configurations similar to Figure 3-46, with tripli­
cated voters. In this case, Rm, = R (i = 2,
3, ... ,n), and RmJ = R . Rv' The two solid lines

indicate a trade-off between Rand Rv' The
optimum falls between the two lines. In this case,
the maximum reliability improvement is also

R
TMR < (9/8rR~~

Rnonredundant

Finally, the nonredundant voter scheme is better
than the TMR voter scheme if

R < 3
2(1 + Rv)

More complex TMR networks are possible ..

I
I
I
I
I
I

\
0.% TMR more reliable I

I

if
:s
.::g 0.94
~
t
'0
>
~

0.92

0.90

\
\
\
\
\
\
\
\
\
\

\ , ,
...... -"'"

I
I

I
I

I
I

I
I

I
I

/
/

I
/

/

--Optimum module reliability

--- Minimum module reliability
0.88 Nonredundant more

reliable

0.50 0.60 0.70 0.80 .0.90 1.00

R, Module reliability

Figure 3-47. Decision regions for single voter TMR. (© 1965 IEEE.)

1.00

0.98

0.96

~
:c
.~
~ 0.94
...
QJ

~
J 0.92

0.90

\
\
\
\
\
\

RELIABILITY AND A VAILABI L1TY TECHNIQUES 117

I
I
I
I

\ TMR more reliable

I
I
I
I
I
I

\
\
\
\
\
\
\
\

\
'\

'\
'\

"

I
I
I
I
I

I
I

/
I

/ --Bounds on optimum module
....... _,..",./ reliability region

0.88

0.50

Nonredundant more
reliable

0.60 0.80

R, Module reliability

--- Minimum module reliability

0.90 1.00

Figure 3-48. Decision regions for triplicated voter TMR. (© 1965 'IEEE.)

Figure 3-49 shows a nonredundant network and
a TMR equivalent. The reliability of such net­
works is more difficult to determine accurately;
Chapter 5 discusses reliability evaluation of com­
plex TMR structures.

In digital systems, majority voting is normally
performed on a bit-by-bit basis. The majority
function for a single-bit line can be performed by
a I-bit adder. The triplicated outputs are fed into
the adder data and carry-in inputs; the carry-out
output is the majority-voted result (see Figure
3-50). For a module with n output lines, the
TMR implementation has three modules and n
single-bit voters. Threshold logic [Hampel and
Winder, 1971] has also been used for voting. In
threshold logic, the output is 1 only if at least a
minimum number (the threshold) of inputs are 1.

While voting can be applied at any level in the
digital system hierarchy, the voter is almost
always made up of single-bit majority elements.
Although it has been proposed [Brown, Tierney,

and Wasserman, 1961], maJonty voting at the
gate level has had little actual use. At the module
level, many designs have incorporated triple
modular redundancy. The Saturn IB and Saturn
Von-board computers both incorporated TMR
modules [Cooper and Chow, 1976]. The Saturn V
computer logic was divided into seven modules,
each with approximately ten voted outputs. Trip­
licated voters were used between the modules in
this design [Dickinson, Jackson, and Randa,
1964]. The Test and Repair Processor (T ARP) of
the JPL-STAR (see Chapter 14) is an ultrarelia­
ble hard core that controls system configuration.
The T ARP is triplicated with a majority vote at
its outputs. (The TARP is actually hybrid redun­
dant. See the section below on hybrid redun­
dancy and other dynamic redundancy variants
of N-modular redundancy.) The Fault Tolerant
Spaceborn Computer (FTSC) [Stiffler, 1976; Av­
izienis, 1978] is another aerospace computer. Its
Configuration Control Unit (CCU) is triplicated.

118 THE THEORY OF RELIABLE SYSTEM DESIGN

Input Outputs

I ... E1--
'a. Nonredundant network

Input

~
1

Outputs

j
B-

h. TMR equivalent

Figure 3-49. TMR applied to more complex networks.

Unlike the STAR's TARP, however, the CCU
output voting is performed locally at each desti­
nation.

Voting is also possible at the bus level. C.vmp
(Computer-voted multiprocessor) is implement­
ed with off-the-shelf DEC LSI-II components
[Siewiorek, Canepa, and Clark, 1977 a]. A single
voter module divides the LSI-II bus in two and

TMR input signal x Carry out Voted output
signal x

xA Carry in
xB a
Xc b ~

Figure 3-50. Logic signal voting with a one-bit
adder.

employs special bidirectional voters on the bidi­
rectional bus lines. As Figure 3-51 shows, the
three processors and three memories reside on
different sides of the voter. Triplicated floppy
disk drives reside on the memory side of the
voter. Chapter 7 analyzes the design of C.vmp in
detail. FTMP (Fault Tolerant Multiprocessor)
uses triplication with voting [Smith and Hopkins,
1978; Hopkins, Smith, and Lala, 1978; and
Chapter 17]. Its processors and memories are
configured in groups of three to form bus triads
and memory triads. Each module in a triad
operates in synchronization with the other two,
and voting is used to mask the effects of a failed
module.

Finally, voting can be applied at the software
level. For example, a single processor could be

RELIABILITY AND A VAl LABILITY TECHNIQUES 119

__ ----~ Bus A

,~---------------v
Bus B

'--_________ ,,/ Bus C

Processors Memories

Figure 3-51. Basic structure of c.vmp.

made less susceptible to transient and/or pro­
gramming errors by performing a task three
times and voting on the result. Making the
algorithm different for each execution producing
the results to be voted on may result in some
protection against hard failures. Chen and Aviz­
ienis [1978] formalized this concept and gave it
the name N-version programming. The SIFT
(Software Implemented Fault Tolerance) com­
puter uses software voting in a different way (see
Chapter 16): each processor uses a two-out-of­
three vote on data from other processors execut­
ing the same task to obtain a correct version for
further operations.

As with duplication, synchronization of the
multiple copies in N modular redundancy is
necessary to prevent false outputs. Figure 3-52
illustrates one of the problems that can result
without proper synchronization. The signal line
in question carries pulses of fixed duration and is
used in a master-slave protocol. The first set of

A-ll r-l

pulses occurs soon enough for the simple voter of
Figure 3-50 to provide a valid signal. The second
set of signals caused a voted output that may be
too short for proper operation of the slave logic.
The slave may never respond, resulting in a
timeout at the master. If the slave device is
triplicated, the different copies may respond dif­
ferently to the runt pulse, resulting in divergent
slave behavior, and ultimately, loss of slave
synchronization. In the third set of pulses, even
though the voted master request pulse is valid,
the lagging master may not be ready to receive
the reply when it is transmitted. In this case the
operation of the lagging processor may diverge
from that of the other two, leading to a loss of
master synchronization.

The problem of synchronization is often
solved by using a common clock. Unless the
clock is fault tolerant, however, a single point of
failure exists. Another solution is the synchroniz­
ing voter shown in Figure 3-53a. Incoming re-

r-l

8--11 Il r-l

C

Voted~ n n
signal

Figure 3-52. Triplicated request line using a pulse signalling convention.

120 THE THEORY OF RELIABLE SYSTEM DESIGN

"Hi"
0 Q

7474
.J"L SET .f

A CLR

Q

0 Q V

7474
.J"L

B

0 Q

7474
Jl..

C
V

1/410104

~1K
Module 1

-:0-
8.000 MHz.

Amplifier
1/410104

1/410104 r-
" 10 1 ,

I , I I. 1 L __ '

1/410104 Crystal >

~ ~:o- 1K
> "I" 311

Voter 10 uf '-.l/ 1K ~

T -5.2

Clock 1

Voltage comparator

Module 2
~ r--- Clock 2

~

Module 3
~ - Clock 3

I--

Figure 3-53. a.) Synchronized voter for pulse signals [McConnel and Siewiorek .
1981]. b.) Fully synchronized TMR clock [Davies and Wakerly 1978]. (@ 1981,
1978 IEEE.)

RELIABILITY AND AVAILABILITY TECHNIQUES 121

quest pulses are latched. If pulses are received
from two lines, the voter waits for a time for the
lagging master to catch up. If the third pulse
comes before the waiting period is over, the
voted pulse is sent out immediately, minimizing
delay. The one-shot at the output ensures a voted
pulse signal of the proper duration. The prob­
lems and solutions of synchronization in C.vmp
are discussed at length in Chapter 7. More
detailed consideration of the problems of syn­
chronization and voting can be found in Davies
and Wakerly [1978] and McConnel and Siewio­
rek [1981]. Davies and Wakerly also discuss the
design of a fully synchronized TMR clock, in
which synchronization is achieved by inserting a
voter into the feedback path of each of the three
crystal oscillators (Figure 3-53b).

Fault detection in N-modular redundancy can
be provided by a disagreement detector that
usually operates in parallel with the voter. The
disagreemen t detector is an important elemen t in
NMR systems that are reconfigurable. Even in
nonreconfigurable systems they act as an aid in
diagnosis and can be used to warn of a deterio­
rating hardware state as the redundancy is ex­
hausted. C.vmp, IPL-ST AR, and FTMP are
among the systems that use disagreement detec­
tors.

In the earlier consideration of software tripli­
cation, it was mentioned that using three differ­
ent implementations of the same process pro­
vides protection from software design errors as
well as hard failures. A scheme based on a
similar principle has been proposed for protec­
tion against both hardware design errors and
inadequacies in component screening [Platteter,
1980]. Because only a tiny fraction of a micro­
processor's possible states can be tested in the
few seconds normally allowed in electrical
screening tests, complete confidence in a com­
plex LSI chip is almost impossible. Three micro­
processors are employed in a TMR configura­
tion; each is from a different source but imple­
ments the same architecture (such as 8080As
from three different manufacturers). All three
share the same clock and inputs, and thus oper-

ate synchronously in lockstep. When employed
with a disagreement detector to report faults in
any of the chips, this strategy can also be used
for more thorough testing of components over a
long test period.

As mentioned earlier in the section on Dupli­
cation, when a computing element is replicated
for voting only a fraction of the available com­
puting power is utilized because all copies are
performing the same task. As with duplication,
the solution is to use the multiple processors for
independent tasks and invoke the voting mode
only when necessary. Voting might occur period­
ically for critical tasks to ensure that all pro­
cessors are running properly and/or when there
is some indication of a possible malfunction
(such as power supply flicker, processor self-test
warning, or memory parity error). System perfor­
mance benefits from such a scheme, at the cost
of increased susceptibility to uncorrected (and
undetected) errors during operation in indepen­
dent mode. C.vmp is an example of a TMR
system that can trade off performance for reli­
ability. C.vmp can switch between voting and
independent modes under program control, per­
mitting use as a three-processor multiple pro­
cessor in independent mode. Although this fea­
ture has not been used in C.vmp in an actual
application, it has been used in SIFT, which also
has this capability.

One problem with triplication is the occasional
occurrence of common-mode transient faults.
One possible solution is to deliberately skew the
synchronization of the programs running in the
three processors, but the data on common-mode
phenomena are incomplete. C.vmp is currently
being used to gather statistics on transient faults,
to help determine what provisions are needed to
tolerate transient faults.

Finally, voting on analog signals is a particu­
larly important topic to designers of control and
data collection systems that require ultrareliable
sensors. Using multiple analog-to-digital con­
verters and performing bit-by-bit voting on their
digital outputs is not satisfactory, because the
least significant bits are almost certain not to

122 THE THEORY OF RELIABLE SYSTEM DESIGN

+f

el
Positive Negative

half half
e2 e 1

e 1 +f

Ag- e,4v e2
e3

e3 e 2

+f

e3

e3 el

-f

Figure 3-54. Pseudo voting by selection of a median analog signal.

agree even when everything is working properly.
The normal approach is to perform "voting" in
the analog domain instead. One possibility is to
take the mean instantaneous value (average the
three signals); averaging is the method used for
the redundant sensor inputs in the NASA Air­
borne Advanced Reconfigurable Computer Sys­
tems [McCluskey and Ogus, 1977]. The average
could also be weighted by a priori probabilities
of sensor reliability and accuracy. Another pos­
sibility is to take the mean of the two most
similar signals [Klaassen and Van Peppen,
1977a]. Figure 3-54 illustrates yet another
scheme, called pseudo voting [Dennis, 1974],
which chooses the median of the three signals.
Thus, if the three sensors had outputs of 1.0, 2.5,
and 2.8 volts at a given instant, the median 2.5
volt value would be used. This approach has the
advantage of being simple to implement. More
complete treatment of analog voting, including
methods and accuracy analysis, can be found in
Dennis [1974], and Klaassen and Van Peppen
[1977a, 1977b].

Error-Correcting Codes

Error-correcting codes (ECC codes) are the most
commonly used means of masking redundancy.
In particular, a large proportion of current pri-

mary memory designs use Hamming single-er­
ror-correcting (SEC) codes. There are several
reasons for the popularity of SEC coded memo­
ries. First, they are inexpensive in terms of both
cost and performance overhead. The redun­
dancy of SEC codes is only 10 to 40 percent,
depending on the design. Decoding and encod­
ing delays are relatively minuscule. Second, the
increasingly dense RAM chips in use are more
prone to soft (transient) faults, such as memory­
cell charge loss caused by alpha-particles and
cosmic-rays. Third, random access memories
constitute an increasingly larger part of digital
systems and currently contribute as much as 60
to 70 percent of system failure rates. Finally, LSI
SEC code correction/detection chips have be­
come available, reducing both the dollar and
performance costs of employing SEC codes.

Other error-correction codes with different
characteristics are available. Some provide mul­
tiple-error correction but may prove economical
only in special applications, because the redun­
dancy and decoding delay of multiple error
correcting codes increase dramatically with er­
ror-correcting ability. Some error codes are well
suited for specific applications in which the code
properties can be used to advantage and the
code limitations make little or no difference.
Serial decoding, for example, is usually much

RELIABILITY AND AVAILABILITY TECHNIQUES 123

less expensive than parallel decoding. Serial de­
coding can be used when data are transmitted
serially or when performance is not as critical. In
such an application an efficient multiple-error­
correcting code can be employed that requires
less redundancy but whose cqmplexity would be
prohibitive in a parallel decoder. In other situa­
tions, limitations on possible failure modes may
be used to advantage. For example, in many
applications multiple errors will almost always
appear closely grouped in space or time (so­
called burst errors). In these cases, -special codes
called b'urst-error-correction codes may be em­
ployed. Finally, there are error-correcting codes
that are invariant with respect to certain arith­
metic operations, and hence are suitable for use
in checking arithmetic processors. Some of these
codes are an extension of the arithmetic error­
detection codes mentioned previously.

The concepts introduced in the section on
Error-Detection Codes also apply to error-cor­
rection codes. The minimum distance of a code
determines its error-correction/detection abili­
ties. For example, the code C=(OOlO, 0101) is
contained in the space of 4-bit words illustrated
in Figure 3-21 and has a minimum distance of 3.
This code can detect any single or double error.
It can instead be used to correct any single error,
since a word with a single error will be closer to
the code word it derives from than to the other
code word. In general, a code with distance d can
corrrect any pattern of up to I errors, where
(21 + 1) S d. * All ECC codes can be used to
provide error detection, error correction, or both
correction and detection. There is, however, a
trade-off between detection and correction capa­
bilities. In general, a distance-d code can correct
up to I errors and detect an additional p errors,
where (21 + P + I) S d.

The most important class of error-correcting
codes is the linear error-correction codes. Linear
error-correction codes can be described in terms

* N modular redundancy can be considered an application
of an (N, 1) distance-N code.

of their parity-check matrices (PCMs). The PCM
for an (n, k) linear code is an (n - k) by n matrix
whose e~ements are Os and Is (for binary codes).
Each column corresponds to a bit in the code
word, and each row corresponds to a check bit.
If the n-element column vector r represents the
received code word, and the parity check matrix
is H, the decoding operation is represented by
the matrix operation

H· r = s

s is an (n - k)-element row vector called the
syndrome. Most codes are formed by the n­
element column vectors with 0 syndromes, or
expressed more rigorously, the code is the null
space of H. Note that the all-Os word is always a
code word when the null space of the PCM
forms the code. Codes that are formed by the
null space of a PCM are often called parity­
check codes. If the PCM is binary, the syndrome
can be calculated using (n - k) binary trees.
Each tree corresponds to a different row of the
PCM, with its inputs specified by the bit posi­
tions in the row that are 1 s.

Now consider the set of n column vectors
ei (i = 1,2, ... , n), where the vector has a single
1 located in position i. If f is the code word
transmitted, a received word with a single error
in position i can be represented by

r = f + ej

If m errors are present in the bit locations
specified by the set E, the received word can be
represented by

r = f + ~ ei
ieE

The decoding operation for r is thus

H . r = H . f + H . (~ e) = H . (~ e) = s'
ifE ifE

Note that

is the same as the all-Os code word with m errors.

124 THE THEORY OF RELIABLE SYSTEM DESIGN

For I-error correcting codes, the syndrome s' is
unique for each pattern of I or fewer errors, and
can thus be used to correct the errors present if
m < I. If t < m < d (for a distance-d code), the
syndrome indicates that an uncorrectable error
has occurred. The actual correction operation
based on s varies for different codes, particularly
if the code is used for special error classes (such
as b-bit burst errors, where b < (n - k)/2).
Thus, the explanation of the correction operation
is best left to the references cited later. The
correction operations for the Hamming SEC
codes and the orthogonal Latin square codes,
however, are relatively simple and are explained
below.

As for error-detection codes, distance is not
the only consideration in the properties of error­
correction codes. In many applications, toler­
ance of special classes of failures is often impor­
tant, and codes have been derived to tolerate
unidirectional errors, burst errors, and multiple
adjacent unidirectional errors. In addition, the
properties of the error sources in a given situa­
tion may be used to advantage. For example, in
most communications channels, errors occur in a
completely random fashion. In digital circuits,
however, once a bit value is in error, there is a
high probability that errors will continue to

k = number of known failures «d-2) ;
i = 0 ;
r = recei ved word ;
5 = syndrome ;
for i = 0 to k do

begin
for j = ~ to kCi do

begln

occur in that bit (such as hard or intermittent
failures of memory cells, sense amps, and bus
lines). This form of error (sometimes called an
erasure) can be put to use if a history of error
locations is kept [Ingle and Siewiorek, 1973a].
Consider a bus with a single-parity bit in which
a particular bit line is known to be failed. If the
possibility of additional failures and transient
faults can be ignored, any parity error that
occurs must be caused by the bad bit line. Thus,
the error location is known and the error can be
corrected. In memories a history may be unnec­
essary, because erasures caused by failed bits in
a memory word can be found by writing and
reading an arbitrary word and its complement
into the memory location. XORing of the two
retrieved values determines the position of stuck­
at failures.

An algorithm which allows correction of up to
(d - 2) errors using a distance-d code is given in
Figure 3-55 [Ingle and Siewiorek, 1973a]. This
algorithm assumes that only one new error can
occur before it is discovered (that is, for a
received word with a errors in it, a - I of them
are in already known erasure positions), and that
at most (d - 2) erasures exist. The algorithm
uses the code itself to correct only single errors
at a time. During a given iteration, the algorithm

pick a new permutation of i of the known failure locations
and change the corresponding bits of r ;

end;

form s ; -
if s "1 0 then

end;

- begin
temp = r corrected usi ng s (change only one bit location);
reform 5 us i ng temp; -
if s = TI then; ! errors corrected successfully;

- be"9i n

end;

update history of failed bit locations if there is
a new failure location indicated;

EXIT
end;

signal (uncorrectable error) ; ! a nonzero s could not be found using the
-known failure locations;

Figure 3-55. Proposed algorithm to correct up to d-2 errors in a distance-d
code, using knowledge of erasures present.

RELIABI LITY AN D A VAl LABI LITY TECHNIQUES 125

changes the bit values in locations specified by
some subset of the known erasures, forms a new
single error correction syndrome, and then per­
forms the single-bit correction specified by the
syndrome. Next it forms a new syndrome from
the corrected word to determine if the correction
just performed (the combination of erasure posi­
tions and single error correction) was valid.
Thus, if a (d - l)st error occurs during use of
this algorithm, it is mistakenly corrected to a
code word that is at a distance d from the correct
word and only distance-I from the received
word. Figure 3-56 shows a table-lookup imple­
mentation of this scheme. Note that the erasure­
correction algorithm of Figure 3-55 can be
greatly simplified when used with a distance-3
(single-error-correcting) or distance-4 (single-er­
ror-correcting/ double-error-detecting) code.

Presumably, the (d - I)st error can be cor­
rected if, when there are (d - 2) erasures, it is
assumed at the beginning of the correction pro­
cess that at least one error exists in an erasure
position. The algorithm of Figure 3-55 is
changed by incrementing i from I instead of 0
when k = d - I. This modification means, how­
ever, that a single error occurring in a nonerasure
position will cause an error if d - I erasures are
known, even if it is the only bit in error. Stiffler
[1978] proposed a corrector design based on an
algorithm similar to Figure 3-55. The design can be
varied to correct up to any e errors, e < d, and
detect an additional p errors, e < (e + p) < d.

With the addition of erasure correction, con­
sideration must include the possibility of tran­
sient and soft errors and the ways in which they
affect the validity of the schemes just presented.
If an error history is being maintained, there is
the problem of ensuring that the recorded era­
sure locations are due to hard failures instead of
transient errors; otherwise, the storage space
may quickly become saturated with spurious
erasure locations.

The following subsections present samples of
several kinds of ECC codes. Except for the
Hamming codes, this coverage is neither detailed
nor complete. Peterson and Weldon [1972], Ber­
lekamp [1968], MacWilliams and Sloane [1978],

Corrected data

Figure 3-56. Proposed table look-up implementa­
tion of the error correction algorithm of Figure 3-55.

and Lin [1970] are excellent general references
on coding theory as it applies to digital systems.
A paper by Tang and Chien [1969], reproduced
in Appendix A, provides a good introduction to
coding theory, and should be read in conjunction
with this section. An article by Pradhan and
Stiffler [1980] is a general discussion of error
codes: their properties, applications, limitations,
and possible ways to overcome these limitations.
The article also contains an extensive bibliogra­
phy on codes and code applications. A book by
Rao [1974] is a complete treatment of arithmetic
error codes. Finally, new codes, modifications of
old ones, and more efficient ways of employing
codes are constantly being introduced. The
IEEE Transactions on Computers, the IBM Jour­
nal oj Research and Development, and the pro­
ceedings of the annual Fault Tolerant Comput­
ing Symposiums (published by the IEEE) are
good ~ources for papers on coding theory and
applications.

Hamming SEC Codes

As mentioned before, Hamming SEC codes are
the most commonly encountered codes in com­
puter systems. For k data bits, an (n, k) Ham­
ming code requires c additional check bits, where

Y2c+k+l

126 THE THEORY OF RELIABLE SYSTEM DESIGN

Data bits Check bits d 1
II

dz d 1 dz d 3 d4 C1 C2 C3

U
1 1 0 1 0

n·
d 3 Syndrome

0 0 1
d4 = [5 1 5 2 5 3]

0 0
C1

c2 Received
C3 data word

51 = d1 EB dz EB d 3 EB C1

52 = d1 EB d 3 EB d4 EB C2

53 = dz EB d3 EB d4 EB C3

a. Parity-check matrix and syndrome formation for a (7,4) Hamming SEC code.

Data bits Check bits Syndrome
Code word

0 0 0 ~ Zero Syndrome)
(no error) o 0 0 implies no error

One error QJ 0 0 0 1 1 (Matches d4)
(box) column

(M,lch .. d, ~ Two errors [QJ 0 IT] 0 1 1 1
c~lumn-results

(boxes) In erroneous
correction

b. Received code words and their syndromes for zero, one, and two errors.

c. Parity-check matrix for (7,4) Hamming code for which syndrome is the binary-coded position
of the bit in error.

Figure 3-57. Hamming SEC code examples.

Thus, n = c + k. These codes are separable.
They are best described in terms of their parity­
check matrices. Figure 3-57a shows the parity­
check matrix for a (7,4) Hamming SEC code. A
received code word is decoded by forming the
dot product of the matrix and the code word
column vector as shown, using modulo-2 addi­
tion. The result is a c-bit vector called the

syndrome. If the syndrome is all Os, no correct­
able error is present. If a single error occurs, the
syndrome matches the column in the check
matrix corresponding to the bit in error. A
multiple error results in a false syndrome that is
indistinguishable from the syndrome for one or
no errors; thus, Hamming SEC codes have a
minimum distance of 3. Figure 3-57b shows a

RELIABILITY AND AVAILABILITY TECHNIQUES 127

d1

d1 d 2 d3 d4
d2

C1 C2 C3 C4
d 3

[i
1 1 1 1 1 1

; j. 1 1 0 0 1 0
d4 = [5 1 5 2 5 3 5 4]

0 1 0 0 1
C1

0 0 0
C2

C3

C4

a. Parity-check matrix for (8,4) Hamming SEC/DED code.

Number of Received Received
errors data bits check bits Syndrome

d1 d2 d3 d4 C1 C2 C3 C4 51 52 S3 54

Zero 1 1 1 0 0 1 0 0 0 0 0 0

One @] 1 0 0 0 0 1 0

Two ill] 0 0 [I] 0 0

b. Received words and their syndromes.

Figure 3-58. Hamming SEC/ DED code examples.

code word and its syndrome for 0, 1, and 2
errors.

As stated previously, a syndrome generator for
this code can be made using c parity trees, wi th
the inputs for each tree the code-word bits with
Is in the row corresponding to the syndrome bit.
Encoding for this code uses the same set of
parity trees, with the check-bit inputs corre­
sponding to the check bit being generated held at
0. This matrix is not unique for a (7,4) Hamming
SEC code; any 4 by 7 matrix will work as long
as no two columns are alike, none is all Os, and,
for easier encoding, the columns corresponding
to the c check bits contain only a single 1 in
each.

The most common form of parity-check ma­
trix is of the form shown in Figure 3-57c, origin­
ally proposed by Hamming [1950]. Each column
of this matrix contains the binary-coded repre­
sentation of the column number containing
it (columns are numbered starting with 1).
The check bits are located in bit positions

2i (i= 0,1,2, ... ,en - k - 1)). Thus, the syn­
drome in the event of an error is actually the
binary-coded number of the bit position in error.
This may allow a simpler design for the circuitry
that uses the syndrome to perform the correction.

Because a nonzero syndrome is an indication
of an error, a small amount of extra circuitry will,
provide a means of error notification, and thus,
error detection. In addition, a small increase in
the size of the code word can result in improved
error-detection capabilities. Most implementa­
tions of the Hamming codes use an extra check
bit, which allows detection of all double errors.
This check bit is usually the parity of all the
other check and data bits in the code word (even
parity sense). The check matrix is changed by
adding both an extra check-bit column with a
single I and a row of all Is that corresponds to
the extra overall parity bit. A PCM for an (8,4)
Hamming SECjD ED (single-error-correctingj
double-error-detecting) code is shown in Figure
3-58a. A nonzero syndrome not matching any

128 THE THEORY OF RELIABLE SYSTEM DESIGN

column indicates a double (or greater) error. In
the case of this (S,4) code, the last three syn­
drome bits point to the column number in error
(numbered starting with 0) as long as the first bit
is 1. If the first bit is a 0 and any of the others
nonzero, a double or greater error has occurred. If
all the bits are 0, there is no error. This is
demonstrated in Figure 3-5Sb, which shows the
syndromes for a received word with 0, 1, and 2
errors.

These codes do not detect the all-Os failure
mode, for the all-Os word is a code word. In the
many hardware designs prone to an all-Os failure
mode (such as through a power failure in a
memory array or a failure in a select circuit), this
problem can be overcome by a modified Ham­
ming code. The code of Figure 3-5S, for example,
could. be modified by using the odd instead of
even parity sense for the overall parity-check bit.
Pradhan and Stiffler [19S0] give an example of a
modified Hamming code that detects multiple
unidirectional failures short of the all-l s or all-Os
failure.

It is possible to obtain a Hamming code with
a lower amount of redundancy, by concatenat­
ing several data words and coding the resultant
longer word. The (S,4) code above used for a
4-bit data word has 100 percent redundancy. If
eight data words are concatenated, the resulting
32 bits of data can be protected by using a
(39,32) Hamming SEC/DED code with only 22
percent redundancy. There is a greater possibili­
ty of a fatal error because the single-bit-correc­
tion ability is now distributed over five times as
many bits. Also, the parity trees needed for
decoding have more gate levels and thus a longer
delay. Finally, if this is a RAM, on writes the old
code word must be retrieved, the old data byte
replaced by the new one, and the new code word
formed and stored. These increases, however, are
often balanced by the much lower redundancy
(and cost) needed. An example of this approach
is the SEC/DED memory option for the
PDP-l 1/60, whose 16-bit data words are stored
in 39-bit code words.

Some subsets of Hamming codes have useful
special properties. Hsiao [1970] describes a set of
SEC/DED codes that are equivalent to conven­
tional Hamming codes, in that they require the
same number of check bits. These codes, called
optimal odd-weight column codes, use a parity­
check matrix in which the number of Is is
minimal. Each column has an odd number of Is,
and the number of Is in each row is as close to
the average number per row as possible. The
result is a minimum number of inputs to the
syndrome generation parity trees, which means
the syndrome generator has fewer components
and fewer gate-level delays. The conventional
Hamming SEC/DED codes, in contrast, require
an n-input tree for the overall parity check. Thus,
the codes described by Hsiao result in better
cost, reliability, and performance.

There are other possibilities for improving the
implementation of Hamming SEC/DED code"s.
Carter, Duke, and J essep [1973] propose an
efficient method of decoding called lookaside
correction. In this scheme, the SEC/D ED code
word is translated to a byte-parity encoded
word. The code employed is a special subset of
SEC/DED codes called rotational codes. These
codes also have a minimum number of Is in the
check matrix. Carter, Duke, and Jessep show
that a received code word with a correctable
error translates to a byte-parity encoded word
with a detectable parity error. Thus, detection of
byte-parity errors indicates that error correction
is necessary with the received code word; other­
wise, the data is ready for transmission on a
byte-parity encoded bus. With no error present,
the translation-and-check operation is faster
than the decoding and recoding (into byte-parity
code) operation required in a conventional Ham­
ming code implementation.

In the earlier section on parity codes, a mem­
ory design was suggested wherein the parity bit
stored with the memory word was the parity of
the combined data word and address. The Intel
432 (see Chapter IS) employs a similar scheme
based on the Hamming codes. The check bits

RELIABILITY AND AVAILABILITY TECHNIQUES 129

stored are for the concatenation of the data and
address, and thus provide protection against
both data and addressing faults.

An erasure correction technique similar to that
of Figure 3-55 is used in a prototype memory
described by Carter and McCarthy [1976]. This
design uses a subset of Hamming SEC/OED
distance-4 codes called maintenance codes, in
which the data word Wand its bit-wise comple­
ment W' have identical check bits. The memory
also utilizes the fact that hard stuck-at-a failures
can be discovered by writing and reading back
both a word and its complement, then XORing
the results to learn the location of the failures
(pointed to by set bits in the result). (Stuck-at-a
means a bit is stuck at either I or 0.) As shown
before, this information can be used to correct
up to d - 2 errors in a word, or in this case, two
errors. The memory can detect permanent triple
faults and recover from all permanent double
faults. Black, Sundberg, and Walker [1977] de­
scribe a spacecraft computer memory that can
correct single errors and erasures.

In the final variation of the Hamming SEC/
OED code given here, any single-byte error can
be corrected and any double-byte error detected.
This is accomplished (assuming 8-bit bytes) by
using 8 Hamming codes in parallel in the same
fashion as for interlaced parity (described in the
section on Parity Codes above.)* Thus, for a 64-
bit data word with 8-bit bytes, each Hamming
syndrome is formed using every eighth bit. In
essence, 8 13-bit Hamming code words are being
evaluated in parallel. The redundancy is 63 per­
cent. If 16-bit bytes are used, the number of
parallel code words is 4 (22 bits each), with a 38
percent redundancy. Even though this scheme is
easy to implement using readily available stan­
dard-support ICs (discussed below), other codes
to be discussed later provide similar fault-mask­
ing capability but require lower redundancy.

* In fact, assuming b-bit bytes, this scheme can correct any
pattern of errors spanning at most b adjacent bits, even if
the pattern transcends a byte boundary. Such a pattern is
known as a b-bit burst error.

If a Hamming code is employed purely for
masking purposes (that is, there is no error
notification if the error is correctable), deteriora­
tion of the hardware may be present but un­
known to the system maintainer. Furthermore, it
is desirable to be able to test the encoding/
decoding hardware. Thus, most implementations
of Hamming-coded memory systems include the
ability to write noncode words and to read
memory words without the correction being per­
formed. This provision aids in the diagnosis of
memory problems.

Reliability and performance modeling of
Hamming (and other) SEC codes is deferred to
Chapter 5, where the topic is covered in depth.

A great many commercial computers, over a
large range of sizes and performance, use Ham­
ming SEC codes for main memory. Among these
are several models of the IBM 360/370 series, the
POP-I 1/60 (as an option), the V AX-I 1/780 and
VAX-ll/750, some models of the POP-IO and
OECsystem 20, the Univac 1100/60, the Xerox
Alto, and the Bell ESS-l. In addition, many
manufacturers of plug-compatible aftermarket
memories offer SEC add-on memory for various
computers. Hamming SEC codes see usage in
other areas of computer design, particularly
buses. The IBM STRETCH, for example, used
SEC/OED codes on both its memory and pro­
cessor-memory bus, with encoding/decoding
performed on the processor end of the bus.
Finally, several semiconductor manufacturers
are now supplying LSI support chips for SEC
code memories. Among these are the Advanced
Micro Devices Am2960 and AmZ8160, the Mo­
torola MC68540, and the Fujitsu MB1412A.
Most of these use modified Hamming SEC/OED
codes. The MB1412A, for example, is an 8-bit
(data) slice that can also be stacked for data
words of 2, 4, or 8 bytes. The Am2960 and
AmZ8160 are 16 bits wide but can be used for
data words of 2, 4, or 8 bytes. The MC68540 is a
16-bit wide unit to be used for data words of 1,
2, or 4 bytes and also detects the all-Os and all-l s
failure mode.

130 THE THEORY OF RELIABLE SYSTEM DESIGN

Other frror- Correction Codes

Although Hamming SEC/OED codes are the
most commonly used codes in computers, there
are several others, many of which are effective
against particular classes of errors. For example,
Tang and Chien [1969] (see Appendix A) discuss
classes of cyclic codes for correcting single er­
rors, burst errors, multiple independent errors,
and multiple-character (i.e., byte) errors. This
section briefly presents a few other codes as an
indication of the abundant possibilities that
codes offer.

Burst-error-correction codes are uniquely
suited to some applications in digital systems. A
b-bit burst error is an error pattern that spans b
bits in a word. Another form of multiple error is
a b-adjacent error, in which the errors occur
within specific b-bit boundaries, such as byte
boundaries. b-adjacent error correction is partic­
ularly useful in designs organized as several
parallel byte-wide modules, as in Figure 3-59. In
such designs, a single failure can affect an entire
block of signal lines. In a memory of (h X b)-bit
words organized as h b-bit-wide memory chips,
for example, a failure of the addressing logic in
one chip would cause the simultaneous failure of
b adjacent bits. The interlaced multiple Ham­
ming code of the previous subsection can correct·
b-adjacent errors. Other codes provide similar
protection with less redundancy, such as those
formed from binary-coded characters instead of
individual bits. Thus, for characters of b bits,
there are 2b possible characters. The PCM ele­
ments are b-bit characters instead of Os and Is
and the parity-check summations are performed
over the characters in the code word, modulo-2b

•

Thus, the error detection/correction characteris­
tics are in terms of b-bit characters, and the
codes are effective against b-adjacent errors.
Since b-adjacent errors are a subset of b-bit burst
errors, burst error codes are also effective .. Exam­
pIes of this class of codes are the Reed-Solomon
cyclic codes [Peterson and Weldon, 1972; Tang
and Chien, 1969]. Also, codes specifically for b­
adjacent errors can be derived from burst error

Inputs

h • b output lines

Figure 3-59. Circuit design of parallel byte-wide
modules.

codes. In addition to the general references cited
earlier, other papers on b-adjacent error correc­
tion are Bossen [1970], Reddy [1978], Srinivasan
[197Ib], Bhatt and Kinney [1978], Hong and
Patel [1972], Fujiwara and Kawakami [1977],
Carter and Wadia [1980], and Kaneda and Fuji­
wara [19801-

Unidirectional errors are a common hazard in
digital systems. In this type of error, the signal
lines in error have all made the same transition,
that is, O-to-I or I-to-O, but not both. These
errors mayor may not be adjacent. On an open
collector bus, for example, a gating circuit failed
in the on state can cause multiple signals to be
gated onto the bus. The signal lines affected will
carry the wire-or of the desired and spurious
signals, resulting in unidirectional O-to-I errors.
Other possible causes of unidirectional failures
are power failures, shorts, and loss of charge in
memory cells. The all-Os and all-Is failure modes
mentioned previously are a case of multiple
adjacent unidirectional failures. If multiple uni­
directional errors are likely to occur in an appli­
cation requiring an error-correcting code, the
best code to use is one that at least detects such
failures. Pradhan [1980] has developed a class of
separable random-error-correcting codes that
also detect any number of unidirectional errors.

When k data bits are needed, there is often no
(n, k) code with the desired properties. Thus,

RELIABILITY AND AVAILABILITY TECHNIQUES 131

many of the codes used instead are shortened
versions, such as an (n, k') code shortened to an
(n - i, k' - i) code, where k' = k + i. This can
be accomplished by assuming that i of the data
bits are always O. The resultant PCM is that of
the (n, k') code, with the i columns correspond­
ing to the always-O data bits deleted. Often the
columns to be deleted can be chosen to minimize
the decoder complexity. Most implementations
of Hamming codes are examples of shortened
codes. Consider a (21,16) Hamming SEC code.
According to the criteria for Hamming codes,
the 5 check bits will provide SEC protection for
up to 26 data bits. Thus, any (21,16) Hamming
code is actually a shortened (31,26) Hamming
code.

Hsiao, Bossen, and Chien [1970] state that
usually, the less redundancy a code has relative
to its error-correction ability, the greater are the
complexity, delay, and cost of the decoder. From
this principle they derive a class of codes in
which a systematic addition of redundancy adds

'error-correction ability. In particular, their or­
thogonal Latin square codes are (m2 + 21m, m2)

codes that can correct any I errors (I <
(m + 1)/2). Thus, the code length grows linearly
with I for a given data length. These codes are
decodable quickly in parallel using simple major­
ity logic-decoding [Peterson and Weldon, 1972;
Tang and Chien, 1969]. The parity-check matri­
ces are easy to construct. The high redundancies
result in parity-check matrices with few 1 s, re­
sulting in simple (minimal) decoding circuitry.
Finally, the systematic nature of the matrix
allows modular additions to the decoder for
increased error-correction ability. Needed for
each bit are I modules, each containing 2 m-bit
parity trees, and a (21 + 1)-bit majority voter.
Figure 3-60 shows the PCMs and one of the bit­
correction slices for the (I5,9) and (21,9) single­
and double-error-correcting Latin square codes.
For 9 data bits, double-error correction is the
maximum attainable with this class of codes.

Product codes are the result of the simultane­
ous application of two codes in a particular
fashion. (Tang and Chien [1969] refer to these

codes as N-dimensional codes; see Appendix A.)
Figure 3-61 illustrates the concept. If the two
codes used have minimum distance d) and d2, the
product code formed by them has weight d) d2 •

This concept can be extended to N dimensions
(N codes applied simultaneously). One product
code, often used on tapes and other serial de­
vices, is the result of using single-bit parity along
both the horizontal and vertical axes. Because
parity is a distance-2 code, the result is a dis­
tance-4 code. In practice, a single error produces
a parity error detected by both vertical and
horizontal parity. The intersection of these two
parity errors points to the bit in error (see Figure
3-62). Furthermore, it can be seen that any
double error is detectable. This code is applica­
ble to random-access memories as well as to
serial applications, and can result in less redun­
dancy than a comparable Hamming SEC/OED
code. The section on Single-Error-Correcting
Memory Models in Chapter 5 examines the use
of the code in detail and compares its reliability,
cost, and performance with the Hamming SEC/
OED code.

AN arithmetic error-detection codes were dis­
cussed earlier. With a sufficiently large modulus
A, an AN code is capable of error correction.
Table 3-13, from Kautz [1962], lists the check
modulus, maximum data length, and code word
length for a number of possible single-error­
correcting AN codes. In practice, these codes are
decoded like the error-detection AN codes: divi­
sion by the check modulus. If the remainder of
the division (the residue) is 0, there is no error. A
single-bit error in the rth bit position results in a
residue of (±2' modulo A). Kautz suggests that
the correction be performed by table lookup
using the residue. Because none of the AN codes
of Table 3-13 are low-cost check moduli (see the
previous section on Arithmetic Codes), the divi­
sion operation to obtain the residue is complex.
Rao [1972] presents a modification of AN codes
that allows for more efficient decoding. There are
other arithmetic error-correcting codes. Error
correction using residue-number-system (RNS)
codes is the subject of several papers [Watson

132 THE THEORY OF RELIABLE SYSTEM DESIGN

m 2 = 9

do d1 d2 d3

2tm = 6

d4 d5 d6

(15,9) Single error correction

d7 d8 (1 C2 (3 (4 (5

1 1 1

~----do

Majority
voter

a. (15,9) Single-error correction

m 2 = 9
2tm = 12 (21,9) Double error correction

do d1 d2 d3 d4 d5 d6 d7 d8 C1 (2 (3 (4 (5 (6 I (7 (8 (9 (10 (11 (12

1 1 1 1 I
I
I

:--A
I
I
I
I

1 1 1 1 I - _______________________________ 1

1 1 1

Submatrix A is identical to the SEC parity check matrix,
and the corresponding parity tree is also unchanged.

Majority
Voter

b. (21,9) Double-error correction.

,------do

r-::::::::=::::;;:::::t..-d1
d2
(1

---','--~d3
d6

L..~~~r(4

Figure 3-60. Latin square code parity-check matrix with one bit-slice of
decoder for nine data bits. Decoding is performed by a majority vote among the
received value of a data bit and two values calculated for it from the other
received bits. a.) Single-error correction. b.} Double-error correction.

RELIABILITY AND AVAILABILITY TECHNIQUES 133

[

: Row 1 Data bits I check
: bits

C(~I~~~ ~he~kl Che~ks-o~-
bits I check bits

I

Figure 3-61. Product code resulting fro~ c?mbi­
nation of two linear codes. The check bits In the
lower right-hand corner may be formed either as
row checks on the column check bits or vice versa.
Either way, they will be consistent.

and Hastings, 1966; Mandelbaum, 1972a; Barsi
and Maestrini, 1973, 1974]. The paper by Wat­
son and Hastings also describes the design of a
microprogrammed general-purpose computer
that utilizes RNS coding. A paper by Rao [1970]
discusses biresidue error-correcting codes, a class
of separable codes. Neumann and Rao [1975]
explore the application of arithmetic codes to
byte-sliced arithmetic processors. Finally, Rao
[1974] has :written a textbook on arithmetic error
coding.

Check
Modulus
A

13
19
23
29
37
47
53
59
61
67
71
79
83

101
103

Maximum Data
Length
k

2
4
6
9

12
17
20
23
24
26
28
32
34
42
43

Source: Kautz [1962]

Code Word
Length
n

6
9

11
14
18
23
26
29
30
33
35
39
41
50
51

1 1 0 0 1 1 0 0 1 1
1

0

r
1 0 1 1 0 0 0 0 0 011

1 0 1 1 0 ~ 1 1 1 1! 0 Parity
1 1 1 1 1 0 1 0 1 0 l1 error

1 1 1 0 0 0 1 1 1 1J 1
,-"1-0--1--0-0--;--0--0--1 11

i
Parity error

Figure 3-62. Product code using two even-parity
codes.

Reliability models for a code depend upon the
frequency and types of errors that occur, as well
as on the properties of the code. Thus, no general
model can be presented here. However, a model
is given for an (n, k) t-random-error correcting
code, when single errors occur randomly (i~
random locations, and not in bursts). The relI­
ability of a single code word, given bit reliability
Rb, is:

t .

R d = ~ nCiRg-i(l - RbY
wor i=O

More detailed modeling is the subject of Chapter
5.

Masking Logic

Discussion of the two previous masking tech­
niques did not include fault masking at the gate
level of digital design. NMR with voting is used
almost exclusively for modules or for functional
partitions of designs. Coding is normally appli~d
when some regular strucure is present, as In

memories or buses. Thus, in both NMR and
coding applications a single restoring organ (vot­
er, decoder/corrector) normally protects a set of
hardware that is much more complex and error
prone than the restoring organ itself. In fact, the
increased regularity of control logic obtained
through the use of PLAs and microcode tech­
niques means that error-coding techniques can
have an important impact on system- reliability.
However, some random logic always remains

134 THE THEORY OF RELIABLE SYSTEM DESIGN

that cannot be protected through the straightfor­
ward application of error codes.

This section discusses techniques other than
module replication that have been devised for
random logic. These techniques perform restora­
tion at the gate level or, for sequential machines,
at the state level, usually with a massive use of
redundant gates. Because of their high cost, few
of the techniques have seen actual use. The
discussion is divided into two parts: the first
concerns gate-level masking; the second deals
with the application of error codes to the states
of tinite-state machines.

Interwoven Logic

Several techniques have been proposed for gate­
level fault masking. All employ redundant inputs
to each gate. Among these are von Neumann's
original work on circuits with interspersed restor­
ing organs, quadded logic [Tryon, 1962; Jensen,
1963], and radial logic [Klaschka, 1969]. Pierce
[1965] combined these variant schemes into a
general theory of what he termed interwoven
logic. Some of the basic precepts of interwoven
logic are briefly presented here, based largely
upon Pierce [1965]. Armstrong [1961] proposed
an entirely different technique for fault-tolerant
combinational logic, presented in the next sec­
tion.

Faults in logic circuitry are considered to be
limited to stuck-at-a (where a = 0, 1) faults on
gate outputs, gate inputs, or input lines to the
network. The effect on the logic depends on the
value of the fault and the type of gate whose
inputs are affected. Consider a NAND gate. If
one of its inputs is stuck-at-O, its output is forced
to be 1 regardless of the gate's other inputs. On
the other hand, a stuck-at-l input does not force
the output to ° unless the other inputs are also 1.
Thus, two types of faults exist; critical faults
which by themselves force a certain gate output:
and subcritical faults, which alone will not cause
a gate output error. Table 3-14 lists some com-

Table 3-14. Critical and subcritical input faults
for some common logic gates.

Subcritical
Gate Type Critical Faults Faults

AND I~O O~I

OR O~I I~O

NOT o ~ I, 1 ~ 0 None
NAND I~O O~I

Majority None o ~ I, 1 ~ 0

mon gates and their critical and subcritical input
faults. In a network of AND gates a critical fault
is propagated through the network: a critical
input fault on a gate in one layer forces an
output error that is critical to the subsequent
layers of AND gates. If, however, the network is
composed of alternating layers of AND and OR
gates, a critical fault may be stopped within two
layers: a critical input fault to one layer results
in an output error that is a subcritical input fault
in the following layer. Similarly, an all-NAND
(or all-NOR) gate network may stop a critical
fault within two layers. Finally, majority-logic
faults may be stopped after only one layer be­
cause there are no possible critical faults.

Interwoven logic makes use of the properties
of subcritical and critical faults by assuring that
the effects of up to t faults in any layer are
masked by subsequent layers; t is design-depen­
dent, and the circuit so designed is called
t-fault tolerant. Fault tolerance is accomplished
by using redundant gates with redundant inputs.
The interconnections between logic layers are
interwoven so that critical faults at one stage are
masked out in subsequent stages, through the
mixing of faulty and good replicated signals.
Figure 3-63 illustrates this masking action and a
necessary condition: the interweaving pattern
must vary from layer to layer. Without this
variation, the fault will propagate. *

*!he inputs to the interwoven logic circuit must also be
mdependently replicated if the circuit is to tolerate input
faults.

X1
,0

X4
Y1
Y4

X2
X3 1
Y2 1
)J

X2
X3
Y2
)J

0
X1 I-
X4
Y1
Y4

RELIABILITY AND AVAILABILITY TECHNIQUES 135

1

I

x
y

a. Nonredundant circuit

o
I 1 ~ 0 fault

1
I 0 ~ 1 fault

b. Fault-tolerent interwoven circuit

z

Figure 3-63. Fault tolerance via interwoven logic.

Z1

136 THE THEORY OF RELIABLE SYSTEM DESIGN

Using the principles of critical and subcritical
faults, interweaving, and weave-pattern varia­
tion, Pierce developed a general theory of imple­
menting interwoven logic. To correct any t criti­
cal errors, the redundancy in gates must be
R = (t + 1)2 = B2, and each gate must have B
times the inputs needed for the corresponding
gate in the nonredundant realization. At least
three different interweaving patterns are needed
if the circuit has feedback (such as flip-flops or
loops). A pattern consists of B groupings. If the
redundant copies of a gate are numbered from I
to R, each of the B groupings contains a unique
set of B different numbers; there are no overlaps
between groups. Finally, each group in a pattern
must have elements drawn from at least B differ­
ent groups in any of the other patterns, as Table'
3-15 shows for t = I, 2, and 3. In the table, a
grouping, such as (a, b,.c) for t = 2, implies that
the output from a gate, a, is connected to an
input on each of the gates a, b, and c in the next
layer; the same applies for the outputs of gates b

Table 3-15. Groupings (g;) for interweaving
patterns for t = 1, 2, and 3.

Single-Fault Tolerant
t = I, B = 2, R = 4

gl = (1,2)(3,4)

g2 = (1,4)(2,3)

g3 = (1,3)(2,4)

Double-Fault Tolerant
t = 2, B = 3, R = 9

gl = (1,2,3)(4,5,6)(7,8,9)

g2 = (1,4,7)(2,5,8)(3,6,9)

g3 = (1,6,8)(5,7,3)(9,2,4)

Triple-Fault Tolerant
t = 3, B = 4, R = 16

gl = (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)

g2 = (1,5,9,13)(2,6,10,14)(3,7,11,15)
(4,8, 12, 16)

g3 = (1,6,12,15)(2,5,11,16)(3,8,9, 14)
(4,7,10,12)

Source: Pierce [1965]

and c. In Figure 3-63, the grouping g2 of the
single-fault tolerant groupings was used for the X
inputs, while the grouping gl was used for the
inputs to the second level of gates. A critical 0-
to-I input fault to one layer is masked out by the
next layer; thus, the input fault in signal X does
not cause an error in output Z. If the same
interweaving pattern had been used in both
layers, the fault would have been propagated.

The need for a shorthand notation of inter­
woven logic is demonstrated in Figure 3-63, in
which a simple nonredundant two-gate logic
function is transformed into a complex tangle of
gates and interconnections. Figure 3-64 illus­
trates the notation to be used. A symbol for
replicated gates is formed by using a double line
for the gate symbol edge. The term g; inside the
symbol indicates the weaving pattern that is to
be used in connecting the replicated gates to the
previous layer.

The gate in Figure 3-64 is a gate used in
quadded logic, where t = I, B = 2, and R = 4;
however, the notation can also be generalized to
higher redundancy. Quadded logic was first in­
troduced by Tryon [1962] for use with AND,
OR, and NOT logic. There are two problems
with the use of this family of logic gates if two­
level correction is to be assured at all times.
First, the AND and OR logic levels must be
strictly alternated. Second, because the NOT
gate (inverter) has only one input and no subcri­
tical faults, it does not provide any fault mask­
ing. Also, when a NOT is placed between AND
and OR layers, the effect is to make the two
layers it joins identical, since what would nor­
mally be a subcritical output fault is inverted
into a critical input error. The two difficulties can
be overcome in part by rearrangement of the
logic function, and in part by the insertion of
identity-AND or -OR gates (one leg fixed at 1
and 0, respectively) where appropriate. Figure
3-66b demonstrates this approach with a quad­
ded logic implementation of Figure 3-65b. Re­
quiring alternating AND/OR gate levels is not a
problem when NOR [Jensen, 1963] gates or
NAND gates are used in implementing quadded

RELIABILITY AND AVAILABILITY TECHNIQUES 137

a. Symbol for quadded gate with inputs
woven with pattern 8j.

X42~Z4
Y41~

b. Expansion of quadded gate into four physical
gates, with inputs Xjk and rjk'

~ jk g1 g2 g3
11 1 1 1

12 2 4 3

21 1 2 2

22 2 3 4

31 3 2 1

32 4 3 3

41 3 1 2

42 4 4 4

c. Table of interweaving patterns 8j, and the
relation for each pattern between the inputs
to gate j(X~k and rjd and the output gate
number (Ii, of the previous stage.

Figure 3-64. Weaving notation.

logic. Figures 3-65a and 3-66a show NAND and
quadded NAND gate realizations of the same
circuit. Finally, the principles of two-layer mask­
ing also apply to single-layer fault-correcting
technologies such as majority gate logic.

Radial logic [Klaschka, 1969] is a variation of
interwoven logic that offers single-fault tolerance
with a gate redundancy factor of only 2. This is
possible if the gates used fail in a non symmetric
(fail-safe) manner. In particular, for radial logic
based on NOR gates, the gates used must be

unlikely to experience O-to-I failures at their
outputs. In other words, it is assumed that criti­
cal input faults cannot occur. If this is the case,
the fault is corrected at the next duplicated stage.
Klaschka gave RTL implementations of NOR
gates that are unlikely to have O-to-I output
failures.

More recently, Freeman and Metze [1972]
proposed a form of interwoven logic called dot­
ted logic, derived from the use of dotted outputs
of NAND and/or NOR gates (such as utilizing
the wire-or that results from connecting the
outputs of TTL logic open-collector gates). Al­
though gates are implicit at the dotted connec­
tions, the actual gate count as well as the number
of interconnections is greatly reduced.

Finally, Pradhan and Reddy [1974a] propose a
design method using two-level AND and OR
logic that can tolerate subcritical faults both on
its inputs and due to internal failures. As in
radial logic, gates with asymmetric failure modes
are required. In this scheme, the inputs that
result in a logical one output are coded in a
distance-d code. At most, then, duplication of
the inputs is required. Further reductions in
complexity can be achieved through the use of
don't-care output conditions for some input

. combinations. The resulting design tolerates up
to (d - 1) internal subcritical faults, given a
distance-d coded input. Alternatively, a total of t
faults (combined internal and external) can be
tolerated, where (2t + I < d).

Reliability modeling of interwoven logic can
be extremely complex, and no models will be
given here. Pierce [1965] developed a complex
method of obtaining a lower limit on the reli­
ability. Jensen [1963] developed a cut-set model
for quadded logic (Chapter 5 discusses reliability
modeling with the use of cut sets). Abraham
[1975] developed a combinatorial procedure for
modeling interwoven logic, as well as an easily
calculable formula for providing a tight lower
limit on the network reliability.

In addition to reliability, there is another
factor to be considered in the employment of
interwoven logic. By the very nature of internal

138 THE THEORY OF RELIABLE SYSTEM DESIGN

b

(--------------------------~

d--------------------------------~
a. NAND gates

a--~

b---I

(----I

d------~----------------------~
b. AND, OR, and NOT gates

Figure 3-65. Implementations of the logic function f = d(ab + c).

a ,----I

b

(------------------------~~~

d------------------------------~
a. NAND gate implementation

a----II

(-----I

d------------------------------~

b. AND, OR, NOT gates implementation (note the extra inverter, marked
by an asterisk).

Figure 3-66. Quadded implementations of the circuit of Figure 3-65.

fault masking, the logic network that results is
difficult or impossible to diagnose. When a fault
occurs, no notice is given unless the outputs are
in error. Even with outputs in error, diagnosis is
difficult without probing the internal signals.
Tryon [1962] suggested a possible solution: re­
moving the power from some of the redundant
gates, thereby forcing their outputs to values that

effectively eliminate them from the network. At
the same time, some of the redundant inputs
must be neutralized.

Coded State Machines

The interwoven logic techniques of the previous
section can be used to implement sequential

RELIABILITY AND AVAILABILITY TECHNIQUES 139

Inputs

:::urrent state

Combinational
logic

Memory: flipflops or delays

Next state

igure 3-67. Generic design for a sequential cir­
uit. In asynchronous circuits the memory elements
Je replaced by delays.

synchronous or asynchronous) logic. However,
here are other techniques that could result in
ower redundancy and simpler designs. The basic
:oncept, first proposed by Armstrong [1961], is
hat the state of the machine, represented by its
:tate variables, can be encoded in an error­
:orrection code. Thus, any fault can be masked
f it causes a correctable error in the state of the
nachine.*

Figure 3-67 shows a generic form for a finite
,tate machine. If input errors are ignored, there
lre two sources of error in the machine: the
:ombinational logic and the memory elements.
~igure 3-68 demonstrates Armstrong's solution
:0 faults in the combinational logic. The logic
letwork is split into k independent units, each·
ievoted to producing a subset of p of the output
;ignals. An additional (n - k) subunits produce
ndependently generated sets of error-code check
)its for the k functional outputs. Thus, the net
)utput of this circuit is p parallel (n, k) coded

$ The following discussion primarily concerns synchronous
machines. In asynchronous machines, state assignment
problems occur because of the possibility of races, hazards,
and the like. However, Pradhan and Reddy [1974b] have
extended these principles to asynchronous machines, and
Pradhan [1978b] described a method of realizing fault­
tolerant asynchronous coded-state machines using read­
only memories.

k Outputs
(functional)

(n - k)
Outputs
(check)

Figure 3-68. Division of logic network into sub­
units for outputs in k independent sets.

signals. If p = 1 the result is a single set of
output signals that forms an (n, k) code word.
Conceptually, the check-bit units are not difficult
to design, for the check-bit functions can be
derived as the XOR of the appropriate output-bit
functions.

Combinational logic of the type illustrated in
Figure 3-68 is used to provide both coded output
signals and coded feedback (next-state) signals
for the machine. The decoder/corrector for the
state signals is placed betwe.en the memory ele­
ments and the current state inputs to the combi­
national logic. In this way, faults in both the
combinational logic and the memory elements
can be tolerated. In a companion paper to Arm­
strong's, Ray-Chaudhuri [1961] developed a class
of minimally redundant codes tailored to this
application.

Armstrong showed that, w~en coupled with
maintenance (faulty component replacement), a
state machine implemented in this fashion has a
greatly improved reliability over that of the
equivalent nonredundant version. He also stated
that for some large systems this technique yields
a redundancy at least as great as for triplication,
but that for others it may be considerably less.

140 THE THEORY OF RELIABLE SYSTEM DESIGN

The actual redundancy can be determined only
by a detailed design.

Others have worked on this concept since
Armstrong's paper. Frank and Yau [1966] pro­
posed designing sequential machines using error­
code state assignments. Mandelbaum [1972b]
suggested a scheme in which, given a sequential
machine M, a simpler machine M' is derived
into which the states of M can be mapped. M' is
operated independently of M, but with the same
inputs, and supplies the check bits for the state
encoding. Meye-r [1971] discussed state assign,.
ment and design realization for tolerance of
memory-cell faults. Russo [1965] proposed fault­
tolerant counters with distance-3 coded states.
Reed and Chiang [1970] discussed error-coded
state counters and also offered a synthesis proce­
dure for fault-tolerant sequential circuits. Larsen
and-Reed [1972] presented a synthesis procedure
for fault-tolerant sequential machines. Using an
analysis based on this procedure, they demon­
strated that for a given ability to tolerate faults,
replication is more reliable as well as simpler to
implement. Conversely, they found that for a
fixed complexity (gate count, cost), schemes that
use orthogonal (majority-logic decodable) codes
are more reliable. Osman and Weiss [1973] de­
veloped a technique that can be used to reduce
the redundancy in fault-tolerant logic. In Figun~
3-68 it can be seen that considerable redundancy
is incurred by separate generation of the outputs;
their technique allows some of the circuitry to be
shared between modules generating the output
functions. If this sharing is performed properly
the reliability is not affected and there are con­
siderable savings. Osman and Weiss applied this
technique to triplication and to parity-check
codes.

DYNAMIC REDUNDANCY

Fault-detection techniques provide a means of
flagging the potential presence of errors emanat­
ing from a digital system. In addition, fault
detection offers an increase in system availability

through more rapid failure diagnosis. However,
because it does not provide tolerance, fault de­
tection alone does not improve system reliability
(at least not in terms of the reliability function).
On the other hand, fault-masking techniques
improve system reliability by allowing a system
to operate correctly in the presence of failures.
Also, minor amounts of extra redundancy can
add the benefits of fault detection (error flagging
and rapid diagnosis) to a fault-masking design.
Fault masking in turn is limited by its static
configuration: a system employing a fault-mask­
ing technique cannot heal itself, but only hide its
failures. Eventually, the accumulation of failures
is large enough to saturate the fault-masking
ability, and the entire system fails. In a TMR
system, for example, the failure of a second of
the three modules causes system failure: even
though a good module is still available, the two
failed ones outvote it.

Another approach to increased reliability uti­
lizes redundancy in a dynamic way. Dynamic
redundancy techniques involve the reconfigura­
lion of system components in response to fail­
ures. The reconfiguration prevents failures from
contributing their effects to the system operation.
In many instances reconfiguration amounts to
disconnecting the damaged units from the sys­
tem. If fault masking is used as part of the
dynamic redundancy scheme, the removal of
failed components may be postponed until
enough failures have accumulated to threaten an
impending nonmaskable failure.

Reconfiguration is triggered either by internal
detection of faults in the damaged subunit or by
detection of errors in its output. * Thus, fault­
detection techniques (with or without masking)
form the basis of dynamic redundancy. A sys­
tem's chance of a successful reconfiguration is

* Reconfiguration can be performed either automatically by
the system itself (on-line repair) or manually by operations
or maintenance personnel (off-line repair). In the first case,
the system experiences a temporary pause before operation
continues; in the second, the halt is longer and may require
complete reinitialization. Hence, on-line repair improves
both reliability and availability, whereas off-line repair
usually only increases the availability. The emphasis in this
section is upon on-line repair.

RELIABILITY AND AVAILABILITY TECHNIQUES 141

greatly dependent on its fault detection ability.
Three issues are involved in the employment of
fault detection in a reconfigurable system. The
first is the confinement of fault effects before
unrecoverable damage occurs; the second is
fault detection; and the third is correct diagnosis
of the failure location, so that the faulty unit­
and only the faulty unit-is marked for remedial
action (removal and/or replacement). Thus the
two fault-detection criteria of coverage and diag­
nosability (see the earlier section on Fault-Detec­
tion Techniques) are important factors in the
choice of a detection technique. Detection cover­
age in particular is commonly used in deriving
the reliability formula of a dynamically redun­
dant system. In modeling dynamically redun­
dant systems, coverage is often generalized to
mean the probability of a successful reconfigura­
tion; successful fault detection then becomes
only one of the factors in determining coverage
along with the probabilities of successful error
confinement and resource switching.

The following subsections present several dy­
namic redundancy techniques that utilize a com­
bination of fault detection, fault masking, and
reconfiguration. The first subsection discusses
methods that use duplication for detection as
well as for fault tolerance; the second treats N­
modular redundancy-based designs. Duplication
and N-modular redundancy-based reconfigura­
tion requires massive amounts of redundanc'y J

solely for error detection (and/or correction).
Other, less redundant forms of fault detection
(correction) can also provide a basis for dynamic
redundancy. The more hardware-efficient detec­
tion techniques (such as parity, ECC codes,
timers) can be used to monitor the health of
individual modules. Such detectors can be lo­
cated either inside or outside the modules they
monitor. They can exist either in hardware or
software. The subsections on Backup Sparing,
Graceful Degradation, and Reconfiguration
present reconfiguration techniques that are
usually based on the less redundant detection
methods. Backup sparing is the provision of
spare units that remain unused until an active
unit fails. In graceful degradation, the function-

ality and/or performance is allowed to degrade
as parts of the system fail and are removed
without replacement. The subsection on recon­
figuration presents miscellaneous dynamic re­
dundancy techniques that do not fit into the
categories provided by the other sections.

The effect of transient errors on the various
reconfiguration techniques is not discussed be­
low. If there is no specific mechanism for deter­
mining that an error is due to a transient, per­
fectly good modules may be switched out when
a transient occurs. Fortunately, there exists a
technique which is common to most of the
reconfiguration methods discussed below. This
technique, called retry, returns the module ini­
tially diagnosed as failed to the system for anoth­
er chance. Detection of an error immediately
after the module is returned to service is a good
indication that the module is in fact defective.

The final subsection on dynamic redundancy
discusses recovery, the actions taken after recon­
figuration to erase failure effects and restore the
state of the system and the process(es) it was
executing before the failure. Recovery is usually
performed by special software, but often requires
some support by hardware mechanisms.

Reconfigu rable Dupl ication

Fault detection by duplication and comparison
was discussed earlier in this chapter. In a static
configuration, a duplicated system does not pro­
vide fault tolerance, for only disagreement can
be determined in the presence of a fault. Two
enhancements to the duplicated system can,
however, produce fault tolerance. * The first en­
hancement needed is the ability to determine
which of the two modules is faulty if a disagree­
ment is detected. The second is the ability to

* In this discussion duplication is considered only as the
basis for fault detection. This form of duplication should
not be confused with "duplication," in which an extra copy
is presented as a standby spare, and is not used for fault
detection by comparison. The latter form is discussed in
subsequent subsections.

142 THE THEORY OF RELIABLE SYSTEM DESIGN

disconnect the faulty module and at the same
time disable the comparison element. Thus, upon
fault detection (mismatch), diagnosis determines
the faulty copy, which is then removed from
service. The resulting simplex system continues
to function.

Figure 3-69 illustrates the concept of reconfig­
urable duplication. In the figure, only one of the
duplicated units (the active unit) is connected to
the system outputs. The other (standby) unit is
functioning in parallel with the active unit but is
not connected to the outputs. In practice, the
duplicate modules are often resident on the same
bus (or buses), and the switching function is
performed by the bus interface unit in each
module.

When a fault is detected by a mismatch, there
are several means of determining the faulty copy
and switching it out. Four methods are discussed
here. The first is to run a diagnostic program. In
the Bell ESS-2 (Chapter 12), for example, the
active processor runs a self-diagnostic program.

Unit
A

(on-line)

Unit
B

(off-line)

Comparison
signals

.... -------.... -Inputs

Figure 3-69. Reconfigurable duplication. A detect­
ed mismatch during comparison of characteristic
signals triggers reconfiguration.

If the diagnostic is failed, control is passed to the
standby processor. The faulty processor is taken
off line to run maintenance programs that facili­
tate its rapid repair. Figure 3-70 shows a block
diagram of the ESS-2 organization.

Another means of identifying the faulty copy
is to include self-checking capabilities in each
module. The joint occurrence of an internally
detected fault and a mismatch provides imme­
diate determination of the faulty copy. The use
of comparison in addition to self-checking pro­
vides more coverage than self-checking alone.
The UDET 7116 telephone switching system
control [Morganti, Coppadoro, and Ceru, 1978],
for example, uses a set of internal hardware
checkers (such as parity or timers) to automati­
cally switch a faulty CPU out of service. The
primary detection mechanism in the UDET
7116, however, is duplication. When a mismatch
occurs with no internal alarm indication, both
CPUs are taken off line and forced to run
diagnostics. The first to successfully complete its
self-diagnosis becomes the active CPU. The Bell
ESS-l, -lA, and -2 processors also use internal
self-checking in conjunction with duplication.
Finally, the internal detection mechanisms can
also be used in conjunction with diagnostic
software.

A third approach to determining the faulty
processor is to use a watchdog timer. In the Bell
ESS-2, for example, the active processor must
reset a timer periodically. If it fails to do so, the
timer automatically invokes a change of control
to the standby processor. Thus, the timer pro­
tects the system when the active processor be­
comes stuck while attempting to perform the
diagnostic after a mismatch has occurred. Tim­
ers are used in another fashion in the Bell
ESS-IA. When the current configuration does
not function, a set of timers is used to force a
sequence of reconfigurations until a working
configuration is found .

The last method of configuration selection is
to use an outside arbiter to control the configu­
ration. In the COMTRAC railroad traffic control

RELIABILITY AND AVAILABILITY TECHNIQUES 143

r------------

Processor
o

Processor
1

r-c=======l===-- Error signals

Match

Maintenance
center

• Halt off-line
central control

• Run detection
programs in
on-line central
control

Figure 3-70. Reconfigurable duplication in Bell ESS-2. The two processors run
synchronously; comparison of the call store input registers is performed
constantly.

;omputer [Ihara et aI., 1978], a mismatch forces
)oth processors to run identical test programs.
[he test program exercises the en tire processor
n the course of calculating a single constant. If
1 failure is present, there is a high probability
:hat the calculation will result in a wrong answer.
[he results from the two processors are com­
)ared with a stored constant by a special con­
:roller (called the Dual System Controller, or
DSC), as shown in Figure 3-71a. Based on the
~esults of the test, the DSC performs the proper
::onfiguration action. Designers at Boeing Aero­
ipace used a similar concept in a duplication­
based design of a prototype aerospace computer
:Wachter, 1975]. In the Boeing design, the recon­
tiguration control logic can be accessed only by
a "good" machine, that is, one that can success­
fully construct two levels of key words. The key
construction process is designed to make suc­
cessful key construction by a faulty processor
unlikely.

The problems of synchronization with repli-

cated processes has been discussed previously
(see the subsections on Duplication and N-Mod­
ular Redundancy with Voting). Three examples
of different synchronization methods that can be
applied to reconfigurable duplication systems are
presented here. In the first, the duplicated mod­
ules perform in lockstep to a common clock,
synchronized at the microcycle level. This
method is used on the Bell ESS-l, -lA, and -2
processors, as well as the UDET 7116. Compar­
isons in these telephone-switching control pro­
cessors are performed at the end of each clock
period.

The AXE telephone switching control [Oss­
feIdt and Jonsson, 1980] uses a different method
of synchronization. Each of its two processors is
formed of asynchronous functional units (e.g.,
microinstruction generator, ALU) that commu­
nicate via an internal bus (CPB), as shown in
Figure 3-72. One of these units is the update and
match unit (UPM), which performs the detection
function. On most microinstructions, data from

144 THE THEORY OF RELIABLE SYSTEM DESIGN

Interrupting
sig. to computer

I
I
I

Calc. "End" signal
L _____________ ...J

a. Organization of the dual system controller
with respect to configuration control

Figure 3-71. Synchronization, matching, and reconfiguration in the COM­
TRAC computer. Synchronization and matching are performed at the task
level, [lhara et aI., 1978]. (@ IEEE 1978.)

the active processor CPB is input to a buffer in
the standby processor's UPM. The data are held
in the iluffer to await comparison with the data
on the standby processor's CPB. Synchroniza­
tion of the two pro.cessors is performed by the
UPMs, which keep a count of the bus cycles. The
UPM on the faster side periodically brings its
processor back into synchronization by simulat­
ing a busy signal on the controllin.es of its own
CPB.

A third method of synchronization is used by
the COMTRAC system. Synchronization is
maintained at the program task level. The Dual
System Controller (DSC) is used to ensure that
both processors are performing the same calcula­
tions. When both computers have finished the
calculation, the DSC compares the two results. If
a mismatch occurs, the DSC then invokes the

diagnosis mode discussed earlier. Figure 3-71 b
illustrates the procedure.

A simple reliability model for a reconfigurable
duplication system with individual module reli­
ability Rm is:

In Equation 4, Rk is the reliability of the control,
switching, and matching circuitry. C is the cov­
erage factor, and represents the combined prob­
ability of successful fault detection and reconfig­
uration. A system with reconfigurable duplica­
tion can achieve increased reliability and availa­
bility if a faulty module can be repaired while
the rest of the system remains on line. In such a
case the model of Equation 4 is pessimistic. The
more complex modeling techniques of Chapter 5

RELIABILITY AND AVAILABILITY TECHNIQUES 145

'0 c Same calc. ends by two computers

~~
QJ I'!l
QJ:i

-:5 ~ Let two computers write the
S ~ calc results in the registers
.~ ~ 1 and 2
I'!l C
~

Let two computers start the
test routine and write the

results in the registers 1 and 2

Compare
Register 1:C

Compare
Register 2:C

Stop both computers

Single-computer
operation by II

Single-computer
operation by I

b. Algorithm for fault detection by comparison,
synchronization, and reconfiguration

Figure 3-71-Continued

(such as Markov modeling) are needed to prop­
erly evaluate a system with repair.

Reconfigurable NMR

One of the drawbacks of N-modular redundancy
with voting (NMR) is that fault masking ability
deteriorates as more copies fail. The faulty mod­
ules eventually outvote the good modules. How­
ever, an NMR system could continue to function
if the known bad modules could be discounted
in the vote. Two methods of reconfiguration
based on NMR realize this potential. The first,
hybrid redundancy, replaces failed modules with

previously unused spares. The second is to mod­
ify the voting process dynamically as the system
deteriorates. The latter method actually encom­
passes a variety of techniques, which can be
loosely classified under the term adaptive voting.
Both hybrid redundancy and adaptive voting
depend upon detection of disagreements and the
ability to determine the identity of the module(s)
not agreeing with the majority.

Hybrid Redundancy

Hybrid redundancy obtains its name from the
fact that it is the wedding of two redundancy

146 THE THEORY OF RELIABLE SYSTEM DESIGN

RPB A
RPB B

CPA CPB

L._._._._._._._._.j

OS Data Store MIG Micro Instr. Generator
PS Program Store PCU Priority Control Unit
RS Reference Store TRU Trace Unit
CPB Central Processor Bus DSH Data Store Handler
RPB Regional Processor Bus LlU link and Instr. Addr. Unit
MAU Maintenance Unit PSH Program Store Handler
CPU Central Processor Unit UPM Updating and Match Unit
TCU Table and Counter Unit RSH Reference Store Handler
ALU Arithmetic Logic Unit SBU Shift and Bit Handling Unit
BAM Mainte'lance Buffer Unit PTH Processor Test Handler

RPC

RPI

CM
PTB
UMB
CP

Regional Processor
Controller
Regional Processor
Interface
Control Memory
Processor Test Bus
Updating and Matching Bus
Central Processor

Figure 3-72. Organization of the duplicated processor in the AXE telephone­
switching control processor. (@ 1980 IEEE.)

techniques: N-modular redundancy with voting
(discussed earlier) and backup sparing (discussed
below). Figure 3-73 illustrates the basic concept.
A "core" of N identical modules is in use at any
one time, with their outputs voted upon to
produce the system output. When a disagree­
ment is detected, the module or modules in the

minority are considered to be failed and are
replaced by the equivalent number of spare
modules. Initially the system contains a total of
(N + S) modules. As long as there are never
more than t = LN/2J failed modules in the core
before reconfiguration can take place, the system
can tolerate the failure of P = (t + S) of its

RELIABILITY AND AVAILABILITY TECHNIQUES 147

N+S
functional

units

Voter-Switch-Detector (VSD)
~ ____ ~A~ ________ ~

Switch
Select

N out of
(N + S)

L..-~r-----l N

Control
lines

Disagree­
ment

detector

Voted
output

Figure 3-73. Basic organization of a hybrid­
redundant system.

modules. Thus, assuming the reliability of the
modules on standby is the same as for those on­
line, the system reliability is:

.; (N+S-i) ()i (5)
Rsys = Rysd .~ n+sCi Rm 1 - Rm .

1=0

Rm is the individual module reliability, and Rysd

is the reliability of the unit comprised of the
voter, switch, and disagreement detector (VSD
unit). Equation 5 is a simple model. It assumes
that, as long as there are spares remaining,
reconfiguration occurs before there are enough
failed modules in the core to outvote the good
modules. The model also does not take compen­
sating failures into acccount. One final factor not
considered is that the standby units may be
unpowered until they are switched in. A module
in an unpowered state will probably have a lower
failure rate; if so, Equation 5 will provide a
pessimistic estimation of the system reliability.

Mathur and Avizienis [1970] derived a reli­
ability model for hybrid redundant systems that
takes the standby. failure rates into account.
They then used the model to examine the trade­
offs between N, S, and Rm' The VSD unit is
assumed to be perfect (Rysd = 1). Figure 3-74
demonstrates the use of the model for a hybrid
TMR system with up to six spare modules. In
Figure 3-74a, the standby failure rate is assumed
equal to the active state failure rate, with the

eC'

0.60 ~---1-+-++-;-~;ot-=-----+----;

0.40 I---I--A--:.f---i~r--+----t----i

0.20 0.40 1.00
RM

a. System with standby failure rate equal
to on-line failure rate

0.40 I---I--+---V-~~~-+---t-------i

0.20 f-f+-+-""lIF--+-

1.00

b. System with standby failure rate 10% of
on-line failure rate.

Figure 3-74. Plots of hybrid TMR system reliability
{Rs} vs. individual module reliability {Rm}. 5 is the
number of spares. (@ 1970 IEEE.)

result that a system with one spare is more
reliable than a simplex system if Rm > 0:23.
Figure 3-74b assumes that the standby failure
rate is only 10 percent of the active failure rate.
The crossover point has shifted, and a system
with one spare is more reliable than the simplex
system if Rm > 0.17. Another result of the
model is that for a system with one spare, a
TMR system (N = 3) is more reliable than an
NMR system (N > 3) if Rm < 0.55. For a sys­
tem with two spares, a TMR system is better
than an NMR system if Rm < 0.62.

Examination of Equation 5 shows that hybrid
system reliability is greatly dependent on the

148 THE THEORY OF RELIABLE SYSTEM DESIGN

switch complexity. If every spare can be con­
nected with every voter (total assignment), it can
be seen that as the core size (N) and the number
of spares (S) grow, the switch complexity grows
even more rapidly. Eventually, the switch unreli­
ability dominates the reliability of the system,
and the hybrid system becomes less reliable than
a simplex system. Siewiorek and McCluskey
[1973a] demonstrated that total assignment is not
necessary. Assuming a perfect switch, the same

. reliability is achieved even if only (I N/2l + 1) of
the voter inputs can be connected to every spare
module. (Note that for N = 3, this is the same as
total assignment.) Because no switch can in

Clock

Modules

practice be perfect, such a partial connection
strategy tends to be more reliable than the total
assignment strategy; the switch for partial con­
nection is less complex and thus more reliable.

In a companion paper, Siewiorek and McClus­
key [1973b] presented a design for a low-com­
plexity switch. Figure 3-75 shows the iterative
cell array switch for a TMR core. The switch
works in the following fashion. A clock pulse
causes the outputs of the modules to appear, and
the outputs of the N core modules are gated to
the voter inputs. The same clock pulse, suitably
delayed in accordance with the VSD unit propa­
gation delays, loads disagreement signals into the

Disagreement
detectors

Interconnection
logic

Figure 3-75. An iterative cell switch for a TMR core and two standby spares.

RELIABILITY AND AVAILABILITY TECHNIQUES 149

condition flip-flops. Based on the condition of its
corresponding module (agree/disagree with the
voted output) and the condition of the iterative
cells to its left (0, 1, 2, or [3 or more] good
modules present), each iterative cell decides
whether to connect its module to the voter, and
if so, to which voter input. Table 3-16 contains
the cell state and output tables for the iterative
cells used in the design of Figure 3-75.

One of the problems with an iterative cell
switch of the form of Figure 3-75 is the propaga­
tion delay through the chain of iterative cells,
particularly for large Nand S. Siewiorek and
McCluskey proposed three different solutions to
the problem: carry bypass, carry lookahead, and
redesign of the cell. The first two solutions are
similar to those found in fast adders. The last

Table 3-16. Cell state and output tables for the
iterative cell switch network of Figure 3-75.

Current State

(number of previous Failed
cells functional) 0

A (zero)
B (one)
C (two)
D (three +)

Current State

A
B
C
D

Next State
(a) Cell state table

Failed
0

Functional
1

B
C
D
D

Functional
1

A (zero) 000 100
B (one) 000 010
C (two) 000 001
D (three +) 000 000

J)i J-2i ~i

J~/: Connect module i to voter input).

(b) Output table

Source: Siewiorek and McCluskey [1973b].

solution, cell redesign, was shown to be the
fastest for (N + S) < 12, while the carry bypass
method was shown to be the least complex.

Finally, the iterative cell switch (or any other
hybrid redundancy switch) was shown to be
simpler if a threshold voter with (N + S) inputs
is used. The threshold is set at «N + 1)/2), and
the switching function is realized merely by using
AND gates to connect modules to the voter
inputs.

Siewiorek and McCluskey [1973b] modeled
the cost and complexity of several different ap­
proaches to designing switches for hybrid redun­
dancy, and found the iterative cell switch to be
generally superior. Ingle and Siewiorek [1973b,
1976] proposed reliability models for various
switch designs. Assuming that switch complexity
grows linearly with Nand S (the iterative cell
method approaches this growth), they found that
there is a number of spares for which reliability
is maximized, and beyond which the reliability
decreases. In addition, they found that maxi­
mum reliability for most hybrid TMR systems is
reached with one or two spares. Finally, it was
found that hybrid TMR systems may have lower
mission times than simple TMR systems. Ogus
[1973, 1974] obtained similar results in another
analysis of iterative cell switch reliability. *

Adaptive Voting

Adaptive voting is a technique in which, for
modules i, the voter inputs nj are weighted by the
factors a j • In the pure form of adaptive voting
the decision is based on the sum ~ aini, using a
threshold detector. The aj are modified over time
by the accumulated history of disagreements and
fault detection. In practical digital systems the a j

are usually zero or one, and the voting mayor
may not be performed by a threshold voter.

* A derivation of complexity and reliability models for
hybrid redundancy is presented in Chapter 5.

150 THE THEORY OF RELIABLE SYSTEM DESIGN

Thus, hybrid redundancy can be considered a
form of adaptive voting, with the aj determined
by the switch. Discussed here are two other
proposed forms of adaptive voting techniques:
NMR/simplex and self-purging redundancy.

In NMR/simplex systems [Mathur, 1971a;
Mathur and DeSousa, 1975], the initial configu­
ration is conventional NMR. When one module
fails, it and one other module are removed from
the system, leaving an (N - 2) modular redun­
dancy system. The removal of two modules
preserves the property that all votes are unam­
biguous; no tie is possible. Eventually, the sys­
tem deteriorates to a simplex system. C.vmp (see
Chapter 7) or any other TMR system capable of
independent (nonvoting) mode operation has the
potential of being a TMR/simplex system with
only minor modifications. Upon detection of a
failure, a TMR/simplex version of C.vmp would
go into independent mode operation, with the
on-line processor selected from the two remain­
ing processors. The NMR/simplex concept can
be extended to allow the intermediate step of
duplicate operation (detection with a standby
spare) before the final step of simplex operation
is necessary.

Figure 3-76 illustrates self-purging redundancy
[Losq, 1976].* A comparison of Figures 3-75 and
3-76 shows a similarity between self-purging
redundancy and hybrid redundancy implement­
ed with an iterative cell switch. This is particular­
ly true if the hybrid redundant design incorpo­
rates the threshold voter simplifications men­
tioned previously. In self-purging redundancy,
all P modules are initially connected to the voter,
and are removed only when they disagree with
the voted output. The delayed clock line avoids
spurious resets caused by delay in the voter.
Module retry (in case of transient errors) and

* The switching circuitry in Figure 3-76 is altered from
Losq's design by the addition of the delayed clock line and
the attached AND gates. This is necessary to avoid spu­
rious flipflop resets due to the propagation delay of the
voter. The AND gates can be eliminated if clocked SR
flipflops are used.

system initialization are accomplished via the
retry line. For hybrid redundancy with a TMR
core, the iterative cell switch for each module
requires 8 gates and a flip-flop, including the
AND gate for gating the module output to the
voter input. (This is for a threshold voter only.
The majority voter iterative cell switch requires
even more gates.) The self-purging switch, on the
other hand, requires only 3 gates and a flipflop
for each module, regardless of the number of
redundant modules in the system. The decreased
complexity of the self-purging redundancy
switch is one reason for its being more reliable
than the hybrid redundancy switch. The other
factor is that a single failure in the self-purging
redundancy switch element attached to one
module will not affect the other switch elements
and modules. In contrast, a failure in an iterative
cell may cause an error that will propagate to
other switch cells via the carry lines.

The threshold for a P-module self-purging
system voter can be as low as I if 0-to-1 errors
cannot occur, and as high as (P - 1) if 1-to-0
failures are impossible. If O-to-I errors do occur,
the threshold must be higher than 1. This is
particularly true if stuck-at-1 failures can occur
in a switch output. Losq found that in general,
the optimum threshold for a self-purging system
is equivalent to half the number of remaining
good modules. The variable threshold can be
obtained by using a threshold voter with P
weight-2 inputs and P weight-I inputs (or a
threshold voter with 3P weight-1 inputs). The
weights of the inputs are the weights used when
summing inputs to determine whether the thresh­
old is reached (weighted sum); thus, a weight-2
input counts twice as much as a weight-I input.
The Q' output of each condition flipflop, shown
unconnected in Figure 3-76b, is connected to a
weight-1 input; the gated module output is con­
nected to a weight-2 input (or two weight-I
inputs).

After deriving an accurate and simple reli­
ability model for self-purging redundancy, Losq
. demonstrated that if the standby failure rate is

RELIABILITY AND AVAILABILITY TECHNIQUES 151

Initialize
and
retry

p

Voted
system
output

Figure 3-76. System using self-purging redundancy.

equal to the active failure rate, the self-purging
design is potentially more reliable than the
equivalent hybrid redundant design. Unfortu­
nately, threshold gates are analog circuit ele­
ments; large threshold gates are not available as
standard integrated circuits. As a result, either
threshold voters must be implemented from dis­
crete components or from standard logic gates
and they become prohibitively complex for even
moderate numbers of inputs. Though not consid-

ered in the analysis above, this practical limita­
tion on threshold voters must be taken into
account when considering the use of self-purging
redundancy or any other technique that includes
a threshold voter. For a large number (P) of
redundant modules, a self-purging system re­
quires a complex (thus, less reliable) and expen­
sive threshold voter. In a hybrid system with the
same number of redundant modules, however,
the threshold voter complexity is limited because

152 THE THEORY OF RELIABLE SYSTEM DESIGN

it has only N inputs, not the (N + S) = P inputs
required for the self-purging system; the hybrid
system may thus be more reliable and less com­
plex than the self-purging system. Table 3-17, in
the section on Reconfiguration, gives some ex­
amples of the relative complexities of the restor­
ing organs for hybrid and self-purging redundan­
cies.

Four examples of actual systems employing
reconfigurable N-modular redundancy tech­
niques are the JPL STAR, the Space Shuttle
computer, FTMP, and SIFT. All except the
Space Shuttle computer are described in detail in
later chapters. The test and repair processor
(T ARP) in the JPL STAR spacecraft computer
(Chapter 14) is hybrid redundant. The T ARP
must be ultrareliable, because it forms the "hard
core" -the part of the system that must be
functioning to enable the system to be reconfig­
ured. The TARP design uses hybrid TMR with a
threshold voter.

The Space Shuttle computer [Sklaroff, 1976;
A WST, 1981] uses four of its five computers as a
redundant set during critical mission phases, in a
fashion similar to NMR/simplex; the fifth per­
forms noncritical tasks in simplex mode and acts
as a simplex backup for the primary system. The
control outputs of the four primary computers
are voted on at the control actuators. In addi­
tion, each computer listens to the outputs of the
three other computers and compares those sig­
nals with its own via special software. If a
computer detects a disagreement, it signals the
disagreeing computer. The received disagree­
ment detection signals are voted on in the redun­
dancy management circuitry of each computer;
if the vote is positive, the redundancy manage­
ment unit removes its computer from service. Up
to two computer failures can be tolerated in
voting mode operation. After the second failure,
the system converts to a duplex system that can
survive one additonal computer failure by using

. comparison and self-test methods. The fifth com­
puter contains a backup flight software package
written by Rockwell International, while the

package running on the primary computers was
written by IBM. This is in case program bugs are
encountered in the primary software during
flight.

The FTMP computer (Chapter 17) is imple­
mented from a set of processor/cache, memory,
and I/O modules, all interconnected by redun­
dant common serial buses (Figure 3-77a). Com­
putations are performed by triads: three pro­
cessor/caches* and three memories performing
the same operation in voting mode and synchro­
nized at the clock level. Voting is performed in
each memory and each processor/cache at its
interface to the bus. Thus, because most proces­
sing utilizes the cache, voting is not necessarily
performed at every clock cycle, but whenever
data is transferred over the bus. Multiple triads
can operate at the same time, thereby affording
multiprocessing capabilities. Configuration is
controlled by a redundant "bus guardian" in
each module that controls access to the bus.
Upon detection of a module failure, once the
affected triad has completed its current opera­
tion another triad forces reconfiguration of the
affected triad. If sufficient spares are available,
the failed module is replaced. Otherwise, the
triad is broken up and the good modules are
added to the pool of spares.

The SIFT computer (Chapter 16), on the other
hand, is implemented from a set of self-con­
tained computers and redundant buses (Figure
3-77b).** Each computer broadcasts its results,
and software voting is performed in each com­
puter at intermediate points in each NMR task.
Synchronization and reconfiguration are also

* The term cache used in this context is misleading, for the
memory unit attached to the processor does not perform
quite the same function that a cache in a high-performance
computer does. A better term would be local or scratchpad
memory.

** The bus shown in Figure 3-77b is consistent with the
SIFT design in Chapter 16. The current implementation
of SIFT, however, does not use redundant buses. Instead,
a totally connected scheme is used, in which a pair of
unidirectional serial links connects each pair of computers
(one link in each direction).

Memory
Modules

M

M

M

M

•
•
•

M

0

M

M

I-- .----

f-- L-.

f-- ,--

f-- ~

I-- .----

- '--

- r--

f-- L.-

f-- .----

- '--

- r--

- '--

- .----

Processor
modules

P

P

P

P

•
•
•

P

0

P

P

Memory
access
buses

r---

I--

I--

I--

I--

t--

t--

I--

I--

I--

-
-

-
-

Redundant buses and dock
(processors and memories

grouped in triads)

a, The FTMP structure

RELIABILITY AND AVAILABILITY TECHNIQUES 153

Interface Redundant buses
access
buses

liD access
units

Ir k=> liD

r ,"
I I

'-- Bus
- control

I-J

•
•
•

-

k=> 1- liD

r

1 I I

L.- Main

L---

k=> I liD

L
r- liD K=>

r-- computers
P'

1 I I

- liD
'---- computers

J

jIll
Redundant liD

b. The SIFT structure

Figure 3-77. Block diagrams of the FTMP and SIFT flight control computers
[Rennels, 1980]. (@ 1980 IEEE.)

154 THE THEORY OF RELIABLE SYSTEM DESIGN

performed by software. Reconfiguration occurs
through ignoring the broadcasts of known bad
computers and reallocating tasks to nonfaulty
computers. Critical tasks are performed in an
NMR fashion (the redundancy N is variable,
depending on the criticality); noncritical tasks
can be executed by single computers.

Backup Sparing

In hybrid redundancy there is a core of N
modules operating in parallel, with a voter deter­
mining the system output. In addition, there is
initially a set, S, of backup spare modules that
can be switched in to replace failed modules in
the core. The concept of backup spares can also
be combined with redundancy techniques other
than N-modular redundancy. In general, some
means of failure detection is used to trigger the
replacement of a failed on-line unit with a spare.
The detection means can be internal (either
through self-test or the use of self-checking cir­
cuitry), external (such as timer, parity check, '
reasonability check), or some combination of
internal and external checks. As with hybrid
redundancy, the switch complexity is an impor­
tant factor. Another concern is the effectiveness
of the failure detection techniques used. In
Chapter 5, a few simple models of standby
sparing reliability are derived. A more general
reliability model of a system with standby spar­
ing is [Bouricius et aI., 1971]:

R(t;s,C,q,A,}-t) = R(t;(s - 1),c,q,A,}-t)

+ (ta[-R(u;(s-l),I,q,A,}-t)] (6)
)0 au

where

. (cSe-J-LUe-q"A(t-u)du)

q = the number of on-line mod­
ules required

s = the initial number of spare
modules

(q + s) = the total number of modules
in the system

c = the probability of successful
. replacemen t by a spare
(coverage)

A = failure rate of an on-line
module

JL = failure rate of a standby
module*

The recursive form of Equation 6 can be
transformed by induction on s:

S

R(t;s,C,q,A,JL) = e-qAt [~ aCkck(I - e-J-Lt)k]
k=O

where a = (qA/p,) + k - 1. This model does not
explicitly include the reliability of the switch,
detection elements, and control circuitry (SDC
unit). If any failure in the SDC unit is assumed
to cause a system failure, the reliability of the
system is:

RSDC(t)· R(t;s,C,q,A,JL). (7)

If, however, compensating failures can occur (as
with some switch failures; see Chapter 5 for
discussion of modeling compensating failures),
modeling a spares-switching system becomes dif­
ficult. Sometimes the coverage factor (c) is mod­
ified to include the effect of some or all failures
in the SDC unit, thereby retaining the simplicity
of the model of Equation 7. The increased ease
of modeling is gained at the cost of decreas~d
accuracy.

One widely used application of spares switch­
ing is in systems that are bit- or byte-sliced (such
as Figure 3-78). Possibilities include memories
physically assembled from a set of bit planes,
and ALUs made from ALU byte slices (such as
the Am2903). Figure 3-79 shows a possible im­
plementation of a byte-sliced ~ystem containing
a single spare slice (M4). Initially, all the input

* Spare modules that are unpowered (cold spares) may have
a lower failure rate than on-line modules or powered-up
spare modules (hot spares).

RELIABILITY AND AVAILABILITY TECHNIQUES 155

Inputs

h • b output lines

Figure 3-78. Circuit design of parallel byte-wide
modules.

MUXes are set to connect their right leg inputs
to the modules, and the output MUXes are set to
connect their left leg inputs to the system out­
puts. The MUXes could be replaced by pairs of
open-collector AND gates with outputs tied to­
gether. When a slice fails, the MUXes are reset
so that a bad slice is bypassed in both input and
output data paths. If, for example, module M2
has failed, M2 can be bypassed and M4 switched
in by resetting input MUX 2 to connect its left
leg input to M3, while output MUXes 2 and 3
are reset to select their right leg inputs. Figure
3-79 shows the states of the MUX control lines
during normal operation, and when module M2
is failed. The addition of more spares to the
circuit of Figure 3-79 requires more complex
arrangements. For example, the addition of a
second spare requires replacement of the two-to­
one MUXes by three-to-one MUXes, as well as
more interconnections.

In addition to the inclusion of more spares,
other concerns may affect the design of a spares
switch. The arrangement in Figure 3-79, for
example, will not work for memories in which
the information stored in the nonfailed modules
must remain in the same relational order both
before and after the spare is switched in. In the
example of a failure of module M2, bytes 0 and

1 are in their correct locations, but byte slice 3
now contains the byte slice 2 data, and byte slice 2
is blank. The recovery procedure for this situation
involves restoring the contents of two byte slices.
For this reason, an order-preserving switch would
be better. An order-preserving switch allows a re­
configuration that preserves the logical order of
the entire system except for the placement of the
failed module and its replacement. Order­
preserving switches, however, are more complex
than nonorder-preserving switches. For more com­
plex arrangements (such as order-preserving
switches with a large number of spares) an itera­
tive cell-switching network such as that proposed
in Levitt, Green, and Goldberg [1968] could be
used. The section below on Reconfiguration in­
cludes a brief discussion of such switching net­
works and methods of making the networks
themselves fault tolerant.

Bit-slice spares switching is often used for
memories. The data and program stores in the
AXE telephone exchange control computer [Oss­
feldt and Jonsson, 1980], for example, incorpo­
rate both a spare bit plane and a parity bit. Other
designs have combined spares switching with
error-correcting codes. For example, a design by
Carter and McCarthy [1976] combines a (22,16)
single-error-correcting (SEC/OED) code, erasure
correction, and a spare bit plane. A Boeing aero­
space computer [Wachter, 1975], designed for
extended missions without maintenance, uses a
(35,28) SEC code and four spare bit planes, with
two of the spares hot and two cold. The DEC
MF20 memory (for the DECSYSTEM-20) uses a
(44,36) SEC/DED code. In addition, the memory
has a single spare bit for each 8K words of mem­
ory. The spare bit can be switched in to replace
any bit in the 8K words that the system software
has determined to contain a hard failure.

The Saturn V launch vehicle computer [Dick­
inson, Jackson, and Randa, 1964], which uses
TMR for its functional modules, uses a backup
sparing technique for its memory. The Saturn V
memory operates in a duplex mode. The dupli­
cate copy, however, is not used for error detec-

Byte ° Byte 1 Byte 2 Byte 3

Byte ° Byte 1 Byte 2 Byte 3

Control input to MUX: ° (left leg), 1 (right leg)

Normal control line state: (in MUX 0, in MUX 1, in MUX 2) = (1, 1, 1)
(out MUX 0, out MUX 1, out MUX 2, out MUX 3) = (0, 0, 0, 0)

Control line state if M2 failed: in MUX = (1,X,0)
out MUX = (0,0,1,1)
X = don't care

Figure 3-79. Possible implementation of a system made from four byte-slice
modules, with a fifth module added as a spare.

-VI

Inputs ~

-l
J:
tTl
-l
J:
tTl
0

Input MUXes ;::c
-<
0
'Tl
;::c
tTl
r
;;
cc
r
tTl

Modules VJ
-<
VJ
-l
m
3::
10
tTl
r/l

C;
Z

Output MUXes

Outputs

RELIABILITY AND AVAILABILITY TECHNIQUES 157

Memory
bank

o

Memory
bank

1

Memory bus

Memory
bank
M-1

Shadow
box

Figure 3-80. The shadow box memory backup technique proposed by Arulpra-
gasm and Swarz.

tion. Error detection is accomplished by the
parity bit in each memory word and by monitor-·
ing of memory-access-line drive current. If an
error is detected in the on-line memory, opera­
tion is transferred to the standby memory with­
out interruption of service or loss of data.

Arulpragasm and Swarz [1980] proposed an­
other spare-switching memory architecture that
is able to preserve data through a failure occur­
rence. The concept, illustrated in Figure 3-80, is
an extension of the principle of product codes
(discussed earlier.) The spare memory box
(called the shadow box) is identical to the other
m memory boxes. However, a word stored at
address i in the shadow box is actually the XOR
of the words stored in the locations i in the on­
line memory boxes. The con ten ts of the shadow
box must be updated every time a word is
written into the memory. In other words, if MAil
denotes the contents of location i of the shadow
box, ~[i] the current contents of the same
location in box j, and ~'[i] the new contents,
then at every write into location i in memory box
j, the following operation is simultaneously exe-
cuted in the shadow box:

The details of the similar update action required
in a block-code memory are discussed in Chap­
ter 5. If one of the active memory boxes fails, the
shadow box replaces it. The contents of the lost
box can be resurrected by XORing the contents
of the remaining memory boxes with those of the

shadow box. In other words, if memory box k
fails, the following operation is performed:

k-\ m-\

A1s [i] = Ms [i] ED ~ ~[i] ffi ~ ~.[i].
j=O j=k+\'

In its simplest form, the shadow box method
requires a parity bit in each memory word for
failure detection. Arulpragasm and Swarz also
examined the extension of the shadow box con­
cept with the use of error-correction codes and
multiple spares. Finally, they projected the ef­
fects of the shadow box on system performance
and cost, and found them to be relatively small.

In other applications, the JPL STAR (Chapter
14) uses backup sparing extensively; the configu­
ration is controlled by the hybrid-redundant
T ARP (test and repair processor). The MECRA
computer [Maison, 1971] uses backup spares for
its counters and registers. MECRA has 8 Ham­
ming-coded registers and 4 spare registers. Any
of the spares can easily be used to replace any of
the active registers, since both the active and
spare registers are connected to the same internal
bus. The spares switching for the MECRA coun­
ters is implemented in the same manner. In
another application of standby sparing, Lewis
[1979] proposed a design for a fault-tolerant
clock for a TMR system, shown in Figure 3-81.
There are two oscillators, one of which is in
standby mode. When on-line oscillator failure is
detected, the spare replaces it. In addition to the
use of standby sparing for the oscillator, the
additional clock circuitry (such as failure detec­
tion, control, and shaping) is triplicated, with

158 THE THEORY OF RELIABLE SYSTEM DESIGN

Primary
OSC input

Secondary
OSC input

Switch over
logic

Clock
shaping
circuitry

Local
clocks

a. Clock circuitry in one TMR module

b. One of two oscillators, with a separate output for driving
clock circuitry on each TMR module.

Figure 3-81. Fault-tolerant clock for TMR system using standby sparing. © IEEE
1979.

each copy of the clock circuitry residing in one
functional module. The unique. feature of the
clock system is that careful consideration is
given to the avoidance of glitches, runt pulses,
pulse width variation, and missing clock pulses
during the switchover. The goal is to prevent any
anomaly in the clock output that might cause
desynchronization of the TMR system using the
clock.

In the final reference, Losq [1975a] proposed a
model for spare-switching systems using Mar­
kov chain techniques (see Chapter 5) and exam­
ined the effects of fault-detection coverage on
system reliability. He found that for short mis­
sion times a single spare results in the best
reliability; for longer mission times, the optimum
number of spares increases with mission time.
The addition of spares beyond the optimum
number decreases the chances of mission s.uccess
(mission reliability). Losq also derived a method
of determining the optimum number of spares.

Graceful Degradation

The dynamic redundancy techniques discussed
so far have one thing in common: redundant
units are used for error detection, correction,
and/or replacement of failed units. They can
perform no useful work until they have replaced
a failed on-line unit. Graceful degradation tech­
niques, on the other hand, use the redundant
hardware as part of the system's normal
resources at all times. There are two similar but
distinct graceful degradation perspectives. In the
first, system resources needed to attain a speci­
fied performance are designed so that continued
(though degraded) operation is possible in the
event of failures: degraded operation is prefera­
ble to no operation at all. In the second, extra
resources are added to a system to ensure that,
with a high probability of success, a minimum
performance level can be maintained in the
presence of failures. The extra resources are also

RELIABILITY AND AVAILABILITY TECHNIQUES 159

used to boost performance above t~e minimum
requirements; the augmented performance con­
tinues as long as the extra hardware is not used
in overcoming failure effects. The major purpose
of both perspectives is to allow system perfor­
mance to degrade gracefully while compensating
for failures. The distinction between the two
perspectives usually lies in the motivations for
including fault tolerance. The motivation for the
first perspective is the priority of a certain cost/
performance goal, along with some ability to
continue operation in the presence of failures
without regard to performance. A computer in­
tended primarily for time sharing is an example
of such a system. With the second perspective,
the motivation is that any performance below a
certain level is not acceptable; the latter is exem­
plified by real-time control processors for critical
applications (such as aircraft control). In many
gracefully degrading designs, it may be impossi­
ble to classify the design goals according to one
or the other perspective.

The first form of graceful degradation occurs
in a wide variety of commercial uniprocessor
systems. * In many computers, portions of mem­
ory can be removed from the address space if
they contain failures. This is often accomplished
through virtual address mapping facilities in the
hardware and/or operating system software. In
many disk memory subsystems, portions of indi­
vidual disks can be deallocated if they contain
permanent errors. The Univac 1100 operating
systems, for example, make a record of bad
tracks on a disk as soon as they are discovered,
and avoid using bad tracks when writing files
onto disk. The DEC V AX-l 1/780 performs a
similar function on its disk memory (Chapter 8).
In systems with multiple disk drives, the loss of
one, two, or more drives can be tolerated as long
as the data lost are not essential to system
operation.

* Many commercial systems contain only some of the aspects
of graceful degradation. The chief missing factor is the
ability to tolerate failures; although the systems can operate
in a degraded fashion, they must be manually reconfigured
(that is, the operating system is reinitialized after throwing
a few switches) after the failure causes a system crash.

Cache memories added to a system to improve
performance can be bypassed in the event of
failure. In the V AX-ll/780, set-associative-two
mapping in the cache allows the disabling of one
set of the cache when a cache failure is detected
(effectively turning off one half of the cache, and
using the other half as a directly-mapped cache.)
Because the cache is a write-through cache, there
is no data loss involved in turning off half the
cache. The VAX-ll/750 has a set-associative­
one cache; thus, it must shut down its entire
cache if a cache failure occurs, and the perfor­
mance degradation is greater than for the
V AX-ll/780. The Univac 1100/60 also has the
ability to shut down portions of its cache (Chap­
ter 10).

The Cm * and C.mmp multiprocessor systems
[Siewiorek et aI., 1978a, 1978b] are systems for
which it is not possible to specify which of the
graceful degradation perspectives is relevant.
Both Cm* and C.mmp were designed to exploit
the high performance possible with multiproc­
essors. Both machines, however, were also de­
signed to benefit from the high reliability that
results when a multiprocessor system is capable
of degrading gracefully with failures. Cm * and
C.mmp are both capable of withstanding multi­
ple processor and memory failures, and tasks can
be reassigned to other modules. The key to the
performance/reliability properties in multiproc­
essors like Cm * and C.mmp lies more in the
systems and application software than in the
hardware. In other words, the software must be
written to take advantage of the "hooks" that
exist in the hardware to provide graceful degra­
dation possibilities.

The Pluribus multiprocessor (Chapter 13), de­
signed as a modularly expandable interface mes­
sage processor (IMP) for the ARPANET, utilizes
the second perspective of graceful degradation.
Redundant Pluribus systems contain only one
extra processor, which is used to provide extra
throughput. If any processor fails, only the ex­
cess capacity is lost; although the Pluribus sys­
tem throughput is degraded, the system can still
supply the required performance. Likewise, the
SIFT, FTMP, and Tandem computers (Chapters

160 THE THEORY OF RELIABLE SYSTEM DESIGN

16, 17, and 11) are initially capable of exceeding
performance requirements but will allow grace­
ful degradation of capacity as portions of the
system fail. All these systems have a high proba­
bility of maintaining at least a minimum level of
functionality until the end of a mission (SIFT,
FTMP) or until repairs can be effected (Tan­
dem).

Borgerson and Freitas [1975] developed a reli­
ability model for systems using both backup
spares and graceful degradation. The model is
based on four different fault classes: solitary
faults, space domain faults (e.g., simultaneous
failure of multiple pieces of hardware), time
domain faults (e.g., a second fault occurring
before the first is recovered from), and resource
exhaustion (running out of extra modules). In
using the model to analyze the PRIME grace­
fully degrading computer system [Baskin, Bor­
gerson, and Roberts, 1972], it was found that
solitary and space domain multiple faults were
much more of a factor in system reliability than
were time domain multiple faults or resource
exhaustion.

Evaluation of systems with graceful degrada­
tion involves more factors than does evaluation
of systems using other redundancy techniques.
In gracefully degrading systems, performance
varies widely over time as failures are accumu­
lated but the systems continue to operate. Thus,
the total amount of work done (computation
performed) over a time interval is as important
as a go/no-go reliability determination. Mea:.
sures of combined performance and reliability
properties are therefore attracting increasing at­
tention. Proposed measures include probability
distributions of capacity at time T, mean compu­
tation before failure, and the probability of a
successful completion of a task started at time T.
Computing resource availability is not the only
factor in such measures; consideration must be
given to additional degradation resulting from
recovery and/or restart of processes executing
when a failure occurs. Performance-related reli­
ability measures are discussed in Chapter 5.

Additionally, recent work on performance/reli­
ability modeling is reported in papers by Losq
[1977], Troy [1977], Beaudry [1978], Meyer
[1978], Gay and Ketelson [1979], Mine and Ha­
tayama [1979], and Castillo and Siewiorek [1980].
In another paper, Meyer, Furchgort, and Wu
[1980] evaluated the performance and reliability
of the SIFT computer in the air transport appli­
cation for which it is designed.

Reconfiguration

The four previous sections presented four classes
of dynamic redundancy techniques: reconfigura­
ble duplication, reconfigurable NMR, backup
sparing, and graceful degradation. These classes
include the majority of reconfiguration tech­
niques. Many other dynamic redundancy
schemes, however, do not fit neatly into the four
categories discussed. This section presents a sam­
pling of some of these miscellaneous techniques.

The first technique is sift-out redundancy [De­
Sousa and Mathur, 1978], proposed as an alter­
native to hybrid and self-purging redundancy
techniques. With N redundant modules in the
initial configuration, sift-out redundancy can tol­
erate up to (N - 2) module failures. This is
comparable to the fault tolerance of hybrid
redundancy with a TMR core and to self-purg­
ing redundancy (voter threshold = 2). The ma­
jor difference in sift-out redundancy is that there
is no actual voting element; the bad module
outputs are eliminated as described below. As a
result, the restoring organ for sift-out redundan­
cy is potentially simpler than that for hybrid and
self-purging redundancies. Figure 3-82 shows the
basic configuration for a system with sift-out
redundancy. The comparator, used to detect
disagreements between all possible pairs of the
functional modules, contains NC2 XOR gates.
Using NC2 signal lines, the comparator signals
the detector which pairs are not in agreement.
The detector uses these signals to identify the
faulty module. Included in the detector are N

Clock

RELIABILITY AND AVAILABILITY TECHNIQUES 161

<- N lines,
line F; signals

the failure
of module i.

N redundant
modules,
operating

synchronously
Comparator t-

f
..:..::;13 __ ---i

fIN-liN

Detector

/
NC2 lines, each for signaling
the disagreement of a pair
of modules

Figure 3-82. Basic configuration for sift-out redundancy. © IEEE 1978.

memory cells; the ith cell is set when it is
determined that the ith module has failed. The
detector contains N flip-flops and (NC2 + N)
NOR gates. Finally, the collector uses the N
detector outputs, each one signaling the state of
a single module (failed/nonfailed), to determine
which module outputs to ignore, or sift out. The
collector requires (N + I) NOR gates. Figure
3-83 shows the design of a sift-out restoring
organ, with N = 4.

If XOR gate implementation requires X ele­
mental (e.g., NOR) gates, the total complexity of
the sift-out restoring organ is:

(X + 1) NC2 + 2N + 1

NOR gates andN flip-flops. If X = I, as as­
sumed previously when comparing iterative cell­
switch hybrid redundancy with self-purging re­
dundancy, the total number of gates required is:

N 2 + N + 1.

Table 3-17 compares the restoring organ com-

plexities for self-purging redundancy (voter
threshold = 2), hybrid TMR redundancy (with a
threshold gate voter), and sift-out redundancy
for several amounts of redundancy. All the de­
signs are able to tolerate up to (N - 2) module
failures. If the complexity of the threshold voters
(the number of standard logic gates needed to
implement one) is taken into account, it can be
seen that sift-out redundancy requires less total
restoring organ complexity than does hybrid
redundancy for the range of N considered. Fur­
thermore, sift-out redundancy and self-purging
redundancy are roughly equal in terms of restor­
ing organ complexity; * the major difference be­
tween the two techniques is that the self-purging
redundancy scheme is vulnerable to some multi­
ple stuck-at-I failures, while the collector for sift­
out redundancy (as shown in Figure 3-83) is

* Note that if each XOR gate requires four simpler gates to
implement, sift-out redundancy is much less attractive
because of its heavy use ofXOR gates in the comparator.

162 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 3-17. Comparison of restoring organ complexity for hybrid TMR, self­
purging, and sift-out redundancy techniques.

Hybrid

T.V.** Total
N Gates Gates Gates JJ*
4 36 10 46 4

5 45 16 59 5

6 54 23 83 6

* ff = flip-flops
**T.V. gates = approximate number of gates needed to
implement N-input threshold voter with threshold of 2.

Assumptions:
Iterative cell hybrid redundancy, TMR core:

9N gates, N flip-flops, N-input threshold gate
(threshold = 2)

Gates

12
15
18

vulnerable to some multiple stuck-at-O failures.
Unlike the self-purging restoring organ, however,
the collector for sift-out redundancy can be
designed (with little change in complexity) to be
vulnerable to· the form of stuck-at failures that
are less likely to occur; that is, if stuck-at-O
failures are less likely than stuck-at-l failures for
the modules being used, then the collector design
shown in Figure 3-83 should be used. The two
possible collector designs are logical duals of
each other.

Another dynamic redundancy technique is the
memory reconfiguration approach proposed by
Hsiao and Bossen [1975]. Assume a bit-sliced
memory using an SEC/OED code. In the usual
straightforward design, the memory can tolerate
any single-bit failure in a given memory word
but fails if any word contains two or more bit
failures. If, however, the memory cell addressing
function can be performed independently on
each bit slice, reconfiguration of the memory is
possible without using a spare bit slice. This is
accomplished by skewing the address mapping
when a double failure is detected, so that the new
configuration contains at most a single failure in
any word. In other words, the address mapping

Self-purging Sift-out

T. v.* * Total Total
Gates Gates JJ* Gates

10 22 4 21
16 31 5 31
23 41 6 43

Self-purging redundancy:
2N gates, N flip-flops, N-input threshold gate
(threshold = 2)

Sift-out redundancy:
N 2 + N + I gates, N flipflops
(threshold = 2)

JJ*
4

5
6

is changed so that the same address now maps
into a different bit location on each module.
Figure 3-84 illustrates the concept. To get the
maximum reconfiguration ability possible with
this approach, the properties of orthogonal Latin
squares are utilized. * However, if there are 2k
memory words (with k large), using orthogonal
Latin squares of order 2k requires considerable
complexity. Latin squares of a smaller size can
be used instead, with the address skewing per­
formed on blocks of memory cells in the bit
plane. When using order-m Latin squares, the
skewing is performed using only (log2 m) bits of
the address. Thus, using order-4 Latin squares as
in Figure 3-84 and skewing by the two most
significant bits in an address results in addresses
skewed in contiguous blocks of 2(k-2) words.

* Definition [Hsiao and Bossen, 1975]: "A Latin square of
order (size) m is an m X m square array of the digits
0, 1, ... , (m - 1), with each row and column a permuta­
tion of the [m digits]. Two Latin squares are orthogonal if,
when [one] is superimposed on the other,every ordered
pair of elements appears only once." The four matrices in
Figure 3-84 are the four possible orthogonal Latin squares
of order 4. Figure 3-85 demonstrates the result of super­
imposing the first two Latin squares in Figure 3-84.

0 1

O 2

0 3

0 4

E12

En

E14

E23

E24

E34
Retry / reset

a. Comparator

E12

En

E14

E23

E24

E34

Retry /reset __ ____ --1

Out b. Detector

c. Collector

Figure 3-83. Design of restoring organ elements for sift-out redundancy
scheme (Figure 3-82) using four redundant modules, with a fault tolerance of
two module failures. © IEEE 1978.

F1

F2

F3

F4

164 THE THEORY OF RELIABLE SYSTEM DESIGN

Bit planes Bit location on plane mapped into address
Address 0 1 2 3 SEC code memory

0 0 0 0 0 Initial configuration: two
1 1 1 0) [] single-bit failures (boxes) and
2 2 2 2 2 a third failure (circle) cause
3 3 3 3 rn a double (noncorrectable) error

0 0 CD 2 rn Second configuration:
1 0 3 2 with three tolerable
2 2 3 0 OJ single-bit failures, a fourth,
3 3 2 UJ 0 noncorrectable failure occurs (circle).

0 0 2 3 OJ Third configuration:
1 1 3 2 0 the fourth failure is
2 2 0 UJ I]J no longer aligned with
3 3 CD 0 2 any other failure; however,

another configuration is
needed because two old failures are aligned.

0 0 3 UJ 2 Fourth configuration:
1 2 0 I1J no double failures
2 2 OJ 3 0 exist, but any additional
3 3 0 2 OJ failure is unrecoverable.

Figure 3-84. Orthogonal Latin squares-based memory address skewing used
to reconfigure a bit-sliced SEC code memory.

Hsiao and Bossen suggested a simple imple­
mentation based on linear feedback shift regis­
ters that allows the use of identical modules for
each bit plane. Each module contains a memory
bit slice and its associated addressing circuitry.
The overall design of the Latin squares memory
is less complex and costly than a memory with a
spare bit plane. Finally, Hsiao and Bossen dem­
onstrated the power of the technique by simula­
tion of an 8-megabyte memory using order-8
Latin squares for address skewing. In a popula-

0,0 0,1 0,2 0,3
1,1 1,0 1,3 1,2
2,2 2,3 2,0 2,1
3,3 3,2 3,1 3,0

Figure 3-85. The superimposition of the upper
two order-4 Latin squares of Figure 3-84.

tion of 1,000 memories, 500 failures were as­
sumed to occur over a period of five years. The
simulation found that a successful reconfigura­
tion was possible for 66 percent of the failures
that caused multiple errors.

Through another technique for memory fault
tolerance, the Univac 1100/60 (Chapter 10) is
able to tolerate single-bit stuck-at-a failures in its
microstore. When a parity error is detected in the
microstore, the system maintenance processor
attempts to correct the error by rewriting the
microstore. If the error is due to a failure the
rewriting will not correct the problem, and the
maintenance processor makes one final attempt
at repair. It writes the logical complement of the
microstore contents into the microstore and sets
a special designator to indicate that microwords
must be inverted before use. Complementing the
microstore contents allows toleration of multiple
failures as long as all failures cause a bit to be

RELIABILITY AND AVAILABILITY TECHNIQUES 165

stuck at its inverted value. The 1100/60 uses
another technique for tolerating transient errors.
Whenever an: error is detected in the processor,
the machine pauses until a special timer expires.
During the pause, any transient phenomenon
(such as static discharge, power fluctuation) that
may have caused the error should die out with­
out further interference, because the machine is
not operating. The timer is variable for periods
of up to 5 seconds, allowing for adjustment to a
variety of computing environments.

The micros tore inversion method could be
extended so that each microstore location has an
extra bit indicating whether the word is inverted
before use. Such an extension would speed up
reconfiguration because only a failed word
would have to be rewritten. The fault tolerance
is also increased, because the chance that multi­
ple failed bits in a micros tore would all be stuck
at the same values is small.

Another microstore technique is to use an
extra bit in each word to denote that the contents
are bad. A few blank microstore locations are
included at the end of the memory, and each
word in the main part of the microstore maps
into one (and only one) of the locations using a
fixed mapping. When a word fails, the "re­
mapped" indicator bit is set and a new copy of
the affected word is written into its backup
location (providing it is not already occupied). If
the micros tore is not writable, ROM could be
used for all of the micros tore except the indicator
bits and the backup locations.

The MECRA computer [Maison, 1971] uses its
main store for micros tore as well. A special bit in
each memory word denotes whether the location
is being used for microcode. Recovery from
failure in the microstore consists of simply re­
writing the microcode in another part of memo­
ry. This approach is similar to the graceful
degradation of main memory by memory block
deallocation, discussed in the previous subsec­
tion. In addition, storing the microcode in main
memory means that it can be easily modified.

MECRA utilizes this feature to perform system
reconfiguration, which is done by changing the
microprogram. For example, there is a separate
hardware element for each of the logical opera­
tions AND, OR, XOR, and complementation. If
one of the four logic elements fails, it can be
replaced by any of a variety of combinations of
operations using the remaining logical operators.
The failure of, say, the XOR operator can be
tolerated by employing the AND, OR, and in­
version operators using the relation:

A E9 B = A B' + A' B

The reconfiguration that permits replacement of
the XOR operator is expensive to provide for if
hardwired into the hardware, but is readily ac­
commodated by MECRA's easy-to-change mi­
crocode.

Another technique has applications in fault­
tolerant interconnection networks. Interconnec­
tion networks between component modules are
needed by many spare-switching and gracefully
degrading systems. The complexity of the switch­
ing network can cause reliability problems. Le­
vitt, Green, and Goldberg [1968] have proposed
some methods for realizing fault-tolerant switch­
ing networks. Consider the situation depicted in
Figure 3-86, in which there are two types of
elements, processors and memories. * The system
can be made gracefully degradable because each
processor can be connected to any memory
through the crossbar switch. Thus, the network is
totally connected; that is, any of the N inputs
can be connected to any of the N outputs (one at
a time). The network also allows all processors
and memories to be utilized simultaneously,
without waiting for a signal path to become free.

* The fault-tolerant switching networks discussed here are
equally employable in other applications needing crossbar
or other types of switching networks, such as multiproc­
essors and telephone systems. For example, the C.mmp
multiprocessor system [Siewiorek et aI., 1978a, 1978b] uses
a 16 X 16 crossbar switch to interconnect processor and
memories.

166 THE THEORY OF RELIABLE SYSTEM DESIGN

Crossbar switch

Processor N1 1 . ~ I~

Processor_ ;>2
2 j~ .L

~ ~

I~

· '\.,; rll '"'l.I · · r~ f"'I-J "',.,

Processor ... - '))

N

J~ l~
'- c. .L

Memory Memory ... Memory
1 2 N

Figure 3-86. Totally connected design, in which any processor can be con­
nected to any memory. Shown with each processor i connected to memory i.

Networks of this type are termed CPCU(N)
[Complete Permutation-Complete Utilization, N
x N) networks. CPCU(N) networks can be real­
ized with a crossbar switch, as shown in Figure
3-86, However, the complexity of the network
increases as N 2. For large N the design complex­
ity of the network is tremendous, especially when
it also takes into account control and fan-out
problems. Fortunately, a switching network such
as that in Figure 3-86 can be implemented
economically from basic 2 x 2 crossbar switch­
ing cells, in a fasion which trades increased
complexity for decreased performance. Each of
the cell's two inputs (I .. 12) can be connected to
each of the two outputs (01, O2). The cell thus
has two operating modes: crossing and bending
(Figure 3-87a and b). Figure 3-88 demonstrates

the use of the basic cell in a CPCU(8) network.
The most efficient procedure for implementing
CPCU(N) networks, based on an iterative imple­
mentation of the network, requires

NrIog2 Nl-iogN + I

cells. The methods of employing the two-mode
cells for economical and/or high performance
realization of switching networks are discussed
in Levitt, Green, and Goldberg [1968], Kautz,
Levitt, and Waksman [1968], and Waksman
[1968]; many other references are available, in
part because switching networks are important
in telephone systems.

Figure 3-87c shows a possible implementation
of the basic cell in which the crossing mode is
attained by pulsing control input R high with

RELIABILITY AND AVAILABILITY TECHNIQUES 167

R

,,-$-°1

O2

a. Crossing mode

p

r-------
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I L ______ _

'1

'2

O2

b. Bending mode

---------1
I
I ,01

I
I
I
I
I
I
I
I

I
I _________ J

c. Redundant implementation of basic cell

Figure 3-87. Basic two-input-to-two-output
switching cell for implementing complex switches.

control input P kept low, thereby resetting the
flip-flops. The bending mode is invoked by puls­
ing P high, with inputs II and h kept high and R
low. The cell of Figure 3-87c could be built with
fewer components, but the circuit shown has one
of the following two fail-safe responses to a
single gate or flip-flop failure:

• Stuck-Functions. The cell is stuck either in bending
mode or crossing mode, with the outputs valid for
that mode.

• Bad-Output. One and only one of the output lines
may contain faulty data.

These fail-safe responses can be used to make
fault-tolerant networks. A CPCU(N) network
that can compensate for any single stuck-at fault
can be implemented from two cascaded net­
works, as shown in Figure 3-89. For example,
both subnetworks could be CPCU(N) networks.

A fault in one subnetwork could be compensated
for in the other network, with the good network
performing the entire switching function. In this
case, the faulty network is basically performing a
null function: all its gates except the faulty one
are being wasted. There are more efficient meth­
ods of making a single fault-tolerant network.
One uses the same layout of Figure 3-89. In place
of the CPCU(N) network for subnetwork A, a
less complex subnetwork suffices. A stuck-at
fault in subnetwork B results in an interchange
of the signals on two of the output leads. It is
possible to compensate for it by designing sub­
network A to be capable of interchanging the
signals on any two input leads; such a network is
less complex than a CPCU(N) network. Figure
3-90 shows a network that performs this function
for N = 8. The structure, which can be general­
ized to different N, is called a "double tree"
(TDT(N)) network. A TDT(N) network in gen­
eral requires (3N/2) switch cells. Note that a
stuck-at fault in subnetwork A can be compen­
sated for by subnetwork B, because it is
CPCU(N).*

Levitt, Green, and Goldberg [1968] examined
several more techniques for making switching
networks fault tolerant. Among these are single
stuck-at fault-tolerant CPCU(N) networks,
which are slightly more efficient (in terms of the
number of gates needed) than a combination of

- nonredundant CPCU(N) and TDT(N) networks.
They also described networks that can tolerate
bad-output faults, and fault-tolerant networks of
the following types (in addition to CPCU(N)
networks):

• Complete permutation-incomplete utilization
• Incomplete permutation-order preserving
• Incomplete permutation-nonorder preserving

* Note that only data paths have been discussed here. The
issues of error detection and configuration control logic
have been totally ignored. The circuitry for performing
such functions can be quite complex, especially if the paths
in use at the time of reconfiguration must be left un­
touched. Telephone exchanges, though admittedly more
complex than computer interconnection networks, require
computers to control the switching configuration (such as
Bell ESS-Ia).

168 THE THEORY OF RELIABLE SYSTEM DESIGN

~--------------------~

Figure 3-88. CPCU(8} switching network implemented from basic cells of
Figure 3-87.

L1

Subnetwork L2 Subnetwork
A B . .

CPCU(N) CPCU(N) LN

Figure 3-89. A fault-tolerant network, in which the damage due to a single
stuck-at fault in one subnetwork can be compensated for by the other
subnetwork.

~Xl

~--~X2
x;

Xi

Xu
Figure 3-90. Compensation network used as subnetwork A (Figure 3-89) for a
CPCU(8} single stuck function fault-tolerant network.

RELIABILITY AND AVAILABILITY TECHNIQUES 169

• "Shorting" (connecting outputs of stage i to inputs
of stage (i + I), or bypassing (shorting around) stage
(i + I))

Finally, Shen and Hayes [1980] examined the
fault tolerance of several types of networks that
can be implemented by means of the basic 2 X 2
crossbar cells.

The final reconfiguration technique to be men­
tioned is a memory reconfiguration approach, in
which the memory chips are arranged in a self­
healing network. The technique requires that an
integral switch be built into each memory chip
[Goldberg, Levitt, and Wensley, 1974].

Recovery

Fault masking techniques such as TMR and
error-correcting codes permit uninterrupted sys­
tem operation as long as the masking redundan­
cy is not exhausted. Faults occur but do not
become errors. When only detection is em­
ployed, perhaps combined with reconfiguration,
faults become errors unless some kind of error­
correction ability is added. A duplicated memo­
ry, for example, can continue operation follow­
ing error detection only if:

" both memory copies have been performing the same
operations in parallel, so that an error-free copy of
the information is available in one of the memories;
and

• it is possible to determine which copy contains the
erroneous information.

If these criteria are met, restoration of the mem­
ory state merely requires reconfiguration. In
many systems, however, the correction ability
either does not exist or cannot compensate for
more than a limited number of failures at a time.
When the correction capability is exceeded, the
system state is irretrievably in error. As an
example, consider a Hamming SEC/OED-coded
memory with a spare bit slice; the bit plane is
switched in only after a double error is detected.
The memory is capable of successful operation
after a double failure occurs, but the information

it contained is corrupted beyond the hope of self­
correction. As long as the initial data, program
code, and the information acquired by the pro­
cess prior to a data-corrupting failure are still
available (such as from backup copies), the pro­
cess can be restarted from scratch after the spare
bit plane is switched in. The only loss is the
(possibly costly) time expended during the first,
unsuccessful, execution of the process. If, howev­
er, the initial data are corrupted and no backup
copy exists, or if the information acquired during
the first execution is irretrievably lost (such as
real-time sampled data), the process cannot be
successfully restarted from scratch.

Recovery techniques can restore enough of the
system state to allow process execution to recom­
mence without a complete restart, and with little
or no loss of acquired information. Recovery
techniques are usually implemented in software,
but may have some hardware basis as well. The
techniques considered here are all backward
error recovery techniques [Randell, 1975], in
.which process execution is restarted at (rolled
back to) some point before the occurrence of the
error. Forward error recovery techniques, in con­
trast, attempt to continue operation with the
system state at hand, even though it may be
faulty. Forward error correction is usually highly
application-dependent, as in the case of a real­
time control system in which an occasional
missed response to a sensor input is tolerable.
Because loss of sensor information due to a
failure is not critical, the system can recover by
skipping its response to the lost sensor input
sample. After reconfiguration, the process pro­
ceeds immediately to deal with the following
sensor input samples. Forward error recovery is
not discussed further here; Randell, Lee, and
Treleaven [1978] consider the topic briefly.

All forms of backward error recovery require
some redundant process-state information to be
recorded as the protected process executes. The
information is used to roll back an interrupted
process to a point for which correct state infor­
mation is known. Three forms of backward error
recovery are considered, ordered by the length of

170 THE THEORY OF RELIABLE SYSTEM DESIGN

rollback required: retry techniques, checkpoint
techniques, and journaling techniques.

Retry techniques are the fastest form of error
recovery, and conceptually the simplest. They
depend upon detection of an error as soon as it
occurs. Immediately after the error is detected,
the necessary repairs are effected. If the error is
transient, repair consists in pausing long enough
for the transient to die away. If there is a hard
failure, the system is reconfigured. The operation
affected by the error is then retried, which neces­
sitates knowing what the system state was imme­
diately before the operation was first attempted.
If the interrupted operation had already irrevo­
cably modified some data the retry will be unsuc­
cessful, especially if the failure itself caused a
spurious (and undiscovered) modification. Retry
techniques are most commonly employed as a
means of tolerating transient errors. One retry
application common to many commercial com­
puters is I/O operation retry. Disk-read errors,
for example, are common occurrences and are
usually due to transients. Without disk-read retry.
capabilities, system and/or job failures would
occur with distressing frequency. In most mod­
ern disk drives, retry on disk-read error detection
is built into the disk controller itself, removing
the burden of the retry operation from the host
system. Other common retry applications are
retry on memory read errors and bus transaction
retry (for both data and protocol errors).

The Univac 1100/60 (Chapter 10) provides
retry for macroinstructions after a failure. After
a pause that permits transients to die away, a
microroutine is invoked that examines the fault
effects and determines whether the instruction is
retryable. If a retry is possible, the retry micro­
routine restores the contents of the operand and
addressing registers from a special retry memory
provided for the purpose (the retry memory is
updated every time a register is read). The mac­
roinstruction is then refetched and its execution
attempted. If the retry is not possible or if it fails,
the microroutine attempts to transplant the pro­
cess on another processor (assuming a multiproc­
essor configuration is being used). The IBM

System/360 (Chapter 9) also provides extensive
retry capability, performing retries for both CPU
and I/O operations.

Alternate-Data Retry (ADR), proposed by
Shedletsky [1978a], is a variation of the retry
approach that offers tolerance of hard failures as
well as of transients. The hardware is designed to
be able to perform the same function using
different data representations. Upon error detec­
tion, the same operation is retried using an
alternate data representation; the use of a differ­
ent form for the data is an attempt to ensure that
the same error will not recur even if there is a
hard failure. In particular, Shedletsky explored
the use of C-morphic representations, in which
there are two possible data representations. Each
representation is the bitwise complement of the
other. The design of C-morphic systems that are
capable of ADR combines the elements of error­
detection codes, complemented duplication, and
self-checking circuitry. Shedletsky also applied
ADR principles to the design of a simplified
processor. The net hardware cost was slightly
over that of a duplex processor system with only
normal retry capability.

Retry techniques require immediate error de­
tection to be successful and usually require sub­
stantial dedicated hardware. In contrast, check­
point techniques allow some error latency, for
the process is backed up to an earlier point in its
execution. Checkpointing is most often imple­
mented in software and requires little or no extra
hardware. These techniques result from a combi­
nation of checkpointing and rollback. In check­
pointing, some subset of the system state is saved
at specific points (the checkpoints) during pro­
cess execution. The information to be stored is
the subset of system state (data, programs, ma­
chine state) that is necessary to the continued
successful execution and completion of the pro­
cess past the checkpoint, and which is not
backed up by other means. Rollback is part of
the actual recovery process and occurs after the
repair (e.g., by reconfiguration) of the physical
damage which caused the detected error (or after
the transient causing the error dies out). The

Task
completion

RELIABILITY AND AVAILABILITY TECHNIQUES 171

A 8 H'

I

,1 /
, I I

/: /
, I I

,,, l: I
II I I I

; ,,' V , , , ,

I
I

I

A'
-r­
I

I

c o
.~

"5

, , , , ,
Co
E
o
1.1

~
Z

Error Error

/ , ,
I

,I ,
1 , ,

I , ,
I

I ,
I

I
I

I

• Checkpoint

........... A Process A (no errors)

_. _. 8 Process H (no errors)

------- A' Process A (with errors)
--- H' Process 8 (with errors)

t(A) f t(8) t(8') t(A') Time ~
Error Error

Figure 3-91. Scenario of two processes, identical except for checkpoint
frequency.

rollback consists of resetting the system and
process state to the state stored at the latest
checkpoint. Hence the only loss is the computa­
tion time between the checkpoint and the roll­
back, plus any data received during that interval
that cannot be recreated.

Figure 3-91 illustrates graphically some of the
issues involved in checkpointing. First, consider
lines Band B'. Line B shows the progress process
B would make if no errors occurred. Line B'
shows the actual progress of process B as a result
of the error occurrence scenario shown. During
process B execution, checkpoints are reached at
regular intervals (regular in terms of amount of
computation, not time). Point X on line B'
corresponds to an error event. The vertical line
segment XY is the rollback performed upon
error detection. Point Y is the point in the
process immediately following the checkpoint, at
which execution restarts. Although the actual
process execution time t(B') is longer than the

ideal time t(B), the process does not have to start
from the beginning four times, as it must without
checkpointing. Line A represents the progress of
process A in the absence of errors. Process A is
identical to process B except that in order to
achieve faster execution, only one-third the num­
ber of checkpoints are used. The use of fewer
checkpoints lowers the overhead required for
saving system states and allows process A to r~n,
say, 20 percent faster than process B. The actual
performance of process A is actually lower, how­
ever, as shown by line A'. The reason is that the
rollbacks were longer for process A than for
process B, and the computation time lost for this
error scenario outweighed process A's speed ad­
vantage. Thus, it is clear that the correct choice
of checkpoint locations is important. If the
checkpoints are too infrequent for the error rate
encountered, much computation time can be lost
to rollbacks. On the other hand, too frequent
checkpointing results in an unnecessary increase

172 THE THEORY OF RELIABLE SYSTEM DESIGN

1
Process A •

3
Process B • b

2
Process C • a

5
•

4
•

6
• c

• Checkpoint

X Error

d

---) Message passed

X-
e

Figure 3-92. Cooperating checkpointing pro­
cesses_ A failure at point e forces process C to roll
back to checkpoint 6_ Because of a message sent by
process C, process A must then be rolled back to
checkpoint 5_ Rolling back of the processes in this
fashion eventually requires all three processes to be
rolled back to their initial checkpoints_

in computation time due to the overhead of
saving-system states.

There are other issues in checkpointing design.
One is the selection of checkpoints to minimize
the amount of state information that must be
saved at each checkpoint. A second is deciding
which information must be backed up for proper
assurance of successful rollback. A third situa­
tion arises when multiple concurrent processes
communicate with each other. If one process is
rolled back, any other process receiving data
from it since the checkpoint must also be rolled
back at least that far. This can give rise to a
"domino effect" [Randell, 1975], illustrated in
Figure 3-92, which causes multiple rollbacks
throughout a multiprocess system. Another con­
sideration is avoiding error latency situations in
which the validity of the state saved at the
checkpoint is jeopardized by the possibility of a
previous, undetected error. More detailed exam­
ination of these and other issues is left to other
sources. Chandy and Ramamoorthy [1972] pro­
posed checkpointing strategies that dynamically
insert checkpoints when the expected loss of
computation reaches a certain value. Troy [1978]
proposed a model for interacting processes oper­
ating concurrently. The model, based on Petri
net-like representations, allows a determination
of the rollback actions needed when an error

occurs in one of the processes. Shedletsky
[1978b] dealt with the problem of error latency
when imperfect error detection is present. He
presented a method for determining a rollback
length concomitant with the desired probability
of successful recovery, and demonstrated the
procedure by analyzing an imperfectly self­
checking AL U.

The Tandem computer (Chapter 11) uses
checkpointing extensively. User processes can be
replicated, with the extra copies used for backup
(usually only duplication is used). The operating
system has a check pointing facility through
which the active process can checkpoint its state
to a backup process. The Fault-Tolerant Space­
borne Computer (FTSC) employs a checkpoint­
ing scheme in which the only information need­
ed to roll back a process is the program counter
contents stored at its last checkpoint [DeAngelis
and Lauro, 1976; O'Brien, 1976; Stiffler, 1976].
The COPRA computer [Meraud, Browaeys, and
Germain, 1976; Meraud et aI., 1979] uses check­
points automatically inserted by its assembler;
rollback is microprogrammed and is automati­
cally invoked by detection of an error. Finally,
the JPL STAR (Chapter 14) operating system
also employs checkpointing.

Randell [1975] described an approach to the
design of complex hardware/software systems
using recovery blocks, which combine elements
of checkpointing and backup spares to provide
tolerance of software design faults as well as
recovery from hard failures and transient errors.
Figure 3-93 shows a sample recovery block at the
user level. Recovery blocks are similar in nature
to blocks in ALGOL. The recovery block shown
executes a search for a key in a data structure
and returns the index of the array element that
matches the key. Checkpointing a variable global
to the block occurs only if it is altered within the
block, and is performed automatically just be­
fore the alteration actually takes place. This
backup procedure not only minimizes the
amount of state information backed up, but also
releases the programmer from determining
which variables should be checkpointed, and

RELIABILITY AND AVAILABILITY TECHNIQUES 173

ensure
~ystructure [pointer] = key) or errorflag

Bl tree.search (pointer, key) --
~ binary. search (pointer, key)

start of recovery block
acceptance test
primary alternate
second alternate

elseby linear.search (pointer, key)
else~y .
~
print ("Not able to find key")
pointer := nil ;
errorflag := true ;
end

elseerror

thi rd alternate

final alternate

Figure 3-93. Recovery block as seen at program level.

when. Assume that all the search algorithms use
the global variable locations.searched as a counter
during the search, and that upon completion
locations.searched contains the number of loca­
tions searched by the algorithm. The first time
the variable is accessed, its old value (0) is
written into the cache. Upon entry to the block,
the primary alternate-a tree search algorithm in
the case of Figure 3-93-first attempts the de­
sired computation. Once the primary alternate
completes its function, the acceptance test is
used to detect any errors in the result. If the test
is passed, the block is exited. If the test is failed,
or if the primary alternate fails to complete the
computation, the contents of the recovery cache
pertaining to this recovery block are automati­
cally reinstated (in the case of Figure 3-93,
locations.searched is reset to zero) and the second
alternate is initiated. The cycle of execution, test,
rollback, and initiation of the next alternate
continues until either an alternate completes the
computation successfully or there are no more
alternates. If the block runs out of alternates, an
error is signaled to the context containing the
recovery block. Usually, the first alternate is the
most desirable (more efficient, more powerful)
and the desirability of the subsequent alternates
decreases at each level. In Figure 3-93 the binary
search takes longer than the tree search but,
being less complex, may have a lower probability
of failure; the linear search takes even longer (it

is assumed that the data structure is universal;
that is, it supports all three search algorithms.)
The last alternate does not execute the desired
task, but instead prints an error message and
returns an obviously faulty value for the index.

A graphical representation of recovery blocks
is shown in Figure 3-94a; the representation is
used here to briefly illustrate some of the exten­
sions to the recovery block idea that can be
found in Randell [1975]. Figure 3-94b shows that
it is possible to nest recovery blocks. Failure by
exhaustion of alternates in a lower level recovery
block causes the recovery block containing it to
invoke the next alternate. Figure 3-94c shows the
extension of recovery blocks to parallel process­
es, with some restrictions on the times at which
messages can be passed between processes. Re­
covery blocks can be used at different levels of
abstraction in a hierarchical system (in the same
way that there can be a physical computer as
well as multiple levels of virtual machines) as
long as proper care is taken when designing the
interfaces between the levels.

The strength of the acceptance test is impor­
tant to the successful detection of errors. Thus, if
weaker alternates which return false or dummy
results are used, the acceptance test must be
weakened to allow the recovery block to be
exited when they complete. Shrivastava and Ak­
inpelu [1978] proposed a method of avoiding this
trouble by the use of assertion statements in a

174 THE THEORY OF RELIABLE SYSTEM DESIGN

I Process

ctJ-CheCkPOint}
Recovery block

_ Acceptance
test

a. Graphic notation for a recovery block

b. Nesting of recovery blocks

C:J
I I

I I

I I

, ,
c. Multiprocess recovery blocks

Figure 3-94. Use of Randell's graphical notation to
demonstrate extensions beyond the simple recov­
ery block.

recovery block. Anderson and Lee [1979] consid­
ered means of improving the fault tolerance of
hardware/software interfaces, making them
more recoverable by adding extra levels of ab­
straction. Russell and Tiedeman [1979] examined
message passing among multiple processes with­
in the same recovery block (a "conversation"),
and its requirements on the degree of couplirig
between cooperating processes.

A possible practical implementation of recov­
ery blocks would utilize a form of cache mecha­
nism to store the current values of checkpoint
variables about to be altered and to keep track of

the nesting depth of the current recovery block.
Shrivastava and Akinpelu [1978] evaluated the
performance of recovery cache scheme, and
found that the overhead involved was not high.
Lee, Ghani, and Heron [1980] haye described an
experimental design of an add-on cache for a
PDP-II that divides the Unibus between the
processor and memory, and requires no modifi­
cations to the system other than cutting the bus.
Because the cache cannot access the registers in
the processor without modifying the processor
hardware, it can checkpoint only variables stored
in the memory. The projected performance deg­
radation is about the same as in C.vmp (Chapter
7). C.vmp, however, will survive hard processor
failures, whereas the recovery cache PDP-II will
not. The recovery cache system is about as
complex as a C.vmp-type configuration, but with
full use of recovery blocks it will survive tran­
sient errors and most software design errors.

Of the three backward error recovery tech­
niques discussed here, journaling is the simplest
and least efficient; it requires the longest time to
recover the state attained before an error. In
journaling, a copy of the initial data (database,
disk, file) is stored as the process begins. As the
process executes, it makes a record of all trans­
actions that affect the data. Thus, if the process
fails, its effect can be recreated by running a
copy of the backup data through the transactions
a second time (after any failures have been
repaired). The recovery takes the same amount
of time as the initial attempt. Journaling is better
than completely restarting because it eliminates
the loss of information involved in a restart. The
Bravo editor on the Xerox Alto personal com­
puter uses journaling to recover an editing ses­
sion during which an error causes the computer
to crash [Lampson, 1979]. A special program
called Bravobug is run when the system is re­
started and can be stopped at any point (up to
the point where the error occurred) to recreate
any intermediate states of the edited file. Typi­
cally, a three-hour editing session takes substan­
tially less time to recreate because there are no
human delays involved the second time.

RELIABILITY AND AVAILABILITY TECHNIQUES 175

SUMMARY

The presentation of reliability and availability
techniques in this chapter followed the organiza­
tion of Table 3-1, which provides a logical pro­
gression of techniques from the simplest methods
of fault avoidance to the most complex methods
of dynamic redundancy. However, there are two
elements missing from this development. First,
the major emphasis is on techniques, and not on
the functionality of the system elements they are
used on. This chapter could also have been
organized on the basis of function: memories,
processors, ALUs, operating systems, and so on.
Organization by function would highlight which
techniques work best in each area of system
design and how those techniques can be best
implemented for that design area. However, or­
ganization by technique has the important ad­
vantage of stressing the universality of tech­
niques. Most techniques can be incorporated
into several, if not all, areas of design. Thus,
rather than improving the reliability of isolated
pieces of a system at a time, the designer can
choose to apply a single technique over several
areas. For example, parity error detection can be
applied to a memory, register set, ALU (with
parity prediction), and the connecting data
paths. A single parity checker on each data path,
monitoring each transaction, is sufficient to mon­
itor system health. By using a single technique
for all the pieces, the need for multiple transla­
tors, checkers, and encoders of several different
types has been eliminated.

The other element missing from the organiza­
tion of this chapter is the simultaneous use of
multiple techniques. The development followed
required treating each technique as a separate
entity. Often, two or more reliability improve­
ment techniques can be synergistically combined
to provide vastly improved protection. Examples
of a few such combinations have been briefly
mentioned, such as the shadow box memory.
Many other combinations are possible; their
suitability depends on the application. For this
reason, the evaluation methods and criteria de-

veloped in the following chapters are necessary
to ensure successful use of the techniques pre­
sen ted in this chapter.

REFERENCES

Abraham [1975]; Anderson [1971]; Anderson and Lee
[1979]; Anderson and Metze [1973]; Ashjaee and
Reddy [1976]; Armstrong [1961]; Avizienis [1971,
1973, 1977, 1978]; Avizienis et al. [1971]; Avrulpra­
gasm and Swarz [1980]; A WST [1981]; Barsi and
Maestrini [1973,1974]; Baskin, Borgerson, and Ro­
berts [1972]; Beaudry [1978]; Berlekamp [1968]; Bhatt
and Kinney [1978]; Black, Sundberg, and Walker
[1977]; Boone, Liebergot, and Sedmak [1980]; Borger­
son and Freitas [1975]; Bossen [1970]; Bouricius et al.
[1971]; Brown, Tierney, and Wasserman [1961]; Car­
ter, Duke, and Jessup [1973]; Carter and McCarthy
[1976]; Carter and Schneider [1968]; Carter and Wa­
dia [1980]; Castillo and Siewiorek [1980]; Chandy and
Ramamoorthy [1972]; Chen and Avizienis [1978];
Chinal [1977]; Cook et al. [1973]; Cooper and Chow
[1976]; Craig [1980]; Crouzet and Landrault [1980];
Davies and Wakerly [1978]; DeAngelis and Lauro
[1976]; Dennis [1974]; DeSousa and Mathur [1978];
Diaz, Geffroy, and Courvoisier [1974]; Diaz, Azema,
and Ayache [1979]; Dickinson, Jackson, and Randa
[1964]; DEC [1975, 1977, 1979]; Frank and Yau
[1966]; Freeman and Metze [1972]; Fujiwara and
Kawakami [1977]; Gay and Ketelson [1979]; Gold­
berg, Levitt, and Wensley [1974]; Gurzi'[1965]; Ham­
ming [1950]; Hampel and Winder [1971]; Hong and
Patel [1972]; Hopkins, Smith, and Lala [1978]; Hsiao
[1970]; Hsiao and Bossen [1975]; Hsiao, Bossen, and
Chien [1970]; Ihara et al. [1978]; Ingle and Siewiorek
[1973a, 1973b, 1976]; Interdata [1975]; Jack et al.
[1975]; Jensen [1963]; Kaneda and Fujiwara [1980];
Kautz [1962]; Kautz, Levitt, and Waksman [1968];
Khodadad-Mostashiry [1979]; Klaassen and Van Pep­
pen [1977a, 1977b]; Klaschka [1969]; Kole [1980];
Lampson [1979]; Larsen and Reed [1972]; Lee, Ghani,
and Heron [1980]; Levitt, Green, and Goldber,g
[1968]; Lewis [1979]; Lin [1970]; Losq [1975a, 1975b,
1978]; MacWilliams and Sloane [1978]; Maison
[1971]; Mandelbaum [1972a, 1972b]; Marouf and
Friedman [1977, 1978]; Mathur [1971a]; Mathur and
Avizienis [1970]; Mathur and DeSousa [1975];
McCluskey and Ogus [1977]; McConnel and Siewio­
rek [1981]; McDonald [1976]; McDonald and

176 THE THEORY OF RELIABLE SYSTEM DESIGN

McCracken [1977]; McKevitt [1972]; McNamara
[1977]; Meraud, Browaeys, and Germain [1976]; Mer­
aud et al. [1979]; Meyer [1971, 1978]; Meyer, Furch­
gott, and Wu [1980]; Mine and Koga [1967]; Mine
and Hatayama [1979]; Morganti, Coppadoro, and
Ceru [1978]; Mukai and Thoma [1974]; Neumann and
Rao [1975]; O'Brien [1976]; Ogus [1973, 1974]; Orn­
stein et al. [1975]; Osman and Weiss [1973]; Ossfeldt
and . Jonsson [1980]; Ozgunner [1977]; Patterson and
Metze [1974]; Peterson and Weldon [1972]; Pierce
[1965]; Platteter[1980]; Pradhan [1978a, 1978b]; Prad­
han and Reddy [1974a, 1974b]; Pradhan and Stiffler
[1980]; Randell [1975]; Randell, Lee, and Treleaven
[1978]; Rao [1970, 1972, 1974]; Ray-Chaudhuri [1961];
Reddy [1978]; Reed and Chiang [1970]; Russel [1978];
Russel and Tiedeman [1979]; Russo [1965]; Sawin
[1975]; Sedmak and Liebergot [1980]; Sellers, Hsiao,
and Bearnson [1968b]; Shedletsky [1978a, 1978b];
Shen and Hayes [1980]; Short [1968]; Shrivastava and
Akinpelu [1978]; Siewiorek, Canepa, and Clark
[1977a]; Siewiorek and McCluskey [1973a, 1973b];
Siewiorek, Bell, and Newell [1982]; Siewiorek et al.
[1978a, 1978b]; Sklaroff [1976]; Smith and Hopkins
[1978]; Smith and Metze [1978]; Srinivasan [1971 b];
Stiffler [1976, 1978]; Swan, Fuller, and Siewiorek
[I977a]; Tang and Chien [1969]; Tohma and Aoyagi
[1971]; Tohma [1974]; Tokura, Kasami, and Hashi­
moto [1971]; Torng [1972]; Toy [1978]; Troy [1977,
1978]; Tryon [1962]; Usas [1978];. von Neumann
[1956]; Wachter [1975]; Wakerly [1974, 1978]; Waks­
man [1968]; Watson and Hastings [1966]; Weissberger
[1980L

PROBLEMS

1. There are 32 data lines on a bus protected by four
interlaced parity bits. Parity bits I and 3 are odd
parity and parity bits 2 and 4 are even parity.
a. Sketch the data bus and indicate which lines

are covered by which parity bits.
b. List all fault sets that are detected in one bus

transfer. Illustrate one· fault from each set.
on your diagram.

2. Assuming that only transient errors lasting exactly
one operation cycle of the system can occur, the
triple modular redundancy is equivalent . to
(choose one)
a. a Hamming single-error-correcting, double-er­

ror-detecting code
b. a simple parity code (odd parity)

c. a repetition code with a complete decoding
algorithm

d. a repetition code with an incomplete decoding
algorithm.

3. A Hamming single-error-correcting code has the
parity-check matrix

H= 0 1 0 0 I I 1
[

0 0 I I 1 0 I]

1001110

A word [0111011] was received. The word sent
must be (choose one)
a. [0110011]
b. [0111001]
c. [0111010]
d. [0001011].

4. Below is a parity matrix for a Hamming code.

d) c) d2 c2 d3 c3 d4
c)

[:
I I 1 0 I !] c2 0 0 I 0

c3 0 0

a. Write the parity equations for the three check
bits.

b. Using these parity equations, encode the data
word d) d2 d3 d4 = OliO.

c. The encoded word 1100001 (d)c)d2c2d3c3d4)
has a single-bit error. Which bit is in error?

d. Assuming that bit failures are independent and
the probability of failure is p, what is the
probability that the encoded data is not decod­
ed correctly?

e. If the receiver and support electronics has a
reliability of k/(I - p), where k is a constant,
what value of p maximizes the reliability of the
system?

5. A binary transmission channel is said to be an
erasure channel if a received bit may be neither a
one nor a zero. Such an error is called an erasure.
To correct up to e erasures, the minimum distance
between any two code words must be (choose one)
a. e
b. e + 1
c. 2e
d. 2e + I.

6. Which of the following cannot be a code word in
a linear single-error-correcting Hamming code?
a. 0010110
b. HOllOO

RELIABILITY AND AVAILABILITY TECHNIQUES 177

c. 1110110
d. 0110000
e. 1010111

7. A 3-of -6 code was modified by adding two check
bits that indicated how many ones the 6 informa­
tion bits have. The number of all possible errone­
ous words that go undetected is (choose one)
a. 20
b. 22
c. 32
d. 42
e. 41.

8. The arithmetic distance between the two code­
words [100001] and [010011] is (choose one)
a. I
b. 2
c. 3
d. 4.

9. In a 25 N + 15 single-error-correcting arithmetic
code, a word [100 I 00 II] was received from the
ALU. Therefore, the corrected output of the ALU
is (choose one)
a. 0001011
b. 1011011
c. 0111011
d. 1001100
e. 1110011.

10. A biresidue code forms residues modulo 3 and
modulo 7. An erroneous word is ([01111], 2, 0).
Assuming that the check bits are correct, the
corrected information bits are (choose one)
a. [10000]
b. [10001]
c. [OllIO]
d. [01101].

11. In a computing system, memory is one of the chief
sources of failures. When a high degree of data
integrity is desired, the overhead for encoding and
decoding may be tolerated. To correct a single-bit
error (Hamming error) in an 8-bit byte, speed is to
be sacrificed in favor of minimizing the total
storage required for a task. The problem is thus to
maximize the number of code words. Find a
single-error-correcting code of block length eight
with a maximum number of code words. (Hint: A
linear code of block length eight has 16 code words.
A code that is made up of a number of cyclic spaces
has 20 code words but is not the code that
maximizes the number of code words.)

12. For the double-error-correcting code with the par­
ity-check matrix

0 0 I 1 0 I

0 I 0 0 1

I 0 0 I I 0
H=

0 0 I 0 I

0 0 1 0

0 0 0

the syndrome formed was [101110]. This implied
(choose one)
a. no error
b. single error
c. double error
d. more than two errors.

13. With the same parity-check matrix, if the bits are
numbered I through 7 from left to right, a syn­
drome [100 Ill] implies (choose one)
a. a single error in position 3
b. two bit errors in positions I and 4
c. two bit errors in positions I and 5
d. more than two bit errors.

14. For a double-error-correcting code of block length
32, the least upper bound on the number of
information bits is (choose one)
a. 24
b. 25
c. 26
d. 27
e. 28.

15. Given the polynomials h(x) = X2 + 1 and g(x) =
x4 + x + 1, the circuit

can be used (with proper initial conditions) to
obtain from the incoming polynomial f(x) the
output (choose one)
a. f/gh
b. fh/g
c. fg/h
d. fgh
e. f(g + h).

178 THE THEORY OF RELIABLE SYSTEM DESIGN

16. With the input polynomial x 7 + I and the circuit

the output polynomial will be (choose one)
a. x + 1
b. x 2 + I
c. x14 + 1

d. x 7 + x6 + ~5 + x4 + x + 1.

17. A new disk storage unit is to be added to a
PDP-1O system. Because the performance of the
system deteriorates considerably as a result of disk
failures, the new disk should be as reliable as
possible. The field was narrowed to two disks,
DSKRA Wand DSKCRC. Both store up to 200
million bytes (eight-bit wide), run at a rate of 3,600
rpm with a byte transfer frequency of 1.25 MHz.
Both cost approximately the same. The difference
lies in redundancy techniques. DSKRA W uses a
Read-After-Write (RAW) to detect (and correct)
errors in transfer, while DSKCRC uses a cyclic
redundancy code (CRC). The CRC generates a
16-bit check word using a generator polynomial

x l6 + x I2 + x 5 + 1

on an information frame of any size. Carry out a
reliability analysis on the two disks and make
recommendations.

18. The design goal is an SEC memory for a 16-bit
minicomputer with memory mapping. The memo­
ry is to be a 128K-word memory, built with lK-bit
MOS RAMs. Assume that the ambient tempera-

ture is 30° C, components are of quality class C,

the environment is ground fixed, and single-bit
failures are the dominant mode of memory-chip
failures.
a. To save on m,emory chips, a 39-bit SEC/

DED Hamming code is to be used (its
parity-check matrix is given below). Design
the correction! detection! encoding tree, hold­
ing register, correction circuit, and other
data path elements shown in the block dia­
gram in Figure 5-16. Use 7400 series TTL
and do not bother with pin numbers (this is
a rough design). Assume control circuitry
of 10 SSI chips (~ 8 gates per chip) and 5
MSI chips (~ 15 gates each). Evaluate
this design using the MIL-217 model and
techniques discussed in this chapter.

b. Design a block-coded memory with a better
MITF. Assess the difference in cost in number
of chips (if any). Assume 10 MSI and 15 SSI
chips for auxiliary circuitry, and design the
data-path elements shown in the block-code
memory diagram in Figure 5-17. Justify your
choice of block size.

c. Discuss the relative performance (not reli­
ability) of the two designs, both with and
without errors present. Can the vertical parity
words be kept in a separate memory so that
they can be accessed in parallel with the data
on writes? How does this affect the perfor­
mance? Discuss the conditions under which
you would choose each design.

19. a. The 8080 microprocessor chip has approxi­
mately 1000 gates. Calculate the failure rates of
this architecture assuming SSI, MSI, and LSI
implementation (40°C ambient).

b. What is the effect of changing 'lTq for the three
implementations above? Changing the ambient

Parity-check matrix for 39-bit SEC/DED Hamming code.

I

0 00000 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 0 I I I I I I 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I I I I I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I I I I I 0 0 0 0 0 0 0 0 I I I I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 I I I 0 0 0 0 I I 0 0 0 0 I 0 0 0 0 I I 0
0 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 I 0 0 I 0

0

RELIABILITY AND AVAILABILITY TECHNIQUES 179

temperature from 40°C to 30"C? Compare
these effects over the three different implemen­
tations.

c. Assume SSI chips cost 20 cents, MSI chips 50
cents, and LSI chips $10; and that screening
weeds out all but 0.2 percent of the weak
components. Also assume that the average
diagnosis and repair cost due to a bad chip is
$5 plus the chip cost through the warranty
period. Compare the expected repair costs for
the SSI, MSI, and LSI implementations of the
8080 architecture.

ZOo a. In a memory made with 1K-bit by four-bit­
wide chips, there are 16 data bits and 2K
words. Zero and one bit values are equally
likely. Assume chip failure modes are single­
bit cell (50 percent), single-row all zeros
(20 percent), single-column all zeros (20
percent), and whole-chip all zeros (10 per­
cent). Calculate single error detection cov­
erage for this scheme when the following
detection techniques are used:
1. interlaced parity (i = 4)

11. chip parity
iii. chip-wide parity
IV. duplication
v. single-precision checksum (assume check­

sum is stored separately, one sum for the
entire memory)

VI. low-cost residue code (checksum stored
separately).

b. Estimate costs (chip counts) for the memories
above, including check circuitry. Comment on
relative performance overheads.

21. What is the CRC constant for the CRC code used
by AUTODIN II, with G (x) = x 32 + x 26 + x 23

+ x l6 + xn + xlI + x lO + x 8 + x 7 + x 5 + x4

+ x 2 + x + 1 ? Design a BCR for this code.

22. In the multiplexer for parity-coded operands shown
at the top of the next column [Wakeriy, 1978],
(S) So) = (01) transfers bus A to bus T, while
(10) transfers bus B to bus T.

a. Demonstrate that this circuit is totally self­
checking.

b. Design a totally self-checking multiplexer net­
work around this TSC multiplexer; that is, the
network serves as a multiplexer with a TSC
error-detection indicator.

to

t1

23. a. A digital system block diagram is shown on the
next page. Discuss which fault-detection tech­
niques can be used to prevent undetected errors
in this system.

b. Discuss the application of TMR with voting
to this system. Consider replication at vari­
ous architectural levels.

c. Discuss the application of error-correcting
codes to this system in at least five different
segments of the design.

24. a. Using the next-state and output-function table
below, design a single-error-correcting coded­
state machine. Compare its cost and reliability
with a TMR implementation of the same ma­
chine. The machine is synchronous, with an
external clock signal.

Input
State 01 11 10 00

a a/I c/O h/O e/l next state/output
b c/l a/I d/l f/O
c b/l g/O e/l f/l
d g/O c/O d/l e/l
e a/I b/O c/O e/O
f b/O b/l g/l h/O
g h/O h/l b/O g/l
h e/l c/l d/l a/I

180 THE THEORY OF RELIABLE SYSTEM DESIGN

CPU

r-----------------M;~~ryAdili~;B~ff~;--

Memory
r--------------,

I Ad. decode I

RO
R1

R2

11/0 Addr
L

B
~------------------l------Control

--~::.~~- ------r----------- ------------------------ 1/0

I Control r- Control ~ I Control I-- I Control r-
I Buffer I I Buffer I I Buffer I r Buffer I

I I I ~

--- ---~---------r--+------------j--------- ---1---
11/0 Device I 110 Device

b. Implement the next-state function in quadded
logic. Compare the cost with a TMR imple­
mentation. Compare maximum clocking
speeds.

25. a. Design restoring organs for a redundant mod­
ule with two output lines and a redundancy
factor of 5 (five identical modules) using the
following techniques:

i. NMR/simplex (N = 5)
ii. hybrid TMR

111. duplication with spares switching (assume
an external diagnostic circuit can correctly
determine which of the two modules is
faulty with probability 0.95, and takes 10
ms to do so)

IV. self-purging redundancy
v. sift-out redundancy

Use standard TTL logic (designs down to pin
number detail are not necessary).

11/0 Devicel 11/0 Device

b. Assume new data are produced synchronously
every 500 ns, that gate complexities for the
function modules are 2,000 gates each, and
that the duplication diagnostic circuit uses 300
gates. Compare the five designs for complexity,
cost, performance, and reliability.

26. Discuss the issues involved in making a multiproc­
essor system such as the Intel 432 (Chapter 18)
gracefully degradable (cost, extra circuitry, perfor­
mance, computation overhead, detection and
diagnostic capabilit1); assume that
a. no modification can be made to the hardware
b .. simple alterations can be made to the hardware

28. Redesign the error-correcting code memory of
Problem 18 to allow it to switch in two spare bit
planes. Evaluate the effect on the memory system
cost, performance, and reliability.

RELIABILITY AND AVAILABILITY TECHNIQUES 181

~9. Select a computer system for which processor and
operating system documentation is available to
you. Analyze the fault tolerance, fault detection,
and recovery techniques and abilities of the hard­
ware/software system. Propose some low-cost im­
provements that might be made.

~O. a. Pick a technique from each of the subsections
in Chapter 3 dealing with error detection, fault
masking, and dynamic redundancy. Use each
independently in the design of the same (Iogi-

cally) micros tore. Rank the designs in terms of
cost, performance, and reliability.

b. Combine the techniques chosen above in
groups of two (using each technique in only
one pair) and apply them to the same micro­
store above. Rank the designs in terms of cost,
performance, and reliability.

c. Select four of the techniques above to make the
best possible microstore design. Evaluate the
cost, performance, and reliability of this de­
sign.

Maintainability and Testing Techniques

A significant proportion of maintenance involves
some form of testing, not only to isolate the
failed component but also to ensure that the
repair operation was successful. This chapter
examines maintainability from the perspective of
testing.

Testing can be characterized as a "black box"
experiment. Each black box has an associated set
of input and output terminals. The correct func­
tioning of the black box must be determined by
applying stimuli to the input terminals and ob­
serving responses on the output terminals, called
terminal characteristics. The terminal character­
istics may be electrical (such as a straight-line
relationship between voltage and current for a
resistor), combinational (such as "n AND gate),
sequential (such as a counter), or even complex
systems (such as a microprocessor on a chip). As
the functions of the component become more
complex the testing problem becomes critical,
for there is less direct control and less direct
observability of internal behavior. Manipulation
of external inputs must establish a certain condi­
tion in a component deep in the recesses of the
black box, and the outputs of that component
must be propagated to the output terminals.
With increasing system complexity, not only are
there more components, but each component is
also harder to test.

Testing covers multiple activities, not just
maintenance, during the life of a digital system.
Table 4-1, reproduced from Chapter 1, depicts
the stages in the life of a system. ·During the
specification and design phase the faults of most
concern are logic errors in the algorithms. Dur­
ing prototype development there can be any
number of failures. Logical design errors, wiring
mistakes, or incorrect timing can lead to differ­
ent functional behavior. Failed components can
also cause altered functional behavior. The for­
mer, designated as a logical fault, can be signifi-

183

184 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-1. Stages in the development of a system.

Stage

Specification
and design

Prototype

Manufacture

Installation

Operational
field

Error Sources

Algorithm
design

Formal
specific a tion

Algorithm
design

Wiring and
assembly

Timing

Component
failure

Wiring and
assembly

Component
failure

Assembly

Component
failure

Component
failure

Operator errors

Environmental
factors

Error Detection
Techniques

Simulation

Consistency
checks

Stimulus/
response testing

System testing

Diagnostics

System testing

Diagnostics

Diagnostics

cantly more difficult to test than the latter,
termed a structural fault. With logical faults, the
proper algorithm must be ultimately distin­
guished from any arbitrary algorithm. Here test­
ing involves many similarities to proving pro­
grams correct; however, given a correct design,
there are many fewer faulty behaviors due to a
malfunction. The component interconnections
limit the number of realizable faulty behaviors.

In prototype development, the final errors in
the design and proposed implementation are
sought by testing. Physical connectivity may
cause timing errors and coupling between multi­
ple signal lines. Subjecting a small number of
systems to design maturity testing (described in

Chapter 1) establishes baseline failure manifesta­
tions and MTTF.

During manufacturing and installation the
main goal is acceptance testing. At this stage,
problems of design have been resolved, and
testing focuses on mass-produced black boxes.
The faults are primarily structural, but there may
be any number of them resulting from the assem­
bly process.

When an installed system malfunctions, main­
tenance testing is used to isolate and repair
faults. This is perhaps the easiest form of testing,
for at this stage there are usually few structural
faults. Frequently, maintenance tests are run
during system idle time to detect failures and
increase confidence in the correct functioning of
the system. As mentioned in Chapter I, there is
a significant trend toward remote diagnosis, ei­
ther to pinpoint failures before dispatching field
service personnel or to issue instructions for
customer repair.

At any of the stages of system life, testing can
occur at each level in the system hierarchy
defined in Chapter I (circuit, logical, program,
and system). Figure 4-1 classifies the types of
testing typically performed at each stage. The
figure has been simplified by combining the
design/prototype and installation/operational
stages and the logical/instruction set levels.

It is extremely important to understand at
what level and stage a testing technique is aimed.
Chapter 1 briefly discussed system-level testing
at all three stages presented in Figure 4-1. This
chapter focuses on logic-level testing at the pro­
duction and operational stages. Maintainability
techniques for discovering faults during field
operation can frequently also be used to isolate
defects during the production stage.

PRODUCTION

As pointed out in Chapter 1, defects should be
located and eliminated at the earliest possible
stage of production; the cost of a defect in­
creases by a factor of 10 with each inspection
stage that fails to identify it [Hotchkiss, 1979;

MAINTAINABILITY AND TESTING TECHNIQUES 185

System
Design maturity

test
Process maturity

test
Synthetic load/

remote diagnosis

'li
~ Logic
-I

Simulation Acceptance test!
incoming inspection

Diagnostics/
built-in test

Circuit Simulation

Design

Parametric

Production

Stage

Margining

Operational

Figure 4-1. Testing as a function of system level and time.

Craig, 1980]. Figure 4-2, reproduced here from
Chapter 1, shows the typical steps in the manu­
facturing process.

!
Incoming

component
inspection !

Printed
circuit
board

fabrication

!
Backplane Board Printed

~ circuit assembly assembly
board test

Board
Backplane inspection

test and functional
test

System
assembly

System
test

+
Figure 4-2. Typical steps in the manufacture of a
~igital system. (© 1979 IEEE.)

Parametric Testing

At the circuit level, incoming inspection may
vary from simple electrical parametric and func­
tional tests to stress-tests that force infant mor­
talities. Stress testing can include vibration, over­
voltage, burn-in, and thermal shock (see Chapter
2). The more extensive the testing, the more
costly the incoming inspection. For mass-pro­
duced, low-cost systems, incoming inspection is
often less than 100 percent because only ran­
domly selected lots are tested.

Table 4-2 lists some typical parametric tests
used to determine whether components meet
vendors' electrical specifications. Figure 4-3 illus­
trates a computer-driven test station for driving
and measuring electrical parameters [Howard
and Nahourai, 1978]. A relay matrix is used to
configure the sources and measuring instruments
to the pin configuration of the unit under test.
Parametric testing is most often done by the IC
manufacturer or by a system house when it
initially qualifies an IC vendor's process.

Acceptance Testing

The largest body of theory has been developed
for logic-level acceptance testing. Usually single
structural stuck-at-Iogical-O/l faults are as­
sumed. A means must be provided for generating
stimulus and checking responses in the Unit
Under Test (UUT). Table 4-3 categorizes the
varied approaches to testing. In general, any

186 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-2. Typical MOS parametric tests.

Gate-oxide breakdown voltage

Drain-to-substrate breakdown voltage

Drain-to-source punch through voltage

Gate-to-source threshold voltage

Drain current at 0 gate voltage

Drain current at specified operating voltage

Gate-to-source leakage current

Drain-to-substrate leakage current

Transconductance at specified operating voltage

Drain-source resistance

stimulus generation approach could be used with
any response checking approach; however, cer­
tain stimulus/response approach pairs have been
more widely adopted than others.

The stimulus/response can. be generated off­
chip or on-chip. If off-chip, they may be dynam­
ically generated or precomputed and stored.
Table 4-3 provides the framework for <;liscussion
of the various testing approaches developed.

The simplest form of response checking is to
compare the outputs of the UUT with those of a

known good component (exclusive OR testing).
The input stimuli could be generated by incre­
menting a counter to produce all possible combi­
nations (exhaustive testing). Exhaustive testing is
practical for only the smallest circuits. Williams
and Parker [1979] give an example of an exhaus­
tive test of an LSI circuit with n inputs and m
latches, which requires a minimum of 2n+m tests.
For n = 25 and m = 50 there are 275 = 3.8
X 1022 patterns. At 1 microsecond per pattern
the test would require over a billion years.

Alternatively, the stimuli could be generated
randomly (probabilistic testing). In probabilistic
testing, a predetermined number of inputs are
generated and properties of the output observed.
The output properties are then compared with
stored characteristics of the good circuit. This
response checking is termed compact testing
because responses are not stored or checked in
detail; only summary statistics are checked.
Summary statistics include counting the number
of Is produced and/or the number of transitions.
If the count exceeds a predetermined threshold,
the component is declared functional. The num­
ber, arrived at statistically, is chosen to yield a
specific confidence level [Williams and Parker,

Voltage
source

Current
source

Voltmeter

Ammeter

Other sources
and

measuring
instruments

Figure 4-3. Block diagram of an automated parametric test system.

MAINTAINABILITY AND TESTING TECHNIQUES 187

rable 4-3. Approaches to stimulus generation
tnd response checking.

Wmulus Generation

:xhaustive

~andom

itored

Simulation

Deductive

Parallel

Concurrent

Algorithmically
generated

Algebraic

Boolean
difference

Path sensitization

D-algorithm

)n-chip

Response Checking

Exclusive OR

Stored

Compact testing

Transition counting

Signature analysis

Predicted response

Fault dictionary

On-chip

1979]. A variation of compact testing is signature
malysis [Nadig, 1977]. In signature analysis, a
:et of known inputs is dynamically applied to the
JUT. The outputs are either displayed for visual
:omparison with a known good pattern or sensed
>y computer for comparison with a stored pat­
ern. If the patterns produced by the most likely
'ailures are stored, signature analysis can also be
Ised for fault diagnosis. Often output patterns
lre summarized by feeding the sequence of out­
mts into Feedback Shift Registers (FSR), such
lS those used in the generation and checking of
:erial codes (see Chapter 3). The FSR output is a
'unction of all the response bits, no matter how
ong the test sequence may be. Although theoret­
cally appealing, compact testing in practice
Isually provides low fault coverage. In any
~vent, the fault coverage is extremely hard to

estimate. Consequently, effort has focused on the
systematic generation of input stimuli.

Systematic test-set generation starts with a list
of all faults of concern. The fault set usually
consists of all single stuck-at-Iogical 0/1 faults. A
test for each fault is generated in turn. Once a
fault list and set of tests have been generated, it
is possible to select a minimal set of tests to
detect all faults or to determine which fault is
present [Kautz, 1968].

Tests can be generated by simulation, alge­
braic methods, and path sensitization. In simula­
tion, faults are inserted into the simulation of the
circuit. Both the faulty and the good circuit are
simulated until their outputs differ [Seshu and
Freeman, 1962]. This is primarily a trial-and­
error approach. Faulty behavior may be deduced
from a logic simulator by comparing the simulat­
ed output of each component with the faulted
output. Alternatively, the nonfaulty and several
faulty circuits could be simulated and compared
in parallel. In concurrent simulation, circuit
components are copied and simulated every time
the faulty output differs from the good circuit
[Grason and Nagle, 1980].

For each test, the predicted output is stored
for use in response checking. If the responses of
faulty and good circuits are tabulated into a fault
dictionary, field service personnel can use the
dictionary to diagnose to the field replaceable
unit. Chang, Smith, and Walford [1974] describe
the LAMP system used to create fault dictionar­
ies for the computers used in the Bell System.

An alternative to simulation is algorithm'ic
generation of the stimulus. One algorithmic ap­
proach is based upon an algebra of differences.
Sellers, Hsiao, and Bearnson [1968a] and Suss­
kind [1972] describe an algebraic approach
called the Boolean Difference. Figure 4-4 illus­
trates a circuit and a minimal test set for all
single stuck-at faults (see Appendix C). Each line
has a separate identification number and can be
stuck-at either logical 0 or 1. The abstract model
makes no assumption about electrical connectiv­
ity; thus, a stuck-at fault on line 5 does not imply

188 THE THEORY OF RELIABLE SYSTEM DESIGN

A __ ~~1~~ ____ ~ __ _

B .--~~

f = ABC + Be

C

Test set A B C f

1 0 0 0
0 0 1 0
1 0 1 1
0 1 0 1
1 1 1 0

Figure 4-4. A circuit for test generation.

Table 4-4. The D-algorithm definition of elementary gate functions in terms of
the symbol D.

AND

Input J Input 2 Output Input J

1 1 1 1
1 0 0 1
0 1 0 0
0 0 0 0
1 D D 1
D 1 D D
1 15 15 1

15 1 15 15
0 D 0 0
D 0 0 D
0 l5 0 0
l5 0 0 l5
D D D D
l5 l5 l5 l5
l5 D 0 l5
D l5 0 D

Inverter

Input Output

1 0
0 1
D l5
l5 D

OR

Input 2

1
0
1
0
D
1

15
1
D
0
15
0
D
l5
D
l5

Output

1
1
1
0
1
1
1
1
D
D
l5
l5
D
l5
1
1

MAINTAINABILITY AND TESTING TECHNIQUES 189

anything about line 3. In practice, certain faults,
such as an open metalization, will comply with
this abstraction while others, such as a short-to­
ground, may cause several lines to be in error.

A test for a fault is one in which the faulty
circuit's output differs from that of the good
circuit. Consider line 5 stuck-at-l in Figure 4-4.
The first test, 100, should produce an output of
O. With line 5 stuck-at-I, the output is 1. Hence,
100 is a test for line 5 stuck-at-I (as well as for
other faults).

The Boolean Difference for a line, i, is defined
as the exclusive-OR of the function with line i
taking on the values of both I and 0:

dF L

d- = F(XI,X2,··· ,Xi-I' I,Xi+I,··· ,Xn)
Xi

The Boolean Difference generates all tests
such that a change in the value of Xi results in a
change in the value of F. For the example in
Figure 4-4,

dF

d- = (Xl X4 + X6 X7) EB X6 X 7
Xs

Setting dF/dxs = I yields all the tests for line 5.

= (Xl X4 + X6 X7) EB X6 X 7

= (Xl + X4)(X6 + X7)X6 X 7

+ (Xl X4 + X6 X 7)(X6 + X7)

= Xl X4 X6 + Xl x4 x7

For Xl X4 X6 = 110, F = xs, and for Xl X4X7 =
110, F = xs. The corresponding input tests are:

ABC = 100 for Xs stuck-at-I and

ABC = 101 for Xs stuck-at-O.

Path sensitization techniques are essentially an
intelligent form of simulation. In path sensitiza­
tion, all components along a path from the fault
to an output are placed in a state such that the
output changes value only as a function of the

value of the faulty component. To complete the
test, the conditions to sensitize the path are
driven back, by means of consistency checks, to
corresponding conditions on the network inputs.
In all these methods, once a test has been
generated, a post process determines which other
faults in the fault list have also been detected
and eliminates them from the list. In Figure 4-4,
in order to propagate Xs to the output, lines 1
and 4 have to be I and line 9 has to be o. Driving
these values back toward the circuit inputs im­
plies that A = 1, B = O.

The path sensitization approach has been for­
malized in the D-algorithm [Roth, 1966; Roth,
Bouricius, and Schneider, 1967]. A symbol, D, is
defined to be equal to 1 in the good circuit and
to 0 in a bad circuit (15 is 0 in the good circuit
and 1 in a bad circuit). Each elementary gate has
its function redefined in terms of the symbol D,
as shown in Table 4-4. First D is placed on the
line for which a test is to be generated, and then
propagated to circuit outputs one step at a time.
An implication step sets values on other circuit
lines required to realize the state specified by the
propagation step. The propagation/implication
cycle is repeated until either D or 15 is propa­
gated to the circuit outputs. If at least one test
exists, the D-algorithm is guaranteed to find one.

Starting with D on line 5 (line 5 stuck -at-I) of
Figure 4-4, the three propagation steps from line
5 to line 8 to line 10 could be tabulated as shown
in Figure 4-5. The D is propagated through each
elementary gate in turn without regard to the
state of other gates. The implication steps assign
values to other circllit lines. For example, in
order for line 8 to take a value D, lines I and 4
must be 1. Line 4 being I implies line 2 being o.
Contradictions (such as a line taking on both a 0
and a I value) signal the nonexistence of a test.

In any algorithmic test-generation technique,
once a test for a fault has been found, the list of
faults the test has detected is compared with the
original fault list. Tested faults are thus removed
and the fault list shortened. Significant work has
been done to reduce the length of the original

190 THE THEORY OF RELIABLE SYSTEM DESIGN

Line

Step 2 3 4 5 6 7 8 9 10

Initial test on Line 5 x x x x D x x x x x

Implication on other
gate inputs x x D x D x x x x x

Propagate to Line 8 x x D x D x x D x x

Implication on other
gate inputs 0 D D x x D x x

Propagate to Line 10 0 D D x x D x D
Implication on other
gate inputs 0 D D 0 0 D 0 D

a. Forward propagation and implication

A B ~I~
ODD

b. Test

Figure 4-5. The D-algorithm applied to Line 5 stuck-at-1 in Figure 4-4.

fault list by grouping faults into equivalence
classes (that is, members of the class are indistin­
guishable) [McCluskey and Clegg, 1971].

Figure 4-6 shows the relationships among six
faults for a two-input AND gate and their re­
spective test sets. The test set for lines I, 2, and
3 stuck-at-O is the same. Hence, these are equiv­
alent faults and it is sufficient to generate a test
for only one of them. Another relationship be­
tween faults is that of dominance. Because the
test set for line 3 stuck-at-I includes the tests for
lines I and 2 stuck-at-I, line 3 stuck-at-I domi­
nates those two faults. The dominating fault is
automatically tested for if all the dominated
faults are tested. Thus, instead of six faults on
the original fault list for this two-input AND
gate, only three are required: line 3 s-a-O, line I
s-a-I, and line 2 s-a-l. In general, for elementary
gates of N inputs, only N + I faults need to be
on the original fault list instead of the 2(N + I)
single faults, provided the single-fault assump­
tion is being used. The reduction of fault lists for
multiple faults has also been addressed [Bossen
and Hong, 1971]. Circuits exist, however, for
which a test set for all single structural faults will
not detect certain multiple faults. Fault models
other than s-a-O, s-a-I have also been used. The

bridging fault, frequently caused by a solder
bridge, is a common fault type in digital system
fabrication [Mei, 1974].

Special fault models developed for memories
look for sensitivity to multiple-bit patterns. Ta­
ble 4-5 lists some of these tests and their com­
plexity as a function of the number of bits.

Test-set generation algorithms based on gate
level and the stuck-at fault m()del are not appli­
cable to VLSI complexity. Williams and Parker
[1979] have observed that the computer run time
to perform test generation and fault simulation is
related to the number of logic gates by a cubic
law:

Hence, there have been efforts to test systems at
higher levels of functionality [Breuer and Fried­
man, 1980; Thatte and Abraham, 1978]. The
purpose of functional testing is to validate the
correct functional operation of a digital system
with respect to its functional specification. Ideal­
ly the tests developed are based solely on the
specification and are capable of validating any
implementation that is alleged to perform the
specified function. Functional testing not only

MAINTAINABILITY AND TESTING TECHNIQUES 191

1

~
Fault Test

n s-a-O 11

Equivalent s-a-O 11

s-a-O 11

{~ s-a-1 01
Dominated

s-a-1 10

Dominating { 3 s-a-1 01,10,00

Figure 4-6. Equivalence and dominance relations
among faults.

reduces test-generation complexity, but also, be­
ing free of implementation details, allows one
test set to serve for implementations produced by
multiple vendors. Indeed, manufacturers of LSI
chips will not release the implementation details
of their chips lest they be copied. Thus, the user
of LSI chips who by necessity deals with multiple
sources has no recourse but functional testing.

The literature abounds with surveys on test-set
generation: Breuer and Friedman [1976], Chang,
Manning, and Metze [1970], Friedman and Me­
non [1971], Hennie [1968], and Bennetts and
Lewin [1971] are examples. More recent research
has focused on generating tests and checking
responses directly on the semiconductor chip, so
that chips could test themselves without reliance
on external support. Such self-testing chips could
alleviate both production and operational test­
ing. One approach [Bozorgui-Nesbat and
McCluskey, 1980] partitions the logic into small

fable 4-5. Tests for pattern sensitivities in
memory chips. (The test complexity is given in
terms of the number of memory bits.)

Test Complexity

Checkerboard pattern of Is and N
Os

Walking pa ttem N 3/2

Galloping Is and Os (dynamic N 2

test)

Ping pong N 2

groups for exhaustive testing. A counter on the
group inputs generates all possible input combi­
nations. An FSR on the group's output is com­
pared with a hard-wired constant to provide the
matching function.

Design for Testability

The discussion so far has focused on the problem
of "Given a circuit~ derive a test set for it." It has
long been recognized that it is easier to derive
test sets for some circuits than for others. At­
tempting to define easy-to-test properties has led
to a new discipline called design for testability.
Table 4-6 lists four stages of testability design.
Each stage has an increasing effect upon the
original design until ultimately a totally new
design is created. Bennetts and Scott [1976] (see
Appendix C) and Grason and Nagle [1980] dis­
cuss in detail techniques for each of these stages.
Only a cursory review will be provided here.

The first stage in testability is developing test
sets for an existing design. T~e faults assumed
are usually of the single stuck-at structural vari­
ety. The Boolean Difference and D-algorithm are
among the approaches used for combinational
circuits. Sequential circuits are more difficult to
test because of feedback. Approaches for combi­
national circuits have been extended to sequen­
tial circuits by replicating logic and treating the
sequential circuit as a cascade of combinational
circuits. Figure 4-7a depicts a typical sequential
circuit. In Figure 4-7b the combinational logic
has been replicated three times, representing
three transitions in the state of the original
circuit. The inputs in Figure 4-7b actually corre­
spond to a sequence of three inputs to the
original sequential circuit. Note that a single
fault in the original circuit (such as a stuck-at-l
on a next-state line) would correspond to a
multiple fault (a stuck-at-l on all three copies of
the next-state line) in the expanded circuit. Fur­
thermore, there is no guarantee that the combi­
national logic test generation algorithms can find
a test in three state transitions. The whole proc-

192 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 4-6. Stages in design for testability.

Stage Combinational Sequential

Test set for unmodified
circuit

Structural faults Extension of combinational
approaches for structural
faults

Functional faults

Minimum modification to
existing circuit

Add a small number of
test points

Add synchronizing sequence

Add distinguishing sequence

Break selected feedback

Extensive modification to
existing circuit

Improve controllability Make combinational LSSD

New design

Improve observability

Reed-Muller expansion

Totally self-checking
circuits

Fail-safe design

ess may have to be repeated for multiple-state
transitions until a test, if any, can be found. The
increased number of faults to be considered and
the additional complexity of the replicated logic
make sequential circuit testing much more com­
plicated than combinational circuit testing.

Another approach to sequential testing is
based on a fault model that is different from the
structural model. The sequential circuit is repre­
sented as a functional state-table, regardless of
its implementation. Faults are simply changes in
the next state or the output for an entry in the
state table. Single structural faults may exist that
are not representable by a single functional fault,
and vice versa. The testing approach is to derive
a sequence that ensures that each state, and each
transition between states, exist. By assuming that
faults cannot introduce new states, a test se­
quence (on the order of N 3 symbols, where N is
the number of states) is generated such that no
sequential machine of fewer states could respond
correctly [Hennie, 1964].

The next stage in testability adds a· small
amount of logic to the existing circuit. For
combinational logic this usually takes the form
of insertion of a test point or control point. Test

points are added at critical pOSItIons (such as
flip-flop outputs, sources of large fan-out, buses,
deeply buried components) to increase observa­
bility. Control points (flip-flop inputs, large fan­
in points, buses, deeply buried information
paths) are added to increase control.

For sequential circuits, extra pins or logic may
be added to produce synchronizing (set circuit to
a known state) or distinguishing sequences. In
addition, feedback lines may be broken by the
insertion of independently controlled blocking
gates.

The third stage starts with the original circuit
but adds extensive modifications; any amount is
possible, but 5 to 20 percent is typical. If suffi­
cient logic is added, only three tests would be
required for combinational logic circuits [Ben­
netts and Scott, 1976]. Often, however, it is not
possible to make the extensive modifications,
and a more practical approach is required. Table
4-7, from Grason and Nagle [1980], summarizes
the types of added logic that can assist testing of
printed circuit boards.

Test points can utilize pins at the edge of
boards, sockets accessible to plug-in of automat­
ic test equipment, internal posts accessible by

MAINTAINABILITY AND TESTING TECHNIQUES 193

Inputs Combinational
logic

Outputs

Next state

a.

Input 2 Input 3

Input Combin,ational 0 tp t 1
logic U u

Combinational
logic Output 2

Combinational
logic

Output 3

Initial
state

1
Next state 1

2

b.

3 Next state 3
Next state 2

Figure 4-7. A sequential circuit replicated three times as a combinational
circuit.

clips, tristate drivers to break or connect a line,
and signal clips placed over an integrated circuit.
Pull-up resistors can be used to isolate power
supplies, providing constant logical values that
allow the line to be forced to the opposite logical
value.

Table 4-7. Design for testability-added hardware
types,

Test points
Edge connectors
Dual In-line Package (DIP) sockets
Terminal posts
Tristate drivers
IC clips

Pull-up resistors
Pin amplification

Input demultiplexers
Output multiplexers
Parity trees

Blocking gates
Control and observation switching
Disconnection structures

Edge connectors
DIP sockets
Tristate drivers
Blocking gates

Test-state register
Power-up reset
Scan-in/scan-out shift registers

A major problem is to provide enough pins for
observing/controlling the circuit. A small num­
ber of output pins can be driven by a multiplexer
so that a large number of internal points can be
sequentially observed. Likewise, a demultiplexer
on a set of inputs can be used to drive a large set
of controllability points. Parity trees can be used
to surpmarize the state of a large number of
points (like the on-board data reduction used in
signature analysis). Blocking gates can be used to
break feedback in sequential circuits or to parti­
tion a combinational circuit. Lines that are diffi­
cult to control/observe can be multiplexed with
an easily controlled/observed line. In test mode,
the easily controlled/observed line is tied directly
to the difficult line.

Often circuits are easier to test if they are
partitioned into smaller ones. Techniques similar
to test-point addition can be used to partition
(disconnect) the circuit. Circuit test-mode con­
trol information (such as the control of blocking
gates, tristate drivers, multiplexers) may be more
extensive than the number of test points that can
be added. Test-mode information is relatively
static and can often be derived from an on-board
test-state register. Finally, a power-up signal can
often be used to set a predetermined state into
the sequential logic.

194 THE THEORY OF RELIABLE SYSTEM DESIGN

As mentioned before, many sequential testing
strategies are based upon transforming the se­
quential circuit into a combinational circuit. One
such technique uses scan-in/scan-out shift regis­
ters and is termed Level Sensitive Scan Design
(LSSD) by IBM. Figure 4-8 illustrates the use of
LSSD in the IBM 4341 [Frechette and Tanner,
1979]. Every latch is replaced by a latch pair.
During normal operation the second latch is
invisible. During test mode, the latch pairs are
tied together into a shift register controlled by a
separate clock (in this case provided by a support
processor). The latch pairs partition the logic
into sections composed only of combinational
logic. In test-mode operation the test mode is set,
test input data are shifted in, the normal mode is
set, one system clock pulse is applied, the test
mode is set again, and the result of the test is
shifted out for analysis. LSSD makes the system

CPU clock

Support processor
clocks -A

-8

Scanned data in--------..... rt

Input;

Input; + 1 -+-------_~

A

Input; + 2

state almost completely observable and control­
lable. Test set generation is the same as for
combinational logic, for which there already
exist many practical results. Few extra pins are
required and IBM reports the extra logic cost to
be 5 to 20 percent. A major disadvantage is that
stimulus application and response checking is
slow. A variation of LSSD is the Visibility Bus;
which provides observability only in the
VAX-l 1/780 and VAX-ll/750 (see Chapter 8).

Table 4-8 contains suggestions on where to
add hardware while Table 4-9 gives some design
guidelines for testability. Both tables are adapted
from Grason and Nagle [1980].

The final stage in design for testability is to
develop new designs with unique properties.
These designs should have a small test-set size
that is easy to generate. Bennetts and Scott
[1976] (see Appendix C) describe the Reed-

1---- Output J

Output J + 1

Scanned data
out

Figure 4-8. An example of LSSD.

MAINTAINABILITY AND TESTING TECHNIQUES 195

Table 4-8. Design for testability-added hardware location suggestions.

I. Make sequential circuit components such as coun­
ters, shift registers, and control flip-flops initializ­
able. Some ways of providing initializability are to
wire control signals or testpoints to component
clear or preset inputs, or to provide direct-load
capabilities. Do not tie both the set and preset
inputs of flip-flops to a common permanent logic
signal.

2. Make counter chains controllable and observable
in a reasonably short test sequence. For example,
break long counter chains during test mode by
inserting testpoints in the carry-propagate/count­
control lines. This is especially important in the
case of clock countdown circuits that are used to
provide control inputs for the rest of the circuit. In
the latter case it may even be wise to provide
testpoints to bypass the counters entirely during
portions of the test.

3. On-board clock oscillators should be made discon­
nectable during test. This can be done by discon­
necting their output with a testpoint or by socket­
ing them for removal during test.

4. If one-shots are used, control and observe their
outputs with testpoints. .

5. Try to break global feedback loops during test

Muller expansion for realizing combinational
circuits. This test-set size and contents are de­
rived by inspection.

Some of the techniques described in Chapter 3
can be used for on-line testing. In particular,
Carter, Wadia, and Jessep [1972] introduce an
algebra for totally self-checking circuits and an
algorithm for producing them from the regular
Boolean description. The physical realization of
these circuits is usually twice as complex as
nonself-checking circuits (roughly comparable to
dual-rail logic or duplication). However, there
are important classes of these checkers that are
only about as complex as the nonredundant
Boolean realization. Anderson and Metze [1973]
explore such a class of check circuits for data
encoded in m-of-n codes (see Chapter 3).

For sequential machines, it is possible to en-

mode. Blocking gates can be used for this, rather
than more costly testpoints.

6. Use added hardware to partition the circuit into
functionally independent subcircuits for testing.
This is especially important for separating digital
and analog subcircuits. One method is to place
testpoints between subcircuits.

7. Break reconvergent fan-out paths when they inter­
fere with testability.

8. Place testpoints at locations of high fan-out or
high fan-in.

9. Route logic drives of lamps and displays to test­
points so that the tester can check for correct
operation. Make keyboard and switch outputs
accessible to the test machine by breaking with
testpoints.

10. In circuits containing microprocessors and other
LSI devices, use testpoints to enhance controlla­
bility and observability of address buses and data
buses, important control signals such as the reset
and hold inputs to the microprocessor, and bus
tristate control. In particular, the address and data
terminals of RAMs and ROMs should be easily
accessible.

Table 4-9. Design for testability suggestions not
requiring added hardware.

1. Avoid the use of asynchronous sequential circuits.
Edge-triggered D-type flip-flops are preferable t<?
other types of flip-flops. These are synchronous,
and behave merely as clocked data delays during
testing.

2. Avoid one-shots when possible.

3. Avoid unnecessary wired-OR or wired-AND con­
nections. When these must be used, try to employ
gates from the same Ie package to enhance fault
locations.

4. Use elements in the same Ie package when de­
signing a series of inverters.

5. Try to assign gates in a feedback loop to the same
Ie package.

196 THE THEORY OF RELIABLE SYSTEM DESIGN

code states such that the machine does not make
a mistake. There are two general approaches.
The first constructs the sequential machine such
that any error drives the machine into an error
state from which it cannot escape. Thus, the
machine remains in essentially a do-nothing
state and no further outputs are issued. The
second approach is the so-called fail-safe [Toh­
rna, Ohyama, and Sake, 1971] sequential ma­
chine. One of the two possible outputs is desig­
nated as fail-safe, and the occurrence of that
output is used in such a way that no damage is
done if that output is wrong. The other output
value can always be assumed correct, even in the
presence of a fault. Consider the example of a
traffic light, mentioned in Chapter 3 in the
section on fail-safe logic design. Whenever green
appears it is correct, even if there are internal
failures. When red appears it is either correct or
the result of an internal failure.

Several theoretical models have been devel­
oped for the application of tests to isolate a
faulty subsystem. The goal of these models is to
isolate the faulty component as quickly as possi­
ble [Brule, Johnson, and Kletsky, 1960; Chang,
1965, 1968]. If subsystems are given the capabil­
ity of diagnosing each other, then it becomes
possible to construct a system that could diag­
nose (and perhaps reconfigure) itself automati­
cally; but the application of test sets requires the
setting of inputs and observation of outputs. In
systems with parallel data paths, the "hooks"
necessary to set and observe results are many
bits wide and costly to implement; the number
of these hooks should be kept to a minimum.

Preparata, Metze, and Chien [1967] treat the
case of subsystem interconnection for diagnosis
when each subsystem is completely capable of
testing another subsystem. Kime [1970], combin­
ing the work of Kautz [1968] and Preparata,
Metze, Chien, extends the possible outcomes of
a test (passed, failed) to include the incomplete
test-a test whose output is indeterminate under.
the influence of a fault (that is, it is unknown
whether the test will pass or fail when the fault is
present). This corresponds to a don't-know con-

dition. Procedures for determining the diagnostic
resolution of a set of tests are developed. Subse­
quent work by Kime and others treats the cases
in which subsystems are not identical.

FIELD OPERATION

The final phase of system life is in the field. Field
service must respond to both real and customer­
perceived failures. Due to the complex nature of
systems, it is not unusual for the false-alarm rate
to be two to four times higher than the actual
fault rate. Therefore, one goal of design for
maintainability is to decrease the rate of false
alarm.

Another problem is illustrated by the typical
Time-To-Repair (TTR) distribution in Figure
4-9. It is not unusual for 5 percent of calls to
consume 35 percent of the time spent in repair.
Tllis Time-To-Repair "tail" is very costly. Hard
failures are easy to diagnose and repair; more
subtle errors are often due to interactions be­
tween systems components and are also a func­
tion of system load. Diagnostics are unable to
reproduce the events leading up to the error.

When the Time-To-Repair a system has gone
beyond a threshold (typically, 4 hours), a second
person, usually a more experienced trouble­
shooter, can be dispatched to assist in the repair
process. Subsequently, a third and even a fourth
person might be dispatched in an attempt to
limit customer downtime. A more realistic view
. of the cost of repair is the number of labor hours
involved in repair; for example, two people for I
hour yields 2 labor hours. Figure 4-10 depicts a
typical labor-hour-to-repair (LH) distribution
corresponding to the TTR distribution in Figure
4-9. The tail on the LH due to problem systems
is even more pronounced than the TTR tail.
Hence, the second goal of design for maintaina­
bility is to decrease the tails on the TTR (affect­
ing customer downtime) and LH (affecting cost
of maintenance) distributions.

The maintenance philosophy is a function of
the total set of design decisions, including design
choices for fault tolerance and design for testa-

'E
<1J
1.1

t
CI.

25

20

15

10

5

,..-
I ,..--'

I
I

I--
I
I

_J

MAINTAINABILITY AND TESTING TECHNIQUES 197

r Repair time
__ .1,

I

Mean 4.4
Median 2.0

----1 ________ _
l _______

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hours to repair

Figure 4-9. Time To Repair (TTR) distribution.

35

30

25

Mean 6.3
20 Median 3.0

Number of calls

15

10

5
__ ~Labor time to repair

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 +
Labor hours to repair

Figure 4-10. Labor Hour to Repair (LH) distribution.

198 THE THEORY OF RELIABLE SYSTEM DESIGN

bility. The great variety of possible combinations
of design choices makes it very difficult to pro­
vide a comprehensive set of guidelines for design
for maintainability. Table 4-10 is an incomplete,
unordered list that may be used to stimulate the
generation of ideas.

Once a suspect subsystem has been identified
(through error detection logic, periodic diagnos­
tics, error reports, and the like), the first consid­
eration is to determine whether a fault is actually
present. Verification should start with the small­
est set of logic that can perform useful functions.
In a processor, the minimum functionality might
be execution of move constant, compare, and
branch instructions. Functions are verified incre­
mentally.

Each subsystem should be testable as a stand­
alone environment. For example, communica­
tions devices should have a test mode that wraps
the sending port around to a receiving port. The
sending and receiving logic can be tested without
the aid of other subsystems.

Table 4-10. Suggestions on design for
maintainability.

I. Start small. Verify subsystem operation step by
step, from the minimal logic configuration through
the addition of each incremental function.

2. Provide isolated environments so that each sub­
system is completely exercised without requiring
other subsystems.

3. Provide subsystem self tests, including tests of
error-detection circuitry.

4. Provide internal observability and controllability
in subsystems.

5. Provide error reporting and logging.

6. Minimize the need for external test equipment
such as logic state analyzers and probes.

7. Provide a cabinet structure that facilitates repair.

8. Base repair strategies on component replacement,
not on component swap.

9. Provide a support processor and remote access for
diagnosis.

Because of the availability of low-cost LSI
technology, most subsystems have at least one
microprocessor. The addition of a microproces­
sor simplifies the design of self-tests for the
subsystem. These tests should include the micro­
processor (checksumming its memory) as well as
error detection/reporting circuitry that is nor­
mally not exercised.

Suggestions 4 and 5 in Table 4-10 attempt to
provide information that will eliminate lengthy
repairs. The fourth suggestion· is to increase
observability and controllability of internal sig­
nals (as with the LSSD and Visibility Bus dis­
cussed under design for testability) and the fifth
suggestion is to provide error logging and report­
ing. Often a diagnostic program cannot recreate
an error event because it does not stress the
system in the same way that the operational
program does. Indeed, often the operational pro­
gram is the best diagnostic. Error logging cap­
tures information about the state of the system at
the time of the error, thus providing clues to the
source of the error. Error logging makes it possi­
ble to perform automatic trend analysis. A pro­
gram can periodically scan. the error log looking
for patterns (such as multiple-read retries to one
head of a disk). Trend analysis can be used in all
systems, whether they contain little or extensive
error-detection logic.

Suggestions 6 through 8 are aimed at the
repair process itself. The use of external test
equipment should be minimized or eliminated.
Such test equipment is difficult to transport,
time-consuming to hook up, and may perturb the
system to the point of masking the fault. Even
options such as a diagnostics control store
should be avoided, because its installation
changes the system configuration (perhaps even
necessitating removal of a board to make room).
A very important factor in maintenance is the
selection of a Field-Replaceable Unit (FRU).
Typically FRUs are printed circuit boards or
LSI chips. The physical layout of the system
should provide for easy access and replacement
of the FRUs. If the maintenance strategy calls

MAINTAINABILITY AND TESTING TECHNIQUES 199

for verification with the cabinet open or the
FRU on an extender board, the subsystem
should operate correctly under these conditions
(power should still be applied and timing mar­
gins still met). If on-line repair is mandated, care
should be taken to minimize human error, such
as the switching off of the wrong power supply.
Telettra builds telephone switching equipment
that supports on-line repair [Morganti, 1978].
The power pins on each card are slightly longer
than the signal pins. Furthermore, there is
enough mechanical resistance in card insertion
to allow enough time for capacitors to charge up
and electrical equilibrium to be reached prior to
logic-signal contact with the rest of the system.
On removal, the logic signals are disconnected
prior to power disruption. The cards are keyed to
prevent incorrect orientation or insertion into the
incorrect slot; thus, there are never any ill­
formed logic signals in the system due to the
insertion/removal of a card. In addition, the
processor is logically notified when a card is not
present.

Above all, the repair strategy should be one of
replacement rather than swap. In replacement
the faulty FRU is uniquely identified. FRU
swapping, sometimes called the "shotgun" ap­
proach, removes and substitutes several compo­
nents at a time. Mostly on the basis of guess­
work, components are substituted, sometimes en
masse, until the system again functions properly.
Swapping increases TTR/LH averages and
spare-inventory costs. More spare FRUs are
required because all removed FRUs are suspect.
The workload on repair facilities is also in­
creased. The swapping strategy was popular in
the early days of computing, but it is no longer
economically justifiable with today's more com­
plex systems.

The final suggestion in the list is to provide a
support processor to serve as a hub for mainte­
nance activities. When provided with remote
access, the support processor can help eliminate
tails on the TTR and LH distributions and
decrease both. Given an average transit time of

one hour from a field service office to a customer
site and a TTR of two hours, an average field
service engineer can make two repairs per day.
Even if the TTR were halved there would still be
only two repairs per day because of the con­
straint of an eight-hour work day. Thus, savings
can be realized by reducing transit time and
eliminating false alarms through use of remote
diagnosis (RD). As described in Chapter I, con­
sider a PDP-l 1/70 system with an RD option.
When a customer perceives a failure, the data
disk is dismounted, a diagnostic disk is mounted,
the RD option is switched to remote and the
customer telephones the PDP-ll/70 diagnostic
center, which dials up the target PDP-l 1/70. The
RD option gives the engineer visibility to the
implementation registers, micro sequencer, back­
plane bus, and other internal components. The
engineer can then run and interpret diagnostics
as if on-site. The RD option greatly reduces false
alarms. The experience of the RD center person­
nel tends to ensure that the field engineer is
dispatched with the appropriate repair kit and
expertise. Multiple trips for additional spare
parts or additional expertise are greatly reduced.
The RD center can also run extensive diagnos­
tics under control of an RD computer when the
customer is not using his computer. For remote
diagnosis to be most effective, the system should
be designed with RD in mind.

The IBM 4341 also uses a support processor to
perform on-line analysis of errors [Frechette and
Tanner, 1979]. The maintenance and support
processor logs environmental factors such as
power-line transients, electrostatic discharge,
and internal machine temperatures. The 4341
processor is implemented using the Level Sensi­
tive Scan Design (LSSD) technique. There are
approximately 5,000 latch pairs in the CPU, 300
of which are used solely to aid fault diagnosis. In
the diagnostic mode, the data latch is transferred
to the scan latch, capturing the state of the
machine for the support processor. The latch
pairs are linked together to form shift registers
called scan rings. The support processor subse-

200 THE THEORY OF RELIABLE SYSTEM DESIGN

quently can serially shift out the scan latch data.
Thus, when the· checking circuitry detects an
error dynamically (such as with parity or dupli­
cation), the state of the machine is captured.
There is no need to recreate the failure.

When error notification occurs, the support
processor reads the scan latches, determines the
error type, attempts recovery via retry for tran­
sient errors, records failure information in an
error log on a diskette, and, in the case of hard
faults, invokes error-log analysis microcode,
whose 17,000 bytes analyze the error logs to
identify the faulty FRU.

REFERENCES

Anderson and Metze [1973]; Bennetts and Lewin
[1971]; Bennetts and Scott [1976]; Bossen and Hong
[1971]; Bozorgui-Nesbat and McCluskey [1980];
Breuer and Friedman [1976, 1980]; Brule, Johnson,
and Kletsky [1960]; Carter, Wadia, and Jessep [1972];
Chang [1965, 1968]; Chang, Manning, and Metze
[1970]; Chang, Smith, and Walford [1974]; Craig
[1980]; Frechette and Tanner [1979]; Friedman and
Menon [1971]; Grason and Nagle [1980]; Hennie
[1964, 1968]; Hotchkiss [1979]; Howard and Nahourai
[1978]; Kautz [1968]; Kime [1970]; Lesser and Shed­
letsky [1980]; McCluskey and Clegg [1971]; Mei
[1974]; Morganti [1978]; Nadig [1977]; Preparata,
Metze, and Chien [1967]; Roth [1966]; Roth, Bouri­
cius, and Schneider [1967]; Sellers, Hsiao, and Bearn­
son [1968a]; Seshu and Freeman [1962]; Susskind
[1972]; Thatte and Abraham [1978]; Tohma, Ohyama,
and Sake [1971]; Williams and Parker [1979]

PROBLEMS

1. Assume incoming components have a defective
rate of 0.01.
a. Without incoming screening, what is the prob­

ability that a 500-chip system will be defective
after assembly?

b. What fraction of the defective components
would have to be removed by incoming screen­
ing if the probability that the 500-chip system
will not be defective is 0.8?

c. If the cost of screening incoming chips is one­
tenth the cost of loading a defective chip in
the assembled system, at what defect rate
(assuming screening is 100 percent effective)
is incoming screening more cost effective than
no screening?

2. Use the Boolean Difference to find all the tests in
the circuit below for:

Line 2 stuck-at-O
Line 6 stuck-at-O

A _---I

2

B -~---,--~~
C --t.----t .1----.

3. Use the D-algorithm to find a test for:
A stuck-at-l
Line 7 stuck-at-l

f

in the circuit of Question 2. What other faults do
these tests also detect?

4. Find a minimal test set for the circuit in Question
2. (Hint: This is a minimal cover problem; see
Kautz [1968] for further information if required.)

5. Create the Reed-Muller implementation for the
circuit in Question 2.

6. Create a controllable version of the circuit (Ap­
pendix C) and list the five required tests (including
control points) for the circuit in Question 2.

7. For the circuit pictured below, generate a test for:
a. Line 8 stuck-at-O
b. Line 1 stuck-at-O
Explain your approach in each case.

A __ ~_O~ ______ ---1

4

2 9
10

7
11

C ___ ~6~--1 ~ ____ ~

Evaluation Criteria

Stephen McConnel Daniel P. Siewiorek

20m paring redundancy techniques and making
mbsequent design trade-offs require a method of
!valuation. Evaluation criteria are often loosely
~eferred to as reliability. Reliability, however,
~an mean many things. The difficulty arises in
:he measurement and interpretation of reli­
ibility. To a businessman, a computer is reliable
.vhen paychecks are printed on time and contain
10 errors. To a scientist, the computer is reliable
.f it has enough computing power available to
)rocess experimental numerical data. A space
;cientist considers a spacecraft's on-board com­
)uter reliable when the mission (perhaps years in
ength) is successfully completed. Finally, an
iirline on-board control computer is considered
~eliable if it makes no decisions with fatal conse­
~uences. The major difference among these users
s the application-dependent interpretation of
.vhat a reliable system does. The great variety of
ipplications has engendered a large number of
~eliability measures, both quantitative and qual i­
:ative. Often several measures are required to
lescribe a system adequately.

This chapter introduces several criteria for
!valuating the dependability of computing struc­
:ures. The chapter also develops techniques for
nodeling such structures in order to obtain
·easonable predictions for those criteria. These
nodels typically divide a computer into various
mbstructures that are easier to study than the
.vhole system. There are certain levels at which it
s customary to model systems.

The highest level of modeling is the system
evel, at which the entire system is considered as
i black box. After statistics are gathered about
!vents such as failures of a certain kind, a model

201

202 THE THEORY OF RELIABLE SYSTEM DESIGN

can be suggested to fit the data as closely as
possible. Modeling at this level requires an enor­
mous amount of data.

At the next level, the module leveL the system
is subdivided into several modules that have
mutually independent failures. The system mod­
el is obtained by a composite of the models for
the modules.

The next lowest level is the gate level. I t is
seldom necessary to model a system below the
gate level. However, if the redundancy is intro­
duced at a lower level, the component level of
modeling is required, where components are
such items as transistors, diodes, and resistors.
The failure rate and reliability functions of indi­
vidual components were discussed in Chapter 2.

Modeling is most often performed at the mod­
ule level. Redundant systems are then modeled in
terms of their nonredundant subsystems.

SURVEY OF EVALUATION
CRITERIA

Hardware Evaluation

Deterministic Model

Table 5-1 lists several evaluation criteria for
system reliability. The simplest is the determinis­
tic model. In this model, the minimum number
of component failures that can be tolerated
without system failure is taken as the figure of
merit for the system. Deterministic modeling can
result in wasted resources and unbalanced sys­
tem design because highly reliable components
must be replicated as many times as the low­
reliability components. The only common use of
the deterministic model in practice is to specify
that no single component failure should cause
the system to fail.

Probabilistic Models

Probabilistic Functions. Thus probabilistic
modeling, based on relative component failure

Table 5-1. Evaluation criteria for system
rei iabi lity.

Deterministic
Survive at least k component failures

Probabilistic junctions
Hazard (failure rate) function-z(t)
Reliability-R(t)
Mission Time-MT(r)
Repair rate-p.
Availability-A (t)

Single parameters (probabilistic)
Mean Time To Failure-MTTF
Mean Time To Repair-MTTR
Mean Time Between Failures-MTBF
Coverage

Comparative measures (probabilistic)
Reliability difference R2 (t) - R~ (t)
Reliability gain R2(t)/R J (t)

Mission Time Improvement M12(r)/M1((r)

and repair rates, is the most often used. Failure
rates of electronic devices vary with time, as
shown in Figure 1-4. (The theory behind hard­
ware component failure rates was discussed in
Chapter 2.) This time-dependent failure rate is
called a hazard junction, denoted as z(t). The
hazard function is sometimes called the hazard
rate or the force of mortality, and is usually
measured in failures per million hours. For a
known distribution,

f1 pd]
z(t) = I - CDF

For electronic components on the normal-life
portion of the bathtub curve, the failure rate is
assumed to be constant. This means that the
exponential hazard function is applicable:

z(t) = A

For the periods of infant mortality and compo­
nent wearout, the Weibull hazard function is
often used:

z(t) = lXA(Att- 1

(As noted in Chapter 2, the exponential function
is equivalent to the Weibull function with a
equal to one.) The Weibull shape parameter a
and the scale parameter A (used in both hazard
functions), are constants specific to a particular
component.

For the nonredundant constant-failure-rate
model, the system hazard function is the sum of
the component failure rates. For the combina­
tion of Weibull processes and for redundant
systems with either model, the relationship is
much more complex.

The hazard function is easy to measure in
ascertaining the operational reliability of physi­
cal systems, because it can be calculated from a
histogram of times between failures.

In keeping with the probabilistic nature of the
concepts of failure rate and hazard function, the
failure of electronic components is assumed to
follow a general Poisson distribution:

• Probability of one failure during an interval M is
approximately z(t)Llt.

• Probability of two or more failures during an inter­
val Llt is negligible.

• failures are independent.

Defining m{t) = f~ z{x)dx, Ross [1972] has
shown that the probability of k failures in time
[O,t] is given by

e-m(t) [m{t)]k
k!

The expected value (or mean) of the number of
failures in time [0, t] is

00 -m(t)[(t)]k
E[k] = ~ k e ~ = m(t)

k=O k.

The variance is

Var [k] = E[k 2] - (E[k])2 = m{t) = E[k]

For a constant failure rate A, m(t) = At. Thus,

-At (A)k
Pr {k failures in time [0, tn = e k! t

E[k] = Var [k] = At

EVALUATION CRITERIA 203

For the Weibull hazard function z(t)
= aA(Atr- l

, m(t) = (Att. Therefore,

e-(M)" (At)k(x
Pr {k failures in time [0, tn = k!

E[k] = Var [k] = (Att

The reliability function R(t) of a system is
mathematically defined as the probability that
the system will perfo:,m satisfactorily from time
zero to time t, given that operation commences
successfully at time zero. It is a monotonically
decreasing function whose initial value is one.
The reliability function can be used to derive
many of the other reliability measures detailed
below.

Given the general Poisson distribution devel­
oped above, the reliability function for a single
componen t becomes:

R(t) ! Pr {O failures in time [0, t]}

= e-m(t)

For a constant failure rate, substitute At for m{t).
Then,

R(t) = e-At

If a system does not contain any redundancy­
that is, if every component must function prop­
erly for the system to work-and if component
failures are statistically independent, then the
system reliability is the product of the compo­
nent reliabilities and is thus also exponential.
Furthermore, the failure rate of the system is the
sum of the failure rates of the individual compo­
nents. Therefore,

n n _ -(± Ai)t
RSys(t) = II RJt) = II e \t = e i=1

i=i i=i

where there are n components.
For the Weibull hazard function, substitute

(Atr for m{t):

R{t) = e-(M)a

The Weibull model is more flexible but less

204 THE THEORY OF RELIABLE SYSTEM DESIGN

. tractable than the exponential when large groups
of components are involved. The reliability func­
tion for a group of c0!llponents is:

-[f (;\1)";J R (t) = e ;=1 I sys

The sum must be performed for each new value
of t, resulting in lengthy calculations. It is also
difficult, if not impossible, to integrate analyti­
cally, which affects the other reliability measures
discussed below.

For the general hazard function, recall that
met) = f~ z(x) dx. Thus,

R(t) = e - fo' z(x)dx

Rsys (t) = e -Ltl (fol Z;(X)dx)J

As noted earlier, the Wei bull function is more
accurate than the exponential function for com­
ponents subject to wear and aging (increasing
failure rates) or those that improve with time, as
the weaker members of the population are culled
out (decreasing failure rates). When extremely
accurate reliability predictions are needed, sam­
ple components are tested to find the underlying
distribution (Weibull or otherwise) and the value
of pertinent parameters. This is necessary be­
cause different kinds of components experience
different distributions, as do similar components
from different manufacturing lots or manufac­
turers.

For systems with stringent reliability require­
ments, a different but related measure is some­
times used. The mission time function MT(r)
gives the time at which system reliability falls
below the level r. The mission time function is
particularly well suited for applications with a
minimum lifetime requirement due either to im­
possible or prohibitively expensive repair or to
fixed intervals between maintenance. Such appli­
cations include spacecraft computers, undersea
cable repeaters, and commercial airliner avionics
systems.

The relationship between R(t) and MT(r) is
given by

R[MT(r)] = r

MT[R(t)] = t

For a constant failure rate (z(t) = >..), the com­
ponent mission time function is easily shown to
be

-In r
MT(r) = ->..-

A nonredundant system with n components
therefore has

MT(r) = ~ln r

~\
i=1

For a more complex hazard function or for a
redundant system, the mission time function is
much more difficult to compute.

In most cases it is possible to repair or replace
failed components, and accurate models of sys­
tem reliability should take this into considera­
tion. Repair activity, however, is not as easily
modeled analytically as failure mechanisms.
Many factors affect the rate at which repair
occurs, including human ability, travel time,
diagnostic capabilities, and parts availability.
Despite the lack of strong theoretical backing,
probabilistic models usually assume a repair rate
analogous to the failure rate discussed already.
For the purposes of this text, the repair rate
function is treated similarly to the hazard (failure
rate) function and generally denoted zr(t). The
form and parameter values of this function can
be measured for existing systems or estimated
from experience with comparable situations. For
a Weibull repair rate function, Jl is used for the
scale parameter (= >.. in the failure rate function)
and f3 for the shape parameter (= a in the failure
rate function). The solution of a reliability model
with both failure and repair rates requires the use
of Markov models, discussed later in this chap­
ter. These models usually assume that repair of a
failed system restores it such that the failure rate
of the repaired system is the same as if no failure
had occurred. In the case of the exponential
model (constant hazard rate) process, this is

completely true. The assumption is less valid for
the Weibull process, but is usually made in order
to provide analytic solutions.

For systems that can be repaired, a new mea­
sure of reliability is often used: the probability
that the system is operational at any given time.
This measure, called availability, is expressed
symbolically as A(t). Availability A(t) differs
from (reliability R(t) in that any number of
system failures can have occurred prior to time t,
but the system is available if all those failures
have been repaired. Recall that with reliability
R(t), the system is considered reliable only if no
system failures have occurred prior to that time.
As a result, the availability function has a non­
zero constant (steady-state) term. For a constant
failure rate A and a constant repair rate 11, the
steady-state availability can be expressed as

11
Ass = A + 11

The exact form of the availability function re­
quires the solution of the appropriate Markov
model which will be derived later in the chapter.

Single-Parameter Models. Reliability and
availability equations, even for simple systems
with repair, are often too complex to compre­
hend except (perhaps) in graphic form. There­
fore, single-parameter metrics have been
proposed to summarize these continuous-time
equations.

Mean Time To Failure (MTTF). Measuring the
Mean Time To Failure (MTTF) for components
was discussed in Chapter 2. As for components,
the MTTF of a system is the expected time of the
first system failure in a population of identical
systems given successful startup at time zero. It
assumes a new (perfect) system at time zero. For
the reliability functions used here, the MTTF is
defined as:

MTTF = fooo R(t) dt

Reliability functions of complex redundant sys­
tems require numeric integration techniques, as

EVALUATION CRITERIA 205

do the Weibull reliability functions because of
their nonintegrability. However, the MTTF is
still relatively easy to determine by means of
numerical integration of the reliability function
on a computer. Although the MTTF, in theory,
applies only to a large population of systems, it
is also useful as a measure for a given design
(population of one).

For an example of MTTF calculation, consid­
er a non redundant system with n components,
e.ach with individual constant failure rate Ai:

MTIF ~ fo'" R(t) dt ~ fo'" e -(t, A) dt

Hence

MTTF = _n_
l _

~\
i=i

This direct relationship between MTTF and the
system failure rate is one reason the constant­
failure-rate assumption is often made even when
supporting data are scanty.

Mean Time To Repair (MTTR). The Mean
Time To Repair (MTTR) is often used to mea­
sure the repairability of a system. It is the
expected time for repair of a failed system or
subsystem. MTTR is related to the repair rate
discussed above much as MTTF is related to the
failure rate. As with the repair rate, MTTR is not
easily modeled analytically, and must usually be
measured or estimated.

As indicated for exponential distributions,
MTTF = 1/A and MTTR = 1/11. The steady­
state availability, Ass' defined earlier can be
rewritten in terms of these parameters:

MTTF
Ass = MTTR + MTTF

Mean Time Between Failures (MTBF). The
term Mean Time Between Failures (MTBF) is
often mistakenly used in place of Mean Time To
Failure (MTTF). The MTBF is the mean time
between failures in a system with repair, and is

206 THE THEORY OF RELIABLE SYSTEM DESIGN

thus derived from a combination of repair and
failure processes. The easiest approximation for
MTBF is

MTBF = MTTF + MTTR

This expression should be exact for nonredun­
dant systems, but is only approximate for redun­
dant systems because the interplay of multiple
failures usually causes the repair rate to change.

Coverage. Coverage is a concept serving di­
verse purposes, with two major meanings: quan­
titative and qualitative. The quantitative mean­
ing is used most often in reliability modeling of
redundant systems. In its quantitative sense,
coverage is the probability that the system suc­
cessfully recovers from a specific type of failure.
Quite often, coverage is the probability that a
particular class of fault is successfully detected
before a complete system corruption occurs.
Other typical uses include the probability of
successful takeover by backup systems and non­
corruption of checkpoint (restart) variables.

The qualitative meaning of coverage specifies
the types of errors against which a particular
redundancy scheme guards. For example, the
coverage of Hamming single error-correcting­
double-error-detecting code is correction for all
single-bit errors in a code word and detection of
all double bit errors and some multiple bit errors.
Jack et al. [1975] develop this measure of cover­
age for a variety of both error-detection and
corrrection techniques.

Comparative Measures. A major use of the
evaluation criteria discussed so far is to compare
different systems or different models of the same
system. Such comparisons generally involve ar­
ithmetic differences of the measures or ratios
between the measures. Three common compara­
tive measures are

• Reliability difference Rnr,w(t) - Rold(t)
• Reliability gain Rnew (t) fRoid (t)
• Mission time improvemen t, M~ew (r) / MT old (r)

where Mission Time (MT) is the time the system is
above the reliability, r.

The use of these and similar measures is illustrat­
ed later in the section "Design Example: The
PDP-8/e."

Software Evaluation

Software reliability assessment is part of the
more general area of software quality assessment
[Mohanly, 1973]. Effective mechanisms for meas­
uring software quality are required because of
the high cost of software development and main­
tenance. Forecasts indicate that by 1985 over 90
percent of the total computing dollars spent
annually will be for software [Horowitz, 1975].
The development of techniques for measuring
software reliability has been motivated mainly
by project managers, who need not only ways of
estimating the manpower needed to develop a
software system with a given level of perfor­
mance but also techniques to determine when
this level of performance has been reached. Most
software reliability models presented to date are
still far from satisfying these two needs in a
general context.

Most models assume that the software failure
rate will be proportional to the number of bugs
or design errors present in the system, without
taking into account that different kinds of errors
may contribute differently to the total failure
rate. Eliminating one significant design error
may double the mean time to failure, whereas
eliminating ten minor implementation errors
(bugs) may have no noticeable effect.

Even assuming that the failure rate is propor­
tional to the number of bugs and design errors in
the system, no model considers the fact that the
failure rate will then be related to the workload
of the system. For example, doubling the work­
load without changing the distribution of input
data to the system may double the failure rate .

Software reliability models can be roughly
grouped in four categories: time .domain, data
domain, axiomatic, and other.

Time Domain Models

Models formulated in the time domain attempt
to relate software reliability (characterized, for
instance, by an MTIF figure under typical work­
load conditions) to the number of bugs present
in the software at a given time during its devel­
opment. Typical of this approach are the models
presented in Shooman [1973], Musa [1975], and
Jelinsky and Moranda [1973]. Removal of imple­
mentation errors should increase MTIF, and
correlation of bug-removal history with the time
evolution of the MTTF value may allow the
prediction of when a given MTTF value will be
reached. The main disadvantages of time do­
main models are that bug correction can gener­
ate more bugs, and that software unreliability
can be due not only to implementation errors but
also to design (specification) errors, characteriza­
tion, and simulation during testing of the typical
workload.

The Shooman model [Shooman 1973] attempts
to estimate the software reliability-that is, the
probability that no software failure will occur
during an operation time interval [0, t]-from an
estimate of the number of errors per machine­
language instruction present in a software system
after T months of debugging. The model as­
sumes that at system integration there are E·

• I

~rrors present m the system and that the system
IS operated continuously by an exerciser that
emulates its real use. The hazard function after T
~onths of debugging is assumed to be propor­
tional to the remaining errors in the system. The
reliability of the software system is then assumed
to be

R(t) = e-c E(r.T)

where E(r, T) is the remaining number of errors
in .the system after T months of debugging, and
~ IS a prop~rtionality constant. The model pro­
VIdes equations for estimating C and E(r, T)
from the results of the exerciser and the number
of errors corrected.

The lelinsky-Moranda model [Jelinsky and
Moranda, 1973] is a special case of the Shooman
model. The additional assumption is made that

EVALUATION CRITERIA 207

each error discovered is immediately removed,
decreasing the remaining number of errors by
one. Assuming that the amount of debugging
time between error occurrences has an exponen­
tial distribution, the density function of the time
of discovery of the ith error, measured from the
time of discovery of the i-I th error, is

pet) = AU)e -;\(i}ti

where AU) = j(N - i + 1) and N is the number
of errors originally present. The model gives the
maximum likelihood estimates for Nand j.

An extension of the lelinsky-Moranda model
has been given by Wolverton and Schick [1974].
It assumes that the error rate is proportional not
only to the number of errors but also to the time
spent in debugging, so that the chance of discov­
ery increases as time goes on.

Another extension is given in Thayer, Lipow,
and Nelson [1978], in which more than one error
can be detected in a time interval, with no
correction being made after the end of this
interval. The new maximum likelihood estima­
tors of Nand j are also given.

All the models presented so far attempt to
predict the reliability of a software system after
a period of testing and debugging. In a good
example of an application of this type of model
Miyamoto [1975] describes the development of
an on-line realtime system for which a require­
ment is that the Mean Time Between Software
Errors (MTBSE) has to be longer than 30 days.
The system will operate on a day-by-day basis,
13 hours a day. (It will be loaded every morning
and reset every evening.) The requirement is
formulated such that the value of the reliability
function, R(t), for t = 13 hours has to be greater
than e[-13/MTBSE] = 0.9672.

Miyamota also gives the variations in time of
the MTBSE as a function of the debugging time.
The MTBSE remained at a very low value for
most of the debugging period, jumping to an
acceptable level oilly at the end. The correlation
coefficient between the remaining number of
errors in the program and the failure rate was
0.77, but the scatter plot shown is disappointing

208 THE THEORY OF RELIABLE SYSTEM DESIGN

and suggests that the correlation coefficient be- for a subset of input data values. A more de-
tween the failure rate and any other system tailed description of data domain techniques is
variable could have given the same value. In the given in Thayer, Lipow, and Nelson [1978]. In
same paper Miyamoto describes in detail how Schick and Wolverton [1978] the time domain
the system was tested. and data domain models are compared. Howev-

None of the models above takes into account er, different applications will tend to use different
that in the process of fixing a bug, new errors subsets of all possible input data values, yielding
may be introduced in the system. The final different reliability values for the same software
number given is usually the Mean Time Between system. This fact is formally taken into account
Software Errors, but only Miyamoto points out in Cheung [1980], where software reliability is
that this number is valid only for a specific set of estimated from a Markov model whose transi-
workload conditions. tion probabilities depend on a user profile. Tech-

Other models to study the improvement in niques for evaluating the transition probabilities
reliability of a software item during its develop- for a given profile are given in Cheung and
ment phase exist, such as Littlewood [1975], Ramamoorthy [1975].
where the execution of a program is simulated In the Nelson model [1973], a computer pro-
with continuous-time Markov switching among gram is defined as a computable function, F,
smaller programs. This model also demonstrates defined on the set E = {Ej,i = 1, ... ,N}. E
that under certain conditions in the software includes all possible combinations of input data
system structure, the failure process will be values, each E j being a sample of data values
asymptotically Poisson. Another Markov model needed to make a run of the program. Execution
is given in Trivedi and Shoo man [1975], where of a program produces, for a given value of E j ,

the most probable number of errors that will the function value F(Ej).
have been corrected at any time t is based on In the presence of bugs or design errors, a
preliminary modeling of the error occurrence program actually implements F'. Let Ee be the
a-m:trep-air rates:Tl1e mO<ielalso pr6videspreaic---serofinpurQaTavalUes~~STIc[lnarF'(E;Jproduc::'
tions of the availability and reliability of the es an execution failure (execution. terminates
system at time t. Schneidewind [1975] describes a prematurely, fails to terminate, or the results
model that assumes that the failure process is produced are not acceptable). If Ne is the num-
described by a nonhomogeneous Poisson pro- ber of E j in E e, then
cess. The rate of error detection in a time interval
is assumed to be proportional to the number of
errors present during that interval. This leads to
a Poisson distribution with a decreasing hazard
rate.

Data Domain Models

Another approach to software reliability model­
ing is to study the data domain. The first model
of this kind is described in ~ elson [1973]. In
principle, if sets of all input data values upon
which a computer program can operate are iden­
tified, an estimate of the reliability of the pro­
gram can be obtained by running the program

is the probability that a run of the program will
result in an execution failure. Nelson defines the
reliability, R, as the probability of no failures, or:

R = I-p

= 1- Ne
N

This model, then, takes into account that the
inputs to a program are not selected from E with
equal a priori probability, but are selected ac­
cording to some operational requirement. This
requirement may be characterized by a probabil­
ity distribution {Pj: i = 1, ... ,N}, Pj being the

probability that the selected input is Ej • If we
define the auxiliary variables lj to have the value
zero if a run with E j is successful, and one
otherwise,

N

p= ~ Pjlj
j=l

where p is again the probability that a run of the
program will result in an execution failure. A
mathematical definition of the reliability of a
computer program is given as the probability of
no execution failures after n runs.

R(n) = Rn = (1 - pr
The model elaborates on how to choose input

data values at random from E according to the
distribution Pj to obtain an unbiased estimator of
R(n). In addition, if the execution time for each
Ej is also known, the reliability function can be
expressed in terms of the more conventional
probability of no failure in a time interval, [0, t].

Chapter 6 in Thayer, Lipow, and Nelson
[1978] extends the previous models to take into
account how the testing input data sets should be
partitioned. Also discussed are the uncertainty in
predicting reliability values, the effect of soft­
ware errors removal, and the effect of program
structure.

Axiomatic Models

The third category includes models in which
software reliability (and software quality in gen­
eral) is postulated to obey certain universal laws
[Ferdinand, 1974; Fitzsimmons and Love, 1978].
Although such models have generated great in­
terest, their general validity has never been prov­
en and, at most, they only give an estimate for
the number of bugs present in a program.

The best-known axiomatic model is the so
called Software Science developed by Halstead
[Fitzsimmons and Love, 1978]. Halstead used an
approach very similar to that of thermodynamics
to provide quantitative measures of program
leveL language leveL algorithm purity, program

EV ALUA TION CRITERIA 209

clarity, effect of modularization, programming
effort, and programming time. In particular, the
estimated number of bugs in a program is given
by the expression

where K is a proportionality constant, V is the
volume of the implementation of an algorithm,
and EO is the mean number of mental discrimi­
nations between errors made by the program­
mer. V is given by

V = N log2 (n)

where N is the program length and n the size of
the vocabulary defined by the language used.
More specifically,

where:

N = Nl + N2

n = nl + n2

nl number of distinct operators
appearing in a program

n2 number of distinct operands
appearing in a program

Nl = total number of occurrences of
the operators in a program

N2 = total number of occurrences of
the operands in a program

EO has been empirically estimated
to have a value around 3000.

Many publications have either supported or
contradicted the results proposed by the Soft­
ware Science, including a special issue of the
IEEE Transactions on Software Engineering [Hal­
stead, 1979].

Though unconventional, the measures pro­
posed by the Software Science are easy to com­
pute, and in any case it is an alternative for
estimating the number of bugs in a software
system. Table 5-2 shows the correlation coeffi­
cient between the real number of bugs found in
a software project and the predicted number
according to software science theory for several
experiments. There are significant correlations

210 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-2. Correlation of actual experience to
software bug prediction by axiomatic models.

Reference

[Funami and Halstead,
1975]

[Cornell and Halstead,
1976]

[Fitzsimmons and Love,
1978]

Correlation Coefficient
Between Predicted and
Real Number of Bugs

0.98 - 0.83 - 0.92

0.99

System A 0.81
System B 0.75
System C 0.75
Total 0.76

with error occurrences in the programs, although
the data reported by Fitzsimmons and Love
(obtained from three General Electric software
development projects totaling 166,280 state­
ments) show weaker correlation than the original
values reported by Halstead.

Other Models

which the probability density function is assumed
to be known. If the fault is due to a software
failure, maintenance takes place, during which the
error may be removed, more errors may be intro­
duced, or no modifications may be made to the
software.

The model computes the availability of the
system as a function of time by use of semi­
Markovian theory. That is, the system will make
state transitions according to the transition prob­
abilities matrix, and the time spent in each state
is a random variable whose probability-density
function is either assumed to be known or is
measurable.

The main result presented in Costes, Land­
rault, and Laprie [1978] is how the availability of
the system tends towards the asymptotic availa­
bility (availability of the system when all the
design errors have been removed) as the design
errors are being removed under some restrictive
conditions.

The minimum availability is shown to depend
only on the software failure rate at system inte­
gration, and not on the order of occurrence of
the different types of errors. The presence of

--------.--- ----diff-eTent-tYpe-s-uf--desi-gn--errors-orrly-extends-1he-
The model presented in Costes, Landrault, and time necessary to approach the asymptotic avail-
Laprie [1978] is based on the fact that for well- ability.
debugged programs the occurrence of a software The mathematics involved for the model are
error results from conditions on both the input's complex, requiring numerical computation of
set of data and the logical paths encountered. inverse Laplace transforms for the transition
These events, then, can be consl·dered random probabilities matrix, and it is not clear that the
and independent of the past behavior of the parameters needed to simulate a real system
system, that is, with constant failure rate. Also, accurately can be easily measured from a real
because of their rarity, design errors or bugs may
have the same effect as transient hardware faults. system.

Finally, there have been some attempts to
The model is built on the foUowl·ng assump-

tions:

1. The system initially possesses N design errors or
bugs that can be totally corrected by N interven­
tions of the maintenance team.

2. The software failure rate is constant for a given
number of design errors present in the system.

3. The system starts and continues operation until a
fault is detected, then passes to a repair state. If the
fault is due to a hardware transient, the system is
put into operation again after a period of time for

model fault-tolerant software through module
duplication [Hecht, 1976] and warnings about
how not to measure software reliability [Little­
wood, 1979].

None of the models above characterizes sys­
tem behavior accurately enough to give the user
a figure of guaranteed level of performance
under general workload conditions. They esti­
mate the number of bugs present in a program
but do not provide any accurate method to

characterize and measure operational system un­
reliability due to software. There is a large gulf
between the variables that can be easily meas­
ured in a running system and the number of bugs
in its software. Instead, a cost-effective analysis
should allow precise evaluation of software unre­
liability from variables easily measurable in an
operational system, without knowing the details
of how the software has been written.

MODELING TECHNIQUES

Redundant systems can be modeled under var­
ious operational assumptions, such as failure to
exhaustion and failure with repair. Redundancy
with failure to exhaustion is a simplistic and
pessimistic model which assumes that all redun­
dant modules fail before any repair. Failure with
repair, on the other hand, models two separate
but concurrent processes: the failure process and
the repair process. Failure to exhaustion can be
modeled by simple combinatorial probability,
the first topic in this section. Failure with repair,
which requires solutions of sets of differential
equations, is the second main topic. Next, the
impact on system availability of different as­
sumptions concerning repair strategy is explored,
followed by models built on the assumption that
failures affect the performance of redundant
systems.

Combinatorial Modeling

In combinatorial modeling, the system is divided
into nonoverlapping modules. Each module is
assigned either a probability of working, Pi' or a
probability as a function of time, Ri(t). The goal
is to derive the probability, Psys , or function,
RsyS (t), of correct system operation. The follow­
ing assumptions are made:

1. Module failures are independent.
2. Once a module has failed, it is assumed always to

yield incorrect results.
3. The system is considered failed if it does not satisfy

the minimal set of functioning modules.

EVALUATION CRITERIA 211

4. Once the system enters a failed state, subsequent
failures cannot return the system to a functional
state. This property, called coherency, is mathemat­
ically defined by Esary and Proschan [1962] in
terms of a structure function <p(x). x is a vector
composed of elements XI' x2' ... , X n ' where each
Xi is I if module i is functional, and ° if module i is
failed. A coherent system satisfies the following
properties:
a. <p(I, I, ... , 1) = I, when all modules function,

the system must function;
b. <p(0, 0, ... ,0) = 0, when all modules fail, the

system fails; and
c. <p(x) 2 <p(y) whenever Xi 2 Yi 'Vi, i = I, 2,

... , n

Failure to exhaustion models typically enu­
merate all the states of the system (where a state
is a pattern of failed and working modules) that
meet or exceed the requirements of the minimal
module set. Combinatorial counting techniques
are used to simplify this enumeration. The fol­
lowing three subsections treat commonly used
modeling techniques for series/parallel systems,
M-of-N systems, and complex systems.

Series/ Parallel Systems

Most frequently, reliability evaluation involves a
series or parallel combination of independent
systems. Figure 5-1 illustrates a serial string of
modules, all of which must function for the
system to function correctly. The modules could
be resistors, fuel valves, computers, or any other
components. If Ri(t) is the reliability of module i
and if the modules are assumed independent,
then the overall system reliability is:

n

Rseries (t) = II R/t)
i=i

(1)

Hence, the failure probability, denoted by Q, of
a series system can be written as:

n

Qseries(t) = 1 - Rseries(t) = 1 - II R/t)
i=i

n
1 - II (1 - Qi(t))

i=i

(2)

212 THE THEORY OF RELIABLE SYSTEM DESIGN

Figure 5-1. A series connection of n modules.

The parallel configuration in Figure 5-2 fails
only if all the systems fail. The probability of
failure is:

n

Qparallel (t) = II Qi(t) (3)
i=1

The system reliability is:
n

Rparallel(t) = 1 - Qparallel(t) = I - II Qi(t)
i= I (4)

n
= I - II (1 - Ri(t»

i=1

Note the duality between R, Q; Equations I and
3; and Equations 2 and 4. For some systems it
may be easier to work with failure probability
than with reliability. Equations I through 4 can
be applied recursively to complex series/parallel
configurations to arrive at an overall reliability
function. Figure 5-3 depicts two different inter-

Figure 5-3a tolerates more patterns of shorted
components (such as shorted resistors/diodes or
stuck-at-open fuel valves) than does configura­
tion (b). Both configurations tolerate all single
shorts and double shorts (ac, bd). Configuration
(a) also tolerates double shorts (ad, bc). In a dual
manner, configuration (b) tolerates more pat­
terns of open components (such as open resistors/
diodes or stuck-at-closed fuel valves). In particu­
lar, configuration (b) tolerates the double-open
failures of (ad, bc) for which configuration (a) fails.

N ow consider the case where blocks (a, c) are
processors and (b, d) are memories. For the
system to operate, at least one processor-memory
pair is required. Configuration (a) represents a

{;Qnn~ctio1!~ ot! oUL CQ1Up-Qn~nls_._Ihes_e~_onfigll .. __ -------t
1
-------- --- ----------------­

rations have been used in aerospace systems for
providing redundant transmission paths between
terminals tl and t2 where each working path has
to contain at least one good component. The
modules may be resistors or diodes (such as the
component quadding used in OAO, the Orbital
Astronomical Observatory) or valves controlling
fuel flow to a rocket motor. The configuration in

Figure 5-2. A parallel connection of n modules.

Shorts tolerated: a, b, c, d, ac, ad, bc, bd

Opens tolerated: a, b, c, d, ab, cd

a.

Shorts tolerated: a, b, c, d, ac, bd

Opens tolerated: a, b, c, d, ab, ad, bc, cd

b.

Figure 5-3. Two forms of series/parallel intercon­
nection designed to tolerate a.) short and b.) open
failures.

computer with a standby spare. Figure 5-4a
illustrates the application of the series reliability
equation. Now, applying the parallel reliability
equation:

Note that the Ri' s may be either a single
such as a probability of success, or a function of
time. In this text the function notation R/t) is
reserved for special cases. The reader may inter­
pret R j as either a single numbered probability or
a function. Applying the parallel reliability equa­
tion to configuration (b) (Figure 5-4b) results in:

Ropen = (1 - (I - R) (I - Rc))

X (1 - (I - R/J)(l - Rtf))

Letting Ra = Rh = Rc = Rd = Rill yields

Rshort = 2 R'~l - R~l

and

(6)

Because there are more combinations of working
systems in configuration (b), it is obvious that

Ropen > Rshort

for all t > O. Now consider the case of n mod­
ules in parallel, only one of which is required to
function. The other n - 1 modules represent

a.

---1 QaQc H QbQd ~
b.

Figure 5-4. Applying a.) the series and b.) the
parallel unreliability formula to Figure 5-3b.

EVALUATION CRITERIA 213

spares. The spares can be operating in parallel
or, as is more usually the case, standing by to
replace the operating module when it fails. The
form of Equation 3 suggests that as n grows
large, Qparallel becomes close to perfection. For
example, for Rparallel to be within € of 1.0, choose
n such that:

ln€
n = InQ

for € = 10-6 and Qm = 0.1, n = 6.

(7)

Equations 3 and 4, however, assume that the
detection of the failed operating module and the
switchover of a standby spare occur flawlessly.
This is not a valid asumption in complex sys­
tems, in which even failure detection is far from
perfect (a typical diagnostic program, for exam­
ple, may detect only 80-90 percent of possible
faults). As a result, the concept of coverage
[Wyle and Burnett, 1967; Bouricius, Carter, and
Schneider, 1969a, 1969b] has been introduced. In
this context, coverage is defined as the condition­
al probability that a system recovers, given there
has been a failure. What constitutes proper re­
covery is a strong function of the intended
application. It may mean merely establishing a
workable hardware system configuration (such
as telephone switching processors) or it may
demand that no data are lost or corrupted (such
as in transaction processing computers, used in
banks). Let coverage be denoted by c. Then, for
a system with two modules:

Rsys = R) + cR2(I - R)) (8)

The first term is the probability that the first
module survives. The second term is the proba­
bility that the first module fails, the second is still
functioning, and a successful switchover was
accomplished. Note that if c = I and R\ = R2

= Rill' Rsys = 2Rm - R~l = 1 - (1 - R,J
2
. If

the modules are identical, then Equation 8 can
be generalized to:

(9)

214 THE THEORY OF RELIABLE SYSTEM DESIGN

This geometric progression can be evaluated by
noting that:

n 1 - x n+ l

~ x i =---
i=O 1 - x

For ° < x < 1
Hence: _ (1 - c

n (I - Rm)n)
Rsys - Rm 1 - c(1 - Rm)

= R (1 - C
nQ:!-')

m 1 - cQm

For Rsys to be within £ of 1.0, choose n such that:

In[1 _ (I - £)(1 - cQm n
n = Rm J (10)

In(cQm)

Returning to the example where Rsys = I -
£ for £ = 10-6 , Rm = 0.9, and c = 1.0, it was
shown that n = 6 was sufficient. Now assume a
nonperfect, but still high coverage of c = 0.99.
Even for n = 00, Rsys from Equation 9 is only
0.99889. For a more conservative coverage of
c = 0.9, the maximum value for Rsys with n
= _oois_O~5l8~ __ __________ ~ __ ~ ______ _

Table 5-3 lists the values of system reliability
expressed by Equation 9 as a function of module
reliability (RnJ, coverage (c), and number of
modules (n). Two things should be noted from
this table. First, as in all redundancy techniques,
the initial application of redundancy produces a
major decrease in system unreliability. Factors
of 10 or more are not uncommon. In a compari­
son of Rm with Rsys for n = 2, the ratios of un­
reliability vary from a high of 9.09 to a low of 1.67.
However, once n is increased to 4, the great
majority of the system reliability improvement has
been realized. Second, the single most important
parameter is coverage. For high values of cover­
age (such as 0.99) and a moderate number of mod­
ules (say, four to six), system reliability is almost
independent of module reliability over a wide
range. Although coverage is a mathematically
concise concept, it is often impossible to measure
(or indeed even estimate) in practice because so
many factors influence the final value of c.

The MTTF of a standby sparing system can
be derived by integrating Equation 9.

MTTF (n modules)

which can be rewritten for exponential reliability
as:

MTTF (n modules) = MTTF (n - I modules)

+ ('YJ R cn-l Jo m

x (I - Rmt- l dt

= MTTF (n - 1 modules)

+ foX e-At cn- l

(11)

x (I - e-Mt- l dt

= MTTF (n - 1 modules)

cn- l

+-­nA
I n ci

=-~-;­
AC i=l 1

The nth spare's contribution to MTTF is cll-Iln
times that of a single module. If c is not very
close to 1.0, the added spare's contribution to
MTTF is negligible.

The impact of improving coverage can also be
demonstrated using mission time improvement.
Setting Equation 4, with t replaced by It, equal
to Equation 9, yields:

()
11 ()(I - cflQm(tt)

I - Qm It = Rm t 1 - cQm(t)

Solving for I gives:

I = ~ln[1 - {I - R (t)(I - cIlQm(tt)}] (12)
At m I - cQm(t)

Equation 12 is tabulated in Table 5-4 and plotted
in Figure 5-5 for the value of Rm(t) = 0.9. Both

EVALUATION CRITERIA 215

Table 5-3. Standby system reliability for various values of module reliability,
coverage, and number of spares.

~ 0.99

Rm 2 4 00 2

0.9 0.9891 0.9988 0.9989 0.9810

0.8 0.9584 0.9960 0.9975 0.9440

0.7 0.9079 0.9880 0.9957 0.8890

0.6 0.8376 0.9689 0.9934 0.8160

0.5 0.7475 0.9307 0.9901 0.7250

illustrate the high sensitivity to the coverage
parameter c.

M-of-N Systems

M-of-N systems are a generalization of the par­
allel model. However, instead of requiring only
one of the N modules for the system to function,
M modules are required. Consider triple modular
redundancy (TMR), in which two of three must
function in order for the system to function.
Thus for module reliability Rill:

RTMR = R~ + (~)R~(l - Rm) (13)

Equation 13 enumerates all the working states.
The R~ term represents the state in which all
three modules function. The (DR~l(1 - Rm)

Table 5-4. Mission time improvement derived
from increasing coverage from the indicated value
to 1.0.

c
0.8
0.85
0.9
0.95
0.99

n = 2

1.738
1.579
10408
1.218
1.047

n = 4

4.601
4.208
3.720
3.034
1.957

Coverage

0.9 0.8

4 00 2 4 00

0.9889 0.9890 0.9720 0.9782 0.9783

0.9746 0.9756 0.9280 0.9518 0.9524

0.9538 0.9589 0.8680 0.9180 0.9211

0.9218 0.9375 0.7920 0.8731 0.8824

0.8718 0.9091 0.7000 0.8120 0.8333

term represents the three states in which one
module is failed and two are functional. Because
the modules are assumed to be identical, all three
states need not be enumerated. Any combination
of two of the three modules is enumerated by the
3-take-2 combinatorial coefficient, denoted by
(D where

(N) N!
M = (N - M}!M!'

6.0

5.0
1:
~

E
~
:>
0 4.0 0..
.§
~

.§
3.0 c

0
.~

~
2.0

Current coverage, c

Figure 5-5. Potential mission time improvement
with coverage increase from C to 1.0.

216 THE THEORY OF RELIABLE SYSTEM DESIGN

The M-of-N model can be generalized as: If
there are N identical modules with the reliability
of each module Rm (Rm may be a single number.
such as a probability of success, or may be a
function of time), and if a task requires k mod­
ules. the system can tolerate up to N - k fail­
ures, and the reliability of such a system is:

We will use the M-of-N model to make several
further points about system modeling, including
incorrect conclusions drawn from single para­
meter summaries and the effect on redundant
system reliability of extra logic (e.g., voters),
more detailed modeling, more accurate model­
ing, and nonredundant components.

Single and Multiple Parameters. To compare
different redundant systems, it is 'often desirable
to summarize their models by a single parameter.
The reliability may be an arbitrarily complex
function of time and the selection of the wrong

1.0

0.9

summary parameter could lead to incorrect con­
clusions. Consider, for example, TMR and
MITF. For the n.onredundant system:

R -At
simplex = e

1
MTTF simplex = X

For TMR with an exponential reliability func­
tion:

RTMR = (e-A1)3 + (i) (e-At)2(l - e-At)

= 3e-2M - 2e-3At

3 2
MTTFTMR = 2A - 3A

5 1
= 6A < X = MTTFsimplex

Thus, by the MITF summary, TMR is worse
than a simplex system.

Figure 5-6 plots the reliability functions for a
simplex PDP-8 and a redundant PDP-8 (TMR

O.B -t.--------Mission reliability = O.B

0.7

0.6

~
:c 0.5 .:::
~
CII::

0.4

0.3

0.2

0.1

0

I '. -- PDP-B/E (nonredundant) reliability
function

....•..... PDP-B/E with TMR processor,
SEC memory

MTI[.B] = MT'[.B]/MT[.B]
= 2212/1334
= 1.66

!-+-- MT[.B] = 1334 hrs I i-- MT[.B] = 2212 hrs

2,000 4,000 6,000 B,OOO 10,000 12,000 14,000

Hours

Figure 5-6. Relation of reliability function, mission time, and mission reliability.

processor and Hamming coded memory}. Even
though there is more area under the nonredun­
dant curve (e.g., MTTF), the redundant system
maintains a higher reliability for the first 6,000
hours of system life. Hence, comparison func­
tions such as Mission Time Improvement (MTI)
have been utilized to compare redundant sys­
tems in subregions of their operational life. The
redundant PDP-8 in Figure 5-6 operates at or
above a probability of success of 0.8, 66 percent
longer than the simplex PDP-8. The S-shaped
curve is typical of redundant systems; usually
there is a well-defined knee. Above the knee, the
redundant system has spare components that
tolerate failures and keep the probability of
system success high. Once the system has ex­
hausted its redundancy, however, there is merely
more hardware to fail (voters, switches, and
other elements that support the redundancy)
than in the nonredundant system. Thus, there is
a sharper decrease in the redundant system's
reliability function.

When modeling redundant systems with re­
pair, single parameters such as MTTF may again
be appropriate since the repair process replenish­
es the redundancy. There is no exhaustion phe­
nomenon. This topic is discussed later in the
chapter.

The Effect of Extra Logic in Redundant Sys­
tems. * In adding redundancy to a system, care
must be taken that the extra logic to control the
redundancy does not actually decrease the over­
all system reliability. Ingle and Siewiorek [1976]
model various switches proposed for hybrid re­
dundancy and show that the switch is a signifi­
cant factor in determining the overall system
reliability. A hybrid redundancy scheme with a
TMR core may have a maximum attainable
reliability for only one or two spares. Adding
spares complicates the switch enough to cause
the system reliability actually to decrease. There
are conditions under which the switch becomes
so complex that simple TMR would yield a
better solution.

* This section is based on Ingle and Siewiorek [1976].

EVALUATION CRITERIA 217

Consider the hybrid redundancy with a TM R
voter described in Chapter 3. If only one of the
three TMR core modules (those currently being
voted on) is assumed to fail at a time, the system
fails only if all the modules fail or if all but one
module fails. The reliability of the hybrid system
with a TMR core and n - 3 spares is:

x {I - nRmO - Rmt- I
- (1 - RI/yl}

where R
l
, and RI'II' are the voter and switch reli­

abilities, respectively. Subtracting the system re­
liability for n modules from that for n + I mod­
ules:

RIll X (I - (n + 1) x RnJI - Rmt - 0 - R,1JI1+I)

This expression is positive for any 0 < Rill
< I and n 2 I. Therefore, under the assump­
tion that Rsw is independent of n, adding mod-

ules increases the system reliability. The switch
typicafly becomes more complex as more mod­
ules are added, although the dependence of the
switch complexity on n will be a function of the
particular design. A reasonable assumption,
however, is that switch complexity grows nearly
linearly with n; that is, the addition of each
module to the system increases switch complex­
ity by a constant amount [Siewiorek and
McCluskey, 1973]. Consequently, as a more real­
IStlC assumption we will consider the
Rsw to be pll, where p is the reliability of the

switch component that must be added when a
module is added. Further, let p = R~;l' where a
is used to relate the relative complexities of the
incremental switch component to the basic mod­
ule. Hence, the system reliability is:

illY. { ()11-1
Rhybrid = Rm I - nRm 1 - Rm

218 THE THEORY OF RELIABLE SYSTEM DESIGN

1.00

0.99

0.98

E
~ 0.96
>­
."

0.95

0.94

0.93 L--_~....IL.--L-..L-...L.......JL--__ --L ___ ..L-__ ---l

1 2 4 6
________ u _____ _

Figure 5-7. Rsys as a function of n and module reliability R for hybrid
redundancy, a = 0.1. (© 1976 IEEE.)

Figure 5-7 shows the variation of Rhybrid as a
function of n, Rm (basic module reliability), and
a. All curves exhibit a definite maximum. The
optimum value, nmax ' of the number of modules
for maximum Rsys ' is higher for lower Rm or
lower a. Differentiating Rhybrid with respect to n

and equating the resultant expression to zero
yields:

alnRm = QIl-1 X {Rm + (aln Rm + In Qn)

X (nRm + Qm)}

where Qm = 1 - Rm'

This equation may be numerically solved for
nmax ' Values of nmax for hybrid redundancy are
plotted in Figure 5-8, which shows that nmax is
about 4 to 6 for most practical cases. This means
that only one to three spares should be used. In_

Figure 5-8, nmax exceeds 6 only for a ~ 10-3 •

Given that a is the complexity of the switch
component compared with that of the module,
more than three modules need be used only
when the module is more than 1,000 times as
complex as the switch. For the iterative cell
switch component that consists of 22 equivalent
gates [Siewiorek and McCluskey, 1973b], the
module will contain about 22,000 gates. A cen­
tral processor of a computer has this complexity.
Figures 5-9 and 5-10 illustrate similar trends for
variations of the hybrid scheme:

• Hybrid redundancy (H.simplex)
• Checker redundancy scheme [Ramamoorthy and

Han, 1973] (CRS)
• TMR switch with single voter (H.tmr.sv)
• TMR switch with triplicate voter (H.tmr.tv)
• Switch with Hamming coded states [Ogus, 1973]

(H.hc)

EVALUATION CRITERIA 219

2L-__________ -L ____________ L-__________ -L ____________ ~ ______ ~

10-5

a

Figure 5-8. nmax as a function of a for hybrid redundancy. (© 1976 IEEE.)

1.00

0.99

0.98

0.97

0.%

0.95

0.94

2 3 4

n

Hybrid with
radial logic

switch

Hybrid with TMR
switch and
triplicated

voters

Hybrid with TMR switch
and single voter

6 7

Figure 5-9. Rsys for various schemes as a function of m {for Rm
(© 1976 IEEE.)

0.9, a 0.1).

220 THE THEORY OF RELIABLE SYSTEM DESIGN

8~--~~------~--------~~------------------------~--------------------------

7

6

5

4

3

2

Checker
redundancy

scheme

Hybrid with
Hamming-coded

switch

a

Hybrid with
TMR switch

and
triplicated

voters

Hybrid with
radial logic

switch

Figure 5-10. nmax for various schemes as a function of a (for Rm = 0.9, a = 1.0).

(© 1976 IEEE.)

• Switch implemented with radial logic [Klaschka,
1969] (H.d)

R.hc does not appear on Figure 5-9 because its
maximum reliability (at m = 3 for R = 0.9) IS

only 0.75.

The Effect of More Detailed Modeling. *
Equation 13 is the classical model for TMR. The
effect of nonperfect voters can readily be incor­
porated into Equation 13 if voters are assigned to
module inputs [von Neumann, 1956; Brown,

* This section is based on Siewiorek [1975].

Tierney, and Wasserman, 1961; Teoste, 1962] .
Because each voter drives exactly one module
input, a voter failure has the same effect as a
module failure. If Rv is the voter reliability, then
the effective module reliability (for a two input
module) in Equation 13 becomes R~ Rm' The
classical model can be rewritten as:

Equation 14 is still pessimistic, for there are
many cases in which a majority of the modules
may have failed and yet the system would not be
failed. For example, consider two failed modules

Module 1

Module 2 1--4-+1

Module 3 ~_--l

Figure 5-11. Classical triple-modular redundancy.
(© 1975 IEEE.)

for the system shown in Figure 5-11. Assuming
that module 1 has a permanent logical one on its
output and module 3 has a permanent logical
zero output, the network will still realize its
designed function. Such multiple module failures
that do not lead to system failures are called
compensating module failures.

Taking into account these double, and even
triple, module failure cases can often lead to a
substantially higher predicted reliability than the
classical reliability model. With a better reli­
ability model some systems may be found to be
overdesigned for their specific mission because
an inadequate reliability model was used.

Siewiorek [1975] develops a model based on
stuck-at interconnection failures. For TMR, the
model takes the form:

RTMR = R! + 3R~(1 - Rm) + Rmh + h (15) .

where hand h are complex expressions for dou­
ble and triple module failures.

An exact model is based on the concept of
functionally equivalent faults [McCluskey and
Clegg, 1971; Schertz and~ Metze, 1972]. A less
complex and less accurate alternative is based on
fault dominance [Mei, 1970]. Table 5-5 summa-

EVALUATION CRITERIA 221

rizes the results. The fault-equivalence model
increases the predicted mission time by at least
40 percent over the classical model for even
simple systems. The fault-dominance model
shows up to a 75 percent improvement for
slightly more complex networks.

The Effect of More Accurate Modeling. * Fig­
ure 5-11 shows TMR in its simplest configura­
tion: triplicated modules followed by triplicated
voters. Systems whose nonredundant form may
be represented by a serial cascade of modules are
referred to as serial TMR.

Reliability modeling becomes more complex
when fan-in and fan-out are considered and
when not all module inputs are driven by voters.
Several investigators have addressed the problem
of modeling the reliability of TMR and multiple­
line systems. There have been two basic ap­
proaches. The first is to approximate the system
by a serial TMR system, modeling the system as
a cascade of single-input single-output modules,
adding extra voters if required. [Brown, Tierney,
and Wasserman, 1961; Teoste, 1962; Rhodes,
1964; Longden, Page, and Scantlebury, 1966;
Lyons and Vanderkulk, 1962; Gurzi, 1965].

A variation of this first approach [Rubin, 1967]
models systems as serial cells and inserts ficti­
tious module trios where required to make all the
cells serial cells, then alters the standard serial
voter-module reliability formula to approximate
the effect of these added fictitious modules.

The second basic approach is to develop a
bound on the system reliabilty by treating TMR
as a coherent system. (The concept of coherent
systems defined above was introduced by Essary
and Proschan [1962].) One property of coherent
systems is that, having once failed, the system or
component cannot work properly again. A sys­
tem cut is defined as a set of components whose
failure causes system failure. A minimal cut is a
cut from which no members can be deleted
without the set losing the property of being a

* This section is adapted from Abraham and Siewiorek
[1974].

222 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-5. Mission time improvement (MTI) of the fault-equivalence reliability
model and fault dominance reliability model over the classical reliability model
for various modules.

Module Type Rill 0.75

Single-NAND gate
Equivalence Model 1.476
Dominance Model 1.358

Two NAND gates
Equivalence Model 1.494
Dominance Model 1.355

Four-Level Full
Binary Tree

Dominance Model 1.405
Multiple-Fault Model 1.300
Dominance plus Multiple 1.442

Exclusive-O R
Dominance Model 1.196

Priority Encoder
Dominance Model 1.228

system cut. The value obtained by taking the
product, over all minimal cuts, of the probability
that the cut does not occur is a lower bound on
coherent system reliability.

" ----Jen-sen-[PJ64ruses--mifrii'ma-riipulatiori--To"-'
establish the minimal cuts of a system. However,
if there are n modules in the nonredundant
system, Jensen's method in the worst case re­
quires on the order of n3 operations and on the
order of n2 storage locations just to set up the
matrices for determining the minimal cuts.

Another approach is to use an algorithm that
divides the system into independent cells; that is,
any nonfatal pattern of failures in a cell that
leaves a cell operational does not interact with a
nonfatal pattern of failures in another cell to
cause system failures. The system reliability is
then the product of the reliability of the indepen­
dent cells. Figure 5-12 illustrates the partitioning
of a complex system into cells (voters are repre­
sented by circles and modules by squares). Voter
I has to be in the same cell as voter 2. If the
indicated voters were in different cells, voters I
and 2 would be nonfatal cell failures, yet the

0.8 0.85 0.9 0.95 0.99

1.477 1.481 1.484 1.491 1.496
1.382 1.405 1.439 1.472 1.491

1.497 1.510 1.515 1.526 1.539
1.384 1.414 1.452 1.492 1.531

1.451 1.505 1.575 1.663 1.766
1.318 1.389 1.361 1.386 1.408
1.485 1.535 1.598 1.692 1.771

1.207 1.214 1.232 1.246 1.259

1.244 1.263 1.283 1.304 1.32.:1

system would fail because modules 3 and 4
receive potentially faulty inputs. The cell reli­
ability is calculated by:

x (1 - Rm)}

where Nv and N m are the number of voters and
modules, respectively, in the cell, F(i,)) is a
complicated function of the cell structure, and

k

Rsys = II Rcelli
i=i '

The algorithm in Abraham and Siewiorek [1974]
calculates the exact classical reliability of TMR
networks (that is, the reliability of a coherent
system as defined in Essary and Proschan
[1962]). The results of this algorithm can be
compared with the previously defined approach­
es: serial cell, and minimal cut set.

Consider a 16-register multiplexed data bus
system in which the contents of a data register
can be supplied to anyone of 16 general-purpose

EV ALUATION CRITERIA 223

,---------,----------,
I I I
I I

,----~ I
I : r--------------------- l

I ~----,
I I
I I

I

I
I I
I I

L----i I
I I
I I I L _________ ~ ______________________________________ J

Figure 5-12. Partitioning a TMR system network into cells. (© 1974 IEEE.)

egisters. Figure 5-13 shows a TMR configura­
ion of the data register to register transfer along
me path.

In the serial cell reliability model, the reli­
lbility of a serial cell is given by Equation 13.
:;'or nonperfect voters, Equation 13 becomes:

~here Rv is the voter reliability.
Figure 5-13 is more complicated than a cas­

:ade of serial cells. One approach to include fan­
n/-out in the serial cell reliability model is to
lssign the voters to the modules they drive [Roth
:t aI., 1967], because a voter failure affects only
.he module it drives. Cell 2 of Figure 5-13 shows
me way to assign voters to the driven modules.
'low the serial cell reliability model for the
letwork of Figure 5-13 can be developed.

The reliability of a module "end cell" such as
;ell 1 can be derived from Equation 16 by letting
Rv = 1. Similarly, setting Rm = 1 in Equation
16 yields the reliability of voter end cells such as
;ell 3. Next assume Rm = Rv' This simplifica­
:ion is not crucial and similar results are obtaina­
)le when Rv and Rm retain their separate identi­
:ies. The end cell reliability is thus 3 R~ - 2 R~l'
[he serial cell reliability model for the system of

Figure 5-13 would consist of 17 end cells (16
voter and 1 module), and 16 serial cells like cell
2, each of which share the one voter trio. The
system reliability is thus modeled by:

- (3R 2 2R 3)17(3 4 2R6)16 () Rserial - m - m Rm - m 17

For the case of fan-in there are still 17 end cells
(16 module and 1 voter). The fan-in portion
would consist of 16 overlapping serial cells.
Thus, Equation 17 represents the serial cell mod­
el for both fan-in and fan-out.

For the minimal cut set reliability model the
lower bound on system reliability is given by
Essary and Proschan [1962]:

RS\S > IT (1 - Qcut)
'.' 'fIlEI /

such that i is a minimal cut where Qcut is the
probability that the minimal cut does not occur
(that is, all the components composing the mini­
mal cut do not fail). Consider Figure 5-13. A
minimal cut is a set of modules whose failure
causes the system to fail. All minimal cuts con­
sist of either two voters (Qcut = Q;), two mod­
ules (Qcut = Q~), or one voter and one module
(Qcut = Qt·QI11)· Note that Qt. = 1 - Rt· and QI/1
= 1 - Rm' There are three ways in which two
modules can fail in the module end cell and

224 THE THEORY OF RELIABLE SYSTEM DESIGN

Register 16
General purpose registers

Figure 5-13. The TMR configuration for one bit of
-- -tlfe- darare1fisn~-rf6-regTsteTfa-n-~oOrblocl :-OYil~T one­

TMR path is shown. (© 1974 IEEE.)

16 X 3 ways in whidi two voters can cause
sys-tem failure in the voter end cells. In the fan­
out portion there are three double-voter failures,
3 X 16 double-module failures, and 3 X 2 X 16
single-voter and single-module failures (such as
voter A and module B) whose failure would
cause system failure. Hence, the minimal cut
reliability model for fan-out is:

Rmcs = (I - Q~)51(I - Q~)51(I - QvQm)96

= (I - (1 - Rm)2)198 (18)

Now consider the case of fan-in. There are
16 X 3 ways in which two modules can cause
system failure in the 16 module end cells and
three ways for two voters in the voter end cell. In
the fan-in portion there are three double-module

failures, 3 X 16 X 2 single-voter and single-mod­
ule failures, 3 X 16 double-voter failures in the
same voter trio, and 3 X 2 X Ln I i or 720 ways
in which two-voter failures from different voter
trios can interact to cause system failure. Thus,
the minimal cut reliability model for fan-in is:

Rmcs = (I - Q;)771 (I - Q~)51(I - QvQm)96

= (I - (I - Rm)2)918 (19)

The system reliability for the three approaches
for the system in Figure 5-13 is plotted as a
function of module reliability in Figure 5-14.

Now consider a case of 16: 1 fan-in, such as an
Arithmetic and Logic Unit (ALU) multiplexer
that takes data from one of 16 registers as an
input to an ALU. The three models for this fan­
in network are also depicted in Figure 5-14. The
minimal cut lower bound is a rather poor predic­
tor of system reliability, whereas the serial cell
approach predicts the same system reliability for
both fan-in and fan-out systems.

Figure 5-15 shows a plot of mission time
improvement when I is the ratio of the exact

__ m{td~Lt~Lthe __ s_e_riaLc~ILmQd_eJ.JJ_c_an_hese~n that
a mission time improvement of 50 percent for the
1: 16 fan-out system can be obtained with the
more accurate reliability model. If the serial cell
model is used, the resultant system is overde­
signed by 50 percent, for it could meet its
mission time specification with less reliable com­
ponents. In the case of 16: 1 fan-in, the system
has only 50 percent of designed mission time.

The Effect of Nonredundant Components. *
As noted before, the first application of a redun­
dancy technique produces the largest improve­
ment in reliability. Furthermore, the application
of redundancy to one portion of a system may
significantly change the distribution of unreli­
ability. In particular, a portion of the system that
formerly had only a small contribution to unre-

* This section is adapted from Elkind and Siewiorek [1978].
Also available in Elkind and Siewiorek [1980].

1.0
R ~ /<

Fan-out \ /~ 1/
exact //# I.

0.8 ,;A' 1/ R"._"",\ /~- // mm-cut ,;. 1 .

0.6
,;.h / .I

RSerial ,; /:: I /

oc-:; / /. 1 i / 1
/ / i 0.4 /

;' h I

""
I .

,,"" ~ /~RFan-in
h / / exact

0.2 .&:~
,; .

,/
. .4--RFan_in

/ min-cut --- -,/
0.0

0.90 0.92 0.94 0.96 0.98 1.00

Figure 5-14. System reliability as a function of
module reliability for the fan-out network of Figure
5-13 and a 16:1 fan-in network. The serial cell
approximation to both networks is identical and
plotted as the solid line. (© 1974 IEEE.)

liability may become the dominant contributor.
This shift in balance is illustrated by the model­
ing of memory and error-correcting codes.

Current digital systems design is dominated by
use of memory chips in the form of microstores,
register files, caches, and main memories. Thus,
improvement in memory reliability will greatly
affect overall system reliability.

The use of Single-Error-Correcting (SEC)
codes, such as Hamming and block, SEC codes
[Peterson and Weldon, 1972] is a primary meth­
od of increasing memory system reliability.
These techniques result in tolerance of single bit­
faults in each memory code word. The decision
to use SEC is a function of system cost, complex­
ity, performance, serviceability, and reliability.
The last two factors determine field repair costs.
Before modeling memory systems with SEC, a
fault model for memory chips must be proposed.

Memory-Chip Failure Modes. There are few
data on semiconductor memory-chip failure
modes during operating life. Most semiconduc­
tor manufacturers are more interested in the
physical failure mechanisms than in the func­
tional characteristics of a failure. What data are

EVALUATION CRITERIA 225

2.0

i:
<IJ

['Fan-OUI E 1.5 <IJ
;;.

e
c. ----.§ 1.0

,'Fan-in <IJ

.~
C 0.5
.~
~

0.90 0.92 0.94 0.96 0.98 1.00
Rm

Figure 5-15. Mission time improvement over seri­
al cell approach with exact reliability model for 1 :16
fan-out and 16:1 fan-in networks. (© 1974 IEEE.)

available come mostly from screening, burn-in,
and, to a lesser extent, high-temperature acceler­
ated-life tests. Table 5-6 summarizes some of the
data.

Not surprisingly, the data show that memory­
chip failure modes are dependent on technology,
process, and device design and thus may vary
widely. Failure mode distributions also change
with time for a given device as the fabrication
process matures. *

Nevertheless, there is good evidence that the
whole-chip failure mode (complete inability to
store and/or retrieve data) is not the dominant
failure mode for most chips. Rather, single-bit.
row, and column failure modes seem to be the
effect of the majority of chip failures. This fact
motivates the formulation of the error-correct­
ing-code (ECC) memory models presented be­
low.

Memory Organization and Reliability Models.
Wang and Lovelace [1977] present a model for
main-memory reliability, based on the use of
4,096 bit chips in a 16-bit word memory system

* The Texas Instruments (TI) data indicate that 92 percent of
the failures observed were single-bit failures. This propor­
tion has since declined as a result of process improvements;
however, the dominant portion of all failures for these chips
is still due to partial-array failures.

226 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-6. Chip failure mode data summary, in percentages.

Source Devices Whole Chip Single Bit Row/Column Not Known

[Texas Instruments, n.d.] 4K MOS RAM 92% 8%
[Pascoe, 1975] 4K MOS RAM 11.8% 35.3 29.4% 23.5
[Rickers, 1975-76] varied PROMs 17.9 53.9 15.3 12.9
[Gear, 1976] 8K MOS EPROM 100.00

using a Hamming single-error-correcting/dou­
ble-error-detecting code The model allows a
combination of different chip failure modes.

to failure (MTTF), the hazard function z(t), and
the reliability function R(t).

Another model, by Levine and Meyers [1976], is Single-Error-Correcting Memory Properties.
used to prepare numerical charts and tables to The ECC memory reliability models depend on
allow a designer to predict the Mean Time To the properties of the single-error-correcting
Failure (MTTF) of Hamming coded memories. schemes used. In the Hamming and block code
The model is based on the whole-chip failure ECC schemes, two types of memory words are
mode. Neither model allows for the effect of the considered. The first, called a logical word, is the
nonredundant memory controller on the total word that the system using the memory requires.
memory system MTTF. The following models The second, called a physical word, is made up
cover any single-error-correction scheme for any of one or more logical words in addition to
size memory, and are developed in such a way whatever coding bits are required.
that the reliability of all the control, correction, For Hamming codes a k-bit word has c coding
and interface circuitry for the memory system is bits (which mayor may not include the extra bit

------ineluded, --thus ... -mode-ling--the---re-lia-bility--ef--the---- -for-double-effo-r-detee-tion1-addeti-to--i-tThetotal-
entire memory system. A formula is derived that number of bits is n = (k + c). Several logical
can be used to calculate Mean Time To Failure words may be combined into a larger physical
(MTTF) efficiently under any of the various word for error encoding, thus decreasing the
failure mode assumptions. A modification of the number of coding bits in the memory. If} logical
model allows inclusion of the effect of failures words occupy a physical word that includes e
already present. coding bits, the physical word size becomes

This section presents three models for error- n = (kj + e), and the number of physical words
correcting-code (ECC) memory reliability, based in an x-logical word memory is w =

on a different assumption of dominant memory- (xl}). For a complete explanation of Hamming
chip failure mode. Two of the models provide codes, see Peterson and Weldon [1972].
upper and lower bounds for the reliability of an Block codes are widely used for sequential-
ECC memory. The third, presented for compari- access memory systems but have seen little or no
son, is a model for a nonredundant memory. All use in other types of memories. In this scheme,
the models assume that component failures in each word has a parity bit appended (horizontal
the memory-support circuitry cannot be sur- parity bit) and} words of k bits are grouped to
vived. Many current commercial memory de- form a block. Each block has an extra word
signs prove the validity of this assumption. Two associated with it, each of whose (k + 1) bits is
error-correcting schemes, Hamming codes and the parity bit for the appropriate bit slice of the
block codes, illustrate the applicability of the block (vertical parity bits). The total number of
general model. The measures used are mean time bits in the physical word is n = (k + 1) X

:} + 1), and for an x-logical word memory there
He w = (x/}) physical words. In the case of a
~ingle error, a horizontal parity error is found
:lnd the vertical parity word reconstructed. The
intersection of the horizontal parity error and
vertical parity error pinpoint the bit to be cor­
rected. This method also detects double errors
not in the same logical word.

Both the Hamming-coded and block-coded
memories contain n-bit physical words and H'

physical words in the memory. The only differ­
ence between these two or any other SEC
schemes as far as the model is concerned is that
nand w vary. In each case, the memory can
tolerate no more than one failure in the 11 bits of
a given word in a w-word memory. This common
property is the one upon which the followin,g
development is based.

Single-Error-Correcting Memory Models. The
first ECC memory model assumes that single­
memory bit-cell failures dominate, and provides
an upper bound on system reliability by assum­
ing that individual bit failures are independent.
In this case, up to one failure per word, or w total
failures, can be tolerated. The second model
assumes that the dominant failure mode is com­
plete functional failure of memory chips. It pro­
vides a lower bound on system reliability, since
bit failures are not assumed to be independent
but to occur d at a time, where d is the number
of bits on a chip. Only wid total failures* of this
type can be tolerated. Between these two ex­
tremes lie row and column failures in the arrays
internal to the chips, and combinations of whole­
chip, single-cell, and row/column failures. A
third model for ECC memory reliability assumes
that the row (column) failure mode is the domi­
nant failure mode.

Single-Bit-Failure Mode (SBFM) Model. Sin­
gle-bit failures are assumed to be independent
events, with each cell following the exponential

* Assuming a d X I-bit memory chip, one bit per physical
wor~ per chip.

EVALUATION CRITERIA 227

failure law with failure rate Ah and reliability
function Rh• Each n-bit word can tolerate the
failure of a single bit. Thus, the reliability Rg of
a given word is:

For a w word memory the array reliability is:

() ((n-I) () n)",
Rasb t = nRh - n - 1 Rh

Fault-free operation of the memory requires that
the selection, control, and decoding circuitry be
functioning correctly. It is assumed that these
also follow exponential failure processes, with
total failure rate As. The reliability of the com­
plete memory is then expressed as:

Rmsb(t) = e-As1(ne-(n-l)Abl - (n - l)e-nAbt)W

The mean time to failure of the memory is:

MTTF = rYJ
e-Ast(ne-(n-I)Aht

sb)0

- (n - l)e-nAht)W dt

The integral is evaluated as:

MTTF = (00 e-A,te-Ah(n-I)w
sb)0

X (n - (n - I)e-Ahtt'dt

Next, make the substitutions

xlt~oo = 0, and xlt=o = 1.

To further simplify the integral, let

m = (n - I)w + 'AsI'Ab - 1

and

v = -en - 1)

The integral becomes

1 (0 w
MTTF sb = - Ab)1 xm(n + vx) dx

which has the recursive solution

228 THE THEORY OF RELIABLE SYSTEM DESIGN

_ I {x(m+l)(n + vxt
MTTF sb - - Ab m + w + I

nw f m }IO

+ m + w + I X (n + vx)(w-I) dx I

After one more recursion, the equation becomes

_ I {x(m+I)(n + vx)W
MTTF sb - Ab m + w + 1

+ nw [x(m+I)(n + VX)(w-I)
m+w+1 m+w

More simplifications are now possible. Let

Ji = (m + w + I) - i = wn + AsiAb - i,

gj = W - i + I,

and

y = n + vx.

With some rearranging the MTTF sb equation
reduces-to

f
ng x(m+l)

ngw xm yg(w+ \) dx = w fw

Thus, x(m+ I) can be factored out, giving

[()]}I
O ng2 ngw X yg2 +-x ... - ...

12 fw I

When x = 0, x(m+l) = 0, while at x = I, x(m+l)
= I and

yielding

I { ngl
MTTFsb = Ahfo I + T

A final reorganization yields an iterative formu­
la:

I (I ngl nWgl .. ·gw)
MTT~sb = Ab 10 + fofl + ... + foii·· ·fw

(20)

The choice of this form of solution is due to its
easy and direct iterative implementation on a
computer or calculator. Usually only the first few
terms need to be computed, for the value of
successive terms quickly drops to zero and the
number of terms is bounded by w.

The MTTF of the memory array alone is
obtained by setting As/Ab = 0. Equation 20 of­
fers a quicker means of calculating ECC memory
MTTF than the earlier methods of numerical
integration or Monte Carlo simulation. Equation

-2U--arso--len-d-s-ifselr-welr1o--expToriiig-reliaoiTilY
properties of ECC memories. This topic is dis­
cussed later.

It is important to note that in solving the
integral, m is assumed to be an integer, which in
turn constrains AsiAb to also be an integer. In
almost all cases this constraint is not a problem,
because normally As » Ab •

The hazard function z(t) expresses the instan­
taneous failure rate of a population. At a given
time it measures the ratio of the instantaneous
rate of change in reliability to tht; current reli­
ability. A constant hazard function implies that
the percentage change in reliability is constant
through time. The corresponding reliability func­
tion is exponential. An increasing hazard func­
tion implies that the percentage change in reli­
ability grows larger with time, and can be
thought of as accelerating (rather than just in­
creasing) unreliability. An increasing hazard
function is inherent in redundant systems. Intui-

ively, as a redundant system approaches the
imit of its tolerance to failures it becomes more
mreliable than it was when new. The hazard
'unction for the SBFM model can be shown to
)e

fhe Whole-Chip Failure Mode (WCFM) and Row
Failure Mode (RFM) Models. The whole-chip
md row (or column) failure mode models have
:he same form as the SBFM model. These mod­
!ls depend on the additional assumption. An
;EC memory architecture is intolerant of multi­
Jle-bit failures in a single physical word. A
nemory design must utilize this fact. If the
whole-chip failure mode is dominant, the design
nust apportion no more than one bit per chip
Jer physical word. A similar restriction applies in
the case of a dominant-row (or column) failure
mode. The models here assume these restrictions.

In the WCFM model, the parameter h replaces
the parameter w of the SBFM model. For a w­
word memory of n-bit physical words imple­
mented with d-bit chips, h = w/d. In effect the
memory is organized into rows of n chips each,
t!very row containing d words; h is then the
number of such rows. Ac' the memory-chip fail­
ure rate, takes the place of Ab' the bit-failure rate.
These substitutions apply in the reliability,
MTTF, and hazard formulas.

The RFM model also derives from the SBFM
model. For a w-word memory of n-bit physical
words implemented with d-bit memory chips
having q bits per row (column), w of the SBFM
model is replaced by p = w X q /d, which is the
number of one-word-wide sets of rows (columns)
in the memory architecture. Ab is replaced by Ar ,

the row (column) failure rate.

MTTF Calculation with Failures Present. A
variation of the MTTF formula above should be
useful in maintenance planning. Assume that f3
failures are present at time zero. These failures
are of the type assumed to be dominant (single-

EVALUATION CRITERIA 229

bit, whole-chip, or row (column)). The expres­
sion for the MTTF of an SBFM model is:

I (I ngl nO: gl ... glY)
MTTF sb·13 = Ab 10 + 1011 + ... + 10···fa

where

and

.h = nw - f3 + (AjAb) - i,

gj = w - f3 - i + I,

a = w - f3.
The forms for the WCFM and RFM models
follow using the previously defined substitutions.

Nonredundant Memory Model. The model for
nonredundant memory is based on the assump­
tions that components have exponential failure
processes and that any component failure results
in complete memory failure. The support and
storage array circuitry have failure rates Aenr and
Aa , respectively. The reliability of the entire
memory is then expressed by

The MTTF of the memory is:

I
MTTFnr = A + A

enr a

The nonredundant memory has the constant
hazard function

ECC Memory Reliability Exploration via the
Models. The Single-Bit Failure Mode (SBFM),
Whole-Chip Failure Mode (WCFM), and Non­
Redundant (NR) memory models will be com­
pared for two SEC schemes, Hamming and
block coding. The comparison measures are the
MTTF, the hazard function z(t), and the reli­
ability function R(t). Where specific values for
memory-chip reliability are used, they are based
on the failure rates for 4,096-bit chips found in
Table 5-7. The ranges in Table 5-7 cover ob-

230 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-7. Memory-chip failure rates for 4096 bit
memory chips in failures per million hours.

Chip
Ac

0.005
0.2
0.5
3.0
5.0

0.0000122
0.0000488
0.000122
0.000732
0.00122

memory. When j logical words are combined
into a larger physical word to limit the increase
in array size, extra logic in the form of wider
data paths, more complex coding/decoding cir­
cuitry, and a final one-of:i switch is needed.

In the block-coded memory shown in Figure
5-17 the control circuitry is more complex than
for the Hamming code. The total support cir­
cuitry required is less, however, because the
coding/decoding logic for block codes is less
complex than for a Hamming code. For exam-

served failure rates for state-of-the-art chips. The pIe, only one parity tree is needed whereas the
reliabilities of control circuitry for error-correct- Hamming-coded memory needs several. The
ing and nonredundant memories are derived block code also requires fewer redundant bits
from the models depicted in Figures 5-16 and than the Hamming code. The block code de-
5-17, assuming the use of standard SSI/MSI coder works in the following manner. When a
logic. These memories are assumed to be "bare- word is read and XORed with zeros being fed
bones" memories of relatively simple design. into the other leg of the XOR array (zero is the
Assume a nonredundant k-bit per word memory XOR identity operator), the parity tree calculates
of w words. Hamming single-error-correcting ca- the parity. If there is an error, the vertical parity
pabilities are added to it as shown in Figure 5-16 for the block is calculated by successively XOR-
by increasing the array size to include the coding ing words from the memory block with what is
bits. Extra control and data manipulation facili- already in the register. The results of the new
ties (MUXes, parity trees, XORs, registers) are vertical parity point to the bit in error. If more
added to perform error correction and detection, than one horizontal or vertical parity bit in the

--as--well--as---error -codingwhen--writing---into--the-- -bl-o-ck-indicates--an--error;-a---m-u-lt-iple;;;hit-failure-

Addr.
Reg.

Array
n bits X w words

(w = xiI)

I Control

jk + e

jk + e

Figure 5-16. Hamming-coded memory model. (© 1980 IEEE.)

laS occurred and the error is unrecoverable. In
he case of a write, the horizontal parity is
:alculated and the vertical parity updated simply
)y XORing the new and old data words with the
)ld vertical-parity word. Because writes to mem­
)ry occur only 10-30 percent of the time, degra­
iation due to vertical parity update is small.
10wever, the block code is particularly effective
'or read-only memory because the extra compli­
:ation on writes is not necessary. The vertical
)arity word could be stored in a separate mem­
)ry array, thus allowing the update of the verti­
:al parity word to proceed in parallel with the
lata write.

Block coding of small memories presents some
Jroblems because of the relatively large physical
.vord size and the small number of physical
.vords in the memory. Tolerance of whole-chip
~ailure modes requires an allocation of no more
:han one bit per block per chip. When whole­
;hip failure modes are dominant, block codes are
!fficient only for large memories. For a small
memory, the number of memory chips is fixed by
the number of bits in a block. A large number of

EVALUATION CRITERIA 231

chips with relatively few bits on each must be
used. The same disadvantage applies less strin­
gently for row/column failure modes. For single­
bit failure modes there is no such problem.

The comparisons that follow use support reli­
abilities calculated from these model memory
designs of Figures 5-16 and 5-17.

MTTF. In comparisons of the SBFM and
WCFM models, a normalized MTTF is used in
order to avoid dependence on specific reli­
abilities of the current or any other technology.
The normalized measure is obtained by multiply­
ing the MTTF formulas by Ab' When this is done
the MTTF becomes a function of the ratio AjAh
instead of being a function of As and Ah'
MTTF we. norm is still dependent on the number of
bits per chip .

It is possible to normalize the nonredundant
memory MTTF in the same way, assuming that
the ratio r = Aenr/As is known. The normalized
MTTF for the nonredundant memory becomes

MTTF nr.norm
I

r Horizontal parity

--------,,......., I Control
Memory array I ... __

Addr. n bits X w words I
Reg. (w = x/j) ,I

Figure 5-17. Block-coded RAM model. (© 1980 IEEE.)

232 THE THEORY OF RELIABLE SYSTEM DESIGN

• 16 bit 16K NR

... 16 bit 64K NR

• 22 bit 16K SBFM

o 22 bit 64K SBFM

o 22 bit 16K WCFM

!:;. 22 bit 64K WCFM

10-8 L-_---L __ --1-__ -'--_----J'--_--'-__

1~ 1~ 1~ 1~ 1~ 1~
Ratio).s/).b

Figure 5-18. Comparison of MTTF. (© 1980 IEEE.)

Figure 5-18 shows the normalized MTTF
curves plotted against the ratio AsiAb. These
curves are for 16-bit logical word memories of
16K and 64K words in the SBFM and WCFM

__ (~_~~J!minK_=tQ2§J2i1~l?_~_LfhiQl. ~~_(: __ JIlQg~!§_'!gg_
the nonredundant memory model.

Figure 5-18 illustrates a factor of 20-30 supe­
riority in MTTF predicted for the SBFM over
the WCFM model for small values of AslAb' with
the size memories modeled. As AsiAb increases,
the ECC memory MTTF becomes essentially
that of the support circuitry (which would plot as
a line with unity negative slope). Thus, the
limiting factor on the memory reliability is the
support-circuitry reliability. The plot also shows
that the ratio AsiAb at which the array reliability
can be ignored in computing MTTF is lower for
the SBFM than for the WCFM model. This
difference becomes greater for larger chip size.
For As in the range from 1 to 100 failures per
million hours this corresponds to a AsiAb of 104

to 106 for the Ab values in Table 5-7. This is well
into the range where the SBFM assumption
shows that the memory reliability can be mod­
eled as simply as that of the support circuitry,
and just at or below that range for the WCFM

assumption. To interpret Figure 5-18 in terms of
a specific memory-chip technology, divide the
vertical scale by Ab'

The normalized MTTF for the nonredundant
memory (assuming r = AenJAs = 0.1) shows the
same behavior as the ECC memories: the MTTF
is limited by the support circuitry MTTF, al­
though at a higher value of AsiAb' It also illus­
trates the fact that by the time

the nonredundant memory becomes more reli­
able than ECC memory, and that for large AslAb'
its MTTF is greater by the factor Ilr. Thus, the
formulas and derived curves such as Figure 5-18
can be used to select the appropriate memory
organization as a function of AsiAb and the
failure mode assumptions.

Hazard Function. Based on the calculated sup­
port failure rates, the hazard functions for 32-bit
logical word memories of 16K and 64K words
were calculated for the SBFM and WCFM mod-
-~"-""---.. -.---------"--.- -~" -- ---" -_ .. _--_._----_._--,.-------_._---_ .. _ ... _. __ .. -- __ ... -...•. "-_. __ ._--

els and the nonredundant memory model. Figure
5-19 plots the results. The assumed bit failure
rate is Ab = 0.000122 failures per million hours.

For the SBFM model the hazard is nearly
constant for the 80 years shown, and the two
different-size memories exhibit an almost total
hazard function dominance by the support cir­
cuitry's constant hazard function z{t) = \~. The
WCFM model exhibits very different behavior
for this ratio of AsiAb' For both sizes of memory
the hazard functions increase throughout the 80
years, with a rapid rise in the first 10 to 20 years
as the memory array hazard function grows and
eventually dwarfs the contribution of the support
circuitry's constant hazard function. At the end
of 15 to 25 years the WCFM models have larger
hazards than do the models for the nonredun­
dant memories of the same (logical) size. The
nonredundant memories exhibit constant hazard
functions dominated by the greater constant
hazard of the memory array alone (Aa » Aenr)'

50

00

50

00

50

00

50

00

50

• 16K NR

... 64K NR

• 16K SBFM

o 64K SBFM

<> 16K WCFM

I:>. 64K WCFM

o~--~--~--~----~--~--~--~--~
o 10 20 30 40 50 60 70

Time, years

Figure 5-19. Comparison of hazard function.
(© 1980 IEEE.)

80

Figure 5-20 demonstrates the effect of varying
\b while holding As constant (i.e., more reliable
nemory for the same support technology, thus
ncreasing AjAb)' The memory modeled is a 16-
)it logical-word memory of 32K words. For
arger Ab the memory array hazard function
)ecomes more important and the SBFM model
)egins to exhibit the same qualities as the
NCFM model in Figure 5-19. Below some Ab the
lOnredundant memory model has a consistently
ower hazard function. Its hazard function never
~ets as large as the Hamming code hazard func­
ion.

A block-coded memory of 64K logical words,
iVith 16 words per block, was compared against
1 Hamming SEC-coded memory of the same
logical) size, but having one logical word per
)hysical word [Elkind and Siewiorek, 1980]. The
;BFM model was used for both memories. The
Hamming-coded memory had a hazard function
hat was approximately constant at 9 failures per
nillion hours over 80 years. The block-coded
nemory, on the other hand, had a hazard func­
ion that increased from 4.5 to 7.5 failures per
nillion hours over 80 years. The block code's

3

EVALUATION CRITERIA 233

• 16 bit 32K word SBFM model, ~b = 0.00122
... 16 bit 32K word SBFM model, ~b = 0.000732
• 16 bit 32K word SBFM model, ~b == 0.0000122
• 16 bit 32K word NR model, ~b = 0.0000122

10 20 30 40 50 60 70 80 90

Time, years

Figure 5-20. Sensitivity of the hazard function
to Ab'

greater departure from a constant hazard func­
tion was due to its larger, and hence less reliable,
code word size. This was more than compen­
sated for by the less complicated support circuit­
ry: over the entire period modeled, the block
code memory hazard function remained lower
than the Hamming code hazard function. Thus,
the block code memory design is more reliable,
and requires fewer memory chips than the Ham­
ming code memory design.

fCC Summary. The way in which memory
chips fail affects the reliability of single-error­
correcting memories. It also dictates the choice
of models for memory system reliability. When
the dominant failure mode, chip failure rate, and
control failure rate are known, the models pre­
sented above can be used in making trade-off
analyses in memory system design.

ECC memories are not inherently more reli­
able than nonredundant memories. With very
reliable memory chips the limiting factor is the
reliability of the support circuitry. When using

234 THE THEORY OF RELIABLE SYSTEM DESIGN

standard SSI/MSI logic, Hamming code support
circuitry has a failure rate several times that of
the support circuitry for an equivalent nonredun­
dant memory. Most current commercial designs
use SSI/MSI support circuitry. Using more reli­
able LSI logic for ECC support would greatly
improve the total ECC memory reliability.

Reduction of the
Nonseriesl Nonparallel Case

Sometimes a "success" diagram is used to de­
scribe the operational modes of a system. Figure
5-21a depicts a success diagram that is not
directly reducible by application of the series/
parallel formulas. Each path from terminal x to
terminal y represents a configuration that leaves
the system successfully operational. The exact
reliability can be derived by expanding around a
single module:

Rsys = Rm X P(system works I m works)

(21)

+ (1 - Rm) X P(system works 1m fails)

-- - wh-ere-th-e-notation--P(3'lmJ--d-enute-s-the--·con-dition-~
al probability "s given m has occurred."

Selecting module B to expand around, Equa­
tion 21 yields the two reduced diagrams in
Figure 5-21 b. In one, module B is replaced by a
"short" (module B works); in the other, module
B is replaced by an "open" (module B is failed
and not available). Using the series/parallel re­
ductions on the case where B is failed yields:

Rsys = R B X P(system works I B works)

+(1 - RB)(RD[l - (1 - RA RE) (22)

X (1 - RFRC)])

The case for module B working has to be further
reduced. Expanding around module C yields:

P(system works I B works)

= Rc[RD(I - (1 - RA)(1 - RF))]

+ (1 - Rc)[RA RD RE]

Thus:

Rsys = RB[RcRD(RA + RF - RA RF)

+(1 - Rc)RA RDRE]

+(1 - RB)[RD(RA RE +RFRC

- RA RCRERF)]

Letting

RA = RB = Rc = RD = RE = RF = Rm:

R = R6 - 3R5 + R4 + 2R3
~s m m m m

If the success diagram becomes too complex
to evaluate exactly, upper- and lower-limit ap­
proximations on Rsys can be used. An upper­
bound on system reliability is [Essary and Pros­
chan, 1962]:

Rsys < I - n(l - Rpath i) (23)

where Rpath i is the serial reliability of path i.
Equation 23 calculates the system reliability as if
all paths were in parallel. Placing the paths in
parallel yields a Reliability Block Diagram
_(RBn) .. ~Figure. __ 5.::22 __ shQws_Jhe_.RBJ2_ .. Q.f.Eig]JTe_
5-21. Equation 23 is an upperbound because the
paths are not independent; that is, the failure of
a single module affects more than one path.
Equation 23 is a close approximation when
Rpath i is small.

Hence:

Rsys < 1 - (1 - RA RB Rc RD)(1 - RA RERD)

X (l - RFRCRD) (24)

Letting

RA = RB = Rc = RD = RE = RF = Rill:

R < 2R3 + R4 - R6 - 2R7 + RIO
~s m m m m III

The RBD method can be altered to yield an
exact result.

Because the paths are not independent, per­
- form the multiplication in Equation 23 by re~

a.

b.

~woru
B works, C fails

c.

Figure 5-21. A system success diagram. a.) Re­
duced diagram replacing module B by a "short"
(working) and an "open" (failed) b.) and further
reduction with module B "shorted" (working) and
module C replaced by an "open" and a "short" c.).

x y

Figure 5-22. Reliability block diagram (RBO) of
Figure 5-21.

EVALUATION CRITERIA 235

placing R~l with Rm; that is, an individual mod­
ule can only have its reliability raised to the first
power.

Rsys = RA RBRCRD + RA R£RD

-RA RBRcRDR£ .

+RCRDRF - RA RcRDR£RF

-RA RBRCRDRF

+RA RBRcRDR£RF

Letting

RA = RB = Rc = RD = R£ = RF = Rill:

Rsys = R! - 3R~ + R~l + 2R~1

which is the same result obtained from Equation
22. Setting all R;'s to Rm has to occur after the
multiplication; otherwise, individual R;'s would
be raised to higher than the first power and the
result would be a lower bound. For obtaining
exact reliability, the RBD approach is more
suitable to noncomputerized calculations, be­
cause simplifying assumptions (such as Rj = Rm
for all i) can be made before algebraic expan­
sion.

Essary and Proschan [1962] also d~fine a lower
bound in terms of the minimal cut sets of the
system. Given that a minimal cut set is a list of
components such that removal of any compo­
nent from the list (by changing the component
from operational to failed) will cause the system
to change from operational to failed, a lower
bound is given by:

Rsys > II Rcut j (25)

where Rcut j is the reliability of minimal cut set i.
The minimal cut sets for Figure 5-21a are D, A C,
AF, CE, and BEF. Hence: .

For

RA = RB = Rc = RD = R£ = RF = Rm:

Rsys > R!?

236 THE THEORY OF RELIABLE SYSTEM DESIGN

Reliability Calculation Aids

Existing algorithms and programs for calculating
computer system reliability may be roughly cast
into one of two classes based on the form of the
input data and type of problem being consid­
ered.

The first class of algorithms and programs
accepts the graph of the physical (or logical)
interconnections of system components and cal­
culates fairly simple measures of reliability for
the system. Typically the system is a computer
communication network, and the vertices of the
interconnection graph denote the computers
while the arcs denote the communication links.
Either arcs or vertices or both are assumed to fail
stochastically. Typically, all failing elements are
considered homogeneous, with identical proba­
bilities of failure. Two common reliability mea­
sures computed for such a system are

• The probability that some specific pair of vertices
will have at least one communication path between
them at all times

• The probability that the operative arcs always con­
tain a ,spanning of the network

Analysis (FMECA). Reliability Graphs are more
often used to compute numerical values of reli­
ability (also termed network reliability analysis
in the literature). Shoo man [1970] shows that
these two intermediate representations are equiv­
alent. The kinds of problems addressed here are
far more general than the simple networks of the
first class. Generalization is made possible by the
fact that Reliability Graphs and Fault Trees are
hand derived from a knowledge of the system.
Lapp and Powers [1977] describes recent work
toward automating synthesis of Fault Trees for
chemical engineering systems. The literature on
the analysis of Reliability Graphs and, in partic­
ular, Fault Trees is vast; the references here
serve as a bare introduction [Misra, 1970; Gan­
dhi, Knove, and Henley, 1972; Satyanarayana
and Prabhaker, 1978; Aggarwal and Rai, 1978;
Bennetts, 1975].

CARE II. CARE II (Computer-Aided Reli­
ability Estimation II), developed at the Raytheon
Company under contract to NASA [Raytheon
1974, 1976], implements a very general combina­
torial model for systems consisting of one or

---------------- -----more--subsystems--or-stages:--E-ach-stage-con tairrs-a-
Frank and Frisch [1970] and Wilkov [1972] are number of identical modules configured as a set

good tutorial papers on the subject. These types of active devices with spares. CARE II handles
of network reliability calculation problems have hard and transient faults, reconfiguration with
been shown to be NP-hard in the case of general degraded performance, and coverage. Two oper-
networks [Rosenthal 1977; Ball, 1980]. ating modes are allowed for each stage: fully

The second class of algorithms and programs operational and degraded but partially opera-
accepts as input some intermediate representa- tional. The coverage model depends on three
tion that encodes the reliability behavior of the conditional probabilities:
system under consideration. This representation,
from which the system reliability is computed, is
expected to be derived by human computation
from the system interconnection structure and
functionality requirements before being input to
the program. Reliability Graphs and Fault Trees
are the most commonly used intermediate repre­
sentations. The system interconnection graph
mayor may not be isomorphic to the derived
intermediate representation. Fault Trees are used
as aids in Failure Modes Effects and Criticality

1. D = the probability that a fault is detected, given
that one occurs;

2. I = the probability that a fault is correctly isolated,
given that it is detected; and

3. R = the probability that the system recovers from
a fault, given that it was properly isolated and that
sufficient spares still exist.

The inputs to CARE II are the reliability
parameters for the modules within each stage,
and a description of the coverage detection/

isolation/recovery mechanisms. The output in­
cludes coverage specification and contributions,
system reliability and unreliability (both tables
and plots), MTTF, mission time, and several
other measures. CARE II is a very versatile
program, limited largely by its combinatorial
approach, which precludes repair.

AD VISfR. Recen t work by Kini [1981] has ad­
vanced the state of the art with respect to
computation of computer system reliability at
the Processor-Memory-Switch (PMS) [Bell and
Newell, 1971] level of design. Kini describes a '
program named ADVISER (ADVanced Interac­
tive Symbolic Evaluator of Reliability), which
computes the symbolic system reliability expres­
SIon gIven:

1. The interconnection graph (PMS diagram) of the
system,

2. The reliability of each class of identical system
components, and

3. A simple statement of system functionality require­
ments.

The program assumes that the arbitrary sys­
tem PMS diagram is represented as a nondirect­
ed graph whose vertices are labeled with the
corresponding system component names. How­
ev~r, the organization of the program does not
preclude a directed graph model. Component
behavior is lumped into the vertices, which are
subject to stochastic failures, whereas the edges
of the graph are perfect and represent only the
topology of the interconnection. Hence, the fail­
ure of a component implies the removal from the
graph of the corresponding vertex and all arcs
incident on it. Components are assumed to be
binary-state entities. The communication axiom,
fundamental to the reliability calculation para­
digm of ADVISER, states roughly that function­
ing components belonging to the component
classes distinguished by the statement of func­
tionality requirements must at all times be able
to communicate in order for the system to be
functional. Only hard-failure reliability is com-

EVALUATION CRITERIA 237

PMS DIAGRAM:

-r--FBUS.1 I I
IT FBUS.2 -+-t --ti..---t~----4i'-
KS.1 KS.2 KS.3 KS.4 KS.5 KS.6

\(\(lMS.,J
IOBUS.1 IOBUS.2 MS.2~

[KO.,-MO., [KO.2_MO.2
ML.1 ML.2

Key: P = processor, FBUS = fast bus,

KS = fast bus interface, MS = shared memory,

lOBUS = processor bus, ML = local memory,

MD = disk memory, KD = disk controller.

REQUIREMENTS EXPRESSION:

1 of P and 1 of ML and 1 of MD and 1 of MS

Figure 5-23. Sample PMS and requirements ex­
pression input to ADVISER.

puted, and the effects of coverage are not mod­
eled in the present version of the program. An
example illustrates the operation of ADVISER.

Figure 5-23 shows a simple dual-processor
system with a duplicated fast interprocessor bus
that also allows access to shared dual-ported
memories. Each processor also has its own I/O
bus with a disk and local memory. The Boolean
requirements expression in the figure distinguish­
es four of the component classes (processor, local
memory, disk, and shared memory) and states
that at least one component from each of the
four classes must be functioning at all times if
the system is to be functional. A requirements
expression may also contain a disjunction, such
as

1 of P and 1 of MD and (1 of MS or 1 of ML).

During the course of the reliability computation
ADVISER takes into account all component

238 THE THEORY OF RELIABLE SYSTEM DESIGN

classes not mentioned in the requirements ex­
pression, whose members must be functional in
the various system success states.

ADVISER begins its analysis by detecting
symmetries in the interconnection graph. Two
subgraphs will be symmetric if they are isomor­
phic, and corresponding vertices of the sub­
graphs represent components drawn from the
same class of identical system components. Any
symmetries found will enable the calculations for
one member of a group of symmetric subgraphs
to be used as templates for the results concerning
the other members of the group. The graph is
then segmented into subgraphs for which special
reliability calculation techniques are known.
When these known subgraphs are removed from
the original interconnection graph, the remaining
vertices and edges form a subgraph, called the
kernel, for which special techniques are not
known, and which is therefore treated with sim-

SEGMENTED PMS DIAGRAM:

Kernel

hFBUS01
FBUS.2

KS.1 KS.2

\/
P.1

Pendant Trees

P.1

I
IOBUS.1

tK001-M001

ML.1

1 T 1 i
KS.3 KS.4 KS.5 KS.6

\/
P.2 tMso1j MS.2

P.2

I
IOBUS.2

lKO.2-MO.2

ML.2

ple pathfinding algorithms to compute reliability. Key: P = processor, FBUS = fast bus,

Currently the only subgraphs for which special KS = fast bus interface, MS = shared memory,

techniques have been devised are Pendant Tree lOBUS = processor bus, Ml· = local memory,

Subgraphs. These are rooted tree subgraphs MD = disk memory, KD = disk controller.

whose root vertices are articulation vertices of ___ ~lg_~r~_~~:!-___ ~~_~_ ~f ~jQ_~~~_~~?_~_~f~~~ ------nTInnferconnecllon--grapn; -tne-patnoetwe-en--any segme nta t i on.
two vertices in the subgraph is the only such path
between those two vertices in the interconnec­
tion graph. Pendant tree subgraphs were a natu­
ral starting point in the search for special
techniques because they occur so frequently in
typical PMS structures. The design of ADVIS­
ER, however, allows inclusion of other types of
subgraphs in the scheme as and when special
reliability calculation techniques are devised for
them.

Figure 5-24 shows the example PMS segment­
ed into symmetric Pendant Tree Subgraphs and
a Kernel. The interface vertices, in this case P.I
and P.2, are considered only once during reli­
ability calculation although for convenience they
appear both in the Kernel and in the Pendan t
Tree Subgraphs of which they are roots. At this
time ADVISER fragments the requirements ex­
pression into its atoms and analyzes cases in

which the system satisfies each of those atomic
requirements. Assume, for example, that one of
the atomic requirements is "5 of M.shared" and
the interconnection graph is divided into three
segments. Then anyone of the different ways in
which five M.shared components could feasibly
be chosen from the three graph segments would
satisfy the atomic requirement "5 of M.shared."
For each of these cases a symbolic expression
would be produced representing the probability
of having five functional M.shared components
scattered in a different way among the three
segments. In our example the atomic require­
ment "1 of ML" can be satisfied by the function­
ing either of ML.I in one Pendant Tree
Subgraph or of ML.2 in the other, but no
components of class ML are available in the

Kernel. In the case that M L.l is functioning,
then, to be useful, it must be available to the rest
of the system in the other segments. This implies
that lOBUS. 1 and P.l must be functional. The
symbolic probability expression for this is
Rp.l R'OBUS.l RML.l· The probability expression
in the case of ML.2 functioning in the other
(symmetric) Pendant Tree Subgraph is identical
in form. Each satisfaction of an atomic require­
ment produces such a symbolic probability ex­
pression. The atomic requirements "I of P," "I
of M L," and" 1 of MD" are each satisfied by two
of the three segments of the graph. The atomic
requirement" 1 of MS" is satisfied only by the
Kernel. Thus, there is a total of eight cases in
which the system is functional.

ADVISER contains algorithms that accept
symbolic probabilities of events, such as are
generated for the cases above, and produces
other symbolic probabilities for the conjunction
or disjunction of those events. By using these
algorithms it is possible to assemble the proba­
bilities of the analyzed functional cases to obtain
the reliability of the system. The symbolic prob­
abilities and the eventual symbolic system-reli­
ability function are maintained in sum-of-prod­
ucts canonical form within ADVISER.

The output of ADVISER consists of the text
of a FORTRAN function that computes the
symbolic reliability function assembled by the
program. Optionally, a procedure in the SAIL
language can also be output. Figure 5-25 shows
the FORTRAN output from ADVISER for the
PMS of Figure 5-23. The block of comments
preceding the function definition of RSYS (the
name is user-assignable) is simply a reproduction
of the salient input data for the problem. The
type definitions identify the classes of identical
components in the PMS structure and give the
parameters for the reliability of a representative
member of each class. Currently, components
may be described as having exponential, Weib­
ull, constant, and external reliability functions.
In the last case, ADVISER inserts a user-sup­
plied function that computes the component

EVALUATION CRITERIA 239

reliability. Failure rates (or the scale parameter,
in the Weibull case) are under the LAMBDA
column and are in units of per-million-hours.
The numbers in this example were arbitrarily
chosen.

The definition of the function itself initializes
variables to the value of component class reli­
abilities at the time, which is given as the func­
tion parameter. Some expressions are computed
and assigned to temporary variables. These ex­
pressions represent the templates for the various
symbolic probabilities derived for symmetric
subgraphs of the interconnection graph. Finally,
the expression that gives the system reliability is
computed and the resultant floating-point num­
ber is returned as the value of the function.
Continuation lines are preceded by a dollar-sign
in column six, and the variable MODREL is
especially useful when printing of the reliability
function requires more continuation lines than
are allowed by the FO R TRAN compiler.

Redundancy to Enhance Chip
Yield

As pointed out in Chapter 2, semiconductor
technology continues to produce increased den­
sities and chip sizes. As chip size increases and
defect density remains constant, however, the
chip yield diminishes. Redundancy on the chip
has been suggested as an effective means to
increase yield [Tamman and Angell, 1967]. In'­
deed, several semiconductor manufacturers al­
ready provide spare bits and control electronics
on 16- and 64K-bit memory parts [Posa, 1980].
The redundancy is configured after wafer probe
but before final assembly. Polysilicon fuses or a
second layer of metallization provide the means
for handwiring the configuration. The redundan­
cy may vary from as little as 1 percent to over 25
percent. The redundancy requires additional
chip area, raising the question of how much
improvement of chip yield redundancy will ac­
tually provide. This section uses combinatorial

240 THE THEORY OF RELIABLE SYSTEM DESIGN

C---
C ** FORTRAN Module for Reliability Function evaluation
C ** produced by ADVISER on Sunday, 18 Jan 81 at 17:32:37 for [4,1367J
C---
C ** Task Title: EXPMS.PMS -- An example PMS to demonstrate ADVISER.
C
C ** Requirements on the Structure were:
C
C
C

(1-0F-P AND 1-0F-ML AND 1-0F-MS AND 1-0F-MD)

C ** Component-Type definitions for this task:
C
C INDEX TYPENAME PRINTNAME REL.FN. PARAMS
C
C
C
C
C
C
C
C
C
C
C

o FASTBUS
1 K.FBUS
2 M.SHARED
3 M.LOCAL
4 CPU

5 lOBUS
6 DISK
7 K.DISK

FBUS
KS
MS
ML
P

lOBUS
MD
KD

Expon.
Expon.
Expon.
Expon.
Weibull

Expon.
Expon.
Expon.

Lambda= .00010000
Lambda=6.00000000
Lambda=10.00000000
Lambda=10.00000000
Lambda=8.00000000
Alpha= .95000001
Lambda= .00010000
Lambda=10.00000000
Lambda=6.00000000

C ** PMS Structure Definitions for this task:
C
C INDEX NAME TYPE NNEIG NEIGHBORS
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

o FBUS.1
1 FBUS.2
2 KS.1
3 KS.2
4 KS.3
5 KS.4
6 KS.5
7 KS.6
8 P.1

-g-- P-.Z-
10 lOBUS. 1
11 IOBUS.2
12 ML.1
13 ML.2
14 KD.1
15 KD.2
16 MD.1
17 MD.2
18 MS.1
19 MS.2

FASTBUS
FASTBUS
K.FBUS
K.FBUS
K.FBUS
K.FBUS
K.FBUS
K.FBUS
CPU ----CWI------- -
lOBUS
lOBUS
M.LOCAL
M.LOCAL
K.DISK
K.DISK
DISK
DISK
M.SHARED
M.SHARED

3
3
2
2
2
2
3
3
3 ----3
3
3
1
1
2
2
1
1
2
2

(KS.1, KS.3, KS.5)
(KS.2, KS.4, KS.6)
(FBUS.1, P.1)
(FBUS.2, P.L)
(FBUS.1, P.2)
(FBUS.2, P.2)
(FBUS.1, MS.1, MS.2)
(FBUS.2, MS.1, MS.2)
(KS.1, KS.2, IOBUS.1)
(KS~3~-R-S-~-4-;--roBUS-:Zr-

(P.1, KD.1, ML.1)
(P.2, KD.2, ML.2)
(lOBUS. 1)
(IOBUS.2)
(MD.1, lOBUS. 1)
(MD.2, IOBUS.2)
(KD.1)
(KD.2)
(KS.5, KS.6)
(KS.5, KS.6)

C---
C
C *** Begin Reliability Function evaluation code;

REAL FUNCTION RSYS (T);
IMPLICIT REAL (A-Z)

WEIBUL(LAMBDA,ALPHA,TIME)=EXP(-(LAMBDA*lE-6*TIME)**ALPHA)

FBUS = EXP(-0.000100 * 1E-6 * T)
KS = EXP(-6.000000 * 1E-6 * T)
MS = EXP(-10.000000 * 1E-6 * T)
ML ~ EXP(-10.000000 * 1E-6 * T)
P = WEIBUL(8.000000 , 0.950000 , T
lOBUS = EXP(-0.000100 * 1E-6 * T)
MD = ~XP(-10.000000 * 1E-6 * T)
KD = EXP(-6.000000 * 1E~6 * T)

C ** End of expressions for calculating individual reliabilities;

Figure 5-25. FORTRAN output from Adviser.

EVALUATION CRITERIA 241

XXXO = ML * P * lOBUS
XXX2 = P * lOBUS * MD * KD
XXX4 = ML * P * lOBUS * MD * KD

C ** End of template evaluating-expressions;

MODREL = 0

MODREL = 8.0 * FBUS * KS**2 * MS * XXX4 + 8.0 * FBUS * KS**3
$ * MS * XXXO * XXX2 - 4.0 * FBUS * KS**2 * MS**2 * XXX4 -
$8.0 * FBUS * KS**3 * MS * XXXO * XXX4 - 8.0 * FBUS * KS**3 *
$MS * XXX4 * XXX2 + 4.0 * FBUS * KS**3 * MS * XXX4**2 - 4.0
$ * FBUS * KS**3 * MS**2 * XXXO * XXX2 + 4.0 * FBUS * KS**3 *
$MS**2 * XXXO * XXX4 + 4.0 * FBUS * KS**3 * MS**2 * XXX4 * XXX2
$ - 2.0 * FBUS * KS**3 * MS**2 * XXX4**2 - 4.0 * FBUS**2 *
$KS**4 * MS * XXX4 - 4.0 * FBUS**2 * KS**4 * MS * XXX4**2 +
$2.0 * FBUS**2 * KS**4 * MS**2 * XXX4 - 4.0 * FBUS**2 * KS**6
$ * MS * XXXO * XXX2 + 2.0 * FBUS**2 * KS**4 * MS**2 * XXX4**2
$ + 8.0 * FBUS**2 * KS**5 * MS * XXX4**2 + 4.0 * FBUS**2 *
$KS**6 * MS * XXXO * XXX4 + 4.0 * FBUS**2 * KS**6 * MS * XXX4
$ * XXX2 - 6.0 * FBUS**2 * KS**6 * MS * XXX4**2 + 2.0 * FBUS
$**2 * KS**6 * MS**2 * XXXO * XXX2 - 2.0 * FBUS**2 * KS**6 *
$MS**2 * XXXO * XXX4 - 2.0 * FBUS**2 * KS**6 * MS**2 * XXX4 *
$XXX2 + 3.0 * FBUS**2 * KS**6 * MS**2 * XXX4**2 - 4.0 * FBUS
$**2 * KS**5 * MS**2 * XXX4**2

C ** End of System Reliability computation;

RSYS = MODREL
RETURN
END

Figure 5-25 -Continued

modeling techniques to evaluate duplication as a
means of yield improvement.

In the absence of redundancy, one or more
defects in a chip cause it to be discarded. There
are three basic types of defects [Murphy, 1964]:

1. Area defects caused by such faults as diffusion or
masking errors, surface layer inversion and general
contamination. They affect whole slices or areas
larger than the chip size.

Lathrop, 1974]. Using the simple Poisson distri­
bution to illustrate the usefulness of redundancy
on a chip, let D be the defect density measured
in number of spot defects per unit area. Assum­
ing that the defect centers obey the Poisson
probability distribution and are independent,
then, if the effective circuit area is A, the proba­
bility that the device is good is:

2. Line defects caused by scratches during the han­
dling of a chip.

3. Highly localized spot defects, the most common
defects, caused by imperfections during the diffu­
sion or masking process.

As the predominant cause for discarding the
chip, the last category affects the yield most.

In several attempts to predict chip yield, the
assumptions for defect density range from a
simple Poisson distribution to a compound (or
mixed) Poisson distribution [Murphy, 1964;
Stapper, 1973; Warner, 1974; Gupta, Porter, and

(26)

The defect density D itself is not constant. Let
J(D) be the normalized distribution function of
D. Then the overall yield, Y, is:

Y = foco e-DA j(D) dD (27)

On the basis of experiences in the field, Mur­
phy [1964] has claimed that the distribution
function, j(D), may be assumed to be the bell­
shaped curve shown in Figure 5-26. The curve
can be further approximated by a 8-function, a
rectangular step function, or a triangular func-

242 THE THEORY OF RELIABLE SYSTEM DESIGN

i

Do

D~

(

Approximate
triangular

distribution

" "-
" " ,

2Do

Figure 5-26. Normalized distribution function of
chips in defect densities.

tion. For our purposes, the bell-shaped curve is
approximated by:

J(D) = D/D6 for 0 < D < Do (28)

= (2Do - D)/D6 for Do < D < 2Do

Evaluating the integral in Equation 27, using

The probability that there is at least one good
section to use is:

e-DaA / n (2e- DA / n _ e-2DA / n)

Because there are n such sections, the proba­
bility that the chip is good is:

p = e-DaA(2e-Da/n - e-2DA / nt (30)

Again, using the expression for yield:

Y,. = J pJ(D)dD (31)

we can determine Y,., the yield of a chip with
redundancy.

The integration of terms in Equation 30 pre­
sents difficulties. The solution is obtained by first
expanding the bracketed terms using the binomi­
al theorem. The expression can then be integrat­
ed with comparative ease.

where b = A[1 + a + (l/n)].
The expression for Y,. remains very complex. It

___________ is best evaluated numerically, and then com-
---- -p-a~~d-With-Y~-Flgure-5-=29--shows--the--yreI(r-Ora--

J(D) from Equation 28, produces:
- - - - ~ - --- ---- - - -----

y ~ C -D:;OA) (29) redundant chip as a function of DoA for n = 2.

Figure 5-27 shows the yield as a function of
DoA.

Now consider replication as a means of im­
proving yield. A circuit is logically divided into n
sections of identical complexity, as shown in
Figure 5-28. Each section is then duplicated, and
simple switching circuitry is added to each pair
of sections to allow selection of a good section
after testing for spot defects. Assuming that the
area required for a circuit is directly proportional
to its complexity, let the complexity of the logic
added to each section be a times the complexity
of the section. The parameter a includes the
additional circuitry required to control the func­
tions of the chip (such as a shift register to
control which duplicate sections are being used).

The yield of a nonredundant chip with the same
DoA is also depicted with the curves for a = 1.0,
a = 0.5, a = 0.1, and a = O. As expected, the
Y,. for the worst case of a = 1.0 (the selection
and switch -circuitry comparable to the original
circuits) is less than that of the nonredundant
chip. Significant increases in Y,. are observed as a
reduces to 0.5, and further to 0.1. Any further
gains, however, are marginal, for there is only a
sligh t increase in Y,. as a is allowed to approach
zero. For a typical LSI microprocessor circuit
(0.2 in. X 0.2 in.) with mean defect density Do
about 6.4 defects per sq. cm. [Muehldorf, 1975],
the yield of a nonredundant chip as predicted by
Equation 28 is 24 percent. With duplication after
dividing the circuit into two sections (n = 2)
and with a = 0.1, the yield will increase to 42

1.0

0.8

0.6

Yield as a function of Do A
(nonredundant chip)

0.4

0.2

O~------~----~--L-~~~~~L-______ ~ ____ ~ __ L--L~~~~

0.1 1.0 10.0

DoA ---')

Figure 5-27. Yield as a function of Do A (nonredundant chip).

r---- -----,
I
I
I
I
I
I
I
L_

I
I
I
I
I
I
I

__J

Nonredundant chip

c::r:J S/selection

Redundant chip

G]1I10gic ~ C/control

a = (35 + C)/(3L)

Figure 5-28. Proposed redundancy to enhance yield.

244 THE THEORY OF RELIABLE SYSTEM DESIGN

1.0 I=====--

0.8

0.6

0.4

0.2

Yield Y, as a function of
DoA{n = 2)

oL-____ i-__ L-~_L~LLLL ____ ~ __ ~ __ ~~~~
0.1 1.0 10.0

DoA~

Figure 5-29. Yield Yr as a function of DoA{n 2).

-percent, afactor-ofL-7-5-increase-in-yield-for --a
small increase in complexity.

In Figure 5-30 Y is plotted allowing n to vary
with a = 0.5. Again, the yield of the nonredun­
dant chip is also depicted for comparison. Al­
though the yield increases with n, the maximum
increase is at low values of n (two and four),
larger numbers of divisions providing diminish­
ing returns. This fact is also obvious in Figure
5-31, where Y,. is depicted as a function of n for
DoA = 1.5. Once again, for a = 1.0 the yield is
less than that of a nonredundant chip.

Alternatively, redundancy can be used to en­
hance logic complexity while maintaining a giv­
en level of yield (the production point estab­
lished for maximizing return). The equations
above can be used to estimate the degree to
which logic complexity can be increased while
maintaining a constant yield.

If there are N possibles on a wafer, for the

-- nonredundantcasetne_numheroLgoodpossibles
IS _

NYo (33)

where Yo is the nonredundant yield. For the
redundant case there are NY,./[2(I + €) + a] pos­
sibles, where € represents an increase in logic
complexity over the nonredundant circuit and Y,.
is the redundant yield.

If the redundant and nonredundant number of
possibles are equated, we have:

Y,.
Yo = (2 + a + 2€) (34)

where Y,. is a function of €.

The second column of Table 5-8 lists the value
of Do A beyond which redundancy is better than
nonredundancy as a function of the number of
sections, n. For larger values of DoA, redundan­
cy yields more possibles. When these are only

EVALUATION CRITERIA 245

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

Yield Y,. as a function of
DoA(a = 0.5)

1.0

DoA~

Figure 5-30. Yield Y,. as a function of DoA(a 05).

0~------~2--------~4------~6~------~8--------1~0------~12

n~

Figure 5-31. Yield y"as a function of n(DoA = 1.5).

10.0

246 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-8. Use of redundancy to increase nonredundant circuit complexity,
holding number of possibles per wafer constant.

Limiting Value of
Original Circuit

Limiting Value (as Complexity
Value of DoA Do A approaches Increase (e) for
(number oj dejects) infinity) of Relative which Compete
Beyond Which Number of Duplication Yields Chip Size of
Complete Possibiles Same Number of Resultant Redundant

Number of Sections in Duplication Yields Complete Possibles Chip Relative to
Chip, n More Possibles Duplication Wafer Nonredundant Chip

2 None 0.94

3 1.78 1.17 0.86 3.90

4 1.40 1.40 0.91 4.01

6 1.20 1.80 1.14 4.49

8 1.10 2.18 1.01 4.22

two sections (n = 2), the nonredundant design dundant circuit. For a redundant circuit with the
always yields a larger number of possibles. For same yield and n = 3, the number of extra
n = 3, DoA = 1.78 for break-even, while DoA possibles would be only 0.04 instead of the
is as small as 1.1 for n = 8. limiting value of 0.17.

In order to see what the maximum potential Other redundancy schemes to enhance yield
gain is through the use of redundancy, DoA was can be evaluated using the Combinatorial Tech-

--- --atlowe-d----to--b-e-com-e----arbitrarily--large~ --The third ---- -niq-ues-presen-ted-in--the--seetions--ab(:)Ve on Series/
column of Table 5-8 lists the limiting value of Parallel Systems, M-of-N Systems, and Reduc-
Y,/>O(2 + a) for a = 0.1. For n = 8 the number tion of Nonseries/Nonparallel Cases.
of possibles increases by almost a factor of 2.2.

Converting the increased number of possibles
from redundancy to increase the nonredundant
circuit size yields solutions to Equation 34. The
fourth column of Table 5-8 lists the limiting
value of € for arbitrarily large DoA, and the fifth
column lists the relative size (nonredundant = 1)
of the resultant redundant chip. The table shows
that a potential increase of 114 percent in the
nonredundant circuit complexity can be
achieved through use of redundancy and a chip
4.49 times larger than the nonredundant circuit
without sacrificing the number of possibles from
a wafer. This, however, is a maximum potential,
and the number of possibles (yield) at that point
might be unacceptably low. If DoA were 2.4, for
example, the yield would be 0.143 for the nonre-

Markov Models

A powerful tool for analyzing complex probabi­
listic systems is the Markov process model. The
two central concepts of such models are state
and state transition. The state of a system repre­
sents all that must be known to describe the
system at any instant. For reliability models,
each state represents a distinct combination of
working and failed modules. If each module is in
one of two conditions-working or failed-then
the complete model for a system of n modules
has 2n states. As time passes, the system goes
from state to state as modules fail and are
repaired. These changes of state are called state

:ransitions. Discrete-time models require all state
:ransitions to occur at fixed intervals and assign
Jrobabilities to each possible transition. Con tin­
lous-time models allow state transitions to occur
1t varying, random intervals, with transition
~ates assigned to possible transitions. For reli-
1bility models, the transition rates are the mod­
lIe hazard functions and repair-rate functions,
Jossibly modified by coverage factors.

Time-Invariant Markov Models

fhe basic assumption underlying Markov mod­
!ls is that the probability of a given state transi­
:ion depends only on the current state. For
:ontinuous-time Markov processes, the length of
:ime already spent in a state does not influence
!ither the probability distribution of the next
;tate or the probability distribution of remaining
:ime in the same state before the next transition.
fhese very strong assumptions imply that the
Naiting time spent in anyone state is geometri­
:ally distributed in the discrete-time case, or
!xponentially distributed in the continuous-time
:ase [Howard, 1971]. Thus, the Markov model
laturally fits with the standard assumption that
~ailure rates are constant, leading to exponential­
y distributed interarrival times of failures and
Poisson arrivals of failures.

Figure 5-32 is a graphic representation of the
:wo-state discrete-time Markov model. The la­
Jeled nodes correspond to the states of the
nodeled systems, and the labeled, directed arcs

O,l-States
qe' q, - State transition probabilities

Figure 5-32. Two-state discrete-time Markov
model.

EVALUATION CRITERIA 247

represent the possible state transitions. The in­
formation conveyed by the model graph is often
summarized in a square matrix p, whose ele­
ments Pi) are the probabilities of a transition
from state i to state). The probabilistic nature of
the matrix requires that each row of the matrix
must sum to one, and that all elements of the
matrix must be nonnegative. The transition
probability matrix for the model of Figure 5-32 is

Current
State

o

New
State

o

[
I - qe qe]

qr I - q,. =P

The discrete-time model is solved by a set of
linear equations based on the transition proba­
bility matrix. In vector notation, these equations
are defined as:

P(k + 1) = P(k) X P

In more explicit form, the equations for the
model of Figure 5-32 are:

[
I - q X e

qr

Multiplying into separate equations yields:

PoCk + 1) = (I - qe)pb(k) + qrP, (k)

PI (k + 1) = qePO(k) + (I - qr)PI (k)

The n-step transition probability matrix that
contains the probabilities of transitions from one
state to another in exactly n transition intervals
is given by P". In general, to find the probability
distribution of a transition from one state to
another in no more than k steps,Ji;(k), state) can
be made a "trapping" state, with Pjj set equal to
one, and the analysis is straightforward.

The continuous-time Markov model can be
derived from the discrete.:time model by taking

248 THE THEORY OF RELIABLE SYSTEM DESIGN

1-Mt

Aat, p,at-State transition probabilities

A, ,..-State transition rates

1 - p,at

Figure 5-33. Two-state differential Markov model.

the limit as the time-step interval approaches
zero. Consider a single system with constant
failure rate A that can be repaired with constant
repair rate JL. Let Po (I) and PI (I) be the probabil­
ities of being in the nonfailed state and the repair
state, respectively. The transactions between
states can be represented as in Figure 5-33. From
the figure we can write the following transition
matrix:

p = [1 -AD.t
JLD.t

The probability of being in state 0 or 1 at time

.t_± .l}~J_~~P:_ ._~~ J~!~~l~_t_~~._~._!!l~l_tiplX~!lJL!?e
probability at time 1 by the transition matrix:

Performing the indicated multiplication yields a
system of equations

PO(I + D./) = (I - AD./)Po(/) + P.D.IPI (I)

PI (t + D./) = AD.IPo(t) + (I - JLD.t)PI (t)

Rearranging and dividing by D.t produces:

Po (t + D.t) - Po (t) _ "\ () ()
D.t - -I\Po t + JLPI t

PI (I + D./) - PI (I) = A (I) - (I)
D.I Po JL PI

Taking the limit as D.I approaches zero generates

A-Failure rate

,..-Repair rate

Figure 5-34. Two-state continuous-time Markov
model.

a set of simultaneous differential equations (the
Chapman-Kolmogorovequations):

dpo(/) .
-----;Jt = Po(/) = -APo(/) + P.PI (I)

dPI (I) .
([t = PI (I) = APo(/) - JLPI (I)

(35)

In matrix form

or

P(t) = P(/) X T (36)

The set of equations (continuous time Chap­
man-Kolmogorov equations) can be written by
inspection of a transition diagram without self­
loops or D.I's. Consider Figure 5-34. The change
in state 0 is minus the flow out of state 0 times
the probability of being in state 0 at time 1 plus
the flow into state 0 from state 1 times the
probability of being in state I. The equation for
the change in state I is derived in a similar
manner.

The set of equations in 35 can be solved by use
of the LaPlace Transform of a time domain
function, given by:

The LaPlace Transform reduces ordinary, con­
stant-coefficient linear differential equations to

Table 5-9. Common LaPlace Transforms.

J(t)

l.k
k
s

2. 8(t) [Unit Impulse]

3 -at .e

n-I
4 t e-at

. (n - 1)!

5. kJ(t)

6. J(t) + get)

7. jet)

8. tj(t)

9. fcf J(r)dT

10. fJ(t)

11. eAt, A = matrix

s+a

kJX(s)

JX(s) + gX(s)

s1""(s) - J(O)

_jX(s)

(1/s)JX(s)

fsOO J(o) do

[sf - Ar l

Note: f(O) denotes the value of f(/) at time 1 = O.

algebraic equations in s. The algebraic equations
are solved and transformed back into the time
domain.

Taking the LaPlace Transform of Equation 35
using Table 5-9 gives:

(37)
Sp{(S) - PI (0) = APO(S) - JLP(s)

where PoCO) is the value of poet) at t = 0. The
algebraic equations in Equation 37 can be solved
by any linear equation-solving technique such as
Kramer's rule or Gaussian elimination. Using
matrix algebra, Equation 37 can be written as:

x x [s + A -A J [pO(O),PI (0)] = [Po (S),PI (s)] X -J-t S + J-t

EVALUATION CRITERIA 249

or

P(O) = P_\-(s) X [sl - T] = P-\-(s) X A

where I is the identity matrix and T is the
differential matrix derived earlier. Thus:

To derive A-I from A, recall that element
a'- of A-I can be calculated as:

Ij

, cofactor ji (A)
a-- =

Ij det A

where cofactorji (A) is defined as:

cofactorji (A) g (_l)i+j X determinant of matrix
formed by removing row j and column i from A

and det A IS the determinant of A. For our
example,

A = [s + A -A J
-IL S + fl

det A = s2 + AS + JLs

[s : I' S ~ AJ
A-I

- s2 + AS + flS

Assuming that the !ystem starts .out in the oper­
ational state, then P(O) = [1,0]. So:

]5X(S) = [1,0]

[

S + JL

X s2 + ~ + I's

s2 + AS + JLs

or

X() s + JL
Po S = 2 +"\ +

S I\S JLS

A
p{(s) = s2 + AS + flS

250 THE THEORY OF RELIABLE SYSTEM DESIGN

The general form of the transforms calculated by
this stage in the solution process is that of a
rational fraction in s, which is a ratio of two
polynomials in s:

f X() = N(s)
s D(s)

The inverse transform of a rational fractional is
obtained by the following process.

1. If the degree of the numerator is greater than or
equal to the degree of the denominator, divide the
denominator into the numerator until the degree of
the remainder is one less than that of the denomi­
na tor. The result is:

fX(s) = N (s) + Nr(s)
q D(s)

The inverse transform of Nq(s) can be found by
using relationships 2 and 7 from Table 5-9 and
added to the remaining solution because of rela­
tionship 6. (For our example, this step is unneces­
sary, as indeed is usually the case. Even when
required, the degree of Nq(s) is almost never higher
than one or two.)

2. The roots of the denominator polynomial D(s) must
be ·founa·:liygeneral~-nfer(yorsmay·15eeilherreatur· ..
complex, and there may be multiple occurrences of
distinct roots. For our example, we shall assume
that all roots are real and distinct. This is usually
the case, and other cases can be found using similar
techniques. If D(s) is a second degree polynomial,
the two roots can be found by direct use of the
quadratic formula. Otherwise, the roots can be
extracted using such techniques as Horner's meth­
od or Lin's method.

3. After finding the roots -a), -a2' ... , -ar of D(s),
the rational fraction Nr(s)/D(s) must be expanded
into

Nr(s) Nr(s)
D(s) = (s + a))(s + a2) .. .o (s + ar)

~ k2 kr =--+--+ ... +--.
s + a) s + a2 s + ar

where r is the degree of D(s) and k i is a constant
associated with the ith root. This expansion is
called the partial fraction expansion of the rational
fraction. The easiest way to find each constant k i is

to cancel the (s + a;) factor in D(s) and evaluate
the modified fraction for s = -ai:

x (a2 - a)··· (ai-I - ai)

X (a i+ I - aJ ... (a,. - ai)]

After obtaining the partial fraction expansion, the
inverse transform is found by applying relation­
ships 3 through 6 from Table 5-9.

Returning to our example, after following the
steps above, we find the partial fraction expan­
sions of the transforms:

J.L A
A+" A+" P x (s) = --' + ---=--'--'-° s S+A+J.L

A A
x _ A+J.L A+J.L

PI (s) - -s- - S + A + J.L

Taking the inverse transforms:

P (t) = _J.L_ + _A_e-(A+/-t)/
........................... _ 0_ _... A ± l!- l\.±. p..

P (t) = _A __ _ A_e-(A+/-t)/
I A+J.L A+ll

-(38)

poet) is the time-dependent probability that the
system is in the operational state, defined earlier
as the availability function A(t). The availability
consists of a steady-state term and an exponen­
tially decaying transient term. As noted earlier,
for a nonredundant system with failure rate A
and repair rate J.L, the steady-state availability is
J.L/(A + J.L). Figure 5-35 plots A(t) for an MTTF
of 1,000 hours (A = 0.001) and an MTTR of 10
hours (ll = 0.1). The steady-state value is
reached iIi a very short time.

If only the steady-state solution is sought, the
required computation is substantially less than
that for the time-dependent solution. The differ­
ential equations in 35 are changed to algebraic
equations by replacing poet) and PI (t) by zero,
poet) by Po, and PI (t) by PI. That is, there is no

1.000

0.999

0.996

:f 0.995
~
.!! .;;
~ 0.994

0.993

0.992

0.991

0.990

Nonredundant system
MTTF = 1,000 hours
MTTR = 10 hours

EVALUATION CRITERIA 251

0.989 '--_....L-_----L __ .L..-_....L-_---L. __ .L..-_-'-_--'-__ "'-------:-'

o W ~ ~ W ~ 70

Time (hours)

Figure 5-35. Availability as a function of time.

rate of change in steady state, and the state
probabilities have reached their equilibrium
values. Po is then the steady-state probability of
proper system operation, if a solution exists.
Applying these changes to Equation 35 yields:

o = -APO + f.LPI

o = APO - f.LPI

or

A
PI = -Po (39)

f.L

The condition that Po + PI IS required to
solve Equation 39. Thus:

A
Po + -Po =

f.L

or

1 f.L
Po = --A = A + f.L

1+-
f.L

which is the result obtained earlier.
The reliability function can also be repre­

sen ted as a Markov model by making the sys­
tem-failed state a trapping state; that is, once the
failed state is entered, the probability of exiting
is zero. Figure 5-36 depicts the transition proba­
bilities for the single-system model. The differen­
tial equations become:

poet) = -APO(t)

PI (t) = APO(t)
(40)

252 THE THEORY OF RELIABLE SYSTEM DESIGN

a. Discrete-time (differential) model

b. Continuous-time model

~
Figure 5-36. Markov model for single system with­
out repair.

The T matrix can be written by inspection:

T = [~A ~]
p(O) = PX(s) X [sl - T] = PX(s) X A

-" -" [s + ,\
P(O) = PX(s) X 0

pxrsr~-··PTOrx-A=l­

Letting P(O) = [1,0]:

s
Po(s) = ---

s2 + '\s

pres) = 2 ,\
s +'\s

Simplifying and performing partial fraction ex­
pansion yields:

Po(s) = s 1 ,\
X() 1 1

PI S = S - s + ,\
Taking the inverse transform gives the final
solutions:

poet) = e-A1

PI (t) = 1 - e-A1
(41)

Equation 41 could also have been derived from
the properties of the exponential distribution and
the fact that Po + PI = 1. In addition, Equation
41 is simply Equation 38 with Jl set equal to zero
(an infinite repair rate). The steady-state solution
to Equation 40 yields:

Po = 0

PI = 1 - Po = 1

Now consider a dual-processor system with
repair. Figure 5-37a gives the Markov model.
There are four states, corresponding to both
functioning, one functioning and one not, and
both failed. Two repairmen and perfect coverage
are assumed. If the processors and repairmen are
identical, the model can be collapsed as in
Figure 5-37b. In general, if there are n compo­
nents in a system that may be either functional
or failed, the Markov model will have 2n states
and a system of 2n equations to solve. Computa­
tional complexity can be reduced by using sym-

- metry--fo-coalesce-sfafes:-Fur11ierm6re;-soIutions-
may be limited to finding only the probability of
occupying one state of interest (the all-failed
state) instead of the probabilities of all states.

To solve the model in Figure 5-37c, which
assumes a single repairman (and perfect cover­
age), by inspection:

[-2A
2,\

~J T = Jl -,\ - Jl

0 Jl

Therefore:

A = [s~t -2,\

o] s+'\+Jl -,\

-Jl s+Jl

The solution requires finding the inverse of this
matrix, which also requires finding the determi­
nant (at top of next page):

det A

2;\5 + 2;\fl

EVALUATION CRITERIA 253

a
-;\

]
]

s2 + (2;\ + fl)S + 2;\~t

f we assume that P(O) = [LO,O], then

\" () 2;\2
Di S = ~------:-----c=-----

'- s3 + (3;\ + 2fl)52 + (2;\2 + 2;\fl + fl) S

(42)

If the initial state is known with certainty, and
)nly one state probability is of interest. then only
me element of A-I needs to be calculated, a
)otentially large savings in effort.) P2 (I) is the
)robability of the system's being in the failed
:tate at time t. The availability function A(/) is
herefore equal to 1 - P2 (t). Alternatively, A (I)
:ould be calculated by solving for Po(t) + PI (t),
vhich increases the amount of computation re­
luired.

Since the degree of the numerator (0) is ob­
riously less than the degree of the denominator
3), the next step in the solution is to find the
oots of the denominator. Using the quadratic
ormula, after noticing that one root is zero:

-al = 0

-a2 = -~(3;\ + 2fl) - ~V;\2 + 4;\fl

-a3 = -~(3;\ + 2fl) + ~V;\2 + 4;\fl

a. Full four-state model

b. Collapsed three-state model (~1 = ~21 111 = 1l2)

2~ ~

Co Single repairman model

II

d. Reliability model

Figure 5-37. Markov models for dual system with
repair.

254 THE THEORY OF RELIABLE SYSTEM DESIGN

N ext, finding the partial fraction expansion: .

x k1 k2 k3
P2 (s) = S + s + a2 + s + a3

where

2l\2 2'A2
k1 =--

a2 a3 2'A2 + 2'Ap, + p,2

2'A2
k2 =----­

-a2(a3 - a2)

'A2 + 4'Ap, + (3'A + 2p,)y'A2 + 4'Ap,

2'A2
k3 = -----,----,-

-a3(a2 - a3)

'A2 + 4'Ap, - (3'A + 2p,)y'A2 + 4'Ap,

and taking the inverse transform:

As noted earlier, A(t) = I - P2(t). Therefore:

A(t) = I - k) - k2 e-a~l - k3 e-a, I

2'Af.L + p,2
A (t) - -----=:-----=----'-------,-

- 2'A2 + 2'Ap, + p,2

4'A2 e-H(3A+2fL)+VA~ +4AfL]1

'A2 + 4'Ap, + (3'A + 2p,)yP!- + 4'Ap,

4'A2 e -i[(3A+2fL)-VA~ +4AfL]1

'A2 + 4'Ap, - (3'A + 2p,)y'A2 + 4'Ap,

The steady-state availability is:

A = I _ k = 2 'Ap, + P,
2

ss 1 2'A2 + 2'Af.L + p,2
(43)

As discussed earlier, the steady-state availability
alone ca!!,. be foun~ mo~ easily by substituting
zero for pet) and P for pet) in Equation 36.

The availability model in Figure 5-37c can be
transformed into a reliability model by making
state 2 a trapping state (see Figure 5-37d). Then
the solution proceeds as follows:

For P(o) = [1,0,0], we need to calculate only
a'l3 in order to find R(t) = I - P2(t).

X() _ , _ cofactor3) (A)
P2 s - a \3 - det A

. de{ +-~: ~ ~AJ
P2(S) = (s + 2'A)(s + 'A + f.L)s - 2'Af.Ls

..................... "2-A~'

P2 (s) = s3 + (3'A + p,)s2 + 2'A2 S

Y() 2l\2
Pi s = s(s + a2)(s + a3)

(a) = 0, by inspection)

where the roots are

Expanding the partial fractions:

where

2'A2
(I = -- =

a2 a3

'A2 + 6'AJL + JL2 - (3'A + JLh/'A2 + 6'AJL + JL2

2'A2
(- ---;-----:-

3 - -a3(a2 - a3)

'A2 + 6'AJL + JL2 + (3'A + JLh/'A2 + 6'AJL + JL2

:he desired reliability function is

R(t) = 1 - P2(t}

fherefore, taking the inverse of the LaPlace
fransform;

~(t) = -k2 e-a21 - k3 e-a11

~(t) =

In review, continuous-time Markov models
ire solved using the Chapman-Kolmogorov dif­
~erential equations

where

P(t} = />(t) X T

P(t} is the vector of state probability
functions

dP(t}
dt

is the differential state transition
rate matrix

EVALUATION CRITERIA 255

The elements of T are easily derived from the
graph of the Markov model. For i =1= j, t ij is the
state transition rate (possibly zero) from state i to
state j. Each diagonal element tii is minus the
sum of all transition rates leaving state i. Thus,
the rows of T all add up to zero, making it a
differential matrix.

Using LaPlace transforms, the differential
equations are changed into algebraic equations:

where

A = [sI - T]

After solving the set of linear algebraic equa­
tions, the final solutions are obtained by apply­
ing the inverse LaPlace transform.

Time- Varying Markov Models

A useful generalization of the Markov process
for reliability modeling is to allow state-transi-

'. tion probabilities to change over time. This caus­
es difficulties in analysis, since it generally makes
the use of transform analysis impossible. N ever­
theless, if failure rates (or repair rates) are func­
tions of time, the techniques discussed in this
section can be used.

Discrete- Time Equations. Define qij(m, n} as
the probability that the system is in state j at time
n given that it was in state i at time m (m < n).
For consistency, Q(m, m} = I. With this nota­
tion, in matrix fomi the Chapman-Kolmogorov
equation is:

Q(m, n} = Q(m, k}Q(k, n}

Letting k = n - 1:

Q(m,n} = Q(m,n - I}Q(n - l,n}

Defining P(n} = Q(n, n + I}:

Q(m, n} = Q(m, n - l}P(n - I} (44)

256 THE THEORY OF RELIABLE SYSTEM DESIGN

This equatien can be expanded recursively:

Q(m,n) = Q(m,n - 2)P(n - 2)P(n - 1)

Q(m,n) = Q(m,n - 3)P(n - 3)P(n - 2)

X P(n - 1)

yielding the final selutien:

Il-I
Q(m, n) = II P{i) (45)

i=lIl

Fer m = 0 and all P{i) = P, this becemes pH,
as given earlier.

Continuous- Time Equations. Define the dif­
ference eperater as:

~,J(n) = f(n + 1) - f(n)

Then:

~nQ(m,n - 1) = Q(m,n) - Q(m,n - 1)

From Equatien 44:

.In Q(m, n - 1) = Q(m, n - l)P(n - 1)

- Q(m,n - 1) (46)

.l~I·~(m~·n~-I-)-=-·~(m~n··=+)-[-P(71-~·+1···~-I}-··

Defining the differential matrix

T(n) = P(n) - I

Equatien 46 is rewritten:

~nQ(m, n - 1) = Q(m, n - 1) X T(n - 1) (47)

Equatien 47 is the difference-equatien ferm ef
the Chapman-Kelmegerev equatien fer discrete­
time Markev precesses. The centinueus-time
Chapman-Kelmegerev equatiens are directly
derived from this equatien. Defining Q(T, t) as
the centinueus-time interval transitien prebabil­
ity matrix analegeus to. the discrete-time multi­
step translatien prebability matrix Q(m, n)
defined earlier, the matrix ferm ef the Chapman­
Kelmegerov equatien is:

Q(T, t) = Q(T, p)Q(p, t)

In differential equatien ferm, this becemes:

(48)

Equatien 48 is a mere general ferm ef Equatien
36. If T = 0, Equatien 36 is obtained by summing

N

p)t) = .L qij(O, t)Pi(O)
/=1

The selutien to. Equatien 47 cernes from basic
differential equatien theery:

Q(T, t) = elf T(p)dp] (49)

Obtaining explicit selutiens frem this may be
quite difficult. If T = 0 and T(t) = T fer all
values ef t, Equatien 49 becemes:

Q(t) = eTI

which is a refermulatien ef the selutien using
LaPlace Transferms that was discussed in the
sectien en time-invariant Markev medels.

Numerical integratien techniques are used to.
selve Equatien 49 because ef its cemplexity
[Stiffler, Bryant, and Gucciene, 1979]. An alter­
native methed is to. appreximate the centinueus-

.- .time_pIocess_with....dis.cLe.te:-.time .. _e.q.uiy.alents .. _Be::
cause numerical integratio.n invo.lves seme de­
gree o.f appreximatien anyway, this is frequently
a geed cheice. The majer difficulty is that many
transitien rates that are effectively zero. in the
centinueus-time differential transitien rate ma­
trix assume small but nenzere prebabilities in
the discrete-time transitien prebability matrix.
Censider the me del ef Figure 5-37c selved in the
previeus sectien. A discrete-time appreximatien
has to. censider the prebability ef two. failures
during the same interval. This cress-ceupled
transitien prebability can be ignered fer centin­
ueus-time medels because ef the infinitesimal
time-steps invelved.

Fer cenverting fro.m co.ntinueus-time hazard
functiens (failure and repair rate functio.ns) to.
discrete-time hazard functiens, a discrete-time
prebability distributien must be feund that cer­
respends to. the centinueus-time distributien de-

a. Continuous time model

2Z(t)

Z,(t)

Z(t) = <lA(M)O-l

Z,(t) = fjp.(p.t)/H

b. Discrete time model

A(n) = 2Z(n)~1 - Z(n))
B(n) = [Z(n)]
C(n) = [1 - Z(n)]Z,(n)

EVALUATION CRITERIA 257

1.0

D(n) = Z(n)l1 - {,(n)1 a

Z(n) = 1 - qtn+1) -n; q(= e-(,\<11)
Z,(n) = 1 - qJn+l)P-nP; qr = e-("M)il

Figure 5-38. Dual system with single repairman: time-varying transition rates.

fined by that hazard function. The correspond­
ing parameters can then be calculated for the
desired time-step t:.t. For the Weibull distribu­
tion function mentioned earlier:

pdf = f(t) = aA(Atyx-1 e-(A/)"

Recall that a corresponding discrete Weibull
function exists (see Chapter 2):

pmf = f(k) = qk" _ q(k+I)"

Given that f(k) is defined as the probability of
an event (failure) occurring between time t:.t and
time (k + l)t:.t for some chosen interval size t:.t,
this probability mass function can be expressed
as:

f(k) = Pr[no event by kt:.t]

- Pr[no event by (k + l)t:.t]

f(k) = R(k) - R(k + I)

where R(k) is the reliability function. Substitut­
ing the continuous-time equivalents:

f(k) = R(kt:.t) - R«k + I)t:.t)

f(k) = e-(Aktlt)" - e-(A(k+l)tlt)"

and rearranging terms:

f(k) = (e-(Mt)o)k<l _ (e-(Mt)Yk+I)<l

which makes it obvious that

q = e -(Mt)"

and that a does not change between the contin­
uous-time distribution and the discrete-time
equivalent. The transition probabilities are now
given by:

z(n) = l_q(n+l)"-n"

Consider the reliability model of Figure 5-38a,

258 THE THEORY OF RELIABLE SYSTEM DESIGN

1.0 ".
~\
\. ~ ...

0.9 \'\.~\
\ ".
'<~

........... Alpha = 2.0

--- Alpha = 1.2

-- Alpha = 1.0

'\" .~
~ , ~-

.. Alpha = 0.8
0.8

------ Alpha = 0.6

0.7

i: 0.6
ct
~

\" " <:~::-.=-----....... ~ ---------
:. \ "

: \ ''-. . \ -. , -.
\ -. :s 0.5

.:!
1i

'\ -.
'\ -'-

CIII: \
0.4 '\

" ,
0.3 "-

0.2

0.1

,
" " "

"
"­----

0L---100~--2~OO---3~OO---400~~-L---600~--7~OO---800~--~J---1~OOO

Number of time steps

Figure 5-39. Reliability of dual redundant systems.

which is the same as that shown in Figure 5-37c highlighted in Figure 5-40, which plots the reli-
--- -ex-cept-tha ttlre-fai-lure-and-rep-airrate-s-llaye-bee-n ---- -ability-diff-ere-n-ce-using--{if== --LO-as--rhe -b-aseHne- -

replaced with Weibull hazard functions. In the system. Two features are generally discernible
equivalent discrete-time model displayed in Fig- from these curves. First, for values of OJ less than
ure 5-37b the complexity of terms is greater, one, the system reliability is less than that for {Xj

particularly due to the joint probabilities of state equal to one for some period. This is followed by
transitions. a much longer period during which the reliability

After deriving the transition probability ma- of systems with (Xj less than one is greater than
trix function Pen) from the model graph, Figure the reliability of systems with {Xj equal to one.
5-39 plots the solution of Equation 45 for repre- (Similar but opposite effects are evident for
sentative values of {X with f3 = I. systems with (Xj greater than one.) The second

For purposes of comparison, failure processes feature is that as {Xj gets farther from 1.0, the
of equal means are used throughout. The values magnitude of deviation in the curves becomes
of A are changed along with the values of {X to
maintain a constant value for the mean of each
process. The reliability curves plotted in Figure
5-39 are based on a module MTTF of 100 time­
steps and a module MTTR of 10 time-steps.
Table 5-10 lists discrete Weibull parameter
values.

The differences in reliability caused by chang­
ing the value of {Xj (and adjusting other parame­
ters to maintain a constant module MTTF) are

Table 5-10. Discrete Weibull parameter values.

a qj f3 q,.

0.6 0.922319 1.0 0.90
0.8 0.972515 1.0 0.90
1.0 0.990000 1.0 0.90
1.2 0.996285 1.0 0.90
2.0 0.999921 1.0 0.90

0.5

0.4

/
/

/ 0.3

./

,,,/'"

-­
..... -

EVALUATION CRITERIA 259

.-------------

5 ,....
Qc 0.2

// /_._._._._._._._._._._.-
/ /'

I ,/
1/'

I

?
N O•1
Qc 1/
Ql
~ Or~~~~--~~~~~--L-~~-L--~--~ __ L-~ __ ~
~c: \ 500 1,000 1,500 2,~ _--_ 2,500------3,000

::: \ I: \ Number of time steps ,..
:c -0.1 ~ \ _-.:-::-:' .
>- ., - --. -.' -.• -....... .-::::::-: •.•] \ "" -- ---
~ -0.2~.-------
ell: Alpha = 2.0

-0.3
Alpha = 1.2

Alpha = 0.8

-0.4
Alpha = 0.6

-0.5

-0.6

Figure 5-40. Reliability differences between exponential and Weibull for a
dual redundant system.

larger. Significant deviations in reliability occur
even for relatively small deviations in aJ'

These examples of Markov analysis have been
given to illustrate the analysis procedure. The
interested reader is referred to more comprehen­
sive analysis such as Howard [1971] and Shoo­
man [1968] for additional solution techniques
and examples.

Monte Carlo Simulation

The techniques considered so far are insufficient
to obtain results for even quite minor changes in
the modeling assumptions. In the issue of failure
process renewal, for example, it seems obvious
that a repaired module should be "as good as
new," but that is not the assumption behind the
model of Figure 5-38. In that model, the failure
processes z/t)(or z/n» are not reset to time
t = 0 (n = 0) when a module is repaired. This
fact can make a dramatic difference in the failure
rates. In the Weibull hazard function, for a less

than one, the failure rate asymptotically ap­
proaches zero; for a greater than one, it grows
without limit. Thus, the failure rate immediately
following a repair can vary tremendously under
the two modeling assumptions (of course, for
constant failure rates there is no difference in
effect between the two assumptions.) Consider
the discrete Weibull hazard function:

zen) = I - q(n+ I)" -n"

If this failure process is reset (renewed) whenever
a repair occurs, then the conditional hazard
function of the process given the renewal time Nr

is:

zen) = I - q(n-NR+l)"-(n-NR)"

In general, the hazard function of the failure
process with renewal is given by:

n
zen) = I - L (q(n-k+W-(n-k)")Pr{N

R
= kin}

k=O

The second factor in the summation is the con­
ditional probability that the renew.:'l.l time has

260 THE THEORY OF RELIABLE SYSTEM DESIGN

1.0 - [A(n) + B(n) + C(n)]
.""- --...-.

o 1.0

C(n)

A(n) = Zf(n - NA) [1 - Zf(n - Nb)]

B(n) = [1 - Zf(n - Na)]Zf(n - NB)

C(n) = Zf(n - NA)Zf(n - NB)

D(n) = Zr(n - MA)[1 - Zf(n - NB»
fen) = Zr(n - MA)Zf(n - NB)

fen) = [1 - Zr(n - MA)]Zf(n - NB)

C(n) = [1 - Zf(n - NA)]Zr(n - M B)

H(n) = Zf(n - NA)Zr(n - M B)

I(n) = Zf(n - NA)[1 - Zr(n - M B))

Zf(n) = 1 - qJn+1)O-na
; qf = e-p·.:lt)a

Zr(n) = 1 - q}n+1)/l-nfl; qr = e-(p..:lt)/l

N A = last repair time for unit A

MA = last failure time for unit A

Figure 5-41. Model of dual system with failure and repair process renewals.

any particular value given the current time.
Calculation of this value depends on the entire
past history of the system, which makes it intrac­
table to compute in practice. Therefore, a new
technique to attack the problem of reliability
modeling is needed.

A standard method of studying the reliability
of systems that are too complex to model analyt­
ically is to simulate their performance and exam­
ine the results [Almassy, 1979; Yakowitz, 1977].
The basis of such "Monte Carlo" simulation
schemes is a pseudo-random number generator
that produces a sequence of numbers between 0
and 1. This sequence approximately follows the
uniform distribution. For good results, simula­
tions should be run on two or more independent
pseudo-random number generators, and the gen-

era tors used should be thoroughly tested [Knuth,
vol. 2, 1969].

Figure 5-41 shows the reliability model of a
dual redundant system. Because of the need to
distinguish between failures and repairs of the
individual modules, a full four-state model is
necessary. Otherwise, this models the same sys­
tem as Figures 5-37d and 5-38b. From the model
graph, the transition probability matrix function
P (n;NA,NB,MA,MB) is defined. Each simula­
tion run follows this algorithm:

1. Global initialization
i = current state = 0
NA= NB = MA = MB = renewal times = 0
n = current time = -}

0.8

0.7

"2 0.6
~

~ :s 0.5
.!!
1i
=-= 0.4

0.3

0.2

0.1

Alpha = 2.0

Alpha = 1.2

Alpha = 1.0

Alpha = 0.8

Alpha = 0.6

EVALUATION CRITERIA 261

0~--1~OO----2~OO----~--~~---5~OO----~~--~---8~OO----~--~

Number of time steps

Figure 5-42. Simulated reliability of dual system.

2. Set loop variables
n = n + I
j = next state = -I
x = cumulative probability = 0
R = next pseudo-random number in sequence

3. Test for next state
a)j = j + I
b) x = x + Pij(n;NA,NB,MA,MB)
c) if R > x then go to step 3a

4. Next state found
a) if i =1= j then set one of {NA , NB , MA , MB} to

n + I
b) i = j

c) if i =1= a trapping (failed) state then go to step 2
5. Output value of n for this simulation run

For each value of lX used in the preceding
example of time-varying Markov processes (0.6,
0.8, 1.0, 1.2, 2.0), 3,000 simulations were per­
formed, using three pseudo-random number gen-

era tors- for 1,000 simulations apiece. Figure 5-42
plots the empirical reliability curves for a dual
redundant system with independent failure and
repair process renewals, using the same parame­
ter values (qf' lX, qr' {3) as for Figure 5-39: only
the modeling assumption concerning process re­
newals was changed. Figure 5-43 plots the corre­
sponding reliability difference curves. The reli­
abilities of systems with lXf not equal to one
diverge quite sharply under the two different
modeling assumptions. The general shapes of the
curves remain much the same, but the magnitude
of the deviation is much smaller in the second
time period (underestimation for lXf less than one
and overestimation for lXf greater" than one) for
the systems with error" process renewals (al­
though comparable in the earlier time frame).
Also, the crossover points are significantly de­
layed for the systems with error process renew­
als, compared to the systems without renewals.

262 THE THEORY OF RELIABLE SYSTEM DESIGN

0.06
:··0

-0.14

Alpha = 2.0

Alpha = 1.2

Alpha = 0.8

Alpha = 0.6

Figure 5-43. Simulated reliability differences between exponential and Weibull
for a dual redundant system.

If the exponential (constant error rate) as­
sumption is used for reliability modeling, signifi­
cant deviations between predicted and experi­
mental reliability will occur whenever the data
indicate that failures follow a nonconstant error
rate. The extent of deviation from exponential
model results depends both on the explicit form
of ,the failure rate (hazard) function and on
whether the failure process is renewed whenever
a -repair occurs.

Modeling a TMR System

This section applies Markov modeling tech­
niques and assumptions to a common structure,
a simple TMR (Triple Modular Redundant)
system. In TMR correct operation continues as
long as two of the three modules are working
properly. A second module failure causes the
system to fail.

3~

p.

Figure 5-44. Markov model for TMR system
reliability.

Constant failure Rates: Markov Model. A re­
pair strategy of calling in a repairman whenever
a module fails produces a Markov model like
that shown in Figure 5-44. By inspection, the
differential transition rate matrix is:

[

-3A 3A 0]
T= p. -2A-P. 2A

o 0 0

where A is the module failure rate and p. is the
repair rate. From this~ the LaPlace transformp2 (s)
is calculated (assuming that p(O) = [1,0,0]):

Expanding the partial fractions, taking the in­
verse of the LaPlace Transform, and subtracting
from one produces the reliability function:

~(t) =

A + Il - VA
2

+ 10AIl + 11
2

e-i(5A+fL+v'A2+ IOAfL+fL2)/

2VA2 + 10AIl + 112

Integrating this function to find the MTTF pro­
duces:

MTTF =

5 A + Il + -0\'2 + 10 AP, + Il '2
~/2 1 1) (5 A + Il) V A + 10 All + Il - - A - - 10 All - Il-

5A + Il - VA2 + 10Ail + 1l'2

Adding together and simplifying:

Rearranging this expression yields:

5 Il
MTTF = 6A + 6A2

Thus, the MTTF of a TMR system with repair is
equal to the MTTF of a TMR system without
repair plus an additional term due to the repair
activity.

Consider the effect of redundancy and repair
on the reliability of a module with a failure rate
of one per 1,000 hours (A = 0.001) and a repair
rate of one per 10 hours (Il = 0.1.) Figure 5-45
plots the reliability curves of a nonredundant

EVALUATION CRITERIA 263

system, a TMR system without repair, and a
TMR system with repair for these parameter
values. The MTTF calculations show the follow­
ing results:

1
Nonredundant MTTF = X = 1000 hours

M . h· 5 T R WIt out repaIr MTTF = 6A = 833 hours

TMR with repair MTTF = (5/6A) + (1l/6A2)

= 17,500 hours.

Thus, although redundancy alone reduces the
MTTF by about 17 percent, the strategy of on­
line repair allows the system MTTF to increase
by a factor of 17. This strongly suggests that
redundant systems should be designed to allow
on-line repair whenever possible.

Time- Varying failure Rates: Time- Varying
Markov Model. If the failure and repair pro­
cesses vary with time according to the Weibull
distribution, a model such as that shown in
Figure 5-46 applies. Solving this model for the
same parameter values as used earlier in the dual
redundant system model (Table 5-10), that is, a
module MTTF of 100 time-steps and an MTTR
of 10 time-steps, generates the family of reli­
ability curves shown in Figure 5-47. Figure 5-48
plots the difference between the reliability of
systems with a not equal to one and systems with
a equal to one (constant failure rates). The same
patterns are evident in these plots as appeared in
the dual redundant system reliability plots in
Figures 5-39 and 5-40.

Another comparative measure mentioned pre­
viously in this chapter is the mission time im­
provement. Instead of comparing the system
reliabilities at fixed intervals, mission time im­
provement compares the amount of time differ­
ent systems require to fall to fixed levels of

264 THE THEORY OF RELIABLE SYSTEM DESIGN

1.0 .. -.... - __

0.9

0.8

'. ,
'. ,
". " '. ,

'. ,
'. ,
..... "

'. , '. , ... \ '. ,
'. ,
". \ 0.7

..... \~ TMR system without repair

0.6

". \
'. ,
". ,

". \
".\

'.~
'1.. ,.

'\'. ,". ,'. , ".
" :---- Nonredundant system 0.4

0.3

0.2

0.1

,
"

Module MTTF = 1,000 hours
MTIR = 10 hours

,
" " " "-

"-

'"

"-"-
......

".
".

............
..............

". ".

.... -
" .

O~----2~50----~-----7~5~0----1-,000~----1,~25-0----1~p~OO----1-,7~5-0--~2,000

Time (hours)

Figure 5-45. Reliabilities of nonredundant and TMR systems.

1.0 - [C(n) + D(n)]

A(n) = 3Zf(n)l1 - Zf(n)]2

8(n)= 3[Zf(n)f[1 - Zf(n» + [Zf(n)]3

= 3[Zf(n)]2 - 2[Zf(n»3

C(n) = [1 - Zf(n»2 Z,(n)

D(n) = 2Zf(n)[1 - Zf(n)][1 - Z,(n)) + [Zf(n)f
Zf(n)= 1 - q~n+W-na; qf = e-(>'~oa
Z,(n) = 1 - q~n+1)/l-n/l; q, = e-(,.~t)/l

1.0

Figure 5-46. TMR model with time-varying failure and repair rates.

EVALUATION CRITERIA 265

1.0 , ".
\ '.

r\ \\
9 \

\ '. o. '\ \ '.
\ . \
\ \ \

0.8 \ \ \ ".
\ . \

0.7
\ \. \ , '. \

" '.

Alpha = 2.0

Alpha = 1.2

Alpha = 1.0

Alpha = 0.8

___ Alpha = 0.6

c: 0.6

Ci'

" . " ~.
~ 0.5
:.c
.!!
'ii
ClI:: 0.4

0.3

0.2

0.1

-.....::. .;-....,. ,
.... ~.~

'. ,~
:. \ ',,--
". , ',--
\ " -----

". " -....-.... ----
....', '-''-.

".', '-'-'-".', '-. . " '. ,
'. '

.... ""'
~ "

............... """---------
ok----L--~----~--~----~-·-.. ~ .. ~·~~~--~--~--_7

50 100 150 200 250 300 350 400 450 500
Number of time steps

Figure 5-47. Reliabilities of TMR system with Wei bull failure processes.

reliability. The calculations are performed by
taking the ratio between the mission time of the
system under study and the mission time of some
baseline system. For our purposes, the baseline
system is the nonredundant system with the
same parameters as the TMR system under
consideration. This is the usual way of using
mission time improvement to evaluate different
redundant system designs. Table 5-11 lists the
mission time improvement factors at several reli­
ability levels. Two patterns are broadly discerni­
ble: first, an increasing value for a results in a
decreasing value of the mission time improve­
ment. Second, whereas the mission time im­
provement values decrease monotonically for a
greater than or equal to one, they hit a minimum
point and start increasing again for the values of
a less than one.

Failure Process Renewals: Monte Carlo Simu­
lation. If the individual failure processes are
renewed (reset to time zero) whenever a corre­
sponding repair occurs, then a simulation model
is needed like the one developed earlier for a

Table 5-11. Mission time improvement factors for
TMR systems.

Reliability

a 0.90 0.80 0.70 0.60

0.6 4.50 2.88 3.13 3.62
0.8 3.33 3.14 3.12 3.23
1.0 3.30 2.82 2.74 2.70
1.2 2.93 2.55 2.34 2.27
2.0 1.97 1.73 1.61 1.53

266 THE THEORY OF RELIABLE SYSTEM DESIGN

""""'...----------.
/' --0.25

/ ---
/ ---0.20

/ --
0.15

/
/

/ ""-'-'-'--.
I
I /

-§- " ,/ --.-
0.10

Q:: 0.05:_: r '-'-'-'_'_'_
,I ;1 \ J
? .,.f!.
~ r-~~--~----~--~---1,~OOO----1-,2~OO--~-~1=~~00=--1~,~----~--~

..--;.:-;-:-·-;-::-·Number of time steps
,,/.<-:. ..

-0.20

-0.25

-0.30

-0.35

,,/ .. "
' _--,,/

Alpha = 2.0

Alpha = 1.2

Alpha = 0.8

Alpha = 0.6

Figure 5-48. Reliability differences for TMR system.

dual redundant system. Figure 5-49 shows the
model for the simple TMR system under discus­
sion. The simulation process is similar to that
discussed for the previous model with 1,000 runs
from each of three pseudo-random number gen­
erators for five different values of a. A rough
check on the validity of the simulation results is
provided by comparing the mission times for
several levels of reliability of the analytic solu­
tion and the simulation solution for a equal to
one. The values should be in close agreement,
because the constant failure rate (exponential)
process is memoryless, as Table 5-12 confirms.
Figure 5-50 shows the empirical reliability curves
for the simulated systems; Figure 5-51 plots the
empirical reliability difference curves. The same
patterns are evident in these plots as in the

earlier dual redundant system and TMR system
reliability and reliability difference plots. The
degree of convergence for system reliabilities
under the assumption of failure process renewals
is even greater for the TMR systems than for the
dual redundant systems.

Although Figures 5-40 and 5-43, the reliability
difference plots for the dual redundant system,
show a superficially different pattern from those
for the TMR system (Figures 5-48 and 5-51), the
changes from the analytical time-varying Mar­
kov model to the Monte Carlo simulation mod­
els are actually quite similar. In both cases, the
magnitudes of deviation for the initial period of
overestimation for a less than one (underestima­
tion for a greater than one) increase slightly with
the assumption of error process renewals. After

EVALUATION CRITERIA 267

1 - [f(n) + F(n) + G(n) + H(n)]

D(n)

1 - [J(n) + K(n) +
L(n) + M(n)]

V(n) + W(n))

A(n) = Zf(n - NA)[1 - Zf(n - NB)][1 - Zf(n - Nd]

B(n) = [1 - Zf(n - NA)]Zf(n - NB) [1 - Zf(n - Nd]

C(n) = [1 - Zf(n - NA)][1 - Zf(n - NB)]Zf(n - Nd

D(n) = Zf(n - NA)Zf(n - NB) [1- Zf(n - Nd]

+ Zf(n - NA)[1 - Zf(n - NB))Zf(n - Nd + ...
f(n)= •••

Zf(n) = qjn+l)a-na
; qf = e-(Mt)a

Z,(n) = q!n+l)P-nP; q, = e-(,.at)p

NA = Time of last transition from state 1A to state 0

Figure 5-49. TMR model with failure process renewals.

the initial period of error, the magnitudes after
the crossover points, are much smaller. These
crossover points are also delayed for the models
assuming error process renewals, in contrast with
the simpler models.

Table 5-13 lists the mission time improvement
factors for TMR systems with failure process
renewals, calculated in the same way as those in
the previous section. The first trend noted above,
that an increasing value of ex results in a decreas­
ing value for the mission time improvement, is
not so evident. The second trend is almost re­
versed: for ex greater than one, the mission time
improvement hits a minimum point and starts
increasing again, whereas for ex less than one, the
decline in mission time improvement values is
almost monotonic.

The deviation of the mISSIon time improve­
ment for ex = 0.8 compared with ex = 1.0 is of
interest because some data collected on transient
errors have yielded experimental values in that
range (see Chapter 2 and McConnel, Siewiorek,
and Tsao [1979]). The TMR model without
failure process renewal shows a ratio increasing
from just over 1.0 to almost 1.4. With failure
process renewals, there is no steady increase in
the ratio. The ratio between the mission time
improvement for ex = 0.8 to that for ex = 1.0
ranges from between 1.1 and 1.2 for the TMR
model with failure process renewals. If the calcu­
lations had been made assuming ex equal to one
in the baseline system, the deviations shown by
these ratios would be even greater.

These examples show that even in models of

'"2 0.6
CC

0.2

Alpha = 2.0

Alpha = 1.2

Alpha = 1.0

Alpha = 0.8

Alpha = 0.6

0~---5~0----100~---1~50----2~00----2~5-0---3~00----3~5-0---~~----45~0--~500

Number of time steps

Figure 5-50. Reliabilities of simulated TMR system.

0.15

0.10

~ .
c; 0.05: /"\:

t '~,
I I :~\

"'2 ,:,
N 0 '.~. J' .-.-. ~
cc 200 ~:.~." v9(tO _ .800·,--1,000 '''1,200'"'''1,400' 1,600
~ / ···:I::rI'········:··~~·#·~·:········ .. Number of time steps
~ .
t . .1 I
~ -0.05 \ l~ /
~ ;' I
:c . I
.!! -0.10 I
~ I

-0.15

I
I

I
I
I
I

-0.20 I I
~J

-0.25

Alpha = 2.0

Alpha = 1.2

Alpha = 0.8

Alpha = 0.6

1,800 2,000

Figure 5-51. Reliability differences for simulated TMR system.

Table 5-12. Comparison of mission times for
analytic and Monte Carlo solutions.

Times

Reliability Analytic Monte Carlo

0.99 7 7
0.90 34 34
0.80 63 63
0.70 97 94
0.60 136 130
0.50 182 179
0.40 238 234
0.30 310 304
0.20 412 412
0.10 587 581

simple structures serious differences exist be­
tween exponential models and models based on
Weibull processes with nonconstant hazard
functions.

Hybrid Models Using Measured
Statistics

The measures traditionally used to compare sys­
tems do not take into account the performance
of the system whose reliability is being measured.
Table 5-14 lists the results obtained from seven
different experiments whose specific goal was to
gain experience on systems reliability. Data for
the first system [Y ourdon, 1972] were from a
summary of failure statistics on a Burroughs
5500 over a 15-month period starting in April
1969. Limited information is available about the
cause of each failure. One category, for example,
includes system failures resulting from unexpect­
ed I/O interrupts. These failures are recorded
whenever the software responds to an interrupt
signifying that some I/O action has taken place
but discovers that it has no record of having
initiated such action. Thus, there is an indication
of some form of hardware or software error, but
the particular cause for the failure (hardware or
software) remains unknown. The data for the
second system, reported in Lynch, Wagner, and

EV ALUA TION CRITERIA 269

Table 5-13. Mission time improvement factors
for TMR systems with failure process renewals.

Reliabilities

ex 0.90 0.80 0.70 0.60

0.6 6.00 2.80 2.33 2.52
0.8 3.60 3.33 3.18 3.11
1.0 3.30 2.81 2.66 2.48
1.2 2.81 2.63 2.49 2.53
2.0 2.00 1.87 1.82 1.88

Schwartz [1975] come from the first 13 months of
operation of a system called Chi/OS developed
by the Chi Corporation for the Univac 1108
between 1970 and 1973. There is no explanation
of how such an accurate distinction between
hardware and software failures was obtained.
Reynolds and Kinsberger [1975] reports data
obtained over three years from a dual IBM
370/165 installed at Hughes Aircraft Company
to handle a mixed batch and time-sharing load.
The fourth system is at the Stanford Linear
Accelerator Center (SLAC), where the main
workload is processed as a multistream back­
ground batch. The system consists of a fore­
ground host (IBM 370/168) and two background
batch servers (IBM 370/168 and IBM 360/91)
and is designed to be highly available and recon­
figurable. The CMU-IOA is an ECL PDP-IO
used in the Computer Science Department at
Carnegie-Mellon University. The data for the
CRA Y-I were reported in Keller [1976]; those
for the three generic UNIVAC systems in Sie­
wiorek and Rennels [1980].

Table 5-14 gives, when available, a Mean
Time to reStart (MTTS) value in hours (that is,
the Mean Time to System Failure), a Mean
Number of Instructions to Restart (MNIR),
which is an estimate of the mean number of
instructions executed from system start up until
system failure; and the percentages of system
failures caused by hardware faults, software
faults, and whose cause could not be resolved.
The information about execution rates needed to

270 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-14. Reliability experience of several commercial systems.

System MTTS (hours) MNIR

B 5500 14.7 2.6 X 1010

Chi/05 (Univac 17 6.7 X 1010
1108)

Dual 370/165 8.86 2.8 X lOll

SLAC 20.2 2.3 X lOll

CMU-IOA 10 4.3 X 1010

CRAY-I 4 1.9 X 1012

UNIVAC (large)

UNIVAC
(medium)

UNIV AC (small)

compute the MNIR value was obtained from
Phister [1979].

Obviously, the numbers in Table 5-14 do not
convey much information. A MTTS figure alone
does not reveal the impact of unreliability on
system use. Compare, for example, the CRA Y-l
[Russel, 1978] with the CMUA [Bell et aI., 1978].
Although the CRA Y -1 crashes twice as often as
the CMUA, it can operate continuously at rates
above 138 Million Instructions Per Second
(MIPS), whereas the CMUA operates at 1.2
MIPS. Hence, the CMUA executes ~ 1010 in­
structions between crashes, whereas the CRA Y-l
executes ~ 1012 instructions between crashes.
Inconsistencies like this suggest that reliability
modeling and measuring should be closely relat­
ed with the characterization of the performance
of the system under study. Integrated perfor­
mance-reliability models have already started to
appear in the literature. In Meyer, Furchtgot,
and Wu [1979], a performance measure called
performability gives the probability that a system
performs at different levels of "accomplish­
ment." Gay and Ketelsen [1979] models systems
with Markov processes to estimate the probabil­
ity of their being in one of several capacity
states. This approach is similar to the one pre-

Percent Percent
Hardware Software Percent
Faults Faults Unknown

39.3% 8.1% 52.6%

45 55

65 32 3

73.3 21.6 5.1

51 42 7

57 41 2

88 9 3

viously taken in Beaudry [1978], who introduced
the concept of "computation reliability" as a
measure that takes into account the computation
capacity of a system in each possible operational
state. Finally, Chou and Abraham [1980] pro­
vides a performance availability model for grace­
fully degrading systems with critically shared
resources.

Consider now Figure 5-52, which shows the
expected elapsed time required to execute a
program for a time-~haring system at three dif­
ferent times of day. The curves were obtained as
follows. From April 3, 1979 to July 2, 1979 a
CPU bound program (basically a loop that com­
putes several FFTs with no I/O involved and
small memory requirements) was executed three
times daily. The program required 10 seconds of
run-time (Tmin = 10 sees.), and the actual
elapsed time for each execution was recorded in
the histogram of Tuse at each of these three
times of day.

The mean time to system crash was measured
for the same period. This value of mean time to
crash was substituted as I/A in the model given
in Castillo and Siewiorek [1980]. The I/A value
was measured at noon (mean time to crash
IjA = 9.6 hours), 4:00 p.m. (I/A = II hours),

'" CI.I

'5
c:

500

450

400

I 350

c
'E
~

'j::;;;- 300
tti'

CI.I

.~
'C 250
~
Co
til
'ii
'C
~ 200
1.1
CI.I
Co
><

1.1.1

150

100

50

Tmin (minutes)

Figure 5-52. Expected elapsed time versus the
minimum time required to execute a program.
(© 1980 IEEE.)

and 4:00 a.m. (VA = 33 hours). A down-time
value of five minutes was assumed in all cases.
These three values of the mean time to fatal
failure were computed by assigning two-hour
time slots around each of the three times of day
and counting the number of system restarts in
each of the slots during the same three months
for which the histograms of Tuse was computed.

Figure 5-52 plots the value of the expected
elapsed time required to execute a program at
these three times of day for different values of
the minimum CPU time required to execute the
program (Tmin). The expected elapsed time in-

EVALUATION CRITERIA 271

cludes the effect of workload and unreliability,
for it takes into account the time wasted by a
system restart due to software or hardware tran­
sien terrors.

For each curve, the dashed straight line repre­
sents the values of the expected elapsed time due
only to workload (the expected elapsed time in
the absence of errors), and the solid line repre­
sents the total expected elapsed time. The figure
shows that at 12:00 noon the contribution due to
restarts for a program requiring 30 minutes of
CPU time amounts to over 40 percent of the
total elapsed time.

The curves have been obtained assuming that
the time to system crash can be characterized
with an exponentially distributed random varia­
ble with constant A. But for the same curves
different values of A are used at different times of
day. This suggests that in models for time­
sharing systems the failure rate is a periodic
function of time.

A workload-dependent model presented in
Butner and Iyer [1980] assumes a linear depend­
ency between failure rate and workload. The
workload is characterized by a periodic function
of time. The pdf becomes an exponential "mod­
ulated" by a periodic function

I;(t < T) = I - e-KpT e-F" Lj,(T)

where If; is defined as the load-induced failure
rate and ~(T) denotes the instantaneous load
value. This model, referred to as the periodic
model, assumes a periodic utilization function
u(t) = met). It further assumes that the instanta­
neous value of the system failure rate is a linear
function of this utilization function; that is:

Ap(t) = spm(t) + cp

Castillo [1980] shows that under this assump­
tion the pdf of the time to system crash is given
by

pet < T) = I - e-(spm+cp)T e1n</>(r)

where cf>(T) is a periodic function of time.
A closer study of the utilization functions of

272 THE THEORY OF RELIABLE SYSTEM DESIGN

0.7

0.6

0.OO~------I:------L..2 ----....J
3
1.....-------I-

4
----....J

5
Days

Figure 5-53. Fraction of time in Kernel mode during five consecutive week­
days.

critical resources in time-sharing systems reveals,
however, that it is an oversimplification to as­
sume that they can be approximated by a purely
periodic function.

Figure 5-53 shows the sampled values of the
fraction of time the operating system spends in
Kernel mode for five consecutive weekdays in a
time-sharing computing system. There are rea­
sons to assume that the instantaneous value of
the system failure rate should follow the varia­
tions of the fraction of time in Kernel mode.

First, assume a constant failure rate for the
primary memory of a digital computing system
operating in a stable environment under a time­
sharing policy. That the transient failure rate in
a memory is constant is a reasonable assump­
tion. There is also justification for thinking that
certain complex devices may follow an exponen­
tial failure law [Barlow and Proschan, 1965, pp.
18-22]. Because the physical characteristics of
the memory ICs do not change with time (at
least during the effective life cycle of modern
digital computing systems), the origin of these
transients must lie either in external sources,
such as radiation, the presence of noise (possibly
impulsive) in the power supply, or in the limita­
tions of the manufacturing process. In fact,
Geilhufe [1979] has reported that MOS memory
devices exhibit nonrecurring bit failures caused

by alpha particles emitted from small amounts of
radioactive elements present in IC packaging
material. The failure rate for this kind of failures
is, of course, constant. Now assume that a tran­
sient memory failure has higher probability of
leading to a system crash when the central
processor is executing in Kernel mode than when
it is executing in user mode. A memory failure
when the CPU is executing in user mode may
affect a user process but will not crash the
system. The system failure rate due to transient
memory failures will then depend on the ratio of
the number of memory references while in Ker­
nel mode to the total number of memory refer­
ences per unit time. Because it is well known that
operating system overhead increases 'with work­
load, the previous ratio will also be a nonde­
creasing function of the system workload, in­
creasing in turn the observed system failure rate.
The result is that the observed system failure rale
due to transient memory failures should be equal
to the sum of a component following the operat­
ing system overhead variations in time (or, indi­
rectly, workload variations in time) plus a con­
stant, workload-independent component (even if
the system is idle, there may still be memory
errors that corrupt, say, the clock interrupt sub­
routine).

Even if the fact that a computing system is not

always equally sensitive to the presence of hard­
ware errors, there are still arguments to support
the idea that the apparent system failure rate
should depend on the workload. In practice, in
most computing systems a component failure
will be noticed only if the component is used. A
time-sharing system with no load, spending most
of its time in a wait state and only a fraction of
the time executing the clock interrupt routine
may sustain several failures and still not report
any errors if the minimal hardware configuration
required to execute these basic functions is not
affected. The idea here is not that failures will be
caused by increased utilization (although in
some cases this situation is certainly possible),
but that they will be detected by an increase in
system utilization. This effect has also been re­
ferred to as error latency [Shedletsky and
McCluskey, 1973].

Analogous arguments lead to the expectation
that the rate of system failures due to software
unreliability will depend on how much the soft­
ware is used. System software failures result from
either of two conditions: the (static) input data
to a program module present some peculiarities
that the program is not able to handle, or the
software is not capable of handling some time­
dependent (dynamic) sequence in the input data
stream. In a time-sharing system, the only soft­
ware capable of provoking a system failure is the
Kernel of the Operating System. This software
executes in a privileged processor state, and a
software error that corrupts some critical infor­
mation in the Kernel data structures may lead to
a system crash. However, because nobody knows
a priori what these errors are,it is less likely that
the system finds one of these combinations in its
input stream under low load than in a high load
situation (that is, small amounts of input data to
process per unit time probably exercises software
that has been more thoroughly ·debugged).
Again, the observed system failure rate has to
depend on the system load. Furthermore, upon
correct system operation, a user program is pre­
vented from accessing any resource for which it
has not been given explicit permission by the

EVALUATION CRITERIA 273

Kernel. Consequently it is not necessary to con­
sider the effects of user programs.

Assuming that the failure rate is workload
related, and given the workload measured in
Figure 5-53, a utilization function of the form

u(t) = m(t) + z(t),

where m(t) is a periodic function of time and z(t)
is a zero-mean stationary Gaussian process, is
thus appropriate for modeling a time-sharing
system. Castillo [1980] shows that, under the
assumption

Ai(t) = si[m(t) + z(t)] + Cj

the following expression is obtained for the pdf
of the time to system failure:

P(t < '7") = I

_ e (-(ac+ocl +O(2)T-(°cl/,8I)[l-e-#' Tj-(Oc2/,82)[l-e- fi2T j+ln cj>(T))

where </>('7") is a periodic function of time depend­
ing only on m(t), and the additional assumption
is that the autocorrelation function of z(t) is of
the form

Rzz(t) = (Xl e-,811 + (X2e-,821

This model is termed cyclostationary because it
is obtained from a cyclostationary utilization
function (that is, the utilization function u(t) is a
stochastic process with periodic mean and auto­
correIa tion functions).

Table 5-15 summarizes the reliability func­
tions and hazard functions of the two models
above (periodic and cyclostationary) along with
the exponential and Weibull distributions. The
fifth distribution in Table 5-15 is a simplified
version of the distribution obtained with the
cyclostationary model, considering only one ex­
ponential in the hazard function and neglecting
the periodic component </>('7"). This last distribu­
tion is particularly important because it has a
known LaPlace Transform that makes it suitable
for Markov modeling (neither the Weibull distri­
bution nor the distributions obtained from the
periodic and cyclostationary models have known

274 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 5-15. Reliability and hazard function of
five failure models.

Exponential

Re(T) = e-Ae'T

he(T) = Ae

Weibull

Rw(T) = e-(A".'T)aW

h () awAw
w T = (Awt)l-a".

Periodic

Rp(T) = e-Ap 'Tee-FpU(7')

Cyc1ostationary

Rc(T) = eX

where

-02[1 _ e-P2'T] + _1_ a$(t)
c $(t) at

Simplified Cyc1ostationary

LaPlace Transforms). Castillo [1980] has shown
that both the cyclostationary and simplified cy­
clostationary models have substantially better
statistical fits to measured data than the expo­
nential, Weibull, and periodic models.

Automated Markov Analysis
Programs

As with combinatorial modeling, programs have
been written using Markov modeling to assist in
evaluating general classes of system structures.
Two of these programs deserve special mention.

ARIES. ARIES (Automated Reliability Interac­
tive Estimation System), developed at UCLA by
Ng and Aviiienis [1980], implements a general
time invariant Markov model for systems similar
to those covered by CARE II. The structures
handled consist of a series of one or more
independent subsystems or stages, each contain­
ing a number of identical modules that are either
active or serve as spares. Systems can be recon­
figured by adding, deleting, or replacing stages,
or by modifying the values of some parameters.
The inputs to ARIES include the following:

1. The initial numbers of active and spare modules;
2. The number of repair facilities for each stage;
3. The failure rates for active and spare modules, and

the repair rates for the repair facilities;
4. The coverage factors for recovery from failed

spares;
5. The number and sequence for allowed degrada­

tions, and the coverage factors for degraded config­
urations.

The program outputs several measures, including
MTTF, mission time, and reliability plots or
tables. ARIES is very general in the type of
redundant structures it can model, limited pri­
marily by the assumption of distinct eigenvalues
for the Markov differential transition matrix.

CARE III. CARE III (Computer-Aided Reli­
ability Estimation III), developed at Raytheon
[Stiffler, Bryant, and Guccione, 1979], imple­
ments a time-varying Markov model for ultrare­
liable redundant systems. The system structures
handled by CARE III are like those handled by
CARE II and ARIES. Two new assumptions are
made, one more restrictive than ARIES and one
more general. The first assumption is that the

llser is interested only in extremely reliable (sys­
tem failure rates less than 10- 10 per hour) sys­
tems with short mission times (no longer than 10
b.ours) and no repair during missions. Typical
target systems are flight-critical avionics com­
puters for future aircraft. The second, more
general assumption is that failures follow a
Weibull distribution. CARE III handles not only
hard failures but also intermittent and transient
Faults. It also implements an extensive coverage
model based on that of CARE II. The inputs to
CARE III include the module-failure parameters
(both a and A for the Weibull function) for each
stage, and the coverage parameters. the output
includes both tables and plots of the system
reliability and unreliability. The' generality of
CARE III is limited both by the assumption of
extremely high mission reliability and by the
assumption of no repair during a mission.

System Availability Models

In general, modeling the availability of systems
with repair requires the use of Markov models. If
certain restrictions are made, however, special
techniques can be used that are easier to apply.
This section presents two such methods. The first
permits calculation of the system availability
function. Asys (t), given the module availability
functions Ai(t) for any arbitrary structure, pro­
vided that the module availabilities are indepen­
dent. The second uses queuing theory to obtain
the steady-state availability for a structure com­
posed of identical modules with constant failure
rates. Both of these restricted models (as well as

I' 21'

EV ALUA nON CRITERIA 275

the general Markov model) assume that redun­
dant structures are designed for on-line repair.

Combinatorial Modeling of
Systems Availability

The reliability function R(t) and the availability
function A(t) are both probability functions,
although of different asymptotic behavior. Be­
cause they are both probabilities, the combinato­
rial modeling techniques developed earlier in this
chapter for system reliability calculations apply
equally well to calculating system availability if
three basic assumptions are met. The first, natu­
ral assumption is that the system design is coher­
ent-that a module failure never causes the
system to have increased availability. The second
assumption is that individual modules are always
in one of two states-working or failed. The last
necessary condition is that the individual module
availabilities must be statistically independent.
For this condition to hold, there is only one
allowable repair strategy: one repairman ca'lled
for each failed module, and repair proceeding on
failed modules while the remainder of the system
continues to function (on-line repair). This also
dictates the size of the subdivision into modules
that are used in the model. Separate repairmen
may be a reasonable assumption for minicompu­
ter-sized modules but probably not for individu­
al memory or I/O cards, and certainly not for
individual memory or logic chips.

To illustrate the application of combinatorial
modeling to system availability, consider the
Markov model of Figure 5-54. The differential

31'

Figure 5-54. Markov model of system with three modules.

276 THE THEORY OF RELIABLE SYSTEM DESIGN

transition rate matrix defined by this model
graph is

T= p,

[

-3A

° °

3A
-2A - p,

2p,

°

° 2A

-2p, - A
3p, 1]

Solving this for an initial state vector of P (0)
= [1,0,0,0], using the Markov model solution
techniques developed earlier, produces the fol­
lowing state probability functions:

which is the same result as obtained by solving
the Markov model.

The second interpretation of the Markov
model is that it represents a simple TMR system
such as the one modeled for reliability earlier
(see Figure 5-44).

p,3 + 3Ap,2 e-("A+/L)1 + 3A2p,e-2("A+/L)1 + A3e-3("A+/Lll
poet) = (A + p,)3

3Ap,2 + 3Ap,(2A - p,)e-("A+/L)I + 3A2(A - 2p,)e-2("A+/tl f - 3A3 e-3("A+/L)f
PI (t) = (A + p,)3

3A2 P, + 3A2(A - 2p,)e-("A+/L)f - 3A2(2A - p,)e-2("A+"/L)f + 3A3 e-3("A+/L)f
P2(t) = (A + p,)3

A3 _ 3A3e-("A+/L)1 + 3A3e-2("A+fL)f _ A3e-3("A+/L)f

P3(t) = (A + p,)3

The Markov model can be interpreted in any
of three ways. First, it may represent a system
that requires all three modules in order to work
properly. For this case, the availability function
is

A(t) = poet)

The alternative way to derive this function (de­
rived earlier in Equation 38 as the solution for
the two-state Markov model with initial state
vector P(o) = [1,0]) is to consider the system as
a series connection of three independent identi­
cal modules, each with availability

A (t) = -p,- + _A_e-("A+/L)I
m A+p, A+p,

The equation for series connection of the
availability block diagram produces:

3 3
ASys(t) = II Ai(t) = [Am(t)]

i=1

For the two-of-three model, the availability
defined by the Markov model solution is

A(t) = poet) + PI (t)

The combinatorial solution proceeds as follows:

ASys(t) = (~)[Am(t)]3

+ (~)[Am(t)f[1 - Am(t)]

Asys (t) = 3[Am(t)f - 2[Am(t)]3

3(p, + Ae-("A+/L)t)2 2(p. + Ae-("A+/L)/)3
Asys(t) = (A + p,)2 - (A + p,)3

Careful examination shows that this combinato­
rial solution for Asys (t) is indeed equal to that
derived from the Markov model.

The remaining system modeled by Figure 5-54
is a module with two spares, which is otherwise
expressed as a parallel structure in the availabil­
ity block diagram. The availability function de­
rived from the Markov model is:

A(t) = Po(t) + PI (t) + P2 (t) = I - P3 (t)

The solution as a parallel system with three
modules is as follows:

3
Asys (t) = I - II (I - A;(t))

;=1

1 - [1 - Am(t)f

1 _ (_"A __ _ "A_ e -(A+/L)t)3
"A+p, "A+p,

I - ["A3 - 3"A3 e-(A+/L)t + 3"A3 e-2(A+/L)t

- "A3 e-3(A+/L)t] If("A + p,)3]

Again, the results obtained from the ·combinato­
rial and Markov model solutions match.

The combinatorial M-of-N formula assumes
that all modules have identical availability. This
is not necessary for the series-parallel approach.
Also, the methods discussed obviously apply
equally to calculating steady-state availability,
which is the next topic of discussion.

Modeling Steady-State System
A vailability: Queuing Theory
Applications

Several of the Markov models in Figure 5-55
have already been discussed in this chapter. All
are members of an important class of Markov
process models known as birth-and-death pro-

EVALUATION CRITERIA 277

cesses. The defining characteristics of birth-and­
death processes are:

1. State transitions occur only between "adjacent"
states: that is, for state N (not an end state),
transitions occur only to state N - 1 or N + 1.

2. Both "birth" transitions (N to N + 1) and "death"
transitions (N to N - 1) follow a Poisson process.

3. The probability of both a "birth" and a "death"
occurring simultaneously is negligible.

Figure 5-56a shows the general infinite birth­
and-death process, Figure 5-56b the general fi­
nite birth-and-death process.

A very fruitful application of birth-and-death
processes has been the study of waiting-line
behavior, or queuing theory. Queues, or waiting
lines, are common in daily life: the checkout line
at the grocery store, the line of customers waiting
to be seated at a restaurant, the innumerable
lines of students at college registration. The
queue involved here consists of a finite popula­
tion of modules that fail randomly, entering a
waiting line to be repaired by a finite (possibly
smaller) number of repair personnel. This queu­
ing model is known as the Machine-Repair,
Multiple-Repairmen model, and is named the
M/M/c/K/K Queuing System. This cryptic no­
menclature is decoded as follows:

1. The first letter describes the interarrival time distri­
bution for failures ("birth"). M (which stands for
Markov, or the memoryless property of the expo­
nential distribution) means that failures follow an
exponential distribution.

2. The second letter gives the distribution for service
(repair) time, again exponential for this model.

3. The third term is the maximum number of repair­
men (servers).

4. The fourth term is the maximum number of failed
modules that can be serviced, either immediately or
after waiting for the next available repairman.

5. The last term (which is always equal to the fourth
term in this model) is the population size, that is,
the total number of modules in the system.

a. Two modules, one repairman
2,\ ~

P P

b. Two modules, two repairmen

2,\ ~

P 2p

c. Three modules, one repairman

d. Three modules, two repairmen

e. Three modules, three repairmen

Figure 5-55. Markov models for two and three module systems for different
numbers of repairmen.

a. Infinite population model

~1 ~2 ~3 ~N+1

x·
IL1 IL2 IlN

b. Finite population model

~1 ~2 ~3

~
P1 P2 ilK

Figure 5-56. Birth-and-death process Markov models.

Figure 5-57 shows the general form of the Mar­
kov model that fits the M/M/c/K/K queuing
system. An modules are assumed to have the
same (constant) failure rate A, and all repairmen
work at the same (constant) rate p,.

For the model shown in Figure 5-57, the
limiting (steady-state) state probabilities Pn are
defined by the following recurrence equation:

_ (An) .
Pn - P,n Pn-I' n = 1, 2, 3, ... ,K (50)

with
K

Po = 1 - ~ Pn
n=1

The specific adaptation of Equation 50 to the
M/M/c/K/K queue of Figure 5-57 is:

(K-n+I)(A)
Pn = n ~ Pn-I;

n = 1, 2, 3, ... , c

Pn = (K - ; + 1) (~)Pn-I;
n = c + I, ... , K

Solving these in terms of Po:

Pn = (~)(~)npo, - n = 1,2, ... , c

n! (K)(A)n
P n = c! cn-c n ~ Po ;

n = c + 1, ... , K

and

(51)

(52)

(53)

DO = C (K)(A)11 1\ n! (K)(A)11
~ - + ~ --,--n=r -

n=O n P, 11=('+ I c. c n p,

fhe limiting state probabilities Pn (n = 0, I, ... ,
K) are used to calculate the steady-state availa-

EVALUATION CRITERIA 279

bility Asys. For an M-of-N system structure, the
equation for Asys is

N-M N
Asys = ~ Pn = 1 - ~ P n (54)

n=O n=N-M+1

The first model of Figure 5-55 (two modules,
one repairman) was solved in the section on
Time-Invariant Markov Models above. Applying
Equation 53 to this M/M/I/2/2 queue:

1

Po~ l+(DG)+~;(DGY
p,2

p,2 + 2Ap, + 21...2

Using Equation 51 yields:

_ 2(1...) _ 2Ap,
PI - ~ Po - Jl2 + 2Ap, + 21...2

(
A) 21...2

P2 = ~ PI = P, 2 + 2Ap, + 21...2

If Figure 5-55 represents a dual redundant sys­
tem, then

Asys = Po + PI

p,2 + 2Ap,
A =-~--~-:::-

sys p,2 + 2Ap, + 21...2

which is the result obtained in the section on
Time-Invariant Markov Models, Equation 43
above.

If the repair strategy is changed to call a
second repairman when a second module fails,
the model of Figure 5-55b results, a M/M/2/2/2
queue. For this model:

Po ~ 1 + G)G) + (DGY

280 THE THEORY OF RELIABLE SYSTEM DESIGN

K>' (K - 1)>' (K - 2)>' (K - C)>.

···x~
'1.1. q.t

Figure 5-57. Model for M/M/K/K queuing system.

1 (A) A2
P2 = 2 ~ PI = JL 2 + 2 AJL + A 2

The system availability for a dual redundant
structure now becomes:

A = JL2 + 2AJL
sys JL2 + 2AJL + A2

This new availability is greater than that of the
previous model because of the smaller A2 term in
the denominator; that is, access to more repair­
men improves the availability.

Figure 5-55d shows an example of an
M/M/2/3/3 queue, where the number of repair­
men is greater than one but less than the number
of modules.

Po =

Using this to model a system with two spares
(one-of-three), the steady-state system availabili­
ty is:

A sys = Po + PI + P2

JL3 + 3AJL2 + 3A2 JL A =---:-----:..--~--'----=---=-----=
sys JL3 + 3AJL2 + 3A2 JL + 1.5 A3

Considering the system modeled by Figure
5-55c to be a TMR structure, the resulting·
steady-state availability should be the same as
the constant terms in the example solved using
combinatorial techniques. For the M/M/3/3/3
queue:

Po = I + (DG) + (DGY + (DOY
JL3

I (A) ,,-3
P3 ="3 Ii P2 = JL3 + 3AJL2 + 3A2JL + A3

JL3 + 3AJL2
Asys = Po + PI = JL3 + 3AJL2 + 3A2 JL + A3

_ JL3 + 3AJL2
- (JL + A)3

This is indeed the constant term from the solu­
tion derived earlier.

Modeling Performance Impact of
Redundancy

Adding redundancy to a system often affects
performance. A triplication-with-voting scheme
such as C.vmp (see Chapter 7), for example,
incurs the gating delay of the voter. Such gate
delays are easy to measure and model. Main­
memory cycle time degradation, due to the addi­
tion of error checking logic, is easy to calculate.
The system degradation is usually small because
the processor-memory bandwidth is normally
not fully utilized. Parallel operations and relative
frequency of use, however, generally make per­
formance degradation modeling more difficult.

Another difficulty is determining the effect on
performance when there are (covered) failures
present in a functioning redundant system. In
some cases (as in backup systems) there is no
additional degradation beyond the time required
for system reconfiguration. In others, perfor­
mance becomes degraded (such as extra time
required for correction, or fewer resources left to
accomplish tasks).

The impact of single-error-correcting codes for
main memory or micros tore on system reliability
was discussed above. The effect such ECC mem­
ories have on system performance serves as an
example of performance-degradation modeling.
Chapter 7 provides additional examples.

Because most error checking can be carried
out in parallel with the use of data, there is
usually no performance change in an error-free
state. This is the case if no irreversible actions
(such as an overwriting of information needed to
restart the current operation) occur before the
error checking has been completed, and if the
hardware has stall/restart capabilities. Most pro­
cessor /main memory systems and vertically cod­
ed microemulators belong in this class. Most
register-transfer level results are not latched until
the end of a microcycle, leaving enough time for
error checking in most designs. On the other
hand, a horizontally microcoded machine with a
short microcycle and a very large word width

EVALUATION CRITERIA 281

would not allow retry, because the propagation
time through the several XOR levels required for
ECC checking would be greater than the micro­
cycle time. This should not very often be the
case, however. This section focuses on the effect
of recoverable memory errors on system perfor­
mance.

Main-Memory Performance in the
Presence of Errors

Assume that the access frequency is not uniform
throughout the memory, so that some memory
segments, such as those containing parts of the
operating system kernel, are more likely to be
accessed than others. Suppose that each location
i has access probability Pi' and that there are n
errors in a w word memory. The expected mem­
ory access time can be expressed as a function of
the cycle time c and the cycle time degradation
due to an error, €c:

WnW n
~ P;{ 1 - -)c + ~ Pi (-)(c + €c)
i=i W i=i W (55)

n€
=c(l+-)

W

since ~ Pi = I. Thus, the expected degradation
of the memory access time is n€/w.

Figure 5-58 illustrates the effects of errors on
memory access time for several values of nand
w. Two types of ECC memory are represented: a
Hamming code memory with an € of one (one
full extra memory cycle to correct an error) and
a block-coded me~ory with an € of 64 (reading
all words in the block to determine the vertical
parity). The performance degradation is negligi­
ble (less than 1 percent) for the Hamming code,
whereas the degradation becomes significant for
the block code only when n becomes large.

The degradation of system performance de­
pends on how often the memory is accessed. A
system with a low memory bandwidth utilization
will exhibit less degradation than one whose
bandwidth is almost saturated. Table 5-16 com-

282 THE THEORY OF RELIABLE SYSTEM DESIGN

0.070 i , ,
0.065

, ,
I , ,

0.060
,

I , , ,
I 0.055

, ,
i , ,

0.050
,

i I , ,
I 0.045

,
c: I i .52 I

-; I

0.040 I

I "'C I Hamming SEC code tU I
Oil I i Q.I 0.035 I --16K words, E = 1 "'C I

"'C I I Q.I I -_128K words, E = 1
ti 0.030

I
I I Q.I I

Co I
~ I i Block SEC code 1.1.1

0.025 I
I
I i -----16K words, E = 64 I

0.020 I
I -.-128K words, E = 64 I / I

0.015 I / I
I

/ I

0.010
I

I

/ I
I

.- .- /
0.005 ,.. .- /'

-' "",,' 0.000
1 2 4 8 16 32 64 128

Number of failures in memory

Figure 5-58. Memory access degradation. (© 1980 IEEE.)

pares the degradation in three different PDP-II
systems. The data in the first two columns,
drawn from Snow and Siewiorek [1978], are the
result of dynamic measurements of PDP-II pro­
grams. Another result from the same source is
that an average of 2.16 memory references occur
for each instruction. If Tm is the memory access
time, ~ the average instruction execution time,
and Dm the expected memory access time degra­
dation, the expected system degradation Ds is:

(56)

Based on this formula, the third column of Table
5-16 lists the proportion of memory degradation
that comes through as system degradation. The

system performance degradation is less than the
memory performance degradation in all cases.
For the LSI-ll and the PDP-II/10, a large
memory degradation must occur before its ef­
fects are noticeable. The system degradation
effects are more noticeable on the PDP-II/34,
which comes close to saturating the processor­
memory bandwidth. Therefore, even though the
memory performance degradation is more seri­
ous for block codes than Hamming codes, as
shown in Figure 5-58, overall system perfor­
mance is comparable over wide ranges of failure
situations. Using Equations 55 and 56, the data
in the last column of Table 5-16 were calculated
assuming four failures in a 16K word block code
memory with 64 word blocks. The degradation is
negligible (I percent) _even in the PDP-I 1/34.

EV ALUA TION CRITERIA 283

Table 5-16. Timing data and resulting degradation for PDP-11 computer
systems.

Time in Microseconds Jor: System Degradation:

Average Instruction D\ D\Jor m = 4,
System Memory Access Execution (% oj Dill) f = 64, w = 16K

LSI-II 0.400

PDP-l 1/40 0.600

PDP-ll/34 0.940

Microstore Performance in the
Presence of Errors

Microstore reliability is becoming more impor­
tant as the use of microcoded system design
increases. The growing size of microstores being
used and the subsequent effect on system reli­
ability make error-coding techniques more at­
tractive. Unlike main memory, in which
degraded segments can be left unallocated, de­
graded sections of microcode are permanently
allocated and will continue to affect system
performance until repaired.

Table 5-17 summarizes the characteristics of a
microcoded machine. It is assumed that all F
fetch and S (interrupt) service microwords are
executed during each macrocycle. The expected

Table 5-17. Microstore model: allocation and
access frequency.

P # oj Occurrences
Purpose Size [access] in Microstore

Fetch F

Interrupt service S

Addressing mode Aj Pj a

Instruction Ik Pk
a i

Total memory w = F + S + ~ Aj + ~ Ik
j=1 k=1

5.883 14.7% 0.0023

4.096 31.6 0.0049

3.129 64.9 0.0101

macrocycle time Mo with no errors present can
be shown to be:

E[Mo] = (F + S + A + l)m

where m is the microcycle time, A is the average
number of microwords needed to access the
operands, and 1 is the average number of mi­
crowords to execute the instruction.

Formulating the performance degradation
model entails two additional assumptions: first,
the probability distribution of errors is uniform
over all memory words; second, an error code
with one logical word per physical word is being
used. If the number of microcycles needed to
correct a word with an error is € and there are n
errors in the memory, the expected macrocycle
time is

E[Mn] = E[Mo](I + ne). (57)
w

The derivation is similar to that of Equation 55.
Thus, the expected performance degradation is
ne/w, as with main memory. This result has been
shown to hold for block codes also.

Consider three computers with microstores of
256, 1,024, and 4,096 words, with E = 1 (Ham­
ming code) and E = 16 (block code, 16 words
per block), and with three failures. The expected
degradation can be calculated as in Elkind and
Siewiorek [1978]. Degradation is negligible for
the Hamming code (1.7 percent for w = 256; 0.3
percent for w = 1,024; and 0.1 percent for w =

4,096). In the block-code design, degradation is

284 THE THEORY OF RELIABLE SYSTEM DESIGN

1.00

0.90

r-· r:r
. ·----f
L~-"- 1

;-.-7 r--'
r.r .-' 1-,.j r-~ ,_J

. I rJ
0.80

:5 0.70

:c
I I j , __ J I

~ 0.60
r· : ,...1
• I I
! ! I -- Hamming, 1 error

~ \, I
·e
:- 0.50

I - . - Hamming, 2 errors
.-----' I

>
.~

:; 0.40
E
= U 0.30 I :

-~ ----- Block, 1 error

- - Block, 2 errors

:._.--: I
0.20 I I_.J

• I I , I I
0.10 t-----.. ..::-------L J
0.00 L--__ ---'" ___ -.L---"-__ ~ __ ----L ___ ___'

0.0000 0.0001 0.0010 0.0100 0.1000 1.0000
Cycle degradation

Figure 5-59. SEC microstore distribution of degradation. (© 1980 IEEE.)

negligible when the block size is small in relation
to the memory size (1.2 percent for w=4,096). In
the other cases it is more noticeable (4.7 percent
for w= 1,024; 18.8 percent for w=256).

Given a machine like the one outlined in
Table 5-17, the probability distribution of the
performance degradation with n errors present
can be computed. Figure 5-59 shows this distri­
bution for two slightly different machines; Table
5-18 lists their characteristics. Addressing mode
and instruction frequencies were drawn from a
study of PDP-II program traces [Snow and
Siewiorek, 1978]. The microstore is divided into
sections for F, S, and each of th~ addressing
modes and instructions. A vector, f, represents
a given error pattern, with an element for each of
the microstore divisions. Th~ expected degrada­
tion was calculated for each f possible in Elkind
and Siewiorek [1978, 1980].

For the Hamming coded machine, the proba­
bility of negligible (less than 1 percent) degrada­
tion is 93 percent. The probability that the

degradation is less than the expected degrada­
tion (0.0039) from Figure 5-59 is 86 percent. The
probability of noticeable degradation (more than
5 percent), is only 5 percent, whereas severe
degradation does not occur.

A second curve in Figure 5-59 details the
probability distribution for the machine when
two errors are present. Although there is a possi­
bility of severe degradation (more than 10 per­
cent), the probability is small (0.24 percent)

Table 5-18. Microstore specifications.

Hamming Code Block Code

F = 3 F= 4
S = 10 s= 12
Aj = 3 Aj = 4 for all)
Ik 3 Ik = 4 for all k
a = 16 a = 16

65 i = 65
w = 256 w = 336

16 words per block

while there is an 86 percent probability that the
degradation will be less than I percent.

The other two curves in Figure 5-59 are for the
block-coded microstore. Its performance degra­
dation is more severe than that of the Hamming
coded microstore. With one error present, the
probability of severe degradation (more than 10
percent) is about 8 percent, whereas the proba­
bility of negligible degradation (1 percent or less)
is only 65 percent. When two errors are present,
the chance of a severe performance loss is 17
percent, and that of a benign failure drops to 40
percent.

Summary of fCC Memory Models

When data are used in parallel with error check­
ing, error-correcting memories can have perfor­
mance similar to nonredundant memories if no
failures are present. In the majority of cases,
error-correcting-code memories experience negli­
gible performance degradation in the presence of
failures. The results above can be used to predict
such degradation. These results, coupled with the
failure-present MTTF predictor developed ear­
lier in the section on the Effect of Nonredundant
Components, should be useful in planning mem­
ory system maintenance.

Block-coded memories have several desirable
properties. When SSI/MSI support circuitry is
used, they can be more reliable than Hamming
code memories. The memory redundancy re­
quired is less than that for Hamming codes. Even
though large Hamming words (many logical
words per physical word) could be used, the
decoding/encoding for such large code sizes
would be complex and slow. The block code,
however, does have disadvantages that limit ap­
plicability. Writing into a block-coded RAM
takes longer (although Hamming codes with
multiple words per physical word have a similar
problem). This would be offset somewhat if serial
memory DMA devices are used. The stored data
are already encoded, for DMA devices usually

EV ALUA TION CRITERIA 285

perform block transfers; thus, reading from tape
or disk would have no degradation. Block-code
error correction also takes longer, but the result­
ant degradation is negligible. Another limitation
is that some double errors (those in the same
logical word) cannot be detected. Finally, al­
though some chip (or row/column) failure modes
are to be tolerated, the block coding scheme is
board-space efficient only for large memories.
Even with these limitations, the block code is still
suitable for many RAM and ROM applications.

TRADE-OFF ANALYSIS IN
SYSTEM DESIGN

An incremental improvement method is often
used to design a cost effective system. This
technique gives rise to the two related problems
of choosing which part of the system design to
improve and deciding how best to improve that
section in accord with the design goals. The
MIL-HDBK-217B parts-count model provides
one way to pinpoint hard-failure problem areas
in a nonredundant system. The least reliable
module (or functional area) will necessarily have
the largest module failure rate. However, the
most . effective target for improvement is not
always the one with the highest failure rate. The
control logic of the PDP-8/e, for example, which
contributes to about 30 percent of the non­
memory failure rate, is exceedingly difficult to
add redundancy to without complete redesign.
The techniques that work for random logic, such
as quadded logic [Tryon, 1962] and triplication
with voting (TMR), unfortunately involve mas­
sive amounts of redundancy. Quadded logic uses
four times the normal number of gates; TMR
requires three times that number. TMR also
requires a majority voter on each of the output
lines, a significant disadvantage if there are a
large number of output lines. Thus, regularity of
structure is an important factor in the choice of
fault-tolerance techniques.

The failure-rate analysis method becomes at

286 THE THEORY OF RELIABLE SYSTEM DESIGN

least partially invalid with redundancy, because
the reliability function is no longer a simple
exponential. Approximations are feasible in
practice. Often, the redundant portion of a sys­
tem can be assumed to be perfect with respect to
other portions of the system.

Design Example: The PDP-8/ e

This section illustrates a possible iterative im­
provement method utilizing the PDP-8 and only
two redundancy techniques. Chapter 8 will illus­
trate the type of analysis that can be performed
during the design of a system, specifically the
V AX-1l/750.

The evaluation criteria for the example are
cost and MTTF (Mean Time To Failure). Man­
ufacturing cost, in terms of chip count, is the
easiest property to model. In early design stages
it is usually taken to be just the materials cost of
a design. Quite often the design is optimized for
minimal materials cost alone. Other costs can
also be used. Total manufacturing costs or user
purchase price are important. Repair, spare
parts, and operating costs can also be important.
Attempts to predict these and other costs over
the lifetime of a system, or life-cycle cost (LCC)
models, usually predict present value, total, or
annual costs of combinations of purchase, fi­
nancing, repair, inflation, and all other possible
costs and factors. The number of different mod­
els is staggering (IEEE [1977] provides some
examples). No single LCC model applies to all
problems and viewpoints. Chapter 6 discusses
economic criteria in more detail. Chip count will
be used as the cost function in this example.

The PDP-8, an early minicomputer, has a one­
address architecture with 12-bit words. The
PDP-8/e is an SSI/MSI TTL implementation of
the PDP-8 [DEC, 1971, 1972]. This design exer­
cise will employ a simple algorithm for making
design changes. The two techniques in the algo­
rithm's catalogue are Single-Error-Correctingl
Double-Error-Detecting (SEC/DED) codes and
Triple Modular Redundancy (TMR) with vot-

Memory
16K words

Omnibus

CPU

Figure 5-60. Simple PDP-8/e system.

ing, the two most commonly used fault-tolerance
techniques. The site chosen for applying a redun­
dancy technique is the module with the largest
percentage failure rate, determined by the AU­
TOFAIL program (discussed in Chapter 2.) The
site choice can be done in a recursive fashion­
the subarea having the largest failure rate withi~
the area having the largest failure rate, and so
on, until a suitable site is found for applying one
of the techniques. Finally, if the MTTF shows a
decline from the previous step, the algorithm
requires the designer to return to the previous
step and try again. This algorithm uses only
MTTF and failure rate as evaluations; it ignores
other factors such as cost and performance.

Figure 5-60 shows, the PDP-8/e system dis­
cussed here. It consists of a PDP-8/e processor,
16K words of MOS memory, and the KM-8
memory extension and time sharing board. * This
system model is used as the basic design prior to
reliability improvement.

Initial Improvement: Adding
SEC/ DED Encoding to the
Memory

Ev~lu~!ing the initial design is the first step in
relIabIlIty enhancement. This is accomplished by
preparing the parts list for the PDP-8/e system,
categorized by function, then running the list
through AUTOFAIL. Figure 5-61 shows the

* The KM-8 is needed to extend the PDP-8 memory space
beyond the 4K word range directly addressable by its 12-
bit addresses.

EV ALUA nON CRITERIA 287

Plain PDP-8/e

PDP8e.REL LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q = 16.000 L =

MODULE

PDP8e
Processor

data .part
registers

MB300.A.MQ .MB. PC .MA
MB31O.LINKBIT

adder
true.compl.one.zero
path. shunt. in
path. shunt .out

bus. connect. open. co 11
MB300
MB310

bus.l oads .MB320
control.l ogi c

MB300
MB310
MB330

KM8.Mem. ext. ti m.shr
16k.memory

memory .chi ps
control
bus.conn.oc

1.000 T = 40.000

FAILURE RATE

167.218
32.111

14.592
5.903

5.808
.095

1.146
.610

2.651
4.282

.966
.724
.241

.121
16.432

.543
6.868
9.021

8.509
126.598

124.186
2.050

.362

PERCENTAGE

100.000
19.203

45.443
40.454

98.387
1.613

7.854
4.180

18.167
29.344

3.007
75.000
25.000

.376
51.173

3.303
41. 798
54.899

5.089
75.708

98.095
1.619

.286

of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000

MISSION
Rel iabil ity Time

.9999

.999

.995

.99

.98

.95

.9

.8

.7

0.57
6.0
30.0
60.1
121
307
630
1334
2133

MTTF = 5984

tota 1 chi ps = 285

Figure 5-61. Basic PDP-8/e.

results. The system has a total failure rate of
167.2 failures per million hours (fpmh) and an
MTTF of 5,984 hours. The percentage column
shows that the memory contributes 76 percent of
the failure rate, making it the most logical place
for initial improvement. The strategy chosen is to
use a Hamming SEC/OED code for the memory
words. Each 12-bit memory word is encoded into
an 18-bit code word. The extra circuitry (control,
encoding/decoding, and so forth) is designed
assuming a special 18-bit Hamming encoding/
decoding tree chip. The approximate model in

Elkind and Siewiorek [1978] is used to generate
the parts list. The 18-bit encoding/decoding chip
replaces the parity chip trees in the model to
accomplish a considerable reduction in chips.
The standard 22-bit SEC chips now becoming
available could also be used, with four data-bit
inputs held at fixed values.
. The resulting design is checked by A UTO­

F AIL for the nonredundant part of the system
(everything except the memory array). Figure
5-62 shows the resultant failure rate to be 49.6
fpmb, less than a third of the original. However,

288 THE THEORY OF RELIABLE SYSTEM DESIGN

PDP-8/e, ECC memory

8ECC.REL LSI= 16.000 ROM=

E = 1.000 Q = 16.000 L =

PDP8e
Processor

data.part
registers

MB300.A.MQ .MB.PC.MA
MB310.LINKBIT

adder
true.compl.one.zero
path. shunt. i n
path .shunt .out

bus .connect .open. coll
MB300
MB310

bus.l oads .MB320
control logic

MB300
MB310
MB330

KM8.Mem. ext. ti m.shr
16k. ecc .memory

control
bus.conn.oc
extra. support

of chips = 264.083 # of gates =

MISSION
Rel iabil ity Time

.9999

.999

.995

.99

.98

.95

.9

.8

.7

2.0
20.2
101
203
407
1034
2123
4496
7187

16.000 RAM= 16.000

1.000 T = 40.000

FAILURE RATE

49.624
32.111

14.592
5.903

PERCENTAGE

100.000
64.708

45.443
40.454

5.808 98.387
.095

1.146
.610

2.651
4.282

.966
.724
.241

.121
16.432

.543
6.868
9.021

8.509
9.004

2.050
.362

6.592

3365.500 # of bits =

MTTF = 20,136

tota 1 chi ps = 336

1.613
7.854
4.180

18.167
29.344

3.007
75.000
25.000

.376
51.173

3.303
41. 798
54.899

17.147
18.145

22.764
4.022

73.215

.000

Figure 5-62. PDP-8/e with SEC memory.

examining the failure process of the entire de­
sign, including the memory array, is necessary to
ensure an accurate appraisal. To perform this
examination, the program SEC* is employed
with the 18-bit ECC memory parameters, using
49.6 fpmh as the non redundant "control" por­
tion failure rate. The SEC program predicts an

* The program SEC (Single Error Correcting) uses the mod­
els of the section on the Effect of Nonredundant Compo­
nents to calculate the MTIF of a single"-error-correcting
code memory.

MTIF of 20,136 hours (assuming a dominant
single-bit failure mode in the memory chips)-a
237 percent improvement over the basic
PDP-8/e. The MTIF of the nonredundant por­
tion alone is 20,161 hours. Thus, as demonstrat­
ed in the section on the Effect of Nonredundant
Components, the SEC code memory array can
essentially be ignored as a contributor to the
system failure rate.

The original (nonredundant) design used 285
ICs; the 18-bit ECC memory version uses 336.
The difference results from the extra support

circuitry and the memory chips for the redun­
dant code bits. The AUTOFAIL chip count does
not include the chips in the redundant portions
of the design. The result is a total increase in cost
of around 18 percent.

The code word size can be increased (and
extra memory bits for coding decreased) by
combining two 12-bit memory words into a 30-
bit SEC/OED code word. This represents a
savings of 12 memory chips over the 18-bit ECC
version. However, the control and coding/ decod­
ing functions become more complex. The net
cost savings over the 18-bit code memory are nil.
The MTTF is also adversely affected (down to
14,948 hours). The memory cycle time on reads
increases over the 18-bit code because there are
more levels in the decoding trees. On writes, the
30-bit word must first be read, decoded, and then
re-encoded and rewritten with the new word
replacing half the code word; this process takes
almost twice as long as a nonredundant memory.
Thus, the 18-bit SEC/OED code is the best
improvement to make for the size of memory
involved. (For a 64K-word memory, the 30-bit
code would use 48 chips less than the 18-bit
code. This results in more attractive cost savings
and perhaps a different decision would be made
if cost were an important factor.)

Triplication of the Processor

The AUTOF AIL output from the previous step
(see Figure 5-62) shows that the processor has
the largest failure rate, contributing 65 percent of
the nonredundant portion's failure rate. Because
the processor outputs are limited in number and
easily identifiable (as the OMNIBUS), the next
attempt at improvement is to triplicate the pro­
cessor and vote on its OMNIBUS outputs. Tri­
plication requires 78 voters. Of these, four lines
carry the major clock phase signals. To force
synchronization of all three copies of the pro­
cessor, synchronizing voters [McConnel and Sie­
wiorek, 1981] will be employed on the four clock
phase lines. The synchronizing voter is more

ECC
memory

16K words

EVALUATION CRITERIA 289

Omnibus

Figure 5-63. PDP-8/e with triplicated processor.

complex than the ordinary voter used on the
other 74 lines. Figure 5-63 is a block diagram of
the resulting modified system.

Figure 5-64 shows the evaluation results. The
overall reliability of this design is more difficult
to assess. Its complex reliability formula is devel­
oped in Elkind [1980b]. The nonredundant por­
tion's failure rate has dropped to 28.9 fpmh, a
reduction of 42 percent. Numerical integration
of the reliability formula, however, yields an
MTTF of 16,952 hours, a 16 percent decline.
Thus, by the rules of the algorithm, a return to
the previous design is required.

Triplication of the Timing Board

The AUTOFAIL listing (Figure 5-62) shows that
the control logic contributes the largest propor­
tion of the processor failure rate. Most of the
control logic, however, is well integrated into the
structure of the rest of the processor. Its triplica­
tion would require a large number of voters at
the interface between the control logic and the
rest of the processor. However, the timing board
(MB330), which contributes to over half of the
failure rate of the pieces of the control logic, has
only 13 outputs at its interface with the rest of
the processor. Thus, the timing board is chosen
as the site for the next improvement. Triplication
of the board requires installation of synchroniz­
ing voters on the four output lines carrying the
major clock phase signals; the other nine will

PDP-8/e, TMR processor, ECC memory

8TPROC.REL LSI= 16.000 ROM=

E = 1.000 Q = 16.000 L =

MODULE

PDP8E. tri pproc .ecc .mem
Processor

omni bus. voters. 78
synch. voters. 4
normal. voters

bus .connect.open .coll
MB300
MB310

bus.l oads .MB320
KM8.Mem. ext. ti m. shr
16k. ecc • memory

control
bus .conn .oc
extra. support

of chips = 146.333 # of gates =

MISSION
Reliability Time

.9999 3.4

.999 34.5

.995 171

.99 337

.98 658

.95 1553

.9 2911

.8 5420

.7 7889

16.000

1.000

RAM= 16.000

T = 40.000

FAILURE RATE

28.865
11. 351

10.265
.777

9.488
.966

.724

.241
.121

8.509
9.004

2.050
.362

6.592

2149.500 # of bits =

MTTF = 16,952

total chi ps = 696

PERCENTAGE

100.000
39.325

90.430
7.568

92.432
8.507

75.000
25.000

1.063
29.480
31.195

22.764
4.022

73.215

.000

Figure 5-64. PDP-8/e with SEC memory, TMR processor.

PDP -8/ e, TMR t i mi ng, ECC memory

8TRIP6.REL LSI= 16.000

E =

MODULE

PDP8e

1.000 Q = 16.000

Processor
data. part

registers
MB300.A.MQ .MB.PC .MA
MB31O.LINKBIT

adder
true .compl .one .zero
path. shunt. i n
path .shunt .out

bus. connect. open. co 11
MB300
MB310

bus.l oads .MB320
control. logic

MB300 •
MB310
MB330. tri p. voter

synced.l i nes
nonsynced.l i nes

KM8.Mem. ext. ti m. shr
16k. ecc .memory

control
bus.conn.oc
extra. support

ROM=

L =

of chi ps = 221. 917 # of gates =

MISSION
Reliability Time

.9999 2.4

.999 23.5

.995 118

.99 236

.98 474

.95 1198

.9 2444

.8 5107

.7 8052

16.000

1.000

RAM= 16.000

T = 40.000

FAILURE RATE

42.534
25.020

14.592
5.903

5.808
.095

1.146
.610

2.651
4.282

.966
.724
.241

.121
9.342

.543
6.868
1.931

.777
1.154

8.509
9.004

2.050
.362

6.592

2950.500 # of bits =

MTTF = 20,774

total chips = 446

PERCENTAGE

100.000
58.824

58.322
40.454

98.387
1.613

7.854
4.180

18.167
29.344

3.859
75.000
25.000

.482
37.337

5.810
73.523
20.668

40.233
59.767

20.006
21.170

22.764
4.022

73.215

.000

Figure 5-65. PDP-8/e with SEC memory, TMR timing board.

~mploy regular voters. The reliability formula for
this design is developed in Elkind [1980b].

Figure 5-65 shows the evaluation results. The
nonredundant portion's failure rate has dropped
by 14 percent from the, SEC design (Figure 5-62).
More important, the MTTF has increased to
20,774 hours, up 3 percent. According to the
algorithm, then, this is a successful step in the
design improvement.

Triplication of the Data Area

The processor failure rate still dominates for the
nonredundant portion of the system, but the
data area now accounts for the largest share.
Figure 5-66, a simplified block diagram of the
PDP-8/e data paths, shows two sets of 12 output
lines. An SEC code would not work in this case,
because there are data transformations inside the
data area. The small number of output lines also
makes triplication the technique of choice for the
data area.

Elkind [1980b] develops the reliability func­
tion for the resulting configuration (SEC memo­
ry, TMR timing board, and TMR data area).
Figure 5-67 shows the reliability evaluation re-

Figure 5-66. Original PDP-8/e data paths.

EVALUA nON CRITERIA 291

sults. The nonredundant failure rate has dropped
by 27 percent. The MTTF, however, has in­
creased by only 0.6 percent, to 20,898 hours.

Analyses of the Example

This treatment of the PDP-8/e follows only one
of the possible routes through the design space.
Figure 5-68 shows other routes, for which each
of the design points was evaluated. In the follow­
ing discussion, each point is specified by the
combination of path and step indexes from the
figure. For example, the PDP-8/e with ECC
memory added is denoted equivalently by AI,
Bl, and Cl, since it belongs in all three paths.
The PDP-8/e with a TMR processor and ECC
memory is denoted by the index A2. The subsec­
tions below examine the path through the design
space followed by the simple redesign algorithm,
analyze its performance, and compare it with
other possible paths.

The Path of the Simple Algorithm

Path "B of Figure 5-68 portrays the path of the
simple algorithm through the design space. The
sole aim of the algorithm is MTTF improvement
through reduction of the nonredundant portion's
failure rate. The net improvement in MTTF in
the example was 249 percent, of which 237
percent occurred in the first step, adding the SEC
memory. Thus, the algorithm attained the
MTTF improvement goal.

It is necessary to evaluate the performance of
the algorithm in relation both to the MTTF
improvement and to the cost of that improve­
ment. One possible measure is:

MTTF n - MTTF(n_l)
I = --~~----~~~
n (cn - C(n-I)

MTTF n is the MTTF of the design resulting
from the nth successful step, and Cn is the cost of
the design (in this example, the number of inte-

PDP-8/e, TMR timing & data part, ECC memory

8SETT .REL LSI= 16.000 ROM= 16.000 RAM= 16.000

E = 1.000 Q = 16.000

MODULE

PDP8e
Processor

trip.data.part
24.voters

bus .connect .open .coll
MB300
MB310

bus.loads.MB320
control. logic

MB300
MB310
MB330. tri p. voter

synced.l i nes
nonsynced.l i nes

KM8.Mem.ext. tim. shr
16k. ecc .memory

control
bus.conn.oc
extra. support

L ~ 1.000 T = 40.000

FAILURE RATE

·31.019
13.505

3.077
3.077

.966
.724
.241

.121
9.342

.543
6.868
1. 931

.777
1.154

8.509
9.004

2.050
.362

6.592

of chi ps = 181.167 # of gates = 1969.500 # of bits

MISSION
Reliability Time

.9999

.999

.995

.99

.98

.95

.9

.8

.7

3.2
32.2
161
321
640
1585
3134
6220
9399

MTTF = 20,898

total chips = 565

PERCENTAGE

100.000
43.539

22.785
100.000

7.150
75.000
25.000

.894
69.171

5.810
73.523
20.668

40.233
59.767

27.433
29.028

22.764
4.022

73.215

.000

Figure 5-67. PDP-8/e with SEC memory, TMR timing board, and data part.

TMR processor and ECC memory

Path

A

ECC memory ECC memory and TMR timing -- ECC memory, TMR timing, B
TMR data part

Plain PDP-8/e ECC memory and registers --- ECC memory and registers, C
TMR timing

TMR timing D

Bit Slice
PDP-8 ---- ECC memory E

Step 0 2 3

Figure 5-68. Design space for fault tolerant PDP-8/e.

300

\

250 \
\
\
\
\
\ 200

\
\
\

100

50

0
1

\
\
\
\
\
\
\
\
\
\
\
\
\
\

2
Step number

3

Figure 5-69. Performance of a simple algorithm
for design improvement.

grated circuits). The graph of Figure 5-69 shows
the performance evaluation of the example. The
plot is monotonic decreasing, which indicates
that each step is the most cost effective of those
performed. In this sense, then, the algorithm
performs well.

Other Paths through the Design
Space

The path followed by the algorithm is not neces­
sarily optimal. In fact, another path attempted
works better in terms of total cost of the final
design and the MTTF attained. Path C of Figure
5-68 portrays an early attempt based on intuition
and guided by AUTOFAIL. The second step of
path C was taken because of the better perfor­
mance of SEC codes over TMR in improving
MTTF. Although the registers have a smaller
failure rate than the timing board and are in the
data area, which has a smaller failure rate than
the control area, the choice was obvious. Figure
5-70 shows the resultant modification. The final
design has an MTTF of 21,903 hours, a 266

EVALUATION CRITERIA 293

Omnibus

Figure 5-70. PDP-8/e data paths with SEC register
modification.

percent improvement on the original PDP-8/e
design. The final cost is 457 chips. In contrast,
the algorithmic path resulted in only a 249
percent increase in MTTF, with a cost of 565
chips. Figure 5-71 compares the performance
measurements of the two algorithms. Not only
does the intuitive algorithm yield a better end
result, but In has a steadier decline, implying a
more consistent performance.

It is also interesting to look at the design paths
followed in terms of mission time improvement,
even though neither algorithm had this as a goal.
The simple algorithm guided primarily by failure
rates and not suitability of technique to improve­
ment site. Thus, the simple approach tends to
choose TMR more often because it works for
many sites (such as random logic) for which
SEC/DED codes will not. TMR tends to im­
prove MT[R] for large R, often with the result of
lower MTTF. The final design of the simple
algorithm has an MT[.95] of 1,585 hours, versus
the 1,280-hour MT[.95] for the intuitive ap­
proach. The MTI[.95] is 5.16 and 4.l7 for the
simple and intuitive approaches, respectively.
Figure 5-72 plots a modified performance mea-

294 THE THEORY OF RELIABLE SYSTEM DESIGN

300

Simple algorithm

~ Intuitive algorithm
250 \

\
\
\
\

200 \
\

Q. \
~ \
<II \
t 150 \
~ \

\
\

100 \
\
\
\
\

50 \
\
\
\

0
1 2 3

Step number

Figure 5-71. Performance comparison of the sim­
ple and intuitive approaches.

surement, I~, with the MTTFn replaced by
MT n [.95], for the two approaches. Both ap­
proaches performed well in this respect, although
the simple algorithm's heavier use of TMR
caused it to do better.

If MT[.95] had been the goal instead of
MITF, both approaches would do equally well.
Both would follow path A of Figure 5-68 to
design A2. In the case of the simple algorithm,
the second step to a TMR processor would have
been deemed successful because the resulting
MT[.95] is 1,553 hours, up 406 percent. Previous­
ly, the same step was unsuccessful because it
resulted in a decline in MITF. Neither ap­
proach, however, reaches the best design in
terms of MT[.95]. Design B3 has a slightly better
MT[.95] of 1,585 hours for 131 fewer chips.
Design A2, however, has better MTs for values
of R equal to or greater than 0.98.

Path D, though not actually followed, is de­
picted in Figure 5-68 for the sake of complete-

20

18

16

14

c,.12
~
<II

t 10
~
~ 8

6

4

2

0
1 2

Simple algorithm

Rejected step, simple algorithm

Intuitive algorithm

3

Step number

Figure 5-72. Performance of improvement with
respect to MT[.95].

ness. Figures 5-73 and 5-74 show the MTTF and
MT[.95] for each point in the design space as a
function of chip count.

Finally, Figure 5-68 portrays in path E an
attempt to ascertain the results of a redesign
using a different design style, created by Tsao
[1982]. Although it is not a complete implemen­
tation of Figure 5-60, the design demonstrates
potential improvement resulting from a change
in design style. The MTTF of design EI, a bit­
slice PDP-8 with SEC code memory, is 54,000
hours, more than twice as high as the best design
previously, and with many times fewer chips.
Thus, even allowing for the added complexity of
a complete implementation, the potential im­
provement is considerable.

This exploration of design space minimized
the number of design trade-offs (such as redun­
dancy techniques) in order to illustrate the meth­
odology. Inclusion of additional redundancy or
fault-intolerant techniques (such as changing en-

25,000

20,000

~ 15,000
o
l:
......
~
~ 10,000

5,000

EVALUATION CRITERIA 295

C3
CI_----------e 83

"_" 82 _ .. t- .. - .. _ .. _
I .. - .. -.. A2 - .. - ..
I
I
I
I
I
I

---~
CO D1

O~------~----------~------------L----------~ ____________ ~
200

1,600

1,400

1,200

~ 1,000
o
~

~ 800
I-
~

600

400

200

500
Number of chips in design

600

Figure 5-73. MTTF as a function of chip count.

...-"'- --- .. ---
."",."'" ."

C2- ... :~·"l82
y

81 /

I
/
I
/
/
/

---J
D1

83

o~------------~---------~------------~------------~---------~ 200 500 600 700

Number of chips in design

Figure 5-74. MT[.95] as a function of chip count.

296 THE THEORY OF RELIABLE SYSTEM DESIGN

vironmental, temperature, and quality factors;
see Chapter 3) would yield a much richer design
space. The practicing engineer must consider all
these alternatives.

SUMMARY

This chapter introduced a number of evaluation
criteria for reliable computing structures. Several
essential considerations in evaluating systems
are:

• Frequently, multiple evaluation criteria are required
for adequate comparison of alternative designs. The
most frequently used criterion-MTTF-is particu­
larly poor for evaluating massively redundant sys­
tems. The reliability curve for a redundant system
exhibits a sharp knee when all the fault tolerance has
been exhausted. The redundant system is much
more likely to fail, because there are more compo­
nents than in a nonredundant system, and the next
component failure causes a system failure.

• The first application of redundancy to a system
produces the largest absolute increase in reliability.
The point of diminishing returns is usually reached
by redundancy factors of five or less.

• Care must be taken to model the entire system. The
addition of extra logic to manage redundancy may
actually result in a less reliable system than the
non redundant one.

• Often, apparent system reliability will improve as a
result of using more detailed models. Although
modeling effort increases rapidly with the level of
detail, more effort in modeling can produce a less
overdesigned, more cost effective system.

• Values for mathematically concise parameters (such
as coverage) are often difficult or impossible to
predict. Indeed, the gross parameters may oversim­
plify the situation. An engineering "guesstimate,"
coupled with a sensitivity analysis (varying the pa­
rameter over a best case, worst case range to deter­
mine effects on the model) can isolate parameters
that need further refinement.

• Fault-intolerant techniques should not be neglected.
Extra care in component specification and screening
may cost less than many forms of redundancy.

• Above all, a balanced approach is required. All
portions of a system should be considered, not
simply the CPU or memory. Furthermore, a mixture
of fault-tolerant techniques usually produces a more
effective design than application of one technique
throughout the system. Each technique should be

applied to the portion of the system that best
matches its properties (such as codes to portions of
systems that deal in vectors of data-memory, regis­
ters, bus, data paths).

• System comparison techniques are stressed rather
than absolute numbers because the reliability func­
tion of a module frequently is not known at system
design time.

REFERENCES

Abraham and Siewiorek [1974]; Aggarwal and Rai
[1978]; Almassy [1979]; Ball [1980]; Barlow and Pros­
chan [1965]; Beaudry [1978]; Bell and Newell [1971];
Bell et al. [1978]; Bennetts [1975]; Bouricius, Carter,
and Schneider [1969a, 1969b]; Brown, Tierney, and
Wasserman [1961]; Butner and Iyer [1980]; Castillo
[1980]; Castillo and Siewiorek [1980]; Cheung and
Ramamoorthy [1975]; Cheung [1980]; Chou and
Abraham [1980]; Cornell and Halstead [1976]; Costes,
Landrault, and Laprie [1978]; DEC [1971, 1972];
Elkind [1980a, 1980b]; Elkind and Siewiorek [1978,
1980]; Essary and Proschan [1962]; Ferdinand [1974];
Fitzsimmons and Love [1978]; Frank and Frisch
[1970]; Funami and Halstead [1975]; Gandhi, Knove,
and Henley [1972]; Gay and Ketelsen [1979]; Gear
[1976]; Geilhufe [1979]; Gupta, Porter, and Lathrop
[1974]; Gurzi [1965]; Halstead [1979]; Hecht [1976];
Horowitz [1975]; Howard [1971]; IEEE [1977]; Ingle
and Siewiorek [1976]; Jack et al. [1975]; Jelinsky and
Moranda [1973]; Jensen [1964]; Keller [1976]; Kini
[1981]; Klaschka [1969]; Knuth [1969]; Lapp and
Powers [1977]; Levine and Meyers [1976]; Littlewood
[1975, 1979]; Longden, Page, and Scantlebury [1966];
Lynch, Wagner, and Schwartz [1975]; Lyons and
Vanderkulk [1962]; McCluskey and Clegg [1971];
McConnel and Siewiorek [1981]; McConnel, Siewio­
rek, and Tsao [1979]; Mei [1970]; Meyer, Furchtgot,
and Wu [1979]; Misra [1970]; Miyamoto [1975]; Mo­
hanly [1973]; Muehldorf [1975]; Murphy [1964]; Musa
[1975]; Nelson [1973]; Ng and Aviiienis [1980]; Ogus
[1973]; Pascoe [1975]; Peterson and Weldon [1972];
Phister [1979]; Po sa [1980]; Ramamoorthy and Han
[1973]; Raytheon [1974, 1976]; Reynolds and Kinsber­
gen [1975]; Rhodes [1964]; Rickers [1975-76]; Rosen­
thal [1977]; Ross [1972]; Roth et al. [1967]; Rubin
[1967]; Russel [1978]; Satyanarayana and Prabhakar
[1978]; Schertz and Metze [1972]; Schick and Wolver­
ton [1978]; Schneidewind [1975]; Shedletsky and
McCluskey [1973]; Shooman [1968, 1970, 1973]; Sie-

'iorek and McCluskey [1973b]; Siewiorek [1975];
iewiorek and Rennels [1980]; Snow and Siewiorek
978]; Stapper [1973]; Stiffler, Bryant. and Guccione
979]; Tammaru and Angell [1967]; Teoste [1962];
exas Instruments [n.d.]; Thayer. Lipow. and Nelson
978]; Trivedi and Shooman [1975]; Tryon [1962];
sao [1982]; von Neumann [1956]; Wang and Love­
ce [1977]; Warner [1974]; Wilkov [1972]; Wolverton
ld Shick [1974]; Wyle and Burnett [1967]; Yakowitz
977]; Yourdon [1972].

ROBLEMS

I. Assume that the failures of three computers, A, B,
and C, are independent, exponentially distributed
random variables with failure rates AA = 1/800,
AB = 1/1,300, and AC = 1/1,300 failures per
hour, respectively.
a. What is the probability that at least one system

fails in a four-week period?
b. What is the probability that all three systems

fail in a four-week period?

~. Calculate the reliability of the structure below
between points A and B. Assume all modules have
a reliability of R.

A B

~. Consider the system success diagram below.

.----~ G 1-----,

a. List all possible working paths in the form of a
"Reliability Block Diagram" (RBD).

EV ALVA TION CRITERIA 297

b. Derive the upperbound for system reliability
given by: .

)

Rsys < 1 - .II (I - Rpath)
/=1

c. Derive the lowerbound for system reliability
from the minimal cut set

k

Rsys > IT (I - Qcut)
i=1 I

d. Derive the exact reliability formula.
e. Simplify the results above if all modules exhibit

the same reliability R.

4. Given the probabilities 10 (probability of a relay or
MOS transistor failure in open position) and f~
(probability of a failure in short position), and that'
the system can tolerate a short between points A
and B (that is, a short failure is acceptable but an
open failure is not), the reliability of
is given by (choose one)

a. 1 - 10
b. (1 - 10)2
c. 1 - 210
d. 1 - 15-

5. With 10 and Is as in question 4, and given that a
short between A and B may be tolerated, the
reliability of
is given by (choose one)

a. 1 - 10
b. (1 - 10)2
c. 1 - 210
d. 1-15-

6. Given that 10 = is, that a short between A and B
is tolerated, and that Y is known to have failed
already, the reliability of

z

298 THE THEORY OF RELIABLE SYSTEM DESIGN

is given by (choose one)
a. 1 - (10/2)
b. 1 - «10 + Is)/2)
c. 0.5(2 - 10)P - 10)
d. 0.5(1 - 10)
e. 1 - 0.510 - 0.516 .

7. The connection between points A and B is to be
controlled. The circuit below is used instead of a
single relay or MOS transistor in order to achieve
highly reliable control.

The probability of failing in an open position is 10,

and the probability of a failure in a short position
is IS' Assume that statistically, the reliabilities of
the relay Itransistors are mutually independent.
What is the reliability of this network? Find the
conditions under which this network is more reli­
able than a single relay Itransistor between A and
B.

8. If the reliability of a module is Rnt, and if a perfect
arbiter chooses between the outputs of a pair of
identical independent modules, the reliability of a
system is (choose one)
a. R;l

b. R~ + 0.5Rm

c. R;l + 0.5Rm(1 - Rm)
d. Rm'

9. The reliability of a nonredundant system ranges
between (0.2,1); that is, below 0.2 the system is
considered failed. To achieve unconditional im­
provements in reliability through triple modular
redundancy, the system is divided into m modules
of identical reliability. If voters are perfect, the
minimum value of m is (choose one)
a. 2
b. 3
c. 4
d. 5.

10. With an imperfect voter, the maximum Systelll
reliability in a TMR scheme with triplicated voters
resulted from dividing the system into eight mod­
ules before triplication. If the mean time to failure

(MTIF) for the original system was 800 hours, th
MTIF for a voter must have been (choose one)
a. 100 hours
b. 800 hours
c. 3,200 hours
d. 6,400 hours.

11. With a perfect voter and a perfect switch, th
reliability of a TMR scheme with two spares at th
time when the reliability of a single module is 0.:
is (choose one)
a. 0.5
b. 0.1875
c. 0.8125
d. 1.0.

12. With a perfect switch but an imperfect voter, '
TMR scheme with S spares would show a maxi
mum reliability (at the time when module reli
ability is 0.7) at S equal to (choose one)
a. 1
b. 2
c. 3
d. ·4.

13. The inputs of an AND gate may be stuck-at-O 0

stuck-at-l with probabilities 10 and Is' respectively
If Is = 0 and if the inputs are totally random, th,
reliability of the output is (choose one)
a. 1 - 10
b. (1 - 10)2
c. 1 - 0.510 + 0.2516

d. 1 - 1.510 + 0.7516.
14. With 10 and Is as defined in Problem 13, and i

10 = 0, the reliability of the output of an ANI
gate (with Is =1= 0) is (choose one)
a. 1 - fs
b. (1 - fs)2 2
c. 1 - 0.5fs + 0.251s
d. 1 - I.5fs + .0751/.

15. The failures in a system are known to alternate
that is, a stuck-at-O failure is followed by a stuck
at-l failure, and so on. A 7MR scheme can the]
tolerate (choose one)
a. 3 failures
b. 4 failures
c. 5 failures
d. 6 failures.

16. A variation of a hybrid redundancy scheme as,so
dates a spare with a specific module; that is, '
spare, Si' can replace only the module Mi and nl

other. For a TMR system with three such spares,
the difference between the reliabilities of the var­
iant system and of the hybrid system (with reli­
ability of a module = Rm, Qm = 1 - Rm) is
(choose one)

a. 0
b. 1
c. 3R3 Q3 + 3R4 Q2 m m m m
d. 3R~Q!
e. 6R~Q~ + 12R~Q!.

17. The following reliability model has been proposed
for the system above:

Rsys = Rv(3R; - 2R;)(3R~ - 2R~)

where Rv' Rp' and Rm are the voter, processor, and
memory reliability, respectively. Several factors
are ignored in this model. Ignoring each factor
makes the model either pessimistic or optimistic.
List at least four of these factors and explain their
effect on the model.

18. Consider a TMRed register file composed of eight
16-bit words.

a. Assuming only single-bit failures, write the
system reliability function, RTMR , in terms of
the bit reliability, Rb, and the voter reliability,

Rv·
b. Now assume that the register file is protected

by a 21-bit (16 data bits and five check bits)
single-error-correcting Hamming code. Write

EV ALUA TION CRITERIA 299

the system reliability function, RSEC ' in terms
of the bit reliability, Rb, and the encoder/
decoder reliability, Re.

1 161 51
r
8

L'----~_""7----'

c. Assume Rv = Re = 1. Pick a value of Rb for
which RTMR > R SEC • Also pick a value of Rb
for which RSEC > RTMR • Which scheme,
TMR or SEC, would you recommend using
and why? (Hint: The functions are well be­
haved and intersect only at one value of Rb.)

19. a. Derive the expression given in Chapter 5 for
the reliability of a hybrid redundant system
with a TMR core.

b. Generalize this expression to hybrid redundan­
cy with an NMR core.

c. What is the effect of including coverage? Con­
sider two cases: TMR with one spare and
TMR with m - 3 spares:

20. a. As an alternative to the conventional hybrid
system with a TMR core and a single spare, the
following organization is proposed.

0----~
2 V

3

In this scheme the spare, a, can replace only
module 1 and no other. If the voter and the
switching circuits are perfect, show that the
reliability of the system is:

R! + 4R~(1 - Rm) + 3R~(1 - Rm)2

where Rm is the reliability of a module. (Hint:
With the three origihal modules denoted by
numbers 1, 2, 3 and the spare by a, a failure

300 THE THEORY OF RELIABLE SYSTEM DESIGN

tree showing all permutations for the system
above is

123(a) a23(*)1*23(*)

a*3(*)

a2*(*)

1*3(a)

12*(a)

123(*) *23(*)

11*3(*)

12*(*)

b. Using the tree approach (or otherwise), what is
the reliability of the system below?

0--- 1

~---

(This is an alternative to a hybrid scheme with
a TMR core and two spares. The spares are
once again dedicated, spare a to module 1 and
spare b to module 2.)

21. If we denote the expression in Problem 20 by Rd

(i.e., Rd = R!l + 4R~1(I - Rm) + 3R;1(I - RnJ2
)

and the reliability of the switching circuits by
Rswd ' then we may model the system reliability as:

Rsysd = Rswd . Rm

We may also model the reliability of a hybrid
scheme with one spare, R hyb ' as a product of the
switch reliability, Rswh' and the probability of
having two or more good modules in the core of
the system. Assume that all modules are identical
and that the reliability is Rm(= e-'\t). The ratio of
the circuit complexity of the switch in the hybrid
scheme to the complexity of a single module is
denoted by a. Assuming that failure rates are
directly dependent on the complexity, we may
write Rswh = Rc:n. Realizing that the switching
circuits in a dedicated spare system need to attain
only half the number of states required by switch-

ing circuits in a hybrid system with a single spare,
we estimate the complexity ratio to be half also;
that is, Rswd = R~;h. For a = 0.1, plot the mis­
sion time improvement (MTI) of Rswh over Rswd
as a function of Rm. (Use Rswd(Rm) as R, 'sn' ,the , Sy, I In

minimum required system reliability that defines
, the mission time.) For the plots, use logarithmic

scale for Rm if you prefer. From the plot, determine
the range of Rm during which Rswd is better than
Rswh . Repeat for a = 0.01. (Note: a = 0.01 im­
plies that the basic modules are 100 times as
complex as the switch in the hybrid system. If the
switch had 10 gates, the module would have 1,000
gates. Compared with the LSI-II, how big is the
module?)

22. Consider two redundant systems based on voting:

a.

b.

System (a) does bus-level voting on every P-M
transfer. System (b) is a multiprocessor that votes
after each sub task by mutual communications
over interfaces (T). Develop a reliability model for
each system. State your assumptions. Which sys­
tem is better? (Hint: This is purposely left as an
open-ended problem. At the highest level of mod­
eling the systems appear identical. Drive the mod­
eling to a low enough level to illustrate the differ­
ences in the systems.)

23. Figures (a) and (b) on the next page depict two
compute~ structures, C.mmp and Cm*. Besides
being multiprocessor systems, the two structures

Switch
16 X 16

EVALUATION CRITERIA 301

Pc= PDP - 11/40

Mp = memory (32K words)

a. C.mmp

Mp= memory (12K words)

S.local = local switch interface controller

K.map = cluster controller

Linc = inter-cluster communications

b. Computer module system (Cm*) with two clusters.

may also be viewed as fault-tolerant structures
with redundant processing power. Consider the
16-processor, 16-memory C.mmp, and a two-clus­
ter, 8-processor-per-cluster Cm* organization. For
a task that requires at least four processors and at
least 48K words of memory, compare the reli­
abilities of C.mmp and Cm* using various model­
ing techniques. Assume that the recovery pro­
cesses are imperfect and the probability of recov­
ery given a failure is a function of the size of the
system. Suggest a model for the probability of
recovery. A parts-count model of the components
of the two systems yields the failure rates shown in
the table opposite. Make reasonable assumptions
where necessary, such as assuming that the failure
rate of K.map includes that of the inter-Cm bus.
(Note: Although a single-memory port of 64K
words of C.mmp seems sufficient for the task, a
single-port with multiple processors is a highly
unbalanced system and not only slows down the
system, but also is extremely susceptible to tran­
sient failures. Therefore, assume that at least as
many memory ports as the number of processors
are required for reliable operation of c.mmp.)

Failure Rate
(failure per 106

Component hrs.)

C.mmp
PDP-ll/40 56.9

Processor associated circuitry
(RELOC box, processor
interface) 20.3

Memory box (32K words) 159.6

Memory associated
circuitry/port (Priority
decode, etc.) 9.8

Switch 507.6

Cm*

LSI-ll processor 29.9

Memory (12K words;
semiconductor) 69.4

K.map 131.0

Linc 34.8

S.local 24.0

302 THE THEORY OF RELIABLE SYSTEM DESIGN

24. Consider a dual redundant system that normally
operates with both units running. Error detection
is achieved by comparing the outputs of the two
units. If either unit fails, the probability that the
failure is isolated correctly so that the remaining
unit (and system) continues to run properly is c
(coverage = c). The system can therefore fail in
two ways: both units fail (exhaustion of spares) or
one unit fails in a bad way (coverage failure).
Assume that each unit exhibits failure rate A and
repair rate J.I..
(Note: Whenever a coverage failure occurs, both
units are considered to have failed, and repair­
with rate J.I.-starts on each. The first one to be
repaired brings the system as a whole back up,
while repair continues on the other.)
a. Draw the complete four-state transition dia­

gram for the system and give the correspond­
ing T matrix.

b. Reduce the transition diagram to three states
and give the corresponding T matrix.

c. Derive the steady-state availability for the
three-state model.

25. Consider the dual redundant system discussed in
Chapter 5. Assume now that when both systems
have failed, two repairmen are called in, one for
each system. Furthermore, assume that the dual
system is configured as a main unit with a backup.
Whenever the main unit fails, there is only the
probability' c (coverage = c) that the backup
comes on-line successfully to keep the system
going. Whenever the backup fails, the system will
continue to operate if the main unit is working, or
will fail if the main unit has already failed without
yet being repaired. Both the main unit and the
backup unit exhibit failure rate A and repair rate J.I..
(Note: Whenever the main unit fails the backup
does not come on-line-coverage failure, both
units are considered to have failed, and repair­
with rate J.I.-starts on both. The first one to be
repaired brings the system as a whole back up,
while repair continues on the other.)

a. Draw the complete four-state transition dia­
gram.

b. Draw the three-state transition diagram ob­
tained by merging the states with a single failed
unit.

c. Derive the availability function A(t} for the
three-state model.

d. Derive the reliability function R(t), first draw­
ing the modified three-state transition diagram.

26. Tandem Computers, Inc. introduced a multiple
computer system in 1975 for critical applications,
characterized by a high cost for loss of computer
power. A prime example is electronic funds trans­
fer wherein interest is charged by the hour and one
company estimated a $300,000 revenue loss per
hour of computer down time. The structure of a
dual processor Tandem Non-Stop system is shown
below.

(C = computer)

The computers communicate via the intercompu­
ter Dynabus. The system is considered failed only
if both computers are down at the same time
(assume the Dynabus never fails).
a. Assume that the failure rate is exponential with

A = 1/1000 failures per hour. Also assume that
computer repair is exponential, with J.I. repairs
per hour. Develop the Markov model for the
system with A, J.I. as parameters. What is the
probability that the system is failed for J.I.
= 1/48 ? Draw a graph of probability of fail­
ure versus J.I..

b. What is the expected time to failure for the
system?

27. Reformulate the analysis in the Redundancy to
Enhance Chip Yield section for a RAM chip
employing the redundancy technique of your
choice.

:inancial Considerations

~TRODUCTION AND
JNDAMENTAL CONCEPTS

l1is chapter discusses several fundamental fi­
lllcial considerations in the development, ac­
lisition, and operation of a computer system
ld explains why knowledge of these costs is
lportant to the designer of a computer system
. component. These concepts can also guide the
wner or operator of a computer system in
isessing the effects of a system's reliability and
.aintainability on the cost of ownership.
Several fundamental terms and concepts will

~ defined and used as parameters in mathemat­
al models. Of primary interest are discounted
lsh-flow cost of ownership models, mainte­
:lllce cost models, life-cycle cost models, and
laintainability feature-decision analysis tech­
lques.

lefinitions

(aintenance cost is the cost associated with
~eping a computer system functioning accord-
19 to operational specifications. This very com­
lex topic should not be trivialized by the design­
~; maintenance cost constitutes a significant.
roportion of the cost of owning a computer,
tld it is under at least indirect control of the
esigner.
From the point of view of the maintenance

rovider, an important factor in the calculation
f maintenance cost is the installed base. This is
le number of systems (as a function of time)
lat the manufacturer is required to service.
orne customers may elect self-maintenance or
lird-party service (by someone other than the
lanufacturer); these are not included in the
lstalled base. (The fact that some customers
lay have fixed-price contracts and that others

303

304 THE THEORY OF RELIABLE SYSTEM DESIGN

pay for each service call is potentially significant
in terms of field service revenue but has no real
importance to the designer.) The installed base
can be estimated from three basic parameters:
the shipment rate, contract penetration rate, and
contract renewal rate.

The shipment rate is simply the number of
units sold, shipped, and installed in the field, as
a' function of time. Typically, the value of the
frequency distribution is low at the beginning
and end of product life, and very high in the
middle. The contract penetration rate is the per­
centage of customers who elect· to have the
manufacturer service their system. It does not
include those who either self-maintain or go to a
third party. This discussion makes no distinction
between per-call (parts and labor) and fixed­
price contract customers. Contract penetration is
normally quite high for medium- to large-scale
systems, ranging from 85 to 95 percent. The last
important parameter in determining installed
base is the contract renewal rate. This factor takes
into account the fact that not all customers
renew their commitment to service from the
manufacturer.

Table 6-1 is an example of an installed base
calculation with an assumed three-year shipment
rate (in quarters), a 75 percent contract penetra­
tion rate, and a 90 percent renewal rate. Seventy-

five percent of the customers receiving systems
take out a contract. Thus, 45 of the 60 systems
shipped in the first quarter become part of the
installed base, 150 of the 200 shipped in the
second quarter, and so on. The last column
shows the accumulation of these contracts in the
installed base.

By the fifth quarter, 90 percent of the 45
contracts coming up for renewal· are actually
renewed, resulting in the attrition of approxi­
mately five contracts. The last column in the fifth
quarter shows the addition of 1,050 contracts
(from new shipments) to the installed base, mi­
nus the attrition of five.

In the ninth quarter, the attrition is 10 percent
of the fifth quarter's new contracts (l05), plus 10
percent of the 40 remaining contracts opened in
the first quarter. Figure 6-1 restates Table 6-1
graphically.

Sources of Maintenance Costs

Labor Expense

The largest expenditure for computer servicing is
for labor. Even the most efficient field service
organizations have an average round-trip travel
time to and from the customer's site (that is,
totally unproductive time) on the order of 1.5

Table ~1. Example of installed base calculation.

New Contract Total
Quarter Shipments Contracts Attrition Contracts

1 60 45 0 45
2 200 150 0 195
3 1,000 750 0 945
4 1,400 1,050 0 1,995
5 1,400 1,050 5 3,040
6 1,400 1,050 15 4,075
7 1,400 1,050 75 5,050
8 1,200 900 105 5,845
9 600 450 109 6,186

10 300 225 119 6,292
11 0 0 173 6,119
12 0 0 185 5,934

..
~
~

E
:=
z

7,000

6,000

5,000

4,000

3,000

2,000

1,000

FINANCIAL CONSIDERATIONS 305

o
Quarter

Figure 6-1. Example of installed base curve.

hours. At $50 or more per hour, fully burdened,
a service call costs the service provider $75
before any work is performed. Labor expense
depends on Mean Time Between Failures, Mean
Time To Repair, Preventive Maintenance (PM)
interval, Mean Time to PM, travel times, average
labor cost, and support ratio (a measurement of
the amount of assistance needed on a particular
service call). The formula below is a rough
estimate of the annual labor expense involved in
servicing a computer system.

ALE = {CPH}{8760}

X {(MTTR + TTR)/MTBF

+(MTPM + TTPM)/MTBP}

where:
ALE = annual labor expense,
CPH = cost per hour for labor,
8760 == number of hours in a year,
MTTR = mean time to repair,
TTR = travel time for a repair call,
MTBF = mean time between failures,
MTPM = mean time to perform pre-

ventive maintenance,
TTPM = travel time for a preventive

maintenance call, and
MTBP = mean time between preven­

tive maintenance.

Assume that the labor cost per hour is $50, the
MTTR is 2.5 hours, and the MTPM is 4.5 hours.

306 THE THEORY OF RELIABLE SYSTEM DESIGN

Further assume a travel time of 1.5 hours for a
repair and 0.5 hours for a PM (it is usually
assumed that because several simultaneous PMs
can be scheduled in advance, the cost of travel
time can be apportioned among several devices).
For an MTBF of 4,000 hours and an MTBP of
5,000 hours, the annual labor expense is:

ALE = {50}{8760}{(2.5 + 1.5)/(4000)

+(4.5 + .5)/5000}

= {50}{8760}{(.00I) + (.OOt)}

= $876.

Material Expense

The next largest expense is the cost of the Field
Replaceable Unit (FRU). The choice between a
logical and physical partitioning of the system is
crucial for a system designer, for it directly
affects both the maintainability and cost of own­
ership of the system. The cost impact can be
estimated from the cost and reliability of each
FR U as follows:

Total Cost = L{(FRU cost)j

x (FRU failure rate)j}

This formula, however, estimates only the cost of
replacing failed hardware. For the service pro­
vider, there are also other costs.

Inventory Costs. Inventory costs are the costs
associated with keeping a supply of spare parts;
they consist of all the costs of maintaining a
supply depot, including order processing costs
and the fully burdened cost per square foot of
the building.

Level of Service. An important· consideration
in determining inventory costs is the level of
service. In this context, level of service is the
conditional probability that a part is in stock,
given a failure of that part. If the MTBF of each
part and its field population are known, a rela­
tively straightforward statistical calculation can

determine how much of each part to have in
stock to attain a given level of service.

Other Expenses

Training Costs. The persons who service the
computer must be trained. Whether the owner
self-maintains the system or purchases field ser­
vice externally, this cost is ultimately borne by
the system owner. Because training and course
development can be a significant expense, it is
important to design a system that minimizes the
amount of special training necessary.

Depreciation of Capital Equipment. If special
test equipment is required to service the comput­
er system, the cost of that equipment may be
significant and must be taken into account by
both the system purchaser and the designer. For
example, such equipment is frequently written
off during a period of 5 years, using the double­
declining balance method. This method expenses
the cost of the equipment at a rate double that of
a linear method, but .it applies this rate to the
remaining balance instead of to the original
amount. Thus, a straight-line depreciation over 5
years would be 20 percent per year. A double­
declining balance would write off 40 percent in
the first year, 40 percent of the remainder (40
percent of 60 percent, or 24 percent) the next
year, and 40 percent of the remainder (40 per­
cent of 36 percent, or 14.4 percent) the third
year. Because this series is infinite, it is custom­
ary to divide the remainder evenly between the
la·st 2 years; thus, 10.8 percent of the original
cost is written off in each of the last 2 years.

Cost of Customer Ownership

Cost of ownership is the true total cost of owning
a computer system, not just the acquisition cost.
It includes a multitude of factors, such as pur­
chase cost; maintenance cost; and costs of
downtime, site preparation, storage media and
supplies, power, environmental conditioning,

and operating personnel. Maintenance cost
alone can easily equal the purchase price after
just 5 years of operation.

The other costs of operation can render the
purchase cost relatively insignificant. Consider
especially the cost of downtime. Presumably, all
computer systems are purchased in order to
increase productivity and efficiency. If a comput­
er system is properly utilized (consistently loaded
at or near full capacity), an interruption in
service will inevitably lead to a loss of money or
time, which normally equates to loss of revenue.

It is difficult to present a generalized model of
the cost of downtime because it varies greatly
with the application. In some systems it is negli­
gible; in others, it far outweighs any other finan­
cial considerations. Finally, in some applications
its value cannot be computed because the surviv­
al of priceless things (such as a human life)
depends upon the computer's continuous opera­
tion. Below are some examples of systems in
which the cost of downtime is high.

On-Line Billing System. In an on-line billing
system used, say, by a telephone company for
recording charges on long distance calls, the lost
revenue when the system is down is practically
unrecoverable, and typically substantial. In this
case, a "lost-revenue-per-hour" figure should be
arrived at by the system's financial analysts and
factored into the cost of ownership.

Airline Reservation System. It is more difficult
to establish a quantitative measure of lost book­
ings due to this system's failure, but it can
obviously be significant.

Electronic Funds Transfer. When money is be­
ing transmitted electronically, there is a great
danger that system failure (including loss of data
integrity) can lead to large losses.

Life-Support Systems. In systems such as those
for monitoring hospital intensive care patients,
system failure at an inopportune time can lead to
loss of life. With the increasing use of computers

FINANCIAL CONSIDERATIONS 307

in medical care and biomedical engineering, the
incidence of loss of life due to computer failures
is bound to increase. The cost is, of course,
impossible to assess. Systems that deal with
transportation (such as flight control systems)
and building management (such as fire alarm
and containment systems) also belong in this'
category.

National Defense Systems. Computers now
form the backbone of the defense of entire
countries. A recent minicomputer failure result­
ed in an indication that a Russian missile attack
on the United States was taking place. The
system was designed to fail "safely," that is, to
indicate an- attack when it failed. (The premise
adopted is that it is better to indicate an attack
when none is occurring than not to indicate an
attack when one is occurring.) Fortunately, an
adequate system of cross-checks was necessary
before counteroffensive measures were taken, the
failure was discovered before any potentially
devastating actions occurred.

Net Present Value

A simplified economic model of the cost of
computer ownership assumes an initial cash pur­
chase, followed by periodic maintenance pay­
ments. It is possible to compute the true cost of
ownership as the present value of these outlays.
Present value is a financial concept that takes the
time value of money into account; that is, if you
receive $10 today and put it into a savings
account for a year at a 10 percent effective
annual interest rate, in a year you will have $11.
Conversely, if I promise to give you $11 one year
from today, its present value is only $10.

The rate used to calculate present value is
known as the discount rate. Assuming a discount
rate of 10 percent, the present value of a dollar
received or expended one year from now is:

(1 + 0.10)

308 THE THEORY OF RELIABLE SYSTEM DESIGN

The present value of a dollar received or expend­
ed two years from now has a present-value factor
of:

(1 + 0.10)2

and so on.
Assume an initial cost of $1 million, an annual

maintenance cost of $100,000, an income tax
rate of 50 percent, a write-off over 5 years using
the double-declining balance method, and a dis­
count rate of 10 percent. Table 6-2 lists the cost
of ownership.

The amount in column 3 is the depreciation on
the capital outlay according to the double-de­
clining balance method. Column 4 is the differ­
ence between columns 2 and 3, or the net
expense. Column 5 shows the after-tax cash flow
(50 percent is deductible from the company's
income tax). Column 6 shows the present-value
factors. Column 7 is the product of columns 5
and 6.

After subtracting the sum of column 7 from
the initial outlay of $1 million, the cost of
ownership is $784,050.

Alternatives to Net Present Value

There are several alternatives to assessing cost of
ownership by the net present value method used

above. The first is the payback method, which
assumes no time value of money and thus simply
adds (or subtracts) the yearly net values to the
initial investment. The payback period is then
defined as the time at which the cumulative cash
flows reach zero.

A better alternative is Internal Rate of Return
(IRR). To determine the internal rate of return,
the discount value is assumed to be unknown,
and an iterative procedure is performed to dis­
cover the discount rate at which the net present
value equals zero. The company establishes a
minimum IRR, and if the IRR is greater than
this minimum, it is a desirable investment.

FIELD SERVICE OVERVIEW AND
COST MODELS

In many computer companies, field service
(hardware and software) is a business unit with
independent responsibility for profit and loss.
The expense the company incurs when repairing
equipment under warranty accumulates in the
field service department. Because each compa­
ny's financial structure varies, it is impossible to
generalize about the field service business units,
but it is important to realize that field service
revenues can be a significant proportion of cor­
porate revenues, in some cases approaching 30
percent. For a large end-user minicomputer com-

Table 6-2. Example of cost of ownership calculation (in thousands of dollars).

(1) (2) (3) (4) (5) (6) (7)
Present

Maintenance After Tax Value Discounted
Year Cost Depreciation Net Cash Flow Factor Cash Flow

1 100 400 -300 -150 0.909 -136.36
2 100 240 -140 -70 0.826 -57.85
3 100 144 -44 -22 0.751 -16.53
4 100 108 -8 -4 0.683 -2.73
5 100 108 -8 -4 0.621 -2.48

Total-215.95

pany or mainframe manufacturer, field service
personnel typically account for 20-30 percent of
the total personnel.

Field service is a labor intensive business, with
travel time also a very significant part of the
expense. The cost of field· service is determined
primarily by product traits (reliability, diagnosa­
lxlity, and the like). The business can be further
characterized by a potentially lengthy and strong
commitment to the customer. There are inherent
risks in charging fixed contract prices: loss of
profits if the price is set too low, and loss of
business to third-party maintenance organiza­
tions if the price is too high.

There is also a growing set of legal considera­
tions about which to worry. What if a client
company loses substantial revenue because of
the failure of a computer? What if property
damage results from a computer malfunction?
What if personal injury occurs as the result of an
unsafe design? In one case, a small data proces­
sing company was located near a fire station.
Electromagnetic emissions from some of the
computer equipment were interfering with the
fire department's radio communications. The
problem was remedied before any damage was
done, but the consequences of a computer's
interfering with the reporting of a major fire
could have been critical. The number of individ­
uallitigations, class action suits, and government
regulations is likely to increase as computers and
the consequences of their malfunctions prolifer­
ate.

Maintenance Cost Models

Maintenance cost models estimate the variable
costs associated with servicing a particular sys­
tem or part of a system. A variable cost is one
that varies in direct proportion to the number of
service calls received, as distinct from a fixed
cost, which is incurred independently of the
number of calls received. Typically, a variable

FINANCIAL CONSIDERATIONS 309

cost is the cost of a particular replacement part
for a broken computer system. An example of a
fixed cost is the cost of a piece of test equipment,
which is required whether or not anything ever
actually breaks.

Typical parameters in a maintenance cost mo­
del are:

• Mean time between failures
• Mean time to repair
• Travel time associated with the service call, perhaps

computed at some average rate
• Material consumed, such as replacement parts and

lubricants
• Preventive maintenance performed, either on a reg­

ular basis or in conjunction with a repair action
• Cost of labor

The results of such a calculation would pro­
vide a rough estimate of the cost per unit time of
maintaining a system or part of a system. This
type of model ignores fixed (front-end) costs and
can be expected to estimate only variable costs.

A comprehensive model that includes these
fixed costs, as well as items such as salvage value,
has been developed by Xerox and reported in
Pierce [1977]. Alternative designs can easily be
analyzed, as the histograms in Figure 6-2 demon­
strate. This case involved comparison of three
alternative packaging schemes. The overall life
costs were shown to be less for one large, rela­
tively expensive board than for a system parti­
tioned into smaller boards; the smaller boards
had decreased reliability resulting from the in­
crease in number of connectors.

Sensitivity analyses evaluate the effect of var­
ious parameters on profitability. Figure 6-3
shows an example.

Other trade-off studies performed with this
model include:

• Should the diagnostic hardware for the system be
included as part of the system hardware or carried
by the field engineer?

• Should a unit replaced in the field be repaired and
recirculated or discarded?

310 THE THEORY OF RELIABLE SYSTEM DESIGN

Life cycle costs ~ $

Single board {
configuration

Servo rep carry-return for repair I
Servo rep. carry-throwaway J
No carry-return for repair I
No carry-throwaway J

{

Servo rep. carry-return for repair I
Multi-board Servo rep. carry-throwaway J

configuration No carry-return for repair J
No carry-throwaway J

Figure 6-2. Life-cycle costs of alternative configu­
rations.

• Should a given availability goal for a subassembly
be achieved by improving its reliability or its main­
tainability?

• At what level (region, district, branch, individual
person) should a spare part be stocked?

Table 6-3 lists the model sensitivity to primary
categories of input and output data [Pierce 1977].

Maintenance Cost Model with
Risks

Risk factors could be added to the above model,
in the form of probability distributions expected
for each of the parameters. Adding risk factors
would take into account the fundamentally ran­
dom nature of failures. The model parameters
could be established to give minimum cost (with
appropriate confidence levels), average cost, and
so on.

The outputs would be a probability distribu­
tion of the expected maintenance costs instead of
a point estimate. This type of model facilitates a
simple sensitivity analysis, answering questions
such as:

• What happens to the cost. of maintenance if the
MTBF is 10 percent higher than the estimate?

• What happens to the cost of maintenance if the
MITR is decreased by 15 minutes?

-30 -20 -10 0 +10 +20 +30
Percent change in assumptions

Figure 6-3. Profit sensitivities.

feature failure-Mode Matrix

A feature failure-mode matrix is a technique to
evaluate a series of maintainability features for
their effect on the cost of maintaining a given
system or device. For example, for a hypothetical
digital tape unit, engineering can generate a list
of potential maintainability features such as data
path loop-around, error simulation, internal par­
ity, speed check, skew check, and power check.
Field service can provide a list of failure modes
(projected from experience with previous similar
designs) such as permanent/intermittent data
path errors, faulty controller, faulty error logic,
faulty head preamplifier, faulty servos, and
faulty power supply. These features and modes
are then put in matrix form, as shown in Table
6-4.

Next to each maintainability feature is the
estimated percent of failures resulting from each
of the defined failure modes. At each intersection
of a feature and a failure mode is an estimate of
the time that would be saved when repairing this
failure, were the feature present. A projection of
the total time saved by each maintainability
feature can then be obtained by taking column­
wide weigh ted averages.

FINANCIAL CONSIDERATIONS 311

Table 6-3. Input and output parameters for a maintenance cost model.

Primary data inputs are listed by category as follows:

Part data
1. Unit cost
2. Repair cost
3. Repair transportation cost
4. Power-on hours
5. Repair turnaround time
6. Repair attrition
7. Part population
8. Erroneous replacements
9. Replacement rates (MTBF)

10. Reliability growth
11. On-site time to repair
12. Salvage value

Business economic factors
1. Life-cycle period
2. Corporation-selected depreciation
3. Corporate tax rate
4. Service Personnel labor rate
5. Part cost improvement
6. Machine placements
7. Machine workload per service personnel

Program option controls
1. Detailed or summarized output
2. Supplemental quarterly output
3. Unit cost vs. reliability indifference routine
4. Part repair or discard evaluation
5. Service rep carry part or no-carry evaluation
6. Computations without present value,

depreciation, and tax influences

The decision about whether to include a par­
ticular feature in the final design would proceed
as follows: From an estimate of the base param­
eters of the design (MTBF, MTTR, MTPM),
calculate the projected decrease in MTTR due to
the feature. Using an appropriate cost model
with sales projections, calculate the present value
of incorporating this feature. Compare this result
with the cost of including this feature in the
design, including development cost and the cost
of the hardware for all the units to be shipped,
expressed in present value. Incorporate the fea-

Primary data outputs obtained are listed as follows:

1. Increase in number of service personnel by year
2. Number of spares replaced per year
3. Average cost of a spare item
4. Mean corrective maintenance time
5. Number of spares returned from the field per year
6. Number of additional spares needed per year
7. Number of spares shipped to the field per year
8. Number of nonrepairable parts
9. Number of parts in field inventory

10. Number of parts returned from the repair facility
11. Initial cost of parts per year
12. Initial parts depreciation/tax recovery per year
13. Cost of replaced spare parts per year
14. Tax recovery from replaced parts per year
15. Cost of service labor per year
16. Shipping cost of failed parts per year
l7. Cost of vendor repair of failed parts per year
18. Shipping cost of spares per year
19. Salvage value of nonrepair parts

ture if the difference between the life-cycle cost
savings and the feature's cost is positive.

Life-Cycle Cost (LCC) Models

Life-cycle cost models take into account the total
product business profile: the cost of purchase of
the computer system, maintenance, supplies, en­
vironmental controls, power, and so on. Every
expense associated with owning a computer is
considered.

312 THE THEORY OF RELIABLE SYSTEM DESIGN

1
Q./

E
o
\J

.5

1
Figure 6-4. Cost and income distribution over the life of a system.

Table 6-4. A feature failure-mode matrix.

Permanent
data path 11% 74 24 74

Intermittent
data path 2 168

Controller 6

Error
logic 6 24 54 24

Head
preamp 10 84 84

Servos 25 90 210 6

Power
supply 5 90

Minutes
saved 18 6 21 97.5 52.5 4.5 16.5

Such a model enables an organization to eval­
late design alternatives with regard to effects on
ife-cycle cost and to make a choice that mini­
rlizes that cost. Figure 6-4 shows how revenues
,nd expenses (the difference of which is defined
.s income) might vary over time. Engineering
xpenses dominate the first years, and manufac­
uring and service expenses begin to take over as
ales revenues increase. Even after manufactur­
rlg has ceased, service expenses and revenues
ontinue for a long time, with (it is hoped) a net
lositive income.

Typical inputs to an LCC model might be:

Shipment forecasts over the planned life of the
product
Contract penetration (the percentage of customers
electing to purchase service contracts) and renewal
(percentage renewing each year) rates

FINANCIAL CONSIDERATIONS 313

• List price of the system
• Warranty period
• Spares requirements (number of spare parts kits

required per system, cost per kit)
• Installation expenses (labor and material expense

per installation), expenses incurred due to DOA
(dead-on-arrival) parts, and other installation diffi­
culties

• MTTR, varying over time as experience with repair­
ing the system increases

• Labor costs per corrective and preventive mainte-
nance action

• MTBF, several values for a sensitivity analysis
• Travel time
• An estimate of average material cost per failure
• Training costs
• Capital equipment costs
• Spare parts inventory carrying expense

The result of such an analysis would be a
tabulation of maintenance cost as a function of
MTBF (or other independent variables), profit

Table 6-5. Cost of manufacturing three systems as a function of time with
different MTBFs (base: 6 months, alternative 1: 8.5 months, alternative 2: 10
months) in thousands of dollars.

Alternative 1 Alternative 2
Quarter Shipments Base ($K) ($K) ($K)

I I 11 11.3 11.8
2 4 44 45.2 47.2
3 73 803 824.9 861.4
4 354 3,894 4,000.2 4,177.2
5 612 6,732 6,915.6 7,221.6
6 820 9,020 9,266.0 9,676.0
7 990 10,890 11,187.0 11,682.0
8 1,000 11,000 11,300.0 11,800.0
9 1,000 11,000 11,300.0 11,800.0

10 1,000 11,000 11,300.0 11,800.0
II 1,000 11,000 11,300.0 11,800.0
12 1,000 11,000 11,300.0 11,800.0
13 1,000 11,000 11,300.0 11,800.0
14 1,000 11,000 11,300.0 11,800.0
15 1,000 11,000 11,300.0 11,800.0
16 1,000 11,000 11,300.0 11,800.0
17 650 7,150 7,345.0 7,670.0
18 447 4,917 5,051.1 5,274.6
19 320 3,520 3,616.0 3,776.0
20 229 2,519 2,587.7 2,702.2

314 THE THEORY OF RELIABLE SYSTEM DESIGN

and loss information, and warranty expense esti­
mates, all with discounted cash flows.

Table 6-5 lists the five-year expense forecasts
for manufacturing costs of a hypothetical piece
of equipment under a base case (6 months
MTBF) and two alternatives (8.5 and 10 months
MTBF). The basic assumption is that increased
reliability requires a higher manufacturing cost
and results in a higher field MTBF and lower
field MITR. This example assumes that the
system manufacturing cost was $11,000 in the
base case, $300 more for the first alternative, and
$800 more for the second alternative.

Table 6-6 lists the service costs for the base
case and the two alternatives over the five-year
planned shipments of the product. There is a
decrease in service costs due to increased
MTBFs and an asociated increase in manufac­
turing costs. From a life-cycle cost point of view,
which alternative is preferable?

Tables 6-7, 6-8, and 6-9 list the discounted
expenses (manufacturing' and service ') over the
shipment life of the product. At the bottom of
the primed columns is the discounted present
value of service and manufacturing costs and
their total for the base case and two alternatives.
In summary:

• The total discounted present value for the base case
(6 months MTBF and $11,000 manufacturing cost)
is $109,277,600.

• The total discounted present value for Alternative I
(8.5 months MTBF and $11,300 manufacturing cost)
is $108,152,300.

• The total discounted present value for Alternative 2
(10 months MTBF and $11,800 manufacturing cost)
is $110,849,300.

This analysis shows that Alternative 1 has the
best financial profile, because it has the lowest
total life-cycle cost, and Alternative 2 has the
lowest service cost (about 2 percent less than
Alternative 1). Is it worth the investment?

Table 6-6. Cost of maintaining three systems
with different MTBFs (base: 6 months, alternative
1: 8.5 months, alternative 2: 10 months) (in
thousands of dollars).

Base Alternative 1
Quarter ($K) ($K)

° 17 17
1 425 425
2 196 177
3 554 493
4 847 757
5 909 818
6 1,179 1,045
7 1,243 1,075
8 1,576 1,309
9 1,777 1,481

10 1,852 1,527
11 2,042 1,673
12 2,194 1,776
13 2,336 1,876
14 2,484 1,981
15 2,626 2,081
16 2,609 2,044
17 2,448 1,866
18 2,345 1,767
19 2,265 1,677
20 2,224 1,633

LCC Model with Generalized
Data Elements

Alternative 2
($K)

17
425
170
462
709
773
992

1,007
1,239
1,361
1,401
1,521
1,609
1,693
1,782
1,866
1,831
1,651
1,542
1,464
1,419

Common Lce models require detailed and pre­
cise analysis of the system's characteristics and
its operating environment. It is a difficult task to
compare alternative designs, for much informa­
tion must be collected and entered in the model
for each alternative. Eames and Spann [1977]
have developed a method that uses cursory sys­
tem descriptions to produce timely and compre­
hensive Lee data to support design decisions.

Implied Characteristics

The system is first classified according to the
following implied characteristics:

FINANCIAL CONSIDERATIONS 315

Table &-7. Discounted cost of manufacturing and service for the base system
(in thousands of dollars).

Manufacturing Manufacturing' Service Service'
Quarter ($K) ($K) ($K) ($K)

° 17 17.0
1 11 10.5 425 406.1
2 44 40.2 196 178.9
3 803 700.4 554 483.2
4 3,894 3,245.4 847 705.9
5 6,732 5,360.9 909 723.9
6 9,020 6,863.1 1,179 897.1
7 10,890 7,917.0 1,243 903.7
8 11,000 7,640.9 1,576 1,094.7
9 11,000 7,300.7 1,777 1,179.4

10 11,000 6,975.7 1,852 1,174.4
11 11,000 6,665.1 2,042 1,237.3
12 11,000 6,368.3 2,194 1,270.2
13 11,000 6,084.8 2,336 1,292.2
14 11,000 5,813.8 2,484 1,312.9
15 11,000 5,555.0 2,626 1,326.1
16 11,000 5,307.6 2,609 1,258.9
17 7,150 3,296.4 2,448 1,128.6
18 4,917 2,165.9 2,345 1,033.0
19 3,520 1,481.5 2,265 953.3
20 2,519 1,013.0 2,224 894.4

Present values 89,806.4 19,471.2

Total present value = $109,277.6

Table 6-8. Discounted cost of manufacturing and service for the first alterna-
tive with a 42 percent improvement in MTBF (in thousands of dollars).

Manufacturing Manufacturing
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K)

° 17 17.0
1 11.3 10.8 425 406.1
2 45.2 41.3 177 161.6
3 824.9 719.5 493 430.0
4 4,000.2 3,333.9 757 630.9
5 6,915.6 5,507.1 818 651.4
6 9,266.0 7,050.3 1,045 795.1
7 11,187.0 8,133.0 1,075 781.5
8 11,300.0 7,849.3 1,309 909.3
9 11,300.0 7,499.8 1,481 982.9

10 11,300.0 7,165.9 1,527 968.3

316 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 6-8 -Continued

Manufacturing Manufacturing
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K)

11 11,300.0 6,846.8 1,673 1,013.7
12 11,300.0 6,542.0 1,776 1,028.2
13 11,300.0 6,250.7 1,876 1,037.7
14 11,300.0 5,972.4 1,981 1,047.0
15 11,300.0 5,706.5 2,081 1,050.9
16 11,300.0 5,452.4 2,044 986.3
17 7,345.0 3,386.3 1,866 860.3
18 5,051.1 2,225.0 1,767 775.7
19 3,616.0 1,521.9 1,677 705.8
20 2,587.7 1,040.6 1,633 656.7

Present values 92,255.7 15,896.6

Total present value = $108,152.3

Table 6-9. Discounted cost of manufacturing and service for the second
alternative with a 67 percent improvement in MTBF (in thousands of dollars).

Manufacturing Manufacturing
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K)

° 17 17.0
1 11.8 11.3 425 406.1
2 47.2 43.1 170 155.2
3 861.4 751.4 462 403.0
4 4,177.2 3,481.5 709 590.9
5 7,221.6 5,750.8 773 615.6
6 9,676.0 7,362.3 992 754.8
7 11,682.0 8,492.8 1,007 732.1
8 11,800.0 8,196.6 1,239 860.6
9 11,800.0 7,831.7 1,361 903.3

10 11,800.0 7,483.0 1,401 888.4
11 11,800.0 7,149.8 1,521 921.6
12 11,800.0 6,831.5 1,609 931.5
13 11,800.0 6,527.3 1,693 936.5
14 11,800.0 6,236.7 1,782 941.8
15 11,800.0 5,958.9 1,866 942.3
16 11,800.0 5,693.6 1,831 883.5
17 7,670.0 3,536.1 1,651 761.2
18 5,274.6 2,323.5 1,542 679.3
19 3,776.0 1,589.3 1,464 616.2
20 2,702.2 1,086.7 1,419 570.6

Present values 96,337.8 14,511.5

Total present value = $110,849.3

, Reliability- developed from a parts stress analysis,
from past engineering data and estimates, or from a
parts-count reliability prediction model.

, Maintainability- determined from maintainability
scores described in MIL-HDBK-472, Procedure III.

, Availability-the availability of a nonredundant
functional entity related to its reliability and main­
tainability by:

MTTF
Ae = (MTTF + MTTR)

The system availability can then be estimated by
taking the product of the availabilities of each
functional entity, provided that system operation is
dependent upon concurrent and continuous func­
tioning of each entity and that the functional entities
are independent in terms of failures and repairs.

Cost Categories

These data are then incorporated in an LCC
estimate that includes the following cost catego­
ries:

• Research and development costs
• Investment costs

• Acquisition
• Initial installation
• Initial and replaceable spares
• Support equipment
• Personnel training
• Management and technical data
• New facilities

• Operating and support costs
• Organizational level maintenance
• Intermediate and depot level maintenance
• Inventory manag~ment

Table 6-10 lists a description of the variables
used and the resulting equations, with suggested
typical values for the constants.

A method of quantifying revenue loss resulting
from system downtime is: determine the opti­
mum simplex system, and divide the total LCC
by the number of hours in the system design life.
The optimum simplex system is defined as a
system with no redundancy, but with maintaina­
bility and fault-intolerant features optimized for
minimum life-cycle cost. Eames and Spann
[1977] cite an example of a system whose design
life is 10 years, with a total LCC of $10 million.

FINANCIAL CONSIDERATIONS 317

If the system is being used 24 hours a day, the
user of the system is paying:

$ 10M $114.16
87,600 hour

for the use of the system. Therefore it must be
worth at least this amount to keep the system
running.

Consider a large computer-aided instruction
(CAl) system *, consisting of keyboards, video
terminals, tape units, line printers, software, and
various controllers and display generation' equip­
ment. Each of these system components is first
assigned to one of two categories: electrome­
chanical and large electronic assemblies, and
printed circuit boards and small electronic as­
semblies. LCC analyses are performed with the
parameters described above. The system is first
considered in its optimum simplex form; Table
6-11 shows the results for three different part
quality grades.

Next, the effects of various kinds and degrees
of redundancy are considered. Table 6-12 com­
pares the results. Column A restates the results
of the optimum simplex analysis. Column B
shows three variations of a 9-out-of-l0 redun­
dancy scheme: 11 percent of the system with 9-
out-of-l0 redundancy, the rest simplex; 63 per­
cent with 9-out-of-l0 redundancy, the rest sim­
plex; and 100 percent with 9-out-of-10 redun­
dancy. Columns C and D show similar analyses
with 4-out-of-5 and l-out-of-2 redundancies in
various portions of the system.

The ratio of LCC change to the change in
system downtime yields the value of avoiding
downtime for each of these approaches. Figure
6-5 shows these values graphically.

CONCLUSIONS

It is for a financial reason of one sort or another
that any fault-tolerant system is designed and

• This example is adapted from Eames and Spann [1977].

318 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 6-10. A simple life-cycle cost model and its parameters.

Description of Variables:

NUM Number of
equipment items

HOURS Total life cycle
operating hours
per equipment
item

LABOR Average labor
rate $/MH

RPPTIP Ratio of system
purchase price
to sum of
PRICE(I)

DEVELS Cost of
development

INSTAS Cost of initial
installation
material and
equipment, $

MTTF Mean Time To
Failure for the
whole system

TQUANT Total quantity
of systems to be
made to
amortize
development
costs

All the Jollowing are arrays oj size 'NUM'

PRICE Initial price

TFAIL Failure rate for
total quantity of
equipment
item(I), F /MHR

QUANT Total quantity
of equipment
item(I)

Equations:

Acquisition = RPPTIP X L [PRICE (I)
X QUANT (I)]

Development = DEVELS/TQUANT

Initial Installation = INSTAS

Initial and replaceable spares =

(0.05 + HOURS X 6.0E-6) X Acquisition

Organizational level maintenance =
in! (HOURS/MTTF) X (L [TFAIL (I)

Input

Input

50.00

0.40

Input

Input

Input

Input

Input

Input

Input

X MTTFx I.OE-6 X {I.O - FlXDLQ - FlXILQ}
X XU)] + TRIP)
Where X (I) = AOLRTS X PRICE (I) + AOLRT
X LABOR

Source: Note this model is a modified version of one
proposed in Life Cycle Analysis Utilizing Generalized Data

These are assumed to be constant:

FIXILQ Fraction of 0.20
failures repaired
at intermediate
level (IL)
branch office by
quantity

FIXDLQ Fraction of 0.20,0.50
failures repaired
at depot level
(DL) by quantity

AILRS Average IL 0.05
repair material
cost percent of
PRICE

AILRT Average IL 5.0
repair time. mh

ADLRS Average DL 0.10
repair material
cost percent of
PRICE

ADLRT Average DL 5.0
repair time. mh

AOLRT Average 5.0
organiza tional
level (OL)
factory repair
time. mh

AOLRTS Average OL 0.20
repair material
cost percent of
PRICE

TRIP Cost to make 100
service trip

Intermediate and depot level maintenance =

int (HOURS/MTTF) X (L [TFAIL (I) X MTTF X
I.OE-6 X {FIXILQ X V (I) + FlXDLQ
X W (I)}] + TRIP)
Where V (I) = AILRS X PRICE (I) + AILRT X

LABOR
and W(I) = ADLRS X PRICE (I) + ADLRTx
LABOR

Inventory management = 4.0 X Initial Installation

Support Equipment = 0

Personnel Training = 0

Management and Technical Data = 0

New Facilities = 0

Elements by Susan Eames and Al Spann of GTE Sylvania
Incorpora ted.

FINANCIAL CONSI DERA TlONS 319

$13M

$12M

$11M

$10M

$9M

$8M

9_out-of-10 redundancy

l~~~~;;;;;;;;;;;;;;;;==~~~~~~~~::::~$~39~2~/~H:r~ $7M
1,785 1,600 1,400 1,200 1,000 800 600 400 200 o

(-- Ten-year downtime, hours
I I I I I

0.97962 0.98173 0.9863 0.99018 0.99543 1.0

Figure 6-5. Cost-to-reduce downtime.

Table 6-11. Example of effects of component quality levels on Lee.

Parts Quality Grade:
Total LRUs:
Availability:
Mean Uptime:

Acquisition

Developmen t

Initial installation

Initial and replacement spares

Organization level maintenance

Branch and depot level
maintenance

Inventory management

Support equipment

Personnel training

Management and technical data

New facilities

Life-cycle cost

Commercial
1,600
0.979624
24 Hrs.

$ 2,560,000

207,999

84,979

2,880,000

125,974

430,346

309,287

185,000

o
200,804

o
$ 6,984,389

MIL
1,600
0.993635
78 Hrs.

$ 2,900,244

207,999

84,979

3,262,804

122,017

147,256

309,287

185,000

o
196,638

o
$ 7,416,224

Cost to Avoid
Downtime
$360/Hr.

HI-REL
1,600
0.997444
195 Hrs.

$ 4,400,516

207,999

84,979

4,950,596

120,968

84,849

309,287

185,000

o
195,530

o
$ 10,539,720

Cost to Avoid
Downtime
$11,484/Hr.

320 THE THEORY OF RELIABLE SYSTEM DESIGN

Table 6-12. Example of effects on LCC of reliability improvement via
redundancy.

A

Configura tion: Series

Total LRUs: 1600

A vaila hili ty: 0.979624

Mean uptime: 24 Hrs.

Acquisition $ 2,560,000

Development 207,099

Initial installation 84,979

Initial and replacement spares 2,880,000

Organization level maintenance 125,974

Branch and depot level mainte-
nance 430,346

Inventory management 309,287

Support equipment 185,000

Personnel training 0

Management and technical data 200,804

New facilities 0

Life-cycle cost $ 6,984,389

built. Calculating the costs and/or benefits of a
given high reliability, maintainability, or availa­
bility design is a complex task. This chapter has
explained important financial concepts related to
the purchase, operation, and servicing of a com­
puter system. Also explained were several math­
ematical techniques, including discounted cash­
flow cost-of-ownership calculations, mainte­
nance cost and life-cycle cost models, and a
method to assess the cost effectiveness of main­
tainability features.

..

B
9-out-oJ-IO Redundancy

11% Redun- 63% Redun- 100% Redun-
dancy dancy dancy

1617 1706 1777

0.981619 0.991583 0.999540

26 Hrs. 58 Hrs. l.085 Hrs.

$ 2,588,423 $ 2,730,836 $ 2,844,423

216,412 225,545 235,674

85,086 85,619 86,046

2,908,423 3,050,636 3,164,423

127,374 134,372 139,970

435,125 459,034 478,163

309,287 309,287 309,287

185,000 185,000 185,000

0 0 0

202,291 209,710 215,649

0 0 0

$ 7,057,421 $ 7,389,939 $ 7,658,635

Cost to avoid downtime $392/Hr. •

This chapter should give the design engineer
an adequate understanding of the principles nec­
essary for a rudimentary analysis of the financial
considerations for a given system. More sophis­
ticated problems can be handled by financial
analysts and management scientists.

REFERENCES

Eames and Spann [1977]; Pierce [1977].

C
4-out-of-5 Redundancy

2% Redun- 65% Redun- 100% Redun-
dancy dancy dancy

1640 1839 2000

0.981619 0.991562 0.999484

26 Hrs. 58 Hrs. 967 Hrs.

$ 2,624,000 $ 2,943,906 $ 3,199,903

216,527 226,437 237,812

85,219 86,419 87,379

2,944,000 3,263,906 3,519,903

129,122 144,869 157,466

441,110 494,905 537,931

309,287 309,287 309,287

185,000 185,000 185,000

0 0 0

204,143 220,845 234,209

0 0 0

$ 7,138,408 $ 7,875,624 $ 8,468,890

"'--Cost to avoid downtime $865/Hr. ~ •

tROBLEMS

Suppose that you are issuing maintenance con­
tracts on a new system with the following shipment
schedule:

Quarter
1
2
3
4
5

Shipments
50

250
1250
4000
5000

FINANCIAL CONSIDERATIONS 321

D
1-out-of-2 Redundancy

18% Redun- 75% Redun- 100% Redun-
dancy dancy dancy

1760 2560 3200

0.981616 0.991453 0.999186

26 Hrs. 58 Hrs. 613 Hrs.

$ 2,816,000 $ 4,095,896 $ 5,119,392

217,151 231,049 249,533

85,939 90,739 94,579

3,136,000 4,415,898 5,439,892

138,571 201,557 251,946

473,384 688,559 860,683

309,287 309,287 309,287

185,000 185,000 185,000

0 0 0

214,167 280,971 334,412

0 0 0

$ 7,575,499 $10,498,950 $12,845,220

Cost to avoid downtime $3,468/Hr. •

6 5000
7 5000
8 2000
9 1000

10 500
11 0
12 0

If the contract penetration rate is 50 percent and
the annual contract renewal rate is 75 percent,
calculate the resulting number of contracts in each
quarter.

322 THE THEORY OF RELIABLE SYSTEM DESIGN

2. What is the cost of owning a system purchased for
$500,000, with an annual cost of maintenance of
$40,000? Assume a discount rate of 15 percent and
a tax rate of 50 percent, with the system depreciat­
ed over 4 years, using the double-declining balance
method.

3. Consider the feature failure-mode matrix (Table
6-4). Suppose that the development costs asso­
ciated with each feature are as follows:

Data Path Loop-Around $1000.
Error Simulation $8500.
Internal Parity $1500.

Speed Check
Skew Check
Power Check
Reel LEDs

$2000.
$5000.
$7400.
$9000.

Assume that the MTBF of the device remains at
a constant 5,000 hours, and that a minute of re­
pair time saved is worth $1. Ignoring the time
value of money, which features should be incor­
porated into the device if you are going to ship a
total of 100 units? 1000 units? 10,000 units?
Assume the manufacturing cost per unit is $1000
and the system lifetime is 5 years.

THE PRAalCE OF RELIABLE
SYSTEM DESIGN
The ultimate system goals affect design philosophy and design trade-offs. The
costs of fault tolerance must be weighted against the cost of error. Error costs
include downtime as well as incorrect computation. Some system goals that affect
design philosophy are listed in Table II-I. Is the system to be highly reliable or
highly available? Do all outputs have to be correct, or only data committed to
long-term storage? How familiar must the user be with the architecture and
software redundancy? Is the system dedicated so that attributes of the applica­
tion can be used to simplify fault-tolerant techniques? Is the system constrained
to use existing components? Even if the design is new, what is the cost and/or
performance penalty to the user who does not require fault tolerance? Is the
design stand-alone, or are there other processors that can be called upon to assist
in times of failure?

Rennels [19801 has identified five different application types to which fault
tolerance has been applied:

1. High Availability. High availability systems share resources when the
occasional loss of a single user is acceptable but a systemwide outage or common
data base destruction is unacceptable. These systems are most frequently
oriented toward general-purpose computing, executing a variety of user programs
whose demands cannot be anticipated. Because they are targeted for the cost­
sensitive commercial marketplace these systems use minimal modifications to
existing designs. Hamming-coded memory, bus parity, timeout counters, diag­
nostics, and software reasonability checks are the primary redundancy tech­
niques. Thus, coverage is low. In multiple-processor systems, however, the fault
can be isolated once it is identified, and the system can continue operation,
perhaps in degraded mode. Examples of high-availability systems include Tan­
dem (see Chapter 11) and Pluribus (see Chapter 13).

2. Long Life. Long-life systems, such as unmanned spacecraft, cannot be
manually maintained over the system operating life (frequently five or more
years). Often, as in spacecraft monitoring of planets, the peak computational
requirement comes at the end of system life. These systems are highly redundant,
equipped with enough spares to survive the mission with the required computa­
tional power. Redundancy management may be performed automatically (on the
spacecraft) or remotely (from ground stations). STAR (see Chapter 14) and
Voyager (see Chapter 15) are examples of long-life spacecraft systems.

3. Postponed Maintenance. Closely related to long-life systems are systems
designed to survive faults until periodic maintenance can be performed. For
small systems like spacecraft, maintenance could be postponed for the entire

323

PART

II

324 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 11-1. System goals determine design philosophy.

• Reliability versus availability
• Grain of correctness

• Correct data output
• No loss of data

• Transparency to user
• Dedicated or general purpose
• New design or add-on

• Penalty to nonreliability user
• Stand-alone or multiple processor

system life. For other systems in which on-site repair is difficult, redundancy is
more cost effective than unscheduled maintenance. There are many mobile
systems that depart from a central facility for a period of time and return.
Stocking spares and maintenance expertise are most cost effective if maintenance
can be postponed until the mobile unit returns to the central facility. Such
systems include mass transit, ships, airplanes, and tanks. .

4. High-Performance Computing. High-performance computing systems (such
as signal processing) are very susceptible to transient errors (due to close timing
margins) and permanent faults (due to complexity). As performance demands
increase, fault tolerance may be the only way of building systems with sufficient
Mean Time To Error (MTTE) to allow useful computation. Occasional errors
that disrupt processing for several seconds are tolerable as long as automatic
recovery follows. Table 11-2 lists some high performance general-purpose com­
puting systems, their Mean Time to Crash (MTTC), and Mean Number of
Instructions Executed (MNIE) between crashes.

Table 11-2. Number of instructions executed between system crashes for
several mainframe systems.

Mean Time Mean Number
To Crash Instructions Executed

System MTTC (hours) MNIE (x 1010)

B5500
[Yourdon, 1972] 14.7 2.6

Chi/05 (Univac 1108)
[Lynch, Wagner, and Schwartz, 1975] 17.0 6.7

Dual 370/165
[Reynolds and Kinsberger, 1975] 8.86 28.0

SLAC 20.2 23.0

PDP-IO
[Castillo, 1980] 10.0 4.3

CRAY-I
[Keller, 1976] 4.0 190.0

THE PRACTICE OF RELIABLE SYSTEM DESIGN 325

5. Critical Computations. The most stringent requirement for fault tolerance
s in realtime control systems in which faulty computations can jeopardize human
ife or have high economic impact. Not only must computations be correct, but
11so recovery time from faults must be minimized. Specially designed hardware
)perates with concurrent error detection so that incorrect data never leave the
~aulty module. SIFT (see Chapter 16) and FTMP (see Chapter 17) are examples
)f avionic computers designed to control dynamically unstable aircraft. Their
iesign goal is a failure probability of less than 10-9 for a lO-hour mission.

Part I presented the techniques used in fault-tolerant computer design. It
'emains to the system designer to combine these techniques into a coherent
lfchitecture and to evaluate the resultant architecture. The remaining 12 chapters
)resent a cross-section of existing fault-tolerant architectures; every system has
been built. Chapter 7 traces the evolution of a simple redundancy technique
TMR) into a working system. The remaining chapters are roughly arranged in
)rder of increasingly stringent reliability requirements. Chapters 8 through 10
iiscuss commercial computing systems. Chapters II through 13 treat high­
lVailability systems. Chapters 14 through 17 describe spacecraft and avionics
~ystems. Finally, Chapter 18 presents a design methodology for fault-tolerant
~ystems and traces the use of this design process in a commercially available
~ystem.

C.VMP

C.vmp is a triplicated microprocessor system designed for realtime control
environments. There are two major reasons for studying this system. First. it
illustrates the process by which a simple technique (triplication) is translated into
a working system. Numerous problems require solution before even simple
techniques are reduced to practice. Auxiliary functions such as error status
information, enabling/disabling of the redundancy, and initialization must
support the technique. From the detailed C.vmp implementation the reader may
be able to extrapolate the higher-level descriptions of more complex systems into
plausible implementations. Space does not permit a detailed discussion of every
design.

The second reason for considering C.vmp is to explore the consequences of
redundancy on system performance. Chapter 7 presents several methods of
predicting and measuring performance.

COMMERCIAL COMPUTERS

DEC

The RAMP (Reliability, Availability, and Maintainability Program) features in
the V AX-I 1/780 and V AX-I 1/750 minicomputers are representative of contem­
porary design. Some RAMP features are defined in the system architecture and

326 THE PRACTICE OF RELIABLE SYSTEM DESIGN

must appear in every implementation. Other features are implementation specific.
Chapter 8 compares the architecture-defined and implementation-specific RAMP
features of the V AX-I 1/780 and VAX-l 1/750, and describes the typical hard­
ware required to support system maintainability. This hardware includes registers
for status, control, and error-monitor maintenance, as well as a special visibility
bus for examining internal signals that are usually not accessible. Discussion of
the VAX-l 1/750 also considers the early design trade-off studies that led to the
final RAMP package.

IBM

Table 11-3 presents the evolution of IBM's maintenance strategy. Techniques are
listed for a representative machine from each major era. The techniques can be
loosely grouped in three major categories: internal hardware error-detection
circuits, diagnostics (including software and microcode), and display (such as
lights, error logs, tracing). The IBM strategy has evolved from "failure recreate"
to "failure capture." Prior to the S/370, IBM customer engineers attempted to
recreate the failure by rerunning diagnostics, sometimes in conjunction with
varying voltage and clock frequency, until the failure recurred. The system was
placed in a tight programmed loop to produce a continuous failure condition for
analysis. In failure capture, hardware circuits detect errors, and information
about the current status of the machine state is logged for subsequent analysis.

Table 11-4 lists the features in the IBM 4300 series. The hardware error­
detection, error-correction, and monitoring circuits described in Table 11-4 are
used in the following maintenance scenario. The support processor displays a
diagnostic code. A customer engineer is called to the site and examines the error
information on the system diskette, executes diagnostics from the system diskette,
and uses the support processor to monitor results. For additional information the
customer engineer can telephone a central data base (called RETAIN) for the
latest service aids and failure data from other sites. A Field Technical Support
Center specialist can use the telephone link to monitor remotely and/or control
diagnostics on the 4341.

Chapter 9 describes in detail the Reliability, Availability, and Serviceability
(RAS) features of the IBM System/360-System/370. The goal is high availability
with minimized impact of failures. Four stages of corrective action are identified,
each with successively larger impact on users: transparent recovery, one user
affected, multiple users affected, and down. The successively higher-severity stage
recovery structure is common in systems with high-availability goals or 10

realtime data processing environments in which temporary loss of data is
tolerable.

UNIVAC

Chapter 10 describes the ARM (Availability, Reliability, and Maintainability)
features in the Univac 1100/60. ARM at Univac emphsizes on-line error

THE PRACTICE OF RELIABLE SYSTEM DESIGN 327

Table 11-3. Evolution of IBM maintenance strategy.

Machine Era

650 Late 1950s

1401 Early 1960s

S/360-50 Mid-1960s

370/168 Mod 3 Early 1970s

303X Mid-1970s

4341 Late 1970s

Techniques

Six internal checkers

Stand-alone diagnostics on
punched cards

Light and switch panel

20 internal checkers

Stand-alone diagnostics

Light and switch panel

75 internal checkers

OL TEP-On-Line Test Executive
Program

Microdiagnostics

Log fault data to main memory.
EREP-Error Recording and
Edit Program for outputting
logged data

Maintenance panel

Error-detection circui ts

OLTEP

Microdiagnostics for fault
isolation

Service processor, including trace
unit-trace up to 199 fixed and 8
movable logic points over 32
machine cycles for intermittent
or environmental faults

Error-detection circui ts

OL TS-On-Line Functional
Tests

Console and processor
microdiagnos tics

EREP

Scope loops

Support processor, including
trace and remote (telephone)
access to log data and trace
information

Error-detection circui ts

25,000 shadow latches

Support processor-error logging
and environmental monitoring

328 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 11-4. IBM 4300 series RAS (Reliability, Availability, Serviceability).

Error -detection/correction circuits
• Single-bit error correction/double-bit error detection in main memory
• Data-path parity
• Store-and-fetch memory access protection
• Instruction retry (4341 only). On an error, processor performs a retry and, if

successful, loads the machine check interrupt. Options include hardstop on error,
no retry (but logout), disable error report, and stop after logout. During
instruction execution, data in certain machine facilities is saved. Prior to
instruction re-execution this data is restored.

• Disk error correction
• I/O retry at both processor and disk controller level
• Peripheral unit power-off signal (4341 only)
• Disk self-test
• Voltage margin under program control
• Relocatable control storage
• Level Sensitive Scan Design (LSSD)
• Microdiagnostic location to Field Replaceable Unit 80 percent of time
• Halt or trace on address or data match comparisons can be made on any reference,

I/O reference, data store, or instruction fetch

Support Processor
• Separately powered
• Separate system diskette for microcde loading, system error logging, and storage of

microdiagnostics .
• Sensors for monitoring power variances, temperature fluctuations, and electrostatic

discharge (4341 only)
• For both retriable and unretriable errors, the support processor performs an internal

logout. Each logout has an identifer that specifies the number of logouts to date.
• Support-processor-generated eight digit reference code guide to failing unit.

Reference code logged on diskette and display console.
• Display console and data link functions for Remote Support Facility (RSF)

Remote support facility
• Remote monitoring (especially of error registers) and control
• Remote initiation of diagnostics
• Remote examination of error log on system diskette
• Distribute microcode updates

detection. As Table 11-5 indicates, parity on multibit logic and duplication of
random logic are primary error-detection techniques employed in the 1100/60.
Based upon the assumption that most errors are transients, recovery consists
primarily of retry (Table 11-6). Instead of attempting a number of retries
immediately after an error is detected, the 1100/60 pauses so that the SOl,lrce of
a transient (such as power supply instability) dies out. The pause can be from five
milliseconds to five seconds in one-millisecond increments. The pause value is set
to cope with site-dependent conditions. Hard failures are tolerated in main
memory through ECC, in cache through performance degradation, and in the

THE PRACTICE OF RELIABLE SYSTEM DESIGN 329

control store by inverting the bits in the microinstruction, if required for a bit to
match a stuck-at value.

An integral part of the 1100/60 ARM philosophy is the System Support
Processor (SSP). The SSP combines many features of the IBM 4341 Support
Processor and the VAX-l 1/780 Console Processor. With the advent of low-cost
microprocessors, it became cost effective to concentrate in a support processor
the functionality traditionally provided by front console switches and mainte­
nance panels. Once the basic functionality was provided for system control,
expansion to ARM functionality followed naturally. A support processor typical­
ly consists of a 50K-IOOK instruction-per-second processor, a small amount of
nonvolatile ROM (such as 4K words), RAM (up to 256K words), secondary
storage (floppy disk), remote access port, and interfaces to buses and' control
signals internal to the CPU. Table 11-7 lists some of the functionality associated
with support processors [Kunshier and Mueller, 1980].

Table 11-5. Error-detection hardware in the UN IVAC 1100/60.

Memory
Double-error-detecting code on memory data
Parity on address and control information

Cache
Parity on data, address, and control information

I/O Unit
Parity on data and control

CPU
Pari ty on data pa ths
Parity on control store
Duplication and comparison of control logic

Table 11-6. Error recovery inthe UNIVAC 1100/60.

Memory
Single-error-correction code on data
Retry on address or control information parity error

Cache
Retry on address or control information parity error
Disable portions of cache on data parity errors

I/O unit
Retry on data or control parity errors

CPU
Retry on control store parity error
Invert sense of control store
Macroinstruction retry

330 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 11-7. Uses of support processors.

• System console
• System boot
• System quick test of boot path
• Error logger
• Diagnostic tool

• Microdiagnostics
• Scan/set/compare internal state
• Fault injection
• Remote diagnosis

• Error recovery
• Writable control store reload
• Transplant state to another processor
• Reconfiguration

HIGH-AVAILABILITY SYSTEMS

Tandem

Tandem Computers, Inc., was founded in 1976 for the purpose of building high­
availability computer systems for commercial transaction processing. The Tan­
dem 16, discussed in Chapter 11, is the first commercially available, modularly
expandable system designed specifically for high availability. Design objectives
for the system included:

• "Nonstop" operation wherein failures are detected, components reconfigured out of
service, and repaired components configured back into the system without stopping the
other system components.

• No single hardware failure can compromise data integrity of the system.
• Modular system expansion through adding more processing power, memory, and

peripherals without impacting applications software.

Tandem is composed of up to 16 computers interconnected by two message­
oriented Dynabuses. A loosely coupled architecture was selected instead of a
tightly coupled, shared-memory architecture because it was felt that the former
allowed for more complete fault containment. Built-in hardware includes:

• Checksums on Dynabus messages
• Parity on data paths
• Error-correcting-code memory
• Watchdog timers

All I/O device controllers are dual ported for access by an alternate path in
case of processor or I/O failure. Upon this hardware structure the software builds
a process-oriented system with all communications handled as messages. This

THE PRACTICE OF RELIABLE SYSTEM DESIGN 331

lbstraction allows the blurring of the physical boundaries between processors
md peripherals. Any I/O device or resource in the system can be accessed by a
)rocess, no matter where the resource and process reside.

Data integrity is maintained through the mechanisms of I/O "process-pairs":
)ne I/O process is designated as primary, the other as backup. All file
nodification messages are delivered to the primary I/O process. The primary
;ends a message with checkpoint information to the backup so that it can take
)Ver if the primary's processor or access path to the I/O device fails. Files can
llso be duplicated on physically distinct devices controlled by an I/O process­
Jair on physically distinct processors. All file modification messages are delivered
:0 both I/O processes. Thus, in the event of physical failure or isolation of the
Jrimary, the backup file is up-to-date and available.

User applications can also use the process-pair mechanism. Consider a
10nstop application program, A, in Figure II-I. A starts a backup process, A 1, in
mother processor. There are also duplicate file images, one designated primary
lnd the other backup. Program A periodically (at user-specified points) sends
;heckpoint information to A 1. A 1 is the same program as A but knows that it is
1 backup program. A 1 reads checkpoint messages to update its data area, file
;tatus, and program counter. A 1 loads and executes if the system reports that A's
Jrocessor is down (error messages sent from A's operating system image or A's
Jrocessor fails to respond to a periodic "I'm alive" message). All file activity by
4 is performed on both the primary and backup file copies. When A 1 starts to
~xecute from the last checkpoint, it may attempt to repeat I/O operations
mccessfully completed by A. The system file handler will recognize this and send
41 a successfully completed I/O message. A periodically asks the operating
;ystem if a backup process exists. Since one no longer does, it can request the

A A'
Backup
exists? Checkpoint

• Data
• File status
.PC

OS

Figure 11-1. Shadow processor inTandem.

332 THE PRACTICE OF RELIABLE SYSTEM DESIGN

creation and initialization of a copy of both the process and file structure. More
information on the operating system and the programming of nonstop applica­
tions can be found in Bartlett [1978].

Networking software exists that allows interconnection of up to 255 geograph­
ically dispersed Tandem systems. Tandem applications include order entry,
hospital records, bank transactions, and library transactions.

ESS Processors

The Electronic Switching Systems (ESS) developed by Bell Laboratories over the
last two decades are the most numerous fault-tolerant digital systems. They are
discussed in Chapter 12. The ESSs handle routing of telephone calls through
central offices. They have an aggressive availability goal: two hours down time in
40 years (three minutes per year).

Telephone switching has many properties in common with the Pluribus (see
Chapter 13) ARPAnet IMP application's realtime routing of information. There
is some natural redundancy in the network and in the data; that is, telephone
users will redial if they get a wrong number or are disconnected. However, there
is a user aggravation level that must be avoided: users will redial so long as errors
do not happen too frequently. User aggravation thresholds are different for
failure to establish a call (moderately high) and disconnection of an established
call (very low). Thus an ESS follows a staged failure recovery process, presented
in Table 11-8.

A substantial portion of the complexity of an ESS system is in the peripheral
hardware. Because the telephone-switching application results in a substantially
different organization from that of general-purpose computers, the following
extract is included to describe briefly the hardware of the No.4 ESS system. *

Figure 11-2 contains an overall system diagram of a No.4 ESS office, broken
down by major functional blocks. Essentially it consists of a digital time division
network which switches digitally encoded 4-wire long distance telephone traffic.
This is controlled by a stored program processor abetted by a group of autonomous
signalling units (signal processors and terminals). The major functional blocks of
Figure 11-2 can be further segregated into four major areas: lA processor, network,
signal processors, and transmission interface.

Each area is reviewed below with a brief functional description of its component
subsystems.

1 A Processor

• Central Control (CC): Main processor performing logic and data manipulation
associated with calling processing, administrative tasks, and a recovery task .

• Program Store (PS): Memory complex storing executable instructions.

* J. J. Kulzer, "Systems Reliability: A Case Study of No.4 ESS," in System Security and Reliability,
Infotech State of the Art Report, Maidenhead, England, 1977, pp. 186-188.

THE PRACTICE OF RELIABLE SYSTEM DESIGN 333

Table 11-8. Levels of recovery in an E55 system.

Phase Recovery Action Effect

2

Initialize specific transient memory.

Reconfigure peripheral hardware.
Initialize all transient memory.

Verify memory operation, establish
a workable processor
configuration, verify program,
configure peripheral hardware,
initialize all transient memory.

Established a workable processor
configuration, configure peripheral
hardware, initialize all memory.

Service circuits PCM

Wire facilities l
Analog carrier

1 Digital carrier
Digroup
terminal

01

Analog Data
carrier I signalling and

signalling I control

Echo

Temporary storage affected. No
calls lost.

Lose calls being established. Calls in
progress not lost.

Lose calls being established. Calls in
progress not affected.

All calls lost.

PCM PCM

l
Time I suppressor Time slot multiplexed

interchange switch terminal
EST 1

lSI IMS

PU bus
PU bus

Timing

- -""'I""----.... ----~~-----____t Bus interface P_U bu .. s __ _

Data links Common
channel

interoffice
signalling

Master
control
console

MCC

PUBB

Figure 11-2. NO.4 E55 system diagram.

334 THE PRACTICE OF RELIABLE SYSTEM DESIGN

• Call Store (CS): Memory complex storing transient information related to the
processing of telephone calls as well as data describing office equipment and
routing (referred to as translations).

• File Store (FS): Disk System used to store backup program copies, seldom used
maintenance programs, and other miscellaneous types of data.

• Auxiliary Units (AU): Additional units used to reference magnetic tape storage
media which retain basic restart programs, new input data and· support mainte­
nance. Also possible future use for data link features.

• Input/Output (I/O): Interface hardware used to reference input and output
terminal devices.

• Bus Systems (AU, PS, CS, PU): Bus systems used to interconnect the various
functional units with the Central Control.

• Master Control Console (MCC): Control and display console to permit limited
manual control of system and provide performance information.

Network

• Time Slot Interchange (TSI): First and fourth stage of the 4-stage time-shared
switching network. Performs time division portion of the time-space-time switch­
ing function (described in later paragraphs).

• Time Multiplexed Switch (TMS): Provides second and third stage of 4-stage
switching (time-shared space portion).

• Network Clock (NC): Provides very accurate timing signals for the switching
network.

• Peripheral Unit Bus Interface (PUBI): Provides interface between IA processor
and the peripheral units.

Transmission Interface

• Voiceband Interface Frame (VIF): Interfaces analogue transmission facilities with
the network for converting analogue voiceband channels into digitally encoded
Pulse-Code Modulated (PCM) signals.

• Digroup Terminal (DT): Interface digital transmission facilities with the network.
Provides signalling interfaces with these facilities.

• Echo Suppressor Terminal (EST): Provides digital 4-wire Echo Suppression
capability for long distance trunks, both analogue and digital.

Signal Processors

• Signal Processor 1 (SPl): Provides scanning and signal distributing functions for
analogue carrier, metallic trunk, and service circuits. Also can provide miscella­
neous control points for other peripheral units.

• Signal Processor 2 (SP2): Performs scanning and signal distributing functions for
digital carrier trunks terminated on DTs. Can also provide miscellaneous scan and
signal distribution functions similar to the SPl.

• Common Channel Interoffice Signalling (CCIS) Terminal: Terminates the Inter­
office CCIS data links serving as the interface between these data links and the
signal processors and lA Processor.

Briefly, No.4 ESS operates in the following manner. Various types of transmis­
sion channels, analogue and digital carriers, and both 2-wire and 4-wire metallic
trunks are connected to voice-frequency terminal units. The 4-wire outputs are
connected to subunits (VIUs) of the Voice band Interface Unit (VIF). These VIUs

THE PRACTICE OF RELIABLE SYSTEM DESIGN 335

sample, multiplex, and digitally encode analogue signals in one direction, reversing
the process for the other. The digital output, a 128 time-slot digital bus, carries 8-
bit Pulse Code Modulated (PCM) signals in each time slot to the Time Slot
Interchange (TSI). The TSI, among other functions, provides a stage of switching
PCM signals to different time slots on the bus. The output of the TSI goes to the
Time Multiplexed Switch (TMS), which permits switching of the PCM signals
during a particular time slot from any bus to any other. The output of the TMS goes
to the TSI where PCM signals may be interchanged to another time slot and back
to a VIU for reconversion to analogue space-divided signals. The VIU does no
switching. A similar scenario exists for digital lines (TI carrier) which terminate on
subunits of the Digroup Terminals, called DTUs. However, the DTU also handles
synchronization and signal extraction/insertion for these facilities, eliminating any
need for conventional scan and signal distribute interfaces to channel banks in the
transmission area.

Four-wire echo suppression can be provided optionally by the Echo Suppressor.
The EST has subunits, ESUs which reside on the digital bus between the VIF /

DT and the TSI. These subunits process the digital PCM signals passing in both
directions of each 4-wire trunk and digitally suppress detected echos. Coordinated
timing for all of the above functions is critical and is provided by the network clock.
The wired logic Signal Processor (SP) is used to provide scanning and signal
distribution functions relieving the central processor of any need to perform these
duties. Similar functions are provided for digital trunks by the SP2. The Common
Channel Interoffice Signaling (CCIS) terminal provides a separate data link for
signalling as an alternative to in-band signalling over trunk facilities. The separate
signalling system handles digital signals in a special format over a 2-way data
channel between switching machines. This system handles both supervisory and
address signals for a group of trunks. The CCIS terminal interfaces to the system
processor over the peripheral bus.

The entire complement of peripheral hardware described above is controlled by
the IA Processor using parallel AC-coupled buses. The processor interfaces with the
periphery through the Peripheral Unit Bus Interface and has been designed to be
separable for use in other applications such as No. IA ESS.

The IA Processor provides overall system control, administration, and call
processing support. Complete self-contained system maintenance is also provided
through the IA Processor. Elements of this include automatic isolation of faulty
units, defensive software strategies, and system supported rapid repair.

Chapter 12 sketches the evolution of ESS processors, summarized in Table 11-9.

Pluribus

Pluribus was conceived as a modular, highly available multiprocessor for the
I\RPAnet task. Chapter 13 describes the architecture as well as the fault-tolerant
techniques employed.

Most of the Pluribus fault tolerance is achieved at the software task level. A
~elatively long period between fault occurrence and fault detection was accept­
lble because of the nature of the IMP task. The several levels of protocol in the
t\RPAnet, each with its own error detection and recovery, relieve the Pluribus
~rom concentrating on data integrity: if a failure occurred, all messages in
)rogress would be buffered at other ARPAnet nodes until positively acknowl­
!dged, and eventually rerouted past the failed Pluribus. Even if the subnet

336 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 11-9. Summary of installed ESS systems.

Year
Number Intro- Number

System of Lines duced Installed Processor Comments

ESS-l 5,000-65,000 1965 1,000 No.1 First processor with
separate control and
data memories.

ESS-2 1,000-10,000 1969 500 No.2

ESS-IA 100,000 1976 No.lA Four to eight times
faster than No. 1

ESS-2B 1,000-20,000 1975 500 No.3 Combined control and
data store. Microcoded,

ESS-3 500-5,000 1976 No.3 emulates No.2.

protocol failed to complete the message transmission reliably, the host-to-host
protocol would retry the entire message transmission. Thus, the application
required only that the Pluribus recover gracefully from a failure. This goal can
be achieved by quick system reinitialization with omission of questionable
components.

The Pluribus IMP (Interface Message Processor) software utilizes:

• Periodic software checks including diagnostics
• Redundancy in data structures
• Watchdog timers that must constantly be reset by software

The multiprocessor structure allows for maximum performance when there are
no failures (that is, the periodic checks are estimated to degrade performance by
only 1 percent) and maximum assistance when there are failures (by focusing all
resources on reaching a consensus on a failure-free configuration).

The network structure allows for remote diagnostics from the Network Control
Center (NCC). Even in the case of total destruction of memory contents, the
Pluribus can request the code be transmitted from the NCC or other Pluribuses
in the network. Any transitory messages lost will be restored via the retransmis­
sion mechanism in the various levels of protocol.

It is well known that the best system diagnostic is the normal execution of
programs. Frequently, normal execution will stress the system in ways not
reproduced by diagnostics (especially for I/O or timing sensitive problems). The
"friendly" environment provided by the IMP application allows the Pluribus to
rotate hardware into use. Any problematic hardware will appear as only a
transient to the system because the offender will be quickly configured out.

The Pluribus represents a cost effective fault-tolerant architecture that takes
fullest advantage of the characteristics of its application environment (realtime
applications in which data loss and brief outages are tolerable). The Pluribus is

THE PRACTICE OF RELIABLE SYSTEM DESIGN 337

:)perational in the ARPAnet and has achieved a measured factor improvement
:)f five in unavailability (0.32 percent) over the previous generation IMPs (1.64
percent) [Kleinrock and Naylor, 1974].

SPACECRAFT AND AVIONIC SYSTEMS

Spacecraft are the primary example of systems reqUIflng long periods of
unattended operation. Unlike most other applications, spacecraft must control
their environment (such as electrical power, temperature, and stability) directly.
Thus one must treat all aspects of a spacecraft (e.g., structural, propulsion, power,
analog, and digital) when designing for reliability.

Spacecraft missions range from simple (such as weather satellites in low earth
orbit) to sophisticated (such as deep-space planetary probes through uncharted
environments). Within this range are low earth-orbit sensing, low earth-orbit
communication or navigation, low earth-orbit scientific, synchronous orbit
communication, and deep-space scientific.

A typical spacecraft can be divided into five subsystems:

Propulsion. The propulsion system controls the stability and orientation of
the spacecraft. Multiple, often redundant, chemical or pressurized-gas thrusters
are most frequently used. Occasionally spacecraft employ a spin for stability
instead of the active control provided by thrusters.

Power. The generation and storage of electrical energy' must be closely
monitored and controlled because all other spacecraft systems operate on
electricity. Most often, spacecraft electrical systems consist of solar cells and
battery storage. The batteries carry the system through loss of sun or loss of
orientation periods. Control of solar cell orientation, battery charging, power
transients, and temperature is the most time-consuming task for the spacecraft
computers.

Data Communications. Data communications are divided into three, often
physically distinct~ channels. The first is commands from the ground to the
spacecraft via the uplink. It is even possible to reprogram a spacecraft computer
by means of the uplink. The other two channels are from the spacecraft to the
ground (downlinks). One downlink carries data from the satellite payload; the
second carries telemetry data about the spacecraft subsystems (temperature,
power supply state, thruster events).

Attitude Control. A dedicated computer is often used to sense and control the
orientation and stability of the spacecraft.

Command/Control/Payload. All aspects of spacecraft control are usually
centered in a single command/control computer. This computer is also the focus
for recovery from error events. Recovery may be automatic or controlled from
the ground via uplink commands.

338 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Typically, each subsystem is composed of a string of elements. As an example,
Table II-IO lists seven stages in a representative power subsystem. Solar panels
are physically oriented by tracking motors. Power is delivered to the spacecraft
via slip rings. A charge controller automatically keeps the batteries at full
potential. A power regulator smooths out voltage fluctuations while a power
distributor controls the load connected to the power subsystems. At each stage,
redundancy is used to tolerate anticipated fault modes. To reduce complexity,
usually only the output of a string is reported via telemetry.

A typical maintenance procedure would be as follows. When a failure has been
detected, the spacecraft automatically enters a "safe" or "hold" mode. All
nonessential loads on the power subsystem are shed. Normal mission sequencing
and solar array tracking are stopped. The spacecraft is oriented to obtain
maximum solar power. Meanwhile, ground personnel must infer which failures
could cause the output behavior of each of the strings. A possible failure scenario
is selected as most likely and a reconfiguration (termed a "work-around") of the
spacecraft subsystems devised. A command sequence implementing the work­
around is sent to the satellite. Depending on the severity of the failure, this
procedure may take days, or even weeks, to complete.

Spacecraft fault responses vary from automatic in hardware for critical faults
(such as power, clocks, and computer), to on-board software for serious faults
(such as attitude and command subsystems), to ground intervention for noncrit­
ical faults. Faults can be detected by one of several means:

• Self-tests. Subsystems fail self-test, such as checksums on computer memories.
• Cross-checking between units. Either physical or functional redundancy may be used.

When a unit is physically duplicated, one is designated as on-line and the other as
monitor. The monitor checks all outputs of the on-line unit. Alternatively, there may be
disjoint units capable of performing the same function. For example, there is usually a
set of sensors and actuators for precision attitude control. Attitude may also be less
precisely sensed by instruments with other primary functions. The less precise calcula­
tion can be used as a sanity check on the more precise units.

• Ground-initiated special tests. Used to diagnose and isolate failures.
• Ground trend analysis. Routine processing and analysis of telemetry detects long-term

trends in units that degrade or wear out.

Table II-II lists the major features of each spacecraft subsystem for RCA's
Defense Meteorological Satellite Program (DMSP) and JPL's Voyager. DMSP
relays weather photographs from a polar orbit. Voyager is a deep-space probe
used in the Jupiter and Saturn planetary fly-bys (see Chapter 15).

Figure 11-3 illustrates the interconnections of the major subsystems in the
DMSP spacecraft. Standby redundancy is used in all but the sensor payload. The
standby spares are cross-strapped so that either unit can be switched in to
communicate with other units. This form of standby redundancy is called block
redundancy because redundancy is provided at the subsystem level rather than
internally to each subsystem. The C-MOS command and control computer has
52 instructions and a 4.68-microsecond Add time. There are four addressing
modes: direct, indirect, indexed, and relative to the program counter. The
memory is composed of 16K, 16-bit words protected by parity. Internally

Table 11-10. Typical power subsystem.

Element Tracking solar -Solar array drive Slip ring
array assembly

Redundancy Extra capacity Redundant
drive elements
and motors

Parallel rings for
power transfer

Charge
controller

Automatic
monitoring and
control of
battery charge
state

Batteries

Series/parallel
connections

Power regulation Power distribution

Redundant
spares

Automatic load
shedding

Series/parallel
connections of
individual solar
cells allows for
graceful
degradation

Diode protection

Table 11-11. Attributes of DMSP and Voyager spacecraft.

System Data Attitude Command and
Spacecraft Characteristics Propulsion Power Communications Control Payload

Defense Meteorological 3- Pressurized N2 Sun-tracking solar Telemetry Star, earth, and Command rate:
Meteorological axis stabilized and hydrazine array downlink: 2 or 10 sun sensors Kbps
Satellite Program sun-synchronous, thrusters Kbps
(DMSP) polar orbit Cd Battery Four reaction Redundant, ground

Mission life: 2 300W minimum Payload data wheels programmable
years average power downlink: 3 links computers, 16K 16-

at 1-2.7 Mbps Magnetic torque bit words each
ring coils

Uplink: I Kbps Downlink data
command or 100 Redundant encrypted
Kbps processors

6 antennae (I per
link)

Voyager Planetary probe Hydrazine 3 radioactive 2 downlinks Redundant sun Command rate: 16
3-axis stabilized thrusters thermal sensors and bps
Mission life: 7 generators I uplink Canopus trackers
years Redundant

430W at Jupiter 2 antennae (high computers,4K
gain and low gain) words each

Data storage on
board

...,
:r:
tTl
"tI
it'
:>
() ...,
n
tTl
o
'T]

it'
tTl
r
;;
tl'
r
tTl
V1

-<
rJJ ...,
tTl s:
I::'
tTl
rF.l

o
Z

w
w
~

340 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Sensor
payload

~----------------------~
Communications

Figure 11-3. Interconnection of major subsystems in RCA's Defense Meteoro­
logical Satellite Program (DMSP) block 5D-1 spacecraft.

detected error conditions include memory parity, memory address, arithmetic
overflow, and illegal transfer. DMSP uses block redundancy, cross-checking on
attitude control, routine self-testin~, automatic load shedding upon undervoltage
detection, and block switching under ground control.

Figure 11-4 displays the interconnection of subsystems on the Voyager
spacecraft. Again, block redundancy is the primary fault-tolerant mechanism.
The Attitude Control Subsystem (ACS) is composed of redundant computers;
one is an unpowered standby spare. The Command and Control Subsystem
(CCS) is also a redundant computer, but the standby is powered and monitors
the on-line unit. Cross-strapping and switching allow reconfiguration around
failed components. The CCS executes self-testing routines prior to issuing
commands to other subsystems. Tables 11-12, II -13 list the error detection
mechanisms in the Voyager Attitude Control and Command/Control Subsys­
tems: Memory is only 4K words. The tape recorders are used for storage of
scientific data only. New programs for memory must be loaded from the ground.

A list of typical redundancy techniques used in contemporary spacecraft is:

• Propulsion
Redundant thrusters
Multiple valves for propellant flow control
Automatic switchover based on excessive attitude change rates
Multiple commands required to initiate any firing sequence

• Power
Redundant solar cell strings, batteries, power buses
Automatic load shedding

THE PRACTICE OF RELIABLE SYSTEM DESIGN 341

FOS ACS CCS

,------,Control r--'"'"'"--"'-...... "'--''--{
Ten

scientific
experiments

Coded commands

Telemetry

11Skbps
Command
detector

Telemetry
modulator

Figure 11-4. Voyager system block diagram.

S-Band

X-Band

Table 11-12. Error detection in Voyager attitude control subsystem.

• CCS fails to receive "I'm healthy" report every 2 seconds
• Loss of celestial (sun and Canopus) reference
• Power supply failure
• Fail to rewrite memory every 10 hours
• Spacecraft takes longer to turn than expected (thruster failure)
• Gyro failure
• Parity error on commands from CCS
• Command sequence incorrect
• Failure to respond to command from CCS

Table 11-13. Error detection in Voyager command and control subsystem.

Hardware
• Low Voltage
• Primary command received before previous one processed
• Attempt to write into protected memory without override
• Processor sequencer reached an illegal state

Software
• Primary output unit unavailable for more than 14 seconds
• Self-test routine not successfully completed
• Output buffer overflow

342 THE PRACTICE OF RELIABLE SYSTEM DESIGN

• Data communications
Redundant transponders
Digital error detection and correction techniques
Switch from directional to omni antennae for backup

• Attitude control
Redundant sensors, gyros, and momentum wheels
Automatic star reacquisition modes

• Command and control
Hardware testing of parity, illegal instructions, memory addresses
Sanity checks
Memory checksums
Task completion timed
Watchdog timers
Memory write protection
Reassemble and reload memory to map around the memory failures

Table 11-14 lists typical redundancy in spacecraft subsystems as a function of
mission. For nondemanding missions, reduced complexity of design is a way of
meeting system reliability goals.

The Voyager missions were lower-cost substitutes for a Grand Tour mission,
which was to take advantage of the alignment of the five outer planets of the solar
system. In support of the grand tour mission, the Jet Propulsion Laboratory
(JPL) designed and breadboarded a Self-Test And Repair (STAR) computer.
Chapter 14 presents the architecture of this unique computer. STAR primarily
used hardware-subsystem fault-tolerant techniques, such as functional unit
redundancy, voting, power-spare switching, coding, and self-checks. Task-level
rollback was also incorporated)n the design, which represented the most
advanced fault-tolerant techniques in the 1960's decade.

Another fault-tolerant uniprocessor designed as a satellite computer is the
Fault Tolerant Spaceborne Computer (FTSC) [FTSC, 1976]. FTSC is a 32-bit,
general-purpose computer with a 60K-word memory and five-microsecond
average instruction execution time. Error-detection/correction codes and bit­
sliced sparing are extensively used to tolerate failures.

With the advent of microprocessors, emphasis has shifted to multiple-computer
spacecraft. The Fault Tolerant Building Block Computer (FTBBC) is an experi­
mental set of VLSI chips that allow construction of reliable multiprocessors with
standard microprocessor and memory LSI chips. The new chips provide ECC
circuitry for memory and duplication/comparison for processors [Rennels, 1980].

FTMP and SIFT

SIFT (Software Implemented Fault Tolerance), designed by SRI International
(see Chapter 16), and FTMP (Fault Tolerant Multiprocessor), designed by C. S.
Draper Labs (see Chapter 17), are intended for realtime control of aircraft. Due
to concerns about fuel efficiency and performance, aircraft in the future will be
dynamically unstable, and loss of computer control for even a few milliseconds
could lead to disaster. Thus, these experimental systems are designed for a failure

Table 11-14. Typical redundancy in spacecraft subsystems as a function of
mission.

Mission
Subsystem

Low Earth
Orbit Sensing

Low Earth
Orbit Navigation
or Communication

Low Earth
Orbit Scientific

Synchronous Orbit
Communications Deep Space Scientific

Propulsion

1
Station keeping maneuvers via ground commands! .. .
Redundant thrusters and leak detection

Backup system

Leak detection and
automatic switching

Power

Data communication

Attitude control

Command and payload

1
Redundant batteries ~
Low-voltage detection and load shedding ~ ----.-

.. Redundant links

Safe hold and ground fix •

Multiple repeaters Fault-tolerant on­
board data processing

Overload protection Overload protection

Low-voltage dropout

Low-rate telemetry
and commands

Automatic

Multiple repeaters
and graceful
degradation

Redundant data and
command channels

Omni antennae for
backup

Automatic

High reliability design

-l
:r:
tTl
"0
;:Q

> n
j
n
tTl
o
.."
;:Q
tTl
c:
>
t:tI
r
tTl
V1
-<
V1
-l
tTl
~
o
tTl
rJ:J

o
Z

~
~
~

344 THE PRACTICE OF RELIABLE SYSTEM DESIGN

probability of 10-9 during a 10-hour mission. With this reliability goal, verifica­
tion that the systems meet their design specification becomes a major problem:
10- \0 failures per hour translates into 1.14 million operating years before failure.

REFERENCES
Bartlett [1977]; Castillo [1980]; FTSC [1976]; Keller [1976]; Kleinrock and Naylor [1974];
Kulzer [1977]; Kunshier and Mueller [1980]; Lynch, Wagner, and Schwartz [1975];
Rennels [1980]; Reynolds and Kinsberger [1975]; Yourdon [1972].

C.vmp: A Voted Multiprocessor

Daniel P. Siewiorek

Stephen McConnel

Vittal Kini Henry Mashburn

Michael Tsao

DESIGN GOALS

<\ design study was initiated in the summer of
1975 to examine fault-tolerant architectures in
ndustrial environments. Major attributes of this
mvironment were electromagnetic noise, less
mowledgeable users, and nonstop operation.
From these attributes the following design goals
were established.

t. Permanent and Transient Fault Survival. The sys­
tem should have the capability to continue correct
operation in the presence of a permanent hardware
failure, i.e., a component or su,bsystem failure, and
in the presence of transient errors, i.e., a component
or subsystem is lost for a period of time due to the
superposition of noise on the correct signal.

~. Software Transparency to the User. The user
should not know that he is programming a fault­
tolerant computer, with all fault tolerance being
achieved in the hardware. This would allow the
user to rely on established software libraries, in­
creasing the reliability of the software itself.

~. Capable oj Real-Time Operation. A fault should be
detected and corrected within a short period from
the time the fault actually occurs.

L Modular Design to Reduce Down Time. The hard­
ware should be able to operate without certain
sections activated. Hence maintenance could be
performed without having to halt the machine.
Modularity includes the design of separate power
distribution networks to be able to deactivate se­
lected sections of the machine. The use of modules
in the design also has the virtue of allowing the user
to upgrade from a nonredundant, to a fully fault­
tolerant computer, in steps.

s: 1978 IEEE. Reprinted, with permission, from Proceedings
:Jfthe IEEE. Vol. 66, No. 10, October 1978, pp. 1190-1198.

345

346 THE PRACTICE OF RELIABLE SYSTEM DESIGN

5. Off-the-Shelf Components. To decrease the
. amount of custom-designed hardware, to be able to

rely on an established software library, and to allow
systematic upgrading to a fault tolerant system, the
computer should primarily employ off-the-shelf
components. Further, as illustrated in a companion
paper [Siewiorek, et aI., 1978b], advantage can be
taken of the greater reliability of high production
volume components.

6. Dynamic Performance/Reliability Tradeoffs. The
fault-tolerant computer should have the capability,
under operator or program control, to dynamically
trade performance for reliability.

SYSTEM ARCHITECTURE

Actual System Configuration

To be consistent with the design goals of modu­
larity and software transparency, bus level vot­
ing was selected as the major fault tolerance
mechanism. (See [Siewiorek, Canepa, and Clark,
1976] for a more detailed discussion leading up
to the selection of voting.) That is, voting occurs
every time t~e processors access the bus to either
send or retrieve information. There are three

C.vmp
I

Front

processor-memory pairs, each pair connected vi.a
a bus as depicted in Figure 7-1. A more precise
definition of C.vmp (for Computer, Voted Multi­
Processor) would therefore be: a multiprocessor
system capable of fault-tolerant operation.
C.vmp is in fact composed of three separate
machines capable of operating in independent
mode executing three separate programs. Under
the control of an external event or under the
control of one of the processors, C.vmp can
synchronize its redundant hardware, and start
executing the critical section of code.

With the voter active, the three buses are voted
upon and the result of the vote is sent out. Any
disagreements among the processors will, there­
fore, not propagate to the memories and vice
versa. Since voting is a simple act of comparison,
the voter is memoryless. Disagreements are
caught and corrected before they have a chance
to propagate. The nonredundant portion of the
voter does not represent a system reliability
"bottleneck," as will be shown later. However,
the voter may be totally triplicated if desired.
With voter triplication even the voter can have

end
computer

POP-10/0 POP-10/A

Figure 7-1. C.vmp configuration and connection to C-MU facilities.

~ither a transient or a hard failure and the
~omputer will remain operational. In addition,
provided that the processor is the only device
~apable of becoming bus master, * only one
bidirectional voter is needed regardless of how
much memory or how many I/O modules are on
the bus. Voting is done in parallel on a bit by bit
basis. A computer can have a failure on a certain
bit in one bus, and, provided that the other two
buses have the correct information for that bit,
operation will continue. There are cases, there­
fore, where failures in all three buses can occur
~imultaneously and the computer would still be
functioning correctly.

Bus level voting** works only if information
passes through the voter. Usually the processor
registers reside on the processor board and so do
not get voted upon. The PDP-II, for example,
has six general purpose registers, one stack point­
er, and one program counter. However, after
tracing over 5.3 million instructions over 41
programs written by five different programmers
and using five different compilers, the following
average program behavior was discovered
[Lunde, 1977]:

1. On the average a register gets loaded or stored to
memory every 24 instructions.

2. A subroutine call is executed, on the average, every
40 instructions, thus saving the program counter on
the stack.

3. The only register that normally is not saved or

It Note that this restriction prohibits the use of Direct Mem­
ory Access (DMA) devices. If such devices were only
allowed to communicate with the processors and the mem­
ory (not other I/O devices), a second voter between the
memory and the I/O devices on the bus would be sufficient
to retain fault tolerance.

It This bus level voting scheme can be contrasted with the
Draper Laboratory Symmetric Fault Tolerant Multiproc­
essor [Hopkins and Smith, 1975] (see also Chapter 17). In
SFTMP, memory and processor triads are interconnected
by a triplicated serial bus. Program tasks are read from a
memory triad into local memory in a processor triad where
execution takes place. After execution the results are trans­
ferred back to memory triads. The major architectural
differences from C.vmp are as follows. Serial bus rather
than parallel bus, thus degrading performance. Voting only

C.VMP: A VOTED MULTIPROCESSOR 347

written into is the stack pointer. To maintain fault
tolerance the system must periodically save and
reload the pointer.

Thus normal program behavior can be count­
ed on to keep the registers circulating through
the voter.

To present a detailed description of the voter,
a brief digression to explain the DEC LSI-II
Qbus is necessary [DEC I975b]. The 36-signal
bus uses a hybrid of synchronous and asyn­
chronous protocols.

Every bus cycle begins· synchronously with the
processor placing an address on the time multi­
plexed Data/Address Lines (DAL).

1. SYNC goes high and all tp.e devices on the bus
latch the address from the DAL lines. The address
is then removed by the processor. This terminates
the synchronous portion of the bus cycle.

2. In the event of an input cycle (DATI shown in
Figure 7-2) the processor activates DIN on the bus.

3. The addressed slave responds by placing a data
word on the DAL lines and asserting REPLY.

4. The processor latches the data word and terminates
DIN and SYNc.

5. In the event of an output cycle (DATO), after
removing the address the processor places a data
word on the bus and activates DOUT.

6. When the slave device has read the word it acti­
vates REPLY.

7. The processor responds by terminating DOUT and
SYNC.

takes place on transfers from and to memory triads. Errors
in the processors may accumulate to the point that their
results are not comparable. Programmer has to partition
problems into tasks and provide for transfer to processor
triads. SFTMP has up to 14 processors that can be dynam­
ically assigned to four triads (two are spares). When a
processor fails it can be replaced in its triad by another
processor. However, processors cannot operate indepen­
dently of triads to improve throughput. Another voting
design is described by Wakerly, [1976]. The described
system is based on an Intel 8080 microprocessor and has an
output address and data bus and an input (from memory to
processor) data bus. The major difference from C.vmp is
that only a unidirectional voter is employed, on the input
data bus. Thus only information flow from memory to
processor is voted upon. There is no consideration of I/O,
apart from an assertion that each I/O device on the bus
requires a separate voter.

348 THE PRACTICE OF RELIABLE SYSTEM DESIGN

BDAl ==>< AD DR X _____ -JX DATA X'-__ _
I I

_----_I 1

}~------------~:----~~ SYNC

I I
I I
I" I / DIN
I I
I I

REPl Y --------t:-------------------LJ
I I

Figure 7-2. .DA TI cycle for LSI-11 computer.

Voter Modes of Operation

The multiplexed paths through the voter are
shown in Figure 7-3. Figure 7-3a shows the case
for the (unidirectional) control lines. Signals
generated by the processor are routed from bus
receivers to multiplexers which allow either sig­
nals from all three buses, or signals only from
bus A, to pass to the voting circuit. The output
of the voting circuit always feeds a bus driver on
external bus A, but is multiplexed with the
initially received signals on buses Band C. This
arrangemen t allows all three processor signals to
be voted on and sent to all three external buses'
the signal from only processor A to be "broad~
cast" to all three external buses; and the inde­
pendent processor signals to be sent to the
separate external buses, albeit with extra delay
on bus A.

1. Voting Mode. The transmitting portion of
each of the three buses is routed into the voter
and the result of the vote is then routed out t~
the receiving portion of all three buses. In addi­
tion to the voting elements the voter has a set of
disagreement detectors. These detectors, one for
each bus, activate whenever that bus has "lost" a
vote. By monitoring these disagreement detec­
tors, one can learn about the kinds of failures the
machine is having.

2. Broadcast Mode. Only the transmitting
portion of bus A is sampled, and its contents are
broadcast to the receiving portions of all three
buses. This mode of operation allows selective
triplica~ion and non triplication of I/O devices,
dependmg on the particular requirements of the
user. The voter has no idea which devices are
triplicated and which are not. The only require­
ment is that all nontriplicated devices be placed
on bus A. To handle non triplicated devices two
extra lines are added to bus A. One is a special
copy of REPLY for use by nontriplicated de­
vices instead of the standard bus A REPLY, and
the other is a special copy of the Interrupt
ReQuest Line (IRQ).

3. Independent Mode. Buses Band Care
routed around the voting hardware. Bus A is
routed to feed its signals to all three inputs of the
voting elements. In this mode C.vmp is a loosely
coupled mulitprocessor. Switching between inde­
pendent and voting modes allows the user to
perform a performance/reliability tradeoff.

The unidirectional control signals generated
by devices on the external buses are handled the
same way as processor signals, except that the
direction (external-processor) has been changed.

Figure 7-3b shows the more complex case of
the bidirectional data/address lines. Two sets of

C.VMP: A VOTED MULTIPROCESSOR 349

EB

EA

EC

PB

PA

PC

a.

b.

Figure 7-3. a.) C.vmp unidirectional voter mUltiplexing. b.) C.vmp bidirection­
al voter multiplexing.

350 THE PRACTICE OF RELIABLE SYSTEM DESIGN

bus transceivers replace the sets of receivers and
transmitters used before, and another level of
multiplexing has been added. The received sig­
nals from both sets of transceivers are fed into a
set of multiplexers that choose which direction
the signals are flowing. After passing through the
set of multiplexers and the voter circuit, the
voted signal goes through a latch which ensures
that bus timing specifications are met. From
there the signals pass onto the opposite bus from
which they were initially received. (Note that the
drivers on the receiving bus are disabled to avoid
both sinking and sourcing the same signal.)

Peripheral Devices

In most cases, triplicating a device just means
plugging standard boards into the backplane, as
is the case with memory. In some cases, however,
the solution is not quite so simple. An example
of a device that has to be somewhat modified is
the RXO I floppy disk drive. The three floppies
run asynchronously. Therefore, there can be as
much as a 360-degree phase difference in the
diskettes. Since the information does not arrive
under the read heads of the three floppies simul­
taneously, the obvious solution to this problem is
to construct a buffer whose size is large enough
to accommodate the size of the sectors being
transferred. A disk READ operation would then
occur as follows [DEC 1975c]:

1. The track and sector number to be read are loaded
into the three interfaces and the "READ" com­
mand is issued.

2. The three floppies load their respective buffers
asynchronously.

3. The processors wait until the three buffers are
loaded and then synchronously empty the buffers
into memory. A write operation would be executed
in a similar fashion.

The main synchronization problem is to find
out when all three floppies have completed their
task or when one of the floppies is so out of

specification that it can be considered failed.
Once this is determined the "DONE" signals are
transmitted to the three buses simultaneously.

When in independent mode, the three pro­
cessors must be able to commmunicate to each
other. For this reason there are three full duplex
single word transfer fully interlocked parallel
interfaces in the system (labeled L in Figure 7-1).
These interfaces provide data transfer between
the separate processors (in independent mode) at
rates up to 180K bytes per second [DEC 1975b].
These interfaces are used for software synchroni­
zation of the processors prior to reestablishment
of voting mode, in addition to straight data
transfers.

ISSUES OF PROCESSOR
SYNCHRONIZATION

Dynamic Voting Control

A major goal in the design of C.vmp was to allow
dynamic tradeoff between reliability and perfor­
mance. Ideally, when reliabilty is of less impor­
tance, the machine should be able to split into a
loosely coupled multiprocessor capable of much
greater performance. Conversely, when reli­
ability becomes crucial, the three processors
ought to be able to resynchronize themselves and
resume voting. Consideration of dynamic voting
mode controlled to the following features.

• In transiting from voting to independent mode, a
simple change in the multiplexing control signals
causes the next instruction to be fetched and execut­
ed independently by the three processors;

• In order to insure proper synchronization of all
processors in transiting from independent to voting
mode, a delayed transition forces an interrupt, pre­
sumably after each processor has had ample time to
execute a "WAIT" instruction. ("WAIT" halts the
processor until an interrupt occurs.)

Two bits are provided in the voter control
register for voter mode control. The first, a read­
only bit, monitors the state, returning "0" if

voting, and "I" if not. The other, a read/write
bit, chooses the desired mode. Each processor
has a copy of the voter control register, and a
vote is taken on the mode control bit. This
control register is accessed like any I/O device
register, as a specific memory location (in this
case, 167770).

Dynamic voting mode control has been dem­
onstrated by a test program. When in voting
mode, setting the appropriate bit in the control
register causes the three processors to split apart
and begin executing separately. To resynchro­
nize the processors, a simple handshaking proto­
col is used, in which each processor waits for
both of the others to signal permission before
clearing the control bit. (A more sophisticated
protocol would provide for a timeout if one of
the processors has failed, with efforts to recover
from such a situation.) After clearing its copy of
the control bit. each processor releases control of
its bus and ceases execution via a "WAIT"
instruction. The ensuing interrupt generated by
the voter then serves to resynchronize the three
processors, and the first instruction of the inter­
rupt service routine is the first instruction execut­
ed in voting (fault-tolerant) mode.

Bus Control Signal
Synchronization

There are two levels of synchronization used in
C.vmp to keep the three processors in step: bus
signal synchronization and processor clock syn­
chronization. The first type of synchronization
deals with the bus control signals. The voter uses
RPLY to synchronize the three buses, as it is
asserted by an external device (memory and I/O
devices) once every bus cycle. Thus processors
can stay in step if they receive RPL Y concur­
rently. A set of possible voting circuits is shown
in Figure 7-4. (The boxes labeled V are voters,
and the boxes labeled T are delays.) The first
voter is the one used for the data/address lines.
The other voters attempt to maintain synchroni-

A
B
C

C.VMP: A VOTED MULTIPROCESSOR 351

i=O-VT
Voter A

~=E]-0--VT
Voter B

VT

Voter C

Voter 0

i VT
Voter E

Figure 7-4. Synchronizing voter circuits.

zation of five critical control lines (SYNC, DIN,
DOUT, IAK, and RPL Y)* by waiting an appro­
priate period of time for a lagging control signal.
(The delay is not only selected long enough that
a lagging device is far enough out of specification
to be suspect, but also short enough not to
degrade performance severely. For maintaining
processor synchronization, a value for T of at
least one microcycle-400 ns-is desirable, as
processors are most likely to slip just one micro­
cycle in the five to ten microcycles between bus
cycles rather than to become several microcycles
out of synchronization.)

* SYNC is used to clock the address lines, and is left asserted
for the remainder of the bus cycle; DIN indicates a read
cycle; DOUT indicates a write cycle; IAK is used to
acknowledge receipt of an interrupt request; and RPL Y is
asserted to indicate that the device has responded to the
request indicated by the previous four signals.

352 THE PRACTICE OF RELIABLE SYSTEM DESIGN

The first circuit considered for synchronizing
the five control lines was voter A in Figure 7-4.
This was rejected because it provides no syn­
chronization at all: if a signal fails high, the voter
passes the first of the other two to be asserted
without regard to the second. Thus, if the two
remaining processors get at all out of step, the
voting process fails.

The second circuit, voter B in Figure 7-4,
provides a measure of synchronization by wait­
ing a time T for the third signal after two have
been asserted. However, performance is degrad­
ed because this delay occurs even when all three
processors are working and synchronized. Also,
control signals will continue to be asserted after
they should be in relation to the data on the bus,
failing to meet bus specific:;ltions. (RPL Y is

Address

asserted after DATA is invalid; see Figure 7-5.)
The third circuit, voter C in Figure 7-4, fixes

the problem of meeting bus specifications by
having a slow-rising, fast-falling delay after the
voter. However, performance is still degraded by
the presence of the delay even when all is well.

The fourth circuit, voter D in Figure 7-4,
addressed the performance problem by provid­
ing a second path through the voter for when all
three processors are working. However, the delay
used after the voter to provide synchronization
still causes the signal to fail bus specifications,
and also causes some amount of unavoidable
performance degradation. (RPLY is asserted af­
ter DATA is invalid; see Figure 7-5.)

The last circuit, and the one used (voter E in
Figure 7-4), combines the features of the pre-

Data

~~~C _~ __ .-:.... __ ~r-----+-~==:::;;-! ____ ) Bus A 
RPlY Ii 

SYNC : L-) 
DIN _~ ____ ~ ____ ~---+---~==~~: _______ BusB 
RPlY II 

SYNC : L-) 
DIN ___ --..:.... ________ '--____ ~---+--..!:::::===;+-I:I ___ Bus C 
RPlY II 

SYNC 
I L-) I 

DIN I Voter A 
I 

RPlY Ii 

I L) SYNC I 
DIN :1 Voter B 

RPlY I L-
I L-) SYNC I 

DIN 
I Voter C 
i RPlY I! 

SYNC L) DIN Voter D 

RPlY L-
I I L-) SYNC I I 

DIN 

" 
I Voter E 
I 

'RPlY I II 

Figure 7-5. DATI bus cycle with desynchronized processors. 



C.VMP: A VOTED MULTIPROCESSOR 353 

t--~r--t-- } Processor A Clocks 

I--+---} Processor R Clocks 

I-----} Processor C Clocks 

a. 

I-----} Voter Clocks 

I--t---} Processor A Clocks 

I---i--- } Processor B Clocks 

1--___ } "mcesso' C Clocks 

b. 

Figure 7-6. a.) Original processor clock synchronization. b.) Current processor 
clock synchronization. 

vious two. Thus, a- slow-rising, fast-falling delay 
is used in order to meet bus specifications; and a 
second path through the voter is provided for 
optimal performance when all is well. Note that 
the fast-falling feature of the delay not only 
allows bus specifications to be met, but also 
removes any performance degradation due to the 
voting process when all three signals are in step. 
This circuit was used for SYNC, DIN, DOUT, 
IAK, and RPL Y in C.vmp. The value for T is 
about 400-500 ns for SYNC, DIN, DOUT, and 
IAK, and about 75-100 ns for RPL Y. This 
method allows the three processors to receive 
RPLY within 5 ns of each other, and thus to stay 
synchronized. 

System Clock 

Perhaps the most critical timing problem en­
countered in the design of C.vmp was the syn­
chronization of the four phase processor clocks, 
and also the memory refresh * timing oscillators. 
This part of the design was left untriplicated in 
C.vmp due to its very small size, hence high 
reliability, relative to the rest of the machine. 
The original design, shown in Figure 7-6a, used 
the oscillators on processor A to drive the clock 

* Note that the LSI-II uses dynamic MOS RAM memory, 
which requires continual refreshing. This is normally done 
by processor microcode at regular intervals of about 1.67 
ms. 



354 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

circuits on all three processors, and the decoded 
clock signals of processor A to feed the voter and 
to synchronize the phases of the other two pro­
cessors by forcing phase one when processor A 
was in phase one. This original design worked 
fairly well, as processors Band C were closely 
synchronized, but the extra loading placed on 
the clocks of processor A caused them to lag 
several nanoseconds behind, a significant figure 
for pulses of less than 100 ns duration. This 
resulted in sufficient unreliability that the mean 
time between crashes in voting mode was never 
more than five minutes. Therefore, a new clock 
circuit, shown in Figure 7-6b, was installed in the 
voter to drive and synchronize the processor 
clocks. All three processors were wired exactly 
the same way, needing only three wires to be 
changed on each board. Since this change was 
made, the mean time between software discern­
ible disagreement has been over 250 hr, with one 
run of more than 900 hr before crashing. 

Ini tial measurements using the disagreemen t 
detection circuit attached to all the bus 'control 
lines showed no errors on any of the three buses 
over periods ranging between eight to forty 
hours. (Note that data/address lines were not 
included.) This indicates that the processors are 
well synchronized by the current design. 

PERFORMANCE MEASUREMENTS 

Processor Execution! Memory 
Fetch Time 

An important parameter in the design of fault­
tolerant computers is the amount of performance 
degradation suffered to obtain greater reliability. 
In a triplicated architecture such as C.vmp, the 
obvious loss of two-thirds of the available com­
puting power is unavoidable. This was the reason 
why C.vmp was made flexible enough to switch 
between voting (fault-tolerant) mode and inde­
pendent (high performance) mode. However, 
this fundamental loss due to triplication is not 

the only loss: the voter cutting and buffering all 
the bus lines introduces delays of 80 to 140 ns in 
the signals between the processors and the mem­
ories. 

Because the LSI -II is a clocked machine, these 
delays are not too significant in and of them­
selves. However, the latching of RPL Y from 
slave devices on the external buses in order to 
preserve processor synchronization turns out to 
be the more dominant degradation factor. The 
voter latches RPLY one clock phase (100 ns) 
before the processors to allow sufficient latch 
settling time for minimizing the probability of a 
runt pulse [Chaney, Ornstein, and Littlefield, 
1972]. The delays in the control lines due to the 
voter cause the external RPL Y to return during 
the phase on which the processors sample RPL Y 
but after the voted RPLY has already been 
latched. Thus, the voted processors must wait 
one more clock cycle (four phases/400 ns) to 
receive their RPLY after asserting SYNC than 
would a nonredundant LSI-II. The same sort of 
delay happens on the falling edge of RPL Y, 
causing up to two clock cycles to be lost in one 
complete bus cycle. These losses could likely be 
prevented by more careful selection of timing 
components within the voter, and more impor­
tant, by choosing different timing on the memory 
boards. 

Measurements were taken on the various bus 
cycles to learn what amount of degradation 
actually was occurring. These measurements, 
and all others presented later, were taken on the 
voted processor (C.vmp) and on either processor 
B (PBB) or C (PCC) in independent mode. (Note 
that in independent mode, bus A passes through 
the entire voter via the broadcast multiplexing, 
while both buses Band C pass only through a 
bus receiver/driver pair. Comparison tests with 
other LSI-II's showed that processors Band C 
operated fully as fast in independent mode as a 
standard LSI-II.) The degradation within bus 
cycles introduced by the voter ranges from 27 
percent to 67 percent, with 40 percent degrada­
tion for the most common (read) cycles. 



Table 7-1. Normalized instruction phases. 

Phase C.vmp pee C.vmp/PCC 

Fetch 7.00 6.00 1.167 
Source 2.69 2.09 1.287 
Destination 3.68 3.22 1.143 
Execution 3.53 3.53 1.000 

Total 16.90 14.84 1.139 

Time (/Lsec) 6.760 5.936 

As the LSI-II does not saturate its bus, the 
above figures are worse than the overall pro­
cessor degradation. A second step in measuring 
degradation was to check the different phases of 
instruction execution. Tests were made using the 
MOV, TST, and BR instructions* as typical 
double operand, single operand, and zero oper­
and instructions. From this data, a prediction 
can be made of performance degradation by 
using instruction frequency data provided by 
Snow and Siewiorek [1978]. Table 7-1 summa­
rizes the calculations, showing that the voting 
process should degrade instruction execution pe­
formance by roughly 14 percent. 

The third stage for measuring performance 
was to run a set of test programs with represen­
tative mixes of instructions and addressing 
modes to test the validity of the above model. 
Table 7-2 compares the triplicated processor 
with a single LSI-ll, both without faults and 
with certain induced faults. These faults were in 
the two most critical bus control signals, SYNC 
and RPLY, and represent worst case failures. 
Each signal was forced to be either always 
asserted (hi) or never asserted (10) on one of the 
three buses. 

As illustrated by Table 7-2, a degradation in 
performance of about 16-19 percent can be ex­
pected, as compared to a standard LSI-II. This 
figure is somewhat larger than predicted by the 

* MOY loads the destination from the source, TST examines 
the destination for various conditions, and BR causes an 
unconditional transfer of control. 

C.VMP: A VOTED MULTIPROCESSOR 355 

above model, which can be attributed to the 
greater degree of degradation in such functions 
as memory refresh, which is done by the pro­
cessor microcode (18.5 percent), and also to 
normal deviations of programs from the "stan­
dard" instruction mix. 

The measurements involving the four failure 
modes show that only certain failures will cause 
further degradation: those which cause the pro­
cessor's synchronizing signals (e.g., SYNC, DIN, 
and DOUT) never to be asserted. Even in these 
extreme cases, only another 12-14 percent slow­
down is experienced. Most faults, however, 
would not degrade the speed at all, but just the 
future reliability. For instance, the loss of power 
to a bus would force all signals to ground, which 
is the active assertion level (hi) on the LSI-II 
bus. Only 10 failures in the five bus control 
signals which require synchronization will cause 
any degradation. (Recall that there are a total of 
36 bus lines.) 

Disk Access Time 

The last performance measurements involved the 
floppy disks used for mass storage on C.vmp. 
Access time to a particular position on a rotating 
memory is assumed to be directly proportional 
to the initial position of the disk. Since the 
hardware makes no attempt to synchronize disk 
rotation, access to the triplicated disks will take 
the maximum of the three times. In general, for 
n disks, the access time is given by: 

I:z = MAX (/1,/2" .• , In)' 

Assuming that each access time I is uniformly 
distributed over the normalized range [0, 1], the 
expected value for access time is: 

I:z = n/(n + 1). 

This means that for a single disk (n = 1), we 
can expect to wait 0.5 rotations; for the triplicat­
ed disk (n = 3), 0.75 rotations. This gives a 50 
percent degradation in access time for the tripli-



356 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 7-2. Sample Program Execution Times* 

Unit DVKAA 

ms 
LSI-II 18.51 
C.vmp (normal) 21.4 
C. vmp (RPL Y hi) 21.4 
C.vmp (RPL Y 10) 21.4 
C.vmp (SYNC hi) 21.4 
C.vmp (SYNC 10) 23.6 

C.vmp/LSI-l1 1.157 
C.vmp/LSI-ll 1.324 

• DVKAA is the basic instruction diagnostic, testing all 
instructions and addressing modes. DZKMA is the memory 
diagnostic, and would tend to make more memory refer-

cated disks over the non triplicated disk for ran­
dom accesses. This figure was verified to an 
extent by experimental data. In reading 50 sec­
tors in a random pattern from the same physical 
track, the triplicated machine experienced about 
51 percent degradation, a very close confirma­
tion. However, if the track was also chosen at 
random for each of the 50 sectors, the triplicated 
machine was only 18 percent slower than the 
single disk system. The model failed to consider 
that, although sector access time is affected by 
the diskettes' being out of phase, track access 
time is the same regardless of triplication. 

Another shortcoming of the disk performance 
model based only on consideration of the disk­
ettes being out of phase with each other is the 
impact of the resulting slowdown on nonrandom 
disk access patterns. The impact of this can be 
much more severe (or much less severe) than 
predicted, depending on the pattern of nonran­
dom disk accesses. For instance, the R T -11 
floppy disk software uses a 2: 1 interleaving of 
sectors in order to minimize access time for 
sequential file storage. * The extra delay due to 

* 2: 1 interleaving means that only every other sector on a 
track is read when reading sectors sequentially. As some 
amount of time is necessary to read the data into memory 
after it has been fetched from the diskette, this allows all 26 
sectors of a track to be read in just two revolutions rather 
than in 26 revolutions. 

DZKMA 

min 
7:03 
8:23 
8:23 
8:23 
8:23 
9:20 

1.189 
1.276 

QSORT 

s 
11.9 
14.0 
14.0 
14.0 
14.1 
15.6 

1.176 
1.311 (SYNC 10) 

ences than average. QSORT is an example of compiler­
produced code, being an integer sorting program coded in 
BLISS-II. 

voting causes this interleaving to be insufficient 
for achieving much speedup in accesses, as illus­
trated by Figure 7-7. Waiting for all three drives 
to read a sector can cause the first two drives to 
overrun the next sector in sequence before the 
third drive has read the initial sector. This causes 
part of an additional revolution to be required 
on the next sector read. For the example shown, 
a non triplicated disk drive requires only 0.375 
revolutions to read sectors 1 and 3, while the 
triplicated drive needs 1.75 revolutions. The spe­
cific values depend on the number of sectors per 
revolution, the access pattern (and interleaving 
scheme), and the degree to which the three disks 
of the triplicated drive are out of phase. 

Table 7-3 summarizes timing data collected by 
a program which was written to test different 
interleaving schemes. A number of consecutive 
logical sectors were read, which mapped into the 
same number of physical sectors in the pattern 
dictated by the desired interleaving. In addition, 
a test program was assembled under R T -11, 
using its 2: 1 interleaving, to examine the impact 
of increased disk latency on typical operations. 
Figure 7-8 plots access time versus interleaving 
factor for reading 1000 sectors sequentially. The 
data indicate that perhaps the best sequential file 
access could be achieved for triplicated disks 
using 8: 1 interleaving. The point to be made 
about replicated disk access time is that it is very 



Initial position After first read After second read 

$ • ~ 7 2 7 2 7 2 

6 3 6 3 6 3 
5 4 5 4 5 40 

Single disk drive 

------------------------------------

O;Sk$ m ~ 7 2 7 2 o 7 2 
6 3 6 3 6 3 

5 4 5 4 5 4 

DiSk~ m ~ 4 7 4 7 o 4 7 
3 8 3 8 3 8 

2 1 2 1 2 1 

DiSk~ 2 3 
1 4 

8 5 
7 6 W 1 4 

8 5 
7 6 ~

3~ 
o 1 4 

8 5 
7 6 

Triplicated disk drive 

Figure 7-7. Effects of disk triplication on sequen­
tial access (2:1 interleaving). 

pattern sensitive: very little degradation due to 
replication occurs in sequential accesses without 
interleaving, but great degradation is seen when 
interleaving is used. Instead of the factor of ten 
speedup available with 2: 1 interleaving on a 
single disk, only a factor of roughly 1.5 is possi­
ble (using 8: 1 interleaving) on a triplicated disk. 

Table 7-3. Disk timing tests (in seconds). 

Sectors Interleave C.vmp 

10 1: 1 1.69 
10 2: 1 1.55 
50 1: 1 8.51 
50 2:1 7.66 
1,000 1: 1 171.2 
1,000 2: 1 153.9 
Assembly 2: 1 109.6 

C.VMP: A VOTED MULTIPROCESSOR 357 

OPERATIONAL EXPERIENCES 

Operating History 

Implementation of C.vmp has been completed, 
and stable performance achieved. The software 
is a standard, unmodified single-user diskette­
based real-time operating system (RT-II). The 
system has been utilized under actual load con­
ditions with students doing projects in an intro­
ductory real-time programming course. The stu­
dents were supplied with an RT-ll software 
manual and a short paper on C.vmp specific data 
(i.e., location of the power switches, reminder to 
load three diskettes, etc.). To these users, C. vmp 
successfully appeared as a standard LSI-II uni­
processor running standard software. 

C.vmp System Reliability 

C.vmp has repeatedly demonstrated hard-failure 
survival by bus power switching and board re­
moval (see comments later about on-line mainte­
nance). Another aspect of fault tolerance is tran­
sient-fault survival. The only transients which 
should cause C.vmp to crash are those occurring 
simultaneously in more than one module. Ac­
cording to the data from Cm* presented in 
Siewiorek, et aI., [1978a], such transients make 
up 17 percent of the total, occurring roughly 
every 1,000 hr. The mean time to crash should 
equal or exceed this figure. Indeed, as the hard­
ware situation has been stabilizing, C.vmp's reli­
ability has been increasing toward this order of 

PBB C.vmp/PBB 

1.66 1.021 
0.17 9.218 
8.06 1.055 
0.81 9.403 

159.9 1.071 
14.6 10.540 
15.8 6.937 



358 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

~180 

~ 165 
~ 150 

§ 135 
~ 120 
7; 105 
"C 
g 90 
a:l 75 
-; 60 

.,S 45 

'" 30 
'" ~ 15 
~ O~~~~~~~~~~~~ 

1 2 3 4 5 6 7 8 9 10 

Interleaving factor 

Figure 7-8. Disk access time versus interleaving 
factor. 

magnitude. Table 7-4 summarizes C.vmp crash 
data for the nine-month period from August 1, 
1977 to April 30, 1978. Note that software- or 
user-caused crashes have not been included in 
the data. Also, repeated crashes (ones due to the 
same cause) have been removed. Due to uncer­
tainty as to the exact causes of many crashes, 
dual tables have been constructed giving the 
"best case" and "worst case" figures. Crashes 
which may have been software or user caused 
are included in the worst-case but not in the 
best-case data. The voter-induced transient fail­
ures are due mainly to construction. The wire­
wrap boards used in the voter are prone to 
socket failures. These sockets are being systemat­
ically replaced, with a consequent improvement 

Table 7-4. C.vmp crash data (in hours). 

Worst Case 

Month Mean Std. Dev. Median Number Uptime 

August 64.8 91.9 28.0 5 323.8 
September 108.7 139.6 35.6 4 434.9 
October 35.5 51.1 19.8 16 568.3 
November 49.3 33.0 52.0 10 492.9 
December 204.8 191.6 113.1 3 614.5 
January 95.4 104.3 70.5 7 667.7 
February 258.8 78.6 258.8 2 5l7.6 
March 298.3 276.4 298.3 2 596.7 
April 352.4 114.2 352.4 2 704.7 

Total 96.5 167.8 30.6 51 4921.1 

Best Case 

Month Mean Std. Dev. Median Number Uptime 

August 81.0 96.1 34.6 4 323.8 
September 217.4 132.4 217.4 2 434.9 
October 142.1 44.5 125.7 4 568.3 
November 246.5 167.3 246.5 2 492.9 
December 614.5 0.0 614.5 1 614.5 
January 0 667.7 
February 517.6 0.0 5l7.6 1 5l7.6 
March 0 596.7 
April 704.7 0.0 704.7 1 704.7 

Total 328.1 470.8 114.3 15 4921.1 

Note: Std. Dev. is the standard deviation. 



in mean time to crash (MTTC). With permanent 
construction techniques (e.g., printed circuit 
boards) the voter should be removed as a source 
of system crashes. 

One measure of transient fault survival lies in 
the severity of the methods necessary for recov­
ery. Five levels of recovery exist: 

1. CONTINUE execution at the same location with­
out any change to processor registers or memory; 

2. RESTART the program in memory, which will also 
reset the I/O devices and processor registers; 

3. RELOAD the program into memory, also resetting 
the I/O devices and processor registers; 

4. RESET the processors and reload the program; 
and 

5. DEBUG the hardware to whatever extent is re­
quired to restore stable operation. 

Table 7-5. C.vmp crash recovery data. 

C.VMP: A VOTED MULTIPROCESSOR 359 

Table 7-5 summarizes this data in correspond­
ence to the entries of Table 7-4. 

It is interesting to note that the majority of 
crashes required relatively little effort to recover 
from. Only a few required the processor to be 
actually reset, and several required only the 
resident monitor to be restarted. All the cases of 
debugging involved socket failures in the voter 
boards and seem to be getting less frequent. 

On-line Maintenance 

The success of the voting mechanism has been 
established by experiments with powering down 
buses and removing components, while still hav­
ing the system as a whole continue operating. 

Worst Case 

Month Continue Restart Reload Reset Debug 

August 0 1 3 0 1 
September 0 0 2 0 2 
October 0 5 7 1 3 
November 0 1 7 1 1 
December 0 0 2 0 1 
January 0 7 0 0 0 
February 0 1 0 0 1 
March 0 2 0 0 0 
April 0 2 0 0 0 

Total 0 19 21 2 9 

Best Case 

Month Continue Restart Reload Reset Debug 

August 0 0 3 0 1 
September 0 0 0 0 2 
October 0 0 1 0 3 
November 0 0 0 1 1 
December 0 0 0 0 1 
January 0 0 0 0 0 
February 0 0 0 0 1 
March 0 0 0 0 0 
April 0 I 0 0 0 

Total 0 4 9 



360 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

With a bus powered down, the associated pro­
cessor and memory are, of course, lost, but the 
system keeps working. Defective components (if 
such exist) can be replaced, and the bus powered 
back up. Contents of the newly restored memory 
can be brought into agreement with the other 
copies by providing a read/write memory back­
ground job. Normal operation suffices to resyn­
chronize the processor, as it starts executing code 
randomly until it gets in execution phase with 
the other two processors. 

Actual experiments have included removing 
memory boards from one, two, or even all three 
buses (different 4K banks of memory from dif­
ferent buses). Also, a processor was removed, 
and the machine kept running. Even with one of 
the processors missing and a different 4K bank 
of memory removed from each bus, the machine 
continued in operation. 

The only problem encountered with these ex­
periments was that restoring power to a bus 
sometimes causes a crash. All three buses, and 
even the voter itself, draw power from the same 

+5 V supply. The transients on the power lines 
associated with turning on an LSI-II processor, 
12K of memory, and assorted I/O interfaces are 
the cause of the crashes. (These transients arise 
from the sudden demand for 7-10 A current for 
the various components on each bus.) Indepen­
dent power supplies, as would be desirable in 
any case for a fault-tolerant computer, are neces­
sary to correct this problem. 

The ability described above to power down 
selective sections of C.vmp in order to remove or 
replace defective modules is certainly a strength 
of the system as regards being a highly available 
machine. 

REFERENCES 

Chaney, Ornstein, and Littlefield [1972]; DEC [1975b, 
1975c]; Hopkins and Smith [1974]; Lunde [1977]; 
Siewiorek et al. [1978a, 1978b]; Siewiorek, Canepa, 
and Clark [1976]; Snow and Siewiorek [1978]; Waker­
ly [1976]. 



~MP in the VAX Family: 
vAX-ll/780 and VAX-ll/7S0 

'he VAX-II (Virtual Address Extension) is an 
xpansion upon the architectural principles in­
orporated in the PDP-II. At the time of the 
[lception of the VAX-II architecture, concerns 
or RAMP were gaining momentum. This chap­
er focuses on the RAMP features in two differ­
nt implementations of the VAX-II architec­
ure: the V AX-ll/780 (ca. 1977) and 
r AX-I 1/750 (ca. 1980). This chapter discusses 
he VAX-II from two viewpoints: architecture* 
md implementation. The first section deals with 
he V AX architecture and architectural-level 
tAMP (Reliability, Availability, and Maintain­
lbility Program) features. The next presents an 
lrchetypical implementation and describes the 
:ommon RAMP implementation features, fol­
owed by two sections on the detailed RAMP 
'eatures of the V AX-I 1/780 and V AX-I 1/750. A 
mmmary of the VAX-ll/780 and VAX-I 1/750 
RAMP features concludes the chapter. 

fHE VAX ARCHITECTURE 

20mpatibility between members of a computer 
family is essential. The need for compatibility at 
the architectural level is the most pronounced, 
but there are also substantial benefits from simi­
larities between implementations. Similarities 
can reduce costs of training, documentation, and 
repair. The original VAX architecture paper 
[Strecker, 1978] reveals the enormous pressure 
for compatibility: 

VAX-II is the Virtual Address extension of 
PDP-ll architecture [Bell et aI., 1970; Bell and 

* The term architecture describes the attributes of a system 
from the viewpoint of the programmer. 

361 



362 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Strecker, 1976]. The most distinctive feature of 
VAX-II is the extension of the virtual address from 
16 bits as provided on the PDP-II to 32 bits. With 
the 8-bit byte the basic addressable unit, the exten­
sion provides a virtual address space of about 4.3 
gigabytes which, even given rapid improvement in 
memory technology, should be adequate far into 
the future. 

Since maximal PDP-II compatibility was a 
strong goal, early VAX-II design efforts focused 
on literally extending the PDP-II: preserving the 
existing instruction formats and instruction set and 
fitting the virtual address extension around them. 
The objective here was to permit, to the extent 
possible, the running of existing programs in the 
extended virtual address environment. While real­
izing this objective was possible (there were three 
distinct designs), it was felt that the extended 
architecture designs were overly compromised in 
the areas of efficiency, functionality, and program­
ming ease. 

Consequently, it was decided to drop the con­
straint of the PDP-II instruction format in design­
ing the extended virtual address space or native 
mode of the VAX-II architecture. However, in 
order to run existing PDP-II programs, VAX-II 
includes a PDP-II compatibility mode. Compatibil­
ity mode provides the basic PDP-II instruction set 
less only privileged instructions (such as HALT) 
and floating point instructions (which are optional 
on most PDP-II processors and not required by 
most PDP-ll software). 

In addition to compatibility mode, a number of 
other features to preserve PDP-II investment have 
been provided in the V AX-ll architecture, the 
VAX-II operating system VAX/VMS, and the 
VAX-I 1/780 implementation of the VAX-II archi­
tecture. These features include: 

1. The equivalent native mode data types and 
formats are identical to those on the PDP-II. 
Also, while extended, the VAX-II native mode 
instruction set and addressing modes are very 
close to those on the PDP-II. As a consequence 
VAX-II native mode assembly language pro­
gramming is quite similar to PDP-II assembly 
language programming. 

2. The V AX-I 1/780 uses the same peripheral buses 
(Unibus and Massbus) as the PDP-II and uses 
the same peripherals. 

3. The VAX/VMS operating system is an evolution 
of the PDP-ll RSX-IIM and lAS operating 
systems, offers a similar although extended set of 
system services, and uses the same command 

languages. Additionally, VAX/VMS supports 
most of the RSX-IIM/IAS system service re­
quests issued by programs executing in compat­
ibility mode. 

4. The VAX/VMS file system supports the 
RSX-llM/IAS operating systems permitting in­
terchange of files and volumes. The file access 
methods as implemented by the RMS record 
manager are also the same. 

5. V AX-ll high level language compilers accept 
the same source languages as the equivalent 
PDP-II compilers and execution of compiled 
programs gives the same results. 

The VAX-II architecture defines the following 
data types: byte, word, longword, 'quadword, 
floating, double-floating, packed decimal, char­
acter string, and bit field. In addition to the basic 
data manipulation and program flow control 
instructions, there are instructions to accelerate 
the performance of special operating system 
functions and to perform high-level language 
constructs. For example, the FORTRAN-com­
puted GOTO and CALL instructions and loop 
control each translate into a single VAX instruc­
tion. Nine addressing modes use the 16 32-bit 
general registers to identify operand locations. 

The architecture defines two ways to invoke 
execution of software outside the explicit flow of 
control. The first, resulting from internal events 
(usually related to the current instruction under 
execution), is called an exception. The second, 
resulting from external events, is called an inter­
rupt. The VAX-II architecture specifies three 
types of exceptions: aborts, faults, and traps. 

Aborts are the most severe form of exception. 
When an instruction is aborted, the machine 
registers and memory may be left in an indeter­
minate state. Because system state is destroyed, 
the instruction cannot be correctly restarted, 
completed, simulated, or undone. 

Faults, on the other hand, leave the machine 
registers and memory in a consistent state. Once 
the fault is eliminated, the instruction may be 
restarted and the correct results obtained. Faults 



able 8-1. Arithmetic exceptions. 

~xception Type 

nteger overflow 
nteger divide by zero 
~loating overflow 
~loating/decimal divide by zero 
~loating underflow 
)ecimal overflow 
:ubscript range 
~loating overflow 
~loating divide by zero 
:loating underflow 

Trap 
Trap 
Trap 
Trap 
Trap 
Trap 
Trap 
Fault 
Fault 
Fault 

·estore only enough state to allow restarting. The 
,tate of the process may not be the same as 
)efore the fault occurred. 

Finally, a trap occurring at the end of the 
nstruction causing the exception. The machine 
·egisters and memory are consistent and the 
lddress of the next instruction to execute is 
;tored on the machine stack. The process can be 
'estarted with the same state as before the trap 
::>ccurred. 

Several arithmetic exceptions are architectur­
l11y defined. These exceptions deal primarily 
with overflow/underflow and illegal operations. 
Table 8-1 summarizes the arithmetic exceptions. 
The floating point faults differ from the traps in 
that the faults do not affect the destination 
operand. 

Table 8-2 lists the defined exception and inter­
rupt vectors. Each vector represents a unique 
memory location where an address is stored. The 
address points to the start of a software routine 
unique to the corresponding exception or inter­
rupt. Exceptions may store information about 
their type on the system stack to help guide the 
software in restarting the system. Some excep­
tions are triggered by consistency checks and 
detect primarily software errors. Other excep­
tions are detected by hardware and represent 
hardware or environmentally induced errors. 
The next few paragraphs provide more details 
for the entries in Table 8-2. 

RAMP IN THE VAX FAMILY 363 

Table 8-2. Exception and interrupt vectors. 

Name Type Notes 

Machine check Abort/trap Length parameter 
and error-specific 
data pushed onto 
the stack, if 
possible. 

Kernel stack not Abort No parameters 
valid 
Power fail Interrupt No parameters 
Reserved or Fault No parameters 
privileged 
instruction 
Customer Fault No parameters 
reserved 
instruction 
Reserved operand Fault/abort No parameters 
Reserved Fault No parameters 
addressing mode 
Access control Fault Virtual address 
violation causing the fault 

is pushed onto the 
kernel stack. 

Translation not Fault Virtual address 
valid causing the fault 

is pushed onto the 
kernel stack. 

Trace pending Fault No parameters 
Breakpoint Fault No parameters 
instruction 
Compatibility Fault/abort Type code pushed 
mode onto stack 
Arithmetic Trap/fault Type code pushed 

onto stack 
Corrected Interrupt No parameters 
memory read data 
Memory write Interrupt No parameters 
timeout 
Interval timer Interrupt No parameters 
Console terminal Interrupt No parameters 
receive 
Console Storage Interrupt V AX-ll/750 only 
device 
SBI SILO Interrupt V AX-ll/780 only 
compare 
SBI alert Interrupt V AX-l1/780 only 
SBI fault Interrupt V AX-ll/780 only 



364 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

The machine check is the most damaging 
exception. It is triggered when internal CPU 
error-checking circuitry detects an exceptional 
condition. The processor may be restartable if 
the exception is related to redundant logic whose 
sole purpose is to improve machine performance 
(such as an instruction cache or instruction look­
ahead buffer). 

The VAX-ll has four defined modes of ac­
cess: Kernel, Executive, Supervisor, and User. 
These modes are used to grant or deny privileges, 
such as access to portions of memory or execu­
tion of specific instructions. An exception occurs 
if an access to the kernel, or most privileged 
stack, encounters a memory-access violation 
(such as no access or attempted write to a read­
only page) or if the translation from virtual 
address to physical address is not valid. 

Power failure causes an interrupt so that ma­
chine state can be saved for a clean power-up 
sequence. 

Table 8-3. Address protection. 

Execution of reserved or privileged (such as 
improper system state) instructions triggers 
faults. Faults may be caused by attempted use of 
a reserved operand format or reserved addres­
sing mode (that is, iII-formed instruction and 
addressing mode). 

The VAX-II architecture defines an extensive 
virtual-to-physical address translation. Associat­
ed with each memory page is a protection code. 
The system mode and address request must 
match the code, or a Translation Not Valid fault 
results. Table 8-3 lists the various allowable 
system modes and access rights. 

When the Trace bit is enabled, the system 
faults after every instruction execution. Tracing 
is used for performance evaluation or debugging. 

The breakpoint fault is also associated with 
debugging. The breakpoint instruction can be 
placed anywhere in the software flow and is 
designed to restore control to the user for exam­
ining the state of the program. 

System Mode 

Protection Code Kernel Executive Supervisor User 

0000 No No No No 
0001 Unpredictable 
0010 R/W No No No 
0011 RO No No No 
0100 R/W R/W R/W R/W 
0101 R/W R/W No No 
0110 R/W RO No No 
0111 RO RO No No 
1000 R/W R/W R/W No 
1001 R/W R/W RO No 
1010 R/W RO RO No 
1011 RO RO RO No 
1100 R/W R/W R/W RO 
1101 R/W R/W RO RO 
1110 R/W RO RO RO 
1111 RO RO RO RO 

Key: No-No Access 
R/W-Read/write access 
RO-Read only access 



When executing in PDP-II compatibility 
lOde, errors (those defined in the PDP-II arch i­
~cture) are reported via the compatibility fault/ 
bort. 
Two interrupts report memory-related prob­

:ms: an error on read-from-memory was 
orrected by an error-correcting code, and no 
lemory responded to a write request (such as 
JonExisting Memory). 

Three interrupts are specific to the 
T AX-ll/780 and deal with the bus between 

RAMP IN THE VAX FAMILY 365 

processor and memory (the Synchronous Back­
plane Interconnect, or SBI). 

In addition to exceptions, the architecture also 
defines several processor registers, listed in Table 
8-4. Most of the registers deal with the software 
structure. The Translation Buffer is similar to a 
data cache except that it caches virtual addresses 
that have already been translated. 

Of the architecturally defined registers, the 10 
registers detailed in Table 8-5 are related to 
RAMP functionality. The numbers in brackets 

'able 8-4. VAX architecturally defined processor registers. 

{arne 

Cernel Stack Pointer 
~xecutive Stack Pointer 
,upervisor Stack Pointer 
Jser Stack Pointer 
nterrupt Stack Pointer 
)0 Base Register 
)0 Length Register 
) I Base Register 
) 1 Length Register 
;ystem Base Register 
;ystem Length Register 
?rocess Control Block Base 
iystem Control Block Base 
[nterrupt Priority Level 
<\synchronous System Trap Level 
ioftware Interrupt Request 
ioftware Interrupt Summary 
lnterval Clock Control 
Next Interval Count 
lnterval Count 
rime of Year 
Console Receiver Control and Status 
Console Receiver Data Buffer 
Console Transmit Control and Status 
Console Transmit Data Buffer 
Memory Management Enable 
Translation Buffer Invalidate All 
Translation Buffer Invalidate Single 
Performance Monitor Enable 
System Identification 
Processor Status Register 

Type 

R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
W 

R/W 
R/W 
W 
R 

R/W 
R/W 
R 
R/W 
W 
R/W 
W 
W 

R/W 
R 
R/W 

Scope 

Process 
Process 
Process 
Process 
CPU 
Process 
Process 
Process 
Process 
CPU 
CPU 
Process 
CPU 
CPU 
Process 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
Process 
CPU 
Process 

Initialized? 

Yes 
Yes 

Yes 
Yes 

No 
Yes 

Yes 

Yes 
No 



Table 8-5. Details of RAMP-related VAX architecturally defined processor registers. 

Name Subfields 

Interval Counter (31 :0) 

Next Interval Counter (31 :0) 

Interval Clock Control and Status Error 

Time of Year (31 :0) 

Console Subsystem Receiver 
Control and Status 

Console Receiver Data Buffer 

Console Subsystem Transmit 
Control and Status 

Interrupt Request 

Interrupt Enable Single CLK 

Transfer 

Run 

Ready, Interrupt Enable 

Data (31 :0) 

Done, Interrupt Enable 

Console Subsystem Transmit Data Data (31 :0) 
Buffer 

System ID 

Processor Status Word 

System Type (7:0) 
ECO Level (7:0) 
Manufacturing Plant (3:0) 
System Serial Number (11 :0) 

Compatibility Mode 

Trace Pending 

First Part Done 

Current Mode (I :0) 

Previous Mode (1 :0) 

Interrupt Priority Level of 
CPU (4:0) 

Enable decimal overflow 
exceptions 

Enable floating underflow 
exceptions 

Enable integer overflow 
exceptions 

T 

N 

Z 

V 

C 

Comments 

I-microsecond resolution 

Loaded into Interval Counter when 
coun ter overflows 

Second overflow occurs before first 
serviced 

Set on counter overflow 

Advances counter one step 

Loads counter from next Interval 
Counter 

Increments counter 

CPU executing PDP-II instructions 

Initiates trace trap at end of current 
instruction 

Set by microcode on certain 
instructions to indicate instruction 
may be restarted from that point if 
instruction is interrupted 

User, Supervisor, Executive, Kernel 

Trace 

Negative condition code 

Zero condition code 

Overflow condition code 

Carry condition code 



tldicate the number of bits in each field. The 
tlterval counter has a one-microsecond resolu­
ion and can be used by diagnostics for timing 
:ritical functions. The Time-Of -Year Clock is 
lsed to put a time stamp on software objects, 
uch as entries of error information into a file 
error log), for post error analysis. 

A console terminal is defined via Data and 
=ontrol/Status register pairs for the Transmit/ 
~eceive functions. A System ID register provides 
nformation that can be used to isolate failures to 
.he manufacturing process. Finally, the Pro­
:essor Status Word contains control for enabling 
:racing and various arithmetic exceptions. 

I\RCHETYPICAL VAX-11 
IMPLEMENTATION 

Figure 8-1 illustrates an archetypical implemen­
tation of a VAX-II. The CPU is interconnected 
to memory and I/O devices by a backplane bus. 
I/O devices reside on either the Unibus or Mass­
bus. The latter is a high-speed block-transfer bus 
used primarily for block-oriented mass storage 
devices such as disks and tapes. Bus adapters 
convert Unibus or Massbus protocols to the 
backpanel bus protocol. 

The backpanel bus is optimized for bandwidth 
rather than for minimum response time. Thus, 
the various ports to the backplane (Unibus, 
Massbus, CPU, and memory) are provided with 
buffers. The buffers can support one of two 
purposes: they can smooth data flow between 

RAMP IN THE VAX FAMILY 367 

buses or devices with different data rates, or they 
can reduce bus accesses by holding frequently 
used data items. 

Two standard options are the Floating Point 
Accelerator (FPA) and the Writable Control 
Store (WCS). Although the CPU microcode im­
plements the full floating-point instruction set, 
the FP A provides data paths specifically tailored 
to executing floating-point operations. The FPA 
is logically invisible to software and affects only 
the instruction execution rate. The Writable 
Control Store supports microcode changes and 
additions. The WCS can also be used for micro­
diagnostics. 

The Console Subsystem serves as a system 
console. The system console terminal provides 
control (halt, restart, initialize, and so on) over 
the CPU, as well as access to internal system 
registers. The Console Subsystem also has a mass 
storage device containing the main system boot­
strap code and some diagnostics. Finally, a port 
is provided for Remote Diagnosis (RD). The RD 
port provides all the functionality of the Console 
Subsystem to a remote site. 

Table 8-6 gives a brief summary comparison 
of the V AX-I 1/750 and V AX-I 1/780 imp lemen­
tations .. The Control Store (CS) of each CPU has 
associated parity bits. Each CPU has three buff­
ers: instruction look ahead, cache, and address 
translation. The Instruction Buffer (IB) serves 
two purposes. First, it decomposes the highly 
variable instruction format into its basic compo­
nents; second, it constantly fetches ahead of 

Floating point accelerator 

Writable control store 

Console VAX-11 
subsystem CPU 

Memory 

Remote Translation buffer array 

diagnosis Cache Memory controller 

f Backplane bus 

Unibus Massbus 

Figure 8-1. Archetypical VAX-11 implementation. 



Table 8-6. Comparison of VAX-11 1750 and -11/780 implementations. 

Component 

Processor 
Relative performance 
Relative cost 
Control store 

Word length 
N umber of words 
Microcycle time 

Data path width 
Instruction lookahead buffer 

Cache 
Size and organization 
Cycle time 
Typical hit ratio 
Effective main memory cycle 
time 

Address Translation Buffer 
Size (number of entries) 
Typical hit ratio 

Main Memory 
Physical address bits 
Physical size (words) 
Battery backup option 
Cycle time 

Read 

Write 
ECC 
Interleaving factor 

I/O 
Max system I/O rate 

Unibus 
Number 
Maximum I/O rate through 
buffered data paths 
Number of buffered data 
paths 

Massbus 
Number 
Maximum I/O rate 
Buffer size 

Weight 
Max. heat dissipation 
Max. AC power consumption 

VAX-lJ/750 

0.6 
0.4 

78 bits + 2 parity 
6K ROM + IK RAM 
320 nsec 
32 bits 
8 bytes 

4 Kbyte direct-mapped 
320 nsec 
.9 
400 nsec/32 bits 

512 
.98-.99 

24 
2 Mbyte in 256-Kbyte increments 
10 minutes for 2 Mbytes 

800 nsec/32 bits 

640 nsec/32 bit 
7-bit ECC per 32-bit word 
I 

5 Mbyte/sec 

1.5 Mbyte/sec 

3 total, 4-byte buffer in each 

up to 3 
2 Mbyte/sec per Massbus total 
32 bytes/Massbus 
4001bs. 
5,800 BTU /hr. 
1,700 watts 

VAX-lJ/780 

1.0 
1.0 

96 bits + 3 parity 
4K ROM + IK RAM 
100 nsec 
32 bits 
8 bytes 

8 Kbyte, 2-way set associative 
290 nsee 
.95 
1800 nsee/64 bits 

128 
.97 

30 
8 Mbyte in 256-Kbyte increments 
10 minutes for 4 Mbytes 

800 nsec/64 bits 
I JOO nsee with single-bit errors 
1400 nsec/64 bit 
8-bit ECC per 64-bit word 
2 wi th 2 independen t memory 
con trollers 

13.3 Mbyte/sec with 2 memory 
con trollers 

up to 4 
1.5 Mbyte/see 

15 total, 8-byte buffer in each 

up to 4 
2 Mbyte/see per Massbus 
32 bytes/Mass bus 
1,100Ibs. 
21,230 BTU 
6,225 watts 



=PU execution to reduce delays in obtaining the 
.nstruction components. The cache stores away 
~requently used data so that subsequent accesses 
[0 a datum do not incur the memory-fetch delay. 
fhe virtual-to-physical address translation speci­
fied in the VAX architecture requires several 
table lookups and memory fetches. The Address 
franslation Buffer (TB) is a cache of recent 
virtual to physical address translations. 

The main memory is protected by Error-Cor­
recting Code (ECC) and has a battery backup 
:)ption that preserves the contents of memory 
:)ver short-term power failures. 

I/O consists of Unibus and Massbus adapters. 
The adapters contain buffers that smooth data 
[low between the slower data rate Unibus/Mass­
bus and the higher data rate Backplane Intercon­
nect, and also serve as assembly/disassembly 
stations for differences in data path widths; for 
example, the Unibus and Massbus deal in 16-bit 
words while the main memory has either 32-bit 
words for the /750 or 64-bit words for the /780. 
The adapters also contain tables for mapping 
Unibus/Massbus physical addresses into Back­
plane Interconnect physical addresses. 

Remote Diagnosis is an integral part of the 
V AX-ll maintenance philosophy. In a typical 
VAX-II maintenance scenario, disk-resident, 
user mode diagnostics periodically execute under 
the VMS operating system to exercise and detect 
functional errors in memory, Massbus Adapters 
(MBA), Unibus Adapters (UBA), device control­
lers, and device drives. Errors reported by User 
Mode diagnostics or hardware check circuits 
prompt a customer call to the Diagnostic Center 
(DC). The customer replaces the removable disk 
media with a diagnostic and scratch disk, turns a 
key on the front console to "remote," and calls 
the DC; unauthorized access is not possible. The 
DC engineer calls the customer's processor, logs 
onto the system, and begins to execute a script of 
diagnostics. Micro- and macrodiagnostics can be, 
loaded from the diagnostic disk and executed, 
the error log can be examined, memory locations 
deposited or examined, and so on. If the diag­
nostic disk is not operable, the diagnostics can be 

RAMP IN THE VAX FAMILY 369 

loaded from the Console Subsystem mass stor­
age device or down-line loaded over a telephone 
line. The DC will attempt to isolate the failure 
to a subsystem. If the CPU is faulty, the diagnos­
tic on the Console Subsystem mass storage de­
vice is executed to verify the CPU status. 

The DC advises the local Field Service office 
of the failing subsystem. At the customer's site, 
Field Service replaces the faulty board and re­
verifies the system. If the failing subsystem is the 
CPU, micro diagnostics are loaded into the writ­
able control store. 

Remote diagnosis has at least three major 
advantages: 

• Faster MTTR, especially when the problem is of a 
trivial nature and can be resolved over the remote 
diagnostic link; 

• Faster resolution of difficult problems, because the 
person at the DC is an expert in VAX system fault 
determination; and 

• Much greater certainty that the repairman arrives 
with the correct part. 

All diagnostics can be run either at the site or 
remotely. In a building-block approach, the Con­
sole Subsystem first verifies its own operation; 
then the system hard core (CPU, Backplane 
Interconnect, and memory controller) is checked 
by loading microdiagnostics into the writable 
control store. Macro level tests on the I/O bus 
adapters and peripheral controllers are run next, 
followed by the peripheral device diagnostics. 

Functional level tests-that is, isolation to the 
failing major unit-can generally be performed 
on-line with the operating system. Faulty field­
replaceable units can then be identified by stand­
alone fault-isolation diagnostics. 

Automatic on-line error logging is an integral 
part of every VAX system. A snapshot of the 
system is taken upon occurrence of a CPU, 
memory, I/O, or software error, with two excep­
tions. First, if a long time has elapsed with no 
errors, only the time of day is logged. Second, if 
the number of errors from the ECC memory 
exceeds a certain threshold (due to a permanent 
correctable failure in a frequently accessed loca­
tion), no more entries are made for a period of 



370 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

time. The operating system has a special utility 
routine that converts the log into a readily ana­
lyzed form. 

The next two sections discuss the V AX-I 1/780 
and VAX-I 1/750 implementations in more de­
tail, focusing on the RAMP-related features. 

THE VAX-11/780 IMPLEMENTATION 

The V AX-I 1/780 is the first implementation of 
the VAX-II architecture. Random logic is imple­
mented in standard, low-power Schottky SSI/ 
MSI; memory consists of standard MOS LSI 
memory chips. A committee was formed to es­
tablish RAMP goals, with members representing 
Diagnostic Engineering, Documentation, Field 
Service, Hardware Development, Manufactur­
ing, Marketing, Software Development, Software 
Support, and Software Quality Management. 

Figure 8-2 shows the major functional blocks 
in the VAX-11/780 implementation. The main 
memory array is protected by ECC; the Data 
Cache, Translation Buffer, Control Store, and 
Writable Control Store memory arrays are pro­
tected by multiple parity bits for error detection. 
Several special-purpose buses interconnect the 
various functional blocks. 

The Synchronous Backplane' Interconnect 
(SBI) joins the CPU, memory, and I/O subsys­
tems. As its name implies, the SBI is a synchro-' 
nous bus with a minor cycle time of 200 nanosec­
onds. The data path is 32 bits wide. During each 
200-nsec minor cycle, either 32 bits of data or 30 
bits of physical address can be transferred. Be­
cause read or write operations require the trans­
mission of both address and data, two SBI minor 
cycles are required to complete the transaction. 
The SBI protocol also provides for 64-bit opera­
tions in three minor cycles, one address and two 
data. The CPU and I/O devices use the 64-bit 
mode whenever possible. 

Each minor cycle is checked by two parity 
bits. One covers the 32 address/data lines; the 
other covers 12 control information lines. During 

each minor cycle the receiver checks and con­
firms parity. Each SBI interface checks bus arbi­
tration and SBI protocol. Any irregularities are 
reported to the CPU. The CPU also maintains a 
history of the last 16 SBI cycles. Any SBI error 
condition preserves the history for diagnostic 
purposes. 

To reduce accesses to the SBI, the CPU con­
tains an 8K-byte write-through cache. The cache 
is two-way set associative, as depicted in Figure 
8-3. A portion of the address is used to index two 
arrays. If the tag field of the address matches 
either of the stored tags, the data are resident in 
cache (cache hit) and an SBI/memory cycle can 
be avoided. The cache uses a random replace­
ment policy on a read miss. On a write hit, the 
location is updated in the cache as well as main 
memory. On a write miss, the location is not 
stored in the cache. The typical hit rate is 95 
percent resulting in a 290-nsec effective address­
operand access time. 

The CPU also contains a two-way, set-associa­
tive Translation Buffer (TB). The TB is a cache 
of recent virtual-to-physical address translations. 

The V AX-11/780 maintenance philosophy 
centers on the Console Subsystem. Two impor­
tant RAMP-related buses, the 10 (Internal 
Data) and V (Visibility) Buses are tied into the 
Console Subsystem. The Console Subsystem is 
composed of an LSI-II microcomputer with 16K 
bytes of RAM and 8K bytes of ROM, a hard 
copy terminal, a floppy disk, and a remote 
diagnostic port. The LSI -11 performs a self-test 
on power-up. The LSI-ll can examine and de­
posit values in internal processor registers via the 
10 bus. Registers accessible to the 10 include 
configuration control, error summary, error data, 
and maintenance registers. The V Bus makes 
almost 600 internal logic signal values visible to 
the microdiagnostics. 

The V AX-11/780 maintenance philosophy can 
be understood by examining the registers asso­
ciated with each hardware error-detection or 
-correction element. In general, each element can 
be associated with up to four types of registers: 



RAMP IN THE VAX FAMILY 371 

Memory 
P array 

I 
MOS Bus 

: 
ECC 

t 

&J 
FI Bus 

Translation buffer 

~ ) - PA Bus 
~ 

SBI 

~ 
Ad-

RData cache 
t P dress 

Data P 

~ SBI Request levels 
V Bus 

P Tag Data P control 

l PC t :I~ ~ I pc] ~ ! ! -< > --c. ~ ---=r PC 

r--- l....- i--
CS Bus 

t-- r-- II r- >-- I-- ,----

t 
MD Bus 

t __ t • • lH It t ~ 
ating 

'GiID Data 
Instruction 

ROM II RAM /1 H Traps and 
lint ~ buffer and control P control interrupts 
lerator r- paths decode store store arbitrator 
-r--

1 t 1. 1 1 f 

r'lff t 
UPC 

V bus 
I- :H '-- I 

ID Bus 

t I t ~ 1 
Clock Diagnostic 

Clo(k <== Clock control Console ·signals Micro 
output generator interface sequencer 

tl 
Synchronous backplane interconnect Q bus 

Virtual address lines 

I s = Physical address bus u1 Local us = Memory data bus 
s = Internal data bus LSI-11 CP 

terminal 
s = Control store bus and 8K DLV-11 RXV-11 Floppy 
= Visibility bus memory -, r-------, disk 

= Microprogra,m counter ~_~ Rem?te : 
= en G eral register data I terminal I = File information bus L _______ ....J 

bus = MOS data bus 
'arity bits 
Parity checker 
Parity generator 

= Error correcting code 

Figure 8-2. VAX-11 1780 data paths and error checking, 



372 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Address 

Data Tag 

Hit Hit 

Figure 3-3. Two-way, set-associative cache. 

configuration/control, status, data, and diagnos­
tic/maintenance. The configuration/control reg­
ister contains information on the state of the 
element (such as checking enabled, reporting 
enabled). The status register contains flags sum­
marizing the state of the element, including error 
reports. Data registers capture relevant informa­
tion about the system state when an error was 
detected (such as the address used on cache 
lookup when a cache parity errOr was detected). 
Finally, the diagnostic/maintenance register con­
tains control and status information relative to 
checking the error-detection/correction logic. 
Although the names of these registers are not 
applied consistently, the generic terms provide a 
means of organizing the many details to follow. 

Registers for processor elements reside either 
internally to the processor or on the ID bus. 
Registers for other ports on the SBI (such as 
memory, Unibus adapters, Massbus adapters) 
reside in the main memory address space. In 
discussing these registers we should look for the 
solutions employed to two maintenance prob­
lems: how to provide a means of testing the 
error-detection/correction circuitry and how to 
alert the system when a second error occurs 
before a first error has been properly handled. 
We will now examine the registers associated 
with each of these areas. 

Table 8-7. VAX-11 1780 implementation-specific 
processor registers. 

Register Access Permitted 

Accelerator Control/ R/W 
Status 

Accelerator R/W 
Maintenance 

Writable Control Store R/W 
Address 

Writable Control Store R/W 
Data 

SBI Fault/Status R/W 

SBI Silo R 

SBI Silo Comparator R/W 

SBI Maintenance R/W 

SBI Error Register R/W 

SBI Timeout Address R 

SBI Quadword Clear W 

Microprogram R/W 
Breakpoint 

Internal Processor Registers 

The implementation-specific internal processor 
registers listed in Table 8-7 are associated with 
the floating point· accelerator (FP A), writable 
control store (WCS), and SBI. The registers are 
accessible by executing the MTPR (Move-to­
Processor Register) and MFPR (Move-From­
Processor Register) macro instructions. Table 
8-8 lists some of their attributes in detail. 

The Floating Point Accelerator has its own 
microprocessor. The FPA Control Status Regis­
ter has a bit for enabling the FPA and recording 
the appearance of reserved operands encoded as 
minus zero. The FP A Maintenance Register has 
facilities for setting microbreakpoints. A Match 
Register is loaded with the Microbreak<8:0) 
contents when the Write Microbreak Bit is set. 
The FP A halts when the FP A microprogram 
counter is equal to the Match Register. An FP A 



RAMP IN THE VAX FAMILY 373 

·able 8-8. Details of RAMP-related VAX-11 1780 implementation-specific processor registers. 

~egister 

~loating Point Accelerator 
~ontrol Status 

:;'loating Point Accelerator 
~aintenance 

Write Control Store (WCS) 
\ddress/Control 

WCS Data 

mI Fault Status 

Subfields 

Reserved Operand 

Accelerator Enable 

Accelerator Type (3:0) 

Write Trap Address 

Trap Address (7:0) 

Write Microbreak 

Match 

Micro break/Curren t 
Microaddress (8:0) 

Invert parity 

Counter (I :0) 

Address (12:0) 

Data (31 :0) 

Parity Fault on SBI 

Unexpected Read Response 

Multiple Transmitter 

SBI Fault 

Fault Interrupt Enable 

Error First Pass 

Transmitter During Fault 

Fault Silo Lock 

Comments 

Minus zero error 

Forms FPA ROM address on trap 

Indicates a match has occurred 

Load micromatch register with this 
subfield. FP A halts when 
microprogram counter matches the 
register value. Used for setting 
breakpoints. Reading yields current 
value of microprogram counter. 

When set, inverts writable control 
store parity 

Modulo-3 counter points to 32-bit 
quantity to write 

Microstore word to be written 

When written, causes 32-bit write into 
WCS. When read, indicates number 
of WCS boards available (up to 8). 

Fault on SBI confirmation lines 

Allows interrupts on receipt of SBI 
Fault Signal 

Set by microcode during first pass 
through fault-handling code; detects 
double errors. 

Set if device was the transmitter 
during the fault. 

Indicates Silo is locked due to SBI 
fault 

(Table continues on next page) 



374 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-8 -Continued 

Register 

Silo 

Silo Comparator 

SBI Error 

Subfields 

First entry after fault 

Stored SBI fields: 
Interlock (0) 
10 (4:0) 
Tag (2:0) 
CNF 0:0) 
Arbitration (15:0) 
Mask (3:0) or 
Data (31 :28) 

Compare Silo Lock 

Silo Lock Interrupt Enable 

Lock Unconditional 

Conditional Lock (1 :0) 

Command/Mask for 
Comparison (3 :0) 

Tag for Comparison (2:0) 

Count Field (3 :0) 

Interrupt Enable on Read Data 
Substitute (RDS) 

Comments 

16 locations storing data from the 16 
most recent SBI cycles; cleared to 
indicate first SBI cycle after a fault. 

Data bits written when tag has value 
"command address"; otherwise mask 
written. 

Set when certain conditions, other 
than faults, have been met 

Locks when Silo is full (counter = Fi6) 
Locks Silo when certain conditions 
exist. Comparator examines SBI; 
when there is a match, Silo counter 
can increment until counter = Fi6. 
Unlocks by writing Fi6 into counter. 

Interrupts when memory has detected 
an uncorrectable data error 

CPU Corrected Read Data (CRD) Memory-corrected data 
received from memory 

CPU RDS 

CPU Processor Timeout 
Status (2:0) 

CPU SBI 
Error Confirmation 

Instruction Buffer (IB) RDS 

IB Timeout Status (2:0) 

Read Data Substitute received from 
memory 

No device response; device busy, 
waiting for read data 

Set when Processor initiated request 
is responded to by an Error code on 
the SBI confirmation lines 

Read Data Substitute received from 
memory 

No device response: device busy, 
waiting for read data 

(Table continues on next page) 



-able 8-8 -Continued 

~egister 

mI Timeout Address 

;HI Maintenance 

Ubreak (12:0) 

Subfields 

IB SBI Error Confirmation 

Multiple CP Error 

SBI Not Busy 

Mode 

Physical address (27:0) 

Cache Match <I :0) 

Force Timeout 

Force PO Reversal on SBI 

Force Write Sequence Fault 

Force Unexpected Read Data 
Fault 

Maintenance ID (4:0) 

Force SBI Invalidate 

Enable SBI Invalidate 

Reverse Cache Parity (3 :0) 

Force Cache Miss <I :0) 

Cache Replacement < 1:0) 

Disable SBI 

Force PI Reversal on SBI 

RAMP IN THE VAX FAMILY 375 

Comments 

Set when Instruction Buffer initiated 
request is responded to by an Error 
code on the SBI confirmation lines 

Set when a second error occurs before 
the first is serviced 

Kernel, executive, supervisor, user 

Address latched when SBI time-outs 

Indicates group that had a cache hit 

Forces read timeouts 

Forces appearance that base register 
PO has an illegal value 

Transmits Read Data command with 
maintenance ID, undefined data, with 
good parity 

ID for forced Unexpected Read Data 

Writes by CPU on SBI forced to 
invalid cache entries 

Allows CPU writes to forced invalid 
cache en tries 

Designates which of 14 parity bits to 
flip; 2 groups of 3 address bytes and 
4 data bytes. 

No miss, group 1 miss, group 0 miss, 
both group I and 0 miss 

Random, group 0 always, group 1 
always. Allows for disabling cache 
halves on permanent error. 

When set, no SBI cycles will be 
started. 

Forces appearance that base register 
PI has an illegal value 

Data used to compare microprogram 
counter for stopping system clock or 
oscilloscope sync 



376 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

trap can be vectored to different microcode 
locations as a function of the FPA trap address. 
Setting the Write Trap Address Bit loads the 
Trap Address Register from the Trap Address 
subfield. 

The Writable Control Store has Address/Con­
trol and Data registers. When the Data 
Register <31 :0) is written, the contents are load­
ed into the control store word designated by 
Address (12:0), and the word location pointed 
to by Counter < I :0) in the WCS Address/Con­
trol Register. The Invert Parity Bit causes the 
parity generated by the Data <31 :0) word to be 
placed in the WCS in a complemented form. 
Thus, the Control Store Bus (see Figure 8-2) 
parity checker and CPU Error Status Register 
(see the section on ID Bus Registers below) can 
be tested by use of this bit. The WCS can be 
loaded with microdiagnostics to assist in fault 
isolation. 

Every port on the SBI has a register that 
summarizes errors detected on the SBI. The SBI 
Fault Status Register records these errors as seen 
by the processor. One bit records parity errors. 
Two bits record SBI protocol errors: the Unex­
pected Read Response Bit is set if data are 
placed on the bus in response to a read com­
mand not seen by the CPU; the Multiple Trans-

. mitter Bit is set if more than one transmitter was 
seen. The SBI Fault Bit is set if the CPU sees a 
fault signal asserted by an SBI port, that is, if the 
SBI port detected an SBI parity error. Setting the 
Fault-Interrupt Enable Bit allows an SBI fault to 
interrupt the CPU. The Transmitter During 
Fault Bit is set if the CPU was transmitting when 
an error was detected. This bit allows the soft­
ware to isolate the error. The Error First Pass Bit 
is used to detect the occurrence of a second SBI 
fault prior to complete handling of the first fault. 

The Silo is a history of a selected 32 bits from 
each of the last 16 SBI cycles. The Silo is frozen 
(locked) whenever a fault is signalled on the SBI 
confirmation lines or when a condition defined 
by the Silo Comparator Register has been· met. 
The Silo can be used in postfault analysis of 
subtle problems such as intermittents. 

The Silo Comparator Register allows the defi­
nition of predetermined conditions to trigger 
loading of the SBI Silo. The Silo can be loaded 
unconditionally or upon matches in SBI sub­
fields: port 10, ID and Tag, 10 and Tag and 
Mask. When the Silo is full it is frozen (locked), 
a bit set, and an interrupt generated if the 
interrupt enable bit is set. 

The SBI Error Register contains further SBI 
status information. Bits indicate whether the 
memory corrected a single-bit error (Corrected 
Read Data: CRD) or detected a double error 
(Read Data Substitute: RDS). RDS errors can 
cause an interrupt to the processor. Also record­
ed are SBI timeouts and parity errors detected 
on cycles requested by the CPU (SBI Error 
Confirmation). The SBI Error Register distin­
guishes whet~er the SBI error was triggered by a 
regular CPU request or an instruction prefetch 
request made by the Instruction Buffer (IB). The 
IB requests are for performance reasons only, 
and errors can be tolerated by simply flushing 
the lB. Errors associated with other perfor­
mance-related buffers such as Translation Buffer 
and Cache, are easily tolerated because they 
cause no change in system state; that is, they are 
logically transparent to the system. 

The SBI Maintenance Register contains bits 
for forcing error conditions in various CPU 
subsystems. The various error-detection circuits 
can be tested by these forced-error conditions. 
Force PO/PI reversal performs bounds checking 
on the system base registers. SBI errors are 
simulated by forcing Write Sequence, Unexpect­
ed Read Data, and Timeouts. Cache operation 
can be checked by observing the Cache Match 
field while invalidating cache entries and forcing 
cache misses. Permanent failures in cache can be 
configured out by disabling Cache halves or 
disabling the Cache altogether. Cache disabling 
is achieved by specifying where new entries are 
to be placed upon a Cache miss (that is, Cache 
Replacement <t :0»). 

Finally, the microbreak register can be used to 
stop the microsequencer in specific regions of 
microcode. 



10 Bus Registers 

The internal processor registers and other regis­
ters listed in Table 8-9 are accessible to the 
Console Subsystem over the ID bus. These regis­
ters may be read or written during local or 
remote diagnosis even if the CPU is halted. Key 
implementation registers such as the Instruction 
Buffer and D/Q (used as register extensions in 
multiple precision operations) are accessible. 

There are status error registers for the CPU 

RAMP IN THE VAX FAMILY 377 

and cache. The CPU Error Status Register holds 
the control store parity-error summary (that is, 
which third of the control store caused a parity 
error). In conjunction with the microbreak regis­
ter, the CPU Error Status Register can be used 
to identify the faulty Control Store chip. The 
value of internal condition codes is made avail­
able to facilitate checking of condition code 
operations. Finally, the arithmetic trap code is 
captured to aid software recovery from arithmet­
ic errors. 

Table 8-9. Details of RAMP-related VAX-11 1780 registers available on the ID bus. 

Register 

Instruction Buffer (31 :0) 
D/Q Register 

CPU Error Status 

Cache Parity Error 

Subjields 

Read D (31 :0) or write Q (31 :0) 
register in system data paths 

Control Store Parity Error 
Summary 

Control Store Parity Error 
Bits (2:0) 

ALUN 

Exponent N 

ALU Z 

Exponent Z 

ALU C31 

Arithmetic Trap Codes 

Any error 

CP/IB Error 

Data Parity OK (7:0) 

Address Parity OK (5:0) 

Comments 

OR of Control Store Parity Error Bits 

1 bit for every 32 bits of control store 

Negative condition from ALU 

Negative condition from Exponent 
Unit 

Zero condition from ALU 

Zero condition from Exponent Unit 

Carry bit from ALU 

Decimal divide by zero 
Decimal overflow 
Floating underflow 
Floating divide by zero 
Integer divide by zero 
Integer overflow 

Logical OR of all error indications 

Designates whether CPU or IB 
caused error 

Indicates which of 8 data bytes 
indicates parity error (2 groups of 4 
bits) 

Indicates which of 6 address bytes 
indicates parity error (2 groups of 3 
bits) 

(Table continues on next page) 



378 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-9 -Continued 

Register Subfields Comments 

Translation Buffer (TB) Data Valid TB allows matches 

Protection Code (3:0) 

Modify 

See Table 8-3. 

Page has been modified 
Page Frame Number (20:0) Page Frame of Physical Address after 

translation 

TB Hit (1:0) 

Force TB Pari ty Error (3: 0) 

Indicates which group had a TB hit 

Allows parity error to be generated 
independently on each of three data 
bytes or three address bytes in either 
group 0 or group 1 

Translate Buffer Register I 

Enable Memory Management 

TB Parity Error Status (1 1:0) Indicates which of possible 12 parity 
errors: group (2), data byte (3 per 
group), or address byte (3 per group) 

TB Pari ty Error 

Last TB Write 

Translation Buffer Register 0 Force Replace (2:0) 

Force Miss (1 :0) 

USTACK (15:0) 

Others 

The Cache Parity Error Register contains the 
parity bit values of the cache data and tag fields. 
Another bit assists recovery software by indicat­
ing whether the CPU or IB caused the cache 
parity error. 

Three registers are associated with Control, 
Status, and Data of the Translation Buffer (TB). 
Translation Buffer Register 0 can disable TB 
halves (that is, Force Replace). the Force Miss 
and TB Hit Fields (in Translation Buffer Data 
Register) can be used by diagnostics to check TB 

Indicates TB microtrap was requested 
due to error during CPU access 

Indicates which TB group was last 
written 

Forces TB writes to define groups: 
both, group I, or group 2 

Forces TB miss on group 0 or 1. 

Reading pops top address from 
microsequencer stack. Writing pushes 
address onto microsequencer stack. 

26 scratch-pad registers used as 
temporaries by the microcode in 
implementing the VAX instruction set 

functionality; the Force TB Parity Error (in 
Translation Buffer Data Register) coupled with 
the TB Parity Error Status bits (in Translation 
Buffer Register 1) can be used to test the TB 
parity checkers. Finally, the Translation Buffer 
Data Register captures relevant information 
about a virtual address that caused a protection 
violation. 

Because the ID Bus is not accessible to the 
V AX-I 1/780 instruction set, an error log format 
has been defined that places several key registers 



rable 8-10. VAX-11 1780 machine-check error 
nformation logged onto machine stack. 

rnformation 

3yte Count of Error Log 
~rror Summary (see below) 
=PU Error Status 
rrapped Microprogram Counter 
virtual Address 
D Register 
rranslation Buffer Error Register 0 
rranslation Buffer Error Register I 
~BI Timeout Address 
=ache Parity 
~BI Error 
Program Counter 
Program Status Longword 

£rror Summary 

=P lIB Read Timeout or Error Confirmation 
=P lIB Translation Buffer Parity Error 
=PjIB Read Data Substitute Fault 
CP lIB Cache Parity Error 
Control Store Parity-Error Abort 
Microcode "not supposed to get here" Abort 

on the kernel stack when an error occurs. Table 
8-10 details the information placed on the kernel 
stack. ID Bus registers include the CPU Error 
Status, D register, and Translation Buffer Error 
Registers 0 and 1. SBI-related processor registers 
include SBI Error, SBI Timeout Address, and 
Cache Parity registers. The virtual address, pro­
gram counter, and microprogram counters are 
also stored. Finally, an Error Summary, also 
listed in Table 8-10,indicates the type of error 
that caused the machine check. 

Machine checks force the microsequencer to 
trap. The error-handling microcode first copies 
the registers to be logged in to temporary regis­
ters accessible on the ID Bus. Subsequently the 
registers are logged onto the machine stack. If 
the error-handling microcode finds the Error­
First-Pass bit set in the SBI Fault Status Regis­
ter, the CPU is halted. Data related to the first 
error are found in the ID temporary registers; 
those related to the second error are found in the 
corresponding error/status registers. Both sets of 
data are readable by the Console Subsystem. 

RAMP IN THE VAX FAMILY 379 

Main Memory Registers 

Registers related to errors in SBI ports-the 
memory, Unibus Adapter, and Massbus Adapter 
registers-are in the main memory address 
space. 

Table 8-11 lists the three main memory regis­
ters. Register A contains the memory port's fault 
status of the SBI. This field is identical to the 
corresponding fields in the CPU SBI Fault Status 
Register. Similar fields reside in the UBA and 
MBA registers. The remaining Register A fields 
deal with memory configuration and power sta­
tus. 

Register B contains additional memory config­
uration (such as Memory Starting Address), sta­
tus (such as ascertaining whether battery backup 
allowed the memory to ride through a power 
loss), and maintenance fields. The memory con­
troller is buffered and can have up to four reads 
and four writes in progress. The File Pointer 
fields can be used to check the functionality of 
these buffers. ECC check logic can be tested by 
forcing the ECC bits to be replaced by the 
contents of the Substitute ECC Bits <7 :0) field. 

Register C has two fields that capture the 
address and syndrome of the memory word in 
error. Both fields are locked until the error is 
serviced. The Error Log Request Bit identifies 
the memory controller in error for the error­
handling subroutine. A set High Error Rate Bit 
indicates that a second error occurred before the 
first was serviced. Finally, error correction on 
reads can be disabled by the Inhibit CRD Bit. 

Table 8-12 lists six registers associated with the 
Unibus Adapter (UBA). The Configuration Reg­
ister records the standard SBI Fault Status. The 
Control Register contains interrupt enable bits 
for reporting Unibus errors to the CPU. 

The Unibus Status Register records several 
situations. The Read Data and Command Trans­
mit timeouts are checks on the Unibus timeout 
circuitry. The bits are set if the SBI has not 
responded within 100 microseconds and the Uni­
bus timeout of 10 microseconds has failed to 
cancel the request. The Read Data Substitute Bit 



380 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-11. VAX-11 1780 memory configuration registers. 

Main Memory Register 

Register A 

Register B 

Subfields 

SBI Fault Status (4:0) 

Bus Parity Error 

Write Data Sequence Fault 

Memory was Transmitter 
During a Fault 

Multiple Transmitters on Bus 

Interlock Sequence Fault 

Power Up/Down Status (1:0) 

Power Up Alert 

Power Down Alert 

Memory Size (6:0) 

Memory Type (1 :0) 

4K chips 

16K chips 

Interleave (3:0) 

Interleave Factor 

Interleaving Enable 

File Output Pointer (1:0) 

File Input Pointer (1 :0) 

Memory Starting Address (12:0) 

Enable Write to Memory Starting 
Address Subfield 

Comments 

No interleaving or 2-way interleaving 

Points to which of 4 address buffers is 
next to command the memory to read 

Points to which of 4 buffers will 
receive next write address and data 

Memory Initialization Status (1 :0) Memory data valid or invalid 
following power loss 

Force ERR 

Substitute ECC Bits (7:0) 

Bypass ECC 

When set, replaces ECC bits with 
substitute ECC bits 

Bits to be substituted for ECC bits in 
memory; checks ECC logic. 

Disables ECC generation, checking 

(Table continues on next page) 



Table 8-11-Continued 

Main Memory Register Subfields 

Register C Inhibit CRD 

High Error Rate 

Error Log Request 

RAMP IN THE VAX FAMILY 381 

Comments 

Enables/disables reporting of 
corrected read data 

Bit set if error occurs between time of 
generating first-error message and 
time of invoking error service 
subroutine. 

Indicates whether memory controller 
has recorded an error. When set, 
subsequent corrected Read Data events 
are not reported. 

Error Address < 19 : 0) Indicates address generating read 
error. Field changed only after first 
error serviced. 

Error Syndrome 0:0) Value of error syndrome. Field 
changed only after first error serviced. 

is set if a Unibus request ends in an uncorrecta­
ble error: no data are transmitted to the Unibus, 
the Unibus times out, and a Unibus nonexisting­
memory error is recorded. The Command Trans­
mit Error Bit is set when the SBI cycle causes an 
error on the Confirmation lines. Finally, parity 
errors on the internal UBA data paths or in the 
address translation memory are recorded. Data 
associated with errors are captured in the Failed 
Map Entry and Failed Unibus Address registers. 
Subsequent errors do not overwrite the Failed 
Map Entry Register until the first error has been 
cleared. 

The Diagnostic Control Register has bits to 
inhibit parity on the data and map registers. If 
data with an even number of ones are used, the 
odd-parity checking circuitry is tested. The Mi­
crosequencer OK bit is used to detect when the 
micro sequencer is caught in a loop. 

Table 8-13 lists the four registers of the Mass­
bus Adapter (MBA). The Configuration/Status 
Register records the standard SBI Fault Status. 
The Control Register has a Maintenance Mode 
Bit that allows for testing the Massbus without 
any devices attached. An Interrupt Enable Bit 
allows reporting of Massbus errors to the CPU. 

The Status Register records SBI, device, and 
Massbus parity errors. The Diagnostic Register 
allows exercising of MBA parity-check circuits 
and testing of the Massbus by reading and 
writing of selected Massbus fields. 

Console Subsystem 

Table 8-14 lists several of the RAMP-related 
console commands available to probe and test 
the CPU. The Examine/Deposit command al­
lows reading and setting of most of the CPU 
registers. In addition to the ID Bus Error regis­
ters, almost 600 internal logic signals are observ­
able over the Visibility Bus (V -Bus). 

The V-Bus is composed of seven channels. 
Table 8-15 lists the logic associated with each 
channel. Figure 8-4 depicts the operation of a V­
Bus channel. When requested, the internal logic 
signals are entered in a shift register, which is 
emptied into a register for examination and 
display. To illustrate the type of information 
associated with the V-Bus, Table 8-16 lists the 
signals available on Channel 4. The V-Bus test 
points for Channel 4 are superimposed on logic 



382 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-12. RAMP-related VAX-11 1780 Unibus adapter registers. 

U BA Registers 

Configura tion 

Control 

Unibus Status 

F ailed Map En try 

Failed Unibus Address 

Diagnostic Control 

Subfields 

SBI Status (4:0) 

SBI to Unibus Error Interrupt 
Enable 

Unibus to SBI Error Interrupt 
Enable 

Read Data Timeout 

Command Transmit Timeout 

Read Data Substitute 

Command Transmit Error 

Data Path Parity Error 

Map Register Parity Failure 

Lost Error Bit 

Map Register Number (8:0) 

Unibus Address Bits (15:0) 

Defeat Map Parity 

Defeat Data Path Parity 

Microsequencer OK 

Comments 

Records errors detected in SBI 
operation, including parity, write data 
sequence, unexpected read data, 
interlock sequence, multiple 
transmitter, and transmitting 

Enables interrupts when Unibus times 
out 

, Enables interrupts on errors reported 
in Unibus status register 

Set when SBI memory has not 
responded 

Set when SBI has not responded to 
command 

Set if SBI read has an uncorrectable 
error 

Set when error confirmation returned 
on SBI cycle initiated by Unibus 
adapter 

Set when parity error detected on 
data path internal to Unibus Adapter 

Set when address mapping registers 
have incorrect parity when selected 

Set if one of the above error bits has 
been set and another error occurs 
before it is cleared 

Provides number of the map register 
being used during one of the error 
conditions reported in the Unibus 
Status Register 

Captures address that caused a 
Unibus timeout 

When set, inhibits parity bits from the 
map registers from entering the parity 
checkers 

When set, inhibits parity bits of data 
path RAM from entering parity 
checkers 

Set when microsequencer is idle 



Table 8-13. RAMP-related VAX-11/780 Massbus adapter registers. 

Register 

Configura tion/Status 

Control 

Status 

Diagnostic 

Subfields 

SBI Status <4:0) 

Maintenance Mode 

Interrupt Enable 

No Response 

Nonexistent Drive 

Data Late 

Miss Transfer Error 

Massbus Data Parity Error 

Massbus Control Parity Error 

Page Frame Map Parity Error 

Error Confirmation 

Read Data Substitute 

Read Timeout 

Invert Parity <2:0) 

Simulate asynchronous control 
lines (3:0) 

Read Signals <20:0) 

RAMPINTHEVAXFAMILY 383 

Comments 

Records errors detected in SBI 
operation, including parity, write-data 
sequence, unexpected read data, 
multiple transmitter, and transmitting 

When set, software can exercise 
Massbus without any attached 
devices. All Massbus devices detach 
from the bus. 

When set, causes an interrupt in CPU 
on the occurrence of any errors 
reported in the status register 

Set if SBI returns a no-response 
confirmation. Causes retry of 
command. 

Set if drive fails to respond within a 
specified time 

Error in parity check of bus data field 

Error in parity check of bus control 
field 

Parity error in memory where page 
map information is stored 

Set when SBI returns an error 
confirmation on a transaction 

Set when SBI indicates an 
uncorrectable error 

Inverts the sense of the bus data, bus 
control, and map register file parity 
generator 

Allows setting, clearing of various 
Massbus signals when in 
Maintenance Mode 

Allows reading of selected Massbus 
fields 



384 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-14. Subset of console VAX-11 1780 
commands. 

Command 

Examine( address) 
/Deposi t( address) 
(data) 

Examine IR 
Start (address) / 
Continue/Halt/Boot/ 
Initialize 
Show 

Show Version 

Test 
Test/Com 

Unjam 
Set Step 

Clear Step 
Next(number) 

QClear( address) 

Set/Clear SCMM 

Set Clock Slow/Fast/ 
Normal 
Load(Filename) 

Q(Filename) 

Repeat(any-console­
command) 

REBOOT 
BOOT 

DIAGNOSE 

HALT 

Comments 

Memory: using physical or 
virtual address 
Internal Registers 

General Registers 

V-Bus Channels (read only) 

ID Bus Registers 
Instruction Register 
Action performed on CPU 

Displays CPU and Console 
state 
Displays version of 
microcode and console 
Runs microdiagnostics 
Calls microdiagnostic 
monitor, awaits commands 
Unjams SBI 
Enables single time state, 
bus cycle, or instruction 
mode 
Enables normal mode 
Steps until <number) 
cycles are done. Step type 
depends on last Set Step 
Command. 
Clears 64 bits at (address) 
as well as ECC errors 
Sets/Clears "stop on 
micro break match" enable 
Sets CPU clock frequency 

Loads file to memory or 
WCS 
Processes a file of console 
commands 
Repeat any console 
command until stopped by 
control C 
Reloads console software 
Boots CPU 

Boots Diagnostic 
Supervisor 

Table 8-15. V-bus channels and associated logic. 

Channel 

o 

2 

3 

4 

5 

6 

Logic 

Microsequencer 

Data Paths, Arithmetic 
Section 

Data Paths, Data and 
Exponent Section 

Instruction Decode, 
Instruction Buffer, 
Translation Buffer Data 
Matrix 

Cache and Translation 
Buffer Address Matrix, 
Cache Data Matrix 

SBI Control 

Floating Point Accelerator: 
Control, Exponent 
Processor, and Fraction 
Adder 

Signals 

101 

60 

92 

85 

103 

93 

43 

diagrams for the Cache Address Matrix, shown 
in Figure 8-5; for the Translation Buffer Address 
Matrix, shown in Figure 8-6; and for the Cache 
Data Matrix, shown in Figure 8-7. 

Other Console commands enable execution of 
micro- and macrodiagnostics; single-stepping a 
state, a bus cycle, or an instruction at a time; 
setting microbreaks; and CPU clock margining. 

Micro- and Macrodiagnostics 

The microdiagnostics are stored on, floppy disks 
accessible to the LSI-II console processor, which 
can load them into the Writable Control Store 
(WCS). The field service engineer gives the con­
sole a TEST command. The first portion of the 
microdiagnostics sizes the system and prints out 
system configuration information. Upon comple­
tion, it prompts the engineer to load a new 
floppy disk. Table 8-17 lists a sample of the 
commands available to the engineer. The micro­
diagnostics consist of a series of "go-chains." 
Detection of a disagreement initiates a fault tree 
analysis, which uses the V -Bus to isolate the 



rable 8-16. Signals available on V-Bus, channel 4. 

:ache Address Matrix 

CAML Group 0, Byte Parity Odd <2:0) 

CAML Group 0, Byte Parity Even <2:0) 

CAMK Group 0 Match 

CAMK Group I Match 

CAML Group I, Byte Parity Odd <2:0) 

CAML Group I, Byte Parity Even (2:0) 

CAMM CPT Clock <3:0) 

CAMB Physical Address Latch Valid 

CAMB Physical Address Latch <28: 12) 

CAMB Tag Parity Even <2:0) 

SBHF Force Read Parity Errors <3:0)H, (3)L 

SBHF Force Miss Group 0 from Maintenance 
Register 

SBHN Force Miss Group I from Maintenance 
Register 

SBLN Miss Data Replacement GO 

SBLN Miss Data Replacement G I 

Translation Buffer Address Matrix 

CAMS Group 0 Address Parity Odd <2:0) 

CAMS Group I Address Parity Odd <2:0) 

CAMU TB Parity (I :0) 

CAMV Receiver Parity 

TBMX Force Parity Error <3:0) 

TBMD Enable CDM Data 

Cache Data Matrix 

CDMR Group 0 Data Parity Odd <3:0) 

CDMR Group 0 Data Parity Even <3:0) 

CDMS Group I Data Parity Odd <3:0) 

CDMS Group I Data Parity Even <3:0) 

CDMA Mask <3:0) 

CDMH Address Latch (I 1:2) 

CDMU Clock CPT2-H; CPTI-L 

CAMP Group 0 Write Enable 

CAMP Group I Write Enable 

SBHF Force Read Parity Errors <3:0) L 

RAMP IN THE VAX FAMILY 385 

Table 8-17. Sample of microdiagnostic monitor 
commands. 

Command 

HALT 

INIT 

UNJAM 

LOAD <CODE) 

RUN <CODE) 

Diagnose/Test: 2F / 
PASS: 2 

SET/CLEAR SCMM : 
<ADDRESS) 

SET STEP ST A TE/ 
BUS/INSTRUCTION 

SET CLOCK FAST / 
SLOW /NORMAL/ 
EXTERNAL 

EXAMINE 
ID : <ADDRESS) 

Action 

Halts CPU 

Initializes 

Clears SBI 

Loads a macrodiagnostic 

Executes a macrodiagnostic 

Executes microdiagnostic 
test 2F twice in succession. 

Sets/clears micromatch; 
loads address into 
micro match register. 

Enables single-stepping 

Selects CPU clock speed 
and source 

Registers on ID bus 

VB us : <CHANNEL) Displays contents of 
specified V-Bus channel 

RA/RC 

LA/LC 

DR/QR/SC/FE/V A 

PC 

DEPOSIT 

Scratch-pad registers 

Latches 

Registers 

Program counter 

A corresponding deposit 
command exists for all 
except the V-Bus and Pc. 
There is a deposit for the 
PA (physical address) 
register. 

failure. The V-Bus is read only (thus requiring 
the machine to be in a known state before 
applying the next test) and is normally used only 
by the microdiagnostics. 

The Diagnostic Supervisor allows the engineer 
to control and run macrodiagnostic programs 
through a command line interpreter in either 
stand-alone or user (on-line) mode. At the begin­
ning of each diagnostic program, the Diagnostic 
Supervisor requests information from the engi­
neer, such as the unit to be tested. Table 8-18 



386 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-18. Sample of macrodiagnostic 
supervisor commands. 

Command 

LOAD (File) 

START 

RESTART 

SUMMARY 

HALT 

LOOP 

QUICK 

TRACE 

LOCK 

SET BREAKPOINT 
(address) 

CLEAR 
BREAKPOINT 
(address) 

EXAMINE/DEPOSIT 
(address) 

Action 

Loads specified file when 
in user mode 

Starts execution of 
program in memory. 
Supervisor enters dialogue 
with user to set values of 
diagnostic switches (such 
as unit to test). 

Reexecutes the previous 
program with the same 
switch values as established 
by the START dialogue 

Prints statistics of tests to 
date 

Halts on detected error 

Enters predetermined 
scope loop when a subtest 
detects an error 

Enters quick-verify mode 

Reports execution of each 
test 

Disables program 
reloca tion. Self -reloca ting 
programs are thus locked 
into their current physical 
memory space. 

Diagnostic supervisor 
assumes control when 
program accesses the 
specified location. 

Examines or deposits the 
specified memory address. 

iists a subset of the Macrodiagnostic Supervisor 
command available to the engineer. A User 
Environment Test Package (UETP) can be em­
ployed for on-line diagnostics. A scratch tape or 
disk is mounted on the peripheral device to be 
tested. The UETP simulates a user load on the 
selected device. The number of simulated users is 

a function of the peripheral device type and the 
amount of memory in the system. 

The Error Log is another tool available to the 
engineer. Information about exceptions is auto­
matically captured by the hardware and entered 
into a disk file. The engineer can select printouts 
of the error log by device and error class. Error 
classes include hardware (such as machine 
checks, corrected read data, read data substitute, 
SBI alerts, and SBI faults), configuration 
changes (such as mount and dismount of periph­
erals), and system information (such as system 
startup time, crashes, software bug checks). The 
engineer can select one of five report formats: 

• Rollup: a summary of the number of errors by each 
device; 

• Brief: brief description of each error entry, including 
device, type of error, and time; 

• Cryptic: contents of associated registers for hard­
ware and device errors; 

• Standard: complete information on each error; and 
• Unknown: full information on unknown, invalid, 

and undefined errors. 

THE VAX-11 1750 IMPLEMENTATION 

The V AX-l 1/750 is the second implementation 
of the VAX architecture. Although the 
V AX-I 1/780 implementation influenced the de­
sign team, the V AX-I 1/750 differs from its pre­
decessor in several major respects. This section 
first discusses the evolution of the V AX-I 1/750 
design with special focus on the RAMP-related 
decisions. This discussion should provide in­
sights on how the material in the first six chap­
ters can be applied in practice. Next, the section 
discusses the details of the VAX-I 1/750 RAMP 
features. 

Design Evolution 

Several global design goals were set even before 
the design team was established. These global 
design goals placed constraints on implementa­
tion and RAMP design trade-offs. 

The targeted market determined the cost and 



RAMP IN THE VAX FAMILY 387 

Module test points 
J.. 

n I I I I I I 
Shift register Serial data out 

Parallel load Clock 

One of 8 serial lines 
---------------- --------- --------------------

I V-bus register I Clock I Load I Self-test I 
I I I 

Figure 8-4. V-bus block diagram. 

)erformance goals: one-third to one-half the cost 
md 60-70 percent of the native mode perfor­
nance of the V AX-I 1/780. The 11/750 should 
lave at least 50 percent of the 11/780 perfor­
nance to achieve a performance/cost ratio im­
)rovement so that three years' difference in 
.echnology would be aggressively utilized. 

The improved performance/cost ratio dictated 
:he use of dense circuitry to decrease signal 
ielays and decrease area, which is directly relat­
!d to cost. The design specified the extended hex 
)oard (12" X 15") used on the VAX-I 1/780. To 
ichieve a density increase over the 11/780, a new 
~andom logic technology was selected. Custom­
iesigned 48-pin gate arrays (400 bipolar gates 
::>Ius 44 transceivers per chip) were to be used. 
Each hex board could hold up to 50 gate array 
:hips. The projected cost of the hex board/gate 
uray combination required a three-board basic 
processor if the cost goal was to be met. 

To take advantage of mass production and 
standardization, several 11/780 features were 
adopted, including use of the same operating 
system, functional diagnostics, Unibus/Massbus 
I/O, and-as nearly as possible-the same main­
tenance/repair procedure. 

Also, to reduce cost, the 11/750 was specified 
as a bounded system with limited expansion 
capacity. In contrast with the 1l/780,which can 
be configured with multipled cabinets, the 

11/750 CPU/Memory/10 adapters were to be 
contained in a single cabinet. Figure 8-8 shows a 
preliminary system diagram (devised about four 
months after the design team was formed). The 
synchronous backplane bus was dubbed CMI 
(Comet Memory Interconnect). Primarily for 
performance reasons, the CMI was limited to 
eight ports and a length of six inches. The CPU, 
memory controller, one Unibus Adapter, Writ­
able Control Store (WCS), and the Remote 
Diagnostic Module (ROM) were dedicated 
ports. The other three ports could be allocated to 
Massbus and/or Unibus Adapters, multiport 
memory, or directly interfaced DMA (Direct 
Memory Access) devices. The memory controller 
could handle up to eight memory array cards of 
128 Kbytes or 256 Kbytes each for a maximum 
system memory of 2 Mbytes. 

The three-board goal resulted in a straightfor­
ward functional partitioning: Data Path Module 
(DPM), Microsequencer and Control Store 
(MCS), and Memory Interface (MI). An option­
al Floating Point Accelerator (FP A) was also 
envisioned. Figure 8-9 illustrates this initial par­
titioning. Custom gate array, RAM, and ROM 
chips were used extensively to keep board densi­
ties high. To minimize the number of custom 
gate array designs, a bit-sliced approach was 
adopted. Depending on logic complexity, each 
gate array handled 4, 8, or 16 bits of data. 



From TBMK 
TB data (11:~) CAM A 

matrix 

III 
j 

.Q 

~ 

BUS PA (29:12) 

From 
SBI 
control 

CAMC 
CAMP GO WRITE EN H 

CAMC GO WRITE ENABLE L 
CAMB BLOCK WRITE L~ 

CAMC PA U CAMC PA -I A 
LATCH (11:3) Drivers BUFF (11:3) 

CAMC 

GO 
TAG 

MATRIX 

CAML GO BYT (2:0) PAR EV,OD 

CAMK 

CAMB 

PA 

CAMB LATCH VALID BIT 

CAMF 
Drivers CAMF PA 

DIN DOUTII I CAM GO TAG (28:12) 

CAME VALID 0 '1 

CAMF,H,J 

DIN DOUT 

Gl 
TAG 

MATRIX 

CAMJ VALID 1 

CAM Gl TAG (28:12) .' Comparator 

CAM Gl TAG PAR(2:0) 

CAMK 

BUFF (11:3) .IA 

CAMF Gl WRITE 
ENABLE L 

CAML Gl BYT (2:0) PAR EV,OD 

To V bus and 
SBI control 

To cache 
data matrh 
and SBI 
control 

~~~~ ~~} To cache 
....;..;.=..;...;;...;;~. data matrix
CAMP Gl an.d
WRITE EN . translation

I buffer

<;AMK Gl MATCH
To cache
data matrix and
SBI control

To V bus
and SBI
control

CAMP Gl WRITE EN H

CAMB BLOCK WRITE L
CAMM

SBHF REV PAR (2:0)
I

From
SBI control

~
CAMB DISABLE GO (B2:BO)

-

CAMB BLOCK WRITE L

CP LECL 13 to L,H

Used to force
read parity
errors during
diagnostics

Figure 8-5. Cache address matrix block diagram.

0=:= Points on V-Bus

1M

~

-l
:t
tTl
"'t:'
:;:t1
:>
~
()
tTl
o
"Tl
:;:t1
tTl
t-'
S;
t::J:j
t-'
tTl
r.FJ
-<
r.FJ
-l
tTl
~
o
tTl
r.FJ
(5
Z

From
data
paths

From
ID BUS
reg

/' VAMX (31,13:9)

CAMR

CAMP DISABLE GO (A2:AO) ____ --,

CAMU

Parity
gen

TBMF GRP 0 WP L J CAMS 6
WP CS

A

GO
CAMU TB TAG
PAR (1:0) MATRIX

DOUT

CAMU
~~ CAMS GO AD PAR

~
arity (2:0) EV,OD JOY-BU:

check TOBg~E~STER 0 ,.
CAMS GRP 0 PROTECT (3:0)/MODIFY

CAMS GRP 0 VALID

CAMS GRP 0 ADRS (30:15) CAMU TB GRP 0 MATCH

Comparator
DEP VAMX (30:14) CAMR VA MUX (30:15) BUFF

DIN , 'CAMS GRP 0 PAR (2:0)

r+ ' ___ ---'

TBMA VA
CAMU

MUX (30:15) BUFF

BUS CAMV REC ID (31:26)
III ID (31:26) CAMU
::> = Receivers L.
9 CAMV REC PAR 3

BUS ID PTY 3
CAMY

CAMT CAMT GRP 1 PAR (2:0)

Comparator
L.iDIN

CAMT GRP 1 ADRS (30:15)

CAMP
TBMT FORCE

~DecOder

DOUTII I CAMT GRP 1 VALID
G1 I .,
TAG ------'

MATRIX

CAMP DISABLE ·IA
GO (A2:AO) WP

To rn
CAMB DISABLE ADDRESS

(;1 (A2:AO) MATRICES

CS

CAMU

CAMT G1 AD PAR
(2:0) EV,OD

J J CAMV fl/" PROTECT (3:0)

CAMU TB GRP 1 MATCH .

TBMF GRP 1 WP L--
0"'" Points on V-Bus

CAMP DISABLE G1 (A2:AO) L--------'

Figure 8-6. Translation buffer address matrix block diagram.

To
TB
DATA
MATRIX

;;0
;I>
3:
"'0

Z
-l
:c
tTl

<
;I>
X
"Tl
>
3:
r
-<

YoI oc
\C

From
CACHE
ADDRESS
MATRIX

CDMU

PA
bus

latch

CAMP GO

{

WRITE EN H

CAMP G1
WRITE EN H

CDMH ADDR
LATCH (11:03)

CDMU

CDMB GO BYTE
(3:0) WP L

CDMB G1 BYTE
(3:0) WP L

CDMU
CP LEC (T3:TO) .1 Clock I (CPT3:CPTO)

logic

CDMC

Drivers

CDME'

Drivers

CDMC ADDR CDMD,F,',K

LATCH (11:02G A
GO

DATA
MATRIX

CDMR
To V BUS and
SBI control
logic

DOUT LU/VIIU:f\U Uf\If\ UU \-11:UUJ

DI~p CDM RD BYTE PAR GO (3:0)

C. DME ADDR I 0 CDML,M,N,P
LATCH (11:02) I WP I

• A G1

CAMK GO MATCH

CDMR G1 (B3:BO)
PAR EVEN,ODD '" ~

.t:J
DATA

MATRIX
DOUT

DIN I I ' '"

To V BUS and 10

SBI control ~
logic

CDMA BYTE (3:0) PAR
CDMA WRITE DATA (31:00)

CDMA MASK (3:0) H

CDMA
BUS MD BYTE (3:0) PAR

MD
DATA BUS MD (31:00)

LATCH _ BUS MD BYTE (3:0) MASK

D == Points on V-Bus

Figure 8-7. Cache data matrix block diagram.

CPU

RAMPINTHEVAXFAMILY 391

Memory
controller

Writable
control

store

Unibus
adapter

Remote
diagnostic

module

Massbus
adapter

Figure 8-8. Backplane interconnect structure for the VAX-11 1750.

The DPM consisted of a bit-sliced ALU fed
Jy two RAM/ROM files. The ROMs supplied
~requently used constant operands. All the com­
Jlex rotate, mask, and extract functions implied
Jy the V AX instruction set were handled by the
Rotate/Mask bit slice, which was driven by a 10-
Jit select code.

The micro sequencer occupied two chips. One
~ate array (Instruction Register Decode-IRD)
:md four PROMs accomplished opcode decod­
.ng for the microsequencer. The control store
was 8K words by 56 bits per word, composed of
56 2K X 4-bit chips.

The Memory Interface accomplished address
:ranslation and alignment of data to/from mem­
)ry (a VAX instruction stream is composed of a
;tring of bytes, without any word-boundary
llignment restrictions). A translated address
~ache and data cache improve system perfor­
nance. The Unibus Adapter was standard with
ill processors, providing a minimal I/O and
iiagnostic load path.

The Floating Point Accelerator was a set of
54-bit data paths controlled by a 16-bit extension
)f the microword to 72 bits.

Even a preliminary design provides enough
ietail to make a first order reliability model. The
:>reliminary design was dominated by LSI,
ltAM, and ROM chips. Almost 95 percent of the
;hips were of LSI complexity, and over 45 per­
;ent represented a new technology-the gate
:trrays. As indicated in Chapter 2, the MIL­
HDBK-217B model was not accurate in predict­
ing failure rates for LSI components. The first

RAMP-related problem was to devise better
estimates of component failure rates. Better esti­
mates were essential because of the effect of
MTTF predictions on maintenance and repair
stra tegies.

The failure rate of RAM chips could be esti­
mated from the failure rates observed by Memo­
ry Engineering during their high-temperature,
accelerated-life testing of memory chips from

. potential vendors. Although accelerated-life test­
ing has shortcomings, as discussed in Chapter 2,
it provided the most up-to-date data available;
data complied by RADC are a few years old by
the time they are published and hence give little
information on the newest components. To be
competitive, components are designed into sys­
tems even prior to general availability. As com­
ponents become more reliable as a result of an
accumulated learning curve, systems produced
with these components will experience a general
reliability improvement throughout their life.

The gate array failure rate was even more
difficult to estimate. There was no similar tech­
nology inside Digital Equipment Corporation
(DEC). Even data on random logic LSI were
difficult to acquire. The major random logic LSI
chip used by DEC at that time was the LSI-II
NMOS chip set. One potential source of infor­
mation was DEC's Field Service Labor Activity
Reporting System (LARS). Each field service call
is recorded according to system identity, time to
repair, type of call (such as installation, preven­
tive maintenance, repair), and module failure
action (such as adjust, repair, replace, trouble-

r------------------------------I------~---,
, Data path module (DPM) I Memory interface (MI) I

i I 1 1 i U i 11'6~b;tl i • i
I ~ UBA J

c:
:J

RAM
file

48 X 32 bit ROM
32 X 16 bit

III
:::I
~

~

III
:::I
~

~

CMI

Memory
controller

S-bus
'r" ---"'--------,

Data routing and alignment
8 X 4 bits I- I (-l~ ; u

Address
4x8bits

Translation buffer

PG I P Tag I Data I P

I
I
I
I
I
I
I
I
I

I '--'----' I
I I I
r------------------------------,---~
: Microsequencer and control store (MCS) I Floating point accelerator (FPA)
I I ,
I
I
I

I
I
1
I
I
I
I

Microsequencer

PC

Microstore, P
8k X 56 bits

Shift
and
ALU
8X8
bits

Microstore
512 X 48

bits

1, I L ______________________________ l ______________________ ----------------_________ ~
Figure 8-9. Initial partitioning of VAX-11 1750 CPU.

If'ey

P = Parity

PG = Parity generator
PC = Parity check

: .

~
\C
N

-l
:r:
m
""t:I
it' »
(J
-l
r;
m
o
"Tl
';tI
m
r
):
I:X:'
r m
r.n
-< r.n
-l
m
s:
o
tTl r.n
C;
Z

shoot). The total number of DEC systems report­
ed in LARS is not known. A second system,
Regional Customer Obligation File (RCOF), is
composed of systems under contract whose con­
figurations were known. With LARS and RCOF,
MTTR and Mean Time Between Calls (MTBC)
can be estimated. Because the system duty cycle
is not known, MTTF calculations are "guessti­
mates" at best. Furthermore, because of the
small size of systems employing them, LSI-lis
rarely appear in RCOF or even LARS. One
solution was to obtain data from a controlled
environment. Carnegie-Mellon University and
DEC had entered into cooperative research in
multiprocessors based on LSI-lis. The LSI-II
data presented in Chapter 2 were collected and
compared for consistency with data on RAM
chip MTTFs culled from several sources. Com­
plexity derating for LSI was developed (see
Chapter 2) and applied to the preliminary de­
sign.

Table 8-19 lists estimates for the chip and
board failure rates. Even though the design
evolved, the relative failure rates did not change
significantly. The major changes in the relative
board failure rates resulted from repartitioning
the logic functions as some boards became over­
crowded.* The absolute failure rate for the CPU
changed less than 5 percent in two years. In fact,
during Design Maturity Testing the basic CPU
was tested to 90 percent of its initially predicted
failure rate at a 90 percent confidence level.
Thus, fairly accurate failure rate predictions can
be made using even preliminary designs. The
relative failure rate predictions are accurate
enough to make RAMP design trade-off deci­
sions.

* The basic machine evolved to a four-board design parti­
tioned into a Data Path Module (DPM), Microsequencer
and Unibus Adapter (UBA), Memory Interface (MIC) and
PROM Control Store (CCS). Although the partitioning
changed, the design depicted in Figure 8-9 did not substan­
tially change. Minor design changes include removal of the
ROM array feeding the ALU (constants are generated
directly from the microstore), a 6K- by 78- (plus two parity)
bit control store (arranged as 120 lK- by 4-bit chips), and
the FPA now has its own micro sequencer and control store.

RAMP IN THE VAX FAMILY 393

Table 8-19. Reliability analysis of preliminary
VAX-11/7S0 design.*

Chip Type

Gate Array
4K ROMs
8K ROMs
64-bit RAMs
512-bit ROM
SSI/MSI

Number

97
16
56
32

1
12

214

Percent oj
Failure
Rate

41%
9

47
2
a
1

100

Percent oj Failure Rate

Board

DPM
MCS
MI
FPA

(initial)

7%
57
15
21

100

*See Figure 8-10 for analysis of final design.

(aJter two
years)

10.4%
43.6
29.0
16.9

99.9

One of the first RAMP design studies was the
sensitivity of system failure rate to the junction
temperature of the gate array transistors. Where­
as the gate arrays were designed for up to two
watts of power dissipation, the actual transistor
junction temperature was unknown. Indeed, no
gate array chip had been fabricated at that time
and the semiconductor process was just being
defined. Table 8-20 lists the results of the temper­
ature-sensitivity study. The sensitivity to high.
junction temperatures reinforced and economi­
cally justified the addition of heat sinks for the
gate array chips.

The following conclusions were drawn from
the initial reliability study .

• For a 2-Mbyte system, main memory chips would
account for 71 percent of the system failure rate.
The application of Hamming code (which to a first­
order approximation removes the memory chips as a
source of error-see Chapter 5) improved CPU /
Memory MTTF (under a failure-to-exhaustion mod­
el) by a factor of almost 3.5.

• The Control Store board represented 57 percent of
the CPU failure rate. Of that total, 82 percent was

394 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Exploded view of gate array assembly.

microstore; thus, a total of 47 percent of the CPU
failure rate was attributable to the microstore.

• Fifty-six percent of the three-board CPU failure rate
and 51 percent of the CPU/Memory control failure
rate consisted of RAM and ROM failures.

A series of fault-tolerant techniques was pro­
posed for the RAMs/ROMs in the CPU. Figure
8-10 shows an AUTOFAIL analysis of the stan­
dard V AX-I 1/750 processor as finally imple­
mented (the failure rate groupings thus corre­
spond to the final partitioning, not to the board
partitioning depicted in Figure 8-9). The control
store (now 80 bits wide) accounts for 55 percent
of the RAM/ROM failure rate and 33 percent of
the total failure rate. Table 8-21 lists the expect­
ed improvements after applications of a series of
error-correcting codes to the RAM/ROM arrays
in the three-board CPU plus memory controller.
With these modifications, a factor of two im­
provements in MTTF was predicted for a cost of
II gate array chips. * A point of diminishing
returns was reached after applications of ECC to

* A gate level design for a Block-Code Corrector chip (see
Chapter 3) was the basis for this chip estimate. No perfor­
mance degradation was anticipated in the case of no
failures. The overall parity detection was fast enough to
freeze the processor and perform microinstruction retry
after correction in all cases except the mUltiply and divide
microoperations, which used a double frequency 160 nsec
cycle clock to produce two results every microcycle time.

Two complete gate array assemblies.

the Control Store, Translation Buffer, and Data
Cache .

Full Hamming coding was too expensive in
terms of board area for the Control Store. Block­
code correctors are susceptible to multiple-bit
failures. Because the Control Store was to be
implemented by four-bit-wide chips, the relative
failure rate of multiple bits was an additional
unknown in establishing the effectiveness of a
Block -Code Corrector. It was therefore decided
to disperse the resource commitment to RAMP
throughout the CPU. In particular, a Visibility
Bus was implemented to improve MTTR and to
support chip-level repair (see below). In the
Control Store, the number of parity bits was
increased from one to two to improve the diag­
nostic resolution of the chip in error. Field
Service would have at most 10 suspect ROM
chips instead of 20 (hardware captures the mi-

Table 8-20. Sensitivity of CPU failure rate to gate
array junction temperature.

Gate Array Junction
Temperature

50° C
60° C
70° C
80° C

Relative Failure Rate of
CPU

1.00
1.05
1.15
1.30

RAMP IN THE VAX FAMILY 395

LSI= 16.000 ROM= 16.000 RAM= 16.000
E = 1.000 Q = 16.000 L = 1.000 T = 40.000

MODULE
CLiMET:'"CPU. PLUS.MEMORY .CONTROL

Data. Path .Modul e
Misc
ROM. AND .RAM
GATE.ARRAY

Memory. Interface .Cache
Mi sc
ROM.AND.RAM
GATLARRAY

Uni bus. Interface
Misc
ROM. AND .RAM
GATE .ARRAY

Control.Store
Misc
ROM.AND.RAM

Memory.Controller
Misc
ROM.AND.RAM
GATE.ARRAY

PERCENTAGE
100.000

16.187
42.643
27.007
30.271

25.038
30.003
48.648
21.349

14.158
58.633
20.905
20.462

29.908
5.657

94.343
14.717

64.169
25.237
10.594

of chi ps = 662.000 # of gates = 33361. 000 # of bits = 732416.000

TYPE

SSI
MSI
LSI
ROM
RAM
MOS
BIP

SUMMARY ROLLUP BY COMPONENT TYPE

of CHIPS

180.000
142.000
67.000

150.000
123.000

.000
662.000

PERCENTAGE

10.824
22.809
14.914
35.179
16.274

.000
100.000

Figure 8-10. Relative failure rates in 111750 three
board CPU and memory controller.

rable 8-21. Projected improvements in applying
:CC to the RAM/ROM arrays in the three-board
11/750 CPU and memory controller.

Percent
Change in Relative
Failure Failure Extra Chips
Rate Rate Required

;tock 11/750 1.00

~CC Control 28% 0.72 4
itore

~CC Memory l2 0.58 4
nterface/Cache

~CC Data Path 4

~CC Unibus 3 0.49 3

nterface 3

~CC Memory 3
:ontroller

croaddress that triggered the parity error as well
as to which half of the Control Store the error
occurred in).

Parity was provided on the Cache and each
half of the Translation Buffer. Upon error detec­
tion, the appropriate Translation Buffer half
could be disabled, thus providing a form of fault
tolerance in exchange for performance degrada­
tion.

RAMP Features

Figure 8-11 depicts the final implementation of
the V AX-I 1/750. The eight CMI ports are occu­
pied by the CPU, memory controller, floating
point accelerator, three Massbus Adapters, Writ­
able Control Store, and Remote Diagnostics
Module (RDM). A Unibus Adapter and small
cassette tape (TU 58)-for logging, bootstrap-

Basic 4 board CPU

W-bus

~-bus Memory
data

routing
and

alignment

Address
logic

Translation
buffer

Cache

Memory
controller

256Kb
memory

array

256Kb
memory

array

256Kb
memory

array

_____________ 1 IL-~_.~~--------------------l Up to 8 boards

UART
CPU

console

CPU
console

UART
console

UART
remote

diagnosis

Control
panel

interface

Con§ole Modem~

TUS8

Console TUS8

UART
switch

for
TUS8

Massbus

1 ______ -----------------------------

Remote Diagnostic Module

Figure 8-11. Final configuration of the VAX-11 1750 system.

Massbus

~ :

-l
:r:
tTl
"'0
:;:0
» n
-l n
tTl
o
"Tl
:;:0
[Tl
r
>
o::l
r
tTl
rJ1
-<
rJ1
-l
tTl
s::
o
tTl
rJ1 a
z

ping, and software distribution-are provided as
part of the CPU.

The V AX-I 1/750 does differ from the
V AX-I 1/780 in two major ways that affect the
RAMP philosophy: it has gate-array custom LSI
chips and a bounded, single cabinet environ­
ment. Table 8-22 lists the characteristics and
utilization of the gate array chips. The extensive
use of gate arrays, the decreased visibility of
logic signals because of LSI gate densities, and
the higher board costs result in a repair strategy
based on microdiagnostics, a Visibility Bus,
sockets for the gate array chips, and chip-level
repair. The bounded, single-cabinet environment
results in reduced complexityand the use of fault
intolerant techniques. To reduce complexity, the
same microsequencer that implements the V AX
architecture also services the Console Subsystem.
Because of the limited, controlled environment
the six-inch CMI is less likely than the intercabi­
net SBI to pick up noise. Errors are less likely to
occur and substantial complexity can be saved
by not implementing parity on the CMI.

Processor Registers

Because there is no separate console processor in
the V AX-I 1/750, there is no equivalent to the ID
Bus. All registers are located in either the pro­
cessor (accessible by the special Move-To/From­
Processor Register instructions) or the main
memory address space.

Table 8-23 lists the implementation-specific
V AX-ll/750 processor registers. Four registers
are associated with the control of the TU-58, the
Console Subsystem mass storage device. These
registers are absent from the V AX-I 1/780 be­
cause its separate LSI-II console processor di­
rectly manages the Console Subsystem's floppy
disk. Another consequence of lack of a separate
console processor is that in the 11/750 the regis­
ters associated with error detection in the pro­
cessor (such as machine check, cache, and trans­
lation buffer) are found as processor registers,
whereas in the 11/780 they were available only
on the ID Bus.

RAMP IN THE VAX FAMILY 397

Table 8-22. VAX-11/750 gate array techology.

Gate Array Characteristics

Technology-Low-power bipolar Schottky

Die Size-.215 inch X .244 inch

Package-48 pins

Circuitry-400 identical 4-input NAND gates
44 I/O transceiver gates

Speed per gate-5 to 10 nanoseconds

Gate Array Utilization Total Used Unique Types

CPU and Memory
Controller 55 27

Floating Point
Accelerator 28 7

Massbus Adapter 12 5

As mentioned above, no parity or error check­
ing was deemed necessary on the CMI due to its
sheltered environment and implementation simi­
larity to other data paths in the CPU. Hence,
there are no registers to control or report CMI
errors in the CPU or, for that matter, any CMI
port.

Table 8-24 lists details of the RAMP-related
processor registers. The Machine Check Error
Summary Register records the region of the
machine where the error was reported: CMI,
Translation Buffer, or Unibus. It also records
whether the error occurred on a CPU fetch or an
Instruction Buffer (IB) prefetch. Transient errors
associated with the IB prefetch can be recovered
from by simply flushing the lB.

The Machine Check Status Register gives de­
tailed information about bus and Translation
Buffer errors. The eMI can be disabled. Memory
errors that are logged include nonresponding
memory, ECC corrected read data, and uncor­
rectable ECC errors. A Lost Error Bit is set if a
second error occurs before the first error is
serviced. Translation Buffer (TB) errors include
the parity bit in error as well as the status (hit or
miss) of the last translation.

The Translation Buffer Disable Register con­
trols the replacement strategy on a TB miss.

398 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 8-23. VAX-11/7S0 implementation-specific
processor registers.

Register Access Permitted

Console Storage R/W
Receive Status

Console Storage R
Receive Data

Console Storage R/W
Transmit Status

Console Storage W
Transmit Data

Machine Check Error R/W
Summary

Machine Check Status R/W

Translation Buffer R/W
Disable

Translation Buffer R/W

Cache Disable R/W

Cache Error R/W

I/O Reset R/W

Memory Management R/W
Enable

Replacement can be random or forced to one
half of the TB. The latter case can be used to
disable half of the TB and allows reconfiguration
around a permanent failure. The Force Miss
Bits, coupled with the TB Hit/Miss Bit (in the
Machine Check Status Register) can be used by
diagnostics to check the TB's functionality. Fin­
ally, the Translation Buffer Register records the
address that caused the last protection violation.
This datum can be used by system software to
repair or isolate software errors.

Because the cache is direct-mapped, the Cache
Disable Register controls only turning the cache
on or off. The Cache Error Register records
whether the Tag or Data recorded the parity
error. The Lost Error Bit indicates that a second
cache error occurred before the first one was
serviced. As in the TB, the Cache Hit/Miss Bit
indicates the status of the last reference.

When an internal error is detected, status
information is automatically placed on the ma-

chine stack for software analysis and error log­
ging. Table 8-25 lists the error status registers
and other information that is placed on the
stack. An error summary code pinpoints the
region of the system where the error occurred.

Main Memory Registers

There are registers in main memory associated
with each CMI port type: memory, Unibus
Adapter, and Massbus Adapter.

Table 8-26 details the three registers associated
with the ECC main memory. Control and Status
Register 0 (CSR 0) contains the address and
syndrome of the last detected error. Two bits
record whether an error was correctable or un­
correctable. The· address and syndrome of an
uncorrectable error overwrites the address and
syndrome of a correctable error. The Uncorrec­
table Error, Information Lost Bit records the
occurrence of a second uncorrectable error be­
fore the first was serviced. The address and
syndrome of this second error will not overwrite
the address and syndrome of the first error.

CSR 1 contains control and maintenance bits.
Single correctable errors can be ignored by set­
ting the Inhibit Reporting Correctable Errors
Bit. The Page Mode Address bits specify the
memory page affected by the other maintenance­
mode bits. The Page Mode Bit controls whether
the whole memory is involved or just the speci­
fied page. The Check Bits are used to replace or
make accessible the ECC bits associated with a
word in main memory. The Diagnostic Check
Mode allows for substitution on a memory read
of the Check Bits field for the ECC bits stored in
memory, providing a means of testing the ECC
check logic. During writes, the newly generated
ECC bits are stored in both memory and Check
Bits<6:0). The Diagnostic Check Mode can
operate only on a single page whose address is
specified by the Page Address field. While in
Diagnostic Check Mode, read errors in other
memory pages will not be logged into CSR O.
The Error Disable Mode turns off error detec­
tion, correction, and logging. ECC can be dis-

RAMP IN THE VAX FAMILY 399

Table 8-24. Details of VAX-11 1750 implementation-specific processor registers.

Registers

Machine Check Error Summary

Machine Check Status

Translation Buffer Disable

Translation Buffer

Cache Disable

Subfields

Bus Error

Translation Buffer Error

Unaligned Unibus Reference

Operand Fetch/Execution Buffer
Fetch

Enable/Disable Buffer

Translation Buffer

Group I Tag Parity Error

Translation Buffer

Group 0 Tag Parity Error

Translation Buffer

Group I Data Parity Error

Translation Buffer

Group 0 Data Parity Error

Translation Buffer Hit/Miss

Nonexistent Memory Timeout

Uncorrectable Data Error

Lost Error

Replace

Force GO/GI

Force Miss G I

Force Miss GO

Valid Protection Code (3:0)

Modify Page Frame
Number <20:0)

Cache on/off

Comments

CPU or instruction prefetch caused
error

Indicates status of last address
translation

Second error occurred before first
serviced

Replaces entries at random or forced

Forces replacement to group GO or G I

If set, forces a miss on group G 1

If set, forces a miss on group GO

Value of address translation that
caused last error

(Table continues on next page)

400 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 8-24 -Continued

Registers

Cache Error

Unibus Initialize

Memory Management Enable

Subfields

Tag Error

Data Error

Lost Error

Hit/Miss

Initialize

Enable/Disable

Table 8-25. VAX-11 1750 machine check error
logout onto machine stack.

Information

Byte Count (length of information on stack)

Error Summary Code (see below)

Virtual Address Register (operand address)

Program Counter

Memory Data Register

Saved Mode Register (CPU mode during fault)

Read Lock Timeout Register

Translation Buffer Group Parity (sub field of
Machine-Check Status Register)

Cache Error Register

Bus Error Register (subfield 9f Machine-Check
Status Register)

Machine-Check Error Summary Register

Backup Program Counter (address of instruction)

Program Status Word

Error Summary Code

Control Store Parity Error

Cache Parity Error

Memory Error

Corrected Memory Data

Write Bus Error

Bad Instruction Register Decode

Comments

Indicates status of last reference

abled for the entire memory or a single page,
depending on the value of the Page Mode Bit.

CSR 2 contains memory configuration infor­
mation such as the starting address of memory,
the validity of memory contents after a power
failure, and the presence of memory array
boards.

The Unibus Adapter has only one RAMP
related-register, the Buffered Data Path Control
and Status Register detailed in Table 8-27. Only
nonexisting memory and uncorrectable ECC er­
rors are recorded.

The Massbus Adapter has three RAMP-relat­
ed registers, detailed in Table 8-28. The Control
Register has a Maintenance Mode Bit that al­
lows exercising the Massbus without requiring an
attached peripheral. When the bit is set, all
Massbus devices detach from the bus. The Inter­
rupt Enable Bit allows reporting of Massbus­
related errors to the CPU.

The MBA Status Register has three groups of
signals. The first group records errors associated
with the CMI portion of the access: corrected
ECC, no response, and error. The second group
deals with Massbus-related errors: control bus
hung, nonexistent drive, data late, miss transfer,
Massbus parity, and programming. A program­
ming error is logged if a second MBA operation
is attempted before completion of the first. The
third group logs errors associated with logic in

Table 8-26. VAX-11 1750 memory control and status registers.

Register

CSRO

CSR 1

CSR2

Subfields

Page Address 04:0>

Error Syndrome (6:0>

Correctable Error

U ncorrectable-Error

Uncorrectable-Error, Information­
Lost

Inhibit Reporting Correctable
Errors

Page Mode Address (14:0>

Page Mode

Check Bits (6:0)

Diagnostic Check Mode

Error Disable Mode

Starting Address (6:0)

Battery Backup Failure

Memory Present Map (15:0)

RAMP IN THE VAX FAMILY 401

Comments

Address of the 512-byte page in
which the error occurred

Set when a correctable error occurs
during a read. Correctable errors
during a byte write do not affect this
bit.

Set when an even number of errors
occurs in a word, or an odd number
of errors that generates an invalid
syndrome

Set when an uncorrectable error has
occurred after the setting of the
Uncorrectable-Error bit

When set, single errors will be
corrected but not reported to the
CPU nor error-related information
logged in CSR O.

When set, the ECC Disable or
Diagnostic Check Modes operate on
the page specified in Page Mode
Address (14:0).

Substituted for the Check Bits in
Diagnostic Check Mode. In ECC
Disable Mode, a read replaces these
bits by the Check Bits in the memory
array.

When set, during a read the Check
Bits (6:0) are substituted for the
ECC bi ts stored in memory.

When set, no error detection,
correction, logging, or reporting is
done.

Starting address of memory

Set when battery backup power has
been exhausted

Bits represent amount and location of
memory in the backplane. There are 8
possible locations for memory array
boards. Each board, when inserted,
sets 2 adjacent bits in this register.

402 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 8-27. RAMP-related VAX-11 1750 Unibus adapter register.

Register

Buffered Data Path Control
and Status

Subjields Comments

Error Logical OR of error bits

Nonexistent Memory
Uncorrectable Error

Set when NXM received from memory
Set when memory has uncorrectable
error

the MBA: page map and data-path parity errors.
The MBA Diagnostic Register allows setting

of incorrect parity on the Massbus, page map, or
MBA data path, and reading or writing of select­
ed Massbus fields.

Diagnostics and Repair

Table 8-29 lists the five levels of diagnostics
employed in the VAX-II/750, ranging from
User Mode Macrodiagnostics, which execute
concurrently with user software, to microdiag­
nostics, which require dedicated use of hardware.
A Micro-Verify routine resident in the PROM
control store is executed upon system initializa­
tion.

The Remote Diagnostics Module (RDM)
plays a critical role in the 11/750 RAMP philos­
ophy. Because the 11/750 console interface is
provided by microcode executed in the main
microsequencer, a CPU failure would bring the
system completely down. A large percentage of
the CPU hardware would have to be functioning
correctly in order to respond to console com­
mands such as examine registers, deposit values,
and single step. The RDM has a separate micro­
processor that can read the W -bus in Figure 8-11
(for access to the CPU registers) and single-step
(either single clock . or single instruction) the
CPU. It can also write via DMA over the CM!.
The RDM contains a small 64-word Writable
Control Store (WCS) for executing microdiag­
nostics stored on a TU-58 cassette. It can also
force arbitrary microaddresses, thus using the
CPU control store to provide more microdiag­
nostics. A typical scenario would be to set up the

CPU registers by DMA write into memory,
execute some CPU microcode through forced
microaddresses and clock control, set up a mi­
crotest via the forced microaddress and clock
control, and observe results via the W -bus.

Another key philosophy is chip-level repair. A
board-swap repair strategy usually ties up as
many boards in Field Service repair kits and in
transit to/from repair depots as there are in
functioning CPUs. Because of the high cost of
large, LSI-intense boards, a board-swap strategy
would have required too large an investment in
inventory. Given that the gate array chips repre­
sented a complexity comparable to that of an
early 1970s SSI printed circuit board and that
those earlier diagnostics were targeted at a
board-level resolution (that is, the FRU was a
board), chip-level repair was deemed practical.
Even if only 20 percent of failures were repaired
by chip replacement in the field, the reduced
inventory costs for boards would offset the chip
socket cost. To facilitate field repair, a special
leadless chip socket was used. Because sockets
potentially increase costs and also increase CPU
failure rate, the question of socket failure rate
had to be adequately resolved with the socket
vendor to insure that more problems were not
introduced than were solved. A special Visibility
Bus (like that in the 11/780) chains together the
outputs of the gate array chips. The goal is
resolution to a path containing three to five gate
arrays and other MSI chips in 98 percent of the
cases. When chip replacement fails, the board
will be swapped.

In a typical maintenance scenario on the
V AX-ll/750, disk-resident, User Mode diagnos-

Table 8-28. RAMP-related VAX-11/7S0 Massbus adapter registers.

Register

Control

Status

Diagnostic

Subfields

Maintenance Mode

Interrupt Enable

Corrected Read Data

No response

Error Confirmation

Control Bus Hung

Nonexistent Drive

Data Late

Miss Transfer Error

Massbus Data Parity Error

Massbus Control Parity ErrQr

Programming Error

Page Frame Map Parity Error

Silo Parity Error

Invert Parity <3:0)

Simulate Asynchronous Control
Lines <4:0)

Read Signals <20:0)

RAMP IN THE VAX FAMILY 403

Comments

When set, software can exercise the
Massbus without any attached devices.

When set, causes an interrupt in CPU
on the occurrence of any errors
reported in the status register.

Set when CMI indicates a correction
was made on data

Set if CMI returns a no response
confirmation

Set when CMI returns an error
confirmation on a transaction

Set if MBA Register access times out

Set if drive fails to respond within a
specified time

Indicates error in parity checking of
bus data field

Indicates error in parity checking of
bus control field

Set if software tries to initiate a data
transfer while MBA is currently
performing one

Indicates parity error in memory
where page map information is stored

Set when there is a parity error in
data transfer buffer

Inverts the sense of the bus data, bus
control, map, and Silo parity generator

Allows setting, clearing of various
Massbus signals when in maintenance
mode

Allows reading of selected Massbus
fields

404 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 8-29. VAX-11/7S0 diagnostics.

Level

Levell

Level 2

Level 3

Level 4

Level 5

Micro-Verify

Action

User Mode Macrodiagnostics
run under the VMS (Virtual
Memory System) operating
system, such as line printer,
card reader, terminal, tape,
disk, instruction set.

Macrodiagnostics executed
under Diagnostic Supervisor
while VMS is still operational.
Used in acceptance tests.

Macrodiagnostics executed
under the Diagnostic
Supervisor with the CPU
operating in a stand-alone
mode. Used in Unibus diagnostics.

Macrodiagnostics executing
stand-alone without the
Diagnostic Supervisor. Used in
instruction set diagnostics.

Microdiagnostics executing in a
stand-alone mode.

PROM resident
microdiagnostics executed upon
system initialization. A sanity
check of the Data Path and
Memory Interconnect Modules.

tics periodically execute under VMS (Virtual
Memory System), to execise and detect function­
al errors in memory, MBA, UBA, device control­
lers, and device drives. Errors reported by User
Mode diagnostics or hardware check circuits
prompt a customer call to the Digital Diagnostic
Center (DDC). The customer replaces the re­
movable disk media with a diagnostic and
scratch disk. The DDC engineer calls the cus­
tomer's processor and loads macrodiagnostics
from the diagnostic disk. If the disk is not
operable, the diagnostics can be loaded from the
TU-58 or down-line loaded over the telephone.
The DDC attempts to isolate the failure to a
subsystem. If the CPU is faulty, the diagnostic

on the TU-58 is executed to verify the CPU
status.

The DDC advises the local Field Service Of­
fice of the failing subsystem. At the customer's
site, Field Service performs a board-swap and
reverifies the system. If the failing subsystem is
the CPU, microdiagnostics are loaded into the
64-word WCS on board the ROM. Multiple
TU-58 cassettes are used to accommodate the
extended length of the microdiagnostics (the
V AX-I 1/780 microdiagnostics occupy five flop­
py disks). Length is also the reason that micro­
diagnostics are not down-line loaded from the
DOC to attempt CPU failure isolation at the
board or chip level. The 64-word WCS is loaded
to set up data paths, registers, and the like, then
overlaid with a series of tests. Each test exercises
a single gate-array function. Results of tests are
observed on the W -bus or Visibility Bus. The
RDM also monitors output of the control store.
In the case of control store failure, parity pin­
points the failure to 10 chips. A micros tore image
stored on the TU-58 is used for comparison
when the ROM accesses the faulty micros tore
word.

The microdiagnostics isolate the failure to
between three and five gate array chips. If the
malfunction persits after chip replacement, the
board is swapped. The board is also swapped if
one of the nonsocketed SSI/MSI chips fails.

SUMMARY

Table 8-30 lists the RAMP features common to
the V AX-I 1/750 and V AX-l 1/780 implementa­
tions. In addition to describing the benefit of
each feature, the table indicates whether the
feature improves MTTF and/or MTTR.

Table 8-31 lists the RAMP-related features
that vary in the two implementations.

REFERENCES

Bell et al. [1970]; Bell and Strecker [1976]; Strecker
[1978].

Table 8-30. Common VAX RAMP features.

Feature

Processor consistency
checking

In terval timer

Disk error correcting
codes

Peripheral write-verify
checking hardware

Track offset retry
hardware

Bad block handling

On-line error logging

Example

Arithmetic traps, memory­
address protection, limit
checking, reserved opcodes

I-microsecond resolution

RP05, RP06, and RK06
detect all errors up to 11 bits
and correct single burst up to
11 bits

Read after write followed by
comparison

Upon error, disk retries read.
If retry fails, disk head is
offset for retry.

VMS operating system
removes bad disk blocks from
use.

Records exceptional
conditions in an error log,
including time and system
state

Benefit

Limits damage due to
hardware or software
errors

Used by diagnostics to
test time-dependent
functions

Tolerates transient and
media related faults

Detects error

Aids permanent and
intermittent fault isolation

Aids
MTTF

Yes

No

Yes

No

Yes

Yes

No

Aids
MTTR

Yes

Yes

Yes

Yes

Yes

Yes

Yes

:::0 »
~
'"'C

Z
-l
:r:
m
-< »
X
.." »
3::
r
-<

".. = Ul

""' = t:I>

-l
Table 8-31. Comparison of VAX-11I7S0 and VAX-11 1780 features. :r:

tTl
"'0

Aid Aid ;;0

Feature VAX-ll/750 VAX-ll/780 Benefit MTTF MTTR
;I;>
()
-l

Fault Intolerance n
Air flow Blowers Blowers Lowers chip junction Yes No tTl

temperature 0
."

Memory chips, 90% of Memory Chips Fewer chips result in fewer
;;0

LSI Yes Yes tTl

CPU Logic functions boards, more reliable per r
;;

implemented as custom function over SSI/MSI, o::l

gate array lower power consumption, r
tTl

hence, cooler junction lfJ

tempera tures -<
lfJ
-l

Cabling Card cage fixed mounted Fewer pluggable Yes Yes tTl
~

and not on slides. No connectors to fail 10
internal cables. tTl

Connections through
C/1 a

backplane, no cables to Z
cards.

Physically Yes No Limited number of system Yes Yes
bounded system configurations; CPU and

memory in one cabinet
results in greater control of
environmental factors such
as temperature and
electromagnetic
in terference.

Sensors and Power loss, temperature, Power loss Protects system from Yes Yes
indicators air flow damage resulting from

emergency conditions

Modular power Yes Yes Easy replacement No Yes
supply

Fault Tolerance

Main memory 7-bit ECC per 32-bit word 8-bit ECC per 64-bit word Tolerates transient and Yes Yes
permanent failures.
Logging of error
information allows quick
fault isolation.

Control store 2 parity bits: 1 even parity. 3 parity bits. Provides tolerance of No Yes
I odd parity. over disjoint 1 per 32 bits of control store transient errors as well as
subfields of the 78-bit-wide partial isolation to the
control store failing chip

Micro-verify Control store resident No Yes
check of data paths.
registers. and other
portions of the system
boot path. Ensures proper
boot of system if passed.

Translation 2-way set-associative. 4 2 way set-associative. 6 parity Provides faulty chip Yes Yes
buffer parity bits for each set: bits for each set: 3 over 16- isolation. Tolerates

over 15-bit tag and valid bit tag. valid. modify. and 4- transients by recalculating
bit; 3 over disjoint bit protection; 3 over 21 bits TB contents. Tolerates
subfields of 15-bit page of page-frame number permanent failures by
frame number, 4-bit disabling one set.
protection, and modify bit

Cache Direct-mapped cache: 5 2-way set-associative. 7 parity Provides faulty chip Yes Yes
parity bits, lover 12-bit bits per set: 3 over 12-bit tag isolation. Tolerates
tag and valid bit; 4 over and valid bit; 4 over 32 data transients by refetching
32 data bits (byte parity) bits (byte parity) cache contents. Tolerates

permanent failures by
disabling cache (I 1/750) or
one set (11/780).

Synchronous None 2 parity bits: lover 32-bit Detects errors and isolates No Yes
Backplane data/address field. lover 12 to faulty bus port.
Interconnect bits' of control information Transients tolerated by bus
(SBI) level retry.

Silo captures last 16 bus Isolates faulty chips No Yes
cycles :::0

:>
Unibus Adapter None Parity on data paths and Provides faulty chip No Yes 3:

""0
Unibus Map isolation. Transients Z

tolerated by retry. ...,
Massbus Data and Control Bus Data and Control Bus lines Provides faulty chip

:t
No Yes tTl

lines parity. Data buffer parity isolation. Transients <
parity. tolerated by retry. :>

X
Watchdog timer None In LSI-II console processor Detects hung machine and No No "T']

>
allows automatic restart 3:

r
(Table continues on next page) -<

"'"" Q
-...J

Table 5-JI -Continued

Feature

Clock margining

Maintenance
registers

Visibility Bus

Chip Sockets

Remote
diagnostic
module

VAX-ll/750

None

Machine Check Error
Summary

Cache Error

Machine Check Status

Internal signals made
available to
microdiagnostics

Gate array

Load/examine critical
machine registers

Monitor control store
output for control store
verification

Error status registers
readable over W -bus

Monitor Memory Data
Register (MDR) to verify
memory-CPU transfers
and opcode undergoing
execution
Visibility of cache and
translation buffer contents
to insure correct
functionality
Access to V-Bus.
On-board 64-word writable
control store for
microdiagnostics.

VAX-ll/780

Change clock speed

SBI Fault/Status

SBI Silo Comparator

SBI Error

SBI Timeout Address

SBI Maintenance Buffer

Translation Parity

Internal signals made
available to the console or
microdiagnostics

None

Load/examine critical
machine registers

Single-step sequencer

Clock margining

Error status registers readable
over ID Bus

Access to V-Bus

Microdiagnostics loadable
into writable control store

Aid
Benefit MTTF

-

Aids isolation of timing No
problems

Aids fault isolation No

Aids fault isolation No

Allows replacement of No
individual gate array chips

Provides remote, expert No
troubleshooting

Aid
MTTR

Yes

Yes

Yes

Yes

Yes

~ oc

-l
:t
tTl
."
;::tl
~
(j
-l
n
tTl
o
'Tl
;::tl
tTl
r
;;
t:rl
r
tTl
rJ)

-<
rJ)

-l
tTl
3:
o
tTl
rJ)

C;
Z

{ecovery through Programming
;ystem/360-System/370

)onald L. Droulette

NTRODUCTION

tecovery Management can be defined as the
Iperational control of those system facilities
both program and machine) which strive to
:ffectively deal with detected machine malfunc­
ions within an operating system. Its primary
:oncern is to maintain total system operation
vith minimum impact upon the availability of
ystem resources.

Recovery Management, defined above and
rea ted in this report, refers to recovery from an
mscheduled system interruption resulting from a
nachine malfunction. As such, Recovery Man-
1gement can be viewed as a consideration which
eads to a higher degree of total system reli­
lbility, serviceability, and availability.

Effective Recovery Management is not a luxu­
y; on the contrary, it may, in a given system, be
l necessity. Without it, what need only be a
ninor problem becomes a major problem, pos­
:ibly a catastrophe.

Recovery Management facilities service un­
:cheduled system interruptions originating with­
n an I/O device/unit, channel, processor storage
mit, or central processing unit. The presence of
:uch an interruption is indicated by a device/
mit, channel, or machine-check condition. No

)roulette, D., "Recovery Through Programming System/
160-System/370," Proceedings oJthe Spring Joint Computer
';onJerence, 1971, pp. 467-476.

409

410 THE PRACTICE OF RELIABLE SYSTEM DESIGN

individual Recovery Management facility ser­
vices all machine malfunctions.

Recovery Management facilities attempt re­
covery at different levels; these levels differ with
respect to the consequences imposed upon the
system during the recovery process. Not all of
the Recovery Management facilities have the
capability of effecting recovery at each level.
Recovery Management facilities are optional,
and as such, must be specified by the user at
system generation time. Considering that Recov­
ery Management facilities are directed at specific
types of failures, only after the thorough analysis
of an installation's applications and require­
ments should a Recovery Management package
be structured.

THE RECOVERY MANAGEMENT
OBJECTIVE

The objective of Recovery Management is to
provide the user with a higher degree of system
availability (more time for more jobs) by mini­
mizing the impact of machine malfunctions upon
the user's operations. This objective is realized
with the successful achievement of the following
goals:

• Reduce the number of unscheduled system interrup­
tions resulting from machine malfunctions.

• Minimize the impact of such interruptions in the
event they do occur.

Through Programming, interruptions to the
user can be reduced, their impact minimized and
their causes isolated. There are a number of
functions which can be performed to achieve
these objectives of Recovery Management. Some
of these are:

• Instruction Retry. The concept of instruction retry
is not new. It is something IBM has been doing for
years, particularly in the I/O area. Instruction retry
has been standard procedure whenever an error was
encountered in reading or writing a tape. It is
possible to extend this retry capability and to em­
ploy it when a CPU or main storage malfunction
occurs. A relatively large number of malfunctions
are intermittent in nature, rather than being solid

failures; therefore, there is a high probability of
success of execution and recovery if an instruction
retry can be attempted.

• Refreshing Main Storage. If instruction retry can­
not be accomplished, one. function which could be
of value would be the ability to refresh main storage.
Through this damage which either caused or was
caused by a malfunction could be repaired. This
function could be accomplished by loading a new
copy of the affected module or "Csect" into main
storage or by a process known as check summing.

• Selective Termination. This function would enable
the system to examine the failing environment, de­
termine what problem program was executing and
then proceed to terminate this program while enter­
ing all other jobs which were executing at the time
of the malfunction. This is really a type of job which
"frees" the resources of the system allocated to the
job and makes them available for future use. This
process results in the loss of a specific job but it
keeps the system alive.

• I/O Recovery. The above functions have been di­
rected mainly to errors which occur in the CPU or
main storage. From an examination of system inci­
dents, it is evident that a certain portion of errors
occur in the I/O area. Recovery could be accom­
plished by I/O retry which is available through the
error recovery procedures for the different I/O de­
vices. Another group of I/O errors-channel control
checks, channel data checks, and interface control
checks-may be analyzed and under certain condi­
tions a retry can be attempted. The I/O device or
medium can malfunction and if retry is not success­
ful the ability to switch data sets may be provided
and then retry the operation on the new drive.
Another is to try alternate routes to the same device,
that is by addressing a device through a different
channel or control unit.

• Operator Awareness. A group of system incidents is
due to procedural and operator errors. Several
things can be done to decrease these errors such as
better trained personnel, minimal control informa­
tion and clear and concise operator messages.

All of these functions are aimed at continuing
the operation of the system. This is not always
possible to accomplish. Therefore, the next best
thing is to minimize the effect of the malfunc­
tion., This can be done by attempting to preserve
information concerning the malfunction and to
make it available to assist personnel to determine
what caused the error and what can be done to
correct it. Recording, therefore, is a major part
of recovery management.

RECOVERY THROUGH PROGRAMMING SYSTEMj360-SYSTEMj370 411

Recovery Management support has provided
a number of these functions in the operating
systems. RMS has provided a hierarchy of recov­
ery which involves four levels of error recovery.

1. Functional Recovery. Retry the interrupted opera-
tion.

2. System Recovery. Terminate the affected task.
3. System-Supported Restart. Prepare for Re-IPL.
4. System Repair. Require stop for repair.

Functional Recovery

Functional recovery is achieved when an inter­
rupted operation is successfully retried. Such
recovery is extremely desirable from a system
point of view, because it makes the entire inci­
dent transparent to the user.

System Recovery

System recovery is achieved when system opera­
tion is maintained although an interrupted oper­
ation has not been retried. This effort involves:
an analysis of the failure's environment, a repair
of the damage associated with the malfunction to
prevent further interruptions, and/or an attempt
to associate the malfunction with a particular
task in order to allow selective termination of the
affected job and continued processing of the
unaffected jobs.

System-Supported Restart

System-supported restart is achieved when a stop
for repair is not required and system operation is
restarted using an Initial Program Load (IPL)
procedure supported by System Restart facilities.
(System Restart facilities aid the IPL procedure
by preserving and using system job and data
queues.)

System Repai r

System repair, the lowest but most critical level
of error recovery, consists of stopping the system
and repairing a malfunction which cannot be

serviced by the particular recovery facility at any
of the previous levels. Recovery Management
facilities aid maintenance personnel by provid­
ing them with detailed error analysis records.
There is always, however, the possibility that
system damage will be severe enough to preclude
retrieval of the error records. In those cases,
personnel will have to make use of the Sys­
tem/360 diagnostics available to them.

The levels of error recovery applicable to IBM
Operating Systems operations are illustrated in
Figure 9-1; the outcome of recovery procedures
1, 2, or 3 determines the level at which recovery
will be effected. The bracketed information on a
given flowline indicates the consequences of re­
covery at that level.

USER PERSONNEL INVOLVEMENT

The successful operation of a Recovery Manage­
ment package is directly proportional to the
planning for and use of sp'ecific facilities in a
given operating system.

Once a user has determined what his needs
and requirements are, the amount of specifica­
tion required to tailor his Recovery Management
package is minimal. The selection of some recov­
ery facilities is made during the system genera­
tion process. Modifications can be made during
the IPL/NIP process.

The programmer's responsibility varies greatly
with respect to the Recovery Management op­
tions available to him:

• He may code actual error recovery routines which
will receive control through macros specifying user
exits (see Optional User-written Routines).

• He need not involve himself at all with regard to
certain Recovery Management facilities.

Once the system has been set up and is
running, it is the operator's responsibilIty to be
aware of and responsive to the parameters re­
quired by, and the messages and wait-state codes
issued by particular Recovery Management fa­
cilities.

Maintenance personnel should acquaint them­
selves with the scope and operation of those

412 THE PRACTICE OF RELIABLE SYSTEM DESIGN

System
operation Machine-check System operation

interruption 5hf.....-----------.f---:....--~-----.-f---------r-f ---
Functional System System System

supported
recovery restart repair recovery

I
I System ~peration I

continues

Perform
instruction

retry

Successful

Unsuccessful

Task abnormally
terminated/task's

TeB set non­
dispatchable

System operation
continues

II Terminate affected Successful

Operator notified
that re-I PL is

required
task and continue _---1. _____ -<
system operation Unsuccessful System is placed

in wait state

III Restart system operation­
stop for repair not required

Re-IPL/system is
restarted

Successful

Unsuccessful

Operator notified
that repair of

system is required

System is placed
in wait state

Personnel repair
system damage

Re-IPL/system is
restarted

IV Restart syste~ ~perati?n- _______________ ---"-_______ ---'
stop for repair IS required

Figure 9-1. Levels of error recovery applicable to IBM operating systems.

Recovery Management facilities incorporated
into the systems for which they have responsibil­
ity. They must be familiar with the messages and
wait-state codes issued, and the error records
produced, if they are to make effective use of the
information available to them.

SUMMARY DESCRIPTION OF FACILITIES

This section briefly describes the available Re­
covery Management facilities. Included are dis­
cussions of the Machine-Check Handler (M CH),

the Channel Check-Handler (CCH), and I/O
Recovery Management-Support (I/O RMS). The
individual recovery facilities are discussed as
they apply to specific types of failures, or to
specific recovery functions. The topics of discus­
sion are:

• I/O Device/Unit Recovery Facilities
• Channel Recovery F acili ties
• I/O Recovery Management Facilities
• CPU/Processor Storage Recovery Facilities
• System Associated Recovery Facilities
• Error Record Retrieval Facilities

RECOVERY THROUGH PROGRAMMING SYSTEM/360-SYSTEM/370 413

The following points are made to clarify the
function and scope of those recovery facilities
which cross the bounds of two or more failure
types:

• The Optional User Routines receive control from the
IBM supplied Error Recovery Procedures (ERPS)
on permanent I/O device/unit errors in order to
determine whether their associated tasks are to be
terminated.

• The System Environment Recording Routines (SERO,
SER1) and the Machine-Check Handler (MCH) pro­
gram can perform recording functions for channel
and machine-check conditions. However, the limited
SERI and extensive MCH recovery capabilities deal
only with machine-check conditions. Therefore, if
one desires channel recovery, he must also make use
of the Channel-Check Handler (CCH). CCH may be
used in conjunction with MCH, SERO, or SER 1.

o The System Environment Recording Editing and
Printing (SEREP) program may be used to record,
edit, and print I/O device/unit, channel, CPU, and
processor storage conditions. SEREP will be used
when no automatic recording facility has been in­
voked, the facility invoked has failed in its opera­
tion, or the recorded records cannot be retrieved by
the Environmental Record Editing and Printing
(EREP) program. EREP is a utility which edits and
prints those error analysis records placed on the
SYSI.LOGREC data set. This data set resides on the
system residence device and is reserved for the
exclusive use of all those recovery facilities which
generate error analysis records.

I/O DEVICE/UNIT RECOVERY FACILITIES

The problem of malfunctions occurring within
I/O device/units has been a concern for quite
some time. The facilities available for the servic­
ing and detection of these failures are:

o IBM Standard Error Recovery Procedures
o Optional User Written Routines
o On-Line Test System

IBM Standard Error Recovery
Procedures

Standard error recovery procedures (ERPs) exist
for I/O devices/units in order to maintain device
performance and to provide uniform recovery

procedures for all failures. The three types of
IBM-supplied error routines are:

• Device-dependent routines
• Common routines
• I/O Recording routines

The device-dependent routines attempt func­
tional recovery for particular device types by
retrying operations a specific number of times. If
functional recovery is not possible, control is
passed to an optional user-written routine for
further determination. Device-dependent rou­
tines exist for:

• Teleprocessing Devices
• Unit Record Devices
• Tape Devices
• Direct Access Devices
• Graphic Devices

The common routines are used by the device­
dependent routines to analyze the type of error,
to issue console messages, and to update the
statistics table.

The I/O recording routines are the outboard
recorder (OBR) and the statistical data recorder/
channel-check recorder (SDR/CCR). OBR pro­
duces records for permanent I/O device failures
on the SYS l.LOGREC data set. SDR/CCR up­
dates the statistic counters on the SYS I.LO­
GREC data set whenever one of the error statis­
tics counters in the statistics table overflows, and
places I/O inboard records produced by the
optional Channel-Check Handler (CCH) on the
SYSI.LOGREC data set. The records placed on
the SYSl.LOGREC aid maintenance personnel
at the System Repair level.

Optional User-Written Routines

Should an installation determine that available
Recovery Management facilities do not fill a
need unique to the installation's requirements,
user-written routines may be added to the sys­
tem. When in the system, user-written routines
are given control through the DCB macro in-

414 THE PRACTICE OF RELIABLE SYSTEM DESIGN

struction (SYNAD and EROPT). The user rou­
tine can determine on certain I/O device condi­
tions if its associated task should be terminated.

On-Line Test System

The purpose of the On-Line Test System is to
test the functioning of I/O devices in a con­
trolled environment with minimum interference
to the operating system. The On-Line Test Sys­
tem consists of an executive program, a series of
tests for I/O devices/units, and a special SVC to
perform functions required in the OS nucleus.
The executive program serves as an interface
between the operating system and the unit tests.
It schedules and controls the running of the tests
and provides communication with the operator.
The use of the On-Line Test System serves to
insure the integrity of the system's I/O devices. It
might be considered preventive Recovery Man­
agement since its use should lead to the repair of
faulty equipment prior to failure during system
operation.

CHANNEL-CHECK HANDLER
(CCH)

The Channel-Check Handler is designed to
increase machine availability by minimizing
the effects of channel malfunctions for
2860/2870/2880 and System/370 Model 155
channels. Without CCH, such malfunctions
would be system incidents. The Channel-Check
Handler will (I) determine the effect on the
system of particular conditions that may have
occurred, (2) set error indicators in the Error
Recovery Procedure Interface Bytes (ERPIB) for
the Error Recovery Procedure (ERP), and (3)
create a record of the channel-error condition.

Unlike MCH, which is model dependent,
CCH is only channel dependent because the
Channel I/O Logout area is the analysis material
used by the CCH program.

CCH includes· the Dynamic Loading feature,
which enables the main part of CCH (channel

CCH
central

Channel
support

according
to

channels
available

at IPL

Figure 9-2. CCH dynamic loading.

and model independent) to link to the various
channel-dependent analysis routines. (See Figure
9-2.) Dynamic Loading also allows dynamic
configuration for the specific channels on-line at
NIP time, even if more channels were specified
at SYSGEN time.

The Channel-Check Handler receives control
from the I/O Supervisor (lOS) after detection of
a channel control check, channel data check or
an interface control check. CCH then completes
its analysis of the error condition by setting up
the ERPIB for the ERP or by indicating that
immediate retry or termination is necessary. If
termination is indicated, the error is recorded on
the SYSl.LOGREC data set and a wait-state
condition is set. If immediate retry is indicated,
control is then returned to lOS who performs the
retry and passes control to the next processing
program on a successful retry. This retry is for
special I/O operations such as SENSE. If an
ERPIB has been created, lOS schedules the
appropriate device ERP which operates in the
Error Transient Area and receives a pointer to
the ERPIB. (See Figure 9-3.) Based on the
ERPIB information, the device ERP can deter­
mine whether a retry of the failing operation can
be attempted or if the operation must be consid­
ered a permanent error.

RECOVERY THROUGH PROGRAMMING SYSTEM/360-SYSTEM/370 415

For permanent error conditions, a message to
he operator is printed· (WTO Error MSG), the
tatistical data counters (STAT Update) for the
levices are updated, a record of the permanent
~rror condition is made on the SYS I.LOG REC
lata set by the Outboard Recording Routine
OBR), and an exit is taken. For errors marked
lS retryable, a retry is attempted and, if success­
ul, control is passed to STAT Update to update
he statistical data counters and then to OBR,
vhich records the successful Channel-check re­
:overy.

Functional Recovery is achieved on channel
~rrors that can be successfully retried by CCH or
he device ERP. CCH enhances the performance
)f OS/360 by reducing the number of system
ncidents resulting from channel malfunctions.

/0 RECOVERY MANAGEMENT SUPPORT

/0 Recovery Management Support (I/O RMS)
s an extension to existing functions of the Oper­
lting System that address the availability and
'eliability needs of IBM customers that may not
)e realized due to channel, control unit, device,
md medium failures.

Initially, these functions encompassed only the
)evice Dependent Error Recovery Procedures

lOS
scheduling

RTN

ERP/STAT
update

functions

Figure 9-3. CCH processi ng.

lOS
scheduling

RTN

ERP/STAT
update

functions

Alternate
path
retry

Dynamic
device

reconfiguration

Figure 9-4. APR/DDR processing.

(ERP's), which were designed to effect a retry of
a device failure on a particular path after a unit­
check condition. Subsequently, with the imple­
mentation of the Channel-Check Handler
(CCH), the utility of the ERP's was extended to
effect a retry of channel failures (channel
checks). In order to meet the continuing need for
higher availability and reliability, I/O RMS pro­
vides two additional optional system functions
that may be used to address the problem of I/O
errors: Alternate Path Retry (APR) on the chan­
nel level and Dynamic Device Reconfiguration
(DDR). (See Figure 9-4.)

Without these functions, when an ERP is
unable to successfully retry an I/O operation,
permanent error is indicated. When a program
encounters a permanent I/O error, it either ac­
cepts the error and continues, or ABENDS. If a
critical supervisor function encounters a perma­
nent I/O error, the system terminates.

APR

I/O RMS extends recovery from an I/O error
with APR by ensuring that a different channel
will be tried (if one exists) during error recovery
on a channel-detected error. If a permanent error

416 THE PRACTICE OF RELIABLE SYSTEM DESIGN

exists on a device with a demountable volume,
I/O RMS will extend recovery with DDR by
requesting that the volume be moved to another
device and the I/O operation retried.

The maximum number of paths supported by
anyone device will be four. APR will ensure that
a different channel will be tried (if one exists, is
on-line, and ready) only on retry of channel­
detected errors, Retry on other errors will be
handled as in the past. APR does not support
tape.

In addition, APR provides an operator Com­
mand-V AR Y PATH. Through this command an
opera tor can select a specific channel path and
remove it from the system. Also, a path that has
been removed can be put back on line through
this command.

Alternate Path Retry is an extension of the
Channel-Check Handler.

DDR

DDR extends I/O recovery when a permanent
error develops on a device with a demountable
volume by causing the system to request that the
volume be moved.

The operator may also request DDR during
normal execution to allow a volume to be moved
from one device to another. A DDR can be
operator-requested for volume cleaning, etc.

DDR can also be requested by the operator
during "intervention required" conditions on
readers, printers, and punches.

DDR will support the 2400 tape series, the
2420-7 tape, the 2311 and 2314 disks, the 2321
data cell drive, and readers, punches, and print­
ers.

DDR can be requested by the operator any­
time during execution, or by the system after a
permanent error for all 2400 (including 2420-7),
2311, 2314, and 2321 devices. DDR can be
requested only by the operator for readers, print­
ers, and punches during "intervention required"
conditions. "Intervention required" is either in­
dicated by the system or may be caused by the
operator. (The operator may cause an "interven-

tion required" condition by making the unit "not
ready.")

DDR's support of the 2314 allows the operator
to move a volume to a drive on another 2314. It
also allows the operator to move all data cells
from the failing 2321 to another 2321. DDR will
not allow the swapping of data cells on one
device.

If the SYSRES option is selected, the SYSRES
volume may be moved from one device to an­
other at the request of the system or of the
operator. The system will not request SYSRES
swap unless a critical I/O operation is involved.
(A critical I/O operation is one which involves
the SVC library.)

If high availability is important to the installa­
tions, a duplicate SYSRES volume would be
advisable. In order to use such a volume, writing
on SYSRES would have to be prohibited except
for the SYS I.LOGREC data set. Therefore, no
libraries on SYSRES could be updated, no work
data sets could be allocated on the SYSRES
device, and SYS I.SYSJOBQE would have to be
on a volume other than SYSRES. If the installa­
tion had such a duplicate volume, as well as an
additional available SYSRES device, it would be
possible to recover from both a device error and
a media error.

SYSRES Option: Since some users do not
have a demountable SYSRES device, DDR sup­
port of SYSRES will be an option at SYSGEN
time. Thus, the resident code necessary for
SYSRES DDR is included only when the option
is taken.

Dynamic Device Reconfiguration is an exten­
sion of lOS as it applies as much to device errors
as channel errors.

With I/O RMS, a device encountering an
error-prone channel path may be able to con­
tinue operating on a different channel path. A
volume on an error-prone device may be used
effectively on a different device. Specifically, bus­
out checks and data checks, along with other
error types, will have a higher degree of recovery,
since a path to the volume may be made avail­
able that excludes the source of error.

RECOVERY THROUGH PROGRAMMING SYSTEM/360-SYSTEM/370 417

I/O RMS is not model dependent.
In summary, I/O RMS will extend device

)erformance in areas that may have previously
'endered a job or the system inoperative.

CPU/PROCESSOR STORAGE
IUCOVERY FACILITIES

Machine-check conditions which arise within the
CPU or processor storage are serviced by the
mutually exclusive recovery facilities MCH,
SERO, and SER 1. If none of these are chosen at
SYSGEN time, the default condition is a wait
state. That is, when a machine check is encoun­
tered, the machine goes into a wait state. If such
a wait state condition occurs or should a facility
Fail in its recovery attempt, SEREP may be used
to access the CPU logout. (MCH is mandatory
in the System/360 Model 85 and System/370
Models 155 and 165.)

Machine-Check Handler (MCH)

The primary function of the Machine-Check
Handler is to attempt recovery from main stor­
age or CPU failures which ECC or HIR has not
previously corrected. An important additional
function is to record each failure. The goal of
MCH is total recovery, achieved when the inter­
rupted program is enabled to continue proces­
sing at the point where the interruption occurred.
When total recovery is not possible, MCH at­
tempts to terminate the effected task without
halting the entire system. If, however, a stop in
system processing cannot be avoided, the error
records produced by MCH aid manual repair.

MCH processing is inseparable from the oper­
ations of the machine recovery facilities, ECC
and HIR. Upon detection of a hardware failure,
either ECC or HIR (depending on the type of
error) receives control. Only after these circuits
make their recovery attempt does a machine­
check interruption occur. MCH receives control
at the interruption by means of the machine­
check new PSW which contains the address of

Machine
check

Retry not
feasible

Initialization

Instruction Successful
r------· retry

Unsuccessful
or

conditional

Hardware
analysis

Refresh
(first time
thru only) Program damage L ________

assessment
and repair

L
Error

processing

!

Exit

Figure 9-5. MCH gross flow.

the MCH Resident Nucleus. Figure 9-5 illus­
trates the sequences of operations performed by
MCH.

The path followed by MCH processing de­
pends on whether or not the machine facilities
were successful in their recovery attempt. If so,
MCH only records the error, after which control
is returned to the system. If the recovery attempt
was unsuccessful, MCH analyzes the error and
attempts recovery. If recovery is achieved, MCH
records the error, notifies the operator, and re­
turns control to the system. However, should

418 THE PRACTICE OF RELIABLE SYSTEM DESIGN

recovery not be effected, MCH attempts to re­
cord the error, informs the operator of the con­
dition of the system, then enters the disabled­
wait state.

Note: In System/360 Model 65, Instruction
retry and single bit error correction are per­
formed by the program.

System Environment Recording
(SERO and SER1)

These optional recovery facilities record machine
malfunctions of the CPU, processor storage, and
channels in System/360 Models 40, 50, 65, 75,
and 91 (SERI only). After an error record has
been placed on the SYSl.LOGREC, the system
is placed in the wait state. If system repair is not
required, a message is issued to the operator
requesting him to re-IPL (System-Supported
Restart). In addition to the recording function,
SER 1 attempts to associate the failure with a
specific task. If the failure affects only the job
step associated with the current task, the job step
can be terminated without requiring a complete
stop of the system (System Recovery).

SYSTEM ASSOCIATED RECOVERY
FACILITIES

While the following facilities do not actually
record or analyze errors, they are an integral part
of the Recovery Management scheme in that
they further reduce the time involved in recover­
ing from a malfunction which has caused an
interruption in system operation:

• System Restart
• Checkpoint/Restart

System Restart

The system restart facilities aid the IPL proce­
dures by allowing the system to resume opera-

tion without having to reenter jobs that have
been enqueued. This is especially time-saving in
the case of those malfunctions which require a
halt of system operation without a stop for
repair. Information concerning input work
queues, output work queues, and jobs in inter­
pretation, execution, or termination is preserved
for use when the system is reloaded. When the
system is restarted, a message is written to the
operator describing the status of each job in the
system.

Checkpoint! Restart

The checkpoint/restart facility provides the ca­
pability of restarting program processing subse­
quent to an I/O device/unit error, machine
check, channel check, intentional operator inter­
vention, or similar event. Job step information is
recorded at user designated checkpoints in a
problem program; if restart becomes necessary,
it can be initiated from an available checkpoint.
Checkpoint/restart can be invoked subsequent to
system restart or subsequent to the abnormal
termination of an effected job by one of the
recovery facilities.

Use of this facility minimizes time lost in
reprocessing a job step that has been terminated.
It is used to best advantage in programs of long
duration, or with programs where restarting from
the beginning would be difficult.

ERROR RECORD RETRIEVAL
FACILITIES

Although automatic recovery procedures are ex­
tremely desirable, such recovery is sometimes
impossible, and human intervention on the part
of the maintenance personnel is required. The
following facilities are part of the Recovery
Management scheme, in that they facilitate sys­
tem repair by providing a means of accessing
failure data:

RECOVERY THROUGH PROGRAMMING SYSTEM/360-SYSTEM/370 419

Environment Record Editing and Printing (EREP)
utility
System Environment Recording Editing and Print­
ing (SEREP) program

:nvironment Record Editing and
-rinting Utility

:REP, running under the operating system, edits
tnd prints error records generated by OBR,
;OR/CCR, CCH, SERO, SER 1, and MCH and
'ecorded on the SYSl.LOGREC data set.

The EREP utility program can edit and print:

Combinations of the above records
Records that were generated within a specific period
of calendar time
I/O outboard or statistical count records, or both,
related to a specific channel or unit
I/O outboard or statistical count records, or both,
related to a specific I/O device type

EREP normally clears each selected record to
:eros in the SYS l.LOGREC data set when pro­
:essing of that record is complete. However, an
>ption can be specified to prevent the clearing of
;elected records. Thus, a log of specific error
:onditions can be retained in the data set.

EREP output provides information for inter­
)retation by the people performing the repair
~unction.

A standard operating procedure in a Com­
)uter Center using MCH and/or CCH should be
:0 execute EREP on a regular basis and then the
nformation would be available to repair person­
leI as an aid or indicator to anticipate serious
:rouble. Upon review, if a particular pattern
lppears indicating possible degradation, preven­
:ative maintenance may be performed before the
)ccurrence of a serious incident.

)ystem Environment Recording,
Editing and Printing Program

SEREP is used to access failure information
when:

• No automatic error recording facility (SERO, SERI,
CCH, MCH, OBR, SDR/CCR) has been invoked

• An automatic error recording facility has failed in
the performance of its function

• The SYSl.LOGREC data set cannot be accessed to
obtain the error analysis records

SEREP is manually loaded using the standard
IPL procedure. The program prints the informa­
tion regarding the failure's environment on an
online printing device. The SEREP procedure is
aimed at improving the overall performance by
minimizing unscheduled downtime. The pro­
gram allows maintenance personnel to take full
advantage of the machine diagnostic capabilities
of the system in analyzing and correcting the
following types of machine malfunctions:

• I/O Channel Failure
• I/O Device Failure
• I/O Test Channel Failure
• I/O Device Not Operational
• I/O Machine Check Failure

RMS/65 RELATIONSHIP TO THE
OPERATING SYSTEM

The RMS/65 package is comprised of two com­
ponents, the Machine Check Handler (MCH)
and the Channel Check Handler (CCH). For
System/360 Model 65, both components are
optional and a user at SYSGEN time may
choose (1) CCH only, (2) MCH only, or (3) both
MCH and CCH, depending on the needs of the
installation. For System/360 Model 85 and Sys­
tem/370 Models 155 and 165, the MCH and
CCH are an integral part of the Control System
and, therefore, are not an option.

When selected at SYSGEN time, the compo­
nents of RMS are included as part of the resident
OS Nucleus. See Figure 9-6.

SYSTEM/370 CONSIDERATIONS

The current program status word (PSW) bit 13
has taken on more significance in System/370. In

420 THE PRACTICE OF RELIABLE SYSTEM DESIGN

. OS nucleus

MCH resident storage

MCH common area

MCH transient area

MCH nucleus

1/0 supervisor

Channel-check handler
common

Applicable channel dependent code
(dynamically loaded)

PSW's

1/0 MCK
new new
PSW PSW

Figure 9-6. RMS relationship to as.

System/360, bit 13 had sole control of Recovery
Management functions. In System/370 there are
recovery submasks in the control registers area
which function in conjunction with bit 13 of the
current PSW. Therefore, if bit 13 of the PSW is
one submask and the subclass mask bit in the
control register is another, the associated condi­
tion will initiate a machine-check interruption. If
either bit is zero, an interruption would not be
initiated. Some subclass condition masks are
system damage, timer damage, system recovery,
etc.

Permanently allocated storage locations have
been extended in System/370 for machine-check

168
ChannellD

172
1/0 extended log pointer

176
Extended CSW

180
Reserved

232
Machine check interrupt code

240
Reserved

248
~ailing storage address

252
Region code

256
Scratch Pad Log Out

352
Floating point registers

384
General purpose registers

448
Control registers

512

Figure 9-7. Permanently allocated storage
locations.

handling. Storage locations 168 thru 512 contain
the added information for handling machine
checks. (See Figure 9-7.) This information is
supplied to assist in performing the recovery
function. Such information consists of Channel
ID, I/O extended by log-out pointer, limited
channel log-out, I/O address, machine-check in­
terruption code (discussed below), failing storage
address, floating point, general and control regis­
ters as well as model dependent areas.

The Machine-Check Interruption Code is a
double word starting at location 232. It contains
such information as the time of interruption
occurrence, machine-check intended log-out
length, and subclasses. A subclass identifies the
machine-check condition which caused the inter­
ruption. Some subclass conditions that can be
indicated are system damage, instruction proces­
sing damage, timer damage, external damage,
automatic configuration (When performed by
hardware) and storage error type (whether cor­
rected or uncorrected).

RECOVERY THROUGH PROGRAMMING SYSTEMj360-SYSTEMj370 421

CONCLUSION

I believe that effective error recovery is a part­
nership between engineering and programming
and these two must form a partnership and
attack the problem together in order to provide
a satisfactory solution. Recovery Management
Support is a step in the direction which Error
Recovery must take if the requirements of com-
puter technology are to be met in this area.
Every sign indicates that this is being accom­
plished.

It appears that some meaningful steps are
being taken toward the goal of reducing the
number of interruptions to which a user is ex­
posed and to minimizing the impact of these
interruptions when they do occur.

REFERENCE MATERIALS

IBM System/360 Operating System-System Refer­
ence Library

Concepts and facilities GC28-6535
Operator's reference GC28-669I
MFT guide GC27-6939
MVT guide GC28-6720

IBM System/360 Operating System-Program Logic
Manuals

I/O supervisor GY28-6616
M VT job management G Y28-6660
MCH for model 65 GY27-7155
MCH for model 85 GY27-7184

IBM System 360 Operating System
Machine check handler for GY27-7198
the IBM System/370
Models 155 and 165, systems logic

~vailability, Reliability, and Maintainability
~spects of the SPERRY UNIVAC 1100/60

_. A. Boone H. L. Liebergot

\bstract

rhis paper describes the jault tolerant capabilities oj the
~PERRY UNIVAC 1100/60 Injormation Processing
-;Ystem, a recently announced medium scale general
'urpose computer system. In the 1100/60, a variety oj
echniques is employed jor the detection/correction and
fiolation oj, and recovery jrom, most single-bit hardware
aults as well as many multiple-bit jaults. An approach
'or checking jault detection circuits is implemented using
r comprehensive jault injection system. A jour level
naintenance philosophy based around the built-in jault
randling logic, scan network, and intelligent support
'rocessor and console provides jor rapid location and
'epair oj the jailing logic.

During development, substantial resources were devot­
'd to assure the quality oj the 1100/60 design, recogniz­
ng that jault tolerance strongly complements, but is not
r substitute jor, design quality and correctness. An
'valuation oj the various jault handling jeatures was
'arried out to provide measures oj system availability,
eliability, and maintainability.

NTRODUCTION

\t Sperry Univac, the acronym ARM stands for
\vailability, Reliability, and Maintainability.
\RM concepts include the organizational proce­
lures used to develop systems; the tools and
echniques used during design, development, and
nanufacturing; and the logic, firmware, and
,oftware that are included to minimize the effects

) 1980 I EEE. Reprinted, with permission, from Digest of
'apers FTCS-IO, The 10th I nternational Symposium on
'ault-Tolerant Computing, Oct. 1-3, 1980, Kyoto, Japan, pp.
-9.

R. M. Sedmak

11@

423

424· THE PRACTICE OF RELIABLE SYSTEM DESIGN

of a failure. The latter ARM features include
many of the fault tolerant features developed
over the years.

Several important trends in the computer in­
dustry have strongly influenced decisions with
regard to ARM at Sperry Univac. The evolution
of computer applications from primarily a batch
processing orientation to a stronger emphasis on
demand and real time processing has resulted in
greater dependence on computers and thus in
increased sensitivity to their availability and
reliability.

The second major trend relates to hardware
technology. The increase in gate densities in LSI
and VLSI chips has effectively brought the cost
of hardware down, to the extent that it is becom­
ing more practical and cost effective to incorpo­
rate fault tolerance in the computer [Sedmak and
Liebergot, 1978].

A third trend lies in the area of field mainte­
nance. The costs of labor for maintenance activ­
ities are increasing at a rate close to that of
inflation. In addition, as systems become more
complex, it becomes increasingly more difficult
for customer engineers to master the detailed
workings of the entire system.

The reaction to these industry trends is to de­
emphasize manual field diagnosis procedures
and to stress the incorporation of built-in auto­
matic fault detection, correction and recovery
capabilities. The SPERRY UNIVAC 1100/60
Information Processing System reflects this in­
creased emphasis on fault tolerance in commer­
cial computers.

ARM PHILOSOPHY FOR 1100/60

ARM in Previous SPERRY UNIVAC
1100 Series Systems

The SPERRY UNIVAC 1108 [Borgerson, Han­
son, and Hartley, 1978; Borgerson et aI., 1979],
introduced in 1965, was the first SPERRY UNI­
V AC 1100 Series computer to offer both a mul­
tiprogramming operating system and multipro­
cessmg configurations. These two capabilities

reflect a general ARM approach that has been
carried forward in other Sperry Univac sys­
tems-the attempt to isolate a problem to either
a particular job in the system or to a particular
unit in the configuration.

The success of this approach is determined
largely by the error detection attributes of the
system. For a typical 1108 system, error detec­
tion consists of 'parity in the main storage and
processor general registers. For the successor
1100/10 and 1100/20 systems, this coverage was
enhanced to include parity on the I/O channels
and in some of the mass storage control units,
while the main storage utilized an error detec­
tion/correction code instead of parity. Mainte­
nance on the central complex (instruction pro­
cessor, input/output unit, and main storage) is
performed using a built-in maintenance panel
and diagnostic programs.

The 1100/40 system has all of the previous
error detection capabilities, and in addition, a
maintenance controller as an adjunct to the
maintenance panel. The controller incorporates
a scan compare capability that allows operations
in the processor to be examined after each clock
cycle and compared to known correct data from
a magnetic tape. Any difference can be used to
indicate the location of the problem area. This
.was the first automation of the maintenance task
for 1100 series systems.

In the 1100/80, additional error detection was
provided for the input/output unit, and a cache
memory with parity was added. The mainte­
nance controller was replaced with a mainte­
nance processor-an intelligent unit that can
write several of the registers in the central com­
plex and read almost all of them. The customer
engineer's interface to the system is via CRT
rather than a maintenance panel, and the main­
tenance processor can function even if most of
the central complex is disabled.

ARM-"in the 1100/60-General
Approach

A fundamental requirement for the 1100/60 was
to produce a system whose ARM attributes

.natched the processing modes of the future with
the technology of today. The price/performance
~oals allowed the selection of proven EeL tech­
[lology for the instruction processor (IP) and
~ache, TTL for the input/output unit, and 16K
MOS chips for the main storage. In addition, the
IP is microprogrammed and uses four-bit-slice
microprocessors to achieve a reduction in com­
ponent count. Established design rules allow
adequate temperature, voltage, and timing mar­
gins. The basic unit processor and most expan­
sion features are packaged in one cabinet and
air-cooled. A block diagram of the 1100/60
system is shown in Figure 10-1.

Error detection has been given increased em­
phasis in the 1100/60 relative to previous sys­
tems. This provides protection from incorrect
results, aids in system recovery and reconfigura­
tion, and helps to isolate a failure to a replace­
able unit. The 1100/60 uses duplication, coding
techniques, and parity to provide error detection
throughout the system.

The main storage and the IP's microcode
control storage have error correction capabilities
to allow error recovery to be transparent to the
user. The cache memory architecture allows re­
covery from an error by automatically disabling
an area of the cache and retrieving desired data
from the main storage. Other solid faults are

System
support

processor

THE SPERRY UNIVAC 1100/60 425

handled by reconfiguration. Extensive retry ca­
pabilities are provided to recover from transient
or intermittent faults in the central complex.

DETAILED ARM
IMPLEMENTATION

System Characteristics

The 1100/60 instruction processor is micropro­
grammed and is based on a high usage of LSI
microprocessors. The amount of hardware re­
quired for the IP has been kept low by imple­
menting a large portion of the control functions
in microcode. The net effect of such an approach
is to replace the traditional mass of SSI/MSI
gates with high-density LSI arithmetic and stor­
age components. The high throughput of the
1100/60 is achieved by the use of multiple micro­
processors, overlap at the microinstruction level,
prefetch of instructions and operands, and other
design techniques [Datamation, 1979].

Figure 10-2 is a block diagram of the main
data paths of the IP. Each 1100/60 macroinstruc­
tion and interrupt is performed by executing a
series of microinstructions. The execution of
each microinstruction consists of bringing data
from the general register set, main storage, or

System
support

processor

Figure 10-1. System block diagram (two processor, two I/O configuration).

426 THE PRACTICE OF RELIABLE SYSTEM DESIGN

General
register
stack

P1 Sub­
processor

B Bus

P1 Local
storage

Main data bus

To
control

logic

Control
storage

Micro
address

generator

Instruction
decode
storage

Figure 10-2. Block diagram of the 1100/60 microexecution section, showing
sample applications of fault detection techniques.

other source through the shifter into the subpro­
cessors. Here, using multiple microprocessor
chips, an arithmetic or logical operation is per­
formed, combining the data from the shifter with
data from the local storages or the accumulators,
and placing the results in the accumulators inter­
nal to the microprocessor chips. At this point,
the data may be placed onto the main data bus
and written into local storage, the general regis­
ter set, or main storage. These data movements
are controlled by a microinstruction that parti­
tions the work between microprocessors, selects
the various resources (registers, local storage,

etc.) to be used, and initiates selection of the next
microinstruction.

The 1100/60 central complex contains, in ad­
dition to the IP, an input/output unit (IOU), an
optional cache or storage interface unit (SIU),
main storage unit (MSU), and a system support
processor (SSP). The functions of each of these
units are well known except for the SSP, a
freestanding, intelligent processor that employs a
CRT and keyboard and serves as the system
maintenance and operator consoles. In addition,
this unit carries out the function of system
partitioning, control storage loading, fault injec-

on, and some assorted system support tasks.
'he system software and the IP microcode and
ardware communicate with the SSP through
lterrupt mechanisms.

ault Detection

be philosophy in the 1100/60 is to detect 100
ercent of all single-bit faults in the data path,
nd many single faults in control logic. The
itionale for such a philosophy is based on the
rinciple of minimizing the probability that a
ser's data could be corrupted without the sys­
!m detecting or correcting the erroneous opera­
on and signaling the operator. As a general
llle, faults are detected in storage elements by
le use of parity codes, while redundancy is used
)r arithmetic and control circuitry. The various
etection circuits are strategically placed in an
trort to achieve a high coverage in hardware
Llch as storages, which have the highest failure
ite, and in areas such as the main data path,
rhich has a high usage and where a large impact
n the system might be experienced if a failure
ccurred.
An overview of the fault detection techniques

sed in various portions of the 1100/60 IP is

THE SPERRY UNIVAC 1100/60 427

given in Figure 10-2. The general register set,
local storages, and the shifter input selector
employ conventional parity; the shifter and, as
discussed previously, the subprocessors (includ­
ing the main data bus) are duplicated and com­
pared. In addition, parity checks are used on
control storage, while duplication is used on the
control storage address generation and logic
function generation circuitry.

An example of fault detection through redun­
dancy is shown in Figure 10-3. Each of the two
36-bit master subprocessors is paired with a
duplicate subprocessor that performs the same
function on the same data as the master subpro­
cessor. Durip.g each microcycle, only one of the
master subprocessors can drive the main data
bus; and when one of them is chosen to drive it,
its duplicate drives a duplicate bus. At the end of
the cycle, a comparison is made between the
data on the two buses; any discrepancy will

, cause the operation to be interrupted.
During the development of the 1100/60, an

observation was made that is contrary to most
claims about fault detection and its associated
performance impact. Many sections of the data
path are duplicated and compared to achieve
fault detection. However, the duplicated logic

To fault handling logic

r
Comparator

Duplicate data bus

Main data bus

r r
Master Duplicate Master Duplicate

sub- sub- sub- sub-
processor processor processor processor

1 1 2 2

Figure 10-3. Example of fault detection through duplication in the 1100/60 I P.

428 THE PRACTICE OF RELIABLE SYSTEM DESIGN

serves another purpose: it provides additional
output drive capability (i.e., loading) for the
functional circuits. For example, if a functional
circuit has 8 unit loads on its outputs, the
addition of a duplicate circuit could reduce that
number to 4 by splitting the loads between the
functional and duplicate circuits. This allows a
reduction in the propagation delay time of the
output stage of the functional circuit. In fact, as
additional portions of the data path were dupli­
cated to detect faults, it was discovered that the
combined effect could be an increase in perfor­
mance compared to a strictly simplex design.
This result points out the fact that fault detection
need not have an adverse effect on performance.

Several factors have contributed to keeping
costs low for the fault detection features:

• Design approach of incorporating fault detection
mostly in high-usage and high-failure-rate sections
of the logic.

• Incorporation of most of the control functions in
microcode, which is stored in LSI storage compo­
nents where fault detection is very economical.

• Heavy use of microprocessors, which are well-or­
dered, bus-oriented logic structures that lend them­
selves to conventional fault detection techniques.

• The philosophy of designing fault detection circuitry
at the same time as functional logic, and designing
functional logic that lends itself to fault detection.·

As a result of these and other factors, the exten­
sive fault detection mechanisms require about 15
percent of the total CPU logic. This translates to
less than 15 percent of the manufacturing costs
attributable to the detection logic.

Error Correction

Error correction techniques are applied in two
primary areas: the main storage unit (MSU) and
the IP's control storage. The MSU employs an
error correction code to correct single-bit faults
and detect double-bit faults in the storage array
chips during every read reference. When a dou­
ble-bit fault occurs, an error signal is sent to the
requesting unit indicating that the data should
not be used.

Error correction is also utilized in the micro­
processors' control storage, although a different
approach is taken than in the main storage.
When a single-bit fault occurs, the parity code
stored with each microinstruction will permit the
detection of a fault. If a fault is detected, a
macroinstruction retry is attempted. Should the
retry fail, an interrupt then allows a correction
procedure to be initiated by the system support
processor. The procedure involves rewriting the
failed portion of control storage. After each
attempt at rewriting, the SSP will read the data
from the failed portion of the control storage to
verify the proper correction. When proper cor­
rection is achieved, the SSP signals the IP to
restart execution.

Fault Isolation

There are two major techniques used for fault
isolation in the 1100/60. One technique relies on
the high level of coverage provided by the fault
detection capabilities in the processor. For exam­
ple, referring to Figure 10-2, it can be seen that
because of the application of the duplication and
comparison technique to both the shifter and the
two subprocessors, it is possible to isolate a
failure in that portion of the microexecution
section down to one of those three logic sections.

The other major technique employed in the
1100/60 for fault isolation is the diagnostic pro­
gram, a tool used after symptoms of the failure
have surfaced. This approach is usually em­
ployed when the failure has not been isolated
sufficently by the fault detection logic. Diagnos­
tics are constructed in the form of microroutines
or macroroutines, which are run on the failing
unit. Frequently, these diagnostic programs
make use of a tool in the 1100/60 known as scan
compare [Stewart, 1977, 1978], which is a method
of determining the states of major test points in
the IP.

Utilizing the two methods, the capability exists
to isolate automatically (i.e., without the need for
manual diagnosis) any failure in the main data
path to one or two printed-circuit cards. The

)bvious values of such a feature are to reduce the
:ime to repair the central complex (and hence
~educe field support costs) and d~amatically im­
:lrove the availability of the system to the user.

Error Recovery

The basic requirement in the development of an
integrated error recovery procedure is that the
computer system must deal with both solid and
transient faults. When a solid fault occurs, any
operation affected will continue to produce in­
correct results. Detection and isolation of such a
fault is relatively easy, but recovery from it
without manual intervention and repair is fre­
quently difficult unless some type of error correc­
tion or masking capability exists in the system.

Restart 1100 Macro
instruction
execution

No

Yes

THE SPERRY UNIVAC 1100/60 429

In contrast, a transient fault is more difficult to
detect and isolate due to its lack of persistence
during diagnosis. However, recovery from tran­
sient faults in many areas can frequently be
achieved in a more economical way than for
solid faults. To accomplish this, the main items
required are the ability to detect the error close
to the time of occurrence, a mechanism to stop
processing upon error detection, and the capabil­
ity to reset the operation to a valid state which
existed prior to the error, utilizing information
that was saved during execution.

The error recovery procedure in the 1100/60
IP is designed to deal with both solid and
transient faults. An overall picture of the recov­
ery procedure is shown in Figure 10-4. The
procedure uses a combination of hardware and

Yes

No

Interrupt system
support processor

Figure 10-4. Flowchart of CPU error recovery.

430 THE PRACTICE OF RELIABLE SYSTEM DESIGN

firmware to implement fault detection, abort the
operation in progress, analyze the fault, and
initiate retry. This approach allows the recovery
procedure to utilize the same microexecution
resources as the macroinstruction set utilizes,
resulting in a cost savings and a sharing of fault
detection capabilities.

When a fault is detected by any of the detec­
tion circuitry discussed in the section on fault
detection, microexecution is halted via hardware
by forcing the control store to execute contin­
uously a no-operation microinstruction and by
blocking the loading of internal registers and
storages. Execution is suspended until a hard­
ware timer expires, during which time no execu­
tion or change of machine state occurs. This
allows time for transient failures to die out. The
period of the timer may be adjusted for different
program environments.

When the period expires, execution restarts in
a fault recovery microroutine, which analyzes the
failure and assembles a fault status word to be
presented to the software. Then a check is made
to determine whether the failing macroinstruc­
tion can be retried. If no retry is possible,
macroinstruction execution is restarted and an
error interrupt is presented to the operating
software to allow the failure to be logged and
software recovery of the failing system to be
attempted.

If the failure is retryable, another procedure
occurs. The 1100/60 IP incorporates a "save"
storage for machine state restoration. The save
storage is a small memory element which cap­
tures general register set operands and addresses
during GRS reads. The fault recovery microcode
can restore original operands to the correct G RS
location. Thus, even if GRS writes are performed
by a macroinstruction before it fails, the IP can
be restored to its original state and a retry can be
attempted. This approach permits retry of the
vast majority of the macroinstructions executed
in a normal program mix. If restoration is possi­
ble so that a retry can be performed, the failing
macroinstruction is retried by restoring it into its

original storage location and then refetching ane
reexecuting it. If the retry is successful, program
execution continues from the point of the failun;
and a subsequent interrupt is presented to the
operating system for logging purposes.

If the retry or the fault recovery microroutine
fails, execution in the IP is halted and the system
support processor is interrupted. Figure 10-5
shows the SSP fault recovery sequence. The IP is
scanned to determine the machine state. If the
failure is in the control storage, correction is
attempted by rewriting the storage to its original
values. If this is unsuccessful, control storage is
rewritten using complemented values, and a des­
ignator is set which causes each control word to
be reinverted before use. This allows both soft
failures and single cell solid failures to be cor­
rected. If the correction is successful, the IP is
restarted and a second retry is attempted. If this
retry is successful, program execution can con­
tinue.

If the retry is unsuccessful or if the original
failure was not in the control store, the failure

Run
microdiagnostics

Figure 10-5. Flowchart of SSP recovery procedure.

may still be recovered in a multiprocessor config­
uration by "program transplant." Utilizing this
procedure, the SSP reads the program environ­
ment and GRS contents from the failing IP and
transmits them to the operating system for use
by another IP in the configuration. The failing
instruction sequence can then be restarted in the
other IP. Effectively, a failure in one IP can be
retried in another IP. Following program trans­
plant, or if no transplant is possible, the internal
storages in the failing IP are reinitialized by the
SSP, and a microdiagnostic program is invoked.
If the execution completes successfully, the fail­
ing IP can be reintroduced to the system. If the
microdiagnostics fail, the operator is notified and
the maintenance techniques discussed in the
section on maintenance are used to isolate and
repair the failure. No manual intervention is
needed in the recovery procedure until recovery
is as complete as possible and the SSP has
determined that a solid unrecoverable failure
exists in the IP.

Fault Injection

In the 1100/60 processing system, a capability
has been included that uses hardware and soft­
ware to verif)' that the fault detection, isolation,
and recovery mechanisms are operational. The
capability is provided through fault injection,
which is the process of deliberately causing a
fault to occur in a system by inserting erroneous
data or control signals in a portion of logic
covered by a fault detection capability. The need
for such a feature arises because the error han­
dling portion of the design is not frequently
exercised under normal operation of the system,
so it could fail with no indication to the software.
Without periodic verification of the integrity of
the error handling logic, one could not be confi­
dent of its ability to function when needed. This
capability is also needed during prototype testing
to verify the design of the hardware and software
fault-handling capabilities.

The 1100/60 system incorporates fault injec-

THE SPERRY UNIVAC 1100/60 431

tion for fault detection circuits in the processor,
input/output unit, storage interface unit, and
main storage unit. In the case of the control
storage or the small storage used for instruction
decoding in the IP, the fault injection is under
control of the SSP. For example, the SSP can
inject a control storage parity error by writing
incorrect parity directly into the desired address
location in order to stimulate one of the associat­
ed parity checkers. Injection of other IP faults is
initiated by the presence of certain processor
state bits and a predetermined micro-control
store bit. During normal system operation, the
state bits are set via a special 1100 macroinstruc­
tion which is periodically executed during system
idle time. This instruction causes injection of a
fault and then monitors for detection of that
same fault.

After the fault is detected, the system is purged
of the fault, and the instruction is retried without
an injected fault. Successful completion of these
steps indicates that the particular fault detection
and retry hardware exercised is operating cor­
rectly.

In the input/output unit, injection is also
under the control of the SSP. For example, a
fault can be injected in the channel control word
storage registers by setting and clearing flip-flops
that specify the type of fault desired and the
device operation during which the fault should
occur. After the proper logic has been primed for
the injection, the chosen fault will be triggered
the next time the preselected device operation
takes place.

In the 1100/60 cache (SIU) and main storage
unit (MSU), the injection process is controlled
by an IP instruction routine. Forced faults inter­
nal to the SIU are specified by the unit request­
ing or sending data, and that requester then
expects a certain type of fault at a predetermined
point in the operation. In the MSU, the routine
provides the capability to insert an invalid ECC
code or bad parity on read data. On the access
cycle of the MSU, the fault should be detected
and an interrupt signaled.

432 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Maintenance

The maintenance philosophy for the 1100/60
incorporates four methods of dealing with a
failure in the system. In the order of priority of
use, they are:

1. Automatic error log
2. Macrodiagnostic tests
3. Scan compare tests
4. Manual troubleshooting

The automatic error log represents a record
kept by the system of any fault handled by the
built-in fault detection/correction, isolation, and
recovery mechanisms. In the majority of cases,
the log should provide sufficient information for
the customer engineer to determine the source of
the problem.

In those cases when the problem has not been
completely identified by the error log informa­
tion, macrodiagnostic tests are employed. These
tests are written on a macroinstruction level;
they serve to exercise most portions of the system
establishing either a high level of confidence that
the system is operating correctly, or determining
the general area in which it has failed.

If the previous two techniques have not iden­
tified the trouble area or if a finer resolution of
the- failure is needed, the scan-compare tests are
run. These routines are tests run under the
control of the SSP. They make use of the pre­
viously mentioned scan network (built into the
processor), permitting access to the state of all
major storage elements in the IP. The tests will
exercise the processor and compare the results to
a table of predetermined correct results to estab­
lish the nature and source of the problem. A
similar process is applied to the IOU, which is a
hardwired unit. I/O instructions are executed
and the scan network is employed under control
of the SSP without the use of the IP.

Accessible through the scan network is a built­
in logic analyzer which is available in each
1100/60 as an additional diagnostic tool for the
customer engineer. This feature permits auto­
matic storage of 1,024 consecutive states of any

16 logic points sampled twice during each mi­
croinstruction cycle. The logic analyzer is helpful
in the diagnosis of a particularly difficult failure
mode, such as might exist in the presence of an
in termi tten t fa ul t.

Should none of the three methods above lo­
cate the failure, the customer engineer will resort
to manual troubleshooting techniques. These
manual efforts, however, are greatly enhanced by
the features available in the SSP. For example,
the scan network will permit the troubleshooter
to capture and display on the CRT a substantial
amount of internal test-point information that in
the past would only have been available by using
such tools as oscilloscopes and logic probes. In
addition, the SSP has a communications capabil­
ity that allows a linkage with a remote mainte­
nance facility staffed with a team of diagnostic
experts. This feature provides the ability to col­
lect from a remote location any error informa­
tion (for example, the contents of the logic
analyzer) that is normally gathered and analyzed
onsite. In addition, this interface can be used for
remote control of diagnostic execution and trou­
bleshooting procedures.

As a means of verifying the tolerance of the
system to reasonable voltage variations during
operation, the 1100/60 IP incorporates power
supplies with output levels that can be varied by
programmable margins under control of the SSP.
This allows customer engineering personnel at
the computer site, or at the remote maintenance
facility, to alter the output voltages easily and to
observe the IP behavior. Hence, this margin
testing tool provides one means of identifying
marginally stable components before they have
degraded to the level where a system fault may
occur.

ARM EV ALUA liON

To measure how the design goals were being met
with respect to the ARM characteristics of the
IP, an evaluation method was developed that
facilitates a quantitative prediction of the ARM

behavior of the central complex. Using this
method, an estimation was made of the fault
jetection/recovery coverage, the system stability
:)r mean time between stops (MTBS), the mean
jown-time (MDT), the mean time to repair
~MTTR), and the availability of the central
~omplex.

The use of the evaluation method requires an
initial examination of the various elements of the
system and their anticipated contributions to the
overall stability and availability of the central
complex. After such an examination the two
major ARM measures can be analyzed: MTBS
and availability. MTBS is a measure of system
stability and is calculated by evaluating its two
components: hardware MTBS (MTBSH) and
software MTBS (MTBSS).

The hardware stability is determined from
component failure rates, the coverage of the fault
detection mechanisms, and the recoverability of
the system from each of the faults detected that
do not lead to a system stop. The failure rates are
obtained by studying vendor, government, and
internal failure data for each of the integrated
circuits and components used in the units. Cov­
erage is analyzed by examining the current de­
tailed hardware documentation for the system
and determining which fault detection circuits
will capture which faults, and in which chips.
The recoverability factor is determined by study­
ing what percentage of detected faults can be
recovered from by each recovery mechanism and
by analyzing the probability of success of that
recovery.

The software stability is calculated by examin­
ing the inherent characteristics of the modules,
such as size and complexity; considering the
quality assurance during development; and eval­
uating the environment in which the software

THE SPERRY UNIVAC 1100/60 433

will be used based on our experience with the
stability of similar software systems in the past.

The other major ARM factor, system availa­
bility, is predicted by considering the MTBFs
and MTTRs of the various units in the central
complex, the amount of redundancy of units in
the system, and the recovery time necessary
following a system stop. The application of the
evaluation method described above proved to be
a valuable tool for management and design
personnel in gaining visibility of the unfolding
ARM characteristics of the 1100/60 CPU versus
the established goals for development. It has
been encouraging to observe that preliminary
data gathered from approximately one hundred
initial installations reflect a very favorable com­
parison with the predicted values.

SUMMARY

As the applications of computers become more
complex and sophisticated, and as new electron­
ic technologies emerge in the industry, the de­
mand, as well as the potential, for increased
availability, reliability, and maintainability ap­
pears to be growing. The Sperry Univac 1100/60
Information Processing System reflects the re­
sults of a coherent development effort that takes
advantage of the current state of the art in
achieving a high level of inherent quality of
design and a dramatic increase in the fault
tolerant attributes of the commercial computer
system.

REFERENCES

Borgerson, Hanson, and Hartley [1978]; Borgerson et
al. [1979]; Datamation [1979]; Sedmak and Liebergot
[1978]; Steward [1977, 1978].

A Fault-Tolerant Computing System

James A. Katzman

Abstract

A fault-tolerant computer architecture is examined that
is commercially available today and installed in many
industries. The hardware is examined in this paper and
the software is examined in a companion paper [Bartlett,
1978; also excerpted in the second half of this chapter].
References for both papers are at the end of the chapter.

INTRODUCTION

The increasing need for businesses to go on-line
is stimulating a requirement for cost effective
computer systems having continuous availability
[Tandem Computers, Inc., 1976; Katzman,
1977a]. Certain applications such as automatic
toll billing for telephone systems lose money
each minute the system is down and the losses
are irrecoverable. Systems commercially avail­
able today have met a necessary requirement of
multiprocessing but not the sufficient conditons
for fault-tolerant computing.

The greatest dollar volume spent on systems
needing these fault-tolerant capabilities are in
the commercial on-line, data base transaction,
and terminal oriented applications. The design
of the Tandem 16 NonStop* system was directed
toward offering the commercial market an off­
the-shelf, general purpose system with at least an
order of magnitude better availability than exist­
ing off-the-shelf systems without charging a pre­
mium. This was accomplished by using a top
down system design approach, thus avoiding the
shortcomings of the systems currently addressing
the fault-tolerant market.

~ copyright 1977, Tandem Computers, Incorporated. All
rights reserved.

" NonStop is a trademark of Tandem Computers.

1111

435

436 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Except for some very expensive special sys­
tems developed by the military, universities, and
some computer manufacturers in limited quanti­
ties, no commercially available systems have
been designed for continuous availability. Some
systems such as the ones designed by ROLM
have been designed for high MTBF by "rugged­
izing," but typically computers have been de­
signed to be in a monolithic, single processor
environment. As certain applications demanded
continuous availability, manufacturers recog­
nized that a multiprocessor system was necessary
to meet the demands for availability. In order
to preserve previous development effort and
compatibility, manufacturers invented awkward
devices such as I/O channel switches and inter­
processor communication adapters to retrofit
existing hardware. The basic flaw in this effort is

CPU

Bus
switch

~

that only multiprocessing was achieved. While
that is necessary for continuously available sys­
tems, it is far from sufficient.

Single points of failure flourish in these past
architectures (Figure 11-1). A power supply fail­
ure in the I/O bus switch or a single integrated
circuit (Ie) package failure in any I/O controller
on the I/O channel emanating from the I/O bus
switch will cause the entire system to fail. Other
architectures have used a common memory for
interprocessor communications, creating another
single point of failure. Typically such systems
have not even approached the problem of on-line
maintenance, redundant cooling, or a power
distribution system that allows for brownout
conditions. In today's marketplace, many of the
applications of fault-tolerant systems do not
allow any down time for repair.

CPU

I
1
I
I

---------1
I
I
1
I _________ ...1

~ 1----------1
o

0..

Figure 11-1. Example of previous fault-tolerant systems.

A FAULT-TOLERANT COMPUTING SYSTEM 437

Dynabus
X Bus

Dynabus Dynabus Dynabus
control control control

CPU CPU CPU

Memory Memory Memory
(up to 512 KB) (up to 512 KB) (up to 512 KB)

1/0 channel 1/0 channel 1/0 channel

1/0

Figure 11-2. Tandem 16 system architecture. (See page 438.)

438 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Expansion of a system such as the one in
Figure 11-1 is prohibitively expensive. A three
processor system, strongly connected in a redun­
dant fashion, would require twelve interproces­
sor links on the I/O channels; five processors
would need forty links; for n processors, 2n X

(n - 1) links are required. These links often
consist of 100--200 IC packages and require
entire circuit boards priced between $6,000 and
$10,000 each. ,Using the I/O channel in this
manner limits the I/O capabilities as a further
undesirable side effect. The resulting hardware
changes for expansion, if undertaken, are typi­
cally dwarfed in magnitude by the software
changes needed when applications are to be
geographically changed or expanded.

This paper describes the Tandem 16 architec­
ture at the lowest level (the hardware). The first
section deals with the overall system organiza­
tion and packaging. The second section explains

the processor module organization and its at­
tachment to the interprocessor communications
system. The third section discusses the I/O sys­
tem organization. The fourth section discusses
power, packaging, and on-line maintenance as­
pects that are not covered elsewhere in the paper.

SYSTEM ORGANIZATION

The Tandem 16 NonStop system is organized
around three basic elements: the processor mod­
ule, dual-ported I/O controllers, and the DC
power distribution system (Figures 11-2, 11-3).
The processors are interconnected by a dual­
interprocessor bus system: the Dynabus; the I/O
controllers are each connected with two indepen­
dent I/O channels, one to each port; and the
power distribution system is integrated with the
modular packaging of the system.

I
---------~
=;:---=-====-==~,

I I,
~~

Figure 11-3. Tandem 16 power distribution.

The system design goal is twofold: (I) to
:ontinue operation of the system through any
ingle failure, and (2) to be able to repair that
ailure without affecting the rest of the system.
lhe on-line maintenance aspects were a key
actor in the design of the physical packaging
lnd the power-distribution of the system.

;ystem Packaging

lhe cabinet (Figure 11-4) is divided into 4
ections: the upper card cage, the lower card
:age, cooling, and power supplies. The upper
:ard cage contains up to 4 processors, each wi th
Lp to 512K bytes of independent main memory.
:he lower card cage contains up to 32 I/O
on troller printed circuit (PC) cards, where each
:ontroller consists of one to three PC cards. The
:ooling section consists of 4 fans and a plenum
hamber that forces laminar air flow through the

I I I I

32 1/0 slots

seee

Figure 11-4. Tandem 16 physical cabinet.

A FAULT-TOLERANT COMPUTING SYSTEM 439

card cages. The power supply section contains
up to 4 power supply modules. Multiple cabinets
may be bolted together and the system has the
capability to accommodate a maximum of 16
processors.

Each processor module, consisting of a CPU,
memory, Dynabus control, and I/O channel, is
powered by an associated power supply. If a
failed module is to be replaced in this section its
associated power supply is shut off, the module
is replaced, and the power supply is turned on.
Each card cage slot in the I/O card cage is
powered by two different power supplies. Each
of the I/O controllers is connected via its dual­
port arrangement to two processors. Each of
those processors has its own power supply;
usually, but not necessarily, those two supplies
are the ones that power the I/O controller (Fig­
ure 11:3). Each slot in the I/O card cage can be
powered down by a corresponding switch dis­
connecting power from the slot from both sup­
plies without affecting power to the remainder of
the system. Therefore, if a power supply fails, or
if one is shut down to repair a processor, no I/O
controllers are affected.

The dual-power sourcing to the I/O control­
lers was originally designed using relay switch­
ing. This plan was abandoned for several rea­
sons: a) to contend with relay failure modes is
difficult; b) ,the number of contact bounces on a
switch-over is neither uniform nor predictable
making it difficult for the operating system to
handle power-:-on interrupts from the I/O con­
trollers; and c) during the switch-over, control­
lers do lose power, and while most controllers
are software-restartable, communications con­
trollers hang up their communications lines. We
therefore devised a diode current sharing scheme
whereby I/O controllers are constantly drawing
current from two supplies simultaneously. If a
power supply fails, all the current for a given
controller is supplied by the second power sup­
ply. There is also circuitry to provide for a
controlled ramping of current draw on turn-on
and turn-off so there are no instantaneous power

440 THE PRACTICE OF RELIABLE SYSTEM DESIGN

demands from a given supply causing a potential
momentary dip in supply voltage.

Both fans and power supplies are electrically
connected using quick disconnect connectors to
speed replacement upon failure. No tools are
required to replace a power supply. A screwdriv­
er is all that is needed to replace a fan. Both
replacements take less than 5 minutes.

Interconnections

Physical interconnection is done both using front
edge connectors and backplanes. Communica­
tion within a processor module (e.g., between the
CPU and main memory) takes place over four 50
pin front edge connectors using fiat ribbon cable.
Interprocessor communication takes place over
the Dynabus on the backplane also utilizing
ribbon cable. The I/O controllers use etch trace
on the backplane for communication among PC
cards of a multicard controller. The I/O chan­
nels are backplane ribbon cable connections
between the processors and the I/O controllers.

Peripheral I/O devices are connected via
shielded round cable either to a bulk-head patch
panel or directly to the front edge connectors of
the I/O controllers. If a patch panel is used, then

I
X bus

Y bus

there is a connection using round cables between
the patch panel and the front edge connectors of
the I/O controllers.

Power is distributed using a DC power distri­
bution scheme. Physically, AC is brought in
through a filtering and phase splitting distribu­
tion box. Pigtails connect the AC distribution
box to one of the input connectors of a power
supply. The DC power from the supply is routed
through a cable harness to a laminated bus bar
arrangement which distributes power on the
backplanes to both processors and I/O control­
lers.

PROCESSOR MODULE
ORGANIZATION

The processor (Figure 11-5) includes a 16-bit
CPU, main memory, the Dynabus interface con­
trol, and an I/O channel. Physically the CPU,
I/O channel and Dynabus control consist of two
PC boards 16 inches by 18 inches, each contain­
ing approximately 300 IC packages. Schottky
TTL circuitry is used. Up to 5I2K bytes of main
memory are available utilizing core or semicon­
ductor technology. Core memory boards hold
32K 17-bit words and each occupies two card

I

-- ---- -----------------------

1
I
I
I
I

Interprocessor
bus

control

r·
I
I
I
I
I
1
1
1

1-1

Central
Processor

Unit

1
Memory

Process or module

~----,

.....

I
I
I
I

l
1/0 ch annel

rol cont

~-------------------------------

1/0 channel

Figure 11-5. Tandem 16 processor organization.

slots because of the height of the core stack.
Semiconductor memory is currently implement­
ed utilizing 16-pin, 4K dynamic RAMs. These
memory boards contain 48K 22-bit words per
board and occupy only one card slot and are
therefore three times denser than core.

The processor module is viewed by the user as
a 16-bit, stack-oriented processor, with a demand
paging, virtual memory system capable of sup­
porting multiprogramming.

The CPU

The CPU is a microprogrammed processor con­
sisting of a bank of 8 registers which can be used
as general purpose registers, as a LIFO register
stack, or for indexing; an ALU; a shifter; two,
memory stack management registers; program
control registers (e.g., program counter, instruc­
tion register, environment or status register, and
a next instruction register for instruction pre­
fetching); scratch pad registers available only to
the microprogrammer; and several other miscel­
laneous flags and counters for the micropro­
grammer.

The microprogram is stored in read-only
memory and is organized in 512-word sectors of
32-bit words. The microinstruction has different
:ormats for branching, sequential functions, and
,mmediate operand operations. The Tandem 16
nstruction set occupies 512 words with the dec i­
nal arithmetic option occupying another 512
Nords. The address space for the microprogram
s 2K words.

The microprocessor has a 100 ns cycle time
md is a two stage pipelined microprocessor, i.e.,
ill microinstructions take two cycles to execute
Jut one completes each cycle. In the first stage of
,he pipeline any two operands are selected by
wo source fields in the microinstruction for
oading into the ALU input registers. In the
;econd stage of the pipeline the ALU performs a
>rimitive operation on the operands placed in
he ALU input registers during the previous
:ycle and performs a shift operation on the
esults. In parallel, a miscellaneous operation

A FAULT-TOLERANT COMPUTING SYSTEM 441

such as a condition code setting or a counter
increment can be done, the result can be stored
in any CPU register or dispatched to the memory
system or I/O channel, and a condition test
made on the results. Each of these parallel
operations is controlled by a separate control
field in the microinstruction.

The basic set of 123 machine instructions
includes arithmetic operations (add, subtract,
etc.), logical operations (and, or, exclusive or),
bit deposit, block (multiple element) moves/
compares/scans, procedure calls and exits, inter­
processor SENDs, and I/O operations. All in­
structions are 16 bits in length. The decimal
instruction set provides an additional 20 instruc­
tions dealing with four-word operands.

The interrupt system has 16 major interrupt
levels which include interprocessor bus data re­
ceived, I/O transfer completion, memory error,
interval timer, page fault, privileged instruction
violation, etc.

Provision is made for several events to cause
microinterrupts. They are entirely handled by
the CPU's microprocessor without causing an
interrupt to the operating system. One event for
example, is the receipt of a 16-word packet over
the Dynabus. A packet is the primitive unit of
data which is transferred over the Dynabus for
interprocessor communication. The micropro­
cessor puts the information in a predetermined
area of memory and does not cause a system
interrupt until the entire message is received.

The register stack is used for most arithmetic
operations and for holding parameters for block
instructions (moves/compares/scans) which
need the parameters updated dynamically so
that the instructions may be interruptable and
restarted. The 8-register stack is a "wraparound"
stack and is not logically connected to the mem­
ory stack.

Main Memory

Main memory is organized in physical pages of
lK words of 16 bits/word. Up to 256K words of
memory may be attached to a processor. In the

442 THE PRACTICE OF RELIABLE SYSTEM DESIGN

core memory systems there is a parity bit for
single error detection, and in semiconductor
memory systems there are 6 check bits/word to
provide single error correction and double error
detection. Due to the relative reliability of these
two technologies, we have found that semicon­
ductor memory, without error corrrection, is
much less reliable than core, and that with error
correction, it is somewhat more reliable than
core. Battery backup provides short term non­
volatility to the semiconductor memory system
for utility power outage considerations.

It might be noted that there are some memory

Logical
address

0
I- r-

User System
data data
area area

(64 logical (64 logical
pages) pages)

65,535
l-

Logical 1 i page No.

0
Map 1

>--Map 0_ system

2 user data

3
- data-

systems using a 21-bit error correction scheme (5
check bits on a 16-bit data word instead of 6).
While 5 bits are enough to correct all single bit
errors, it does not detect approximately 1/3 of
the possible double bit error combinations. In
these conditions, this 5 check bit scheme will
incorrectly deduce that some bit (neither of the
bits actually in error) is incorrect and correct­
able. The scheme will then correct this bit (ac­
tually causing 3 bits to be in error), and deliver
it to the system as "good," reporting a correct­
able memory error.

Memory is logically divided into 4 address

I-

User
code
area

(64 logical
pages)

I-

i
Map 2
user
code

Map entry

System
code
area

(64 logical
pages)

Map 3
system
code

-

-

61 8 o 9 10 11 12 13 14 15

62

63 \~-----------------~~----------------------I
Physical pag~ no. (0:255)

P = Parity

R,R',R" = Reference bits-used by
operating system to select a page for
overlay

D = Dirty bit-set whenever a write
access is made to the page

A = Absent-1I1" indicates that the page
is not present in physical memory

Figure 11-6. Tandem 16 logical memory address spaces,

A FAULT-TOLERANT COMPUTING SYSTEM 443

spaces (Figure 11-6). These are the virtual ad­
dress spaces of the machine; both the system and
the user have a code space and a data space. The
code space is unmodifiable and the data space
can be viewed either as a stack or a random
access memory, depending on the addressIng
mode used. Each of these virtual address spaces
are 64K words long addressed by a 16-bit virtual
address.

The physical memory address is 16 bits with
conversion from the virtual address to physical
address accomplished through a mapping
scheme. Four maps are provided, one for each

Memory reference
instruction in code area:

8 9 10 11 12 13 14 15

's' minus rei

~--------~V~---------JI

Addressing mode and
displacement from base

logical address space; each map consists of 64
entries, one for each page in the virtual address
space. The maps are implemented in 50 ns access
bipolar static RAM. The map access and main
memory error correction is included in the 500
nsec cycle time for semiconductor memory sys­
tems.

The unmodifiable code area provides reen­
trant, recursive, and sharable code. The data
space (Figure 11-7) can be referenced relative to
address 0 (global data or G+ addressing), or
relative to the memory stack management regis­
ters in the CPU.

'G'
(256 words)

'L'minus
(32 words)

Data
area

Global
data

Parameters

Local
'L' plus data

(128 words)

Top of
stack
area

G (O)! base

G (255)

L (-31)

L (0) ! base

L (127)

S (-31)

~ __ ~ S (0) ! base

Figure 11-7. Tandem 16 data space.

444 THE PRACTICE OF RELIABLE SYSTEM DESIGN

The lowest level language provided on the
Tandem 16 system is T /TAL, a high-level, block­
structured, ALGOL-like language which pro­
vides structures to get at the more efficient
machine instructions. The basic program unit in
T/TAL is the PROCEDURE. Unlike ALGOL,
there is no outer block, but rather a main PRO­
CEDURE. T/TAL has the ability to declare
certain variables as global. PROCEDURES can­
not be nested in T /T AL, but a SUBPROCE­
DURE can be nested in a PROCEDURE and
only in a PROCEDURE. A SUBPROCEDURE
is limited in local variable access capabilities.

The memory stack, defined by two registers in
the CPU, is used for efficient linkage to and from
procedures, parameter passing, and dynamic
storage allocation and deallocation for variables
local to the procedure.

The L register (Local variables) points to the
last stack marker placed on the stack. This
marker contains return information about the
caller such as the return address and the previous
location of the L register. The contents of the L
register are primarily changed by the procedure
call and exit instructions.

Addressing relative to the L register provides
access to parameters passed to a procedure (L-)
and local variables of the procedure (L+). Pa­
rameters may be passed either by value (using
direct addressing) or by reference (using indirect
addressing).

The S register (stack top pointer) points to the
last element placed on the stack. It is used for a
SUBPROCEDURE's sublocal data area when S
relative addressing (S-) is used.

There is a special mode of addressing used by
the operating system, called System Global
(SG+) addressing. It is used by the operating
system while it is working in a user's virtual data
space (on his behalf) and needs to address the
system data space. The system data space con­
tains many resource tables and buffers and the
need to access them quickly justifies the exist­
ence of this addressing mode.

There are three tables known to the operating
system, the microprogram and the hardware: the

system interrupt vector (SIV), the I/O Control
(lOC) table, and the Bus Receive Table (BRT).
These tables will be explained in later sections as
appropriate.

The Dynabus

The Dynabus is a set of two independent inter­
processor buses. Bus access is determined by two
independent interprocessor bus controllers. Each
of these controllers is dual-powered, in the same
manner as an I/O controller. The Dynabus con­
trollers are very small, approximately 30 IC
packages, and are not associated with, nor phys­
ically a part of any processor. Each bus has a
two-byte data path and control lines associated
with it. There are two sets of radial connections
from each interprocessor bus controller to each
processor module. They distribute clocks for
synchronous transmission over the bus and for
transmission enable. Therefore, no failed pro­
cessor can independently dominate Dynabus uti­
lization upon failure since in order to electrically
transmit onto the bus, the bus controller must
agree that a given processor has the right to
transmit. Each bus has a clock associated with it,
running independently of the processor clocks
and located on the associated bus controller. The
clock rate is 150 ns on two to eight processor
systems. The clock does need to be slowed down
for the longer interprocessor buses of greater
than eight processors. Therefore each bus on
small systems transfers at the rate of 13.3M
bytes/second and on the larger systems at 10M
bytes/second. Performance measurements have
shown that under worst case test conditions the
Dynabus is only 15% utilized in a ten processor
system.

Each processor in the system attaches to both
interprocessor buses. The Dynabus interface
control section (Figure 11-8) consists of 3 high
speed caches: an incoming queue associated with
each interprocessor bus, and a single outgoing
queue that can be switched to either of the buses.
All caches are 16 words in length and all bus
transfers are cache to cache. All components that

A FAULT-TOLERANT COMPUTING SYSTEM 445

- - X bus - - - - - - - - - - r - - - - - - - -\ f ------------"'T - - - - --

----------------------~I------------~;, I
I

Y bus
I
I _____________________ -_T~--~p-------~+~~~~~~~------~------------~----~

Bus control

CPU

Send 10, Y

Memory

Processor 1

~/

Processor
number

1

Bus control

Memory

Processor 10

I g
I

I
I
I
I

r----J. r -----

Buffer address I

00
~~------~yr------~

Up to 32 buffers
(2 buses *16 processors)

Figure 11-8. Tandem 16 Dynabus interface and control.

Lttach to either of the buses are kept physically
listinct, so that no single component failure can
:ontaminate both buses simultaneously. Also in
his section are clock synchronization and inter­
ock circuitry. All processors communicate in a
loint to point manner using this redundant
lirect shared bus (DSB) configuration [Anderson
.nd Jensen, 1975].

For any given interprocessor data transfer,
me processor is the sender and the other the
eceiver. Before a processor can receive data
Iver an interprocessor bus, the operating system
Gust configure an entry in a table (Figure 11-9)
:nown as the Bus Receive Table (BR T). Each
~RT entry contains the address where the in-

coming data is to be stored and the number of
words expected. To transfer data over a bus, a
SEND instruction is executed in the sending
processor, which specifies the bus to be used, the
intended receiver, and the number of words to
be sent. The sending processor's CPU stays in
the SEND instruction until the data transfer is
completed. Up to 65,535 words can be sent in a
single SEND instruction. While the sending pro­
cessor is executing the SEND instruction, the
Dynabus interface control logic in the receiving
processor is storing the data away according to
the appropriate BRT entry. In the receiving
processor this occurs simultaneously with pro­
gram execution.

446 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Bus receive
table

(system data)

SG (%700) CPU 0-<

1-<
2-<

3-<
SG (%702) BRT entry

-----____ ~-------S-G-(-%-700---+-4-0-B-+--2-P)--------~
..... " Transfer address

'

Bus X
'
',,~ ___________ W __ or_d_c_o_un_t __________ ~

Bus Y --

SG (%736)

SG (%740) o 1

o BUS

C

B

A

Send parameters
in register stack

Timeout value

Transfer address-1

Word count

15.

CPU

13< 12<1
14<

Bus = X or Y (0 = X bus)

15 < SG (%776) CPU = Processor module 0-15

32768 = Timeout value is the number of 0.8 psec
units allocated to completing the send example.

NOTE: % means base 8 notation Timeout value = 0 then 32768-0 * 0.8 = 0.026 Seconds

Figure 11-9. Bus receive table.

The message is divided· in to packets of 15
information words and an LRC check word. The
sending processor first fills its outgoing queue
with these packets, requests a bus transfer, and
transmits upon grant of the bus by the interpro­
cessor bus controller. The receiving processor
fills the incoming queue associated with the bus
over which the packet is received, and issues a
microinterrupt to its own CPU. The micropro­
cessor of the CPU checks the BRT entry, stores
the packet away, verifies the LRC check word,
and updates the BRT entry accordingly. If the
count is exhausted the currently executing pro­
gram is interrupted; otherwise program execu­
tion continues.

TheBRT entries are two words that include a

transfer count and buffer address. The SEND
instruction has as parameters the designation of
the bus to be used, the intended receiver, the
data buffer address in the system data space, the
word count to be transferred, and a timeout
value. Error recovery action is to be taken in
case the transfer is not completed within the
timeout interval. These parameters are placed on
the register stack and are dynamically updated
so that the SEND instruction is interruptible on
packet boundaries.

There are several levels of protocol, beyond
the scope of this paper, dealing with the interpro­
cessor bus that exist in software [Bartlett, 1978
and the second half of this paper], to assure that
valid data are transferred. The philosophy for

the hardware/software partitioning was to leave
the more esoteric decisions to the software, e.g.,
alternate path routing, and error recovery proce­
dures, with fault detection and reporting imple­
mented in the hardware. Fault detection was
designed in those areas having the highest antic­
ipated probability of error.

The Input/Output Channel

The heart of the Tandem 16 I/O System is the I/O
channel. All I/O is done on a direct memory
access (DMA) basis. The channel is a micropro­
grammed, block multiplexed channel with the
block size determined by the individual control­
lers. All the controllers are buffered to some
degree so that all transfers over the I/O channel
are at memory speed (4M Bytes/Second) and
never wait for mechanical motion since the
transfers always come from a buffer in the
controller, rather than from the actual I/O device.

There exists a table in the system data space of
each processor called the IOC (I/O Control)
table that contains a two-word entry (Figure
11-10) for each of the 256 possible I/O devices
attached to the I/O channel. These entries con­
tain a byte count and virtual address in the
system data space for data transfers from the
I/O system.

The I/O channel moves the IOC entry to
active registers during connection of an I/O
controller and restores the updated values to the
IOC upon disconnection. The I/O channel alerts
the I/O controller when the count has been
exhausted and that causes the controller to inter­
rupt the processor.

The channel does not execute channel pro­
grams as on many systems but it does do data
transfer in parallel with program execution. The
memory system priority always permits I/O ac­
cesses to be handled before CPU or Dynabus
accesses (in an on-line, transaction oriented en­
vironment, it is rare that a system is not I/O
bound). The maximum I/O transfer is 4K bytes.

A FAULT-TOLERANT COMPUTING SYSTEM 447

I/O SYSTEM ORGANIZATION

The I/O system had a design goal of being very
efficient in a transaction, on-line oriented envi­
ronment. This environment has constraints dif­
ferent from those of a batch environment. The
figure of merit in an on-line system is the number
of transactions/second/dollar that can be han­
dled by the system. We also wanted an I/O
system that had low overhead, fast transfer rates,
no overruns, and no interrupts to the system
until a logical entity of work was completed (i.e.,
no character by character interrupts from the
terminals). The retiulting design satisfied these
goals by implementing an I/O system that was
extremely simple.

I/O controllers reconnect to the channel when
their buffers are stressed past a configurable
threshold, transfer data in a burst mode until
their buffer stress is zero (buffer empty on input
operations, full on output operations), and dis­
connect from the channel. When the transfer
terminates, the I/O controller interrupts the pro­
cessor. Controllers may interrupt for other rea­
sons than an exhausted byte count, e.g., a termi­
nal controller receiving an end-of-page character
from a page mode terminal, or I/O channel error
condition, or a disc pack being mounted.

Dual-Port Controllers

The dual-ported I/O device controllers provide
the interface between the Tandem 16 standard
I/O channel and a variety of peripheral devices
using distinct interfaces. While the I/O control­
lers are vastly different, there is a commonality
among them that folds them into the Tandem 16
NonStop architecture.

Each controller contains two independent I/O
channel ports implemented by IC packages
which are physically separate from each other so
that no interface chip can simultaneously cause
failure of both ports. Each port of each control­
ler has a 5-bit configurable controller number,
and interrupt priority setting. These settings can

448 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Unit 0

1

2

Controller 0
3

1/0 cQntrol
table

system data

SG (%1000)

SG (%1004)

----...-- 10C table entry
SG (%1000 + %IOC + 2U)

Transfer address
4 '",,~

~ Byte count
...... ~~----~--------------------~ 5

6

7

Unit 0

1
2 ~
3

Controller 1
4

-< -<
5

6

7 ~
Unit 0

~
2 -<
3

Controller 31
4

-< -<
5 -<
6 -<
7 -<

--

SG (%1016)

SG (%1020)

S G (%1200)

o 1 3 4 15

P = Protection bit (1 - output only)
CH ERR = Channel error

0= No error
1 = Protect violation
2 = PAD in violation
3 = Channel parity violation
4 = Timeout
5 = Map absent bit detected
6 = Map parity error
7 = Uncorrectable memory error

Note: '%' means base 8 notation

Figure 11-10. 1/0 control table.

be different on each port. The only requirement
is that each port attached to an I/O channel
must be assigned a controller number and prior­
ity distinct from controller numbers and priori­
ties of other ports attached to the same I/O
channel.

Each controller has a PON (power-on) circuit
which clamps its output to ground whenever the
controller's DC supply voltage is not within
regulation. The PON circuit has hysteresis in it
so that it will not oscillate if the power should
hover near the limit of regulation. When the
power is within regulation, the output of the
PON circuit is at a TTL "1" level. A power-on
condition causes a controller reset and also gives
an interrupt to one of the two processors to
which it is attached. The output of the PON
circuit is also used to enable all the I/O channel

bus transceivers so that a controller being pow­
ered down will not cause interference on the I/O
channels during the power transient. This is
possible because the PON circuit operates with
the supply voltage as low as .2 volts and special
transceivers are used which correctly stay in a
high impedance state as long as the control
enable is at a logical "0."

Logically only one of the two ports of an I/O
controller is active and the other port is utilized
only in the event of a path failure to the primary
port. There is an "ownership" bit (Figure 11-11)
indicating to each port if it is the primary port or
the alternate. Ownership is changed only by the
operating system issuing a TAKE OWNERSHIP
I/O command. Executing this special command
causes the I/O controller to swap its primary and
alternate port designation and to do a controller

IOC

10 Jlj
I CPU 0

All data and
control

information
transfers

occur via the
"owned" side

Typically
ownership is not
changed unless
a failure occurs

Units

Ownership is taken
by CPU 0 when a
"take ownership" .

is issued to controller 3

Ownership

/- -1 I
I
I
I
I
I
I

3

Port

r- -------

A FAULT-TOLERANT COMPUTING SYSTEM 449

Ownership

-1 0 r

Port

CPU 2

--"
I
I A command I
I to the
I "unowned" side \

is rejected with
17 a "device is

owned by another port" status

If necessary, CPU 2 can
take ownership away from

CPU 0 by issuing a
"take ownership" to

controller 17

Figure 11-11. Ownership circuitry.

reset. Any attempt to use a controller which is
not owned by a given processor will result in an
ownership violation. If a processor determines
that a given controller is malfunctioning on its
I/O channel, it can issue a DISABLE PORT
command that logically disconnects the port
from that I/O controller. This does not affect the
ownership status. That way, if the problem is
within the port, the alternate path can be used,
but if the problem is in the common portion of
the controller, ownership is not forced upon the
other processor.

A controller signals an interrupt on the I/O
channel if the channel has indicated an ex­
hausted transfer count, if the controller termi­
nates the transfer prematurely, or for attention
purposes.

When simultaneous interrupts occur on an
I/O channel, a priority scheme determines which
interrupt is handled first. There are two levels of
priorities, designated "rank 0" and "rank 1."
Each rank has up to 16 controllers assigned to it.
Jumper wires on each controller determine the
rank and position within the rank (positions 0 to
15). The I/O channel issues a rank 0 interrupt
poll cycle and each controller assigned to rank 0
can place an interrupt request, if it needs service,
on a dedicated data bit of the I/O channel
determined by the jumper wires. If there are no
controllers on rank 0 requiring service, the I/O
channel issues the interrupt poll cycle for rank 1.
Note, only 32 controllers can be assigned to a
given channel and each one has a unique rank
and position designation. The highest priority

450 THE PRACTICE OF RELIABLE SYSTEM DESIGN

controller is granted access to the interrupt sys­
tem. Thus a radial polling technique allows the
processor to resolve 32 different controller prior­
ities in just two poll cycles. Each port of a
controller has a separate set of configuration
jumpers so that a controller can have different
priorities on its primary and alternate path.

Controller Buffer Considerations

In the design of the Tandem 16 I/O system, a lot
of attention was paid to the overrun problem.
While overruns are possible on this system, they
have been made a rare occurrence. Each I/O
controller has 3 configurable settings: the I/O
controller number, the interrupt priority, and
buffer stress threshold reconnect setting.

Each I/O controller is buffered to some extent.
The asynchronous terminal controller has 2
bytes of buffering, while the disc controller has
4K bytes of buffering. Considerations of device
transfer rate, channel transfer rate, the individual
controller's buffer depth, the controller's recon­
nect priority, and a given channel's I/O comple­
ment can be used to determine the buffer's depth
(stress threshold) at which a reconnect request
should be made to the channel to minimize the
chance of overrun. Each controller with a signif­
icant buffering (more than 32 bytes) has a con­
figurable stress threshold. Buffer stress is defined
as the number of cells full on an input operation,
and the number of cells empty on output opera­
tions. In general, the I/O channel relieves stress
while the I/O device generates more stress.
Therefore the higher the stress, the more the
buffer needs relief from the I/O channel, regard­
less of the direction of data transfer.

Tandem has developed a program which takes
a system configuration and determines the ap­
propriate stress threshold settings needed to
guarantee no data overruns. Since reconnect
overhead time is known, and all transfers on the
I/O bus take place at memory speed, and the
upper bound of the block length is known for
each type of controller, it is a deterministic
function as to whether or not an overrun is

possible. If it is impossible to generate a no­
overrun configuration, the program will output a
minimum-overrun threshold setting. Most times,
however, it is possible to iterate on the configu­
ration until threshold settings can be determined
that prevent overruns.

Disc Controller Considerations

The greatest fear that an on-line system user has
is that "the data base is down" [Dolotta et al.,
1976]. Many of these users are willing to pay the
premium of having duplicated or "mirrored"
data bases in case a disc drive fails. To meet this
requirement, Tandem provides automatic mir­
roring of. data bases.

A disc volume is a set of data contained on
one spindle or one removable disc pack. A user
may declare any of the disc volumes as mirrored
pairs at system generation time (Figure 11-12).
The system then maintains these pairs so that
they always contain identical data. Thus protec­
tion is achieved for a single drive failure. Each
disc drive in the system may be dual-ported.
Each port of a disc drive is connected to an
independent disc controller. Each of the disc
controllers is also dual-ported and connected
between two processors. A string of up to 8
drives (4 mirrored pairs) can be supported by a
pair of con trollers in this manner.

Note that in this configuration there are many
paths to any given data and that data can be
retrieved regardless of any single disc drive fail­
ure, disc controller failure, power supply failure,
processor failure, or I/O channel failure.

The disc controller is buffered for a maximum
length record which provides several features
important in an on-line system. First, the disc
controller is absolutely immune to overruns.
Second, data to be written on two drives need be
transferred over the I/O channel only once. The
data may then be posted twice from the control­
ler's internal buffer. Thus the channel's data
transfer capacity is little impaired by mirrored
volumes.

Figure 11-12. Tandem 16 disc subsystem
organization.

This disc controller uses a Fire code [Peterson,
1961] for burst error correction and detection. It
can correct II bit bursts in the controller's buffer
before transmission to the channel. Since over­
lapped seeks are allowed by the controller, when
data are to be read from a mirrored pair they can
be read from the drive which has its arm closest
to the data cylinder. It is interesting to note that
since the majority of transactions in an on-line
system are reads, mirrored volumes actually can
increase performance.

NonStop I/O System
Considerations

The I/O channel interface consists of a two-byte
data bus and control signals. All data transferred
over the bus are parity checked in both direc­
tions, and errors are reported via the interrupt
system. A watchdog timer in the I/O channel
detects if a nonexistent I/O controller has been

A FAULT-TOLERANT COMPUTING SYSTEM 451

addressed, or if a controller stops responding
during an I/O sequence.

The data transfer byte count word in the 10C
entry contains four status bits including a protect
bi t. When this bit is set to "I" only ou tpu t
transfers are permitted to this device.

Because I/O controllers are connected be­
tween two independent I/O channels, it is very
important that word count, buffer address, and
direction of transfer are controlled by the pro­
cessor instead of within the controller. If that
information were to be kept in the controller, a
single failure could cause both processors to
which it was attached to fail. Consider what
would happen' if a byte count register was locat­
ed in the controller and was stuck in such a
situation such that the count could not decre­
ment to zero on an input transfer. It would be
possible to overwrite the buffer and cause system
tables to become meaningless. The error would
propagate to the other processor upon discovery
that the first processor was no longer operating.

Other error conditions that the· channel checks
for are violations of I/O protocol, attempts to
transfer to absent pages (it is the operating
system's responsibility to "tack down" the virtual
pages used for I/O buffering), uncorrectable
memory errors, and map parity errors.

POWER, PACKAGING, ON-LINE
MAINTENANCE

The Tandem 16 power supply has 3 sections: a 5
volt interruptible section, a 5 volt uninterruptible
section, and a 12-15 volt unin terruptible section.
The interruptible section will stop supplying DC
power when AC is lost while the uninterruptible
sections will continue to supply DC power. The
interruptible section powers I/O controllers and
that portion of a processor which is not related
to memory refresh operation. The uninterrupti­
ble sections provide power for the memory array
and refresh circuitry. The 5 volt sections are
switching regulated supplies while the 12-15 volt
section is linearly regulated. The uninterruptible
sections have a provision for a battery attach-

452 THE PRACTICE OF RELIABLE SYSTEM DESIGN

ment so that in case of utility power failure,
memory contents are kept for l.5 to 4 hours,
depending on the amount of memory attached to
the supply.

The power supply accepts AC input of 110 or
220 volts ±20% to provide brownout insensitivi­
ty. At nominal line conditions, over 30 msec of
ride through is provided by storage capacitors. A
power-fail warning signal is provided when there
is at least 5 msec of regulated power remaining
so that the processor can go through an orderly
shutdown. Some users must remain operational
through utility power failure and have generator
systems which provide continuous AC power for
the entire system, including peripheral devices.

The power-fail warning scheme in the Tandem
16 power supply monitors charge in the storage
capacitors rather than monitoring loss· of AC
peaks as is conventionally done. This has the
advantage that the 5 msec to do a power shut­
down sequence in the processor is guaranteed
even if it occurs after a brownout period.

The power supply provides all other prudent
features required in a computer system, such as
over voltage and over current protection, and
over temperature protection.

The power-up sequencing on disc drives has
been implemented with independent rather than
daisy chained circuits. In the daisy chained ap­
proach, one bad sequencer circuit can cause the
remaining drives in the chain not to sequence up
after a power failure.

Further Packaging and On-line
Maintenance Considerations

Modularity is a key concept in the Tandem 16
system. The maintenance philosophy is to make
all repair by module replacement at the user site
without making the system unavailable to the
user. Therefore the backplanes, power supplies,
fans, I/O channels, as well as the PC cards are
modular and easily replaceable. Thumb screws
are used when they can be so that a minimum of
tools are needed for repair. The package is
designed so that there is easy access to all
. modules.

Processors and I/O controllers not only can be
replaced on-line, but added on-line without sys­
tem interruption if expansion is planned, all
without application software being changed.

SUMMARY

The contribution of the Tandem 16 system lies in
the synthesis of a system to directly address the
need of the NonStop application marketplace.
By avoiding the "onus of compatibility" to any
previous system, an architecture could be de­
signed from "scratch" that was "clean" and
efficient.

The system goals have been met to a large
degree. Systems have been shipped containing 2
to 10 processors. Many application programs are
on-line and running. They recover from failures,
and stay up continuously.

A "NonStop" Operating System

Joel F. Bartlett

Abstract

The Tandem 16 computer system is an attempt at
providing a general-purpose, multiple-computer system
which is at least one order oj magnitude more reliable
than conventional commercial offerings. Through sojt­
ware abstractions a multiple-computer structure, desira­
ble jor jailure tolerance, is transjormed into something
approaching a symmetric multiprocessor, desirable jor
programming ease. The first section oj this paper provides
an overview oj the hardware structure. In the second
section are jound the design goals jor the operating
system, "Guardian." The third section provides a bottom­
up view oj Guardian.

Background

On-line computer processing has become a way
of life for many businesses. As they make the
transition from manual or batch methods to on­
line systems, they become increasingly vulner­
able to computer failures. Whereas in a batch
system the direct costs of a failure might simply
be increased overtime for the operations staff, a
failure of an on-line system results in immediate
business losses.

System Overview

The Tandem 16 [Tandem Computers, Inc., 1976;
Katzman, 1977a] was designed to provide a
system for on-line applications that would be

(D copyright 1977, Tandem Computers, Incorporated. All
rights reserved.

453

significantly more reliable than currently avail­
able commercial computer systems. The hard­
ware structure consists of multiple processor
modules interconnected by redundant interpro­
cessor buses. A PMS [Bell and Newell, 1971]
definition of the hardware is found in Figure
11-13.

Each processor has its own power supply,
memory, and I/O channel and is connected to all
other processors by redundant interprocessor
buses. Each I/O controller is redundantly pow­
ered and connected to two different I/O chan­
nels. As a result, any interprocessor bus failure
does not affect the ability of a processor to
communicate with any other processor. The fail­
ure of an I/O channel or of a processor does not
cause the loss of an I/O device. Likewise, the
failure of a module (processor or I/O controller)
does not disable any other module or disable any
inter-module communication. Finally, certain
I/O devices such as disc drives may be con­
nected to two different I/O controllers, and disc
drives may in turn be duplicated such that the
failure of an I/O controller or disc drive will not
result in loss of data.

The system is not a true multiprocessor [Ens­
low, 1977], but rather a "multiple computer"
system. The multiple computer approach is pref­
erable for several reasons. First, since no module
is shared by the entire system, it increases the
system's reliability. Second, a multiple computer
system does not require the complex hardware
needed to handle multiple access paths to a
common memory. In smaller systems, the cost of
such a multiported memory is undesirable; and

454 THE PRACTICE OF RELIABLE SYSTEM DESIGN

----.--------------------T---I S.interprocessor

-----+-----,----------------.,-+---1 S.interprocessor

Figure 11-13.

in larger systems, performance suffers because of
memory access interference.

On-line repair is as necessary as reliability in
assuring system availability. The modular struc­
ture of the Tandem 16 system allows processors,
I/O controllers, or buses to be repaired or re­
placed while the rest of the system continues to
operate. Once repaired, they may then be reinte­
grated into the system.

The system structure allows a wide range of
system sizes to be supported. As many as sixteen
processors, each with up to 512K bytes of mem­
ory, may be connected into one system. Each
processor may also have up to 256 I/O devices
connected to it. This provides for tremendous
growth of application programs and processing
loads without the requirement that the applica­
tion be reimplemented on a larger system with a
different architecture.

Finally, the system is meant to provide a
general solution to the problem of providing a
failure-tolerant, on-line environment suitable for
commercial use. As such, the system supports
conventional programming languages and pe­
ripherals and is oriented toward providing large
numbers of terminals with access to large data
bases.

Hardware structure.

SYSTEM DESIGN GOALS

Integrated Hardware/Software
Design

The Tandem 16 system was designed to solve a
specific problem. This problem was not stated in
terms of hardware and software requirements,
but rather in terms of system requirements. The
hardware and software designs then proceeded
in tandem to provide a unified solution. The
hardware design concerned itself with the con­
tents of each module, their interconnections to
the common buses, and error detection and
correction within modules and on the communi­
cation paths. The software design was given the
problem of control; that is, selection of which
modules to use and which buses to use to
communicate with them. Furthermore, as errors
are detected, it was the responsibility of the
software to control recovery actions.

Operating System Design Goals

The first and foremost goal of the operating
system, Guardian, was to provide a failure­
tolerant system. This translated into the follow­
ing design "axioms":

• The operating system should be able to remain
operational after any single detected module or bus
failure.

• The operating system should allow any module or
bus to be repaired on-line and then reintegrated into
the system.

• The operating system should be implemented in a
reliable manner. Increased reliability provided by
the hardware architecture must not be negated by
software problems.

A second set of requirements came from the
great numbers and sizes of hardware configura­
tions that are possible:

• The operating system should support all possible
hardware configurations, ranging from a two-pro­
cessor, discless system through a sixteen-processor
system with billions of bytes of disc storage.

• The operating system should hide the physical con­
figuration as much as possible such that applications
could be written to run on a great variety of system
configurations.

OPERATING SYSTEM STRUCTURE

To satisfy these requirements, the operating sys­
tem was designed to have the appearance of a
true multiprocessor at the user level. The design
of the system was strongly influenced by Dijks­
tra's work on the "THE" system [1968], and
Brinch Hansen's implementation of an operating
system nucleus for a single-processor system
[1970]. The primary abstractions are processes,
which do work, and messages, which allow inter­
process communication.

Processes

At the lowest level of the system is the basic
hardware as earlier described. It provides the
capability for redundant modules, i.e., I/O con­
trollers, I/O devices, and processor modules con­
sisting of a processor, memory, and a power
supply. These redundant modules are in turn
interconnected by redundant buses. Error detec­
tion is provided on all communication paths and
error correction is provided within each pro-

A "NONSTOP" OPERATING SYSTEM 455

cessor's memory. The hardware does not con­
cern itself with the selection of communication
paths or the assignment of tasks to specific
modules.

The first abstraction provided is that of the
process. Each processor module may have one or
more processes residing in it. A process is initial­
ly created in a specific processor and may not
execute in another processor. Each process has
an execution priority assigned to it. Processor
time is allocated on a strict priority basis to the
highest priority ready process.

Process synchronization primitives include
"counting semaphores" and process local
"event" flags. Semaphore operations are per­
formed via the functions PSEM and YSEM,
corresponding to Dijkstra's P and Y operations.
Semaphores may only be used for synchroniza­
tion between processes within the same pro­
cessor. They are typically used to control access
to resources such as resident memory buffers,
message control blocks, and I/O controllers.

When certain low-level actions such as device
interrupts, processor power-on, message comple­
tion or message arrival occur, they result in
"event" flags being set for the appropriate proc­
ess. A process may wait for one or more events
to occur via the function WAIT. The process is
activated as soon as the first WAITed for event
occurs. Events are signaled via the function
AWAKE. Event signals are queued using a
"wake up waiting" mechanism so that they are
not lost if the event is signaled when the process
is not waiting on it. Like semaphores, event
signals may not be passed between processors.
Event flags are predefined for eight different
events and may not be redefined.

When a process blocks itself to wait for some
event to occur or for a semaphore to be allocated
to it, it may specify a maximum time to block. If
the time limit expires and the event has not
occurred or the resource has not been obtained,
then the process will continue execution but an
error condition will be returned to it. This time­
out allows "watch dog" timers to be easily placed

456 THE PRACTICE OF RELIABLE SYSTEM DESIGN

on device interrupts or on resource allocations
where a failure may occur.
. Ea~h process in the system has a unique
IdentIfier or "processid" in the form: < cpu #,

process # >, which allows it to be referenced on
a system-wide basis. This leads to the next
abstraction, the message system, which provides
a processor-independent, failure-tolerant method
for interprocess communication.

Messages

The message system provides five primitive oper­
ations which can be illustrated in the context of
a process making a request to some server pro­
cess, Figure 11-14. The process's request for
service will send a message to the appropriate
server process via the procedure LINK. The
message will consist of parameters denoting the
type of request and any needed data. The mes­
sage will be queued for the server process, setting
an event flag, and then the requester process may
continue executing.

When the server process wishes to check for
any messages, it calls LISTEN. LISTEN returns
the first message queued or an indication that no
messages are queued. The server process will
then obtain a copy of the requester's data by
calling the procedure READLINK.

Next, the server process will process the re­
quest. The status of the operation and any result
will then be returned by the WRITELINK pro­
cedure, which will signal the requester process
via another event flag. Finally, the requester
process will complete its end of the transaction
by calling BREAKLINK.

A communications protocol was defined for
t~e interprocessor buses that would tolerate any
smgle bus error during the execution of any
message system primitive. This design assures
that a communications failure will occur if and
only if the sender or receiver processes or their
processors fail. Any bus errors which occur
during a message system operation will be auto­
matically corrected in a manner transparent to

..:..: c::
Requestor :3 ~ Message ---..~ Server

...I

..:..:
c::

Requestor r- Data copied ---. ~ Server
~
~

..:..: ..:..:
:§ :§

Requestor ..:..: ~Result copied- <II Server
~ .t::

= ~ ~----~~ ~~----~

Figure 11-14. Message system primitive
operations.

the communicating processes and logged on the
system console. The interprocessor buses are not
used for communication between processes in
the same processor, which can be done faster in
memory. However, the processes involved in the
message transfer are unable to detect this differ­
ence.

The message system is designed such that
resources needed for message transmission (con­
trol blocks) are obtained at the start of a message
transfer request. Once LINK has been success­
fully completed, both processes are assured that
sufficient resources are in hand to be able to
complete the message transfer. Furthermore, a
process may reserve control blocks to guarantee
that it will always be able to send messages to
process a request that it picks up from its mes­
sage queue. Such resource controls assure that
deadlocks can be prevented in complex produ­
cer/consumer interactions, if the programmer
correctly analyzes and anticipates potential
deadlocks within the application.

Process-Pairs

With the implementation of processes and mes­
s~ges, the system is no longer seen as separate
modules. Instead, the system can be viewed as a

:igure 11-15. System structure after the addition
)f processes and messages.

.et of processes which may interact via messages
n any arbitrary manner, as shown in Figure
ll-15.

By defining messages as the only legitimate
nethod for process-to-process interaction, inter­
)rocess communication is not limited by the
nultiple-computer organization of the system.
[he system then starts to take on the appearance
)f a true multiprocessor. Processor boundaries
lave been blurred, but I/O devices are still not
lccessible to all processes.

System-wide access to I/O devices is provided
>y the mechanism of "process-pairs." An I/O
)rocess-pair consists of two cooperating process­
~s located in two different processors that control
l particular I/O device. One of the processes will

A "NONSTOP" OPERATING SYSTEM 457

be considered the "primary" and one will be
considered the "backup." The primary process
handles requests sent to it and controls the I/O
device. When a request for an operation such as
a file open or close occurs, the primary will send
this information to the backup process via the
message system. These "checkpoints" assure that
the backup process will have all information
needed to take over control of the device in the
event of an I/O channel error or a failure of the
primary process' processor. A process-pair for a
redundantly recorded disc volume is illustrated
in Figure 11-16.

Because of the distributed nature of the sys­
tem, it is not possible to provide a block of
"driver" code that could be called directly to
access the device. While potentially more effi­
cient, such an approach would preclude access to
every device in the system by every process in
the system.

The I/O process-pair and associated I/O de­
vice(s) are known by a logical device name such
as "SDISCI" or by a logical device number
rather than by the processid of either process.
I/O device names are mapped to the appropriate
processes via the logical device table (LDT) in
every processor, which supplies two processids
for each device. A message request made on the
basis of a device name or number results in the
message's being sent to the first process in the
table. If the message cannot be sent or if the
message is sent to the backup process, an error
indication will be returned. The processid entries

t----Checkpoints --~ Backup process

Figure 11-16. Process-pair for a redundantly recorded disc volume.

458 THE PRACTICE OF RELIABLE SYSTEM DESIGN

in the LDT will then be reversed and the mes­
sage re-sent. Note two things: first, the error
recovery can be done in an automatic manner;
and second, the requester is not concerned with
what process actually handled the request. Error
recovery cannot always be done automatically.
F or example, the primary process of a pair
controlling a line printer fails while handling a
request to print a line on a check. The applica­
tion process would prefer to see the process
failure as an error rather than have the request
automatically retried, which might result in two
checks being printed.

The two primitives, processes and messages,
blur the boundaries between processors and pro­
vide a failure-tolerant method for interprocess
communication. By defining a method of group­
ing processes (process-pairs), a mechanism for
uniform access to an I/O device or other system­
wide resource is provided. This access method is
independent of the functions performed within
the processes, their locations, or their implemen­
tations. Within the process-pair, the message
system is used to checkpoint state changes so
that the backup process may take over in the
event of a failure. This checkpoint mechanism is
in turn independent of all other processes and
messages in the system.

The system structure can be summarized as
follows. Guardian is constructed of processes
which communicate using messages. Fault toler­
ance is provided by duplication of components
in both the hardware and the software. Access to
I/O devices is provided by process-pairs consist­
ing of a primary process and a backup process.
The primary process must checkpoint state infor­
mation to the backup process so that the backup
may take over on a failure. Requests to these
devices are routed using the logical device name
or number so that the request is always routed to
the current primary process. The result is a set of
primitives and protocols which allow recovery
and continued processing in spite of bus, pro­
cessor, I/O controller, or I/O device failures.
Furthermore, these primitives provide access to

all system resources from every process III the;
system.

System Processes

The next step in structuring the system comes in
assigning functions to processes. As previously
shown, I/O devices are controlled by process­
pairs. Another process-pair known as the "oper­
ator" is present in the system. This pair is
responsible for formatting and printing error
messages on the system console. Here is an
example of where Guardian has not followed a
strict level structure. The operator makes re­
quests to a terminal process to print the mes­
sages, yet the terminal process wishes to send
messages to the operator to report I/O channel
errors. An infinite cycle is prevented by having
the terminal process not send messages for errors
on the operator terminal and having I/O pro­
cesses never wait for message completions when
sending errors to the operator. While it may be
preferable to prevent cycles of any type in sys­
tem design, they have been allowed in Guardian
when it can be shown that they will terminate.
The ability to reserve message control blocks
assures that no cycle will be blocked because of
resource problems.

Each processor has a "system monitor" pro­
cess which handles such functions as process
creation and deletion, setting time of day, and
processor failure and reload cleanup operations.

A memory management process is also resi­
dent in each processor. This process is responsi­
ble for allocating a page of physical memory and
then sending messages to the appropriate disc
processes to do the actual disc I/O. Pages are
brought in on a demand basis, and pages to
overlay are selected on a "least recently used"
basis over the entire memory of the processor.

The choice of relatively unsophisticated algo­
rithms for scheduling and memory management
was a result of the fact that the system was not
intended to be a general-purpose timeshare sys­
tem. Rather, it was to be a system which sup-

orted multiple processes and terminals In an
I(tremely flexible manner.

,pplication Process Interface

,bove the process and communication structure
lere exists a library of procedures which are
sed to access system resources. These proce­
ures run in the calling process's environment
nd mayor may not send messages to other
rocesses in the system. For example, the file
),stem procedures do not do the actual I/O
perations. Instead, they check the caller's pa­
lmeters, and if all is in order a message is sen t
) the appropriate I/O process-pair. Likewise,
rocess creation is seen as a procedure call to
JEWPROCESS, which does nothing but check
le caller's parameters and then send a message
) the system monitor process in the processor
rhere the process is to be created. On the other
and, a procedure such as TIME which returns
he current time of day does not send any
lessages. In either case, the access to system
esources appears simply as procedure calls, ef­
ectively hiding the process structure, message
ystem, hardware organization, and associated
ailure recovery mechanisms.

nitialization and Processor Reload

;ystem initialization starts with one processor
)eing cold loaded from some disc on the system.
['he load file contains a memory image of the
)perating system resident code and data, with all
ystem processes in existence and at their initial
tates. The system monitor process then creates a
:ommand interpreter process.

Guardian may be brought up even though a
)focessor or peripheral device is down. This is
)ossible because operating system disc images
nay be kept on multiple disc drives, I/O control­
ers may be accessed by two different processors,
md the terminal that has the initial command
nterpreter on it is selected by using the pro­
;essor's switch register.

A "NONSTOP" OPERATING SYSTEM 459

After a cold load, the system logically consists
of one processor and any peripherals attached to
it. More processors and peripherals may be
added to the system via the command interpreter
command:

: RELOAD 1, SDISC

This command will read the disc image for
processor 1 from the disc SDISC and send it
over either interprocessor bus to processor 1.
Once it is loaded, all processes residing in other
processors in the system will be notified that
processor I is up.

This command is also used to reload a pro­
cessor after" it has been repaired. Guardian does
not differentiate between an initial load of a
processor and a later reload. In each case,
resources are being logically added to the system
and processes must be notified so that they may
make use of them.

The previous example of a reload message
being sent to all processes is an example of how
functions are split in Guardian. A mechanism is
provided for informing a process of a system
status change. It may then take some unspecified
action (including doing nothing). Similarly, a
system power-on simply sets the PON event flag
for all processes. The operating system kernel
must only insure that the process structure and
message system are correctly saved and restored.
It is then the responsibility of individual process­
es to do such things as reinitialize their I/O
controllers.

Operating System Error Detection

Besides the hardware-provided single error de­
tection and correction on memory, and single
error detection on the interprocessor and I/O
buses, additional software error checks are pro­
vided. The first of these is the detection of a
down processor. Every second, each processor in
the system. sends a special "I'm alive" message
over each bus to all processors in the system.
Every two seconds, each processor checks to see

460 THE PRACTICE OF RELIABLE SYSTEM DESIGN

that it has received one of these messages from
each processor. If a message has not been re­
ceived, then it assumes that that processor is
down.

Additionally, the operating system makes
checks on the correctness of data structures such
as linked lists when operations are done on them.
Any processor detecting such an error will halt.

All I/O interrupts are bracketed by a "watch
dog" timer such that the system will not hang up
if an I/O operation does not complete with the
expected interrupt. If an I/O bus error occurs,
then the backup process will take over control of
the device using the second I/O bus.

As previously noted, the interprocessor bus
protocol is designed to correct single bus errors.
In addition to this, extensive checks are made on
the control information received over the buses
to verify that it is consistent with the state of the
receiving processor.

Power-fail/automatic restart is provided with­
in each processor. A power failure is detected
independently by each processor module and as
a result is not a system-wide, synchronous event.
The system was designed to recover from either
a complete system power-fail, or a transient
which will cause some of the processors to
power-fail and then immediately restart.

The innovative aspects of Guardian lie not in
any new concepts introduced, but rather in the
synthesis of pre-existing ideas. Of particular note
are the low-level abstractions, process and mes­
sage. By using these, all processor boundaries
can be hidden from both the application pro­
grams and most of the operating system. These

initial abstractions are the key to the system's
ability to tolerate failures. They also provide the
configuration independence that is necessary in
order for the system and applications to run over
a wide range of system sizes.

Guardian provides the application program­
mer with extremely general approaches to pro­
cess structuring, interprocess communication,
and failure tolerance. Much has been said about
structuring programs using multiple communi­
cating processes, but few operating systems are
able to support such structures.

Finally, the design goals of the system have
been met to a large degree. Systems with be­
tween two and ten processors have been installed
and are running on-line applications. They are
recovering from failures and failures are being
repaired on-line.

ACKNOWLEDGMENTS

An operating system is the work of many people.
In particular I would like to acknowledge the
contributions of Dennis McEvoy, Dave Hinders,
Jerry Held, and Robert Shaw in its design,
implementation, and testing.

REFERENCES

Anderson and Jensen [1975]; Bartlett [1978]; Bell and
Newell [1971]; Brinch Hansen [1970]; Dijkstra [1968];
Dolotta et al. [1976]; Enslow [1977]; Katzman [1977];
Peterson [1961]; Tandem Computers, Inc. [1976].

=ault-Tolerant Design of Local ESS
>rocessors

N. N. Toy

Lbstract

nhe stored program control of Bell System Electronic
~witching Systems (ESS) has been under development
ince 1953. During this period, the No.1 ESS, the No.2
~SS, and the No.3 ESS have been developed and used
xtensively by Bell System operating companies to pro­
ide commercial telephone service. These systems serve
'II types of telephone offices: The large-capacity No.1
~SS serves metropolitan offices, the medium-capacity
>/0. 2 ESS was designed for suburban offices, and the
>/0.3 can be found in many small rural offices. The fault
olerant design of ESS processors provides the same
righly dependable telephone service established by the
Irevious electromechanical systems. Pertinent processor
rrchitecture features used to achieve ESS reliability
'bjectives are discussed. A detailed discussion of the
rzaintenance design of the 3A Processor is also included.

NTRODUCTION

~ext to computer systems used in space-borne
rehicles and U.S. defense installations, no other
lpplication has a higher availability requirement
han a Bell System Electronic Switching System
ESS). These systems have been designed to be
mt of service no more than a few minutes per
rear. Furthermore, design objectives permit no
nore than 0.01 percent of the telephone calls to
)e processed incorrectly [Downing, Nowak, and
[uomenoksa, 1964]. For example, when a fault

) 1978 I EEE. Reprinted, with permission, from Proceedings
if the IEEE, Vo1.66, No. 10, October 1978,pp.1126-1145.

461

462 THE PRACTICE OF RELIABLE SYSTEM DESIGN

occurs in a system, few calls in progress may be
handled incorrectly during the recovery process.

At the core of every ESS is a single high-speed
central processor [Hart, Taylor, and Ulrich,
1969; Brown et aI., 1969; Staehler, 1977]. To
establish an ultrareliable switching environment,
redundancy of system components and duplica­
tion of the processor itself has been the approach
taken to compensate for potential machine
faults. Without this redundancy, a single compo­
nent failure in the processor might cause a
complete failure of the entire system. With dupli­
cation, a standby processor takes over control
and provides continuous telephone service.

When the system fails, the fault must be
quickly detected and isolated. Meanwhile, a rap­
id recovery of the call processing functions (by
the redundant component(s) and/or processor) is
necessary to maintain the system's high availa­
bility. Next, the fault must be diagnosed and the
defective unit repaired or replaced. The failure
rate and repair time must be such that the
probability is very small for a failure to occur in
the duplicated unit before the first one is re­
paired.

ALLOCATION AND CAUSES OF
SYSTEM DOWNTIME

The outage of a telephone (switching) office can
be caused by facilities other than the processor.
While a hardware fault in one of the peripheral
units generally results in only a partial loss of
service, it is possible for a fault in this area to
bring the system down. By design, the processor
has been allocated two-thirds of the system
downtime. The other one-third is allocated to the
remaining equipment in the system.

Field experience indicates that system outages
due to the processor may be assigned to one of
four categories shown in Figure 12-1 [Staehler
and Watters, 1976]. The percentages in this fig­
ure represent the fraction of total downtime
attributable to each cause. The four categories
are as follows:

Figure 12-1. System outage allocation.

Hardware Reliability

Before the accumulation of large amounts of
field data, total system downtime was usually
assigned to hardware. We now know that the
situation is more complex. Processor hardware
actually accounts for only 20 percent of the
downtime. With growing use of stored program
control, it has become increasingly important to
make such systems more reliable. Redundancy is
designed into all subsystems so that the system
can go down only when hardware failures occur
simultaneously in duplicated units. However, the
data now show that good diagnostic and trouble
location programs are very critical parts of the
total system reliability performance.

Software Deficiencies

Software deficiencies include all software errors
that cause memory mutilation, and program
loops that can only be cleared by major reinitial­
ization. Software faults are the result of improper
translation or implementation of the original
algorithm. In some cases, the original algorithm
may have been incorrectly specified. Program
changes and feature additions are continuously
incorporated into working offices. Software ac­
count for 15 percent of the downtime.

ecovery Deficiencies

.ecovery is the system's most complex and
ifficult function. Deficiencies may include the
lortcomings of either hardware or software
esign to detect faults when they occur. When
le faults go undetected, the system remains
densively impaired until the trouble is recog­
ized. Another kind of recovery problem can
ccur if the system is unable to properly isolate

faulty subsystem and configure a working
{stem around it.
The many possible system states which may

rise under trouble conditions make recovery a
:)mplicated process. Besides those already men­
oned, unforeseen difficulties may be encoun­
~red in the field, and lead to inadequate recov­
ry. Because of the large number of variables
lVolved and because the recovery function is so
:rongly related to all other components of main­
~nance, recovery deficiencies account for 35
ercent of the downtime.

'rocedural Errors

luman error on the part of maintenance person­
leI or office administrators can also cause the
ystem to go down. For example, someone in
Ilaintenance may mistakenly pull a circuit pack
rom the on-line processor while repairing a
.efective standby processor. Inadequate and in­
orrect documentation (e.g., users' manuals) may
Iso be classified as human error. Obviously, the
.umber of manual operations must be reduced if
,rocedural errors are to be minimized. Procedur-
1 errors account for about 30 percent of the
. owntime.

The shortcomings and deficiencies of current
ystems are being continually corrected to im­
,rove system reliability.

)UPlEX ARCHITECTURE

Vhen a fault occurs in a nonredundant single
'rocessor, the system will remain down until the
,rocessor is repaired. In order to meet the ESS

LOCAL ESS PROCESSORS 463

reliability requirement, redundancy is included in
the system design; continuous and correct oper­
ation is maintained by duplicating all functional
units within the processor. If one of the units
fails, the duplicated unit is switched in, maintain­
ing continuous operation. Meanwhile, the defec­
tive unit is repaired. Should a fault occur in the
duplicated unit during the repair interval, t~e

system will, of course, go down. If the. :epatr
interval is relatively short, the probabIlIty of
simultaneous faults occurring in two identical
units is quite small. This technique of redundan­
cy has been used throughout each ESS.

The first-generation ESS processor structure
consists of two store communities: program store
(PS) and call store (CS). The program store is a
read-only memory (ROM) containing the call
processing, maintenance, and administrat~on

programs; it also contains long-term translatI.on
and system parameters. The call store con tams
the transient data related to telephone calls in
progress. The memory is electrically alterable to
allow its data to be changed frequently. In one

Peripheral units

.----- ------1
I I
I I
I I
I I
I I
I CS I I
I Processor 0 I Processor 1 J I ________ ' __ L _______ _

Processor
o

a .

r- -- -,
I Processor I

0/1 I
I (working system) t
~-------b.

Processor
1

Figure 12-2. Single-unit duplex con.figuratio~.
a.) Processor structure. b.) Two possible configura­
tions.

464 THE PRACTICE OF RELIABLE SYSTEM DESIGN

particular arrangement, shown in Figure 12-2,
the complete processor is treated as a single
functional block and is duplicated. This type of
single-unit duplex system has two possible con­
figurations: Either Processor 0 or Processor I
can be assigned as the on-line working system,
while the other unit serves as standby backup.
The mean-time-to-failure (MTTF), a measure of
reliability, is given by the following expression
[Smith, 1972]:

where J.t is the repair rate (reciprocal of the repair
time), and J\ is the failure rate.

The failure rate (J\) of one unit is the summa­
tion of failure rates of all components within the
unit. For medium and small ESS processors,
Figure 12-2 shows a system structure containing
several functional units which are treated as a
single entity, with J\ still sufficiently small to meet
the reliability requirement. The single-unit du­
plex configuration has the merit of being very
simple in terms of the number of switching
blocks in the system. This configuration simpli­
fies not only the recovery program but also the
hardware interconnection. It does this by elimi­
nating the additional access required to make
each duplicated block capable of switching inde­
pendently into the on-line system configuration.

In the large No. I ESS, which contains many
componen ts, the MTTF becomes too low to
meet the reliability requirement. In order to
increase the value of the MTTF, either the
number of components (failure rate) or the re­
pair time must be reduced. Alternatively, the
single-unit duplex configuration can be parti­
tioned into a multiunit duplex configuration as
shown in Figure 12-3. In this arrangement, each
subunit contains a small number of components
and is able to be switched into a working system.
The system will fail only if a fault occurs in the
redundant subunit while the original is being
repaired. Since each subunit contains fewer com­
ponents, the probability of two simultaneous

Peripheral units

PSBO CSBO

PUBO -+-.1

Q
<I) Q ::;,

.:J II)

Q,I
::;,

.:J

~ Q,I

E ~
~ -;
tl.()
0 u
~

pso

a.

CSB1 PSB1

8[:-[E PUB1 CCO I CC I CC1
I 0/1 I L __ J

III r\sfE, CS1 I 0/1 I L __ ..J

ElGPSO r.!l I P!,
10/1 I L __ ...J

Figure 12-3. Multiunit duplex configuration.
a.) Processor structure. b.) 64 possible
configurations.

faults occurring in a duplicated pair of subunits
is reduced. The MTTF of the multiunit duplex
configuration can be computed by taking into
consideration the conditional probability of a
subunit failing during the repair time of the
original subunit.

An example of a multiunit duplex configura­
tion is shown in Figure 12-3. A working system
is configured with a fault-free CCx-CSx-CSBx­
PSx-PSBx-PUBx arrangement, where x is either
Subunit 0 or Subunit 1. This means there are 26,

or 64, possible combinations of system configu­
rations. The MTTF is given by the following
expreSSIOn:

(1)

Nhere

" = V{ ('\cc/,\) 2 + ('\cS/,\)2 + ('\CSB/,\)2

+ ('\pS/,\)2 + ('\PSB/,\)2 + ('\PUB/,\)2}
(2)

~he factor r is at a maximum when the failure
ate (,\) for each subunit is the same. In this case

)r

v-here

'\cc = '\cs = '\CSB = '\ps = '\pSB

= '\pUB = \

,\
,\. = -

I S

s = number of subunits in (2),
s = 6, and
r = s.

(3)

(4)

At best, the MTTF is improved by a factor
;orresponding to the number of partitioned sub­
lnits. This improvement is not fully realized
;ince equipment must be added to provide addi­
jonal access and to select subunits. The parti­
joning of the subsystem into subunits as shown
n Figure 12-3 results in subunits of different
;izes. Again, the failure rate for each individual
mbunit will not be the same; hence, the r-factor
Nill be smaller than 6. Because of the relatively
arge number of components used in implement­
Ing the No.1 ESS, the system is arranged in the
multiunit duplex configuration in order to meet
the reliability requirement.

Reliability calculation is a process of predict­
mg, from available failure rate data, the achiev­
Ible reliability of a system and the probability of
meeting the reliability objectives for ESS appli­
;ations. These calculations are most useful and
beneficial during the early stages of design in
Jrder to assess various types of redundancy and
jetermine the system's organization. In the small
Ind medium ESS's, the calculations have sup­
ported the use of single-unit duplex structures.
For large ESS's, it was necessary to partition the
~ystem into a multiunit duplex configuration.

LOCAL ESS PROCESSORS 465

FAULT SIMULATION
TECHNIQUES

One of the more difficult tasks of maintenance
design is fault diagnosis. Its effectiveness in
diagnostic resolution can be determined by sim­
ulation of the system's behavior in the presence
of a specific fault. By means of simulation,
design deficiencies can be identified and correct­
ed prior to any system being deployed in the
field. It is necessary to evaluate the system's
ability to detect faults, to recover automatically
back into a working system, and to provide
diagnostics information where the fault is within
a few replaceable circuit packs. Fault simulation,
therefore, is an important aspect of maintenance
design.

There are essentially two techniques used for
simulating faults of digital systems; physical
simulation or digital simulation. Physical simula­
tion is a process of inserting faults into a physical
working model. This method produces more
realistic behavior under fault conditions. A wider
class of faults can be applied to the system, such
as a blown fuse or shorted backplane intercon­
nection. However, fault simulation cannot begin
until the design has been completed and the
equipment is fully operational. Also, it is not
possible to insert faults interior to an integrated
circuit.

Digital fault simulation is a means of predict­
ing the behavior under failure of a processor
modeled in a computer program. The computer
used to execute the program (the host) is gener­
ally different from the processor being simulated
(the object). Digital fault simulation gives a high
degree of automation and excellent access to
interior points of logic to monitor the signal flow.
It allows diagnostic test development and evalu­
ation to proceed well in advance of unit fabrica­
tion. The cost of computer simulation can be
quite high for a large, complex system.

The physical fault simulation method was first
employed to generate diagnostic data for the
Morris Electronic Switching System [Tsiang and
Ulrich, 1962]. Over 50,000 known faults were

466 THE PRACTICE OF RELIABLE SYSTEM DESIGN

purposely introduced into the central control to
be diagnosed by its diagnostic program. Test
results associated with each fault were recorded.
They were then sorted and printed in dictionary
format to formulate a trouble locating manual
(TLM). Under trouble conditions, by consulting
the TLM, it was possible to determine a set of
several suspected circuit packs which might con­
tain the defective component. Using the diction­
ary technique at the Morris system, the average
repair time was kept low and maintenance was
made much easier.

The experience gained in the physical fault
simulation was applied and extended in the No.
I ESS development [Downing, Nowak, and
Tuomenoksa, 1964]. Each plug-in circuit pack
was replaced by a fault simulator which intro­
duced every possible type of single fault on the
replaced package one at a time and then record­
ed the, system reaction on magnetic tape. This
was done for all circuits packs in the system. In
addition to diagnostic data for dictionaries, addi­
tional data were collected to determine the
adequacy of hardware and software in fault
detection and system recovery. Deficiencies were
corrected tojmprove the overall maintenance of
the system.

A digital logic simulator called LAMP [Chang,
Smith, and Walford, 1974] was developed for the
No. lA ESS development. It played an impor­
tant role in the hardware and diagnostic develop­
ment of the No. IA Processor. The simulator is
capable of simulating subsystem with as many as
65,000 logic gates. All classical faults for stan­
dard logic gates are simulatable with logic nodes
stuck at "0" or stuck at "1." Before physical
units are available, digital simulation can be very
effective in verifying the design, evaluating diag­
nostic access, and developing tests. Physical fault
simulation has been demonstrated in the No. 1
ESS to give a very realistic behavior under fault
conditions. The integration of both techniques
was employed in the development of the No. lA
Processor to take advantage of both processes.
The use of complementary simulation allows

faults to be simulated physically (in the systerr
laboratory) and logically (on a computer). Mos1
of the deficiencies of one simulation process are
compensated for by the other. The complemen­
tary method provided both a convenient method
for validating the results and more extensive
fault simulation data than would have been
normally if either process were used individually.
Figure 12-4 shows the complementary process of
fault simulation used in the No. lA Processor
development [Bowman et aI., 1977; Goetz, 1974].
Maximum diagnostic performance was achieved
from an integrated use of both simulation meth­
ods.

FIRST GENERATION ESS
PROCESSORS

The world's first ESS provided commercial tele­
phone service at Morris, Illinois, in 1959 for
about a year on a field trial basis [Keister,
Ketchledge, and Lovell, 1960]. The system dem­
onstrated the use of stored program control and
the basic maintenance philosophy of providing
continuous and reliable telephone service. The
trial established valuable guides for designing a
successor, the No. lESS.

No. 1 ESS Processor

The No. 1 ESS was designed to serve large
metropolitan telephone offices, ranging from sev­
eral thousand to 65,000 lines [Keister, Ketch­
ledge, and Vaughan, 1964]. As in most large
switching systems, the processor represents only
a small percentage of the total system cost.
Therefore, performance and reliability were of
primary importance in the design of the No. I
Processor; cost was secondary. In order to meet
the reliability standards established by electro­
mechanical systems, all units essential to proper
operation of the office are duplicated (see Figure
12-3). The multiunit duplex configuration was
necessary to increase the MTTF of the processor

LOCAL ESS PROCESSORS 467

Physical Common Digital

Physical
fault 14--------+-~

simulator

Circuit
under test

1 A Processor 14---1

Lamp
fault

simulator

Figure 12-4. Complementary fault-simulation system.

,ecause of the large number of components in
ach of the functional blocks.

Even with duplication, troubles must be found
nd corrected quickly to minimize exposure to
ystem failure due to multiple troubles. All units
re monitored continually so that troubles in the
tandby units are found just as quickly as those
n. the on-line units." This is accomplished by

running the on-line and standby units in the
synchronous and match mode of operation
[Downing, Nowak, and Tuomenoksa, 1964].
Synchronization requires that clock timing sig­
nals be in close tolerance so that every operation
in both halves is performed in step, and key
outputs are compared for error detection. The
synchronization of duplicated units is accom-

468 THE PRACTICE OF RELIABLE SYSTEM DESIGN

plished by having the on-line oscillator output
drive both clock circuits. There are two match
circuits in each central control (CC). Each
matcher compares 24 bits within one machine
cycle of 5.5 J-tS. Figure 12~5 shows that each
matcher has access to six sets of internal nodes
(24 bits per node). In the routine match mode,
the points matched in each cycle are dependent
upon the instruction being executed. The select­
ed match points are those most pertinent to the
data processing steps occurring during a given
machine cycle. The two matchers in each CC

To interrupt
source

-} To other
- CC

r-~========~--,-------------~o~:er _j cc

To interrupt
source

Figure 12-5. No.1 CC match access.

compare the same sets of selected test poin ts.
The capability of each CC to compare a number
of internal nodes provides a highly effective
means of detecting hardware errors.

If a mismatch occurs, an interrupt is generat­
ed, which causes the fault-recognition program
to run. The basic function of this program is to
determine which half of the system is faulty. The
suspected unit is removed from service and the
appropriate diagnostic program is run to pin­
point the defective circuit pack.

The No. 1 ESS was designed during the dis­
crete component era (early 1960s) using individ­
ual components to implement logic gates [Cagle
et aI., 1964]. The CC contains approximately
12,000 logic gates. Although this number appears
small when compared to large-scale integration
(LSI) technology, the No. 1 Processor was a
physically large machine for its time.

The match circuits capable of comparing in­
ternal nodes are the primary tools incorporated
into the CC for diagnosing as well as detecting
troubles. Specified information can be sampled
by the matchers and retained in the match
registers for examination. This module of opera­
tion obtains critical data during the execution of
diagnostic programs.

The early program store used permanent mag­
net twister (PMT) modules as basic storage
elements [Ault et aI., 1964]. They are a form of
ROM in which system failures cannot alter the
information content. Experience gained from the
Morris field test system, which used the less
reliable flying spot store, indicated that Ham­
ming correction code was highly effective in
providing continuous operation. At the time of
development, it was felt that PMT modules
might not be reliable enough. Consequently, the
program store word included additional check
bits for single-bit error correction (Hamming
code). In addition, an overall parity check bit
which covers both the data and their address is
included in the word. The word size consists of
37 bits of information and seven check bits.
When an error is corrected during normal oper-

tion, it is logged in an error counter. Also,
etection of a single error in the address or a
ouble error in the word will cause an automatic
!try.
The call store is the temporary read and write

lemory for storing transient data associated
rith call processing. Ferrite sheet memory mod­
les are the basic storage elements used in imple­
lenting the call store in the No.1 ESS [Genke,
larding, and Staehler, 1964]. The call store used
1 most No. 1 offices is smaller than the program
tore. (At the time of design, the cost per bit of
all store was considerably higher than that of
Irogram store.) Also, ferrite sheet memory mod­
lIes were considered to be very reliable devices.
:onsequently, single-bit error detection rather
han Hamming correction code was provided in
he call store.

There are two parity check bits: one over both
he address and data, and the other over the
Lddress only. Again, as in the program store,
Lutomatic retry is performed whenever an error
s detected, and the event is logged in an error
:ounter for diagnostic use.

Troubles are normally detected by fault-detec­
ion circuits, and error-free system operation is
ecovered by fault recognition programs [Down­
ng, Nowak, and Tuomenoksa, 1964]. This re­
luires the on-line processor to be capable of
naking a proper decision. If this is not possible,
tn emergency action timer will "time out" and
Lctivate special circuits to establish various com­
)inations of subsystems into a system configura­
.ion. A special program which is used to deter­
nine whether or not the assembled processor is
lane takes the processor through a series of tests
Hranged in a maze. Only one correct path
:hrough the maze exists. If the processor passes
:hrough successfully, the timer will be reset, and
~ecovery is successful. If recovery is unsuccess­
:ul, the timer will time out again, and the rear­
rangement of subsystems will be tried one at a
time (e.g., combination of CC, program store,
:llld program store bus systems). For each select­
;!d combination, the special sanity program is

LOCAL ESS PROCESSORS 469

started and the sanity timer is activated. This
procedure is repeated until a working configura­
tion is found. The sanity program and sanity
timer determine if the on-line CC is functioning
properly. The active CC includes the program
store and the program store bus.

Operational Results of No.1 ESS

The No.1 ESS has been in commercial operation
since 1965. Over 1,000 systems are providing
telephone service to more than 15 million sub­
scribers. The performance of the No. 1 ESS has
continually improved over a decade of continued
effort to improve all phases of software and
hardware.

Figure 12-6 shows the result of field data
accumulated over many machine operating
hours. This curve was derived from data in a
paper [Fleckenstein, 1974] presented at the 1974
International Switching Symposium in Munich,
Germany, and data supplied by W. C. Jones of
Bell Laboratories.

When the No. 1 ESS was first cut into com­
mercial service, many outages occurred because
of software and hardware inadequacies that
could only be weeded out with field experience.
The inexperience of maintenance personnel also
contributed heavily towards system outages.
Most hardware and software bugs were correct­
ed during the early years of operation. However,
deficiencies still exist, and designs are continual­
ly upgraded in working systems. Continual im­
provements include better diagnostic access,
more complete fault recognition and isolation
programs, and more effective system recovery.

Improved diagnostic capability reduces repair
time and human errors by decreasing the
amount of human interaction required by the
machine. Better maintenance procedures and
more experienced craftpersonnel also contribute
to improved system performance. The curve in
Figure 12-6 shows that the outage rate improved
as machine design and operating personnel ma­
tured.

470 THE PRACTICE OF RELIABLE SYSTEM DESIGN

..
IU

80

~ 70 ..
QJ

c..

~60
IU

t
> I 50
QJ

r 1 office

r47 offices
;,.....-------i

'5
I: 40
'E

y--127 offices

.=
QJ 30
~
'5
o 20
QJ

'ai
Q.
E 10
o
U

r 207 offices

r 315 offices

544 offices r r 672 offices '--"""":"'""---; r 794 offices

r 922 offices

o 65 66 67 68 69 70 71 72 73 74 75 76 77

Year

Figure 12-6. No.1 ESS service performance.

No.2 E55 Processor

The No.2 ESS processor was developed during
the mid-1960s [Spencer and Vigilante, 1969].
This system was designed for medium-sized of­
fices ranging from' 1,000 to 10,000 lines. The
processor's design was derived from experience
with the common stored program of a private
branch exchange (PBX), the No. 101 ESS [Seley
and Vigilante, 1964]. Since the capacity require­
ment of the No.2 ESS was to be less than that
of the No. 1 ESS, cost became one of the more
important design considerations. (Reliability is
equally important in all systems.) The No.2 ESS
contains much less hardware than the No.1 ESS.
Understandably, its component failure rate is
also substantially less. Its CC contains approxi­
mately 5,000 gates (discrete components). To
reduce cost and increase reliability, resistor-tran­
sistor logic (RTL) gates were chosen for the No.
2's processor since resistors are less expensive
and more reliable than diodes [the No. 1 Pro­
cessor used diode-transistor logic (OTL)].

Because the No. 2's CC, program store, and
call store are smaller, they are grouped together

as a single switchable block in the single-unit
duplex configuration shown in Figure 12-2. Cal­
culations indicate that its MTTF is approximate­
ly the same as the No. 1 multiunit duplex struc­
ture, with each of the functional blocks and
associated store buses grouped together as a
switchable block. The use of only two subsystem
configurations reduces considerably the amount
of hardware needed to provide gating paths and
control for each functional unit. Moreover, the
recovery program is simplified, and the reliability
of the system is improved.

The No.2 Processor runs in the synchronous
and match mode of operation [Beuscher et aI.,
1969]. The on-line oscillator output drives both
clock circuits in order to keep the timing syn­
chronized. The match operation is not as exten­
sive as it is in the No.1 ESS. For simplicity, there
is only one IP_atcher in the No. 2 ESS; it is
located in the nonduplicated maintenance center
(see Figure 12-7). The matcher always compares
the call store input registers in the two CC's
when call store operations are performed syn­
chronously. A fault in almost any part of either
CC quickly results in a call store input register

lismatch. This occurs because almost all data
rlanipulation performed in both the program
ontrol and the input-output (I/O) control in­
'olves processed data returning to the call store.
~he call store input is the central point whereby
lata eventually funnel through to the call store.
~y matching the call store inputs, an effective
:heck of the system equipment is provided.
:ompared to the more complex matching of the
-.J'o. I Processor, error detection in the No. 2
>rocessor may not be as instantaneous since
mly one crucial node in the processor is
natched. Certain faults in the No.2 Processor
vill go undetected until the errors propagate into
he call store. This interval is probably no more
han tens or hundreds of microseconds. During
:uch a short interval, the fault would affect only
l single call.

The No. 2 ESS matcher is not used as a
iiagnostic tool as is the matcher in the No. I
)rocessor. Therefore, additional detection hard­
~are is designed into the No.2 Processor to help
iiagnose as well as detect faults.

When a mismatch occurs, the detection pro­
~ram is run in the on-line CC to determine if it
:ontains the fault. This is done while the standby
Jrocessor is disabled. If a solid fault in the on-

M--M----+--Error signals

Maintenance center

• Halt off-line
CC

• Run detection
programs in
on-line CC

Figure 12-7. No.2 CC match access.

LOCAL ESS PROCESSORS 471

line processor is detected by the mismatch detec­
tion program, the control is automatically passed
to the standby processor, causing it to become
the on-line processor. The faulty processor is
disabled and diagnostic tests are called in to
pinpoint the defective circuit pack.

The program store also uses PMT modules as
basic storage elements, with a word size of 22
bits, half the width of the No. l's word size.
Experience gained in the design and operation of
the No. 101 ESS (PBX) showed that PMT stores
were very reliable. The additional protection
provided in the No. 1 Processor against memory
faults by error correction was not considered to
be as essential in the No.2 Processor. This and
the need to keep the cost down led to the choice
of error detection only instead of the more so­
phisticated Hamming correction code.

Error detection works as follo\Ys: one of the 22
bits in a word is allocated as a parity check bit.
The program store contains both program and
translation data. Additional protection is provid­
ed by using odd parity for program words and
even parity for translation data. This detects the
possibility of accessing the translation data area
of memory as instruction words. For example, a
software error may cause the program to branch
into the data section of the memory and execute
the data words as instruction words. The parity
check would detect this problem immediately.
The program store includes checking circuits to
detect multiple-word access. Under program
control, the sense amplifier threshold voltage can
be varied in two discrete amounts from its nom­
inal value to obtain a measure of the operating
margin. The use of parity check was the proper
choice for the No. 2 ESS in view of the high
reliability of these memory devices.

The No.2 Processor call store uses the same
ferrite sheet memory modules as the No. 1
Processor. However, the No. 2's data word is 16
bits wide instead of 24. Fault detection depends
heavily upon the matching of the call store
inputs when the duplex processors run in the
synchronous mode. Within the call store circuit,

472 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the access circuitry is checked to see that access
currents flow in the right direction at the correct
time and that only two access switches are
selected in any store operation. This ensures that
only one word is accessed in the memory opera­
tion. Similarly, threshold voltages of the sense
amplifiers may be varied under program control
to evaluate the operating margins of the. store.
No parity check bit is provided in the call store.

Each processor contains a program timer
which is designed to back up other detection
methods. Normally, the on-line processor clears
the timer in both processors at prescribed inter­
vals if the basic call processing program cycles
correctly. If, however, a hardware or software
trouble condition exists (e.g., a program may go
astray or a long program loop may prevent the
timer from being cleared), the timer will tjme out
and automatically produce a switch. The new
on-line processor is automatically forced to run
an initialization restart program which attempts
to establish a working system. System recovery is
simplified by using two pO'ssible system configu­
rations rather than the multiunit duplex system.

SECOND GENERATION OF ESS
PROCESSORS

The advent of silicon integrated circuits (IC's) in
the mid-1960's provided the technological cli­
mate for dramatic miniaturization, improved
performance,. and cost-reduced hardware. "I A
technology" refers to the standard set of (IC)
devices, apparatus, and design tools that were
used to design the No. 1 A Processor and the No.
3A Processor [Becker et aI., 1977]. The choice of
technology and the scale of integration level was
dictated by the technological advances made
between 1968 and 1970. Small-scale integration
(SSI), made possible by bipolar technology, was
capable of high yield production. Because of the
processor cycle time, high-speed logic gates with
propagation delays from 5 to 10 ns were de­
signed and developed concurrent with th~ No.
1 A Processor.

No. 1 A Processor

The No. IA Processor, successor to the No. 1
Processor, was designed primarily for the control
of large local and toll ESS with high processing
capabilities (the No. IA ESS and No.4 ESS,
respectively) [Budlong et aI., 1977]. An important
objective in developing the No. IA ESS was to
maintain commonality with the No.1 ESS. High
capacity was achieved by implementing the new
No. IA integrated technology and a newly de­
signed system structure. These changes made
possible an instruction execution rate that is four
to eight times faster than the No. 1 Processor.
Compatibility with the No. I ESS also allows the
No. IA Processor to be retrofitted into an in­
service No. I ESS, replacing the No. I Processor
when additional capacity is needed. The first IA
Processor was put into service in January 1976,
as control for a No.4 ESS in Chicago. Less than
one year later, the first No. IA ESS was put into
commercial operation. By 1980, several hundred
will be in service [Nowak, 1976].

The No. IA Processor architecture is similar to
its predecessor in that all of its subsystems have
redundant units and are connected to the basic
CC via redundant bus systems [Bowman et al.,
1977]. One of the No. IA Processor's major
architectural differences is its program store
[Ault et aI., 1977]. It has a writable random­
access memory (RAM) instead of PMT ROM.
By combining disk memory and RAM, the sys­
tem has the same amount of memory as a system
with PMT, but at a lower cost. Backup copy of
program 'and translation data is kept on disk.
Other programs (e.g., diagnostics) are brought to
RAM as needed; the same RAM spare is shared
among different programs. More important is the
system's ability to change the content of the
store quickly and automatically. This simplifies
considerably the administration and updating of
program and translation information in working
offices.

The additional disk (file store) subsystem adds
flexibility to the No. IA Processor [Ault et aI.,

977], but it also increases the complexity of
ystem recovery. Figure 12-8 shows the multi­
mit duplex lA Processor. This configuration is
imilar to the No. I Processor arrangement (see
~igure 12-3) with a duplicated file store included.
~he file store communicates with the program
tore or call store via the CC and the auxiliary
mit bus. This allows direct memory access be­
ween the file store and the program store or the
'all store. The disk file and the auxiliary unit bus
.re grouped together as a switchable entity.

Error detection is achieved by the duplicated
.nd matched synchronous mode of operation, as
n the No. I Processor. Both CC's operate in step
.nd perform identical operations. The matching

Peripheral units

0 0
III III 0 ;:, 0 ;:,

.t:J III .t:J III

~
;:, - ;:,

.t:J ·c .t:J

.s QJ ;:, ~ III .9 E C QJ
.c

tU III ~ .g-
~ ;; .:;:c

QJ 0 U ;:, Q. ct -<

AUBO PUBO PUB1 AUB1

CSBO CSB1

PSBO PSB1

Figure 12-8. No. 1A processor configuration.

LOCAL ESS PROCESSORS 473

is done more extensively in the IA to obtain as
complete a check as possible. There are two
match circuits in each processor. Each matcher
has the ability to compare 24 internal bits to 24
bits in its mate once every machine cycle. (A
machine cycle is 700 ns.) Anyone of 16 different
24-bit internal nodes can be selected for compar­
ison. The choice is determined by the type of
instruction being executed. Rather than compare
the same nodes in both CC's, the on-line and the
standby CC's are arranged to match different
sets of data. Four distinct internal groups are
matched in the same machine cycle. This ensures
the correct execution of any instruction.

The No. IA.Processor design is an improve­
ment of the No. I Processor design. The No. I A
Processor incorporates much more checking
hardware throughout various functional units in
addition to matching hardware. Checking hard­
ware speeds up fault detection and also aids the
fault recovery process by providing indications
that help isolate the faulty unit. The matching is
used in various modes for maintenance purposes.
This capability provides powerful diagnostic
tools in isolating faults .

The program store and call store use the same
hardware technology. The CC contains approxi­
mately 50,000 logic gates. While the initial design
of the stores called for core memories, they have
been replaced with semiconductor dynamic
MOS memories. The word size is 26 bits; 24 data
bits and 2 parity check bits. In the No. I
Processor, the program store and the call store
are fully duplicated. Because of their size, dupli­
cation requires a considerable amount of hard­
ware, resulting in higher cost and increased
component failures. To reduce the amount of
hardware in the No. IA Processor's store com­
munity, the memory is partitioned into blocks of
64K words, as shown in Figure 12-9. Two addi­
tional store blocks are provided as roving spares.
If one of the program stores fails, a roving
program store spare is substituted and a copy of
the program in the file store is transferred to the
program store replacement. This type of redun-

474 THE PRACTICE OF RELIABLE SYSTEM DESIGN

PSUO Program store bus 0

~--------~v~------~A~ ____ ~ ____ ~

Active program stores Standby pr~gram stores
maximum of 20 2 roving spares

Figure 12-9. No. 1A program store structure.

dancy has been made possible by the ability to
regenerate data stored in a failing unit. Since a
program store can be reloaded from the file store
in less than a second, a roving spare redundancy
plan is sufficient to meet the reliability require­
ment. As a result, Hamming correction code was
not adopted in the No. IA program store. How­
ever, it is essential that an error be detected
quickly. Two parity check bits are generated
over a partially overlapped, interleaved set of
data bits and address. This overlapping is ar­
ranged to cope with particular memory circuit
failures which may affect more than one bit of a
word.

The IA call stores contain both translation
data backed up on the file stores and call-related
transient data which are difficult to regenerate.
The roving spare concept is expanded for the call
stores to include sufficient spares to provide full
duplication of transient data. If a fault occurs in
a store that contains translation data, one of the
duplicated stores containing transient call data is
preempted and loaded with the necessary trans­
lation data from the duplicated copy in the file
store. A parity check is done in the same manner
as in the program store, using two check bi ts.

The combination of writable program store
and file store provides a very effective and flexi­
ble system architecture for administrating and
implementing a wide variety of features which
are difficult to o~tain in the No.1 ESS. However,
this architecture also complicates the process of
fault recognition and recovery. Reconfiguration
into a working system under trouble conditions

is an extensive task, depending on the severity of
the fault. (For example, it is possible for the
processor to lose its sanity or ability to make
proper decisions.) An autonomous hardware
processor configuration (PC) circuit is provided
in each CC to assist in assembling a working
system. The PC circuit consists of various timers
which ensure that the operational, fault recovery,
and configuration programs are successfully exe­
cuted. If these programs are not executed, the PC
circuit controls the CC-to-program memory con­
figuration, reloading program memory from file
store when required, and isolating various sub­
systems from the CC until a working system is
obtained.

No. 3A Processor

The No. 3A Processor was designed to control
the small No.3 ESS [Irland and Stagg, 1974],
which can handle from 500 to 5,000 lines. One of
the major concerns in the design of this ESS was
the cost of its processor. The low cost and high
speed of integrated logic circuitry made it possi­
ble to design a cost-effective processor that per­
formed better than its discrete component pred­
ecessor, the No.2 Processor. The No. 3A project
was started in early 1971. The first system cut
into commercial service in late 1975.

Because the number of components in the No.
3A Processor is considerably less than in the No.
lA Processor, all subsystems are fully duplicat­
ed, including the main store. The CC, the store
bus, and the store are treated as a single switch­
able entity rather than individual switch able
units as in the No. lA Processor. The system
structure is similar to the No.2 ESS. Experience
gained in the design and operation of the No.2
provided valuable input for the No.3 Processor
design.

The 3A's design makes one major departure
from previous ESS processor designs: it operates
in the nonmatched mode of duplex operation.
The primary purpose of matching is to detect
errors. A mismatch, however, does not indicate

where (which one of the processors) the fault has
occurred. A diagnostic fault-location program
must be run to localize the trouble so that the
defective unit can be taken off-line. For this
reason, the No. 3A Processor was designed to be
self-checking, with detection circuitry incorpo­
rated as an integral part of the processor. Faults
occurring during normal operation are discov­
ered quickly by detecting hardware. This elimi­
nates the need to run the standby system in the
synchronous and match mode of operation, or
the need to run the fault recognition program to
identify the defective unit when a mismatch
occurs.

The synchronous and match mode arrange­
ment of the No.1 Processor and the No.2 ESS
provides excellent detection and coverage of
faults. However, there are many instances (e.g.,
periodic diagnostics, administration changes, re­
cent change updates, etc.) when the system is not
run in the normal match mode. Consequently,
during these periods, the system is vulnerable to
faults which may go undetected. The rapid ad­
vances in integrated circuit technology make
possible the implementation of self-checking cir­
cuits in a cost-effective manner. This eliminates
the need for the synchronous and match mode of
operation. Self-checking design is covered in
more detail in the next section.

Another new feature in ESS processor design
is the application of microprogram technique in
the No. 3A [Storey, 1976]. This technique pro­
vides a regular procedure of implementing the
control logic. Standard error detection is made
part of the hardware to achieve a high degree of
checkability. Sequential logic, which is difficult
to check, is easily implemented as a sequence of
microprogram steps. Microprogramming offers
many attractive features: it is simple, flexible,
easy to maintain, and easy to expand.

The No. 3A Processor paralleled the design of
the No. lA Processor in its use of an electrically
alterable (writable) memory. However, great
strides in semiconductor memory technology af­
ter the No. lA became operational permitted the

LOCAL ESS PROCESSORS 475

use of semiconductor memory in the 3A rather
than the core memory.

The 3A's call store and program store are
consolidated into a single store system. This
reduces cost by eliminating buses, drivers, regis­
ters, and controls. A single store system no
longer allows concurrent access of call store and
program store. However, this disadvantage is
more than compensated for by the much faster
semiconductor memory. Its access time is 1 f.Ls
(the earlier PMT stores had an access time of 6
f.Ls). .

Normal operation requires the on-line pro­
cessor to run and process calls while the standby
processor is in the halt state, with its memory
updated for each write operation. For the read
operation, only the on-line memory is read,
except when a parity error occurs during a mem­
ory read. This results in a microprogram inter­
rupt, which reads the word from the standby
store in an attempt to bypass the error.

As discussed previously, the No.2 Processor
(first generation) is used in the No. 2 ESS for
medium-size offices. It covers approximately
4,000 to 12,000 lines, with a call handling capa­
bility of 19,000 busy-hour calls. (The number of
calls is related to the calling rate of lines during
the busy hour.) The microprogram technique
used in the No. 3A Processor design allows the
No.2 Processor's instruction set to be emulated.
This enables programs written in the No. 2
assembly language to be directly portable to the
No. 3A Processor. The ability to preserve the call
processing programs permits the No.2 ESS to be
updated with the No. 3A Processor without
having to undergo a complete, new program
developmen t.

The combination of the No. 3A Processor and
the peripheral equipment of the No.2 ESS is
designated as the No. 2B ESS. It is capable of
handling 38,000 busy-hour calls, twice the capa­
bility of the No.2 ESS [Mandigo, 1976]. The No.
2B ESS can be expanded to cover about 20,000
lines. Furthermore, when an existing No.2 ESS
system in the field exceeds its real-time capacity,

476 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the No. 2 Processor can be taken out and
replaced with the No. 3A Processor. The retrofit
operation has been carried out successfully in
working offices without disturbing telephone ser­
vlce.

MAINTENANCE DESIGN OF
NO. 3A PROCESSOR

The 3A Processor is the most recent Bell System
ESS processor. Self-checking hardware has been
integrated into the design to detect faults during
normal system operation. This simplified fault
recognition technique is required to identify a
subsystem unit when it becomes defective. Re­
configuration into a working system is imme­
diate, without extensive diagnostic programs to

I

determine which subsystem unit contains the
fault. The problem of synchronization, in a much
shorter machine cycle (150 ns), is eliminated by
not having to run both processors in step. The
No. 3A Processor uses low-cost Ie's to realize its
highly reliable and flexible design.

General Systems Description

The general system block diagram of the No. 3A
Processor is shown in Figure 12-10. The ee, the
main store, and the cartridge tape unit are dupli­
cated for reliability. These units are grouped as a
single switchable entity rather than individual
switchable units. The quantity of equipment
within the switchable block is small enough to
meet the reliability requirement; therefore, the

~ Peripheral ~ units

System
~ control ~

and status

1"--------- f- ---T--- 1-- ----------,

+. •• I
Cartridge

tape
unit

Central
control

Bus 0 Bus 1

t
• -

I

Main
store
256K

words

Central
control

Bus 0 Bus 1 ,
..
-

J
Main
store
256K

words

Cartridge
tape
unit

I
I
I
I
I
I
I
I
I
I
I
I
I

• .. II 256K 256K r words r words !

I Processor 0 I I Processor 1 II
I I I L ________________ ~ _______________ ~

,Figure 12-10. No. 3A processor organization.

~xpense and complexity of providing communi­
:ation paths and control for switchable units
vithin the system are avoided. Each functional
mit was designed to be as autonomous as possi­
)le, with a minimum number of output signal
eads. This provides the flexibility necessary to
:xpand the system and make changes easily.

As shown in Figure 12-10, the standard pro­
~ram store and call store are combined as a
ingle storage unit to reduce cost. Although the
)rocessors are not run in the synchronous and
natch mode of operation, both stores (on-line
md standby) are kept up to date. This is
lchieved by having the on-line processor write
nto both stores simultaneously when call store
lata are written or changed. Because of the
'olatile nature of a writable memory, low-cost
m1k storage backup (cartridge tape) is required
o reload the program and translation data when
he latter are lost due to a store failure. The
mmp-up mechanism or store loader uses the
nicroprogram control in conjunction with an
I/O) serial channel to transfer data between the
:artridge tape unit and the main store. Other
leferrable, infrequently used programs (i.e.,
liagnostics or growth programs) are stored on
ape and paged in as needed.

The system control and status panel, a nondu­
Ilicated block, provides a common point for the
lisplay of overall system status and alarms.
ncluded in this unit is the emergency action
ircuitry which allows the maintenance person­
LeI to initialize the system or force and lock the
ystem into a fixed configuration. Communica­
ion with the processor takes place via the I/O
erial channel.

;eneral Processor Description

~igure 12-11 shows a detailed block diagram of
he CC. It is organized to process input data and
landle call processing functions efficiently. The
~rocessor's design is based on the register type of
Tchitecture. Fast-access storage in the form of
lip-flop registers provides short-term storage for

LOCAL ESS PROCESSORS 477

information being used in current data proces­
sing operations. Sixteen general-purpose registers
(GPRs) are provided as integral parts of the
structure.

Microprogram control is the heart of the No.
3A Processor. It provides nearly all of the com­
plex control and sequencing operations required
for implementing the instruction set. Other com­
plicated sequencing functions are also stored in
the microprogram memory. Examples:

I. the bootstrap operation of reloading the program
from the backup tape unit

2. the initializing sequence to restart the system under
trouble conditions

3. the interrupt priority control and saving of essential
registers

4. the emergency action timer and processor switching
operation

5. the craft-to-machine functions

The regular structure of the microprogram
memory makes error detection easier. The mi­
croprogram method of implementation also of­
fers flexibility in changing control functions.

The data manipulation instructions are de­
signed specifically for implementing the call pro­
cessing programs. These instructions are con­
cerned with logical and bit manipulation rather
than with arithmetical operations. However, a
binary ADD is included in the instruction reper­
toire for adding two binary numbers and for
indexing. This allows other arithmetical opera­
tions to be implemented conveniently by the
software combination of addition and logical
operations, or by a microprogram sequence if
higher speed is essential. The data manipulation
logic contains rotation, Boolean function of two
variables, first zero detection, and fast binary
ADD.

The remaining functional blocks in Figure
12-11 deal with external interfaces. The 20 main
I/O channels, each with 20 subchanne1s, allow
the processor to control and access up to 400
peripheral units by means of 21-bit (16 data, 2
parity, and 3 start code bits) serial 6.67-MHz
messages. The system is expandable in modules

478 THE PRACTICE OF RELIABLE SYSTEM DESIGN

I-G~~~~~~-r---Micro~~~~~tr~---I---Im~~~~---'
I I
I RO 0 I
I I
I I
I Gating I
I bus 19 I
I I

Error
-T-------

I Data-
I manipulation
I logic
I
I
I
I
I

------1
Error

Figure 12-11. No. 3A central control.

1/0
channel

bus

o

19

o

I

To
peripheral

of one main channel (20 subchannels). The I/O
structure allows up to 20 subchannels (one from
each main channel) to be active simultaneously.
In addition, the craft-to-machine interface, with
displays and manual inputs, is integrated into the
processor. This interface contains many of the
manual functions which will assist in hardware
and software debugging. The control logic asso­
ciated with this part of the processor is. incorpo­
rated as part of the microprogram control. Last­
ly, the maintenance channel enables the on-line
processor to control and diagnose the standby
processor. The use of a serial channel reduces the

number of leads interconnecting the two pro­
cessors and causes them to be "loosely coupled."
This facilitates the split mode or stand-alone
configuration for factory test or system test.

Detection Techniques

Control Circuitry

The major feature of the No. 3A Processor's
control logic is that it is microprogrammed.
Microprogramming provides a more regular ap­
proach than the conventional technique to the

Other
sources

Bl

Main store

LOCAL ESS PROCESSORS 479

Microprogram store
(read-only memory)

y

Control signals

Figure 12-12. Microprogram control.

design of control logic. It also permits checking
techniques to be applied more readily. The sim­
plified microprogrammed structure of the system
is shown in Figure 12-12. Each microprogram
store word contains the address of the next
instruction and a FROM and TO control field
which specifies the source and destination for a
data transfer operation. The store word may also
specify some other types of operation. The mi­
croprogram address register (MAR) receives its
contents from either the OPCODE of the main
machine instruction to be executed (this forms
the initial address of the microprogram which
performs the instruction) or the last micropro­
gram store word. One instruction from the main
store results in the execution of a sequence- of
microinstructions. System operation consists of
continually reading instructions from the main
store and executing the specified sequences of
microinstructions.

In designing the hardware check for the mi­
croprogram control, it is essential to recognize
the types of failures which are most probable.
Matching the checking techniques with the type
of faults that actually occur yields the best
results with the least amount of hardware. The
microprogram control is constructed from inte­
grated circuits: LSI for the memory and SSI for
the associated control logic. Because of the
method of isolating components and because of
the physical proximity of devices on an integrat­
ed circuit chip, multiple faults within a chip have
been analyzed and found to be of the type which
would tend to affect the bits in the unidirectional
manner: it affects adjacent bits, rather than
nonadjacent bits in the word [Cook et aI, 1973].
Unidirectional error refers to a fault which caus­
es a data bites) to assume a wrong value of one
type: 0 or 1, but not both simultaneously. (For
example, 01100 to 01111, not to 01010.)

480 THE PRACTICE OF RELIABLE SYSTEM DESIGN

The checking technique used in the implemen­
tation of the microprogram control takes advan­
tage of the error characteristics mentioned
above. The microprogram store contains two
types of data: control and address information.
The control fields are immediately decoded and
checked to provide control signals. A more effi­
cient nonsystematic check code, such as the m­
out-of-2m code, would give the maximum detec­
tability at the least possible cost in hardware.
This code can detect all multiple-unidirectional
errors. However, for the address field, it is desir­
able to maintain the data in binary form for
addressing and to provide immediate binary data
to several sources. Consequently, the choice of a
systematic check code for the address field is
essential to' give this flexibility. By recognizing
that the multiple-bit faults tend to affect adjacent
bits rather than randomly disperse them

throughout the word, the binary field is inter­
leaved with the m-out-of-2m code as shown in
Figure 12-13. Any multiple-adjacent-bit fault
would then affect both the binary and the m-out­
of-2m code. Consequently, a single parity check
bit is adequate to detect single-bit faults in the
binary field, and multiple adjacent bit faults
would be detected by the m-out-of-2m check.

In checking the binary address field, parity is
maintained on Jhe address in the MAR and
checked by 1) storing the correct parity (see
Figure 12-12) in the word addressed in memory,
and 2) comparing the two after the word is read
out. The next address field in the microprogram
store output register (MIR) also has a parity bit
which becomes the parity bit of the MAR when
it is gated into the MAR. The condition branch
logic is checked by duplication. A match is not
necessary to check the duplicated logic since its

Microprogram store

Binary
code

address

M-out-of N (4/8)
code

control

figure 12-13. Microprogram store coding techniques.

mtput must change both the low-order bit and
,he parity bit of the MAR. One of the branch
ogic circuits feeds the low-order bit, and the
>ther feeds the parity bit fA (see Figure 12-12) so
,hat branch logic failure is detected because of
:he resultant bad parity of the MAR.

The checking techniques (such as m-out­
>f-2m, interleaves parity, and duplication) are
ntegrated into the No. 3A's design to detect the
~ailures that may occur in the microprogram
;ontrol. These types of checks are provided to
ietect the multiple-unidirectional type of faults
:hat are possible with the integrated technology.

t-out-of-B Decoder and Check

fhe TO and FROM control fields are each eight
:>its wide and encoded as a 4-out-of-8 code.
fhere are 70 valid combinations in an 8-bit field;
!ach combination has four l's and four O's. The
ields, which are decoded to drive the control
:>oints of the processor, are checked by a self­
::hecking checker which detects faults in the
iecoder and the input codes [Anderson, 1971].

Because of the large number of output leads in
1 fully decoded 4-out-of-8 code to 70 outputs,
the decoder circuitry is divided into two groups.
!\. control function is represented by two outputs,
:me from each group. Figure 12-14 shows the
iecoding arrangement whereby each group is
iorted into five logic subgroups with 4, 3, 2, 1,
:md 0 inputs and designated as 4(1), 3(1), 2(1),
1(1), and 0(1), respectively. The numbers of gates
belonging to the respective subgroups are 1, 4, 6,
~, and 1, as shown in the figure. Similarly, the
iecond four bits in the 4-out-of-8 code are de­
;;oded and divided into the same sub grouping.
The A subgroupings are paired with the B sub­
groups to obtain the 70 possible 4-out-of-8 code
;;ombinations. The 4a (1) group pairs with the
0b(1) group to give one combination; the 3a(1)
group pairs with the Ib(1) group to give 16
;;ombinations; and so on, as indicated in Figure
12-14. The 0(1) subgroup is redundant, and,
therefore, it is not used.

LOCAL ESS PROCESSORS 481

The total number of decoder outputs from
each group is 15 instead of 16. Within a decoder
group, more than one output may be active
simultaneously. For example, the 1111 input
code can cause all gates to be active. This is
entirely satisfactory since only the gate in the
corresponding subgroup of the second decoder
(in this case the 0(1) subgroup) would be active;
gates in the other subgroups would not be active.
Hence, one and only one pair of decoder outputs
is active. This condition uniquely defines one of
the possible 70 combination.s in the 4-out-of-8
codes.

The decoder design provides the proper out­
puts which facilitate the implementation of the
self-checking 4-out-of-8 checker. The self-check­
ing circuit is realized by subdividing the checker
into two separate independent subcircuits. Each
subcircuit generates a single output whose values
are arranged to be complementary for normal 4-
out-of-8 input -codes. For any errors in the input
code, decoder, or check logic, the two outputs
are alike (00 or 11).

A totally self-checking checker has the advan­
tage of not requiring periodic tests in order to
ensure that any faults occurring in the functional
circuits will be detected immediately. The check
scheme involves pairing the subgroups, corre­
sponding to exactly four I's, as follows:
Oa(1) - 4b(1), la(1) - 3b(1), 2a(1) - 2b(1), 3a(1)
- Ib(1), 4a(1) - 0b(1). An output is generated
for each pairing. The alternating pairs are divid­
ed into separate groups, f and g, as indicated in
Figure 12-15. Since only one pair will be active
for a correct 4-out-of-8 input, the response from
f and g will be 10 or 01 for the normal operating
condition. If the input is other than a 4-out-of-8
code, the f and g outputs will be 11 or 00. For
example, if the input is 11100011, the 3a(1),
2a(1), la(1), and Oa(1) from the A group and the
2b (1), Ib (1), and 0b (1) from the B group will be
active. This means two pairs of subgroups will be
active: 3a(1) - Ib(1) in the f group and 2a(1) -
2b (1) in the g group. The alternating pairs are
chosen to be in separate groups to ensure that

482 THE PRACTICE OF RELIABLE SYSTEM DESIGN

4
~

4b(1){_ ~ I-
~--~ 1-- -r- r-

r

I-

(I:: I-
3b(1) -.rr-

A B "\ I --
4 I 4 ~ I-

~U- Redundant ~ '-

OA1) not needed
_ 4

b
(1)

".. --C]: r-1-- - -
--- ~---
101(1) ~ 3b(1) I-
f---- f----
2A1)

;!:~~~ n-----
3A1) 1b(1)
--- -
4A1) ~ °b(1) <L: '--- I.....,;,-

Decoder Decoder 2b(1) --
("' l ./ I 4 4 6 6 4 4 -

Self-checking re- I--
checker

(see Figure 12-16) --, , rr-~
'--.r-J '-v--I '-v-J f g

~--o= - - - -
1 4X46x64X4-1 "..

1 + 16 + 36 + 16 + 1 = 70 Combinations

0-....
1b(1)

'- RJ----- - -
Ob(1)t

Decoder

Redundant
not needed

Figure 12-14. 4-out-of-8 decoding arrangement.

A B

g

:igure 12-15. General diagram of 4-out-of-8
:heckero

when there is more than one pair active, the
°esultant fg output is 11, representing an input
with more than four 1 'so If the input contains less
:han four. 1 's, none of the four pairs will be
lctive. For example, if the input is 01110000, the
Ja(1), 2a(1), la(1), and Oa(1) of the A group and
:he 0b (1) of the B group will be active. These are
)utputs from each group, but none of them
l)elong to a pair, hence, the fg output is 00,
::orresponding to an input combination with less
than four 1 'so The logic implementation of the 4-
:mt-of-8 checker is shown in Figure 12-16.

The 0 (1) subgroup represents the condition of
1 or any number of 1 's in the 4-bit input. This
means the 0(1) gate is always active and redun­
dant. The pairing of 4a (1) - 0b(1) does not need
to include the Ob (1) subgroup at all. Its gate and
output is ignored in the implementation.

The FROM and TO decoder outputs fan out to
various functional units for controlling logical
operations or data transfers within the CC.
Those that go to the data transfer logic control
the gating of data from one register to another
via the data bus. The circuitry of this functional
block is partitioned on a 2-bit slice; all logic
gates associated with the two bits are contained
on a single circuit board. Since the decoder
outputs fan out to 2 bits, any malfunction of the
control within a circuit board would affect only
those 2 bits of data. When the word is used at a
later time, the error will be detected by the parity

LOCAL ESS PROCESSORS 483

check on the data. Consequently, it is sufficient
to check the control signals prior to entering the
data transfer block. This is also true for the data
manipulation block since the circuitry is dupli­
cated.

A number of microoperations consist of set­
ting or clearing individual flip-flops or enabling
dedicated paths where the use of a single TO or
FROM field crosspoint would be inefficient. A
miscellaneous decoder is provided; it takes in­
puts from both the TO and FROM fields. In this
way, a 10 X 10 matrix (100 crosspoints) is gener­
ated by assigning only 10 of the 70 combinations
from each of the TO and FROM fields. Most of
these types 'of crosspoints control duplicated
circuitry; hence, the decoding gate itself is dupli­
cated. A fault in this area will result in an error
in the data path and will be detected by a parity
check.

Data Registers

There are two types of internal data registers:
general purpose and special purpose. The latter
type is dedicated to specific function~. Examples
are the interrupt status register (IS) and the error
register (ER). The general-purpose registers are

f 1;

f = 1a(1) ·3b(1) + 3a(1)· 1b(1)

8 = 4b(1) + 2a(1)· 2b(1) + 4a(1)

Figure 12-16. 4-out-of-8 checker.

484 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Circuit boards

DDDDD

P1 = Parity Over bits 0,1,2,3,4,5,6,7

P2 = Parity Over bits 8,9,10,11,12,13,14,15

Figure 12-17. Layout of general registers.

involved with the handling of data associated
directly with the instructions. The checking of
the data transfer logic is done by partitioning
two bits of the register on a single circuit board
and then carrying two parity bits. This partition­
ing and the definition of the parity bits is illus­
trated in Figure 12-17, with the first circuit board
containing two bits of every general-purpose
register. Partitioning the registers in this way
ensures that any fault on a circuit board will not
affect more than two bits of any register. This
also ensures that the fault will be detected by the
two parity bits. If all of one register's bits were
grouped on a single board, a catastrophic failure
of that board could affect all of the bits, and the
failure would not necessarily be detectable by
the two parity bits. The main memory is also
organized as a 2-bit slice per circuit pack plus
two parity check bits. A consistent parity check
is done throughout the entire system; I/O is
included.

For any data transfer, the information from
the source register is checked by the parity
checker at a common point: the data bus. In a
register-to-register transfer, the data in the desti­
nation register are not checked. This is satisfac­
tory since it will be checked when the data are
used either to address the store or to be operated
on by the data manipulation logic.

Data Manipulation Logic (DML)

The DML contains rotation, Boolean function of
two variables, first zero detection, and fast bi-

Bus

Error

Figure 12-18. Duplicated data manipulation logic.

nary ADD. The DML is duplicated and matched
to allow full checking in this area. Other coding
techniques, such as parity prediction and residue
coding, are available for arithmetical functions.
However, for all logical functions of two varia­
bles, duplication is the simplest method of check­
ing. Duplication eliminates the need for checking
if the data arrived at the modification logic
correctly.

As shown in Figure 12-18, a match circuit
detects faults, and a parity generation circuit
supplies parity on the DML output to interface
with the rest of the system.

1/ 0 Channels

The 20 I/O channels are 6.67-MHz serial chan­
nels. Each channel has 20 subchannels. Figure
12-19 shows the data flow from the processor to
the I/O buffers. Three of the general-purpose
registers, R9 through R 11, are used; R9 loads the
control buffer (lOS), RIO loads the data buffer
(100), and RII receives data from the I/O

Data bus

Error

CH.
decode
check

Micro
Data instr

LOCAL ESS PROCESSORS 485

r----------- - --- - --------l
I
I
I
I
I
I
I
I
I

: SCHO

i
I CH.O L ______________________ ~

---------------------..,

CH.1

I
I
I
I
I

-----------------------~

----------------------,
I

SCH1

~~_+----~ CH.19 l ______________________ ...J

Figure 12-19. I/O channel structure.

486 THE PRACTICE OF RELIABLE SYSTEM DESIGN

channel. All command and selection signals are
encoded in 3-out-of -6 codes and decoded to l­
out-of -20 codes. The channel address stored in
R9 is used to direct the data and microinstruc­
tions to one of the 20 specified main channels.
The decoding of the enable address is done
individually in each main channel, with the
output returning to a common point for check­
ing. This is done to ensure that only the right
channel is enabled. The command decoding and
sub channel selector within each channel are sim­
ilarly checked for proper decoding of 3-out-of-6
codes. The data messsage containing two parity
check bits from RIO is transmitted by the chan­
nel and checked by the peripheral unit. In addi­
tion, prior to transmission of the message, the
data are brought back by the microprogram
sequence to the data manipultion logic and com­
pared with the content of RIO to ensure that the
data have been loaded properly. Messages re­
ceived from the peripheral unit also have two
parity bits, which are checked when they are
placed on the bus.

Maintenance Channel (MCH)

The MCH is used for interprocessor communica­
tion, as well as for the diagnosis of one processor
by the other processor. The MCH's structure is
similar to the I/O channel and, therefore, the
checking technique is the same. The data field
uses the standard 2-bit parity in order to remain
consistent with the rest of the processor. The
command field is encoded in 3-out-of-6 codes.

Method of Checking Error
Detection Circuits

Any circuitry used for checking purposes is
incorporated as part of the system. Such circuitry
should be as fail-safe as possible so that a failure
in the system will cause a failure alarm. It has
been shown that such a check circuit can be
realized if the output is in the form of a I-out-

of-2 code, with 01 or 10 for the normal operation
and 00 or 11 for the error condition [Carter,
Duke, and Jessep, 1971]. Ultimately, these two
outputs must be monitored to generate a single
error output.

The final gate is not completely fail-safe. A
failure in this gate will prevent the circuitry from
giving any error indication, and faults normally
detected will be ignored. A good design allows
only a small portion of the detection hardware to
be non-fail-safe. The checking of the non-fail­
safe portion of the check logic is essential to
guarantee reliable operation of these circuits.
This is accomplished by a combination of hard­
ware and software. This approach has been
proved to be very effective in checking the check
circuits, with both hardware and software costs
kept to a minimum. The hardware provides the
means of simulating test conditions or circuit
faults which are extremely difficult or awkward
to set up normally in the system. A flip-flop
register, called the maintenance state (MS) regis­
ter, is used for this purpose. Each bit represents
an error or test condition. By appropriately
setting up the MS register and applying a well
designed test sequence, the detection circuitry
can be checked on a periodic basis to ensure its
proper application.

Method of Detecting Hard-Core
Circuit Faults

Although the system is designed to be nearly
self-checking, it contains a small hard-core por­
tion which must be operating properly prior to
running a program sequence. The circuitry
usually includes the sequencing logic of the
microprogram control and the addressing and
fetching of instructions from the main store. For
example, if the control to advance the program
counter (PC) cannot be activated, the PC re­
mains in one particular state. The same address
is used at each reading, resulting in the same
outputs from the store. The program, therefore,

; stuck at one location, executing the same
lstruction repetitively, with no means of ad­
ancing through the program sequence to pro­
.uce any useful work. The amount of hard-core
ircuitry is strongly dependent upon the system
.esign and is difficult to eliminate. In a duplicat­
d and matched system, when both processors
re running in a synchronous mode with imp or­
:mt outputs being matched continuously, any
rror in the hard-core circuitry will be detected
lstan taneously.

In the nearly self-checking design, the system
loes not run in a synchronous and match mode.
'his is done to reduce the complexity of soft­
mre, thereby increasing reliability. A hardware
imer is used to detect faults in the hard-core
ircuitry and also as a backup to protect the
ystem from control by an insane CC due to
ither hardware or software troubles. The use of
. timer depends upon the program meeting an
Ibstacle or a series of tests arranged in a maze.
f the program is successfully completed through
he maze, the timer is reset by the maintenance
ontrol program. On the other hand, if the
Irogram strays off course, the timer will time out
.nd the emergency action circuit will select a
lew configuration. The sanity test is repeated to
·erify a fault-free system.

The telephone processing program is cyclic in
lature. It returns to the starting point at each
can upon completion of a series of tasks re­
luired by the call processing [Andrews et aI.,
969]. Although the scan time may vary from
can to scan, depending on the amount of work
equired of the program, the maximum time can
Ie easily determined.

The use of a hardware timer is closely tied
(ith the system program. It is arranged so that a
eset is generated for the timer only if the
irogram proceeds through the scan correctly
vithin the prescribed period. If the program
leviates from the normal course, no reset will
Iccur. In this case, the timer automatically times
lut, stops processing, and switches to the stand­
»y system.

LOCAL ESS PROCESSORS 487

There are two timers, one located in each
processor; both are active at all times. Duplica­
tion is necessary in order to guarantee that the
system be capable of recovery. It is possible that
a single fault can disable one processor and its
timer, thus necessitating the standby to perform
the function. The timers are periodically reset by
the on-line program. If they are not reset, the on­
line timers will time out first. If the on-line timer
does not work, the off-line timer will perform the
task at a later time.

Recovery Techniques

Fault detection is the first and most important
step in realizing a highly reliable system. Two
other functions of equal importance are: 1) rapid
recovery of the system to process calls, and 2) the
protection of calls in progress in face of either
hardware or software difficulties. This means the
mechanism for switching controls must be highly
reliable. Proper steps have been taken to give a
smooth transition in the transfer of controls. In
the design of the system, the combination of
hardware and software is so intertwined as to
provide the utmost protection against an insane
CC from taking control of the system. A rapid
and successful recovery is achieved by a combi­
nation of hardware and software so that continu­
ity is maintained [Kennedy and Quinn, 1972].

Automatic Recovery

When an error is recognized in the on-line
processor, several things may happen depending
on the type of error. Error signals are buffered in
the error register (ER) for diagnostic purposes.
In addition, the error signals are sorted out and
divided into three groups, with each group caus­
ing a different set of system actions. The least
severe of the three are the errors associated with
the I/O or MCH. These errors will cause an
interrupt in which the processor has complete
control in determining the exact cause of the

488 THE PRACTICE OF RELIABLE SYSTEM DESIGN

trouble. If the error is a transient fault, it will be
recorded and compiled for later analysis. If the
error is determined to be a hardware fault within
the switchable block of the processor, the inter­
rupt program will initiate a reconfiguration to
the standby machine by means of the M CH.
This would be an orderly switch to the other
processor; there would be no detrimental effect
on the system.

The second type of error involves faults occur­
ring in the standby portion of the system. These
faults directly influence the on-line operation.
For example, the system is organized to operate
both stores asynchronously. Whenever data are
written into the on-line store, they are written
into the off-line store simultaneously. The pro­
cessor waits for a store completion signal from
both stores before proceeding with the next
operation. If a response signal originates only
from the on-line store, there is a 32-JLs pause, and
then a special timer times out and generates an
error signal, indicating trouble in the off-line
store. Under this condition, the processor is
interrupted at the microinstruction level and
appropriate action is taken to continue call pro­
cessing with the standby store isolated.

The third type of error involves hardware
faults within the on-line processor. An extension
of the previous discussion will serve as a good
example: If the store completion signal is re­
ceived from the standby store and not from the
on-line store, this error signal causes the system
to switch to the standby configuration. In this
situation, the system momentarily "hangs up." A
restart in the standby machine would initialize
the processor and continue with call processing,
affecting, perhaps, only one call in the transient
state.

Numerous check circuits are designed and
integrated into the system. As soon as an error is
detected, immediate action takes place to recon­
figure the system into an error-free working
system. In addition, duplicated hardware timers
are provided to back up undetected hardware
faults or software bugs which cause the program

to go astray. The recovery process involves two
steps:

Step I: Reconfiguration
Step 2: Restart or initialization-to enable the new

processor configuration a smooth transition
into full control of the system.

When a switch to the standby processor oc­
curs, it must be initialized to a known state in
order to start smoothly. This operation is divided
into three stages, or levels. The first stage in­
volves the elementary control of the micropro­
gram store, ensuring that it can start and execute
a sequence of microinstructions properly at a
predetermined store location. This is done by
hardware before the first microcycle. The opera­
tion consists of:

I. Setting the MAR to a predetermined address
2. Setting clock circuitry to a well-defined state
3. Setting the block hardware check (BHC) flip-flop to

inhibit detection hardware from possibly generat­
ing an error signal, thus initiating a switch opera­
tion

4. Resetting various control flip-flops (e.g., STOP,

FREEZE) which would directly affect the running of
the microprogram control.

The second stage of initialization is done by
microprogram. The primary function of the mi­
croprogram initialization is to set the various
control bits or registers which have direct influ­
ence on running the main program sequence.
F or example:

I. Set the block interrupt (BIN) flip-flop to inhibit the
external interrupt from interfering with the initial­
izing program.

2. Reset the update (UPD) flip-flop to inhibit the
standby store from being updated.

3. Set the isolate (ISO) flip-flop to prevent the off-line
store operation from interfering with the on-line
operation.

4. Reset the hardware timer to prevent it from timing
out.

In addition, the microprogram decides wheth­
er or not the main store contains valid program

lata. If it does not, the alternative would be to
witch the processor and try the other configura­
ion since the program data are duplicated, with
. copy in each store. The objective is to try to use
'ach of the two copies before resorting to the use
.f a tape unit as a final backup. The sanity of the
nachine depends very heavily on the memory
ontent. As a result, an arrangement (shown in
;'igure 12-20) has been implemented to allow a
ystematic way of recovering from system errors.
~he scheme uses two initialization sanity check
.its (ISCI and ISC2) as markers. They are part

LOCAL ESS PROCESSORS 489

of the system status (SS) register. Normally,
these two bits are in the 00 state. During the first

. time through the microprogram level of initiali­
zation (ISel = 0), this ISCI bit is set to the 1
condition as a marker for subsequent initializa­
tion. The system then proceeds to the main
program initialization. If the store contains cor­
rect program data, and if the system is fully
recovered from the initialization, this marker bit
will be reset. However, if the program data have
been badly mutilated, the main program may
wander aimlessly, executing bad programs.

Restart

¢ 1

Set
ISC2

=

= 1

Hardware
initialization

Microprogram
initialization

Reload
Mainstore
from tape

Finish
initialization

System
initialization

Switch Set
to other ISC1 = 0

processor ISC2 = 0

Restart System program

Figure 12-20. Initialization sequence.

} Hardware

Microprogram

Main memory

490 THE PRACTICE OF RELIABLE SYSTEM DESIGN

When a second initialization occurs within the
same CC and the first marker bit is set to the I
state, the initialization 'at the microprogram level
will set the second marker bit to 1. It then directs
the control to be passed on to the other processor
with the expectation that its main memory and
the rest of the hardware are in good working
condition. Otherwise, it will switch back to the
original processor and try to initialize for the
third time. Now, with both marker bits set to 11,
the microprogram initialization sequence will
recognize this condition and take the drastic step
of reloading the main memory from the backup
tape unit. These operational steps are depicted in
Figure 12-20.

The third and final stage of initialization is
done by the main program. This stage covers
both the internal status of the processor and the
main store data pertaining to the peripheral
equipment status, transient data, and various
data associated with maintenance of the system.
The internal state of the processor is saved in the
main memory for subsequent analysis by the
diagnostic program. Next, the various registers
are set to a prescribed initial state. All control
flip-flops, which were set up by the first two
levels of initialization to inhibit various functions
(such as block hardware check, block interrupt,
and inhibit store update, etc.) are now restored
to normal operation. This handling of the mem­
ory data, which have direct effect on the opera­
tion of the system, depends on the ability of the
main program to run successfully and the fre­
quency of initialization. Audit programs are
called in to validate and check for consistent
data in the memory and peripheral equipment
status. The initialization and recovery programs
clear selective portions of memory data and take
increasingly severe actions on the memory, de­
pending on the rate of system reconfiguration.· A
high rate indicates the system's inability to main­
tain its sanity.

Manual Recovery

Although the system is designed to recover auto­
matically under trouble conditions, it is conceiv-

able for the system to be unable to reconfigun
into a working mode. This can be caused b~

software bugs, hardware faults, or a combinatiOI
of both. The processor may be switching con tin
uously, spending all of its available time repeat
ing initialization work. In other words, the con
trol unit has gone insane and is incapable 0

making any rational decisions. In this case, th<
ultimate control of the system must be left to th<
judgment of qualified maintenance personnel
Hardware has been provided to give mainte,
nance personnel the capability of forcing th<
system into a fixed configuration and locking i'
into the mode. Under this condition, the switch,
ing operation would be made inoperative ane
any system initialization would be directed'to the;
locked processor. If both processors are defec·
tive, but to different degrees, manual contro:
makes it possible to lock out the most defectivt
one and hope that the system will limp along.

In addition to the manual force and lod
functions of the emergency action panel, provi­
sion has been made to manually generate initial­
ization and cause different categories of data in
the nonwrite protect area of the store be cleaned.
These categories include: I) transient data whicb
are associated with calls in a stable talking state~
and 2) recent change data which are associated
with changing of customer telephone lines. The
automatic recovery program is only allowed to
clear the transient data which affect telephone
calls in the non talking state. If an incomplete cal]
is interrupted, the caller must try again. On the
other hand, if the stable data are cleared, calls in
the talking state are interrupted and the talking
state is taken down. Hence, maintenance person­
nel are given the final control over recovery by
taking the additional action of clearing the more
important stable and recent change data por­
tions of the store.

Due to the importance of these controls, safe­
guards have been designed into the manual
switches and circuitry to protect against an acci­
dental switch operation. This is necessary to
prevent any inadvertent actions which may have
severe effects on the system. Emergency controls
are grouped together with system alarms and

.tatus indicators at the common system control
)anel, which is readily available to maintenance
)ersonnel. Additional redundancy has been de­
.igned into the system so that if both processors
He down a positive indication must be given to
naintenance personnel before the appropriate
lction can be taken. This is done by another
lardware timer in the common system control
Janel. While the on-line program is progressing
:hrough the programs correctly, it must periodi­
::ally reset this timer. If the on-line processor
joes not reset the timer, it will time out and set
the alarm circuit, immediately bringing the situ­
ition to the attention of the craftperson.

Diagnostic Hardware

Fault detection determines whether or not a
::ircuit is operating correctly, whereas fault diag­
n.osis localizes the failure to a few replaceable
::ircuit packs. Hardware has been integrated into
the design of this system to allow a systematic
approach for identifying failures via software.
The most commonly used procedure in fault
diagnosis [Bashkow, Friets, and Karson, 1963;
Agnew, Forbes, and Stieglitz, 1967] is based
upon the bootstrap technique. The hard-core
portion of the machine can apply test sequences
to itself. With a duplicated processor, the fault­
free machine is used to check or diagnose the
hard-core portion of the defective machine. Once
the hard-core portion has been checked and
found to be fault-free, it is used to start the
diagnostic test of another portion of the pro­
cessor. Therefore, subunits are tested before be­
ing used to check other subunits. This procedure
continues until the fault is pinpointed.

In order to facilitate this diagnostic procedure,
several important designs have been incorporat­
ed into the system. One is the MCH and its
associated circuitry. Its primary function is the
diagnosis of one processor by the other. The
MCH is an autonomous portion of the processor
which, under control of the other processor, can
provide information about the state of the ma­
chine and exercise the machine at its most basic
level by direct access to the microprogram con-

LOCAL ESS PROCESSORS 491

trol. Another hardware feature is the mainte­
nance instruction, which provides complete ac­
cess to the system at the most elementary level of
hardware.

Maintenance Channel facilities

The MCH interconnects and provides the main
source of communication between the two pro­
cessors. As shown in Figure 12-21, the MCH is a
high-speed (6.67 MHz), serial, full duplex chan­
nel. This method of communication reduces the
number of leads at the expense of additional
hardware, making the interface easier to main­
tain. Since there are so few leads, the processors
can be said to be "loosely interconnected"; they
are isolated from each other in terms of hard­
ware faults. That is, a fault in one processor will
not affect the operation of the other processor.

The basic structure of the MCH shown in
Figure 12-21 consists of a transmit-receive regis­
ter (MCHTR), a command register (MCHC),
and a buffer register (MCHB). The format of a
MCH message is 20 bits of data, 2 parity check
bits, and 8 bits of command. Although the
processor is essentially a 16-bit machine, there
are several 20-bit registers for store addressing.
Consequently, the MCH message is dictated by
the widest data word. For 16-bit data fields, the
high four bits are not used. The commands are
coded in 4-out-of-8 codes for ease in decoding
and checking. The decoded outputs are used to
control the primitive functions of the processor
so that elementary operations can. be observed
by the on-line machine. For example, under
MCH control, the clock can be stopped and
stepped along one clock phase at a time. In
between steps, the state of each phase is trans­
mitted back to the other processor for analysis.
In this way, the very hard-core is exercised to
permit a systematic check of the clock circuitry.

Another basic operation involves transmitting
microinstructions over the main channel and
executing them one at a time. This is done by
gating the received data in the MCHTR directly
into the MIR: The command part of the message
provides control for gating and executing the

492 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Data bus

MCHC (Command) ~---... } Other

8 Bits processor
.---~~--~~--~~~--~--~~~------

ER SS MIR MB .,
Special gating paths

Error

~
Micro­

instructions
Control signals

Figure 12-21. Maintenance channel.

microinstruction. This operation allows the on­
line processor to step the off-line machine along
one microinstruction at a time, thereby gaining
access to the entire machine at the most elemen­
tary level for fault diagnosis.

The MCHB is used to temporarily store the
data transmitted over the MCH. This data
source can be used for a variety of operations.
For example, in a READ-STORE operation, assume
a 20-bit address has been received and buffered
in the MCHB at the receiving end. When execut­
ed, the maintenance messages which follow (con­
taining microinstructions) will gate the content
of MCHB to the store address register (SAR)
and read store at that address. In order to bring
the store output back into the on-line processor,
two more maintenance messages must be sent.
The first message gates the store output to the
MCHB, and the second message gates the con­
tent of the MCHB to the MCHTR and is then
transmitted back to the on-line processor. Simi­
larly, the data stored in the MCHB can also be
used to write into the store. These operations

allow the on-line processor to check the off-line
store control circuitry. The MCHB, in addition
to buffering the incoming data which are to be
directed to any internal register within the pro­
cessor, may also be used to buffer data which are
to be returned to the transmitting processor (on­
line processor).

The MCH registers are connected to the com­
mon data bus to permit data transfer to any of
the internal registers. Also, there are dedicated
paths, as shown in Figure 12-21, to allow special
registers (such as the error register, system status
register, etc.) to be fetched directly without the
aid of microinstructions. Some of these registers,
particularly in the error register and the system
status register, contain information which may
be helpful to the diagnostic program, and, hence,
must be saved prior to any diagnostic procedure.

Finally, the controller block, as shown in
Figure 12-21, provides all of the necessary timing
and sequencing operations that the MCH needs
to transmit and receive messages. The off-line
processor must be able to derive timing signals

directly from the incoming serial data stream
since the processor's clock may be stopped.
Therefore, the MCH circuitry, which is closely
integrated into the processor, is really an exten­
sion of the other processor since the two are
connected by means of an "umbilical" cord.

Microdiagnostic Techniques

After the circuits associated with the micropro­
gram control and the main store operation have
been checked and verified to be operational, the
off-line processor can execute instructions and
initiate diagnostic procedures by itself. The mi­
croinstruction, being the most elementary opera­
tion, provides the best possible access to pinpoint
faults within the machine. Therefore, if the diag­
nosis is performed at the microprogram level,
isolating faults to a few replaceable circuit packs
becomes a more efficient and effective process.
The ideal situation would be to store the diag­
nostic routines on low-cost units and then page
them into a writable microprogram store as
needed [Bartow and McGuire, 1970]. However,
in this system, the microprogram store is entirely
ROM. This is necessary for reasons of cost and
reliability. Therefore, it is not practical to store
the diagnostic in the ROM because of the in­
crease in the size and cost of the microprogram
store.

In order to achieve equivalent microdiagnostic
capability, a special microinterrupt (MI) instruc­
tion has been incorporated into the design to
allow the machine to be exercised at the micro­
program level. This is done by allowing the
microsequences to be stored in the main memo­
ry. The MI instruction simply puts the processor
in the interpret mode. While in this mode, the
processor stops using the outputs from the mi­
croprogram memory and fetches microinstruc­
tions from successive main memory words. Any
number of microinstructions may now be execut­
ed from main memory until the microinstruc­
tion, which turns off the intrepret mode, is given.

There are several advantages to the microin-

LOCAL ESS PROCESSORS 493

terpret technique. First, it will allow mainte­
nance routines to be stored in low-cost tape units
and page.d into main memory as needed at a
considerable cost reduction. Since the micropro­
gram memory is a ROM, the microprograms
stored in main memory can be changed much
more easily than if they were stored in micropro­
gram memory. Secondly, the interpret mode will
allow microprogram sequences to be checked out
before they are encoded in ROM. Lastly, and
most importantly, the maintenance programmer
has complete access to every control signal that
exists within the machine.

Microprogram sequences in the interpret
mode do run slower than the native mode since
the main memory is slower than the micropro­
gram memory. This is not an important disad­
vantage since diagnostic programs are normally
run in the standby machine. However, the mi­
croinstructions are executed at the same speed.

Repair

When the fault has been diagnosed and located
to within a few circuit packs, maintenance per­
sonnel must replace the packs one at a time until
the defective one has been found. In pack re­
placement, the power must be turned off to avoid
the harmful effects of breaking current on the
connector. Since there are a number of leads
from the processor to various functional units,
power must be turned off "gracefully" so as not
to cause any disturbance to the working system.
Consequently, the operation is arranged in a
sequence to ensure that no harmful transient
signals are generated in the process. Similarly,
the same protection is given in turning power on.

During the repair process, the working system
is manually locked into a selected configuration.
This is done to avoid any error conditions which
may cause the system to switch control to the
machine under repair. Since it is under repair,
the machine is without power. Therefore, if an
error occurs in the working system, it would be
better to restart and attempt to run again with

494 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the same configuration. The hardware required
to prevent any interaction from the machine
under repair is minimal, but it must be integrated
into the design at the beginning.

Hardware Implementation

Maintenance has been made an integral part of
the 3A CC design. It uses the standard No. lA
ESS logic family with its associated packaging
technology [Becker et aI., 1977]. Up to 52 silicon
integrated circuit chips (SIC's), each containing
from 4 to 10 logic gates, can be packed on a 3.25
by 4.00-in. lA ceramic substrate. The substrate is

mounted on a 3.67 by 7-in. circuit board with an
82-pin connector for backplane interconnec­
tions. In the 3A CC, the 53 lA logic circuit packs
average about 44 SIC's, resulting in an average
of 308 gates per circuit pack, or a total of 16,482
gates. Figure 12-22 shows a detailed functional
diagram of the 3A CC and the percentage of
logic gates used in each functional unit.

Another insight into how the gates are used in
the 3A is shown in Figure 12-23. The figure
shows the relationship between working gates,
maintenance access gates, and self-checking log­
ic. The working gates are the portion which
contribute to the data processing functions,
while the maintenance access gates provide the

Total gates = 16,482

Console
Panel

Console
panel

functions

6.0%

Data bus)'

Special
registers

16.4%

Main store
bus and seq

8.4%

Clock
and

timing logic
5%

Maintenance
channel
access

5.2%

7.0%

General
registers

10.6%

1/0 1/0
CH No.1 CH No. 0

Figure 12-22. No. 3A CC gate count.

To
other
c.c.

Functional execution
54.29%

Decoder and
clock timing

check

:igure 12-23. Logic gates in No. 3A Cc. Total gates
= 16,482.

rlecessary access to make the CC maintainable
:i.e., maintenance channel and control panel).
The self-checking gates are required to imple­
ment the parity bits, the check circuits, and the
duplicate circuits that make the CC self-check­
ing. As indicated, about 30 percent of the logic is
used for checking. The design covers a high
degree of component failures. It is estimated
about 90 to 95 percent of the faults would be
detected by hardware error detection logic. Cer­
tain portions of the checkers, timers, and inter­
rupt logic are not checked. These circuits are
periodically exercised under program control to
ensure that they are fault-free.

SUMMARY

In order to achieve the reliability requirements,
all ESS subsystem units are duplicated. When a
hardware failure occurs in any of the subunits,
the processor is reconfigured into a working
system around the defective unit. The partition­
ing of subsystem units into switching blocks
varies with the size of the ESS processors. For
the medium- or small-size processors such as the
No.2 or the No.3, the central control, the main
memory, the bulk memory, and the store bus are

LOCAL ESS PROCESSORS 495

grouped as a single switch able entity. A failure in
one of the subunits is considered a failure in the
switchable block. Since the number of compo­
nents within a switchable block is sufficiently
small, this type of single-unit duplex configura­
tion meets the reliability requirement. For larger
processors such as the No. 1 or the No. lA, the
central control, the program store, the call store,
the store buses, and the bulk file store are treated
individually as switchable blocks. This multi-unit
duplex configuration allows a considerable num­
ber of combinations in which a working system
can be assembled. The system is down only
when two simultaneous failures occur, one in the
subunit and the other in the duplicated subunit.
A greater fault tolerance is possible with this
configuration. This type of configuration is nec­
essary for the large processor because each sub­
unit contains a larger number of components.

The first generation of ESS processors, which
includes the No. 1 and the No.2, have provided
commercial service since 1965 and 1969, respec­
tively. The No. 1 ESS serves large telephone
offices (metropolitan); the No.2 is used in me­
dium-size offices (suburban). Their reliability re­
quirements are the same. Both processors de­
pend on integrated maintenance software, with
hardware that must 1) quickly detect a system
failure condition, 2) isolate and configure a
working system around the faulty subunit, 3)
diagnose the faulty unit, and 4) assist the main­
tenance personnel in repairing the unit. The
primary detection technique is the synchronous
and match mode of operation of both central
controls. Matching is done more extensively in
the No. 1 than in the No. 2 since cost is one of
major considerations in the design of the No.2
Processor. In addition to matching, coding tech­
niques, diagnostic access, and other check logic
have been incorporated into the basic design of
these processors to realize the reliability objec­
tives.

The widespread acceptance of the No.1 ESS
and the No.2 ESS has created the need for a
second generation of ESS processors: the No. IA
and the No. 3A. They offer greater capability

496 THE PRACTICE OF RELIABLE SYSTEM DESIGN

and are also more cost-effective. Both processors
use the same· integrated technology. The IA
Processor extends its performance range by ~
factor of four to eight times over the No. 1
Processor by using faster logic and faster memo­
ry. The IA design takes advantage of the experi­
ence gained in the design and operation of the
No. I ESS. The No. IA Processor provides
considerably more hardware for error detection
and more extensive matching of a large number
of internal nodes within the central control. The
design of the No. 3A Processor has benefited by
the experience gained from the No. 2 ESS. A
major departure in the design of the 3A Pro­
cessor from the design of other ESS processors is
the nonsynchronous and the nonmatch mode of
operation. The No. 3A Processor uses self-check­
ing as primary means of error detection. Another
departure is in the design of the No. 3A Pro­
cessor's control section; it is microprogrammed.
The No. 3A Processor's flexibility permits emu­
lation of the No.2 Processor quite easily.

ACKNOWLEDGMENT

The author would like to acknowledge the kind
assistance of Pat Loprete, Jr.

REFERENCES

Agnew, Forbes, and Stieglitz [1967]; Anderson [1971];
Andrews et al. [1969]; Ault et al. [1964, 1977]; Bartow
and McGuire [1970]; Bashkow, Friets, and Karson
[1963]; Becker et al. [1977]; Beuscher et al. [1969];
Bowman et al. [1977]; Browne et al. [1969]; Budlong
et al. [1977]; Cagle et al. [1964]; Carter, Duke, and
Jessep [1971]; Chang, Smith, and Walford [1974];
Cook et al. [1973]; Downing, Nowak, and Tuome­
noksa [1964]; Fleckenstein [1974]; Genke, Harding,
and Staehler [1964]; Goetz [1974]; Harr, Taylor, and
Ulrich [1969]; Irland and Stagg [1974]; Keister, Ketch­
ledge, and Lovell [1960]; Keister, Ketchledge, and
Vaughan [1964]; Kennedy and Quinn [1972]; Man­
digo [1976]; Nowak [1976]; Seley and Vigilante [1964];
Smith [1972]; Spencer and Vigilante [1969]; Staehler
[1977]; Staehler and Watters [1976]; Storey [1976];
Tsiang and Ulrich [1962].

Pluribus-An Operational Fault-Tolerant
Mu Iti processor

Eric S. Elsam David Katsuki

John G. Robinson

William F. Mann Eric S. Roberts

F. Stanley Skowronski

Abstract

The authors describe the Pluribus multiprocessor system,
outline several techniques used to achieve fault-tolerance,
describe their field experience to date, and mention some
potential applications. The Pluribus system places the
major responsibility for recovery from failures on the
software. Failing hardware modules are removed from
the system, spare modules are substituted where avail­
able, and appropriate initialization is performed. In
applications where the goal is maximum availability
rather than totally fault-free operation, this approach
represents a considerable savings in complexity and cost
over traditional implementations. The software-based
reliability approach has been extended to provide error­
handling and recovery mechanisms for the system soft­
ware structures as well. A number of Pluribus systems
have been built and are currently in operation. Experi­
ence with these sytems has given us confidence in their
performance and maintainability, and leads us to suggest
other applications that might benefit from this approach.

INTRODUCTION

The multiprocessor discussed in this paper had
its beginnings in 1972 when the need for a
second-generation interface message processor
(IMP) [Heart et aI., 1970] for the ARPA network
(ARPANET) [Roberts and Wessler, 1970; Wolf,
1973b; Heart, 1975] became apparent. At that
time, the IMP's Bolt Beranek and Newman
(BBN) already installed at more than thirty-five

© 1978 IEEE. Reprinted, with permission, from Proceedings
of the IEEE. Vol. 66, No. 10, October 1978, pp.1146-1159.

497

Eric W. Wolf

1133

498 THE PRACTICE OF RELIABLE SYSTEM DESIGN

ARPANET sites, were Honeywell 316 and 516
minicomputers. The network was growing rapid­
ly in several dimensions: number of nodes, hosts,
and terminals; volume of traffic; and geographic
coverage (including plans, now realized, for sat­
ellite extensions to Europe and Hawaii). A goal
was established to design a modular machine
which, at its lower end, would be smaller and less
expensive than the 316's and 516's while being
expandable in capacity to provide ten times the
bandwidth of, and capable of servicing five times
as many input-output (I/O) devices as, the 516
[Heart et aI., 1973]. Related goals included great­
er memory addressing capability and increased
reliability.

We decided on a multiprocessor approach
because of its promising potential for modula­
rity, for cost per performance advantages, for
reliability, and because the IMP algorithm was
clearly suitable for parallel processing by inde­
pendent processors.

The IMP's communicate with host computers
and with asynchronous terminals (IMP's with
terminals attached are called TIP's [Ornstein et
aI., 1972].) Hosts use the network of IMP's and
lines to communicate data messages of up to
about 8,000 bits; the IMP's divide these mes­
sages into packets up to about 1,000 bits long.
The functions performed by the IMP are those
of a communications processor; they include
storing and forwarding packets, generating head­
ers, routing, retransmission, error checking,
packet and message acknowledgment, message
assembly and sequencing, flow control, line error
detection, host and line status monitoring, and
related housekeeping functions. The IMP's also
send status and performance data to a network
control center (NCC) which monitors and con­
trols network operations [McKenzie et aI., 1972;
Ornstein and Walden, 1975]. The ARPANET
IMP's operate 24 hours a day, often in unattend­
ed locations.

In applications of this sort, reliability require­
ments differ from those commonly found in
other real-time systems. The IMP network forms

only a part of a larger system; even a perfectly
operating network is not sufficient to guarantee
perfect overa]l system performance. Failures in
the host, or in the interface between the host and
IMP, may still introduce errors. What this means
is that some sort of host-process to host-process
error control is required for critical applications;
the best that the IMP network can provide is a
good environment for host-level error recovery
processes. These processes need a network which
rarely makes errors and which, when such errors
do occur, can effectively process host-to-host
retransmissions. In other words, occasional
dropped messages and brief outages are accept­
able; outages of more than a few minutes are
undesirable even if scheduled in advance.

Once we realized that what was needed was
not so much reliability as the ability to recover
gracefully from failures, we began to see ways to
provide a much more robust network by coding
this type of fault-tolerance into our operating
system and application algorithms, and by in­
cluding special mechanisms for bypassing and
localizing faults in our already-modular' hard­
ware designs. The machine that emerged [Heart
et aI., 1973, 1976; Bressler, Kraley, and Michel,
1975; Ornstein and Walden, 1975; Ornstein et
aI., 1975] we call the Pluribus (Figure 13-1 shows
a typical Pluribus installation). I t provides simple
checking procedures such as parity, amputation
features which allow failing equipment to be
isolated ana., optionally, redundant components.
The software uses these features to detect, report,
and isolate hardware failures. Since the symp­
toms of many subtle software failures are similar
to those of intermittent hardware errors, fault­
tolerant procedures which adequately recover
from one can also recover from the other.

There is a spectrum of fault-tolerant ap­
proaches which are appropriate in various appli­
cations [Avizienis, 1975, 1976]; our approach
opts for a relatively inexpensive system which
can quickly reinitialize itself, omitting trouble­
some components. This approach is especially
suitable for applications in which brief outages

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 499

Figure 13-1. The Pluribus front-end processor
at Bolt Beranek and Newman's Research
Computer Center.

can be tolerated and where overall correctness
can be ensured by other techniques.

PLURIBUS SYSTEM
ARCHITECTURE

The Pluribus may be characterized as a symmet­
ric, tightly coupled multiprocessor, designed to
be flexible and highly modular. Modules are
physically isolated to protect against common
failures, and a form of distributed switch is
employed for intermodule communications. In
this section, we discuss these characteristics and
describe the hardware architecture of the Pluri­
bus.

Major Design Decisions

In order to make the basic operation of the
Pluribus clearer, it is useful to examine some of
the major design decisions that have directed its
development, and to consider those decisions in
the context of other options for multiprocessor
system design. We have identified three areas
which we believe are key aspects of the Pluribus

approach to multiprocessing, each of which is
considered in greater detail below.

Processor Symmetry

One dimension of multiprocessing involves the
degree of inter-processor symmetry within the
system [Enslow, 1974, p. 83]. In this dimension,
one extreme might be a typical general purpose
computer system, including a central processor,
a front-end processor, and perhaps one or more
channel processors. Such an asymmetric system
is relatively inflexible in power 'since increasing
its central processing capacity requires the intro­
duction of a more po\\::erful central processor.
Building redundancy into an asymmetric system
can be expensive, since replication of all critical
resources involves duplicating virtually the
whole machine.

At the other extreme are systems like the
Pluribus in which all processors are identical. In
such systems, the advantages of redundancy and
flexibility are much easier to achieve since they
include only one type of processing unit. Even
without explicit redundancy, a symmetric system
can provide graceful degradation of throughput
when a processing element fails. Pluribus sys­
tems which are sized for fully redundant opera­
tion include just one extra processing module;
thus the degradation which results from failure
of any processing module consists only of a loss
of excess throughput capacity.

Processor Coupling

Another multiprocessing dimension is the level
at which processors cooperate to accomplish
overall system requirements. At one extreme the
processors might run totally separate programs
under the direction of a supervisor program,
communicating only at arm's length. Such pro­
cessors may be described as "loosely coupled"
[Enslow, 1974, p. 15]. At the other extreme,
which is characterized by array processors such

500 THE PRACTICE OF RELIABLE SYSTEM DESIGN

as ILLIAC IV [Barnes et aI., 1968], the pro­
cessors run in lockstep, with a single program
operating simultaneously on a number of data
streams. The Pluribus lies between these ex­
tremes. Its processors are tightly coupled in the
sense that all processors can access all system
resources and perform all parts of the operation
program; they operate independently except for
necessary software interlocks on specific I/O
devices and data structures.

flexibility

Although one of the goals in the creation of the
Pluribus was to develop a machine with high
throughput, this goal was complemented by the
need for a smaller, cheaper machine with rela­
tively low throughput. Similarly, although the
Pluribus was conceived as having at least two of
every resource to permit recovery after failures,
it was also clear that not all applications required
or could afford a fully redundant system. Thus it
was desirable for the architecture to be flexible in
at least two ways: The size-flexibility goal was to
smooth large incremental steps in the cost-per­
formance curve by utilizing a highly modular
design, which could provide processing capacity
well beyond our anticipated needs. Flexibility in
the area of fault-tolerance and fault-recovery
was a related goal, since the need for fault­
tolerance involves primarily economic consider­
ations arid we wanted to allow our customers to
select fault-tolerance features independent of
their throughput requirements. Also implied in
each of these goals was the requirement for easy
expansion to meet changing requirements.

System Overview

A central requirement in any multiprocessor is
that processing elements be able to communicate
both among themselves and with shared,
resources such as memories and I/O equipment.
Ease of communication is always desirable and
is vital in tightly coupled systems, since any

delays or unwieldiness would immediately im­
pact system operation and reduce programma­
bility. These considerations, together with a nat­
ural desire for symmetry and simplicity, led us to
adopt a unified addressing structure in which all
common memory and I/O devices share the
same address space. The Pluribus development
was strongly influenced by previous unified-bus
architectures in which processing, memory, and
I/O units share not only a common address
structure but also a single, time-multiplexed bus
(the DEC PDP-ll is perhaps the most familiar
example of this). Although multiprocessors
based on the unified bus are both extensible and
conceptually simple structures, they are vulner­
able to single failures anywhere along the bus. In
addition, the maximum throughput of such mul­
tiprocessors is limited both by the design band­
width of the bus as well as by contention for
common resources. To avoid these problems we
used a unified bus to create the functional mod­
ules which make up the system, but not to form
the main connection structure. We defined three
basic functional modules which share a common
address space but have separate intermodule
communications paths: processor buses, memory
buses, and I/O buses. A simplified system dia­
gram is shown in Figure 13-2.

(In the following sections we will often use the
term bus to mean a logical and physical module,
as in "processor bus," rather than just an inter­
connection system. All such usages will be itali­
cized for clarity.)

The system for interconnecting these modules
had several major requirements. It had to be
easily extensible to support as many as eight
memory or I/O buses (common buses) and eight
or more processor buses. It had to permit the
operating software to remove malfunctioning
modules from the system and incorporate newly
acquired or repaired modules. In addition, it had
to impose minimal cost penalties for smaller
systems, while scaling up smoothly to produce
large systems. Finally, it had to have no common
point of failure which could lead to total system
failure.

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 501

1 MByte common
p address space

Figure 13-2. A simplified view of the functional
modules in a typical Pluribus system showing their
interconnectivity. No physical relationships are im­
plied.

~e approach we finally adopted is similar in
function to a central crossbar switch although it
differs greatly in implementation. The crossbar
switch approach allows an extremely high-band­
width interconnection scheme and has been used
to advantage in several multiprocessors [Wulf
and Bell, 1972]. However, the usual implementa­
tion techniques are vulnerable to single-point
failures. To avoid these problems, we distributed
the components of the switch among the various
sy~tem modules in such a way that no single
failure points remain. Switch elements are called
bus couplers and consist of two circuit boards
connected by a cable.

The bus couplers function by recognizing a
range of addresses on processor or I/O buses,
and initiating an access request on the appropri­
ate common bus as a result. Since memory and
I/O buses share a 20-bit address space, bus
couplers must map l6-bit processor addresses
into 20-bit ,system addresses under program con­
trol (see Figure 13-3). In addition to handling
inter-bus communications, bus couplers perform
several other functions which will be described
later.

§
32 KByte Address space
processor of processor on

space remote bus

Local

Figure 13-3. Pluribus system address space, show­
ing the mapping of processor "local" address space
into the system space. "Backwards bus-coupling"
path from one processor bus through an I/O bus to
another processor bus is shown on the right.

Modularity

Since the basic Pluribus was modular at several
levels, an unusual degree of flexibility was avail­
able when we set out to define standard struc­
tures within the system. The three basic system
modules described above have clear logical func­
tions within the system, but their actual imple­
mentation depended on various tradeoffs be­
tween cost, throughput, and available physical
componen ts.

It was decided early that the goals of flexibility
and symmetry could be achieved by segmenting
the operational tasks into strips of code (task

502 THE PRACTICE OF RELIABLE SYSTEM DESIGN

distribution routines, task-oriented application
routines, timers, etc.) which could be run by any
available processor. The concept was that the
code should be both reentrant and accessible to
all processors at all times. The primary function
of the common memory modules is to provide
space for data buffers, program work areas, and
inter-processor communication areas. Code stor­
age is divided into two parts: lightly used code is
stored on common memory buses and is shared
between processors; heavily used code is repli­
cated in local memory on each processor bus.
This strategy minimizes contention for access to
common memory while holding down costs,
especially since, in most applications, only a
small part of the code is heavily used. The I/O
modules were intended to support both polled
low-speed I/O devices and high-speed interfaces
capable of direct memory transfers. Couplers
provide direct paths both from processor buses to
I/O buses for control and polling, and from I/O
buses to memory buses for direct memory trans­
fers.

All normal processor-to-processor communi­
cation occurs through locations in common
memory. However, to initialize the system, it
must be possible for one processor to access the
local memory and control registers of a pro­
cessor on a different bus. To allow this, the bus
couplers provide a limited reverse path through
any common I/O bus.

In the following sections, we describe the
physical implementation of these system mod­
ules and detail several support functions re­
quired by the architecture.

Physical System Structure

As mentioned in previous papers [Heart et aI.,
1973; Ornstein and Walden, 1975], we chose the
Lockheed SUE minicomputer as the point of
departure for our system. It is a 16-bit machine,
generally similar to the DEC PDP-II, which
incorporates a unified address structure and an
asynchronous, time-multiplexed bus. It also per­
mits the attachment of a flexible combination of

processors, memory, and I/O units. In contrast
to the PDP-II, the SUE has its bus arbitration
logic physically separated from the processor.
This feature permits a bus to have one or several
processors, or none at all. The Pluribus uses the
bus, arbitration logic, processors, memories, and
several minor I/O units of the SUE.

The basic Pluribus building block is the bus
module. This module contains a modified SUE
bus and card cage for up to twenty-four cards,
together with completely self-contained cooling
fans and power supply. Two bus modules can be
connected to form an extended bus. A Pluribus
system rack contains up to five bus modules, and
each rack is typically supplied with a separate
source of AC power. Systems sized to be fully
redundant allow any bus module or any rack to
be powered down for maintenance without af­
fecting system availability (see Figure 13-4).

Bus Structure (See figure 13-5)

A processor bus contains one or two processors
and their associated local memory, a bus arbiter,
and one bus coupler per logical path. Our cur­
rent applications require 8 to 12K words of local
memory for each processor. The flexibility of the
processor bus allows us to easily vary this param­
eter as memory prices or the requirements of the
application change.

The common memory bus contains an arbiter,
bus coupler cards for all the connected paths,
and enough memory modules to support the
application. Up to 512K words of common
memory can be supported in a system, although
that amount of memory would probably not be
concentrated on one memory bus. Typical Pluri­
bus systems have from 32K to 80K words of
memory on each bus, depending on the applica­
tion.

In addition to the bus arbiter and bus coupler
cards, an I/O bus also contains cards for each of
the various types of I/O interfaces that are
required, including interfaces for modems, termi­
nals, host computers, etc., as well as interfaces
for standard peripherals. The I/O bus also houses

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 503

Backplane
bus

Logic cards-+--~I-+

Blower

Figure 13-4. Physical organization of bus modules. Modules are independent Iy supplied
with power and cooling.

a number of special units, including I) a real­
time clock (R TC) which is used by the system for
timing processes and communications links, 2) a
special hardware task disbursing unit known as
the pseudo-interrupt device (PID) discussed fur­
ther below, and 3) a reload card which monitors
up to eight communication lines, watching for
(and processing) specially formatted reload mes­
sages from the outside world.

Inter-Bus Connection System

Since all processors in our system must be able
to perform any system task, buses are connected
so that all processors can access all shared
memory and control the operation and sense the
status of any I/O unit (see Figures 13-2 and
13-6).

To connect processors and common memory,
one card of a bus coupler is installed on a
common memory bus, and the other on a pro­
cessorbus. Similar connections are made from
every processor bus to every common I/O bus.
Coupler cards are connected by cables which
may be up to 30 ft. long, although most systems
require a maximum of 10 ft.

The memory or I/O end of a bus coupler
contains address-recognition circuitry and may
be strapped to recognize and pass on to the
memories or I/O devices any desired address
range. When a processor makes a reference to
common memory or I/O buses, the bus coupler
cards on the processor bus all map the 16-bit
address on the processor bus into a 20-bit system
address and pass it to bus couplers at the other
ends of the connecting cables. If the address is
within the recognition range of a memory or I/O

504 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Processor bus Memory bus 110 bus

Arbiter Arbiter Arbiter

Processor Bus coupler Bus coupler

Processor

8K memory Bus coupler Bus coupler

8K memory 8K memory Clock

Bus coupler 8K memory PID

Bus coupler

Bus coupler

Commu n ications
interface

. .
Communications

interface

Communications
interface

Figure 13-5. Local busing structure and contents of the three kinds of bus modules.

end bus coupler, it will request a service cycle on
its bus. Data from the selected memory cell or
device register are then passed back along the
coupler path to the processor. This feature differ­
entiates the system address space so that requests
for memory or I/O bus access only cause service
cycles on appropriate buses, thereby avoiding
unnecessary contention.

Given a bus coupler connecting each pro­
cessor bus to each common memory bus, all
processors can access all common memory; I/O
devices which do direct memory transfers must

also access the common m,emories. These I/O
devices are attached to as many I/O buses as are
required to physically accommodate the number
of devices and allow redundancy if necessary.
Couplers connect each I/O bus to each memory
bus. This coupler path is much like the processor­
to-memory coupler path except that no address
mapping needs to be done. I/O devices must
respond to processor requests for action or infor­
mation and in this respect the I/O devices act
like memories. Bus couplers are also used to
connect each processor bus to each I/O bus. Here

Power
supply

m = Bus coupler liJ 1/0 end

110 bus

1/0 bus

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 505

m = Bus e"ende'

~ = Bus .,bite,

~ P = Central
U processor

m = Ps~udo interrupt ~ = Communication l£J device ~ interface

~ = Bus coupler l!J processor end

~ = Bus coupler
~ memory end

~ = Real Ume clock

IMEMI = Memmy

Memory buses (2)

1/0 bus
extension

1/0 bus
extension

Figure 13-6. Logical organization of a typical Pluribus system, showing inter- connections of
the distributed switch (bus coupler) structure.

506 THE PRACTICE OF RELIABLE SYSTEM DESIGN

also, a mapping must be done between the 16-bit
processor address space and the 20-bit system
space (see Figure 13-3).

Processor buses need to access each other in
order to start and stop each other and reload
local memories. We provide this low bandwidth
interconnection by allowing a processor to ac­
cess another processor bus via its processor-to­
I/O bus coupler. The coupler provides a small (4-
word) mapping window from I/O space to each
processor's space. A processor accesses another
processor on a different bus by setting up and
referencing this "backwards bus-coupling" win­
dow in the system I/O space.

The coupler paths that connect processor
buses into memory and I/O buses have program­
settable enabling switches at their far (memory
and I/O) ends, thus permitting processors to be
cut into and out of ("amputated" from) the
system. The reverse paths in the processor-to­
I/O couplers also have enabling switches; nor­
mally the forward paths are turned on and the
backwards paths are shut off. Since these paths
represent a hazard whereby a "sick" processor or
device could damage the system, we have ar­
ranged that only by storing a password at the
proper address can a switch be changed. A
processor can neither enable nor disable its own
access paths but one processor, deciding that
another is sick and should be eliminated from
the system, can amputate the bus of the Qffend­
ing processor. Reinstatement of an amputated
bus happens in a similar manner.

Parity

To aid in detecting faulty bus couplers or defec­
tive memory, we compute and check parity
across all bus coupler paths using a parity com­
putation based on both data and address [U.S.
Patent Office, 1977]. The scheme detects both
"all zeros" and "all ones" failures. For writes to
common memory, parity is computed at the
processor or I/O end of the bus coupler and
stored in the memory cell with the data. When

the memory cell is read, the stored parity is
checked at the processor or I/O end of the bus
coupler. For access from processors to units on
the I/O buses we use "feedback" parity; for
writes to I/O the parity is computed by a special
card on the I/O bus. The parity is then sent back
up the coupler to the processor bus where it is
compared with parity computed on that bus. For
reads from I/O the special I/O parity card
computes parity and compares it with recomput­
ed parity on the processor bus.

Pseudo-Interrupt Devices

Real-time systems or, more generally, systems
requiring fast response, employ priority interrupt
mechanisms to direct the attention of the pro­
cessor to the most urgent tasks. Reliability and
load sharing requirements make it desirable that
any processor be able to service any I/O device,
but also raise such questions as which processor
to interrupt for servicing. We have opted for a
simple yet flexible method: each "interrupt
event" (DMA completion, RTC tick, software
events, etc.), instead of actually interrupting a
processor, writes a value associated with its
priority to a hardware queuing device called
PID. The software is designed to allow each
processor to put aside the context of its present
computation periodically and check thePID.
The PID, upon being read, will produce the
highest value that has been stored in it and
simultaneously delete that value from its internal
queue. The processor can then use that value as
an index to a table of tasks to be performed. The
software uses the PID in a similar manner: each
time a "strip" of code completes, it writes the
number of the next strip in that task to the PID.
When that becomes the highest number in the
PID, the next available processor will execute the
associated strip.

Our system does have hyo traditional inter­
rupts, however. One is a 60-Hz clock interrupt.
Each bus has its own 60-Hz clock, but concep­
tually this is an interrupt going to all processors;

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 507

.s main function is to timeout locked data
tructures. The other classical interrupt is the
ower-fail/power-restore interrupt; each pro­
essor handles a power-fail interrupt from its
wn bus in the traditional way. Furthermore, bus
oupler's connected to processor buses will pass
n any power-fail interrupt detected at their
lemory or I/O ends. A restoration of power
auses first a bus master-reset and then a pro­
essor interrupt. We have adapted this interrupt
lechanism to serve also as a bus activity watch­
og timer. If any bus fails to show access activity
:)r one second, a hardware timer fires, causing
n artificial power-restore reset and interrupt.
'his provides recovery from some illegal hard­
rare and software states.

~edundancy

'0 assure that a particular machine has enough
edundant resources to allow survival in the face
f component failures, we include at least one
xtra bus of each type so that a failure of anyone
esource, or the bus holding that resource, will
.ot result in system failure. This approach also
lermits the system to survive many combina­
lons of multiple failures. Thus if a system re­
uires four processors to function at minimum
cceptable throughput, six processors would be
Irovided for reliability since the failure of any
Irocessor bus would disable two processors. Sim­
.arly, if a machine required at least 60K of
Ilemory to function, we would provide two buses
ach containing 60K of memory, or three buses
ach containing 30K of memory. It is important
o note that redundant resources configured into
given machine are not idly standing by since

hey are used by the running machine to produce
lerformance greater than the acceptable mini­
Ilum.

I/O ports pose a special problem, since the
levices and lines to which they are connected are
requently not doubled. For reliability, I/O inter­
aces can be doubled on separate I/O buses, but
loth interfaces must usually drive a single cable

leaving the machine. We allow this by construct­
ing all of our I/O port drivers with circuits that
present a high impedance while unpowered. In
addition, each I/O interface has a watchdog
timer which, if not held off by repeated processor
accesses, will disconnect the driver circuits with­
in a second. Thus the likelihood that malfunc­
tioning or un powered I/O interfaces will inter­
fere with the signals put on the external cable by
the backup I/O interface is kept to a minimum.

THE PLURIBUS OPERATING
SYSTEM

Unlike most conventional systems, the principal
responsibility for maintaining reliability in the
Pluribus is placed on the system software rather
than in the hardware structure. The Pluribus
hardware was designed to provide an appropri­
ate vehicle for software reliability mechanisms.
Besides normal error checking and reporting in
the hardware itself, programmed tests using
known data patterns are run at intervals. When
hardware errors are detected, system software
exploits the redundancy of the hardware by
forming a new logical system configuration
which excludes the failing resource, using redun­
dant counterparts in its place.

Pluribus systems also check the validity of
their software structures. Redundant informa­
tion is intentionally introduced into the data
structures at various points and checked by
processes operating upon those structures. An
example of this technique applied to buffer struc­
tures is described in the next section. In addition,
periodic background processes are used to re­
compute certain variables which are maintained
by the operational system. If the recomputation
uncovers a discrepancy, the variables are fixed
directly or a more drastic recovery procedure is
initiated.

In many cases, a failure is not detected at the
exact time of occurrence but later when the
software encounters some failure-induced dis­
crepancy. By this time, the effects of the failure

508 THE PRACTICE OF RELIABLE SYSTEM DESIGN

may be more widespread and the actual cause of
the failure may be difficult to determine. In such
cases, the system is not able to perform instanta­
neous recovery and seeks instead to restore nor­
mal operation as quickly as possible.

The remainder of this' section discusses the
organization of the Pluribus operating system
and some of the techniques used for achieving
coordination of multiple processors. These tech­
niques are further explored below where two
examples of Pluribus fault-tolerant software
strategies are presented. One of these examines
the Pluribus IMP buffer system in detail, and the
other covers strategies for understanding failures
when they occur and effecting necessary repairs.

General Responsibility of the
Operating System

The software reliability mechanisms for a PI uri-
9US system are coordinated by a small operating
system (called STAGE) which performs the
management of the system configuration and the
recovery functions. The overall goal of the oper­
ating system is to maintain a reliable, current
map of the available hardware and software
resources. The map must include accurate infor­
mation not only about the hardware structure of
the machine, but also about variables and data
structures associated with the processes that use
the hardware. Moreover, the operating system
must function correctly even after parts of the
system hardware have ceased to be operational.
New resources, as they are discovered, (e.g.,
because hardware has been added or repaired),
should be incorporated as part of the ongoing
operation of the application system.

Since any component of the system may fail at
any time, the operating. system must monitor its
own behavior as well as that of the application
system. It may not assume that any element of
hardware or software is working properly-each
must be tested before it is used and retested
periodically to ensure that it continues to func-

tion correctly. The operating system must bt
skeptical of its current picture of the systerr
configuration and continually check to see if tht
environment has changed.

Based on these considerations, the Pluribw
operating system builds the map of its environ·
ment step by step. Each step tests and certifie~
the proper operation of some aspect of tht
environment, relying on those resources certifiec
by previous steps as primitives. Early steps ex·
amine the operation of the local processor anc
its associated private resources. Subsequent step~
look outward and begin to discover and tesl
more global resources of the system, giving tht
checking process a layered appearance. In tht
Pluribus operating system, each processor begim
by checking its own operation and by finding c
clock for use as a time base. Once thest
resources have been verified, the processor car
begin to coordinate with the other active pro·
cessors to develop an accurate picture of tht
system.

At the same time, the system must balance tht
need for reliable primitives with the need tc
accomplish normal operation efficiently. Wher
all the environment has been certified, the systerr
should spend most of its processing power or
advancing the operational algorithms and returr
only occasionally to the task of reverifying it~

primitives. When failures of the environmenl
have been detected, however, the power of tht
system must be brought to bear on the task oj
reconfiguring to isolate the failure.

Hierarchical Structure of the
STAGE System

The Pluribus operating system is organized as c
seque,nce of stages which are polled by a centra:
dispatcher. A processor starts with only the firsl
stage enabled. As each stage succeeds in estab·
lishing a proper map of its segment of the systerr
state, it enables the next stage to run. Each stagt
may use information guaranteed by earlier stage~

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 509

ld thus may run only if the previous stage has
Lccessfully completed its checks. Once enabled,
stage will be polled periodically to verify that
le conditions for successful completion of that
age continue to apply. The system applies most
~ its processing power to the last stage that is
lab led but returns periodically to poll each
lrlier stage. The application system is the final
age in the sequence and may run only after the
lrlier stages have verified all the configuration
lformation of the applications and the validity
~ the data structures.
Table 13-1 lists each stage of the Pluribus

:Jerating system, together with the aspects of the
lVironment it guarantees. Many of the func­
ons listed will not be discussed further but are
rovided to illustrate the layering of stages.
Since processors continue to perform each of

Le stages periodically, changes in the environ­
lent will eventually be noted. Any stage detect-
19 a discrepancy in the configuration map will
isable all later stages until the discrepancy is
:paired. Then, all the later stages, which might
epend on data verified by the disabling stage,
ill be forced to run all their checks, guarantee-
19 that they will make any further modifications
) the configuration map necessitated by the first
:lange. A serious failure, such as a nonexistent­
Lemory interrupt, disables all but the first stage.
1 these cases, some reconfiguration might be
eeded, and all stages should perform all their
llecks before the application system is resumed.

stablishing Communication

o far, we have described the progress of one
rocessor through the staged checking proce­
ures of the operating system. All processors in
le Pluribus perform the same checks, since it is
nportant that they agree about the state of the
fstem resources. Coordination of multiple pro­
essors with potentially different views of the
ardware configuration requires two mecha­
isms: the processors must agree on an area of

Table 13-1. Pluribus operating system stages.

Stage Function

o Checksum local memory code (for
stages 0, 1, 2). Initialize local
interrupt vectors, and enable
interrupts. Discover Processor bus
I/O. Find some real-time clock for
system timing.

Discover all usable common memory
pages. Establish page for
communication between processors.

2 Find and checksum common memory
code (for stages 3, 4, 5). Checksum
whole page ("reliability page").

3 Discover all common buses, PIDs,
and real-time clocks.

4 Discover all processor bus couplers
and processors.

5 Verify checksum (form stage 2) of
reliability page code (for rest of stages
plus perhaps some application
routines). External reloading of
missing code pages is possible once
this stage is running.

6 Checksum all of local code.

7 Checksum common memory code.
Maintain page allocation map.

8 Discover common I/O interfaces.

9 Poll application-dependent reliability
and initialization routines. Periodi­
cally trigger restarts of halted
processors.

10 Application system.

common memory in which to record the ma­
chine configuration map, and they must cooper­
ate in their decisions to modify that map.

The first step in coordinating the multiple
processors of a Pluribus is to agree on a page of
memory through which to communicate. The
procedure for initially establishing the page for
communication is clearly delicate. Prior to estab-

510 THE PRACTICE OF RELIABLE SYSTEM DESIGN

lishing the page, the processors have no way to
communicate about where it will be. The proce­
dure must operate correctly in the face of failures
which might leave some of the processors seeing
a different set of common memory pages from
the rest. Processors which are unable to see the
communication area will attempt to use another
memory page and must be prevented from inter­
fering with the unaffected processors.

Any processor that is first starting up (or
restarting after some massive failure) can assume
nothing about the location of the communica­
tion page. Any page may be used, and therefore
a small area for communication control variables
is reserved on each page of common memory.
Part of this area is used for a brief memory test,
which must succeed before the page may be used
at all. Every processor attempts to establish the
lowest numbered (lowest address in memory
space) page that it sees as the page through
which to communicate. To be valid, any page
must have a pointer to the current communica­
tion page, and the communication page must
point to itself.

Each processor looks at the pointer on the
lowest numbered page it can see. There are three
possible states for the pointer. First, if it points
to the page itself, the processor has found the
communication page and may now proceed to
interact with other processors about the common
environment. If it points to a higher numbered
page, the processor may just fix the pointer, as
the requirement that the communication page be
lowest makes this case inconsistent .. If it points to
a lower numbered page, the processor must
attempt to check if the indicated communication
page is active. It must assume that the data might
simply be old or invalid and must time it out
using a dedicated entry in a special array of
timers which is allocated on each page. The
processor increments the timer and, if it ever
reaches a certain threshold, unilaterally fixes the
communication pointer and starts to use this
page for communication. The processor is pre­
vented from doing this by any other processor
which is successfully using the lower numbered

communication page; all such processors period­
ically zero all the timers on all memory pages in
the system.

Consider what happens during various possi­
ble hardware failures. If the memory bus con­
taining the communication page is lost, all
processors will attempt to establish a new com­
munication page on the other bus. Using their
timers on the new lowest page (which initally
points to the old one after the failure), they await
the threshold. No one is holding the timers to
zero, so the new page becomes the communica­
tion page when some processor's timer first runs
out.

A processor blinded to the communication
page by a bus or coupler failure will try to
establish a higher numbered page for communi­
cation. From the point of view of the failing
processor, this case is indistinguishable from the
previous case, where the common bus failed.
Since the rest of the processors are satisfied with
the cOm1llunication pointer, they will hold all
timers to zero, and the failed processor will never
be able to change the communication page
pointer. If the processor sees a set of pages
disjoint from the rest of the system, it behaves as
if no other processors are running, but there is no
memory where it may interfere and now we have
two systems operating independently. In this
case it is likely that the two systems will interfere
over other resources; since multiple failures are
required for this situation to occur in a Pluibus,
we choose not to attempt recovery here.

The Consensus Mechanism

When configuration data must be updated, it is
crucial to coordinate the Pluribus processors
before making the modification. The mechanism
to accomplish this goal we call consensus. Each
stage has a consensus which is maintained as
part of its environment. The first step in forming
a consensus is to determine the set of processors
that is executing the corresponding stage. This
set has certified the primitives necessary to main-

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 511

lin successfully this stages's portion of the con­
~guration map. In order for the system to re­
pond to failures, the consensus must be kept
urrent-new processors must be able to join
apidly and processors that may have halted or
eased to run the stage must be erased from the
et.

Each processor, based on its hardware address
tl the Pluribus, is assigned a bit in three consen­
us arrays, called "next," "smoothed," and "fix­
t." As part of the corresponding stage, every
Irocessor periodically sets its bit in the next
onsensus array to show that it wishes to partic­
pate in the consensus. After enough time has
lapsed for each properly running processor to
et its bit, this array is copied into the smoothed
:onsensus and cleared. The set of processors in
he smoothed array will then be used as a basis
or decisions to reconfigure some portion of the
esource map.,

Any processor which wishes to modify some
:onfiguration information sets its bit in the ap­
)ropriate fix-it array. Processors that agree with
he configuration map clear their bits, and bits
:orresponding to processors not in the smoothed
lrrays are also cleared.

In effect, the bits in the fix-it array represent
he votes of the individual processors in favor of
l potential modification. In most cases, it is
lesirable that all processors agree before making
he change. All processors wait until the fix-it
lrray matches the smoothed array before imple­
nenting the fix. Other modifications might re­
Iuire only majority or two-thirds agreement. The
~hoice of policy often depends on some tradeoff
)etween resources (e.g., should we use more
nemory or more processors?). The Pluribus ap­
)roach allows us to make this choice indepen­
lently at each stage.

Since each processor in the Pluribus performs
!ach stage of the checking code, the consensus
nechanism provides the coordination needed to
;hange the configuration map gracefully. When
i stage detects a failure, the processor sets the
ippropriate fix-it bit and disables the following
;tages. When enough processors detect the fail-

ure they implement the fix to the configuration
map. Now these processors can complete the
later stages, devoting their attention to any fur­
ther changes required by the failure. A processor
which sees a different picture of the resources
and cannot reach agreement with the rest of the
system hangs forever at the point of detecting the
discrepancy. This technique effectively prevents
the processor from damaging the system.

Application-Dependent Checking

In general, it is desirable for the application
system to perform its own checks before initiat­
ing or resuming normal operation. The last stage
provides a mechanism which polls application­
oriented processes to perform consensus-driven
checks and repairs of their own data structures.
This stage uses the results of the hardware (ap­
plication-independent) discovery stages to certify
its own data structures. For example, it could
allocate or deallocate device parameter blocks as
the I/O devices are discovered or disappear and
initialize spare memory pages for use as data
buffers as they become available. User-written
reliability checks can be performed on any of the
application data structures, and the appropriate
reinitialization invoked to remedy failures.

Occasionally, it is possible for a processor
checking application data structures to imple­
ment minor repairs to the data structures unilat­
erally. For major reconfigurations of the data
structures, such as complete application system
reinitialization, the checking routines must signal
to the stage dispatcher that consensus is needed.
The last concurring processor is then permitted
to perform the reinitialization routine. Just as the
early stages guarantee the hardware map, the
application-dependent routines have the consen­
sus mechanism at their disposal to validate the
system data structures before entering the sys­
tem. In addition, the application system data
structures are rechecked periodically during nor­
mal system operation.

512 THE PRACTICE OF RELIABLE SYSTEM DESIGN

AN EXAMPLE OF APPLICATION
RELIABILlTY*

We use two general techniques to ensure the
validity of data structures in the Pluribus. First,
redundant information, where it exists is
checked for discrepancies, and appropriat: ac­
tion taken if they exist. Second, since detailed
examination of all data for inconsistency is
deemed impossible for any system of nontrivial
complexity, we use watchdog timers to ensure
the correct operation of the application system at
various levels. As an example, we will discuss the
buffer management strategy for the Pluribus
IMP system.

Buffers in the Pluribus IMP circulate through
the system from queue to queue; in some cases,
they may be shared between two or more pro­
cesses. Since a compromised queue structure
may, in general, rapidly degrade the perfor­
mance of the system, elaborate checking meth­
ods are built into the IMP program at various
levels. In particular, we must be able to detect
queues that are crossed or looped and buffers
that have been lost (are on no queue at all.)

Associated with each buffer in the system is a
set of use bits corresponding to various processes
that consume buffers. Any process that enqueues
a buffer for some other process first sets the use
bit for that process. When a process dequeues a
buffer, the appropriate use bit must be on or the
buffer will not be processed. As a special case,
buffers on the system free list must have all their
bits turned off. The buffer-freeing routine only
'feturns a buffer to the free list if the last remain­
ing use bit is that of the freeing process.

This technique intentionally generates redun­
dant information and continually validates it as
a buffer circulates through the system. In other
words, the existence of a buffer on a queue
informs the system that some processing is de-

• Porti~ns of the next two sections have appeared in J. G.
Robinson and E. S. Roberts, "Software Fault-Tolerance in
~e Pluribus," AFIPS Conference Proceedings, vol. 47, copy­
n~t. AFIPS Press, Montvale, N.J. Reproduced with per­
DllSSlon.

sired for that buffer. In principle, the use bi
signals the same thing. Each buffer-processin!
routine could scan all the buffers in the systen
for those with its use bit set, but such strateg)
would clearly be inefficient. The redundanq
check gives preference to neither the queue no]
the use bit as an indication of need for service
but rather requires agreement between the tW(
indicators. When they disagree, the system as·
sumes that a failure has indeed occurred anc
attempts to correct it by forcing the queue to b(
empty, so that the effects of the failure can b(
contained as much as possible.

The use bits allow the prompt detection oj
looped and crossed queues. In addition, an im·
proper buffer point will often lead to a failure oj
the use bit check.

We must also consider the case of a buffe1
which has been lost from all queues. This condi·
tion could arise due to a program bug or as a
result of a queue being emptied after a use bil
failure. We could employ a classical garbage·
collection scheme for this purpose; unfortunate·
ly, the demand for buffers is often great in a
high-speed communication system, and the req·
uisite locking of the buffer resources during such
a garbage collection would likely result in 10sl
inputs.

The recovery scheme we have chosen is a
watchdog timer mechanism. Each buffer has
associated with it a flag set by normal activity of
the buffer which, in this case, is defined to be the
periodic appearance of that buffer on the free
list. Whenever a buffer is freed, its flag is set. In
addition, flags for all the buffers on the free list
are set periodicaJly. In the high-speed communi­
cations environment, where data passes through
a network node very rapidly, each buffer must
appear on the free list at least once every two
minutes. Therefore, .each buffer flag is checked
every two minutes to be sure it is set, and then
cleared. A zero flag indicates that the buffer has
dropped out of normal activity, and the buffer is
unilaterally freed and its use bits cleared. In this
way, any lost buffer is detected within at most
four minutes and returned to normal usage.

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 513

~DVANTAGES OF THE PLURIBUS
~PPROACH TO FAULT-TOLERANCE

tWO factors help to make our approach a cost­
:ffective one. First, fault-tolerance is implement­
:d primarily in software. This not only allows us
o use un specialized off-the-shelf hardware for
nuch of our system, but also gives us consider­
lble flexibility by allowing us to try new ideas as
he product develops. When the time comes to
lpgrade machines in the field, a new software
dease is infinitely preferable to hardware modi­
ication. Implementing most fault detection in
:oftware also allows more complete error report­
ng than is characteristic of static-redundancy
lpproaches.

The second factor is the modular nature of the
>luribus. Initially, the modular approach was
:hosen to permit easy expansion of the capabili­
ies of a system to fit an application without
)eing hampered by system-size boundaries. Our
:ystem expands by adding the same hardware
nodules as those which are duplicated to create
l dynamic fault-tolerant system. Thus any sys­
em with more than the minimum number of
)rocessors for a given application both performs
veIl and is fault-tolerant. A processor failure in
:uch a system merely causes it to run a little
,lower. Since individual processors are relatively
nexpensive, the percentage increase in system
:ost for processor redundancy is usually small,
:specially in large systems.

Sometimes the system requirements justify
mly limited fault-tolerance. An example is the
arge front-end processor which services the
JBN Research Computer Center [Mann, Orn­
,tein, and Kraley, 1976]. Here the bulk of the
nachine is fully redundant, but several of the
lost interfaces are used only occasionally for
:xperimental systems, and their users can toler­
lte an occasional outage. Therefore, these inter­
'aces are not duplicated, with a resultant savings
n cost.

An additional factor contributing to cost-ef­
'ectiveness is the relatively low percentage of
)rocessing power spent in explicit error detection

(about 1 percent for current systems). We de­
pend to a large extent on checks embedded in
the operating program (such as code checksums)
to detect errors, since the program is able to
recover from failures whose effects are detected
well after the fact. It is common practice for
large software systems to include checks for
some "impossible" software states and bad data
structures. We have expanded checks to be com­
prehensive, including checks which catch many
types of hardware errors as well as lingering
software problems.

One interesting effect of our approach is to
make even a minimal, nonredundant machine
significantly more resilient to transient failures
caused by either hardware or software. All of the
fault-tolerant mechanisms which run in the large
systems run also in the small ones, and there are
many transient failures which cause only mo­
mentary confusion which is usually solved by
some level of reset or reinitialization. Obviously,
a· solid failure of some critical component or
destruction of the program cannot be resolved
without redundant resources, but these are by no
means the only possible failures.

One result of our modular approach is that in
contrast to the usual state of affairs, we expect
larger systems to be more reliable than smaller
ones, since more resources are available to be
redistributed in case of trouble.

RECENT FIELD EXPERIENCE

During the past [1977] year, we have had the
opportunity to observe eight Pluribus IMP sys­
tems both under general operational conditions
and in controlled field tests; the availability of
these machines has been above 99.7 percent (by
availability we mean uptime divided by sched­
uled uptime, excluding power and air-condition­
ing failures). Almost all!he downtime was
caused by program bugs which have been cor­
rected since. Most recently, availability has been
above 99.9 percent and we expect it to improve
further as the machines reach maturity.

514 THE PRACTICE OF RELIABLE SYSTEM DESIGN

In evaluating this experience in terms of fault­
tolerant performance, we feel that it is important
to go beyond overall availability numbers and
discuss the kinds of faults that the Pluribus
system can report, the kinds we observed in the
field, and the effects these faults had on system
behavior.

The concepts of availability and fault-toler­
ance are complex when applied to a Pluribus
since failure of a component generally results in
a reduction in, rather than a complete loss of,
performance. In many applications this is an
advantage since extra capacity is useful during
periods of peak load and reduced service is
tolerable while repairing faults. For example, if
an I/O interface or an entire I/O bus fails, the
machine automatically substitutes a spare ele­
ment with only a momentary (often unnotice­
able) interruption of service and with no loss in
performance. In the case of processors and mem­
ory, however, all resources are normally in use
(none are in a standby mode) and the loss of any
one (or several) of them forces a reduction in
performance, but does not keep the system from
running.

When used as an IMP, the principal measure
of Pluribus performance is throughput. In the
tests described below, the presence of program
bugs (since corrected) resulted in somewhat low­
er availability than we had expected, but the
three machines easily exceeded their contractual
requirements and were able to deliver better than
92 percent of their rated throughput capacity
99.76 percent of the time and better than 50
percent of capacity 99.83 percent of the time.

Under normal operating conditions, it is pos­
sible to observe an IMP only by means of its
reports to the Nee or by the reports of its
neighbors in the network. Since IMP's often
operate unattended, emphasis has been placed
on the ability of each Pluribus to evaluate and
report its internal hardware and software health.
Three varieties of trouble-report messages are
sent to the Nee.

Since the Pluribus continually evaluates the
state of its hardware (see the discussion of the

STAGE system), one type reports trouble in the
hardware area. Examples of this are I/O errors,
memory parity errors, power failures, and
changes in configuration. The second type re­
flects the results of numerous interlocks and
consistency checks which are made regarding
tables, queues, variables, and other software en­
tities. The third category concerns the Pluribus's
role as part of the network. These reports moni­
tor normal throughput statistics and temporary
discontinuities in the IMP-IMP message han­
dling protocols, and are normally not directly
pertinent to the fault-tolerance of the Pluribus
itself. In a few cases the reports are received
some time after a fault has been detected and
dealt with by the Pluribus, but most fault mes­
sages appear within a few seconds.

In the normal course of building and operat­
ing Pluribus systems during the past year [1977],
we observed a number of unexpected hardware
and software faults, but to verify our ideas and
procedures we also wanted to observe a number
of failure modes which would be -expected to
occur infrequently under normal operating con­
ditions. To this end, we conducted an extensive
series of tests over a three-month period using
three four-processor Pluribus IMP's with redun­
dant I/O interfaces, interconnected by high­
speed terrestrial and satellite links. These tests
demonstrated how the Pluribus handles many of
the possible faults that might be encountered
during the life of the equipment. We believe that
the combination of the unexpected and planned
faults we experienced constitutes a valid sample
of the wide variety of intermittent failures in
either hardware or software which such systems
are likely to encounter. Examples of the types of
fault recovery which were provoked or observed
during these tests are discussed in the following
sections.

Failures on the Processor Bus

We powered off various combinations of pro­
cessor buses to demonstrate that the system
would continue with traffic processing. We also

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 515

ried placing bad instructions in various pro­
:essors' local memories. In power failure situa­
ions, the remaining processors continued to
)perate without reinitialization. Data handled by
he failed processor(s) was recovered by network
)rotocols and a number of trouble-reports indi­
:ated this fact. Data structures which were
'locked" by the failed processors were "un­
ocked" by a software watchdog timer. When
)ower was restored, the processors were smooth­
y readmitted to the system. Processors with bad
ocal memory either halted or looped, and were
luickly reloaded 'by other processors and
)rought back into operation automatically.

:rrors in or Loss of Common
Wemory

Ne created situations whereby the system sud­
lenly saw common memory disappear. In some
:ases we powered off the memory bus; in others
~e "removed" memory from usability tables. We
Llso observed some spontaneous parity errors.
iince common memory pages are assigned spe­
:ific roles at initialization time, loss of one or
nore pages caused a variety of reactions, de­
lending on the role of the lost memory and the
Lmount remaining. At one extreme, loss of all
:ommon memory prevented the system from
:ontinuing. At the other, loss of one of several
)ages of message buffers caused only a brief
ldjustment of memory assignments by the
iTAGE program. Most Pluribus systems are
)rganized for fully redundant operation and
lave spare code and variable pages. Loss of a
)rimary code or variables area caused a short
:ransient in operations while the spare was ini­
:ialized. As an example, loss of one-half of
)hysical common memory (several pages of
~ode, variables, and buffers) caused a reconfigu­
~ation lasting 15 s or less. During this period, all
)rocessors agreed on the reallocation of the:
·emaining memory and reevaluated its usability.
O\S a further test, we destroyed the integrity of
rarious pages of common memory by storing
·andom data in checksummed areas. The system

reacted by restoring the contents of the affected
page from the backup copy. This process re­
quired about 10-l2 s. We also created test con­
ditions in which the system found that all copies
of critical programs in common memory were
unusable (their checksum was bad). At this time
the system automatically requested that it be
reloaded (from another of the Pluribus IMP's or
the NCC). It should also be emphasized that the
integrity of message buffers is also protected by
software checksums; data harmed in any way is
reported to the NCC, and the originator is
notified so the retransmission can take place.

Loss of /I 0 Device

We both created and observed several situations
wherein I/O devices were either removed or
experienced errors. In these cases, the I/O device
was eliminated from usability tables by all. pro­
cessors and a backup device substituted. The
system continued to operate, although in some
cases, depending on the configuration being
used, reinitialization was required. Loss of an
entire I/O bus was handled in much the same
way.

Loss of Critical Hardware

We observed that redundantly configured Pluri­
bus systems would survive the loss of the R TC
and the PID by swapping to the backup. Very
little time was lost before the system continued.
Errors in PID and RTC operation also are
checked for and reported.

Internal Software Errors

As previously mentioned, the STAGE system
and the IMP code are designed to check on the
internal consistency of various software struc­
tures. In addition, the system ensures that none
of the asynchronous processors is allowed to
remain in a waiting state or in a loop. On a very
infrequent basis, we observed that a Pluribus will

516 THE PRACTICE OF RELIABLE SYSTEM DESIGN

report that such a condition was detected and
corrected. We also forced many of these situa­
tions to occur by destroying key data structures
or by causing queues to be looped or crossed.
The system detected these, reported the problem,
and continued normally, reinitializing if neces­
sary.

Artificial Pathological Conditions

We did not attempt to cause pathological behav­
ior of Pluribus hardware components which
would, for example, write zeros to portions of
memory or amputate buses at random, although
we simulated these conditions with the software.
Our observations of pathological behavior in the
field, although infrequent, convince us that many
of these cases can be withstood by the fault­
tolerant software. For example, during field tests
we observed that some extraneous data appear
occasionally in certain critical tables causing the
Pluribus to reinitialize quickly or to suspend
activity on a communications link briefly. The
problem was traced to a special reloading device
which was being improperly activated. This situ­
ation was eliminated by a minor program
change.

We now have gained enough experience with
the Pluribus fault-tolerant mechanisms to have
confidence in their ability to detect and cope
with failures. In the field, spontaneous failures
have been of a relatively minor nature and have
been successfully dealt with. Under test condi­
tions, all the major and minor failures which
occurred or which we created were well tolerated
and the systems continued to function within
their rated capacities.

PLURIBUS SYSTEM
MAINTAINABILlTY*

Most fault-tolerant systems are designed to be
repaired, sooner or later, by humans. Maintain-

* Portions of this section have appeared in J. G. Robinson
and E. S. Roberts, "Software Fault-Tolerance in the Pluri-

ability thus becomes a significant factor in long·
term system performance. Since many system~
are designed to recover from any single failure,
but not from all multiple failures, the mean timt:
to repair (MTTR) directly influences on-lint:
spares requirements and hence the system cost
for any given performance goal. To minimizt:
MTTR, the system must provide accurate and
unambiguous information about the nature of
the detected fault and the automatic recovery
process initiated. The environment in which tht:
system operates is also important since the main­
taining authority must be notified and must
initiate the repair process as soon as possible.

The actual repair process may be carried out
at several levels depending on the accuracy of
the diagnostics and the obscurity of the failure
symptoms. At the lowest level, the repair is
accurately defined by the diagnostic and involves
only the replacement of a faulty component. At
the highest level, the failure may be caused by a
design bug in either hardware or software. For
the latter," the system must provide sufficient
tools to permit overriding the operational recov­
ery procedures. They must permit the repair
personnel to reconfigure the system and run any
required diagnostic procedures. The more pow­
erful repair tools must be guarded to avoid
operator-induced errors. Ideally this "fool-toler­
ance" [Goldberg, 1975, p. 32] should extend into
all phases of repair. In practice we use only a
two-level protection scheme that relies on ex­
perienced personnel not to make catastrophic
errors.

Although we tend to think of hardware mal­
functions as separate from software malfunc­
tions, the symptoms of failure and the recovery
procedures are frequently similar. In the Pluri­
bus, the first detection of a fault is usually
through failure of an embedded check in the
main program, and frequently that is all that is
required to initiate a correct recovery procedure.
When the diagnostic value of an embedded
check is insufficient to define a recovery proce-

bus," AFIPS Conference Proceedings, vol. 47, copyrigh1
AFIPS Press, Montvale, N.J. Reproduced with permission

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 517

.ure, various modular diagnostics may be run on
lIe system. Thus in the case of a memory whose
hecksum is discovered to be wrong, the recov­
ry action is to run a brief memory diagnostic
nd, if the memory appears usable, to restore the
ode from a spare copy.

Including a spare copy of some resource helps
ystem recovery only if that spare resource
fOrks. Although it is traditional to run modular
jagnostics on spare resources, our strategy has
leen to force the system to rotate use of
esources from time to time. In some cases we
.se manual procedures, but the tendency has
leen to include automatic rotation procedures in
lIe operational system software. This technique
i clearly more appropriate to our application
lIan it would be to a more traditional fault­
::>lerant requirement, since rotating faulty hard­
rare into the operational system could cause a
ransient malfunction. On the other hand, it
Irovides a better test of the hardware than
[wdular diagnostics would provide.

One advantage of our reliance on embedded
hecks for failure detection is that we can detect
lIat class of failure which is rarely caught by
liagnostics. It is axiomatic that the operational
Irogram is the best program for certifying the
.ardware, but our operational program has also
lecome the most comprehensive diagnostic for
lIe hardware. In our experience, some of the
[lOst subtle hardware failures occur during oper­
tion of the application system, even though
,ardware diagnostic programs detect no errors.
~y augmenting the operational system with diag­
lostic capabilities, we have often been able to
iolate even obscure or intermittent failures with­
lut interrupting normal operation.

~eporting Facilities

n the Pluribus IMP, the mechanism for report­
ng errors, recovery operations, and change-of­
tatus information is the system trap (i.e., a
upervisor call). Traps are reported locally on the
ystem terminal and are also sent via trouble­
eports to the network log at the NCC, where

they serve a variety of diagnostic purposes. Un­
derstanding the nature of a failure in the running
system requires fairly accurate knowledge of the
state of the machine at the instant of the failure.
The initial implementation of the trap mecha­
nism recorded only the code number of the trap,
which set of processors had encountered it, and
a total occurrence count. This proved inadequate
for accurate diagnosis and we have augmented
the original trap mechanism to allow for saving
a large snapshot of the instantaneous state of the
processor, including such information as the
contents of general registers, the global system
time, map register settings, the last value read
from the PIO, and other important local data.
These snapshots allow us to examine diagnostic
information about the failure after the recovery
code has taken effect and normal operation of
the system has resumed. In an operational IMP,
the snapshot information is sent to a data collec­
tion program at the NCC, where it is both stored
for future reference and printed out on a log
terminal. The snapshot facility is usually only
enabled for that set of traps which indicate
system malfunctions of some kind, since there
are many normal traps which indicate such
things as network topology changes. The same
da ta collection program also keeps track of the
current configuration of each machine and re­
ports any changes on the log terminal. Thus the
reconfiguration resulting from some module fail­
ure is immediately apparent. Correlating a re­
configuration with preceding snapshot error mes­
sages is usually sufficient to isolate· solid failures.

Remote Diagnosis and Repair

Where the failure is intermittent, or error indica­
tions are ambiguous, we can make further diag­
nosis from the N CC using the remote connection
capabilities of the network. This allows person­
nel at the NCC to interact with a system at a
remote site exactly as if they were using the
system control terminal at the site. We have
provided a command structure in the system
which allows us to make either "soft" or "firm"

518 THE PRACTICE OF RELIABLE SYSTEM DESIGN

overrides of the configuration control structure,
loop communication links, and run a variety of
special diagnostics, monitors, and traffic genera­
tors. This enables us to diagnose many problems
from the Nee even before dispatching repair
personnel to the site (this can be especially
appropriate for diagnosing program bugs). The
current software is best at diagnosing the solid
failures typical of mature hardware and treats
most long-term intermittents as unrelated tran­
sients. Although we plan to implement heuristics
which can deal with this type of problem, the
diagnosis of long-term intermittents currently
requires human intervention. Fully redundant
Pluribus systems may be thought of as networks
of paths and buses, so by causing the system not
to use a particular path or bus and watching the
trap log, we are usually able to localize the
source of a hardware intermittent. Partitioning
the bus and using some subset of the modules on
the bus further localizes an intermittent traced to
a particular bus, and repairs can then proceed.
The same tools for reconfiguration are, of course,
also available to maintenance personnel on site
through the system control terminal, and trap
reports sent to the Nee are duplicated also.

Partitioning

In extreme cases, when all normal diagnostic
approaches have been exhausted, it is also possi­
ble to partition a fully redundant machine into
two separate machines and run the operation
system in one half while running stand-alone
diagnostics or another copy of the system in the
other half. We originally expected to use this
approach quite frequently, but experience has
shown the technique to be less useful than we
expected. Splitting a system is a combinatipn of
many "firm" overrides of the configuration con­
trol which are not currently protected against
operator error (i.e., deleting the last copy of a
resource from the use tables, or overlapping
system resources across the partition). There is
also the problem of identifying fault-free compo-

nents to include in the operational system half.
In general, being able to identify a faulty module
which is to be excluded from the operational
system implies that we can fix the fault by
replacing the module, which usually obviates the
need for partitioning into two machines. And
finally, once a machine has been split, any new
failures are likely to cause fatal problems that the
machine might have been able to cope with had
it not been split. Our current feeling is that the
risks of splitting an operational system usually
outweigh the advantages.

Reloading and Down-Line Loading

An important facility provided by the Pluribus
hardware allows us to load and start the machine
with no onsite personnel. This is accomplished
by special-format messages which trigger a sim­
ple reload device when received over the net­
work. This device is used to load a software
package capable of dumping or reloading the
operating system and application code. The
source of reload code may be either some other
Pluribus IMP on the network, or a disk file at the
network control center. These reloading facilities
are also used for distributing software updates to
the machines in the field. A Pluribus IMP which
discovers all copies of some application code
page to be compromised will attempt to get a·
down-line reload from a neighbor IMP. This
request is reported to the Nee where an opera­
tor then sets up the reload source for the trans­
fer. Its use enables an IMP without duplicated
resources to recover quickly from transient fail­
ures caused by hardware or software.

Maintenance Experience

The prototype Pluribus systems performed their
error recovery functions well in many cases.
Minor problems were often bypassed so effec­
tively that the users and maintenance personnel
were never' aware of the problem. Even following

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 519

lrastic failures, such as the loss of a common
nemory bus, normal system operation was re­
:tored within seconds. From our experience with
hese early systems, however, certain deficiencies
n our original strategies have become clear.

In some failure cases, one repair would lead to
mother, until eventually a fairly major reinitiali­
:ation would be performed, with obvious effects
m the users of the system. Unfortunately, the
nassive recovery often destroyed evidence of the
>riginal failure, or masked evidence necessary
'or effective diagnosis. While the goal of restor­
ng the system to normal operation was achieved,
"e were left without any idea of why the reini­
ialization was required. This was particularly
'rustrating when the frequency of occurrence
"as on the order of hours or days.

In other cases, normal operation seemed to
:ontinue while some hardware failure occurred
mdetected. Either the failure was covered by
~ffective recovery at a fairly low level in the
;ystem or it occurred in a redundant portion of
:he hardware which was not being exercised. A
;econd failure in conjunction with the first would
·emove the last copy of some critical resource,
:ausing the system to fail.

These initial experiences led through several
ntermediate steps to the current set of mainte­
lance tools and diagnostics. In the prototype
;ystems, we were forced to remove the system
;oftware and run stand-alone diagnostics when
:rouble arose. Development of the original re­
;overy algorithms into early versions of the
;urrent STAGE system allowed diagnosis and
·epair while running the operational system;
lOwever, system programmers were required to
nterpret the traps and wrestle the system into
lifferent configurations during repair. The usual
~epair team during this period included a system
:>rogrammer (usually at the Nee) watching and
nterpreting the traps, with a maintenance tech­
Llician on site replacing components.

At present, the tools and diagnostics are well
~nough defined and documented so that usually
lnly maintenance personnel are required for a
:epair. Hardware and software staff at the Nee

may offer suggestions when maintenance person­
nel are dispatched to a site and may still direct
occasional repair efforts if a difficult problem or
inexperienced personnel require it, but this is the
exception rather than the rule.

OTHER APPLICATIONS AND
EXTENSIONS

Since the Pluribus has evolved from a communi­
cations application where overall system availa­
bility rather than total fault-coverage is the goal,
our approach is most obviously suitable for
similar applications. We have opted for an ap­
proach which depends heavily upon reconfigura­
tion and reinitialization when faults are detected,
and which requires very little special hardware
beyond that needed to implement our multiproc­
essor architecture. Our approach would not be
suitable for applications where absolutely no
downtime can be tolerated, where total compu­
tational context must be preserved over failures,
or where overall correctness must be ensured. In
these cases, traditional approaches involving
some form of static redundancy or execution
redundancy are indicated [Avizienis, 1975, 1976].
Techniques somewhat similar to ours, but for a
redundant uniprocessor, are in use in the Bell
System's latest Electronic Switching System
[Myers et aI., 1977]. Although we have not
closely investigated applications outside the
communications area, we believe our approach is
suitable for many other tasks, and we discuss
several of these briefly below.

Message Systems

We have made an extensive study of the possibil­
ity of using the Pluribus as the basis for a
message system. By message system we mean not
only traditional message-switching such as done
in the Telex system, but also a system of mail­
boxes and files by which users can exchange and
file messages without recourse to the U.S. Postal
Service, secretaries, or filing cabinets, and which

520 THE PRACTICE OF RELIABLE SYSTEM DESIGN

will permit complicated searches and sorts of
message files. Such a system must have high
availability but could easily tolerate brief outages
after a failure.

Real-Time Signal Processing

We have already built one system which is the
front-end and control processor for a seismic
data collection network, and which performs
some preprocessing of seismic data [Gudz, 1977].
We believe this application can be extended to
other areas of real-time signal processing with
requirements for high overall system availability.
Since many signal processing tasks can be bro­
ken into parallel components, the multiprocessor
architecture would be especially appropriate.

General-Purpose Timesharing
Systems

It seems to us that explicit use of fault-tolerant
techniques could benefit general-purpose time­
sharing systems and large operating systems.
These systems could operate continuously and
are subject to minor hardware errors and subtle
software bugs, but do not require totally uninter­
rupted operation. Although most large systems
include some self-checking in the software, soft­
ware fault-tolerance, to be truly effective, must
be well integrated into the overall system.design,
and into the special hardware features which are
usually required.

One of the primary purposes of most large
operating systems is to provide disk and tape
handling features. In this context, reinitialization
in response to faults is a much more serious
problem than, for example, in the IMP. Various
checkpointing procedures may be required to
restore the overall system state to a point where
restart is possible [Yourdon, 1972b, pp. 340--353].
Large operating systems often support a variety
of checkpointing services since the best tech-

niques to use under these circumstances depend
in part on the applications being serviced; in
cases involving on-line database updates, the
application programs themselves must be de­
signed around their fault-tolerance requirements.

Reservation Systems

Airline, hotel, and car rental reservation systems
provide good examples of on-line database sys­
tems which could benefit from well-designed
software fault-tolerance systems. Once a reserva­
tion has been accepted, it must not be lost.
Backup techniques such as dual updating of two
copies of the database, perhaps located in differ­
ent cities with independent central processors
and telecommunications systems, may be worth­
while. On the other hand, minor problems (hard­
ware or software) may be tolerated, especially if
the problems can be resolved by reentering on­
line transactions which were affected by the
fault. Even with dual machines in remote loca­
tions, using a machine like the Pluribus would
increase the reliability of each site separately,
and provide substantial computing power in an
expandable package. Further research will be
required to understand fully the implications to
the Pluribus of database integrity requirements
for reservation systems.

Process Control

Our approach is clearly more appropriate to
some areas of process than to others. We envi­
sion a typical application in the area of overall
supervisory systems coordinating a number of
subsidiary systems or controllers, and incorpo­
rating tasks such as inventory control and job
scheduling. Processes that could afford to stop
momentarily would be controlled directly. End­
to-end error correction and fault-masking hard­
ware would be used in the machine interface for
applications needing overall fault-tolerance. As

PLURIBUS-A FAULT-TOLERANT MULTIPROCESSOR 521

with the previous applications, some form of
checkpointing would be built in to preserve
context over restarts.

ACKNOWLEDGMENT

Much of the initial development of the Pluribus
computer was supported by the Information
Processing Techniques Office of the U.S. De­
fense Advanced Research Projects Agency, un­
der Contract Numbers DAHCI5-69-C-OI79,
F08606-73-C-0027, and F08606-75-C-0032, and
by the Defense Communications Agency under
Contract DCA200-C-616. Additionally, a num­
ber of the applications systems were developed

under contracts from various branches of the
U.S. Government.

Many people have contributed to the Pluribus
project; Frank Heart has led the effort since its
inception.

REFERENCES

Avizienis [1975, 1976]; Barnes et al. [1968]; Bressler,
Kraley, and Michel [1975]; Enslow [1974]; Goldberg
[1975]; Gudz [1977]; Heart [1975]; Heart et al. [1970,
1973, 1976]; Mann, Ornstein, and Kraley [1976];
McKenzie et al. [1972]; Myers et al. [1977]; Ornstein
and Walden [1975]; Ornstein et al. [1972, 1975];
Roberts and Wessler [1970]; U.S. Patent Office [1977];
Wolf [1973b]; Wulf and Bell [1972]; Yourdon [1972b].

The STAR (Self-Testing And Repairing)
Computer: An Investigation of the Theory
tlnd Practice of Fault-Tolerant Computer
Design

~Igirdas Avizienis

)avid A. Rennels

George C. Gilley Francis P. Mathur

John A. Rohr David K. Rubin

Abstract

This paper presents the results obtained in a continuing
investigation of fault-tolerant computing which is being
conducted at the Jet Propulsion Laboratory. Initial
studies led to the decision to design and construct an
experimental computer with dynamic (standby) redun­
dancy, including replaceable subsystems and a program
rollback provision to eliminate transient errors. This
system, called the STAR computer, began operation in
1969. The following aspects of the STAR system are
described: architecture, reliability analysis, software, au­
tomatic maintenance of peripheral systems, and adapta­
tion to serve as the central computer of an outer planet
exploration spacecraft.

Index Terms-Fault-tolerant computers, replacement
systems, self-repairing computers.

INTRODUCTION: CHRONOLOGY
AND RATIONALE

This paper presents a summary of the theoretical
results and design experience obtained in an
investigation of fault-tolerant computing which

© 1977 IEEE. Reprinted, with permission, from IEEE Trans­
actions on Computers, Vol. C-20, No. 11, November 1971,
pp. 1312-132l.

523

524 THE PRACTICE OF RELIABLE SYSTEM DESIGN

is being conducted at the Jet Propulsion Labora­
tory (JPL). Initial studies (I961-1965) led to the
conclusion that dynamic (also called standby)
redundancy offered the greatest promise in the
design of fault-tolerant digital computer systems
[Aviiienis, 1967c]. The dynamic redundancy
[Short, 1968] approach requires a two-step proce­
dure for the elimination of a fault: first, the
presence of a fault is determined; second, a
corrective action is taken (e.g., replacement of
failed unit, repetition of program, reconfigura­
tion of systems, etc.). The alternative to the
dynamic approach is static (masking) redundan­
cy [Short, 1968], which was already being utilized
in existing component-redundant [Lewis, 1963;
Kuehn, 1969] and triple-modular-redundant
(TMR) [Lyons and Vanderkulk, 1962; Anderson
and Macri, 1967; Kuehn, 1969] computers. Early
analytic studies of dynamic redundancy with
idealized series-parallel system models indicated
that mean life gains of an order of magnitude
and more over a nonredundant system could be
expected from dynamically redundant systems
with standby spares replacing failed units [Fle­
hinger, 1958; Griesmer, Miller, and Roth, 1962; ,
Reed and Brimley, 1962; Kruus, 1963]. This gain
compared favorably with the mean life gain of
less than two in the typical TMR systems. Other
qualitative advantages of the dynamic over the
static redundancy were: I) greater isolation of
catastrophic (nonindependent) faults which is
especially important for densely packed micro­
electronic circuitry; 2) survival of system until all
spares of one type are exhausted; 3) ability to
eliminate errors which are caused by transient
faults by the use of program rollback; 4) ready
adjustability of the number and type of spare
units; 5) utilization of the potentially lower fail­
ure rate of unpowered components in spare
units; 6) avoidance of the circuit-related prob­
lems of static redundancy: increases in fan-out,
fan-in, power requirements, and the need for
isolation and synchronization of separate chan­
nels; and 7) facilitation of the checkout of spare
units by means of standard diagnostic programs.

The attainment of the apparent advantages of
a dynamically redundant system had been
shown to depend very strongly on the successful
execution of the detection and replacement oper­
ations [Flehinger, 1958; Griesmer, Miller, and
Roth, 1962]: these observations have since been
formalized as the concept of "coverage" [Bouri­
cius, Carter, and Schneider, 1969a].

The second phase of the investigation
(I965-1970) was focused on the identification
and solution of the problems involved in the
design of a general-purpose digital computer
possessing the properties attributed to the ab­
stract model of a dynamically redundant com­
puting system. Three major areas of investiga­
tion were: 1) an investigation of fault-detection
methods; 2) a study of computer architecture
with emphasis on partitioning into subsystems
with minimal interconnection requirements; and
3) a study of the "hardcore" problem, i.e., the
alternate technologies and logic organizations
for implementing the detection and switching
functions. The choices among feasible alterna­
tives in all three areas are strongly affected by
assumptions on the available component tech­
nology and on the computing tasks to be re­
quired of the computer. In order to retain con­
tact with the practice of computer design, it was
decided to design and construct an experimental
general-purpose digital computer which would
incorporate dynamic redundancy (i.e., fault de­
tection and replacement of failed subsystems) as
integral parts of its structure. The design objec­
tives have been carried out and the system,
called the STAR (self-testing and repairing)
computer, began operation in 1969. The modular
nature of the STAR computer has allowed sys­
tematic expansion and modifications that are
still being continued.

The first objective of the design is to study the
class of problems which are encountered in
transforming the theoretical model of a self­
repairing system into a working computer. State­
of-the-art integrated circuit and memory tech­
nology was employed in the design. The STAR

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 525

computer characteristics were chosen to satisfy
all predictable requirements of a spacecraft guid­
ance, control, and data acquisition computer
which would be used in the very long (ten years
and more) unmanned missions exploring the
outer planets of the solar system [Long, 1969].
The second objective was to provide a tool for
laboratory studies of fault-tolerant computing,
including the injection of transient as well as
permanent faults of catastrophic nature. Very
extensive displays of registers, manually con­
trolled clocking, and provisions fo~ convenient
modification of subsystems were incorporated
into the· experimental STAR computer bread­
board (Figure 14-1).

The STAR computer employs a balanced mix­
ture of coding, monitoring, standby redundancy,
replication with voting, component redundancy,
and repetition in order to attain hardware-con­
trolled self-repair and protection against tran­
sient faults. The principal goal of the design is to
attain fault tolerance for a variety of faults:
transient, permanent, random, and catastrophic.
The actual construction (rather than simulation)

Figure 14-1. The STAR computer.

of the STAR breadboard has two significant
advantages. First, the design process has uncov­
ered interesting new hardware-related problems
and led to numerous improvements. Second, the
computer serves as a vehicle for further experi­
mentation and refinement of the recovery tech­
niques.

During the studies of fault-tolerant architec­
ture and the design of the STAR computer,
concurrent investigations were being conducted
in other closely related areas of fault-tolerant
computing, including studies of software, reli­
ability prediction, and extension of dynamic
redundancy to peripheral devices [Avizienis et
aI., 1969]. A complete redesign of the STAR
computer is being performed to match the exact
requirements ofa control computer for the ther­
moelectric outer planet spacecraft (TOPS)
[TOPS, 1970]. This effort led to the evaluation of
additional fault-recovery techniques. The results
of the efforts described above are summarized in
the following sections of this paper.

ARCHITECTURE OF THE STAR
COMPUTER

Methods of Fault Tolerance

The STAR computer is a replacement system
that provides one standard configuration of
functional subsystems with the required comput­
ing capacity. The standard computer is supple­
mented with one or more spares of each subsys­
tem. The spares are unpowered and are used to
replace operating units when permanent faults
are. discovered .. · The principal methods of error
detection and recovery are the following.

1. All machine words (data and instructions) are
encoded in error-detecting codes and fault detec­
tion occurs concurrently with the execution of the
programs.

2. The computer is divided into a set of replaceable
functional units containing their own instruction
decoders and sequence generators. This decentrali­
zation allows simple fault location procedures and
simplifies system interfaces.

526 THE PRACTICE OF RELIABLE SYSTEM DESIGN

3. Fault detection, recovery, and replacement are car­
ried out by special-purpose hardware. In the case of
memory damage, software augments the recovery
hardware.

4. Transient faults are identified and their effects are
corrected by the repetition of a segment of the
current program; permanent faults are eliminated
by the replacement of faulty functional units.

5. The replacement is implemented by power switch­
ing: units are removed by turning power off and
connected by turning power on. The information
lines of all units are permanently connected to the
buses through isolating circuits; unpowered units
produce only logic "zero" outputs.

6. The error-detecting codes are supplemented by
monitoring circuits which serve to verify the proper
synchronization and internal operation of the func­
tional units.

7. The "hard core" test and repair processor (TARP)
is protected by triplication and replacement of
failed members of the triplet.

Hardware System Organization

The block diagram of the STAR computer is
shown in Figure 14-2. Communication between
the units is carred out on two four-wire buses:
the memory-out (M-O) bus, and the memory-in
(M-I) bus. The abbreviations designate the fol­
lowing units.

COP Control processor, contains the location
counter and index registers and performs
modification of instruction addresses before
execution.

I
I L. __ _

Control bus (3),
status lines,
switch lines

LOP Logic processor, performs logical operations
on data words (two copies are powered).

MAP Main arithmetic processor, performs arith­
metic operations on data words.

ROM READ-ONLY memory, 16,384 permanently
stored words.

RWM READ-WRITE memory unit with 4,096 words of
storage (at least two copies powered; 12 units
are directly addressable).

lOP Input/output processor, contains I/O buffer
registers.

IRP Interrupt processor, handles interrupt re­
quests.

TARP Test and repair processor, monitors the oper­
ation of the computer and implements recov­
ery (three copies are powered).

The functional units (processors and memories)
of the STAR computer communicate by means
of the M-I and M-O (four-wire) information
buses. The 32-bit words are transmitted on these
two buses as eight bytes of four bits each. Three
control signals are sent from the TARP on the
three-wire control bus to synchronize the opera­
tions of the functional units and to initiate
recovery. Otherwise the functional units operate
autonomously. Unless otherwise noted, one copy
of each unit is powered at a given time. The
decentralized organization allows a standard in­
terface between each unit and the remainder of
the computer. Each STAR unit interfaces with
the computer by the means of 14 signal lines.
Eleven lines, both in active and spare units, are

,
I
I
I
I
I
I

_.J

Figure 14-2. STAR computer organization.

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 527

From TARP:

Control bus inputs

'ower switch control

Input from data bus

Typical
STAR unit

(memory or
processor)

Output to data bus

To TARP:

Unit status

Figure 14-3. Functional unit of STAR computer.

)ermanently connected to the computer system
)Uses, and three are connected to the T ARP
lrray. An unpowered unit cannot produce logic
me outputs. The external connections of a
iTAR unit are shown in Figure 14-3.

The four input and four output lines are
;onnected to the data M-I and M-O buses. They
·eceive and send coded machine words in four­
)it bytes. The power switch control input causes
)ower to be applied to the unit. The three
;ontrol bus input signals are: CLOCK, a basic
:iming input; SYNC, a periodic synchronization
;ignal; and RESET, a signal that forces the unit
nto a standard initial state. Two unit status lines
;end information on the internal operation of the
lnit to the TARP. These lines carry multiplexed
nformation which will be discussed in a follow­
ng section. Each functional unit is autonomous
lnd contains its own sequence generator as well
lS storage for the current operation code, oper­
mds, and results. The internal design of a unit
nay be altered without affecting other units as
ong as the interface specifications are observed.

It is to be noted that the lOP and IRP units
lre shown combined in Figure 14-2.

itandard Operation

rhe STAR computer has two modes of opera­
:ion: the standard mode and the recovery mode
,under T ARP control). During the standard mode
he stored programs are carried out. The T ARP
)rocessor issues the principal CLOCK signal and
;YNC signal which occurs when a new step is

initiated in the execution of an instruction. Ten
CLOCK periods form the basic time unit (cycle) of
the computer. During the first period, a four-bit
"step code" (in 2-out-of-4 encoding) is issued by
the TARP to the M-O bus. The next eight
periods are employed to transmit or manipulate
one eight-byte machine word. During the tenth
period a four-bit "condition-code" byte may be
broadcast by one of the functional units. The
ten-period cycle is needed because of the series­
parallel organization of the computer.

One instruction is executed in two or three
steps. In the first step, the address of the instruc­
tion is sent from the location counter in the COP
to the memory (ROM and RWM) units. In the
second step, the addressed memory unit broad­
casts on the M-O bus the operation code and
address of the instruction to all functional units.
The address is indexed in the COP which trans­
mits to the M-I bus if necessary. The appropriate
units recognize the operation code, store the
address, and initiate execution. In the third step
the instruction is executed: an operand is placed
on the appropriate bus and accepted by the
destination unit. The first two steps require one
cycle each; the duration of the third step de­
pends on the instruction and requires 0, 1, or
more cycles. Program interrupts begin without
the first step. During the second step an instruc­
tion is broadcast by the interrupting unit (10-
IRP or TARP).

The instruction set consists of 180 single­
address instructions, about one-third of which
are indexable. It includes fixed-point arithmetic,
mask able logic, and shift operations. Loop-facil­
itating and subroutine link register instructions
are provided. There are 28 interrupts which can
be masked out and tested under program con­
trol. A special class of instructions aids in fault
tolerance. They include diagnostic instructions
which exercise unit status messages and the
fault-location logic in the TARP. Others perform
updating of the "rollback" register in T ARP
units, name assignment and cancellation of
R WM units, power control of spare units, du­
plexing of ROMs and processors, and absolute
read or write operations in RWM units.

528 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Computer Words: Formats and
Encoding

There are two possible effects of logic faults
upon the operation of a digital computer. First,
a data word or an instruction word may be
altered during storage, transmission, or proces­
sing. The eff~ct is a word error. Second, during
the execution of an instruction a processor or a
memory module may act incorrectly, act out of
turn, or fail to act at all. The effect is a control
error. Both classes of errors are detected in the
STAR computer. The present section considers
coding techniques for word error detection; con­
trol errors are considered later.

Complete duplication offers the simplest word­
error detection at the highest cost. Low-cost
arithmetic error-detecting codes [Aviiienis,
1967a] are attractive because they are preserved
during arithmetic processing and mandatory du­
plication of an 'ilrithmetic processor is avoided.
An intensive study of error codes led to the
choice of modulo 15 arithmetic checking which
is especially effective for a byte-organized com­
puter with four-bit bytes [Aviiienis, 1971; ap­
pears as Appendix B in this book].

All words in the STAR computer are encoded
as shown in Figure 14-4. The 32-bit numeric
operand word (Figure 14-4b) consists of the 28-
bit binary number b, and a 4-bit check byte c(b).
The check byte is a binary number which has the
value

c(b) = 15 - Ibits
where Ibits means "the modulo 15 residue of b."
This check byte causes the 32-bit word to be a
multiple of 15. The checking algorithm casts out
15s, that is, it computes the modulo 15 residue of
the entire coded word. A zero residue, repre­
sented by 1111, indicates a correct word: all
other values of the residue indicate a fault. The
casting out of 15s is implemented with a four-bit
"end-around carry" adder and takes place con­
currently with the transmission of a word on the
bus.

The 32-bit instruction word (Figure 14-4a)
consists of a 12-bit operation code and a 20-bit

114f .. ----lnstruction word 32 bits ----~~
I c(a) I a3 I a2 I a1 I aO I c2 I c1 . cO I
~ Address part __ ---IJ ___ Op-Code ----l
1- c(a) = 15 - iai15 l 2-out-of-4 -I

a.

r Numeric operand word 32 bits ,

I c(b) I b6 I b5 I b4 I b3 I b2 I b1 I bO I
Residue code: c(b) = 15 - ibi15

b.

Figure 14-4. a.) STAR instruction word format. b.)
STAR operand word format.

residue-coded address part. The 16-bit address is
encoded in the same residue code as the oper­
ands, and the same checking algorithm is used.
The operation code is divided into three bytes,
and each byte is encoded in a 2-out-of-4 code.
This code permits each byte to be checked
individually. There are six valid forms of each
byte, giving a total of 216 valid op-code variants.
The structure of a bus checker circuit which
performs word checking is shown in Figure 14-5.
The single step-code and condition-code bytes
also use the 2-out-of-4 code and are checked by
the bus checker.

The initial choice of error codes in the STAR
computer emphasized variety for the purpose of
comparison and evaluation, and the arithmetic
product (or AN) code was used for operands
[Aviiienis, 1967a]. Two reasons for the change to
the present encoding of operands were: 1) the
residue code is separable and allows the use of
the more efficient two's complement algorithms
for binary arithmetic, and 2) multiple precision
and floating-point arithmetic is much more read­
ily implemented with residue encoding. Residue
encoding is also suitable for operation codes in
STAR instructions. Its advantage is that an
identical checking algorithm is applied to in­
structions and operands; an explicit identifica-

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 529

D ata bus I Sum test I (for 1111)

I Modulo 15 I adder

lOP-COde test I
(2-out-of-4)

Figure 14-5. The bus checker circuit.

:ion is not required for checking, and loading of
)rograms is facilitated. The drawback is that the
)ytes of the op-code cannot be checked individ­
lally as in the 2-out-of -4 encoding.

~ontrol Error Detection

[t has been observed that a large number of
~aults which cause control errors also cause word
!rrors and are detectable by the use of error
~odes. Some critical control errors, however, do
lot fall into this category and require other
nethods of detection.

The principal method of control fault detec­
:ion in the STAR computer is the validation that
!very unit is active at the proper time and that
:he proper algorithm is carried out within the
Init. The initial design [Avizienis, 1968] used a
~our-wire status line for every replaceable unit to
:ransmit one of six possible "2-out-of-4" coded
;tatus messages. Experience has shown that the
iiagnostic logic in the T ARP is significantly
;implified when status messages are conveyed to
:he TARP at predetermined clock times within
!ach ten-unit cycle of operation. In the revised
iesign, each status message is conveyed on two
~res (in 1-out-of-2 encoding) and each message
~overs the time interval between two messages of
:he same type. The status-message originating
~ircuits are duplicated in each unit to allow the
ietection of a fault in the status message.

The "output active" message indicates that the
unit has produced a nonzero output to the bus in
the preceding time interval. It serves to identify
improperly active units which otherwise would
destroy the information being transmitted on a
bus, and make it impossible to locate the source
of error. The absence of an expected active
message is also a fault condition, since the all­
zero word is not a validly coded operand or
instruction. The checking of output activity is the
most critical of all status monitoring functions.

The other status messages are multiplexed and
sent over the same pair of wires as the output
active messages because the activity information
is not required continuously in the byte-serial
machine structure. The status messages which
are listed below aid in increasing the probability
of immediate detection of incorrect operation.

The "disagree with bus" message is needed for
duplex operation (discussed in the next section).
Two identical units produce outputs to a bus
which acts as an OR gate. Each unit compares the
bus word to its internally held output word and
records a disagree message if a mismatch occurs.
The message is conveyed to the T ARP at a
specified time. The bus checker result together
with disagree message permits a rapid identifica­
tion of a faulty unit. In simplex operation this
message helps to identify improper activity of
another unit.

The "complete" message is essential for func­
tional units which have variable-duration algo­
rithms. Memory units issue "write complete"
and "read complete" messages which are essen­
tial for immediate detection of incorrect storage
events.

The "internal fault" message is produced by
internal monitoring circuits within each unit. Its
function is to indicate incorrect internal algo­
rithms detected by duplication of critical signals,
special test circuits, and "inverse microprogram­
ming" in which an operation is deduced from
active gating signals.

In addition to the above listed four types of
messages, time is provided for a "special" status
message which varies for different units. For

530 THE PRACTICE OF RELIABLE SYSTEM DESIGN

example, the IO/IRP uses it to report to the
TARP the arrival of an external interrupt re­
quest.

Properties of Functional Units

The main arithmetic processor (MAP) input
consists of an operation code followed by a
coded operand, and the output is a coded result
followed by a condition-code byte, indicating
either one of three singularities (sum overflow,
quotient overflow, zero divisor) or the type of a
good result (positive, zero, negative). The control
processor (COP) stores the condition code and
uses it to implement conditional branches in­
structions. The COP also contains the location
counter LC, two index registers, and a four-bit
adder to implement indexing of residue-coded
addresses and incrementing the LC. The logic
processor (LOP) performs the bit-by-bit logic
operations and code conversions on input words.
The arithmetic coding is removed from the oper­
and before the operation, since error codes are
not preserved during logic operations, and the
final result is again encoded. The LOP operation
is checked by operating two copies which issue
disagree status messages when their outputs dif­
fer. The la/interrupt processor (IO/IRP) re­
ceives external interrupt requests, initiates allow­
able interrupts, and carries out input/output
buffering functions.

The READ-ONLY memory (ROM) contains the
permanent programs and the associated con­
stants. The present machine uses a "braid" as­
sembly of transformers and wires for the perma­
nent storage of 16,384 words. Complete replicas
of the ROM are used as replacements. Each
4,096 word READ-WRITE memory (RWM) unit
has two modes of operation. In the absolute
mode a R WM unit recognizes its own wired-in
absolute name. In the relocated mode a RWM
unit responds to an assigned name. All relocated
units with the same assigned name store and
read out the same locations simultaneously. In
case of a disagreement with the word on the
M-O bus, the RWM unit sends a disagree status

message to the T ARP. The relocated mode pro­
vides duplicate or triplicate storage for critical
programs and data. When a RWM unit fails, its
replacement unit can be assigned the same name,
avoiding a discontinuity in addresses. Assign­
ment and cancellation of assigned names is
performed under program control; this provision
allows selective redundancy of storage. A record
of R WM name assignments is retained (in non­
volatile storage) in all active TARP units. The
accessing of storage locations within a R WM
unit is checked by permanently storing the 4-bit
check byte of its 12-bit internal address in every
location. This byte is read out and checked
against the contents of the address register dur­
ing every read and write operation.

In the STAR computer only the logic pro­
cessor and the RWM memory unit containing
critical system programs are duplexed for normal
operation. For experimentation; complete provi­
sions have been made for optional duplex oper­
ation of all memory and processor units under
program control. The combination of duplica­
tion and coding offers detection of all errors as
well as a fast identification of one faulty unit. In
order to permit duplex operation of processor
and ROM units, active T ARP units hold a
record of units which are operating in duplex.

The Test and Repair Processor
(T ARP) and Recovery Mode

The "hard core" monitor of the STAR system is
designated as TARP (test and repair processor)
in Figure 14-2. The TARP monitors the opera­
tion of the STAR computer by two methods:
1) testing every word sent over the two data
buses for validity of its code; and 2) checking the
status messages from the functional units for
predicted responses. An incorrect word or a
deviation from predicted response causes an
interruption of normal computing and an entry
into the recovery mode of operation. The block
diagram of one TARP is shown in Figure 14-6.
It is functionally divided into two sections. One
section provides standard mode machine control

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 531 r-Recovery Control ~nd test --l control·
section

section

To M-O bus
Reconfiguration M-I bus From M-I bus

logic: Machine state checker

Status {
rollback prediction
control

from and Standard
other disaster mode dock Control
TARP restart control reset bus
units Comparator

sync}

and

Power switch fault location M-O bus From M-O bus
control logic checker

~ Unit status inputs
To switches

Figure 14-6. Test and repair processor (TARP) organization.

md fault location, and the other controls the
'ecovery mode operation and effects the switch­
ng of replaceable units.

rhe Control and Test (CA 1)

rhis section contains the standard mode control
ogic consisting of an op-code decoder, a clock,
md a counter which generates the step-code
ignals for standard mode operation. The ma­
:hine-state prediction logic uses the current in­
,truction and step-code to predict which status
nessages should be received from each powered
unctional unit. It also predicts the information
,Durce and the type of encoding expected on
:ach bus. The fault location compares the status
md bus checker (Figure 14-5) results to the
)rediction. In most cases, it can localize an error
o a particular functional unit. Upon detecting
m error, the CAT section stops the machine and
ransfers its error information to the recovery
:ontrol section.

~ecovery Control (Rfq

[bis section of the T ARP contains a "rollback
)oint" address register which specifies the loca­
ion of the instruction at which normal operation

is to be resumed after a recovery. This register is
updated under program control. Before every
updating, the contents of all processor registers
needed for recovery is stored in duplexed mem­
ory units. Upon receipt of an error message from
the CAT section, the REC section issues the
"reset" signal whiCh causes all powered units to
be set to an initial state, and then broadcasts an
unconditional jump instruction, which causes the
program to be resumed at the "rollback" ad­
dress. A repeated fault indication in the same
unit leads to its replacement. The number of
repetitions before replacement can be· specified
in the experimental TARP. To replace, power is
turned off in the unit, a spare is turned on, and
another reset (and jump) is issued. For cases of
temporary power loss and other fault conditions
which cannot be resolved by the fault location
logic, the REC section contains a wired-in "dis­
aster restart" procedure.

The T ARP is the hard core of the system.
Three fully powered copies of the T ARP are
operated at all times together with n standby
spares (n = 2 in the present design). The outputs
of the TARPs are decided by a 2-out-of- (n + 3)
threshold vote. When one powered TARP dis­
agrees with the other two, the recovery mode is
entered and an attempt is made to set the

532 THE PRACTICE OF RELIABLE SYSTEM DESIGN

internal state of the disagreeing unit to match the
other two units. If this T ARP rollback attempt
fails, the disagreeing unit is returned to the
standby condition and one of the standby units
receives power, goes through the TARP rollback,
and joins the powered triplet. The computer is
now restarted, a rollback performed, and stan­
dard operation continues. Because of the three
unit requirement, design effort has been concen­
trated on reducing the T ARP to the least possi­
ble complexity. Experience with the present
model has led to several refinements of the
design.

The replacement of faulty functional units is
commanded by the T ARP vote and is imple­
mented by power switching. It offers several
advantages over the switching of information
lines which connect the units to the bus. The
number of switches is reduced to one per unit,
power is conserved, and strong isolation is pro­
vided for catastrophic failures. Magnetic power
switches have been developed which are part of
each unit's power supply and are designed to
open for most internal failures. The threshold
function is inherent in the control windings of
the switch. The information lines of each unit are
permanently connected to the buses through
component-redundant isolation circuits. The sig­
nal on a bus is the logic OR of all inputs from 'the
units, and unpowered units produce only logic
zero outputs. The power switch and the buses
utilize the component redundancy for protection
against fatal "shorting" failures.

COMPARATIVE RELIABILITY
ANALYSIS

This section considers the reliability (with re­
spect to permanent failures) which can be ex­
pected for the STAR computer. The approach is
to estimate the relative reliability with respect to
an existing reference system. An absolute reli­
ability prediction is not made because the failure
rates for components which are being developed
for a flight model are not yet adequately estab­
lished.

The reference computer for reliability estima,
tion is the nonredundant Mariner. Mars 196~

(MM'69) computer, which was the on-boaT(
computer for the successful Mariner 6 and ~

missions to Mars. It was chosen because a de·
tailed description and extensive failure rate dat,
are readily available. With respect to computin~
performance it must be noted that the MM'6S
computer is a bit-serial machine with a bit rat(
of 2.4 kHz and an instruction set of 16 op-codes,
whereas the STAR is a byte-serial machine win
a 0.5 MHz clock and an instruction set of 13(
op-codes. This gain in performance is not used
as a factor in reliability estimation.

Reliability models 1) the MM'69 computer~
2) a simplex computer equivalent in performance:
to the STAR, and 3) the STAR computer as
shown in Figure 14-7. The MM'69 computer
(Figure 14-7a) is assigned a complexity of unity.
It is assumed that the simplex computer (Figure
14-7b) consisting of eight functional units is
8 X CF times as complex as the MM'69 com­
puter. The relative complexity factor CF is de­
fined as the ratio of complexity (component
count) of a single STAR unit to the complexity
of the entire MM'69 computer. The value CF
= 1/ 3 was established by detailed comparison
and is used in the subsequent analysis. The
comparison is made with respect to MM'69
technology, i.e., it is assumed that the simplex
and the STAR computers employ the same com­
ponents and packaging techniques as the MM'69
computer.

The STAR model (Figure 14-7 c) consists of
eight functional units plus the test and repair
processor (TARP) array in series reliability. All
units are considered to be of similar complexity
and are allocated an equal number of spares.
Results for S = 2 and S = 3 are presented. The
reliability model applied to all. units except the
TARP is the standby-replacement redundancy
model with dormant spares [Bouricius, Carter,
and Schneider, 1969a; Mathur, 197Ia]. The
TARP was modeled as a hybrid-redundant
H(3, S) system [Mathur and AviZienis, 1 970L,
Details of the reliability models and measures

Basic STAR

Dormant standby
spares

TARP

1 o
20

-1 1 ~
a.

b.

lOP IRP LOP MAP ROM RWM1 RWM2

ODDElDDDD
c.

Relative
complexity

}1

} 2.7

}~4

~ 11

Figure 14-7. Reliability models. a.) Mariner Mars 1969 computer. b.) Simplex computer. c.) STAR computer.

-l
:r:
tTl
r.n
-l
;l>
:;0

en
tTl
r

~
tTl
r.n
:l
z
a
;l>
z
o
:;0
tTl
"tl

:!:
:;0

Z
,9
n o
3:
"tl
c:::
-l
tTl
:;0

!.II
Vol
Vol

534 THE PRACTICE OF RELIABLE SYSTEM DESIGN

are presented in Mathur [1971a]. The logic pro­
cessor LOP is assumed to have an internal
duplication of the circuits which are not protect­
ed by the error-detecting codes. Two sets of three
RWM units each are shown; this is a pessimistic
assumption, since the computer can function
with only one of the six R WM units surviving.

The fault coverage factor [Bouricius, Carter,
and Schneider, 1969] in the STAR model is
taken into account in two ways: 1) by including
the fault detector and recovery initiator as a
separate processor (the TARP), and 2) by apply­
ing a self-testing factor (STF) to the relative
complexities of the units. Note that the simplex
computer (Figure 14-7b) does not contain a
processor corresponding to the T ARP in the
STAR computer since the simplex computer is a
computationally equivalent nonredundant ma­
chine without "test and repair" capabilities.

Since 4 bits of the 32-bit STAR word serve for
error detection, a STF equal to 8/7 was chosen.
The STF expresses the overhead due to the self­
testing and repairing features within each STAR
unit, that is, a STAR unit has 8/7 of the com­
plexity of the same unit in the "simplex" com­
puter. Applying CF = 1/3 and STF = 8/7 a
STAR unit has the relative complexity of 8/21
with respect to the entire MM'69 computer.

Examples of reliability predictions based on
the MM'69 data are shown in Tables 14-1 and
14-2 and Figures 14-8 and 14-9. The lower bound
(K = 1) assumes equal failure rates of powered
and spare units (K is the failure rate ratio). The
upper bound (K = (0) assumes a zero failure rate
of spare units. Two-spare (S = 2) and three­
spare (S = 3) STAR systems are considered.
Table 14-1 and Figure 14-8 show the predicted
reliability as a function of time. Table 14-2

Table 14-1. Reliability versus time for various configurations (CF = 1/3).

STAR Computer with S Spares

Mission Upper Bound Lower Bound
Time MM'69 Simplex (K = 00) (K = 1)
(h) Computer Computer S=3 S=2 S=3 S=2

4,368
(~ 6 months) 0.928 0.82 0.9999998 0.99997 0.999995 0.99982
43,680
(~ 5 years) 0.475 0.14 0.997 0.97 0.966 0.87
87,360
(~ 10 years) 0.225 0.019 0.96 0.79 0.71 0.45

Table 14-2. Mission duration for specified reliability (CF = 1/3.)

Mission Duration in Years

STAR Computer with S Spares

Desired Mission MM'69 Simplex
Upper Bound Lower Bound

Reliability Computer Computer S=3 S=2 S=3 S=2

0.9 0.7 0.3 12.5 7.5 6.7 4.5
0.8 1.5 0.6 16.0 9.7 8.5 6.0
0.7 2.4 0.9 18.5 11.7 10.0 7.0
0.6 3.5 1.3 20.5 13.5 11.3 8.3

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 535

~ 0.6
S
!!
~ 0.4

0.2

o 2 4 6 8
Time (years)

K = 00

K = 00

K = 1

K = 1

10 12

:igure 14-8. Reliability versus mission time
v1M'69, simplex, and STAR computers.

hows the time (in years) for which the reliability
'emains above a specified value. Figure 14-9
Iresents the predicted reliability gain, defined as
he ratio STAR reliability /MM'69 reliability.

The computing operations for the foregoing
malysis, the generation of tables, and the plot­
ing of graphs was done with the aid of the
:omputer-aided reliability estimation CARE
Irogram [Mathur, 1971b], which was developed
lS a design tool during the reliability study.
:ARE is a software package developed on the
Jnivac 1108 computer system at JPL. CARE
nay be interactively accessed by a designer from
l teletype console to calculate his reliability
:stimates. The input is in the form of a system
:onfiguration description followed by queries on
he various reliability parameters of interest and
heir behavior with respect to mission time, fault
:overage, failure rates, dormancy factors, allo­
:ated spares, and partitioning. The CARE pro­
~am is extensible, and it may be updated to
ncorporate new reliablity models as they be­
:ome available.

.TAR COMPUTER SOFTWARE

.YSTEM

~ar1y in the design of the STAR computer it
)ecame evident that the fault-tolerant architec­
ure would impose unconventional constraints
m its software. The development of the-software

6

K = 00

5

K = 00
c 4 .;;
~ K = 1
~ 3
:s
.!!
"ii 2 =.:: K= 1

o 2 4 6 12
Time (years)

Figure 14-9. Reliability gain of STAR computer
with respect to the MM'69 computer.

system for the STAR computer was initiated in
1968 and-closely followed the hardware develop­
ment. It is partitioned into two subsystems. The
programming subsystem consists of three mod­
ules:an assembler, a loader, and a functional
simulator. An executive program facilitates coor­
dinated use of these modules. The operating
subsystem consists of two modules: the resident
executive module and the applications program
module. The programming subsystem has been
implemented on the Univac 1108 computer of
the Scientific Computing Facility at JPL. The
first version of a resident executive for the ST AR
computer is nearing completion.

SCAP (the STAR computer assembly pro­
gram) is the first module of STAR software.
Programs for the STAR computer are written in
the assembly language SCAL. SCAP is a tradi­
tional two-pass assembler incorporating machine
instructions, pseudo-operations, and macrofacil­
ities. A unique feature of SCAP is the encoding
of instruction and data words as required by the
STAR computer. SCAP calculates the code re­
quired and generates the encoded value of the
word. Another feature of SCAP is the
COMPILE pseudo-operation which implements
automatic compilation of simple arithmetic
statements by the assembler.

The second module LOAD (the loader) reads
the program into the simulated STAR computer
memory. After all decks have been read, a

536 THE PRACTICE OF RELIABLE SYSTEM DESIGN

COMMON area is allocated, relocation is com­
pleted, and external linkage is accomplished. A
map and cross-reference table are printed to aid
in debugging and documenting the program. The
third'module of STAR software is the functional
simulator, which is modular in nature and fol­
lows the latest STAR hardware configuration.
Two special features are incorporated in the
simulator. The first is the facility to simulate
hardware errors in order to test the software
aspects of error recovery. The second feature
provides STAR register and memory dumps. An
executive program facilitates the coordinated use
of the assembler, loader, and simulator.

The modules of the operating subsystem of the
STAR computer software system consist of the
resident executive module and the applications
programs module. The STAR resident executive
augments the self-testing and repairing features
of the hardware in addition to its normal func­
tions. The standard features include interrupt
control, input/output processing, and job sched,;.
uling. Novel features incorporated due to the
fault-tolerant architecture of the STAR com­
puter include a "cold start" capability, reconfig­
uration processing, rollback assistance, and diag­
nosis of faulty units. The cold start capability
resets the hardware and software after a disaster
restart as well as prior to an initial load. Recon­
figuration processing is required for memory
replacement, since software assistance is re­
quired to load a newly activated memory unit.
All programs running on the STAR computer
require rollback (recovery) points. The resident
executive provides rollback status storage and
controls events which are nonrepeatable, i.e.,
they may not occur more than once even if a
rollback takes place. Finally, it implements diag­
nosis for faulty units to determine the cause and
extent of failures for possible partial reuse. The
present application programs module includes
floating-point arithmetic subroutines, and test
and demonstration programs. The applications
programs which will be required for space mis­
sions are a part of the TOPS control computer
subsystem project discussed later in this paper.

EXTENSION OF STAR TECHNIQUES
TO PERIPHERAL SYSTEMS

The STAR techniques of fault tolerance can be
systematically extended beyond the boundarie:
of the computer to effect automatic maintenance
of various peripheral systems that communicate
with the computer. The case which was investi
gated in connection with the STAR compute]
development is the implementation of automati(
maintenance for a simplified model of the JPI
thermoelectric outer planet spacecraft (TOPS
which is being proposed for the exploration oj
the outer planets [TOPS, 1970]. The potentiall~
lower failure rates of unpowered spare units anc
the constant power demand of a replacemell'
system are exceptionally important in mission!
requiring a ten-year survival of the spacecraf'
under very strict power constraints.

The methodology of extending the STAR
techniques consists of several steps: I) identifica·
tion of the replaceable peripheral units; 2) selec·
tion of internal error detection functions whid
are economically feasible within the units them·
selves; 3) identification of possible functional
redundancy, in which either another type oj
peripheral unit, or the computer itself can take:
over the function of a failed unit; 4) algorithmic
description of the monitoring and recovery pro·
cedures to be performed for each unit by the:
computer; 5) development of fault-tolerant com­
munication between the peripheral units and the:
I/O and interrupt processors of the computer; 6~
translation of the monitoring and recovery pro­
cedures which have been assigned to the com­
puter into computational requirements: speed:
instruction set, storage size, input/output, and
'interrupt system complexity; and 7) estimation
of reliability and mean life' attainable for each
peripheral unit. Several iterations of the design
process lead to a system for which a balanced
gain in the reliability has been attained by me am
of computer-controlled automatic maintenance.
A detailed case study of the application of these:
techniques is presented in Gilley [1970].

The investigation has identified and quantized

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 537

le computing capability required from the
TAR computer in order to effect the automatic
laintenance of the TOPS spacecraft. Further­
lore, the results have shown that: 1) the fully
utomatic maintenance of a complex long-life
pacecraft is feasible through a systematic exten­
lon of STAR techniques, and 2) the automatic
laintenance requirements of the spacecraft sys­
!ms can be algorithmically described to the
etail required to produce computer programs
)r their implementation. The results of the
lVestigation have systematically extended dy­
amic redundancy to various peripheral subsys­
!ms of an information processing system. Be­
ond the specific example of a spacecraft, the
lethodology is applicable to computer-con­
~olled automatic maintenance of other complex
ata processing, communication, and control
ystems.

)ESIGN OF THE TOPS CONTROL COMPUTER

lle most recent step in the development of the
:T AR computer concept has been the design of

control computer subsystem (CCS) for the
hermoelectric outer planet spacecraft (TOPS)
raps, 1970]. After the TOPS requirements were
luantified as described in the preceding section,
he CCS design had still to meet four major
xternally-imposed constraints: I) the weight of
he subsystem was not to exceed 40 lbs.;
.) power consumption was not to be greater than
.0 W; 3) probability of successfully completing a
OO,OOO-hour mission was to be equal to or
),eater than 0.95 (using TOPS approved part
ailure rates; and 4) it could not, as a conse­
luence of any single internal fault, result in a
ailure mode catastrophic to the mission.

Because of these constraints, it was not possi­
.le merely to "shrink" the STAR computer into
, flight package. The STAR design was simpli­
led by retaining only the capabilities needed to
(leet the TOPS functional requirements. The
ntire self-test and repair ability of the larger
(lachine has been retained; in fact, the TOPS
:CS has expanded failure detection and recov-

erycapability. A variety of advances ansmg
from the years of work on the STAR computer
that preceded the TOPS effort have been incor­
porated into its design.

The CCS operates at a clock frequency of 500
kHz. The CCS word is the same length as the
STAR word, 32 bits. The word-processing cycle,
ten byte-times long in the STAR computer, has
been reduced to nine in the CCS: eight for
processing or transferring information and one
(two in ST AR) for the messages and decision
making between words. The execution (including
fetch) of an instruction requires one to three
cycles. The STAR instruction set with over 200
variants has been reduced to less than 100. To
detect word errors, the CCS uses the same resi­
due code as the STAR computer. Unlike the
STAR, however, the CCS employs the residue
encoding also for operation codes of instruc­
tions. In addition to these failure detection mea­
sures, the CCS incorporates dual control logic
and clocking, memory address checking simulta­
neous with all memory accesses, and a nonde­
structive read-after-write option on all store in­
structions.

The CCS consists of the seven STAR com­
puter functional units designated the COP, LOP,
lOP, IRP, ROM, RWM, and TARP (Figure
14-2). The IO/IRP has been split into indepen­
dent lOP and IRP units in order to improve
failure detection and isolation in a completely
unattended environment. The MAP is deleted
because software multiplication and division are
sufficient, while addition and subtraction are
done in the LOP. Simplifications in the instruc­
tion set have resulted in reduced hardware in the
COP, LOP, lOP, and IRP. Conversely, there is
increased hardware in the R WM and T ARP for
added failure detection. A 4,096-word ROM and
two 4,096-word RWM units constitute the pro­
gram storage capability of the CCS. In addition,
another 4,096-word R WM (designated SHM) is
shared (by use of two independent ports) by the
CCS and measurement processor subsystem
(MPS). All the CCS RWM units are identical;
anyone of them can be assigned either as a CCS

538 THE PRACTICE OF RELIABLE SYSTEM DESIGN

internal memory or as the SHM. The SHM
contains the MPS operating program and the
most recent samples of spacecraft variables gath­
ered by the MPS. Because the SHM is available
to the CCS as part of its own memory, these
samples are conveniently available to it for fault
diagnosis and monitoring of spacecraft activity
[Gilley, 1970].

CURRENT RESEARCH

The research and development program which
led to the STAR computer is continuing in
several directions. The design of several im­
proved second-generation STAR functional
units is under way, including a new arithmetic
processor, a control processor for medium-scale
integrated-circuit implementation, and the
shared READ-WRITE memory unit for the storage
of automatic maintenance information from the
spacecraft telemetry system. Analysis of auto­
matic maintenance algorithms and design of a
command/data bus for their implementation are
under intensive study. Other current investiga­
tions are concerned with the following areas: I)
hardware-software interaction in a fault-tolerant
system with recovery, especially the interaction
of the TARP and the operating system; 2) stud­
ies of advanced recovery techniques, i.e., post­
catastrophic restart, T ARP replacement
schemes, recovery from massive interference,
partial utilization of failed units; 3) advanced
component technology, especially methods to
attain bus and power switch (i.e., hard core)
immunity to faults; 4) heuristic studies of fault
tolerance by interpretation of extensive experi­
ments with the STAR breadboard as the instru­
ment; 5) design of a second-generation ST AR-

,type computer with universal processor and stor­
t age modules, and their implementation by large­
scale integration; 6) computational utilization of
the spare units for supplemental tasks in a mul­
tiprocessing mode.

At the present time it is evident that the STAR
computer design and construction effort has led

to valuable new insights into the problem of
fault-tolerant computing; further results in this
field are expected from the research program in
the future.

ACKNOWLEDGMENT

The research and development of the STAR
computer has been performed in the Spacecraft
Computers Section of the JPL Astrionics Divi­
sion, and recognition is due to most of the
Section's members for support in their respective
specialties. The STAR concept of computer ar­
chitecture is due to A. Avizienis, who has direct­
ed the overall research effort. The hardware
design is directed by D. A. Rennels, the software
effort by J. A. Rohr, reliability analysis by F. P.
Mathur, and the implementation of peripheral
automatic maintenance by G. C. Gilley. Techni­
cal contributions to the design have been made
by P. H. Sobel and A. D. Weeks, and consulta­
tion has been contributed by R. K. Caplette, E.
Greenberg, G. R. Hansen, E. H. Imlay, G. R.
Kunstmann, J. Nievergelt, J. J. Wedel, and L. J.
Zottarelli. The STAR effort has been adminis­
tered by J. R. Scull, W. F. Scott, and J. J. Wedel.
The power switch has been developed by the
Stanford Research Institute, Menlo Park, Calif.,
and a fault-tolerant READ-ONLY memory has
been designed by the M.LT. Instrumentation
Laboratory, Cambridge, Mass., under subcon­
tracts from JPL. Construction of the computer
was performed by J. Buchok, J. L. Cline, N., B.
Funsten, J. C. Schooler, and B. Stall. The design
of the TOPS Control Computer is due to D. K.
Rubin, with technical contributions by N. Deo,
G. Milligan, and M. Vineberg. A special ac­
knowledgment is due to R. V. Powell of the JPL
Research and Advanced Development Program
Office, and F. J. Sullivan, Director, Electronics
~nd Control, J. L. East, J. I. Kanter, T. S.
Michaels, and G. A. Vacca of the NASA Office
of Advanced Research and Technology, Wash­
ington, D.C., for their continued support and
encouragement of the STAR computer effort.

THE STAR (SELF-TESTING AND REPAIRING) COMPUTER 539

I{EFERENCES

t\.nderson and Macri [1967]; Avifienis [1967a, 1967c,
1968, 1971]; AviZienis et at. [1969]; Bouricius, Carter,
md Schneider [1969a]; Flehinger [1958]; Gilley

[1970]; Griesmer, Miller, and Roth [1962]; Kruus
[1963]; Kuehn [1969]; Lewis [1963]; Long [1969];
Lyons and Vanderkulk [1962]; Mathur [1971a, 1971b];
Mathur and AviZienis [1970]; Reed and Brimley
[1962]; Short [1968]; TOPS [1970].

\utomatic Fault Protection in the Voyager
ipacecraft

... P. Jones

~bstract

)ue to reliability requirements placed on the Voyager
ryacecraft design and a mission resulting in long two-way
ght time communication links, on-board automatic fault
etection and correction capabilities are a significant
~ature of that spacecraft's design. Most of the protection
") otherwise mission-catastrophic failures is implemented
1 the software of the Voyager's central computer, while
'Jme resides in an attribute control-dedicated processor.
"'his paper will present the role that automatic fault
rotection plays in achieving Voyager's overall reliability,
's design evolution, and how its design was validated
'uring system testing. In-flight experience will also be
escribed, and from the lessons learned therein, conclu­
rons and recommendations will be drawn for the benefit
f future designs.

NTRODUCTION

·he Mission

n August and September of 1977, two Voyager
pacecraft were launched on four-year-Iong mis­
ions to investigate Jupiter and Saturn, their
aany satellites, and the traversed interplanetary
nvironment. Voyager 2 is targeted by navigators
o eventually rendezvous with Uranus some ad­
litional four years after its encounter with Sat­
lrn. The planetary encounter phases are each
00 days long and are marked by a 30-day
'observatory" phase during which regular, peri-

ones, c.P., "Automatic Fault Protection in the Voyager
;pacecraft," AIAA Paper No. 79-1919, American Institute
,f Aeronautics and Astronautics.

541

542 THE PRACTICE OF RELIABLE SYSTEM DESIGN

odic observations are made of the planetary
system. The next 30 days, or "far-encounter"
phase, include increased observations of the
planet's satellites and spacecraft reorientation
maneuvers for the purpose of calibrating the
various fields and particles instruments. The
"near-encounter" phase, typically five days in
length, provides the most intense data gathering
during the encounter. Experiments utilizing Sun
and Earth occulations by the planet are conduct­
ed as well as high-resolution observations by the
spacecraft's remote sensing instruments. A 30-
day "post-encounter" phase follows during
which the activity pace drops to that of the
earlier far-encounter phase.

Between encounters, each spacecraft conducts
the necessary calibration exercises to ready itself
for the next encounter while the "cruise science"
instruments (typically fields and particles) gather
information about the interplanetary medium.

The Spacecraft

The Voyager spacecraft design is a product of (1)
the early (pre-1970) Thermoelectric Outer Plan­
ets Spacecraft (TOPS) concept, characterized by
substantial redundancy, and a Self-Test and Re­
pair (STAR) computer; (2) hard fiscal con­
straints of the 1970s; and, to some extent, (3) the
recognition that earlier Mariner and Viking-class
spacecraft designs, while not boasting the auton­
omy or operational flexibility of the TOPS de­
sign, could, in fact, meet the mission require­
ments provided that concerns about their long
lifetime reliability could be allayed.

At launch, the Voyager spacecraft consisted of
a Mission Module and a Propulsion Module.
The Propulsion Module was jettisoned approxi­
mately one hour after launch following its 45-
second thrust period that placed the spacecraft
on its interplanetary trajectory. The Mission
Module (henceforth referred to as the space­
craft), shown in Figure 15-1, differs markedly in
appearance from its Mariner and Viking prede­
cessors.lts configuration is dominated by a 3.7-m

diameter high-gain antenna (HGA), used for
transmitting the spacecraft's S-band and X-band
data links and for receiving the S-band uplink.
Power is provided by three radioisotopic thermal
generators (RTGs) that, in combination, output
approximately 430 watts at Jupiter and 400 watts
at Saturn. The majority of the spacecraft's elec­
tronics are mounted within the 10-sided bus
structure behind the HGA. Fields and particles
science instruments are fixed-mounted on either
the bus structure or on booms extending from it,
while remote sensing instruments are mounted
on a 2-degree-of-freedom articulable "scan plat­
form."

ACHIEVING RELIABILITY

The task of maximizing total Voyager spacecraft
system reliability within the constraints of mis­
sion return, cost, and scheduling was distributed
among design analysis, design and fabrication
practices, fault-tolerance design requirements,
testing, and conservative in-flight operational
practices.

The traditional failure modes, effects, and
criticality analysis (FMECA) was performed on
the engineering subsystem designs to help identi­
fy design weaknesses and access vulnerability to
random part failures. Additionally, the radiation
environment at Jupiter prompted further analy­
sis of the radiation and electrostatic discharge
susceptibility of the spacecraft design. These
activities led to a modest amount of circuit
redesign, a parts hardening and component
shielding effort, and to the goal of achieving an
"equipotential" spacecraft through surface-to­
surface grounding. Finally, electronic compo­
nents and structural elements were analytically
tested to determine if they operated within spec­
ification over environmental (thermal, acoustic,
vibration, and radio frequency interference) lim­
its, and in the case of electronic components,
over electrical interface operating margins (input
voltage variations, conducted· interface noise,
etc.).

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 543

Low-field
magnetometers

(Boom length, 13 m)

/
High-gain antenna

(3.7m dia)

~
Radiosotope

thermoelectric
generators

Planetary radiO/
astronomy and

plasma wave
antennas

(10 m length)

/ Imaging wide angle

/~-11~~- Imaging narrow angle

Plasma

I

Ultraviolet
--spectrometer

Infrared
spectrometer

and radiometer

Low-energy charged particle

Optical calibration target

Figure 15-1. Voyager spacecraft.

Parts selection and screening, reliance on
flight-proven designs where practical, a quality
assurance program monitoring fabrication and
assembly processes, and an underlying desire to
"keep it simple" were significant aspects of the
Voyager spacecraft reliability program.

Fault-tolerance, as a characteristic of the
spacecraft system design, came about as a result
of top-level design requirements on the system
that were intended to (l) assure maximum fault­
tolerance during mission-critical activities (dur­
ing post-launch injection, at planetary closest
approach, during off-Earth point maneuvers,
etc.); (2) provide spacecraft safing in response to
faults during unattended (nontracked) cruise;
and (3) minimize the required ground support in
the event of an on-board fault. The requirements

and their implementation had a profound effect
on the spacecraft's hardware configuration and
software design.

A comprehensive test program was conducted
to validate the hardware and software designs.
Each subsystem was first tested (in ambient
conditions, then in a solar-thermal vacuum) to
verify its performance and interface integrity.
Next, each subsystem was integrated into the
system, again with extensive validation of inter­
face performance. Once the spacecraft was fully
assembled and functionally validated, it was
subjected to a rigorous set of environmental
tests. Finally, the system, back in ambient condi­
tions, performed operational sequences that
demonstrated its mission readiness. The test pro­
gram provided operating time on electronic sys-

544 THE PRACTICE OF RELIABLE SYSTEM DESIGN

terns, thereby weeding out cases of "infant mor­
tality" failure, identified shortcomings in the
software design (including that dedicated to fault
tolerance), and substantiated that much of the
design analysis that had been performed at the
subsystem level was valid at the system level.

Once the spacecraft are in flight, only conserv­
ative operational practices can help protect the
lifetime of the system. Careful management of
consumables, a minimization of unit power on/
off and thermal cycles, and strict monitoring of
spacecraft performance all help prevent the fore­
shortening of the spacecraft lifetime.

AUTOMATIC FAULT PROTECTION
DESIGN

The remainder of this paper will focus on the
fault-tolerant aspects of the Voyager system de­
sign. A comprehensive discussion of fault protec­
tion wholly within the Attitude and Articulation
Control Subsystem (AACS) can be found in
Fleischer [1977].

Requirements

The top-level requirements referred to earlier
include one whOSe intent was to eliminate from
the design "all single-point failures" whose oc­
currence would result in the loss of all engineer­
ing data or the data from more than one science
instrument. Any such failure prior to the space­
craft's Saturn encounter would be unacceptable.
Obviously, the requirement had to be waived
when considering primary structure, the HGA,
the major elements of the Propulsion Module,
and so on; but for electronic subassemblies the
requirement was to be strictly adhered to. A
second requirement dictated that whatever pro­
tection was to be provided had to be consistent
with periods of unattended cruise, lasting up to
24 hours. This requirement applied primarily to

cruise phase safing responses; during encounter
periods, when round-the-clock coverage was
available, the long light time transmission delays
became the significant design driver. Finally,
response priorities were established to direct the
design. In order of decreasing priority, they
were:

1. Spacecraft safety and commandability
2. Preservation of spacecraft consumables
3. Downlink telemetry visibility
4. Ongoing sequence integrity

Implementation of the
Requirements in Hardware

The simplest response the hardware designer can
give to the requirement of eliminating single
point failures from his design is to, of course,
provide two of everything. This approach has
distinct advantages:

1. It is patently obvious that the requirement has been
met.

2. The integrity of the redundancy is easily tested for
(in the case of part-level redundancy, there is no
visibility beyond board-level testing).

3. Circuit designs are kept simple.
4. Where inherited designs are to be taken advantage

of, it is considerably cheaper than adding part-level
redundancy.

It was clear from the outset that the Voyager
spacecraft would employ considerable redun­
dancy. Of course, other steps were taken to
achieve the same result. Designs were made to be
as operationally independent as possible (e.g.,
subsystems were provided dedicated on/off relay
interfaces with the power subsystem, and electri­
cal interfaces between block redundant elements
of two subsystems were cross-strapped, where
practical, so that a failure in one subsystem did
not require reconfiguration of another). Where
critical decisions were to be made by hardware,
majority logic was employed.

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 545

mplementation of the
tequirements in Software

n most cases, adding redundant hardware
loesn't provide fault tolerance. As a rule, redun­
lant units are held in a de-energized, standby
tate and need to be powered on and, in some
:ases, initialized before they can perform their
ask of replacing a failed counterpart. One of the
)rimary functions of the fault protection soft­
vare then, is to manage the spacecraft's redun-

dant elements. This management function in­
cludes determining if evidence of a problem
exists, making the decision as to the appropriate
action to be taken, and then affecting the action
(executing the response). Table 15-1 itemizes
those functions or subassemblies in which anom­
alous performance can trigger an automatic fault
response. The table also shows the roles that
hardware and software play in the detection­
decision-action process of the various fault rou­
tines.

'able 15-1. On-board redundancy and fault protection,

Fault Protection

;Unction or Subassembly Detection Decision Action Routine

Receiver S/W S/W H/W 1
S-band exciter H/W S/W H/W 1,2
S-band transmitter H/W S/W H/W 1,2

tFS X-band exciter H/W S/W H/W 1,2
X-band transmitter H/W S/W H/W 1,2
Downlink frequency source H/W S/W H/W 1,2
Antenna control S/W S/W H/W I

..iDS { Command detector unit S/W S/W H/W

)WR { 2.4 kHz inverter H/W H/W* H/W & S/W 3
System low voltage H/W H/W* H/W & S/W 3

AACS PWR code response S/W S/W S/W 5
Processor H/W & S/W H/W & S/W S/W 6

~CS Output unit H/W & S/W H/W & S/W S/W 6
Event timing S/W S/W S/W 7
Sequence abort S/W S/W S/W 7

AACS processor S/W S/W H/W & S/W 5
AACS electronics S/W S/W H/W & S/W 5
Sun sensor S/W S/W H/W & S/W 5

\ACS
Star tracker S/W S/W H/W & S/W 5
Attitude control thrusters S/W S/W H/W & S/W 5**
Gyros S/W S/W H/W & S/W 5**
Platform slewing S/W S/W H/W & S/W 5
CCS response to power codes S/W, S/W S/W 5

RIS { IRIS standby heater units H/W S/W H/W & S/W 4

, Majority voting circuits Routine Name Identifier Routine Name Identifier
'*See Fleischer [1977].

CMDLOS 1 AACSIN 5
RFLOSS 2 ERROR 6
PWRCHK 3 TRNSUP 7
IRSPWR 4

546 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Before describing the fault routines, it is ap­
propriate to establish an understanding of the
hardware environment in which they operate.

COMMAND COMPUTER
SUBSYSTEM FUNCTIONAL
DESCRIPTION

The Command Computer Subsystem (CCS)
serves as the central controller of the Voyager
spacecraft. It is composed of two computers,
each of which is used as an interrupt processor,
reacting to periodic timing interrupts (hours,
seconds, centiseconds, science data frame tim­
ing, command bit sync, etc.), and external level
interrupts from other subsystems which are typi-

V)
1.1..
CI::

2.4 kHz
INVSW

Commands

S-EXC low

X-EXC low

S-XMTR low

X-XMTR low

Stby Supp low

UNDV
trip

:S :: > V) c > z
~ ~

'"
~

~
s:::::
~

~ E
~ E
s::::: 0

I0I.l U

Scientific Commands
instruments ----.....

'" ~
s:::::
~

E
E
0 u

Q.
~

~
f
~

cally used to indicate external failures elsewhere
in the spacecraft. Both processors have an 18-bit,
plated-wire (hence nonvolatile) memory contain­
ing 4,096 words, half of which are "write protect­
ed" such that a "key" must be employed a'nytime
this part of memory is to be altered. Fixed
routines for command decoding and failure de­
tection and correction are typical of the func­
tions located in write-protected memory. The
remaining half of the memory is used to load
sequences which control the spacecraft's engi­
neering and science subsystems during trajectory
correction maneuvers, science data acquisition
and transmittal, and various calibration exercis­
es. Key system interfaces with CCS are shown in
the block diagram in Figure 15-2.

'" '" ~
~ ~ -;

s::::: s:::::
~ ~ ~ E E ~

E E s::::: ::.:
~

0 0 E u
u u

E 0
...,j

0 .: u

CCS

'" ~
s:::::
~

... E
\oJ E

'" ... ~ 0
~ \oJ ~ U

s::::: l- .: x
~ 0 ~

E >< ~

~ = ~ .E E "'C :: 0 l- .E
0 U 0
~ I0I.l

Commands

Figure 15-2. CCS system interfaces.

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 547

CCS Routine Structure

The routine structure of the CCS has five essen­
tial parts.

1. Hardware receives levels and timing interrupts
from other subsystems on the spacecraft.

2. Software preprocesses this data as input.
3. Software performs intermediate processing.
4. Software generates commands to other subsystems

and telemetry as output.
s. Hardware generates switch closures or data pat­

terns to other subsystems on the spacecraft.

The block diagram in Figure 15-3 depicts this
structure. When a timing or level interrupt oc­
curs, an element of sequence code (e.g., a com­
mand to be issued to another subsystem) or a
fixed routine is executed. Following execution,

the software returns to a "wait" state. During
normal sequencing activity, the CCS is active
(executing code) only a small percentage of the
time.

FAU L T -PROTECTION SOFTWARE

The Voyager fault-protection software exists
within two subsystems; the CCS and the AACS.
In the former, fault routines are initiated by
interrupts received from external sources, and
followed by the preprogrammed response. In
AACS, however, fault routines are periodically
executed and are always comparing current per­
formance indicators against preprogrammed
"norms." When an unfavorable comparison oc­
curs, action is taken (see Fleischer [1977]).

(1)

Figure 15-3. CCS routine structure.

548 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Fault Protection in CCS

The fault routines resident in CCS are: ERROR,
PWRCHK, RFLOSS, CMDLOS, IRSPWR,
AACSIN, and TRNSUP.

Error

Whenever an abnormal condition (hardware or
software) exists within the CCS, the ERROR
routine is entered. The response generally is to
place the CCS in a known, quiescent state.
Reasons for ERROR entry are:

I. Hardware
a. A low voltage condition exists.
b. A primary command bit sync signal has been

received before the previous one was processed.
c. An attempt to write into protected memory

without a memory-protect override has oc­
curred.

d. An execute of an execute instruction has been
attempted.

e. The processor bit generator has reached an
illegal state.

2. Software
a. The primary output unit has been unavailable

for 14 seconds or longer.
b. The self-test subroutine* has not executed cor­

rectly.
c. A secondary command bit sync signal has been

received before the previous one was processed.
d. The sequencing support routine has been to

activate more than 30 time/event tables.
e. The output buffer has overflowed.
f. During the launch phase a processor is counting

relative to the other processor and Flight Data
Subsystem (FDS).

Upon entry, the routine determines the source of
the error and stores that error condition, the
value of its hours clock, the status of its two
interrupt registers, two mask registers, and three
indicators relating to self-test and power code
activity, and output unit availability.

* The self-test routine is primarily a software test of the
hardware. It must be successfully executed before any
commands are output from the CCS to any other subsys­
tem.

If the rollback feature is enabled (rollback
refers to the capability of restarting a predesig­
nated portion of the sequence), then its particu­
lar time/event region is flagged to be restarted if
and when the PWRCHK routine requests it.
Next the ERROR routine:

I. Clamps the other processor and disables output
units.

2. Terminates the following activities: command de­
coding; memory readout; sequence activity (except
rollback); FDS/ AACS memory load; power code
processing (momentarily); and Data Storage Sub­
system (DSS) tape positioning.

3. Clears the following: data received from the other
CCS processor; output buffer data and not-avail­
able time counters; sequence support routine time
and block schedules; FDS/ AACS memory load
pointers; power code processing and DSS tape
positioning/active indicators; and, power low-volt­
age response enable.

4. Resets output and telemetry buffer pointers.
5. Initializes the sequence support routine counters

and pointers.
6. Disables interrupts and unmasks the following in­

terrupts: ERROR; DDS tape recorder inputs; pow­
er codes; internal interrupt; checksum; command
decoding; demand read; one pulse per hour clock
input; RFLOSS inputs; power inverter switch and
IRSPWR inputs; and self-test.

If output unit initialization is enabled and
ERROR has successfully reenabled itself and the
power low-voltage response, and if the reason for
entering ERROR was, in fact, a CCS tolerance
detection trip or an undervoltage trip indication,
then the PWRCHK routine is entered. Other­
wise, the rollback table will be disabled and CCS
will go to a WAIT state.

PWRCHK

The PWRCHK routine responds to either:

• An interrupt from the Power Subsystem (PWR),
indicating that an undervoltage trip has occurred.
This action signifies that the spacecraft power de­
mand exceeds the supply such that the PWR can no
longer maintain a DC bus voltage greater than 29.3
volts (normally 30 volts), or an AC bus voltage of
47.5 volts rms (normally 50 volts rms). Upon detect-

AUTOMATIC FAULT PROTECTION INTHE VOYAGER SPACECRAFT 549

ing this condition, PWR disconnects all nonessential
loads (those not needed for commanding or assuring
attitude control) and waits for the CCS, via
PWRCHK, to restore the loads safely; or
A CCS tolerance detector trip indicating that the
CCS input power has dropped below a level where
the processor can reliably function.

[f the latter is the case, the PWRCHK response
.s to:

l. Assume that all other spacecraft loads have experi­
enced power-on resets and issue mission phase­
dependent reconfiguration commands as required.

t Reset the CCS hardware clock.
3. Initiate the special rollback table, if present.
tEnable RFLOSS and IRSPWR and initiate their

execution.
5. Enable the celestial reference loss response portions

of AACSIN.

rable 15-2. PWRCHK response matrix.

6. Restart a search for celestial references if one was
in progress at the time of PWRCHK entry.

7. Initiate the sequence abort/safing sequence, if ena­
bled (e.g., during a trajectory correction maneuver,
TCM).

If the PWRCHK entry is caused by an under­
voltage trip, the response will depend on two
other factors:

• Whether the PWR standby 2.4 kHz inverter has
been selected.

• If a return to a science acquisition spacecraft state is
desired.

The matrix in Table 15-2 describes the basic
responses of PWRCHK in terms of the space­
craft loads switched, and the initiating event and
the option override variable. In general, the

PWRCHK Entry/Variables

function

Radio
transmitters

Science
lnstruments

Science
replacement
h.eaters

folerance
ietector trip
responses
1-3

folerance
ietector trip
responses
4-7

Standby
Inverter
Selected

Redundancy
selected

Low power
mode

No change

No change

Yes

Yes

Override
Option
Set*

Redundancy
selected

Low power
mode

No change

No change

Yes

Yes

.. PWRCHK automatically resets this variable after it is tested.

Override
Option
Reset

Redundancy
selected

Low power
mode

X-band off

Powered off

Powered off

No

Yes

Tolerance
Detector
Trip

No change

No change

No change

Yes

Yes

Undervoltage
Trip During
Launch

Powered off

No change

No change

Yes

Yes

550 THE PRACTICE OF RELIABLE SYSTEM DESIGN

option override is set during far-, near-, and
post-encounter phases and reset during cruise.
During launch, a second variable is used to force
all PWRCHK entries to be treated as one caused
by a tolerance detector trip, thereby minimizing
CCS activity during that critical mission phase.

Each time a power undervoltage trip signal is
detected by the CCS, PWRCHK will increment
a special undervoltage trip counter; likewise, a
tolerance detector trip counter is provided. In
addition, a "master counter" whose value is
te1emetered each hour by CCS is incremented by
each PWRCHK entry, regardless of the cause.
These counters provide useful data for subse­
quent ground-based fault analyses.

RFLOSS

The RFLOSS routine is designed to restore
either the S-band or X-band (or both) downlinks
subsequent to a failure of either an exciter or
transmitter. Diode detectors within the Radio
Frequency Subsystem (RFS) monitor the output
power of the exciters and transmitters. Whenever
the output power drops below a preset level the
detector closes a switch. Anyone or more of the
four interrupts will cause RFLOSS to be entered
and during the execution of the routine all four
interrupts will be systematically interrogated.

Upon entry, the routine will first disable itself
from reentry, increment the master counter, and
then wait five seconds before processing the
exciter interrupts. (This delay permits the routine
to be tolerant of exciter interrupts produced at
tum-on.) Following the five-second delay, the
RFLOSS counter (ex post facto diagnostic trace)
is incremented and the S-band exciter is checked.
If the level indicates a failure, a command is
issued to decouple the exciter's input frequency
reference from the ground-transmitted uplink.
This will eliminate the radio's voltage-controlled
oscillator as a possible failure source. One sec­
ond later, the RFLOSS counter is incremented
again and the S-band exciter level rechecked. If
still present, the routine will disable future entry
into the S-band exciter interrupt subroutine and

issue the command to select the backup unit.
The routine will then wait five seconds, incre­
ment the RFLOSS counter, and chec~ the re­
maining three interrupt levels. Also, one second
after the exciter switch, the S-band exciter level
input is checked for the last time. If it still
indicates a failed unit, the ultra-stable oscillator
is turned off, thereby removing it as the last
possible source of failure. At this point, the
radio's auxiliary oscillator becomes the downlink
frequency source.

The next interrupt level to be processed is that
of the X-band exciter. If this interrupt indicates
a failure, the routine will disable future X-band
exciter failure checks and issue the command to
select the redundant X-band exciter. If the fail­
ure indicator is still present one second later, the
backup S-band exciter (the frequency source for
the X-band exciter) is selected; future S-band
exciter checks are then disabled.

After processing the exciter level inputs, the
routine moves on to check first the S-band, then
the X-band transmitter level inputs. As with the
exciters, a delay (of five minutes) is provided to
assure tolerance to the transmitter's turn-on
characteristics. Following the five minute delay,
if the S-band transmitter failure is indicated and
it is the first such indication, the routine will
select the redundant transmitter and proceed to
the X-band transmitter check. If it is not the first
indication, then the transmitters have already
been switched and the suspected cause becomes
the transmitter's input source, the S-band exciter.
If the S-band exciter has not yet been switched,
it will be at this time, future exciter switches will
be disabled, and the routine will be reentered
back at the five-second delay point (beginning).
If the S-band exciter has already been switched,
then the routine will inhibit future checks of the
S-band transmitter interrupt, turn off the failed
transmitter, and turn on the transmitter bay
heater. The routine will then continue by proces­
sing the remaining X-band transmitter level in­
terrupt in a manner identical to that for the S­
band transmitter. Following this the routine is
re-enabled and exited.

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 551

CMDLOS

fhe purpose of the Command Loss (CMDLOS)
~outine is to provide a means for the Voyager
ipacecraft to autonomously correct for a failure
which is preventing the receipt of ground com­
mands. Such failures can exist in the spacecraft's
receiver (RCVR), command detector unit
~CDU) of the Modulation/Demodulation Sub­
)ystem (MDS), or the CCS itself '(which must do
the actual command decoding). Additionally,
misorientation of the spacecraft and, therefore,
the narrow beamwidth HGA can lead to an
inability to receive commands. Finally, the re­
mote, yet possible, instance in which the receiver
locks up on an RF spur being generated else­
where within the RFS (i.e., the RF exciters or
transmitters) is also a failure which must be
protected against. Since the loss of commanda­
bility generally precludes any ground-based cor­
rective action, the spacecraft is on its own in
~roviding the needed protection. The only excep­
tIon to this is the case in which one of the CCS's
is unable to process command data it receives
from the CD U. Should this happen, the ground
merely needs to reformat the command so that it
is executed by the other CCS. By having both
CCS's always on-line, receiving and decoding the
commands (only command execution need to be
specified), protection against a single failure re­
sulting in a permanent loss of commandability is
provided.

Entry into the CMDLOS routine occurs when
the CCS (each half independently) determines
that a valid command has not been received in
the last N hours, where N (typically 192 hours)
reflects the current mission activity level and
reliance on commandability. N is decremented
by one each hour, but reset to its initial value
each time the CCS successfully receives a com­
mand. If it ever underflows, CMDLOS is en­
tered.

At the start of the routine, commands are
issued to:

I. Decouple the downlink frequency source from the
uplink.

2. Turn off S- and X-band ranging receivers.
3. Select the backup RCVR and CDU.
4. Issue a sun search command.

These commands reduce the chances of hav­
ing the receiver false lock (1 and 2), select those
units that are most likely the cause of the prob­
lem (3), and initiate a reorientation back to the
Earth-line in the event that the spacecraft has
lost its celestial references (4). The routine then
waits six hours, at the end of which it checks to
determine if a valid command has been received.
If so, the routine is exited. If not, the low-gain
antenna is selected, and after an additional six
hours with no commanding, the following events
occur:

1. Both S- and X-band transmitters are commanded
to their low-power modes.

2. The heater for the transmitter electronics bay is
turned on.

3. Commands to turn on the S- and X-band transmit­
ters are issued.

These commands initialize the transmitter
power/heater configuration so that subsequent
events issued by CMDLOS do not result in too
high a power demand from the spacecraft power
subsystem or the subcooling of the transmitter
electronics bay. (The yaw thruster hydrazine line
thermally coupled to the bay could freeze, which
would result in a loss of attitude control.) The
rest of the events issued by CMDLOS are func­
tionally identified in Tables 15-3 and 15-4, as the
downlink configuration events and uplink con­
figuration events, respectively. These events are
issued in the following manner. The routine
issues the first event from the downlink table
waits six minutes, then issues each of the event~
from the uplink table on six-minute centers.
When the routine completes the uplink table it
selects the next entry from the downlink table
and cycles through the' uplink table for a second
time. This process continues until all the uplink
events have been issued for all the downlink
events. Before· each uplink event during the
above process, CMDLOS checks to determine if

552 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Table 15-3. CMDLOS downlink configuration
events.

1. Select S-band exciter # 1. *
2. Select S-band transmitter # 2.
3. Select S-band transmitter #2.
4. Select S-band transmitter # 1.
5. Tum off X-band transmitter and exciter, turn on

transmitter bay heater.
6. Turn off S-band transmitter and exciter.
7. Turn on S-band transmitter and exciter.
8. Turn on X-band transmitter and exciter, turn off

transmitter bay heater and ultra-stable oscillator.
9. Turn on ultra-stable oscillator.

* All devices except the Itansmitter bay heater and ultra­
stable oscillator have redundant power relays.

Table 154. CMDLOS uplink configuration events.

1. Select CDU B.*
2. Select RCVR #2.*
3. Select CDU A.*
4. Select HGA.
5. Dummy command
6. Select CDU B.*
7. Select RCVR # 1.*
8. Select CDU A.*
9. Select LGA.

10. Dummy command
11. Dummy command

* These functions have redundant power relays.

a command has been received; if so, the routine
is exited and the spacecraft is left in a command­
able state. If not, the routine continues.

If no ground command has been received, the
routine restarts the cyclic'tables. This time, com­
mands are issued to redundant relays to preclude
any relay failure from preventing the attainment
of a commandable spacecraft state. The routine
will execute endlessly in this manner (redundant
relays are selected only on even numbered
cycles) until a command is received.

IRSPWR

The Infrared Interferometer Spectrometer and
Radiometer Subsystems (IRIS) includes a Casse-

grain optical system and interferometer subas­
sembly whose temperatures are actively main­
tained by redundant proportional thermal
controllers. If the operating thermal controller
should fail, its standby redundant counterpart
must be energized within two hours or the optics
will supercool and become permanently mis­
aligned. The purpose of the IRSPWR routine is
to provide on-board selection of the IRIS stand­
by heater unit should the prime unit fail. This
routine is by far the simplest of all the fault
routines aboard Voyager. Upon sensing a change
in a level interrupt provided to CCS by IRIS
(which indicates either a "normal" or "low" IRIS
heater power supply voltage condition), the rou­
tine disables reentry, waits 60 seconds, incre­
ments the "master counter," and then examines
the absolute state of the level input. If it is low,
the prime supply is turned off, its backup turned
on and the routine is exited (without re-enabling
itself). If the level input is high, the routine re­
enables itself and exits.

AACSIN

AACS Power Code Processing (AACSIN) con­
trols the CCS half of the CCS/ AACS power code
interface. Power codes are of two types: func­
tional and informational. Functional power
codes are requests by AACS to have CCS issue
specific commands to the power subsystem.
There is a one-to-one relationship between func­
tional power codes and power commands, and
no intermediate processing is required other than
formatting the power command. Informational
power codes are issued by AACS when certain
events occur in AACS for which the CCS has a
"need to know." Those related to fault condi­
tions are:

• Heartbeat
• Omen
• Celestial reference loss/ acquistion
• Power supply fail
• Memory refresh fail
• Thruster branch fail
• Gyro fail

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 553

Scan slew abort
Command parity error
Command sequence error
Bad/no echo response
TCM burn abort
Turn complete

'ieartbeat. As its name implies, the Heartbeat
s a periodic (~ 2 seconds) signal from AACS to
:CS whose presence is an indication of a healthy
~CS processor. If a fault occurs (hardware or
ioftware) which stops the Heartbeat, then the
:CS is programmed to take corrective action.
~very ten seconds CCS checks for the reception
)f any power code. If none have occurred, CCS
ssues two self-test commands to AACS and
lisables commanding through the AACS hard­
~are loader (normally not used). If two such
~vents occur in one hour, CCS will repeat the
·esponse above, then select and initialize the
·edundant AACS electronics and processor.

Omen. The Omen power code triggers the
:CS to store the next three non-Heartbeat power
;odes for the purpose of post-failure analysis.
~CS issues this power code just prior to issuing
~ach of the next nine power codes discussed
}elow. The error-indicating power codes referred
:0 later in the discussion of the Tandem and
rum Support Routine (TRNSUP) are all pre­
;eded by the Omen power code.

Celestial Reference Lossl Acquisition. Losses
)f the Sun reference cause the CCS to select the
ow-gain antenna (for possible uplink command­
ng while mispointed), slewing the platform so
hat its sensitive instruments are safely pointed at
.he calibration target and cannot view the Sun.
~ext, the FDS is commanded to an engineering­
mly data mode so that science instruments are
>laced in safe operating modes (high voltage off,
~tc.). The CCS then commands the AACS to
~xecute a set of maneuver turns which will result
n a 4'77" steradian search for the Sun. If the search
s unsuccessful, the backup AACS processor and
~lectronics are selected and the search is repeat­
~d. Upon Sun acquisition, the search pattern

terminates and the scan platform is slewed to a
"neutral position," from which subsequent slew
commands in the sequence can reposition it for
science data taking.

Loss of the star reference results in selection of
the low-gain antenna. Reacquisition causes a
switch back to the high-gain antenna.

Power Supply, Memory Refresh, Thruster
Branch, and Gyro fail. These power codes do
not result in any special processing, but because
they are preceded by the Omen power code, they
are stored for subsequent diagnostics. ,.

Scan Slew Abort. The Scan Slew Abort power
code indicates the AACS has been unable to
complete a platform slew within some preset
value of time. The possible reasons for this
include:

• The platform has run up against a mechanical
obstruction.

• The electronics controlling the platform actuator
have failed.

• The present value was specified too low for that
particular slew.

The CCS response to the power code is a
function of how many have been received in one
hour's time. The response is summarized in the
table below. "L" is the software constant con­
trolling the response.

Number oj
Aborts per
Hour

<L

=L
>L

Scan Slew Abort Response

In-sequence scans are inhibited
while the platform is slewed to a
"neutral position." In-sequence
scans are then enabled.

The AACS electronics are switched.

The routine is disabled from future
entry, in-sequence scanning is
inhibited, and the platform is
commanded first to a "neutral
position," then a "safe position."

SS4 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Command Parity Error and Command Se­
quence Error. These commands do not result
in any special processing, but like others preced­
ed by the Omen power code, they are stored by
CCS for subsequent readout and ground-based
analysis.

Bad/ No Echo Response. A feature of the
AACS/CCS interface design is that CCS
(through one of its processors designated as
"prime for power codes") echoes back to AACS
all the power codes it receives, except the Heart­
beat and NOP (all zeros). When AACS discovers
a mismatch between a previously sent power
code and its echo, it issues the Bad/No Echo
Response power code. The CCS response to this
is to designate the other CCS processor as "prime
for power codes," then echo the Bad/No Echo
Response power code. Like the preceding power
codes, this one is preceded by an Omen.

TCM Burn Abort and Turn Complete. These
two informational power codes are used by the
CCS routine TRNSUP. They each set an indica­
tor which is tested by TRNSUP at "turn window
open" and "turn window close" times (see the
description of TRNSUP that follows).

TRNSUP. The Tandem and Turn Support Rou­
tine (TRNSUP) is employed whenever a space­
craft sequence is to be executed that requires
maneuvering away from celestial references or
includes a trajectory correction propulsive event.
TRNSUP is loaded with the sequence as a utility
routine and is called by the executing sequence
to perform tpe following functions:

1. To issue CCS "tandem" events.
2. To check key fault indicators as a go/no-go test for

subsequent sequenced events.
3. To check for proper maneuver tum durations.

Tandem Events. Tandem events issued by the
CCS require that both CCS processors agree on
the timing (within 900 msec) and content of the
command data bits to be issued to the receiving
subsystem (usually AACS). If either criterion is

not met, the command is not issued, the execut­
ing sequence is halted, and a safing sequence is
called. The function of the safing sequence is to
assure that subsequent recovery data are record­
ed on-board, and that the spacecraft reacquire its
celestial references.

Checking Key fault Indicators. Whenever it is
desired to check the status of fault indicators
stored in CCS prior to executing an event,
TRNSUP offers the option for the sequence to
test for (a) prior celestial reference loss, (b) CCS
tolerance detector trip status, and (c) error­
indicating power codes from AACS.

If a prior reference loss has occurred, the
sequence is terminated. If either a tolerance
detector trip indication or an error-indicating
power code trace is present, the sequence is
terminated and the safing sequence is executed.

Maneuver Turn Duration. One final capability
that the TRNSUP affords is checking the dura­
tion of maneuver turns. The sequence can be
designed to call TRNSUP with a "turn window
open" and a "turn window close" event. If
TRNSUP determines that the TURN COM­
PLETE power code from AACS has been re­
ceived at the window open time (too short a
turn) or has not been received at window close
time (too long a turn), the sequence is terminat­
ed, a turn abort command is issued to AACS,
and the general safing routine is executed.

DESIGN VALIDATION

From the outset, when requirements were first
being transformed into design concepts, the de­
sign validation process was at work. At each
stage in the design of the fault algorithms (prose
description, top-level flow chart, detailed logic
flow, and finally, assembly language listing), the
routines were analyzed for their completeness,
efficiency, and mutual compatibility. Design
groups spent hours working with failure models
to see if the designs were adequate. Project
reviews were conducted to scrutinize the philos-

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 555

phy, requirements, and designs of the routines
nd, in the process, they matured. Subsystem­
~vel testing demonstrated their compatibility
'ith their respective computers. Most productive
f all were the tests conducted at the systems
~vel, where all the hardware was integrated and
perating, and the spacecraft were subjected to
lmulated faults. The matrix in Table 15-5 iden­
fies to test personnel the minimum number of
~quired tests to validate the fault protection
:>ftware design and determine its launch and
lission readiness. For each test, a procedure was
rritten specifying:

· The required initial conditions (spacecraft and sup­
port equipment).

· A detailed test script, defining event timing, and
required reporting during the test.

· The expected final conditions following the test.

The combination of "initiating events" and
'mission modes," again referring to Table 15-5,
vas selected to place the greatest demand on

"able 15-5. System test fault protection validation.

~outine* Initiating Event

CCS tolerance detector trip
)WRCHK Inverter switch

Undervoltage trip

S-exciter fail
tFLOSS S-transmitter fail

X-exciter fail
X -transmi tter fail

RSPWR IRIS standby heater

Sun loss
~CSIN Canopus loss

Scan slew abort
AACS processor fail

:MDLOS Command loss

Tandem error
rRNSUP Reference loss

Undervoltage trip
Omen power code

computer processing time and concurrently se­
lect failure situations that were either most likely
to occur (e.g., undervoltage trips during phases
of lowest power margin), or present the greatest
risk to the mission (e.g., attitude control failures
during TCMs).

Most "failures" during system test were in­
duced via support equipment interfaces by either
biasing failure-detecting circuits (in the case of
RFLOSS tests), reducing the operating power
margin (for PWRCHK tests), or by loading data
into CCS or AACS memory corresponding to
software-sensed failures. Only two tests, that for
IRSPWR and the CCS tolerance detector trip,
required special test circuitry at the spacecraft.

Verification of the proper failure response
depended heavily on support equipment visibili­
ty into CCS and AACS with secondary reliance
on the "traces" built into the routines for ex post
facto diagnosis. Normal engineering telemetry,
at 40 bits/second, was much too slow to see the
fast-acting routines. In addition to si~ply verify-

Mission Mode Being Tested

Launch Cruise TCM Encounter

x
x

x x x

x
x

x
x

x

x
x

x
x x

x

x
x
x
x

, The ERROR routine was validated during CCS subsystem-ievel testing.

556 THE PRACTICE OF RELIABLE SYSTEM DESIGN

ing proper event timing, it was also required to
assure that fault routines which were designed to
operate independently from ongoing sequences
did not interfere with sequence execution (or
vice versa) and that routines which were de­
signed to interrupt ongoing sequences, either
restarted them properly (e.g., the launch se­
quence) or aborted them and safely secured the
spacecraft (e.g., TCMs).

The tests demonstrated that the routine struc­
tures were sound but that in a few cases, subtle
timing problems would require modifications to
the design. Each time a change was made to the
software, the test was rerun. Additionally, as
hardware or software design changes were made
(for other reasons), the routines were reviewed
for impact, revised if needed, and then retested.

IN-FLIGHT EXPERIENCE

As of this writing, there have been several occur­
rences of in-flight execution of Voyager's fault
protection routines. The causes for these events
fall into three categories:

• An on-board failure or degraded performance was
sensed and the appropriate routine was triggered.

• Unanticipated environmental factors, not accounted
for in the design or use of the fault routines, led to
unexpected fault algorithm execution.

• An error was committed in the sequence design
process or in the conduct of the mission's real-time
activities wherein the spacecraft's resulting perfor­
mance appeared to be abnormal, and thus activated
a routine.

Failures and Degraded
Performance

Two examples in this category are the "stuck"
scan platform on Voyager I and the failed
receiver on Voyager 2. In each case, the fault
routines (the Scan Abort portion of AACSIN
and CMDLOS, respectively) executed properly,
providing the needed safing and corrective ac~
tion.

Environmental Factors

The Voyager fault routines were designed to be
compatible with a spacecraft specified by its full
set of design requirements. Some departures of
the "as built" spacecraft from the design concept
were uncovered during the test program and
were either corrected or the software was modi­
fied to make accomodations where necessary. In
two instances, however, tolerable, out-of-specifi­
cation performance didn't become evident until
after the first spacecraft was launched.

The incidents occurred near Earth. The Dry
Inertial Reference Unit (DRIRU) CHECK rou­
tine (described in Fleischer [1977]) monitoring
the spacecraft gyro performance during the as­
cent phase treated noise spikes induced by
launch vehicle events as symptoms of a failing
gyro. This resulted in several gyro swaps during
the launch of Voyager 2 (launched first). The
routine was disabled for the second launch. The
second near-Earth event occurred as Voyager
was jettisoning its propulsion module and de­
ploying its R TG and science booms. Large tipoff
rates, coupled with a reaction control system
degraded by unexpected structural plume im­
pingement, resulted in a swap of AACS thrust­
ers, electronics, and processors. The backup sys­
tem acquired its celestial references as required.
For the second launch, the thruster monitoring
routine was not enabled until time had passed to
damp out tipoff-induced rates and null the asso­
ciated position errors.

Sequence Errors

As discussed earlier, maneuver turn durations
are checked by TRNSUP so that turns that are
too short or too long result in a sequence abort
and general spacecraft safing. Early in the mis­
sion, a sequence was designed in which a space­
craft yaw turn of 10 complete revolutions was to
be executed. The acceptable turn duration
checked on-board was determined by ground
software based on the latest measured gyro scale

AUTOMATIC FAULT PROTECTION IN THE VOYAGER SPACECRAFT 557

actors, hence turn rates. Unfortunately, the data
n the ground software were of insufficient accu­
acy. The difference between the actual yaw
cale factor and the measured yaw scale factor
vas great enough (over the course of 10 revolu­
ions) to cause the turn to last too long and abort
he sequence. Subsequent gyro scale factor cali­
Irations prevented this problem from recurring.

:ONCLUSIONS AND
tECOMMENDATIONS

:;'ault protection software, the automatic man-
1gement of spacecraft redundancy, is key to the
lchievement of a reliable, fault-tolerant system
lesign. It forms the bridge between a hardware
:onfiguration that is driven by a desire to main­
ain its simplicity, and strict mission reliability
equirements, which lead to a highly complex
pacecraft autonomy.

Hardware and design practice inheritance do
Lot permit the designer to have sufficient flexibil­
ty to perform a classical top-down system de­
ign, one that reflects the "right mix" of hard­
vare and software fault tolerance functions. But
:onstraints like these also help bound the prob­
em solutions and can force the evolution of fault
Irotection software techniques. Fault protection

software design must be compatible with the
actual hardware operating characteristics. A de­
sign based on performance specifications needs to
permit reasonable deviations from those specifi­
cations. In addition, failure thresholds should be
set so that unacceptable performance triggers
routine initiation, not just anomalous perfor­
mance.

If a routine is to be active during any given
mission phase, then it must be tested at the
system level for proper operation during that
phase. It should be demonstrated during the test
that reasonable spacecraft operation does not
invoke the routine. At the same time, the test
must properly characterize or simulate the ex­
pected environment.

ACKNOWLEDGMENT

This paper presents the result of one phase of
research carried out at the Jet Propulsion Labo­
ratory, California Institute of Technology, under
Contract No. NAS7-100, sponsored by the Na­
tional Aeronautics and Space Administration.

REFERENCE

Fleischer [1977}.

iIFT: Design and Analysis of a Fault-Tolerant
:omputer for Aircraft Control

Leslie Lamport

Karl N. Levitt

Jack Goldberg

P. M. Melliar-Smith

ohn H. Wensley

v1ilton w. Green

~obert E. Shostak Charles B. Weinstock

~bstract

:IFT (Software Implemented Fault Tolerance) is an
ltrareliable computer jor critical aircrajt control appli­
ations that achieves fault tolerance by the replication oj
7sks among processing units. The main processing units
re off-the-shelf minicomputers, with standard microcom­
uters serving as the interface to the 1/0 system. Fault
rolation is achieved by using a specially designed redun­
'ant bus system to interconnect the processing units.
~rror detection and analysis and system reconjiguration
re perjormed by software. Iterative tasks are redundant­
~ executed, and the results of each iteration are voted
pon bejore being used. Thus, any single failure in a
rocessing unit or bus can be tolerated with triplication
f ta.sks, and subsequent jailures can be tolerated ajter
f?conjiguration. Independent execution by separate pro­
essors means that the processors need only be loosely
vnchronized, and a novel fault-tolerant synchronization
1ethod is described. The SIFT software is highly struc­
'.Ired and is jormally specified using the SRI-developed
:PECIAL language. The correctness of SIFT is to be
roved using a hierarchy of formal models. A Markov
wdel is used both to analyze the reliability of the system
nd to serve as the jormal requirement jor the SIFT
esign. Axioms are given to characterize the high-level
ehavior of the system, from which a correctness state-
1ent has been proved. An engineering version oj SIFT is
urrently being built.

NTRODUCTION

'his paper describes ongoing research whose
oal is to build an ultrareliable fault-tolerant

1978 IEEE. Reprinted, with permission, from Proceedings
(the IEEE, Vol. 66, No. 10, October 1978, pp. 1240-1255.

559

560 THE PRACTICE OF RELIABLE SYSTEM DESIGN

computer system named SIFT (Software Imple­
mented Fault Tolerance). In this introduction,
we describe the motivation for SIFT and provide
some background for our work. The remainder
of the paper describes the actual design of the
SIFT system. The second section gives an over­
view of the system and describes the approach to
fault tolerance used in SIFT. The third and
fourth sections describe the SIFT hardware and
software, respectively. The fifth section discusses
the proof of the correctness of SIFT.

Motivation

Modem commercial jet transports use computers
to carry out many functions, such as navigation,
stability augmentation, flight control, and system
monitoring. Although these computers provide
great benefits in the operation of the aircraft,
they are not critical. If a computer fails, it is
always possible for the aircrew to assume its
function, or for the function to be abandoned.
(This may require significant changes, such as
diversion to an alternative destination.) NASA,
in its Aircraft Energy Efficiency (ACEE) Pro­
gram, is currently studying the design of new
types of aircraft to reduce fuel consumption.
Such aircraft will operate with greatly reduced
stability margins, which means that the safety of
the flight will depend upon active controls de­
rived from computer outputs. Computers for this
application must have a reliability that is compa­
rable with other parts of the aircraft. The fre­
quently quoted reliability requirement is that the
probability of failure should be less than 10-9

per hour in a flight of ten hours duration. A good
review of the reliability requirements associated
with flight control computers appears in Murray,
Hopkins, and Wensley [1977]. This reliability
requirement is similar to that demanded for
manned space-flight systems.

A highly reliable computer system can have
applications in other areas as ·well. In the past,
control systems in critical industrial applications
have not relied solely on computers, but have

used a combination of human and computer
control. With the need for faster control loops,
and with the increased complexity of modern
industrial processes, computer reliability has be­
come extremely important. A highly reliable
computer system developed for aircraft control
can be used in such applications as well. Our
objective in designing SIFT is to achieve the
reliability required by these applications in an
economic manner. Moreover, we want the result­
ing system to be as flexible as possible, so it can
be easily adapted to changes in the problem
specification.

When failure rates are extremely small, it is
impossible to determine their values by testing.
Therefore, testing cannot be used to demonstrate
that SIFT meets its reliability requirements. It is
necessary to prove the reliability of SIFT by
mathematical methods. The need for such a
proof of reliability has been a major influence on
the design of SIFT.

Background

Our work on SIFT began with a study of the
requirements for computing in an advanced
commercial transport aircraft [Ratner et aI.,
1973; Wensley et aI., 1973]. We identified the
computational and memory requirements for
such an application and the reliability required
for the safety of the aircraft. The basic concept
of the SIFT system emerged from a study of
computer architectures for meeting these re­
quiremen~s.

The second phase in the development of the
SIFT system, which has just been completed,
was the complete design of the hardware and
software systems [Wensley, 1972; Wensley et aI.,
1976]. This design has been expressed formally
by rigorous specifications that describe the func­
tional intent of each part of the system. A major
influence during this phase was the Hierarchical
Design Methodology developed at SRI [Robin­
son et at, 1976]. A further influence has been the
need to use formal program proving techniques

:0 ensure the correctness of the software design.
The current phase of the development calls for

:he building of an engineering model and the
;arrying out of tests to demonstrate its fault­
:olerant behavior. The engineering model is in­
:ended to be capable of carrying out the ca1cula­
:ions required for the control of an advanced
;ommercial transport aircraft. SRI is responsible
~or the overall design, the software, and the
:esting, while the detailed design and construc­
:ion of the hardware is being done by Bendix
:orporation. The engineering model is sched­
lIed to be built by the middle of 1979, with
:esting to be completed by the end of that year.
Work is also continuing at SRI on proving the
~orrectness of the system.

The study of fault-tolerant computing has in
the past concentrated on failure modes of com­
)onents, most of which are no longer relevant.
fhe prior work on permanent "stuck-at-one" or
"stuck-at-zero" faults on single lines is not ap­
propriate for considering the possible failure
modes of modern LSI circuit components, which
~an be very complex and affect the performance
Jf units in very subtle ways. Our design ap­
proach makes no assumptions about the failure
modes. We distinguish only between failed and
tlonfailed units. Since our primary method for
ietecting errors is the corruption of data, the
particular manner in which the data are corrupt­
;!d is of no importance. This has important
:;onsequences for failure-modes-and-effects anal­
ysis (FMEA), which is only required at the
lnterface between units. The rigorous, formal
~pecification of interfaces enables us to deduce
the effects on one unit of improper signals from
a faulty unit.

Early work on fault-tolerant computer systems
llsed fault detection and reconfiguration at the
level of simple devices such as flip-flops and
adders. Later work considered units such as
registers or blocks of memory. With today's LSI
llnits, it is no longer appropriate to be concerned
with such small subunits. The unit of fault
detection and of reconfiguration in SIFT is a
processor/memory module or a bus.

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 561

Several low-level techniques for fault toler­
ance, such as error detection and correction
codes in memory, are not included in the design
of SIFT. Such techniques could be incorporated
in SIFT, but would provide only a slight im­
provement in reliability.

SIFT CONCEPT OF FAULT
TOLERANCE

System Overview

As the name "Software Implemented Fault Tol­
erance" implies, the central concept of SIFT is
that fault tolerance is accomplished as much as
possible by programs rather than hardware. This
includes error detection and correction, diagno­
sis, reconfiguration, and the prevention of a
faulty unit from having an adverse effect on the
system as a whole.

The structure of SIFT hardware is shown in
Figure 16-1. Computing is carried out by the
main processors. Each processor's results are
stored in a main memory that is uniquely asso­
ciated with the processor. A processor and its
memory are connected by a conventional high
bandwidth connection. The I/O processors and
memories are structurally similar to the main
processors and memories, but are of much smal­
ler computational and memory capacity. They
connect to the input and output units of the
system which, for this application, are the sen­
sors and actuators of the aircraft.

Each processor and its associated memory
form a processing module, and each of the mod­
ules is connected to a multiple bus system. A
faulty module or bus is prevented from causing
faulty behavior in a nonfaulty module by the
fault isolation methods described in the next
section.

The SIFT system executes a set of tasks, each
of which consists of a sequence of iterations. The
input data to each iteration of a task are the
output data produced by the previous iteration
of some collection of tasks (which may include
the task itself). The input and output of the

562 THE PRACTICE OF RELIABLE SYSTEM DESIGN

...

...

==
~

=

I

I I ...
I Bus

controller

~.

~

Processor Memory

Main processing
modules

~

Processor

1111 I
To/from
actuators
sensors

Memory

I/O
processing
modules

I

Buses

.: =1-
~

.. '=-

~

Figure 16-1. Structure of the SIFT system.

. ..

entire system is accomplished by tasks executed
in the I/O processors. Reliability is achieved by
having each iteration of a task independently
executed by a number of modules. After execut­
ing the iteration, a processor places the itera-'
tion's output in the memory associated with the
processor. A processor that' uses the output of
this iteration determines its value by examining
the output generated by each processor which
executed the iteration. Typically, the value is
chosen by a "two out of three" vote. If all copies
of the output are not identical, then an error has
occurred. Such errors are recorded in the pro­
cessor's memory, and these records are used by
the executive system to determine which units
are faulty.

SIFT uses the iterative nature of the tasks to
economize on the amount of voting, by voting on
the state data of the aircraft (or the computer
system) only at the beginning of each iteration.

This produces less data flow along the buses than
with schemes that vote on the results of all
calculations performed by the program. It also
has important implications for the problem of
synchronizing the different processors. We must
ensure only that the different processors allocat­
ed to a task are executing the same iteration.
This means that the processors need be only
loosely synchronized (e.g., to within 50 p.s,), so
we do not need tight synchronization to the
instruction or clock interval.

An important benefit of this loose synchroni­
zation is that an iteration of a task can be
scheduled for execution at slightly different times
by different processors. Simultaneous transient
failures of several, processors will, therefore, be
less likely to produce correlated failures in the
replicated versions of a task.

The number of processors executing a task can
vary with the task, and can be different for the
same task at different times-e.g., if a task that is
not critical at one time becomes critical at anoth­
er time. The allocation of tasks to modules is in
general different for each module. It is deter­
mined dynamically by a task called the global
executive, which diagnoses errors to determine
which modules and buses are faulty. When the
global executive decides that a module has be­
come faulty, it "reconfigures" the system by
appropriately changing the allocation of tasks to
modules. The global executive and its interaction
with the individual processors is described in the
fourth section.

Fault Isolation

An important property required in all fault­
tolerant computers is that of fault isolation:
preventing a faulty unit from causing incorrect
behavior in a nonfaulty unit. Fault isolation is a
more general concept than damage isolation.
Damage isolation means preventing physical
damage from spreading beyond carefully pre­
scribed boundaries. Techniques for damage iso­
iation include physical barriers to prevent prop':

gation of mechanical and thermal effects and
lectrical barriers-e.g., high-impedance electri­
al connections and optical couplers. In SIFT,
uch damage isolation is provided at the bound­
ries between processing modules and buses.

Fault isolation in SIFT requires not only dam­
ge isolation, but also preventing a faulty unit
rom causing incorrect behavior either by cor­
upting the data of the nonfaulty unit, or by
,roviding invalid control signals. The control
ignals include those that request service, grant
ervice, effect timing synchronization between
mits, etc.

Protection against the corruption of data is
Irovided by the way in which units can commu­
licate. A processing module can read data from
. ny processing module's memory, but it can
{rite only into its own memory. Thus a faulty
Irocessor can corrupt the data only in its own
rlemory, and not in that of any other processing
rlodules. All faults within a module are treated
.s if they have the same effect: namely, that they
Iroduce bad data in that module's memory. The
ysteni does not attempt to distinguish the nature
If a module fault. In particular, it does not
listinguish between a faulty memory and a pro­
essor that puts bad data into an otherwise
lonfaulty memory.

Note that a faulty processor can obtain bad
lata if those data are read from a faulty proces­
ing module or over a faulty bus. Preventing
hese bad data from causing the generation of
ncorrect results is discussed below in the section
m Fault Masking.

Fault isolation also requires that invalid con­
rol signals not produce incorrect behavior in a
lonfaulty unit. In general a faulty set of control
ignals can cause two types of faulty behavior in
.nother unit.

The unit carries out the wrong action (possibly by
doing nothing).
The unit does not provide service to other units.

In SIFT these two types of fault propagation
lre prevented by making each unit autonomous,

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 563

with its own control. Improper control signals
are ignored, and time-outs are used to prevent
the unit from "hanging up" waiting for a signal
that never arrives. The details of how this is done
are discussed in the third section.

Fault Masking

Although a faulty unit cannot cause a nonfaulty
processor to behave incorrectly, it can provide
the processor with bad data. In order to com­
pletely mask the effects of the faulty unit, we
must ensure that these bad data do not cause the
processor to generate incorrect results. As we
indicated above, this is accomplished by having
the processor receive multiple copies of the data .
Each copy is obtained from a different memory
over a different bus, and the processor uses
majority voting to obtain a correct version of the
data. The most common case will be the one in
which a processor obtains three copies of the
data, providing protection from a single faulty
unit.

After identifying the faulty unit, the system
will be reconfigured to prevent that unit from
having any further effect. If the faulty unit is a
processing module, then the tasks that were
assigned to it will be reassigned to other mod­
ules. If it is a bus, then processors will request
their data over other buses. After reconfigura­
tion, the syste·m will be able to withstand a new
failure-assuming that there are enough non­
faulty units remaining.

Because the number of processors executing a
task can vary with the task and can be changed
dynamically, SIFT has a flexibility not present in
most fault tolerant systems. The particular appli­
cation field-aircraft control-is one in which
different computations are critical to different
degrees, and the design takes advantage of this.

Scheduling

.The aircraft control function places two types of
timing requirements on the SIFT system.

564 THE PRACTICE OF RELIABLE SYSTEM DESIGN

• Output to the actuators must be generated with
specified frequency.

• Transport delay-the delay between the reading of
sensors and the generation of output to the actuators
based upon those readings-must be kept below
specified limits.

To fulfill these requirements, an iteration rate
is specified for each task. The scheduling strategy
must guarantee that the processing of each itera­
tion of the task will be completed within the
"time frame" of that iteration. It does not matter
when the processing is performed, provided that
it is completed by the end of the frame. More­
over, the time needed to execute an iteration of
a task is highly predictable. The iteration rates
required by different tasks differ, but they can be
adjusted somewhat to simplify the scheduling.

Four scheduling strategies were considered for
SIFT:

• fixed preplanned (nonpreemptive) scheduling;
• priority scheduling;
• deadline scheduling; and
• simply periodic scheduling.

Of these, fixed preplanned scheduling in which
each iteration is run to completion, traditional
in-flight control applications, was rejected be­
cause it does not allow sufficient flexibility.

The priority-scheduling strategy, commonly
used in general-purpose systems, can meet the
real-time requirements if the tasks with the fas­
test iteration rates are given the highest priorities.
Under this condition, it is shown in Melliar­
Smith [1977] that all tasks will" be processed
within their frames, for any pattern of iteration
rates and processing times-provided the proces­
sing load does not exceed In (2) of the capacity
of the processor (up to about 70 percent loading
is always safe).

The deadline-scheduling strategy always runs
the task whose deadline is closest. It is shown in
Melliar-Smith [1977] that all the tasks will be
processed within their time frames provided the
workload does not exceed the capacity of the
processor (100 percent loading is permissible).

Unfortunately, for the brief tasks characteristic
of flight-control applications, the scheduling
overhead eliminates the advant~ges of this strat­
egy.

The simply periodic strategy is similar to the
priority strategy, but the iteration rates of the
tasks are constrained so that each iteration rate
is an integral multiple of the next smaller rate
(and thus of all smaller rates). To comply with
this requirement, it may be necessary to run
some tasks more frequently than their optimum
rate, but this is permissible in a flight control
system. It is shown in Melliar-Smith [1977] that
if the workload does not exceed the capacity of
the processor (100 percent loading is possible),
then simply periodic scheduling guarantees that
all tasks will complete wi thin their frames.

The scheduling strategy chosen for the SIFT
system is a slight variant of the simply periodic
method, illustrated by Figure 16-2. Each task is
assigned to one of several priority levels. Each
priority level corresponds to an iteration rate,
and each iteration rate is an integral multiple of
the next lower one. In order to provide very
small transport delays for certain functions, and
to allow rapid detection of any fault which
causes a task not to terminate, the scheme illus­
trated in Figure 16-2 is modified as follows. The
time frame corresponding to highest priority
level (typically 20 ms) is divided into a number
of subframes (typically 2 ms). The highest prior­
ity tasks are run in specific subframes, so that
their results can be available to other tasks run in
the next subframe, and they are required to
complete within one subframe.

Processor Synchronization

The SIFT inter task and interprocessor commu­
nication mechanism allows a degree of asyn­
chronism between processors and avoids the
lockstep traditional in ultrareliable systems. Up
to 50 p,s of skew between processors can readily
be accommodated, but even this margin cannot
be assured over a ten-hour period with free-

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 565

Clock ticks

! Priority
level 1
frames -------------------
Tasks -- -- -- -- -- -- --
Priority
level 2
frames

Tasks

Priority
level 3
frames

_ •.....• _

Tasks
Diagnostic ... _
task

Figure 16-2. A typical schedule.

~unning clocks unless unreasonable requirements
ire imposed on the clocks. Thus, the processors
nust periodically resynchronize their clocks to
msure that no clock drifts too far from any
)ther.

For reliability, the resynchronization proce­
lure must be immune to the failure of anyone
;lock or processor, and to a succession of failures
)Ver a period of time. In order to guarantee the
ligh reliability required of SIFT, we cannot
illow a system failure to be caused by any
;ondition whose probability cannot be quanti­
ied, regardless of how implausible that condi­
:ion may seem. This means that our synchroni­
~ation procedure must be reliable in the face of
:he worst possible behavior of the failing compo­
lent, even though that behavior may seem un­
~ealistically malicious. We can only exclude be­
lavior which we can prove to be sufficiently
.mprobable.

The traditional clock resynchronization algo­
;thm for reliable systems is the median clock
ilgorithm, requiring at least three clocks. In this

algorithm, each clock observes every other clock
and sets itself to the median of the values that it
sees. The justification for this algorithm is that,
in the presence of only a single fault, the median
value must either be the value of one of the valid
clocks or else it must lie between a pair of valid
clock values. In either case, the median is an
acceptable value for resynchronization. The
weakness of this argument is that the worst
possible failure modes of the clock may cause
other clocks to observe different values for the
failing clock. Even if the clock is read by sensing
the time of a pulse waveform, the effects of a
highly degraded output pulse and the inevitable
slight differences between detectors can result in
detection of the pulse at different times.

In the presence of a fault that results in other
clocks seeing different values for the failing
clock, the median resynchronization algorithm
can lead to a system failure. Consider a system
of three clocks A, B, and C, of which C is faulty.
Clock A runs slightly faster than clock B. The
failure mode of clock C is such that clock A sees

566 THE PRACTICE OF RELIABLE SYSTEM DESIGN

a value for clock C that is slightly earlier than its
own value, while clock B sees a value for clock C
that is slightly later than its own value. Clocks A
and B both correctly observe that the value of
clock A is earlier than the value of clock B. In
this situation, clocks A and B will both see their
own value as the median value, and therefore not
change it. Both the good clocks A and Bare
therefore resynchronizing onto themselves, and
they will slowly drift apart until the system fails.

It might be hoped that some relatively minor
modification to the median algorithm could
eliminate the possibility of such system failure
modes. However, such hope is groundless. The
type of behavior exhibited by clock C above will
doom to failure any attempt to devise a reliable
clock resynchronization algorithm for only three
clocks. It can be proved that, if the failure-mode
behavior is permitted to be arbitrary, then there
cannot exist any reliable clock resynchronization
algorithm for three clocks. The impossibility of
obtaining exact synchronization with three
clocks is proved in [Pease, Shostak, and Lam­
port, 1980]. The impossibility of obtaining even
the approximate synchronization needed by
SIFT has also been proved, but the proof is too
complex to present here and will appear in a
future paper. The result is quite general'and
applies not only to_ clocks, but to any type of
integrator which is subject to minor perturba­
tions as, for example, inertial navigation systems.

Although no algorithm exists for three clocks,
we have devised an algorithm for four or more
clocks which makes the system immune to the
failure of a single clock. The algorithm has been
generalized to allow the simultaneous failure of
M out of N clocks when N > 3 M. Here, we only
describe the single-failure algorithm, without
proving it correct. (Algorithms of this type often
contain very subtle errors, and extremely rigor­
ous proofs are needed to ensure their correct­
ness.) The general algorithm, and the proof of its
correctness, can be found in Pease, Shostak,
and Lamport [1980].

The algorithm is carried out in two parts. In

the first part, each clock* computes a vector of
clock values, called the interactive consistency
vector, having an entry for every clock. In the
second part, each clock uses the interactive con­
sistency vector to compute its new value.

A clock p computes its interactive consistency
vector as follows. The entry of the vector corre­
sponding to p itself is set equal to p's own clock
value. The value for the entry corresponding to
another processor q is obtained by p as follows.

1. Read q's value from q.
2. Obtain from each other clock r the value of q that

r read from q.
3. If a majority of these values agree, then the majori­

ty value is used. Otherwise, the default value NIL
(indicating that q is faulty) is used.

One can show that if at most one of the clocks is
faulty, then: 1) each nonfaulty clock computes
exactly the same interactive consistency vector;
and 2) the component of this vector correspond­
ing to any nonfaulty clock q is q's actual value.

Having computed the interactive consistency
vector, each clock computes its new value as
follows. Let 8 be the maximum amount by which
the values. of nonfaulty processors may disagree.
(The value of 8 is known in advance, and de­
pends upon the synchronization interval and the
rate of clock drift.) Any component that is not
within 8 of at least two other components is
ignored, and any NIL component is ignored.
The clock then takes the median value of the
remaining components as its new value.

Since each nonfaulty clock computes exactly
the same interactive consistency vector, each will
compute exactly the same median value. More­
over, this value must be within 8 of the original
value of each nonfaulty clock.

This is the basic algorithm that the SIFT
processors will use to synchronize their clocks.
Each SIFT processor reads the value of its own
clock directly, and reads the value of another

• In the following discussion, a clock is assumed to be
capable of logical operations. In SIFT, such a clock is
actually a processor and its internal clock.

Irocessor's clock over a bus. It obtains the value
l1at processor r read for processor q's clock by
eading from processor r's memory over a bus.

teliability Prediction

~ sufficiently catastrophic sequence of compo­
lent failures will cause any system to fail. The
:IFT system is designed to be immune to certain
lkely sequences of failures. To guarantee that
:IFT meets its reliability goals, we must show
hat the probability of a more catastrophic se­
[uence of failures is sufficiently small.

The reliability goal of the SIFT system is to
.chieve a high probability of survival for a short
leriod of time-e.g., a ten-hour flight-rather
han a large mean time before failure (MTBF).
;'or a flight of duration T, survival will occur
mless certain combinations of failure events
Iccur within the interval T or have already
Iccurred prior to the interval T and were unde­
ected by the initial checkout of the system.
)perationally, failures of the latter type are
ndistinguishable from faults that occur during
he interval T.

To estimate the probability of system failure
ve use a finite-state Markov-like reliability model
n which the state transitions are caused by the
:vents of fault occurrence, fault detection, and
ault "handling." The combined probability of
.11 event sequences that lead to a failed state is
he system failure probability. A design goal for
aFT is to achieve a failure rate of 10-9 per hour
or a ten-hour period.

For the reliability model, we assume that
lardware fault events and electrical transient
ault events are uncorrelated and exponentially
listributed in time (constant failure rates). These
.ssumptions are believed to be accurate for
lardware faults because the physical design of
he system prevents fault propagation between
unctional units (processors and buses) and be­
:ause a multiple fault within one functional unit
s no more serious than a single fault. The model
lssumes that all failures are permanent (for the

SlIT: A COMPUTER FOR AIRCRAIT CONTROL 567

duration of the flight), so it does not consider
transient errors. The effects of uncorrelated tran­
sient errors are masked by the executive system,
which requires a unit to make multiple errors
before it considers the unit to be faulty. It is
believed that careful electrical design can pre­
vent correlation of transient errors between func­
tional units. The execution of critical tasks in
"loose" synchronism also helps protect against
correlation of fast transient errors. Failure rates
for hardware have been estimated on the basis of
active component counts, using typical reliability
figures for similar hardware. For the main pro­
cessors, we obtain the rate 10-4 per hour; for
I/O processors and buses, we obtain 10-5 per hour.

For a SIFT system with about the same num­
ber of main processing modules, I/O processing
modules, and buses, it can be shown that the
large difference in failure rates between a main
processing module and an I/O processing mod­
ule or bus implies that we need only consider
main processing module failures in our calcula­
tions. We can therefore let the state of the system
be represented in the reliability model as a triple
of integers (h, d,j) with h < d < j, where such a
state represents a situation in which j failures of
individual processors have occurred, d of those
failures have been detected, and h of these
detected failures have been "handled" by recon­
figuration. There are three types of possible state
transitio.n .

• (h,d,J) ~ (h,d,J + 1), representing the failure of a
processor

• (h,d,J) ~ (h,d + 1,J), d < J, representing the de­
tection of a failure

• (h,d,J) ~ (h + l,d,J), h < d, representing the
handling of a detected failure

This is illustrated in Figure 16-3 .
The first two types of transition-processor

failure and failure detection, represented in Fig­
ure 16-3 by straight arrows-are assumed to
have constant probabilities per unit time. How­
ever, the third type of transition-failure han­
dling, represented in Figure 16-3 by wavy

568 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Transitions:

ft = fault occurrence

fd = fault detection

fh = fault handling

* = double fault

"'-

Figure 16-3. The reliability model.

arrows-represents the completion of a realloca­
tion procedure. We assume that this transition
must occur within some fixed length of time T.

A state (h,d,J) with h < d represents a situa­
tion in which the system is reconfiguring. To
make the system immune to an additional failure
while in this state is a difficult problem, since it
means that the procedure to reconfigure around
a failure must work despite an additional, unde­
tected failure. Rather than assuming that this
problem could be solved, we took the approach
of trying to insure that the time T that the system
remains in such a state is small enough to make
it highly unlikely for an additional failure to
occur before reconfiguration is completed. We
therefore made the pessimistic assumpfion that a
processor failure which occurs while the system
is reconfiguring will cause a system failure. Such

Table 16-1. Failure probabilities for as-processor
system. (T = 10 hours.)

Failure Cause

Exhaustion of spares

Double fault (T = lOOms.)

Double fault (T = 1 sec.)

Failure Probability

5 X 10-12

7 X 10-11

7 X 10- 10

failures are represented by the "double-fault"
transitions indicated by asterisks in Figure 16-3.
In our calculations, we assume that each of these
transitions results in a system failure.

We have calculated the probability of system
failure through a double fault transition, and
also through reaching a state with fewer than two
nonfaulty processors, for which we say that the
system has failed because it has "run out of
spares."* A brief summary of these failure prob­
abilities for a five processor system is shown in
Table 16-1.

THE SIFT HARDWARE

The SIFT system attempts to use standard units
whenever possible. Special design is needed only
in the bus system and in the interfaces between
the buses and the processing modules.

The major parameters of the SIFT system are
shown in Table 16-2. The column heading "En­
gineering Model" indicates the system intended
for initial construction, integration, and testing.
The column heading "Maximum" indicates the
limits to which the engineering model can be
expanded with only the procurement of addi­
tional equipment.

As described in the previous section, the fault­
tolerant properties of SIFT are based on the
interconnection system between units and upon
the software system. The particular design of the
processors and memories is irrelevant to our­
discussion of fault tolerance. We merely mention
that the main processors and memories are based
on the BDmicroX computer-a modern, LSI­
based 16-bit computer designed and manufac­
tured by Bendix Corporation specifically for
avionics or similar applications. The I/O pro­
cessors are based upon the well-known 8080
microprocessor architecture.

To help the reader understand the operation

* The probability of system failure because of mUltiple
undetected faults has not been computed precisely, but is
expected to be comparable ta the double fault values.

"able 16-2. Major parameters of the SIFT system,
!ngineering model.

~stem Parameters Engineering Model Maximum

Main processors 5* 8

Main memories 5 8

I/O processors 5 8

I/O memories 5 8

Buses 5 8

External inter- 5 8
faces

~ain processors

Word length 16 bits Same

Addressing 32K words 64K
capability

Speed 500K IPS Same

Arithmetic Fixed point Same
modes Double length

Floating point

Type Bendix BD/L Same

~ain Memories

Word length 16 bits Same

Capacity 32K words 64K

Type Semiconductor Same
RAM**

/0 Processors

Word length 8 bits Same

Type Intel 8080 Same

/0 Memories

Word length 8 bits Same

Capacity 4K bytes Same

~uses

Speed < 10 microsec. per Same
word

Bit serial

/0 Interfaces

Type 1553A MILSTD Same

, In addition, a spare unit of each type is to be built.
'*Program memory would be read only memory (ROM) for

actual flight use.

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 569

PROCESSOR
I

PREQUEST
READIN BUSREQUEST

11
m w

.
To/from To/from

other other
buses processors

RUSE:] ~l
BCOUNTER

DATA
BUSDATA READY

I
I

MEMREQUEST
BREQUEST

r
w

To/from
other Other

memories buses
-L

Memory

11 I MCOUNTER I MEMREAD MEMDATA

I

I MEMORY I
I

Figure 16-4. An abstract view of data transfers.

of the units and their interaction with one anoth­
er, we describe the operation of the interconnec­
tion system in abstract terms. Figure 16-4 shows
the connections among processors, buses, and
memories. The varying replications of these con­
nections are shown for each type of unit. Within
each unit are shown a number of abstract regis­
ters that contain data or control information.
Arrows that terminate at a register indicate the
flow of data to the register. Arrows that termi­
nate at the boundary of a unit indicate control
signals for that unit.

We explain the operation of the interconnec-

570 THE PRACTICE OF RELIABLE SYSTEM DESIGN

tion system by describing how a processor p
reads a word of data from location w of memory
m via bus b. We assume normal operation, in
which no errors or time-outs occur. Processor p
initiates the READ operation by putting m and w
into the register PREQUEST (p, b). Note that every
processor has a separate PREQUEST register for
each bus to which it is connected. When this
register is loaded, a BUS REQUEST line is set to·
request attention from the appropriate bus. The
processor must now wait until the requested bus
and memory units have completed their part of
the operation.

Each bus unit contains a counter-driven scan­
ner that continuously scans the PREQUEST and
BUSREQUEST lines from processors. When the
scanner finds a processor that requires its atten­
tion (BUSREQUEST high), it stops and the bus is
said to have been seized by that processor. The
bus's counter then contains the identifying num­
ber of the processor that has seized it. When
seized, the bus transfers the value w from the
processor to a register connected to memory m.
When this transfer has been completed, the
MEMREQUEST line is raised calling for attention
from the memory. The bus then waits for the
memory to complete its actions.

Memory units contain counter-driven scan­
ners that operate in the same manner as those in
the bus units-i.e., they continuously scan all
buses to determine which of them (if any) is
requesting service. When a request is detected,
the memory is said to be seized, and it reads the
value w from the bus. The memory then reads
the contents of its location w into MEMDATA

register, and raises the MEMREAD line to inform
the bus that the data are available. The memory
leaves the state of MEMDATA and MEMREAD un­
changed until it detects that the MEMREQUEST line
from the bus has dropped, indicating that the
bus has received the data from the MEMDATA

register. The memory then drops the MEMREAD

line and resumes scanning the buses for futher
requests.

When. the bus detects that the MEMREAD line
from the memory is up, it transfers the data in.
the MEMDATA register to the BUSDATA register,

drops the MEMREQUEST line, and raises the DA­

TAREADY line-indicating to the processor that
the data are available. The bus leaves the state of
the BUSDATA and DATAREADY lines unchanged
until it detects that the BUSREQUEST line from the
processor has dropped, indicating that the pro­
cessor has received the data word. The bus then
drops the DATAREADY line and resumes scanning
the processors for further requests.

Meanwhile, the processor that made the origi­
nal request has been waiting for the DATAREADY

line to be raised by the bus, at which time it
reads the data from the BUSDATA register. After
completing this read, it drops the BUS REQUEST

line and continues with other operations.
These actions have left the units in their

original states. They are therefore ready to take
part in other data transfer operations.

The precise behavior of the units can be
described by abstract programs. Table 16-3 is an
abstract program for the processor to bus inter­
face unit. * It shows the unit's autonomous con­
trol, and the manner in which the unit requests
service. Note how time-outs are used to prevent
any kind of bus or memory failure from "hang­
ing up" the unit. Abstract programs for the other
units are similar.

The interconnection system units designed
especially for the SIFT system are:

1. the processor-to-bus interfaces;
2. the buses;
3. the bus-to-memory interfaces.

These units all operate autonomously and
contain their own control, which is implemented
as a simple microprogrammed controller. For
example, the bus control scanner that detects the
processors' requests for service is controlled by a
microprogram in a programmable read-only
memory (PROM). The contents of this PROM
are used for two purposes: first, part of the data
is fed back to the PROM's address register to
determine which word of the PROM is to be
read next; second, part of the data is used as

* This program is only meant to illustrate the unit's main
features; it does not accurately describe the true behavior
of the unit.

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 571

Table 16-3. Abstract program for processor-to-bus interface unit.

Data:
READIN(p,b)
A set of registers, one for each bus b, that receive data read from another processor.

PREQUEST(p,b)
A set of registers, one for each bus b, that hold the parameters of a request to read
one word from another module's memory over that bus.

BUSREQUEST(P,b)
A set of booleans that indicate a request from bus b.

A constant that is the maximum time a processor will wait for a bus action.

BUS FAIL(P,b)
A boolean indicating that processor p timed-out before receiving data from bus b.

External Data (generated by other units):
DATAREADY, BUSDATA from BUS module

Abstract Program:
REQUEST(P,b) := m,w
D:= REALTIME
WAIT ON (DATAREADY (b) OR REALTIME> (D + - - -))
IF DATA READY (b)

THEN BEGIN READIN(p,b) := BUSDATA(b)
BUSREQUEST(P,b) := FALSE
WAIT ON ((DATA READY = FALSE)

OR (REALTIME> (D + - - -)
END

ELSE BEGIN BUS REQUEST: = FALSE
BUSFAIL(p,b) : = TRUE

END

logic signals that control the operation of the
unit in which the PROM resides. For example,
this second part could contain data to open gates
to allow the flow of information from one unit to
another. Input signals to the controller are ap­
plied to some of the bits of the PROM's address
register, thereby affecting which PROM words
are read.

The interface units (items 1 and 3 above)
consist mainly of a few registers, the controller,
and the gates necessary to effect the data flow.
The bus with its controller (item 2) contains a
larger set of such gates, since each bus can allow
data flow from every memory to every processor.
We estimate that the complexity of a bus unit,

consisting of a bus together with all its interfaces,
is about 10 percent of that of a main processing
module. The logical structure is such that an LSI
version of an entire bus unit will be practical for
future versions of SIFT. However, the engineer­
ing model will be a mixture of LSI and MSI
(medium scale integration) technology.

The design of the interfaces permits simultane­
ous operation of all units. For example, a pro­
cessor can simultaneously read data from its
memory and from another memory, while at the
same time another processor is reading from the
first processor's memory. Such simultaneous
operation is limited only by contention at a
memory unit. This contention is handled by

572 THE PRACTICE OF RELIABLE SYSTEM DESIGN

conventional cycle-stealing techniques and caus­
es little delay, since the memory cycle time is
small (250 ns) compared to the time needed to
transfer a full word through the bus (IO p.s).

Since several processors may attempt to seize
the same bus, or several buses may attempt to
seize the same memory, a processor can have to
wait for the completion of one or more other
operations before receiving service. Such waiting
should be insignificant because of the small
amount of data that is transmitted over the
buses.

THE SOFTWARE SYSTEM

The software of SIFT consists of the application
software and the executive software. The appli­
cation software performs the actual flight control
computations. The executive software is respon­
sible for the reliable execution of the application
tasks, and implements the error detection and
reconfiguration mechanisms discussed in the sec­
ond section. Additional support software to be
run on a large support computer is also provided.

From the point of view of the software, a
processing module-with its processor, memory,
and assocated registers-is a single logical unit.
We will therefore simply use the term "pro­
cessor" to refer to a processing module for the
rest of the paper.

The Application Software

The application software is structured as a set of
iterative tasks. As described in the subsection on
Scheduling, each task is run with a fixed iteration
rate which depends upon its priority. The itera­
tion rate of a higher priority task is an integral
multiple of the iteration rate of any lower prior­
ity task. Every task's iteration rate is a simple
fraction of the main clock frequency.

The fact that a task is executed by several
processors is invisible to the application soft­
ware. In each iteration, an application task ob­
tains its inputs by executing calls to the executive

software. After computing its outputs, it makes
them available as inputs to the next iteration of
tasks by executing calls to the executive soft­
ware. The input and output of a task iteration
will consist of at most a few words of data.

The SIFT Executive Software

Formal specifications of the executive software
have been written in a rigorous form using the
SPECIAL language [Robinson and Roubine,
1977] developed at SRI. These formal specifica­
tions are needed for the proof of the correctness
of the system discussed in the next section.
Moreover, they are also intended to force the
designer to produce a well-structured system.
Good structuring is essential to the success of
SIFT. A sample of these SPECIAL specifications
is given in the Appendix. The complete formal
specification is omitted from this paper. Instead,
we informally describe the important aspects of
the design.

The SIFT executive software performs the
following functions:

1. run each task at the required iteration rate;
2. provide correct input values for each iteration of a

critical task (masking any errors);
3. detect errors and diagnose their cause;
4. reconfigure the system to avoid the use of failed

components.

To perform the last three functions, the exec­
utive software implements the techniques of re­
dundant execution and majority voting de­
scribed in the second section. The executive
software is structured into three parts:

• the global executive task;
• the local executive;
• the local-global communicating tasks.

One global executive task is provided for the
whole system. It is run just like a highly critical
application task-being executed by several pro­
cessors and using majority voting to obtain the
output of each iteration. It diagnoses errors to
decide which units have failed, and determines
the appropriate allocation of tasks to processors.

Tasks

Local executive

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 573

Local
executive

tables

Figure 16-5. Logical structure of the SIFT software system.

Each processing module has its own local
!xecutive and local-global communicating tasks.
[he local-global communicating tasks are the
!rror reporting task and the local reconfiguration
task. Each of these tasks is regarded as a separate
task executed on a single processor rather than
is a replication of some more global task, so
there are as many separate error reporting tasks
ind local reconfiguration tasks as there are pro­
:;essors.

Figure 16-5 shows the logical structure of the
SIFT software system. The replication of tasks
ind their allocation to processors is not visible.
[asks communicate with one another through
buffers maintained by the local executives. Note
that the single global executive task is aware of
(and communicates with) each of the local exec­
~tives, but that the local executives communicate
)nly with the single (replicated) global executive
task and not with each other. In this logical
)icture, application tasks communicate with
~ach other and with the global executive, but not
.vith the local executives.

Figures 16-6 and 16-7 show where the logical
:;omponents of Figure 16-5 actually reside within
SIFT. Note how critical tasks are replicated on
;everal processors. For the sake of clarity, many
)f the paths by which tasks read buffers have
)een eliminated from Figures 16-6 and 16-7.

The Local-Global Communicating Tasks

Each processor runs its local reconfiguration task
and error reporting task at a specified frequency,
just like any other task. These two tasks commu­
nicate with the global executive via buffers.

The local executive detects an error when it
obtains different output values for the same task
iteration from different processors. * It reports all
such errors to the error reporting task. The error
reporting task performs a preliminary analysis of
these errors, and communicates its results to the
global executive task. These results ar~ also used
by the local executive to detect possIbly faulty
units before the global executive has diagnosed
the errors. For example, after several error re­
ports involving a particular bus, the local execu­
tive will attempt to use other buses in preference
to that one until the global executive has diag­
nosed the cause of the errors.

The local reconfiguration task maintains the
tables used by the local executive to schedule the
execution of tasks. It does this using information
provided to it by the global executive:

The interaction of the global executIve and the
local-global communicating tasks is shown in
Figure 16-8.

* It can also detect that a time-out occurred while reading
from the memory of another processing module.

574 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Processor 1 Processor 2 Processor 3

. Figure 16-6. Arrangement of application tasks within SI FT configuration.

Processor 1 Processor 2 Processor 3

Figure 16-7. Arrangement of executive within SI FT configuration.

1. Error handler in each processor
puts reports in error table.

2. Error reporter task in each pro­
cessor reads error table and de­
cides what conditions to report to
the global executive. This report is
put in a buffer.

3. Global executive (triplicated) reads
each processor's buffer over three
buses (to guard against bus errors)
and votes for a plurality.

4. Global executive, using the diagno­
sis provided by the error reporter,
determines what reconfiguration, if
any, is necessary. If a reconfigura­
tion is necessary, a report is put in
a buffer.

5. Local reconfiguration task in each
processor reads report from each of
the global executive buffers and
votes to determine plurality.

6. Local reconfiguration task changes
the scheduling table to reflect the
global executive's wishes.

Figure 16--8. Error reporting and reconfiguration.

The Global Executive Task

The global executive task uses the results of
every processor's error task to determine which
processing modules and buses are faulty. The
problem of determining which units are faulty is
discussed in the subsection on Fault Detection
below. When the global executive decides that a
component has failed, it initiates a reconfigura­
tion by sending the appropriate information to
the local reconfiguration task of each processor.
The global executive may also reconfigure the
system as a result of directives from the applica,..
tion tasks. For example, an application task may
report a change of flight phase which changes the
criticality of various tasks.

To permit rapid reconfiguration, we require
that the program for executing a task must reside
in a processor's memory before the task can be
allocated to that processor. In the initial version
of SIFT, there will be a static assignment of
programs to memories. The program for a criti­
cal task will usually reside in all main processor
memories, so the task can be executed by any
main processor.

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 575

The Local Executive

The local executive is a collection of routines to
perform the following functions: 1) run each task
allocated to it at the task's specified iteration
rate; 2) provide input values to, and receive
output values from each task iteration, and 3)
report errors to the local executive task.

A processor's local executive routine can be
invoked from within that processor by a call
from a running task, by a clock interrupt, or by
a call from another local executive routine.
There are four types of routines:

• error handler;
• scheduler;
• buffer interface routines;
• voter.

The error handler routine is invoked by the
voter when an error condition is detected. It
records the error in a processor/bus error table,
which is used by the error reporting task de­
scribed above.

The scheduler routine is responsible for sched­
uling the execution of tasks. Every task is run at
a prespecified iteration rate that defines a se­
quence of time frames within which the task
must be run. (For simplicity, we ignore the
scheduling of the highest priority tasks in sub­
frames that was mentioned in the subsection on
Scheduling above.) A single iteration of the task
is executed within each of its frames, but it may
be executed at any time during that frame.

The scheduler is invoked by a clock interrupt
or by the completion of a task. It always runs the
highest priority task allocated to the processor
that has not yet finished executing the iteration
for its current time frame. Execution of a task
may be interrupted by the clock, in which case
its state is preserved until execution is resumed­
possibly after the execution of a higher priority
task. A task that has completed its current
iteration is not executed again until after the
start of its next time frame.

The buffer interface routines are invoked by a

576 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Figure 16-9. The double buffering mechanism.

task when it generates output for an iteration.
These routines put the output into a buffer
reserved for that task. These output values are
used by the voter routines described below to
obtain input for the tasks. Because a task may be
run at any time during its time frame, the
double-buffering scheme shown in Figure 16-9 is
used. Each buffer consists of a double buffer. In
anyone time frame, one of the buffers is avail­
able for new data being generated by the task
while the other contains the data generated last
time frame. It is the latter values that are used to
provide input to other tasks (and possibly to the
same task). At the start of the next time frame,
the buffers are switched around. Provision is .also
made for communication between processors
operating at different frequencies.

The voter routine is invoked by a task to obtain
the inputs for its current iteration. The task
requests a particular output from the previous
iteration of second task-which may be the same
task. The voter uses tables provided by the local
reconfiguration task to determine what pro­
cessors contain copies of that output, and in
which of their buffers. It reads the data from
each of these buffers and performs a majority
vote to obtain a single value. If all the values do

not agree, then an error has occurred, and the
error reporter is called.

Fault Detection

Fault detection is the analysis of errors to deter­
mine which components are faulty. In SIFT,
fault detection is based upon the processor/bus
error table, an m by n matrix, where m is the
number of processors and n the number of buses
in time system. Each processor has its own
processor/bus error table that is maintained by
its local executive's error handler. An entry
xp(i,}] in processor p's table represents the num­
ber of errors detected by processor p's local
executive that involve processor i and bus }.
Suppose that processor p is reading from pro-:
cessor q using bus r. There are five distinct kinds
of errors that cause a matrix value to change:

1. the connection from bus r to processor q is faulty;
2. the connection from processor p to bus r is faulty;
3. bus r is faulty;
4. processor q is faulty;
5. processor p is faulty.

Processor p's error reporting task analyzes the
processor/bus error table as follows to determine
if any of these cases hold. Let e > 0 be a
threshold of errors that will be tolerated for any
processor/bus combination. It can deduce that
case 1 holds if the following conditions all hold:
(1) Xp[q,r] > e, (2) there exists a bus} such that
Xp[q,}] <; e, and (3) there exists a processor i
such that Xp[i, r] <; e. Either case 2 or 3 may
hold if Xp[i, r] > e for all active processors i.
These two cases can only be distinguished by the
global executive task, which has access to infor­
mation from all the processors. (Case 3 holds if
all active processors report bus r faulty; other­
wise case 2 holds.) The error handler can deduce
that case 4 holds if Xp[q,}] > e for all active
buses}. The error handler cannot be depended
upon to diagnose case 5, since the failure of the
processor executing it could cause the error
handler to decide that any (or none) of the other
four cases hold. .

Once the error handler has performed this
nalysis, the appropriate action must be taken.
t1 case I, processor p will stop using bus r to talk
) processor q. In cases 2 and 3, processor p will
top using bus r, and will report to the global
xecutive that bus r is faulty. In case 4, processor
will report to the global executive that pro­

essor q is faulty.
The global executive task makes the final

lecision about which unit is faulty. To do this, it
eads the faulty processor reports provided by
he error reporting task. If two or more pro­
:essors report that another processor is faulty,
hen the global executive decides that this other
)rocessor has indeed failed. If two or more
)rocessors report that a bus is faulty, then the
~lobal executive decides that the bus has failed.

The global executive may know that some unit
>roduced errors, but be unable to determine
~hich is the faulty unit. In that case, it must
lwait further information. It can obtain such
nformation by allocating the appropriate diag­
lostic tasks. If there is a faulty unit (and the
~rror reports were not due to transient faults),
:hen it should obtain the necessary information
n a short time.

It can be shown that in the presence of a single
~ault, the above procedure cannot cause the
~lobal executive to declare a nonfaulty unit to be
~aulty. With the appropriately "malicious" be­
lavior, a faulty unit may generate error reports
without giving the global executive enough infor­
mation to determine that it is faulty. For exam­
ple, if processor p fails in such a way that it gives
lncorrect results only to processor q, then the
global executive cannot decide whether it is p or
7. that is faulty. However, the majority voting
technique will mask these errors and prevent a
system failure.

The Simulator

An initial version of the SIFT system has been
coded in PASCAL. Since the avionics computer
is not available at this time, the executive is
being debugged on an available general-purpose

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 577

computer (a DEC PDP-IO). To facilitate this, a
simulator has been constructed. The simulator
uses five asynchronous processes, each running a
SIFT executive and a "toy" set of application
tasks. The controlling process simulates the ac­
tions of the SIFT bus system and facilitates
interprocess communications. Faults are inject­
ed, either at the processor or the bus levels, and
a visual display of the system's behavior is
provided. This gives us a means of testing soft­
ware in the absence of the actual SIFT hardware.

THE PROOF OF CORRECTNESS

Concepts

Estimates of the reliability of SIFT are based
upon the assumption that the software operates
correctly. Since we know of no satisfactory way
to estimate the probability that a piece of soft­
ware is incorrect, we are forced to try to guaran­
tee that the software is indeed correct. For an
asynchronous multiprocess system such as SIFT,
the only way to do this is to give a rigorous
mathematical proof of its correctness.

A rigorous proof of correctness for a system
requires a precise statement of what it means for
the system to be correct. The correctness of SIFT
must be expressed as a precise mathematical
statement about its behavior. Since the SIFT
system is composed of several processors and
memories, such a statement must describe the
behavior of many thousands of bits of informa­
tion. We are thus faced with the problem that the
statement of what it means for the SIFT software
to be correct is too complicated to be humanly
comprehensible.

The solution to this problem is to construct a
higher level "view" of the SIFT system that is
simpler than the actual system. Such a view is
called a model. When stated in terms of the
simple model, the requisite system properties can
be made comprehensible. The proof of correct­
ness is then performed in two steps: I) we first
prove that the model possesses the necessary
correctness properties; and 2) we then prove that

578 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the model accurately describes the SIFT system
[Shostak et aI., 1977].

Actually, different aspects of correctness are
best expressed in terms of different models. We
use a hierarchy of models. The system itself may
be viewed as the lowest level model. In order to
prove that the models accurately describe the
SIFT system, we prove that each model accu­
rately describes the next lower-level one.

Models

We now make the concept of a model more
precise. We define a model to consist of a set S
of possible states, a subset So of S consisting of
the set of possible initial states, and a transition
relation ~ on S. The relation s ~ S' means that
a transition is possible from state s to state S'. It
is possible for the relations s ~ S' and s ~ s"
both to hold for two different states S' and s", so
we allow nondeterministic behavior. A possible
behavior of the system consists of a sequence of
states so' sl' . .. such that So is in So and
Si ~ si+ I for each i. Correctness properties are
mathematical statements about the possible be­
haviors of the system.

Note that the behavior of a model consists of
a linear sequence of transitions, even though
concurrent operations occur in the SIFT system.
Concurrent activity can be represented by tran­
sitions that change disjoint components of the
state, so that the order in which they occur is
irrelevant.

Each state of the model represents a collection
of states in the real system. For example, in the
reliability model discussed in the subsection on
reliability prediction, the state is a triple of
integers (h, d,j) which contains only the infor­
mation that f processors have failed, d of those
failures have been detected, and h of the detect­
ed failures have been handled. A single model
state corresponds to all possible states the system
could reach through any combination of f fail­
ures, d failure detections, and h reconfigurations.

We now consider what it means for one mode
to accurately describe a lower level one. Let S
So' and ~ be the set of states, set of initial states
and transition relation for the higher level mod
el; and let S', So' and ~' be the correspondin!
quantities for the lower level model. Each statt
of the lower level model must represent somt
state of the higher level one, but different lowel
level states can represent the same higher leve
one. Thus there must be a mapping REP: S' ~ S
where REP (S') denotes the higher-level state rep·
resented by S'.

Having defined a correspondence between the
states of the two models, we can require that the
two models exhibit corresponding behavior.
Since the lower level model represents a more
detailed description of the system, it may contain
more transitions than the higher level one. Each
transition in the lower level model should either
correspond to a transition in the higher level one,
or else should describe a change in the system
that is invisible in the higher level model. This
requirement is embodied in the following two
conditions.

1. REP (So) is a subset of So.
2. For all S', (' in S/: if S' ~ (' then either:

a. REP (S') = REP (t'); or
b. REP (S') ~ REP «(I).

If these conditions are satisfied, then we say
that REP defines the lower level model to be a
refinement of the higher level one.

If a model is a refinement of a higher level one,
then any theorem about the possible behaviors
of the higher level model yields a corresponding
theorem about the possible behaviors of the
lower level one. This is used to infer correctness
of the lower level model (and ultimately, of the
system itself) from the correctness of the higher
-level one.

A transition in the higher level model may
represent a system action that is represented by
a sequence of transitions in the lower level one.
For example, the action of detecting a failure

lay be represented by a single transition in the
igher level model. However, in a lower level
lOdel (such as the system itself), detecting a
tilure may involve a complex sequence of tran­
:tions. The second requirement means that in
rder to define REP, we must define some arbi­
·ary point at which the lower level model is
onsidered to have detected the failure. This
roblem of defining exactly when the higher level
~ansition takes place in the lower level model
lfns out to be the major difficulty in construct-
19 the mapping REP.

he Reliability Model

n the reliability model, the state consists of a
riple (h, d,J) of integers with h < d < f < p,
rhere p is the number of processors. The transi­
Ion relation ~ is described in the subsection on
leliability Prediction above, as is the meaning of
lle quantities h, d, and f.

Associated with each value of h is an integer
r(h) called its safety factor, which has the follow-
19 interpretation. If the system has reached a
onfiguration in which h failures have been han­
led, then it can successfully cope with up to
r(h) additional (unhandled) failures. That is, the
ystem should function correctly so long as f -
, the number of unhandled failures, is less than
Ir equal to sf(h). The state (h,d,J) is called safe
f f - h < sf(h).

To demonstrate that SIFT meets its reliability
equirements, we must show two things.

. If the system remains in a safe state (one repre­
sented by a safe state in the reliability model), then
it will behave correctly.

. The probability of the system reaching an unsafe
state is sufficiently small.

Property 2 was discussed in the subsection on
teliability Prediction. The remainder of this
ection describes our approach to proving 1.

The reliability model is introduced specifically
o allow us to discuss property 2. The model does

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 579

not reflect the fact that SIFT is performing any
computations, so it cannot be used to state any
correctness properties of the system. For that a
lower level model is needed.

The Allocation Model

An Overview

SIFT performs a number of iterative tasks. In
the allocation model, a single transition represents
the execution of one complete iteration of all the
tasks. As described in the subsection on Sched­
uling, most tasks are not actually executed every
iteration cycle. For the allocation model, an
unexecuted task is considered to perform a null
calculation, producing the same result it pro­
duced during the previous iteration.

The input used by a task in its tth iteration is
the output of the (t - 1)st iterations of some
(possibly empty) set of tasks. Input to SIFT is
modeled by a task executed on an I/O processor
which produces output without requiring input
from other tasks. The output which an I/O
processor produces is simply the output of some
task which it executes.

In the allocation model, we make no distinc­
tion between main processors and I/O pro­
cessors. Bus errors are not represented in the
modeL SIFT's handling of them is invisible in
the allocation model, and can be represented by
a lower level model.

The fundamental correctness property of
SIFT-property 1 above-is stated in terms of
the allocation model as follows: if the system
remains in a safe state, then each nonfaulty
'processor produces correct output for every crit­
ical task it executes. This implies the correctness
of any critical output of SIFT generated by a
nonfaulty I/O processor. (The possibility of
faulty I/O processors must be handled by redun­
dancy in the external environment.)

The allocation of processors to tasks is effected
by the interaction of the global executive task,

580 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the local-global communicating tasks, and local
executives, as described in the previous section.
The output of the tth iteration of a local-global
communicating task uses as input the output of
the (t - I)st iteration of the global executive.
During the tth iteration cycle, the local executive
determines what the processor should be doing
during the (t + I)st cycle-i.e., what tasks it
should execute, and what processor memories
contain the input values for each of these tasks.
The processor executes a task by fetching each
input from several processor memories, using a
majority vote to determine the correct value, and
then computing the task's output.* We assume
that a nonfaulty processor will compute the
correct output value for a task if majority voting
obtains the correct value for each of the task's
inputs.

The only part of the executive software that is
explicitly represented in the allocation are the
local-global communicating tasks. Although
each processor's local-global communicating
task is treated in SIFT as a separate task, it is
more convenient to represent it in the allocation
model as the execution on that processor of a
single replicated task whose output determines
the complete allocation of tasks to processors.

The States of the Allocation Model

We now describe the set of states of the alloca­
tion model. They are defined in terms of the
primitive quantities listed below, which are
themselves undefined. (To show that a lower
level model is a refinement of the allocation
model, we must define these primitive quantities
in terms of the primitive quantities of that lower
level model.) The descriptions of .these quantities
are given to help the reader understand the
model: they have no formal significance.

* The fault diagnosis performed by the global executive is
not represented in the allocation model.

P A set of processors. It represents the set of all
processors in the system.

K A set of tasks. It represents the set of all (critical)
tasks in the system.

LE An element of K. It is the single task that repre­
sents all the local-global communicating tasks, as
described above.

e A mapping from the cross product of K and the
set of nonnegative integers into some unspecified
set of values. The value of e(k, t) represents the
correct output of the tth iteration cycle of task k.
Thus, e describes what the SIFT tasks should
compute. It is a primitive (i.e., undefined) quantity
in the allocation model because we are not speci­
fying the actual values the tasks should produce.
(These values will, of course, depend upon the
particular application tasks SIFT executes, and
the inputs from the external environment.)

sf The safety factor function introduced in the reli­
ability model. It remains a primitive quantity in
the allocation model. It can be thought of as a
goal the system is trying to achieve.

We define the allocation model state to consist
of the following components. ** (Again, the de­
scriptions are to assist the reader and are irrele­
vant to the proof.)

t A nonnegative integer. It represents the number of
iteration cycles that have been executed.

F A subset of P. It represents the set of all failed
processors.

D A subset of F. It represents the set of all failed
processors whose failure has been detected.

c A mapping from P X K into some unspecified set
of values. The value c(p, k) denotes the output of
task k as computed by processor p. This value is
presumably meaningless if p did not execute the tth
iteration of task k.

The Axioms of the Model

We do not completely describe the set of initial
states So and the transition relation ~ for the
allocation model. Instead, we give the following
list of axioms about So and ~. Rather than

** To simplify the discussion, one component of our actual
model has been omitted.

;lvmg their formal statement, we simply give
tere an informal description of the axioms.
Uninteresting axioms dealing with such matters
lS initialization are omitted.)

. The value of c(p, LE) during iteration cycle t,
which represents the output of the tth iteration of
processor p's local-global communicating task,
specifies the tasks that p should execute during
cycle t + I and the processors whose memories
contain input values for each such task.

:. If a nonfaulty processor p executes a task k during
iteration cycle t, and a majority of the copies of
each input value to k received by p are correct, then
the value c(p, k) it computes will equal the correct
value e(k, t).

L Certain natural assumptions are made about the
allocation of tasks to processors specified by
e(LE, t). In particular, we assume that a) no critical
tasks are assigned to a processor in D (the set of
processors known to be faulty), and b) when recon­
figuring, the reallocation of tasks to processors is
done in such a way that the global executive never
knowingly makes the system less tolerant of failure
than it currently is.

To prove that a lower level model is a refine­
nent of the allocation model, it will suffice to
{erify that these axioms are satisfied.

rhe Correspondence with the
rleliability Model

[n order to show that the allocation model is a
refinement of the reliability model, we must
:lefine the quantities h, d, and J of the reliability
model in terms of the state components of the
illocation model-thereby defining the function
R.EP.

The definitions of d and J are obvious; they are
just the number of elements in the sets D and F,
respectively. To define h, we must specify the
precise point during the "execution" of the allo­
cation model at which a detected failure is
considered to be "handled." Basically, the value
of h is increased to h + 1 when the reconfigura­
tion has progressed to the point where it can

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 581

handle sf (h + 1) additional errors. (The function
sf appears in the definition.) We omit the details.

The Correctness Proof

Within the allocation model, we can define a
predicate CF(t) that expresses the condition that
the system functions correctly during the tth
iteration cycle. Intuitively, it is the statement that
every nonfaulty processor produces the correct
output for every task it executes. The predicate
CF(t) can be stated more precisely as follows.

If e(LE, t - 1) indicates that p should execute
a task k in K during the tth iteration cycle, and p
is in P - F, then the value of c(p, k) after the tth
iteration equals e(k, t).

(A precise statement of how e(LE, t - 1) indi­
cates that p should execute task k requires some
additional notation, and is omitted.)

We can define the predicate SAFE(t) to mean
that the system is in a safe state at time t. More
precisely, SAFE(t) means that after the tth itera­
tion cycle, sf (h) ~ f - h, where J and hare
defined above as functions of the allocation
model state. The basic correctness condition for
SIFT can be stated as follows.

If SAFE (t') is true for all t' with 0 < I' < I,
then CF(/) is true.

A rigorous proof of this theorem has been
developed, based upon the axioms for the alloca­
tion model. The proof is too long and detailed to
include here. It will appear in the final report to
NASA at the conclusion of the current phase of
the project.

Future Work

The basic correctness property of SIFT has been
stated and proved for the allocation model.
What remains to be done is to show that the
actual system is a refinement of the allocation

582 THE PRACTICE OF RELIABLE SYSTEM DESIGN

model. Current plans call for this to be done in
terms of two lower level models. The first of
these is the operating-system model. The alloca­
tion model represents all the computations in a
given iteration cycle performed by all the pro­
cesses as a single transition. The operating sys­
tem model will represent the asynchrony of the
actual computations. It will essentially be a high­
level representation of the system that embodies
the mechanisms used to synchronize the pro­
cessors. The proof that the operating-system
model is a refinement of the allocation model
will be a proof of correctness of these synchro­
nizing mechanisms.

The next lower level model will be the program
model. It will essentially represent the PASCAL
version of the software. We expect that proving
the program model to be a refinement of the
operating-system model will be done by the
ordinary methods of program verification
[Floyd, 1967].

Finally, we must verify that the system itself is
a correct refinement of the program model. This
requires verifying first that the PASCAL pro­
grams are compiled correctly, and second that
the hardware correctly executes programs. (In
particular, this involves verifying the fault-isola­
tion properties of the hardware.) We have not yet
decided how to address these tasks. Although
most of this verification is theoretically straight­
forward, it presents a difficult problem in prac­
tice.

CONCLUSIONS

The SIFT computer development is an attempt
to use modern methods of computer design and
verification to achieve fault-tolerant behavior for
real-time, critical control systems. We believe
that the use of standard, mass-produced compo­
nents helps to attain high reliability. Our basic
approach, therefore; involves the replication of
standard components, relying upon the software
to detect· and analyze errors and to dyamically
reconfigure the system to bypass faulty units.
Special hardware is needed only to isolate the

units from one another, so a faulty unit does nol
cause the failure of a nonfaulty one.

We have chosen processor/memory modules
and bus modules as the basic units of faul1
detection and reconfiguration. These units are al
a high enough level to make system reconfigura­
tion easy, and are small and inexpensive enough
to allow sufficient replication to achieve the
desired reliability. Moreover, new advances in
Large Scale Integration will further reduce their
size and cost.

By using software to achieve fault-tolerance,
SIFT allows considerable flexibility in the choice
of error handling policies and mechanisms. For
example, algorithms for fault masking and re­
configuration can be easily modified on the basis
of operational experience. Novel approaches to
the tolerance of programming errors, such as
redundant programming and recovery blocks
[Randell, 1975] can be incorporated. Moreover,
it is fairly easy to enhance the performance of
the system by adding more hardware.

While designing SIFT, we have been con­
cerned with proving that it meets its stringent
reliability requirements. We have constructed
formal models with which to analyze the proba­
bility of system failure, and we intend to prove
that these models accurately describe the behav­
ior of the SIFT system. Our effort has included
the use of formal specifications for functional
modules. We hope to achieve a degree of system
verification that has been unavailable in previous
fault-tolerant architectures.

Although the design described in this paper
has been oriented toward the needs of commer­
cial air transports, the basic architectural
approach has a wide applicability to critical real­
time systems. Future work may extend this ap­
proach to the design of fault-tolerant software
and more general fault-tolerant control systems.

APPENDIX: SAMPLE SPECIAL
SPEC. FICA liON

This appendix contains an example of a· formal
specification extracted from the specifications of

SIFT: A COMPUTER FOR AIRCRAFT CONTROL 583

e SIFT executive software. The specification is
ritten in a language called SPECIAL, a formal-
defined specification language. SPECIAL has
~en designed explicitly to permit the description
, the results required from a computer program
ithout constraining the programmer's decisions
, to how to write the most efficient program.
The function that is specified here is the local
~ecutive's voter routine, described informally in
e Software System section. This function is
llled to obtain a value from one of the buffers
,ed to communicate between tasks. The value
qui red is requested over the bus system from
rery replication of this buffer, and a consensus
tlue that masks any errors is formed and re­
rned to the calling program. Errors are report­
l and provision is made for buses that do not
)tain a value (due to a nonresponding bus or
emory) and for the possibility that there is no
msensus.

The following notes are keyed to statements in
the specification.

Notes

1. The function 'read_buffer' takes three arguments
and returns a result. The buffer_name 'i' is the
name of a logical buffer which may be replicated in
several processors, while the address 'k' is the offset
of the required word in the buffer and 'safe' is the
value to be returned if no consensus can be ob­
tained. The. parameters 'a' and 't' need not be
explicitly cited by the caller of this function but are
deduced from the context.

2. Exception returns will be made if there are no
active instances of the named buffer or if the offset
is not within the buffer.

3. A response is obtained by interrogating a buffer in
another processor. Each response is a record (also
known as a "structure," containing a value field
("val") and flag field ("flag"), the latter set if no

OVFUN read buffer (buffer name i; address k; va 1 ue safe)
- [processor a;task tJ

-> result r;

EXCEPTIONS
CARDINALITY(acti vated buffers(a, i))=0;
O>k OR k>=buffer_si zeTi);

EFFECTS
EXISTS SET OF response

w=responses(a, activated buffers(a,i),k):
EXISTS SET OF response -

z=lresponse bib INSET wAND b.flag f :

IF(EXISTS value v;
SET OF response x I
x =-1 response clc INSET (w DIFF z)

AND c. val = v f :

FORALL value u:
SET OF response y I
Y=lresponse did INSET (w DIFF x DIFF z)

AND d.val=u}.:
CARDINALITY (x) > CARDINALITY (y))

THEN(EXISTS value v;
SET OF response x I
x=lresponse clc INSET (w DIFF z)

AND c.val=v}:

FORALL value u;
SET OF response yl
y=lresponse did INSET (w DIFF x DIFF z)

AND d.val=u~:
CARDINALITY(x)) CARDINALITY(y);

EFFECTS OF errors(a, w DIFF x);
r=v) -

ELSE(EFFECTS OF errors(a,w);
r=safe);

[lJ

[2J

[3 J

[4J

[5 J

[6J

[6J

[7J

[8J

584 THE PRACTICE OF RELIABLE SYSTEM DESIGN

response was obtained from the bus or store. The
set 'w' of responses is the set obtained from all of
the activated buffers known to processor 'a.' The
set 'z' is the subset of no-response responses.

4. First we must check that a plurality opinion exists.
This section hypothesises that there exists a consen­
sus value 'v' together with the subset of responses
'x' that returned that value.

5. Here we consider all other values and establish for
each of them that fewer responses contained this
other value than contained the proposed consensus
value.

6. Having established that a consensus value exists,
we may now validly construct it, repeating the
criteria of stages [4] and [5]. It is important to note
that these are not programs but logical criteria. The"
actual implementations would not repeat the pro­
gram.

7. This section requires that any responses not in the
set 'x' (the set 'x' is the set reporting the consensus
value) should be reported as errors, and the result
is the consensus value 'v.' The expression

EFFECTS_ OF errors(a, w DIFF X})

indicates a state change in the module that contains
the O-function "errors." The specification indicates
that an error report is loaded into a table associated
with processor "a."

8. If there is no consensus value, as determined by
stages [4] and [5], then all the responses must be
reported as errors, and the safe value returned as
the result.

ACKNOWLEDGMENT

The authors wish to acknowledge the help of
other members of the Computer Science Labora-

tory who contributed to the development of
SIFT. In particular, Dr. William H. Kautz
helped in the formulation of the reliability model
and with the diagnosis problem. Marshall Pease
developed a proof showing that synchronization
could not be achieved with three clocks. Law­
rence Robinson indirectly aided the project by
his creation of the hierarchical development
methodology. We are indebted to numerous in­
dividuals of NASA-Langley Research Center:
Nicholas D. Murray, the Project Monitor, has
provided early and continuing guidance and
encouragement; Billy Dove has provided inspi­
ration and support within the context of a long­
range NASA program of technology develop­
ment for reliable aircraft control; Earl Migneault
first alerted us to problems with the "obvious"
solutions to the clock synchronization problem;
Sal Bavuso has continually reviewed our work
on reliability modeling; and Brian Lupton and
Larry Spencer have provided considerable valu­
able comments during the course of the work.

REFERENCES

Floyd [1967]; Melliar-Smith [1977]; Murray, Hopkins,
and Wensley [1977]; Pease, Shostak, and Lamport
[1980]; Randell [1975]; Ratner et al. [1973]; Robinson
and Roubine [1977]; Robinson et al. [1976]; Shostak
et al. [1977]; Wensley [1972]; Wensley et al. [1973,
1976].

FTMIL-A Highly Reliable Fault-Tolerant
"ultiprocessor for Aircraft

\Ibert L. Hopki ns, Jr. T. Basil Smith, III

'bstract

'TM P is a digital computer architecture which has
'volved over a ten-year period in connection with several
ife-critical aerospace applications. Most recently it has
~een proposed as a fault-tolerant central computer for
'ivil transport aircraft applications. A working emulation
!llS been operating for some time, and the first engineer­
ng prototype is scheduled to be completed in late 1979.

FTMP is designed to have afailure rate due to random
'auses of the order of 10-10 failures per hour, on ten-hour
lights where no airborne maintenance is available. The
~referred maintenance interval is of the order of hundreds
if flight hours, and the probability that maintenance will
~e required earlier than the preferred interval is desired
o be at most a few percent.

The design is based on independent processor-cache
nemory modules and common memory modules which
'ommunicate via redundant serial buses. A II information
~rocessing and transmission is conducted in triplicate so
hat local voters in each module can correct errors.
't,fodules can be retired and/or reassigned in any config­
rration. Reconfiguration is carried out routinely from
econd to second to search for latent faults in the voting
rnd reconfiguration elements . Job assignments are all
nade on a floating basis, so that any processor triad is
'ligible to execute any job step. The core software in the
"TMP will handle all fault detection, diagnosis, and
'ecovery in such a way that applications programs do not
leed to be involved.

Failure-rate models and numerical results are de­
cribed for both permanent and intermittent faults. A
{is patch probability model is also presented. Experience
vith an experimental emulation is described.

v 1978 IEEE. Reprinted, with permission, from Proceedings
if the IEEE, Vol. 66, No. 10, October 1978, pp. 1221-1239.

585

Jaynarayan H. Lala

586 THE PRACTICE OF RELIABLE SYSTEM DESIGN

INTRODUCTION

The FTMP (Fault-Tolerant Multiprocessor) is a
computer architecture that has been studied,
simulated, modeled, and emulated extensively
over the past several years. It is scheduled to be
implemented in an engineering prototype form
within two years of this writing. The principal
goal of FTMP is to be extraordinarily survivable
without being difficult to program, operate, or
maintain. It is presently predicted that the over­
all FTMP failure rate will be less than 10-9

failures per hour, provided that maintenance is
available within no more than ten hours of
dispatch. In most cases, however, it will not be
necessary to maintain the FTMP at intervals of
less than 200-300 hours.

The FTMP structure can be described as an
arbitrary number of processor modules with lo­
cal, or cache, memories, and an arbitrary number
of memory modules, interconnected by redun­
dant serial buses. Modules are associated into
groups of three to perform triply redundant
functions. All data is distributed synchronously
and in triplicate, and every module contains a
voting element to mask bus disagreements. All
modules contain special circuits to create logical
and physical boundaries to halt the propagation
of faults from one module to another.

The FTMP is intended for use as one of at
least two central computers in a redundant dis­
tributed digital system designed to serve as a
highly survivable avionics system [Deyst and
Hopkins, n.d.].

Background and Context

The development history of the FTMP dates to
1965, with a serial-bus multiprocessor concept
for spaceborne control applications [Alonso,
Hopkins, and Thaler, 1966, 1967]. Increasingly
redundant versions were conceived, including
one in 1969 intended to serve as a preliminary
design baseline for a manned spacecraft, i:e., the
space shuttle [Hopkins, 1971]. At that time, a
concept was stated for the systematic design of a
redundant, fault-tolerant vehicle, employing

fault-tolerant "regional" computers, each oj
which was to be the master of an I/O bw
connected to a number of dedicated (micro-:
computers, local to each of a number of sens01
and effector components or subsystems [Hop·
kins, 1970]. In the early 1970's, some of the basic
concepts were tested by simulation in a laborato­
ry multiprocessor arrangement called Cerberus
The National Science Foundation sponsored
most of this testing effort.

There were two particularly significant out­
comes of this work. One was a network I/O data
communication structure to replace the topolog­
ically leaner, and therefore more vulnerable, I/O
bus [Smith, 1975]. The second was a significan1
improvement in the redundancy managemen1
capability of the architecture [Hopkins and
Smith, 1975, 1977a]. As a result of these develop­
ments the Draper Laboratory undertook the
construction of breadboard emulations of the
new multiprocessor and the network as indepen­
dent Research and Development projects. Eval­
uations of various aspects of these emulatiom
were sponsored by the National Science Foun­
dation, the Office of Naval Research, the NASA
Langley Research Center, and Draper itself.

The Draper study concerned itself with the
design of a robust integrated avionics systems
concept suitable for control-configured aircraft,
and numerous other life-critical applications.
This concept was to use a fault-tolerant central
computer with a second remote identical com­
puter available to take over in case of damage to
the first. The concept also used the I/O network
as a fault-tolerant and damage-tolerant medium
for maintaining access to all surviving system
elements. The third prong of the concept was a
redundant sensor and effector architecture, with
algorithms executed centrally to determine
which, if any, of the sensors and effectors were
malfunctioning [Deckert et aI, 1977]. _ The entire
system concept came to be called OSIRIS, (on­
board, survivable, integrated, redundant infor­
mation system [Hopkins and Smith, 1977b].)

Meanwhile, NASA Langley sponsorship fur­
ther developed the fault-tolerant multiprocessOI
architecture in the direction of civil transpor1

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 587

ircraft application, along with a competing ar­
hitecture developed at SRI International, called
1FT [Murray, Hopkins, and Wensley, 1977] (see
Iso Chapter 16 in this book). In 1977, a design
Jecification was drawn up for an engineering
rototype of the multiprocessor, to be built by a
lajor avionics manufacturer. At this point, the
arne FTMP was adopted to signify this particu­
lr architecture and its derivatives.
The FTMP represents a major architectural

dvance beyond the contemporary practices of
omputer redundancy in aircraft systems. All too
ften, computers have been interconnected in
Ie simplest possible way, leaving as a program­
ling task the detection and isolation of each
lUlt and the subsequent recovery. This ap­
roach has serious problems, including the
leans of granting authority to a valid module
rithout granting it to an invalid one. It is also
irtually impossible in such approaches to sepa­
lte the redundancy management software from
Ie applications programs, with the result that
oth are greatly complicated. Validation is a
ifficult problem in these systems.
The FTMP is quite different from some other

lUlt-tolerant computers for different applica­
ons. A fault-tolerant spacecraft computer, for
'(ample, has a similar task, but a dissimilar
lfvival requirement. Other fault-tolerant archi­
:ctures are meant to serve general data proces­
ng tasks in a benign environment with mainte­
ance available. The next subsection attempts to
lOW how the architecture of the FTMP corre­
)onds to the class of applications it is designed
) serve.

ationale of the FTMP Approach

'he intended use of the FTMP is to support
ritical control functions in vehicles, process
lants, life-support, or any similar application in
'hich maintenance is available periodically or
fter a delay, and where loss of control leads
'ith significant probability to high cost in terms
f life or property. The failure rate at the system
:vel must be remote. In civil transport aircraft

this generally means the order of 10-9 failures
per hour in flights of up to ten hours.

One can immediately rule out some of the
classical approaches to redundant systems on the
grounds that they do not permit the detection
and location of faults concurrent with critical
operation. Other approaches can be dismissed
because of insufficient redundancy and fault
coverage. Still others are unusable because they
depend excessively on the applications software.

The approach must have the ability to mask,
i.e., correct, errors without requiring program
rollback. All resources, including those used only
in case of malfunction, must be capable of being
individually verified during system operation.
The approach must further be capable of surviv­
ing a multiplicity of faults, although not neces­
sarily all at the same time.

Apparently, the most efficient way to furnish
the multiple fault tolerance and concurrent test­
ing is in a multiprocessing or multicomputing
structure. Moreover, in order to provide error
masking, all critical transactions must be at least
triplicated. This is the course that has been
followed in both the FTMP and the SIFT archi­
tectures. The result is a variant of classical
redundancy of the TMR-Hybrid type [Mathur,
1971a], in which spare elements are placed in a
pool so that they can substitute for any element
in any of several parallel TMR triads. We find it
convenient to refer to this redundancy form as
"parallel-hybrid" redundancy. Both FTMP and
SIFT employ three times the resources nominal­
ly required by the application, plus an arbitrary
level of spares, plus the hardware and software
overhead necessary to manage the redundancy,
i.e., fault detection and isolation, reconfigura­
tion, and recovery. These two architectures em­
ploy graceful degradation as an important means
of trading system cost against criticality. In
projected aircraft, the flight critical functions
account for a minority of the resource utilization.
These functions are therefore supported with
highest priority as resource pools diminish due to
aggregated failures.

Beyond this point, FTMP and SIFT have gone
separate ways. The FTMP has adopted a fully

588 THE PRACTICE OF RELIABLE SYSTEM DESIGN

synchronous approach, which allows hardware­
implemented bit-by-bit voting of all transactions.
This in turn allows system management to be
effected by majority rule, and means that the
modules can be reassigned under executive con­
trol to different triads, or to spare status. Mod­
ules can be reconfigured in order to diagnose the
location of a fault, to test the reconfiguration
mechanisms, to activate spares for purposes of
test and recovery, and to retire modules diag­
nosed as failed.

The next section discusses the theory of the
FTMP architecture, and enlarges on several of
the points that have been introduced here.

THEORY OF THE FTMP

Nominal Organization

Loosely defined, a multiprocessor is a computer
with several processors and a single (possibly
multiport) memory accessible to all processors.
In the extreme, all instructions and data reside in
a common memory available to any processor,
so that processors are "anonymous." Given a
suitable state vector, any processor can execute
any procedure from any starting point. Motiva­
tions for multiprocessors are typically to increase
productivity and availability at the same time,
although these two purposes are competitive. At
any rate, parallelism is intrinsic to the multiproc­
essor, as each processor is able to execute a
different concurrent procedure subject to li:tnita­
tions imposed by resource sharing and sequential
contraints on the procedures.

Memory Access

A "canonical form" of a multiprocessor is illus­
trated in Figure 17-1, which introduces the no­
tion of memory private to each processor in
addition to the common memory. The rationale
for this private, or cache, memory stems from the
limitations imposed on parallel operation by

Common
memory
modules

Processors

Cache
memories

r--

I I I
Memory access

--- --- -- -- --

Interface access

Input-output

Figure 17-1. Multiprocessor functional form.

memory access constraints. In a multiprocessor
with highly parallel memory access, memory
conflicts would occur only when individual units
of data are simultaneously requested, or are
locked for sequential conflict resolution. This
would be the optimum structure for parallelism,
and the cache memory's role is reduced to a
possible enhancement of processor execution
speed.

In the FTMP, on the other hand, the memory
access is highly serial, for reasons dictated by
reliability and economy. This essentially means
that the memory has a single port, and that the
throughput of the multiprocessor is governed by
the bandwidth of this memory port. In this case,
the cache memory has a significant role in en­
hancing parallelism. The combination of pro­
cessor and cache is a true computer, capable of
performing elaborate operations on input data in
response to terse commands. This means that the
common memory can contain programs written
in a language level higher than the processor's
machine-language level, and that the processor­
cache unit can interrupt the higher level state­
ments during the time that other processor-cache
units are accessing the common memory. In this
mode of system operation, which is really a form
of "virtual machine," a memory port of moder­
ate bandwidth can support an instruction execu­
tion "bandwidth" that is, at least in principle,
almost arbitrarily large.

The degree to which the instruction execution
bandwidth can exceed the common memory port

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 589

bandwidth depends on the parameters of the
cache memory, the terseness of the higher level
language, and the relative amount of input and
Dutput data for each independent procedure.
Clearly, the enlargement of the cache memories
tends toward a multicomputer organization. In­
deed, at some point the total cache capacity
becomes adequate to contain everything in com­
mon memory, and the usefulness of common
memory is reduced to the buffering of interpro­
cess data. Processor anonymity is significant to
this application because of the frequent recon­
figurations that need to take place in this com­
puter for latent fault exposure. Anonymity also
provides an intrinsic mechanism for dynamic
load distribution among available processing
resources. The cache memory, however, acts to
reduce the anonymity of the processor. To put it
another way, the degree of anonymity is deter­
mined by the ease of reloading the cache mem­
ory. With zero cache memory, anonymity is
greatest. As cache memory is increased to sup­
port instruction bandwidth enhancement, the
anonymity of the processor-cache units depends
on the amount of cache memory whose contents
are unique to one processor. Note that the
incorporation of identical procedural and other
constant data, or indeed identical variable data,
in every cache memory has no adverse impact on
anonymity.

The use of a cache memory in a sampled-data
control application, such as the aircraft applica­
tion considered here, is generally productive.
The typical job step uses rather few data samples
as input, and produces one data sample as
DutpUt. The procedures used tend to lend them­
selves well to expression as macrooperations, i.e.,
higher level operations, such as floating point
arithmetic, linear combination, elementary func­
tions, vector and matrix operations, and so forth.
The incorporation of procedures of this level as
cache subroutines is reasonable and profitable in
today's technology. The current high annual rate
of memory density increase prompts one to
observe that a fairly extensive set of procedures,
and indeed a hierarchy of procedures, is increas-

ingly appropriate for inclusion in cache memo­
ries.

The cache memory structure of the FTMP
includes memories for data and procedures, part­
ly read-write, partly read-only, designed to en­
hance instruction bandwidth with rather little
loss of processor anonymity. The common mem­
ory, although highly modular, acts as a single­
port paged memory, accessible to one processor
at a time via a serial bus with a built-in conten­
tion mechanism.

functional Resource Allocation

The programmer sees this multiprocessor as a
machine for executing job steps, largely corre­
sponding to periodic sampled-data updates. The
magnitudes of these job steps will vary consider­
ably from one control function to another, but
will require something of the order of a few
milliseconds, on the average, of processor time
per job step. The procedure for each job step is
written in a suitable language, and resides in
common memory. Typically, each job step is
scheduled to occur at a given time or following a
given event. The relevant dispatch data for each
scheduled job step is kept in a queue, where it is
frequently examined to see if the job step is
eligible to be run, or invoked. The frequent
examinations are conducted by processors that
have completed their earlier assignments, and
are available to undertake new ones. When an
available processor finds one or more eligible job
steps, it selects one of them to invoke. In this
way, job allocation is dynamic, and adjusts itself
to the momentary load distribution and to mod­
ule failures.

Input-output management in a multiprocessor
can be more complex than it is in a single
multiprogrammed computer, because as a single­
port resource, it impinges on program parallel­
ism. Depending on the statistics of external data
traffic and of internal job steps, different access
strategies may be appropriate. The most straight­
forward of these is to treat interface access as a

590 THE PRACTICE OF RELIABLE SYSTEM DESIGN

single resource that is allocated to a single pro­
cess for its exclusive use for the short period of
time that a process requires access. Access may
be granted on ,a priority basis or a first come first
served basis. That is, when a processor needs
interface access, it ascertains by means of flags in
memory whether the interface is free. If not, the
processor waits (with appropriate safeguards
against lock-up) until it becomes free.

Redundant Organization

The physical organization of the FTMP is sub­
stantially more complex than the nominal organ­
ization outlined in the preceding section. A sim­
plified module diagram of the computer is shown
in Figure 17-2. Superficially, this diagram ap­
pears much the same as the nominal multiproc­
essor. The principal differences are that the buses
for memory and interface access are redundant,
and that the actual number of modules is three
times the number of nominal modules plus some
number of spares.

All activity is conducted by triads of modules
and triads of buses. A module triad is formed by
associating any three like modules with one
another. This means that any module can serve
as a spare for any triad. Such flexibility permits
the best possible utilization of surviving modules.
A single triad of bus lines is active at anyone
time for each of the memory and interface
accesses. In other words, a three-member subset
of N bus lines is chosen on a quasi-static basis to
serve as a bus triad.

Every module of every kind is able to receive
data from all incident bus lines, and contains a
decision element to formulate a corrected ver­
sion of bus data. It is necessary for each module
to know which three bus lines are the active
ones. These three lines are connected to a voter
in each module, thus constituting a TMR ele­
ment. The three active bus lines carry three
independently generated versions of the data,
each version coming from a different member of
the triad that is transmitting the data. To accom-

plish this, it is necessary to assign each module to
transmit on one specific bus line. Now if totally
flexible module configuration is to be possible, it
follows that the assignment of a module's trans­
mission to a single bus line must be quasi-static
and reconfigurable.

Bus Guardians

In addition to the redundancy described in the
preceding few paragraphs, the redundant organ­
ization differs from the nominal one by virture of
the inclusion of independent submodules called
bus guardian units in each processor, memory,
and input-output access unit. Guardians are
charged with governing the status of their asso­
ciated modules. This includes power-on status,
memory bus triad and transmission selection,
and certain self-test configuration selections.

Each of the functions of the guardian has the
characteristic that its failure modes have safe
directions as well as unsafe ones. By biasing the
failure modes toward the safe directions, it is
possible to increase the probability of system
survival. In general, the safe failure modes of a
module are power-off, and bus transmission dis­
connected. To bias in this direction, one can
employ redundant guardians in each module,
and require agreement among them to establish
power-on and bus transmission enable.

The connection of bus guardians is illustrated
in Figure 17-3. It should first be noted that the
guardian principle depends heaviliy on fault
independence. Therefore, each guardian derives
its power, its bus inputs, and its timing reference
independently of all other guardians. It is more­
over physically isolated from all other guardians
and all modules. A particularly critical area from
the isolation viewpoint is the control of the
module's transmission interface onto the various
bus lines. The bus isolation gates must be highly
independent of one another, as must the guardi­
an's enable signals to these gates. This is one of
the crucial electrical and mechanical design as­
pects of the entire computer.

Interface access buses 5

I I o I I
I I

V
To/from system Note: BG = Bus guardian fo/from system

BIGS = Bus isolation gates

Figure 17-2. Simplified physical diagram of the FTMP.

592 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Processor or memory ..
04--module

Power switch Power switch ::-
~

Bus Bus
guardian J L guardian

unit I I I I unit

9 oQlatioQ U
I

+

Redundant bus

Figure 17-3. Bus guardian connections.

Bus guardians are addressable as part of the
common memory address space, and are capable
of receiving messages from 'any processor triad
via the active memory bus triad. A message to a
guardian contains commands' which are stati­
cized by the guardian and applied to its outputs
until superseded by a new command message. In
this way, the probability is remote that a failed
module can assert more than one erroneous data
stream. As a result, correct data can be deter­
mined by the bus voters, and the malfunctioning
module can be switched to a silent state. It is
noted in passing that certain failures of a bus
isolation gate can render a bus line useless, in
which case the active bus triad must be reconfig­
ured. However, most guardian failures are biased
to appear as passive failures of the unit to which
the particular guardian unit pertains.

Guardians are used as agents to convey the
computer's configuration authority to all ele­
ments of the computer. They are highly secure
against the random or willful malfunction of any
single active transmitting module. They make
possible the highly flexible reconfiguration on
which' the FTMP depends.

Processor and Memory Modules

All modules and buses are organized into triads.
In the case of processors and memories, there
can be numerous triads in existence at the same
time, but only one memory bus triad and only
one interface bus triad. Each processor triad acts
as one functional processor, of which several can
work in parallel. Each memory triad acts as a
page of memory, of which several can exist at
one time, but only one can communicate at a
time with a processor triad.

When a processor fails, its triad will attempt to
complete its current job step, which it will be
able to do unless a second failure prevents it.
The period of vulnerability to a second failure
will be a fraction of a second. When the job step
is complete, one of the other processor triads is
assigned the task of reconfiguring the injured
triad. When the erroneous module is identified, it
is removed by commands to its guardians. If a
spare is available, it is connected to the appropri­
ate bus by its guardians, likewise upon command
by the processor triad assigned to the reconfigu­
ration. Triad identity will be assigned to the

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 593

spare processor by a direct message. If no spares
are available, the injured triad is retired. The
resources of the multiprocessor are diminished
by one processing unit, and the two unfailed
members of the former triad are now available to
be used as spares, should further failures occur.

The situation is much the same for memory
modules. The principal difference is that memo­
ries are not anonymous. In fact, a read-only
memory module is totally dedicated to its as­
signed function, and cannot be used as a spare.
When a read-only memory triad is injured by the
loss of a memory module, a read-write memory
module can be used as a spare. It must be loaded
to agree with the surviving triad members before
a second failure occurs. If no spare is available,
the triad is reduced to a dyad, which is vulner­
able to the next failure, at which time one
memory page is lost. This is a significant depar­
ture from the flexibility offered by the anony­
mous processor triads. The eventuality of read­
only memory failure must clearly be covered by
the inclusion of adequate spares, either read­
write memories for flexible pooled use, or extra
dedicated copies of read-only memory.

Input-Output Access

Figure 17-2 indicates the existence of input­
output access modules connected to the internal
interface bus and also the external environment.

The external interfaces of the computer can
alternatively support dedicated, bused, or net­
worked link structures to the sensor and effector
components. The redundancy structure at this
point depends on the redundancy desired in the
external interface.

The simplest conceptual structure is a triple­
redundant interface, such as a redundant exter­
nal bus, where the triple modular redundancy
structure is extended through to the component
interfaces. Each external bus line can be dedicat­
ed to a different input-output access module,
which in turn is assigned by its guardian units to
transmit on one of the active interface bus lines.
More complex variants are possible, in which

each access module performs error correction by
voting on incoming data from the external bus.

When an external interface is nonredundant,
the strategy would be to assign it to a single
access module, where the module would transmit
on all three active interface bus lines. A malfunc­
tioning access module could pollute the entire
interface bus, but with suitable encoding and
protocol there would be no serious consequences
to the state of the system. The offending access
module could be discovered and disconnected
by bus guardian commands conducted over the
memory bus, the major penalty being a time loss
on the remainder of the input-output interface of
the computer. For dedicated links, the loss of the
link is noncritical by hypothesis. For a network,
whose survival is assumed critical [Smith, 1975],
the computer must interface with the network in
several places via several distinct access modules.
Each such interface would be simplex, but the
system would survive the failure of all but one of
them.

Synchronization

The employment of independent redundancy
requires some form of synchronization among
the independent data sources. Soft, or loose,
synchronization involves such operations as buf­
fering, comparing or voting, signaling consensus,
and marking completed intervals. These can be
done by program, given suitable intermodule
data links. Hard, or tight, synchronization in­
volves hardware comparison or voting, and a
common time reference, whereas loose synchro­
nization can employ separate time references.

Tight synchronization is employed in the
FTMP. It provides the basis for solving some
problems, and it presents some problems of its
own. A common time reference, or clock, that
supports hardware voting, allows instantaneous
validation of internal data, configuration control,
and, in some cases, interface data. In this way, it
helps to make the redundant multiprocessor re­
semble the nominal one, which is advantageous
to programmers at all levels.

594 THE PRACTICE OF RELIABLE SYSTEM DESIGN

The problems of common clocking stem pri­
marily from the fact that it is critical to computer
operation in the dynamic sense. The timing
reference must be continuous and must remain
within tolerances. A second consideration is that
common clocking results in time-correlated data
transfer, which is subject to correlated malfunc­
tion if subjected to external radiation of electro­
magnetic energy beyond the levels tolerated by
shielding. The second problem is intrinsic to all
synchronization, but is more severe for tight
synchronization. The problem also exists in prin­
ciple for any degree of shielding. When the
statistics of such interference are known, the
problem can be addressed in the time domain by
encoding for error detection, rerun for recovery,
or repetition for time independence.

The problem of maintaining a continuous tim­
ing reference is solved by a fault-tolerant redun­
dant clocking arrangement, based on a majority
logic algorithm described in Daly, Hopkins, and
McKenna [1973]. A more recent embodiment,
using voltage-controlled crystal oscillators, will
be described in future reports. The basic princi­
ple of the system is shown in Figure 17-4, which
shows a set of independent phase-locked oscilla­
tors arranged so that the failure of one of the
oscillators does not destroy the phase lock of the
survivors. The clock signal from each oscillator is
distributed to every module and guardian, so
that each can make an independent-determina­
tion of clocking edges. These independent deter­
minations are made by circuits called clock
receivers, whose operational principles are close­
ly similar to the clock receivers described in
Daly, Hopkins, and McKenna [1973]. In normal,
nonfailed operation, the outputs of all the clock
receivers are in. phase lock with each other and
with all the oscillators. The same phase lock
holds when an oscillator fails. The failure of a
clock distribution line appears as an oscillator
failure, and the failure of a clock receiver ap­
pears as a failure of the module or guardian that
contains it. The approach is discussed further in
the subsection on the Clock Generator below.

Malfunction Management

The unusually high level of dependability re­
quired in the FTMP makes it mandatory to
consider all possible sources and effects of prob­
able malfunctions. The probabilities associated
with exposure to hazards are important here, as
they are in any reliability analysis. The fact that
reconfiguration and recovery are needed to meet
reliability goals raises other issues of importance,
having to do with the probabilities associated
with the detection and identification of malfunc­
tions, reconfiguration and recovery of the sys­
tem, and the system status following a malfunc­
tion event. All those considerations relate both
to the design and the evaluation of t?e system.

Malfunction Sources

A malfunction is a general term for anomalous
behavior. Numerous kinds of malfunctions are
distinguished, ranging from microscopic disor­
ders in an integrated circuit to total aircraft
impairment. Within the information processing
segment of the total system, we are concerned
about avoiding malfunctions that preclude the
availability of viable contingencies. We can
think of potential malfunctions as being infinite­
ly rich in number and variety, and tractable
solely because they can be treated as classes and
subclasses.

The first class of malfunctions to be examined
is that resulting from externally induced phe­
nomena, such as physical penetration, radiation
(atomic, electromagnetic), temperature extremes,
or excursion of prime power. The common
thread in these diverse physical environments is
that their effects cannot be confined or localized
to one or a few subportions of the information
system. The entire system is vulnerable at one
time, and for an arbitrarily high exposure it
cannot be made otherwise. That is, the shielding,
structure, environmental control, and prime
power generation must all be designed to with-

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 595

CR = Clock receiver

PlO = Phase-locked oscillator

L Note: CR may use any 3 of
the 4 inputs available

Figure 17-4. Fault-tolerant clock system.

stand stated levels of exposure to known haz­
ards. Exposures in excess of these levels are
potentially catastrophic.

The second malfunction class is that of ran­
dom malfunctions whose sources are internal to
the system. Typically, these result from circuit
failures. When idealized, such malfunctions are
permanent, isolated, unambiguous, visible, and
recoverable. Actual faults are apt to be marginal,
intermittent, correlated, hidden, uncovered, and/

or not perceived uniformly by multiple observ­
ers. This is the category of malfunctions that
redundancy addresses, although the nonideal
attributes of actual faults tend to undermine the
effectiveness of all redundant systems.

The third class of malfunction sources will
simply be denoted as "other sources." The first
two classes are broadly enough defined to be
stretched to cover everything, but it is useful to
emphasize certain sources separately. Thus we

596 THE PRACTICE OF RELIABLE SYSTEM DESIGN

include in this third category the deficiencies
resulting from lapses in system specification, that
is, where the domain of operation and the do­
main of design are not matched. Software in this
sense is a specification. It specifies the sequential
rules of hardware utilization. Logic design is also
a specification in this sense, as are design factors
related to the human interfaces and the sensor
and effector interfaces. The architectural impli­
cations of this category are that the system must
be tractable and understandable enough to re­
duce the probability of occurrence of such mal­
functions to a negligible level.

Malfunction Consequences

I t has been useful to characterize the various
possible malfunctions according to the levels at
which they affect the system [Aviiienis, 1975].
There are physical malfunctions that occur within
hardware elements, such as a short circuit in a
transistor. These have been referred to by var­
ious writers as faults and failures, and in this
paper the word "failure" refers to this category.
A physical malfunction mayor may not result in
a logic malfunction, in which a logic variable is at
some time or _another complementary to its cor­
rect value. Where authors use the word "fault"
for physical malfunction, they use "failure" for
logic malfunction, and vice versa. A logic mal­
function can occur in the absence of a physical
malfunction, notably from induced sources.

A logic malfunction mayor may not produce
a data malfunction, often called an error. A data
malfunction can occur in the absence of a logic
malfunction, notably from specification lapses.
A data malfunction, in turn, mayor may not
produce a subsystem malfunction, which in turn
mayor may not produce system malfunction.

We have portrayed a propagation chain from
physical malfunctions to system malfunction,
with some external entry points. Whether propa­
gation takes place from one level to another
depends on whether a causal link exists in the
first place, and whether the phenomenon is
masked by a redundancy. Thus a logic malfunc-

tion produces a data malfunction only if it
impacts the outcome of an operation. Even then,
it may not, as for example when the data results
from the voting of three inputs, only one of
which suffers a data malfunction.

A key point, often overlooked in simplistic
treatments of redundancy, is that redundancy
always has a limited capacity to mask malfunc­
tions, and this capacity can degrade to zero
without affecting the apparent behavior of the
system. Therefore, a system designed to have
tolerance may in fact have none at the inception
of a critical mission. Alternatively it may have
some tolerance, but less than the design level,
and less than what is assumed. Masking is a two­
edged sword. On one hand it is a mechanism for
holding malfunctions at a low system level, while
on the other hand it may obscure the fact that
the malfunction has occurred and thereby has
reduced the system's tolerance to future mal­
functions [Hopkins, 1977].

Tolerance Renewal Principles

The primary advantage of hybrid redundancy
over TMR is that injured triads are,reconfigured
back to a state where they can once again mask
malfunctions. This is a process of tolerance
renewal. In principle, the system failure rate is
restored to its design value by the reconfigura­
tion process. If reconfiguration were to fail, the
system failure rate would increase, possibly by
many orders of magnitude.

In practice, there are several ways in which an
injured triad can fail to be reconfigured. These
include exhaustion of spare modules, malfunc­
tion of the reconfiguration mechanism, failure to
detect the need to reconfigure, and perhaps the
use of a defective spare module. We can charac­
terize the process of tolerance renewal as the
detection and location of any physical malfunc­
tion, the removal of vulnerability from the triad
containing the malfunction, the replacement, by
spares, of functions thus removed, and the ini­
tialization of the reconstituted triad. All mecha­
nisms involved in this process are subject to

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 597

malfunction, of course, and such malfunctions
constitute injury to their triads, and require that
tolerance renewal be carried out on the ~ppropri­
ate modules.

The tolerance renewal mechanism in the
FTMP is largely contained in the voters and the
bus guardian units. Both the voters and the
guardian units possess bus line interfaces, and
therefore are both capable of degrading elements
(i.e., bus lines) outside of their own modules
(e.g., processor, memory, interface access). This
by itself is not qualitatively different from a
single malfunction. The important concern is
that all guardians in a single module may fail in
such a way as to enable that module to transmit
on more than one bus line. Design steps are
taken to minimize the probability of this even­
tuality, but the probability is finite that it will
happen. A subsequent failure of the module in a
malevolent state could cause an entire central
computer to malfunction.

fault Detection, Identification,
and Recovery

The FTMP is designed to have a highly improb­
able loss of capability, with a total failure rate of
less than 10-9 failures per hour in a flight of up
to ten hours. This virtually rules out the use of
ordinary triple modular redundancy, as the
MTBF's achievable in large scale production
have been consistently too low for such reli­
ability without replacement of failed modules.
Therefore some form of hybrid redundancy is
needed. In a simplistic view, hybrid redundancy
works by substituting a spare the first time the
TMR voters disagree. This view has the short­
coming of not taking latency of faults into
account. That is, the first fault may not result in
any voter disagreements, whereas when com­
bined with a second fault, it may frustrate recov­
ery. A prerequisite for achieving highly improb­
able failure in a hybrid system is therefore to
expose latent faults by systematic exercising, or
"flexing" of all logic elements. The flexing period
must be of the order of seconds for a reasonably

sized system with module MTBF's in the 10,000-
hour range. Clearly, then, flexing cannot be
relegated to preflight checkout, but must rather
be conducted routinely in flight. An ordinary
hybrid TMR system cannot routinely test itself
when performing critical functions, as it is vul­
nerable during these times. A parallel hybrid
TMR system can do this, however, and this
becomes an integral part of the computer's archi­
tecture.

In the FTMP, an error correction mechanism
exists in every module in the form of a voter.
Each voter must be tested routinely to ensure
that its error correcting capability is undimin­
ished. Bus voters under normal conditions will
correct single bus errors and will set error latches
to indicate which of the buses was in disagree­
ment. At this time the processor can record the
identity of the nominal user of the bus for
diagnostic purposes. A processor triad can flex
its own voters during a test job step by having
each triad member purposely utter independent
bus data that causes all possible kinds of bus
errors. To pass the test, all triad members must
receive the same data, form the same corrected
result, and indicate the same disagreement pat­
terns in their error latches. This is a relatively
simple test procedure, which can be conducted
by a processor triad under test while other triads
carry on normal functions. In a sense it qualifies
the triad to conduct further testing, in which the
triad's voters are the decision elements.

The remainder of the system testing function
is carried out under the assumption that the
processor voters and error latches are operation­
al. The test process involves the conversion of
every fault into an error, by making calculations
whose results are sensitive to each logic variable.
Each bus and module, including voters, guardi­
ans, isolation gates, clock receivers, oscillators,
and data and power interfaces must be exercised
in depth.

We might summarize the fault detection pro­
cess as the arrival of disagreement errors at the
voters of a processor triad, stimulated by normal
or test activity. The detection of a fault initiates

598 THE PRACTICE OF RELIABLE SYSTEM DESIGN

the process of fault identification, which is the
discovery of the module, bus, or other isolated
element in which the failure resides. During the
testing process for latent faults, there is relatively
little ambiguity in the determiJ?ation of faulty
modules. In normal operation, however, an error
on the bus can come from a number of sources.
The identification of the faulty module generally
requires the "rounding up of suspects," that is,
the listing of elements that transmit on the
disagreeing bus. If a module fault is permanent,
the module can be found by moving it to another
bus. If the bus is faulty, reconfiguration will not
move the error to another bus.

Intermittent faults are less easy to identify.
When the source of an error eludes detection by
disappearing, all of the suspect elements are
assigned one demerit, and a reconfiguration is
then made to distribute the suspects evenly on
different buses. Subsequent error occurrences
and reconfigurations will cause a preponderance
of demerits to accumulate in the name of the
faulty module or bus.

The recovery process is one of assignment and
initialization for modules, and voter and trans­
mitter selection for buses. These are all accom­
plished by the bus guardian units upon receipt of
commands from active triads executing system
software. Recovery can take place even if single
errors are present on the buses. In principle,
therefore, an injured processor triad can recon­
figure itself.

The use of program restart, or rollback, as a
recovery mechanism is secondary, because it is
neither sufficiently effective nor easy to imple­
ment. The first level of system defense is the
masking of errors by the TMR method. The
additional system failure rate reduction achiev­
able by rollback cannot be measured, a priori,
without an understanding of the applications
software. It should be anticipated, however, that
any event that defeats the TMR masking is apt
to destroy the vehicle's state vector, which may
or may not be catastrophic. In any event, some
degree of program rerun should be included to
support power-up initialization and to deal to
some extent with the eventuality of uncovered

errors. This will affect both system software and
application software.

DESCRIPTION OF AN ENGINEERING
PROTOTYPE OF THE FTMP

During the 1978 and 1979 time frame the
Charles Stark Draper Laboratory is planning the
construction, for NASA, of an engineering pro­
totype of the FTMP. The hardware is to be built
by a major avionics manufacturer using specifi­
cations provided by CSDL. CSDL will retain
program responsibility, provide all system soft­
ware, and will conduct the integration, test, and
evaluation of the system. The project is being
sponsored by the NASA Langley Research
Center as a part of the Energy Efficient Aircraft
Program. The implementation of the prototype is
discussed in this section.

The proposed system is to be constructed of
ten identical line replaceable units (LRU's) con­
nected as indicated in Figure 17-5. Each LRU
contains one processor/cache module, one mem­
ory module, one I/O port, one clock generator,
and related peripheral support and control cir­
cuitry. Figure 17-6 shows how an LRU is divided
into fault-containment regions. The principle re­
gion is detailed in Figure 17-7.

Up to three processor triads can be in opera­
tion simultaneously, utilizing nine of ten avail­
able processor/cache modules. The tenth module
serves as a spare. With three triads operating
simultaneously, the system is functioning as a
three-processor multiprocessor.

Up to three memory triads can be formed
from nine of the mass memory modules. The
tenth module is a spare. Each memory triad is
assigned to service a single 16K work region of
the shared mass memory address space. With
three memory triads operating simultaneously,
48K words of contiguous shared mass memory
address space can be serviced.

The I/O ports use MIL-STD-1553 data for­
mats and signaling protocols. MIL-STD-1553 is
a United States Air Force standard for a bit
serial, time multiplexed avionics data bus. A

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 599

lRU

Processor I cache

Clock gen.

Mass memory

1/0 port

(see Figure 17-6) External I 10

0::
N
Q. ct

....I
U

~
><
0

~

~
CIJ
III

III
::l

0 co

~
<Il

<Il
::l

U co
~

lRU

co <Il

<Il ::l CIJ co <Il

<Il
::l

< co

~
III

III External 1/0
::l

CO

• • •

Figure 17-5. LRU and bus interconnections.

600 THE PRACTICE OF RELIABLE SYSTEM DESIGN

___________ , Conductors
Bus set A r-- l-- 6/6 _

l-- 5/3-

:-- 5/3-

I
'--- I ____________ J

E '---- I l ____________ .J
......

------ ------,

r---------- ,

Common
circuit
region

(See Figure
17-7)

I
I
I
I
I
I
I
I
I
I

o
~

Bus set 0 r-- I
~~----+++-----------~1---'!-'

i
"-- i ___________ -1

------------,
Bus set E.....-- i

~~I----++++----------~~--~~
I

1"--- --,
I I
I I
I I
I I
I I
I BGU 0 I
I I
I I
I I
I I
I I L ____________ J

~--

BGU 1

'------r----.J
I
I4---Fault
: containment
: boundary
I
I
I
I
I ___________ J

Figure 17~. LRU fault containment boundaries.

single I/O port accepts the bit serial data from a
processor triad, votes to mask any errors in that
triad, and generates a single version of the I/O
transmission. This version is electrically trans­
formed to conform with MIL-STD-1553 specifi­
cations, and is transmitted to the outside world
on one member of a full-duplex transmission
pair. Received data from this MIL-STD-1553
transmission pair is accepted by the I/O port,
converted to an internal signal level, and distrib-

uted to all processors. At least one port and its
associated external transmission pair must re­
main functional for the system to remain opera­
tional. Error detection and correction outside the
multiprocessor relies upon data encoding and
time redundancy in communications to and
from remote terminals.

This engineering prototype differs from the
basic FTMP design in that it groups aprocessor,
a memory unit, and an I/O port together in a

Line selectors
vote and error

Tolfrom bus interface

P2's ClK's
detect INMUX ~ I

~:- ------ -I
I P1 IX OX I

3 of 5 select I INMUX INMUX INMUX I
lines (20) I I

~ L_______ ___ _ ______ J

OX's IX's M's

-I \.

CCU

~
Processor triad
identification

Power
supply

Four 28 v DC
supply lines

~
/'

" P1

\.

Processor I cache

../

M

ClK

P2

IX

Mass memory
relocation value

./

1(5)1

Clock
generator

Memory
module

1/0
port

1

Figure 17-7. Common circuitry region.

~
Error latch
outputs

CLK
ox

P2

P1

IX

M

Q Q 1 ()

External
1553A

bus

~
3:

I'
>
:I:
o
:I:
r
-<
ttl
tTl
r

>
0;:1
r
tTl

3:
c:
r
j
"'tI
ttl o
(')
tTl
ifJ
ifJ
o
ttl

Q\ =

602 THE PRACTICE OF RELIABLE SYSTEM DESIGN

single LRU with common power supply, bus
guardians, isolation gates, and other common­
failure elements. The reason for doing this arises
from the physical form factors involved. Mean­
while, this design preserves the necessary fea­
tures to allow processors, memory units, and I/O
ports to be assigned independently of each other,
and for the system to diagnose and recover from
simultaneous failures of all three.

The Redundant Bus Structure

The bus system shown in Figure 17-5 is quintu­
ple-redundant. Each bus has lines dedicated to
processor transmission, (the two P bus lines);
memory module transmissions, (the M line);
clock generator transmission, (the eLK line);
and I/O transmissions, (the IX and OX lines).
Subsets of three of the five buses are assigned to
carry processor and memory triad data. A subset
of four of the five is used to carry clock generator
transmissions. A single bus of the five is used to
carry I/O port transmissions.

The processor uses two bus lines, P I and P2,
to transmit data and commands to common
memory and status register devices. The pro­
cessor triads also contend for control of the bus
system via a cooperative, competitive allocation
technique which uses these bus lines.

A triad of memory modules uses the memory
bus lines to transmit data requested by a pro­
cessor triad. Since memory triads only speak on
command, there is no mechanism, such as the
competitive poll used by the processors, to grant
permission to transmit. The processor in control
of the P bus implicitly grants transmission per­
mission by issuing a read request.

lRU Interfacing to the Bus System

Each LRU of the system must be interfaced to
the bus system in a fashion that protects the
fault-tolerant architectural features of the logical
design. Several design constraints must be met in

order to meet this requirement. Figure 17-6
illustrates a suitable interface.

Each of the five buses is connected to the LR U
through a dedicated bus interface. Each of these
bus interfaces represents an independent fault
containment region. Design requirements for a
fault containment region limit the physical im­
pact of a fault in that region. Signal lines into
and out of the region are buffered at the region's
edge so that a fault on any of these lines external
to the region will not affect the correct operation
of the circuitry within the region, excepting
possibly these output or input buffers. The prin­
cipal concept of a fault-containment region is the
containment of physical damage to one region
by the surrounding regions. The logical contain­
ment of the effects of a fault are provided by
other means. For example, a fault such as a short
circuit to power on all lines into and out of a bus
interface has two partitionable effects. First, data
transmitted through that bus interface is likely to
be received incorrectly. This is the logical impact
of the fault. The logical failure is not contained
by the fault-containment region. The second
effect is physical. The fault will electrically stress
the receiving and transmitting buffers of at­
tached regions. This stress may induce physical
faults within these buffers, but the design of
these regions is such that these internal faults do
not propagate beyond these buffer circuits.

The remaining portion of an attached region's
circuitry continues to function correctly, al­
though it may be operating on incorrect data.
Since there are no fault propagation paths be­
tween regions, a fault within a single bus inter­
face cannot affect the correct operation of anoth­
er bus interface. A single bus interface failure,
therefore, can at most cause the apparent loss of
a single bus.

The remaining portions of the LRU are di­
vided into three additional fault-containment
regions. Each Bus Guardian Unit is a fault­
containment region. The third region, or princi­
pal region, consists of common voters, processor /
cache, mass memory, I/O port, clock generator,

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 603

and power supply. The bus interface provides
separately buffered copies of the PI, P2, and
CLK lines to both bus guardians and the princi­
pal region. Since a fault within one of these
attached regions cannot affect the separately
buffered PI, P2, and CLK lines used by the other
two regions, they each appear to have indepen­
dent access to the bus system. In order for a bus
interface to allow principal region transmissions
onto a system bus line, it must have enabling
signals from both bus guardians. Thus either
guardian can block access to a particular bus
line. Each of the guardians has what is effectively
independent access to all incoming bus data. It
can independently mask single bus errors via
voting, and it processes incoming processor triad
transmissions, responding only to write com­
mands to its particular address location. The
contents of these write commands alter the static
enabling signals from the guardians. Each guard­
ian provides an enable line to each bus interface
for the P lines, M line, CLK line, and OX line.

The LRU interfacing is designed to protect the
integrity of the bus system despite multiple se­
quential faults. A worst case bus interface failure
can at most disable all of the lines of only one of
the quintuple bus sets. The system can then be
reconfigured to use the remaining lines of other
buses. One element of a triad or the clock quad,
if it fails, can impact at most one of the active
bus sets. Again reconfiguration commands can
isolate that faulty unit from the bus and assign a
spare to replace it, thereby restoring system
health. To cause a system failure, four of the five
bus sets must fail, or two bus guardians within
the same LRU must fail, enabling the principal
region to access all bus lines, and in addition, the
principal region must fail.

System Control Units

The bus guardian unit is a particular case of a
generalized unit called a system control unit. Each
LRU has four system control units. They are

designated bus guardian unit 0 (BGU 0); bus
guardian unit I (BGU 1); configuration control
unit, (CCU); and the interprocessor triad com­
munication unit, (IPC unit). The CCU and IPC
units are part of the principal fault containment
region. As previously stated, BG U 0 and BG U I
are each a fault-containment region.

All of these system control unit types are
similar and can be constructed from the same
circuit. Figure 17-8 illustrates the functional re­
quirements for such a common circuit. Essential­
ly the circuit must take the serial processor
command data, PI, P2, and CLK, pass it
through error-correlation circuitry, if this data is
in redundant form, and convert it to a parallel
form. A system control unit only responds to a
memory write command to its own particular
memory address.

Register contents may be supplied as static
enabling or data signals to circuitry external to
the system control unit, or they may be used
internally to control the error correction circuitry
(if present).

A power monitoring circuit switches the regis­
ter store to battery power when primary power to
the unit is not within specification. When battery
powered, the register contents are protected, and
the enabling lines from the guardians are in the
disable state. Total loss of all power to a guardi­
an clears the register contents to the disable
state.

The Principal Fault-Containment
Region

All of the circuitry of an LRU is within the
bounds of the principal fault-containment region
excepting the two bus guardians and the bus
interfaces.

The principal region can be viewed as being
made up of seven subregions. These are: I) input
processing; 2) configuration control; 3) pro­
cessor/cache; 4) memory; 5) I/O ports; 6) clock
generator; and 7) power supply, as shown in
Figure 17-7.

604 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Serial-parallel converter
and register select & strobe t-----------t .Five P1

inputs
Strobes

Register file

Discrete
outputs

Five P2
inputs

Five elK
inputs

Figure 17-8. System control unit.

Input Processing

All input to the principal region is from the bus
interfaces, and is first processed by shared signal
selectors, voters, and error detection circuits. The
input circuitry generates a single version of the
PI, P2, eLK, M, IX, and OX lines to be used by
all modules within the region. This single version
of each line is the appropriate majority function
of the selected group of 3 out of 5 lines. Addi­
tionally, the voting circuitry detects and latches
any error condition on the bus lines, and pro­
vides this information as input discretes to the
processor. The selection of one of the ten possi­
ble groups of 3 out of 5 buses to be used by the
majority circuitry or the selection of which IX
line to be used, is made by selector discretes
provided by the Configuration Control Unit.

Configuration Control Unit (CCU)

The Configuration Control Unit (CCU) is a
system control unit. The CCU is used to control
the INMUX circuitry, is. used to assign the
processor/cache unit to a processor triad and to
start and stop the processor, and is used to assign
the mass memory module to a memory triad.

Processorl Cache Module

The processor/cache memory module is the most
complex of the principal region. It can be parti­
tioned into a number of submodules. These are:
a) processor, b) cache memory, c) bus controller,
d) IPC unit, and e) MIL-STD-I553 controller.

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 605

rhe Processor. The principal design require­
nents of the processor could be met using any of
l large number of general purpose 16-bit mini­
;omputer architectures. In order to support the
)rojected computational requirements of aninte­
~rated avionics system, the basic processor has a
·aw instruction execution rate roughly equivalent
,0 500,000 16-bit fixed-point adds per second. A
l6-bit fixed-point multiply has an execution time
;ix times that of the fixed point add.

The instruction set of the processor is suitable
~or avionics applications and, in addition, pro­
rides for the following: 1) code is relocatable
without modification; 2) code is read-only and
·eentrant; 3) the CALL and RETURN instruc­
:ions support dynamic program loading efficient­
y; 4) memory protect is supported for a region
)f the cache RAM; and 5) privileged user modes
)f operation are provided to prevent the direct
!xecution of I/O and mass memory access in­
;tructions by applications code.

The processor is adapted to use the output of
:he CLK generator as its time base and incorpo­
~ates a microcode interlock with the bus control­
,er which allows three processors to be synchro­
lized by using particular bus events, such as bus
~rant.

Cache Memory. The cache memory is a 4K X

16 semiconductor RAM and 4K X 16 semicon­
juctor PROM array. It interfaces to the pro­
::essor over the processor's internal parallel bus.
I\ccess time for this memory is 400 ns. There is
rlO requirement for nonvolatility in the RAM
portion of this memory.

flus Controller. The bus controller is responsi­
ble for the bit-by-bit control of the processor side
:>f bus activity. On command of the processor,
the bus controller conducts a competitive polling
iequence to acquire control of the main memory
bus. The controller then holds the bus until
tnstructed to release it. It makes use of the' triad
tdentification provided by the CCU and a prior­
tty field provided by the processor during the

polling sequence. While holding the bus, it per­
forms memory reads and writes as requested by
the processor. Data and memory address trans­
fers between the processor and controller are
handled in parallel. The controller performs the
necessary timing, serial to parallel and parallel to
serial conversions for the processor. The pro­
cessor handles block transfers performing the
necessary housekeeping, streaming parallel
memory addresses, and accepting whole word
data streams from the controller and storing
them in cache memory, or streaming parallel
addresses and data to the controller for storage
in the common memory.

Interprocessor Triad Communication Unit.
The Interprocessor Triad Communication Unit
(IPC) is used by the executive for direct pro­
cessor-triad to processor-triad communications.
The IPC registers are available as discretes to the
processor.

MIL-STD-1553 Controller. A MIL-STD-1553
controller interfaces to the processor over the
processor's internal parallel bus. It conforms to
the standard format, except that the outgoing
and incoming data paths have been split so as to
provide full-duplex transmission paths.

Memory Module

The memory module contains a 16K X 16 CMOS
memory array with the appropriate control cir­
cuitry to respond to processor triad memory read
and write commands.

Input to the memory control circuitry is the
bit-serial quantity represented by the outputs of
the P-INMUX outputs and CLK-INMUX. The
most significant bits of the incoming address are
compared to the relocation register provided by
the CCU. If they match, a read or write opera­
tion is performed. If they do not match, the
incoming command is ignored. Read responses
are made using the M bus. Responses are
clocked using the output of the CLK-INMUX.

606 THE PRACTICE OF RELIABLE SYSTEM DESIGN

110 Port

The I/O port is principally a signal level shifter
and data synchronizer. A single corrected ver­
sion of I/O output data, OX, is accepted by the
I/O port from the common input module, and is
buffered to conform to MIL-STD-1553 specifica­
tions. The transmitting processor triad is respon­
sible for formatting the OX lines signal to con­
form to the MIL-STD-1553 format.

The I/O port receives I/O input data, synchro­
nizes it so that transitions do not occur near
system clock edges, converts the signal levels to
an internal standard, and transmits the signal on
an IX line to all processors.

Clock Generator

As discussed in the subsection on Synchroniza­
tion, the entire fault-tolerant multiprocessor rests
on an assumption of synchronized operation
based on a common timing reference. Each LR U
includes a clock generator which can be synchro­
nized to the common reference, and which, if
gated by the BGU's onto a CLK bus, could serve
as a contributing element to the common refer­
ence in the manner shown in Figure 17-4. The
clock generation circuit of an LRU interacts
with the CLK bus lines, the CLK-INMUX, and
the other clock generators. To understand the
function of the clocking system, it is necessary to
discuss all of these components as they interre­
late with one another.

The clock bus is a component part of the
quintuple redundant busing system. Each of the
five bus sets includes one clock bus line, CLK.
Normally, four of the five CLK lines are active
and one is inactive. Four clock generators are
chosen as the clock sources, each being assigned
to a different clock bus. Each transmits a clock
signal which is phase-locked to the other three
active clock generators. Thus the system has
available at all points a quad-redundant time
base. Each clock receiver listens to three of the
four active clock buses and generates a derived
clock which remains correct even if one of the

three input signals fails. It is therefore possible to
tolerate a single failure of one of the elements of
the clock quad without affecting the correctness
of the derived clocks generated throughout the
system.

Each bus guardian and each CLK-INMUX
uses a clock receiver to generate its own correct­
ed version of the system clock, despite single
faults in the clock quad.

Each clock generator, whether active or in
standby mode, phase locks its output to its CLK­
INMUX output. Thus the clock generator out­
puts a clock which is in phase with the majority
of three CLK buses. When active, the output of
the clock generator is gated onto one of the four
CLK buses, and its associated CLK-INMUX is
adjusted to listen to the other three CLK buses.
In this configuration the correctly functioning
clock generators will produce multiple phase­
locked clocks which will remain phase-locked
despite any failure of a single clock element of
the quad.

When a failure is detected, the system recon­
figures, replacing the failed CLK bus or clock
generator. Standby clock generators are already
phase-locked to the corrected system clock, so
that they can be switched in to replace a failed
clock generator with minimal transients in clock
frequency and with negligible risks. This restores
the fault-tolerant character of the clocking sys-

. tern, positioning it to tolerate the next clocking
component failure.

Power Supply

The power supply provides regulated power to
the LRU. The power supply can draw power
from any of the four primary 28-V DC power
buses. A circuit breaker or fuse protects each of
these buses from a short circuit within the LR U.
The power supply must have adequate energy
storage so that its output remains within regula­
tion for the time it takes these protective devices
to act and the bus voltages to return to normal
after a short circuit within another LRU. The

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 607

output of the power supply is overvoltage pro­
tected, possibly with serial redundant protection.

The bus interface devices will be designed to
operate safely for all power supply voltages
beneath the overvoltage protection limit; that is,
the bus interface will present a high impedance
load on the bus for all voltage levels if the
corresponding enables from the BGU's are un as­
serted.

The BGU's will monitor power supply volt­
ages. If out-of-regulation voltages are detected,
the contents of the BGU registers will be frozen,
and all enabling outputs will revert to the unas­
serted state.

A battery backup is used to provide power to
the CMOS memory array, and to the BGU and
CCU register files, when primary power is lost. If
this battery power fails when primary power is
down, the register files of the BGU's and CCU
will be cleared.

Primary Power

Power is distributed to all LR U's of the system
by means of four 28-V DC power buses. Four
400-Hz 1l0-V DC to 28-V DC power converters
provide power to these buses. These power sup­
plies are overvoltage and overcurrent protected.
If an overcurrent condition arises, the 28-V DC
output will current-limit but return to normal
when the protective devices within the shorting
LRU open. Energy storage with the power sup­
ply must be adequate to tolerate momentary
power interruptions such as are typically caused
by power switching in aircraft power distribution
systems.

SURVIVAL AND DISPATCH
PROBABILITY MODELS FOR
THE FTMP

The FTMP has several different failure modes,
each of which is amenable to a different mathe­
matical tool. Specifically, the probability of

failure due to exhaustion of spares can be ade­
quately modeled using combinatorial methods,
whereas Markov processes are better suited to
modeling coverage-related problems. Fortunate­
ly, each of these failure modes predominates in a
different time segment, and therefore can be
modeled and analyzed independently.

Survival Probability Models

The computation of survival probability of the
FTMP for random hard failures is divided into
the following three phases:

• probability of failure due to the lack of perfect
coverage using a Markov process model;

• probability of failure due to exhaustion of spares
using a combinatorial model;

• probability of failure due to BGU failures in enable
mode using a combinatorial model.

In the FTMP some time is required to detect,
isolate, and recover from any failure. During this
time a second failure may arrive in such a place
as to be catastrophic. Therefore, the coverage
[Bouricius et aI., 1971] is imperfect. This phe­
nomenon is most conveniently modeled using
Markov processes, as ~ach distinct failure or
recovery moves the system into a state that is
dependent only on the present state of the sys­
tem. However, to limit the number of states to a
reasonable level, it is necessary to make some
approximations. The most effective of these ap­
proximations is to assume that recovery from a
failure returns the system to a perfect state,
which is the initial state of the system, rather
than to a computationally degraded state. In
effect, this implies an unlimited supply of spare
units of each kind. The probability of failure due
solely to exhaustion of equipment can be com­
puted independently using combinatorial meth­
ods. The basic premise which allows one to
decouple and model these two modes of failures
separately is the predominance of each mode
during a different time span. As will be shown in
the following sections, in the short run (0-50 hr)

608 THE PRACTICE OF RELIABLE SYSTEM DESIGN

it is the threat of near simultaneous failures
which most affects system survivability, whereas
in the long run (> 100 hr) the system is likely to
fail due to a lack of equipment. In addition to
these, there is a third failure mode peculiar to the
FTMP architecture that has to be accounted for.
This relates to two bus guardian units in an LRU
failing so as to enable a failed unit (processor,
memory, etc.) to transmit simultaneously on a
number of buses. It will be shown that this mode
does not affect the reliability since its probability
is insignificant at all times.

The following three subsections describe the
models and the results.

Lack of Coverage: Markov Model

Since all the information as well as all the
computations in the FTMP computer are triply
redundant, any single failure in the system is
completely masked by the majority voters.
Therefore, if the system starts out in a totally
fault-free state, it takes at least two successive
failures without recovery to produce a cata­
strophic system failure . .However, not all double
failures are catastrophic. In fact, most double
failures can be tolerated by the FTMP without
any problem. The following is a list of all the
catastrophic double failure combinations:

• two processors in a triad fail;
• two memory modules in a triad fail;
• two active buses fail;
• one active bus fails and a processor or memory

enabled on another active bus fails;
• two active oscillators fail;
• one active bus and an oscillator enabled on another

bus fails;
• one LR U . fails in common mode and an associated

processor, memory, or bus fails;
• two associated LRU's fail in common mode.

The . common mode LRU failure refers to a
failure of any of the LRU components that are
shared by the processor, memory, and I/O port

in that LRU. These include the local power
supply, the oscillator, the two BGU's, and the
selectors and voters. A local power supply failure
in an LR U, for example, will result in the
simultaneous loss of the processor, memory, and
I/O port in that LRU. The BGU failures include
only the disable mode, since the enable mode is
taken care of separately. Finally, the bus failure
includes a failure of any of the five lines consti­
tuting a bus or a failure of any of the ten bus
interface gates connected to that bus.

A Markov model of the FTMP computer
reliability based on the above discussion is
shown in Figure 17-9. The system is initially in a
completely fault-free state or "ALL GOOD" state.
It will be shown shortly that at time t = 0, such
as a take-off time, the probability of having a
latent failure in the system should be about 10-6

to achieve a system failure rate of 10-9 failures
per hour. That is, one must be certain with a
probability of about 0.999999 that the system is
initially fault-free. In the following discussion, it
is assumed that the system is initially fault-free.
Some of the other assumptions used in develop­
ing the model are outlined below.

As explained earlier, it is assumed that recon­
figuration around a failed unit returns the system
to the perfect state. It is also assumed that all the
failed buses are active and that all triple unde­
tected faults cause system failure. These simpli­
fying assumptions reduce the number of states in
the model considerably without significantly al­
tering the system failure probability. For exam­
ple, contribution of triple faults to the system
failure probability is found to be less than 2
percent.

A baseline set of failure and recovery rates, as
shown in Table 17-1, was used to obtain a
numerical solution of the Markov model. The
values shown in Table 17-1 are the mean values.
The model uses random values that are exponen­
tially distributed around these means. One may
argue about the fidelity of exponential distribu­
tions, although it is our contention that they
represent the actual reconfiguration time distri­
butions sufficiently well for this purpose [Laprie,
1975].

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 609

6

---- A module fails

- System recovers

--.... System fails

Figure 17-9. Reliability model for lack of coverage.

Table 17-1. Baseline parameter values.

Failure Rate MTBF Recovery Time
System Configuration CMC (per hour) (hrs) (sec)

Processors 10 5 2 X 10-4 5,000 0.25
Memory units 10 2 2 X 10-4 5,000 0.25

I/O units 10 1 5 X 10-5 20,000
Buses 5 3 10-5 100,000 0.25
Main power 4 10-4 10,000

Supply units
BGUs 20 EN = 10-6 1,000

DIS = 10-5 100,000
LRUs 10 eMF = 1.46 x 10-4 7,000 0.25
Oscillators 10 3 10-5 100,000 1.0

610 THE PRACTICE OF RELIABLE SYSTEM DESIGN

10-14 '___ __ IC.L..._~'___ __ 1__ __ .l....__

0.1 10
Hours

100 1000

Figure 17-10. System failure probability.

The results of the Markov model are shown in
Figure 17-10 by the curve labeled "lack of cover­
age." It shows the system failure probability as a
function of time on a log-log scale for the
baseline hazard and recovery rates. The failure
probability is seen to be a linear function of time
(linear and unity slope on the log-log graph)
which can be explained as follows. After an
initial transient, which may take several hundred
seconds to settle down, the state probabilities for
all states except the system fail state become
nearly constant. During this equilibrium there is
a constant leakage of probability into the trap­
ping state since all the transition rates are time
invariant. Since the total leakage rate is only
about 10-9 per hour, the state probabilities di­
minish extremely slowly, and a state of equilibri­
um would hold for hundreds of hours. For the
baseline case, the system failure rate due to lack
of coverage is found to be about 3 X 10- 10 per
hour.

The reason for having an initial latent-failure
probability of 10-6 now becomes clear. This is
the probability of the system being in states 2
through 5, that is, the single-undetected-failure
states (see Figure 17-9). The transition rate from
those four states into the system fail state or the
probability of arrival of a second catastrophic
failure is of the order of magnitude of 10-3 per
hour. To prove that the system is initially fault­
free with absolute certainty is not possible. The

triple redundancy prevalent in the system imme­
diately points to any obvious disagreements and
component failures, and a systematic exercise of
all parts of the system using diagnostic routines
can uncover most undetected faults. But this still
leaves some types of faults, such as pattern
sensitive memory locations, which can not be
uncovered without exhaustive testing. The prob­
ability of such latent failures has to be reduced
to an insignificant level.

Exhaustion of Spares
Combinatorial Model

In order to compute the probability of not
having sufficient equipment, it is necessary to
define the minimum equipment necessary to
operate successfully. This is mission dependent
as well as architecture dependent. The minimum
equipment required to fly an aircraft shall be
denoted as the Critical Minimum Complement
(CMC). The architecture-dependent parameters
of the CMC include the power supply units and
buses. One main power supply unit is deemed
sufficient to run the whole computer. Similarly,
two buses are adequate at the minimum to
support communication between processors and
memories, as well as the distribution of the clock.
However, for one pathological clock failure
mode it would be necessary to have three buses.
The minimum number of processors and memo­
ries required is mission dependent. The through­
put of the FTMP computer in a fully operational
state is estimated to be 500,000 operations per
second and the minimum throughput necessary
to support all flight-critical functions is estimated
to be about 200,000 operations per second. Sim­
ilarly, the total storage capacity of the computer
is 48,000 words while the critical programs are
estimated to be less than 16,000 words. Thus two
processor triads and one memory triad have to
be operational to support the critical functions.
There are a number of ways of achieving this,
one of which uses five processors and two mem­
ories. It is, of course, possible to lose another

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 611

processor in the fully populated triad and still be
operational, although the probability of such an
event is only 3/5. The number of I/O ports
necessary to interface with the I/O network is
one. Table 17-1 lists the critical minimum com­
plement based on the above discussion. This
table lists the minimum number of oscillators as
three, which is what is needed to generate a
clock. However, this is dominated by a larger
requirement of five or more oscillators necessary
to operate five processors, two memories, and an
I/O port, all of which may be in different LRU's.

Figure 17-10 shows the overall failure proba­
bility due to lack of equipment for a period of up
to 1,000 hr. In the short run, the number of buses
is critical, while in the long run it is the number
of LRU's. The number of power supplies is
adequate at all times.

Bus Guardian Unit failures­
Combinatorial Model

This section discusses the system failure proba­
bility due to BGU failures in the enable mode.
Although this mode can be made about an order
of magnitude less likely than the normal disable
failure mode, it is nonetheless present and must
be accounted for. As explained earlier, one single
BGU may disable a unit from transmitting on a
bus, while both BGU's in an LRU unit must
agree before a unit is enabled on a bus. Under
the normal circumstances, an active unit (pro­
cessor, memory, etc.) will be enabled on a single
bus. With two BGU's failed in the enable mode,
a unit would be enabled on more than one bus.
This by itself presents little, if any, problem since
three members of a triad transmit in tight syn­
chronism on three buses. However, if the unit
enabled on multiple buses fails and does not
transmit in synchronism, a number of buses
immediately become useless, and this may result
in a catastrophic system failure. Thus it takes at
least three related failures in a single LRU for
the system to fail. The BGU enable mode fail­
ures are nonrecoverable. That is, the system can

not be reconfigured around a failed BGU. The
results for the baseline parameter values are
shown in Figure 17-10. It is seen that the system
failure probability due to this peculiarity of the
architecture is at all times insignificant.

Unified Survival Probability
Results

The following conclusions can be drawn from
Figure 17-10.

1. During a typical commercial flight of one to ten
hours the most likely threat of the FTMP computer
failure is due to an arrival of two failures so close
that system reconfiguration is not possible. The
probability of this event, however, is acceptably
low (about 3 X 10-10 per hour) because of high
component MTBF's and fast reconfiguration times.

2. There is very little chance that the FTMP computer
will run out of spares during a ten-hour flight,
assuming that the system initially has all ten LRU's
fully operational. In longer flights, however, failure
would be quite possible as evidenced by the sharply
rising failure probability curve after 50 hours. Lack
of equipment is a critical item as far as the dispatch
reliability of the computer is concerned, and is
discussed in detail in the subsection on Dispatch
Reliability below.

3. Finally, the system failure rate due to BGU enable
mode failures is substantially lower than other
system failure modes. Therefore it does not contrib­
ute significantly to the overall system failure prob­
ability.

The overall system failure probability due
to all causes, up to about 50 hours, is dominated
by the probability of failure due to near simulta­
neous failures. During this time the probability
of exhaustion of spares is several orders of
magnitude lower. Beyond 100 hours the opposite
is true. Strictly speaking, the overall failure prob­
ability is a complex function of all the contribut­
ing failure probabilities. However, under certain
circumstances, it can be approximated very
closely by just the predominant failure probability.

612 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Impact of Intermittent Faults

An intermittent fault in a digital computing
system may be defined as a fault that persists
only part of the time. Physically, this may corre­
spond to a loose connection between compo­
nents, a loose bond within a semiconductor
device, a temperature sensitive device, etc. Since
an intermittent fault manifests itself only a frac­
tion of the time, it injects an additional level of
latency to the problem of fault detection. This
would lead to longer fault detection and isola­
tion times, thereby reducing the system reli­
ability. The actual extent to which the system
reliability would be degraded due to intermittent
faults would depend on the degree of latency of
the fault. That is, the higher the percentage of
time a fault stays in the good state, the higher the
chance of it being undetected. With the presence
of such a lurking fault in a triad, for example, a
second fault in another member of the triad
leads to a situation where two out of three
members of the triad are at one time or another
malfunctioning. If this situation is not redressed
promptly by reconfiguration of faulty elements it
can result in a catastrophic system failure. On
the other hand, the presence of two intermittent
faults in two members of a triad can be tolerated
as long as one or both of them stay in the lurking
mode. This apparently should result in an in­
creased level of fault-tolerance. The following
study was undertaken to analyze these contradic­
tory impacts of intermittent faults on the FTMP
reliability.

To incorporate intermittent faults in the
FTMP survivability models, it is necessary first
to define various states and their transition rates
corresponding to intermittent faults. In the sim­
plest form, an element with an intermittent fault
may be represented by two states: a failed state
and a pseudofailed state [Breuer, 1973]. In the
first state the fault is actually present, that is, use
of the element will produce an incorrect output.
In the second state, the fault is in a benign mode,
and use of the element will not corrupt the
output. An intermittent fault will oscillate be­
tween these two states with a frequency that is

a

a
8 = Latency factor

a, 8 = Frequencies of transition

Figure 17-11. Intermittent failure model.

dependent upon the characteristics of the fault.
In general, the transition rate from the failed to
the pseudofailed state may not be the same as
the rate in the other direction (see Figure 17-11).
The ratio of transition rates, 0./0, is a measure of
the additional latency due to the intermittent
nature of the fault. The higher the ratio 0./0, the
higher is the percent of time a fault stays in the
pseudofailed state and is invisible a longer time.
For 0./0 = 0, the intermittent fault really be­
comes a hard fault since all the time is spent in
the failed state.

Certain assumptions have been made regard­
ing the use of this basic model to keep the overall
models and the number of parameters tractable.
For example, a and 0 are assumed to be constant
with respect to time. In addition, all faults are
assumed to be intermittent with the same transi­
tion frequencies and duty cycles. In practice
there will be faults with various frequencies
which will most likely vary with time as the
intermittent faults transition into hard faults.
However, the present purpose is to get an insight
into how an intermittent fault affects the system
survivability. This is best done by simulating a
situation where all the failures are intermittent
and stay intermittent during the course of inves­
tigation.

A Markov process coverage model of a triple
modular redundant (TMR) system incorporating
the intermittent failure model was developed, as
shown in Figure 17-12. The reasons for modeling
a TMR before going to a full-fledged multiproc­
essor model are twofold. It involves fewer pa­
rameters, making it easier to establish a cau.se
and effect relationship between reliability and

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 613

Figure 17-12. Intermittent failure model of a TMR-hybrid system.

various parameters. It also involves fewer states
and can be analyzed for a wider range of param­
eter values. Since the FTMP multiprocessor un­
der investigation is a combination of a number
of triads, the TMR results can generally lead to
a good understanding of the FTMP reliability
behavior.

Figure 17-12 shows three different ways in
which a catastrophic system failure can result.
The first is the occurrence of two simultaneous
failures, that is, the failure of a second element
before the first failure has been diagnosed and
recovered from (transition 2-8). This is the only
mode of failure in a TMR system if all the
failures were hard failures. However, due to the
intermittent nature of our assumed failures, the
system can survive even in the presence of two
failures as long as at least one of the faulty
elements is in the pseudofailed state (states 4, 5,
6, 7). In such a case, the arrival of another failure
in the third element (transition 4-8), or the

transition of an element from a pseudofailed to a
failed state (transition 6-8), leads to a cata­
strophic system failure. The model was solved
numerically for a number of different values of
a, B, A, and Jl. Some of the important results are
shown graphically in Figure 17-13. It is found
that the failure probability is not a monotonic
function of a or B. However, if the ratio a/8 is
held constant, the failure probability increases
with 8 as shown in Figure 17-13. Similarly, for a
constant 8, the failure probability generally in­
creases with a/B. In the steady state, the ratio of
state probabilities P3 to P2 is given by a/B. That
is

P3 _ ex
P

2
-~.

This is assuming there is no leakage from state 2
to the system fail state 8. Physically, the ratio a/8
represents the relative time a fault stays in the
lurking mode. That is, the higher the variable

614 THE PRACTICE OF RELIABLE SYSTEM DESIGN

50
40

30

20

10

5

1

Prob. of failure (0: ~ 0)

Prob. of failure (0: = 0)
or

Prob. of failure (inter. faults)

Prob. of failure (hard faults)
@ 100 mins.

10

It = 1()2/hr., ~ = 100

It = 1()2/hr., 3 = 10

1()4

~ per hour

Figure 17-13. Influence of intermittency on the system failure rate.

a/~, the higher is the latency factor of the
intermittent fault. For a fixed ratio a/~, increas­
ing ~ implies a higher leakage rate from state 4,
resulting in a higher failure probability. In other
words, since the ratio a/~ is fixed, the duty cycle
between failed and pseudofailed states is a con­
stant, and therefore, increasing the frequency of
transition between these two states only in­
creases the chance of a lurking fault suddenly
crashing the system. It is evident from these
results that the worst situation arises where the
latency of intermittent faults is high (a high a/~)
and the frequency of transition from pseudo­
failed to failed state is high (a high ~).

The worst case system failure probability with
intermittent faults, for the range of parameters
investigated, is about fifty times higher than that
due to hard failures (see Figure 17-13). The
critical frequencies, that is, the worst case a and
~, depend upon the recovery time. The faster the
recovery time, the higher these frequencies are.
For example, for a recovery time of 36 s, the
critical ~ is 104 per hour or about 3 Hz, while for

a recovery time of a one-quarter second, it is
about 30 Hz. Increasing the transition frequen­
cies beyond the critical levels does not further
deteriorate the reliability appreciably.

To extend these results to the FTMP com­
puter, a 49-state Markov model was developed.
This is basically an expanded version of the 14-
state hard failure model described in the subsec­
tion on Lack of Coverage. All the assumptions of
that model carry forward here. This model was
solved for the base-line parameter values shown
in Table 17-1. The FTMP reliability behavior
with respect to a and ~ was found to be in close
agreement with that of the TMR-hybrid system
qualitatively as well as quantitatively. As shown
in Figure 17-13, the FTMP curve is remarkably
close to the TMR curve with typical FTMP
failure and recovery rates.

Finally, it should be noted that some of the
high-frequency intermittent faults, which could
do the most damage, may actually look like hard
faults. A fault in a processor module, for exam­
ple, may cause that module to go out of synchro-

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 615

1.0 10 LRUs
11 LRUs

~ 10-1

:c
"' .J:J 10-2
i:
Q,

Q,/

.a 10-3

]
.c

10-4 \"I -;
Q,
III

0 10-5

10-6

1 10 100 500 1,000
Hours

Figure 17-14. Dispatch failure probability.

nism with the other two triad members, thereby
making its presence felt after it disappears.
Therefore, the overall impact of the intermittent
faults may not be as severe as suggested here.

Dispatch Reliability of the FTMP
Computer

Availability of equipment, in general, is an im­
portant concern in the commercial air transport
industry. Availability of avionics equipment, in
particular, is economically more important since
it tends to be at the heart of "Go/NoGo"
decisions. A central computer with digital "fly­
by-wire" authority certainly falls into this cate­
gory. It is imperative, therefore, that the dispatch
reliability of the FTMP computer be commensu­
rate with its high survival probability. A prelim­
inary estimate of the dispatch reliability is car­
ried out in this section.

Let the "dispatch minimum complement"
(DMC) denote the amount of equipment (pro­
cessors, memories, etc.) necessary to be opera­
tional before take-off for the computer to survive
through the flight with a given probability. Using
a trial-and-error approach with the combinato­
rial models of the section on exhaustion of

spares, the DMC for the baseline case was found
to be as follows:

Dispatch Minimum Complement:
Processors = 8
Memories = 6
Buses = 4
Power Supplies = 3

The question to be answered at this point is,
how long would it take an initially fully opera­
tional FTMP to degrade below the DMC and
thereby fail the dispatch criteria? The probability
of this event at time t, assuming no maintenance,
is shown as a functon of time in Figure 17-14. It
is seen from this figure that there is a 7 percent
chance that the computer will be below the
dispatch minimums if the maintenance is sched­
uled every 300 hours. The probability of requir­
ing unscheduled maintenance can be reduced to
just over two percent by carrying an extra LR U
or by shortening the maintenance interval to 200
hours. This would seem to satisfy the needs of
most airlines as far as the computer dispatch
reliability is concerned. Beyond this, however,
the dispatch reliability is bounded by the reli­
ability of main power supply units. That is, the
dispatch reliability can be improved only by

616 THE PRACTICE OF RELIABLE SYSTEM DESIGN

modifying the architecture to include five or
more main power supply units.

EXPERIMENTAL RESU L TS

In order to demonstrate and validate as many of
the design concepts as possible, a breadboard
multiprocessor was used to emulate many of the
design features of the proposed system. This
demonstration was of an integrated nature in
that the experimental setup duplicated much of
the information environment which a final prod­
uct of this nature might encounter, and was
therefore able to verify not only the separate
design pieces forming the whole, but was also
able to confirm predicted interactions between
disjoint pieces, and in some cases unearth unex­
pected interactions.

The basic experimental apparatus consisted of

Fault-tolerant
multi processor

emulation

a fault-tolerant multiprocessor, modeled along
the lines of the FTMP. The multiprocessor
served as the control computer for a Boeing 707
aircraft simulation on a hybrid computer. The
experimental fault-tolerant multiprocessor con­
sists of 14 National Semiconductor IMP-16-
based processor modules, seven common memo­
ry modules of 2K X 16 words, two I/O ports, and
ten I/O nodes. The processor modules include
lK RAM/IK ROM cache memory storage.
With the 14 processor modules it is possible to
operate up to 4 triads of processors simulta­
neously. With the seven RAM modules it is
possible to operate two memory triads. The
redundant data busing system is triply redun­
dant, and each attached module has two Bus
Guardian Units associated with it for protecting
the bus system. An I/O node remote from the
multiprocessor and local to the hybrid computer

Figure 17-15. Experimental simulation system.

FTMP-A HIGHLY RELIABLE MULTIPROCESSOR 617

Irovides AjD and OJ A interfacing to the simu­
lted aircraft as shown in Figure 17-15. Figure
7-16 is a photograph of the multiprocessor
mulation hardware.

:ault Diagnostic Capabilities

~ach processor module of the experimental sys­
em includes special circuitry for noting and
ecording disagreements among the three copies
)f each bus line. All other modules or receiving
:lements have only error masking circuits. The
:rror detection circuitry functions as expected.
v10st faults manifest themselves as bus errors,
md are therefore easily detected. Certain classes
)f latent faults are detected by diagnostic pro­
~rams which basically force bus errors if a latent

Figure 17-16. Multiprocessor emulation hardware.

fault exists. Records kept by diagnostic programs
and fault isolation procedures enable the loca­
tion of both transient and hard failures.

Most faults are detectable as one of a large
class of faults. For example, all processor failures
are detected at the bus without the aid of special
diagnostic code to test the processor or knowl­
edge of the fault mechanism. Some special atten­
tion to specific failure modes and effects was
required to devise latent fault detection pro­
grams. While code was not written for unearth­
ing all possible latent faults, sufficient latent
testing code was written so as to establish consid­
erable confidence in the method.

The bus isolation mechanism serves as intend­
ed and is able to isolate processor failures from
the bus system.

This integrated system's demonstration illus­
trates all significant aspects of the FTMP archi­
tecture. It demonstrates the hardware capability
to mask faulty unit outputs in the short run, and
the capability to detect the fault, isolate the unit,
and to reorganize so as to restore system health,
all concurrent with normal program activity.

Software Experience

The software for the demonstration consists
principally of executive or system software and
applications software. Executive or system soft­
ware was written and debugged by staff thor­
oughly familiar with the experimental hardware
and design objectives. The applications software
was provided by a team which was briefed only
in general terms as to the nature of fault recovery
mechanisms and the overall system architecture.
The applications software team ·was provided
with detailed explanations of the executive-to­
applications interfaces and executive services, as
well as a reasonably short list of programming
constraints.

Multiprocessor Executive

The multiprocessor executive provides a simple
task dispatch mechanism. Tasks awaiting their

618 THE PRACTICE OF RELIABLE SYSTEM DESIGN

time of execution are organized in a queue sorted
by scheduled start time. As processor triads
become free (having finished a previous task)
they consult this list and take the next scheduled
job. Jobs may be inserted into any relative
position of the time queue as long as it remains
properly sorted. Executive functions provide for
the routine iterative scheduling of the same job
step, as might be required for an autopilot itera­
tion, for example. Alternatively, any job, by a
call to the executive, can insert a job into the
time queue. The executive also handles the re­
moval of a job from the queue when it is taken
up for execution.

In addition to the time queue, the executive
handles an event queue. Jobs in the event queue
have their execution blocked waiting for a partic­
ular event to occur. When the event does occur,
the affected job is moved from the event queue
to the top of the time queue. Jobs can be inserted
into the event queue by any job, through a call
to the executive. Events can be signaled by the
executive or by another job through a call to the
executive.

The executive also provides interfaces for all
I/O traffic, common memory to/from cache data
transfers, real-time clock, and for other relatively
simple functions commonly thought of as execu­
tive-related.

Critical to the success of the demonstration
are the executive functions which provide for
automatic error logging and recovery. Executive
functions perform all common memory to/from
cache transfers, and all I/O. During these func­
tions any errors that might occur will become
visible. The executive handles the proper logging
of the error, schedules recovery action, and, via
voting, masks the error for the applications task
which was using the executive function. Thus, to
the applications task, error handling is com­
pletely invisible. Additionally, since hardware
monitoring is used, error checking, error mask­
ing, and majority voting do not impact the
applications execution speed.

The executive schedules error diagnostics, la-

tent test routines, and error recovery routines
using basically the same mechanisms used t(
schedule applications tasks. These executiv~

tasks, running concurrently with the application:
tasks, but in different processor triads, main tail
the system, repairing faults, searching out laten
failures, configuring processor triads and memo
ry triads, and starting and stopping triads a:
required. Thus in the background, behind th(
system application, continuous activity is in prog­
ress to maintain the integrity of the system
assuring faultless and error-free execution 01
applications of software.

An executive providing these functions wa~
written for the experimental test hardware. AI·
though it is not complete, in that only represen·
tative latent faults were tested, the executive doe~
provide the basic facilities for providing errOl
free execution of both executive and applicatiom
code. The software framework for latent tes1
procedures is fully developed although it is only
sparsely populated. Error detection and recover)
from all classes of faults is demonstrated in the
simulated environment without interfering with
the applications tasks.

Cache Memory Management

The experimental hardware and the proposed
future system both have a common memory
shared by all processor triads and private cache
memories which are part of the processor mod­
ules. Programs are executed exclusively out of a
processor's cache memory. Clearly, the burden
of program loading from common memory, pro­
gram overlaying, and other functions associated
with bringing sections of code from common
memory to the cache for execution could not be
placed on the applications coding.

In the experimental computer, a software
cache-memory management system was provid­
ed as part of the executive. At the subroutine call
interface, conventions were adopted that provid­
ed for the automatic loading of called routines.

FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 619

, last used, first out algorithm clears space in the
lche if unused space is not available. If a calling
)Utine is dropped from the cache to make room
>r loading of the called routine, it is reloaded by
le subroutine return interface.
The efficiency of this process of loading in­

:ructions into the cache before execution de­
ends a great deal on the number of times an
lstruction is executed each time it is brought
·om common memory. Each word brought from
ammon memory will take about 5/ls in the
TMP. Thus one triad executing 190K instruc­
ons per second could completely fill the bus
apacity. In the experimental system, it is found
lat the applications programs execute between
o and 40 instructions for every instruction
rought from common memory. If an overall
verage of 20 can be maintained in the proposed
ystem, a processor triad now projected to have
raw computing power of 200K instructions per
~cond would load the bus with 10K instruction
!tches per second. With reasonable allowances
lade for data transfers and queuing overheads,
lis suggests a maximum capacity of 4 or 5
rocessor triads before saturating the memory
'us.

:ONClUSION

:ritical Areas of the FTMP Design

~he following are areas where the FTMP has
equired, or will require, special care in concep­
ion, analysis, and/or design.

· The phase-locked redundant clock has presented
problems in latent fault exposure and in theoretical
validation. Both of these are believed to be solved.

· Mechanical and electrical design of bus guardians,
bus isolation gates, and the buses themselves, must
be done with care in order to prevent undesired
fault propagation. The engineering prototype de­
sign to achieve this is partially complete at this
writing.

· Cold start capability requires the default formation
of a triad or the equivalent. This has not yet been
designed.

4. Self-test programs must be virtually complete, in­
cluding perhaps attempts at finding pattern-sensi­
tive failures over a period of time that is large
compared to the basic test cycle. These programs
will operate by producing bus errors as results of
logic malfunctions. They do not need to diagnose
the nature of the fault.

5. Mechanisms must be provided in hardware and
software to screen or inhibit interferences caused
by a lower priority procedure from impinging on a
higher priority procedure. The opposite mayor
may not be possible.

6. Finally, validation must be made effective to a
higher degree than ever before. Although some
approaches are available, it remains to show how
effective they will be.

Summary

The FTMP is a complex multiprocessor com­
puter that employs a form of redundancy related
to TMR-Hybrid redundancy, denoted here as
Parallel-Hybrid redundancy, in which each ma­
jor module can substitute for any other module
of the same type. Despite the conceptual simpli­
city of the redundancy form, the implementation
has many intricacies owing partly to the low
target failure rate, and partly to the difficulty of
eliminating single-fault vulnerability.

An extensive analysis of the computer through
the use of such modeling techniques as Markov
processes and combinatorial mathematics shows
that for random hard faults the computer can
meet its requirements. It was also shown that the
maintenance scheduled at intervals of 200 hr or
more 'can be adequate most of the time. The
probability of requiring unscheduled mainte­
nance during this time interval can be reduced to
about 2 percent by carrying one or two spare
LRU's.

A study of intermittent faults revealed that the
longer a fault stays in a pseudofailed state the
worse is the system failure probability. Further­
more, high frequency faults also tend to affect
the system failure probability adversely. This
places an obvious burden upon the computer
design and production activities to limit the

620 THE PRACTICE OF RELIABLE SYSTEM DESIGN

intermittent failure arrivals and/or their duty
cycles and frequencies to values such that the
overall failure criterion can be met.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jean-Claude
Laprie of L.A.A.S., Toulouse, France, for his
verification of the numerical results for intermit­
tent faults. Dr. John M. Myers and Dr. Anatol

. Holt were responsible for an analytical valida­
tion of the phase-locked fault-tolerant clock.

REFERENCES

Alonso, Hopkins, and Thaler [1966, 1967]; Avifienis
[1975]; Bouricius et al. [1971]; Breuer [1973]; Daly,
Hopkins, and McKenna [1973]; Deckert et al. [1977];
Deyst and Hopkins [n.d.]; Hopkins [1970, 1971, 1977];
Hopkins and Smith [1975, 1977a, 1977b]; Lala and
Hopkins [1978]; Laprie[1975]; Mathur [1971a]; Mur­
ray, Hopkins, and Wensley [1977]; Smith [1975].

A Design Methodology for High Reliability
Systems: The Intel 432®

Daniel P. Siewiorek David Johnson

After the presentation of numerous techniques
and evaluation criteria, the question remains,
how can these techniques be applied to produce
a coherent, balanced system design? This chap­
ter attempts to answer that question by propos­
ing a top-down design methodology and illus­
trating its application in a detailed example, the
Intel 432.

A DESIGN METHODOLOGY FOR
A HIGH RELIABILITY SYSTEM

The methodology consists of eight steps:

I. Define system objectives.
2. Limit the scope.
3. Define the layers of fault handling.
4. Define reconfiguration and repair boundaries.
5. Design the fault-handling mechanisms.
6. Identify the hardcore.
7. Evaluate the design against the objectives.
8. Return to Step 3 and iterate the design if necessary.

Each of the first six steps is discussed in detail
in the following subsections.

Define System Objectives

As illustrated in Chapter 5, there are multiple
objectives in the design of computing systems: in
particular, cost, performance, and reliability.

Published courtesy Intel Corporation.

621

11$

622 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Performance
Cost / performance / reliabi I ity

product

I

Traditional point product

Reliability

Cost

Figure 18-1. The product evaluation space.

The first decision in the design of a new system
is whele in the cost/performance/reliability
space the system is to be positioned. Figure 18-1
depicts three generic system types in the evalua­
tion space. The first is the traditional point
product, which evaluates to a single cost/perfor­
mance/reliability number. The second is a family
of products that requires more resources (hence,
cost) to deliver more performance. Examples
include a computer family such as the IBM
System/360-System/370 or the DEC PDP-II. It
is nearly impossible to modify cost and perfor­
mance without altering reliability. Generally,
higher performance systems have lower reli­
ability because of the extra components. Anoth­
er technique for expanding the performance and
reliability range is to add resources in a modular
fashion. In the Tandem and Pluribus systems of
Chapters 11 and 13, for example, processors,
memory, and I/O can be replicated to enhance
performance. These resources can also be uti­
lized to enhance reliability (shadow computers in
the case of Tandem and spare processor/memo­
ry/switch components in the case of Pluribus).
Thus, there is a trend toward products that

occupy a volume in the evaluation space to
which resources can be added to enhance perfor­
mance or reliability or both.

Although the cost/performance design space is
relatively well understood, the reliability dimen­
sion is not. However, it is possible to evaluate
system reliability and fault-tolerant capabilities
by using such key measures as:

• System availability
• Fault coverage (completeness of-fault detection)
• Granularity of fault isolation
• Probability of system survival for a given period
• Extent of graceful degradation of service
• Range of applications covered by the design
• Division of fault-tolerant responsibilities among

hardware, system software, and application pro­
grams

The definition of system objectives imposes the
needs of the selected set of applications 'onto the
key fault-tolerant metrics.

It is extremely important to establish the sys­
tem objectives as early as possible. These objec­
tives help to limit the overwhelming number of
design alternatives by restricting the design

A DESIGN METHODOLOGY-THE INTEL 432 623

Typical error

Level
Typical error
sources

Typical error
detection technique

Typical error response time
recovery technique (sec.)

Application • Incorrect coding of algorithm • Reasonability checks • Job retry

I Consistency checks r
Incorrect design on data structures

Operating system .--------'=~----.• ---------- .Process retry

Alpha particles flip memory I I
state Memory protection violation •

Macrocode • ----------. • • Process retry

Microcode • Race condition .1 '''0' cod;ng I . • • Instruction retry

Environmentally produced I 1
transient Replication

Hardware .----------. .. .Bus cycle retry

Figure 18-2. Levels in a hypothetical system.

pace, and by providing the criteria for making
esign decisions. Without a well-defined set of
bjectives, the design process will fail to focus,
nd inconsistent design decisions may be made.

imit the Scope

n order to make intelligent design trade-offs, the
cope of the system objectives must be limited.
Jumerous environmental factors must be select­
d to refine the system objectives defined earlier.
'hese environmental assumptions will intensify
le focus of the design and limit the system
evelopment effort. Environmental factors in­
lude:

What is the maintenance strategy? Is field repair
possible? Is on-line repair required? What is accept­
able as a field replaceable unit (component, module,
subsystem)? What is the response time of the field
service people?
What parts of the system will the fault-tolerant
design encompass (central system, I/O devices, pow­
er)?
What are the relative failure rates for various parts
of the system?
What are the dominant failure modes in the system?
What types of failures will be considered? Single or
multiple concurrent faults? What is the ratio of

transient to permanent faults? What error sources
are considered (external environment, hardware,
software, operator)?

Define the Layers of Fault
Handling

Systems are composed of a hierarchy of levels.
Faults and errors may be generated at 'any of the
levels in the hierarchy. Indeed, mechanisms for
each of the ten stages in handling a fault (con­
finement, detection, masking, retry, diagnosis,
reconfiguration, recovery, restart, repair, and
reintegration) can be proposed at each level.
Figure 18-2 is an incomplete example of a hypo­
thetical system composed of five hierarchical
levels. Typical errors, typical techniques for the
detection and recovery stages of fault handling,
and typical error response times are also given. If
an error is not detected at the level in which it
originated, the detection of the error is left to
higher levels. Likewise, if the current level lacks
the capacity to recover from a particular detect­
ed error, appropriate information about the de­
tected error must be passed onto a higher level.

As an undetected error propagates up the
levels in the hierarchy, it affects an increasing

624 THE PRACTICE OF RELIABLE SYSTEM DESIGN

amount of system state and data structures.
Longer response times to an error mean that the
error manifestations have become more diverse.
The error recovery becomes more complex. If
left totally to software, error recovery routines
may easily become more complex than the appli­
cation software.

Error-detection techniques should be estab­
lished at the various boundaries to ensure that
the coverage holes from one level to the next do
not align. Figure 18-3 graphically depicts several
levels in a system, each with "holes" in its
coverage. The existence of holes represents
trade-offs between fault-tolerant design goals
such as speed of recovery and granularity of
fault isolation, and system constraints such as
cost and available technology. However, aware­
ness of the system's hierarchical structure allows
the design to handle all faults, some immediately

o

o

and others after reflection to higher levels of the
system.

When error correction is performed at the
lower levels, a straightforward combinational
recovery can be attempted. For example, the
state affected by the current level can be double
buffered, so that the prior state is released only
upon successful completion of the operation at
this level. If an error is detected, the buffered
prior state can be used to retry. The higher this
solution is applied in the system hierarchy, the
more state that has to be buffered and the longer
the time between checking for errors and the
greater the opportunity for the error to interact
with healthy activities, causing incorrect deci­
sions. The longer an error, and hence a physical
fault, goes undetected, the more data structures
in the system may be polluted.

The situation is even more critical in a multi-

o

o

0-

Errors

Figure 18-3. Interception of errors at multiple system levels due to imperfect coverage.

:>rocessor, where memory and data structures are
;hared by several concurrently executing pro­
~esses. Errors can be multiplied by nonfailed
~omponents that make incorrect decisions or
Initiate incorrect operations based on the errone­
)us information.

Define Reconfiguration and
Repair Boundaries

Next, conceptual and physical boundaries for
;!rror confinement and isolation must be speci­
fied. In order to produce a coherent design
;trategy, these boundaries must reflect the pre­
viously defined system objectives, such as modu­
larity and maintenance/repair strategies. Ideally,
boundaries drawn for each level in the hierarchy
:lefine nonoverlapping regions.

The percentage of faults detected is the single
most important factor in successful recovery. An
llndetected error usually results in incorrect in­
formation's crossing system boundaries and ulti­
mately to a system failure.

Once the confinement boundaries have been
;!stablished, the repair and reconfiguration
boundaries can be drawn. The repair and recon­
figuration regions are placed to maximize the
;!ffectiveness of the recovery procedures. Before
;!stablishing the repair and reconfiguration re­
gions it is important to review the general proce­
:lure for recovery.

The purpose of reconfiguration/recovery is to
return the system to an operational state. This
aew operational state should have as many of the
)riginal hardware resources available as possible,
:md the transition to this new state should have
minimal impact on normal system operation.
Figure 18-4 depicts the generalized reconfigura­
lion/recovery procedure employed at each level
. n the system hierarchy. After an error has been
ietected, the faulted operation is frozen (halted).
fhis guarantees that corrupted information can­
aot leave the faulty reconfiguration/repair re­
~ion. Next an attempt is made to reestablish the
;orrect operation of the hardware. If the fault is

A DESIGN METHODOLOGY-THE INTEL 432 625

Stop faulty operation

Attempl 10 ,e-e5lab1r co"ect ope,al;on

Rollback and re-try faulted operation

I
Successful? __ Ye_s ___ -.

1
No

Yes
'------- More alternatives?

I No

Lock damaged resources

Report situation to next higher level

Restart operation

Figure 18-4. Generalized recovery procedure.

transient, correct operation can resume after the
transient interference has subsided. If the fault is
permanent, it may be possible to resume opera­
tion by reconfiguring around the faulty reconfig­
uration/repair region. Next the faulted operation
is rolled back and the operation retried. The
correction phase of recovery ends when either
the operation has been successfully retried or
there are no more alternatives for correcting the
situation. If the faulted operation cannot be
completed, any shared resources damaged or left
in an inconsistent state are locked. Next the error
is reported by signaling the next higher level in
the hierarchy. The final step is restart. If recovery
was successful, control moves to the next opera­
tion. Otherwise control passes up to the next
higher level in the recovery hierarchy .

Typically, recovery takes one of two forms:
retry (good for transient error correction and
permanent failure detection) and standby-spar­
ing/graceful degradation. In the latter case, the
computation is moved to another part of the
system and restarted. Enough information must

626 THE PRACTICE OF RELIABLE SYSTEM DESIGN

be retained so that the restart can be executed
cleanly without interference from the side effects
of the partially completed first instantiation.

Design the Fault-Handling
Mechanisms

Now mechanisms can be designed for each of
the ten fault-handling stages at each of the
system levels. The previous steps in the design
methodology resulted in the definition of regions
for fault isolation and subsequent recovery. The
partitioning establishes the ideal recovery, recon­
figuration, and repair regions in the system. It
also describes the extent and the completeness of
detection and recovery mechanisms at each level
in the system. Hence, system partitioning will
provide the higher-level guidelines during the
design of the detection and recovery mecha­
nisms, ensuring that the fault-handling mecha­
nisms are applied in a unified manner in support
of the system objectives.

The mechanisms are aimed at containing er­
rors at the defined conceptual boundaries. Gen­
erally, smaller boundaries are more costly in
terms of hardware or time but allow for more
complete recovery. At the hardware levels the
goal is to effect recovery without software inter­
vention. At the software levels the goal is to
prevent incorrect data from passing across
boundaries.

Location and isolation of a failure can be
achieved by analyzing the state of the system
when the error was detected. The activity of the
error-associated components should be stopped
and their intermediate state frozen. A mecha­
nism should be provided to notify some other
components in the system of the stoppage. Some
nonaffected intelligence can examine the state
information, exercise the components, and ini­
tiate a recovery. Thus, at each conceptual
boundary the object should be controllable and
observable. If the fault cannot be resolved by the
existing state, a diagnostic sequence can be ini­
tiated.

Identify the Hardcore

At this point in the design process It IS very
important to evaluate the effectiveness of the
fault-tolerant mechanisms. This evaluation is
based on three checkpoints:

• Are all the fault-handling mechanisms in the system
exercised as part of normal operation?

• Do the detection mechanisms provide the desired
level of fault coverage?

• Are there any common-mode failures (single-point
dependencies) that undermine the detection and
recovery mechanisms?

Failures are detected only when an erroneous
piece of information is processed. If any portion
of the system is not exercised as a part of normal
operation, then latent faults may accumulate.
The presence of these latent faults may violate
the environmental assumptions (such as no con­
current multiple failures) made earlier in the
design process. Two areas of a system where
latent faults could occur are the detection and
recovery mechanisms, and memory locations
that are used only during software recovery. An
evaluation of the system fault coverage is impor­
tant because the detection and recovery circuits
that were just added to the design may not be
fault tolerant. Indeed, they may not be covered
by the fault-detection mechanisms or they may
have introduced common-mode failures. These
circuits may need to be self-checking or covered
by periodic testing.

THE IMPACT OF TECHNOLOGY

Ever since the introduction of integrated circuits
(ICs), their complexity has been doubling every
one to two years. With the advent of the fourth­
generation microprocessors in 1978 (typified by
the Intel 8086, Motorola 68000, and Zilog
Z8000), LSI technology offers, in a small number
of chips, capabilities that were reserved for
room-size mainframe computers a scant 15 years
before. VLSI technology provides the opportuni-

ty to devote hardware complexity to areas such
as increased functionality, modularity, and reli­
ability. Increased functionality can be achieved
by implementing traditional software and oper­
ating system functions directly in hardware. Due
to the exponential relationship between complex­
ity and chip development costs, the number of
chip types has to be kept small. Hardware com­
plexity can be added to allow an orderly, modu­
lar expansion of system capabilities. Modularity
also provides at least three cost advantages to the
system user. First, high-volume production de­
creases the cost per chip. Second, the system
capacity can be closely matched to the applica­
tion. And third, the system can grow at the pace
of the application demands-there is no need to
abandon previous hardware acquisitions in order
to increase capacity. Another opportunity is to
devote hardware to error detection and recovery.
[n fact, the commercial marketplace is becoming
increasingly concerned with system reliability.
This concern is manifested by the large market
demand for special chips (such as for CRC
checks) and systems (such as Tandem) that offer
~nhanced reliability.

THE INTEL 432 DETECTION
MECHANISMS

The Intel 432 system is used to illustrate the
design methodology outlined above. After briefly
discussing the first three steps (define system
objectives, limit the scope, and define layers of
Fault handling) we will examine in detail the next
three steps (define reconfiguration and repair
boundaries, design the fault-handling mecha­
nisms, and identify the hardcore) for the lowest
Fault-handling layer in the system hierarchy.

Define System Objectives

One of the primary objectives for the 432 Micro­
mainframe ™ system was to match the expand­
ing needs of fault-tolerant applications with the

A DESIGN METHODOLOGY-THE INTEL 432 627

increasing capabilities of VLSI technology. Spe­
cifically, the Intel 432 detection mechanisms
have the following objectives.

• Provide comprehensive and complete fault coverage
• Provide error confinement and isolation to small

logic blocks
• Represent a modular option to the basic 432 system

functionality

Limit the Scope

The objectives were further refined by three
environmental assumptions. First, it is assumed
that all fault occurrences are independent, and
that two or more faults will not occur simulta­
neously; however, it will be possible for a second
fault to occur while a latent fault is present in the
system. Second, the design assumes that tran­
sients will be the dominant type of fault occur­
rence (see Chapter 2). The third assumption is
that the field environment will allow access to
the system for repair. Although this is not a very
restrictive assumption, it serves to focus atten­
tion on repairable systems rather than on sys­
tems that must remain operational until every
resource in the system has been exhausted.

From this set of objectives and environmental
assumptions two design decisions were made.

• The propagation of errors between levels should be
minimized.

• The detection and recovery mechanisms must ad­
dress every level of the system.

The propagation of errors needs to be mini­
mized to prevent information overload at higher
levels in the system structure. If all failures are
allowed to propagate to the top, the system loses
its ability to react to the fault conditions. The
complexity of the response to diverse failure
manifestations at higher system levels may make
implementation impossible, force a reduction in
the completeness of fault coverage, or force a
reduction in the generality of operation.

Placing detection and recovery at every level

628 THE PRACTICE OF RELIABLE SYSTEM DESIGN

of the system makes possible a more general and
complete solution to the problems of handling
system failures. This approach divides the re­
sponsibilities of fault tolerance, allowing faster,
simpler, and more general solutions to fault
detection and recovery. Each level need address
only the set of faults that can be generated by
that level. By controlling and reducing the num­
ber of errors propagated to the next level, paral­
lel and independent development may proceed
on different levels (hardware, system software,
applications). The designers at one lever can
assume that lower levels will always provide
consistent and correct operation.

Define Layers of Fault Handling

The goal of the 432 detection mechanisms is to
prevent any hardware errors from propagating
into higher levels of the system. Figure 18-5
shows the levels defined in the system hierarchy.
The hardware is divided into two levels: memory
array modules, and hardware system. At the
module level, detection is provided for the RAM
arrays inside memory modules. This isolates
RAM failures from other types of failures (con­
troller, bus drivers, and the like) in the memory
module. All other internal errors are allowed to
propagate to the next level. At the hardware
system level (modules and their interconnection),
comprehensive detection is present and the goal
is to prevent any errors from propagating up into
the software system. These detection mecha­
nisms isolate the errors to a single module or a
single section of the interconnect system.

Define Reconfiguration and
Repair Boundaries

Two major principles guide the design of 432
detection mechanisms.

• The arrangement of the detection mechanisms to
form confinement areas .

• The effective use of VLSI technology.

Application software

Operating system software

Hardware system

Memory array modules

Figure 18-5. Hierarchy of levels in the Intel 432.

The purpose of a confinement area is to limi1
damage by error propagation and to localize the
faulty area for recovery and repair. A confine·
ment area is defined as a module of the system
that has a limited number of tightly controlled
interfaces. Detection mechanisms are placed a1
every interface to ensure that no inconsisten1
data can leave the area and corrupt other con·
finement areas.

Confinement areas form a conceptual frame·
work for the systematic and coherent placemen1
and definition of the detection mechanisms a1
each system level. The confinement areas alsc
provide a conceptual view of the system under
fault conditions. This clarifies the external (soft­
ware) view of the hardware and eliminates the
need for diagnostic probing as a method of faul1
isolation.

The second principle is the effective use of
VLSI technology. The cornerstone of this princi­
ple is that VLSI replication will be used to
achieve the functionality required to implemen1
the 432 mechanisms. Replication is used because
it allows a wide range of products to be buill
from a small set of chip types. The same
components provide modular expansion of per­
formance, memory storage, and detection capa­
bilities. This approach allows high-volume pro­
duction for each of the components in the set.

An overview of the Intel 432 architecture will
help to illustrate how the system responds to the
remaining steps in the design methodology. We
omit the numerous synthesis evaluation cycles
inherent in any design process and present only
the final system.

Packet bus

ey: GOP = Generalized Data Processor
IP = Interface Processor
BIU = Bus Interface Unit
MCU = Memory Control Unit

igure 18-6. Basic Intel 432 hardware organiza­
on.

Figure 18-6 shows the basic hardware organi­
ation of the 432. The central system is com­
losed of three different module types: an Inter­
ace Processo~ (IP), a Generalized Data
»rocessor (GOP), and a memory. These modules
re connected via a Packet Bus. The GOP is the
entral processing unit in the machine. It pro­
ides the basic computation power of the 432
rith a capability-based logical addressing struc­
LIre to provide a secure software run-time envi­
anment. For a complete description of the pro­
essor architecture see Intel [1981]. The GOP
lodule is composed of the processor and an
lterface (that is a Bus Interface Unit) between
h.e local processor bus and the system-wide
lacket Bus. The IP module provides an interface
'etween an independent I/O system and the
entral 432 system. The IP is responsible for
lanaging all I/O traffic and providing a pro­
!cted, capability-based interface into the central
ystem. The IP module contains the processor,
le interface to the I/O system, and the interface
etween the local processor bus and the system­
ride Packet Bus. The memory module provides
antrol of a dynamic RAM memory array and
n interface to the Packet Bus.

A DESIGN METHODOLOGY-THE INTEL 432 629

The Packet Bus provides a high-speed central
system communications channel. The bus is a
message based, multiprocessor bus, composed of
16 data, 3 control, and 3 arbitration lines. The
bus supports not only processor-to-memory
transfers but also transfers directly between
modules (that is, processor to processor). The
Packet Bus is the only intermodule communica­
tions channel. There are no interrupts or any
other independent signals between modules.

The system is composed of five VLSI chip
types, plus a minimum of TTL support logic for
electrical buffering.

• The GDP is a two-chip processing unit.
• The IP is a single-chip processor.
• The bus interface unit (BIU) is a single chip that

provides an interface between the local processor
bus, which is internal to a processor module, and the
packet bus, which provides system wide communica­
tion.

• The memory control unit (MeU) is a VLSI chip that
manages the dynamic RAM array and provides an
interface between the memory and the packet bus.

Figure 18-7 illustrates how a 432 system can
be expanded to provide increasing processing
and I/O power as well as increased memory
space and communication bandwidth. This ex­
pansion is achieved solely through VLSI replica­
tion and is totally transparent to the software
system. The multiple processors manage them­
selves by a cooperative hardware dispatching
mechanism that provides transparent multipro­
cessing capabilities. The BIU and MeU provide
interleaving and distributed control functions
that act to balance the bus and memory loading
without any software interaction.

Figure 18-8 shows the four types of confine­
ment areas in a 432 system. There is a confine­
ment area for each module type and for the
Packet Bus. These confinement areas were cho­
sen because they match the basic units of system
expansion. When a module has its confinement
mechanisms activated, it can be viewed as a self­
checking module. The operation of a self-check­
ing module is designed so that no inconsistent

630 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Figure 13-7. Expanded Intel 432 configuration.

data will be allowed to leave the module and
corrupt another confinement area.

Design the Fault-Handling
Mechanisms

The Intel 432's fault-handling mechanisms at all
levels in the system hierarchy are beyond the
scope of this book. We will focus on the confine­
ment, detection, and isolation/reporting mecha­
nisms at the two hardware levels (memory array
modules and hardware system).

The detection mechanisms are separated into
four distinct groups based on the type of opera­
tion they are designed to cover.

Transfer of Information

Information flow in the system is covered by two
separate detection mechanisms: A two-bit odd/
even interlaced parity scheme is used on the
packet bus. This mechanism detects all single-bit
errors, all double-bit errors on adjacent lines, an
all-zero bus, and certain other combinations of
multiple-bit errors (see Chapter 3). Duplication
of signal paths (two physical signal lines for each
logical signal) is used to detect errors in bus

arbitration lines. Duplication will detect any
failure along a signal path.

Storage of Information

A Hamming code is used to detect and correct
errors within the memory array. Seven check bits
are appended to the four-byte storage array
word. These check bits are computed from the
data to be stored and the address of the storage
location. Including the address bits in the ECC
prevents inadvertent aliasing of one address for
another. That is, even though two different mem­
ory locations contain the same data, the ECC
bits will be different. This coding technique
provides detection for all single, double, and
multiple odd-bit errors either in the address sent
to the array or in the data stored in the array; it
also provides error correction for all single-bit
errors in the data stored in the array.

Transformation of Information

Whenever data undergoes transformation in the
432 system, error detection is available by com­
plete duplication of all circuitry. Additional cir­
cuitry (also duplicated) is used to compare the

A DESIGN METHODOLOGY-THE INTEL 432 631

----,
I
I r------ I

i Packet bus # 1 I ~ ___ J

Figure 18-3. Multiprocessor configuration of the Intel 432 illustrating confinement areas.

results of the two operations. This detection
mechanism (the comparison logic) is implement­
;!d totally in VLSI and is called Functional
Redundancy Checking (FRC).

As discussed in Chapter 3, there are several
:tdvantages to duplication and matching, includ­
mg:

, Systems that do not need high reliability are not
penalized by the extra cost of error-detection mech­
anisms.

, Systems that evolve to higher reliability require­
ments can be upgraded without massive conceptual
redesign.

, Fault detection coverage is very high.
, The number of VLSI component types does not

increase.

To provide FRC, the hardware is divided into
,locks of functionality that may include any
lumber of components and interconnections.
Each block is then duplicated and equipped with
:omparison logic in the VLSI component at 'the
,lock's external interfaces. One of the pair is
;elected as the Master; the other functions as the
::::hecker. The Master logic block is responsible
~or carrying out the normal operation of the
)lock. The Checker disables its outputs and
nstead monitors the outputs of its Master. The

Checker is responsible for duplicating the opera­
tion of the Master and for using its comparison
circuitry to detect any inconsistency between the
two blocks. Figure 18-9 shows the general appli­
cation of FRC to form a self-checking block of
logic. Figure 18-10 provides a basic schema tic
for the FRC circuits. These circuits are all lo­
cated inside the VLSI components.

This detection method detects any operational
error occurring in either the Master or Checker
blocks of functionality. The only circuitry that
must be relied upon in the event of a failure is
the comparison and fault reporting circuitry of
the Checker. This circuitry is periodically tested
to detect any latent faults that may reside in the
detection or reporting logic (see the section be­
low on Identify the Hardcore).

Protocols

There are two timeouts in the system to protect
against errors in the bus protocols. One timeout
is used for the local processor bus protocol; the
other is used for the Packet Bus protocol. The
BIU and MCU components continually monitor
for incorrectly formed bus cycles. All requests

632 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Master Checker

Enable driver Disable driver

Output from self-checking
module

Figure 18-9. Functional redundancy checking.

-must eventually be followed by the paired reply.
If a set number of the bus time slots pass without
the paired reply appearing, each BIU and MCU
times out. The detection of any error in the
system is reported via a network of error report­
ing lines.

These error-detection mechanisms are used to
implement the previously defined confinement
areas. The GDP confinement area, shown in
Figure 18-11, consists of the GDP components,
the local processor bus, the BIU components
(except the Packet Bus arbitration logic), and
any miscellaneous components used to support
the GDP. FRC is the only detection mechanism
used in this confinement area. The FRC detec­
tion is applied at the points where the module
interfaces with the Packet Buses.

The IP confinement area, shown in Figure
18-12, contains the IP component, the local
processor bus, the BIU components (except the
Packet Bus arbitration logic), any miscellaneous
components used to support the IP, and some of
the support components in the interface between
the IP and the I/O system. FRC is applied at the
module interfaces to the Packet Buses and at the
interface to the I/O subsystem.

The memory module confinement area, shown
in Figure 18-13, covers the MCU component, the
RAM components, the storage array bus, and
the support logic between the MCU and the

RAM array. The memory confinement area is
covered by two independent detection mecha­
nisms. An ECC code provides coverage for fail­
ures in the RAM chips, the address lines, and the
buffers/latches between the MCU and the array.
The TTL circuits are covered only for faults that
manifest themselves as a single- or double-bit
data or address failure. FRC is applied at both
the Packet Bus interface and the storage array
interface to the MCU. This FRC detection com­
pletely covers the operation of the MCU (includ­
ing array control signals). The MCU provides
further array protection by implementing all
write requests as a read-modify-write sequence.
When this approach is combined with the ECC
coverage of the address lines, it is assured that
data will never be written into an incorrect
memory location. The MCU performs the fol­
lowing sequence in response to a write request.

1. Generate array address.
2. Read data and ECC.
3. Check ECC for correct address and valid data.
4. Generate ECC check bits for new data.
5. Write the data into the array.

Figure 18-14 shows the packet bus confine­
ment area. This confinement area covers the
Packet Bus data, control" and arbitration lines,
the TTL buffering at each node along the bus,
and the arbitration logic inside the BIUs and

A DESIGN METHODOLOGY-THE INTEL 432 633

Logic included in each VLSI component
--------------------------l

FRC error
FRC test

Parity-------t

Tristate
enable

Reporting Error I
and reporting I

logging lines I
Timeout ------=.--L ____ J+---~

I __________________________ J

Figure 1S-10. Details for FRC circuitry.

1CUs. The two-bit interleaved parity scheme is
sed to provide fault coverage for the data and
ontrollines plus their associated TTL buffers.
:very node on the bus checks for correct' parity
n every bus cycle. This guarantees that parity
rrors during address transmission cycles will
till be detected.
The three arbitration lines and their associated

TL buffers are covered by duplication. There is
ne arbitration network for. Master modules,
nother network for Checker modules. The Mas­
~r modules drive both sets of lines (allowing
'RC checking), but the master and checker
~nse the arbitration results independently. A
tilure in the arbitration network is detected by
n FRC error in the node's use of the arbitration
nes during the next arbitration cycle.
Figure 18-15 pictures a multiprocessor 432

y'stem with resources dedicated to providing
mIt detection. A comparison of Figures 18-7
nd 18-15 shows the flexibility of the 432 expan­
.on. The replication of VLSI can be used to

increase performance, or fault-tolerant capabili­
ties, or both.

Identify the Hardcore

The detection mechanisms described above pro­
vide fault coverage in the 432 central system.
However, this coverage applies only to informa­
tion being processed or to resources being used
as a part of normal operation. Latent faults are
faults that exist in those parts of the system that
are not exercised in the course of normal opera­
tion. As long as part of the system remains
dormant, a fault will have no opportunity to
generate errors in the system. However, if a
second fault occurs, the dormant part of the
system may be activated (as part of recovery
operation, for instance), causing the system to
face a double-error condition. Thus, latent fault
detection is desirable for all parts of the system
not exercised during normal operation. The 432

634 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Master) Checker

FRC interface

Figure 18-11. GDP confinement area.

Packet
buses

system exposes latent faults by periodically exer­
cising the parts of the system not used. during
normal system operation. Once a latent fault has
been exposed, it is handled by the normal fault­
handling mechanisms.

Two obvious areas of the machine where
latent faults can occur are the detection mecha­
nisms used in establishing the confinement areas,
and memory locations not accessed during nor­
mal operation.

The system software is responsible for period­
ically exercising the detection mechanisms in the
BIUs and MCUs. The FRC, parity, and ECC
detection circuits can all be exercised via special
commands available to the software. The FRC
and parity circuits are exercised by a command
that forces an internal disagreement at each
FRC comparator input and in the two Packet
Bus parity bits. The outputs from each FRC
comparator and the two parity trees are checked
to confirm that they are operating correctly.
With different values placed in a test register, the
complete parity tree and FRC circuits can be
checked. This test of the detection circuits is
done completely internally; no corrupt informa­
tion propagates outside of the tested component.

The ECC circuits are checked by a second
command, which allows software to write bad
check bits into an ECC field. After writing in a
bad check field, the periodic correction of every

I
Master I Checker

41RC interface

Figure 18-12. IP confinement area.

Packet
buses

memory location (the scrubbing mechanism dis·
cussed below) by the MCU will automaticall)
exercise the ECC logic when it accesses tha
memory location.

The. mechanism for periodically accessing al
memory locations is called scrubbing. Scrubbin~
is tied in with the refresh mechanism to perfonT
the function totally within the MCU without an)
additional performance degradation or softwan
intervention. The MCU reads one location duro
ing every refresh access. The read data an
checked and correctly re-stored in the array vi2
the ECC mechanism. This guarantees access tc
every location approximately once every second
In this way, scrubbing virtually eliminates the;
probability of an access's encountering a wore
with a double-bit failure.

THE INTEL 432 ERROR
ISOLATION AND REPORTING
MECHANISMS

Error isolation is achieved by capturing all rele·
vant information about the error and then reo

RAM array

Data ECC

Packet bus

Master I Checker

L.~c interface

Figure 18-13. Memory confinement area.

)orting the error information to all other mod­
des in the system. This reporting procedure
solates the error to a single confinement area,
tIl owing recovery to proceed without any diag­
lostic probing of the system. In addition to their
lormal data paths, all of the local processor
Juses and the system-wide Packet Buses have an
ldditional signal for transmitting error report
nessages. The component detecting the error
)foadcasts an error report message to the other
nodules of the system over this network of error
~eporting lines.

A DESIGN METHODOLOGY-THE INTEL 432 635

... __ } Duplicate
arbitration

---fo---<l>--4>-----------+_ ..• - networks

Data and
---<l>-------------+_ ••• -- control, plus

parity

Figure 18-14. Packet bus confinement area.

The error report message has two fields: the
first specifies the type of error detected, and the
second identifies the location at which the error
was detected. The type field assigns the fault to
one of 16 possible classes. The location field
uniquely identifies the BIU or MCU that detect­
ed the error by providing the packet bus ID and
the module ID of the component that detected
the error. A single-parity bit appended to the end
of the message provides error detection in the
error reporting mechanism.

Upon receiving the error report, each BIU and
MCU independently determines whether the re-,
ported error is transient or permanent. An error
is considered permanent if the same error is
reported twice within a software-specified time

Figure 18-15. Multiprocessor system with detection.

636 THE PRACTICE OF RELIABLE SYSTEM DESIGN

Error Type: 5 bits

Permanent/transient: 1 bit

Error Class: 4 bits

• Report line parity error
• Unsafe module
• Module error
• Packet bus error
• Uncorrectable ECC error
• Correctable ECC error
• Module! bus error
• Successful error detection test
• 8 classes reserved

Error Location: 9 bits

Packet bus 10: 3 bits (0-7)

Module ID: 6 bits (0-62)

Figure 18-16. Error log content.

window. The error report message is recorded in
the error report logs of each BIU and MCU
component, where is it accessible to the software
system. Figure 18-16 shows the organization of
the error report log.

Consider an example in which an Meu on
Packet Bus 0 in Figure 18-8 detects an ECC
error. The MCU serially broadcasts an error
report message on the Bus 0 error report lines.
The error message is received by all BIUs and
MCUs on Bus o. The BIUs on Packet Bus 0
subsequently propagate the information to all
BIUs by asserting their processor bus error line
and serially broadcasting the information to the
other BIUs in the processor module. Finally, the
BIUs on Packet Bus 1 assert the Bus 1 error line
and broadcast the error information to the
MCUs on Bus 1. Thus, in three cycles all error
registers hold identical information about the
error.

If the error is permanent and uncorrectable,
the MCU enters Register-Access-Only mode. In
this mode, the error and status registers can be
read for diagnosis and reconfiguration purposes,

but potentially corrupted data in the memory
array cannot be propagated by good processors.
Thus, the MCU is frozen and the system is
notified.

The error-detection and reporting mechanisms
of the Intel 432 allow it to meet the objectives of
excellent fault coverage and fine-grain fault iso­
lation via modular expansion of the 432 func­
tionality. By using VLSI replication to achieve
modular growth in processing and interconnec­
tion power as well as fault-tolerant functionality,
the Intel 432 addresses a wide region in the cost/
performance/reliability design space. Although
these error-detection and reporting mechanisms
may be costly to implement in conventional
logic, the advent of VLSI minimizes the cost of
the fault-tolerant functionality.

SUMMARY

The trend in applications is toward an expanding
and diversifying set of fault-tolerant needs. The
systematic methodology introduced in this chap­
ter provides a method for future designers to
meet the expanding needs for fault tolerance in
systems with increasingly complex applications.
This design strategy provides a top-down meth­
odology for combining the numerous techniques
described in earlier chapters into a balanced and
unified system design. The benefits of applying
VLSI technology and a structured methodology
to the design of fault-tolerant systems are illus­
trated by the detailed description of the Intel
432. The authors hope that this book will inspire
system and chip designers to incorporate reli­
ability features in their next product.

REFERENCE

Intel [1981]

Appendixes

Coding for Error Control

). T. Tang R. T. Chien

'bstract

rutorially presented are theoretical and practical con­
'epts that underlie error-control coding for data comput­
ng, storage, and transmission systems.

Emphasis is on cyclic codes, the most deeply studied
rnd widely used of the many available codes. Operations
if typical binary shift registers illustrate the encoding and
(ecoding processes.

Strategic considerations for applying coding to com­
mter-communication systems are discussed. Actual ap­
,lications further exemplify the basis for code selection.

Error rates associated with current digital sys­
:ems are usually extremely low in spite of the
ncreasingly high speed of processing and trans­
nission. Recent developments in error-correct­
ng codes have contributed toward achieving the
ligh reliability required by today's digital sys­
:ems, and it is evident that the use of coding
nethods for error control has become an integral
:>art in the design of modern computers and
:;ommunications systems.

This paper is intended as an introduction to
:he theory and applications of error-control
:;odes, involving both error detection and error
:;orrection. The first two parts of this paper are
:;oncerned with fundamental definitions in cod­
mg and digital data channels. In the following
;;ections, concepts of errors, code structures for
~rror control, and some general properties of
;;hift-register circuits are introduced. Methods of
mplementing encoders and decoders as well as
the functional classes of error-control codes are
also described. The last two sections deal with
coding strategy and applications of error-control

Reprinted by permission from IBM Systems Journal, Vol. 8,
No.1, 1969, pp. 48-86. @ 1969 by International Business Ma­
;:hines Corporation.

639

640 APPENDIX A

schemes in existing data-transmission and stor­
age systems.

BASIC DEFINITIONS

Coding is the representation of information (sig­
nals, numbers, messages, etc.) by code symbols
or sequences of code symbols (often called code
words). The set of code words and their mapping,
which determines the set, characterize a code.
Information is said to be placed into code form
by encoding and extracted from code form by
decoding. Certain codes may have a larger aver­
age code length than others. Such codes are said
to contain "redundancy," which can be used to
advantage for error control.

Redundancy

The development of redundancy schemes, in the
form of coding suitable for modern digital sys­
tems, took place after the inspiration of Shan­
non's basic theorem in 1948 [Shannon, 1948].
Among other things, Shannon showed that even
in a noisy channel, errors in data transmission
can be reduced to any desired level if a certain
minimum percentage of redundancy is main­
tained by means of proper encoding and decod­
ing of the data. Although Shannon's theorem
does not suggest any procedure for constructing
such codes, the work of Golay [1949], Hamming
[1950], Slepian [1956], Prange [1957], and many
others has contributed a whole body of new
knowledge-coding theory [Peterson, 1961 ;
Lucky, Salz, and Weldon, 1968]. Mathematical
structures have been used to construct codes
with various types of error control, and these
structures provide means of analysis as well as
sophisticated encoding and decoding proce­
dures.

Source Codes

Since encoding i~ no more than the digital repre­
sentation of information, a code does not neces­
sarily have error-control capability. Source codes,
for example, are designed to represent informa-

tion with sequences of code symbols in the most
efficient way, i.e., using the smallest possible
number of code symbols on the average [Huff­
man, 1952]. Therefore, source codes usually con­
tain negligible redundancy and should not be
confused with the error-control channel codes
used under noisy situations. Typically, a source
code is first used to represent the output of an
information source. Then an error-control cod­
ing scheme is implemented to cope with the
noisy condition in which the resulting code se­
quence is to be transmitted or stored.

Block Codes

An important class of error-control codes is that
of block codes. A block code consists of "code
words," which are sequences of code symbols of
fixed length n, often referred to as n-tuples or n­
vectors. In most cases, the information sequence
to be encoded contains k digits, which are en­
coded as an n-tuple code word. The redundancy
(normalized) is (n - k)/n, or r/n, where r = n -
k. Such a block code is often denoted as an (n,k)
code.

Binary Codes

Because of their applications in digital data
transmission, storage, and processing systems,
binary codes are by far the most important codes
used. The simplicity of the binary representation
of information lends itself conveniently to math­
ematical treatments, and as a result, we now
know much more about binary codes than
others. We deal almost exclusively with binary
codes in this paper. Although familiarity with
basic matrix operations is assumed, other con­
cepts of modern algebra are described as they
are used.

ERRORS IN DIGITAL DATA
CHANNELS

Transmission and Storage

The transmission and storage of digital data
have much in common. They both accomplish

h.e transfer of digital data from a source to a
.estination. For transmission, the source and
lestination are mainly separated in space, and
or storage, they are mainly separated in time.
~ransmitting lunar photographs from a distant
atellite back to earth, transferring data from one
omputer component to another only inches
way, and writing and reading data on magnetic
ape can all be described by the same general
.rocess consisting of the steps shown in the
.lock diagram in Figure A-I.

iource Encoding

fhe purpose of the source encoder is to produce
he best digital representation of data originating
It the information source. Source encoding often
'equires redundancy removal. When the infor­
nation at the source is in analog form, the.
luantization of analog signals must also be per­
'ormed. This part of the system is normally
ndependent of the channel characteristics or
loise statistics. After the error-control encoder
:or channel encoder) adds the appropriate
l.mount of redundancy, the modulator then
:ransforms the digital code symbols into physical
;ignals, such as voltage waveforms, ready for

Digital. data source

I
Information Source I

........... -+-source encoder I

r------ - ------ - - -..,
I I
I
I
I
I
I I

I I
L_ ______________ --1

Dig
r­
I
I
I
I
I
I

ital data destination
-_._--- - -- -------,

I
I

Information Source I - H-destination decoder I
I

I I L ______________ ~~

CODING FOR ERROR CONTROL 641

transmission or storage via the noisy channel. On
the other end of the channel, the exact reversal
of the above procedure is performed in comple­
mentary steps.

Modulation and Demodulation

Both the modulator and demodulator must be
considered as parts of the digital data channel,
since an error-control code can only protect
against errors corresponding to the wrong iden­
tifications of digital symbols. Modulation and
demodulation techniques designed to produce
the fewest possible errors are usually analog in
nature.

Although the analyses of modulation-demodu­
lation techniques are basically communications
problems, which are not discussed in this paper,
several related facts are mentioned here. In order
to demodulate properly, the demodulation must
be able to establish the synchronization of re­
ceived signals so that the detection of a digital
symbol is based on the proper portion of the
detected waveform. Any small change in detec­
tion threshold level or sampling delay would,
strictly speaking, result in a different digital data
channel. However, we may assume that the

Error
control
encoder

Noise

'Error
control
decoder

Channel
r------- -----l
I I
I

~ Modulator I--

I
I
I
I
I
I
I Transmission __ .1.. ______ or storage
I medium
I
I
I
I
I
I

7- Demodulator f--

I
I

I
I
I
I
I
I
I

L ______________ ~

Figure A-l. Generalized data transmission or storage system.

642 APPENDIX A

system parameters do not change greatly during
a typical operating period. All temporary effects
of changes can be regarded as noise afld includ­
ed in the error statistics. In the final analysis, the
error statistics of the demodulated signals char­
acterize the digital data channel.

ERROR SOURCES

Error Statistics

The distribution of error statistics depends heav­
ily on the following sources of errors:

• Modulator and demodulator circuit noise is predomi­
nantly thermal in origin and results mostly in uncor­
related errors.

• Physical disturbances in terminal components include
changing air gap and changing surface velocity in
magnetic surface recording. Errors caused by physi­
cal disturbances are highly correlated and tend to
cluster in bursts.

• Physical disturbances in transmission or storage media
are usually sources of bust errors.

The first two error sources are self-explanato:­
ry, but there are many causes of transmission
and storage disturbances. The most common
cause of errors in telephone lines, for example, is
switching-impulse noise. The duration of such
impulses is in the order of milliseconds, resulting
in short error bursts. For microwave and radio
links, typical fading or dropouts may last from
milliseconds to seconds or even to minutes. The
resulting bursts thus tend to be much longer than
those caused by switching impulses, and they are
often difficult to control by codes, unless ex­
tremely long blocks are used.

Storage

In storage media, such as magnetic tapes, surface
defects include loss of oxide, scratches, dirt
particles, and wrinkles. The effect of such dis­
turbances can accumulate until a tape is no
longer usable. Many of these defects are also
common to magnetic disks or drums. These
defects typically assume sizes up to several mils,

resulting again in short bursts of errors. Core
storage arrays usually remain reliable after they
are tested, although breakage or other accidental
defects may later cause independent errors. Ge­
nerally speaking, burst errors are much more
likely to be caused by physical disturbances.
Background noises do exist, but become signifi­
cant only in special cases such as space commu­
nications.

Channel Models

A digital data channel is characterized by the
error statistics associated with the input and
output alphabets of the channel. Therefore, it is
often desirable to represent the error statistics in
terms of a certain simple mathematical model.
List all the conditional probabilities of receiving
the symbols in the output alphabet, for all possi­
ble transmitted symbols in the input alphabet. If
these probabilities are independent of the loca­
tions of symbols, then we have a model com­
pletely characterizing a digital memoryless
channel [Shannon, 1948]. In such a channel,
probabilities of erroneous symbols are indepen­
dent of the neighboring transmitted or received
sequences of symbols.

When most errors tend to cluster, the channel
is no longer a memoryless one. A memoryless
model can at best be considered as an approxi­
mation of the real channel. If the clustering of
errors is independent of the transmitted symbols,
a Markov model is the appropriate one. Such a
model consists of states identified by one or
more preceding symbols from the "error se­
quence" (the difference between the transmitted
and received sequences).

When error bursts are not necessarily solid, or
when bursts themselves tend to cluster, such as
in a fading channel, one must either go to
Markov models of higher orders or use a differ­
ent model, such as one in which the probability
distribution of the number of digits between
errors is described by a certain simple function
[Berger and Mandelbrot, 1963].

\ttATHEMATICAL STRUCTURES
N CODING

;ome basic concepts of code structure and re­
luirements of error-control are now discussed.
We choose a subset from the set of all n-tuples to
~orm a code set. This code set has some error­
;ontrol capability, since the receiver can detect
:he occurrence of an error when the received n­
tuple is not in the chosen code set. For errors to
:>e corrected, we must also have a decoding
:>rocedure that determines the supposedly trans­
mitted code word when an unacceptable n-tuple
IS received. This can be done by a table lookup
procedure at the receiving end.

A mathematical treatment of the encoding­
jecoding process is needed to (1) select a set of
'1-tuple code words with a specified error-control
capability, and (2) build a structure so that the
code set can be decoded systematically without
table lookup (which is clearly impractical for
large code sets). Such structures yield properties
of code sets that facilitate analysis and simplifi­
cation of the encoding-decoding procedure.

Linear Separable Codes

It is desirable to divide a code word into an
information part and a redundant checking part.
A code with this feature is a separable code. In
the case of the linear separable codes, each of the
check symbols is a certain linear combination of
the information symbols. For example, a binary
information 4-tuple (i\, i2 , i3 , i4) can be coded as
a binary 7-tuple with three binary check symbols
(c\ 'C2' c3)' Here, a 7-tuple code word may take
the general form (i\ , i2, i3, i4, c\ ' c2' c3), with

c\ = i\ + i2 + i3, c2 = i2 + i3 + i4,

c3 == i\ + i2 + i4

where additions are binary operations. * The

• The addition (+) and the multiplication (.) in a binary field
are defined by the following equations: 0 + 0 = 0, 0 + I
= I + 0 = 1, 1 + 1 = 0, O· 0 = 0 . 1 = 1 . 0 = 0, and
1 . 1 = l.

CODING FOR ERROR CONTROL 643

relationship can be conveniently illustrated by
an example expressed in matrix form as shown in
Equation 1. A code word vector results when a
binary information 4-tuple operates on the code
generator matrix. The configuration of the gener­
ator matrix is obtained from coefficients of the
corresponding simultaneous equations, which
depend upon the nature of the code selected.

[I 0 0 0 0

il o 1 0 0
[i\ ' i2, i3, i4] 0 0 1 0

(1)
o 0 0 1 0

= [v\,v3"" ,v7]

An equivalent way to characterize a linear
code is to specify a set of simultaneous parity
equations that must be satisfied by the code
symbols. Using the example in Equation 1, the
following three equations must be satisfied by all'
the code words that take the form (v\' v2' ... ,
v7):

v\ + v2 + v3 + v5 = 0

v2 + v3 + v4 + v6 = 0

VI + v2 + v4 + v7 = 0

Again, this set of linear simultaneous equa­
tions can be conveniently written in matrix form
as follows:

1 0 1

1 1 1

1 0

[V\,V2,·",V7] 0 =0
1 0 0
0 1 0

0 0

In general, a k-tuple information part can be
coded into an n-tuple code word according to the
equation

iG = v

where the matrix i is 1 by k, G is k by n, and v is

644 APPENDIX A

I by n. The matrix G is called the generator
matrix of the code. Alternatively, the parity
equations may be written in the form

vHT = 0

where v is 1 by n, HT is n by r(= n - k), and 0
is I by r. HT is the transpose of H, which is
called the parity-check matrix of the code. For
some basic structural features of linear codes, see
Appendix I. *

Polynomial Cyclic Codes

One way to represent an n-tuple is to consider
the symbols of the n-tuple to be coefficients of a
polynomial of degree n - I or less. Specifically,
an n-tuple (ai' a2' ... ,an) gives rise to a polyno­
mial representation

n-l n-2 + al x + a2 x + . . . an .

When the addition and multiplication are both
defined on the symbols used as the coefficients of
polynomials, the addition and multiplication of
polynomials can be carried out in the ordinary
manner. The addition of two polynomials of
degree n - 1 or less does not differ from the
addition of corresponding n-tuples. The product
of two polynomials a(x) and b(x) of degree n - I
or less can be defined as another polynomial
c(x), also of degree n - 1 or less, which is the
residue of the usual product when divided by
xn + 1. This operation is written in the form

a(x)b(x) == c(x)modulo(xn + 1)

We use the symbol == in this paper to mean "is
congruent to."

Any binary polynomial g(x) must divide xn +
1 for some positive integer n. The set of all
polynomials that are distinct multiples of g(x)
. modulo xn + 1 constitutes a cyclic (polynomial)
code in the sense that if a(x) and b(x) are code
polynomials then a(x) + b(x) is also a code poly­
nomial.

* All references are to appendixes at the end of this paper,
pages 656-669.

Furthermore, any cyclic (end-around) shift of
a code word is also a code word, since a cyclic
shift of a code word is equivalent to the multipli­
cation of xi by the code polynomial modulo
(xn + 1), resulting in another polynomial in the
code set. The polynomial g(x) is called the
generator polynomial of the code, and such a
polynomial uniquely characterizes a cyclic code.
The polynomial hex) = (xn + l)jg(x) is called
the recursive polynomial of the same code.

If the degree of g(x) is r, then there are 2k
distinct multiples of g(x) of degree n - 1 or less,
where k = n - r is also the degree of h(x). Some
basic structural features of polynomial codes are
included in Appendix 2.

GENERAL REQUIREMENTS FOR
ENCODING AND DECODING

Thus far we have discussed the generation of
linear separable and cyclic codes and have ap­
pended some basic structural features of these
codes. Now, we briefly discuss certain general
requirements of linear and cyclic codes. It was
stated that the encoding procedure consists of
essentially the selection of an n-tuple code word,
given any number of information symbols. At
the same time, the decoding procedure essential­
ly consists of determining what these informa­
tion symbols should be when receiving any n­
tuple. Without any code structure, decoding can
only be done by table lookup.

Error Syndromes

When linear codes are used, however, the cor­
rectable error patterns become separable from
the code words and can thus be identified inde­
pendently of the code words transmitted. To
show this, let v be a code word, and H be a
parity-check matrix. If the error is e (an n-tuple),
then the received n-tuple is v' = v + e. If we
calculate the syndrome, defined as

S = v'HT = (v + e)HT = vHT + eHT = eHT

'lie see that it is an r-tuple independent of the
;ode word v. The syndrome S contains all the
nformation regarding the error that has been
tdded to the code word during the transmission.
For a deterministic correction scheme, each
;yndrome must be identified with a unique error
1-tuple. Since the zero syndrome always means
'no error," a nonzero syndrome is necessary for
the detection of any error n-tuple.

The following observation can now be made
for a binary code. Since the syndromes are r­
tuples, there are 2' distinct forms. Clearly, we
~annot expect the code to correct more than 2'
jistinct errors (including no error). Furthermore,
If two errors result in the same syndrome, at
most one of them can be corrected. A condition
for a set of errors to be correctable is for any two
~rrors el and e2 from the set to satisfy

el HT - e2HT = (el - e2)HT i= 0

[n terms of polynomials, the condition becomes

el (x) = e2(x) i= 0 modulo g(x)

where el (x) and e2 (x) are any two correctable
error polynomials. In particular, if an error takes
the same form as a code word, then it cannot be
distinguished from zero error.

F or a cyclic code, the syndrome of an error
e(x) usually means the residue of e(x)
. modulo g(x), the generator polynomial. How­
ever, depending on the specific decoding proce­
dure chosen, the syndrome may take other forms
such as the residue of x' e(x) modulo g(x).

Conditional Maximum Likelihood
Decoding

It should be noted that the performance of a
decoding scheme depends on the characteristics
of the information source and the channel, as'
well as that of the code used. Generally speaking,
if we want to minimize the decoding error with a
specific code, the conditional maximum likelihood
decision scheme should be used. With this
scheme, a code word Vi is selected as the decoded

CODING FOR ERROR CONTROL 645

message upon receiving v', such that the condi­
tional probability P(Vi I v') is maximum for all vi.
In evaluating these conditional probabilities, ac­
curate source statistics must be used. This intro­
duces an immediate difficulty since such detailed
source statistics are usually not available. Fur­
thermore, the calculation of p(vilv/) for all Vi is
impractical for most cases.

Maximum Likelihood Decoding

An alternative method of decoding is to use the
maximum likelihood decision rule, which selects a
code word Vi' upon receiving v', such that the
conditional probability p(v/l v) is maximum for
all possible code words. The calculation of con­
ditional probabilities p(v/lv) no longer depends
on the source statistics. This rule is equivalent to
the conditional maximum likelihood decision
rule when all source symbols are equally likely.
F or linear codes, this decoding method requires
that, among all error n-tuples resulting in the
syndrome calculated, the one with the highest
probability of occurrence should be taken as the
error that occurred. Note that the error can be
identified independently of the code transmitted.

Minimum Distance Decoding

We may consider all possible n-tuples to be
points in an n-dimensional space, and define a
dis,tance Junction D(x, y) between two points (n­
tuples) x and y to be the number of places where
the two n-tuples differ. (In binary cases, this is
usually called the "Hamming distance.") We
may then use the following minimum distance
decoding scheme: upon receiving v', select a
code word Vi that minimizes D(v', Vi) among all
code words. Minimum distance decoding is
equivalent to that obtained by using the maxi­
mum likelihood decision rule, provided that the
errors are independent. This geometrical inter­
pretation of the coding and decoding procedure
is often very useful.

The distance function previously defined has

646 APPENDIX A

the following "triangular" property: for any
three points x, y, and z, then D(x, y) + D(y, z) >
D(x, z). From this property, one can show that,
if for a given code the minimum distance be­
tween any pair of code words is Dm, then this
code is capable of correcting I errors and simul­
taneously detecting d errors (d > I) as long as
d + I < Dm' On the other hand, if I-error cor­
rection is desired, then Dm > 21 + I.

LINEAR SWITCHING CIRCUITS
AND SHIFT REGISTERS

A properly designed electronic linear switching
circuit is capable of storing and manipulating a
given digital message sequence algebraically, and
hence can be used for encoding or decoding
purposes. The basic elements of a linear switch­
ing circuit are: delay units, adders, and multi­
pliers. In binary cases, no multipliers are neces­
sary because the multiplication of I implies a
direct connection, and the multiplication of 0
implies no connection. A switching circuit with
modulo 2 adders and delay units (or registers) is
referred to as a shift-register circuit.

The relationship between input and output
sequences of a linear switching circuit depends
upon the connections among the basic elements
previously described. With respect to a pair of
input/output points, the behavior of such a cir­
cuit can be described by its unit response. This
response is the output sequence caused by an
input sequence wherein the first symbol is I, and
all the following symbols are O. (The initial
contents of all delay units must be 0.)

Polynomials in Delay Operator D

We may denote a sequence S = (sl' s2' ...) in
terms of its transform [Huffman, 1956], which is
a power series in the delay operator D

s(D) = sl + s2 D + s3 D2 + ...
For ease of algebraic manipulation, a code poly­
nomial A(x) representing an n-tuple is usually

transmitted with the higher-order-first conven,
tion. Writing

A(x) = al x n- I + a2 Xn- 2 + ... + an-I x + all

= x n- I (al + a2x-1 + ... + an-I x 2- n

+ anxl - n)

we see that, in a sense, x-I becomes equivalen1
to the delay operator D.

Consider the binary shift-register circuits as
shown in Figure A-2a and b. If s(D) = I, one
can see from the paths directed from the input to
the output that, in both cases,

I(D)ls(D)=1 = T(D) = I + D2 + D3

If we let D = x-I in T(D), we have

T(1/x) = I + x-2 + x-3

or

x 3 T(1/ x) = x 3 + x + I = T* (x)

Here, T* (x) denotes the reciprocal of T(x) and
is obtained by reversing the order of coefficients
in T(x). Thus, in terms of polynomials in x, the
circuits in Figure A-2 are both circuits for multi­
plying the input polynomial by the polynomial
x 3 + x + 1. The coefficient of the highest degree
term in the product is obtained at the output
without any delay.

A

B

~------~ + ~------------~

Figure A-2. Multiplication circuits.

)

s(D)

s(D)

A

t(O)

B

~------~ + ~------------~

t(O)

Figure A-3. Division circuits.

Figure A-3a and b shows two division circuits
whose functions can be easily analyzed by first
observing that the following relationships hold in
both circuits

and

xeD) + seD) = teD)

Combining the above two equations, we have

or

T(D) - teD) - --,,----0--­

- seD) - D3 + D2 + I

Similarly, for both circuits in Figure A-4,

teD) _ D3
s(D) - D3 + D2 + I

In terms of polynomial representations, all cir­
cuits in Figures A-3 and A-4 are circuits for
dividing the input polynomial by the polynomial
x 3 + x + 1. The first bit of the quotient (coeffi­
cient of the highest degree term) is obtained at
the output without any delay or after three units·
of delay depending upon whether 1 or D3 ap­
pears in the numerator of the transfer function.

Figure A-5 shows circuits for respectively mul-

A

B

CODING FOR ERROR CONTROL 647

~------~ + r-------------~

s(O)

Figure A-4. Division circuits that produce
residues.

t(O)

tiplying and dividing the input polynomial by an
arbitrary polynomial of degree m,

A(x) = xm + Qm_\xm-\ + ... + Q\x\ + Qo

The division circuits described perform essen­
tially the long division process. Thus, if the input
polynomial is a multiple of the dividing polyno­
mial, the output sequence is the quotient fol­
lowed by zeros. Otherwise, the output sequence
is the infinite sequence corresponding exactly to
what one obtains in the long division process.
F or example, if we divide x3 by x3 + x + 1 as
follows:

+x-7 + ...

x 3 + X + 1) x 3

x 3 + X + 1

1+ x-I + x-2

1 +x-2 +x-3

X-I +x-3

x-I +x-3+x-4

The outcome is 1 + x-2 + x-3 + x-4 + x-7

+ The division circuit of Figure A-3a or

648 APPENDIX A

A

Input

B

Output

FigureA-5. Generalized multiplication and division circuits.

A-3b, on the other hand, gives a corresponding
output sequence 1 + D2 + D3+ D4 + D7
+

The circuit in Figure A-4a (or the general
circuit of Figure A-5b) has the following special
property. The contents of the registers represent
the residue of the division after the last term of
the input polynomial has entered the circuit. For
example, if we consider the register from left to
right as coefficients of 1, x, and x 2, respectively,
in Figure A-4a, then a shift to the right is
equivalent to multiplication by x. The feedback
connections add the output from the third regis­
ter to the contents of the first and the second
registers, thus effecting x 3 = 1 + x (or x 3 +
x + 1 = 0) whenever this reduction becomes
possible. The final contents of the registers clear­
ly represent the input polynomial minus all mul-

tiples of x 3 + x + 1, that is, the residue of the
input polynomial modulo x 3 + x + 1.

The shift-register contents of other types of
division circuits do not necessarily correspond to
residues. For example, the shift-register contents
of the circuit in Figure A-3a represent the resi­
due of the input polynomial multiplied by x 3

•

modulo x3 + x + 1. In general, register contents
represent linear transforms of the residue coeffi­
cients described above.

ENCODERS AN D DECODERS

An encoder for an (n, k) linear code produces an
n-tuple code word when an information k-tuple
is given. This fact is illustrated by writing the
symbols in· the n-tuple code word as functions of

CODING FOR ERROR CONTROL 649

Figure A-6. Combinatorial encoder for a linear code.

the given k-tuple and implementing each of these
functions (as Boolean functions) with logic cir­
cuits. For example, the linear code specified by
Equation 1 may be implemented by the circuit in
Figure A-6. Note that the information symbols
remain unchanged; thus, the code obtained is
separable.

When a cyclic polynomial code is used, it is
convenient to generate the code polynomials in a
sequential manner. The binary cyclic code with
generator polynomial g(x) = x3 + X + 1, for
example, may be encoded with the shift-register
(multiplication) circuits in Figure A-2 yielding a
nonseparable code structure. When the code is
separable, a division circuit capable of producing
the residue of the input polynomial modulo g(x)
can be used to produce the check symbols.
Figure A-7 shows such an encoder. During the
transmission of the first k bits, information sym­
bols are fed into the encoders shown in Figure
A-7. The switch K is in the 0 position, allowing
the same symbols to appear unchanged at the
output. At the end of k bits, the desired residue
has formed in the registers and is obtained by
throwing the switch K to the I position. Since the
feedback of the division circuit is now nullified,
the register contents will next appear at the
output.

The cyclic code generated by the polynomial
g(x) = x3 + X + 1 is identical to the linear code
described by the generator matrix of Equation 1.
Encoders shown in Figures A-6 and A-7, there­
fore, yield the same code words when fed with
the same k-tuple input.

The basic function of a decoder is to establish
mapping from the syndrome (r-tuple) of the
received message to an error n-tuple. By sub­
tracting the error from the received message, one
obtains the transmitted code word which, in the
case of separable codes, contains the original
information k-tuple.

Since the mapping being implemented can be
completely specified by a table, an immediate
approach to the design of a decoder is via a logic
circuit that implements the table lookup proce-

Figure A-7. Sequential encoder for a linear code.

650 APPENDIX A

dure. When decoding delay must be minimized,
the logic circuit approach in decoding can be
quite attractive. The obvious limit to this ap­
proach is that the complexity of the decoding
circuit tends to grow exponentially with the
capability of the code used.

With cyclic codes, simplification in the decod­
ing circuitry is possible. Figure A-8 shows a
general-purpose decoder which consists of the
following components: a division circuit that
serves as a syndrome generator, an n-stage buffer
storage that retains the message received, and a
syndrome recognition circuit that usually recog­
nizes the syndromes of error vectors that include
an erroneous highest-degree digit.

To see how this decoder works, let al x n- I

+ ... + an-l x + an be the code polynomial and
let des) = a(x) + e(x) be the received polyno­
mial, where e(x) represents the error. As men­
tioned earlier, the syndrome of a'ex) generated
here by a division circuit of g(x) is independent
of a(x). The syndrome is obtained when the last
digit of the code word, an' has entered the
decoder. If the first digit is not in error, the
syndrome detection circuit maintains a zero out­
put and the highest order bit is obtained unal­
tered at the output. After a shift, the transformed
syndrome corresponds to xe(x), which is the
original error with the coefficients advanced one
position toward the high-degree end. The synd-

Received
message N-bit

buffer
storage

Syndrome
generator

Syndrome
detection

circuit

Corrected
message

Figure A-8. General-purpose decoder for cyclic
code.

rome recognition circuit then recognizes the
syndrome if the second digit in the original
received message is in error. Since the same
argument applies to the subsequent shifts and
subsequent errors, we see that erroneous digits of
a correctable error pattern can all be corrected.

The decoding circuit of Figure A-8 requires a
delay of n digits before the decoded message is
received. The errors are corrected sequentially.
Although generally applicable to all types of
cyclic codes, the syndrome recognition circuit
may in many cases still be too complicated (in
spite of the relative simplicity in comparison
with the pure combinatorial circuit). However,
remarkably simple decoding circuits of this type
are possible with cyclic burst-error-correcting
codes (including the Hamming codes).

If a code is used for error detection only, one
merely needs a recognition circuit to determine
whether the residue is zero. A n()nzero indicates
that an error has been detected.

FUNCTIONAL CLASSES OF
ERROR-CONTROL CODES

Several functional classes of cyclic polynomial
codes have been found:

• Singe-Error-Correcting Codes. A single-error-correct­
ing code of length n is capable of correcting any
error affecting no more than one symbol in a code
block of n symbols.

• Burst-Error-Correcting Codes. A burst-error-correct­
ing code of length n is one that can correct any span
of errors of fixed length b or less in a code block of
n symbols.

• Independent-Error-Correcting Codes. An indepen­
dent- (or multiple-) error-correcting code is a code of
length n that is capable of correcting up to a multiple
of t errors within a code block of length n.

• Multiple-Character-Correcting Codes. A multiple­
character-correcting code is a code of length n
characters, where a character is a group of bits with
fixed length. Any combination up to a fixed number
of character errors within a block may be corrected.

Depending upon channel characteristics,
members of these code classes may be selected.

Methods for finding generator polynomials for
these codes are given in Appendix 3.

Certain specialized codes are modifications of
some members of previously mentioned func­
tional classes of codes. Interleaved codes, N­
dimensional codes, and shortened codes, for
example, are methods of constructing stronger
codes based on weaker ones. Self-orthogonal
codes are characterized by their threshold logic
decodability, which leads to simple decoding
circuits. Synchronization codes add framing ca­
pability to error control. Convolution codes form
a class of nonblock codes with various possible
error-control capabilities and are often used in
conjunction with the sequential decoding tech­
nique. Constant-weight codes are useful in chan­
nels with some special properties. Arithmetic
codes are based on arithmetic operations and are
useful in channels which include arithmetic pro­
cessors. Certain basic properties of such special­
ized codes are included in Appendix 4.

CODING STRATEGY

When an error-control code is considered in a
digital transmission or storage system, one
should ask not only what can this code do, but
also what is needed to achieve the capability of
the code.

Generally speaking, the longer the block
length (i.e., larger n), the more storage the decod­
er requires, and the greater the minimum decod­
ing delay. It is also generally true that the longer
the code block the larger the class of errors to be
corrected, hence the more complicated the de­
coding circuits. However, the distribution of
errors in longer code blocks becomes much more
predictable, thereby permitting the use of codes
with smaller redundancy while maintaining the
same relia bili ty.

The data flow in a complex computer system
may take different forms at different levels corre­
sponding to the channels described previously.
Therefore, basic requirements for error-control
codes may also change in emphasis from one

CODING FOR ERROR CONTROL 651

case to another. For example, intermachine data
transmission may go through many conventional
communications channels. The primary require­
ments of the preferred error-control scheme are
high reliability and high information rate. Since
decoding delay does not reduce throughput, one
would tend to use longer codes with lower redun­
dancy even though they require more decoding
complexity.

For intramachine transmission, such as going
in and out of an internal random-access storage,
the primary coding requirements are high reli­
ability and speed. Thus, simple decoding by
circuitry is essential in keeping storage access­
time small. Another feature of the codes used for
intramachine transmission is that an error-con­
trol code is often used in the detecting mode,
since retransmission can usually be effected by
simple instructions based on the outcome of
error detection. There are exceptions to such
generai rules. An optimum coding strategy can
be achieved, and the best code obtained, only
after a design engineer evaluates several alterna­
tives.

We now outline several different courses of
action he may prefer as an alternative of for­
ward-acting full-power correction with block
codes.

Error Detection

The main advantage of error detection is the
simplicity of its implementation. An error is
detected if the received message yields a nonzero
syndrome. For cyclic codes, a division circuit
plus a test for zero constitute a complete decod­
er.

The detection capability of a code is closely
related to its correction capability. If a code is
capable of correcting a set {eJ of error n-tuples,
then the syndromes of any two errors, ej and ej
from the set must be distinct. This implies that
any error of the form e j + ej must be detectable.
It should be pointed out that the code also
detects many other errors. Any error of the form

652 APPENDIX A

ej + ej + V is clearly detectable if v is a code
vector (and vHT = 0). This often results in a
significant reduction in the undetected and un­
corrected error rate.

From the preceding, we observe that a t-error­
correcting code is capable of detecting all com­
binations of 2t errors, and aburst-b-correcting
code is capable of detecting any two bursts of
length b or less. A Fire code generated by
g(x) = (XC + l)p(x)-as described in Appendix
3-when used for detection only, is capable of
detecting any combination of two bursts of
which the length of the shorter burst is no greater
than the degree of p(x). Any cyclic code of
degree r is capable of detecting all single bursts
of length up to r.

Error detection is an attractive means of error
control provided it is possible to effect retrans­
mission. In the case of data transmission, this
implies the existence of a reliable feedback chan­
nel, which is used to relay the request-for-re­
transmission message back to the sender [Shan­
non, 1959; Turin, 1965; Schalkwijk and Kailath,
1966]. Many data links within a computer system
have the ability to regenerate a message at the
sending end when it is not cleared at the receiv­
ing end. On the other hand, an error detected
during a readback process from storage may not
be successfully avoided by rereading the same
message when the error is due to permanent
damage in the storage medium or when the error
occurred during the writing process.

When a feedback channel is available, one
should calculate, from available statistics, the
probability of requests for retransmission and
the average time the system is tied up because of
the requests. Performance of the detection-re­
transmission method can then be evaluated with­
in the context of given system parameters [Frey
and Benice, 1964]. In general, detection and
retransmission is effective against highly clus­
tered errors. For random errors or for a combi­
nation of random and burst errors, some error
will tend to appear regularly in every block. In
such cases, some forward-acting error correction

is necessary to maintain the performance of the
transmission system.

Partial Correction

We have seen that, even where a feedback chan­
nel is available, some forward error correction is
often needed to combat random errors. For most
codes, there is a trade-off between the numbers
of correctable and detectable errors. A multiple­
error-correcting code is capable of correcting t
errors and simultaneously detecting d errors as
long as the minimum distance of this code is at
least t + d + 1. A fire code generated by g(x)
= (XC - 1) g(x) is capable of correcting a burst
of length up to b and simultaneously detecting
any other burst of length up to de > b as long as
b + d - 1 < e and b < m, the degree of p(x).
See Appendix 3.

Aside from the need to use partial correction
in conjuction with the detection-retransmission
method, there may be other reasons for the use
of partial correction in the overall error-control
scheme, namely, to minimize the decoding com­
plexity. We mention here two situations wherein
partial correction may prove useful.

1. In the case of multiple-error correction,
decoding complexity grows exponentially with
the number of errors corrected. Thus, even if a
given code can correct t > 1 errors, one may still
want to go through a single-error-correction pro­
cedure and test the syndrome for possible erro­
neous correction. If single errors account for a
large portion of the overall error rate, consider­
able reduction in average decoding delay can
thereby be achieved. Success of single-error cor­
rection eliminates the need to go through the
more complicated t-error-correction. If two or
more errors occur, the single-error-correction
procedure may make an erroneous correction in
some cases. However, due to the minimum dis­
tance of the code, the result is still a detectable
error. The correction algorithm specifies return-

ing to the original message received and trying a
more powerful correction procedure. A similar
approach also applies to the partial correction of
multiple errors up to the maximum number of
correctable errors.

2. For certain classes of multiple-error-correct­
ing codes, simple circuit implementation is pos­
sible for correcting a small number of errors.
Since threshold-logic decoding has error detec­
tion and correction capabilities approaching
those of multiple-error correcting codes, the
combination of partial correction by logic cir­
cuitry and detection may prove very useful.

Erasures

Erasures usually correspond to detected signals
that are considered to be in a certain "no­
confidence zone." In the case of binary level
detection, the erasure zone is intermediate be­
tween the 1- and the O-zone. In general, an
erasure implies an unknown symbol (or charac­
ter) at a known location.

In a pure erasure channel, locations of errors
are always known. The error-correction capabil­
ity of a code in an erasure channel is similar to
its detection capability in a nonerasure channel.
An erasure pattern is correctable if (and only if),
by substituting all possible combinations of sym­
bols at these erased digits, only one results in a
code word. With a t-error-correcting code, any
pattern of 2t erasures is correctable. This follows
immediately from the fact that, with 2t erasures,
any 'two n-tuples resulting from different substi­
tutions can differ at most at 2t digits. However, a
t-error-correcting code must have a minimum
distance of at least 2t + 1, which means these
two n-tuples cannot both be code words. Similar­
ly, with a burst-b-correcting code, any pattern
consisting of two erasure bursts of length b or
less is correctable.

In more realistic channels, erasures are often
compounded with nonerasure errors. Again,
there is a trade-off between the numbers of

CODING FOR ERROR CONTROL 653

correctable errors and erasures. For example, a
multiple-error-correcting code is capable of cor­
recting any combination of t errors and e era­
sures as long as the minimum distance of the
code is at least 2t + e + 1.

Generally speaking, the use of erasures tends
to reduce the uncorrectable-error rate. The
amount of improvement is a function of the
detailed statistics of the detected signals and of
the thresholds that define the erasures. The price
of improvement here is a probable increase in
decoding complexity. When correcting combina­
tions of errors and erasures with a multiple­
error-correcting code, one must perform the
additional step of transforming the error syn­
dromes in order to separate the erasures from
nonerasures before the ordinary decoding proce­
dures can be applied [Forney, 1965]. At least
part of this added effort is compensated by a
reduction in the number of errors to be correct­
ed, as compared with forcing all erasures into
decisions of code symbols. The erasure concept
can be generalized as an increased number of
levels at the detector output whereby further
gain in reliability is possible [Forney, 1966].

Adaptive Coding Schemes

If the noise characteristics of a digital data
channel tend to change from time to time, an
adaptive coding scheme may be desirable. In the
method of detection and retransmission, certain
forward-acting partial correction becomes neces­
sary if a small number of errors tend to occur
reg~larly. The amount 'of partial correction can
be monitored at the receiving end to cope with
the varying error rate. Recently, an interesting
method of adaptive decoding without feedback
has been developed [Frey, 1967]. With this meth­
od, a received message is analyzed to determine
whether the burst-error correction or the inde­
pendent-error correction should be performed.
Methods have been studied for changing the
code used (as well as the decoding algorithm) in

654 APPENDIX A

such a way as to minimize implementation com,.
plexity [Tang, 1965; Tang and Chien, 1966].

Sequential Decoding

Although sequential decoding has been success­
fully applied to space communications, its use in
computer systems is still in an exploratory stage.
Quantitative performance evaluation of a se­
quential decoding algorithm is difficult without
actual implementation and testing. As we have
indicated previously, since the decoding algo­
rithm can only be implemented by a computer,
sequential decoding is not applicable where suf­
ficient processing capability is not provided. An­
other factor that may limit the use of sequential
decoding is that decoding effort is a random
variable without an upper bound. However, the
sequential decoding algorithm is applicable to a
wide range of conditions, including those in
which other block coding schemes do not per­
form satisfactorily. Such conditions exist, for
example, where the initial error rate is high, or
where high reliability is required at a high infor­
mation rate.

SOME ERROR-CONTROL
APPLICATIONS

Data Communications

Many IBM terminals use cyclic codes for error
detection. Because of their relatively low error
rates, the codes are mostly burst-detecting codes
that usually have very little redundancy.

The IBM 1050 data communication system
uses an interleaved code, generated by g(x) =

(x6 + 1), in which six check digits form a char­
acter at the end of each message. Single burst­
errors of length up to six are detectable, as are
many other error patterns.

The Binary Synchronous Communication
(BSC) [Eisenbies, 1967] convention uses a
burst-2-correcting code generated by g(x) =
(x + I)p(x), where p(x) is a primitive polynomial
of degree 15. The BSC code is capable of detect-

ing two bursts of length two. Also, because the
minimum distance is four, BSC can detect any
three or fewer independent errors in messages up
to a length of 21s - 1.

Although errors.on microwave links used for
voice-grade channels are effectively eliminated
by the use of pulse code modulation and repeat­
ers, encoders and decoders for additional error
control are provided. For example, private lines
are available with additional coding equipment,
wherein the code used is a shortened (200, 175)
BCH type with a minimum distance equal to
eight. The generator polynomial of this code is of
the form g(x) = (x + I)ml (x)m3 (x)ms (x), where
ml (x), m3(x), and ms(x) are polynomials of de­
gree eight. The (200, 175) code is obtained by
shortening a full-length (255, 230) code. This
code is capable of correcting three independent
errors and, in addition, detecting four errors.
Retransmission is requested if an uncorrectable
error is detected. The use of a convolutional
code with one-sixth redundancy is also an option
with the direct-distance-dialing switched net­
work.

Data Storage

Although magnetic cores are highly reliable,
such storage elements as drivers, sense ampli­
fiers, and read-write gates, which control the
storage operation, are subject to occasional fail­
ures. The use of an error-control code in the
CPU of a computing system not only helps to
locate failures, but also keeps the CPU in opera­
tion when the effect of a failure is within the
correction capability of the code used.

The IBM 650 central processing unit uses a
"bi-quinary" code, which encodes a decimal
digit into seven binary digits with two I's. This
code, like the four-of-eight code, .detects all odd
numbers of errors.

The IBM 7030 (STRETCH) computer uses a
single-error-correcting double-error-detecting
code with 64 data bits and eight check bits. The
encoding and decoding are implemented by logic
circuits.

The IBM 7070 data processing system uses a
"two-of-five" code with an addtional overall
parity check. Many other CPU's, including SYS­
TEM/360, use single parity checks for error
detection.

Auxiliary Storage

Disk files, like other magnetic surface-record­
ing systems, are vulnerable to surface irregulari­
ties. Therefore, protection against burst error is
usually needed. As the recording density in­
creases, more powerful coding schemes are need­
ed. The IBM 1300-series disk storage uses a
cyclic code, for burst detection, in which there
are 13 check digits at the end of every record.
The IBM 2301 drum storage unit also uses a
cyclic code with 19 check digits for error detec­
tion. Most of the other disk files use similar
cyclic codes for error detection.

Magnetic tape units used today contain sever­
al tracks, and a character or a byte is obtained
by reading one bit from each track. Error control
is necessary since tapes are relatively less reliable
than magnetic cores. Control can be achieved in
a number of ways. The tractor tape unit has 22
tracks, 16 of which are information bits and six
are check bits. Each character is a (22, 16) code
obtained by shortening a (31,25) BCH code with
minimum distance of four. The IBM 727 and
729-series magnetic tape units use a two-dimen­
sional coding scheme. One track, which provides
a vertical redundancy check (VRC), is used for an
overall check on each character. Also, one char­
acter at the end of each record is used for an
overall check on each track and is known as the
longitudinal redundancy check (LRC). The overall
code detects errors in a single track, plus many
other errors.

The IBM 2400-series magnetic tape units use a
coding scheme involving another character next
to LRC as a check based on a cyclic code, in
addition to the VRC and LRC already de­
scribed. This check is called cyclic redundancy
check (CRC) and is discussed in greater detail in
Appendix 5.

CODING FOR ERROR CONTROL 655

Digital Cypress Error Control

The photo-digital storage for the IBM 1360
computer, known as Digital Cypress [Oldham,
Chien, and Tang, 1968], uses a (366, 300) Reed­
Solomon code, which is one of the most sophis­
ticated codes ever used for storage. With six bits
in each character, this code is a multiple-charac­
ter-error-correcting code with a minimum dis­
tance (on the character basis) equal to 12, which
requires II check characters (66 bits). The full
length of the code is 26 - I characters (i.e., 63
characters or 378 bits). There are 300 bits (or 50
characters) of data plus two characters for line
number and II check characters. The code is
capable of correcting any combination of inde­
pendent and burst errors representable by five
characters. A sixth character error, plus many
others, can be detected.

Except for the encoder and the syndrome­
generating circuit, the Digital Cypress decoding
procedure is implemented by programming, the
strategy for which may be outlined as follows.
When a nonzero syndrome is detected, a rescan
is called for first. If the error is still present, the
program goes to a single-error partial-correction
subroutine. If that procedure is unsuccessful
in correcting the error, a two-error
partial-correction subroutine is called. The full­
power correction routine is used only when both
the single-error- and the double-error-correction
subroutines are unsuccessful.

CONCLUDING REMARKS

We have developed basic concepts of error­
control coding, with emphasis on the use of
cyclic codes, which form a subclass of linear
block codes. The use of an error-control scheme
should be an integral part of the overall system
design, rather than a "remedy" or a "bonus" for
a system with unsatisfactory reliability. To
achieve a proper error-control scheme, a systems
engineer needs an extensive knowledge of exist­
ing coding methods and their implementations.
Since this paper is not intended to give a full

656 APPENDIX A

treatment of the theory and applications of all
types of codes, the aim has been to· expose some
of the underlying principles involved in selecting
an error-control coding scheme for a realistic
computer or communication system.

The demands on overall data-processing and
communications capacities have been increasing
and are expected to grow. This implies a prevail­
ing need to fully utilize every communication or
memory channel available. One approach is by
way of error-control coding. With advances in
integrated circuit technology, costs of logic and
storage elements are declining in comparison
with increasing rates of data-processing. Thus,
circuit-implemented error-control schemes are
expected to become increasingly attractive. One
objective of system designers is to achieve "ultra
reliable" components, in which error-control ca­
pabilities are an integral part of the monolitic
circuit design.

As applications of more sophisticated error­
control coding schemes for computer and com­
munications systems become more extensive,
one may expect coding principles to be applied
to other types of problems. For example, alge­
braic procedures typical of encoding and decod­
ing can be used to obtain solutions in such
problem areas as file organization and document
retrieval [Chien and Frazer, 1966; Abraham,
Ghosh, and Ray-Chaudhuri, 1968]. Since a doc­
ument in a file is usually characterized by a list
of "descriptors" contained in a "dictionary," a
binary n-vector can identify a document, where­
in each position of the n-vector represents a
descriptor. Storage required for such a dictionary
becomes too large to be practical in most cases.
However, if we regard the n-vectors as errors, the
vectors can be transformed into r-tuples (syn ...
dromes) appropriate to the code selected. The r­
tuples can then be used to identify documents in
the file. Requests for retrieval can be handled
with the help of the corresponding decoding
algorithm.

The design of matrix switches, such as those
used in main storage arrays, is another example.

It has been shown that certain codes can be used
to determine selection patterns in a matrix switch
so that all driving power is channeled to the
selected output only [Constantine, 1958; Chien,
1960].

Coding concepts and techniques are also po­
tentially useful in such other areas as signal
design, digital modulation, pattern recognition,
fault diagnosis, image processing, and cryptogra­
phy.

APPENDIX 1: STRUCTURE OF
LINEAR CODES

The first four columns of the four-by-seven coef­
ficient matrix in Equation I form an identity
submatrix. In general, the generator matrix of a
separable code is a k by n matrix containing a k
by k identity submatrix. The columns of the
submatrix correspond to information positions.

A fundamental property of a linear code is
that if Vi and ~ are two code words, then
Vk(= Vi + ~) must also be a code word, since

v· + v· = x· G + x . G = (x. + x .)G = xk G I 'j I) I)

= vk

The use of a generator matrix to represent a
code eliminates the need to list all the n-tuples in
the code set. In the binary case, a k by n
generator matrix uniquely specifies the code set
containing 2k n-tuples.

With respect to every linear code set V, it is
possible to find a set U of n-tuples such that U
and V are "orthogonal" in the sense that for any
n-tuple code word v in V and any n-tuple code
word u in U,

vuT = 0

Here, v and u are row matrices, and u T denotes
the transpose of u. The set U is obtained by
summing all possible combinations of rows of an
r by n parity-check matrix. The orthogonality

requirement can, therefore, be written as

Given the code word v = (Vl,V2'" .,Vn) in V
that satisfies the equation

then the following set of linear simultaneous
~quations is obtained:

A parity-check matrix H specifies r linear
simultaneous parity-check equations that must
be satisfied by the symbols of every code word
From V.

To obtain the parity-check matrix, we can
write the generator matrix in the standard form
G = [Ik P], where Ik is a k by k identity subma­
trix and P is a k by r submatrix that describes the
interdependence between information and par­
ity-check symbols. The parity-check matrix can
then be written as H = [pT1,]. One can check to
see that

Although the specification of either a genera­
tor matrix or a parity-check matrix uniquely
determines a linear code, neither the generator
matrix nor the parity-check matrix is unique. In
general, different generator or parity-check ma­
trices for the same code are obtainable from one
another by means of nonsingular linear transfor­
mations.

CODING FOR ERROR CONTROL 657

APPENDIX 2: STRUCTURE OF
POLYNOMIAL CODES

Given a generator of polynomial g(x) of a cyclic
code, a corresponding generator matrix G can be
written by listing k n-tuples (corresponding to k
code polynomials), none of which can be ob­
tained by a linear combination of the others. For
example, n-tuples corresponding to Xi g(x), i =

k - 1, k - 2, ... , 0 constitute k rows of a gen­
erator matrix of the same code. The generator
matrix of the specific form G = [Ik p] can be
determined as follows. For each xi, where i
= n - 1, n - 2, ... , r, find the residue Pi(x)
== xi, modulo g(x). The k polynomials

(where i = n - 1, n - 2, ... , r)

are multiples of g(x) and are, therefore, code
words. Also, by writing the corresponding n­
tuple as rows, the result is a generator matrix of
the form

To obtain a parity-check matrix H, si?lply
write each n-tuple corresponding to Xl hex),
i = 0, 1, ... , r - 1 in the reverse order. The r
rows thus obtained form a parity-check matrix.
This procedure can be checked by identifying
the product of any row of G corresponding to
xi g(x), where 0 < i < k - 1, and any row of
the previously mentioned H to be identical to
one of the missing coefficients in the equation
g(x)h(x) = xn + 1. To obtain the specific form
H = [PTI,], we find the residue qi(x) == xi,
modulo hex), for each xi, where i = k, k + 1,
... , n. The reversal of each n-tuple correspond­

ing to the polynomials xi + qi(x), where i = k,
k + 1, ... ,n, which are all multiples of hex),
gives the r rows of the parity-check matrix in the
desired form H = [PTI,].

For example, consider the primitive polyno­
mial g(x) = x 3 + X + 1, which as a generator
polynomial, generates a code of length 23

- I
= 7. To write the corresponding generator ma­
trix, calculate the residues of Xi as follows:

658 APPENDIX A

P3(X) == X3 == X + I,P4(x) == X4 == X2 + x,

P5(X) == X5 == X3 + X2 == X2 + X + 1,

P6(x) == x6 == x3 + x 2 + X == x 2 + 1,

modulo (x3 + X + 1)

The following generator matrix contains rows
corresponding to the vector representation of
polynomials xi + Pi (x), i = 6, 5, 4, 3:

[

1 0 0 0 1 0 1]
o 1 001 1 1

G= 001 0 1 10

0001011

To write the parity-check matrix, first calculate
hex) = (x7 + I)/(x3 + x + 1) as follows:

x4 +x2 + x + 1

x 3 + X + I)x7

x 7 +x5 + x4
+ 1

X4 + x 3 + x 2 + 1
x4 + x 2 + x

Thus, hex) = x4 + x 2 + x + 1, and

q4(x) == x4 == x2 + x + 1,

q5 (x) == x5 == x3 + x 2 + x,

o

Q6(X) == x6 == x4 + x 3 + x 2 == x 3 + x + 1,

modulo (x4 + x 2 + x + 1)

Writing, in reverse order, the vector represen­
tation of polynomials Xi + qJx), where i = 4, 5,
6, we have the parity-check matrix

H = [~ ~ 1 0 ~ ~ ~]
1 1 0 0 0 1

It can be seen that the cyclic code in this
example is identical to the linear code of the last
example.

APPENDIX 3: METHODS FOR
FINDING GENERATOR
POLYNOMIALS

Single-Error-Correcting Codes

Single-error-correcting codes are often referred
to as Hamming codes [Hamming, 1950]. In such
a code, any two distinct single errors xi and xi
must yield distinct syndromes. ~et ei a~d ei be
row vectors corresponding to Xl and xl respec­
tively.

or

(ei + e)HT =1= 0

Thus, the generator polynomial g(x) never di­
vides xi + xi for any i and). This condition can
be satisfied if we choose the code length n to be
e, where e is the period of g(x). The period e is
the smallest int)eger such that g(x) divides x e + 1.
With i and) both smaller than n, g(x) can never
divide (xi + xi) = xi (xi-j + 1). In particular, if
an rth degree g(x) is irreducible (i.e., not divisible
by any other polynomial except 1), then the
period of g(x) divides 2' - 1. Then, if the period
of g(x) is 2' - 1, g(x) is said to be primitive. A
single-error-correcting code generated by a prim­
itive polynomial is "close-packed" in the sense
that all 2' syndromes are used for the prescribed
correctable errors, 2' - 1 single errors and one
zero error. Since primitive polynomials are
known to exist for all degrees, Hamming codes
of length 2' - 1 exist for all r.

Burst -Error-Correcting Codes

One way to generalize the class of single-error­
correcting codes is to obtain codes to correct any
error burst within a span of b digits. Such codes

are called burst-b correcting codes [Abramson,
1959; Fire, 1959] and are suitable for channels
with occasional error bursts.

A class of burst-correcting codes, known as
Fire codes [Fire, 1959], is best defined as the class
of cyclic codes wherein the generator polyno­
mials take the form

g(x) = (XC + l)p(x)

Here, c > 2b + 1, the length of the code is the
least common multiple (LCM) of c and the
period of p(x), and the degree of p(x) is at least
b. When these conditions are satisfied, the result­
ing code is capable of distinguishing syndromes
resulting from any two burst errors each of
length no greater than b.

There are burst-error-correcting codes other
than the class of Fire codes; many are optimum
codes, which are more efficient than the Fire
codes of the same length and maximum correct­
able bursts [Elspas and Short, 1962].

Independent -Error-Correcti ng
Codes

It was pointed out earlier that an irreducible
polynomial p(x) can be used to generate a single­
error-correcting code of a length equal to the
period e of the polynomial p(x), where e is the
smallest integer such that p(x) divides x e + 1. If
we properly combine several irreducible factors
of x e + I, we can obtain the generator polyno­
mial of an independent (or multiple)-error-cor­
recting code. Given that some a is a root of
m\ (x) = p(x), i.e.,p(a) = O. Then for any i, only
one among these factors, denoted by mi (x),
satisfies mi(ai

) = O. These mi(x), called the min­
imum polynomials of xi, are not necessarily dis­
tinct for different i's.

BCH Codes

The binary BCH (Bose-Chaudhuri-Hoqueng­
hem) codes form a class of multiple-error-cor­
recting codes [Hocquenghem, 1959; Bose and

CODING FOR ERROR CONTROL 659

Ray-Chaudhuri, 1960a, 1960b; Peterson, 1961]
that can be described in terms of the minimum
polynomials mi(x) as follows. Let the generator
polynomial be defined as

g(x) = LCM [m\(x),m3(x), ... ,m2t-\(x)] (2)

then the code generated by g(x) is at-error
correcting code with a minimum distance at least
2t + I and a length n = e\, where e\ is the
period of m\ (x).

If the generator polynomial is

g(x) = LCM [mo(x), m\ (x), m3 (x), ... ,m2t-\ (x)]
(3)

the corresponding code has a minimum distance
of at least 2t + 2. The length of this code is again
n = e\ for t > 1. For t = 0, g(x) = mo(x) =

x + 1. The code generated by g(x) = x + 1 has
a minimum distance of 2. This is a code with a
single parity digit, and the code length can be
arbitrary.

Given any ml (x), one could obtain mi(x) for
any i by using algebraic procedures [Albert,
1956; Peterson, 1961, pp. 141-142]. However,
this is generally time consuming and unnecessary
since tables of binary minimum polynomials are
available [Peterson, 1961, pp. 254-70].

Examples

As an example, assume that we are generating a
binary double-error-correcting code of length
n = 26 - 1 = 63. Since a primitive polynomial
of degree six has a period equal to 63, we select
m\ (x) as a primitive polynomial. From Peterson
[1961, pp. 254-270], if the primitive polynomial
x6 + x + 1 is chosen as ml (x), then m3(x) =

x 6 + x4 + x 2 + x + I. From Equation 3, the
generator polynomial

g(x) = LCM [m\(x),m3(x)] = m\(x)m3(x)

= (x6 + x + 1) (x6 + x4 + x 2 + x + I)

= xl2 + xIO + x 8 + x 5 + x4 + x 3 + 1

generates a (63, 51) code with a minimum dis-

660 APPENDIX A

tance at least 5, good for double independent­
error correction. Note that the coefficients in the
product can be obtained by first writing the
product in the ordinary fashion. Then all even
coefficients are transformed to O's and all the
odd ones to 1 'so

The period of mi(x) may be smaller than that
of ml (x); the degree of mJx) may also be smaller
than that of ml (x). Such properties are some­
times useful, as shown in the following example.

With the same mJx) as used in the last exam­
ple, if we let m; (x) = m3 (x) and (3 = a3, such
thatm'I({3) = m3(a3) = 0, thenm3(x) = m9(x),
where m3(x)({33) = m9(a9) = O. From Peterson
[1961, pp. 254-270] we find that m9(x) = x3 +
x 2 + 1. From Equation 3, the generator polyno­
mial is

g(x) = (x + l)(x6 + x4 + x2 + X + 1)

. (x 3 + x 2 + 1) (4)

= x lO + x 7 + x6 + x4 + x2 + 1

which generates a (21, 11) code with a minimum
distance of 6.

It should be pointed out that the minimum
distance d guaranteed by the BCH code in
Equation 2 is just a lower bound to the actual
minimum distance of the code. For example, the
primitive binary polynomial ml (x) = xii + x2

+ 1 has a period 211 - 1 = 89 X 23. The poly­
nomial m89(x) = xii + x9 + x7 + x6 + x5 + x
+ 1 has a period of 23. Assuming (3 = a89 and
m; (x) = m89(x), then the roots of m'l (x) are
{3, {32, {34, f38, {316, ({332 = (39), {318, ({336 = (313),
({326 = (33), {36, (312. Since m'l (x) = m2(x)
= m3(x) = m4(x), as a BCH code, ml (x) gener­
ates a (23, 12) code of minimum distance at least
5. However, the (23, 12) code is equivalent to the
Golay code [1958] with a minimum distance
equal to 7. Other BCH codes have also been
found to have actual minimum distances exceed­
ing those guaranteed by the theory of BCH
codes [Lum, 1966].

Error-correction procedures of BCH codes are
rather complicated. They generally involve solv-

ing the roots of a I-degree polynomial and a set
of I simultaneous equations, where I is the num­
ber of correctable errors. The number of opera­
tions needed to perform these procedures grows
exponentially with respect to I. Recent research
suggests ways of significantly reducing the de­
coding complexity of BCH codes [Chien, 1964;
Berlekamp, 1968; Massey, 1969]. Perhaps decod­
ing complexity will eventually increase only line­
arly with I.

For many applications where the number of
errors to be corrected in a code block is small,
logic implementation of table lookup is a practi­
cal solution to the decoding of BCH codes.
Another attractive method of implementation by
means of majority gates can be used for a class
called "self-orthogonal" codes, which includes
certain BCH codes. This subject is covered later
in Appendix 4.

Another well-known class of multiple-error­
correcting code is the class of Reed-Muller codes
[Muller, 1954; Reed, 1954]. Although not origin­
ally formulated in terms of cyclic codes, Reed­
Muller codes have been shown to be obtainable
from a special class of BCH codes [Kasami, Lin,
and Peterson, 1968; Weldon, 1968].

Multiple-Burst-Correcting Codes

The BCH codes described earlier exist in other
than binary cases. A q-nary BCH code can be
generated by a q-nary polynomial (a polynomial
with q-nary coefficients), provided the q symbols
can be identified as elements in afield. * A
character (or a byte) consisting of a binary m­
tuple, for example, may be considered as belong­
ing to a field of 2m elements.

* There are two operations defined in a field, addition and
multiplication. If 2m binary m-tuples are represented by
corresponding polynomials, the addition and multiplication
of binary polynomials can be taken as field operations,
provided that we always reduce a product polynomial of
degree m or higher to its residue modulo, a fixed, irreduci­
ble polynomial of degree m. For a rigorous treatment on
the theory of finite fields, see Chapter 6 in Peterson [1961].

teed-Solomon Codes

teed-Solomon codes are a special class of BCH
:odes where the message symbols are m-tuples
Reed and Solomon, 1960]. When used for bi­
lary messages, binary symbols must be grouped
lS m-tuples (or characters). A generator polyno­
nial taking the form

~enerates a code with minimum distance of at
east d. Note that the coefficients of the generator
)olynomial and code polynomials are now m­
uples and the distance between two code words
s the number of places wherein corresponding
n-tuples differ. The length of this code is
, = 2m - 1 characters, or m(2m - 1) binary dig­
ts.

Because of their independent-character-error
:orrecting capability, Reed-Solomon codes are
:ffective against multiple bursts of error if they
)ccur within a code block. The decoding proce­
lure is rather complex and usually requires
)rogram implementation. The code efficiency is
Isually attractive when compared with the effi­
:iency of competitive schemes, such as the use of
nterleaved codes. A Reed-Solomon code with a
ninimum distance equal to 12 has been used in

CODING FOR ERROR CONTROL 661

Digital Cypress [Oldman, Chien, and Tang,
1968].

Example Decoders

We indicated previously that burst-error-correct­
ing codes can easily be implemented. This is
illustrated in the following example. A binary
code having as its generator polynomial

g(x) = (x + I)(x4 + x + 1)

= x 5 + x4 + x 2 + 1

is a burst-2 correcting code of length 15, a
decoder for which is shown in Figure A-9. The
registers in the division circuit contain the resi­
due of x3 e(x) modulo g(x), where e(x) is the
error polynomial. Since the syndrome detection
circuit must recognize the syndrome when the
error burst is located at the high-degree end, we
may write the corresponding error polynomial as

e(x) = xI5 - 2b(x)

where hex) is the error-burst polynomial of de­
gree b - 1 = 1. The syndrome of this e(x) is the
residue of x I5 - 2+5 hex) modulo (x5 + x4 + x2

+ 1), which is simply x3 b(x). The existence of

Input
15-bit buffer storage

Figure A-9. Decoder for a burst-2 code.

662 APPENDIX A

Input
7 -bit buffer storage

Figure A-10. Decoder for a single-error-correcting code,

three zeros in this syndrome is taken as the basis
of syndrome detection as shown in Figure A-9.
Once the burst location is determined, feedbacks
in the division circuit can be cut off or, as shown
in 'Figure A-9, nullified by establishing an addi­
tional feedback path. The detected error pattern
(including no error) is then gated through and
removed from the received message coming out
of the IS-bit buffer storage. Switch N is closed
only during the second n-bit cycle.

Another example is the single-error-correcting
code generated by g(x) = x3 + x + 1, a decoder
for which is shown in Figure A-IO. The opera­
tion of this decoder is similar to that shown in
Figure A-9.

In some applications, the input message may
not be in the exact serial form. Combinatorial
decoders or decoders that combine serial and
parallel operations then become distinct possibil­
ities [Gill, 1966; Sih and Hsiao, 1966].

APPENDIX 4: SPECIALIZED
ERROR-CONTROL CODES

Interleaved Codes
The interleaving of codes is just like the time­
division multiplexing of a number of messages.

Each "subcode" consists of symbols separated
periodically by m digits; there are m such sub­
codes. Usually all m sub codes are generated by
the same polynomial g'(x). Clearly, if the length
of the sub code is n', the overall code length is
n = mn'. The generator polynomial of the inter­
leaved code can be shown to be

g(x) = g'(xm
)

where g'(x) is the generator polynomial of indi­
vidual subcodes.

Interleaved codes tend to break up error
bursts, and subcodes interpret them as indepen­
dent errors. Thus, one can use independent­
error-correcting codes of acceptable decoding
complexity against burst or multiple-burst errors,
which might otherwise require a multiple-burst­
correcting code with impractical decoding com­
plexity. On the other hand, a single-burst-cor­
recting code with simple implementation cannot
handle long bursts (e.g., drop-outs) unless the
code is long. In that case, long code words would
be exposed to some additional errors not protect­
ed by the cude. The main disadvantage of inter­
leaved codes is that the redundancy requirement
is relatively high in comparison with that of
multiple-burst-error-correctirig codes.

N-Dimensional Codes

The N-dimensional codes are, as the name sug­
gests, best discussed in geometric terms. Figure
A-II shows a two-dimensional code format in
which each row belongs to a subcode and each
column belongs to another (not necessarily dis­
tinct) subcode.

If d1 and d2 are respectively the minimum
distances of row and column subcodes, then the
two-dimensional code has a minimum distance
d = d1 d2 • More dimensions can be added to the
code to further strengthen the correction capa­
bility.

The above two-dimensional code is equivalent
to a two-level interleaved code. Columns of
information symbols can be considered as being
interleaved with the row subcode, and N itera­
tions of interleaving clearly result in an N­
dimensional code. It is from this point of view
that N-dimensional codes are often referred .to as
iterated codes [Birdsall and Ristenblatt, 1958].
The geometrical interpretation of N-dimensional
codes also enables one to obtain simple imple­
mentations of such codes especially for such
storage devices as tapes and core arrays whose
geometrical configurations are ideal.

An N-dimensional code may also suffer from
the high redundancy requirement when used in
burst channels because of interleaving. Never­
theless, such a code has the attractive feature
that as long as the error rate is reduced in each
level of iteration, more and more iterations will,
in theory, make the error rate diminish while

I
Information I Row

symbols I checks
I
I -------------+------
I
I Checks

Column checks I on
I checks
I
I

Figure A-11. Two-dimensional code format.

CODING FOR ERROR CONTROL 663

keeping the information rate nonzero [Elias,
1954].

Shortened Codes

We have seen that in any cyclic code capable of
correcting single errors, the code length should
not exceed e, the period of the generator polyno­
mial. However, an (n, k) code can be shortened
to become an (n - s, k - s) code by constraining
the s high-degree digits of the code polynomial to
be always zero. These s digits are then omitted
from all code words. The linear sequential en­
coder of Figure A-7 can be used for shortened
codes without change. However, if the decoding
delay is to be n' = n - s digits instead of n
digits, the input of the division circuit in the
decoder of Figure A-8 should be premultiplied
by xS. The same syndrome detection circuit can
then be used [Peterson, 1961, pp. 194-195].

Shortened codes are often used because natu­
ral lengths may not be suitable in some applica­
tions. They can also be used to improve reli­
ability, since with the reduced code length (n
- s), the expected number of errors is reduced
by a factor (n - s)/n. The most attractive feature
of shortened codes, however, is that the maxi­
mum correctable errors may now exceed what
was originally possible with full-length codes
[Kasami, 1963]. This feature is particularly desir­
able with burst-error correcting codes, since the
increased correcting capability presents no extra
decoding complexity. In applications to variable
length messages, codes that have increased capa­
bilities at shorter lengths can achieve additional
reduction in overall error rate.

Threshold-Logic-Decodable
Codes

We have seen that decoding complexity is a
severe limitation to the application of powerful
BCH codes. It is, therefore, desirable to find new
classes of codes with structures that enable one

664 APPENDIX A

to use simple decoding procedure. Codes ob­
tained from projective and Euclidean geometries
have recently been shown to be decodable by
threshold logic [Rudolph, 1967]. We shall illus­
trate the basic concept with a special class of
binary "self-orthogonal" codes [Massey, 1963].

Self-orthogonality is defined on the parity­
check matrix as follows: the set of rows (hi'
h2' ... ,hJ) in a parity-check matrix H with 1 's in
a particular column i are self-orthogonal on the
ith column if, in this set (considered as a sub ma­
trix), no other column contains two or more 1 'so
To decode the digit corresponding to the ith
column of H, we first assume that the error at
this digit is unknown, and that each of the J
parity equations from the set gives an "estimate"
of this error. The majority determines the final
error value. Since an error corresponding to the
ith column has J votes, while an error at any
other position has at most one vote (because of
the self-orthogonality), the majority decision
must be correct as long as the total number of
errors does not exceed J/2. If the self-orthogon­
ality condition can be established for every digit
(not necessarily with the same parity-check ma­
trix), the code is threshold decodable with a
miminum distance at least J + 1.

The most interesting case occurs when the
code is cyclic, because a decoder with the general
form shown in Figure A-8 can be used. The
syndrome detection circuit, in this case, contains
majority logic with inputs from J modulo-2

H=

o 0

o

o
o

0

0

1 0

0 0

0
1

0
1

0 0

0

0

0

1

0
1

0

1

0

adders performing the set of J parity checks
found to be self-orthogonal on the highest-de­
gree digit. We now demonstrate this with an
example.

Self-Orthogonal Decoding
Example

The code generated by g(x) == x lO + X
7 + x6

+ x4 + x 2 + 1 of Equation 4 was shown to be a
(21, ll)-code with minimum distance equal to
six. Using the division circuit of Figure A-4a in
the decoder of Figure A-8, the contents of the
shift-registers (considered as an r-tuple) give the
syndrome of the error, which, in this case, is the
residue of the received polynomial modulo g(x).
The ith column of the parity-check matrix can be
written as the residue of x i

-
I modulo g(x) as in

Equation 6.
This matrix does not satisfy the desired "self­

orthogonality" condition. However, an equiva­
lent parity-check matrix can be obtained by
cyclicly shifting the first row of H in Equation 6.
There are five . such cyclic shifts with a 1 in the
right-most column (because the row has five 1 's)
as shown in Equation 7.

The five rows of H' are self -orthogonal on the
right-most column, since no other column cbn­
tains two 1 'so The minimum distance is 6. Any
row of H', denoted by hi, is a linear combination
of a unique collection· of rows in H and can be

0 0 0 0 1 0 1

0 0 0 0 1 0 1 0
0 0 0 0 0 0 0
1 0 1 0 0
0 1 0 1

(6)
1 0 0
0 1 1 0 0 1

1 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 I 0
1

0 1 0 0 0 0 0 0 0 010
H'= 0 0 0 0 0 1 0 0 0:0

1 0 0 0 0 1 0 0 010

0 0 0 0 0 0 o 11

'synthesized" from the 10 left-most digits by
.dding rows of H (or Equation 6) with 1 's at the
lesired position. These sums are equivalent to
nodulo-2 additions of the contents of the corre­
ponding shift-registers. A complete implementa­
ion of the decoder is shown in Figure A-l2.

Self-orthogonal codes, such as the one just
liscussed, belong to a general class of threshold­
ogic decodable codes, which are derived from
inite geometries. For more details regarding the
ecent developments in threshold decodable
:odes, see Weldon [1966] and Chow [n.d.].

;ynchronization Codes

['he error-control codes discussed thus far deal
vith additive errors, and we assume that there is
lO misidentification of locations of symbols. In
eal transmission or storage systems, however,
ynchronization errors can occur at a bit level,
:haracter level, and even at a higher level, where
he framing of code words is involved. Various
nethods of controlling synchronization errors
lave been suggested. The use of a synchroniza­
ion sequence with a sharp autocorrelation func­
ion [Barker, 1953] sets up the word-framing. To
lvoid subsequent loss of word synchronization
lue to the possible loss of bit synchronization,
uch special sequences may be inserted before
:ach code word, or periodically at longer inter­
rals to avoid the need for excessive redundancy.

When a cyclic code is to be used for error
:ontrol, it is possible to incorporate synchroniza­
ion-error control in the code capability. Since,
n that case, a cyclic shift of a code word is also
l code word, ordinary coding schemes must be
nodified if a slip in word framing is to be

CODING FOR ERROR CONTROL 665

0 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 (7)
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

controlled within the context of a code. There
are three possibilities:

• Add a fixed n-tuple, with a special synchronization
property, to every code word. (Such a code is known
as a "coset code.") The same n-tuple is subtracted
from the received message after the word-framing is
established [Tong, 1966].

• Use a shortened cyclic code to control word-framing
[Tong, 1966].

• Use an extended cyclic code for the same purpose
[Bose and Caldwell, 1967 ; Weldon, 1967].

Recovering errors due to the loss or insertion
of bits within a code block is a different problem
and has' yielded relatively few results [Sellers,
1962; Ullman, 1966]. A more practical method is
the detection of this type of errors accompanied
by a possible request for retransmission.

Convolutional Codes

The relationship between information symbols
and code symbols need not be confined to dis­
joint blocks. In a convolutional (or recurrent)
code, check digits in a given block check some of
the' information digits .in other blocks as well.
One may describe a convolutional code as one
that has overlapping blocks. In a separable linear
code, the generator matrix may be written in the
standard form G= [Ik Pl. Similarly, we may
write the generator matrix for a truncated convo­
lutional code of length n' = m(k + r) as

G=

o
o

Received
message

21-bit storage buffer

h2 h3

Figure A-12. Decoder for a self-orthogonal code.

h4

Majority logic gate
threshold = 21

+

hs hl

Decoded

N

c:I'I
c:I'I
c:I'I

:>
'"0
'"0
tTl
Z
o
X
:>

Here, the first k information digits are related to
:he r following check digits in the same block by
flo and are related to the check digits in the
n - 1 following blocks by PI' ... , Pm-I- The
;orresponding parity-check matrix is the follow­
ng:

[P~ Ir

H = pJ 0

P.J-I 0

0

pJ

PrJ-2

0

Ir

0 pT o J
Although convolutional codes for correcting

:mrst errors [Hagelbarger, 1959; Wyner and Ash,
1963; Berlekamp, 1964] and independent errors
Bussgang, 1965; Robinson, 1965] have been
;tudied, at present they are not as well under­
;tood as block codes. As far as theoretical error­
;ontrol capability is concerned, there appears to
)e no significant difference between block codes
:md convolutional codes [Freiman and Robin­
ion, 1965].

There are two different approaches in decod­
mg a convolutional code. The first is "determin­
Istic decoding," in which syndromes are caIculat­
:!d and algebraic procedures are carried out to
jetermine the error sequence, similar to the
jecoding of block codes. However, if the decod­
Lng results of previous blocks are fed back to
modify syndromes that determine the following
blocks, any decoding error may "propagate" to
mcceeding blocks. Although the error propaga­
tion problem may not be serious, it must be
:malyzed and evaluated when convolutional
~odes are used.

Another method of decoding a convolutional
~ode is known as the "sequential decoding"
technique [Wozencraft, 1957; Fano, 1963; Jeli­
nek, 1968]. With sequential decoding, one evalu­
ates the accumulated likelihood of correct deci­
~ions at each digit and accepts a digit only after
a certain number of succeeding digits tend to
~onfirm (in terms of accumulated likelihood
measure) that the first digit is correct. If succeed­
Lng digits indicate that the first digit is in error, a
~earch through the code tree, based on a prede­
termined algorithm follows, with corresponding

CODING FOR ERROR CONTROL 667

likelihood evaluated, until a satisfactory decod­
ing of the digit is found.

The following can be said about sequential
decoding in general:

• The decoding algorithm is usually flexible enough to
be used on a variety of channels.

• Randomly chosen convolutional codes can be used.
• A computer with large storage is required.
• In theory, given sufficient redundancy, the decoding

error decreases exponentially with the constraint
length n'.

• The decoding effort (in terms of computations or
storage required) is a random variable without an
upper bound, although the expected decoding effort
is bounded.

Constant-Weight Codes

A constant-weight code consists of all n-vectors
of a certain fixed weight (number of 1 's) w. Since
two n-vectors of weight w do not-always result in
a vector sum of the same we:rt, such codes are
generally not linear codes. Constant-weight
codes are useful in asymmetric channels in which
errors of one polarity dominate, since such errors
always change the weight of the code vectors
and, thus, can be detected [Berger, 1961; Frei­
man, 1961]. The minimum Hamming distance
between any two code vectors is two. Therefore,
any combination of an odd number of errors can
also be detected. When n = 2w, the code vectors
can be used directly to specify the exact bipolar
signal sequences to be used in the channel. Such
signals would contain no dc component. This is
a desirable feature, since it is common for a
channel frequency characteristic to assume a
zero at the zero frequency.

Arithmetic Codes

Arithmetic codes have been proposed for use
with computers to control errors that occur in
arithmetic operations as well as in transmission
and storage [Brown, 1960]. Code words are con­
sidered integer numbers, and ordinary arithmetic
operations apply. There is a generator A, similar
to that of cyclic polynomial codes, and the code

668 APPENDIX A

words are all integer multiples of A, within a
certain range of n digits. For binary arithmetic
codes, the number of redundant digits is the
smallest integer r > log2A. Such a code is linear
with respect to arithmetic operations, i.e., ANI
+ AN2 = A (NI + N2) = A N3 .

An error in arithmetic code is defined by
subtracting the transmitted code "number" from
the received number arithmetically. Because of
carries, a "single" arithmetic error may appear as
a burst of errors in the vector representation.

A single-error-detecting arithmetic code can
be obtained by letting A = 3. Since a single
error must assume a magnitude of the form ±2i ,

no single error can change one code number to
another because code numbers must differ by a
multiple of three. Such a multiple can never
assume the form ±i. The arithmetic code length
can be arbitrary.

For single-error correction, the residues of ±i
(i = 0, ... ,n - 1) modulo A (which are similar
to the syndromes in polynomial codes) must be
distinct. For example, with A = 19, we have the
following residues:

2° == 1,2' == 2, 22 == 4, 23 == 8, 24 == 16,

25 == 13,26 == 7,27 == 14,28 == 9, _2° == 18

-21 == 17, _22 == 15, _23 == II, _24 == 3,

_2 5 == 6, _2 6 == 12, _27 == 5, _28 == to

modulo 19

The code length is nine digits with five redun­
dancy digits. Despite their attractive features for
error control in computer-communication sys­
tems, there are few known classes of arithmetic
codes. However, some encouraging results in the
theory of arithmetic codes for multiple-error
correction have recently been obtained [Chien,
Hong, and Prep arata, 1968].

APPENDIX 5: CYCLIC
REDUNDANCY CHECKING

Operation of the CRC in IBM 2400-series mag­
netic tapes is now illustrated. If ai(x), i =0, ... ,
8, indicates the message polynomials on the ith
track, then the CRC character contains the resi­
due

where

c(x) = Co + ci X + ... + c8 x8

8
== L x i+1 ai(x) modulo g(x)

i=O

g(x) = x9 + x6 + x5 + x4 + x 3 + 1

The residue c(x) can be obtained from the divi­
sion circuit shown in Figure A-l3. Comparing
Figure A-l3 with Figure A-4a, it is clear that the
contribution of xao(x) in the residue c(x) is
c(O)(x) == xao(x) modulo g(x). Similarly, be­
cause of the successively advanced inputyoints,
t~e contribution of xai(x) in c(x) is C(l J(x) ==
Xl+ I ai(x) modulo g(x). The complete residue is

8 (i) _
Li=O C (x) - c(x).

The effect of the premultiplication by x at all
inputs is equivalent to an additional shift after
the last digits in a/x) are in the division circuit.
The CRC-coded message in the ith track is
m/x) = xa/x) + ci . When the error-free coded
messages in nine tracks are fed into the division
circuit of Figure A-l3, the shift-register contents
correspond to the residue of

888
L ximi(X) = L xi+lai(x) + L XiCi
i=O i=O i=O

== c(x) + c(x) = ° modulo g(x)

Figure A-13. Nine-bit division circuit.

If an error ei(X) occurs in the ith track, then the
register con ten ts correspond to

modulo g(x) (8)

which is not zero if g(x) does not divide ei(x).
To determine the track i, feed the VRC error

sequence into a second division circuit similar to
the one shown in Figure A-l3, but with the input
point corresponding to that of the eighth track.
An error appears in the VRC sequence when e(x)
~ccurs in any single track. Therefore, the register
:;ontents of the second division circuit corre­
spond to

s'(x) == x8ei(X) modulo g(x)

\1aking 8 - i additional shifts in the original
iivider after s(x) is obtained (and referring to
Equation 8), the register contents are

x8- i s(x) = x8- i xi ei(x) == s'(x) modulo g(x)

matching the register contents of the second
iivider. After the error track is determined by
;hifting and matching the divider register con­
:ents, the track is reread with the VRC error
;equence added to the message. Many errors not
:orrectable by the above procedure, including
my single-track error ei(x) that is divisible by

CODING FOR ERROR CONTROL 669

g(x) and any combination of odd numbers of bit
errors, are still detectable.

REFERENCES

Abraham, Ghosh, and Ray-Chaudhuri [1968];
Abramson [1959]; Albert [1956]; Barker [1953]; Berger
[1961]; Berger and Mandelbrot [1963]; Berlekamp
[1964, 1968]; Birdsall and Ristenblatt [1958]; Bose and
Caldwell [1967]; Bose and Ray-Chaudhuri [1960a,
1960b]; Brown [1960]; Bussgang [1965]; Chien [1960,
1964]; Chien and Frazer [1966]; Chien, Hong, and
Preparata [1968]; Chow [n.d.]; Constantine [1958];
Eisenbies [1967]; Elias [1954]; Elspas and Short
[1962]; Fano [1963]; Fire [1959]; Forney [1965, 1966];
Freiman [1961]; Freiman and Robinson [1965]; Frey
[1967]; Frey and Benice [1964]; Gill [1966]; Golay
[1949, 1958]; Hagelbarger [1959]; Hamming [1950];
Hocquenghem [1959]; Huffman [1952, 1956]; Jelinek
[1968]; Kasami [1963]; Kasami, Lin, and Peterson
[1968]; Lucky, Salz, and Weldon [1968]; Lum [1966];
Massey [1963, 1969]; Muller [1954]; Oldham, Chien,
and Tang [1968]; Peterson [1961]; Prange [1957]; Reed
[1954]; Reed and Solomon [1960]; Robinson [1965];
Rudolph [1967]; Schalkwijk and Kailath [1966]; Sell­
ers [1962]; Shannon [1948, 1959]; Sih and Hsiao
[1966]; Slepian [1956]; Tang [1965]; Tang and Chien
[1966]; Tong [1966]; Turin [1965]; Ullman [1966];
Weldon [1966, 1967, 1968]; Wozencraft [1957]; Wyner
and Ash [1963].

Arithmetic Error Codes: Cost and
Effectiveness Studies for Application in
Digital System Design

Aigirdas Avizienis

4bstract

The application of error-detecting or error-correcting
~odes in digital computer design requires studies of cost
znd effectiveness tradeoffs to supplement the knowledge
'1 their theoretical properties. General criteria for cost
znd effectiveness studies of error codes are developed, and
-esults are presented for arithmetic error codes with the
row-cost check modulus 2n - l. Both separate (residue)
md nonseparate (AN) codes are considered. The class of
nultiple arithmetic error codes is developed as an exten­
~ion of low-cost single codes.

\t1ETHODOLOGY OF CODE
EVALUATION

;cope of the Problem

n this paper the name arithmetic error codes
dentifies the class of error-detecting and error­
:orrecting codes which are preserved during
lrithmetic operations. Given the digital number
epresentations, x, y, an arithmetic operation *,
.nd an encoding f: x ~ x', we say that f is an
.rithmetic-error code with respect to * if and
mly if there exists an algorithm A * for coded
Iperands to implement the operation * such that

A * (x',y') == (x * yr.

) 1977 IEEE. Reprinted, with permission, from IEEE Trans­
'ctions on Computers, Vol. C-20, No. 11, 1971, pp.
322-1331.

671

672 APPENDIX B

The definition applies to single-operand opera­
tions and multi operand operations as well. i.e.,

A * (x') == (* x)'
and

A * (xI' x2' ... ,x~) == (xI * X2 * ... * x,J

must be satisfied in those cases.
Arithmetic error codes are of special interest

in the design of fault-tolerant computer systems,
since they serve to detect (or correct) errors in
the results produced by arithmetic processors as
well as the errors which have been caused by
faulty transmission or storage. The same encod­
ing is applicable throughout the entire comput­
ing system to provide concurrent diagnosis, i.e.,
error detection which occurs concurrently with
the operation of the computer. Real-time detec­
tion of transient and permanent faults is ob­
tained without a duplication of arithmetic pro­
cessors.

The economic feasibility of arithmetic error
codes in a computer system depends on their
cost and effectiveness with respect to the set of
arithmetic algorithms and their speed require­
ments. The choice of a specific code from the
available alternatives further depends on their
relative cost and effectiveness values. This paper
presents the results of an investigation of the cost
and effectiveness of arithmetic error codes in
digital system design. Other new results include
several classes of multiple arithmetic error codes.
The investigation was stimulated by the need for
low-cost real-time fault detection in the fault­
tolerant STAR computer [Avizienis, 1968; Aviz­
ienis et aI., 1971]. Favorable results led to the
choice of arithmetic encoding of both data words
and instruction addresses in this machine. Pre­
liminary reports on parts of the results have been
made on several occasions previously [A vizienis,
1964, 1965, 1966a, 1966b, 1967a, 1967b, 1969].

The Criteria of Cost

For the purposes of this paper a "perfect" com­
puter is a reference computer in which logic

faults do not occur. The specified set of arithmet­
ic algorithms is carried out with prescribed speed
and without errors. For a given algorithm, word
length, and number representation system of the
perfect computer the introduction of any error
code will result in changes that represent the cost
of the code. The components of the cost are
discussed below in general terms applicable to all
arithmetic error codes.

Word Length

The encoding introduces redundant bits in the
number representation. A proportional hardware
increase takes place in storage arrays, data paths,
and processor units. The increase is expressed as
a percentage of the perfect design. "Complete
duplication" (100 percent increase) is the encod­
ing which serves as the limiting case.

The Checking Algorithm

This tests the code validity of every incoming
operand and every result of an instruction. A
correcting operation follows when an error-cor­
recting code is used. The cost of the checking
algorithm has two interrelated components: the
hardware complexity and the time required by
checking. The complete duplication case requires
only bit-by-bit comparison; other codes require
more hardware and time. Provisions for fault
detection in the checking hardware itself are
needed and add to the cost.

The Arithmetic Algorithms

An encoding usually requires a more complex
algorithm for the same arithmetic operation than
the perfect computer. This cost is expressed by
the incremental time and hardware required by
the new algorithm. The reference case of com­
plete duplication does not add any cost of this
type (the algorithms are not changed, but they
are performed in two separate processors). The

set of arithmetic algorithms which is usually
provided in a general-purpose processor is dis­
cussed in the section on Fault Effects in Binary
Arithmetic Processors.

The Criteria of Effectiveness

An arithmetic error occurs when a logic fault
causes the change of one or more digits in the
result of an algorithm. A logic fault is defined to
be the deviation of one or more logic variables
from the values specified in the perfect design.
Logic faults differ in their duration, extent, and
nature of the deviation from perfect values. The
effectiveness of an arithmetic error code in a
computer may be expressed in two forms: as a
direct value effectiveness, and as a design-depen­
dent fault effectiveness.

Value Effectiveness

The most direct measure of effectiveness is the
listing of the error values that will be detected or
corrected when the code is used. These values
are determined by the properties of the code and
are independent of the logic structure of the
computer in which the code will be used. Value
effectiveness for 100 percent detection (or correc­
tion) of some class of error values has been the
main measure of arithmetic codes. For example,
single error detection (or correction) is said to
occur when all (100 percent) errors of value

±cri

are detected (or corrected) in an n-digit, radix-r
number [Brown, 1960; Peterson, 1961, pp.
236-244]. There is no direct reference for algo­
rithms or their implementation. The present
study considers value effectiveness with less than
100 percent detection. Such codes may be useful
when their cost is low and when other means of
fault tolerance supplement the codes in a com­
puter.

ARITHMETIC ERROR CODES 673

Fault Effectiveness

The purpose of arithmetic error codes in digital
systems is to detect the occurrence of logic faults.
The detection enables the system to initiate
corrective action (error correction, diagnosis,
program restart, etc.). In order to assess the
effectiveness of fault detection, the value effec­
tiveness of a code must be translated into a
measure of fault effectiveness for one or more
specified types of logic faults. The translation is
performed separately for every algorithm and
requires an error table for every type of fault. The
error table is generated from the description of
the logic implementation of the algorithm a. The
specified fault </> is applied to every logic circuit
which is used by the algorithm. Every applica­
tion yields an error value E (or a set of error
values {ED by which the fault will change the
perfect value S of the result to the actual (incor­
rect) value S* = S + E. The error table T(a, </»

lists all error values together with their relative
frequencies of occurrence during the compilation
of T (a, </». A comparison of T(a, </» with the
detectable error values of the given code f shows
which entries of the error table are not detecta­
ble. The fault effectiveness of fwith respect to (a,
</» is the percentage of all occurrences of </> which
will be detected (or corrected) when f is em­
ployed. Less than 100 percent fault-effective
codes are of interest when their cost is low,
because other methods of fault tolerance (espe­
cially program restarts) can be used to reinforce
the codes [Aviiienis, 1968; Aviiienis et aI., 1971].
If the fault effectiveness for (a, </» is not suffi­
cient, it may be improved by redesigning the
implementation of a to eliminate some or all of
the undetectable entries of T(a, </».

During the compilation of the error table T(a,
</» an application of the fault </> to a logic circuit
changes the radix-r, n-digit perfect result s ==
(sn-I' ... , sl' so) to an "actual" (incorrect) result
s* which differs from the s in at least one digit.
The digit changes which have taken place are
described by the error number e ==
(en-I, ... , el, eo) defined digitwise as

674 APPENDIX B

for 0 ::::; i ::::; n - 1.

The digits of e are in the range -r + 1 ::::;
e· < r - 1, and e itself represents the error value I-

E in the range

-(rll - 1) ::::; E ::::; rll - 1.

When e is recoded to have the minimum number
of nonzero digits, this minimum number is de­
fined to be the arithmetic distance between sand
s* as well as the arithmetic weight of e [Peterson,
1961, pp. 236-244]. The weight of an error value
has been employed to indicate its relative proba­
bility (single, double, etc.) The results of follow­
ing sections show that the weight of an error
number is data dependent in some algorithms
and therefore not suitable as a general criterion
of fault effectiveness.

Classes of Logic Faults

Single Faults

A single logic fault is the deviation of one logic
variable from the design value. During an inter­
val of time d1j (to be called a use) it has two
possible forms: a) the logic variable is "stuck-on­
zero" (abbreviated SO) when it assumes the ac­
tual value 0 instead of the design value I; and b)
the logic variable is "stuck-on-I" (abbreviated
S 1) when it assumes the actual value 1 instead of
the design value O.

The circuits that are used to store, transmit, or
generate digit values during an algorithm will be
called digit circuits. A single fault is said to be
local if its immediate effect changes the value of
only one digit, i.e., the local fault in position
i(O ::::; i ::; n - 1) of a radix-r operand adds the
value

cr i
, -r + 1 ::::; c ::::; r - I

to the affected number. The value of the error
number is either cr i

, or an arithmetic function of
cr i

, determined by the location of the fault and
the microprogram of the algorithm. A single

fault which immediately affects more than one
digit is distributed. Its effect is expressed as the
cumulative effect of two or more local faults.

One-Use and Repeated-Use Faults

With respect to the microprogram of the algo­
rithm, there are one-use and repeated-use faults.
The fault is a one-use fault when the faulty digit
circuit is used only once before the checking
algorithm is performed. Iterative algorithms
(multiplication, division, byte-serial additio?,
etc.) employ the same digit circuits repeatedly III
order to generate the result; if one of these
circuits is faulty, a repeated-use fault results.
Repeated-use faults differ according to their one­
use effectiveness, duration, and determinancy.
The fault is ineffective during the use Ll7j if the
fault-induced value is identical to the design
value. The fault is transient if it does not exist
during one or more of the uses: otherwise it is
permanent. A transient fault is equivalent to a
permanent fault that is ineffective during some
uses; consequently, transient faults are a subset
of permanent faults. Some types of failures cause
the logic value at a point to become uncertain,
and it is interpreted randomly as either one or
zero during the repeated uses of the faulty cir­
cuit. In these cases neither a constant SO nor a
constant S 1 fault exists for all uses; the fault is
indeterminate and is called "stuck-on-X," abbre­
viated SX. An indeterminate fault has the com­
bined effect of two transient faults (one SO, the
other S 1) affecting the same variable.

Cumulative Fault Effects

A multiple (double, triple, etc.) fault occurs when
two or more faulty logic variables exist during
the same algorithm. Its effect is expressed as the
cumulative effect of two or more single faults. A
review of the fault model shows that the effect of
any fault is equivalent to the cumulative effect of

a set of local one-use faults. The basic fault is
defined to be a local one-use fault (either SO or
S I at ~7j). In the study of fault effectiveness, the
effect of a basic fault is determined for every
digit circuit and every algorithm of a processor
or storage array. The effect of any other fault is
then determined in two steps: a) identify the. set
of basic faults which corresponds to the given
fault: and b) determine the effect (error value, or
set of possible error values) of the given fault by
applying sequentially the basic faults identified
in step a.

The classification of faults is summarized in
Figure B-1.

Criteria of
classification

Number
of faults }
Number of }
digits directly
altered

Use of faulty}
circuit during
the algorithm

Duration of }
fault during
the algorithm

Constancy Of}
the effect of
a fault

ARITHMETIC ERROR CODES 675

FAULT EFFECTS IN BINARY
ARITHMETIC PROCESSORS

Basic Faults in Parallel Arithmetic

The set of arithmetic algorithms which is provid-'
ed in a general-purpose processor includes at
least the eight algorithms listed in Table B-1
either separately or as parts of composite algo­
rithms, multiplication, and division. In this sec­
tion we determine the error magnitudes due to
the existence of a basic (local, one-use) fault in a
digit circuit of a radix-2 processor. A parallel
design is assumed, in which the algorithms of
Table B-1 use the digit circuits of the processor

Fault: incorrect logic value

A
Multiple Single

(set of single faults) A
Local Distributed
~. of local faults)

One use Repeated use
"basic"

A
Permanent Transient A (subset of permanent)

Determinate Indeterminate
~ d (pair of transient I ~etenninate faults)

deviation of Stuck on 1 Stuck on 0 Stuck on 1 Stuck on 0
Direction of }

logic value 1
COincidenCe} ./ ~ .

A (setl of basic 51) (setl of basic SO)

of fault with Effective Ineffective Effective Ineffective

the required
value

Notes

* Membership of set determined by logical design of the net and by the nature of the fault
t Membership of set determined by algorithm being implemented

Figure B-1. Classification of logic faults.

676 APPENDIX B

only once, and the faults are single-use faults.
The error magnitudes I EI which can be generat­
ed by a basic fault and their arithmetic weights
are presented in Table B-1. The radix-2 operands
are n binary digits long (0 ~ i ~ n - I). Two
systems for the representation of negative num­
bers are considered: complements with respect
to Nl = 211 - I (one's complements), and com­
plements with respect to N2 = 2/1 (two's comple­
ments). All operands and results are treated as
unsigned integer values for checking purposes.
The transfer (AI) is included in every other
algorithm; thus the lEI = 2i of a transfer may
occur in every case. If the same register is used
to hold an operand and the result, a repeated-use
fault may result.

Table B-1 shows that error magnitudes of

weights greater than one occur for a single basic
fault. In (A2)-(AS) they assume the form e2f,
with I ~ e ~ 2k

+
1

- I; that is, the nonzero
digits in the error number are contained in at
most k + I adjacent positions. In modulo N
addition and subtraction, every lEI = i with
weight I has an associated I E I = N - 2i, usual­
ly with weights 2 or 3. The origins of error values
with weights greater than I are discussed next.

Arithmetic Shifts (A2, A3)

These are subject to basic faults that affect the
values of the end digits. In the k-digit right shift
(A3) for both complement systems, the left-end
digit x

l1
-1 is replicated k times. A fault in xn-l or

Table B-1. Magnitudes due to a basic fault in a parallel binary processor.

Number System M. = 2n - 1 N2 = 2n

(one's complement) (two's complement)

Error Error
Algorithm Magnitude /E/ Weight W Magnitude / E / Weight W

Al Transfer (applies also to A2-A7 i i
below)

A2 Left shift, k digits 2k - 1 2 2k - 1 2

A3 Righ t shift, k digits 2n- 1- k (2k + 1 2 2n-l-k(2k+1 2
- 1) - 1)

A4 Range extension, 2n- 1 (2k+1 - 1) 2 2n- 1 (2k+1 - 1) 2
k digits 2n(2k - 1) 2 2n(2k - 1) 2

A5 Range contraction, c2n- k I<w c2n- k I < w/2
k digits (I < c < 2k - 1) < Lk/2 < Lk/2 + 1J

+1J
2n-l-k(2k+l 2 211- 1- k (2k + I 2

-1) - 1)

A6 Modulo N addition or 2n - I - 2i 2, (i = 0, 211 - i 1, (i = n - 1)
modulo N subtraction n - 1)

3, (I < i < 2, (0 < i <
n - 2) n - 2)

A7 Additive inverse 2i i
(complementation) Also see (A6)

A8 Roundoff, k digits 2k 2k
Also see (A6) for case (a)

he setting circuit affects k + 1 left-end digits of
he results, giving

/I-I
lEI ~ i.

/I-I-k

n the k-digit left shift (A2), k new digits are
llled in at the right end. They are equal to
'/I-I for NI = 211 - 1, and they are zero for
"2 = 211. In both cases, a fault will generate

k-I
lEI = ~ 2i.

o

~ange Extension and Contraction

n the k-digit range extension (A4), k identical
ligits equal to X

I1
-1 are attached at the left end.

\.n incorrect value of x l1-1 will give

n-I+k
lEI = ~ 2i.

n-I

\. fault in the sensing circuit will give

II-I+k
lEI = ~ 2i.

11

rhe value I E I = i (n ~ i ~ n + k - 1) occurs
vhen one of the new digits is altered by a fault.
rhe k-digit range contraction (AS) is the inverse
)peration, in which k identical digits.cx/I_I' ... ,
en-k) are removed at the left end when they are
~qual to the leftmost remaining digit X/I-A _\ . An
ncorrect removal gives I E I = c211

-
k , with 1

::; c ~ 2k - 1. An incorrect value of x/I-k I
e.g., 1 instead of 0) causes the removal of k
den tical digits (e.g., all Is), giving

11-1
lEI ~ i.

l1-k-1

\IIodulo N Addition or
~ubtraction(A6)

[his requires the "casting out" of N or of - N
'rom the sum or difference, respectively. A basic

ARITHMETIC ERROR CODES 677

fault which locally generates I E I = 2' may cause
an error in the "casting out," either by causing it
unnecessarily, or by inhibiting it when it should
take place. In both cases I E I = N - 2i occurs;
its weight is 1, 2, or 3, depending on Nand i.

The Additive Inverse (A7)

This is the fixed subtraction N - X, called "com­
plementation." For NI = 211 - 1 it is the digit­
wise negation of x. For N2 = 2/1, the negation of
x is followed by the addition of 1 to the least
significant digit, and the addition errors of (A6)
may also occur.

Roundoff (AB)

The, roundoff of k digits (i = 0, ... ,k - 1) is
implemented by one of three methods: a) range
test of xk -I' ... , Xo followed by the addition of
o or 1 to xk; b) always setting xk to 1; and c)
truncation (without arithmetic). Cases a and b
both may have lEI = 2k; case a is also subject
to the addition error of (A6).

Repeated-Use Faults in Binary
Processors

Two classes of algorithms are subject to repeat­
ed-use faults: algorithms (A 1) - (A8) of Table
B-1 in a byte-serial arithmetic processor, and
multiplication and division in a parallel pro­
cessor.

In a byte-serial processor, the kb digits long
operands enter the processor in a sequence of k
bytes, and the digit circuits are used k times. The
length of each byte is b > 1 digits. The value of
k is variable in some processors. A permanent
local fault will affect the same relative position
h(O ~ h ~ b - 1) within each byte. The fault
may be ineffective during some of the k uses.

Of the algorithms in Table B-1, byte-serial
processing directly affects (A 1) - (A3), (A6), and
(A7). The error magnitudes i and N - 2i are

678 APPENDIX B

replaced by the sets of possible error magnitudes
{IEel} and {N - IEel},with

k-I

E = L d·2 hj+h

e)=0)

where ~ = 0 if the fault is ineffective for the jth
byte, ~ = I for an effective S I, and dj = -I for
an effective SO. There are 2k - I nonzero magni­
tudes I Ee I for a determinate (SO or S 1) local
fault, and (3 k

- 1)/2 nonzero magnitudes I Ee I
for an indeterminate (SX) local fault. Which one
of the 2k - I or 3k - 1 nonzero sets of the
coefficients dj occurs is determined by the digit
values of the operand or operands. An equal
frequency of occurrence is assumed here. The
arithmetic weights Ware in the following ranges:
1) for IEel: I ~ W ~ k; 2) for 211 - IEel: 2
~ W ~ k + I; and 3) for (211 - 1) - I Ee I:
2 ~ W ~ k + 2. The end-condition errors of
the shifts (A2) and (A3), the range algorithms
(A4) and (A5), and the roundoff (A8) do not
differ from the parallel case (k = 1, b = n - 1)
and the results of Table B-1 apply.

Parallel multiplication and division may be
intolerably slowed down by the checking of
individual additions and shifts, therefore, the
repeated-use error magnitudes are of interest. It
is assumed that the partial products or partial
remainders are not checked, but returned to the
accumulator as operands for the next step. The
effect of a local fault in the digit circuits is
cumulative, and different positions of the results
are affected by successive steps because of the
shifting. The set of expected error magnitudes is
determined by the details of the algorithm.

Most readily susceptible to analysis are algo­
rithms that employ fixed shifts of b bits. In this
case the error numbers caused by a local fault in
the digit circuits are the same as those developed
during an addition or shift in a byte-serial pro­
cessor with byte length b. End-condition setting
in shifts, multiplier digit recoding, and quotient
digit selection may contribute additional error
values. More error values are also contributed by

the multiple-forming circuits which shift the mul­
tiplicand (or divisor) left to obtain the multiples
2, 4, 8, etc. For example, a fault in the multipli­
cand register with provisions to add cj = 0, ± 1,
±2 times the operand to the partial product
during the jth step affects one of two adjacent
positions (i, i + I) of the sum. The sets of possi­
ble error magnitudes are {I E I} and {N - I E I},
with

k-I

E = L c·d.2bj

)=0 .J .J

where b is the length of one right shift. The set of
error magnitudes for any given variation of an
algorithm and logic structure of the processor is
obtained as the cumulative effect (sum) of appro­
priately shifted contributions of the error magni­
tudes in Table B-1.

LOW-COST RADIX-2 ARITHMETIC
CODES

Implementation of Arithmetic
Error Codes

Arithmetic error codes are classified into sepa­
rate and nonseparate codes [Garner, 1966]. Both
classes possess many common properties, but
differ significantly in their implementation. The
nonseparate code considered is the AN code
[Brown, 1960; Peterson, 1961], which is formed
when an uncoded operand x is multiplied by the
check modulus A to give the coded operand Ax.
The separate codes are the residue code [Peter­
son, 1958], and the inverse residue code [Aviiien­
is, 1967a, 1969], which is a previously unexplored
variant of the residue code. The inverse residue
code has significant advantages in fault detection
of repeated-use faults. The modulo A inverse
residue encoding for a number x attaches a
check symbol x" to form the pair (x, x"). The
value of x" is X":

X"=A-(AIX)=A-x'

where A I X designates the modulo A residue of X.

~Ix is the value X' of the check symbol x'
~mployed in modulo A residue encoding (x, x').
[he inverse residue code is a separate code, since
t has no arithmetic interaction between x and x"
Garner, 1966], and should not be confused with
he nonseparate systematic subcodes of AN codes
Henderson, 1961; Garner, 1966].

The set of undetectable error magnitudes I Em I
called misses in the subsequent discussion) for
>oth AN and residue codes consists of all multi­
,les of the check modulus A:

K = 1,2, ... , L(rn - I)/AJ

'or n-digit radix-r operands. The effectiveness
md the cost of arithmetic checking depends very
;trongly on the choice of the check modulus A.
rhe checking algorithm which establishes wheth­
!r a detectable (or correctable) error exists in the
'esult z for both classes of codes computes the
nodulo A residue A Iz, where Z is the unsigned
nteger value of z. The increase in word length is
:he same for both classes of codes. For radix-2 it
s r log2 Al bits.

The most significant differences of implemen­
tation are caused by the property of separate­
[less. For residue codes, the operands x, y and
their check symbols x', y' enter separate (main
:md check) processors which produce the main
result z (value Z) and the check result z' (value
l'). The checking algorithm computes A Iz and
::ompares it 'to Z'. If the values are equal, either
the correct result has been obtained, or a miss
las occurred. Disagreement indicates a fault in
!ither the main or the check processor; the
lncertainty precludes fault location and error
::orrection without supplementary procedures.
I\.n exception in the check procedure occurs for
iivision X + Y which produces the quotient Q
:md the remainder P. The checking algorithm
::omputes both AIQ and Alp. The check pro­
::essor computes the value (AIQ)' Y' + (AlP)
which is compared to X' for equality [Garner,
1958]. The inverse residue code differs from the
residue code in only one respect: the check result

ARITHMETIC ERROR CODES 679

has the value Z" = A - (A IZ) when an error
has not occurred. The checking algorithm com­
putes A Iz and forms the check sum F
= A I[(A IZ) + Z"], where F = 0 indicates that
either the result is correct, or a miss has oc­
curred.

For the nonseparate AN code the checking
algorithm computes A IZ, where Z is the value of
a result. A IZ = 0 indicates either a correct result
or a miss. A nonzero A Iz indicates a fault: for
certain choices of A the value of A Iz indicates
the error value E for error correction [Brown,
1960; Peterson, 1961; Garner, 1966]. The algo­
rithms of the processor are designed to compute
with product-coded numbers [Avizienis, 1966b].
All intermediate steps of the algorithms must
preserve product coding in order to retain the
error-checking properties in the result. The hard­
ware cost of AN codes is in the greater complexity
of the main processor, while for residue codes it
is in the separate check processor.

The Low-Cost Checking Algorithm

A practical checking method must satisfy both
cost and effectiveness constraints. For radix-2
numbers, every odd integer A > 1 will detect
weight 1 error magnitudes. The search for values
of A which have a low-cost checking algorithm
identified the class of low-cost arithmetic codes
[Avizienis, 1964] which employ check moduli of
the form

A = 2£1 - 1, with integer a > 1.

The parameter a is called the group length of the
code. Since division is a complex algorithm, the
checking algorithms for most odd A > 1 are
relatively costly and slow. The check modulus
2£1 - 1 is an exception because the congruence

allows the use of modulo 2£1 - 1 summation of
the k groups (a-bit segments of value Kj , with
o ~ K j ~ 2a

- 1) that compose the ka-bit num-

680 APPENDIX B

ber Z to compute the check sum (2(/ - I) Iz.
Division by A is replaced by an "end-around
carry" addition algorithm, which "casts out 2(/
- I's" in a byte-serial or parallel implementa­
tion.

It is also important to note that the low-cost
check moduli 2a - 1 are .exceptionally compati­
ble with binary arithmetic. A complete set of
algorithms has been devised for AN-coded oper­
ands [Aviiienis, 1964, 1967a], and an experimen­
tal byte-serial processor with four-bit bytes, ka
= 32, a = 4, and A = 15 has been constructed
for the STAR computer [Aviiienis, 1966b, 1968].
While AN codes are limited to one's complement
(N = 2n - 1) algorithms, the two's complement
(N = 2n) algorithms can be carried out as well
with the separate residue and inverse residue
codes, which also display implementation advan­
tages for mUltiple-precision algorithms. A set of
algorithms for a two's complement inverse resi­
due code processor (including multiple preci­
sion) has been developed to replace the AN code
processor of the STAR computer [Aviiienis et
aI., 1971].

Fault Effectiveness: One-Use
Faults

It was already noted that the check moduli
2° - 1, with a > 1, will detect all weight 1 error
magnitudes 2i , with 0 ~) ~ ka - 1. Further­
more, all error values which can be confined
within a-I adjacent bits of the error number.
(bursts of length a-lor less) will be detected,
since their error magnitudes are g2i , with g in
the range 1 ~ g ~ 2°-I - 1. Only one error
magnitude (out of 2° - 1 possibilities) confined
within a adjacent bits is undetectable (that de­
scribed by a adjacent l's); This is important with
respect to algorithms (Al)-(A5) of Table B-1,
which contains error magnitudes of the forms
(2k - 1)2i and (2k +1 - 1)2) The choice of a
~ k +2 will guarantee complete fault detection
for these algorithms.

F or operands of length n == ka bits, the check

modulus 2a - 1 will detect the one's comple­
ments (2 ka

- 1) - lEI of all detectable error
magni tudes I E I. Some weigh t 2 error magni tudes
will not be detected: the undetectable error
numbers are caused by one S 1 and one SO basic
fault with a certain separation. The fraction 12 of
undetected weight 2 error magnitudes for a > 2
IS

12 = (k - 1)a/[2a(ka - 3) + 6/k]'

For a > 2,12 < 1/2a holds [Aviiienis, 1964].
F or example, given ka = 24, a = 3 yields 12
= 0.166, a = 4 yields 12 == 0.118, and a = 6
yields 12 = 0.071 . The case of a = 2 is an
unfavorable exception, yielding 12 -- 0.5 for any
value of k. The analysis may be continued for
higher weights, due to several independent basic
faults; however, errors due to repeated use of a
single faulty circuit are of more immediate inter­
est.

Fault Effectiveness: Determinate
Repeated-Use Faults

For the case of a determinate local repeated-use
fault discussed earlier in the section on Re­
peated-Use Faults in Binary Processes above,
which considers kb bits long operands processed
in k bytes of b bits each, an analytic solution
indicates very effective fault detection for the
choice b = a [AviZienis, 1965]. All possible
2k - 1 error magnitudes (and their one'scomple­
ments) are detected by the check modulus 2°
- 1 for k < 2° - 1. Only one miss (undetect­
able error) occurs when k = 2° - 1; the count
of misses E: for k ~ 2° - 1 is given by the
expression

Lk/(2Cl -I)J

E: = ~ k!j[)(2a - I)]! [k -)(2a - 1)]! .
i=1

For example, the ~heck modulus a = 15 with
byte length b = 4 allows no misses for words up
to n = 56 bits, and a = 31 with b = 5 up to n
= 150 bits. The expressions for the miss count E:

lre derived by considering all possible ways in
~hich result value 2a

- 1 consisting of all ones
:an be generated by modulo 2a

- 1 summation
)f k contributions of either 0 or 2 11

, with 0 S
lSa-l.

For any choice of the pair (a, b) and the word
ength n = kb = ca, it has been shown that the
irst miss occurs when the word length reaches
he value

n' = c'a(2a/ k ' - 1)

where c' a = k'b is the least common multiple of
1 and b [AviZienis, 1965]. Consequently, the
naximum value of n' results when k' = I,
~iving b = c' a, and

n~ax = c' a(2a - 1) = b(2a - O.

rhe choice of b = 2a will double the "safe
ength"; for example, a = 15 and b = 8 allows
10 misses for words up to 112 bits, and a = 7
md b = 6 up to 36 bits. The minimum value of
l' is obtained when a and b are relatively prime:
n this case we have n~in = abo

The effectiveness of any choice of the pair
:a, b) can be expressed in terms of the percentage
)f misses among all possible 2k - I error magni­
:udes which can be caused by a local determi­
late fault. Given a miss count €, the miss percent-
1ge is obtained as I OO€/ (2k - I), where n = kb
s the word length of the operands. The miss
)ercentages for various word lengths are ob­
:ained using a computer program which tabu­
ated all misses for word lengths up to k = 18
)ytes, check lengths 2 S a S 12, and byte
engths 2 S b S 10 and b = 12 [AviZienis,
1965]. The maximum word length of 18 bytes
'esults in a total of 218 - I = 262,143 possible·
lOnzero error magnitudes. In selected cases the
naximum word length was extended to 20 bytes,
.e., 220 - I = 1,048,575 possible nonzero error
nagnitudes. The miss percentages (for the same
ralues of b) were also tabulated for II moduli A
~hich detect all weight 2 and 5 check moduli
~hich detect all weight 2 and 3 error magnitudes

ARITHMETIC ERROR CODES 681

[Peterson, 1961, pp. 236-44]. The word lengths
used were n, with the requirement that 2" - 1
should be divisible by A.

The results of the tabulation (available in
Aviiienis [1965]) show that for a and b relatively
prime, the percentage of misses rapidly becomes
100/ (2a

- 1) after the first miss which occurs at
word length n' = ab (the minimal case). For
other pairs (a, b), the miss percentages beyond
the word length n' tend to overshoot 100/ (2([
- 1) and then go below 100/(2a - 1) with in­
creasing word length. The weight 2 and weight 2,
3 detecting check moduli A display miss percent­
ages which are comparable to those of relatively
prime (a, b).

Fault Effectiveness: Indeterminate
Repeated-Use Faults

A local indeterminate fault (used m times) will
contribute to the error magnitude in one of 3111

possible ways. During each use the contribution
will be 0, i, or - i with various values of i. For
the same repeated-use model as used in the
preceding section, the choice b = a, and the
word length ka, the number of misses €' due to
the indeterminate fault (excluding the determi­
nate subset) is given by the expression

Lk/2J
€' = ~ k!/2[(k - 2j)!](j!)2.

j=1

The total count of possible nonzero error
magnitudes is (3 k - 1)/2. The miss percentage
100€'/2(3k - 1) is highest for k = 2 and gradual­
ly decreases with increasing k. For values k
~ 2a - I the determinate subset contributes the
miss count €, and the total number of misses is
€ + €'. We also note that the value of €' is
independent of a. Table B-2 lists the miss per­
centages (excluding the determinate subset) for
the byte counts 2 S k S 12.

Given any pair (a, b), the first miss due to an
indeterminate fault (excluding the determinate

682 APPENDIX B

Table 8-2. Miss percentages for byte counts 2 <
k < 12.

k (3 k - 1)/2 e' Miss %

2 4 1 25.00

3 13 3 23.08

4 40 9 22.50

5 121 25 20.66

6 364 70 19.23

7 1093 196 17.93

8 3280 553 16.86

9 9841 1569 15.94

10 29524 4476 15.16

11 88573 12826 14.48

12 265720 36894 13.88

subset) occurs when the word length exceeds the
least common multiple of a and b, that is, the
first miss occurs for the word length n", where

n" > c'a

where c'a = k'b is the least common multiple.
Consequently, the maximum safe length n is
attained for a and b relatively prime, with n;~ax

> abo In this case the first miss is due to the
determinate subset and occurs for n" = abo For
other choices of the pair (a, b) we observe

The total miss percentages 100(€' + €)/2(3"
- 1) are of interest in the cases b =1= a as well.
An exhaustive tabulation by means of a com­
puter program was performed for word lengths
up to k = 12 bytes; that is, (3 12

- 1)/2
= 265,720 nonzero error magnitudes were con­
sidered. The check lengths were again 2 :::; a
:::; 12, and the byte lengths were 2:::; b
:::; 10 and b= 12. It was observed that for rela­
tively prime pairs (a, b) the miss percentages
were close to 100/(2a - 1), becoming greater for
pairs with common divisors, and reaching the

maximal values of Table B-2 for b = a and
b = c' a. Complete results of the tabulation are
presented in [Avizienis 1965].

It is noted that the most favorable choices of
pairs (a, b) in the determinate faults are the least
desirable choices for indeterminate faults, and
vice versa. The choice of the most suitable values
therefore depends on the relative frequencies of
these two types of faults.

Repeated-Use Faults in Residue
Codes

The results of the preceding sections on repeat­
ed-use faults apply directly to the fault effective­
ness of the low-cost AN codes (20 - OX. The
low-cost residue codes in the byte-serial pro­
cessor suffer a serious disadvantage because of a
new variety of an undetectable repeated-use de­
terminate fault. The miss occurs when the check
symbol x' of value (2a - 1) I X uses the same digit
circuits as the operand X. In this case, the fault
affects the relative position h(O:::; h :::;
b - 1) in x' as well as in every byte of x, and a
compensating error may occur. In the preferred
choice b = a, the miss will occur whenever the
position h in x' and exactly one position in x are
altered by an SO or S 1 fault. For example,
consider the modulo 15 residue encoding

x = 0010, 0011, 0101, x' = 1010.

An S 1 fault sets the rightmost (h = 0) bit to 1 in
every byte of x and in x' (boldface indicates
changed bits) to give X*, x'*:

x* = 0011,0011,0101, x'* = 1011.

The checking algorithm yields l5lx* = 1011
which is equal to X'*, and a "compensating
miss" occurs which is independent of the length
of x as long as only one byte in x is affected.

The compensating miss is eliminated by the
use of the inverse residue code in which
X" = (2a - 1) - X' is substituted for X'. Con­
sider the preceding example with the inverse

residue X" = 1111 - 1010 = 0101 replacing
X'. The same SI fault causes

x* = 0011, 0011, 0101, x"* = 0101.

The check yields 151 X * = 1011: adding X"*
modulo 15 gives the result 0001 which indicates
an error, since it is not equal to 1111.

The fault remains detectable even when one
change each occurs in x and x'. Consider the
previous example with a new operand y and its
inverse residue y":

y = 1000, 1101, 0101, y" = 0100.

The check gives 151 Y = 1011, and 151 Y +
Y" = 1111, i.e., no error. The previous SI fault
causes

y* = 1001, 1101,0101, y"* = 0101.

The check gives 151 Y* = 1100 and 151 Y* +
Y"* = 0010, indicating an error.

The compensating miss does not occur be­
cause the change 0 ~ 1 in y" corresponds to the
change 1 ~ 0 in y'. The first miss will occur
when y * consists of 14 bytes, each containing a
zero in the rightmost position n = O~ and y" also
has a zero in h = O. All results of the determi­
nate fault effectiveness study are directly appli­
cable to the low-cost inverse residue codes. This
result led to the choice of modulo 15 inverse
residue codes for both data words and address
parts of instructions in the fault-tolerant STAR
computer [Avizienis et aI., 1971].

MULTIPLE ARITHMETIC ERROR
CODES

Multiple LOW-Cost Codes

The preceding section treated single codes which
use only one check modulus. A study of fault­
locating properties of the low-cost codes led to
the observation that the use of multiple codes
with two or more check moduli could provide
complete fault location, corresponding to error
correction [Avizienis, 1965, 1967a]. Continued

ARITHMETIC ERROR CODES 683

study of multiple encodings has led to the devel­
opment of several new varieties of arithmetic
error codes, first discussed in [Avizienis 1969].*

First it is shown that a single low-cost check
modulus 2a - 1 has partial error-location prop­
erties in both AN and residues codes. Consider
the error value pairs (0 ~ i ~ ka - 1):

{i; _(2ka - 1) + 2i} and

{_2i;(2ka - 1) - 2i}

that may be caused by a basic fault during a
transfer or one's complement additive inverse,
shift, or addition (the operand is ka bits long).
Writing the value of 2i as a radix-2a number, we
have

h = i - ja.

The index h = i -)a is called the intra-group
index and) is called the group index. Their ranges
are

O~h~a-l

I t is evident that

and O~)~k-1.

2a12 h2)a = 2al[_(2ka - 1) + 2h2)a] = 211

2al(_2h~)a) = 2al[(2ka - 1) - 2h2)(1]

= (2(/ - 1) - 211.

The sign and the intra-group index h are unique­
ly identified for the error values ±2i

, even if the
value of the end-around carry is incorrect due to
the addition of ±2i. The a-bit residue 211 has a
single 1 digit, and (2a - 1) -:- 2 h has a single 0
digit. For example, (with h = 3, a = 4) the

* Multiple arithmetic encodings have been recently described
in Rao [1970] and Rao and Garcia [1971]. It must be noted
that the use of multiple check moduli for single-error
correction was first described in Aviiienis [1965, pp. 12-13]
and [1967a, pp. 36-37], and details were presented in
Aviiienis [1969], considerably prior to Rao [1970] and Rao
and Garcia [1971]. Papers by Aviiienis [1965, 1967a] and
additional communication on the topic were supplied to
Garcia at a UCLA short course in April 1968.

684 APPENDIX B

residue is 1000 for the error 23+4),

and 0 III for - 23+4}.

In the case of AN low-cost codes, the mod'ulo
2a - I checking algorithm directly yields the
check sum residues described above. In the case
of residue low-cost codes, the main result X and
the check result X' are computed. The checking
algorithm must compute the a-bit check sum F:

F = (2a
- 1) I [(2a

- I)lx + (2a
- 1) - X'].

A correct result (X, X ') will yield the all ones
form of F = O. It is readily shown that an
erroneous main result X ± i yields F =

(2a - I)I(±2h), identical to the check sums of
the AN code. An erroneous check result (2a - I)
I(X' ± 2h) yields F = (2a

- 1) I (+2h), and the
sign information becomes ambiguous: 1000 indi­
cates the error +23+4) in the main result, or the
error -23 in the check result. The ambiguity is
eliminated by the inverse residue codes which
use X" = (2a - I) - X' as the check result. The
check sum for the inverse residue code is

G = (2a
- I) 1[(2a - I)lx + X"].

When X" is correct, G = 0 is represented by the
all ones form. An error in the main result X gives
the same check sum as for the residue code. An
erroneous check result has the value (2a - 1)
I(X" ± 2h), which replaces X" and yields the
check sum G = (2a - I)1(±2h

). Both the sign
and the intra-group index h are known. The
group index j remains unknown; it is also not
known whether the check result or the main
result is in error.

The preceding result has two applications.
First, it has been used to derive the miss percent­
age equations for repeated-use faults in the sec­
tion above on Low-Cost Radix-2 Arithmetic
Codes. Second, it has led to the observation that
the use of more than one low-cost check modu­
lus will permit the unique identification of the bit
index i of the error values ±i, and subsequent
error correction, while using only the low-cost

check moduli 2al - 1, 2a2 - 1, etc. [Aviiienis,
1965, 1967a].

The check modulus Ai = 2ai - 1 has the
group length of ai bits. Given the pair (a),
a2) with GCD (aI,a2) = 1, there will be a) a2
distinct pairs of intra-group indices

o ~ hI ~ al - 1,

o ~ h2 ~ a2 - 1.

For example, al = 3 and a2 = 4, yield twelve
pairs of indices:

hI = 12, 1,012, 1, 012, 1,012, 1, 01

h2 =13,2,1,013,2,1,013,2,1,01·

The same observation applies to sets of three or
more group lengths {aI' a2' ... ,am} which are
pairwise prime. The length of the binary number
for which distinct sets of intra-group indices
{hI' h2' ... ,hm} exist is p bits, while the encoding
requires s bits, with

m

p = II ai
i=i

and

For example, the choice of a) = 3, a2 = 4, a3
= 5 will give p = 3 . 4 . 5 = 60 distinct sets of
three intra-group indiCes with s = 3 + 4 + 5
= 12 bits used for encoding [Aviiienis, 1965,
I967a].

The effect of the m-tuple low-cost code with m
pairwise prime group lengths {aI' a2' ... ,am} is
the same as the effect of a 'code with a single
check modulus 2P - 1 with respect to single­
error correction and double-error detection for
error values ±iand +(2 P - 1 - 2i) over 0 ~ i
~ P - 1. Burst-error detection is 100 percent
effective for all bursts up to and including s - 1
adjacent positions. Most important, the m sepa­
rate low-cost checking algorithms are retained by
an m-tuple low-cost code. One low-cost check is
sufficient to detect the error values for which
correction is possible; the other checks need to

be performed only when an error is indicated
and may share the same hardware.

Both AN and residue codes are suitable for
multiple low-cost encoding. In the case of ordi­
nary and inverse residue codes, the use of more
than one check modulus resolves whether the
error is in the main or in the check result: if only
one check result indicates an error, it is incor­
rect; if all check results indicate an error, then it
is traced to the bit i in the main result by the set
of intra-group indices. The sign ambiguity of
single residue codes is eliminated, and correction
takes place either in the main result, or in the
incorrect residue. An important difference be­
tween multiple low-cost residue and AN codes is
the length of the uncoded information word. The
nonseparate AN codes allow p - s information
bits, while the separate residue codes allow p
information bits, with the s check bits added on
as separate check symbols. Residue codes with
the same number of check bits provide the same
performance for a longer information word. The
separateness of residue codes leads to a simpler
design of the main processor which deals with
uncoded operands, rather than with multiples of
the check moduli which are used in the AN code
processor.

The use of two or more low-cost check moduli
permits multiple "mixed" low-cost encodings.A
mixed low-cost code is a single or multiple low­
cost AN code (p bits long) with a low-co~t residue
encoding (single or multiple) of the AN-coded
words. Given the moduli {A I' ... ,A nJ, the
mixed codes possess the same error-location
properties as the corresponding uniform (AN or
residue) multiple codes. For an example, consid­
er the moduli {7, 15, 31}, with al = 3, a2 = 4, a3

= 5. The uniform residue code has p = 3 . 4 . 5
= 60 information bits and s = 3 + 4 + 5 = 12
check bits. The uniform AN code has p - s = 48
information bits encoded with A = 7 . 15 . 31
= 3255; however, the checking algorithms re­
main separate modulo 7, 15, 31 low-cost checks.
Six versions of the mixed code are available:

ARITHMETIC ERROR CODES 685

three with double-residue encoding: (7, IS), (7,
31), (IS, 31); and three with single-residue en­
coding: (7), (15), (31). In all six cases the AN­
coded word must remain p = 60 bits long; e.g.,
the AN code with A3 = 31 has 55 information
bits and 5 check bits, plus the 7 check bits of the
double residue code with Al = 7, A2 = IS. The
error location algorithm uses the intra-group
indices as in the uniform codes; an error in the
main result is identified by the AN code check.

IIHybrid-Cost" Forms of Multiple
Codes

In this section it is shown that the partial error­
location property of the low-cost codes provides
a low-cost extension of the range of other (non­
low-cost) error-correcting codes. Hybrid-cost ar­
ithmetic error codes are multiple codes with a set
of moduli {AI ,A 2 , ••• ,Am} which includes one
or more low-cost check moduli Ai' as well as one
or more non-low-cost check moduli A j with the
properties of error correction [Brown, 1960; Pe­
terson, 1961, pp. 236-44; Henderson, 1961; Gar­
ner, 1966].

A hybrid-cost code (for example, the double
code with moduli A, A'), offers two advantages
over one error-correcting check modulus A'.
First, the low-cost code (modulo 2a - I) check­
ing algorithm alone is sufficient to detect errors
which are corrected by A'. Second, suitable
choices of the pairs (A, A') permit the use of the
intra-group index h of the low-cost code (h = 0,
1, ... ,a - 1) to extend the range covered by A'.
Given a single-error-correcting check modulus
A' with the period of g bits, and the low-cost
check modulus A = 2a - 1 such that GCD (g, a)
= 1, it is evident that the intra-group index h
extends the range of the hybrid-cost code to
p' = g . a bits. For example, A' = 23 gives dis­
tinct values of the residue 231(±i) for 0 :::; i
:::; 10, 11 < i < 21, etc., identifying uniquely
the index i and the sign of ±i for an II-bit
operand [Brown, 1960]. Together with A = 2a

686 APPENDIX B

- I, the length for unique identification of the
index and sign is Ila bits as long as GCD (I I, a)
= I [Avizienis, 1969]. The use of i ~ 2 low-cost
check moduli (AI' ... ,Aj) with some A' will give
the combined effect of the i-tuple low-cost code
with the error-correcting properties of A', as long
as the check moduli have pairwise GCD = I.

Three distinct classes of i-tuple hybrid-cost
codes (with J 2 2) can be identified: 1) uniform
AN codes; 2) uniform residue codes; and 3)
mixed (AN + residue) codes. The codes are
similar to low-cost multiple codes described pre­
viously with the exception that one or more
check moduli A j are non-low-cost. Differences
between the three classes of codes appear in their
implementation. The hybrid-cost AN codes AA I X
have the disadvantage of a costlier and slower
implementation of arithmetic algorithms, since
A I is not a low-cost check modulus. The hybrid­
cost residue codes avoid these difficulties be­
cause they are separate. The use of more than
one check modulus resolves the question whether
the error is in the main or in the check result. In
a double hybrid-cost residue code with the check
moduli (A, A') the low-cost modulo A check is
carried out each time for error detection. An
error indication initiates the modulo A I check. If
the latter does not indicate an error, then the
modulo A check result is incorrect, and correc­
tion of the check result follows. If the modulo A I
check result also indicates an error, then the
main result is corrected, using both check results.

The mixed hybrid-cost codes have two major
variants: I) low-cost AN code with modulo A'
residue encoding; 2) error-correcting A'X code
with modulo-A low-cost residue encoding. The
first variant gives simple algorithms in the main
processor, but must resolve the problem (existing
also for hybrid-cost residue codes) of checking
the error-correcting modulo A I residue if the
modulo A I check is used only after detection
using low-cost A. The second variant (preferably
with inverse residue code) gives simple residue

checking for error detection, but requires com­
plex algorithms in the main processor which
operates on multiples of the non-low-cost check
modulus A'. Other minor variants of mixed
hybrid-cost codes are created when two or more
check moduli are used for the AN part and/or the
residue part. Each part, in turn, can be low cost
or hybrid cost. '

In conclusion it is noted that the use of
multiple low-cost and hybrid-cost arithmetic en­
codings offers a variety of implementations.
Fault location and error correction by means of
multiple encodings employs the low-cost codes
alone as well as to extend the range covered by
error-correcting codes. It is also important to
observe that multiple encodings permit the use of
residue codes for error correction, since they
distinguish whether the error is in the main result
or in one of the check results. This information
is not available with one residue and the gener­
ally less convenient nonseparate AN codes have
to be used in single encodings. Detailed consid­
eration of multiple en co dings is presented in
Avizienis [1969]. Finally, it should be noted that
the concepts of multiple encoding (AN, residue.
and mixed) are applicable to multiple non-Iow­
cost check moduli as well.

ACKNOWLEDGMENT

The author wishes to acknowledge stimulating
discussions with D. A. Rennels, D. K. Rubin, J.
J .. Wedel, and A. D. Weeks of the Jet Propulsion
Laboratory, Pasadena, Calif.

REFERENCES

AviZienis [1964, 1965, 1966a, 1966b, 1967a, 1967b,
1968, 1969]; AviZienis et al. [1971]; Brown [1960];
Garner [1958, 1966]; Henderson [1961]; Peterson
[1958, 1961]; Rao [1970]; Rao and Garcia [1971].

Recent Developments in the Theory and
Practice of Testable Logic Design

R. G. Bennetts R. V. Scott

Abstract

This paper surveys and summarizes the major contribu­
tions to the theory and practice of testable logic design.
The first part, dealing with the theoretical procedures,
discusses the design of easily testable combinational,
sequential, and iterative networks, illustrating major
techniques with common running examples. The second
part comments on the more practical aspects such as
board layout, test point siting, and other facilities for
easing the problems associated with testing.

INTRODUCTION

Interest has been focussed recently on the prob­
lems of designing and implementing logic cir­
cuits that are "easily testable" (a term we will
define later). This paper is a natural extension to
the large amount of research effort that has been
devoted to the generation of test sequences for
logic circuits [Bennetts and Lewin, 1971] and
constitutes an attempt to present some of the
major considerations and techniques that have
been described in the literature. It has the dual
objective of both reviewing the literature and
discussing the concepts of some of the design
algorithms contained therein. In most cases, de­
tailed descriptions of the algorithms are omitted,
but their effect on the design of an actual circuit
is shown, hopefully enabling the reader to make
some assessment of their value.

The paper divides into two main sections. The
first discusses techniques for constraining the

@ 1976 IEEE. Reprinted, with permission, from COMPUTER,
June 1976, pp.47-63.

cc

687

688 APPENDIX C

logic design itself-the end product being a logic
circuit schematic-whereas the second relates to
the more practical aspects of implementation:
board layout, single-shot facilities, test point
si ting, etc.

The paper as a whole, therefore, attempts to
show what effect "testability" can have on digital
circuit engineering, and this reflects the short­
comings of test sequence generation algorithms.
These shortcomings, which have been discussed
more fully elsewhere [Bennetts, 1974] by one of
the authors, are due to such factors as circuit
complexity and size, computational limitations,
shortcomings of the algorithms and the stuck-at­
model upon which they are based, limitations of
the testing system, etc. Although considerable
research effort is being devoted to overcome
these limitations, it has long been recognized
that constraints must eventually be placed on the
actual design, in order to produce logic circuit
designs that are "easily testable." Reddy [1974]
has defined an easily testable network as one
having the following properties: (1) small test
set; (2) contains no logical redundancy; (3) test
set can be derived without much extra work,
either during the design phase or after the net­
work is defined; (4) structure of the test set is
such that it is both easy to generate and interpret
the results; (5) faults locatable to the desired
degree.

This list is qualitative only, but for the purpose
of this paper it will serve as a working definition
for "easily testable" circuits. Various other prop­
erties may also be desirable and can be added to
the list-e.g.: (6) final gate-count should not be
excessively high compared with a "normal" im­
plementation; (7) minimum number of addition­
al primary control inputs and observable outputs
used to enhance testability.

THEORETICAL DEVELOPMENTS

This section discusses design algorithms for com­
binational and sequential logic and comments
briefly on the design of easily tested iterative
arrays.

A~---....,

B

Z = ABC + BE

Figure C-1. Simple combinational circuit
example.

Combinational Circuits

The various procedures to be introduced will be
illustrated where possible by the following simple
Boolean function:

z = J(ABC) = A lic + Be (1)

A normal AND-OR-INVERT implementa­
tion of this function is shown in Figure C-l; a
minimal test set to detect any single stuck-at-l or
stuck-at-O (s-a-l, s-a-O) fault on either the pri­
mary inputs, primary input fanout branches, or
gate outputs is given by:

T = {A liEjz,AliC/Z,A BCjZ,ABEjz,

ABCjZ}
(2)

(This result is obtained using the Boolean differ­
ence approach [Bennets, 1972] and incorporating
the concept of pseudo-primary inputs [Bennetts,
1973] to generate specific tests, if they exist, for
primary input fanout branches.)

The Reed-Muller Expansion
Technique (Reddy)

In the paper by Reddy already mentioned [1974],
a design technique is presented for realizing any
arbitrary n-variable logic function using AND
and EOR (exclusive-OR) gates only, and having
the following properties:

I. If the primary input leads are fault-free, then a
fault-detection test set of only (n + 4) tests exists.

2. If the primary inputs themselves could also be
faulty, then the number of fault-detecting tests is
increased by 2ne (defined later). It is also shown

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 689

that this can be reduced back to (n + 4) by the f(A BC) = ABC + Be (already disjoint)
addition of one extra AND gate whose output is
observable. = A BC ffi BC

The basis of the technique is to determine the
Reed-Muller expansion [Mukhopadhyay and
Schmitz, 1970] of the function and to implement
this directly. The Reed-Muller expansion is a
special case of the more general ring-sum expan­
sion of a logic function-the latter being defined
in the following manner:

f(xl x2 ... xn) = Co ffi cl xI ffi c2x2 ffi ...

ffi cn xn E9 cn+ I xI x2 ffi cn+2 xI x3 ffi . . . (3)

.ffi C2n-1 xI x2 ... xn

where Xi is either xi or Xi and Cj a binary constant
o or l. Note that in the full expression, Xi can
either take its true (x) or complemented (x;)
value, but not both. If all x/s take their true
(uncomplemented) value, then this special case is
known as the Reed-Muller expansion or, alterna­
tively, complement-free ring sum expansion of
the logic function.

The Reed-Muller expansion for a function can
be formed in two distinct stages. The first uses
the fact that the OR operators in an s-o-p
expression can be directly replaced by exclusive
-OR operators if all the terms are originally
disjoint-i.e., mutually exclusive. (Bennetts
[1975], describes a simple test and modification
procedure for converting any s-o-p to an equiva­
lent· sum of mutually-exclusive products.) Full
conversion to a complement-free Reed-Muller
form makes use of the identity

to replace all complemented literals present in
any term. Two other identities are used:

x;(xj ffi Xk) ~ Xi Xj ffi Xi Xk

and

o ffif(X) ~ f(X).

Applying these to f(ABC) in (1) has the follow­
ing result:

= A C (B ffi 1) ffi B(C ffi 1) (4)

= ABC ffi AC ffi BC ffi B

= 0 ffi B ffi AC ffi BC ffi ABC

A direct implementation of (4) is shown in
Figure C-2; the dotted output will be explained
later.

Kautz [1971] has shown that to detect a single
faulty EOR gate in such an array, it is sufficient
to supply a set of test inputs which will apply all
possible input combinations to each cell. For the
type of array shown in Figure C-2,such a test set
1) is given by:

D A B C

0 0 0 0

1)=0 four input vectors (5)

1 0 0 0

1 1

The form of the 1) test set is always the same
independent of the number of input variables n,
and constitutes four tests only. In addition to the
EOR gate fault-cover, Reddy demonstrates that
this test set will also detect (1) any s-a-O fault on
an AND gate input or output (tests 0111, 111 1)
and (2) any s-a-l fault on the output of any
AND gate (tests 0000, 1000).

Ao-----~----------~--~~-­

Bo-~--~----~----~---+--­

Co-T---4-~--4-~--4-~~~--

Figure C-2. Reed-Muller implementation for
((ABC).

690 APPENDIX C

It remains therefore to provide a test set 12 to
detect s-a-l faults on the AND gate inputs. This
is achieved by observing that to test an AND
gate input s-a-l, it is necessary to set that input
to 0 with all other inputs to 1. The fault-free
output is then 0 changing to 1 if the s-a-l fault
exists, and this fault-effect is then further propa­
gated through the EOR gates to the primary
output. A systematic way of checking for all
AND gate inputs s-a-l, therefore, is to succes­
sively set one primary input to 0 and all others to
1. For example, 12 is given by:

D A B C

12=
x 0 1 1

n input vectors
x 0 1 (6)
x 1 0

(x is "don't care")

Thus, for an n-variable function, 12 will contain
n tests and the full test set T(= 1) + 12) will
contain (n + 4) tests.

This result is based on the primary inputs
themselves being fault-free; i.e., single s-a-l, s­
a-O faults are assumed to occur only on the
fanout branches to the AND gates. If this restric­
tion is lifted, the paper shows that the number of
tests is increased by a factor 2ne where ne is the
number of input variables that appear an even
number of times in the product terms of the
Reed-Muller expansion-i.e., ne = 1 (input A)
in (4). Reddy also demonstrates how this addi­
tional set of 2ne tests is removed by an extra
AND gate with its output made observable. The
inputs to this AND gate are those appearing an
even number of times in the Reed-Muller prod­
uct terms, and if the circuit is modified so, the
original (n + 4) tests in T are then sufficient to
detect single s-a-O, s-a-I faults on the primary
inputs themselves. The modification for the ex­
ample is very simple since only one of the
variables-A-occurs an even number of times.
It is sufficient, therefore, to allow direct monitor­
ing of A as shown by the dotted output in Figure
C-2.

A later extension to this work has been report-

ed by Kodandapani [1974] in which he notes that
one of the test vectors in the 4-vector test set 1)
can be removed by assigning the don't-care
variable D in the test set 12 in a specific manner.

The input combinations 00, 01, and 11 are
applied to each EOR gate by the 0000, 0111, and
1111 vectors of 1) respectively. Kodandapani
observes that it is possible to apply the remaining
10 input by assigning values to the don't-care
variable in 12 rather than by using the 1000
vector in 1).

The algorithm is based on a re-ordering of the
terms in the Reed-Muller expansion with identi­
fication of certain subsets of product terms con­
taining xl' Xl X2' Xl X2 X3' etc. Each subset is then
ANDed with an appropriate vector of the 12 test
set, and the result produces the complement of
the assignment to be given to the don't-care
variable for that particular vector. The validity
of the procedure and a description of the algo­
rithm are presented in the paper; the result, in
this case, is given by:

T.
~l

and

D A B

0 0 0
=

0

D A

1 0
12=0

o

C

0

B C
1 1
o 1

o

thrpp lnnllt "p{'tr"\r~ ("7\
-... -- "'r-' .. __ ... "' ... u

\ I J

n input vectors (8)

The two major objections to the Reed Muller
technique are (1) the prohibitive cost of imple­
mentation (each multi-literal term in the Reed­
Muller expansion implies one EOR gate and at
least one AND gate) and (2) the corresponding
excessive propagation delay.

Reddy comments on the second point in the
1974 paper. The following section describes an
alternative technique, again by Reddy, that al­
ways results in a three-level implementation.

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 691

Three Level OR-AND-OR
Technique (Reddy)

This technique [Reddy, 1972b] is a combination­
al circuit design procedure in which any single s­
a-lor s-a-O fault is locatable within certain fault
indistinguishability constraints and which results
in networks having up to three levels and em­
ploying only AND and OR gates. The applica­
tion of the procedure is restricted to positive
unate logic functions* and produces three level
OR-AND-OR implementations in which every
distinguishable fault is locatable. The process
commences with the design of an irredundant
three-level OR-AND-OR prime tree. The defini­
tion and synthesis of prime trees have been
presented by Dandapani and Reddy [1974].
Briefly, a prime tree is defined as the following:

• A restricted tree network consists of AND, OR, and
NOT gates only and has the restriction that any
input to a NOT gate is a primary input.

• A restricted prime tree is a restricted tree network
implementing a function j and satisfying the follow­
ing conditions:
• If the primary output gate is an OR type and if

j = 'l\ + 12 + ... + 1'p where 1j is a product of
literals then 1j is a prime implicant of j, 1 < i
<po

• If the primary output gate is an AND type, and
if j = V\ . V2 • ••• Vq where ~ is a sum of
literals, then ~ is a prime implicate of 1, 1 < i
< q. (Examples of restricted prime trees are
given in Dandapani and Reddy [1974], Figure
5.)

· A prime tree is a tree network containing AND, OR,
NAND, NOR, or NOT gates which is either a
restricted prime tree in its own right, or whose test­
equivalent network [Kohavi and Kohavi, 1972] is a
restricted prime tree.

The procedure presented in Reddy [1972b]
commences with a prime tree implementation of
the original unate function and then applies
certain network modification procedures aimed

* A logic function j(x) x2 ... xn) is unate if and only if it is
representable as a sum-of-product or product-of-sum ex­
pression in which no literal Xi appears in both its comple­
mented and uncomplemented form. A positive unate func­
tion is one in which all x;'s are uncomplemented.

at enhancing the fault distinguishability proper­
ties of the tree.

In reality, of course, many functions are not
unate, but Reddy suggests that if true and com­
plemented versions of primary inputs were avail­
able from independent sources, the function
could be converted to a positive unate form by
considering the complemented variables to be
independent. For example, j(ABC) in (1) is not
unate, but could be converted to such if Ii and C
are considered to be independent variables a and
f3 respectively. This would modify the function
to:

j(ABC) = AaC + Bf3 (9)

The prime tree realization of (9) is, unfortu­
nately, a trivial network (it results in a two-level
rather than three-level network) and does not
really illustrate the technique. To convey some­
thing of the application of the process, however,
Figure C-3 is borrowed from Reddy [1972b] and
demonstrates the totally fault-locatable imple­
mentation for the logic function given by:

j(AB, . .. , K) = ACEF + BCEF + ADEF

A

B

C

D

C

D

A
B
K

+ BDEF + GCH + DGH (to)

+ AI F + BIJ + KIJ

(A, B, ... , K)

Figure C-3. Prime tree example [Reddy, 1972b].

692 APPENDIX C

Use of Additional Control Logic
(Hayes)

Both techniques discussed so far have attempted
to minimize the number of additional control
inputs or observable output requirements. A
procedure by Hayes [1974], however, discusses
the addition of control logic to increase the
diagnosability of the circuit-either by rendering
observable internal conditions that are not nor­
mally so (extra primary outputs) or by allowing
external control of internal conditions not nor­
mally directly controllable (extra primary in­
puts). The paper examines the systematic use of
control logic to reduce the number of tests
assuming that any additional control logic must
itself be testable if it is to serve any useful
purpose.

The main aim is to improve the circuit's
"controllability," defined as the extent to which
internal conditions can be controlled by apply­
ing signals to the primary inputs, by the addition
of extra control inputs and gates. In this case, the
gate~ used are the EOR type, and the first stage

Ao----~

B~--I

z

cO'------I

Figure C-4. Two-input NAND + INVERTER im­
plementation of ((ABC).

is to produce a design based solely on 2-input
NAND gates and inverters. The inverters are
then replaced by EOR gates and additional EOR
gates inserted in all other NAND gate input lines
not containing an EOR gate. The application of
these two stages to the running example is shown
in Figures C-4 and C-5. Note that the other
inputs to the EOR gates are brought out as
primary inputs and for normal operation as­
signed 1 if the particular EOR gate replaced an
inverter and 0 otherwise.

z

Figure C-S. Fully modified testable network with control lines Kl to Ks.

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 693

With regard to the generation of tests for such
a circuit, consider the basic module shown in
Figure C-6a. In order to fully test such a module,
it is necessary in the first instance to apply all
four input combinations to each EOR gate and
ensure that their outputs produce the four differ­
ent input combinations to the following NAND
gate. One way of doing this with four tests is
shown in Figure C-6b-ignoring the additional
test shown below the dotted line for the moment.

If x" becomes an input to a following EOR
gate, however, it is necessary to generate an
additional 0 on xk to satisfy the following EOR
input requirement of two 1 's and two O's. The
extra test shown beneath the dotted line will
achieve this, and each module now requires a
minimum of five tests. These tests will (1) ensure
full fault-cover (Hayes comments that the fault
cover includes all multiple fault situations as well
as the single fault ones) and (2) enable all the
necessary input conditions to be generated for
successor modules.

The main problem now is to specify five-bit
sequences on all primary and control lines so

a.
Inputs Outputs

Xi ki Xi ki Pi Pi xk

0 0 0 0 0 0] 0 1 0 1 0
1 1 1 0 0 1 1 5 test

1 0 1 0 ! vectors

0 1 0 1 1

b.

Figure C-6. Basic logic module and possible test
vectors.

that module outputs and successor module in­
puts are compatible. Hayes offers an algorithm
for doing this based on the observation that each
five-bit sequence on the primary and NAND
gate inputs in the module must be a permutation
of the sequence 00 Ill.

There are only ten such sequences, denoted by
the set P = {Xo, X) , ... ,X9} where Xo = 00111,
X) = 01011, etc., and two sequences are compat­
ible if their NAND product, on a bit-for-bit
basis, produces a result that is also in P, e.g.,
XOX) = 11100(X9); therefore Xo is compatible
with X). Note however that XOX9 = 11011, and
this is not a permutation of 001.1 1: Xo and X9 are
therefore incompatible.

The procedure itself, then, is to arbitrarily
assign sequences from P to the primary inputs
and then derive sequences on the control inputs
to the first set of EOR gates to produce a
compatible pair of sequences on the following
NAND gate inputs. The NAND gate outputs
must themselves be sequences from P (because
the inputs were compatible), and these become
the inputs to the next set of EOR gates. So the
process repeats itself until the primary outputs
are reached. Applying this to Figure C-5 produc­
es the following possible test set:

A B C K) K2 K3 K4 K5 K6 K7 Kg Z
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 I I 1 I 0 0 0 1

1 0 1 0 1 0 0 1
0 I 0 1 0 0 0 0
0 0 0 0 0 I 1 0

Hayes also comments on the application of
this approach to sequential circuits defined by
the standard Huffman model-i.e., a delay-free
combinational network and a set of feedback
lines each containing a unit delay element.

The procedure here is to convert the combina­
tional network into a two-input NAND gate
version with additional EOR gates as before, but
the sequential nature of the circuit introduces
two additional problems: the first is that the

694 APPENDIX C

initial value of the feedback lines must be deter­
mined and be compatible with the sequence
assigned to the primary inputs. The second prob­
lem is similar: the sequences assigned to the
delay element input must be related to those
assigned to the delay element outputs both from
the viewpoint of compatibility and from the unit
delay property. Both these problems are over­
come by introducing the concept of sequence
rotation. If the ith sequence in P is defined by
Xi = cl c2 c3 C4 C s where cl' cb etc., are binary
constants 0 or I, then the rotation of Xi' denoted
by r(XJ, is given by the sequence C2C3 C4 Cs Cj and
is itself a sequence in P. The problems are then
solved by assigning sequences to the feedback
line inputs to the combinational circuit so that if
Xi is assigned to one of the feedback lines-i.e.,
delay element output-this implies the sequence
r(XJ on the "delay line input. The problem now
is to find a set of sequences through the combi­
national circuit that finally match at the inputs.
In some cases, this results in unresolvable con­
flicts. Hayes demonstrates how these may be
overcome by the insertion into the module of yet
another pair of EOR gates-between the existing
pair and the NAND gate-and he concludes
therefore that the approach is quite general.

He does note, however, that the cost of im­
proving the diagnosability of the network is a
large increase in the number of gates and addi­
tional inputs and outputs (it is suggested that, for
maximum diagnosability, each EOR gate output
should be directly observable) and comments
that, in practice, there may be quite severe
limitations-e.g., restrictions due to the physical
size, reliability requirements, number of avail­
able input/output lines, propagation delay con­
straints, and length of test vectors. Some of the
additional EOR gates can be removed-for in­
stance, if they are not needed for normal inver­
sion purposes and if their removal does not
violate the compatibility constraint. This can be
applied to Figure C-5 and removes the EOR
gates with control inputs K1, K3 and Ks. This
causes a modification to the previous test set and

a possible reduced sequence is now given by:

A B C K2 K4 K6 K7
0 0 0 0 0 1 0

0 1 1 1 0 0

0 0 0 I 0

0 0

0

Minimally Tested Logic Networks
(Sa/uja and Reddy)

Kg Z

1 1

0

1

0
0

The previous technique by Hayes utilizing extra
control logic and producing combinational logic
designs that are fully tested by five tests pro­
voked further investigation into minimally tested
networks. A paper by Saluja and Reddy [1974]
presents a design process that produces circuit
designs that are fully tested by three tests. Their
procedure is based on the fact that any n-input
I-output gate of the AND, OR, NAND, NOR
variety is fully tested for single or multiple stuck­
at fault conditions on its inputs or output by
(n + 1) tests. Therefore, if the circuit utilizes
two-input gates throughout, then each gate is
tested by three tests only. The addition of certain
control inputs and observable outputs allows this
idea to be extended to the whole circuit. The
procedure is illustrated below.

Consider first the three input AND gate shown
in Figure C-7a. By replacing the gate with a
three-level AND-OR-AND using two input
gates as shown in Figure C-7b, one may derive a
version that is fully tested by three sets of input
combinations. These are shown in the figure and
rely on the provision of an extra control input K j

and observable outputs 0) and O2.

Similar circuits exist for three-input OR,
NAND, and NOR gates, and"obvious extensions
can be made for n-input gates where n > 3.

The first step in the procedure, therefore, is to
replace any n-input AND or OR gates, for which
n > 2, with cascaded two-input gates-omitting

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 695

A

B

a.

co-----------------------~

b.

Figure C-7. Minimally-tested 3-input AND
module.

0 1

O2

for the time being any intermediate control gates
such as the OR gate in Figure C-7b. This is
demonstrated in Figure C-S.

The next step is to assign test sequences to the
first level gates (those nearest the primary inputs)
by selecting any two sequences from the follow­
ing sets SI and S2' depending on whether the
gate is AND or OR:

AND gate: SI = {OIl, 101, 110}

OR gate: S2 = {100, 010, 001}

It can be seen that the application of any two
sequences from SI will apply the combinations
01, 10, and II to the AND gate inputs, and that
this is a necessary and sufficient set to test for
any single or multiple s-a-I, s-a-O fault set Qn the
gate inputs and output. A similar result holds for
the S2 set in relation to the OR gate-the comb i­
na tions in this case being 01, 10, and 00.

A

: ~~ G3 Z

Figure C-8. Two-input gate version of {(ABC).

Incompatible

X~110
010 Z

Y

110
Compatible

X

Y

K

Z

0 1

O2

Figure C-9. Example of an incompatible set of
gate input sequences and the necessary modifica­
tions.

The outputs from the first level gates will
either be a correct part of the necessary test
sequences for their successor gates, or not. In the
event of a gate output being incompatible* with
the the requirements of a successor gate, the
successor gate is suitably modified by introduc­
ing extra gates with additional control inputs and
observable outputs.

There are many possibilities here; one of them
is illustrated in Figure C-9. Here, the two-input
AND gate to the left is assumed to have the
input sequences shown-these being the outputs
generated by predecessor gates. Although one of
these sequences (on x) comes from SI' the other
on y comes from S2' and the gate must be
replaced by the OR-AND circuit shown.

Figure C-IO shows the compatible/incompati­
ble conditions for a certain set of sequences
applied to the circuits' primary inputs, and Fig­
ure C-li presents the final circuit showing the
modifications due to the incompatibilities. This
circuit has an additional five control inputs and
seven observable outputs.

Saluja and Reddy note that the number of
extra control inputs cannot exceed six since only
six different sequences will ever be required (in

* The terms compatible and incompatible are used in the same
sense as in the discussion above.

696 APPENDIX C

011 o------=-..:....;..r--~--....

101

001

Compatible

Figure C-10. Compatible and incompatible gate
conditions.

the example K1, K2 and K3 are the same and
could be joined), and that the additional observ­
able outputs enable fault location to be made
right down to single gates.

They also point out that the extension of the
procedure to cover the combinational section of
sequential networks is similar to the procedure
outlined by Hayes [1974].

Sequential Circuits

Apart from the extension to easiiy .tested combi­
national circuit design procedures already men­
tioned, most research workers have concentrated
on improving the testability of sequential net­
works by modifying the initial reduced state-

011o---------=~

101

0010----+---1

table description. The underlying objectives here
stem from the ideas contained in Hennie's paper
[1964] regarding the derivation of a checking
experiment from an analysis of the state table. (A
checking experiment on a sequential machine is
the application of input sequences to the input
terminals with observations of the output se­
quences at the output terminals to determine
whether or not the machine is operating correct­
ly.)

In his paper, Hennie defines certain types of
input/output sequences and shows how, subject
to limitations in the structure and faulty behav­
ior of the sequential machine, they could be used
to assist in the derivation of a checking experi­
ment capable of demonstrating (a) that all the
states exist and (b) that all defined transitions
between the states could be made.

Foremost among these sequences is the distin­
guishing sequence-an input sequence whose out­
put response enables unique identification of the
starting state. Hennie shows how distinguishing
sequences can be used to reduce considerably
the total length of the checking experiment.
Unfortunately, not all state-tables possess distin­
guishing sequences, and although this does not
inhibit the derivation of a checking experiment,
it does cause the derivation to be more compli­
cated. A significant paper by Kohavi and Laval­
lee [1967] demonstrates how state-tables not pos-

110

Figure C-11. Fully modified circuit tested by three tests.

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 697

rable C-1. State table for synchronous 110
Jattern recognizer.

Dresent
~tate

\. (00)

~(II)

= (10)

Next State/Output zi
xI = 0 xI = I

A/O

A/O

A/I

B/O
C/O

C/O

;essing distinguishing sequences could be modi­
ied by the provision of extra outputs.

They go on to show how a checking experi­
nent could be derived. Before demonstrating
heir procedure, we will again introduce a rela­
ively simple example to be used as a running
:xample.

Table C-I represents the behavior of a syn­
:hronous pattern recognizer whose output zl

~oes to 1 only when the input pattern xI = 110
las occurred. This state-table does not possess a
listinguishing sequence (any sequence beginning
~ith 0 would not be able to differentiate between
l state of A or B, and any beginning with 1
)etween B or C) and a checking experimen t
vould have to be based on identification of a
'haracterizing set with the associated locating
'equences [Hennie, 1964]. For this state-table
herefore, using the following locating sequences
with the simplifications suggested by Hennie),

Clock o--~.....----t--------'

Yl (D) = Xl: Zl = Yl)72 Xl

• State A: LA = 000 I 0 (terminating in state A);
• State B: L8 = 0000 00 I 0 (terminating in state

A); and
• State C: Lc = 0 I I 0 I I 0 I I 1 0 (terminating in

state A);

and the synchronizing sequence 0 (synchronizing
to state A), a suitable input sequence for a
checking experiment is given by

I I 10 I I 0 I LA 1 L8 I 1 Lc lOLA 0 1 0 I

lOLA 1 1 0 : 1 0 0 LA 1 0 I 0 :

I lOLA I I I 0 : I I 0 0 LA I I 0 I 0: (11)

1 I lOLA 1 1 1 1 0 :

(100 symbols)

This has been derived using the procedure in
Hennie's paper, and it should be recognized that
other checking experiments could be derived
that are possibly shorter in length. This is not too
important, however, since the decrease in length
would only be marginal and the purpose of
defining the experiment is for comparison only.

To complete the picture for this example,
Figure C-12 illustrates a possible implementation
using D-type bistables (the dotted output Z2 can
be ignored for the moment). This and other
implementations shown later were produced by a
computer assisted logic design (CAL D) suite of
programs [Lewin, Purslow, and Bennetts, 1972].

Figure C-12. D-type implementation of 110 pattern recognizer.

698 APPENDIX C

Additional Outputs to Produce
Distinguishing Sequences (Kohavi
and Lavallee)

Kohavi and Lavallee's paper [1967] is but one of
a number of papers that have appeared since the
original paper by Hennie and that seek to reduce
the length of the checking experiment either by
using special sequences or by optimizing the
order in which states and transitions are
checked, or both. This aspect of state-table anal­
ysis is not discussed further here except to say
that many efficient algorithms are now available.
The interested reader is referred either to the
bibliography in Bennetts and Lewin [1971] or to
more recent publications of which Hsieh [1971],
Farmer [1973], and Kohavi, Rivierre, and Ko­
havi [1973] are representative.

The contribution of interest, however, is the
procedure in Kohavi and Lavallee's paper for
modifying a state-table to possess a distinguish­
ing sequence if it does not already do so. This
can be regarded as a design constraint for test­
ability and is based on the provision of extra
output variables.

T'h", nrA£'P;tllrp ;~ h~~p;t An ;;tpnt;f,,;no nrp~pnt
.J..l.l"" pl.'"''''''''''''''" ''''..I.U' '-''''''tJ'''''-&. '-'.I.,&, ..l.",,""".I...I.".I..I.J.I..I..I.6 Y"''''''''''''''.I..&."

state pairs whose next states are identical for the
same input condition and output results. Such
state pairs, called repeated states, are illustrated
by states (AB) and (BC) in Table C-l. .The
procedure also identifies any present state pairs
whose implied entry derivations eventually loop
back to a predecessor pair. An implied entry for
any present state pair is the next state pair under
the same input condition that has the same
output value. In Table C-l, for instance, the
present state pair .(AB) implies (BC) for xI = 1
and (BC) then implies (CC) under xI = 1. These
implications can be chained together to form a
testing graph. It is shown that if the testing graph
ever loops back on itself, the input sequence that
causes this cannot be a distinguishing sequence.
(This looping feature is not present in the testing
graph for the example in Table C-l.)

The procedure therefore seeks to eliminate all
repeated states and testing graph loops by selec-

tive addition of extra output variables and, in the
case of Table C-l, a single output z2 is sufficient
to break the repeated state pairs (A B) and (BC).
Shown in Table C-2, this version now possesses
the very simple distinguishing sequence xI = O.
Application of Kohavi and Lavallee's algorithm
for deriving checking experiments produces the
following much reduced input sequence:

o 0 0 1 0 1 1 0 1 1 1 0 (12 symbols). (12)

The modification involves the addition of gates
G3 and G4 shown in Figure C-12 to produce the
extra output Z2 (shown dotted).

Additional Inputs to Improve
Testability (Murakami, Kinoshita,
and Ozaki)

As in easily tested combinational circuit proce­
dures, an alternative approach to improve
sequential machine testability is to add extra
control input variables rather than observable
output functions. This is considered by Mura­
kami, Kinoshita, and Ozaki [1970], who intro-
;tll£'P thp £'on{,pnt of ~ rll1lntor r"rlo r. ;tpfinp;t ;n -... u._ -~··--r· ~ ~~~ ... -. ~J ~.~ ~ I ... _,

the following way:
A counter cycle CI for an n-state sequential

machine of the Mealy type is an alternating
sequence of states si and input symbol I such
that

where

and

8(sn,I) = Sl and A(sn,I) = 1

where 8(Si' I) and A(Si' I) are the next state and
output functions, respectively.

An application of n consecutive input symboh
I to the sequential machine will produce an
output sequence of (n - 1) O's and one 1. Tht

RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 699

·able C-2. State table with additional output z2.

>resent Next State/Output zl z2
.tate xI = 0 xI = I

\. (00) A/OO B/OO
l (I I) A/OI C/OO

= (10) A/II C/O I

elative position of the I in the output sequence
vill vary with the initial starting state and will
miquely identify it: e.g., an output response of
10 ... 01 will identify sl as the start state; 00 ...
no will identify s2' and so on. Such an input
equence therefore is a distinguishing sequence,
md the authors show that if the sequential
nachine contains a counter cycle (called a CC
rzachine), then reduced checking experiments are
:asily derived.

They also demonstrate how non-CC machines
nay be converted into CC machines by the
lddition of an extra symbol £ so that

md

8(sj' €) = Sj+ I and A(Sj, €) = 0

I<i<n-I

Table C-3. State table with additional input x2.

Next State/Output zi
Present xlx2 = xlx2 = xlx2 =
State OO(a) lO(fJ) 01(£)

A (00) A/O B/O B/O
B(II) A/O C/O C/O
C (10) A/I C/O A/I

It can be seen that the basic state-table (Table
C- 1) is non-CC and Table C-3 shows a suitable
CC version. Note that the extra input symbol E

has been coded 01 and an extra input variable x2

introduced so that x2 = 0 for normal operation.
Denoting xI X2 = 00 by lX, xI x2 = 10 by {3,

and xI x2 = 01 by €, a suitable checking experi­
ment for Table C-3, using Murakami's proce­
dure, is given by:

Input
Output

€ € € € € E lX € € € 13€€ €lXEE€

001001 0001 001 00001

(31 symbols) (13)

€{3€ €€lX€€€ €€{3€

001 001001 0001.

A D-type implementation is shown III Figure
C-13.

~~~-------------------.------~------------~ 

Clock ~--------"*""-------+--__ ~ ____________ --..J 

Yl(D) = xl + x2Yl + x2Y2: Zl = Y1 Y2 xl 

)2(D) = xlYl + x2Yl 

Figure C':"13. D-type implementation of counter cycle version. 



700 APPENDIX C 

This work has been extended by Holborow 
[1972], who has shown that the length of the 
checking experiment can be significantly reduced 
by ordering the states according to the number 
of transitions into them (number of times they 
appear in the state-table) before assigning the 
next state/output values under the E input sym­
bol. This characteristic has been included in the 
derivation of Table C-3. 

Shift Register Modifications for 
Synchronous Circuits (Williams 
and Angell) 

The paper by Williams and Angell [1973] sug­
gests that most problems in sequential circuit 
testing can be overcome if (1) the circuit can 
easily be set to any desired internal state, and (2) 
it is easy to find a sequence of input patterns 
such that the resulting output sequence will 
indicate whether the circuit was in a given state. 

The second property is, of course, the distin­
guishing sequence requirement al1:d, unlike pre­
vious authors, Williams and Angell base their 
.......... ",-l;h£"'·'}t;.A.-nC" "'..." fh.a ; .......... "I"'\ol.a~.n. ......... +nf;;""\,_ ;+~ ..... lf ......... +t.... __ 
111VU111'-'UUVl1;' V11 U1'-' 111.11-'1\,-111\,-11 LUUVll 1 L;)".,Jl J a UJ~J 

than on the state-table. The suggestion is that 
bistables in the circuit can, under the control of 
a signal p, be connected together in a chain to 
behave as a shift-register. This facility can be 
modeled by a double-throw switch in each input 
lead of every bistable and in one or two of the 
circuit's primary output connections. All these 

D Q 

C 

Clock o--+-+-----+-..... 

x 
Combinational 

logic : z 

Figure C-14. Standard model for a synchronous 
sequential circuit. 

switches are ganged together, and the circuit can 
operate either in its "normal" mode or "shift­
register" mode. The principle is illustrated in 
Figures C-14 and C-IS where, for simplicity, two 
D-type bistables have been assumed. For JK and 
other two-input, two-output bistables, the num­
ber of switches would be doubled. Figure C-16 
describes the characteristics of the switch and 
shows a suitable implementation (a two-input 
multiplexer in fact) . 

In the shift-register mode, the first bistable can 
be set directly from one of the primary inputs, 
and the output of the last bistable can be directly 
monitored on one of the primary outputs. This 
means that the circuit can be set to any desired 
state from the primary inputs and that the inter­
nal state can be determined by the signal se-

Control 0-------.----------+-------------, 
p 

Clock O-+--+---_~---+__+_---....J 

x 
Combinational 

logic 
~---.... z 

Figure C-1S. Modified circuit model: includes double-throw switches. 



RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 701 

[uence appearing on the primary outputs. The 
Irocedure for testing the circuit therefore is as 
ollows: 

Itep I. Switch to shift register mode and check the 
shift-register operation. 

Itep 2. Set the initial state into the shift-register. 
Itep 3. Return to normal mode and apply the test 

input pattern. 
Itep 4. Switch to shift-register mode and shift out 

the final state while setting the starting state 
for the next test. Return to Step 3. 

To demonstrate the approach on the pattern 
ecognizer, Figure C-17 shows a reconfigured 
rersion of Figure C-12 that includes the addi­
ional switches, and Figure C-1S shows the 
'combinational" circuit to be tested, with inputs 
: (the original circuit input), y\ and Y2 (the 
>istable outputs), andp (the mode control input), 
md outputs z, (the original circuit output), and 
(, and d2 (the bistable inputs). A suitable test 
.equence can be derived using any suitable com­
>inational circuit test sequence generation proce­
lure such as has been described by Bennetts 

Control 

Inputs 

a. Schematic 

p 

ao--t---f 

Z = pa + jib 

bO----f 

b. Circuit 

Figure C-16. Schematic and circuit for double­
throw switch. 

[1972, 1973], and can be applied using the four­
step procedure outlined above. 

Obviously, the length of the shift register will 
determine the time spent in Step 4, and this may 

Po--------------.----------------------~ 

D Q 

c 
Clock o---+--.-----+---_+_~ 

d1 Y1 d2 Y2 r--------------------------- ---- ---------1 

I 
I L ___________________________________ J 

Figure C-17. Modified version of Figure C-12 (input switch SW1 is not 
required for this example). 



702 APPENDIX C 

pO-------------~--------------~ 

L-------------------------------------------- d1 

Figure C-18. Combinational segment of Figure C-17. 

-
represent an excessive proportion of the total 
testing time. The authors offer suggestions as to 
how this time may de decreased by forming 
~everal shorter shift-registers with the accompa­
nying more complex switches. The paper also 
discusses the application of the approach to 
asynchronous logic. In this case, the strategy is to 
use one feedback line to control the next in 
sequence, so that the chain of feedback lines 
behaves as a shift-register. This requires the 
addition of a sample-and-hold plus latch Gombi­
nation involving eight NAND gates and two 
extra propagation delays per feedback line to­
gether with two additional mode-control primary 
inputs. 

A very similar approach to that of Williams 
and Angell has been described by Toth and Holt 
[1974]. They constrain the initial sequential cir­
cuit design to contain a shift register in the first 
place. The left and right propagation of the shift 
register (known as the DSR or diagnostic shift 
register) is externally controlled by the tester 
and, in the test mode, the combinational network 
inputs come from the DSR parallel outputs. 
Similarly, combinational outputs feed back as 
parallel input data into the DSR. Their testing 
strategy is identical to Steps I to 4 above. 

Other Sequential Circuit 
Procedures 

This section draws attention to three other rela­
tively academic papers of relevance to sequential 
machine testability. The first, by Meyer and Yeh 
[1971], discusses the design of sequential circuits 
oossessine: distinguishing sequences. The second, 
by Fried~an and Menon [1973], demonstrates 
that if there is no shared logic between the state 
logic and the output logic in the implementation 
of a sequential machine possessing a synchroniz­
ing sequence, and if the single fault assumption 
is valid, then the length of the checking experi­
ment can be considerably reduced. In particular, 
Friedman and Menon modify Hsieh's checking 
experiment algorithm [1971]. .. 

The third paper, by Fujiwara and Kmoshlta 
[1974], is an alternative scheme for adding extra 
observable outputs to minimize the length of the 
checking sequence and increase the diagnostic 
resolution. 

Iterative Arrays 

The use of one- and two-dimensional iterative 
arrays of identical cells is attractive because oj 



RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 703 

le advantages of design regularity and ease of 
lbrication. If they are to realize their full poten­
ai, however, they must also be easily tested. 
everal authors have studied this. In particular, 
andgraff and Yau [1971] have considered the 
esign and testing of arrays based on combina­
onal cells and have specified the following 

• ~nditions for which the array is testable: 

It must be possible to initialize the inputs of each 
cell of the array to all possible input values using the 
array's external inputs only. 
It must be possible to sensitize a path from the 
outputs of the cell to the outputs of the array to 
enable the propagation of a cell fault-effect. 

The paper shows how the design of an array 
lat is not initially testable, as defined above, can 
e modified by additional logic and input/output 
!rminals. This is achieved by inserting test poin ts 
lonitored at the external outputs, or by modify-
19 to ensure that each cell can be set into a 
nown state. Rendering the array testable results 
1 a reduction in the number of tests, and the 
aper includes appropriate test derivation algo­
ithms. 

Two other papers of interest are those by 
:riedman [1973] and Reddy and Wilson [1974]. 
:riedman, who has extended some previous 
IOrk [Menon and Friedman, 1971], considers 
he properties of unilateral combinational arrays 
hat enable them to be tested with a fixed 
:onstant number of tests independent of the 
lUmber of cells. Referring to such systems as C­
estable, he shows how a non C-testable array 
:an be made C-testable by augmenting the state­
able describing the basic cell. * At the most, for 
m arbitrary N-state cell, thIs involves the addi-

The behavior of a two-dimensional combinational cell with 
x (horizontal) and z (vertical) inputs and corresponding x 
and i outputs is usually defined by a table which has a row 
for each x input and a column for each z input. Each row 
is referred to as the state, and the entries in the table consist 
of the corresponding (x,i) pair outputs for each (x,z) 
combination of cell inputs. 

tion of one more row and less than (log2 N )2 
columns. These additions may make use of unas­
signed input/output values or may require fur­
ther inputs or outputs. 

Reddy and Wilson [1974] discuss the design of 
two-dimensional iterative arrays to realize all n­
variable symmetric and elementary threshold 
functions that require, at the most, 2n tests to 
detect all possible permanent stuck-at-faults. 

PRACTICAL ASPECTS OF TESTABLE 
LOGIC DESIGN 

This section is primarily based on two papers 
[Boswell, 1972; Schneider, 1974]. The first, by 
Boswell, suggests (quite rightly) that the efficien­
cy of practical automatic test systems could be 
considerably enhanced if the logic designer in­
cluded testability among his design criteria. Bos­
well presents eight empirical guidelines "that 
have proved highly successful" in practice. The 
present authors make no apology in repeating 
these guidelines here and, in some cases, have 
enlarged upon the comments made by Boswell. 
(A similar set of guidelines has been discussed in 
a General Radio Systems pamphlet [n.d.].) 

Guideline 1: Give the tester 
access to internal circuit board 
nodes 

Boswell suggests that this can be achieved either 
by using spare edge connector pins or by provid­
ing a separate edge connector specifically for test 
purposes. This guideline, which relates to the 
problem of strategic test point siting, has been 
studied by Russell and Kime [1971] and Hayes 
and Friedman [1974]. Their contributions are 
discussed in the following subsection, but before 
this, it is worthwhile summarizing Schneider's 
comments on accessibility. He suggests that the 
outputs of all memory units (bistables) should be 
directly observable and that, furthermore, access 



704 APPENDIX C 

to the dc set or reset inputs should be available, 
enabling individual control of each bistable. This 
would obviously take up many extra connector 
positions, but nevertheless is a constraint im­
posed on the design layout of boards tested by 
the system described by Adshead, Jain, and 
Knowles [1972]. 

Schneider demonstrates how the extra facility 
of resetting (or setting) a bistable can be tied in 
with existing reset logic, if it exists, either by 
using an additional gate or by simply using 
wired-OR if the particular logic family permits it. 
Alternatively, if additional edge connector inputs 
are not available, a power-up reset that momen­
tarily remains low as power is applied can be 
used to at least ensure that the initial start state 
is known. This is simply a CR network between 
the power line and ground whose output is 
attached to the DC reset input of the bistable. 
Such a facility would not be accessible by the 
tester; however, by switching the power off and 
on, a crude method of re-initialization could be 
effected. (The authors hasten to add that this is 
not suggested by Schneider and there are other 
obvious considerations in doing this of course!) 
These three techniques are illustrated in Figure 
C-19. 

Strategic Test Point Siting (Russell 
and Kime, Hayes and friedman) 

Russell and Kime [1971] analyze the fault detec­
tability and diagnosability of a combinational 
network by considering it from a purely structur­
al viewpoint-i.e., the logical function of each 
gate is disregarded and is merely considered to 
be a node. This is thought to (1) provide insight 
into the contribution of network structure to the 
diagnosis process, and (2) be useful for purely 
structural problems such as identifying strategic 
sites for test point placement. 

The authors make use of two directed graph 
models for the circuit-the basic and detailed 
models-and, using the mathematical techniques 
of graph theory, they discuss such topics as (1) 
fan-in, fan-out, and the effects of reconvergence 

a. Basic circuit 

c. Wired-OR 

Extra 
test input 

(normally 1) 

b. Additional control gate 

d. Power-up reset 

Figure C-19. Techniques for overriding internal 
reset conditions. 

on fault detectability; (2) fault-equivalence for 
graph condensation purposes; and (3) criteria for 
optimizing the increased diagnostic resolution 
afforded by additional test points. 

Hayes and Friedman [1974] describe an alter­
native scheme for fan-out free and restricted fan­
out combinational networks which does make 
use of the individual gate functions. They 
present a method for labeling the connections 
within the circuit so that a minimal set of tests 
can be derived corresponding to a minimal label­
ing. The labeling is derived from the minimum 
number of essential O's and 1 's that must be 



RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 705 

)laced on each input to an n-input gate to 
)rovide complete stuck-at fault detection cover. 
rhus the label for ci' the output line of an n-input 
\JAND gate Gi, would be given by (I, n), a 
ogical zero corresponding to the any-or-all in­
)uts s-a-O test and n logical ones corresponding 
:0 the n separate tests for inputs s-a-l. If the test 
;et for the circuit is known, and corresponding 
ine vectors calculated-as in Figure C-7b for 
nstance-then some of the O's and I's in each 
vector may not be essential. This is incorporated 
.nto the labeling and serves to indicate where test 
)oints would be helpful. This idea can then be 
turned around the other way and a minimal test 
set derived from a corresponding minimal label­
ing. 

These concepts form the basis for a branch­
and-bound algorithm for selecting an optimal or 
near-optimal set of q test points, where I < q < 
the maximum number of permissible test points 
determined by the number of available spare 
pins. 

Schneider also discusses test point siting, from 
a more intuitive point of view, suggesting that 
the junctions of large fan-in and fan-out are 
"ideal"-either for logic level monitoring or in­
sertion. Other good candidates are important 
lines such as master clocks or reset lines, and 
logically redundant lines (discussed in the next 
section). 

Guideline 2: As a general rule, 
ilvoid logically redundant circuits 

A. connection in a circuit is logically redundant 
If the output function is independent of the 
binary value on the connection for all input 
:.:ombinations. Any fault on such a connection is 
therefore undetectable. This is of no direct con­
;;equence to the operation of the circuit, but it 
:.:an mask the detection of other stuck-at faults 
that would normally be detected by a particular 
test set. This phenomenon was initially reported 
by Friedman [1967] and has been considerably 
:!xtended by Dandapani, Reddy, and Robinson 

[1970]. Examples are given in Friedman and 
Menon's book [1971]. 

Unfortunately, redundancy is often essential 
to maintain the correct operation of the final 
circuit-the inclusion of bridging terms to re­
move static hazards in combinational logic for 
instance-and although the guideline is sound, it 
is not always possible to follow it. 

Guideline 3: Make faults as easy 
to locate as possible 

The diagnostic resolution of any test set is al­
ways limited by the indistinguishable fault set 
(IFS) grouping [Schertz and Metze, 1972] rela­
tive to the particular implementation of the 
function. Reference to some theoretical work in 
this area has already been made [Reddy, 1972], 
but Boswell demonstrates how, in some cases, 
locational uncertainty can be removed if connec­
tions in the same IFS group are arranged to go 
to the same gate rather than to two or more 
different gates. This would not remove the indis­
tinguishability but would make the fault group 
locatable to the single gate alone. 

Schneider also makes a number of practical 
suggestions regarding the layout and packaging 
of printed circuit boards to assist the location of 
faults. These an; summarized below: 

• Keep analog and digital subsystems physically apart 
if possible because of the different testing strategies 
and test equipment required. 

• If a board contains more than one independent sub­
circuit, try to keep them physically separate-i.e., 
partition the board. 

• In conjunction with this, separate power lines assist 
circuit isolation. Tri-state logic is also useful. 

• Employ a uniform layout for integrated circuits 
(relative position and pin orientation) and board 
edge connectors (same number pin for power input, 
ground, etc.) 

• For easy removal and testing, mount MSI/LSI chips 
in sockets rather than solder directly to the board. 

The reader should note that this list is not 
complete. These and other practical suggestions 



706 APPENDIX C 

regarding layout are covered in Boswell [1972] 
and Schneider [1974]. The General Radio Sys­
tems pamphlet [n.d.] is also recommended. 

Guideline 4: Use synchronous 
(clocked) circuitry whenever 
possible 

Boswell's main point here is that every tester 
possesses a latency period (the time lapse be­
tween the tester applying the test and sampling 
the response), which could result in undetected 
output changes if they occurred within this peri­
od. He suggests therefore that asynchronous 
logic should be avoided. 

There are other complications in the testing of 
asynchronous logic apart from those introduced 
by the speed of response. These stem from (I) 
the non-deterministic behavior of asynchronous 
circuits under certain fault conditions, especially 
those that re-introduce critical race possibilities, 
and (2) the fact that repetition of the same input 
value is not recognized by the circuit. This 
obviously inhibits the allowable test sequence 
and generaily compiicates the state-table analy­
sis approach to checking experiment derivation. 

Guideline 5: Take precautions to 
isolate the clock from the logic 

The test application rate of the tester, deter­
mined by the test setup plus latency periods, may 
be less than the operating speed of the logic. It 
makes sense, therefore, to enable the internal 
high-speed clock to be replaced by an external 
lower speed one, including a single-shot facility. 

Guideline 6: Make it possible to 
initialize sequential circuits prior 
to testing 

The reasons for doing this have already been 
discussed in previous sections. Boswell com-

ments on the alternative procedures of eithet 
applying a synchronizing sequence [Hennie. 
1964] or providing a master reset. He claims that. 
of the two, the second is preferable since it doe5 
not imply a decision-making capability within 
the tester itself. This is not strictly true because 
the presence of a fault prior to initialization rna) 
inhibit correct initialization irrespective of the 
means to achieve it. In either case, therefore, the 
test equipment needs to assess the status of the 
circuit and act accordingly-i.e., it must possess 
decision-making capabilities. 

Guideline 7: Take into account 
the operational characteristics of 
the tester to be used for a 
particular board 

Boswell describes the various ways by which 
testers change the binary values of the input 
patterns to the circuit-under-test. This may be 
done simultaneously (parallel), in fixed n-bit 
groups (quasi-parallel), or singly (serial), and it is 
possible for the latter two to have an adverse 
effect on the circuit's operation. In particular, it 
may introduce critical race conditions into asyn­
chronous sequential circuits that would not oc­
cur under normal operating conditions. Knowl­
edge of the tester characteristics, therefore, may 
act as a constraint on the ordering of tests in a 
testing sequence to prevent the possible rejection 
of a fault-free board. 

Guideline 8: Take test economics 
into consideration when 
developing a new logic design 

The physical characteristics and limitations of 
the tester, its voltage level output and interface 
specifications, test application rate, and other 
such factors should all be taken into considera­
tion before embarking upon a new logic design 
exercise. In a way, the economics of testing is 



RECENT DEVELOPMENTS IN TESTABLE LOGIC DESIGN 707 

ne of the most unstable cost factors in the total 
)st of design and production of a logic board. It 
Hies tremendously with the logic circuit type 
nd complexity, the degree of confidence to be 
laced in the final board or chip, who is doing 
Ie testing (manufacturer or user), whether stan­
ard test generation algorithms are suitable or 
'hether intuitive procedures must be employed, 
nd a host of other factors. What it really comes 
own to in the end is that you only get what you 
ay for, and since integrated circuit technology 
nd digital systems based on it always seem to be 
ne step ahead of the procedure for testable 
esign and test sequence generation, nobody is 
~ally sure of what they're getting. Certainly, 
10S memory arrays seem to be offering new 
hallenges from a testability viewpoint [Chiang 
nd Standridge, 1975; Hnatek, 1975] and many 
~search workers, including the authors [Ben­
etts et al., 1975], are still seeking test sequence 
eneration algorithms for sequential circuits con­
tining 1,000 or more gates and bistables-this 
eing the size of large-scale integrated circuit 
esigns to come. Although test economics is 
nportant, therefore, it is very difficult to accu­
:ttely predict at the moment. All that one can 
:ty is that it will be relatively expensive. 

:ONClUDING REMARKS 

'his paper has described some of the more 
nportant procedures for designing testability 
lto logic networks, and it has been shown that 
lis almost always results in additional logic with 
arying requirements for additional inputs and 
utputs. One of the authors has recently evaluat­
d [Bennetts, 1976] the effect of applying three of 
le combinational circuit techniques to sixteen 
ircuits taken from the series 74 TTL logic 
:tmily and has produced graphs showing the 
istribution of percentage increase of a number 
f circuit parameters. In particular, the graphs 
how the distribution of percentage increases in 
~e number of primary inputs, number of pri-

mary outputs, number of basic gates, propaga­
tion delay, and failure rate, and in some cases 
the percentage increases can be very consider­
able (see graphs 1-10 in Bennetts [1976] for more 
detail). 

These increases are inevitable, but the consol­
idation of microelectronic technology has caused 
a shift in design emphasis from fully minimized 
implementations to those possessing a high reli­
ability and integrity, and the ability to fully test 
the final product is an essential feature of this. 
As always, practical solutions will be a compro­
mise between the costs of design, production, 
and testing on the one hand and the specification 
on the other. It is therefore very necessary that 
the design engineers appreciate the concepts and 
implications of the procedures for including or 
improving testability. We have attempted to pro­
vide the basis for this. 

Finally, the paper has dealt specifically with 
those design constraints that improve the test­
ability properties of the final circuit. The authors 
would like to point out, however, that other 
closely allied constraints may also be imposed on 
the circuit design. These constraints arise from 
general considerations of fault-tolerant design to 
achieve high reliability, and they may well be at 
variance with testability constraints. For this 
reason, therefore, they are drawn to the reader's 
attention. The reference set that is included in 
these lists is a representative selection of recent 
papers and should not be regarded as a complete 
survey: (1) fail-safe logic circuit/system design 
[IEEE Trans. Computers, 1971, pp. 536-542; 
1972, pp. 1189-1196; 1974, pp. 41-47,113-118, 
369-374, 1149-1154]; (2) sequential machine as­
signment procedures for achieving fault-toler­
ance [IEEE Trans. Computers, 1971, pp. 
1270--1275; 1972, pp. 492-495, 1973, pp. 
239-249, 662-669; 1974, pp. 494-500, 651-657, 
736-739]; and (3) design of self-testing, self­
diagnostic logic circuits [IEEE Trans. Computers, 
1971, pp. 1413-1414; 1973, pp. 263-269, 
298-306; 1974, pp. 1100--1102]. 

These and other topics associated with the 



708 APPENDIX C 

general area of fault-tolerant hardware and soft­
ware design are also discussed in Proceedings of 
the International Symposium on Fault-Tolerant 
Computing, IEEE Computer Society [1971-1975]. 

ACKNOWLEDGMENT 

One of the authors, Mr. R. V. Scott, would like 
to acknowledge the financial assistance of a 
Science Research Council research studentship. 

REFERENCES 

Adshead, Jain, and Knowles [1972]; Bennetts [1972, 
1973, 1974, 1975, 1976]; Bennetts and Lewin [1971]; 

Bennetts et al. [1975]; Boswell [1972]; Chiang and 
Standridge [1975]; Dandapani and Reddy [1974]; 
Dandapani, Reddy, and Robinson [1970]; Farmer 
[1973]; Friedman [1967, 1973]; Friedman and Menon 
[1971, 1973]; Fujiwara and Kinoshita [1974]; General 
Radio Systems [n.d.]; Hayes [1974]; Hayes and Fried· 
man [1974]; Hennie [1964]; Hnatek [1975]; Holborro\\­
[1972]; Hsieh [1971]; Kautz [1971]; Kodandapani 
[1974]; Kohavi and Kohavi [1972]; Kohavi and Laval­
lee [1967]; Kohavi, Rivierre, and Kohavi [1973]; 
Landgraff and Yau [1971]; Lewin, Purslow, and Ben­
netts [1972]; Menon and Friedman [1971]; Meyer and 
Yeh [1971]; Mukhopadhyay and Schmitz [1970]; Mu­
rakami, Kinoshita, and Ozaki [1970]; Reddy [1972h 
1974]; Reddy and Wilson [1974]; Russell and Kimt 
[1971]; Saluja and Reddy [1974]; Schertz and Metzt 
[1972]; Schneider [1974]; Toth and Holt [1974]; Wil· 
Iiams and Angell [1973]. 



iummary of Mll-HDBK-217B Reliability 
\ltodel 

~xperience has shown that 90 percent or more of 
he failure rate of a typical digital print circuit 
loard is accounted for by the integrated circuit 
hips. To a first approximation the failure rates 
If the printed circuit board, capacitors, and 
esistors can be ignored in design studies. Hence, 
his appendix only summarizes the MIL­
-IDBK-217B model for integrated circuit chips. 
~ or boards populated primarily by discrete de­
-ices, or for nonelectronic components, the read­
:r is referred to U.S. Department of Defense 
1976]. 

The failure rate, A, in failures per million hours 
or monolithic MOS and bipolar chips takes the 
orm of: 

A = 'TTL 'TTQ(C\ 'TTT + C2 'TTE)'TTP 

{alues of each factor will be discussed in turn. 

TL 

[he learning factor has a value of 10 if the device 
s new, if there are major changes in the fabrica­
ion process, or if the fabrication process is being 
'estarted after an extended interruption. Other­
~ise the value of 'TTL is 1.0. 

TQ 

rhe quality factor is a function of the amount of 
levice screening. Table 0-1 lists the values of 'TTQ' 

Whereas most commercial parts are not subject-

From U.S. Department of Defense, "Military Standardiza­
tion Handbook: Reliability Prediction of Electronic Equip­
ment," MIL-HDBK-217B (Washington, D.C., 1976). 

[)) 

709 



710 APPENDIX D 

Table 0-1. Quality factors. 

Quality Level Screening Standard 

A Mil-M-3851O Class A 

B Mil-M-3851O Class B 

B-1 Mil-Std-883, Method 
5004, Class B 

B-2 Same as B-1 with some 
tests waived 

C Mil-M-3851O Class C 

C-l Mil-Std-883, Method 
5004, Class C 

2 

5 

10 

16 

90 

For other bipolar (especially TTL): 

'ITT = O.le(-4794[I/(1j'+273)-I/298]) 

If ~ is unknown, it may be approximated as 
follows. 

• Low power TTL, MOS: 

1) = ambient T(OC) + K(OC) 

where K is 13 (OC) if there are more than 30 gates 0] 

120 linear tra:gsistors or the device is a memory 
Otherwise K is 5 (OC). 

• All others: 

1) = ambient T(OC) + L(OC) 
D Commercial, 

hermetically sealed 
150 where L is 25 (OC) if there are more than 30 gates 01 

120 linear transistors or the device is a memory. 
0-1 Commercial, organic 300 Otherwise Lis 10 (OC). 

seal 

ed to Class C screening requirements, their oper­
ational environment does not expose the devices 
to the failure modes that Class C screening is 
designed to stress. The Class C quality factor 
seems the most appropriate for devices used in 
computers built by reputable manufacturers. 

'iTT 

The temperature acceleration factor is a function 
of device technology. If ~ is the worst case 
junction temperature (OC), then: 
For linear (bipolar and MOS), MOS, ECL, bipo­
lar beam lead: 

'ITT = O.le(-8121[Ij(1j'+273)-I/298]) 

Table 0-2. Some useful values of 'ITT' 

Low Power 

Ambient 
TTL MOS 

Temperature Small Large Small Large 

25 (OC) 0.13 0.20 0.l6 0.31 

40 (OC) 0.28 0.40 0.56 1.0 

Table 0-2 gives useful values of 'ITT' 

'iTE 

The application environment factor depends on 
the operational environment, as indicated in 
Table 0-3. 

'iTp 

The pin multiplier is a function of technology as 
depicted in Table 0-4. 

C11 C2 

The complexity factors are a function of density 
and function as given in Table 0-5. 

For initial design evaluations it is convenient 
to have the equations for A available on a 

Technology 

TTL EeL 

Small Large Small Large 

0.17 0.35 0.24 0.82 

0.35 0.67 .82 2.5 



MIL-HDBK-217B RELIABILITY MODEL 711 

Table 0-3. Environmental factor, wE' 

Environment Example 

Ground, benign Computer room 

Space flight Satellite 

Ground, fixed Factory floor 

Airborne, inhabited Cockpit 

Naval, sheltered Bridge of a surface ship 

Ground, mobile Jeep 

Airborne, uninhabited Aircraft equipment bay 

Naval,. unsheltered Engine room of a surface ship 

Missile, launch Missile 

Table D-4. Pin multiplier Wp. 

NUtrlper of 
SSI/MSI Pins LSI 

1-23 1.0 1.0 

24 1.1 1.0 
25 1.1 1.0 

26--41 1.1 1.1 

42-64 1.2 1.1 

>64 1.3 1.2 

Table 0-5. Complexity factors Cl , C2 . 

Density/Function 

SSIjMSI 

Linear 

LSI 
(100 < Nc < 13(0) 

ROM memory 

RAM memory 

Key: NG is the number of gates 
NT is the number of transistors 
B is the number of bits 

1.29 (1O)-3(Nc )0.677 

.56 (1O)-3(NT)0.763 

18.7 (10)-3 e[·OO471 Nd 

1.14 (1O)-\B)0.603 

1.99 (1O)-\B)0.603 

WE 

0.2 
0.2 
1.0 
4.0 
4.0 
4.0 

6.0 
5.0 

10.0 

Memories 

1.0 
1.0 
1.1 
1.1 
1.1 
1.1 

3.89 (10) -3 (Nc )0.359 

2.6 (1O)-\NT )0.547 

13(10 )-3 e[·OO423N(,] 

.32 (10)-3 (B)0.646 

.56 (10)-3 (B)0.644 



712 APPENDIX D 

programmable calculator or a time-sharing sys­
tem. Tables D-6 through D-IO were produced by 
a BASIC program and have proved helpful when 
programs such as AUTOFAIL and FAIL [El­
kind, 1980a] are not available. Reliability cal­
culations and design trade-offs are tedious and 

Table~. Failure per million hours for TTL and 
MOS as a function of gate complexity. 

Gates/ 
Chip 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 
150 
200 
250 
300 
350 
400 
450 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 

Bipolar 
Lambda 

0.069409 
0.091287 
0.107416 
0.120704 
0.132232 
0.142535 
0.151925 
0.160604 
0.168707 
0.176333 
0.209387 
0.236932 
0.261034 
0.282729 
0.-302623 
0.32i iD5 
0.338442 
0.354827 
0.385285 
0.413295 
0.439380 
0.463902 
0.483965 
0.602949 
0.751283 
0.936233 
1.166869 
1.454514 
1.813312 
2.260923 
2.819410 
4.386130 
6.827237 

10.632875 
16.569166 
25.834288 
40.303211 
62.911668 
98.258928 

MOS 
Lambda 

0.079252 
0.107024 
0.128123 
0.145864 
0.161495 
0.175642 
0.188674 
0.200830 
0.212272 
0.223119 
0.270951 
0.311733 
0.348033 
0.381158 
0.411880 
0.440699 
0.467963 
0.493923 
0.542655 
0.587975 
0.630587 
0.670980 
0.712481 
0.892145 
1.117273 
1.399409 
1.753037 
2.196335 
2.752117 
3.449020 
4.322995 
6.794265 

10.684093 
16.809997 
26.462414 
41.679265 
65.680445 
103.55572 
163.35424 

Note: 'TTQ = 16, 'TTL = I, 'TT£ = I, 1j = 50°C. 

time-consuming and are best handled by AUTO­
FAIL or FAIL. However, the user must be fully 
aware of the model parameters, the significance 
of the parameters, and the model's sensitivity to 
the parameters. Otherwise, the model will not 
produce meaningful, calibratable predictions. 

Table D-7. Failures per million hours for bipolar 
ROM as a function of bit complexity. 

Bits/Chip 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1,024 
2,048 
4,096 
8,192 

16,384 
32,768 
65,536 

Lambda 

0.017635 
0.027153 
0.041818 
0.064418 
0.099253 
0.152961 
0.235782 
0.363528 
0.560611 
0.864732 
1.33413 
2.05878 
3.17774 
4.90595 
7.57570 

11.7009 

Note:'TTQ = 16, 'TTL = I, 'TT£ = 1, 1j = 50°C. 

Table 0-8. Failures per million hours for bipolar 
RAM as a function of bit complexity. 

Bits/Chip 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1,024 
2,048 
4,096 
8,192 

16,384 
32,768 
65,536 

Lambda 

0.030799 
0.047393 
0.072942 
0.112287 
0.172888 
0.266250 
0.410112 
0.631833 
0.973623 
1.500606 
2.313288 
3.566814 
5.500706 
8.484838 

13.090480 
20.200135 

Note: 'TTQ = 16, 'TTL = 1, 'TT£ = 1, 1j = 50°C. 



rable 0-9. Failures per million hours for MaS 
~aM as a function of bit complexity. 

rJits/Chip Lambda 

2 0.030846 
4 0.047220 
8 0.072297 

16 0.110711 
32 0.169566 
64 0.259757 

128 0.397991 
256 0.609903 
512 0.934823 

1,024 1.43311 
2,048 2.19743 
4,096 3.37002 
8,192 5.16935 

16,384 7.93094 
32,768 12.1703 
65,536 18.6794 

Note: 'TTQ = 16, 'TTL = 1, 'TTE = 1, 1) = 50°C. 

REFERENCE 

Elkind [1980a); U.S. Department of Defense [1976]. 

MIL-HDBK-217B RELIABILITY MODEL 713 

Table 0-10. Failures per million hours for Mas 
RAM as a function of bit complexity. 

Bits/Chip Lambda 

2 0.053861 
4 0.082421 
8 0.126145 

16 0.193096 
32 0.295627 
64 0.452675 

128 0.693267 
256 1.061909 
512 1.626853 

1,024 2.492778 
2,048 3.820270 
4,096 5.855726 
8,192 8.977270 

16,384 13.765292 
32,768 21.110812 
65,536 32.381991 

Note: 'TTQ = 16, 'TTL = 1, 'TTE = 1, 1) = 50°C. 





Summary of MI L -H DBK-217C Reliability 
Model 

When first released in April 1979, MIL­
HDBK-217C [U.S. Department of Defense, 
1979] followed the same general form as 217B. 
Subsequently an update was released in May 
1980, known as MIL-HDBK-217C Notice 1. 
Notice 1 was subsequently different from 217C, 
primarily in the addition of power dissipation 
and package type in the calculation of junction 
temperature. The failure rate model for mono­
Ii thic devices is summarized for both 217C and 
217C Notice 1. . 

217C MODEL 

The MIL-HDBK-217C is very similar to the 
217B model. Hence, only the differences from 
MIL-HDBK-217B will be presented. If not stat­
ed otherwise, the same equations and parameters 
are used for MIL-HDBK-217C that were speci­
fied for MIL-HDBK-217B. 

'lTE 

The Airborne Inhabited and Airborne Uninhab­
ited environment classes were expanded into 
four classes, as indicated in Table E-1. 

The junction temperature equation for TTL also 
covers Schottky TTL and low power Schottky 
TTL. 

c1 , C2 

The complexity factors for LSI, ROM, and 
RAM were changed as follows: 

LSI 
NG < 1,000 gates 
same as SSI/MSI 

NG > 1,000 gates 
C

1 
= 0.051 e(·OOIN(;) 

C2 = 0.0171 e(.OOINc,) 

715 



716 APPENDIX E 

Table E-1. Additional environmental classes in 
MIL-HDBK-217C. 

Class Example 

Airborne, Cockpit of long-
inhabited, transport mission aircraft 

Airborne, Cockpit of high-
inhabited, fighter performance 

aircraft 

Airborne, Equipment bay of 
uninha bited, long-mission 
transport aircraft 

Airborne, Equipment bay of 
uninhabited, high -performance 
fighter aircraft 

ROM 
C) = .285 (10)-3(B)o.603 

C
2 

= .08 (1O)-\B)o.646 

RAM 
C) = .995 (10)-3(B)o.603 
C

2 
= .28 (1O)-\B)o.644 

Value 

2.8 

5.6 

4.2 

8.4 

In the case of LSI devices, the coefficient of N G 

in the exponent decreased by a factor of four 
from MIL-HDBK-217B. C1 and C2 decreased by 
a factor of four for ROMs and a factor of two 
for RAMs. These decreases reflect the increased 
reliability of semiconductor components as fab­
rication experience grows. 

217C NOTICE 1 MODEL 

The failure rate, A, in failures per million hours 
for monolithic MOS and bipolar chips takes the 
form of: 

A = '7TL '7TQ[C1 '7TT'7TV'7TpT + (C2 + C3 )'7TE] 

Values for each factor will be discussed in turn. 

'7TL 

The learning factor has a value of 10 if the device 
is new, if there are major changes in the fabrica-

tion process, or if the fabrication process is being 
restarted after an extended interruption. Other­
wise the value of '7TL is 1.0. 

'7TQ 

The quality factor is a function of the amount of 
device screening. Table E-2 lists the values of '7TQ. 

Note the decreases in '7TQ (ranging from a factor 
of 1.5 to 8.5 lower) over the values, for the same 
classes, in MIL-HDBK-217B. 

'7TT 

The temperature acceleration factor is a function 
of device technology, package type, case temper-

Table E-2. Quality factors for MI L 217C notice 1. 

Quality Level 

S 

B 

B-1 

B-2 

C 

C-I 

D 

D-l 

Screening Standard 

MIL­
M-38510, 
Ciass S 

MIL­
M-38510, 
Class B 

MIL­
STD-883, 
Method 
5004, Class B 

Same as B-1 
with some 
tests waived 

MIL­
M-3851O, 
Class C 

MIL­
STD-883, 
Method 
5004, Class C 

Commercial, 
hermeticc;l.lly 
sealed 

Commercial 

7TQ 

0.5 

1.0 

3 

6.5 

8.0 

13.0 

17.5 

35.0 



lture, and power dissipation. 

'lTT = 0.le(-A[(I/(7;+273))-(1/298)j) 

wrhere A is a function of technology and package 
type as given in Table E-3 and 1) is the worst­
~ase junction temperature. 1) is given by: 

wrhere: 

1) = Tc + 0)c P 

Tc is the case temperature (OC) 
S}C IS the junction to case thermal 

resistance (OC/watt) for a de­
vice soldered onto a printed 
circuit board. 

P is the worst-case power dissipa-
tion. 

If 0)C is unknown, the values in Table E-4 
may be used. Some useful values of 'lTT are given 
tn Table E-5. Early experience suggests that 
2l7C Notice 1 is very sensitive to the junction 
temperature calculation. In particular, the de­
fault values for 0)C lead to questionably large 
values for 1), especially in the case of nonhermet­
ic packages. 

7TV 

The voltage stress factor, 'lTv, is 1.0 for all tech-
nologies other than CMOS. 'lTv is also 1.0 for 
CMOS with JiJD = 5 volts. For supply voltage 
between 12 and 15.5 volts: 

'lTv = O.lle x 

Table E-5. Some useful values of 7fT-

Junction Low-Power TTL 

MIL-HDBK-217C RELIABILITY MODEL 717 

Table E-3. Technology and package parameter, 
A, used in calculation of 7fT-

Technology Package Type A 

TTL,ECL Hermetic 4635 

TTL,ECL Nonhermetic 5214 

Schottky TTL Hermetic 5214 

Schottky TTL Nonhermetic 5794 

Low Power Hermetic 5794 
Schottky TTL, 
PMOS 

Low Power Nonhermetic 6373 
Schottky TTL 

PMOS Nonhermetic 8111 

NMOS Hermetic 6373 

NMOS Nonhermetic 9270 

CMOS, Linear Hermetic 7532 

CMOS, Linear N onhermetic 10429 

Table E-4. Default values for thermal resistance, 
Ole-

Number of 
Package Type Pins OJC 

Hermetic DIP < 22 30 

Hermetic DIP > 22 25 

Nonhermetic DIP < 22 125 

Nonhermetic DIP > 22 100 

NMOS TTL 

Temperature Hermetic N onhermetic Hermetic Nonhermetic Hermetic N onhermetic 

25 (OC) 0.1 0.1 0.1 0.1 0.1 0.1 

40 (OC) 0.26 0.28 0.28 0.44 0.21 0.26 

70 (OC) 1.3 1.7 1.7 5.9 0.77 1.0 

90 (OC) 3.25 4.6 4.6 26.2 1.6 2.3 



718 APPENDIX E 

where: Table E-6. Environmental factor, 'lTE' 

0.168 ~(~ + 273) 
x = 298 

with ~ the supply voltage. 

'lTpT 

'lTpT is the PROM programming technique factor. 
'lTpT is 1.0 for all devices except PROMs. For 
bipolar PROMs: 

'lTPT = 0.985 + 9.5 X 10-5(B) 

where B is the number of bits. For MaS 
PROMs: 

'lTPT =0.95 + 7.5 X 10-5(B) 

'lTE 

The application environment factor depends on 
the operational environment as indicated in Ta­
ble E-6. 

Environment 

Ground, benign 

Space flight 

Ground, fixed 

Airborne, 
inhabited, transport 

Airborne, 
inhabited, fighter 

Naval, sheltered 

Ground, mobile 

Airborne, 
uninhabited, 
transport 

Airborne, 
uninha bi ted,. figh ter 

Naval, unsheltered 

Missile, launch 

Table E-7. MIL-HDBK-217C, notice 1 complexity factors. 

Density/Function C1 

Bipolar SSI/MSI 7.48 (1O)-4(Nc )0.654 

MOS SSI/MSI 2.17 (1O)-\Nc )0.357 

Linear 1.57 (10)-3 (N
T

)0.780 

Bipolar LSI 1.48 (10)-3 (Ndo.S06 

(100 < Nc < 20,000) 

MOS LSI 1.75 (1O)-\Nc )oA 

(100 < Nc < 20,000) 

Bipolar RAM 2.2 (1O)-\B)0.s76 
(B < 16,384) 

Dynamic MOS RAM 5(1O)-4(B)o.610 

(B < 65,536) 

Example 

Computer room 

Satellite 

Factory floor 

Cockpit of long-
mission aircraft 

Cockpit of high-
performance 
aircraft 

Bridge of a surface 
ship 

Jeep 

Equipment bay of 
long-mission 
aircraft 

Equipment bay of 
high-performance 
aircraft 

Engine room of a 
surface ship 

Missile 

2.19 (10)-4 

· (Nc )0.364 

3.11 (10)-4 
· (Nc )0.178 

'IT£ 

1.0 

1.0 

2.5 

3.5 

7.0 

4.0 

4.0 

4.0 

8.0 

5.0 

10.0 

8( 1 0) -4 (NT )0.535 

3.2 (1O)-4(Nc )0.279 

2.52 (10)-4 
· (Nc )0.226 

(Table continues on next page) 



Table E-7 -Continued 

Density/Function 

Static MOS RAM 
(B < 65,536) 

Bipolar ROM, PROM 
(B < 65,536) 

MOS ROM, PROM 
(B < 65,536) 

Key: Nc is the number of gates 

Cl , C2 

NT is the number of transistors 
B is the number of bits 

C, and C2 are a function of the device complex­
ity and the device function as given in Table E-7. 

C3 

C3 is a function of package complexity as given 
in Table E-8. 

REFERENCE 

u.s. Department of Defense [1979, 1980]. 

MIL-HDBK-217C RELIABILITY MODEL 719 

~ 

4( 1O)-\B)o.609 

Table E-8. MIL-HDBK-217C, notice 1 package 
complexity. 

Package Type 

Hermetic DIPs with solder or 2.8 (1O)-4(Np )I.08 

weld seals 

Hermetic DIPs with glass seals 9(10)-5 (Np ) 1.51 

Nonhermetic DIPs 2(10)-4 (Np ) 1.23 

Hermetic Flatpacks 

Hermetic Cans 

3(1O)-\Np ) 1.82 

3(10)-5 (Np )2.01 

Note: Np is the number of pins on the package connected to 
the device substrate. 





References 

[Abraham, 1975] 
Abraham, J. A. "A Combinatorial Solution to the Reliability 
of Interwoven Redundant Logic Networks." IEEE Trans. 
Compo C-24 (May 1975): 578-584. 

[Abraham, Gosh, and Ray-Chaudhuri, 1968] 
Abraham, C. T.; S. P. Ghosh; and D. K. Ray-Chaudhuri. "File 
Organization Schemes Based on Finite Geometries. Informa­
tion and Control 12, 'no. 2 (February 1968): 143-163. 

[Abraham and Siewiorek, 1974] 
Abraham, J. A., and D. P. Siewiorek. "An Algorithm for the 
Accurate Reliability Evaluation of Triple Modular Redun­
dancy Networks." IEEE Trans. Compo C-23 (July 1974): 
682-692. 

[Abramson, 1959] 
Abramson, N. M. "A Class of Systematic Codes for Non­
Independent Errors." IRE Trans. Information Theory IT-5, 
no. 4 (December 1959): 150--157. 

[Adshead, Jain, and Knowles, 1972] 
Adshead, H. G.; G. C. Jain; and A. J. Knowles. "New Dimen­
sions in Automatic Logic Testing and Diagnostics." In Pro­
ceedings International Conference on Computer Aided 
Design. Institute of Electrical Engineers, 1972, pp. 1l2-1I8. 

[Aggarwal and Rai, 1978] 
Aggarwal, K. K., and S. Rai. "Symbolic Reliability Evalua­
tion Using Logical Signal Relations." IEEE Trans. Reliabil­
ity R-27, no. 3 (August 1978): 202-205. 

[Agnew, Forbes, and Stieglitz, 1967] 
Agnew, P. W.; R. E. Forbes; and C. B. Stieglitz. "An Ap­
proach to Self-Repairing Computers." In Digest 1st Annual 
IEEE Computer Con!. Chicago, 1967 60-64. 

[Albert, 1956] 
Albert, A. A. Fundamental Concepts of Higher Algebra. Chi­
cago: University of Chicago Press, 1956. 

[Almassy, 1979] 
Almassy, G. "Limits of Models in Reliability Engineering." In 
Proc. Annual Reliability and Maintainability Symposium. 
1979. IEEE Reliability Society, 1979, pp. 364-367. 

[Alonso, Hopkins, and Thaler, 1966] 
Alonso, R. L.; A. L. Hopkins, Jr.; and H. A. Thaler. "Design 
Criteria for a Spacecraft Computer," In Proc. Seminar on 
Spaceborne Multiprocessors. Boston, 1966. pp. 21-28 

721 

[Alonso, Hopkins, and Thaler, 1967] 
Alonso, R. L.; A. L. Hopkins, Jr.; and H. A. Thaler. "A Mul­
tiprocessing Structure." In Digest 1 st IEEE Computer Con!. 
Chicago, 1967. pp. 56-60 

[Anderson, 1971] 
Anderson, D. A. "Design of Self-Checking Digital Networks 
Using Code Techniques." Ph.D. diss., University of Illinois, 
1971. 

[Anderson and Jensen, 1975] 
Anderson, G. A., and E. D. Jensen. "Computer Interconnec­
tion Structures: Taxonomy Characteristics and Examples." 
ACM Computing Surveys. 7, no. 4 (December 1975): 
197-215. 

[Anderson and Lee, 1979] 
Anderson, T., and P. A. Lee. "The Provision of Recoverable 
Interfaces." In Proceedings 9th International Fault Tolerant 
Computing Symposium. IEEE Computer Society. Madison. 
WI 1979, pp. 87-94. 

[Anderson and Macri, 1967] 
Anderson, J. E., and F. J. Macri. "Multiple Redundancy Ap­
plications in a Computer." In Proc. Annual Symp. Rei .. 
Washington, DC, 1967. pp. 553-562 

[Anderson and Metze, 1973] 
Anderson, D. A., and G. Metze. "Design of Totally Self­
Checking Check Circuits for m-out-of-n Codes." IEEE Trans. 
Compo C-22 (March 1973): 263-269. 

[Andrews et al., 1969] 
Andrews, R. J.; J. J. Driscoll; J. A. Herndon; P. C. Richards; 
and L. R. Roberts. "Service Features and Call Processing 
Plan." Bell Systems Tech. Journal. 48, no. 8 (October 1969): 
pp.2713-2764. 

[ARINC, 1964] 
ARINC Research Corporation. Reliability Engineering. En­
glewood Cliffs, NJ: Prentice-Hall, 1964. 

[Armstrong, 1961] 
Armstrong, D. B. "A General Method of Applying Error Cor­
rection to Synchronous Digital Systems." Bell System Tech. 
Journal 40 (March 1961): 577-593. 

[Arulpragasm and Swarz, 1980] 
Arulpragasm, J. A., and R. S. Swarz. "A Design for Process 
State Preservation on Storage Unit Failure." In Digest of 10th 



722 REFERENCES 

International Fault Tolerant Computing Symposium, IEEE 
Computer Society, Kyoto, Japan, pp. 47-52. 

[Ashjaee and Reddy, 1976] 
Ashjaee, and S. M. Reddy. "On Totally Self-Checking Check­
ers for Separable Codes." In Proceedings 6th International 
Fault Tolerant Computing Symposium, IEEE Computer So­
ciety, Pittsburgh, PA, 1976, pp. 151-156 

[Ault et aI., 1964] 
Ault, C. F.; L. E. Gallaher; T. S. Greenwood; and D. C. Koeh­
ler. "No. I ESS Program Store." Bell System Tech. Journal 
43 (September 1964): 2097-2146. 

[Ault, et al., 1977] 
Ault, C. F.; J. H. Brewster; T. S. Greenwood; R. E. Haglund; 
W. A. Read, and M. W. Rolund, "IA Processor-Memory Sys­
tems." Bell System Tech. Journal, vol. 56, no. 2 (February 
1977): 181-205. 

[Avizienis, 1964] 
Avizienis, A "A Set of Algorithms for a Diagnosable Arith­
metic Unit." Jet Propulsion Lab 34-546. Pasadena, CA, 1964. 

[Avizienis, 1965] 
Avizienis, A "A Study of the Effectiveness of Fault-Detecting 
Codes for Binary Arithmetic." Jet Propulsion Lab 32-711. 
Pasadena, CA, 1965. 

[Avizienis, 1966a] 
Avizienis, A "Codes for Fault Detection in Digital Arithmetic 
Processors." In W. A. Kalenich, ed., Information Processing 
1965: Proc. IFJP Congress, vol. 2, Washington, DC: Spartan 
Books, 1966, p. 634. 

[Avizienis, 1966b] 
A vizienis, A "The Diagnosable Arithmetic Processor." In 
Space Programs Summary. Pasadena, CA: Jet Propulsion 
Lab, 1966, pp. 76-80. 

[Avizienis, 1967a] 
Avizienis, A "Concurrent Diagnosis of Arithmetic Proces-
30rs." In Digest 1st Annual IEEE Computer Con!, 1967, pp. 
34-37. 

[Avizienis, 1967b] 
A vizienis, A. "Application of Codes in Digital Computer Sys­
tems." In International Conference on Information Theory, 
San Remo, Italy, 1967. 

[Avizienis, 1967c] 
Avizienis" A "Design of Fault-Tolerant Computers." In 
FJCC, AFJPS Con! Proc., vol. 31, Washington, DC: Thomp­
son,1967, pp. 733-743. 

[Avizienis, 1968] 
Avizienis, A "An Experimental Self-Repairing Computer." 
In A. J. H. Morrell, ed., Information Processing 1968, Proc. 
IFIP Congress, vol. 2, North Holland, 1968, pp. 872-877. 

[Avizienis, 1969] 
Avizienis, A "Digital Fault Diagnosis by Low-Cost Arithme­
tical Coding Techniques." In Proc. Purdue Centennial Year 
Symposium Information Processing, vol. 1, Lafayette, IN, 
1969. pp. 81-91. 

[Avizienis, 1971] 
Avizienis, A "Arithmetic Error Codes: Cost and Effective­
ness Studies for Application in Digital System Design." IEEE 
Trans. Compo C-20 (November 1971): 1322-1331. 

[Avizienis, 1973] 
Avizienis, A "Arithmetic Algorithms for Error-Coded Ope­
rands." IEEE Trans. Compo C-22 (June 1973): 566-572. 

[Avizienis, 1975] 
Avizienis, A "Architecture of Fault-Tolerant Computing Sys­
tems." In Digest Fifth Int. Symp. Fault-Tolerant Computing, 
IEEE Computer Society, Paris, France, 1975, pp. 3-16. 

[Avizienis, 1976] 
Avizienis, A "Approaches to Computer Reliability-Then 
and Now." In AFIPS Con! Proc. vol. 45, Montvale, NJ, 
AFIPS Press, 1976, pp. 401-411 

[A vizienis, 1977] 
Avizienis, A. "Fault-Tolerant Computing-Progress, Prob­
lems, and Prospects." In Proceedings IFIP Congress, North 
Holland, 1977, pp. 405-420. 

[A vizienis, 1978] 
Avizienis, A "Fault-Tolerance: The Survival Attribute of 
Digital Systems." Proceedings of the IEEE, vol. 66 (October 
1978): 1109-1125. 

[Avizienis, et aI., 1969] 
Avizienis, A; F. P. Mathur; D. A Rennels; and J. A Rohr. 
"Automatic Maintenance of Aerospace Computers and 
Spacecraft Information and Control Systems." In Proc. AIAA 
Aerosp. Comput. Syst. Con!, AIAA Paper 69-966, 1969. 

[Avizienis, et aI., 1971] 
Avizienis, A; G. C. Gilley; F. P. Mathur; D. A Rennels; J. A 
Rohr; and D. K. Rubin. "The STAR (Self-Testing and Repair­
ing) Computer: An Investigation on the Theory and Practice 
of Fault-Tolerant Computer Design." IEEE Trans. Compo 
C-20 (October 1971): 1312-1321. 

[A WST, 1981] 
"Velocity, Altitude Regimes to Push Computer Limits." Avi­
ation Week & Space Technology, 6 April 1981, pp. 49-51. 

[8all, 1980] 
Ball, M. O. "Complexity of Network Reliability Computa­
tions." Networks 10 (1980): 153-5. 

[8all and Hardie, 1967] 
Ball, M. O. and F. Hardie. "Effects and Detection of Intermit­
tent Failures in Digital Systems." IBM 67-825-2137. 1967. 



Jarker, 1953] 
arker, R. H. "Group Synchronizing of Binary Digital Sys­
:ms." In W. Jackson, ed., Communication Theory, vol. 4. 
lew York: Academic Press, 1953, pp. 273-287. 

Jarlow, 1965] 
arlow, R. E., and F. Proschan. Mathematical Theory of Re­
ability. New York: Wiley, 1965. 

Jarlow, 1975] 
arlow, R. E., and F. Proschan. Statistical Theory of Reli­
bility and Life Testing: Probability Models. New York: 
[olt, Rinehart and Winston, 1975. 

Jarnes et ai, 1968] 
arnes, G. H., R. M. Brown, M. Kato, D. J. Kuch, D. L. 
kotnick, and R. A. Stokes. "The lIliac IV Computer." IEEE 
'rans. Compo C-17 (August 1968): 746-757. 

Jarsi and Maestrini, 1973] 
arsi, F., and R. Maestrini. "Error Correcting Properties of 
.edundant Residue Number Systems." IEEE Trans. Compo 
:-22 (March 1973): 307-924. 

Jarsi and Maestrini, 1974] 
arsi, F., and P. Maestrini. "Error Detection and Correction 
y Product Codes in Residue Number Systems."IEEE Trans. 
'omp. C-23 (September 1974): 915-924. 

Jartlett, 1978] 
artlett, J. F. " A 'NonStop' Operating System." In Proceed­
IgS Hawaii Int. Con! of System Sciences. Honolulu, HI 
978, pp. 103-119 

Jartow and McGuire, 1970] 
artow, N. and R. McGuire. "System/360 Model 85 Micr­
diagnostics," SJCC AFIPS Con! Proc., Vol. 36. Montvale, 
11: AFIPS Press, 1970, pp. 191-197. 

Jashkow, Friets, and Karson, 1963] 
ashkow, T R.; J. Friets; and A. Karson. "A Programming 
ystem for Detection and Diagnosis of Machine Malfunc­
ons." IEEE Trans. Elec. Compo EC-12, no. 1 (February 
963): pp. 10-17. 

Jaskin, Borgerson, and Roberts, 1972] 
askin, H. B.; B. R. Borgerson; and R. Roberts. "PRIME-A 
lodular Architecture for Terminal Oriented Systems." In 
'on! Proc., vol. 40, AFIPS Press, Montvale, NJ: 1972, pp. 
31-437. 

Jeaudry, 1978] 
eaudry, M. D. "Performance Related Reliability Measures 
)r Computing Systems," IEEE Trans. Compo C-27 (June 
978): 540-547. 

Jecker, et al., 1978] 
ecker, J. 0.; J. G. Cheoalier; R. K. Eisenhart; J. H. Forster; 

REFERENCES 723 

A. W. Fulton; W. L. Harrod. "IA Processor-Technology and 
Physical Design." Bell System Tech. Journal 56 (February 
1977): 207-236. 

[Beister, 1968] 
Beister, J. "On the Implementation of Failure-Tolerant Coun­
ters." IEEE Trans. Compo C-17 (September 1968): 885-886. 

[Bell and Newell, 1971] 
Bell, C. G., and A. Newell. Computer Structures: Readings 
and Examples, New York: McGraw-Hill, 1971. 

[Bell and Strecker, 1976] 
Bell, C. G., and W. D. Strecker. "Computer Structures: What 
Have We Learned from the PDP-II?" Proc. Third Ann. 
Symp. on Comp Architecture, Clearwater FL 1976 (IEEE/ 
ACM) pp. 1-14 .. 

[Bell et aI., 1970] 
Bell, C .G.; R. Cady; H. McFarland; B. Delaji; J. O'Loughlin; 
R. Noonan; and W. Wulf. "A New Architecture for Mini­
Computers: The DEC PDP-II." SJCC, AFIPS con! Proc, 
vol. 36, 1970, pp. 657-675. 

[Bell et al., 1978] 
Bell, C. G.; A. Kotok; T. N. Hastings; and R. Hill. "The Evo­
lution of the DECsystem 10." Comm. ACM. 21 (January 
1978): 44-63. 

[Bellis, 1978] 
Bellis, H. "Comparing Analytical Reliability Models to Hard 
and Transient Failure Data." Master's thesis, Carnegie­
Mellon University Department of Electrical Engineering, 
1987. 

[Bennetts, 1972] 
Bennetts, R. G. "A Realistic Approach to Fault Detection 
Test Set Generation for Combinational Logic Circuits," BCS 
Computer Journal 15, no. 3 (1972): 238-246. 

[Bennetts, 1973] 
Bennetts, R. G. "A Contribution to the Boolean Difference 
Procedure for Generating Tests for Combinational Logic Cir­
cuits." In BCS Datafair Conf. Proc .. vol. 2, 1973, pp. 
431-436. 

[Bennetts, 1974] 
Bennetts, R. G. "Automatic Test Sequence Generation for 
Complex Digital Networks." in Proc.· Automatic Testing. 
1974 Conference. 1974, pp. 27-36. 

[Bennetts, 1975] 
Bennetts, R. G. "On the Analysis of Fault Trees" IEEE 
Trans. Reliability R-24, (August 1975): 175-185. 

[Bennetts, 1976] 
Bennetts, R. G. "An Evaluation of Techniques for Designing 
Easily-Tested Combinational Logic Circuits." In Proc. Auto­
matic Testing. 1976 Conference. 1976 pp. 94-106. 



724 REFERENCES 

[Bennetts and Lewin, 1971] 
Bennetts, R. G., and D. W. Lewing "Fault Diagnosis of Digital 
Systems-A Review." Computer Vol. 4, no. 4 (July/August 
1971): 12-20. 

[Bennetts and Scott, 1976] 
Bennetts, R. 8., and R. V. Scott. "Recent Developments in the 
Theory and Practice of Testable Logic Design."Computer vol. 
9, no. 6 (June 1976): pp. 47-62. 

[Bennetts et aI., 1975] 
Bennetts, R. G.; D. C. Brittle; A. C. Prior; and J. L. Washing­
ton. "A Modular Approach to Test Sequence Generation for 
Large Digital Networks." Digital Processes 1, no. 1 (1975): 
pp.3-24. 

[Berger, 1961] 
Berger, J. M. "A Note on Burst Error Detection Codes for 
Asymmetric Channels." Information and Control 4, no. 3 
(March 1961): pp. 68-73 

[Berger and Lawrence, 1974] 
Berger, R. W.; and K. Lawrence. "Estimating Wei bull Param­
eters by Linear and Nonlinear Regression." Technometrics, 
16, no. 4 (November 1974): 617-619. 

[Berger and Mandelbrot, 1963] 
Berger, J. M., and 8. Mandelbrot. "A New Model for Error 
Clustering in Telephone Circuits." IBM J. Res. and Dev. 7, 
no. 3 (July 1963): 224-236. 

[Berlekamp, 1964] 
Berlekamp, E. R. "Note on Recurrent Codes." IEEE Trans. 
Info. Theory IT-IO, no. 3 (July 1964): 257-259. 

[Berlekamp, 1968] 
Berlekamp, E. R. Algebraic Coding Theory. New York: 
McGraw-Hill, 1968. 

[Beuscher et al., 1969] 
Beusher, H. J.; G. E. Fessler; D. W. l1uffman; P. J. Kennedy; 
and E. Nussbaum. "Administration and Maintenance Plan." 
Bell System Tech. Journal 48, no. 8 (October 1969): 
2765-2815. 

[Bhatt and Kinney, 1978J 
Bhatt, A. K., and L L. Kinney. "A High Speed Parallel 
Encoder /Decoder for b-Adjacent Error-Checking Codes." In 
Proc. Third USA-Japan Computer Con! AFIPS, 1978, pp. 
203-207. 

[Birdsall and Ristenblatt, 1958J 
Birdsall, T. G., and M. P. Ristenblatt. "Introduction to Linear 
Shift-Register Generated Sequences." Ann Arbor: University 
of Michigan Research Institute, 1958. 

[Black, Sundberg, and Walker, 1977J 
Black, C. J.: C. E. Sundberg; and W. K. S. Walker. "Develop­
ment of a Spaceborne Memory with a Single Error and Era-

sure Correction Scheme," In Digest of Seventh International 
Fault Tolerant Computing Symposium, IEEE Computer So­
ciety, Los Angeles, CA, 1977, pp. 50-55. 

[Boone, Liebergot, and Sedmak, 1980] 
Boone, L. A.; H. L. Liebergot; and R. M. Sedmak. "Availabil­
ity, Reliability, and Maintainability Aspects of the Sperry 
Univac 1100/60." In Digest of Ten International Fault­
Tolerant Computing Symposium, Kyoto, Japan, IEEE Com­
puter Society, 1980, pp. 3-8. 

[Borgerson and Freitas, 1975] 
Borgerson, 8. R., and R. F. Freitas. "A Reliability Model for 
Gracefully Degrading and Standby-Sparing Systems." IEEE 
Trans. Compo (May 1975): 517-525. 

[Borgerson, Hanson, and Hartley, 1978] 
Borgerson, 8. R.; M. L. Hanson; and P. A. Hartley. "The Evo­
lution of the Sperry Univac 1100 Series: A History, Analysis 
and Projection." Comm. ACM 1 (January 1978): 25-43. 

[Borgerson et al., 1979] 
Borgerson, 8. R.; M. D. Godfrey; P. E. Hagerty; and T. R. 
Rykkem. "The Architecture of Sperry Univac 1100 Series 
Systems." In Digest, Sixth Ann. Int. Symp. on Computer Ar­
chitecture, Philadelphia, PA: IEEE/ACM, 1979, pp. 
137-146. 

[Bose and Caldwell, 1967] 
Bose, R. c., and J. G. Caldwell. "Synchronizable Error­
Correcting Codes." Information and Control 10, no 6 (June 
1967): 616-630. 

[Bose and Ray-Chaudhuri, 1960aJ 
Bose, R. c., and D. K. Ray-Chaudhuri. "On a Class of Error 
Correcting Binary Group Codes." Information and Control 3, 
no. 1 (March 1960): 68-79. 

[Bose and Ray-Chaudhuri, 1960b J 
Bose, R. c., and D. K. Ray-Chaudhuri. "Further Results on 
Error-Correcting Binary Group Codes." Information and 
Control 3, no. 3 (September 1960): 279-290. 

[Bossen, 1970J 
Bossen, D. C. "b-Adjacent Error Correction." IBM J. Res. 
and Dev. 14, no. 4 (July 1970): 402-408. 

[Bossen and Hong, 1971J 
Bossen, D. C., and S. J. Hong. "Cause and Effect Analysis for 
Multiple Fault Detection in Combinational Networks." IEEE 
Trans. Compo C-20, (November 1971): 1252-1257. 

[Boswell, 1972] 
Boswell, F. R. "Designing Testability into Complex Logic 
Boards." Electronics International 45, no. 17 (14 August 
1972): 116-119. 

[Bouricius, Carter, and Schneider, 1969aJ 
Bouri<;ius, W. G.; W. C. Carter; and P. R. Schneider. "Reli-



ability Modeling Techniques for Self-Repairing Computer 
Systems." In Proc. 24th National Conference of the ACM, 
ACM, 1969, pp. 295-309. 

[Bouricius, Carter, and Schneider, 1969b] 
Bouricius, W. G.; W. C. Carter; and P. R. Schneider. "Reli­
ability Modeling Techniques and Trade-Off Studies for Self­
Repairing Computers." IBM RC2378, 1969. 

[Bouricius et aI., 1971] 
Bouricius, W. G.; W. C. Carter; D. C. Jessep; P. R. Schneider; 
and A. B. Wadia. "Reliability Modeling for Fault-Tolerant 
Computers." IEEE Trans. Compo C-20 (November 1971): 
1306-1311. 

[Bowman et al. 1977] 
Bowman, P. W.; M. R. Diebman; F. M. Gaety; R. F. Kranz­
mann; E. H. Stredde; and R. J. Watters. "IA Processor­
Maintenance Software." Bell System Tech. Journal, 56 (Feb­
ruary 1977) pp. 225-287. 

[Bozorgui-Nesbat and McCluskey, 1980] 
Bozorgui-Nesbat, S., and E. J. McCluskey. "Structured De­
sign for Testability to Eliminate Test Pattern Generation." In 
Digest of Tenth International Fault Tolerant Computing 
Symposium, IEEE Computer Society, 1980, pp. 158-163. 

[Bressler, Kraley, and Michel, 1975] 
Bressler, R. D.; M. F. Kraley; and A. Michel. "Pluribus: A 
Multiprocessor for Comminications Networks." In 14th An­
nual ACM/NBS Technical Symp.--Computing in the Mid-
70s: An Assessment, 1975, pp. 13-19. 

[Breuer, 1973] 
Breuer, M. A. "Testing for Intermittent Faults in Digital Cir­
cuits." IEEE Trans. Compo C-22 (March 1973): 241-246. 

[Breuer and Friedman, 1976] 
Breuer, M. A., and A. D. Friedman.Diagnosis and Reliable 
Design of Digital Systems. Potomac, MD: Computer Science 
Press, 1976. 

[Breuer and Friedman, 1980] 
Breuer, M. A., and A. D. Friedman. "Functional Level Primi­
tives in Test Generation."IEEE Trans. Comp C-29 (March 
1980): 223-?35. 

[Brinch Hansen, 1970] 
Brinch Hansen, P. "The Nucleus of a Multi-programming 
System." Comm. ACM. 13 (April 1970): 238-241. 

[Brodsky, 1980] 
Brodsky, M. "Hardening RAMs Against Soft Errors." Elec­
tronics, Vol. 53, April 24, 1980. McGraw-Hill. 

[Brown, 1960] 
Brown, D. T. "Error Detecting and Correcting Binary Codes 
for Arithmetic Operations." IRE Trans. Elec. Compo EC-9, 
no. 3 (September 1960): 333-337. 

REFERENCES 725 

[Brown, Tierney, and Wasserman, 1961] 
Brown, W. G.; J. Tierney; and R. Wasserman. "Improvement 
of Electronic-Computer Reliability Through the Use of Re­
dundancy." IRE Trans. Elec. Compo EC-lO, no. 3 (September 
1961): 407-416. 

[Browne, et aI., 1969] 
Browne, T. E.; T. M. Quinn; W. N. Toy; and J. E. Yates. "No. 
2 ESS Control Unit System." Bell System Tech. Journal, 48, 
no. 2 (October 1969): 443-476. 

[Brule, Johnson, and Kletsky, 1960] 
Brule, J. D.; R. A. Johnson; and E.J. Kletsky. "Diagnosis of 
Equipment Failures." IRE Trans. Reliability and Quality 
Control RQC-9 (April 1960): 23-24. 

[Budlong, et aI. 1977] 
Budlong, A. H.; B. G. DeLiegish; I. M. Neville; J. S. Nowak; 
J. L. Quinn; and F. W. Wendloud. "IA Processor-Control 
System." Bell System Tech. Journal 56, no. 2 (February 
1977): 135-179. 

[Bussgang, 1965] 
Bussgang, J. J. "Some Properties of Binary Convolutional 
Code Generators." IEEE Trans. Info Theory IT-II, no. 1 
(January 1965): 90-100. 

[Butner and Iyer, 1980] 
Butner, S. E., and R. K. Iyer. "A Statistical Study of Reliabil­
ity and System Load at SLAC." Center for Reliable Comput­
ing, Stanford University, 1980. 

[Cagle, et al., 1964] 
Cagle, W. B.; R. S. Menne; R. S. Skinner; R. E. Staehler; and 
M. D. Underwood. "No 1 ESS Logic Circuits and Their Ap­
plication to the Design of the Central Control." Bell System 
Tech. Journal 43, no. 5, Part 1 (September 1964): 2055-2095. 

[Carter, Duke, and Jessep, 1971] 
Carter, W. c.; K. A. Duke; and D. C. Jessep. "A Simple Self­
Testing Decoder Checking Circuit." IEEE Trans. Compo 
C-20 (November 1971): 1413-1414. 

[Carter, Duke, and Jessep, 1973] 
Carter, W. c.; K. A. Duke; and D. C. Jessup. "Lookaside 
Techniques for Minimum Circuit Memory Translators." 
IEEE Trans. Compo C-20 (March 1973): 283-289. 

[Carter and McCarthy, 1976] 
Carter, W. c.; and C. E. McCarthy. "Implementation of an 
Experimental Fault-Tolerant Memory System." IEEE Trans. 
Compo C-25 (June 1976): 557-568. 

[Carter et aI., 1964] 
Carter, W. C., H. c., Montgomery, R. J. Preiss, and H. J. 
Reinheimer. "Design of Serviceability Features for the IBM 
Systemj360," IBM Journal of Research and Development, 
vol. 8, no. 2, April 1964, pp. 115-126. 



726 REFERENCES 

[Carter and Schneider, 1968] 
Carter, W. C.; and P. R. Schneider. "Design of Dynamically 
Checked Computers." In Proceedings IFIP Congress. vol. 2. 
North-Holland Publ. Co. 1968, pp. 878-883. 

[Carter and Wadia, 1980] 
Carter, W. c.; and A. B. Wadia. "Design and Analysis of 
Codes and Their Self-Checking Circuit Implementations for 
Correction and Detection of Multiple b-Adjacent Errors." In 
Digest of Tenth International Fault-Tolerant Computing 
Symposium. IEEE Computer Society, Kyoto Japan 1980, pp. 
35-40. 

[Carter, Wadi a, and Jessep, 1972] 
Carter, W. c.; A. B. Wadia; and D. C. Jessep, Jr. "Computer 
Error Control by Testable Morphic Boolean Functions-A 
Way of Removing Hardcore." In Digest of Second Int. Symp. 
on Fault-Tolerant Computing. IEEE Computer Society, Bos­
ton, MA 1972, pp. 154-159. 

[Castillo, 1980] 
Castillo, X. "Workload, Performance, and Reliability of Digi­
tal Computing Systems." Carnegie-Mellon University Techni­
cal Report. Computer Science Department, 1980. 

[Castillo and Siewiorek, 1980] 
Castillo, x., and D. P. Siewiorek. "A Performance-Reliability 
Model for Computing Systems." Digest Tenth Int. Fault­
Tolerant Computing Symposium. Kyoto, Japan. 1980, pp. 
187-192. 

[Chandy and Ramamoorthy, 1972] 
Chandy, K. M., and C. V. Ramamoorthy. "Rollback and Re-
.................. _ .. c._ ............ ..-= ........ £' .... _ r" ..... __ •. 4. __ 0 _______ .....", TT":'T:tF:" ,.,.., _____ _ 

\,.VV\;;IY ..:JU<1l\;;/:SI\;;:> IVI ,,",VllIPUl\;;I riV/:SHUU:>. ILLL I rUfl'l. 

Compo C-21 (June 1972): 546-556. 

[Chaney, Ornstein, and Littlefield, 1972] 
Chaney, T. J.; S. M. Ornstein; and W. M. Littlefield. "Beware 
the Synchronizer." CompCon. 1972, pp. 317-319. 

[Chang, 1965] 
Chang, H. Y. "An Algorithm for Selecting an Optimum Set of 
Diagnostic Tests." IEEE Trans. Elec. Compo EC-14 (October 
1965): 705-711. 

[Chang, 1968] 
Chang, H. Y. "A Distinguishability Criterion for Selecting Ef­
ficient Diagnostic Tests." In SJCC. AFIPS Conf Proc. vol. 
32, Washington, DC: Thompson, 1968, pp. 529-534. 

[Chang, Manning, and Metze, 1970] 
Chang, H. Y.; E. G. Manning; and G. Metze. Fault Diagnosis 
of Digital Systems. New York: Wiley Interscience, 1970. 

[Chang, Smith, and Walford, 1974] 
Chang, H. Y.; G. W. Smith, Jr.; and R. B. Walford. "LAMP: 
System Description." Bell System Tech. Journal 53 (October 
1974): 1431-1449. 

[Chen and Avizienis, 1978] 
Chen, L., and A. Avizienis. "N-Version Programming: A 
Fault-Tolerance Approach to Reliability of Software Opera-

tion." In Digest of Eighth International Fault-Tolerant' Com­
puting Symposium. IEEE Computer Society, Toulouse, 
France, 1978, pp. 3-9. 

[Cheung, 1980] 
Cheung, R. C. "A User-Oriented Software Reliability 
Model," IEEE Trans. Soft. Eng. SE-6, no. 6 (March 1980): 
118-125. 

[Cheung and Ramamoorthy, 1975] 
Cheung, R. c., and C. V. Ramamoorthy. "Optimal Measure­
ment of Program Path Frequencies and its Applications." In 
Proc. Int. Federation Automatic Control Congress 1975. 

[Chiang and Standridge, 1975] 
Chiang, A. C. L., and R. Standridge. "Pattern Sensitivity on 
4K RAM Devices." Computer Design 14, no. 2 (February 
1975): 88-91. 

[Chien, 1960] 
Chien, R. T. "A Class of Optimal Noiseless Load-Sharing Ma­
trix Switches." IBM J. Res. and Dev. 4, no. 4 (October 1960): 
414-417. 

[Chien, 1964] 
Chien, R. T. "Cyclic Decoding Procedures for Bose­
Chaudhuri-Hocquenghem Codes." IEEE Trans. Info. Theory 
IT-I0, no. 4 (October 1964): 357-363. 

[Chien and Frazer, 1966] 
Chien, R. T., and D. Frazer. "An Application of Coding The­
ory to Document Retrieval." IEEE Trans. Info. Theory IT-12, 
no. 2 (April 1966): 92-96 . 

[Chien, Hong, and Preparata, 1968] 
Chien, R. T.; S. J. Hong; and F. P. Preparata. "Some Contri­
butions to the Theory of Arithmetic Codes." In Proc. Hawaii 
Int. Con! on Systems Sciences. University of Hawaii Press, 
Honolulu, Hawaii, 1968, pp. 460-462. 

[Chinal, 1977] 
Chinal, J. P. "High Speed Parity Prediction for Binary 
Adders." In Digest Seventh International Fault-Tolerant 
Computing Symposium. IEEE Computer Society, Los 
Angeles, CA, 1977, p. 190. 

[Chou and Abraham, 1980] 
Chou, T. C. K., and J. A. Abraham. "Performance/ 
Availability Model of Shared Resource Multiprocessors." 
IEEE Trans. Reliability R-29, no. 1 (April 1980): 70-74. 

[Chow, n.d.] 
Chow, D. K. "A Geometric Approach to Coding Theory with 
Application to Information Retrieval." University of Illinois 
Report R-368. Urbana, IL, n.d. 

(Constantine, 1958] 
Constantine, G., Jr. "A Load-Sharing Matrix Switch." IBM J. 
Res. and Dev. 2, no. 3 (July 1958): 204-211. 

[Cook et al., 1973] 
Cook, R. W.; W. H. Sisson; T. F. Storey; and W. N. Toy. "De-



iign of a Self-Checking Microprogram Control." IEEE Trans. 
'::omp. C-22 (March 1973): 255-262. 

Cooper and Chow, 1976] 
::::ooper, A. E., and W. T. Chow. "Development of On-Board 
ipace Computer Systems." IBM J. Res. and Dev. 20, no. 1 
January 1976): 5-19. 

Cornell and Halstead, 1976] 
::::ornell, L., and M. H. Halstead. "Predicting the Number of 
Jugs Expected in a Program Module." Purdue University 
::::SD-TR-20r. 1976. 

Costes, Landrault, and Laprie, 1978] 
::::ostes, A.; C. Landrault; and J. C. Laprie. "Reliability and 
\vailability Models for Maintained Systems Featuring Hard­
yare Failures and Design Faults." IEEE Trans. Compo C-27 
June 1978): 548-560. 

Craig, 1964] 
::::raig, E. J. Laplace and Fourier Transforms for Electrical 
~ngineers. New York; Holt, Rinehart and Winston, 1964. 

Craig, 1980] 
:raig, S. R. "Incoming Inspection and Test Programs." Elec­
ronics Test. October 1980, pp. 58-73. 

Crouzet and Landrault, 1980] 
:rouzet, Y., and C. Landrault. "Design of Self-Checking 
viOS LSI Circuits, Application to a Four-Bit Microproces­
or." IEEE Trans. Compo C-29 (June 1980): 532-537. 

Daly, Hopkins, and McKenna, 1973] 
)aly, W. M.; A.L. Hopkins, Jr.; and J. F. McKenna Jr. "A 
~ault-Tolerant Clocking System." In Dig. Third Int. Symp. 
"ault-Tolerant Computing, IEEE Computer Society, 1973. 

Dandapani and Reddy, 1974] 
)andapani, R., and S. M. Reddy. "On the Design of Logic 
'Iletworks with Redundancy and Testability Considerations." 
EEE Trans. Compo C-23 (November 1974): 1139-1149. 

Dandapani, Reddy, and Robinson, 1970] 
)andapani, R.; S. M. Reddy; and J. P. Robinson. "An Investi­
:ation into Redundancy and Testability of Combinational 
Jogic Networks." AD 174-157, 1970. 

Datamation, 1979] 
The Microarchitecture of Univac's 1100/60." Datamation, 
uly 1979, pp. 173-178. 

Davies and Wakerly, 1978] 
)avies, D.; and J. F. Wakerly. "Synchronization and Match­
rlg in Redundant Systems." IEEE Trans. Compo C-27 (June 
978): 531-539. 

DeAngelis and Lauro, 1976] 
)eAngelis, D., and J. A. Lauro. "Software Recovery in the 
~ault-Tolerant Spaceborne Computer." In Digest Sixth Inter­
'ational Fault Tolerant Computing Symposium, IEEE Com-, 
,uter Society, Pittsburgh, PA, 1976, pp. 143-148. 

REFERENCES 727 

[DEC, 1971] 
Digital Equipment Corporation. PDP-8/e Engineering Circuit 
Diagrams. Bedford, MA, 1971. 

[DEC, 1972] 
Digital Equipment Corporation. PDP-8/e Maintenance Man­
ual. DEC-8E-HR 1 B-D. Bedford, MA, 1972. 

[DEC, 1975a] 
Digital Equipment Corporation. LSI-II PDP-I1/03 User's 
Manual. Bedford, MA, 1975. 

[DEC, 1975b] 
Digital Equipment Corporation. RXV-11 User's Manual. Bed­
ford, MA, 1975. 

[DEC, 1975c] 
Digital Equipment Corporation. "A Reliability Report. " Bed­
ford, MA, 1975. 

[DEC, 1977] 
Digital Equipment Corporation. VAX-11/780 Architecture 
Handbook. Bedford, MA, 1977. 

[DEC, 1978] 
Digital Equipment Corporation TOPS-10 and TOPS-20 SY­
SERR Manual. Bedford, MA, 1978. 

[DEC, 1979] 
Digital Equipment Corporation. PDP-II Bus Handbook. Bed­
ford, MA, 1979. 

[Deckert et al., 1977] 
Deckert, J. c.; M. N. Desai; J. J. Deyst; and A. J. Willsky. 
"F8-DFBW Sensor Failure Identification Using Analytic Re­
dundancy." IEEE Trans. Autom. Contr. AC-22, no. 5 (Octo­
ber 1977): 795-803. 

[DeGroot, 1975] 
DeGroot, M. H. Probability and Statistics. Reading, MA: 
Addison-Wesley, 1975. 

[Dennis, 1974] 
Dennis, N. G. "Ultrareliable Voter Switches, with a Bibliogra­
phy of Mechanization." Microelectronics and Reliability, Au­
gust 1974, pp. 299-308. 

[DeSousa and Mathur, 1978] 
De Sousa, P. T.; and F. P. Mathur. "Sift-Out Modular Redun­
dancy." IEEE Trans. Compo C-27 (July 1978): 624-627. 

[Deyst and Hopkins] 
Deyst, J. J., Jr.,and A. L. Hopkins, Jr. "Highly Survivable In­
tegrated Avionics." Astronautics and Aeronautics, 
forthcoming. 

[Diaz, Azema, and Ayache, 1979] 
Dias; M.; P. Azema; and J. M. Ayache. "Unified Design of 
Self-Checking and Fail-Safe Combinational Circuits and Se­
quential Machines." IEEE Trans. Compo C-28 (March 1979): 
276-281. 



728 REFERENCES 

[Diaz, Geffroy, and Courvoisier, 1974J 
Diaz, M.; J. C. Geffroy; and M. Courvoisier. "On-Set Realiza­
tion of Fail-Safe Sequential Machines." IEEE Trans. Compo 
C-23 (February 1974): 133-138. 

[Dickinson, Jackson, and Randa, 1964J 
Dickinson, M. M.; J. B. Jackson; and G. C. Randa. "Saturn V 
Launch Vehicle Digital Computer and Data Adapter." In 
FJCe. AFIPS Con! Proc. Vol. 26,1964, pp. 501-516. 

[Dijkstra, 1968J 
Dijkstra, E. W. "The Structure of the 'THE' Multiprogramm­
ing System." Comm ACM. II (1968): 341-346. 

[Dolotta et al., 1976J 
Dolotta, T. A.; M. I. Bernstein; R. S. Dickson, Jr.; N. A. 
France; B. A. Rosenblatt; D. M. Smith; and T. B. Steel, Jr. 
Data Processing in /980-/985. New York: Wiley, 1976. 

[Downing, Nowak, and Tuomenoksa, 1964J 
Downing, R. W.; J. S. Nowak; and L. S. Tuomenoksa. "No 1 
ESS Maintenance Plan." Bell System Tech. Journal Vol. 43 
no. 5, Part 1, (September 1964): pp. 1961-2019. 

[Droulette, 1971 J 
Droulette, D. L. "Recovery through Programming System/ 
360-System/370." In SJCC AFIPS Con! Proc. Vol. 38, 
AFIPS Press, Montvale, NJ, 1971, pp. 467-476. 

[Eames and Spann, 1977J 
Eames, S., and A. Spann. "Life Cycle Cost Analysis Utilizing 
Generalized Data Elements." In Proc. 15th Annual Spring 
Reliability Seminar. IEEE Boston Section, 1977, pp. 12-39. 

[Eisenbies, 1967J 
Eisenbies, J. L. "Conventions for Digital Data Communica­
tion Design." IBM Syst. J. 6, no. 4 (1967): 267-302. 

[Elias, 1954J 
Elias, P. "Error-Free Coding." IRE Trans. Professional 
Group on Information Theory PGIT-4 (1954): 29-37. 

[Elkind, 1980aJ 
Elkind, S. A. "Fail Users Manual." Carnegie-Mellon Univer­
sity Department of Electrical Engineering, 1980. 

[Elkind, 1980bJ 
Elkind, S. A. "Towards Automatic Design of Reliable Sys­
tems." PhD. Diss. proposal, Carnegie-Mellon University De­
partment of Electrical Engineering; 1980. 

[Elkind and Siewiorek, 1978J 
Elkind, S. A., and D. P. Siewiorek: "Reliability and Perfor­
mance Models for Error Correcting Memory and Register Ar­
rays." Carnegie-Mellon University CMU-CS-78-118, 1978. 

[Elkind and Siewiorek, 1980J 
Elkind, S. A., and D. P. Siewiorek. "Reliability and Perfor­
mance of Error-Correcting Memory and Register Arrays." 
IEEE Trans. Compo C-29 (October 1980): 920-927. 

[Elspas and Short, 1962J 
Elspas, B., and R. A. Short. "A Note on Optimum Burst­
Error-Correcting Codes." IRE Trans. Information Theory 
IT-8, no. I (January 1962): 39-42. 

[Enslow, 1974J 
Enslow, P. H., Jr., ed. Multiprocessors and Parallel Process­
ing. New York: Wiley, 1974. 

[Enslow, 1977J 
Enslow, P. H., Jr. "Multiprocessor Organization-A Survey." 
ACM Computing Surveys 9 (March 1977): 103-129. 

[Esary and Proschan, 1962J 
Esary, J. D., and F. Proschan. "The Reliability of Coherent 
Systems." In Wilcox and Mann, eds., Redundancy Techniques 
for Computing Systems. Washington, DC: Spartan Books, 
1962, pp. 47-61. 

[Fano, 1963J 
Fano, R. M. "A Heuristic Discussion of Probabilistic Decod­
ing." IEEE Trans. Info. Theory IT-9, no. 2 (January 1963): 
64-74. 

[Farmer, 1973J 
Farmer, D. E. "Algorithms for Designing Fault-Detection Ex­
periments for Sequential Machines." IEEE Trans. Compo 
C-22 (February 1973): 159-167. 

[Ferdinand, 1974J 
Ferdinand, A. E. "A Theory of Systems Complexity." Int. J. 
Gen. Syst. 1 (1974): 19-33. 

[Finkelstein, 1970J 
Finkelstein, H. A. "An Investigation into the Extension of Re­
dundancy Techniques." Coordinated Science Laboratory, 
University of Illinois R-455. Urbana, IL, 1970. 

[Fire, 1959J 
Fire, P. "A Class of Multiple-Error-Correcting Binary Codes 
for Non-Independent Errors." Sylvania Reconnaissance Sys­
tems Laboratory RSL-E-2. Mountain View, CA, 1959. 

[Fitzsimmons and Love, 1978J 
Fitzsimmons, A., and T. Love. "A Review and Evaluation 'of 
Software Science." ACM Computing Surveys 10 (March 
1978): 3-18. 

[Fleckenstein, 1974J 
Fleckenstein, W. O. "Bell System ESS Family-Present and 
Future." In ISS Record. Munich, Germany, 1974. 

[Flehinger, 1958J 
Flehinger, B. J. "Reliability Improvement through Redun­
dancy at Various Systems Levels." IBM J. Res. and Dev. no. 
2, (April 1958): 148-158. 

[Fleischer, 1977] 
Fleischer, G. E. "Voyager Altitude Control Flight Software 
Techniques for Fault Detection/Correction." AIAA Paper 



\/0. 77-1058, presented at the Guidance and Control Confer­
~nce, Hollywood, FL, August 1977. 

Floyd, 1967] 
Floyd, R. W. "Assigning Meanings to Programs." In J. T. 
~chwartz, ed., Mathematical Aspects of Computer Science, 
Providence, RI. American Mathematical Society, 1967, pp. 
19-32. 

Foley, 1979] 
Foley, E. "The Effects of the Microelectronics Revolution on 
:he Systems and Board Test." Computer 12, no. 10 (October 
1979): 32-38. 

Forney, 1965] 
Forney, G. D., "On Decoding BCH Codes." IEEE Trans. 
rnfo. Theory IT-II, no. 4 (October 1965): 549-557. 

Forney, 1966] 
Forney, G. D. "Generalized Minimum Distance Coding." 
rEEE Trans. Info. Theory IT-12, no. 2 (April 1966): 125-131. 

Frank and Frisch, 1970] 
Frank, H., and I. T. Frisch. "Analysis and Design of Survi­
{able Networks." IEEE Trans. Comm. Tech. COM-18 (May 
1970): 501-519. 

:Frank and Yau, 1966] 
Frank, H., and S. S. Yau. "Improving Reliability of a Sequen­
lial Machine by Error-Correcting State Assignments." IEEE 
Trans. Elec. Compo 15 (February 1966): 111-113. 

Frechette and Tanner, 1979] 
Frechette, T. J., and F. Tanner. "Support Processor Analyzer 
Errors Caught by Latches." Electronics 52, no. 23 (November 
1979): McGraw-Hill, 116-118. 

Freeman and Metze, 1972] 
Freeman, H. A., and G. Metze. "Fault Tolerant Computers 
Using 'Dotted Logic' Redundancy Techniques." IEEE Trans. 
Compo C-21 (August 1972): 867-871. 

[Freiman, 1962] 
Freiman, C. Y. "Optimal Error Detection Codes for Com­
pletely Asymmetric Binary Chanels." Information and Con­
trol 5, no. I (March 1962): 64-71. 

[Freiman and Robinson, 1965) 
Freiman, C. Y., and J. P. Robinson. "A Comparison of Block 
,wd Recurrent Codes For The Correction of Independent Er­
rors." IEEE Trans. Info. Theory IT-II, no. 3 (July 1965): 
445-449. 

[Frey, 1967) 
Frey, A. H., Jr. "Adaptive Decoding without Feedback." In 
Proc. Int. Symp. on Information Theory, Athens, 1967. 

[Frey and Benice, 1964] 
Frey, A. H., Jr., and R. J. Benice. "An Analysis of Retransmis-

REFERENCES 729 

sion Systems." IEEE Trans. Comm. Tech. COM-12 (Decem­
ber 1964): 135-146. 

[Friedman, 1967] 
Friedman, A. D. "Fault Detection in Redundant Circuits." 
IEEE Trans. Elec. Compo EC-16 (February 1967): 99-100. 

[Friedman, 1973] 
Friedman, A. D. "Easily Testable Iterative Systems." IEEE 
Trans. Compo C-22 (December 1973): 1061-1064. 

[Friedman and Menon, 1971] 
Friedman, A. D., and P. R. Menon. Fault Detection in Digital 
Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1971. 

[Friedman and Menon, 1973] 
Friedman, A. D., and P. R. Menon. "Restricted Checking Se­
quences for Sequential Machines." IEEE Trans. Compo C-22 
(April 1973): 397-399. 

[FTSC, 1976] 
"The Fault-Tolerant Space borne Computer." In Digest Sixth 
International Symp. on Fault-Tolerant Computing, IEEE 
Computer Society, Pittsburgh, PA, 1976, pp. 129-147. 

[Fujiwara and Kawakami, 1977] 
Fujiwara, E., and T. Kawakami. "Modularized b-Adjacent Er­
ror Correction." In Direct Seventh International Fault­
Tolerant Computing Symposium IEEE Computer Society, 
Los Angeles, CA, 1977, p. 199. 

[Fujiwara and Kinoshita, 1974] 
Fujiwara, H., and K. Kinoshita. "Design of Diagnosable Se­
quential Machines Utilizing Extra Outputs." IEEE Trans. 
Compo C-23 (February 1974): 138-145. 

[Funami and Halstead, 1975] 
Funami, Y., and M. H. Halstead. "A Software Physics Analy­
sis of Akiyama's Debugging Data." Purdue University CSD­
TR-144. 1975. 

[Gandhi, Knoue, and Henley, 1972) 
Gandhi, S. L.; K. Knoue; and E. J. Henley. "Computer Aided 
System Reliability Analysis and Optimization." In Proc. IFIP 
Working Conference on Principles of Computer-Aided De­
sign, Eindhoven, 1972, pp. 283-308. 

[Garner, 1958) 
Garner, H. L. "Generalized Parity Checking." IRE Trans. 
Elec. Compo EC-7 (September 1958): 207-213. 

[Garner, 1966] 
Garner, H. L. "Error Codes for Arithmetic Operations." 
IEEE Trans. Elec. Compo EC-15 (October 1966): 763-769. 

[Gavrilov, 1960] 
Gavrilov, M. A. "Structural Redundancy and Reliability of 
Relay Circuits." In Proceedings International Federation of 
Automatic Control Congress, 1960, pp. 838-844. 



730 REFERENCES 

[Gay and Ketelsen, 1979J 
Gay, F. A., and M. L. Ketelsen. "Performance Evaluation for 
Gracefully Degrading Systems." In Digest Ninth Int. Conf. 
Fault- Tolerant Computing Symposium, IEEE, Madison, WI, 
1979, pp. 5 I-58. 

[Gear, 1976J 
Gear, G. "Intel 2708 8K UV Erasable PROM." Intel Corpo­
ration RR-12. Santa Clara, CA, 1976, pp. 51-58. 

[Geilhufe, 1979J 
Geilhufe, M. "Soft Errors in Semiconductor Memories." In 
Digest of Papers Spring CompCon, IEEE Computer Society, 
1979, pp. 210-216. 

[General Radio, n.d.J 
General Radio Co. Ltd., Systems Division. How to Design 
Logic Boards for Easier Automatic Testing and Trouble­
shooting, n.d. 

[Genke, Harding, and Staehler, 1964J 
Genke, R. M.~ P. A. Harding; and R. E. Staehler. "No. 1 ESS 
Call Store-A-AO, 2-Megabit Ferrite Sheet Memory." Bell 
System Tech. Journal 43, no. 5, part 1, (September 1964): 
2147-2191. 

(Gill, 1966J 
Gill, A. " On the Series-to-Paralles Transformations of Linear 
Sequential Circuits." IEEE Trans. E/ec. Compo EC-15 (Feb­
ruary 1966): 107-108. 

[Gilley, 1970J 
Gilley, G. C., Automatic Maintenance of Spacecraft Systems 
for Long-Life Deep-Space Missions. Ph.D. diss., University of 
California, Department of Computer Science, Los Angeles, 
1970. 

[Goetz, 1974J 
Goetz F. M. "Complementary Fault Simulation." In Proc. 3rd 
Annual Texas Con! Computing Systems, Austin, Texas 1974. 

[Golay, 1949J 
Golay, M. J. E.; "Notes on Digital Coding." In Proceedings of 
the IRE 37 (1949): 657. 

(Golay, 1958J 
Golay, M. 1. E.; "Notes on the Penny-Weighing Problem, Los­
siess Symbol Coding with Nonprimes, etc." IRE Trans. Infor­
mation Theory IT-4, no. 3 (September 1958): 103-109. 

[Goldberg, 1975J 
Goldberg, J. "New Problems in Fault-Tolerant Computing." 
In Int. Digest Fifth IEEEE Fault-Tolerant Computing Sym­
posium, Computer Society, Paris, France; 1975. 

(Goldberg, Levitt, and Short, 1966J 
Goldberg, 1.; K. N. Levitt; and R. A. Short. "Techniques for 
the Realization of Ultra-Reliable Spaceborne Computers." 
Menlo Park, CA: Stanford Research Institute, 1966. 

[Golberg, Levitt, and Wensley, 1974J 
Goldberg, J.; K. N. Levitt; and J. H. Wensley. "An Organiza­
tion for a Highly Reliable Memory." IEEE Trans. Compo 
C-23 (July 1974): 693-705. 

(Grason and Nagle, 1980J 
Grason, J. and A. Nagle. "Digital Test Generation and Design 
for Testability." In Proc. 17th Annual Design Automation 
Conference. IEEEjACM 1980, pp. 175-189. 

(Griesmer, Miller, and Roth, 1962] 
Griesmer, J. E.; R. E. Miller; and J. P. Roth. "The Design of 
Digital Circuits to Eliminate Catastrophic Failures." In Re­
dundancy Techniques for Computing Systems. Wilcox and 
Mann (Eds). Washington, DC: Spartan Books, 1962, pp. 
328-348. 

[Gudz, 1977J 
Gudz, R. T. "Application of the Pluribus Multiprocessor in a 
Distributed. Data Collection and Processing Network." In 
Con! Rec. OCEANS 77, 1977. 

(Gupta, Porter, and Lathrop, 1974] 
Gupta, A.; W. A. Porter; and J. W. Lathrop. "Defect Analysis 
and Yield Degradation of Integrated Circuits." IEEE J. 
Solid-State Circuits SC-9 (June 1974): 96-103. 

[Gurzi, 1965J 
Gurzi, K. J. "Estimates for the Best Placement of Voters in a 
Triplicated Logic Network." IEEE Trans. Elec. Compo 
EC-14 (October 1965): 711-717. 

[Hagel barger, 1959J 
Hagelbarger, D. W. "Recurrent Codes: Easily Mechanized, 
Burst-Correcting Binary Codes." Bell System Tech. Journal 
38 no. 4 (July 1959): 969-984. 

[Halstead, 1979J 
"Commemorative issue in honor of Dr. Maurice H. Halstead." 
Special issue of IEEE Trans. Soft. Eng. SE-5, no. 2 (March 
1979). 

[Hamming, 1950J 
Hamming, W. R. "Error Detecting and Error Correcting 
Codes." Bell System Tech. Journal 29, no. 2 (April 1950): 
147-160. 

[Hampel and Winder, 1971] 
Hampel, D .• and R. O. Winder. "Threshold Logic" IEEE 
Spectrum (May 1971): 31-39. 

[Harr, Taylor, and Ulrich, 1969] 
Harr,. J. A., F. F. Taylor~ and W. Ulrich. "Organization of the 
No.1 ESS Central Processor." Bell System Tech. Journal 48 
(September 1969). 

(Harrahy, 1977] 
Harrahy, J. J. "Assessment of Plastic, Commercial Grade Ie 
Failure Rates Achieved in Field Operation." In Proc. 15th 



Annual Spring Reliability Seminar, IEEE Boston Section, 
1977, pp. 144-172. 

[Hayes, 1974] 
Hayes, J. P. "On Modifying Logic Networks to Improve Their 
Diagnosability." IEEE Trans. Compo C-23 (January 1974): 
56-62. 

[Hayes and Friedman, 1974] 
Hayes, J. P., and A. D. Friedman. "Test Point Placement to 
Simplify Fault Detection." IEEE Trans. Compo C-23 (July 
1974): 727-735. 

[Heart, 1975] 
Heart, F. E. ·'The ARPA Network." In R. L. Grimsdale and 
F. F. Kuo, eds., Communication Networks: Proc NATO Ad­
vanced Study Institute of September 1973, Leyden: Noord­
hoff, 1975, pp. 19-33. 

[Heart et aI., 1970] 
Heart, F. E.; R. E. Hahn; S. M. Ornstein; W. R. Crowther; 
and D. C. Walden. "The Interface Message Processor for the 
ARPA Computer Network." In AFIPS Conf Proc .. vol. 36, 
Montvale, NJ. AFIPS Press, 1970. pp. 551-567. 

[Heart et aI., 1973] 
Heart, F. E .. ; S. M. Ornstein; W. R. Crowther; and W. B. 
Barker. "A New Minicomputer/Multiprocessor for the ARPA 
Network." In AFIPS Conf Proc., vol. 42, Montvale, NJ: 
AFIPS Press, 1973, pp. 529-537. 

[Heart et aI., 1976] 
Heart, F. E.; S. M. Ornstein; W. R. Crowther; W. B. Barker; 
M. F. Kraley; R. D. Bressler; and A. Michel. ·'The Pluribus 
Multiprocessor System." In Multiprocessor Systems: Infot'ech 
State of the Art Report, Maidenhead, England: Infotech In­
ternational Ltd., 1976, pp. 307-330. 

[Hecht, 1976] 
Hecht, H. "Fault-Tolerant Software for Real-Time Applica­
tions." ACM Computing Surveys 8 (December 1976): 
391-407. 

[Henderson, 1961] 
Henderson D. S. "Residue Class Error Checking Codes." In 
Preprints Papers 16th Natl. Meet. Ass. Comput. Mach., 
ACM,1961. 

[Hennie, 1964] 
Hennie, F. C. "Fault Detecting Experiments for Sequential 
Circuits." In Proc. 5th Annual Symp. on Switching Theory 
and Logic Design, IEEE 1964, pp. 95-110. 

[Hennie, 1968] 
Hennie, F. C. Finite State Models for Logical Machines. New 
York: Wiley 1968. 

[Hewlett, 1973] 
Hewlett-Packard Journal, 25, no. 4, (January 1973). 

REFERENCES 731 

[Hnatek, 1975] 
Hnatek, E. R. "4-Kilobit Memories Present a Challenge to 
Testing." Computer Design 14, no. 5 (May 1975): 117-125. 

[Hocquenghem, 1959] 
Hocquenghem, A. "Codes Correcteurs d'Erreurs." Chiffres 2 
(1959): 147-156. 

[Holborow, 1972] 
Holborow, C. E. "An Improved Bound on the Length of 
Checking Experiments for Sequential Machines with Counter 
Cycles." IEEE Trans. Compo C-21 (June 1972): 597-598. 

[Hong and Patel, 1972] 
Hong, S. J., and A. M. Patel. "A General Class of Maximal 
Codes for Computer Applications." IEEE Trans. Compo C-21 
(December 1972): 1322-1331. 

[Hopkins, 1970] 
Hopkins, A. L., Jr. "A New Standard for Information Process­
ing Systems for Manned Space Flight." In Proceedings IFAC 
3rd Symp. Control Systems in Space, Toulouse, France 1970. 

[Hopkins, 1971] 
Hopkins, A. L., Jr. "A Fault-Tolerant Information Processing 
Concept for Space Vehicles." IEEE Trans. Compo C-20, no. 
11, (November 1971): 1394-1403. 

[Hopkins, 1977] 
Hopkins, A. L., Jr. "Design Foundations for Survivable Inte­
grated On-Board Computation and Control." In Proc. Joint 
Automatic Control Conf, 1977, pp. 232-237. 

[Hopkins and Smith, 1975] 
Hopkins, A. L., Jr., and T. B. Smith, III. ·'The Architectural 
Elements of a Symmetric Fault Tolerant Multiprocessor." 
IEEE Trans. Compo C-24 (May 1975): 498-505. 

[Hopkins and Smith, 1977a] 
Hopkins, A. L., Jr., and T. B. Smith, III. "OSIRIS-A Dis­
tributed Fault-Tolerant Control System," In Digest 14th 
IEEE Computer Society Int. Con[., IEEE, 1977. 

[Hopkins and Smith, 1977b] 
Hopkins, A. L. Jr., and T. B. Smith III, United States Patent 
No. 4,015,246 Synchronous Fault-Tolerant Multiprocessor 
System, March 29, 1977. 

[Hopkins, Smith, and Lata, 1978] 
Hopkins, A. L., Jr.; T. B. Smith, III; and J. H. Lala. 
"FTMP-A Highly Reliable Fault-Tolerant Multiprocessor 
for Aircraft." Proceedings of the IEEE 66 (October 1978): 
1221-39. 

[Horowitz, 1975] 
Horowitz, E. Practical Strategies for Developing Large Scale 
Systems. Reading, MA: Addison-Wesley, 1975. 



732 REFERENCES 

[Hotchkiss, 1979] 
Hotchkiss, J. "The Roles of In-Circuit and Functional Board 
Test in the Manufacturing Process." Electronic Packaging 
and Production 19 (January 1979): 47-66. 

[Howard, 1971] 
Howard, R. A. Dynamic Probabilistic Systems. New York: 
Wiley, 1971. 

[Howard and Nahourai, 1978] 
Howard, J. S., and J. Nahourai. "Improvement in LSI Produc­
tion Using an Automated Parametric Test System." Solid 
State Technology 21 (July 1978). 

[Hsiao, 1970] 
Hsiao, M. Y. "A Class of Optimal Minimum Odd-Weight­
Column SEC-DED Codes." IBM J. Res. and Dev. 14, no. 4, 
(July 1970): 395-401. 

[Hsiao and .8Qssen, 1975] 
Hsiao, M. Y., and D. C. Bossen. "Orthogonal Latin Square 
Configuration for LSI Yield and Reliability Enhancement." 
IEEE Trans. Compo C-24 (May 1975): 512-516. 

[Hsiao, Bossen, and Chien, 1970] 
Hsaio, M. Y.; D. C. Bossen; and R. T. Chien. "Orthogonal 
Latin Square Codes." IBM J. Res. and Dev. 14,4 (July 1970). 

[Hsieh, 1971] 
Hsieh, E. P. "Checking Experiments for Sequential Ma­
chines." IEEE Trans. Compo C-20 (October 1971): 1152-66. 

[Huffman, 1952] 
Huffman, D. A. "A Method for the Construction of 
Minimu~-Redundancy Codes." In Proceedings of the IRE 40 
(1952): 1098-1101. 

[Huffman, 1956] 
Huffman, D. A. "The Synthesis of Linear Sequential Coding 
Networks." In Information Theory, New York: Academic 
Press, 1956, pp. 77-95. 

[IBM] 
International Business Machines. I/O Supervisor-IBM 
System/360 Operating System Program Logic Manuals. 
GY28-6616. 

[IBM] 
International Business Machines. MVT Job Management 
-IBM System/360 Operating System. Program Logic Man­
uals. GY28-6660. 

[IBM] 
International Business Machines. MCH for Model 65-IBM 
System/360 Operating System. Program Logic Manuals. 
GY27-7155. 

[IBM] 
International Business Machines. MCH for Model 85-IBM 
System/360 Operating System. Program Logic Manuals. 
GY27-7184. 

[IBM] 
International Business Machines. Concepts and Facilities 
-IBM System/360 Operating System. System Reference Li­
brary. GC28-6535. 

[IBM] 
International Business Machines. Operator's Reference-IBM 
System/360 Operating System. System Reference Library. 
GC28-6691. 

[IBM] 
International Business Machines. MVT Guide-IBM 
System/360 Operating System. System Reference Library. 
GC28-6720. ' 

[IBM] 
International Business Machines. MFT Guide-IBM 
System/360 Operating System. System Reference Library. 
GC27-6939. 

[IBM] 
International Business Machines. Machine Check Handler for 
the IBM System/370 Models 155 and 165. Systems Logic. 
GY27-7198. 

[IBM] 
International Business Machines. "IBM SDLC General 
Information. " 

(IEEE, 1971aJ 
IEEE Trans. Compo C-20 (1971): 536-542, 1270-1275, 
1413-1414. 

[IEEE,1971b] 
IEEE Computer Society. Proc. Int. Symp. Fault-Tolerant 
Computing, 1971. 

[IEEE, 1972a] 
IEEE Trans. Compo C-21 (1972): 492-495, 1189-1196. 

[IEEE,1972b] 
IEEE Computer Society. Digest Second Int. Symp. Fault­
Tolerant Computing. 1972. 

[IEEE, 1973a] 
IEEE Trans. Compo C-22 (1973): 239-249, 263-269, 
298-306, 662-669. 

[IEEE,1973b] 
IEEE Computer Society. Digest Third Int. Symp. Fault­
Tolerant Computing. 1973. 

(IEEE,1974a] 
IEEE Trans. Compo C-23 (1974): 41-47, 113-118, 369-374, 
494-500,651-657, 736-739, 1100-1102, 1149-1154. 

[IEEE,1974b] 
IEEE Computer Society. Digest Fourth Int. Symp. Fault­
Tolerant Computing, 1974. 



[IEEE, 1975) 
IEEE Computer Society. Digest Fifth Int. Symp. Fault­
Tolerant Computing. 1975. 

[IEEE, 1977) 
IEEE, Boston Section. Annual Spring Reliability Seminar, 
April 1977. 

[Ihara, et al., 1978) 
Ihara, H.; K. Fukuoka; Y. Kubo; and S. Yokota. "Fault­
Tolerant Computer System with Three Symmetric Comput­
ers." Proceedings of the IEEE 66 (October 1978): 1160-1177. 

[Ingle and Siewiorek, 1973a) 
Ingle, A. D., and D. P. Siewiorek. "Extending the Error Cor­
rection Capability of Linear Codes." Carnegie-Mellon Univer­
sity Technical Report, Department of Computer Science, 
1973. 

[Ingle and Siewiorek, 1973b) 
Ingle, A. D., and D. P. Siewiorek. "A Reliability Model for 
Various Switch Designs in Hybrid Redundancy." Technical 
Report, Carnegie-Mellon University Department of Computer 
Science, 1973. 

[Ingle and Siewiorek, 1976) 
Ingle, A. D., and D. P. Siewiorek. "A Reliability Model for 
Various Switch Designs in Hybrid Redundancy." IEEE 
Trans. Compo C-25 (February 1976): 115-133. 

[Intel, 1981] 
"The Intel 432 System Summary," Intel Corp., Aloha, Or­
egon, 1981. 

[Interdata, 1975] 
Interdata, Inc. Model 8/32 Processor User's Manual. 1975. 

[Irland and Stagg, 1974] 
Irland, E. A., and U. K. Stagg. "New Developments in Subur­
ban and Rural ESS (No.2 and No.3 ESS)." In ISS Record. 
Munich, Germany, 1974. 

[Jack, Kinney, and Berg, 1977] 
Jack, L. A.; L. L. Kinney; and R. O. Berg. "Comparison of 
Alternative Self-Check Techniques in Semiconductor Memo­
ries." In Proc. Spring CompCon. Vol. 14, IEEE Computer So­
ciety, Long Beach, CA, 1977, pp. 170-173. 

[Jack, et al., 1975] 
Jack, L. A.; R. O. Berg; L. L. Kinney; and G. J. Prom. "Cover­
age Analysis of Self Test Techniques for Semiconductor 
Memories." Honeywell Corporation Technical Report, 
MR12399. Minneapolis, MN, 1975. 

[Jelinek, 1968) 
Jelinek, F. Probabilistic Information Theory: Discrete and 
Memoryless Models. New York: McGraw-Hill, 1968. . 

[Jelinskyand Moranda, 1973] 
Jelinsky, Z., and P. B. Moranda. "Applications of a Probabil­
ity Based Method to a Code Heading Experiment." In Proc. 

REFERENCES 733 

IEEE Symp. Computer Software Reliability. IEEE, 1973, p. 
78. 

[Jensen, 1963] 
Jensen, P. A. "Quadded NOR Logic." IEEE Trans. Reliabil­
ity R-12, no. 3 (September 1963): 22-31. 

[Jensen, 1964] 
Jensen, P. A. "The Reliability of Redundant Multiple-Line 
Networks." IEEE Trans. Reliability R-13, no. 1 (March 
1964). 23-33. 

[Jones, 1979] 
Jones, C. P. "Automatic Fault Protection in the Voyager 
Spacecraft." Jet Propulsion Laboratory, California Institute 
of Technology AIAA Paper No. 79-1919. Pasadena, CA, 
1979. 

[Kamal, 1975] 
Kamal, S. "An Approach to the Diagnosis of Intermittent 
Faults." IEEE Trans. Compo C-24 (May 1975): 461-467 

[Kamal and Page, 1974] 
Kamal, S., and C. V. Page. "Intermittent Faults: A Model and 
Detection Procedure." IEEE trans. Compo C-23 (July 1974): 
173-179 

[Kaneda and Fujiwara, 1980) 
Kaneda, S., and E. Fujiwara. "Single Byte Error Correc­
ting-Double Byte Error Detecting Codes for Memory Sys­
tems." In Digest Tenth International Fault-Tolerant 
Computing Symposium. IEEE Computer Society, Kyoto, Ja­
pan, 1980, pp. 41-46. 

[Kasami, 1963] 
Kasami, T. "Optimum Shortened Cyclic Codes for Burst­
Error-Correction." IEEE Trans. Info. Theory IT-9, no. 2 
(April 1963): 105-109. 

[Kasami, Lin, and Peterson, 1968] 
Kasami, T.; S. Lin; and W. Peterson. "New Generalizations of 
the Reed-Muller Codes Part I: Primitive Codes." IEEE 
Trans. Info. Theory IT-14, no. 2 (March 1968): 189-199. 

[Katsuki et al., 1978] 
Katsuki, D.; E. S. Elsam; W. F. Mann; E. S. Roberts; J. F. 
Robinson; R. S. Skowronski; and E. W. Wolf. "Pluribus-An 
Operational Fault-Tolerant Multiprocessor." Proceedings of 
the IEEE 66 (October 1978): 1146-1159. 

[Katzman, 1977a] 
Katzman, J. A. "System Architecture for NonStop Comput­
ing." CompCon. 1977, p. 77-80. 

[Katzman, 1977b] 
Katzman, J. A. "A Fault-Tolerant Computing System." Tan­
dem Computers, Inc., Cupertino, CA, 1977. 

[Kautz, 1962] 
Kautz, W. H. "Codes and Coding Circuitry for Automatic Er­
ror Correction within Digital System." In R. H. Wilcox and 



734 REFERENCES 

W. C. Mann, eds., Redundancy Techniques for Computing 
Systems, Washington, DC: Spartan Books, 1962, pp. 152-195. 

[Kautz, 1968] 
Kautz, W. H. "Fault Testing and Diagnosis in Combination 
Digital Circuits." IEEE Trans. Compo C-17 (April 1968): 
352-366. 

[Kautz, 1971] 
Kautz, W. H. "Testing Faults in Combinational Cellular 
Logic Arrays." In Proc. 8th Annual Symposium on Switching 
and Automata Theory, IEEE 1971, pp. 161-174. 

[Kautz, Levitt, and Waksman, 1968] 
Kautz, W. H.; K. N. Levitt; and A. Waksman. "Cellular Inter­
connection Arrays." IEEE Trans. Compo C-17 (May 1968): 
443-451. 

[Keister, Ketchledge, and Lovell, 1960] 
Keister, W.; R. W. Ketchledge; and C. A. Lovell. "Morris 
Electronic Telephone Exchange." Proc. Inst. Elec. Eng. 107, 
no. 20 (1960): 257-263. 

[Keister, Ketchledge, and Vaughan, 1964] 
Keister, W.; R. W. Ketchledg"e; and H. E. Vaughan. ,"No.1 
ESS: System Organization and Objectives." Bell System 
Tech. Journal 43, no. 5, part 1, (September 1964): 
1831-1844. 

[Keller, 1976] 
Keller, T. W. "CRAY-l Evaluation Final Report." :Los 
Alamos Scientific Laboratory, 1976. 

[Kennedy and Quinn, 1972] 
Kennedy, P. J., and T. M. Quinn. "Recovery Strategies in the 
No.2 ESS." In Digest Second International Fault-Tolerant 
Computing Symposium, IEEE Boston, MA, 1972. 

[Khodadad-Mostashiry, 1979] 
Khodadad-Mostashiry, B. "Parity Prediction in Combination 
Circuits." In Digest Ninth International Fault-Tolerant Com­
puting Symposium, IEEE Computer Society, Madison, WI, 
1979. 

[Kime, 1970] 
Kime, C. R. "An Analysis Model for Digital System Diagno­
sis." IEEE Trans. Compo C-19 (November 1970): 1063-1073. 

[Kini, 1981] 
Kini, V. "Automatic Synthesis of Symbolic Reliability Func­
tions for Processor-Memory-Switch Structures." Ph.D. diss., 
Electrical Engineering Department Carnegie-Mellon Univer­
sity, 1981. 

[Klaassen and Van Peppen, 1977a] 
Klaassen, K. B., and J. C. L. Van Peppen. "Majority and Simi­
larity Voting in Analogue Redundant Systems." Microelect­
ronics and Reliability, 1977, pp. 47-54. 

[Klaassen and Van Peppen, 1977bJ 
Klaassen, K. B., and J. C. L. Van Peppen. "Reliability Im­
provement by Redundancy Voting in Analogue Electronic 

Systems." Microelectronics and Reliability, 1977, pp. 
593-600. 

[Klaschka, 1969] 
Klaschka, T. F. "Reliability Improvement by Redundancy in 
Electronic Systems, II: An Efficient New Redundancy Sche­
me-Radial Logic." Royal Aircraft Establishment, Ministry 
of Technology 69045. Farnborough. u.K., 1969. 

[Klaschka, 1971] 
Klaschka, F. "A Method for Redundancy Scheme Perfor­
mance Assessment." In Digest First International Fault Tol­
erant Computing Symposium, IEEE Computer Society, 
Pasadena, CA, 1971. pp. 69-73. 

[Klein, 1976J 
Klein, M. R. "Microcircuit Device Reliability, Digital De­
tailed Data." Reliability Analysis Center RADC MDR-4. 
Griffiss AFB, Rome, NY, 1976. 

[Kleinrock and Naylor, 1974] 
Kleinrock, L., and W. F. Naylor. "On Measured Behavior of 
the ARPA Network." Proc. AFIPS NCC 43 (1974): 767-778. 

[Knuth, 1969] 
Knuth, D. E. The Art of Computer Programming. Volume 2: 
Seminumerical Algorithms. Reading, MA: Addison-Wesley, 
1969. 

[Kodandapani, 1974] 
Kodandapani, K. L. "A Note on Easily Testable Realizations 
for Logic Functions." IEEE Trans. Compo C-23 (March 
1974): 332-333. 

[Kohavi and Kohavi, 1972] 
Kohavi, I., and Z: Kohavi. "Detection of Multiple Faults in 
Combinational Logic Networks." IEEE. Trans. Comp C-21 
(June 1972): 556-558. 

[Kohavi and Lavellee, 1967] 
Kohavi, Z., and P. Lavellee. "Design of Sequential Machines 
with Fault Detection Capabilities." IEEE Trans. Compo C-16 
(August 1967): 473-484. 

[Kohavi, Rivierre, and Kohavi, 1973] 
Kohavi, Z.; J. A. Rivierre; and I. Kohavi. "Machine Distin­
guishing Experiments." BCS Computer Journal 16, no. 2 
(1973): 141-147. 

[Kole, 1980] 
Kole, R. S. "An Advanced Telecommunications Protocol Con­
troller." Fairchild Journal of Semiconductor Progress, 
January /February 1980, pp. 4-8. 

[Kruus, 1963] 
Kruus, J. "Upper Bounds for the Mean Life of Self-Repairing 
Systems." University of Illinois R-I72, AD-418. Urbana, IL, 
1963. 

[Kuehn, 1969] 
Kuehn, E. "Computer Redundancy: Design, Performance, and 
Future." IEEE Trans. Reliability R-18, no. 1 (February 
1969): 3-11. 



[Kulzer, 1977] 
Kulzer, J. J. "Systems Reliability: A Case Study of No .. 4 
ESS." In System Security and Reliability, Maidenhead, 
Berkshire, England: Infotech, 1977, pp. 186-188. 

[Kunshier and Mueller, 1980] 
Kunshier, D. J., and D. R. Mueller. "Support Processor Based 
System Fault Recovery." In Proc. Tenth Int. Symp. Fault 
Tolerant Computing, IEEE Computer Society, Kyoto, Japan, 
1980,pp.197-301. 

[Lala and Hopkins, 1978] 
Lala, J. H., and A. L. Hopkins, Jr. "Survival and Dispatch 
Probability Models for the FTMP Computer." In Dig. Eighth 
Int. Fault-Tolerant Computing Symp., IEEE Computer Soci­
ety: Toulouse, France, 1978, pp. 37-43. 

[Lampson, 1979] 
Lampson, B. W. "Bravo." In Xerox Corporation, Alto User's 
Handbook, Xerox Palo Alto Research Center, Palo Alto, CA, 
1978 

[Landgraff and Vau, 1971] 
Landgraff, R. W., and S. S. Yau. "Design and Diagnosable 
Iterative Arrays." IEEE Trans. Compo C-20 (August 1971): 
867-877. 

[Lapp and Powers, 1977] 
Lapp, S., and G. Powers. "Computer-Aided Synthesis of 
Fault-Trees." IEEE Trans. Reliability R-26, no. 1 (April 
1977): 2. 

[Laprie, 1975] 
Laprie, J.-c. "Reliability and Availability of Repairable 
Structures." In Dig. Fifth Int. Fault-Tolerant Computing 
Symp., IEEE Computer Society, Paris, France, 1975, pp 
87-92. 

[Larsen and Reed, 1972] 
Larsen, R. W., and I. S. Reed. "Redundancy by Coding Ver­
sus Redundancy by Replication of Failure-Tolerant Sequential 
Circuits." IEEE Trans. Comp C-21 (February 1972): 
130--137. 

[Lee, Ghani, and Heron, 1980] 
Lee, P. A.; N. Ghani; and K. Heron. "A Recovery Cache for 
the PDP-II." IEEE Trans. Compo C-29 (June 1980): 
546-549. 

[Lesser and Shedletsky, 1980] 
Lesser, J. D., and J. J. Shedletsky. "An Experimental Delay 
Test Generator for LSI Logic." IEEE Trans. Compo C-29 
(March 1980): 235-248. 

[Lefine and Meyers, 1976] 
Levine, L., and W. Meyers. "Semiconductor Memory Reli­
ability with Error Detecting and Correcting Codes." Com­
puter 9, no. 10 (October 1976): 43-50. 

[Lefitt, Green, and Goldberg, 1968] 
Levitt, K. N.; M. W. Green; and J. Goldberg. "A Study of the 
Data Commutation Problems in a Self-Repairable Multipro-

REFERENCES 735 

cessor." In SJCC, AFIPS, Con! Proc., vol. 32, Thompson 
Books, Washington, DC, 1968, pp. 515-527. 

[Lewin, Purslow, and Bennetts, 1972] 
Lewin, D. W.; E. Purslow; and R. G. Bennetts. "Computer As­
sisted Logic Design-the CALD System." In IEEE Confer­
ence Publication CAD Conference, 1972, pp. 343-351. 

[Lewis, 1963] 
Lewis, T. B. "Primary Processor and Data Storage Equipment 
for Orbiting Astronomical Observatory." IEEE Trans. Elec. 
Compo EC-12 (December 1963): 677-686. 

[Lewis, 1979] 
Lewis, D. W. "A Fault-Tolerant Clock Using Standby Spar­
ing." In Digest Ninth International Fault-Tolerant Comput­
ing Symposium, IEEE Computer Society, Madison, WI, 
1979, pp. 33-40. 

[Lilliefors, 1969] 
Lilliefors, H. W. "On the Kolmogorov-Smirnov Test for the 
Exponential Distribution with Mean Unknown," J. A mer. 
Statis. Assoc. 64 (1964): 387-389. 

[Lin, 1970] 
Lin, S. An Introduction to Error-Correcting Codes. Engle­
wood Cliffs, NJ: Prentice-Hall, 1970. 

[Littlewood, 1975] 
Littlewood, B. "A Reliability Model for Markov Structured 
Software." In IEEE Conf. Reliable Software, 1975, pp. 
204-207. 

[Littlewood, 1979] 
Littlewood, B. "How to Measure Software Reliability and 
How Not To." IEEE Trans. Soft. Eng. SE-5, no. 2, (June 
1979): 103-110. 

[Locks, 1973] 
Locks, M. O. Reliability, Maintainability, and Availability 
Assessment. Washington, DC: Spartan Books/Hayden Book 
Company, 1973. 

[Long, 1969] 
Long, J. E. "To the Outer Planets." Astronautics and Aero­
nautics 7 (June 1969): 32-47. 

[Longden, Page, and Scantlebury, 1966] 
Longden, M.; L. J. Page; and R. A. Scantlebury. "An Assess­
ment of the Value of Triplicated Redundancy in Digital Sys­
tems." In Microelectronics and Reliability, Vol. 5, Elmsford, 
NY: Pergamon Press, 1966, pp. 39-55. 

[Losq, 1975a] 
Losq, J. "Influence of Fault-Detection and Switching Mecha­
nisms on the Reliability of Stand-by Systems." In Digest Fifth 
Int. Fault-Tolerant Computing Symposium IEEE Computer 
Society: Paris, France, 1975, pp. 81-86. 

[Losq. 1975b] 
Losq, J. "A Highly Efficient Redundancy Scheme: Self-



736 REFERENCES 

Purging Redundancy." Digital Systems Laboratory, Stanford 
University Tech. Report No. 62. Stanford, CA, 1975. 

[Losq, 1976] 
Losq, J. "A Highly Efficient Redundancy Scheme; Self­
Purging Redundancy." IEEE Trans. Compo C-25 (June 
1976): 569-578. 

[Losq, 1977] 
Losq, J. "Effects of Failures on Gracefully Degraded Sys­
tems." In Digest Seventh International Fault Tolerant Com­
puting Symposium, IEEE Computer Society, Los Angeles, 
CA, 1977, pp. 29-34. 

[Losq, 1978] 
Losq,' J. "Testing for Intermittent Failures in Combinational 
Circuits." In Proc. Third USA-Japan Computer Con! 
AFIPS and IPSJ, 1978, pp. 165-170. 

[Lucky, Salz, and Weldon, 1968] 
Lucky, R. W.; J. Salz; and E. J. Weldon, Jr. Principles of 
Data Communication. New York: McGraw-Hili, 1968 

[Lum, 1966] 
Lum, V. Y. "On Bose-Chaudhuri-Hocquenghem Codes Over 
GF(q)." University of Illinois R-306. Urbana, IL, 1966. 

[Lunde, 1977] 
Lunde, A. "Empirical Evaluation of Instruction Set Processor 
Architecture." Comm. ACM 20, no. 3 (March 1977): 
143-153. 

[Lynch, Wagner, and Schwartz, 1975] 
Lynch, W. c.; W. Wagner; and M. S. Schwartz. "Reliability 
Experience with Chi/OS." IEEE Trans. Soft. Eng. SE-l, no. 
2 (June 1975): 253-257 

[Lyons and Vanderkulk, 1962] 
Lyons, R. E., and W. Vanderkulk. "The Use of Triple­
Modular Redundancy to Improve Computer Reliability." 
IBM J. Res. and Dev. 6, no. 2 (April 1962): 200-209 

[MacWilliams and Sloan, 1978] 
MacWilliams, F. J., and N. J. A. Sloane. The Theory of 
Error-Correcting Codes. New York: North-Holland, 1978. 

[Maison, 1971] 
Maison, F. P. "THE MECRA: A Self-Reconfigurable Com­
puter for Highly Reliable Process." IEEE Trans. Compo C-20 
(November 1971): 1382-1388. 

[Mandelbaum, 1972a] 
Mandelbaum, D. "On Error Control in Sequential Machines." 
IEEE Trans. Compo C-21 (May 1972): 492-495. 

[Mandelbaum, 1972b] 
Mandelbaum, D. "Error Correction in Residue Arithmetic." 
IEEE Trans. Compo C-21 (June 1972): 538-545. 

[Mandigo, 1976] 
Mandigo, P. D. "No. 2B ESS: New Features for a More Effi-

cient Processor." Bell Labs Rec. 54, no.l1, (December 1976): 
304-309. 

[Mann, Ornstein, and Kraley, 1976] 
Mann, W. F.; S. M. Ornstein; and M. F. Kraley. "A Network­
Oriented Multiprocessor Front-End Handling Many Hosts 
and Hundreds of Terminals." In AFIPS Con! Proc., Vol. 45. 
Montvale, NJ: AFIPS Press, 1976, 533-540. 

[Marouf and Friedman, 1977] 
Marouf M. A., and A. D. Friedman. "Efficient Design of Self­
Checking Checkers for m-out-of-n Codes." In Digest Seventh 
International Fault-Tolerant Computing Symposium, IEEE 
Computer Society, Los Angeles, CA, pp. 134-149. 

[Marouf and Friedman, 1978] 
Marouf, M. A., and A. D. Friedman. "Design of Self­
Checking Gheckers for Berger Codes." In Digest Eighth In­
ternational Fault Tolerant Computing Symposium, IEEE 
Computer Society, Toulouse, France, 1978, pp. 179-184. 

[Massey, 1963] 
Massey, J. Threshold Decoding, Cambridge, MA: MIT Press, 
1963. 

[Massey, 1969] 
Massey, J. L. "Feedback Shift-Register Synthesis and BCH 
Decoding." IEEE Trans. Info. Theory. Vol. IT-15, Jan. 1969, 
pp. 122-127. 

[Mathur, 1971a] 
Mathur, F. P. "Reliability Estimation Procedures and CARE: 
The Computer Aided Reliability Estimation Program." Jet 
Propulsion Laboratory Quarterly Tech. Review 1 (October 
1971). 

[Mathur, 1971b] 
Mathur, F. P. "On Reliability Modeling and Analysis of 
Ultra-Reliable Fault-Tolerant Digital Systems." IEEE Trans. 
Compo Cc20 (November 1971): 1376-1382. 

[Mathur and A vizienis, 1970] 
Mathur, F. P., and A. Avizienis. "Reliability Analysis and Ar­
chitecture of a Hybrid-Redundant Digital System: General­
ized Triple Modular Redundancy with Self-Repair." In SJCC, 
AFIPS Con! Proc., Vol. 36, Montvale, NJ: AFIPS Press, 
1970, pp. 375-383. 

[Mathur and De Sousa, 1975] 
Mathur, F. P. and P. De Sousa. "Reliability Modeling and 
Analysis of General Modular Redundant Systems." IEEE 
Trans. Reliability R-24, no. 5 (December 1975): 296-299. 

[McCluskey and Clegg, 1971] 
McCluskey, E. J., and F. W. Clegg. "Fault Equivalence in 
Combinational Logic Networks." IEEE Trans. Compo C-20 
(November 1971): 1286-1293. 

[McCluskey and Ogus, 1977] 
McCluskey, E. J., and R. C. Ogus. "Comparative Architec­
ture of High-Availability Computer Systems." In Proc. Comp 
Con, IEEE 1977, pp. 288-293. 



[McConnel,1981] 
McConnel, S. R. "Analysis and Modeling of Transient Errors 
in Digital Computers." PhD. diss, Carnegie-Mellon University 
Department of Electrical Engineering, 1981. 

[McConnel and Siewiorek, 1981] 
McConnel, S. R., and D. P. Siewiorek. "Synchronization and 
Voting." IEEE Trans. Compo C-30 (February 1981): 
161-164. 

:McConnel, Siewiorek, and Tsao, 1979a] 
McConnel, S. R.; D. P. Siewiorek; and M. M. Tsao. "The 
Measurement and Analysis of Transient Errors in Digital 
Computer Systems." In Digest Ninth Int. Fault-Tolerant 
Computing Symposium. IEEE Computer Society, Madison, 
Wisconsin 1979, pp. 67-70. 

McConnel, Siewiorek, and Tsao, 1979b] 
McConnel, S. R.; D. P. Siewiorek; and M. M. Tsao. "Tran­
.ient Error Data Analysis." Technical Report, Carnegie­
Mellon University Department of Computer Science 1979. 

McDonald, 1976] 
McDonald, J. C. "Testing for High Reliability: A Case 
;tudy." Computer 9, no. 2 (February 1976): 18-21. 

McDonald and McCracken, 1977] 
McDonald, J. C., and P. T. McCracken. "Testing for High Re­
iability." In Proc. CompCon. IEEE 1977, pp. 190-191. 

McKenzie et al., 1972] 
McKenzie, A. A.; B. P. Cosell; J. M. McQuillan; and M. J. 
rhrope. "The Network Control Center for the ARPA Net­
'Iork." In Proc. 1st Int. Con! Computer Communication. 
1972, pp. 185-191. 

McKevitt, 1972] 
vlcKevitt, J. F. "Parity Fault Detection in Semiconductor 
vlemories." Computer Design II, no. 7 (July 1972): 67-73. 

McNamara, 1977] 
vlcNamara, J. E. Technical Aspects of Data Communica­
ions. Bedford, MA: Digital Press, 1977. 

Mei,1970] 
vlei, K. C. Y. "Fault Dominance in Combinational Circuits." 
)igital Systems Lab, Stanford University Technician Note 2. 
;tanford, CA, 1970. 

Mei,1974] 
vfei, K. C. Y. "Bridging and Stuck-At-Faults." IEEE Trans. 
~omp. C-23 (July 1974): 720-727. 

\1elIiar-Smith, 1977] 
.1elliar-Smith, P. M. "Permissible Processor Loadings for 
'arious Scheduling Algorithms." Menlo Park, CA: SRI Inter­
ational, 1977. 

\1elsa and Cohen, 1978] 
ifelsa, J. L., and D. L. Cohen. Decision and Estimation The­
ry. New York: McGraw-Hill, 1978. 

REFERENCES 737 

[Menon and Friedman, 1971] 
Menon, P. R., and A. D. Friedman. "Fault Detection in Itera­
tive Logic Arrays." IEEE Trans. Compo C-20 (May 1971): 
524-535. 

[Meraud, Browaeys, and Germain, 1976] 
Meraud, C.; F. Browaeys; and G. Germain. "Automatic Roll­
back Techniques of the COPRA Computer." Digest Sixth In­
ternational Fault-Tolerant Computing Symposium. IEEE 
Computer Society, Pittsburgh, PA, pp. 23-31. 

[Meraud et al.; 1979] 
Meraud, C.; F. Browaeys; J. P. Queille; and G. Germain. 
"Hardware and Software Design of the Fault-Tolerant Com­
puter COPRA." Digest Ninth International Fault-Tolerant 
Computing Symposium. IEEE Computing Society, Madison, 
WI, p. 167 .. 

[Meyer, 1971] 
Meyer, J. F. "Fault Tolerant Sequential Machines." IEEE 
Trans. Compo C-20 (October 1971): 1167-1177. 

[Meyer, 1978] 
Meyer, J. F. "On Evaluating the Performability of Degradable 
Computing Systems." In Digest Eighth International Fault­
Tolerant Computing Symposium. IEEE Computer Society, 
Toulouse, France, 1978, pp. 44-49. 

[Meyer, Furchgott, and Wu, 1979] 
Meyer, J. F.; D. G. Furchgott; and L. T. Wu. "Performability 
Evaluation of the SIFT Computer." In Digest Ninth Int. 
Fault-Tolerant Computing Symposium. IEEE Computer So­
ciety, Madison WI, 1979, pp. 43-50. 

[Meyer, Furchgott, and Wu, 1979] 
Meyer, J. F.; D. G. Furchgott; and L. T. Wu. "Performability 
Evaluation of the SIFT Computer." In IEEE Trans. Compo 
C-29 (June 1980): 501-509. 

[Meyer and Yeh, 1971] 
Meyer, J. F., and K. Yeh. "Diagnosable Machine Realizations 
of Sequential Behavior." In Digest First International Fault­
Tolerant Computing Symposium. IEEE Computer Society, 
Boston, MA, 1971. 

[Miller and Freund, 1965] 
Miller, I., and J. Freund. Probability and Statistics for Engi­
neers. Englewood Cliffs, NJ: Prentice-Hall, 1965. 

[Mine and Hatayama, 1979] 
Mine, H., and K. Hatayama. "Performance Evaluation of a 
Fault-Tolerant Computing System." In Digest Ninth Interna­
tional Fault Tolerant Computing Symposium, IEEE Com­
puter Society, Madison, WI, 1979, pp. 59-62. 

[Mine and Koga, 1967] 
Mine, H., and Y. Koga. "Basic Properties and a Construction 
Method for Fail-Safe Logical Systems." IEEE Trans. Elec. 
Compo EC-16 (June 1967): 282-289. 



738 REFERENCES 

[Misra, 1970J 
Misra, K. B. "An Algorithm for the Reliability Evaluation of 
Redundant Networks." IEEE Trans. Reliability R-19 no. 4 
(November 1970): pp. 146-151. 

[Miyamoto, 1975J 
Miyamoto, I. "Software Reliability in Online Real Time Envi­
ronment." In Proc. Int. Con! Reliable Software, IEEE 1975, 
pp.518-527. 

[Mohanly, 1973J 
Mohanly, S. N. "Models and Measurements for Quality As­
sessment of Software." ACM Computer Surveys II (Septem­
ber 1973), pp. 250-275. 

[Moore and Shannon, 1956J 
Moore, E. F., and C. E. Shannon. "Reliable Circuits Using 
Less Reliable Relays." J. Franklin Inst. 262 (September 
1956): 191-208. 

(Morganti, 1978J 
Morganti, M. Personal communication to authors, 1978. 

[Morganti, Coppadoro, and Ceru, 1978J 
Morganti, M.; G. Coppadoro; and S. Ceru. "UDET 
7116-Common Control for PCM Telephone Exchange: Diag­
nostic Software Design and Availability Evaluation." In Di­
gest Eighth Int. Fault-Tolerant Computing Symposium. 
IEEE Computer Society, Toulouse, France, 1978, pp. 16-23. 

[Muehldorf,1975J 
Muehldorf, E. I. "Fault Clustering: Modeling and Observation 
of Experimental LSI Chips." IEEE J. Solid-State Circuits 
SC-I0 (August 1975): 237-244. 

[Mukai and Tohma, 1974J 
Mukai, Y., and Y. Tohma. "A Method for the Realization of 
Fail-Safe Asynchronous Sequential Circuits." IEEE Trans. 
Compo C-23 (July 1974): 736-739. 

[Mukhopadhyay and Schmitz, 1970J 
Mukhopadhyay, A., and G. Schmitz. "Minimization of EX­
CLUSIVE OR and LOG ICAL EQUIVALENCE Switching 
Circuits." IEEE Trans. Compo C-19 (February 1970): 
132-140. 

[Muller, 1954} 
Muller, D. E. "Application of Boolean Algebra to Switching 
Circuit Design and to Error Detection." IRE Trans. E lee. 
Compo ED-3 (September 1954): 6-12. 

[Murakami, Kinoshita, and Ozaki, 1970} 
Murakami, S.~ K. Kinoshita; and H. Ozaki. "Sequential Ma­
chines Capable of Fault Diagnosis." IEEE Trans. Compo C-19 
(November 1970): 1079-1085. 

[Murphy, 1964} 
Murphy, B. T. "Cost-Size Optima of Monolithic Integrated 
Circuits." Proceedings of the IEEE 52 (December 1964): 
1537-1545. 

[Murray, Hopkins, and Wensley, 1977] 
Murray, N: D.; A. L. Hopkins, Jr.; and J. H. Wensley. 
"Highly Reliable Multiprocessors." In P. Kurzhals, ed., Integ­
rity in Electronic Flight Control Systems. Neuilly-sur-Seine, 
France: AGARD-NATO, 1977, pp. 17.1-17.16. 

[Musa, 1975] 
Musa, J. D. "A Theory of Software Reliability and Its Appli­
cations." IEEE Trans. Soft. Eng SE-l, no. 3 (September 
1975): 312-327. 

[Myers et aI., 1977] 
Myers, M. N.; W. A. Route, and K. W. Yoder. "Maintenance 
Software." Bell System Tech. Journal 56 no. 7 (September 
1977): 1139-1167. 

[Nadig, 1977] 
Nadig, H. J. "Signature Analysis-Concepts, Examples and 
Guidelines." Hewlett-Packard Journal, May 1977, pp. 15-21. 

[Nakagawa and Osaki, 1975] 
Nakagawa, T., and S. Osaki. "The Discrete Weibull Distribu­
tion." IEEE Trans. Reliability R-24, no. 5 (December 1975): 
300-301. 

[Nelson, 1973] 
Nelson, E. C. "A Statistical Basis for Software Reliability As­
sessment." TRW, 1973. 

[Neumann and Rao, 1975] 
Neumann, P. G., and T. R. N. Rao. "Error-Correcting Codes 
for Byte-Organized Arithmetic Processors." IEEE Trans. 
Compo C-24 (March 1975): 226-232. 

[Ng and Avizienis, 1980] 
Ng, Y. W., and A. Avizienis. "A Unified Reliability Model for 
Fault-Tolerant Computers." IEEE Trans. Compo C-29 (No­
vember 1980): 1002-1011. 

[Nicholls, 1979] 
Nicholls, D. B. "Microcircuit Device Reliability, Digital Fail­
ure Rate Data." Reliability Analysis Center RADC MDR-12. 
Griffiss AFB, Rome, New York, 1979. 

[Nowak,1976] 
Nowak, J. S. "No lA ESS-A New High Capacity Switching 
System." In Int. Switching Symp. Record. Japan, .1976. 

[O'Brien, 1976] 
O'Brien, F. J. "Rollback Point Insertion Strategies." In Digest 
Sixth International Fault Tolerant Computing Symposium. 
IEEE Computer Society, Pittsburgh, PA, 1976, pp. 138-142. 

[Ogus, 1973] 
Ogus, R. C. "Fault-Tolerance of the Iterative Cell Array 
Switch for Hybrid Redundancy Through the Use of Failsafe 
Logic." Digital Systems Lab, Stanford University Depart­
ments of Electrical Engineering and Computer Science. Stan­
ford, CA, 1973. 



Ogus, 1974] 
)gus, R. C. "Fault-Tolerance of the Iterative Cell Array 
)witch for Hybrid Redundancy." IEEE Trans. Compo C-23 
July 1974): 667-681. 

Ohm, 1979] 
)hm, V. J. "Reliability Considerations for Semiconductor 
\1emories." In Spring Digest of Papers, CompCon IEEE 
:omputer Society, 1979, pp. 207-209. 

Oldham, Chien, and Tang, 1968] 
)ldham, I. B.; R. T. Chien; and D. T. Tang. "Error Detection 
llld Correction in a Photo-Digital Memory System." IBM J. 
~es. and Dev. 12, no. 6 (November 1968): 422-430. 

Ornstein and Walden, 1975] 
)rnstein, S. M., and D. C. Walden. "The Evolution of a High 
>erformance Modular Packet-Switch." In Proc. Int. Conf 
';ommunications, Vol. I, 1975, pp. 6-17-6-21. 

Ornstein et aI., 1972] 
)rnstein, S. M.; F. E. Heart; W. R. Crowther; S. B. Russell; 
.4. K. Rising; and A. Michel. "The Terminal IMP for the 
~RPA Computer Network." AFIPS Conf Proc., Vol. 40, 
Vlontvale, NJ: AFIPS Press, 1972, pp. 243-254. 

Ornstein, et al., 1975] 
)rnstein, S. M.; W. R. Crowther; M. F. Kraley; R. D. Bress­
er; A. Michel; and F. E. Heart. "Pluribus-A Reliable Mul­
:iprocessor." In AFIPS Conf Proc., Vol. 44, AFIPS Press, 
Vlontvale, NJ: 1975, pp. 551-559. 

Osman and Weiss, 1973] 
)sman, M. Y., and C. D. Weiss. "Shared Logic Realizations 
)f Dynamically Self-Checked and Fault-Tolerant Logic." 
rEEE Trans. Compo C-22 (March 1973): 298-306. 

Ossfeldt and Jonsson, 1980] 
)ssfeldt, B. E., and I. Jonsson. "Recovery and Diagnostics in 
:he Central Control of the AXE Switching System." IEEE 
Trans. Compo C-29 (June 1980): 482-491. 

Ozgunner, 1977] 
)zgunner, F. "Design of Totally Self-Checking Asynchronous 
md Synchronous Sequential Machines." In Digest Seventh 
rnternational Fault Tolerant Computing Symposium, Los 
I\ngeles, CA: IEEE Computer Society, 1977, pp. 124-129. 

Pascoe, 1975] 
flascoe, W. "2107A/2107B N-Channel Silicon Gate MOS 4K 
RAMS." Santa Clara, CA: Intel Corporation RR-7, 1975. 

Patterson and Metze, 1974] 
flatterson, W. W., and G. Metze. "A Fail-Safe Asynchronous 
;;equential Machine." IEEE Trans. Compo C-23 (April 1974): 
369-374. 

Pearson and Hartley, 1954] 
flearson, E. S., and H. O. Hartley, eds., Biometriva Tablesfor 
f)tatisticians, Vol. 1. Cambridge University Press, 1954. 

REFERENCES 739 

[Pease, Shostak, and Lamport, 1980] 
Pease, M.; R. Shostak; and L. Lamport. "Reaching Agree­
ment in the Presence of Faults." Journal of the Association 
for Computing Machinery, vol. 27, no. 2 (April 1980): 
228-234. 

[Peterson, 1958] 
Peterson, W. W. "On Checking an Adder." IBM J. Res. and 
Dev. 2 no. 2 (April 1958): 166-168. 

[Peterson, 1961) 
Peterson, W. W. Error-Correcting Codes. Cambridge, MA: 
MIT Press, 1961. 

[Peterson and Weldon, 1972) 
Peterson, W. W., and E. J. Weldon, Jr. Error-Correcting 
Codes. 2nd ed. Cambridge MA: MIT Press, 1972. 

[phister, 1979] 
Phister, M., Jr. Data Processing Technology and Economics. 
Bedford, MA: Digital Press, 1979. 

[Pierce, 1977] 
Pierce, R. "Service Economic Model Simulator," Electro, No­
vember 2, 1977. 

[Pierce, 1962] 
Pierce, W. H. "Adaptive Vote-Takers Improve the Use of Re­
dundancy." In R. H. Wilcox and W. C. Mann, eds., Redun­
dancy Techniques for Computing Systems. Washington, DC: 
Spartan Books, 1962, pp. 229-250. 

[Pierce, 1965) 
Pierce, W. H. Failure Tolerant Design. New York: Academic 
Press, 1965. 

[Platteter, 1980) 
Platteter, D. G. "Transparent Protection of Untestable LSI 
Microprocessors." In Digest Tenth International Fault Toler­
ant Computing Symposium. Kyoto Japan: IEEE Computer 
Society, 1980, pp. 345-347. 

[Posa, 1980) 
Posa, J. G. "Memory Makers Turn to Redundancy." Electron­
ics 53, McGraw-Hill (December 1980): 108-110. 

[Pradhan, 1978a] 
Pradhan, D. K. "Asynchronous State Assignments with 
Unateness Properties and Fault-Secure Design." IEEE Trans. 
Compo C-27 (May 1978): 396-404. 

[Pradhan, 1978b] 
Pradhan, D. K. "Fault-Tolerant Asynchronous Networks 
Using-.Read-Only Memories." IEEE Trans. Compo C-27 (July 
1978): 674-679. 

[Pradhan, 1980] 
Pradhan, D. K. "A New Class of Error-Correcting/Detecting 
Codes for Fault-Tolerant Computer Applications." IEEE 
Trans. Compo C-29 (June 1980): 471-481. 



749 REFERENCES 

[Praelhan anel Reddy, 1974a] 
Pradhan, D. K., and S. M. Reddy. "Design of Two-Level 
Fault-Tolerant Networks." IEEE Trans. Compo C-23 (Janu­
ary 1974): 41-47. 

[Pradhan and Reddy, 1974b] 
Pradhan, D. K., and S. M. Reddy. "Fault-Tolerant Asynchro­
nous Networks." IEEE Trans. Compo C-23 (January 1974): 
651-658. 

[Pradhan and Stiffler, 1980] 
Pradhan, D. K., and J. J. Stiffler. "Error-Correcting Codes 
and Self-Check Circuits." Computer 13, no. 3 (March 1980): 
27-37. 

[Prange, 1957] 
Prange, E. "Cyclic Error Correcting Codes in Two Symbols." 
U.S. Air Force Cambridge Research Center AFCRC­
TN-58-156, Bedford, MA; 1957. 

[Preparata, Metze, and Chien, 1967] 
Preparata, F. P.; G. Metze, and R. T. Chien. "On the Connec­
tion Assignment Problem of Diagnosable System." IEEE 
Trans. Elec. Compo EC-16 (December 1967): 848-854. 

[Queyssac, 1979] 
Queyssac, D. "Projecting VLSI's Impact on Microproces­
sors." IEEE Spectrum 16, no. 5 (1979): 38-41. 

[Ramamoorthy and Han, 1973] 
Ramamoorthy, C. V., and Y. W. Han. "Reliability Analysis of 
Systems with Concurrent Error Detection." University of 
California at Berkeley, Departments of Electrical Engineering 
and Computer Science, 1973. 

[Randell, 1975] 
Randell, B. "System Structure for Software Fault Tolerance." 
IEEE Trans. Soft. Eng. SE-l, no. 2 (June 1975): 220-232. 

[Randell, Lee, and Treleaven, 1978] 
Randell, B.; P. A. Lee; and P. C. Treleaven. "Reliability Issues 
in Computing System Design. Computing Surveys 10, no. 2 
(June 1978): 123-165 

[Rao, 1970] 
Rao, T. R. N. "Biresidue Error-Correcting Codes for Com­
puter Arithmetic." IEEE Trans. Compo C-19 (May 1970): 
398-402. 

[Rao, 1972] 
Rao, T. R. N. "Error Correction in Adders Using Systematic 
Subcodes." IEEE Trans. Compo C-21 (March 1972): 
254-259. 

[Rao, 1974] 
Rao, T. R. N. Error Coding for Arithmetic Processors. New 
York: Academic Press, 1974. 

[Rao and Garcia, 1971] 
Rao, T. R. N., and O. N. Garcia. "Cyclic and Multiresidue 

Codes for Arithmetic Operations." IEEE Trans. Info. Theory 
IT-17 No.1 (January 1971): 85-91. 

[Rattler et aI., 1973] 
Ratner, R. S.; "Computational Requirements and Technol­
ogy." Menlo Park, CA: SRI International, 1973. 

[Ray-Chautllluri, 1961] 
Ray-Chaudhuri, D. K. "On the Construction of Minimally Re­
dundant Reliable Systems Design." Bell System Techn. Jour­
nal 40, no. 2 (March 1961): 595-611. 

[Raytheon, 1974] 
Raytheon Company. Reliability Model Derivation of a Fault­
Tolerant. Dual. Spare-Switching Digital Computer System. 
NASA CR-132441. Sudbury, MA: 1974. 

[Raytheon, 1976] 
Raytheon Company. An Engineering Treatise on the CARE II 
Dual·Mode and Coverage Models. NASA CR-144993. Sud­
bury, MA: 1976. 

[Reddy, 1972a] 
Reddy, S. M. "Easily Testable Realization for Logic Func­
tions." IEEE Trans. Compo C-21 (November 1972): 
1183-1188. 

[Reddy, 1972b] 
Reddy, S. M. "A Design Procedure for Fault-Locatable 
Switching Circuits." IEEE Trans. Compo C-21 (December 
1972): 1421-1426. 

[Reddy, 1978] 
Reddy, S. M. "A Class of Linear Codes for Error Control in 
Byte-per-Card Organized Digital Systems." IEEE Trans. 
Compo C-27 (May 1978): 455-459 

[Reddy and Wilson, 1974] 
Reddy, S. M., and J. R. Wilson. "Easily Testable Cellular Re­
alizations for (exactly p)-out-of-n and (p or more)-out-of-n 
Logic Functions." IEEE Trans. Compo C-23 (January 1974): 
98-100. 

[Reed, 1954] 
Reed, I. S. "A Class of Multiple-Error-Correcting Codes and 
the Decoding Scheme." IRE Trans. Professional Group on 
Information Theory PGIT-4 (September 1954): 38-49. 

[Reed and Brimley, 1962] 
Reed, I. S., and D. E. Brimley. "On Increasing the Operating 
Life of Unattended Machines." RAND Corporation RM-
3338-PR. Santa Monica, CA, 1962. 

[Reed and Chiang, 1970] 
Reed, I. S., and A. C. L. Chiang. "Coding Techniques for 
Failure-Tolerant Counters." IEEE Trans. Compo C-19 (No­
vember 1970): 1035-1038. 

[Reed an4 Soloman, 1960] 
Reed, I. S., and G. Soloman. "Polynomial Codes over Certain 



Finite Field!)." Journal of the Society for Industrial and Ap­
plied Mathematics 8, no. 2 (1960): 300-304. 

[Reliability, 1976a) 
Reliability Analysis Center. Microcircuit Device Reliahility: 
Memory/LSI Data. MDR-3. Griffiss AFB, Rome, New York 
1976. 

[Reliability, 1976b) 
Reliability Analysis Center. Microcircuit Device Reliability: 
Digital Detailed Data. MDR-4. Griffiss AFB, Rome, New 
York 1976. 

[Reliability, 1979a) 
Reliability Analysis Center. Digital Failure Rate Data. 
MDR-12. Griffiss AFB, Rome, NY, 1979. 

[Reliability, 1979b) 
Reliability Analysis Center. Memory/LSI Data. MDR-l3. 
Griffiss AFB, Rome, NY, 1979. 

[Rennels, 1980) 
Rennels, D. A. "Distributed Fault-Tolerant Computer Sys­
terns." Computer 13, no. 3 (March 1980): 55-65. 

[Reynolds aad, Kinsbergen, 1975) 
Reynolds, C. H., and J. E. Kinsbergen. "Tracking Reliability 
and Availability." Datamation 21, no. II (November 1975): 
106-116. 

[Rhodes, 1964) 
Rhodes, L. J. "Effects of Failure Modes on Redundancy." In 
Proc. 10th National Symp. Reliability and Quality Control, 
Washington, DC, 1964, pp. 360-364. 

[Rickers, 1975/76) 
Rickers, H. C. "Microcircuit Device Reliability Memory/LSI 
Data." Reliability Analysis Center, RADCjRBRAC MDR-3. 
Griffiss AFB, Rome, NY, 1975-1976. 

[Roberts, 1965) 
Roberts, N. H. Mathematical Methods in Reliability Engi­
neering. New York: McGraw-Hill, 1965. 

[Roherts and Wessler, 1970) 
Roberts, L. G., and B. D. Wessler. "Computer Network De­
velopment to Achieve Resource Sharing." In AFIPS Con! 
Proc., Vol. 36, Montvale, NJ: AFlPS Press, 1970, pp. 
543-549. 

[Robinson, 19(5) 
Robinson, J. P. "An Upper Bound on Minimal Distance of 
Convolutional Code." IEEE Trans. Info. Theory IT-Il, no. 4 
(October 1965): 567-571. 

[Robinson and Roubine, 1977) 
Robinson, L., and O. Roubine. "SECIAL-A Specification 
and Assertion Language." Menlo Park, CA: SRI Itlterna­
tional, 1977. 

REFERENCES 741 

[Robinson et ai, 1976) 
Robinson, L.; K. N. Levitt; P. G. Neuman; and A. K. Saxena. 
"A Formal Methodology for the Design of Operating System 
Software." In R. T. Yeh, ed., Current Trends in Programming 
Methodology, Vol. I. Englewood Cliffs, NJ: Prentice-Hall, 
1976, pp. 61-110. 

[Romano, 1977) 
Romano, A. Applied Statistics for Science and Industry. Bos­
ton: Allyn and Bacon, 1977. 

[Rosenthal, 1977) 
Rosenthal, A. "Computing the Reliability of Complex Net­
works." SIAM J. Appl. Math. 32, no. 2 (March 1977): 
384-393. 

[Ross, 1972) 
Ross, S. M. Introduction to Probability Models. New York: 
Academic Press, 1972. 

[Roth, 1966) 
Roth, J. P. "Diagnosis of Automata Failures: A Calculus and a 
Method." IBM J. Res. and Dev. 10, no. 4, (July 1966): 
278-281. 

[Roth, Bouricius, and Schneider, 1967) 
Roth, J. P., W. G. Bouricius, and P. R. Schneider. "Pro­
grammed Algorithms to Compute Tests to Detect and Distin­
guish between Failures in Logic Circuits." IEEE Trans. Elec. 
Compo EC-16 (October 1967): 567-580. 

[Roth et al., 1967) 
Roth, J. P.; W. G. Bouricius; W. C. Carter; and P. R. Schnei­
der. "Phase II of an Architectural Study for a Self-Repairing 
Computer." SAMSO-TR-67-106. U.S. Air Force Space and 
Missile Division, EI Segundo, CA. 

[Rubin, 1967) 
Rubin, D. K. "The Approximate Reliability of Triply Redun­
dant Majority-Voted Systems." Digest, First Annual IEEE 
Comput. Con! Chicago: IEEE Publications, 1967, pp. 46-49. 

[Rudolph, 1967) 
Roudolph, L. D. "A Class of Majority Logic Decodable 
Codes," IEEE Trans. Info. Theory IT-l3, no. 12 (April 1967): 
305-306. 

[Russel, 1978) 
Russel, R. M. "The CRAY-I Computer System." Comm. 
ACM 21 (January 1978): 63-72. 

[Russel,1980) 
Russel, S. C. "Incoming Inspection and Test Programs," Elec­
tronic Test, October 1980, pp. 46-57. 

[Russell and Kime, 1971) 
Russell, J. D., and C. R. Kime. "Structural Factors in the 
Fault Diagnosis of Combinational Networks." IEEE Trans. 
Compo C-20 (November 1971): 1276-1285. 



742 REFERENCES 

[Russell and Tiedeman, 1979] 
Russell, D. L., and M. J. Tiedeman. "Multiprocess Recovery 
Using Conversations." In Digest Ninth International Fault 
Tolerant Computing Symposium. IEEE Computer Society, 
Madison, WI, 1979, pp. 106-110. 

[Russo, 1965] 
Russo, R. L. "Synthesis of Error-Tolerant Counters Using 
Minimum Distance Three State Assignments." IEEE Trans. 
Elec. Compo EC-14 (June 1965): 359-366. 

[Saluja and Reddy, 1974] 
Saluja, K. K., and S. M. Reddy. "On Minimally Testable 
Logic Networks." IEEE Trans. Camp. C-23 (November 
1974): 552-554. 

[Satyanarayana and Prabhakar, 1978] 
Satya narayana, A., and A. Prabhakar. "New Topological For­
mula and Rapid Algorithm for Reliability Analysis of Com­
plex Networks." IEEE Trans. Reliability R-27, no. 2 (June 
1978): 82-100. 

[Sa vir, 1978] 
Savir, J. "Testing for Intermittent Failures in Combinational 
Circuits by Minimizing the Mean Testing Time for a Given 
Test Quality." In Proc. Third USA-Japan Computer Con! 
AFIPS and IPSJ, 1978, pp, 155-161. 

[Sawin, 1975] 
Sawin, D. H. "Design of Reliable Synchronous Sequential 
Circuits." IEEE Trans Camp. C-24 (May 1975): 567-570. 

[Schalkwijk and Kailath, 1966] 
Schalkwijk, J. P., and T. Kailath. "A Coding Scheme for Ad­
ditive Noise Channels with Feedback-Part I: No Bandwidth 
Constraint." IEEE Trans. Info. Theory IT-12, no. 4 (April 
1966): 172-188. 

[Schertz and Metze, 1972] 
Schertz, D. R., and G. Metze. "A New Representation for 
Faults in Combinational Digital Circuits." IEEE Trans. 
Compo C-21 (August 1972): 858-866. 

[Schick and W oiverton, 1978] 
Schick, G. J., and R. W. Wolverton. "An Analysis of Comput­
ing Software Reliability Models." IEEE Trans. Soft. Eng. 
SE-4, no. 2 (March 1978): 104-120. 

[Schneider, 1974] 
Schneider, D. "Designing Logic Boards for Automatic Test­
ing." Electronics International 47, no. 15 (July 1974). 

[Schneidewind, 1975] 
Schneidewind, N. F. "Analysis of Error Processes in Com­
puter Software." In Proc. Int. Con! Reliable Software. IEEE, 
1975, pp. 337-346. 

[Sedmak and Liebergot, 1978] 
Sedmak, R. M., and H. L. Liebergot. "Fault Tolerance of a 

General Purpose Computer Implemented by Very Large Scale 
Integrating." In Digest Eight International Fault Tolerant 
Computing Symposium. IEEE Computer Society, Toulouse, 
France 1978, pp. 137-143. 

[Sedmak and Liebergot, 1980] 
Sedmak, R. M., and H. L. Liebergot. "Fault Tolerance of a 
General Purpose Computer Implemented by Very Large Scale 
Integrating." IEEE Trans. Compo C-29 (June 1980): 
492-500. 

[Seley and Vigilante, 1964] 
Seley, E. L., and F. S. Vigilante. "Common Control-For an 
Electronic Private Branch Exchange." IEEE Trans. Comm. 
Electron. 83, no. 73, (July 1964): 321-329. 

[Sellers, 1962] 
Sellers, E. F. "Bit Loss and Gain Correction Code." IEEE 
Trans. Info. Theory IT-8, no. I (January 1962): 36-38. 

[Sellers, Hsiao, and Bearnson, 1968a] 
Sellers, E. F.; M. Y. Hsiao; and L. W. Bearnson. "Analyzing 
Errors with the Boolean Difference." IEEE Trans. Compo 
C-17 (July 1968): 676-683. 

[Sellers, Hsiao, and Bearnson, 1968b] 
Sellers, E. F.; M. Y. Hsiao; and L. W. Bearnson. Error Detect­
ing Logic for Digital Computers. New York: McGraw-Hill, 
1968. 

[Seshu and Freeman, 1962] 
Seshu, S., and D. N. Freeman. "The Diagnosis of Asynchro­
nous Sequential Switching Systems." IRE Trans. Elec. Compo 
EC-II, no. 8 (August 1962): 459-465. 

[Shannon, 1948] 
Shannon, C. E. "A Mathematical Theory of Communica­
tions." Bell System Tech. Journal 27 no. 3 (July 1948): 
379-423, 623-656. 

[Shannon, 1959] 
Shannon, C. E. "Probability of Error for Optimal Codes in a 
Gaussian Channel." Bell System Tech. Journal 38 (May 
1959): 611-656. 

[Shedletsky, 1978a] 
Shedletsky, J. J. "Error Correction by Alternative Data Re­
try." IEEE Trans. Compo C-27 (February 1978): 106-112. 

[Shedletsky, 1978b] 
Shedletsky, J. J. "A Rollback Interval for Networks with an 
Imperfect Self Checking Property." IEEE Trans. Compo C-27 
(June 1978): 500-508. 

[Shedletsky and McCluskey, 1975] 
Shedletsky, J. J.; and E. J. McCluskey. "The Error Latency of 
a Fault in a Combinatorial, Digital Circuit." In Digest Fifth 
International Fault Tolerant Computing Symposium. IEEE 
Computer Society, Paris, France, 1975, pp. 210-314. 



[Shedletsky and McCluskey, 1976] 
Shedletsky, J. J.; and E. J. McCluskey. "The Error Latency of 
a Fault in a Sequential Circuit." IEEE Trans. Compo C-25 
(June 1976): 6-55-659. 

[Shen and Hayes, 1980] 
Shen, J. P., and J. P. Hayes. "Fault Tolerance of a Class of 
Connecting Architecture." In Proc. Seventh Ann. Symp. on 
Computer Architecture. La Boule, France: IEEE Press, 1980, 
pp.61-71. 

[Shoo man, 1968] 
Shooman, M. L. Probabilistic Reliability: An Engineering 
Approach. New York: McGraw-Hill, 1968. 

[Shooman, 1970] 
Shooman, M. L. "The Equivalence of Reliability Diagrams 
and Fault-Tree Analysis." IEEE Trans. Reliability R-19, no. 
2 (May 1970): 74-75. 

[Shooman, 1973] 
Shooman, M. L. "Operational Testing and Software Reliabil­
ity Estimation During Program Development." In Record. 
IEEE Symposium on Computer Software Reliability. 1973, 
pp.51-57. 

[Short, 1968] 
Short, R. A. "The Attainment of Reliable Digital Systems 
through the Use of Redundancy: A Survey." IEEE Computer 
Group News 2 (March 1968): 2-17. 

[Shostak et al., 1977] 
Shostak, R. E.; "Proving the Reliability of a Fault-Tolerant 
Computer System." In Proc. 14th IEEE Comput. Soc. Int. 
Conj,1977. 

[Shrivastava and Akinpelu, 1978] 
Shrivastava, S. K., and Akinpelu, A. A. "Fault-Tolerant Se­
quential Programming Using Recovery Blocks." In Digest 
Eight International Fault Tolerant Computing Symposium, 
IEEE Computer Society, Toulouse, France, 1978, p. 207. 

[Siewiorek, 1975] 
Siewiorek, D. P. "Reliability Modeling of Compensating Mod­
ule Failures in Majority Voted Redundancy." IEEE Trans. 
Compo C-24 (May 1975): 525-533. 

[Siewiorek, 1977] 
Siewiorek, D. P. "Multiprocessors: Reliability Modeling and 
Graceful Degradation." In Infotech State of Art Conference 
on System Reliability, London: Infotech International Ltd. 
1977, pp.48-73. 

[Siewiorek, Bell, and Newell, 1982] 
Siewiorek, D. P.; C. G. Bell; and A. Newell, Computer Struc­
tures: Principles and Examples. New York: McGraw-Hill, 
1982. 

REFERENCES 743 

[Siewiorek, Canepa, and Clark, 1976] 
Siewiorek, D. P.; M. Canepa; and S. Clark. "C.vmp: The Ana­
lysis, Architecture, and Implementation of a Fault Tolerant 
Multiprocessor." Technical Report Carnegie-Mellon Univer­
sity Departments of Electrical Engineering and Computer Sci­
ence, Pittsburgh, PA. 

[Siewiorek, Canepa, and Clark, 1977] 
Siewiorek, D. P.; M. Canepa; and S. Clark. "c.vmp: The Ar­
chitecture and Implementation of a Fault-Tolerant Multipro­
cessor." In Proc. Seventh Annual Int. Symp. Fault-Tolerant 
Computing, IEEE Computer Society, Los Angeles, CA, 1977, 
pp.37-43. 

[Siewiorek and McCluskey, 1973a] 
Siewiorek, D. P., and E. J. McCluskey. "Switch Complexity in 
Systems with Hybrid Redundancy." IEEE Trans. Compo 
C-22 (March 1973): 276-282. 

[Siewiorek and McCluskey, 1973b] 
Siewiorek, D. P., and E. J. McCluskey. "An Iterative Cell 
Switch Design for Hybrid Redundancy." IEEE Trans. Compo 
C-22 (March 1973): 290-297. 

[Siewiorek and Rennels, 1980] 
Siewiorek, D. P., and D. Rennels. "Workshop Report: Fault­
Tolerant VLSI Deisgn." Computer, December 1980, pp. 
51-53. 

[Siewiorek, et al., 1978a] 
Siewiorek, D. P.; V. Kini; H. Mashburn; S. R. McConnel; and 
M. M. Tsao. "A Case Study of C.mmp, Cm*, and C.vmp: Part 
I-Experiences with Fault Tolerance in Multiprocessor Sys­
terns." In Proceedings of the IEEE 66 (October 1978): 
1178-1199. 

[Siewiorek, et al. 1978b] 
Siewiorek, D. P.; V. Kini; R. Joobbani; and H. Bellis. "A Case 
Study of C.mmp, Cm*, and c.vmp: Part II-Predicting and 
Calibrating Reliability of Multiprocessor Systems." Proceed­
ings of the IEEE, 66 (October 1978): 1200-1220. 

[Signetics, 1975] 
Signetics Product Reliability Report R363, June 1975, Signet­
ics Corporation, Sunnyvale, CA. 

[Sih and Hsiao, 1966] 
Sih, K. Y., and M. Y. Hsiao. "Cyclic Codes in Multiple Chan­
nel Parallel Systems." IEEE Trans. Elec. Compo EC-15 (De­
cember 1966): 927-930. 

[Sklaroff, 1976] 
Sklaroff, J. R. "Redundancy Management Technique for 
Space Shuttle Computers." IBM J. Res. and Dev. 20, no. 1 
(January 1976): 20-28. 

[Slepian, 1956] 
Slepian, D. "A Class of Binary Signalling Alphabets." Bell 
System Tech. Journal 35 (January 1956): 203-234. 



744 REFERENCES 

[Smith, 1972] 
Smith, D. J. Reliability Engineering New York: Barnes and 
Noble, 1972. 

[Smith,1975] 
Smith, T. B., III. "A Damage- and Fault-Tolerant Input/ 
Output Network." IEEE Trans. Compo C-24 (May 1975): 
506-512. 

[Smith and Hopkins, 1978] 
Smith, T. 8., III and A. L. Hopkins, Jr. "Architectural De­
scription of a Fault-Tolerant Multiprocessor Engineering Pro­
totype." In Digest Eighth International Fault Tolerant 
Computing Symposium, p. 194. IEEE Computer Society, 
Toulouse, France, 1978. 

[Smith and Metze, 1978] 
Smith, J. E., and G. Metze. "Strongly Fault Secure Logic 
Networks." IEEE Trans. Compo C-27 (June 1978): 491-499. 

[Snow and Siewiorek, 1978] 
Snow, E. and D. P. Siewiorek. "Impact of Implementation De­
sign Tradeoffs on Performance: The PDP-II, A Case Study." 
In C. G. Bell, J. C. Mudge, and J. E. McNamara, eds., Com­
puter Engineering: A DEC View of Hardware Design. Bed­
ford, MA: Digital Press, 1978, pp. 327-364. 

[Snyder, 1975] 
Snyder, D. L. Random Point Processes. New York: Wiley, 
1975. 

[Spencer and Vigilante, 1969] 
Spencer, A. E., and F. S. Vigilante. "No.2 ESS-System Or­
ganization and Objectives." Bell System Tech. Journal 48 
(October 1969): 2607-2618. 

[Sperry, 1979] 
Sperry Univac Corporation. "The Microarchitecture of Uni­
vac's 1100/60," Datamation, July 1979, pp,- 173-178. 

[Spillman, 1977] 
Spillman, R. J. "A Markov Model of Intermittent Faults in 
Digital Systems." In Seventh Int. Fault-Tolerant Computing 
Symp. Los Angeles, CA: IEEE Computer Society, 1977, pp. 
157-161. 

[Srinivasan, 1971a] 
Srinivasan, C. V. "Codes for Error Correction in High-Speed 
Memory Systems, Part I: Correction of Cell Defects in Inte­
grated Memories." IEEE Trans. Compo C-20 (August 1971): 
882-888. 

[Srinivasan, 1971b] 
Srinivasan, C. V. "Codes for Error Correction in High-Speed 
Memory Systems, Part II: Correction of Temporary and Cata­
strophic Errors." IEEE Trans. Compo C-20 (December 1971): 
1514-1520. 

[Staebler, 1977] 
Staehler, R. E. "IA Processor-Organizations and Objec-

tives." Bell System Tech. Journal 56, no. 2 (February 1977): 
119-134. 

[Staehler and W~tters, 1976] 
Staehler, R. E. and R. J. Watters. "IA Processor-An Ultra­
Dependable Common Control." In Int. Switching Symp. Re­
cord, Japan, 1976. 

[Stapper, 1973] 
Stapper, C. H. "Defect Density Distribution for LSI Yield 
Calculations." IEEE Trans. Elec. Devices ED-20 (July 1973): 
655-657. 

[Stewart, 1977] 
Stewart, J. H. "Future Testing of Large LSI Circuit Cards." 
In IEEE, Digest of Papers, 1977 Semiconductor Test Sympo­
sium. Cherry Hill, NJ, 1977, pp. 6-15. 

[Stewart, 1978] 
Stewart, J. H. "Application of Scan Set for Error Detection 
and Diagnostics." In IEEE Digest of Papers, 1978 Semicon­
ductor Test Conference. Cherry Hill, NJ, 1978, pp. 152-158. 

[Stiffler, 1976] 
Stiffler, J. J. "Architectural Design for Near-l00% Fault Cov­
erage." In Digest Sixth International Fault Tolerant Com­
puting Symposium, IEEE Computer Society, Pittsburgh, PA, 
1976. 

[Stiffler, 1978] 
Stiffler, J. J. "Coding for Random-Access Memories." IEEE 
Trans. Compo C-27 (June 1978): 526-531. 

[Stiffler, Bryant, and Guccione, 1979] 
Stiffler, J. J.; L. A. Bryant; and L. Guccione. "CARE III Fi­
nal Report: Phase One." NASA Langley Research Center 
NASA Contractor Report 159122. Langley, VI: 1979. 

[Storey, 1976] 
Storey, T. F. "Design of a Microprogram Control for a Proces­
sor in an Electronic Switching System," Bell System Tech. 
Journal no. 2 (February 1976): 183-232. 

[Strecker, 1978] 
Strecker, W. D. "VAX-II /780-A Virtual Address Extension 
to the DEC PDP-II Family," NCC AFIPS Proceedings, vol. 
47. Montvale, NJ: AFIPS Press, 1978, pp. 967-980. 

[Sturges, 1926] 
Sturges, "The Choice of a Class Interval." J. Amer. Statisti­
cal Association. 21 (1926): 65-66. 

[Su, Keren, and Malaiya, 1978] 
Suo S. Y. H.; I. Koren; and Y. K. Malaiya. "A Continuous­
Parameter Markov Model and Detection Procedures for Inter­
mittent Faults," IEEE Trans. Compo C-27 (June 1978): 
567-570. 

[Sussldatl,1972] 
~usskind, A. K. "Additional Applications of the Boolean Dif-



ference to Fault Detection and Diagnosis." In Digest Second 
'nt. Fault-Tolerant Computing Symposium, IEEE Computer 
Society, Boston, MA, 1972, pp. 58-61. 

[Swan, 1977] 
Swan, R. J. "The Switching Structure and Addressing Archi­
tecture of an Extensible Multiprocessor: The Cm*." Ph.D. 
diss., Carnegie-Mellon University, 1977. 

[Swan, Fuller, and Siewiorek, 1977] 
Swan, R. J.,; S. H. Fuller; and D. P. Siewiorek. "Cm*-A 
Modular Multi-Microprocessor." In AFIPS Con! Proc., vol. 
46. Montvale, NJ: AFIPS Press, 1977, pp. 637-644. 

[Tammaru and Angell, 1967] 
Tammaru, E., and J. B. Angell. "Redundancy for LSI Yield 
Enhancement." IEEE J. Solid-State Circuits SC-2 (Decem­
ber 1967): 172-182. 

[Tandem, 1976] 
Tandem Computers. Tandem/16 System Description. Cuper­
tino, CA, 1976. 

[Tang, 1965] 
Tang, D. T. "Dual Codes are Variable Redundancy Codes." 
In IEEE International Convention Record 13, (1965): 
220-226. 

[Tang and Chien, 1966] 
Tang, D. T., and R. T. Chien. "Cyclic Product Codes and 
Their Implementation." Information and Control 9, no. 2 
(April 1966): pp. 196-209. 

[Tang and Chien, 1969] 
Tang, D. T., and R. T. Chien. "Coding for Error Control." 
IBM Syst. J. 8 no. 1 (1969): 48-85. 

[Tasar and Tasar, 1977] 
Tasar, 0., and V. Tasar. "A Study of Intermittent Faults in 
Digital Computers." In AFIPS Con! Proc. vol. 46. Montvale, 
NJ: AFIPS Press, 1977, pp. 807-811. 

[Teoste, 1962] 
Teoste, R. "Design of a Repairable Redundant Computer." 
IRE Trims. Elec. Compo C-ll (October 1962): 643-649. 

[Teoste, 1964] 
Teoste, R. "Digital Circuit Redundancy." IEEE Trans. Reli­
ability R-13, no. 3 (June 1964): 42-61. 

[Texas, 1976] 
Texas Instruments. The TTL Data Book for Design Engi­
neers. 2d. ed. Dallas, Texas 1976. 

[Texas, n.d.] 
Texas, Instruments. Preliminary Reliability Report for TI 
Series TMS4030, TMS4050, TMS4060 4K RAMS. Bulletin 
CR-112. Dallas, TX, n.d. 

REFERENCES 745 

[Thatte and Abraham, 1978] 
Thatte, S. M., and J. A. Abraham. "A Methodology for Func­
tional Level Testing of Microprocessors." In Digest Eighth 
Int. Fault-Tolerant Computing Symposium IEEE Computer 
Society, Toulouse, France, 1978, pp. 90,95. 

[Thayer, Lipow, and Nelson, 1978] 
Thayer, T. A.: M. Lipow; and E. C. Nelson. Software Reli­
ability. New York: North-Holland, 1978. 

[Thoman, Bain, and Antle, 1969] 
Thoman, D. R.; L. J. Bain; and C. E. Antle. "Inferences on the 
Parameters of the Weibul Distribution." Technometrics 11, 
no. 3 (August 1969): 445-460. 

[Thompson and Ritchie, 1974] 
Thompson, K., and D. M. Ritchie. "The UNIX Time-Sharing 
System." Comm. ACM 17 (July 1974): 365-375. 

[Tohma, 1974] 
Tohma, Y. "Design Technique of Fail-Safe Sequential Cir­
cuits Using Flip-Flops for Internal Memory." IEEE Trans. 
Compo C-23 (November 1974): 1149-1154. 

[Tohma and Aoyagi, 1968] 
Tohma, Y., and S. Aoyagi. "Failure-Tolerant Sequential Ma­
chines Using Past Information." Electronics and Communica­
tions in Japan 51-C, no. 11 (1968): 95-101. Also IEEE Trans. 
Compo C-20 (April 1971): 392-396. 

[Tohma and Aoyagi, 1971] 
Thoma, Y., and S. Aoyagi. "Failure-Tolerant Sequential Ma­
chines with Past Information." IEEE Trans. Compo C-20 
(April 1971): 392-396. 

[Tohma, Ohyama, and Sakai, 1971] 
Tohma, Y.; Y. Ohyama; and R. Sakai. "Realization of Fail­
Safe Sequential Machines Using a k-out-of-n Code." IEEE 
Trans. Compo C-20 (November 1971): 1270-1275. 

[Tokura, Kasami, and Hashimoto, 1971] 
Tokura, N.; T. Kasami; and A. Hashimoto. "Fail-Safe Logic 
Nets," IEEE Trans. Compo C-20 (March 1971): 323-330. 

[Tong, 1966] 
Tong, S. Y. "Synchronization Recovery Techniques for Binary 
Cyclic Codes." Bell System Tech. Journal 45 (April 1966): 
561-596. 

[TOPS, 1970] 
"TOPS Outer Planet Spacecraft." Astronautics and Aeronau­
tics 8 (September 1970). 

[Torng, 1972] 
Torng, H. C. Switching Circuits: Theory and Logic Design. 
Reading, MA: Addison-Wesley, 1972. 

[Toth and Holt, 1974] 
Toth, A., and C. Holt. "Automated Data-Based Driven Digital 
Testing." Computer, January 1974, pp. 13-19. 



746 REFERENCES 

[Toy, 1978] 
Toy, W. N. "Fault-Tolerant Design of Local ESS Processors." 
Proceedings of the IEEE 66 (October 1978): 1126-1145. 

[Trivedi and Shooman, 1975] 
Trivedi, A. K, and M. L. Shooman. "A Many-State Markov 
Model for the Estimation and Prediction of Computer Soft­
ware Performance." In Proc. Int. Con! on Reliable Software, 
IEEE Computer Society, Los Angeles, CA, 1975, pp. 
208-220. 

[Troy, 1977] 
Troy, R. "Dynamic Reconfiguration: An Algorithm and Its 
Efficiency Evaluation." In Digest Seventh International Sym­
posium on Fault Tolerant Computing IEEE Computer Soci­
ety, Los Angeles, CA, 1977, pp. 44-49. 

[Troy, 1978) 
Troy, R. "Rollback Model for Interactive Processes." In Di­
gest Eighth International Symposium on Fault Tolerant 
Computing IEEE Computer Society, Toulouse, France, 1978. 

[Tryon, 1962] 
Tryon, J. G. "Quadded Logic." In Wilcox and W. C. Mann, 
eds., Redundancy Techniques for Computing Systems, Wash­
ington, DC: Spartan Books, 1962, pp. 205-228. 

[Tsao, 1978) 
Tsao, M. M. "A Study of Transient Errors on Cm*." Master's 
report, Carnegie-Mellon University, 1978. 

[Tsao, 1982] 
Tsao, M. M. "A PDP-8 Implementation AMO Bit-Sized Micr­
oprocessors." In D. P. Siewiorek; C. G. Bell; and A. Newell, 
Computer Structures: Principles and Examples, New York: 
McGraw-Hill, 1982, pp. 219-226. 

[Tsiang and Ulrich, 1962] 
Tsiang, S. H., and W. Ulrich. "Automatic Trouble Diagnosis 
of Complex Logic Circuits." Bell System Tech. Journal (July 
1962). 

[Turin, 1965) 
Turin, G. L. "Signal Design for Sequential Detection Systems 
with Feedback." IEEE Trans. Info. Theory IT-II, no. 7 (July 
1965): 401-408. 

[Ullman, 1966] 
Ullman, J. D. "Near-Optional, Single-Synchronization-Error­
Correcting Code." IEEE Trans. Info. Theory IT-12, no. 4 
(October 1966): 418-425. 

[U.S., 1965] 
U.S. Department of Defense. Military Standardization 
Handbook: Reliability Prediction of Electronic Equipment. 
MIL-HDBK-217. 1965. 

[U.S., 1974] 
U.S. Department of Defense. Military Standardization 
Handbook: Reliability Prediction of Electronic Equipment. 
MIL-HDBK-217B. 1974. 

[U.S., 1976] 
U.S. Department of Defense. Military Standardization 
Handbook: Reliability Prediction of Electronic Equipment. 
MIL-STD-HDBK-217B. Notice I, 1976. 

[U.S., 1979] 
U.S. Department of Defense. Military Standardization 
Handbook: Reliability Prediction of Electronic Equipment. 
MIL-HDBK-217C. 1979. 

[U.S., 1980] 
U.S. Department of Defense. Military Standardization 
Handbook: Reliability Prediction of Electronic Equipment. 
MIL-HDBK-217C. Notice I, 1980. 

[Usas, 1978] 
Usas, A. M. "Checksum Versus Residue Codes for Multiple 
Error Detection." In Digest Eighth International Fault Toler­
ant Computing Symposium, 1978. IEEE Computer Society, 
Toulouse, France, p. 224. 

[U.S. Patent, 1977a] 
U.S. Patent No.4 015246. "Synchronous Fault-Tolerant Mul­
tiprocessor System." Washington, DC, 1977. 

[U.S. Patent, 1977b] 
U.S. Patent No.4 035 766. Washington, DC, 1977. 

[von Alven, 1964] 
von Alven, W. H. (Ed). Reliability Engineering. Englewood 
Cliffs, NJ: Prentice-Hall, 1964. 

[von Neumann, 1956] 
von Neumann, J. "Probabilistic Logics and the Synthesis of 
Reliable Organisms from Unreliable Components." In C. E. 
Shannon and J. McCarthy, eds., Automata Studies, Prince­
ton: Princeton University Press, 1956, pp. 43-98. 

[Wachter, 1975] 
Wachter, W. J. "System Malfunction Detection and Correc­
tion." In Digest Fifth International Fault Tolerant Comput­
ing Symposium IEEE Computer Society, Paris France, 1975, 
pp. 196-201. 

[Wakerly, 1974] 
Wakeriy, J. "Partially Self-Checking Circuits and Their Use 
in Performing Logical Operations." IEEE Trans. Compo C-23 
(July 1974): 658-666. 

[Wakerly, 1976] 
Wakeriy, J. "Microcomputer Reliability Improvement Using 
Triple-Modular Redundancy." In Proceedings of the IEEE. 
64 (June 1976): 889-895. 

[Wakerly, 1978] 
Wakeriy, J. Error Detecting Codes. Self-Checking Circuits 
and Applications. New York: North-Holland, 1978. 

[Waksman, 1968] 
Waksman, A. "A Permutation Network." J. ACM, 15, no. 1 
(January 1968): 159-163. 



Wang and Lovelace, 1977J 
Wang, S. D., and K. Lovelace. "Improvement of Memory Re­
iability by Single-Bit-Error Correction." Long Beach, CA: 
I EEE Press, 1977 

Warner, 1974J 
Warner, R. M., Jr. "Applying a Composite Model to the IC 
Yield Problem." IEEE J. Solid-State Circuits. SC-9, no. 6 
:June 1974): 86-95. 

. Watson and Hastings, 1966J 
Watson, R. W., and C. W. Hastings. "Self-Checked Computa­
:ion Using Residue Arithmetic." Proceedings of the IEEE 54 
:December 1966): 1920-1931. 

Weissberger, 1980J 
Weissberger, A. J. "An LSI Implementation of an Intelligent 
2RC Computer and Programmable Character Comparator." 
'EEE Trans. Compo C-29 (February 1980): 116-124. 

Weldon, 1966J 
Weldon, E. J. "Difference-Set Cyclic Codes." Bell System 
Tech. Journal. 45 (September 1966): 1045-1057. 

Weldon, 1967J 
Weldon, E. J. "A Note on Synchronization Recovery with Ex­
~ended Cyclic Codes." In Proc. First Annual Princeton Con­
ference on Information Sciences and Systems, Princeton, NJ, 
1967. p. 233. 

Weldon, 1968J 
Weldon, E. J. "New Generalizations of the Reed-Muller 
20des Part II: Nonprimitive Codes." IEEE Trans. Info. The­
Jry IT-14, no. 2 (March 1968): 199-205. 

Wensley, 1972) 
Wens ley, J. H. "SIFT Software Implemented Fault Toler­
lOce." In FJCC, AFIPS Conf. Proc. Vol. 41, pp. 243-253. 
Montvale, NJ: AFIPS Press, 1972. 

Wensley et aI., 1973) 
Wensley, J. H. et ai.: "Architecture." Menlo Park, CA: SRI 
International, 1973. 

Wensley et aI., 1976J 
Wensley, J. H.: M. W. Green; K. N. Levitt; and R. E. Shostak. 
'The Design, Analysis, and Verification of the SIFT Fault 
rolerant System." In Proc. 2nd Int. Con! Software Engineer­
'ng, Long Beach, CA: IEEE Computer Society, 1976, pp. 
~58-469. 

Wensley et al., 1978J 
Wens ley, J. H.; L. Lamport; J. Goldberg; M. W. Green: K. N. 
Levitt; P. M. Melliar-Smith; R. E. Shostak; and C. B. Weins­
:ock. "SIFT; Design and Analysis of a Fault-Tolerant Com­
)uter for Aircraft Control." Proceedings of the IEEE 66 
:October 1978): 1240-1255. 

Wilcox and Mann, 1962J 
Wilcox, R. H. and W. C. Mann. Redundancy Techniques for 
':omputer Systems, Spartan Books, 1962. 

REFERENCES 747 

[Wilkov, 1972) 
Wilkov, R. "Analysis and Design of Reliable Computer Net­
works." IEEE Trans. Communication COM-20, no. 3 (1972): 
660. 

[Williams and Angell, 1973) 
Williams, M. J., and J. B. Angell. "Enhancing Testability of 
LSI Circuits via Test Points and Additional Logic." IEEE 
Trans. Compo C-22 (January 1973): 46-60 . 

[Williams and Parker, 1979J 
Williams, T. W., and K. P. Parker. "Testing Logic Networks 
and Designing for Testability." Computer 12, no. 10 (October 
1979): 9-21. 

[E. W. Wolf, 1973) 
Wolf, E. W. "An Advanced Computer Communication Net­
work." In AIAA Computer Network Systems Conj. Record, 
1973. 

[J. K. Wolf, 1973J 
Wolf, J. K. "A Survey of Coding Theory: 1967-1972." IEEE 
Trans. Info. Theory IT-19, no. 4 (July 1973): 381-389. 

[Wolverton and Shick, 1974J 
Wolverton, R. W., and G. J. Shick. "Assessment of Software 
Reliability." TRW -SS-7 3-04. Los Angeles, CA, 1974. 

[W ozencraft, 1957J 
Wozencraft, J. M. "Sequential Decoding for Reliable Com­
municating." Research Laboratory for Electronics, MIT 
TR325. Boston, MA, 1957. 

[Wulf and Bell, 1972J 
Wulf, W. A., and C. G. Bell. "C.mmp-A Multi-Mini­
Processor." In AFlPS Con! Proc., vol. 41, Montvale, NJ: 
AFIPS Press, 1972, pp. 765-777. 

[Wyle and Burnett, 1967J 
Wyle, H., and G. J. Burnett. "Some Relationships between 
Failure Detection Probability and Computer System Reliabil­
ity." FJCC, AFlPS Con! Proc., vol. 31, Montvale, NJ: Aca­
demic Press, 1967, pp. 745-756. 

[Wyner and Ash, 1963J 
Wyner, A. D. and R. B. Ash, "Analysis of Recurrent Codes," 
IEEE Trans. Inform. Th., IT-II, no. 3 (July 1963): 148-156. 

[Yakowitz, 1977] 
Yakowitz, S. J., Computational Probability and Simulation, 
Reading, MA : Addison-Wesley, 1977. 

[Yourdon, 1972aJ 
Yourdon, E., "Reliability Measurements for Third Generation 
Systems." In Proceedings of the Annual Reliability and 
Maintainability Symposium, IEEE Computer Society, 1972, 
pp.174-182. 

[Yourdan, 1972b) 
Yourdan, E., Design of On-Line Computing Systems. Engle­
wood Cliffs, NJ: Prentice-Hall, 1972. 





CONTRIBUTING AUTHORS 

~t the time of original publication of the reprinted articles in­
;Iuded in this volume, the following were the authors' 
lffiliations: 

Chapter 9 

Donald L. Droulette: IBM Corporation 

Chapter 10 

L. A. Boone, H. L. Liebergot, and R. M. Sedmak: Sperry 
Univac 

Chapter II 

James A. Katzman: Tandem Computers 

Joel F. Bartlett: Tandem Computers 

Chapter 12 

W. N. Toy: Processor Design Group, Bell Laboratories 

Chapter 13 

David Katzuki, Eric S. Elsam, William F. Mann, Eric S. Rob­
~rts, John G. Robinson, F. Stanley Skowronski, and Eric W. 
Wolf: Bolt, Beranek and Newman, Inc. 

Chapter 14 

Algirdas Avizienis and George C. Gilley: Jet Propulsion Labo­
ratory,. California Institute of Technology, and the Depart-

TRADEMARKS 

Digital Equipment Corporation: DEC, DEC US, PDP, 
UNIBUS, VAX, DECnet, DECsystem-IO, DECSYSTEM 20, 
DECwriter, DIBOL, EduSystem, lAS, MASS BUS, PDT, 
RSTS, RSX, VMS, VT. 

Advanced Micro Devices, Inc.: AMD 2901 and AMD 2903. 
American Telephone and Telegraph, Inc.: Telex. 
Bell Laboratories: LAMP. 
Bendix Corp.: BDmicro X. 
Bolt, Beranek, and Newman: Pluribus and STAGE. 
Burroughs Corp.: B5500. 
Cray Research Inc.: CRAY-l. 

749 

ment of Computer Science, University of California at Los 
Angeles 

Francis P. Mathur, David A. Rennels, John A. Rohr, and Da­
vid K. Rubin: Jet Propulsion Laboratory, California Institute 
of Technology 

Chapter 15 

C. P. Jones: Systems Design and Engineering Section, Jet Pro­
pulsion Laboratory, California Institute of Technology 

Chapter 16 

John H. Wens ley, Leslie Lamport, Jack Goldberg, Milton W. 
Green, Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shos­
tak, and Charles B. Weinstock: SRI International 

Chapter 17 

Albert L. Hopkins, Jr., T. Basil Smith, III, and Jaynarayan H. 
Lala: Charles Stark Draper Laboratory, Inc. 

Appendix B 

Algirdas Avizienis: Jet Propulsion Laboratory, California In­
stitute of Technology 

Appendix C 

R. G. Bennetts and R. V. Scott: Southampton University, 
Southampton, England 

E. I. DuPont: Freon. 
Honeywell, Inc.: 316 and 516. 
Intel Corp.: 432, 8080, and 8086. 
International Business Machines, Inc.: 4341, OS/360, RE­
TAIN, System/360, and System/370 
Lockheed: SUE. 
Motorola: MC6800. 
National Semiconductor Company: IMP-16. 
Sperry, Inc.: Univac, Univac 1100/60, and Univac 1108. 
Tandem Computers, Inc.: Dynabus, Guardian, and NonStop. 
Xerox Corp.: Alto. 
Zilog Corp.: Z8000. 





:REDITS (Continued from p. iv) 

'igures 11-3, 11-4 

,fichael Marshall and G. David Low (Jet Propulsion Labora­
Dry, California Institute of Technology), "Report of the 
~utonomous Spacecraft Maintenance Study Group Interim 
)raft Report," (July 28, 1980). Reprinted by permission. 

'abies 11-10, 11-11, 11-12, 11-13, 11-14 

~bstracted from Michael Marshall and G. David Low (Jet 
'ropulsion Laboratory, California Institute of Technology), 
Report of the Autonomous Spacecraft Maintenance Study 
.. roup Interim Draft Report," (July 28, 1980). Reprinted by 
ermission. 

'abies 5-14, 5-15 

~avier Castillo, "Workload Performance and Reliability of 
)igital Computing Systems," Carnegie-Mellon University, 
)epartment of Electrical Engineering (December 1980). Re­
rinted by permission. 

'igures 5-51, 5-52 

~avier Castillo and D. P. Siewiorek, "A Performance­
leliability Model for Computing Systems," IEEE PRO­
~EEDINGS 10th INTERNATIONAL SYMPOSIUM ON 
:AUL T-TOLERANT COMPUTING (1980). Copyright © 
980 IEEE. Reprinted by permission. (Originally published 
'y Carnegie-Mellon University, Department of Computer Sci­
nce, 1980.) 

'igures 1-4, 1-6 

:. Russell Craig, "Incoming Inspection and Test Programs," 
~LECTRONICS TEST (October 1980). Reprinted by 
'ermission. 

'igures 3-54. 

~.G. Dennis, "Ultrareliable Voter Switches, with a Bibliogra­
,hy on Mechanization," MICROELECTRONICS AND RE­
,lABILITY (August 1974). Copyright © 1974 Pergamon 
'ress, Ltd. Reprinted by permission. 

'igures 5-59 through 5-73 

:teven Elkind, "Towards Automatic Design of Reliable Sys­
~ms," Ph.D. thesis proposal, Carnegie-Mellon University, De­
artment of Electrical Engineering (January 16, 1980). 
leprinted by permission. 

'igures 5-16 through 5-19, 5-57, 5-58; Tables 5-6, 5-7, 
,-16,5-17,5-18 

aeven Elkind and Daniel P. Siewiorek, "Reliability and Per­
Drmance Models for Error Correcting Memory and Register 
~rrays," IEEE TRANSACTIONS ON COMPUTERS, vol. 
>29, no. 10 (October 1980). Copyright © 1980 IEEE. Re­
,rinted by permission. (Originally published by Carnegie­
tfellon University, 1978.) 

CREDITS 751 

Figures 1-3, 4-2 

Eugene Foley, "The Effects of Microelectronics Revolution on 
Systems and Board Test," COMPUTERS, vol. 12, no. 10 (Oc­
tober 1979). Copyright © 1979 IEEE. Reprinted by 
permission. 

Figure 4-8 

Adapted from, T. J. Frechette and F. Tanner, "Support Pro­
cessor Analyzes Error Caught by Latches," ELECTRONICS 
(November 8, 1979). Copyright McGraw-Hill, Inc. 1979. All 
rights reserved. Reprinted by permission. 

Figure 2-2 

Michael Geilhufe, "Soft Errors in Semiconductor Memories," 
DIGEST OF PAPERS, COMPCON SPRING 1979, IEEE 
(1979). Copyright © 1979 IEEE. Reprinted by permission. 

Tables 4-7, 4-8, 4-9 

Adapted from, J. Grason and A. Nagle, "Digital Test Genera­
tion Design for Testability," PROCEEDINGS OF 17th AN­
NUAL DESIGN AUTOMATION CONFERENCE (1980). 
Copyright © 1980 IEEE. Reprinted by permission. 

Figures 3-47, 3-48 

K. J. Gurzi, "Estimates for the Best Placement of Voters in a 
Triplicated Logic Network," IEEE TRANSACTIONS ON 
ELECTRONIC COMPUTERS, vol. EC-14 (October 1965). 
Copyright © 1965 IEEE. Reprinted by permission. 

Figure 3-60 

M. Y. Hsiao, D. C. Bossen, R. T. Chen, "Orthogonal Latin 
Square Codes," IBM JOURNAL OF RESEARCH AND 
DEVELOPMENT, vol. 14, no. 4 (July 1970). Copyright © 
1970 by International Business Machines Corporation. Re­
printed by permission. 

Figures 5-7, 5-8, 5-9, 5-10 

Ashok Ingle and Daniel Siewiorek, "A Reliability Model for 
Various Switch Designs in Hybrid Redundancy," IEEE 
TRANSACTIONS ON COMPUTERS, vol. C-25, no. 2 
(February 1976). Copyright © 1976 IEEE. Reprinted by per­
mission. (Originally published by Carnegie-Mellon University, 
Department of Computer Science, October 1973.) 

Figure 11-2 

J. J. Kulzer, "Systems and Reliability: A Case Study of No.4 
ESS," Infotech State of the Art Report SYSTEM RELI­
ABILITY AND INTEGRITY, Pergamon Infotech Limited, 
Maidenhead (UK), 1978. Reprinted by permission. 

Figures 3-88, 3-90 

K. N. Levitt, M. W. Green, J. Goldberg, "A Study of the Data 
Communication Problems in a Self-Repairable Multiproces­
sor," AFIPS CONFERENCE PROCEEDINGS, vol. 32 
(1968), Spring Joint Computer Conference. Reprinted by per-



752 CREDITS 

mission of American Federation of Information Processing So­
cieties Inc. 

Figures 3-74 

F. P. Mathur and A. Avizienis, "Reliability Analysis and Ar­
chitecture of a Hybrid-Redundant Digital System: General­
ized Triple Modular Redundancy with Self-Repair," AFIPS 
CONFERENCE PROCEEDINGS, vol. 36 (1970), Spring 
Joint Computer Conference. Reprinted by permission of 
American Federation of Information Processing Societies, Inc. 

Figure 3-81 

D. W. Lewis, "A Fault-Tolerant Clock Using Standby Spar­
ing," PROCEEDINGS 9th ANNUAL FAULT TOLERANT 
COMPUTING SYMPOSIUM (1979). Copyright © 1979 
IEEE. Reprinted by permission. 

Figures 3-82, 3-83 

F. P. Mathur and P. T. DeSousa, "Sift-Out Modular Redun­
dancy," IEEE TRANSACTIONS ON COMPUTERS (July 
1978). Copyright © 1978 lEEK Reprinted by permission. 

Figure 3-53 

Stephen R. McConnel and Daniel P. Siewiorek, "Synchroniza­
tion and Voting," IEEE TRANSACTIONS ON COMPUT­
ERS, vol. C-30, no. 2 (February 1981). Copyright © 1981 
IEEE. Reprinted by permission. 

Figures 2-4, 2-11 through 2-22; Tables 2-1, 2-22 through 
2-26 

S. McConnel, D. Siewiorek, M. Tsao, "Transient Error Data 
Analysis," Carnegie-Mellon University, Department of Com­
puter Science (May 1979). Reprinted by permission. 

Figure 3-10 

J. C. McDonald, "Testing for High Reliability: A Case 
Study," COMPUTER (February 1976). Copyright (i) 1976 
I EEE. Reprinted by permission. 

Figure 3-77 

D. A. Rennels, "Distributed Fault-Tolerant Computer Sys­
tems," COMPUTER (March 1980). Copyright :D IEEE. Re­
printed by permission. 

Figure 3-72 

B. E. Ossfeldt and I. Jonsson, "Recovery and Diagnostics in 
the Central Control of the AXE Switching System," IEEE 
TRANSACTIONS ON COMPUTERS (June 1980). Copy­
right 11) I EEE. Reprinted by permission. 

Figure 3-71 
Ihara, Kubo, Ypkota. "Fault-Tolerant Computer Sys­
tem with Three Symmetric Computers," Proceedings of 
the IEEE (Oct. 1978). Copyright © IEEE. Reprinted 
by permission. 

Figure 3-16 

R. M. Sedmak and H. L. Liebergot, "Fault Tolerance of a 
General Purpose Computer Implemented by a Very Large 
Scale Integration," IEEE TRANSACTIONS ON COMPUT­
ERS (June 1980). Copyright 11:) IEEE. Reprinted by 
permission. 

Figure 5-11; Table 5-5 

D. Siewiorek, "Reliability Modeling of Compensating Module 
Failures in Majority Voted Redundancy," IEEE TRANSAC­
TIONS ON COMPUTERS, vol. C-24, no. 5 (May 1975). 
Copyright © 1975 IEEE. Reprinted by permission. (Originally 
published by Carnegie-Mellon University, Department of 
Computer Science, June 1974.) 

Figure 1-5; Tables 1-1,11-8,11-9 

Adapted from, Daniel Siewiorek, Gordon Bell, Allend Newell, 
COMPUTER STRUCTURES: PRINCIPLES AND EX­
AMPLES. Copyright 1981 McGraw-Hill Book Company. Re­
printed by permission of publisher. 

Figures 2-7, 2-10; Tables 2-14 through 2-21 

Siewiorek, Kini, Joobbani, Bellis, "A Case Study of Cmmp, 
Cm*, and c.vmp: Part II-Predicting and Calibrating Reliabil­
ity of Multiprocessor Systems," PROCEEDINGS OF THE 
IEEE, vol. 66, no. 10 (October 1978). Copyright 1978 
I EEE. Reprinted by permission. 

Figures 3-75; Table 3-13 

D. Siewiorek and D. J. McCluskey, "An Iteratived Cell 
Switch Design for Hybrid Redundancy," IEEE TRANSAC­
TIONS ON COMPUTERS, vol. C-22, no. 3 (March 1973). 
Copyright ~) I EEE. Reprinted by permission. 

Figures 2-5, 2-6 

J. N. Thielman, "Signetics Product Reliability Report," R363 
(June 1975). Reprinted by permission of Signetics Corpora­
tion, Calif. 

Table 6-10 

Donald E. Thomas and Daniel P. Siewiorek, "The Analysis of 
the Performance, Reliability, and Life Cycle Cost of Multi­
Processor Architectures and Their Impact on SENET," 
Carnegie-Mellon University, Department of Computer Sci­
ence (May 1978). Reprinted by permission. 

Figure 3-9 

Adapted from The Texas Instruments Data Book, 2d ed., 
Texas Instruments 38510/MACH IV Procurement Specifica­
tion Flow Chart for Class c Levell Processing. Courtesy Texas 
Instruments Incorporated. 



Index 

AACS Power Code Processing 
(AACSIN), 552 

ABENDS, 415 
Aborts, 362 
Abstractions. 4 
Accelerated life-cycle testing, 19 
Accelerating factors, 37 
Acceptable Quality Level (AQL) test, 

see Test. 
Acceptance testing, see Test. 
Access mode 

Executive, 364 
Kernel,364 
Supervisor, 364 
User, 364 

Adaptive voting, see Voting. 
Address checking, see Checking. 
Address Translation Buffer (TB), 369 
Advanced Scientific Computer (ASC), 

69 
ADVISER,237 

Boolean requirements expression, 
237 

communications axiom, 237 
Kernel,238 
Pendant Tree Subgraphs, 238 
system functionality requirements, 

237 
After-tax cash flow, 308 
Aircraft Energy Efficiency (ACEE) 

program, 560 
Airline reservation system, 3-7 
Algebraic equations, 250 
Algorithm purity, 209 
Algorithmic generation, 187 
All-Os failure, 89, 90 
All-Is failure, 90 
Allocation model, see Model. 
Alpha particles, 6, 18, 26, 30, 272 
Alternate Data Retry (ADR), 170 
Alternate Path Retry (APR), 415-416 
Am2901,80 
Am2903,154 
AMD-2901,77 
Amputation, 506 
AN error-correcting code, see Code. 
Annual labor expense, 305 
Application"dependent checking, 511 
Application process interface (APR), 

416,459 
Archetypical implementation 

VAX-ll,367 
Architecture. 361 
Arithmetic and Logic Unit (ALU), 224 

Arithmetic code, see also Code. 
additive inverse, 677 
AN,678 
arithmetic algorithm, 672 
arithmetic error, 671, 673 
arithmetic shifts, 676 
byte-serial arithmetic processor, 

677-678 
check modulus, 678 
check sum, 680 
checking algorithm, 672, 679 
concurrent diagnosis, 672 
cost, 672 
cumulative fault effects, 674 
error table, 673 
error value, 673 
fault effectiveness, 673, 680 
fault effectiveness of determinate, 

680 
fault effectiveness of indeterminate, 

681 
faults in parallel arithmetic, 675 
group length, 679 
hybrid-cost, 685, 686 
hybrid-cost arithmetic, 686 
indeterminate fault, 674 
inverse residue, 678, 679, 682 
least common multiple, 681 
logic fault, 673 
low-cost AN, 682 
low-cost check modulus, 683 
low-cost radix-2 arithmetic, 678 
miss percentage, 681 
mixed low-cost, 685 
Modulo N addition, 677 
m-tuple low-cost, 684 
multiple, 683, 685 
multiple low-cost, 683 
multiple low-cost arithmetic, 686 
nonseparate, 678 
one-use faults, 674, 680 
permanent fault, 674 
product, 679 
range contraction, 677 
range extension, 677 
repeated-use faults, 674, 677, 

680-681 
residue code, 682 

residue, 678 
roundoff,677 
separate, 678 
single, 683 
STAR, 672, 680 
transient fault, 674 

753 

uniform, 685 
value effectiveness, 673 
word length, 672 

Arithmetic distance, 177 
Arithmetic exceptions, 363 
Arithmetic operation checking, see 

Checking. 
ARPAnet, 335, 498 
ARPAnet Interface Message Processor 

(IMP),332 
Array 

gate, 76 
transistor, 76 

Array processors, 499 
Arrhenius equation, 37 

activation energy, 37 
Asymmetric failure modes, see 

Failure. 
Asymmetric system, 499 
A(t), see Availability. 
Attitude and Articulation Control 

Subsystem (AACS), 544 
Attitude Control Subsystem (ACS), 

340 
Audit programs, 490 
AUTOFAIL, 49,51,73,286-287,289, 

293-394. See also 
MIL-HDBK-217B,49. 

Automated Markov analysis programs, 
274-275 

ARIES, 274 
CARE III, 274 

Automated recovery, 487 
Automatic error log, 432, 618 
Automatic Test Equipment (ATE), 11 
Auxiliary Units (AU), 334 
Availability, 7, 65, 205, 250, 317 

A(t),7 
M-out-of-N, 277 
preventive maintenance, 8 
Reliability, and Maintainability 

(ARM), 326, 423 
Triple Modular Redundancy 

(TMR),276 
Avionic systems, 337-342 
AXE, 143, 155 
Axioms, 580 

Backplane Interconnect, 369 
Backup process, 457 
Backup sparing, 154-158 
Backup tape, 477 
Backward error recovery 

techniques, 169 



754 INDEX 

checkpoint, 170 
journaling, 170 
retry, 170 

b-adjacent error correction, 130 
Bad/No echo response, 554 
Bathtub curve, 31, 72, 202 
BDmicroX, 568 
Bell System Electronic Switching 

Systems (ESS), see Electronic 
Switching Systems. 

Bendix Corporation, 561, 568 
Bidirectional voter, 347 
Birth-and-death processes, 277 
Birth transitions, 277 
Bisync protocols, 103 
Bit-by-bit voting, 588 
Bit-per-byte parity, see Parity. 
Bit-per-word parity, see Parity. 
Blocking gates, see Gate. 
Block Check Register (BCR), 101 
Block code, see Code. . 
Block-coded memories, see Memory. 
Block transfers, 285 
Board, 11 
Board partitioning, 484 
Board swap, 404, see also Swapped. 
Boeing 707 aircraft simulation, 616 
Boolean Difference, 187, 189 
Branch field service office, 13 
Breakpoint instruction, 364 
Bridging fault, see Fault. 
Broadcast mode, 348 
Buffer, 512, 573 
Buffer interface routine, 575 
Buffer stress, 450 
Bugs in a program, 209 
Burn in, 12, 71,72 
Burst-error-correction code, see Code. 
Burst errors, see Error. 
Bus arbiter, 502 
Bus control signal synchronization, 351 
Bus controller, 605 
Bus coupler, 501, 503, 506 
BUSDATA,570 
Bus disagreement 

latent fault detection, 617 
Bus Guardian Unit, 590, 602 

FTMP,I52 
Business plan, 16 
Bus Interface Unit (BIU), 629 
Bus isolation gate, 592 
Bus level voting, 347 
Bus Receive Table (BRT), 444-445 
BUSREQUEST, 570 
Bus structure, 602 

Cabinet ventilation, 69 
Cache, 369, 370,376,398,425,444, 

586 
Cache memory, see Memory. _ 
Cache memory management, 618 
Call Store (CS), 334, 463, 477 

Capability 
trade-off between detection and 

correction, 123 
Capability-based addressing, 629 
Capability checking, see Checking. 
Capability in Cm*, 113 
CARE, 535 
Carnegie-Mellon University, 51, 73 
Carry bypass, 149 
Carry lookahead, 149 
Carry-in service, 13 
Celestial reference loss/acquisition, 

553 
Central Control (CC), 332, 468 
Cere bus, 586 
Channel-Check Handler (CCH), 412, 

414 
Chapman-Kolmogorov differential 

equations, 248, 255-256 
continuous-time, 248 

Check-bit units, 139 
Check byte, 528 
Check matrix, 127 
Checker, 631 
Checker redundancy, see Redundancy. 
Checking 

address, 112 
arithmetic operation, 112 
capability, 112 
consistency, 112-113 
opcode, 112 
overflow, 112 
underflow, 112 

Checking error-detection circuits, 486 
Checkpoint, 64, 170, 172, 457 

error latency, 172 
Checkpoint/Restart, 418 
Checksum, 513 

extended precision, 97, 98 
Honeywell, 97, 98 
Pluribus, 96 
single-precision, 96 

Chip-level repair, 397,402 
Chip parity, see Parity. 
Chip socket, 402 
Chip-wide parity, see Parity. 
Circuit 

fail-safe, 106 
fault-secure, 104 
fault-tolerant, synthesis procedure, 

140 
Partially Self-Checking (PSC), 106 

insecure, 108 
secure, 108 

self-checking, 104, 154, 195 
self-testing, 104 
Totally Self-Checking (TSC), 104 

Clock generator, 606 
Clustering, 11 
Cm*, 44-45,51,56,300,357 

capability, 113 
replacement rate assumption, 46 

CMDLOSS, 551 
C.mmp,300 

Changing interrupt levels, 28 
Mean Time To Crash (MTTC), 26 
memory parity failures, 26 
mutual suspicion, 28 
NonExistent Memory (NXM), 28 
stack operations, 28 
swap-and-compare, 79 
switch deadlock, 28 
transient loss of interprocessor, 28 

C.vmp, 51,56, 118, 121, 150, 174,281, 
325,345-360 

bidirectional voter, 347 
broadcast mode, 348 
bus control signal synchronization, 

351 
bus level voting, 347 
Cm*,357 
CONTINUE, 359 
crash data, 358 
Data/ Address Lines (DAL), 347 
DEBUG, 359 
Direct Memory Access (DMA), 347 
Disagreement Detection Circuit 

(DDC),354 
dynamic performance, 346 
dynamic voting control, 350 
floppy disk, 350 
FTMP, 347 
independent mode, 348 
interleaving of disk sectors, 356 
LSI-II bus control signals 

DIN, 347, 351, 355 
DOUr, 347, 351, 355 
IAK,351 
Interrupt ReQuest (IRQ), 348 
RPLY, 351, 354 
SYNC, 347,351,355 

LSI-II bus cycles 
DATI,347 
DATO,347 

LSI-II instructions 
BR,355 
MaY, 355 
TST, 355 

Mean Time To Crash (MTTC), 359 
Memory refresh, 352 
modular design, 345 
off-the-shelf components, 346 
on-line maintenance, 359 
performance measurements 354 
program behavior, 347 
Q-bus,347 
RELOAD, 359 
RESET,359 
RESTART, 359 
RT-II,356 
SFTMP,347 
software transparency, 345 
system clock, 352 
unidirectional voter, 348 



voting, 346, 348 
WAIT instruction, 350 

Code 
adaptive, 653 
additive inverse, 677 
AN error-correcting, 131, 678 
arithmetic algorithm, 672 
arithmetic distance, 674 
arithmetic error, 671, 673 
arithmetic shifts, 676 
arithmetic weight, 674 
arithmetic, 98-101, 651, 667 

AN, 99 
inverse residue-m, 99 
residue-m, 99 • 

autoaccelerating function, 665 
binary, 640 
Binary Synchronous Communication 

(BSC),654 
bi-quinary, 654 
block, 225, 640 
Bose-Chaudhuri-Hoquenghem 

(BCH), 654, 659 
burst errors, 652 
burst-error-correction, 130, 650, 658 
byte-serial arithmetic processor, 

677-678 
channel, 640 
check modulus, 678, 680 
check sum, 680 
checking algorithm, 672, 679 
circuit noise, 642 
complemented duplicate, 85 
concurrent diagnosis, 672 
constant-weight, 651, 667 
convolution, 651, 665 
coset, 665 
cost, 672 
cumulative fault effects, 674 
cyclic, 101-104, 130,639 

Block Check Register (BCR), 101 
CRC-12,102 
CRC-16,102 
CRC-CCITT, 102 
generator polynomial, 101 
linear feedback registers, 101 
n,k,101 

cyclical redundancy, 4 
Cyclic Redundancy Check (CRC), 

655,668 
decoders, 648-650 
decoding ~omplexity, 652 
delay operator, 646 
demodulation, 641 
deterministic decoding, 667 
Digital Cypress 655 
disk, 655 
distance functions, 645 
document organization, 656 
encoders, 648-650 
erasures, 653 
error-correcting, 122-125 

transient errors, 125 
error detection, 84-87, 651 
error n-tuples, 651 
error source, 642 

channel, 642 
storage, 642 

error syndromes, 644 
error table, 673 
error value, 673 
errors in digital data channels, 

640-642 
fault effectiveness, 673, 680 
fault effectiveness of determinate, 

680 
fault effectiveness of indeterminate, 

681 
faults in parallel arithmetic, 675 
feedback channel, 652 
feedback shift register, 646 
file organization, 656 
fire, 451,652, 659 
forward error correction, 652 
4-out-of-8,481 
generator matrix, 644, 656, 657, 665 
generator polynomial, 644,649, 

658-662, 
geometric interpretation, 645, 663 
Golay, 660 
group length, 679 
Hamming, 225, 468, 630, 658 

Bell ESS No.1 Processor, 129 
chips 

Am2960,129 
AmZ160,129 
Fujitsu MB 1412A, 129 
MC68540, 129 

IBM 360/370, 129 
Intel 432, 128 
interlaced multiple, 130 
PDP-IO,129 
PDP-ll/60,129 
Univac 1100/60, 129 
VAX-llj750,129 
VAX-l 1/780, 129 
Xerox Alto, 129 
unidirectional failures, 128 

Hamming distance, 84, 645 
Hamming Error-Correcting-Code 

(ECC),4 
Hamming Single-Error-Correcting 

(SEC), 122, 125-133, 176 
parity-check matrix, 126 

Hamming Single-Error-Detecting/ 
Double-Error-Correcting 
(SEC/DED) 

PCM,127 
lookaside correction, 128 
maintenance costs, 129 
single-byte error, 129 

hybrid-cost, 685, 686 
hybrid-cost arithmetic, 686 
IBM 650, 654 

INDEX 755 

IBM 727 magnetic tape, 655 
IBM 1300,655 
IBM 1360,655 
IBM 2301,655 
IBM 2400 magnetic tape, 655 
IBM 7030 (STRETCH), 654 
IBM System/360, 655 
I ndependent-Error-Correcting, 650, 

659 
indeterminate fault, 674 
Inverse residue-m, 100 
interlaced, 89 
interleaved, 651 

IBM 1050 data communications 
system, 654 

invariant with respect to data 
operation, 87 

inverse residue, 678, 679, 682 
irreducible polynomial, 658 
iterated, 663 
Least Commom Multiple (LCM), 

659,681 
linear separable, 86, 89, 643 
linear simultaneous equations, 643, 

657 
linear switch circuit, 646 
logic fault, 673 
Longitudinal Redundancy Check 

(LRC),655 
low-cost AN, 682 
low-cost check modulus, 683 
low-cost radix-2 arithmetic, 678 
low-cost residual, 97, 98 

unidirectional errors, 98 
M-out-of-N, 87-89, 480 
m-tuple low-cost, 684 
memoryless channel, 642 
minimum distance, 85, 87 
minimum polynomial, 659 
miss percentage, 681 
mixed low-cost, 685 
modulation, 641 
Modulo N addition, 677 
multiple, 683, 685 
Multiple-Burst-Correcting,660 
Multiple-Character-Correcting,650 
multiple low-cost, 683 
multiple low-cost arithmetic, 686 
N-dimensional, 651, 662 
n,k,87 
n,k linear, 648 
nonseparate, 678 
one-use faults, 674, 680 
optimal odd-weight column, 128 
orthogonal (majority-logic 

decodable), 140 
orthogonal Latin square, 124, 131 
parity, 85, 89-94 
parity-check matrix, 644, 657 
parity-check, 86 
parity equations, 643 
partial correction, 652 



756 INDEX 

period of polynomial, 658 
permanent fault, 674 
physical disturbances, 642 
polynomial, 650 
polynomial cyclic, 644 
primitive, 658 
product, l31, '679 
range contraction, 677 
range extension, 677 
recurrent, 665 
recursive polynomial, 644 
redundancy, 640 
Reed-Muller, 660 
Reed-Solomon, 655, 661 
Reed-Solomon cyclic, 130 
repeated-use faults, 674, 677,680, 

681 
residue code, 682 

residue, 100, 528, 645, 678 
residue-number-system, 131 
roundoff, 677 
self-orthogonal, 660, 664, 665 
separable, 86, 87, 643, 678 
separable linear, 665 
sequential decoding, 654, 667 
shift-register, 646, 649 
shortened, 131, 651, 663 
single, 683 
Single-Error-Correcting (SEC), 155, 

225,650 
Single-Error-Correcting/ 

Double-Error-Detecting 
(SEC/DED),286 

single faults, 674 
source, 640 
source encoding, 641 
STAR, 672, 680 
structure of linear, 656 
structure of polynomial, 657 
synchronization, 651, 665 
syndrome, 644,650,661 
t-error-correcting, 653 
table lookup decoding, 660 
3N,100 

self-checking decoder, 100 
threshold-Iogic-decodable, 653, 663 
transient fault, 674 
2-out-of-5 , 655 
2-out-of-4, 86, 528 
uniform, 685 
value effectiveness, 673 
Vertical Redundancy Check (VRC), 

655 
word length, 672 
word, 640, 657 
XOR parity, 89 

Code word, 84 
Coded-state machines, 138-140 
Cofactor, 249 
Coherency, 211 
Coherent system, 221 

Combinatorial modeling of system 
availability, 275-277 

Combinatorial modeling, 211, see also 
Model. 

Combinatorial probability, 211 
Combinatorial recovery, 624 
Comet Memory Interconnect (CMI), 

387,397 
Command and Control Subsystem 

(CCS),340 
Command Computer Subsytem 

(CCS),546 
Command parity error, 554 
Command sequence error, 554 
Common address space, 500 
Common Channel Interoffice 

Signaling (CCIS), 335 
Common clock, 143 
Common failure modes, 11, 79 
Common memory, 502 
Communication page, 510 
Communications protocol, 456 
Compact testing, see Test. 
Compatibility mode, 362 
Complementary process of fault 

simulation, 466 
Complemented duplicate code, see 

Code. 
Complete Permutation-Incomplete 

Utilization, 167 
Complete Permutation-Complete 

Utilization N x N Networks 
(CPCU(N»,166 

Complexity derating, 48 
Component level, 11 
Component redundancy, see 

Redundancy. 
Computation reliability, 270 
Computer Control Subsystems (CCS), 

537 
Computer family, 361,622 

compatibility, 362 
Computer-Aided Instruction (CAl), 

317 
Computer-Aided Reliability 

Estimation II (CARE II), 236 
COMTRAC, 142 
Confidence intervals, 34, 56 
Confidence limit, 38 
Configuration Control Unit (CCU), 

117,604 
Configuration map, 509, 511 
Confinement, 141 
Confinement areas, 628, 629 
Confinement boundaries, 625 
Consensus mechanism, 510, 511 
Consistency check, 64, 189, see also 

Checking. 
Console Subsystem, 370,381-384 
Console terminal, 367 
CONTINUE,_ 359 

Continuous-time Chapman­
Kolmogorov equations, 248 

Continuous-time equations, 256 
Continuous-time Markov model, see 

Markov model. 
Contract penetration, 304, 313 
Contract renewal rate, 304 
Control and Test (CAT), 531 
Control buffer, 450 
Control error, 528 
Control error detection, 529 
Control point, J 92 
Control Processor (COP), 526, 530 
COPRA computer 

checkpoint techniques, 172 
Corrected Read Data (CRD), 376 
Correlation coefficient, 209 
Cosmic rays, 26 
Cost 

maintenance, 303 
service, 16 

Cost and reliability 
design space, 291 

Cost of customer ownership, 305 
Cost of downtime, 306 
Cost of environmental conditioning, 

306 
Cost of Field Service, 308 
Cost of operating personnel, 307 
Cost of ownership, see Ownership. 
Cost of power, 306 
Cost of site preparation, 306 
Cost of storage media, 306 
Cost of supplies, 306 
Cost/performance/reliability space, 

622 
Cost/reliability trade-off, 285 
Coverage, 78,141,154,206,213,300, 

524,607 
CPCU(N) 

fault-tolerant network, 166 
Crash data, 358 
Crash logging, 28 
CRAY-l,IO,68,69 
CRC,179 
CRC-12,102 

Interdata 8/32, 103 
CRC-16,102 

Interdata 8/32, IP3 
use 

bisync protocols, 103 
DDCMP,103 

CRC-CCITT, 102, 103 
use 

ANSI X.25, 103 
HDLC protocols, 103 

CRC instruction 
VAX-ll/780,104 

Critical computation systems, 325 
FTMP, 325, see also Fault-Tolerant 

Multiprocessors. 



SIFT, 325, see also Software 
Implemented Fault Tolerance. 

Critical Minimum Complement 
(CMC),610 

Cross-strapping, 340 
Crossbar switch, 501 
Cruise science, 542 
Cumulative Distribution Function 

(CDF), see Function. 
Cumulative parity, see Parity. 
Custom LSI, see LSI. 
Cyclic Redundancy Check (CRC), 101 
Cyclic code, see Code. 
Cyclical redundancy coding, see Code. 
Cyclostationary model, 273 

D-algorithm, 189 
Damage isolation, 562 
Data 

field,8 
life-cycle, 8 

Data/ Address Lines (DAL), 347 
Data malfunctions, 596 
Data Manipulation Logic (DML), 484 
Data Path Module (DPM), 387, 393 
DATAREADY, 570 
DC parametric test, see Test. 
DC power distribution system, 438 
Deadline scheduling, 564 
Dead-on-arrival, 313 
Death transitions, 277 
DEBUG,359 
Debugging software, see Software. 
Decoding, 87, 640 

conditional maximum likelihood, 
645 

maximum likelihood, 645 
minimum distance, 645 . 
parallel, 123 
serial, 123 
table lookup, 649 

DECsystem-1O (PDP-IO), 51 
DECSYSTEM-20, 51,155 
Defect 

physical, 19 
Defect density, 239, 241 

bell-shaped curve, 241 
mean, 242 

Defense Meteorological Satellite 
Program (DMSP), 338 

block redundancy, 340 
Defining layers of fault handling, 622 
Defining reconfiguration and repair 

boundaries, 625 
Defining system objectives, 621 
Depreciation of capital equipment, 306 
Design errors, 6, 210, see also Error. 
Design for testability, see Test. 
Design goals, 454 
Design Maturity Testing (DMT), 7, 

393, see also Manufacturing 

Stage. See also Test. 
Design methodology for a high 

reliability system, 621 
Design phase, 183 
Design validation, 554 
Designing fault-handling mechanisms, 

626 
Detecting hard-core circuit faults, 486 
Detection mechanisms, 627-634 
Detection techniques, 478 
Determinant of matrix, 249 
Deterministic model, 202 
Device fall-out rates, 19 
Diagnosability, 78, 141 
Diagnosis, 64, 141 

subsystem interconnection, 196 
Diagnostic Center (DC), 369 
Diagnostic check mode, 398 
Diagnostic Control Register, 380 
Diagnostic hardware, 491 
Diagnostic instruction, 527 
Diagnostic programs, 427 
Diagnostic resolution, 78 
Diagnostic script, 13, 369 
Diagnostic Supervisor, 385 
Diagnostics, 196, 516 
Differential equation, 211, 251 
Digital Diagnostic Center (DDC), 13, 

404 
Digital Equipment Corporation, 73,325 
Digital fault simulation, 465 
Digital system 

levels in, 4 
circuit, 5 
logic, 5 
Processor Memory Switch (PMS), 5 
program, 5 

Digroup Terminal (DT), 334 
Diode-Transistor Logic (DTL), 470 
Direct Memory Access (DMA), 285, 

347,387,401-402,447 
Disagree with bus, 529 
Disagreement Detection Circuit, 354 
Disagreement detector, 121 
Disagreement errors, see Error. 
Discount rate, 307 
Discrete-time equations, 255 
Discrete-time Markov model, see 

Markov model. 
Discrete Weibull distribution, 32 

cumulative distribution function, 32 
hazard function, 32 
mean, 32 
probabilty mass function, 32 
reliability function, 32 

Disk controller, 450 
Dispatch Minimum Complement 

(DMC),615 
Dispatch reliability, 615 
Distinguishing sequences, see 

Sequences. 

INDEX 757 

Dormant spares, 532 
Dotted logic, see Logic. 
Double-declining balance method, 306 
Down-line loading, 518 
Downlink, 550 
Downlink table, 551 
Draper Laboratory, 586, 598 
Dual-diversity, 79 
Dual-port controllers, 447-450 
Dual-ported Input/Output (I/O) 

controllers, 438 
Dual-processor system, 237 
Dual-rail comparator, 107 
Dual-range signals, 105 
Dual redundant system, 300 
Dual System Controller (DSC), 143 
Dumps, 28 
Duplex architecture, 463-465 
Duplication, 79, 107,426,462,630 

bus level, 81 
complementary function, 79 
performance degradation, 82-84 
reconfigurable, 141-145 
system level, 81 

Dyad,593 
Dynabus, 84,300, 330,439-441, 

444-447 
Dynamic Device Reconfiguration, 

(DDR),415-416 
Dynamic loading, 414 
Dynamic model, 202 
Dynamic performance, 346 
Dynamic redundancy, see 

Redundancy. 
Dynamic voting control, 350 

Echo Suppressor (ES), 335 
Echo Suppressor Terminal (EST) , 334 
ECL, 68, 425 
Effect of extra logic, 217 
Effectiveness of modularization, 209 
Electrical parametric tests, see Test. 
Electrical tests, 72 

test pattern, 72 
Electronic Switching Systems (ESS), 

332,461-496 
audit program, 490 
automated recovery, 487 
Auxiliary Units (AU), 34 
backup tape, 477 
board partitioning, 484 
Call Store (CS), 334, 463, 477 
Central Control (CC), 81, 332,468 
checking error-detection circuits, 

486 
code 

4-out-of-8, 481 
M-out-of-N,480 

Common Channel Interoffice 
Signaling (CCIS), 335 



758 INDEX 

complementary process of fault 
simulation, 466 

Data Manipulation Logic (DML), 
484 

detecting hard-core circuit faults, 
486 

detection techniques, 478 
diagnostic hardware, 491 
digital fault simulation, 465 
Digroup Terminal (DT), 334 
Diode-Transistor Logic (DTL), 470 
duplex architecture, 463 
duplication, 462 
Echo Suppressor (ES), 335 
Echo Suppressor Terminal (EST), 

334 
error detection, 471 
Error Register (ER), 483 
fault dictionary, 466 
fault recognition program, 468, 469 
fault simulation, 465 
field data, 469 
File Store (FS), 334, 472, 474 
Hamming code, 468 
hardware reliability, 462 
initialization, 488 
initialization sanity check bits, 489 
Input/Output (I/O) channels, 484 
LAMP, 466 
M-out-of-N code, see Code. 
Maintenance Channels (MCH), 486, 

491 
manual recovery, 490 
match circuits, 473 
match mode, 467, 470 
matcher, 81, 468 
Mean Time To Failure (MTTF), 

464,465 
Memory 

Random Access (RAM), 472 
Read Only (ROM), 463, 493 

microdiagnostics, 493 
microprogramming, 475, 478 
Morris Electronic Switching 

System, 465 
multiunit duplex configuration, 464 
No.1 processor, 142-143,466 
No. 101 processor, 470 
No. lA processor, 142-143,336, 

466,472 
No.2 processor, 142-143,470 
No. 3A processor, 89,110,472,474, 

,476, 
parity, 469,471,473,475,480 
Permanent Magnet Twister (PMT), 

468,471 
physical fault simulation, 465 
Private Branch Exchange (PBX), 

470 
procedural errors, 463 

Processor Configuration (PC) 
circuit, 474 

Program Store (PS), 463,477 
Pulse-Code Modulated (PCM), 334 
recovery deficiencies, 463 
recovery techniques, 487 
repair, 493 
Resistor-Transistor Logic (RTL), 

470 
retry, 469 
roving spares, 473 
sanity timer, 469 
self-checking, 475 
Signal Processor (SP), 334 
software deficiencies, 462 
system control panel, 491 
system downtime, 462 
Time Multiplexed Switch (TMS), 

334 
time out, 469, 488 
Time Slot Interchange (TSI), 334 
timer, 487 
Trouble Locating Manual (TLM), 

466 
unidirectional error, 479 
Voiceband Interface Frame (VI F), 

334 
voltage margining, 471 

Electronic funds transfer, 307 
Encoding, 87,640 
End-around carry, 98 
Energy-Efficient Aircraft program, 

598 
Engineering failure, see Failure. 
Environment 

ground benign, 68 
ground fixed, 68 
junction temperature, 68 
operating, 68 

Environment Record Editing and 
Printing (EREP) program, 413, 
419 

Environmental factors, 556 
Equipotential spacecraft, 542 
Equivalent faults, see Fault. 
Erasure, 124, 176 
Erasure correction algorithm, 125 
Error, 17,51,548 

burst, 123-124 
clustering, 11 
design, 206 
disagreement, 597 
Hamming, 177 
intermittent, 17 
main-memory performance, 281 
microstore performance, 283 
multiple adjacent unidirectional, 

124 
permanent, 17 
soft, 11 

software-related, 28 
specification, 207 
transient, 17 
unidirectional, 97, 124, 130 

Error-Correcting-Code (ECC), 369, 
379,417,427, see also Code. 

Error-Correcting-Code (ECC) memory 
Mean Time To Failure (MTTF), 228 
Mean Time To Failure (MTTF) with 

errors present, 229 
Error-Correcting-Code (ECC) memory 

reliability, see Reliability. 
Error-First-Pass, 376, 379 
Error correction 427 
Error detection, 6, 471,525, see also 

Code. 
Error diagnostics, 618 
Error handling routine, 575 
Error latches, 597 
Error latency, 64, 170, 172,273 
Error log, 198,369,386,636 
Error recovery, 429, 525 
Error Recovery Procedure (ERPS), 

413-415 
Error Register (ER), 483 
Error reporting message, 635 
Error Status Register, 377 
Evaluation criteria, 296 
Event queue, 618 
Exception vectors, 363 
Exceptions, 362 
Exclusive OR testing, see Test. 
Exhaustive testing, see Test. 
Expected value, 203, see Value. 
Experimental recovery block cache, 

174 
Exponential distribution, 31 

cumulative distribution function, 31 
hazard function, 31 
probability density function, 31 
reliability function, 31 

Exponential function, 204 
Exponential hazard function, 202 
Extended-precision checksum, see 

Checksum. 
Externally induced malfunctions, 594 

FAIL, 49, see also MIL-HDBK-217B. 
Fail-safe, 196 
Fail-safe circuit, 106, see Circuit. 
Fail-safe logic, see Logic. 
Fail safely, 307 
Failure, 17 

asymmetric modes, 137 
C.mmp,26 
engineering, 12 
infancy, 12 
latent, 610 
manufacturing/inspection, 12 



multiple adjacent unidirectional, 130 
nonoverlapping, 79 
permanent, 17 
physical, 17 
residual, 12 
transient, 272 
whole chip, 91 

Failure mode, II 
Failure Modes and Effects Analysis 

(FMEA),561 
Failure Modes, Effects, and Criticality 

Analysis (FMECA), 236, 542 
Failure process renewal, 259 
Failure rate, 31, 202, 393, 567 
Failure rate dependent on system load, 

273 
Failure rate per function, 9 
Failure to capture, 326 
Failure to recreate, 326 
Fairchild F6856 Synchronous Protocol 

Communications chip, 103 
Far-encounter, 542 
Fault, 17, 362 

bridging, 190 
equivalent, 190 
intermittent, 17, 26, 612-615 
latent, 631,633 
logic, 17, 183 
lurking, 614 
multiple, 191 
permanent, 17 
soft 

alpha particle, 122 
cosmic ray, 122 

structural, 184 
transient, 17, 26 

Fault avoidance techniques, 63, 67-77 
fanout limitation, 67 
human error, 67 
MIL-HDBK-217B model, 68 
noise margin, 67 
signal-to-noise-ratio,67 

Fault confinement, 64 
Fault containment region, 602 

principal, 602 
system control unit, 603 

Fault detection, 64, 141,426,576 
cost of 

board level, 11 
component level, 11 
field service level, II 
system level, 11 

off-line, 64 
on-line, 64 
techniques, 77-113 

diagnosability,78 
duplication, 79 
retry, 77 

Fault dictionary, 187,466 
Fault-handling mechanisms, 630 

Fault handling stages 
time line, 65 

Fault injection, 431, 577 
Fault intolerance, 63 
Fault isolation, 427, 562-563 
Fault list, 190 
Fault manifestations, 19 
Fault masking, 64, 563, see also 

Masking. 
Fault protection software, see 

Software. 
Fault recognition program, 468-469 
Fault-secure circuit, see Circuit. 
Fault-secure logic, see Logic. 
Fault simulation, 465-466 
Fault tolerance, 543 
Fault-Tolerant Building Block 

Computer (FTBBC), 342 
Fault-Tolerant Multiprocessor 

(FTMP), 118, 121, 152,342, 
347,585-620 

automatic error logging, 618 
bit-by-bit voting, 588 
Boeing 707 aircraft simulation, 616 
bus controller, 605 
bus disagreement 

latent fault detection, 617 
Bus Guardian Unit, 152, 590, 602 
bus isolation gate, 592 
bus structure, 602 
cache, 586 
cache memory management, 618, 

see also Memory. 
Cerebus, 586 
clock generator, 606 
combinatorial model, see Mode/. 
Configuration Control Unit (CCU), 

604 
coverage, 607 
Critical Minimum Complement 

(CMC),610 
data malfunctions, 596 
disagreement errors, see Error. 
Dispatch Minimum Complement 

(DMC),615 
dispatch reliability, 615 
Draper Laboratory, 586, 598 
dyad,593 
Energy Efficient Aircraft program, 

598 
error diagnostics, 618 
error latches, 597 
event queue, 618 
externally induced malfunctions, 

594 
failure 

latent, 610 
fault containment region, 602 

principal, 602-603 
system control unit, 603 

INDEX 759 

fault-tolerant redundancy clocking, 
594 

flexing, 597 
hybrid redundancy, see 

Redundancy. 
input/output access, 593 
Input/Output (I/O) port, 606 
intermittent fault, see Fault. 
interprocessor triad communication 

unit (lPC), 605 
latency factor, 614 
latent failure, see Failure. 
Line Replaceable Units (LRU), 598, 

602 
logic malfunctions, 596 
lurking fault, see Fault. 
malfunction consequences, 596 
malfunction management, 594 
malfunction sources, 594 
Markov model, see Model. 
memory module, 593, 605 
Memory protect, 605 
MIL-STD-1553, 598,605 
multiprocessor executive, 617 
NASA Langley Research Center, 

586,598 
National Science Foundation, 586 
National Semiconductor 

I MP-16-processor, 616 
Office of Naval Research, 586 
On-board, Survivable, Integrated, 

Redundant Information System 
(OSIRIS), 586 

organization, 590 
parallel-hybrid redundancy, see 

Redundancy. 
phase-locked oscillators, 594 
phase-locked redundant clock, 619 
physical malfunctions, 596 
power supply, 606 
Privileged user modes, 605 
probability models, see Mode/. 
processor modules, 592 
processor-cache memory module, 

585 
processor-cache module, 598, 604 
processor-cache units, 589 
random malfunctions, 595 
redundancy 

parallel-hybrid, 587 
resource allocation, 589 
self-test program, 619 
serial-bus multiprocessor, 586 
subsystem malfunctions, 596 
survival probability, 611 
synchronization, 593 
system exercising, 597 
system malfunctions, 596 
tight synchronization, see 

Synchronization. 



760 INDEX 

tolerance renewal mechanism, 597 
triad~ 152,588,590 
Triple Modular Redundancy 

(TMR), 598, see also 
Redundancy. 

Triple Modular Redundancy (TMR) 
hybrid, 587, see also 
Redundancy. 

Fault-tolerant redundancy clocking, 
594 

Fault-tolerant sequential circuits, see 
Circuits. 

Fault-Tolerant Space borne Computer 
(FTSC),.117,342 

checkpoint techniques, 172 
Fault-tolerant switching networks, 165 
Fault-tolerant techniques, 65, 77 

cost, 65 
dynamic redundancy, 65 
fault detection, 65 
masking redundancy, 65 
percentage of redundancy, 65 

Fault trees, 236 
Feature failure-mode matrix, 310 
Feedback Shift Registers (FSR), 187 
Field data, 469, see Data. 
Field experience, 513 
Field Replaceable Unit (FRU), 12, 79, 

198,200,306,402 
Field service, 11 
Field service branch office, 13 
Field service engineer, 13 
Field service plan, 16 
File Store (FS), 334, 472, 474 
Fire code, see Code. 
Fixed cost, 309 
Fixed preplanned scheduling, 564 
Fixed-price contracts, 303 
Fixed-price per call contract, 304 
Fix-it, 511 
Flexing, 597 
Floating Point Accelerator (FPA), 367, 

372,391 
Force Miss, 398 
Formal specifications, 582 
Forward error recovery techniques, 

169 
Forward propagation, 189 
4-out-of-8 checker, 481 
4-out-of-8 code, see Code. 
Freeze state, 626, 636 
FTMP, see Fault-Tolerant 

Multiprocessor. 
Fully burdened, 305 
Function 

cumulative distribution, 30, 31 
gamma, 32 
hazard,31 
probability density, 30, 31 
probability mass, 30 
reliability, 31 

Functional level test, 369 

Functional recovery, 411 
Functional Redundancy Checking 

(FRC),631 
Functional simulator, 536 
Functional test, see Test. 

Garbage collection, 512 
Gate, 

blocking, 192 
threshold, 151 
TTL logic open-collector, 137 

Gate array, 76, 387 
Gate array failure rate, 391 
Gaussian elimination, 249 
Gaussian process, 273 
General coverage, 78 
Generalized Data Processor (GDP), 

629 
Generator polynomial, 101 
Geometric distribution, 32 

cumulative distribution function, 32 
mean deviation, 32 
probability mass function, 32 
reliability function, 32 
standard deviation, 32 

Geometric progression, 214 
Global executive, 572 
Global executive task, 575 
Go chains, 384 
Goodness-of-Fit test, 35 

Chi-square, 35, 57 
Kolmogorov-Smirnov, 36 

Graceful degradation, 64, 158-160, 
499 

Cm*, 159 
C.mmp, 159 
FTMP, 159 
performance availability models, 

270 
Pluribus, 159 
SIFT, 159 
Tandem, 159 
virtual address mapping, 159 

Ground benign environment, see 
Environment. 

Ground fixed environment, see 
Environment. 

Guardian, 454, 458, 460 

Hamming code, see Code. 
Hamming code memories, see 

Memory. 
Hamming distance, see Code. 
Hamming error, see Error. 
Hamming error-correcting codes, see 

Code. 
Hamming Single-Error-Correcting 

code (SEC), see Code. 
Hamming Single-Error-Detecting/ 

Double-Error-Correcting 
(SEC/DED) code, see Code. 

Hardcore, 524,633 
Hardware MTBS (MTBSH), 433 
Hardware reliability, 462 
Hazard function, 202, 203, 228, see 

also Function. 
Hazard rate, 45 
Heartbeat, 553 
Heat sink, 68 
Hex board, 387 
Hierarchical Design Methodology, 560 
Hierarchy, 4 
Hierarchy of models, see Model. 
High availability systems, 323 

Pluribus, 323 
Tandem, 323 

High-error rate, 379 
High-Gain Antenna (HGA), 542 
High-performance systems, 324 
High-reliability components, 71 
Honeywell checksum, see Checksum. 
Horizontal parity bit, 226 
Horner's method, 250 
Hot spots, 69 
Hybrid redundancy, see Redundancy. 
Hybrid reliability models using 

measured statistics, see 
Reliability. 

Hybrid Triple Modular Redundancy 
(TMR), see Redundancy. 

lAS, 362 
IBM,325 
IBM 4300, 326 
IBM 4341, 194 
IBM 4341,199, 
IBM System/360 

retry, 170 
Identifying the hardcore, 626 
Illegal operations, 363 
I'm alive message, 331 
ILLIAC IV, 500 
Impact of technology on Intel 432, 626 
Implementation, 361 
Incoming inspection, 185 
Incoming inspection program, 11 
Incomplete permutation-non-order-

preserving, 167 
Incomplete permutation-order-

perserving, 167 
Independent mode, 348 
Infancy failure, see Failure. 
Infant mortality, 8, 11,31,185,544 
Infrared Interferometer Spectrometer 

and Radiometer Subsystems 
(IRIS),532 

Inhibit Reporting Correctable Errors, 
398 

Initial Program Load (lPL), 411, 418 
Initial screening, 19 
Initialization, 459, 488 
Initialization sanity check bits, 489 
Input/Output access, 593 



Input/Output Channel, 447, 484 
Input/Output Control (l0C) table, 

447,484 
Input/Output Interrupt Processor 

(I/O IRP), 530 
Input/Output loss, 515 
Input/Output port, 606 
Input/Output Processor (lOP), 526 
Input/Output recovery, 410 
Input/Output Recovery Management 

Support (I/O RMS), 412, 415 
Input/Output retry, 410 
Input/Output supervisor, 414 
Input/Output system, 447-451 
Input/Output Unit (IOU), 425 
Inspection stage, 184 
Installed base, 303 
Instruction 

Move From Processor Register 
(MFPR),372 

Move To Processor Register 
(MTPR),372 

Instruction Buffer (lB), 367 
Instruction Processor (lP), 425 
I nstruction Retry, 410 
Instruction set, 527 
Instruction Set Processor (lSP), 5 
Intel 432, 180,621-636 

Bus Interface Unit (BIU), 629 
capability-based addressing, 629 
checker, 631 
combinatorial recovery, 624 
computer family, 622 
confinement areas, 628-629 
confinement boundaries, 625 
cost/ performance / reliability space, 

622 
defining layers of fault handling, 623 
defining reconfiguration and repair 

boundaries, 625 
defining system objectives, 621 
design methodology for a high 

reliability system, 621 
designing fault-handling 

mechanisms, 626 
detection mechanisms, 627 
duplication, 630 
error logging, 636 
error reporting message, 635 
fault-handling mechanisms, 630 
freeze state, 626, 636 
Functional Redundancy Checking 

(FRC),631 
Generalized Data Processor (GDP), 

629 
Hamming code, see Code. 
hardcore, 633 
identifying the hardcore, 626 
impact of technology on Intel 432, 

626 
Interface ProceSsor (IP), 629 
interlaced parity, 630 

latent faults, see Fault. 
layers of fault handling, 628 
limiting scope, 623 
Memory Control Unit (MCU), 631 
multiprocessor, 633 
packet bus, 629 
packet bus confinement area, 632 
reconfiguration and repair 

boundaries, 628 
reconfiguration region, 625 
repair region, 625 
retry, 625 
scope, 627 
scrubbing, 636 
self-checking, 631 
self-checking module, 629 
standby sparing/graceful 

degradation, 625 
system objectives, 622, 627 
time-out, 631 

Intel 8080, 178 
Interactive consistency vector, 566 
Interface Message Processor (IMP), 

336,498,512 
Interface Processor (lP), 426, 629 
Interlaced code 

in ESS No. 3A processor, see Code. 
Interlaced multiple Hamming code, 

see Code. 
Interlaced parity, 630, see also Parity. 
Interleaving of disk sectors, 356 
Intermittent, 518 
Intermittent error, see Error. 
Intermittent fault, see Fault. 
Internal Data (ID), 370 
Internal Data (lD) bus registers, 377 
Internal fault message, 529 
Internal processor register, 372 
Internal Rate of Return (lRR), 308 
International Business Machines, see 

IBM; see also 
System/360-System/370. 

Interprocessor triad communication 
unjt (lPC), 605 

Interrupt Processor (lRP), 526 
Interrupt vectors, 363 
Interwoven logic, see Logic. 
Invariant with respect to data 

operation, see Code. 
Inventory costs, 306 
Inverse residue-m code, see Code. 
Inverse transform, 250 
Ion 

metal migration, 31 
Iteration rate, 564 
Iterative cell switch, see Switch. 

Jet Propulsion Laboratory (JPL), 523 
Journaling,64,174 
Junction temperature, 68 
Junction temperature of the gate array 

transistors, 393 

INDEX 761 

K.bus,46 
Kernel model, 272 
Kernel of the operating system, 273 
Key fault indicators, 554 
Kramer's rule, 249 

Labor Activity Reporting System 
(LARS),391 

Labor expense, 304 
Labor-Hour-to-repair (LH), 196 
LAMP,466 
Language level, 209 
Laplace transform, 210, 248 

rational fraction, 250 
Latency factor, 614 
Latent failure, see Failure. 
Latent faults, see Fault. 
Layers of fault handling, 628 
Level of service, 306 
Level Sensitive Scan Design (LSSD), 

194,198 
Life-Cycle Cost (LCC) model, 311 

change, 317 
generalized data elements, 314 

Life-cycle data, see Data. 
Life-cyle testing, 37 
Life-support system, 307 
Limiting scope, 622 
Line Replaceable Units (LRU), 598, 

602 
Linear equation solving, 249 
Linear-feedback shift registers, 101 
Linear regression analysis, 34 
Linear separable code, see Code. 
LINK,456 
Lin's method, 250 
Local executive, 573,575 
Local-global communicating tasks, 573 
Local variable, 444 
Lockheed SUE minicomputer, 502 
Logic 

control part, 5 
data part, 5 
dotted, 137 
fail-safe, 104-110 
fault-secure, 104-110 
interwoven, 134-138 

critical faults, 134 
cut-set reliability model, 137 
subcritical faults, 134 
weave-pattern, 136 

masking, 133-134 
quadded, 134, 136 
radial, 134, 137,220 
self-checking, 104-110 
switching circuit, 5 

Logic analyzer, 432 
Logic circuit 

combinatorial,5 
sequential, 5 

Logic fault, see Fault. 



762 INDEX 

Logic-level fault classes, 26 
circuit, 26 

Logic-level fault models, 26 
bridging, 26 
short or open, 26 
stuck-at, 26 
unidirectional, 26 

Logic malfunctions, 596 
Logic Processor (LOP), 526, 530 
Logical Device Table (LDT), 457 
Logical fault, see Fault. 
Logical word, 226 
Long life systems, 323 

STAR,323 
Voyager, 323 

Loose Synchronization, 562 
Loosely coupled, 499 
Lost Error 397 
Lost-revenue-per-hour, 307 
Low-cost residual code, see Code. 
Lower bound on system reliability, 

223, see also Reliability. 
LRC, 446 
LSI, 76, 77 

custom, 76 
LSI-II, 45, 49,51 
LSI-II bus control signals 

DIN, 347, 351, 355 
DOUT, 347, 351, 355 
IAK,351 
Interrupt ReQuest (IRQ), 348 
RPLY, 347, 351, 355 
SYNC, 347, 351, 355 

LSI-II bus cycles 
DATI,347 
DATa, 347 

LSI-II instructions 
BR,355 
MOV, 355 
TST,355 

Lurking fault, see Fault. 

Machine check, 364, 397 
Machine-Check Handler (MCH), 412, 

417 
Machine configuration, 517 
Machine-Repair / Multiple-Repairmen 

model,277 
Machine-state predication logic, 531 
Macrodiagnostic, 384 
Macrodiagnostic tests, 432 
Magnetic power switches, 532 
Main Arithmetic Processor (MAP), 

526,530 
Main memory, 441 
Main memory performance in the 

presence of errors, see Errors. 
Main memory registers, 379-381, 

398-402 
Main Storage Unit (MSU), 425, 427 

Maintainability, 516-514 
Mean Time To Repair (MTTR), 16 

Maintenance, 432, see also Ownership. 
preventive, see Availability. 

Maintenance Channel (MCH), 
486,491 493 

Maintenance cost model, 306, 309, see 
also Model. 

Maintenance mode, 400 
Majority logic-decoding, 131 
Malfunction consequences, 596 
Malfunction management, 594 
Malfunction sources, 594 
Manual recovery, 490 
Manual troubleshooting, 432 
Manufacturing and installation, 184 
Manufacturing/Inspection failure, see 

Failure. 
Manufacturing stage, 7 

incoming inspection, 8 
infant mortality period, 8 
process maturity testing, 12 

Margin testing, 432 
Markov model, 208, 246-247, see also 

Model. 
continuous-time, 247 
discrete-time, 247 
dual-processor system, 2~2 
Poisson arrivals in failures, 247 
simultaneous differential equations, 

248 
state, 246 
state transition, 246 
time-invariant, 247-255 
time-varying, 255-259 
trapping state, 247, 251 
Triple Modular Redundancy 

(TMR),262 
time-varying, 263 

Masking 
fault, 113 

Masking logic, see Logic. 
Masking redundancy, see Redundancy. 
Massbus, 362, 367 
Massbus Adapter (MBA), 369, 381, 

387,400 
Massbus adapter registers, 383 
Match circuits, 473 
Match mode, 467, 470 
Matcher, 468 
Material expense, 306 
Matrix algebra, 249 
Maximum Likelihood Estimators 

(MLE), 32, 33, 47, 207 
MB3300 timing board, 289 
Mean Likelihood Estimators (MLE) 

Weibull,53 
Mean Number of Instructions 

Executed (MNIE), 324 
Mean Number of Instructions to 

Restart (MNIR), 269 

Mean Time Between Calls (MTBC), 
393 

Mean Time Between Errors (MTBE), 
18 

Mean Time Between Failures (MTBF), 
205,313 

Mean Time Between Software Errors 
(MTBSE), 207, 208 

Mean Time Between Stops (MTBS), 
433 

Mean Time To Crash (MTTC), 16, 
269,324,359 

Mean Time To Detection (MTTD), 65 
Mean Time To Error (MTTE), 16,324 
Mean Time To Failure (MTTF), 7,10, 

12,16,18,45-46,65,205,286, 
296;464-465 

consumer's risk, 8 
Hamming coded memories, 226 
normalized, 231 
producer's risk, 8 
redundant systems, 205 

Mean Time To Repair (MTTR), 16, 
65,205,313,433 

Mean Time To reStart (MTTS), 269 
Mean Time To System Crash 

(MTTSC), 270 
Mean value, see Value. 
Median clock algorithm, 565 
MECRA,157 

microstore recovery, 165 
Memory 

block-coded, 285 
cache, 589,605 
Hamming code, 285 
MOSRAM,18 
NonExistent (NXM), 112 
Programmable Read Only (PROM), 

570 
Random Access (RAM), 41, 472 
Read Only (ROM), 5, 41, 76, 77, 

463,493,526,530 
Read-Write (RWM), 526, 530 
single-bit and whole-chip models 

Mean Time To Failure (MTTF), 
232 

hazard failure, 232 
support circuitry, 230 

Memory-chip failure modes, 225 
Memory Control Unit (MCU), 632 
Memory failures, 515 
Memory Interface (MI), 387 
Memory module, 592, 605 
Memory pl~ted-wire, 546 
Memory protect, 605 
Memory refresh, 353 
MEMREQUEST,570 
Mental discrimination, 209 
Merging, 556 
Messages, 456 
Microbreakpoints, 372 



Microdiagnostic monitor, 385 
Microdiagnostics, 369, 384,493 
Microprocessor, 441 
Microprogramming, 475, 478 
Microsequencer, 393 
Microsequencer and Control Store 

(MCS),387 
Microstore performance in the 

presence of errors, see Errors. 
Microstore remap, 165 
MIL-HDBK-217 

complexity derating factor, 41 
complexity factor, 37, 76 
environmental factor, 37 
field data, 42 
learning factor, 37 
quality factor, 37 
RAM failures, 42 
temperature factor, 37 

MIL-HDBK-217A,8 
MIL-HDBK-217B, 8, 285, 391, 

709-714 
AUTOF AIL, 49, 712 
complexity factor, 710 
environment factor, 710 
FAIL, 49, 712 
learning factor, 709 
pin multiplier, 710 
quality factor, 709 
screening. 710 
temperature acceleration factor, 710 

MIL-HDBK-217C, 8,715-719 
complexity factor, 715 
device complexity factor, 719 
environment factor, 718 
junction temperature, 717 
learning factors, 716 
package complexity factor, 719 
Programmable Read Only Memory 

(PROM) programming 
technique factor, 718 

quality factors, 716 
temperature acceleration factor, 716 
thermal resistance, 717 
voltage stress factor, 717 

MIL-HDBK-472, 317 
MIL-STD-1553, 598, 605 
MIL-STD-883, 38 
Minimal cut, 221 
Minimal cut lower bound, 224 
Minimal cut set, 222, 235 
Minimal test set, 187 
Minimum distance code, see Code. 
Mirrored pairs, 450 
Mirrored volumes, 451 
Mission Module, 542 
Mission Time (MT), 204, 216, 293 
Mission Time Improvement (MTI), 

206,217,293 
Model 

allocation, 579 

combinatorial, 607, 610, 611 
hierarchy, 578 
Markov, 607-610, 612,614 

Triple Modular Redundancy 
(TMR),612 

operating system, 582 
probability, 607 
program, 582 
refinement, 578 
reliability, 579 

Modeling a Triple Modular 
Redundancy (TMR) system, see 
Redundancy. 

Models, universe of, 15 
Modular design, 345 
Modularity, 501, 513 
Module reliability, see Reliability. 
Module time, 45 
Monte Carlo simulation, 259-262 
Morris Electronic Switching System, 

465 
MOS,41 
MOSRAM, see Memory. 
Motorola MC6800, 9 
M-out-of-N,566 

availability, see Availability. 
code, see Code. 
systems, 215-216 

MSI,38 
MSU,431 
Multiple adjacent unidirectional 

errors, see Error. 
Multiple adjacent unidirectional 

failures, see Failure. 
Multiple faults, see Fault. 
Multiple requests/confirmation, 64 
Multiple transmitter, 376 
Multiprocessor, 453, 499, 633 
Multiprocessor executive, 617 
Multiunit duplex configuration, 464 

NAND,49 
NASA,560 
NASA Langley Research Center, 586, 

598 
National defense system, 307 
National Science Foundation, 586 
National Semiconductor IMP-16 

processor, 6 16 
Native mode, 362 
Near-encounter, 542 
Net present value, 307 
Network Control Center (NCC), 336, 

498 
Network log, 51 7 
Newton-Raphson method, 34 
n,k code, see Code. 
n,k cyclic code, see Code. 
N-modular redundancy, see 

Redundancy. 

INDEX 763 

NMR, 133, 145 
reconfigurable, 145 

NMR/simplex systems, 150, 152 
No.1 processor, 466-470, see also 

Electronic Switching System. 
No. 101 processor, 470, see also 

Electronic Switching System. 
No. lA processor, 332,466,472-474, 

see also Electronic Switching 
System. 

No.2 processor, 470-472, see also 
Electronic Switching System. 

No. 3A processor, 472, 474-476, see 
also Electronic Switching 
System. 

No.4 processor, 332, see also 
Electronic Switching System. 

NonExisting Memory (NXM), 365, 
see also Memory. 

Non-order-preserving switch, see 
Switch. 

Nonoverlapping failure, see Failure. 
Nonredundant components 

effect, 224-234 
Nonredundant memory reliability 

model, see Reliability. 
Nonserial/nonparallel reliability 

model, see Reliability. 
Normal infancy, 12 
Normalized Mean Time To Failure, 

231 
Numerical integration techniques, 256 
N-version programming, 119 

Observability, 192 
Office of Naval Research, 586 
Off-line repair, see Repair. 
Off-set, 79 
Off-the-shelf components, 346 
Omen, 553 
OMNIBUS, 77, 289 
On-board, Survivable, Integrated, 

Redundant Information System 
(OSIRIS), 586 

On-line billing system, 307 
On-line diagnostics, 518 
On-line error detection, 26 
On-line maintenance, 359, 452 
On-line repair, see Repair. 
On-line test system, 414 
On-line transaction processing, 520 
On-set, 79 
Opcode checking, see Checking. 
Operating environment, see 

Environment. 
Operating system, 455,507-512 
Operating system model, see Model. 
Operational life stage, 12 
Operator Awareness, 410 
Optimal odd-weight column codes, see 

Code. 



764 INDEX 

Orbital Astronomical Observatory 
(OAO),212 

Order-preserving switch, see Switch. 
Organization, 590 
Original Equipment Manufacturer 

(OEM),14 
Orthogonal (majority-logic decodable) 

code, see Code. 
Orthogonal Latin square code, 162, see 

also Code. 
Outboard Recording Routine (OBR), 

415 
Overflow checking, see Checking. 
Ownership, 448 

cost of, 14 

Packaging, 71 
Packet bus, 629 
Packet bus confinement area, 632 
Page mode, 398 
Parallel decoding, 123 
Parallel-hybrid redundancy, see 

Redundancy. 
Parity alternatives 

processor-memory bus, 94 
Parity, 376,378,395,402,424, 

426-427,442,469,471,473, 
475,480,506 

AMD,93 
bit-per-byte, 90 
bit-per-word, 89 
buses, 93 
chip, 91 

diagnostic resolution, 91 
chip-wide, 91 
cumulative, 94 
DECSYSTEM 2020, 93 
error log, 378 
interlaced, 91 

whole-chip failures, 91 
PDP-I 1/60, 93 
UNIVAC, 93 

Parity-check code, see Code. 
Parity-check matrix, 87, 123, 178 
Parity code, see Code. 
Parity generation, 87 
Parity of address, 94 
Parity of data, 94 
Parity prediction, 94 
Parity valid bit, 93 
Partial fraction expansion, 250, 252 
Partial space assignment, 297 
Partially Self-Checking (PSC) circuit, 

see Circuit. 
Partitioning, 518 
Password protection 

Pluribus, 113 
Path sensitization, 189 
Payback method, 308 

PDP-IO, 51, 53, 56 
PDP-II, 362, 500, 502 

Single-Error-Detecting/ 
Double-Error-Correcting 
(SEC/DED),128 

PDP-I 1/70, 13, 199 
PDP-8,286 
PDP-8/e, 69, 286 

AUTOFAIL failure rate analysis, 69 
Performability,270 
Performance impact of redundancy, 

see Redundancy. 
Performance measurements 354-360 
Performance-related reliability 

measures, 160 
Performance-reliability, 270 
Periodic model, 271 
Periodic scheduling, 564 
Peripheral systems, 536 
Permanent error, see Error. 
Permanent failure, see Failure. 
Permanent fault, MIL-HDBK-217 

model, 37, see also Fault. 
Permanent Magnet Twister (PMT), 

468 
Phase-locked oscillators, 594 
Phase-locked redundant clock, 619 
Physical defect, 19 
Physical failure, see Failure. 
Physical fault simulation, 465 
Physical malfunctions, 596 
Physical word, 226 
PLA,133 
Pluribus, 335-336, 497-521 

amputation, 506 
application-dependent checking, 511 
ARPAnet, 498 
array processors, 499 
asymmetric system, 499 
buffers, 512 
bus arbiter, 502 
bus coupler, 501, 503, 506 
checksum, 96,513 
common address space, 500 
common memory, 502 
communication page, 510 
configuration map, 509, 511 
consensus mechanism, 510-511 
crossbar switch, 501 
diagnostics, 516 
down-line loading, 518 
field experience, 513 
fix-it, 511 
garbage collection, 512 
graceful degradation, 499 
ILLIAC IV, 500 
Input/Output (I/O) loss, 515 
Interface Message Processor (IMP), 

498,512 
intermittent, 518 

Lockheed SUE minicomputer, 502 
loosely coupled, 499 
machine configuration, 517 
maintainability, 516 
memory failures, 515 
modularity, 501, 513 
multiprocessors, 499 
Network Control Center (NCC), 

498 
network log, 517 
on-line diagnostics, 520 
on-line transaction processing, 520 
operating system, 507 
parity, 506 
partitioning, 518 
password protection, 113 
PDP-II, 500, 502 
processor bus failures, 514 
Pseudo-Interrupt Device (PI D), 503, 

506 
redundancy, 507 
Remote Diagnosis (RD), 517 
reservations systems, 520 
seismic processing, 520 
software 

fault tolerance, 513 
STAGE,508 

hierarchical structure of, 508 
strip, 501, 506 
SUE,502 
symmetry, 499 
throughput capacity, 514 
tightly coupled, 500 
TIP, 498 
traps, 517 
use bit, 512 
watchdog timer, 512 

P.map, 46, 49 
PMT,471 
Poisson distribution, 203, 241 
Polysilicon fuses, 239 
Possible behavior, 578 
Post-encounter, 542 
Postponed maintenance systems, 323 
Power dissipation, 68 
Power failure, 364 
Power-on (PON), 448 
Power supply, 439, 451, 606 
Power supply margining, 432 
Power switching, 526 
PREQUEST, 570 
Preventative Maintenance (PM), 305 
Primary process, 457 
Principal fault-containment region, 

603 
Priority-scheduling strategy, 564 
Private Branch Exchange (PBX), 470 
Privileged user modes, 605 
Probabilistic model, 202-206 
Probabilistic testing, see Test. 



Probability Density Function (PDF), 
see Function. 

Probability Mass Function (PMF), see 
Function. 

Probability models, see Mode/. 
Procedural errors, 463 
Process maturity testing, see 

Manufacturing. 
Process-pairs, 456 
Processes, 455 
Processing module, 561 
Processor, 440 
Processor/bus error table, 575 
Processor bus failures, 514 
Processor-cache memory module, 585 
Processor-cache module, 598, 604 
Processor-cache units, 589 
Processor Configuration (PC) circuit, 

474 
Processor/memory module, 582 
Processor Memory Switch (PMS), 237, 

239,453 
Processor modules, 592 
Processor-pairs, 331 
Processor registers, 397 
Processor synchronization, 564-567 
Product codes, see Code. 
Program behavior, 347 
Program clarity, 209 
Program level, 209 
Program model, see Mode/. 
Program Store (PS), 463, 477 
Program transplant, 431 
Programmable Read Only Memory 

(PROM), see Memory. 
Programmable Read Only Memory 

(PROM) Control Store (CCS), 
393 

Programming effort, 209 
Programming time, 209 
Proof of Correctness, 577-582 
Propulsion Module, 542 
Prototype development, 183 
Proving programs correct, 184 
PSC, 110 
Pseudo-Interrupt Device (PID), 503, 

506 
Pseudo-random number generator, 260 
Pulse-Code Modulated (PCM), 334 
Purchase cost, 306 
Purchase price, 14 
PWRCHK,548 

Q-bus, 347 
Quadded logic, see Logic. 
Quality factors, 48 
Queuing model, 277 

Radial logic, see Logic. 
Radio Frequency Interference (RFI), 14 

Radioisotopic Thermal Generators 
(RTG) 542 

RAMP, see Reliability, Availability, 
and Maintainability Program. 

Random Access Memory (RAM), see 
Memory. 

Random malfunctions, 595 
Random phenomena, 30 
Random variable, 30 
Range check, 112 
Read Data Substitute (RDS), 376, 379 
Read Only Memory (ROM), see 

Memory. 
Read-Write Memory (RWM), see 

Memory. 
Reconfigurable duplication, see 

Duplication. 
Reconfigurable NMR, see NMR. 
Reconfiguration, 140, 160-169,64 
Reconfiguration and repair 

boundaries, 628 
Reconfiguration region, 625 
Recovery, 64, 169-175 
Recovery blocks, 172-173,582 

acceptance tests, 173 
assertion statement, 173 

Recovery Control (REC), 531 
Recovery deficiencies, 463 
Recovery Management, 409 

Program Status Word (PSW), 419 
Recovery Management functions, 420 
Recovery techniques, 487 
Redundancy,6,11,63,507 

checker, 218 
chip yield, 239-246 
component, 63 
dynamic, 140-175,524 

memory reconfiguration, 162 
hybrid,145-149,218,596,597 
masking, 65, 113-140 
N-modular, 114-122 
parallel-hybrid, 587 
performance impact, 281 
self-purging, 150, 161 
sift-out, 160 
static,65, 113 
time, 63, 82 
Triple Modular (TMR), 114-115 

compensating module failures, 221 
modeling a system, 262-263 
optimum placement of voters, 116 
serial systems, 221 
testing of components, 121 
use 

Saturn IB, 117 
Saturn V, 117 

Triple Modular (TMR) hybrid, 161, 
619 

Redundancy dynamic 
advantages, 524 

INDEX 765 

Redundancy to enhance chip yield, see 
Redundancy. 

Reed-Muller expansion, 194,195 
Reed-Solomon cyclic code, see Code. 
Refinement of models, see Mode/. 
Refreshing Main Storage, 410 
Regional Customer Obligation File 

(RCOF),393 
Register Transfer (RT), 5 
Registers 

configuration/ control, 372 
data, 372 
diagnostic/maintenance, 372 
status, 372 

Reintegration, 64 
Reliability, 7, 78 

comparative measures, 206 
dynamic redundancy, 66 
Error-Correcting-Code (ECC) 

memory, 226 
fault avoidance, 66 
fault detection, 66 
hybrid models using measured 

statistics, 269-274 
importance of, 3 
levels of modeling 

component, 202 
gate, 202 
module, 202 
system, 201 

lower bound, 235 
lower bound for system, 297 
masking redundancy, 66 
Mean Time To Failure (MTTF), 16 
module, 214 
nonredundant memory model, 229 
nonseries/nonparallel model, 234 
R(t),7 
Row Failure Mode (RFM) model, 229 
Single-Bit-Failure Mode (SBFM) 

model,227-229 
software, 206-211 

axiomatic model, 209 
data domain models, 208 
time domain models, 207 

software-based, 497 
system, 214 
upper bound for system, 297 
upper bound on memory system, 227 
Whole-Chip-Failure Mode (WCFM) 

model,229 
workload-dependent model, 271 

Reliability analysis, 532 
Reliability Analysis Center (RAC), 19, 

37 
Reliability and cost 

design space, 29'1 
Reliability, Availability, and 

Maintainability Program 
(RAMP), 325,361-404 



766 INDEX 

Reliability, Availability, and 
Serviceability (RAS), 326 

Reliability Block Diagram (RBD), 
234,297 

Reliability calculation aids, 236 
Reliability / cost trade-off, 285 
Reliability curve 

knee,217,296 
Reliability difference, 206 
Reliability Function, 203 

R(t), see Function. 
Reliability gain, 206 
Reliability graphs, 236 
Reliability model, see also Model. 

expanding around a module, 234 
failure to exhaustion, 211 
failure with repair, 211 
fan-in, 221 
fan-out, 221 
fault dominance, 221 
functionally equivalent faults, 221 
hybrid redundancy, 217 
independent cells, 222 
iterative cell switch, 217 
single parameter summary, 216 
success diagram, 234 

Reliability prediction, 567-568 
Reliability techniques spectrum, 66 
RELOAD,359 
Relocate mode, 530 
Remote Diagnosis (RD), 199,367, 

369,517 
Remote Diagnostic Module (RDM), 

387,402 
Remote maintenance, 432 
Repair, 64, 493 

off-line, 64, 140 
on-line, 64, 140 

Repair costs, 3 
Repair rate, 204 
Repair region, 625 
Repair strategy, 199 

replacement, 199 
shot-gun approach, 199 
swap, 199 

Repair time tail, 196 
Reservations systems, 520 
RESET, 359, 527 
Residual failure, see Failure. 
Residue code, see Code. 
Residue-number-system code, see 

Code. 
Resistor-Transistor Logic (RTL), 470 
Resource allocation, 589 
Restart, 64 
RESTART, 359 
Restoring organ, 134, 160 
RETAIN,326 
Retry, 64, 77, 425, 430, 469, 625 
RFLOSS, 550 
RMS, 362 

RMS/65,419 
Roll back, 64, 169-170, 548 

domino effect, 172 
Roll back (recovery) points, 536 
ROLM,436 
ROM, see Memory. 
Rome Air Development Center 

(RADC), 19,38,391 
Roving spares, 473 
Row Failure Mode (RFM) reliability 

model, see Reliability. 
RSX-11M,362 
RT-11,357 
R(t), see Reliability. 
RTL,137 
Ruggedizing, 436 

Safety factor, 579 
Sales forecast, 16 
Sanders Associates, 38 
Sanity timer, 469 
Saturn V launch vehicle computer, 155 
Save storage, 430 
Scan compare, 427, 432 
Scan network, 432 
Scan slew abort, 553 
Scheduler routine, 575 
Scheduling, 563 
Scope,627 
Screening, 71 
Screening test, see Test. 
Script of diagnostics, 369 
Scrubbing, 636 
SEADS, see Statistical Error 

Analysis Data Summary. 
Seismic processing, 520 
Selective Termination, 410 
Self-checking, 475, 631 
Self-checking circuit, see Circuit. 
Self-checking logic, see Logic. 
Self-checking module, 629 
Self-purging redundancy, see 

Redundancy. 
Self-test, 154 
Self-test program, 619 
Self-test subroutines, 548 
Self-testing, see Test. 
Self-Testing and Repairing (STAR) 

computer, 100-101, 117, 121, 
342,523-542 

CARE,535 
check byte, 528 
Code 

residue, 528 
Computer Control Subsystems 

(CCS),537 
Control and Test (CAT), 531 
control error, 528 
control error detection, 529 
Control Processor (COP), 526, 530 

coverage, 524 
diagnostic instruction, 527 
disagree with bus, 529 
dormant spares, 532 
dynamic redundancy, see 

Redundancy. 
error detection, 525 
error recovery, 525 
functional simulator, 536 
hardcore, 524 
Input/Output Interrupt Processor 

(I/O IRP), 530 
Input/Output Processor (lOP), 526 
instruction set, 527 
internal fault message, 529 
Interrupt Processor (IRP), 526 
Jet Propulsion Laboratory (JPL), 

523 
Logic Processor (LOP), 526, 530 
machine-state predication logic, 531 
magnetic power switches, 532 
Main Arithmetic Processor (MAP), 

526,530 
Memory 

Read Only (ROM), 526, see also 
Memory. 

Read-Write (RWM), see 
Memory. 

peripheral systems, 536 
power switching, 526 
Recovery Control (REC), 531 
redundancy 

dynamic, 524 
reliability analysis, 532 
relocate mode, 530 
RESET,527 
residue code, see Code. 
roll back (recovery) points, 536 
Self-Testing Factor (STF), 534 
SHM,537 
software, 535 
standard mode operation, 527 
static (masking) redundancy, see 

Redundancy. 
status messages, 529 
SYNC, 527 
Test and Repair Processor (TARP), 

526,530 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 536 
TOPS,525 c 

Triple Modular Redundancy 
(TMR),524 

2-out-of-4 code, see Code. 
word error, 528 

Self-testing circuit, see Circuit. 
Self-Testing Factor (STF), 534 
Semaphores, 445 
Semi-Markovian model, 210 
Semiconductor chips 

area defects, 241 



line defects, 241 
spot defects, 241 

SEND,445 
Sensitivity analyses, 309 
Separable code, see Code. 
Sequences 

distinguishing, 192 
synchronizing, 192 

Sequence errors, 556 
Sequential circuits as a cascade of 

combinatorial circuits, 191 
Sequential machines 

error-code state assignments, 140 
SEREP, 417 
Serial decoding, 122 
Serial-bus multiprocessor, 586 
Serial Triple Modular Redundancy 

(TMR) systems, see 
Redundancy. 

Series/parallel system modeling, 211 
probability of failure, 212 

Service costs, 16 
SFTMP, 347 
Shadow box, 157 
Shipment rate, 304 
SHM,537 
Shortened code, see Code. 
Shorting, 169 
SIFT, see Software Implemented 

Fault Tolerance. 
SIFT hardware, 568-572 
Sift-out redundancy, see Redundancy. 
SIFT software, see Software. 
Signal Processor (SP), 334 
Signature analysis, 193 
Signetics, 38, 41 
Silo, 376 
Simulation, 187 
Simulator, 577 
Simultaneous differential equations in 

Markov model, 248 
Single-Bit-Failure Mode (SBFM) 

reliability model, see 
Reliability. 

Single-bit and whole-chip memory 
models 

Mean Time To Failure (MTTF), 232 
hazard failure, 232 

Single-bit column failure mode, 225 
Single-bit row failure mode, 225 
Single-Error-Correcting code (SEC), 

see Code. 
Single-Error-Correcting/ 

Double-Error-Detection 
(SEC/DED),442 

Single-precision checksum, see 
Checksum. 

Site preparation, 14 
SIU,431 
Skewing the address mapping, 162 
S.local,49 

Soft errors, 11 
Soft faults, see Fault. 
Software 

debugging, 207 
execution failure, 208 
fault protection, 546-554 
fault tolerance, 513 
SIFT,570,572-577 
STAR,535 

Software-based reliability, see 
Reliability. 

Software deficiencies, 462 
Software failure rate, 210 
Software Implemented Fault 

Tolerance (SIFT), 119, 152, 
160,342,559-584 

Aircraft Energy Efficiency (ACE E) 
program, 560 

allocation model, see Model. 
axioms, 580 
BDmicroX, 568 
Bendix Corporation, 561, 568 
buffer interface routine, 575 
buffers, 573 
BUSDA T A, 570 
BUSREQUEST, 570 
DATAREADY, 570 
damage isolation, 562 
deadline scheduling, 564 
error-handling routine, 575 
Failure Modes and Effects Analysis 

(FMEA),561 
failure rates, 567 
fault detection, 576 
fault injection, 577 
fault isolation, 562 
fault masking, 563 
fixed preplan ned scheduling, 564 
formal specifications, 582 
global executive, 572-575 
Hierarchical Design Methodology, 

560 
hierarchy of models, see Model. 
interactive consistency vector, 566 
iteration rate, 564 
local executive, 573, 575 
local-global communicating tasks, 

573 
loose synchronization, 562 
M-out-of-N, 566 
median clock algorithm, 565 
MEMREQUEST, 570 
NASA,560 
operating system model, see Model. 
periodic scheduling, 564 
possible behavior, 578 
PREQUEST,570 
priority-scheduling strategy, 564 
processing module, 561 
processor synchronization, 564 
processor /bus error table, 575 

INDEX 767 

processor / memory module, 582 
program model, see Model. 
Programmable Read Only Memory 

(PROM), see Memory. 
Proof of Correctness, 577 
recovery blocks, 582 
refinement of models, see Model. 
reliability model, see Model. 
reliability prediction, 567 
safety factor, 579 
scheduler routine, 575 
scheduling, 563 
simulator, 577 
SPECIAL language, 572, 583 
time frame, 564 
transition relation, 578 
transition, 578 
voter routine, 576 

Software MTBS (MTBSS), 433 
Software-related errors, see Errors. 
Software reliability, see Reliability. 
Software science, 209 
Software transparency, 345 
Space shuttle computer, 152 
Spacecraft safing, 543 
Spacecraft subsystems, 337, 340 

attitude control, 337 
command/control/payload,337 
data communications, 337 
downlink,337 
power, 337 
propulsion, 337 
uplink, 337 

Spacecraft systems, 337-342 
cross-checking between units, 338 
hold mode, 338 
self-tests, 338 
trend analysis, 338 

Spanning tree, 236 
SPECIAL language, 572, 583 
Specification errors, see Error. 
Sperry Univac, see Univac. 
S-shaped curve, 217 
SSI,38 . 
Stack top pointer, 444 
STAGE,508 

hierarchical structure of, 508 
Standard deviation, 31 
Standard mode operation, 527 
Standby sparing/ graceful degradation, 

625 
Standby sparing system, 212 

Mean Time To Failure (MTTF), 214 
Mission Time Improvement (MTI), 

214 
STAR, see Self Testing and Repairing 

Computer. 
STAR Computer Assembly Program 

(SCAP),535 
Static (masking) redundancy, see 

Redundancy. 



768 INDEX 

Statistical Data Recorder / 
Channel-Check Recorder 
(SDR/CCR),413 

Statistical Error Analysis Data 
Summary (SEADS), 51 

Statistical independence, 203 
Status messages, 529 
Steady-state probability, 251 
Steady-state system availability: 

queuing theory applications, 
277-281 

Steady-state· term, 250 
Stimulus/response, 186 
Stimulus/response testing, see Test. 
Storage Interface Unit (SIU), 425 
STRETCH, 129 
Stress testing, 72 
Stress tests, see Test. 
Strip, 501, 506 
Structural fault, see Fault. 
Stuck-at-faults, 105 
Subsystem interconnection for 

diagnosis, see Diagnosis. 
Subsystem malfunctions, 596 
Success diagram, 234, 296 
Success diagram in reliability 

modeling, see Reliability. 
SUE,502 
Support circuitry in memory, see 

Memory. 
Support processor, 329 
Survival probability, 611 
SVC, 414 
Swapped 

board,12 
Switch 

detection elements and control 
circuitry (SDC), 154 

iterative cell, 149, 155 
non-order-preserving, 155 
order-preserving, 155 
total assignment, 148 

Switch complexity, 148 
Symbolic reliability modeling, 237 
Symmetrics, 238 
Symmetry, 499 
SYNC, 527 
Synchronization, 119, 143, 593 

program task level, 144 
tight, 593 

Synchronizing sequence, see Sequence. 
Synchronizing voter, see Voter. 
Synchronous Backplane Interconnect 

(SBI), 366, 370, 376 
Synchronous Backplane Interconnect 

(SBI) Fault Status, 379 
Synchronous Data Link Control 

(SDLC),103 
Syndrome, 124-126, 177 
SYSl.LOGREC, 413, 416, 418-419 
SYSGEN, 414, 417, 419 

SYSRES, 416 
System availability models, 275 
System clock, 353-354 
System control panel, 491 
System downtime, 462 
System Environment Recording, 413, 

418 
System Environment Recording, 

Editing, and Printing (SEREP), 
413,419 

System exercising, 597 
System Interrupt Vector (SIV), 444 
System life 

design errors, 6 
environmental factors, 6 
error-detection techniques, 6 
redundancy, 6 
stages in, 5 

field operation, 6 
installation, 6 
logic design, 5 
manufacturing, 6 
prototype debugging, 5 
specification of input/ output 

relationships, 5 
System malfunctions, 596 
System objectives, 622, 627 
System packing, 439 
System recovery, 411 
System reliability, see Reliability. 
System repair, 411 
System Restart, 418 
System Support Processor (SSP), 329, 

425 
System-supported restart, 411, 418 
System/360, 326 
System/360-System/370, 409-421 

ABENDS,415 
Alternate Path Retry (ARP), 

415-416 
Channel-Check Handler (CCH), 

412,414 
Checkpoint / Restart, 418 
Dynamic Device Reconfiguration 

(DDR),415-416 
Dynamic Loading, 414 
Environment Record Editing and 

Printing (EREP), 413 
Error-Correcting-Code (ECC), 417 
Error Recovery Procedure (ERPS), 

413,414,415 
functional recovery, 411 
Initial Program Load (IPL), 411, 

418 
Input/Output 

recovery, 410 
retry, 410 
supervisor, 414 

Input/Output Recovery 
Management Support (I/O 
RMS), 412, 415 

Instruction Retry, 410 
Machine-Check Handler (MCH), 

412,417 
On-line test system, 414 
Operator Awareness, 410 
Outboard Recording Routine 

(OBR),415 
Recovery Management, 409 
Refreshing Main Storage, 410 
RMS/65, 419 
Selective Termination, 410 
Statistical Data 

Recorder /Channel-Check 
Recorder (SDR/CCR), 413 

SVC, 414 
SYSl.LOGREC, 413, 416, 418, 419 
SYSGEN, 414, 417, 419 
SYSRES, 416 
System Environment Recording, 

413,418 
System Environment Recording, 

Editing, and Printing (SEREP), 
413 

system recovery, 411 
system repair, 411 
System Restart, 418 
system-supported restart, 411, 418 
VARY PATH, 416 
WTO, 415 

System/370, 326 

Tandem, 435-460 
application process interface, 459 
back up process, 457 
buffer stress, 450 
Bus Receive Table (BRT), 444, 445 
cache, 444 
checkpoints, 457 
checkpoint techniques, 172 
communications protocol, 456 
control buffer, 450 
DC power distribution system, 438 
design goals, 454 
disk controller, 450 
DMA,447 
dual-port controllers, 447 
dual-ported Input/Output (I/O) 

controllers, 438 
Dynabus, 439,440, 441,444 
fire code, 451 
Guardian, 454, 458, 460 
I'm alive message, 459 
initialization, 459 
Input/Output Channel, 447 
Input/Output Control (IOC), 444 
Input/Output Control (lOC) table, 

447 
Input/Output (I/O) system, 447 
LINK,456 
local variable, 444 



Logical Device Table (LDT), 457 
LRC, 446 
main memory, 441 
messages, 456 
microprocessor, 441 
mirrored pairs, 450 
mirrored volumes, 451 
multiprocessor, 453 
on-line maintenance, 452 
operating system, 455 
ownershi p, 448 
parity, 442 
Power on (PON), 448 
power supply, 439, 451 
primary process, 457 
processes, 455 
processor, 440 
Processor Memory Switch (PMS), 

453 
process-pairs, 456 
ROLM,436 
ruggedizing, 436 
semaphores, 455 
SEND,445 
Single-Error-Correcting/ 

Dou ble-Error-Detection 
(SEC/DED),442 

stack top pointer, 444 
System Interrupt Vector (SlY), 444 
system packing, 439 
T/TAL,444 
watchdog timer, 456, 460 

Tandem and Turn Support Routine 
(TRNSUP), 553, 554 

Tandem Computers, Inc., 4, 84, 300, 
330, 435-460. 

Tandem events, 554 
Tandem 16 architecture, 438 
Tandem 16 NonStop, 435 
TARP, see Test and Repair Processors. 
Taxonomy of system-failure response 

strategies, 65 
TCM burn abort, 554 
TCM turn complete, 554 
TDT(N) network, 167 
Telettra, 199 
Temperature translation, 37 
Test 

Acceptable Quality Level (AQL), 73 
acceptance, 184, 185 
compact, 186 

signature analysis, 187 
DC parametric, 73 
design for, 191 
Design Maturity (DMT), 184 
electrical parametric, 185 
exclusive OR, 186 
exhaustive, 186 
functional, 185, 190 
goodness-of-fit, 35 
probabilistic, 186 

screening 
electrical, 26 
environmental, 26 
mechanical, 26 

self-, 191 
stimulus/response, 183 
stress, 185 

burn in, 185 
over-voltage, 185 
thermal shock, 185 

Test and Repair Processor (T ARP), 
117,152,157,526,530 

Test mode, 193 
Test point, 192, 703 
Testability 

additional inputs to improve, 698 
additional outputs to produce 

distinguishing sequences, 697 
asynchronous circuits, 706 
characterizing set, 697 
checking experiment, 696 
combinatorial circuits, 688 
compatible, 693 
control logic 

use of, 692 
controllability, 692 
counter cycle, 698 
C-testable, 703 
diagnostic shift register, 702 
distinguishing sequence, 696 
incompatible, 693, 695 
initialization of sequential circuits, 

706 
iterative array, 702 
locating sequences, 697 
minimally tested logic networks, 694 
prime implicant, 691 
prime tree, 691 
Reed-Muller expansion, 688, 690 
restricted tree, 691 
ring-sum expansion, 689 
sequence rotation, 694 
sequential circuits, 696 
shift register modifications for 

synchronous circuits, 700 
synchronizing sequence, 697, 706 
test set, 689 
three-level OR-AND-OR, 691 
unate function, 691 

Testable logic design, 687 
Testing 

Design Maturity (DMT), see 
Manufacturing Stage. 

Testing graph, 698 
Texas Instrument's Advanced 

Scientific Computer (ASC), 69 
Texas Instrument's Class C 

qualification process, 72 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 536, 542 
Third-party service, 303 

INDEX 769 

Threshold,53 
Threshold detector, 149 
Threshold gates, see Gate. 
Threshold voter, see Voter. 
Throughput capacity, 514 
Tightly coupled, 500 
Tight Synchronization, see 

Synchronization. 
Time frame, 564 
Time-invariant Markov model, see 

Markov model. 
Time Multiplexed Switch (TMS), 334 
Time out, 469, 488, 631 
Time redundancy, see Redundancy. 
Time Slot Interchange (TSI), 334 
Time-To-Repair (TTR), 196 
Time-varying Markov model, see 

Markov model. 
Timeouts, I 10-112 

UNIBUS, 112 
Timer, 487 

bus arbiter, 111 
TIP, 498 
Tolerance renewal mechanism, 597 
TOPS, 53, 56, 525 
Totally Self-Checking (TSC) circuit, 

see Circuit. 
Trace bit, 364 
Trade-off analysis in system design, 

285 
Trade-off between detection and 

correction capability, see 
Capability. 

Training costs, 306 
Transient, 51 
Transient error, see Error. 
Transient failure, see Failure. 
Transient fault, see Fault. 
Transient term, 250 
Transistor array, 76 
Transition, 578 
Transition probabilities matrix, 210 
Transition relation, 578 
Translation Buffer (TB), 370, 378, 397 
Trap, 363, 517 
Trapping state in Markov model, see 

Markov model. 
Trend analysis, 198 
Triads, 588, 590 

FTMP, 152 
Triple Modular Redundancy (TMR), 

140,148,157,179,215,218, 
286, 524, 598, see also 
Redundancy. 

failure process renewals, 265 
Markov model, see Markov model. 
Mean Time To Failure (MTTF), 216 
Mission Time Improvement (MTI) 

comparision of models, 263 
Mission Time Improvement (MTI) 

with failure process renewals, 267 



770 INDEX 

Triple Modular Redundancy (TMR) 
availability, see Availability. 

Triple Modular Redundancy (TMR) 
hybrid, 587, see also 
Redundancy. 

Triple Modular Redundancy 
(TMR)/simplex systems, 150 

Triple Modular Redundancy (TMR) 
time-varying Markov model, see 
Markov model. 

TRNSUP,554 
Trouble Locating Manual (TLM), 466 
TSC, 105, 107, 108 
TSC comparator, 106 
T/TAL,444 
TTL logic open-collector gates, see 

Gate. 
TU 58, 395 
2 x 2 crossbar switching cells, 166 
2-out-of-4 code, see Code. 

UDET 7116,142 
Uncorrectable-Error /Information 

Lost, 398 
Underflow checking, see Checking. 
Unexpected-Read Response, 376 
Unibus, 362, 367 
Unibus Adapter (UBA), 369, 379, 382, 

387,393,400 
Unidirectional errors, 479, see also 

Error. 
Unidirectional faults, 85, 87 
Unidirectional voter, 348 
Uninterruptible Power Supply (UPS), 

14 
Unit Under Test (UUT), 185 
Univac 1100 

bad disk block mapping, 159 
Univac 1100/40,424 
Univac 1100/60,326,423-433 

automatic error log, 432 
Availability, Reliability and 

Maintainability (ARM), 423 
cache, 425 
cache disability, 159 
diagnostic programs, 428 
duplication, 427 
ECL,425 
Error-Correcting-Code (ECC), 428 
error recovery, 429 
failures in the microstore, 163 
fault detection, 427 
fault injection, 431 
fault isolation, 428 
hardware MTBS (MTBSH), 433 
Input/Output Unit (IOU), 426 
Instruction Processor (IP), 425 
Interface Processor (lP), 427 
logic analyzer, 432 
macrodiagnostic tests, 432 

macroinstructions 
retry, 170 

Main Storage Unit (MSU), 426, 428 
maintenance, 432 
manual troubleshooting, 432 
margin testing, 432 
Mean Time Between Stops (MTBS), 

433 
Mean Time To Repair (MTTR), 433 
microstore inversion, 165 
parity, 424, 427, 428 
power supply margining, 432 
program transplant, 431 
remote maintenance, 432 
retry, 425, 431 
save storage, 430 
scan compare, 428, 432 
scan network, 432 
software MTBS (MTBSS), 433 
Storage Interface Unit (SIU), 426 
System Support Processor (SSP), 

426,431 
transient pause, 165 
VLSI chips, 424 

Univac 1100/80,424 
Univac 1108,424 
Universe of models, see Models. 
Update and Match unit (UPM), 143 
Uplink, 542, 550 
Uplink table, 551 
Upper bound on memory system 

reliability, see Reliability. 
Use bit, 512 
User Environment Test Package 

(UETP),386 
User-Mode Diagnosis, 369,404 
User-mode microdiagnostics, 402 

Value 
expected, 30 
mean, 30 

Variable cost, 309 
Variance, 203 
Variance of 2/x, 30 
VARY PATH, 416 
VAX-II, 361 

access mode 
Executive, 364 
Kernel, 364 
Supervisor,364 
User, 364 

Address Translation Buffer (A TB), 
369 

Backplane Interconnect, 369 
breakpoint instruction, 364 
cache, 369 
compatibility mode, 362 
Console Subsystem, 367 
console terminal, 366 
Error-Correcting-Code (ECC), 369 
error log, 369 

exception vectors, 363 
faults, 362 
Floating Point Accelerator (FPA), 

367 
functional level test, 369 
illegal operations, 363 
Instruction Buffer (lB), 367 
interrupt vectors, 363 
machine check, 364 
Massbus Adapter (MBA), 369 
native mode, 362 
NonExistent Memory (NXM), 365 
power failure, 364 
Reliability, Availability, and 

Maintainability Program 
(RAMP), 361--404 

Remote Diagnosis (RD), 367, 369 
Synchronous Backplane 

Interconnect (SBI), 365 
trace bit, 364 
trap, 363 
Unibus Adapter (UBA), 369 
User-Mode Diagnosis, 369 
Virtual Memory System (VMS), 

362,404 
Writable Control Store (WCS), 367 

VAX-Ilj750, 194,325,329,361 
board swap,404 
cache, 398 
cache disability, 159 
chip-level repair, 397,401 
chip socket, 401 
Comet Memory Interconnect 

(CMI), 387, 397 
Data Path Module (DPM), 387, 393 
diagnostic check mode, 398 
Direct Memory Access (DMA), 387 
error-disable mode, 398 
failure rates, 393 
Field Replaceable Unit (FRU), 401 
Floating Point Accelerator (FPA), 

391 
Force Miss, 398 
gate arrays, 387 
gate array failure rate, 391 
Hex board, 387 
implementation, 386 
Inhibit Reporting Correctable 

Errors, 398 
junction temperature of gate array 

transistors, 393 
Lost Error, 397 
Machine Check, 397 
main memory registers, 398 
maintenance mode, 400 
Massbus Adapter (MBA), 387,400 
Memory Interface (MI), 387, 393 
microsequencer, 393 
Microsequencer and Control Store 

(MCS),387 
page mode, 398 



parity, 394,401 
processor registers, 397 
Progammable Read Only Memory 

(PROM) Control Store (CCS), 
393 

Remote Diagnostic Module (RDM), 
387,401 

TU 58, 395 
Translation Buffer (TB), 397 
Uncorrectable-Error /Information 

Lost, 398 
Unibus Adapter (UBA), 387, 393, 

400 
user-mode diagnostics, 401 
user-mode microdiagnostics, 401 
Visibility Bus (V-Bus), 394 
Visibility Bus (V-Bus) socket, 397 
Writable Control Store (WCS), 387 

VAX-ll/750 implementation, 386, 
395 

VAX-II /780,69, 194, 325, 361 
pad disk block mapping, 159 
cache, 370,376 
cache disability, 159 
console subsystem, 370,381 
Corrected Read Data (CRD), 376 
CRC instruction, 104 
Diagnostic Control Register, 381 
Diagnostic Supervisor, 385 
error log, 378, 386 
Error-Correcting-Code (ECC), 379 
Error-First-Pass, 376, 379 
Error Status Register, 377 
Floating Point Accelerator (FPA), 

372 
High-Error-Rate, 379 
instruction 

Move From Processor Register 
(MFPR),372 

Move To Processor Register 
(MTPR),372 

Internal Data (lD), 370 
Internal Data (lD) bus registers, 377 
internal processor register, 372 
macrodiagnostic,384 
main memory registers, 379 
Massbus Adapter (MBA), 381 
microbreakpoints, 372 
microdiagnostics, 384 
Multiple Transmitter, 376 
parity, 376, 378 
Read Data Substitute (RDS), 376, 

379 
registers 

configuration/ control, 372 
data, 372 
diagnostic/maintenance, 372 
status, 372 

Silo, 376 
Synchronous Backplane 

Interconnect (SBI), 370, 376 

Synchronous Backplane 
Interconnect (SBI) Fault Status, 
379 

Translation Buffer (TB), 370, 378 
Unexpected-Read Response, 376 
Unibus Adapter (UBA), 379 
User Environment Test Package 

(UETP),386 
Visibility Bus (V-Bus), 370, 381 
watchdog timer, 111 
Writable Control Store (WCS), 372, 

376 
VAX-II /780 implementation, 

370-386 
Verification, 198 
Vertical parity bit, 226 
Virtual Memory Storage (VMS), 362, 

404 
Visibility Bus (V-Bus), 194, 198,370, 

381,394 
Visibility Bus (V-Bus) socket, 397 
Visual inspection, 72 
VLSI chips, 424 
Voiceband Interface Frame (VIF), 334 
Voltage margining, 472 
Voter routine, 576 
Voter, switch, and disagreement 

detector (VSD), 147 
synchronizing, 119 
threshold, 149 

Voter synchronizing, 289 
Voting, 346 

adaptive, 145, 149-154 
sensors, 121 

Voting mode, 348 
Voyager, 338, 340, 342,541-557 

AACS Power Code Processing 
(AACSIN), 552 

Attitude and Articulation Control 
Subsystem (AACS), 544 

bad/no echo response, 554 
celestial reference loss/acquisition, 

553 
CMDLOSS,551 
Command Computer Subsytem 

(CCS),546 
command parity error, 554 
command sequence error, 554 
cruise science, 542 
design validation, 554 
downlink, 550 
downlink table, 551 
environmental factors, 556 
equipotential spacecraft, 542 
error, 548 
Failure Mode, Effects, and 

Criticality Analysis (FMECA), 
542 

far-encounter, 542 
fault protection software, see 

Software. 

INDEX 771 

fault tolerance, 544 
heartbeat, 553 
High-Gain Antenna (HGA), 542 
infant mortality, 544 
Infrared Interferometer 

Spectrometer and Radiometer 
Subsystems (IRIS), 552 

key fault indicators, 554 
memory plated-wire, 546 
merging, 556 
Mission Module, 542 
near-encounter, 542 
Omen, 553 
post-encounter, 542 
roll back, 548 
Propulsion Module, 542 
PWRCHK,548 
Radioisotopic Thermal Generators 

(RTG) 542 
RFLOSS,550 
scan slew abort, 553.". 
self-test subroutines, 548 
sequence errors, 556 
software 

fault protection, 545 
spacecraft safing, 543 
STAR, 542 
Tandem and Turn Support Routine 

(TRNSUP), 553, 554 
Tandem events, 554 
TCM burn abort, 554 
TCM turn complete, 554 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 542 
TRNSUP,554 
uplink table, 551 
uplink, 542, 550 

VSD,148 

WAIT instruction, 350 
Warranty period, 73 
Wa,tchdog timer, 110-12, 142,445, 

460,512 
ARPANET, III 
Pluribus, III 
VAX-ll/780,111 

Wei bull distribution, 31, 53 
cumulative distribution function, 31 
graphical linear regression analysis, 

34 
hazard function, 31 
Maximum Likelihood Estimators 

(MLE),34 
mean deviation, 32 
probability density function, 31 
reliability function, 31 
scale parameter, 31 
standard deviation, 32 

Weibull function, 204 
Weibull hazard function, 202 



772 INDEX 

Weighted sum, 150 
Whole-Chip Failure Mode (WCFM), 

225 
Whole-Chip Failure Mode (WCFM) 

reliability model, see 
Reliability. 

Word error, 528 
Workload dependence, 11 
Workload-dependent reliability model, 

see Reliability. 
Writable Control Store (WCS), 367, 

372,377,387 
WTO,415 

Xerox Alto, 96 
Bravo editor, 174 

XOR,89 
modulo-2 addition, 89 

Yield, 244 

Z8080,568 








