


The Theory 
and Practice 
of Reliable 
System Design 

DANIEL P. SIEWIOREK 

ROBERT S. SWARZ 

DIGITAL PRESS 



Copyright 1982 by Digital Equipment Corporation. 

All rights reserved. Reproduction of this book, in part or in whole, is strictly prohibited. For copy infor­
mation write Digital Press, Educational Services, Digital Equipment Corporation, Bedford, Massachu­
setts 01730. 

Printed in U.S.A. 
10 9 8 7 6 5 4 3 2 

Documentation number EY-AXO 16-DP 
ISBN 0-932376-13-4 

Library of Congress Cataloging in Publication Data 

Siewiorek, Daniel P. 
The theory and practice of reliable system design. 

Bibliography: p. 
Includes index. 
I. Electronic digital computers-Reliability. 

2. Fault-tolerant computing. I. Swarz, Robert. 
II. Title. 
QA 76.5.S538 001.64 
ISBN 0-932376-13-4 

Trademarks appear on p. 749. 

CREDITS 

Figures 5-12, 5-13, 5-14, 5-15 

81-9696 
AACR2 

Jacob A. Abraham and Daniel P. Siewiorek, "An Algorithm for the Accurate Reliability Evaluation of 
Triple Modular Redundancy Networks," IEEE TRANSACTIONS ON COMPUTERS (July 1974). 
Copyright @ 1974 I EEE. Reprinted by permission. 

Figure 3-68 

D.G. Armstrong, "A General Method of Applying Error Correction to Synchronous Digital Systems," 
THE BELL SYSTEM TECHNICAL JOURNAL, vol. 40, p. 580. Copyright © 1961, American Tele­
phone and Telegraph Company. Reprinted by permission. 

Credits are continued on p. 751 and are considered part of the copyright page. 



To Karon and Lonnie 





Contents 

Preface XXI 

PART I THE THEORY OF RELIABLE SYSTEM DESIGN 1 

1 Fundamental Concepts 3 

The Importance of Reliability 3 
Levels in a Digital System 4 
Stages in System Life 5 
Attributes of Fault-Tolerant Computing and Their Definitions 6 

Availability 7 
Reliability 7 

The Manufacturing Stage 7 
Design Maturity Testing 7 
Incoming Inspection 8 
Process Maturity Testing 11 

The Operational Life Stage 12 
Cost of Ownership 14 
Universe of Models 15 
The Designable Parameters 16 
References 16 

2 Faults and Their Manifestations 17 

Introduction 17 
Fault Manifestations 19 

Physical Defects 19 
Logic-Level Fault Classes 26 
System-Level Abstractions 26 

Fault Distributions 30 
Probability Review 30 

Matching Sampled Data to Math Distributions 33 
Maximum Likelihood Estimators 33 
Maximum Likelihood Estimation of Weibull Parameters 34 
Linear Regression Analysis 34 
Confidence Intervals 34 
Goodness-of-Fit Tests 35 

Distributions for Permanent Faults: The MIL-HDBK-217 Model 37 
Life-Cycle Testing and Field Data 37 
Analysis of Permanent Failure Data: Estimating the Distribution and 

Its Parameters 44 
Automated Failure Rate Calculation 49 

vii 



viii CONTENTS 

Distributions for Transients and System Errors 51 
Data Collection 5 J 
Graphical Data Analysis 53 
Confidence Intervals for the Parameters 56 
Goodness-of-Fit Tests 56 

Summary 57 
References 61 
Problems 61 

3 Reliability and Availability Techniques Steven A. Elkind 63 
Fault-Avoidance Techniques 67 

Environmental Changes 68 
Quality Changes 71 
Component Integration Level 75. 

Fault-Detection Techniques 77 
Duplication 79 
Error-Detection Codes 84 
Self-Checking, Fault-Secure, and Fail-Safe Logic 104 
Watchdog Timers and Timeouts 110 
Consistency and Capability Checking 112 

Masking Redundancy 113 
N-Modular Redundancy with Voting 114 
Error-Correcting Codes 122 
Masking Logic 133 

Dynamic Redundancy 140 
Reconfigurable Duplication J 41 
Reconfigurable NMR 145 
Backup Sparing 154 
Graceful Degradation 158 
Reconfiguration 160 
Recovery 169 

Summary 175 
References 175 
Problems 176 

4 Maintainability and Testing Techniques 183 

Production 184 
Parametric Testing 185 
Acceptance Testing 185 
Designfor Testability 191 

Field Operation 196 
References 200 
Problems 200 

5 Evaluation Criteria Stephen McConnel and Daniel P. Siewiorek 201 

Survey of Evaluation Criteria 202 
Hardware Evaluation 202 
Software Evaluation 206 



Modeling Techniques 211 
Combinatorial Modeling 211 
Markov Models 246 
System Availability Models 275 
Modeling Performance Impact of Redundancy 281 

Trade-Off Analysis in System Design 285 
Design Example: The PDP-8/e 286 
Analyses of the Example 291 

Summary 296 
References 296 
Problems 297 

6 Financial Considerations 303 

Introduction and Fundamental Concepts 303 
Definitions 303 
Sources of Maintenance Costs 304 
Cost of Customer Ownership 306 

Field Service Overview and Cost Models 308 
Maintenance Cost Models 309 
Life-Cycle Cost ( LCC) Models 311 
LCC Model with Generalized Data Elements 314 

Conclusions 317 
References 320 
Problems 321 

PART II THE PRACTICE OF RELIABLE SYSTEM DESIGN 323 

C.vmp 325 
Commercial Computers 325 

DEC 325 
IBM 326 
UNIVAC 326 

High-Availability Systems 330 
Tandem 330 
ESS Processors 332 
Pluribus 335 

Spacecraft and Avionic Systems 337 
FTMPandSIFT 342 

References 344 

7 C. vmp: A Voted Multiprocessor Daniel P. Siewiorek, Vittal Kini, 
Henry Mashburn, Stephen McConnel, and Michael Tsao 345 

Design Goals 345 
System Architecture 346 

Actual System Configuration 346 
Voter Modes of Operation 348 
Peripheral Devices 350 

CONTENTS ix 



x CONTENTS 

Issues of Processor Synchronization 350 
Dynamic Voting Control 350 
Bus Control Signal Synchronization 351 
System Clock 353 

Performance Measurements 354 
Processor Execution/Memory Fetch Time 354 
Disk Access Time 355 

Operational Experiences 357 
Operating History 357 
C. vmp System Reliability 357 
On-Line Maintenance 359 

References 360 

8 RAMP in the VAX Family: VAX-11/780 and VAX-11/750 361 

The VAX Architecture 361 
Archetypical VAX-II Implementation 367 
The VAX-II /780 Implementation 370 

Internal Processor Registers 372 
I D Bus Registers 377 
Main Memory Registers 379 
Console Subsystem 381 
Micro- and Macrodiagnostics 384 

The VAX-II /750 Implementation 386 
Design Evolution 386 
RAMP Features 395 
Processor Registers 397 
Main Memory Registers 398 
Diagnostics and Repair 402 

Summary 404 
References 404 

9 Recovery through Programming System/360-System 370 
Donald L. Droulette 409 

Introduction 409 
The Recovery Management Objective 410 

Functional Recovery 411 
System Recovery 411 
System-Supported Restart 411 
System Repair 411 

User Personnel Involvement 411 
Summary Description of Facilities 412 
I/O Device/Unit Recovery Facilities 413 

IBM Standard Error Recovery Procedures 413 
Optional User- Written Routines 413 
On-Line Test System 414 



Channel-Check Handler (CCH) 414 
I/O Recovery Management Support 415 

APR 415 
DDR 416 

CPU/Processor Storage Recovery Facilities 417 
Machine-Check Handler (MCH) 417 
System Environment Recording (SERO and SER1) 418 

System Associated Recovery Facilities 418 
System Restart 418 
Checkpoint/Restart 418 

Error Record Retrieval Facilities 418 
Environment Record Editing and Printing Utility 419 
System Environment Recording, Editing and Printing Program 419 

RMS/65 Relationship to the Operating System 419 
System/370 Considerations 419 
Conclusion 421 
Reference Materials 421 

10 Availability, Reliability, and Maintainability Aspects of the SPERRY 
UNIVAC 1100/60 L. A. Boone, H. L. Liebergot, and R. M. Sedmak 423 

Abstract 423 
Introduction 423 
ARM Philosophy for 1100/60 424 

ARM in Previous SPERRY UNIVAC 1100 Series Systems 424 
ARM in the 1100/60-General Approach 424 

Detailed ARM Implementation 425 
System Characteristics 425 
Fault Detection 427 
Error Correction 428 
Fault Isolation 428 
Error Recovery 429 
Fault Injection 431 
Maintenance 432 

ARM Evaluation 432 
Summary 433 
References 433 

11 A Fault-Tolerant Computing System James A. Katzman 435 

Abstract 435 
Introduction 435 
System Organization 438 

System Packaging 439 
Interconnections 440 

Processor Module Organization 440 
The CPU 441 

CONTENTS xi 



xii CONTENTS 

Main Memory 441 
The Dynabus 444 
The Input/Output Channel 447 

I/O System Organization 447 
Dual-Port Controllers 447 
Controller Buffer Considerations 450 
Disc Controller Considerations 450 
NonStop I/O System Considerations 451 

Power, Packaging, On-Line Maintenance 451 
Further Packaging and On-Line Maintenance Considerations 452 

Summary 452 

A "NonStop" Operating System Joel F. Bartlett 453 

Abstract 453 
Background 453 

System Overview 453 
System Design Goals 454 

Integrated Hardware/Software Design 454 
Operating System Design Goals 454 

Operating System Structure 455 
Processes 455 
Messages 456 
Process-Pairs 456 
System Processes 458 
Application Process Interface 459 
Initialization and Processor Reload 459 
Operating System Error Detection 459 

Acknowledgments 460 
References 460 

12 Fault-Tolerant Design of Local ESS Processors W N. Toy 461 

Abstract 461 
Introduction 461 
Allocation and Causes of System Downtime 462 

Hardware Reliability 462 
Software Deficiencies 462 
Recovery Deficiencies 463 
Procedural Errors 463 

Duplex Architecture 463 
Fault Simulation Techniques 465 
First Generation ESS Processors 466 

No.1 ESS Processor 466 
Operational Results of No.1 ESS 469 
No.2 ESS Processor 470 

Second Generation of ESS Processors 472 
No.1 A Processor 472 



No. 3A Processor 474 
Maintenance Design of No. 3A Processor 476 

General Systems Description 476 
General Processor Description 477 
Detection Techniques 478 
Recovery Techniques 487 
Diagnostic Hardware 491 
Repair 493 
Hardware Implementation 494 

Summary 495 
Acknowledgment 496 
References 496 

13 Pluribus-An Operational Fault-Tolerant Multiprocessor David Katsuki, 
Eric S. E/sam, William F. Mann, Eric S. Roberts, John C. Robinson, 
F. Stanley Skowronski, and Eric W Wolf 497 

Abstract 497 
Introduction 497 
Pluribus System Architecture 499 

Major Design Decisions 499 
System Overview 500 
Physical System Structure 502 
Redundancy 507 

The Pluribus Operating System 507 
General Responsibility of the Operating System 508 
Hierarchical Structure of the STAGE System 508 
Establishing Communication 509 
The Consensus Mechanism 510 
Application-Dependent Checking 511 

An Example of Application Reliability 512 
Advantages of the Pluribus Approach to Fault-Tolerance 513 
Recent Field Experience 513 
Pluribus System Maintainability 516 

Reporting Facilities 517 
Remote Diagnosis and Repair 517 
Partitioning 518 
Reloading and Down-Line Loading 518 
Maintenance Experience 518 

Other Applications and Extensions 519 
Message Systems 519 
Real-Time Signal Processing 520 
General-Purpose Timesharing Sytems 520 
Reservation Systems 520 
Process Control 520 

Acknowledgment 521 
References 521 

CONTENTS xiii 



xiv CONTENTS 

14 The STAR (Self-Testing And Repairing) Computer: An Investigation of the 
Theory and Practice of Fault-Tolerant Computer Design Algirdas Avizienis, 
George C. Gilley, Francis P. Mathur, David A. Rennels, John A. Rohr, 
and David K. Rubin 523 

Abstract 523 
Introduction: Chronology and Rationale 523 
Architecture of the STAR Computer 525 

Methods of Fault Tolerance 525 
Hardware System Organization 526 
Standard Operation 527 
Computer Words: Formats and Encoding 528 
Control Error Detection 529 
Properties of Functional Units 530 
The Test and Repair Processor (TARP) and Recovery Mode 530 

Comparative Reliability Analysis 532 
STAR Computer Software System 535 
Extension of STAR Techniques to Peripheral Systems 536 
Design of the TOPS Control Computer 537 
Current Research 538 
Acknowledgment 538 
References 539 

15 Automatic Fault Protection in the Voyager Spacecraft C. P. Jones 541 

Abstract 541 
Introduction 541 

The Mission 541 
The Spacecraft 542 

Achieving Reliability 542 
Automatic Fault Protection Design 544 

Requirements 544 
Implementation of the Requirements in Hardware 544 
Implementation of the Requirements in Software 545 

Command Computer Subsystem Functional Description 546 
CCS Routine Structure 547 

Fault-Protection Software 547 
Fault Protection in CCS 548 

Design Validation 554 
In-Flight Experience 556 

Failures and Degraded Performance 556 
Environmental Factors 556 
Sequence Errors 556 

Conclusions and Recommendations 557 
Acknowledgment 557 
Reference 557 



16 SIFT: Design and Analysis of a Fault-Tolerant Computer for 
Aircraft Control John H. Wensley, Leslie Lamport, Jack Goldberg, 
Milton W Green, Karl N. Levitt, P. M. Mel/iar-Smith, Robert E. Shostak, 
and Charles B. Weinstock 559 

Abstract 559 
Introduction 559 

Motivation 560 
Background 560 

SIFT Concept of Fault Tolerance 561 
System Overview 561 
Fault Isolation 562 
Fault Masking 563 
Scheduling 563 
Processor Synchronization 564 
Reliability Prediction 567 

The SIFT Hardware 568 
The Software System 572 

The Application Software 572 
The SIFT Executive Software 572 
Fault Detection 576 
The Simulator 577 

The Proof of Correctness 577 
Concepts 577 
Models 578 
The Reliability Model 579 
The Allocation Model 579 
Future Work 581 

Conclusions 582 
Appendix: Sample Special Specification 582 

Notes 583 
Acknowledgment 584 
References 584 

17 FTMIL-A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft 
Albert L. Hopkins, Jr., I Basil Smith, III, and Jaynarayan H. Lala 585 

Abstract 585 
Introduction 586 

Background and Context 586 
Rationale of the FTMP Approach 587 

Theory of the FTMP 588 
NominalOrganization 588 
Redundant Organization 590 
Synchronization 593 
Malfunction Management 594 

CONTENTS xv 



xvi CONTENTS 

Description of an Engineering Prototype of the FTMP 598 
The Redundant Bus Structure 602 
LRU Interfacing to the Bus System 602 
System Control Units 603 
The Principal Fault-Containment Region 603 
Primary Power 607 

Survival and Dispatch Probability Models for the FTMP 607 
Survival Probability Models 607 
Impact of Intermittent Faults 612 
Dispatch Reliability of the FTMP Computer 615 

Experimental Results 616 
Fault Diagnostic Capabilities 617 
Software Experience 617 

Conclusion 619 
Critical Areas of the FTMP Design 619 
Summary 619 

Acknowledgments 620 
References 620 

18 Design Methodology for High Reliability Systems: The Intel 432® 
Daniel P. Siewiorek and David Johnson 621 

A Design Methodology for a High Reliability System 621 
Define System Objectives 621 
Limit the Scope 623 
Define the Layers of Fault Handling 623 
Define Reconfiguration and Repair Boundaries 625 
Design the Fault-Handling Mechanisms 626 
Identify the Hardcore 626 

The Impact of Technology 626 
The Intel 432 Detection Mechanisms 627 

Define System Objectives 627 
Limit the Scope 627 
Define Layers of Fault Handling 628 
Define Reconfiguration and Repair Boundaries 628 
Design the Fault-Handling Mechanisms 630 
Identify the Hardcore 633 

The Intel 432 Error Isolation and Reporting Mechanisms 634 
Summary 636 
Reference 636 

APPENDIXES 637 

A Coding for Error Control D. T. Tang and R. T. Chien 639 

Abstract 639 
Basic Definitions 640 

Redundancy 640 
Source Codes 640 



Block Codes 640 
Binary Codes 640 

Errors in Digital Data Channels 640 
Transmission and Storage 640 
Source Encoding 641 
Modulation and Demodulation 641 

Error Sources 642 
Error Statistics 642 
Storage 642 
Channel Models 642 

Mathematical Structures in Coding 643 
Linear Separable Codes 643 
Polynomial Cyclic Codes 644 

General Requirements for Encoding and Decoding 644 
Error Syndromes 644 
Conditional Maximum Likelihood Decoding 645 
Maximum Likelihood Decoding 645 
Minimum Distance Decoding 645 

Linear Switching Circuits and Shift Registers 646 
Polynomials in Delay Operator D 646 

Encoders and Decoders 648 
Functional Classes of Error-Control Codes 650 
Coding Strategy 651 

Error Detection 651 
Partial Correction 652 
Erasures 653 
Adaptive Coding Schemes 653 
Sequential Decoding 654 

Some Error-Control Applications 654 
Data Communications 654 
Data Storage 654 
Auxiliary Storage 655 
Digital Cypress Error Control 655 

Concluding Remarks 655 
Appendix 1: Structure of Linear Codes 656 
Appendix 2: Structure of Polynomial Codes 657 
Appendix 3: Methods for Finding Generator Polynomials 658 

Single-Error-Correcting Codes 658 
Burst-Error-Correcting Codes 658 
Independent-Error-Correcting Codes 659 
BCH Codes 659 
Examples 659 
Multiple-Burst-Correcting Codes 660 
Reed-Solomon Codes 661 
Example Decoders 661 

Appendix 4: Specialized Error-Control Codes 662 
Interleaved Codes 662 

CONTENTS xvii 



xviii CONTENTS 

N-Dimensional Codes 663 
Shortened Codes 663 
Threshold-Logic-Decodable Codes 663 
Self-Orthogonal Decoding Example 664 
Synchronization Codes 665 
Convolutional Codes 665 
Constant-Weight Codes 667 
Arithmetic Codes 667 

Appendix 5: Cyclic Redundancy Checking 668 
References 669 

B Arithmetic Error Codes: Cost and Effectiveness Studies for Application in 
Digital.System Design Algirdas Avizienis 671 

Abstract 671 
Methodology of Code Evaluation 671 

Scope of the Problem 671 
The Criteria of Cost 672 
The Criteria of Effectiveness 673 
Classes of Logic Faults 674 

Fault Effects in Binary Arithmetic Processors 675 
Basic Faults in Parallel Arithmetic 675 
Repeated-Use Faults in Binary Processors 677 

Low-Cost Radix-2 Arithmetic Codes 678 
Implementation of Arithmetic Error Codes 678 
The Low-Cost Checking Algorithm 679 
Fault-Effectiveness: One-Use Faults 680 
Fault..;.Effectiveness: Determinate Repeated-Use Faults 680 
Fault-Effectiveness: Indeterminate Repeated-Use Faults 681 
~epeated-Use Faults in Residue Codes 682 

Multiple Arithmetic Error Codes 683 
Multiple Low-Cost Codes 683 
"Hybrid-Cost" Forms of Multiple Codes 685 

Acknowledgment 686 
References 686 

C Recent Developments in the Theory and Practice of Testable logic Design 
R. C. Bennetts and R. V. Scott 687 

Abstract 687 
Introduction 687 
Theoretical Developments 688 

Combinational Circuits 688 
Sequential Circuits 696 
Iterative Arrays 702 

Practical Aspects of Testable Logic Design 703 
Guideline 1: Give the tester access to internal circuit board nodes 70 
Guideline 2: As a general rule, avoid logically redundant circuits 70 



Guideline 3: Makefaults as easy to locate as possible 705 
Guideline 4: Use synchronous (clocked) circuitry whenever 
possible 706 
Guideline 5: Take precautions to isolate the clock from the logic 706 
Guideline 6: Make it possible to initialize sequential circuits prior to 
testing 706 
Guideline 7: Take into account the operational characteristics of the 
tester to be used for a particular board 706 
Guideline 8: Take test economics into consideration when developing a 
new logic design 706 

Concluding Remarks 707 
Acknowledgment 708 
References 708 

D Summary of MIL-HDBK-217B Reliability Model 709 

E Summary of MIL-HDBK-217C Reliability Model 715 

217C Model 715 
217C Notice 1 Model 716 
Reference 719 

References 721 

Contributing Authors 749 

Trademarks 749 

Credits 751 

Index 753 

CONTENTS xix 





Preface 

~ystem reliability has been a major concern since the beginning of the electronic 
ligital computer age. The earliest computers were constructed of components such 
LS relays and vacuum tubes that would fail to operate correctly as often as once 
:very hundred thousand or million cycles. This error rate was far too large to en­
:ure correct completion of even modest calculations requiring tens of millions of 
>perating cycles. The Bell relay computer (c. 1944) performed a computation 
wice and compared results; it also employed error-detecting codes. The first com­
nercial computer, the UNIVAC I (c. 1951), utilized extensive parity checking and 
wo arithmetic logic units (ALUs) in a match-and-compare mode. Today, interest 
n reliability pervades the computer industry, from large mainframe manufacturers 
o semiconductor fabricators, who produce not only reliability-specific chips (such 
LS for error-correcting codes) but also entire systems (such as the Intel 432). 

Computer designers have to be students of reliability, and so do computer sys­
em users. Our dependence on computing systems has grown so great that it is be­
;oming difficult or impossible to return to less sophisticated mechanisms. When an 
Lirline seat selection computer "crashes," for example, the airline can no longer 
·evert to assigning seats from a manual checklist; since the addition of roundtrip 
;heck-in service, there is no way of telling which seats have been assigned to pas­
,engers who have not yet checked in without consulting the computer. The last 
'esort is a free-for-all rush for seats. The computer system user must be able to 
mderstand the advantages and limitations of the state-of-the-art in reliability de­
.ign; determine the impact of those advantages and limitations upon the applica­
ion or computation at hand; and specify the requirements for the system's 
diability so that the application or computation can be successfully completed. 

The literature on reliability has been slow to evolve. During the 1950s reliability 
vas the domain of industry, and the quality of the design often depended on the 
:leverness of an individual engineer. Notable exceptions are the work of Shannon 
1948] and Hamming [1950] on communication through noisy (hence error­
nducing) channels, and of Moore and Shannon [1956] and von Neumann [1956] 
m redundancy that sarvives component failures. Shannon and Hamming inaugu­
ated the field of coding theory, a cornerstone in contemporary systems design. 
vloore, Shannon, and von Neumann laid the foundation for development and 
nathematical evaluation of redundancy techniques. 

During the 1960s the design of reliable systems received systematic treatment in 
ndustry. Bell Telephone Laboratories designed and built an Electronic Switching 
;ystem (ESS), with a goal of only two hours down-time in 40 years [Downing, No­
vak, and Tuomenoksa, 1964]. The IBM System/360 computer family had ext en­
ive serviceability features [Carter et aI., 1964]. Reliable design also found 
ncreasing use in the aerospace industry, and a triplicated computer helped man 
and on the moon [Cooper and Chow, 1976; Dickinson, Jackson, and Randa, 1964]. 
~he volume of literature also increased. In 1962 a Symposium on Redundancy 

xxi 
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Table P-l. Proposed structure for undergraduate course. 

Chapters Remarks 

1 
Fundamental Concepts 

2 
Faults and Their 
Manifestations 

3 
Reliability and 
Availability 
Techniques 

4 
Maintainability and 
Testing Techniques 

5 
Evaluation Criteria 

6 
Financial Considerations 

7 
C.vmp 

18 
Intel 432 

A suitable subset such as one branch of the taxonomy (i.e., 
fault avoidance, fault detection, masking redundancy, 
dynamic redundancy) 

Through to, but not including, Markov models 

As time permits, augment by other examples 

Techniques held in Washington, D;C. led to the first comprehensive book on the 
topic [Wilcox and Mann, 1962]. Later, Pierce [1965] published a book generaliz· 
ing and analyzing the Quadded Redundancy technique proposed by Tryon and reo 
ported in Wilcox and Mann [1962]. A community of reliability theoreticians anc 
practitioners was developing. 

During the 1970s interest in system reliability expanded explosively. Companie~ 
were formed whose major product was a reliable system (such as Tandem). Due tc 
the effort of Algirdas Avizienis and other pioneers, a Technical Committee or 
Fault Tolerant Computing (TCFTC) was formulated within the Institute of Elec' 
trical and Electronic Engineers (IEEE). Every year since 1971, the TCFTC ha~ 
held an International Symposium on Fault-Tolerant Computing. The time is ript 
for a book on the design of reliable computing structures. 

This book has three audiences. The first is the advanced undergraduate studen 
interested in reliable design; as prerequisites, this student should have had course! 
in introductory programming, computer organization, digital design, and probabil 
ity. Part I of the book, selected chapters of Part II, and end-of-chapter problem: 
are sufficient for a quarter- or semester-length course like that suggested in Table 
P-l. 

The second audience is the graduate student seeking a second course in reliable 
design, perhaps as a prelude to engaging in research. The more advanced portion: 



lble P-2. Proposed structure for graduate course. 

hapters Augmentation 

Llndamental Concepts 

mlts and Their 
fanifestations 

eliability and 
vailability 
echniques 

laintainability and 
esting Techniques 

valuation Criteria 

inancial Considerations 

art II 

Ross [1972] and/or Shooman [1968] for random variables, 
statistical parameter estimation 

ARINC [1964] for data collection and analysis 

Appendix A, Peterson and Weldon [1972] for coding theory 

Sellers, Hsiao, and Bearnson [1968b] for error detection 
techniques 

Proceedings of Annual IEEE International Symposium on 
Fault-Tolerant Computing 

Special issues of the IEEE Transactions on Computers on 
Fault-Tolerant Computing (e.g., Nov 1971, March 1973, 
July 1974, May 1975, June 1976, June 1980, July 1982) 

Special issues of Computer on Fault-Tolerant Computing 
(e.g., March 1980) 

Breuer and Friedman [1976] for testing 
Proceedings of Cherry Hill Test Conference 

Special issues of Computer on Testing (e.g., Oct. 1979) 

ARINC [1964] for maintenance analysis 

Ross [1972], Howard [1971], Shooman [1968], Craig 
[1964] for Markov models and their solutions 

Phister [1979] 

Oct. 1978 special issue of the Proceedings of the IEEE. 

f Part I and the system examples of Part II should be augmented by other books 
rld current research literature as suggested in Table P-2. A project, such as design 
f a dual system with a factor of 20 greater Mean-Time-To-Failure, while minimiz-
19 Life-Cycle Costs, would help to crystallize the material for students. An exten­
ve bibliography provides access to the literature. 
The third audience is the practicing engineer. A major goal of this book is to 

rovide enough concepts to enable the practicing engineer to incorporate com pre­
~nsive reliability techniques into his or her next design. Part I provides a taxon­
ny of reliability techniques and the mathematical models to evaluate them. 
,esign techniques are illustrated through the series of articles in Part II, which 
~scribe actual implementations of reliable computers. These articles were written 
y the system designers. The final chapter provides a methodology for reliable sys-
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tern design and illustrates how this methodology can be applied in an actual desigr 
situation (the Intel 432). 

The book is divided into two parts. Part I deals with the theory and Part II with 
the practice of reliable design. The appendixes provide detailed information or 
coding theory, design for testability, and the MIL-HDBK-217 component reliabil­
ity model. 

The authors wish to express deep gratitude to many colleagues in the fault­
tolerant computing community. Without their contributions and assistance thi~ 
book could not have been written. We are especially grateful to the authors of the 
papers who shared their design insights with us. Special thanks go to Sudhir Bhag­
wani and Justin Rattner for assistance with Chapter 18. John Shebell provided ma­
terial and insight for Chapter 6. 

Xavier Castillo and Vittal Kini provided material on mathematical modeling anc 
computer aids, respectively. Ashok Ingle assisted in an earlier draft and providec 
several problems at the end of chapters. Comments from several reviewers and stu· 
dents were particularly helpful. 

Special thanks are due to colleagues at both Carnegie-Mellon University anc 
Digital Equipment Corporation (DEC) for providing an environment conducive tc 
generating and testing ideas. The entire staff of Digital Press provided excellen1 
support for a timely production. 

This book would not have been possible without the patience and diligence oj 
Mrs. Dorothy Josephson, who typed and retyped the many drafts of th( 
manuscrip~. 
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TH E TH EORY OF RE LIABLE SYSTEM 
DESIGN 
)art I of this book presents the many disciplines required to construct a reliable 
omputing system. Chapter 1 explains the motivation for reliable systems and 
Irovides the theoretical framework for their design, fabrication, and mainte­
lance. First we consider the motivation for interest in fault-tolerant systems. 
-.rext we present the hierarchical levels into which a computer system is 
ustomarily divided to enable the engineer to deal with it efficiently and 
ffectively; we also explain the reasons for introducing divisions into the life cycle 
If a computer system. After defining several terms and metrics important to 
ault-tolerant computing, Chapter 1 provides a detailed discussion of two stages 
rl a system's life: manufacturing and operation. Last, the chapter explains some 
If the mathematical models used in the design of a computer system and specifies 
lIe parameters that are under the engineer's control. 

Chapter 2 discusses faults in a computer system: failure mechanisms, fault 
rlanifestations at several levels in the structural hierarchy (physical, logical, and 
ystem), fault prediction, and fault measurement. A review of applicable proba­
lility theory is presented as an aid to understanding the mathematics of the 
arious fault distributions. Common techniques for matching empirical data to 
:lUlt distributions, such as the maximum likelihood estimator, linear regression, 
nd the chi-square goodness-of-fit test are discussed. 

Chapter 2 introduces methods for estimating permanent failure rates, including 
le MIL-HDBK-217 procedure, a widely used mathematical model of permanent 
lultS in electronic equipment, and the life-cycle testing and data analysis 
pproaches. It then addresses the problem of finding an appropriate distribution 
)r transient errors by analyzing field data from four mainframe time-sharing 
omputers operated by Carnegie-Mellon University. 

Chapter 3 deals with reliability techniques, that is, ways to improve the mean 
me to failures. A comprehensive taxonomy of reliability and availability 
~chniques is presented. There is also a catalog of techniques, along with 
valuation criteria. 

Chapter 4 deals with maintainability techniques, that is, ways to improve the 
lean time to repair of a failed computer system. It provides a taxonomy of 
~sting and maintenance techniques and describes ways to detect and correct 
)urces of errors at each stage of a computer's life cycle. Specific strategies are 
iscussed for testing during the manufacturing phase. Several logic-level accept­
nce tests are explained, such as exclusive-OR testing, signature analysis, 
oolean difference, path sensitization, and the D-algorithm. The chapter also 
ltroduces a discipline, called design for testability, which attempts to define 
roperties of easy-to-test systems. 

PART 

I 



2 THE THEORY OF RELIABLE SYSTEM DESIGN 

How can a reliable or maintainable design be mathematically evaluated? That 
is, if a system is supposed to be down no more than two hours in 40 years, how 
can one avoid waiting that long to confirm success? Chapter 5 defines a host of 
evaluation criteria, establishes the underlying mathematics, and presents deter­
ministic models and simulation techniques. Simple series-parallel models are 
introduced as a method for evaluating the reliability of nonredundant systems 
and systems with standby sparing. Next, several types of combinatorial (failure­
to-exhaustion) models are described. The chapter also introduces ways of 
reducing nonseries, nonparallel models to more tractable forms. 

Chapter 5 continues with Markov models, which define various system states 
and express the probability of going from one state to another. In these models, 
the probability depends only on the present state and is independent of how the 
present state was reached. After describing several other simulation and model­
ing techniques, the chapter culminates in a case study of an effort to make a more 
reliable version of the PDP-8/e, using the techniques defined in Chapter 3. 

Finally, Chapter 6 is concerned with the financial considerations inherent in 
the design, purchase, and operation of a computer system. The discussion adopts 
two major viewpoints: that of the maintenance provider arid that of the system's 
owner/operator. An explanation of the various sources of maintenance costs, 
such as labor and material, is followed by an overview of the field service 
business. Several maintenance cost models are suggested, along with a method 
for assessing the value of maintainability features. The chapter describes two of 
the many ways of modeling the life-cycle costs of owning and operating a 
computer system; these cost models are essential to the system designer in 
understanding the financial motivations of the customer. 



=undamental Concepts 

HE IMPORTANCE OF 
ELiABILITY 

[istorically, reliable computers have been lim­
ed to military, industrial, aerospace, and com­
lUnications applications in which the conse­
llence of computer failure is significant eco­
Jmic impact and/or loss of life. Reliability is of 
·itical importance wherever a computer mal­
mction could have catastrophic results, as in 
Ie space shuttle, aircraft flight-control systems, 
)spital patient monitors, and power system 
mtrol. Reliability techniques have become of 
creasing interest to general purpose computer 
stems because of several recent trends, a few of 
h.ich are listed below: 

Harsher Environments. With the advent of 
icroprocessors, computer systems have moved 
)m the clean environments of computer rooms 
industrial environments. The cooling air con­

ins more particulate matter. Temperature and 
Lmidity vary widely and are frequently subject 

spontaneous changes. The primary power 
pply fluctuates, and there is electromagnetic 
terference. 

Novice Users. As computers proliferate, the 
:Jical user knows less about proper operation of 
;! system. Consequently, the system has to be 
Ie to tolerate more inadvertent user abuse. 

Increasing Repair Costs. As hardware costs 
ntinue to decline and labor costs escalate, a 
;!r cannot afford frequent calls for field service. 
~ure 1-1 depicts the relation between cost of 
'nership and the addition of reliability, main­
nability, and availability features. Note that as 
rdware costs increase, service costs decrease 
e to fewer and shorter field service calls. 

3 

11 
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Reliability and maintainability features 

Figure 1-1. Cost of ownership as a function of 
reliability and maintainability. 

Larger Systems. As systems become larger, 
there are more components that can fail. Be­
cause the overall failure rate is directly related to 
the sum of the failure rates of individual compo­
nents, fault-tolerant designs may be required to 
keep the overall system failure rate at an accept­
able level. 

The increased interest in fault tolerance has 
already had an impact on the industrial world. 
Manufacturers of large mainframe computers, 
such as IBM, Univac, and Amdahl, use redun­
dancy both for improving reliability and for 
assisting field service personnel in fault isolation. 
Minicomputer manufacturers have also been in­
corporating fault-tolerant features, such as Ham­
ming error-correcting codes in memory. Special 
Large Scale Integration (LSI) chips have been 
introduced to perform cyclic redundancy coding 
and decoding. Some companies, such as Tan­
dem, have been formed solely to market fault­
tolerant computers. 

LEVELS IN A DIGITAL SYSTEM* 

Digital computer systems are enormously com­
plex. To make them more comprehensible it is 
necessary to divide the system into several levels. 

• This discussion is adapted from D. Siewiorek, G. Bell, and 
A. Newell, Computer Structures: Principles and Examples, 
(New York, McGraw-Hill, 1981). 

One can then proceed upward from the most 
primitive level to the highest conceptual level 
through a series of abstractions. Each abstrac­
tion contains only information important to its 
level and suppresses unnecessary information 
about lower ones. Because system designers uti­
lize the hierarchical concept to manage the com­
plexity of a digital system, the levels frequently 
coincide with the system's physical boundaries. 
Table 1-1 describes a typical set of levels for a 
digital computer. 

Table 1-1. Levels of abstraction for digital 
computers. 

Level Sublevel 

·PMS 

Program High-level 
language 

ISP 

Logic Register 
transfer 

Components 

Processors 

Memories 

Switches 

Controllers 

Transducers 

Data operators 

Links 

Software 

Memory state 

Processor state 

Effective address 
calculation 

Instruction decode 

Instruction execution 

Data paths 

Registers 

Data operators 

Control 

Hardwired 

Sequential logic 
machines 

Microprogramming 

Microsequencer 

Microstore 

(Table continues on next page 
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r...evel Sublevel 

:ircuit 

Switching 
circuit 

Components 

Sequential 

Flip-flops 

Latches 

Delays 

Combinatorial 

Gates 

Encoders/Decoders 

Data operators 

Resistors 

Capacitors 

Inductors 

Power sources 

Diodes 

Transistors 

Circuit Level. The circuit level consists of 
llch components as resistors, capacitors, induc­
)rs, and power sources. The metrics of system 
ehavior include voltage, current, flux, and 
b.arge. The circuit level is not the lowest possible 
~vel at which to describe a digital system. Var­
ms electromagnetic and quantum mechanical 
henomena underlie circuit theory, and the oper­
lion of electromechanical system devices (such 
; disks) requires more than circuit theory to 
lodel their operation. 

Logic Level. The logic level is unique to 
.gital systems. The switching-circuit sublevel is 
)mposed of such things as gates and data 
)erators built out of gates. The logic level is 
:rther subdivided into combinatorial and se­
lential logic circuits, the fundamental differ­
lce being the absence of memory elements in 
.mbinatorial circuits. 
A register is a digital device that remembers 
e state of a set of binary digits. The Register 
·ansfer (RT) sublevel deals with the next higher 
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level of abstraction, namely, registers and func­
tional transfers of information among registers. 
RT sublevels frequently are further subdivided 
into a data part and a control part. The data part 
is composed of registers, operators, and data 
paths. The control part provides the time-de­
pendent stimuli that cause transfers between 
registers to take place. 

In some computers, the control part is imple­
mented as a hard-wired state-machine. With the 
availability of low-cost Read-Only Memories 
(ROMs), microprogramming is now a more pop­
ular way to implement the control function. 

Program Level. The program level is unique 
to digital computers. At this level a sequence of 
instructions in the device is interpreted and 
causes action upon a data structure. This is the 
Instruction Set Processor (ISP) sublevel. The ISP 
description is used in turn to create software 
components that are easily manipulated by pro­
grammers-the high-level-language sublevel. The 
result is software, such as operating systems, run­
time systems, application programs, and applica­
tion systems. 

PMS Level. Finally, the various elements­
input/output devices, memories, mass storage, 
communications, and processors-are intercon­
nected to form a complete system. 

STAGES IN SYSTEM LIFE 

Not only are system levels important for describ­
ing a digital computer; a time dimension is also 
required. At what point a technique or method­
ology is applied during the life cycle of a system 
may be more important than at what physical 
level. 

From a user's viewpoint, a digital system can 
be treated as a "black box" that produces out­
puts in response to input stimuli. Table 1-2 lists 
the numerous stages in the life of the box as it 
progresses from concept to final implementation. 
These stages include specification of input/out­
put relationships, logic design, prototype debug-
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Table 1-2. Stages in the development of a system. 

Stage Error Sources 

Specification Algorithm 
and design design 

Formal 
specifications 

Prototype Algorithm 
design 

Wiring and 
assembly 

Timing 

Component 
failure 

Manufacture Wiring and 
assembly 

Component 
failure 

Installation Assembly 

Component 
failure 

Operational life Component 
failure 

Opera tor errors 

Environmen tal 
fl uctua tions 

Error Detection 
Techniques 

Simulation 

Consistency 
checks 

Stimulus/ 
response testing 

System testing 

Diagnostics 

System testing 

Diagnostics 

Diagnostics 

ging, manufacturing, installation, and field oper­
ation. Deviations from intended behavior, or 
errors, can occur at any stage as a result of 
incomplete specifications, incorrect implementa­
tion of a specification into a logic design, and 
assembly mistakes during proto typing or manu­
facturing. 

During the system's operational life, errors can 
result from change in the physical state or dam­
age to hardware. Physical changes may be trig-' 
gered by environmental factors such as fluctua­
tions in temperature or power supply voltage, 
static discharge, and even alpha particle emis­
sions. Inconsistent states can also be caused by 

operator errors and by design errors in hardware 
or software. 

Design errors, whether in hardware or soft­
ware, are those caused by improper translation 
of a concept into an operational realization. 
Closely tied to the human creative process, de­
sign errors are difficult to predict. Gathering 
statistical information about the phenomenon is 
difficult because each design error occurs only 
once per system. The rapid rate of development 
in hardware technology constantly changes the 
set of design trade-offs, further complicating the 
study of hardware design errors. In the last five 
years there has been some progress in the use of 
redundancy-using additional resources beyond 
the minimum required to perform the task suc­
cessfully-to control software design errors. 

Any source of error can appear at any stage; 
however, it is usually assumed that certain 
sources of error predominate at particular stages. 
Furthermore, error-detection techniques can be 
tailored to the manifestation of fault sources. 
Thus, at each stage of system life there is a 
primary methodology for detecting errors. In the 
following discussion, the student of systems re­
liability must keep in mind the question, "At 
what level and at what stage of the system 
development does the subject matter apply?" 
The two dimensions of physical level and tempo­
ral stage serve as a framework to relate otherwise 
mutually exclusive factors. Later a third dimen­
sion, cost, will be considered. 

ATTRIBUTES OF FAULT-TOLERANT 
COMPUTING AND THEIR 
DEFINITIONS 

Fault-tolerant computing is the correct executi01 
of a specified algorithm in the presence of de 
fects. The effect of defects can be overcome b: 
the use of redundancy. This redundancy can b 
either temporal (repeated executions) or physic(l 
(replicated hardware or software). 



As in all systems design, system specifications 
~onstrain the design space and thus the design 
techniques that can be used. At the highest level 
of specification, fault-tolerant systems are cate­
gorized as either highly available or highly reli­
able. 

~vailability 

lIe availability of a system as a function of 
ime, A(f), is the probability that the system is 
perational at the instant of time, f. If the limit 
f this function exists as f goes to infinity, it 
xpresses the expected fraction of time that the 
ystem is available to perform useful computa­
ons. Activities such as preventive maintenance 
nd repair reduce the time that the system is 
vail able to the user. Availability is typically 
sed as a figure of merit in systems in which 
!rvice can be delayed or denied for short peri­
ds without serious consequences. 

eliability 

he reliability of a system as a function of time, 
(f), is the conditional probability that the sys­
m has survived the interval [0, f], given that it 
as operational at time f = O. Reliability is used 
I describe systems in which repair cannot take 
ace (as in satellite computers) or in which the 
Imputer is serving a critical function and can­
)t be lost even for the duration of a repair (as 
fiightcomputers on aircraft) or in which the 

pair is prohibitively expensive. In general, it is 
ore difficult to build a highly reliable comput­
g system than a highly available one because of 
e more stringent requirements imposed by the 
liability definition. An even more stringent 
finition than R(f), sometimes used in aero­
ace applications, is the maximum number of 
lures anywhere in the system that the system 
t1 tolerate and still function correctly. 
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Two important stages in the development of a 
system will be discussed next: the manufacturing 
stage and the operational life stage. A third 
important stage, design, is the subject of the 
remaining chapters in Part I. 

THE MANUFACTURING STAGE 

A careless manufacturing process can make even 
the most careful design useless. The manufactur­
ing stage begins with the final portion of the 
prototype stage in a process called Design Matu­
rity Testing. 

Design Maturity Testing 

A Design Maturity Test (DMT) estimates the 
Mean Time To Failure (MTTF) for a new prod­
uct before it is committed to volume manufac­
turing. The DMT is conducted to isolate and 
correct repetitive systemic problems that, if left 
in the design, would result in higher service costs 
and customer dissatisfaction. 

The DMT is accomplished by operating a set 
of sample devices for a prolonged time (typically 
six to eight units for two to four months) to 
simulate actual field operation. In cases in which 
the duty cycle of the equipment is less than 100 
percent, the duty cycle under test may be in­
creased to 100 percent to accelerate testing. As 
failures are observed and recorded, they are 
classified according to such factors as failure 
mode, time, or environmental cause. Similar 
failures are then ranked in groups by decreasing 
frequency of occurrence. 

This procedure establishes priorities for elimi­
nating the causes. After the fundamental cause 
of the failure is found and corrective design 
action is taken, the operation of the modified or 
repaired test samples provides a closed-loop 
evaluation of the efficacy of the change. Repeat­
ing the procedure improves the design of the test 
samples until their estimated MTIF meets the 
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16 
Unit test hours 

Figure 1-2. Reliability Demonstration Chart for 
monitoring the progress of a Design Maturity Test. 

specifications with a certain statistical confi­
dence. 

The progress of the test can be monitored with 
a chart prepared in advance for the product 
under test, shown in Figure 1-2 [von Alven, 
1964], which provides an objective criterion for 
judging the MTTF of a product with a predeter­
mined statistical risk. The construction of the 
chart is determined by four parameters: 

• Specified MTIF, 8 0 
• Minimum acceptable MTIF, 8 1 
• Consumer's risk, a. This is the probability that a 

product with an MTTF lower than 8 0 will be 
accepted. 

• Producer's risk, {3. This is the probability that a 
product with an MTTF higher than 8 0 will be 
rejected. 

A ratio of 8 0 to 8 1 between 1.5 and 2 to 1 is 
typically used. Consumers' and producers' risks 
are commonly taken to be 20 percent. Operating 
time in unit hours is the abscissa, and number of 
failures is the ordinate. The resultant perform­
ance line is a staircase that moves up and to the 
right as test experience accumulates. The chart is 
divided into three areas: accept, reject, or con­
tinue testing. When the performance line crosses 
into the accept region, the test samples' MTTF is 
at least equal to the minimum acceptable MTTF 
(with the predetermined risk of error), and the 
design should be accepted. 

If the performance line crosses into the reject 
region, the MTTF of the design is. probably 
lower than the acceptable minimum with its 
corresponding probability of error; testing 
should be suspended un til the design has been 
sufficiently improved and it can reasonably be 
expected to pass the test. 

Incoming Inspection 

Figure 1-3 depicts typical steps in the volume 
manufacturing process. Note the alternating pat­
tern of test/inspect and fabrication [Foley, 1979]. 

Incoming inspection is an attempt to cull weak 
or defective components prior to assembly into 
subsystems. All semiconductor processes yield a 
certain number of defective devices. Even aftel 
the semiconductor manufacturer has detectec 
and removed these defective devices, failures wit: 
continue to occur for a time known as tht 
"infant mortality period." This period is typical 
ly 20 weeks or less, during which the rate 0 

failures continues to decline. At the end of thi: 
period, failures tend to stabilize at a constan 
rate for a long time, sometimes 25 years or more 
Ultimately the failure rate begins to rise again, il 
a period known as wear-out. This variation il 
failure rate as a function of time is illustrated h 
the bathtub-shaped curve shown in Figure 1-4 . 

Over the years, with the accumulation of expe 
rience in the manufacture of semiconducto 
components, the failure rate per logic device ha 
steadily declined. Figure 1-5 depicts the numbe 
of failures per million hours for bipolar techno· 
ogy as a function of the number of gates on 
chip. The curves Mil Model 217 A were derive 
from 1965 data. The curves Mil Model217B (se 
Appendix D) and Mil Model 217C (see Appel 
dix E) were generated from a 1974 reliabili1 
prediction model. Actual failure data are a15 
plotted to calibrate the 217B and 217C model 
The curve Field data was derived from a yea 
long reliability study of a sample of video term 
nals [Harrahy, 1977]. The curve Life cycle da 
was derived from elevated temperature testing, 
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~ 
igure 1-3. Typical steps in the manufacture of a 
ligital system. (© 1979 IEEE.) 

:hips, followed by application of a mathematical 
nodel that translated the failure rates to ambient 
emperatures [Siewiorek et aI., 1978b]. Finally, 
he improvement in the 3,OOO-gate Motorola 
r1C6800 is plotted [Queyssac, 1979]. 

Two trends are noteworthy. First, there is 
10re than an order of magnitude decrease in 
:tilure rate per gate. Plots of failure per bit of 
,ipolar random access memory indicate that the 
tilure rates per gate and per bit are comparable 
)r comparable levels of integration. 
Obviously, the chip failure rate is a function of 
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Infant 
mortality 
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Wear-out 
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Approximately 5 to 25 
20 weeks years 

Time 

Figure 14. Bathtub curve depicting component 
failure rate as a function of time. 

chip complexity and is not a constant. Failure 
rate per function (gate or bit) decreases by one 
order of magnitude over two orders of magni­
tude of gate complexity and two to three orders 
of magnitude of memory complexity. The failure 
rate decreases in direct proportion to increases in 
complexity. 

The second trend is that the MIL­
HDBK-217B model predicted an increase in 
failure rate per function beyond about 200-gate 
complexity, presumably because of the immatu­
rity of the fabrication process at that scale of 
integration at that time. * 

Now consider a system composed of a con­
stant number of semiconductor chips. Because 
the chips double in density everyone to two 
years, the number of functions, 1, in the system is 
proportional to changes in time, ~t: 

f ex:: 2~t 

where t is time in years. The failure rate per 
function, from Figure 1-5, is proportional to the 

* The switch from a polynomial to an exponential function 
in number of gates occurs at 100 in 217B and 1,000 in 217C. 
This reflects the improvements in the fabrication process 
over time. See Appendixes D and E. 
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Mil Model 217A r1
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Figure 1-5. Failure rate per gate as a function of chip complexity for bipolar technology, 

square root of the number of functions per chip: 

r ex: 11/2 

Hence 

r ex: 2:J.t/2 

and the Mean Time To Failure (MTTF) is 

1 I 
MTTF ex: r ex: 2((j.t/2) 

This implies that over a 10-year period a system 
with the same number of semiconductor chips 
has increased its logic complexity by a factor of 

1,024 and decreased its MTTF by a factor of 32. 
Hence, system reliability has not kept pace with 
system complexity. Complex, high-performance 
machines are on the verge of becoming virtually 
unusable. For example, when the Los Alamos 
Scientific Laboratory evaluated the reliability of 
its CRAY-I over a 6-month period, the mean 
time to failure was found to be four hours 
[Keller, 1976]. The average repair time was only 
about 25 minutes, due to the skilled on-site 
maintenance crew. Even so, this represented the 
loss of about 100 billion potential machine oper­
ations [Avizienis, 1978]. Gains in system reli-



ability cannot be attained from improved com­
ponent reliability alone. Redundancy must be 
introduced. Redundancy techniques are the sub­
ject of Chapter 3. * 

The cost of component failure depends upon 
the level at which the failure is detected: the 
higher the level, the more expensive the repair. 
Fault detection at the semiconductor component 
level minimizes cost. Fault detection at the next 
highest level, the board, has been estimated at 
$5; at the system test level, $50; and at the field 
service level, $500 [Russel, 1980]. The level at 
which a computer manufacturer detects initial 
and infant mortality failures is a function of the 
incoming test program chosen. 

Even relatively low semiconductor failure 
rates can cause substantial board yield problems, 
aggravated by the density of the board. Consider 
a board with forty semiconductor devices that 
have an initial failure rate of I percent: 

Probability board not defective = (0.99)40 

= 0.669 

The benefits of an incoming inspection program 
can be easily quantified. The value of culling bad 
semiconductor components before they are in­
serted into the board is the most easily measured 
benefit. Board/system test savings, inventory re­
duction, and service personnel savings depend 
on the particular strategy used. To calculate the 

• The same semiconductor evolution that has led to in­
creased reliability per gate or bit has also introduced new 
failure modes. The smaller dimensions of semiconductor 
devices have decreased the amount of energy required to 
change the state of a memory bit. 
The loss of memory information caused by the decay of 
radioactive trace elements in packaging material has been 
documented. Studies show that even in sheltered environ­
ments such as well-conditioned computer rooms, soft errors 
are 20 to 50 times more prevalent than hard failures. Soft 
errors also exhibit clustering (a high probability that, once 
one error has occurred, another will occur soon), workload 
dependence (the heavier the system workload, the more 
likely an error), and common failure modes (more than one 
system, or portion of a system, affected simultaneously). 
Semiconductor failure rates and failure modes are dis­
cussed in detail in Chapter 2. 
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value of removing defective components at in­
coming inspection, mUltiply the number of bad 
parts found by the cost of detecting, isolating, 
and repairing failures at higher levels of integra­
tion. The following formula estimates the total 
savings: 

where 

D = 5 B + 50S + 500 F 

D = dollar savings, 
B = number of failures at board test 

level, 
S = number of failures at system test 

level, and 
F = number of failures in the field. 

This formula can be translated into annual sav­
ings by considering total component volume and 
mean failure rate data: 

Potential annual savings 

= annual component volume X 

[ (% ini tial failures) 

(% failures detected at board level X $5 

+ % failures detected at system level X $50) 

+(% infancy failures) 

(% failures detected at system level X $50 

+ % failures detected in the field X $500)] 

Typical savings for 100 percent incoming inspec­
tion can be estimated and compared with the 
cost of the Automatic Test Equipment (ATE) 
required to carry out such testing. Figure 1-6 
(from [Russell, 1980]) shows the potential annual 
savings as a function of annual component vol­
umes. A family of curves is shown for overall 
failure rates of 0.8, 1.2, 2.0, and 4.0 percent. 

Process Maturity Testing 

The term process includes all manufacturing 
steps to acquire parts, assemble, fabricate, in-
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Figure 1-6. Savings from screening and testing as 
a function of defective component rate and annual 
device volume. 

spect, and test a product during volume produc­
tion. The rationale for Process Maturity Testing 
(PMT) is that newly manufactured products 
contain some latent defects built in by the proc­
ess that produced them. 

A large number of units, about the first 120 off 
the production line, are operated for 96 hours, 
often in lot sizes convenient to the particular 
production process. They are operated (burned 
in) in a manner that simulates the normal pro­
duction process environment as closely as pos­
sible. If the burn-in and production process 
environments differ significantly, appropriate 
test results must be adjusted accordingly. 

Infant mortality characterist~cs may fluctuate 
significantly throughout the test lot. The com­
posite of these individual failure characteristics is 
considered the "normal infancy" for the device. 

The end of the burn-in period for production 
equipment is determined by the normal infancy 
curve thus derived from the PMT. The objective 
is to ship products of consistently good quality 
and acceptable MTTF after a minimum burn-in 
period. Typical production burn-in times are 20 
to 40 hours. 

PMT is used to identify several classes of 
failures. Infancy failures are problems generally 
caused by parts that were defective from the time 
they were received. In largely solid-state devices, 
component problems will remain in this category 
until identified and controlled by either incom­
ing inspection or changes implemented by the 
component vendor. 

Manufacturing/inspection failures are gener­
ally failures repaired by readjustments or re­
touching, such as a part damaged by the assem­
bly process or defects that bypassed the normal 
incoming test procedures. 

Engineering failures are recurrent problems in 
the design that have not yet been corrected or 
new problems not yet resolved because of lack of 
experience. 

Residual failures are problems that have not 
yet recurred and for which there is no corrective 
action except to repair when they occur. These 
are the truly random failures. 

Experience has shown that the three major 
recurring problems usually account for 75 per­
cent of all failures. It is reasonable to expect that 
the correction of the top four to six recurring 
problems will yield a tenfold improvement in 
MTTF. 

THE OPERATIONAL LIFE STAGE 

Maintenance and repair during the field opera­
tional stage are the customer's primary contacts 
with system reliability. In the early days of 
computers, repairing a downed system was an 
art. Diagnostics that were halted or trapped 
when executing certain instructions did give 
clues to the location of the failure but did not 
pinpoint the failing Field Replaceable Unit 
(FRU). To identify the failing FRU, technicians 
swapped circuit boards one by one with "known 
good boards" in the hope of eventually restoring 
the system to proper operation. In time, diagnos­
tic techniques became better able to identify the 
specific failed FRU before swapping any boards; 
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Figure 1-7. Overview of DEC's Remote Diagnosis Network. 

then the failed board could rapidly be replaced 
with a good one. 

Unfortunately, as on-site repair time is de­
creased by better diagnosis, travel time to the site 
becomes a limiting factor. At today's labor and 
transportation rates, the cost of travel time fre­
quently exceeds the cost of the actual repair. 
Return trips, because the failed FRU was identi­
fied but the field service engineer had no replace­
ment along, are very cost inefficient. Alternative 
service strategies have developed in response to 
these factors, such as customer carry-in service 
for small computers and service vans that carry 
enough sets of spare parts to permit long absenc­
es from the branch field service office. 

A good example of a current field service 
approach is Digital Equipment Corporation's 
Digital Diagnosis Center (DDC). An overview of 
the network operation is shown in Figure 1-7. 
When customers detect or suspect a computer 
malfunction, they call a special telephone ·re­
sponse line that is attended 24 hours a day, seven 
days a week. The heart of the DDC is a dual 

PDP-II/70 configuration with auto-dial equip­
ment. Once attached to the customer's failing 
computer (typically within 15 minutes), the DDC 
host system directs the diagnosis process based 
on results produced by the system under test. A 
configuration file is kept on each system sup­
ported. The DDC host executes the appropriate 
diagnostic "scripts," which simulate the thought 
processes of an on-site field service engineer. 
Each script executes a diagnostic sequence that 
can be modified according to the error responses 
generated by the computer being tested. 

At the same time, the remote diagnosis spe­
cialist puts the local field service office on alert 
for a probable call. When initial diagnostic re­
sults are available, an engineer in the DDC 
reviews them and may then initiate further auto­
matic tests or take direct control of the system 
under test. 

When the analysis is complete, the problem 
will be described to the local field service branch 
office, which then dispatches the right person 
with the right part to the site. The on-site field 
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engineer replaces the predetermined failed part 
and verifies the resolution of the problem. Final 
results of the corrective action are transmitted to 
the DDC to update the system's maintenance 
log. Information about problem areas in various 
computer systems is passed on to the engineering 
development groups for improvements in the 
future. 

COST OF OWNERSHIP 

The third dimension of the reliability framework, 
in addition to physical and temporal stage is 
cost. The cost of a computer system is not 
limited to initial purchase; significant costs recur 
during the life of a system. As a result, computer 
owners frequently develop mathematical models 
that enable them to make optimal decisions, 
minimizing the total cost of ownership.* Follow­
ing is a description of some of the more signifi­
cant costs: 

Purchase Price. The purchase price of a com­
puter, though significant, can represent less than 
half the cost of ownership, computed on the 
basis of net present value. The purchase price 
usually includes system hardware, documenta­
tion, software license fees, training, and installa­
tion. The potential owner of a computer always 
has renting and leasing alternatives to consider, 
which can sometimes be advantageous in terms 
of cash flow or net present value. 

Site Preparation. Many computers' require 
special. operating environments. This may in­
clude special air conditioning, with closely con­
trolled temperature, humidity, and airborne par­
ticulate matter size and density. A large computer 
may also require a raised floor for cabling. The 
main power supply may require a separate trans­
former with three-phase service and Radio Fre­
quency Interference (RFI) filters. In some instal-

• These financial considerations are discussed in detail in 
Chapter 6. 

lations, an Uninterruptible Power Supply (UPS) 
is essential to increa-se system availability or 
prevent loss of data. 

Maintenance. All computers require some de­
gree of preventive and corrective maintenance. 
The user usually has the option of purchasing a 
field service contract at a fixed price or paying 
for field s~rvice on a time-and-materials basis. 
The maintenance can come from the computer 
manufacturer, Original Equipment Manufactur­
er (OEM), a third party, or may be performed by 
the customer. The trade-offs inherent in deci­
sions about when and how often to perform 
preventive maintenance also affect cost of own­
ership. 

Supplies. A computer system requires paper 
for the printers, disks and tapes for the mass 
storage devices, and other periodically replaced 
material. Very significant, too, is the power re­
quired to run the computer. With ever-escalating 
energy cpsts, supplying power to a computer for 
its operational lifetime can be one of the most 
significant expenses associated with ownership. 

Cost oj Downtime. Depending on the applica­
tion of the system, the cost of downtime can be 
trivial or crucial. In a system' that acquires 
revenue, for example, the cost of downtime can 
far exceed the actual purchase price. This param­
eter requires careful evaluation by the potential 
customer. 

Consider a system that has only an initial cost, 
I, and a failure rate A. The cost, C, of owning this 
system for n years can be expressed as: 

where 

n S.P. 
C=I+~ II. 

i=l (1 + D)' 

Si = the cost of one corrective main­
tenance call in year i 

Pi the expected number of failures 
during year i, and 

D = the discount rate. 
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Figure 1-8. Major activities in the design and marketing of a computer system. 

The discount rate expresses the value of mon­
ey in terms of time. For example, if you need 
$100 in two years and can get 10 percent annual 
interest in a savings account, you need to put 
away only $100/1.1 2 

= $82.65 today. Here 10 
percent represents the discount rate. 

Assume that the failure rate is constant over 
the period in question. Then 

n s. 
C=I+P~ I. 

i=l (1 + DY 
Further assume that the system has a five-year 
life, that a service call costs $300, and that the 
discount rate is 20 percent. Expressing )... in 
failures per million hours and noting the fact 
that there are 8,760 hours in a year results in: 

C = I + (300) 8760)", ± _1_. 
106 

i=l (1.2Y 

= 1+7.86)", 

Consider a system that costs $21,000 and has a 
failure rate of 6,500 per million hours (equivalent 
to a Mean Time To Failure of 154 hours). Its 
cost of ownership, using the assumptions above, 
is $72,090. Now consider another system that 

costs more to purchase, $27,500, but is more 
reliable. Its failure rate is 4,400, or an MTTF of 
227 hours. Its cost of ownership is $62,084. 
Although the second system is 31 percent more 
expensive to purchase, its 47 percent increase in 
reliability results in a 14 percent reduction in 
five-year cost of ownership. 

UNIVERSE OF MODELS 

Figure 1-8 depicts the major actiVIties in the 
design and marketing of a computer system. 
Each activity has a model that can be used for 
predictive and evaluation purposes. The goal of 
all these activities is to produce a system which 
fulfills its intended use, thereby satisfying the 
customer. Customer satisfaction is a complex 
function of system cost, performance, reliability, 
and maintainability. 

Once the need for a system is established, 
usually by technological or market pressures, a 
design is developed. Enhanced reliability usually 
involves some degree of hardware redundancy, 
and maintainability improvements usually in­
volve the addition of self-testing circuits, both of 
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Table 1-3. Parameters a designer can control, 
their impact on system design goals, and typical 
techniques used to achieve these goals. 

Designable Example 
Parameters Goals Techniques 

Hard Failures 

MTTF Tolerate Replication 

MTTR Isolate Detection 

Transient Faults 

MTTC Tolerate Detection/Retry 

which increase the design effort and the product 
cost. The goal should be to minimize the cost of 
ownership. 

Ideally, sales forecasts are expressed as a func­
tion of selling price. Thus, the cost of hardware 
affects the sales forecasts and the business 
plan. Reliability (MTTF) and maintainability 
(MTTR) influence the field service plan. The 
sales forecasts affect both the field service and 
business plans. Coupled with the MTTF, 
MTTR, and sales forecasts, the field service plan 
produces the service costs, which further affect 
the business plan. Finally, the business plan 
determines the marketing, manufacturing, and 
field service strategies. Thus, all the components 
interact with and influence one another, and a 
modeling process underlies each component. Be­
cause financial plans vary greatly according to 
markets, and indeed between companies in the 
same market, this book focuses on evaluating 
reliability (see Chapter 5). 

THE DESIGNABLE PARAMETERS 

The designer influences reliability (MTTF), 
availability, and maintainability (MTTR) pa­
rameters in the model space of Figure 1-8. Table 
1-3 illustrates the implication of these parameters 
on the system design. 

With increased customer interest in fault toler­
ance and constantly decreasing hardware costs, 
there is a significant trend to implement more 
fault tolerance in hardware. Hardware error tol­
erance has many advantages: 

• Simplifies recovery for software and user applica-
tions 

• Saves time 
• Provides transparency to the user 
• Increases probability of successful recovery, given 

early detection 
• Decreases MTTR 
• Increases MTTF, MTTE (Mean Time To Error), 

and MITC (Mean Time To Crash) 
• Simplifies software recovery and reduces depend­

ence on implementation 
• Error detection logic can help isolate design errors 

so that future implementations are even more reli­
able. 

The goal of this book is to provide methodolo­
gies for designing and evaluating the use of 
MTTF, MITE, MTTC, and MTTR improve­
ment techniques in computer systems. 

REFERENCES 

Avizienis [1978]; Foley [1979]; Harrahy [1977]; Keller 
[1976]; Queyssac [1979]; Russel [1980]; Siewiorek et 
al. [1978b]; Siewiorek, Bell, and Newell [1982]; von 
Alven [1964]. 



Faults and Their Manifestations 

INTRODUCTION 

Designing a fault-tolerant system requires find­
ing a way to prevent the logical fault that arises 
from a physical failure from causing an error. 
Figure 2-1 depicts the possible sources of an 
error. The following apply [Avizienis, 1975]: 

• Failure. Physical change in hardware. 
• Fault. Erroneous state of hardware or software 

resulting from failures of components, physical inte­
ference from the environment, operator error, or 
incorrect design. 

• Error. Manifestation of a fault within a program or 
data structure. The error may occur some distance 
from the fault site. 

• Permanent. Describes a failure, fault, or error that 
is continuous and stable. In hardware, permanent 
failure reflects an irreversible physical change. The 
word hard is used interchangeably with permanent. 

• Intermittent. Describes a fault or error that is only 
occasionally present due to unstable hardware or 
varying hardware or software states (for example, as 
a function of load or activity). 

· Transient. Describes a fault or error resulting from 
temporary environmental conditions. The word soft 
is used interchangeably with transient. 

A fault can be caused by a physical failure, an 
nadequacy in the design of the system, an 
!nvironmental influence, or the operator of the 
;ystem. A permanent failure may lead to a 
)ermanent fault. Intermittent faults can be 
:aused by unstable, marginally stable, or incor­
'ect designs. Environmental conditions can lead 
o transient faults. All these faults can cause 
:rrors. Incorrect designs and operator mistakes 
an lead directly to errors. 

The distinction between intermittent and tran­
ient faults is not always made in the literature 
Kamal, 1975; Tasar and Tasar, 1977]. The di-

17 
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Unstable 
or Error 
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hardware 

Figure 2-1. Sources of errors. 

viding line is the applicability of repair [Breuer, 
1973; Kamal and Page, 1974; Losq, 1978; Savir, 
1978]. Faults resulting from physical conditions 
of the hardware, incorrect hardware or software 
design, or unstable but repeated environmental 
conditions are potentially detectable and repair­
able by replacement or redesign; faults due to 
temporary environmental conditions, however, 
are incapable of repair because the hardware is 
physically undamaged. It is this attribute of 
transient faults that magnifies their importance. 
Even in the absence of all physical defects, 

Table 2-1. Ratios of transient to permanent errors. 

System/Technology Mechanism 

CMUA PDP-lO, ECL Parity 

Cm* LSI-II, NMOS Diagnostics 

C.vmp TMR LSI-II Crash 

T elettra, TTL Mismatch 

1M X 37 RAM, MOS (Parity) 

including those manifested as intermittent faults, 
errors will still occur. 

Transient and intermittent faults are already a 
major source of errors in systems. An early study 
for the U.S. Air Force [Roth et al., 1967a] 
showed that 80 percent of the electronic failures 
in computers are intermittent. Another study by 
IBM [Ball and Hardie, 1967] indicated that 
"intermittents comprised over 90% of field fail­
ures." Table 2-1 depicts the ratio of measured 
Mean Time Between Errors (MTBE) to Mean 
Time To Failure (MTTF) for several systems 
[Siewiorek et aI., 1978a; Morganti, 1978; 
McConnel, Siewiorek, and Tsao, 1979]. The last 
row of this table is the estimate of permanent 
and transient failure rates for a one-megaword, 
37-bit memory composed of 4K MOS RAMs 
[Geilhufe, 1979; Ohm, 1979]. In this case, tran­
sient errors are caused by alpha particles emitted 
by the decay of trace radioactive particles in the 
semiconductor packaging materials. As they pass 
through the semiconductor material, alpha par­
ticles create sufficient hole-electron pairs to add 
charge to or remove charge from bit cells. By 
exposing MOS RAMs to artificial alpha particle 
sources, the operational life error rate can be 
determined as a function of RAM density (Fig­
ure 2-2), voltage, and cycle time [Brodsky, 1980]. 

Transient errors have also been observed in 
microprocessor chips [Brodsky, 1980]. Transient 

Processor Processor MTBE/ 
MTBE MTTF MTTF 

44 hrs. 800-1,600 hrs. 0.03-0.06 

128 hrs. 4,200 hrs. 0.03 

97-328 hrs. 4,900 hrs. 0.02-0.07 

80-170 hrs. 1,300 hrs. 0.06-0.13 

106 hrs. 1,450 hrs. 0.07 
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Figure 2-2. Measured soft error rates vs. dynamic RAM densities. (© 1979 IEEE.) 

errors will become even more of a problem in the 
future with shrinking device dimensions, lower 
energy levels for indicating logical values, and 
higher-speed operation. 

To design and evaluate the reliability and 
availability of systems requires a fault model. 
How do faults manifest themselves as errors? Do 
the arrival times of faults (or errors) fit a proba­
bility distribution? If so, what are the parameters 
of that distribution? This chapter attempts to 
answer these questions. 

FAULT MANIFESTATIONS 

Physical Defects 

Physical defects are the lowest level in the hier­
archy of failures. There are numerous ways in 
which a semiconductor chip can fail. Some fail­
ures result from defects in the manufacturing 
process. Others are due to stress during normal 
operation. The Reliability Analysis Center 
(RAC) of the Rome Air Development Center 

(RADC) collects reliability data from govern­
ment and industry on all phases of component 
development, assembly, testing, and field opera­
tion. The data are summarized in publications 
dealing with digital ICs, hybrid circuits, linear/ 
interface devices, memory/LSI, discrete transis­
tors/diodes, and nonelectronic parts. 

Summary data are provided on device fall-out 
rates (the percent that fail initial screening), 
accelerated life testing (performed at high tem­
peratures), and field operation. Analysis indi­
cates the effect of package type, logic family, 
complexity, temperature" environment, and 
screening class on failure rates. Detailed infor­
mation, listed in Table 2-2, is also given on each 
individual test of a device. 

Tables 2-3 through 2-7 illustrate some failures 
observed in the RAC data as a function of 
technology [Rickers, 1976; Klein, 1976]. Many of 
the defects are related to manufacture and as­
sembly; others develop as a result of aging. To 
eliminate as many of these defects as possible 
before board insertion, various screening tests 
are employed to stress devices and promote early 
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Table 2-2. Typical data reported in RAe detailed 
test information. 

Device function 

Test type 
Life 
Environmen tal/screening 

Technology 
Bipolar 
MOS 
MOS, silicon gate 
CMOS 

Device complexity 

Manufacturer/part number 

Package material/type 
Ceramic 
Ceramic-metal 
Epoxy 
Silicone 
Phenolic 
CAN 
DIP 
Flat-pack 

Number of pins 

Screening class 
MIL-STD-883 class B 
MIL-STD-883 class C 
Selected screening 
Previously subjected to burn-in 
Previously subjected to environmental test 
Commercial off-the-shelf 

Rated operational temperature 

Ending date of test 

Source of data 
Part-level environmental test 
Equipment-level reliability demonstration test 
Equipment-level checkout and burn-in 
Part-level burn-in 
Part-level life test 

Test type 
Accelerated life (operating) 
Autoclave 
Bond strength 
Burn-in 
Constant acceleration 
Electrical parameter measurement 
Leak 
Electrical measurement (functional) 
High pressure 
Humidity life (nonoperating) 
Intermittent life 
Lead fatigue 
Mechanical shock 
Moisture resistance 
Dynamic operation life 
Operating life (equipment-level) 
Power cycle 
Reverse bias life 
Humidity life with reverse bias 
Salt atmosphere 
Solderability 
Electrical measurement (static parameters) 
Storage life 
Temperature, vibration, and power cycle 
Temperature cycle 
Thermal shock 
Varied frequency vibration 
Visual inspection 
Wearout life test 
X-ray . 

Stress level 
Ambient temperature 
Number of cycles 
Minimum and maximum stresses 

Number of devices tested 

Total number of device hours 

Number of failed devices 

Description of failures 
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Table 2-3. Die-related malfunction summary for LSI device technologies. 

Bipolar MOS CMOS 

Failure No. No. No. 
Classification Devices % Devices % Devices % 

Surface 29 29.00% 78 45.09% 1 20.00% 

Contamination 1 1.00 41 23.70 1 20.00 

Inversion/channeling 15 15.00 1 .58 

Leakage 13 13.00 36 20.81 

Oxide defects 14 14.00 43 24.86 2 40.00 

Pinholes 

Gate oxide 32 18.50 2 40.00 

Field oxide 12 12.00 I .58 

NOC 

Oxide fault/ 
breakdown 2 2.00 IO 5.78 

Diffusion defects I 1.00 17 9.83 

Diffusion anomaly 3 1.74 

Diffusion spike 

Masking fault I 1.00 14 8.09 

Metalization defects 21 21.00 3 1.74 

Open 3 3.00 1 .58 

Short 16 16.00 1 .58 

Pi tted/ corroded I .58 

Smeared/ scra tched 2 2.00 

NOe 

Bond defects 5 5.00 7 4.05 

Misplaced 

Multiple bond 

Smeared/over bonded 

Lifted 4 4.00 7 4.05 

Broken I 1.00 

Intermetallic 
compound 

Interconnection defects 29 29.00 7 4.05 

Open 6 3.47 

Short 28 28.00 I .58 

Missing 

(Table continues on next page) 
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Table 2-3-Continued 

Bipolar MOS CMOS 

Failure No. No. No. 
Classification Devices % Devices % Devices % 

Broken wire I 1.00 

Die (mechanical) 3 1.74 2 40.00 

Cracked/chipped I .58 

Die attach bond 
defect 2 1.16 2 40.00 

Degraded input cktry I 1.00 15 8.64 

Excessive leakage I 1.00 13 7.48 

Short 2 1.16 

Table 2-4. Die-related failure modes: 551, MSI, LSI CMOS. 

SSI MSI LSI 
CMOS CMOS CMOS 

Failure No. No. No. 
Classification Devices % Devices % Deuices % 

Surface defects 26 37% 31 37P1c 8 50O/C 

Con tamina tion 22 31 22 27 8 50 

Foreign material/ 
stray particles 2 2 2 2 

Inversion/ channeling 2 3 5 6 

Surface leakage 2 2 

Bulk defects 2 3 10 12 0 0 

Crystal imperfections I 2 9 II 

Cracked, chipped die 1 2 I 1 

Oxide defects 27 39 21 25 6 38 

Gate oxide pinholes 8 II 2 2 5 31 

Field oxide pinholes 

Oxide fault I I I 6 

(Table continues on next page) 
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Table 2-4-Continued 

SSI MSI LSI 
CMOS CMOS CMOS 

Failure No.' No. No. 
Classification Devices % Devices % Devices % 

Oxide short/ 
breakdown 17 24 17 21 

Glassivation defect 2 2 I I 

Diffusion defects 8 II 2 2 0 0 

Diffusion anomaly 

Diffusion spike/ 
piped junct. 

Isolation defect 

Mask fault 8 II 2 2 

Metalization defects 4 7 8 10 2 12 

Open at oxide step 2 3 

Open at contact 
window 

Open/not specified I 2 4 5 2 13 

Short/in terlevel 
metal 

Short/not specified I I 

Pitted/corroded 

Smeared/scratched I 2 3 4 

Electromigra tion 

Input output circuit 3 4 12 14 0 0 
defects 

Excessive input 
leakage 8 10 

Input circuit short 3 4 2 2 

Excessive output 
leakage 

Output circuit short 2 2 

Total 70 84 16 
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Table 2-5. Die-related defect summary: 551, M51, 
L51 CM05. 

General Deject No. 
Classification Maljunctions Relative Percent 

Surface 65 38% 

Bulk 12 7 

Oxide 54 32 

Diffusion 10 6 

Metalization 14 8 

Input/output 
circuit 15 9 

Oxide (32%) 

Table 2-6. Die-related failure modes: 551, M51, L51 standard TTL. 

SSI STD MSI STD 
TTL TTL 

Failure No. No. 
Classification D.evices % Devices % 

Surface defects 51 20% 10 1 1 (,7c 

! 

Con tamina tion 29 11 5 6 

Foreign material/ 
stray particles 7 3 4 5 

Inversion/channeling 11 4 1 1 

Surface leakage 4 2 

Bulk defects 24 9 5 6 

Crystal imperfections 2 I 3 3 

Cracked, chipped die 22 8 2 2 

Oxide defects 27 10 10 II 

Gate oxide pinholes 

Field oxide pinholes 8 3 6 7 

Oxide fault 19 7 3 3 

Oxide short/ 
breakdown 

Passivation defect 1 0 

Diffusion defects 19 7 13 15 

Diffusion anomaly 4 2 9 10 

Diffusion spike/ 
piped junction 3 1 2 2 

Isolation defect I 0 

Surface (38%) 

LSI STD 
TTL 

No. 
Deuicl!s % 

5 8(};' 

2 3 

1 2 

2 3 

0 0 

22 33 

12 18 

3 4 

5 8 

2 3 

0 0 

(Table continues on next page) 
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SSI STD 
TTL 

Failure No. 
Classification Devices 

Mask fault II 

Metalization defects 136 

Open at oxide step 

Open at contact 
window 85 

Open/not specified I3 

Short/in terlayer 
metal 8 

Short/not specified 22 

Pitted/corroded 5 

Smeared/scratched 3 

Electromigra tion 

Input/output circuit 
defects 5 

Excessive input 
leakage I 

Input circuit short 2 

Excessive output 
leakage 

Output circuit short 2 

Total 262 

Table 2-7. Die-related defect summary: 551, M51, 
L51 standard TTL. 

General Defect No. 
Classification Malfunctions Relative Percent 

Surface 66 16% 

Bulk 29 7 

Oxide 59 14 

Diffusion 32 8 

Metalization 213 51 

Input/output 
circuit 17 4 

% 

4 

52 

33 

5 

3 

8 

2 

I 

2 

0 

1 

1 
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MSI STD LSI STD 
TTL TTL 

No. No. 
Devices % Devices % 

2 2 

38 43 39 59 

4 5 

IO II II 17 

7 8 9 13 
15 17 17 26 

2 2 2 3 

12 14 0 0 

6 7 

4 5 

I I 

1 1 

88 66 

Metalization (51%) 
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failure. The majority of the test types in Table 
2-2 are electrical, mechanical, or environmental 
screens. Table 2-8 illustrates how tests can be 
constructed to uncover multiple defect types. 
Because screening consumes time, money, and 
resources, how much screening is used is a major 
decision. The optimum amount is a function of 
screening costs, device costs, fall-out rate, and 
cost of device failure in an assembled system. 

logic-level Fault Classes 

To determine the effect of failures on logic 
functions, physical data such as those given in 
the previous section must be used to generate 
circuit-level fault classes, which in turn are used 
to formulate logic-level fault classes. The ab-' 
straction process prevents proliferation of de­
tails. The following logic-level fault models have 
been used successfully as abstractions of the 
physical defect mechanisms: 

• Stuck-at. Logical values in lines, gates, pins, and 
the like are permanently constrained to a value of I 
(s-a-I) or 0 (s-a-O). 

• Bridging. Two or more adjacent signal lines are 
physically shorted together. In some logic families 
this introduces an additional "wired-AND" or 
"wired-OR" function. 

• Short or Open. These correspond to missing (open) 
or additional (short) connections. 

• Unidirectional. Due to the geometric nature of cir­
cuits, some single failures can effect multiple signal 
lines. An open circuit in a memory-select line may 
cause a word to be incorrectly read as all Is. The 
multiple bits in error are all in the same logical 
direction (that is, correct Os have been transformed 
into incorrect Is). 

Faults have two other important properties: 
extent and value. The extent of a fault may be an 
independent occurrence (local) affecting a single 
logical variable, or correlated with other simulta­
neous occurrences (related) because of the densi­
ty of logic elements or the failure of a common 
element. The fault value may be determinate 
(such as s-a-l) or indeterminate (for example, 
varies between logical 0 and 1). 

System-level Abstractions 

The manifestations of intermittent and transient 
faults and of incorrect hardware and software 
design are much harder to determine than per­
manent faults. The permanent fault models often 
can be applied to intermittents; however, be­
cause the fault is present only temporarily and 
because most contemporary computer systems 
do not have substantial on-line error detection, 
the normal manifestations of an intermittent are 
at the system level (such as system crash or I/O 
channel retry). Transient faults and incorrect 
designs do not have a well-defined, bounded, 
basic fault model. Transients are a combination 
of local phenomena (such as ground loops, static 
electricity discharges, power lines, and thermal 
distributions) and universal phenomena (such as 
cosmic rays, alpha particles, power supply char­
acteristics, and mechanical design). Even if mod­
els could be developed for transients and incor­
rect designs, they would quickly become obsolete 
because of the rapid changes in technology. 

Consider now the types of system-level mani­
festations that might be expected from intermit­
tent faults, transient faults, and incorrect design. 
The experience reported below, derived from an 
extensive study of system crashes on C.mmp, a 
multiprocessor in which 16 processors converse 
with 16 memories through a crosspoint switch, 
indicate that system-level fault behavior is com­
plex. There is a large gap between logic-level 
fault models and system-level manifestations. 
Much work remains to be done before an accept­
able system level model can be developed. * 

Memory parity failures have, with rare excep­
tion, been the most common failure mode, ac­
counting for 50-100 percent of the system crashes. 
Most are transient, but permanent errors occur 
with regularity. Often the memory failure rate 
had largely determined the Mean-Time-T 0-

Crash (MTTC). 

• The remainder of this section is excerpted and adapte( 
from Siewiorek et aI., 1978a. 



Table 2-8. Screening test summary. 

Screening Tests 

Wafer probe 

Wafer inspection 

Precap inspection 

Stabilization bake 

Thermal cycling 

Thermal shock 

Hermeticity 

Centrifuge 

Mechanical shock 

Vibration 

Burn-in 

Radiographic 

External visual 

Scanning Electron Microscope 
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It is always difficult to locate the source of 
transient failures. Transient failures have been 
an especially large problem on C.mmp, since 
there are few trace points in most data paths. 
Not including powerful debugging aids in the 
logical design has continuously hampered devel­
opment. There was little that could be done for 
the processors, but aids could have been incor­
porated in all the custom-built logic. A similar 
weakness became evident in the software: often 
information about a failure was lost by the 
operating system, making recording of the condi­
tions for transients unreliable. 

A transient failure that has eluded solutions is 
the problem of "false NXMs." The processor 
reports a nonexistent memory (NXM) exception, 
but subsequent analysis shows that the memory 
is responding, and the instruction, registers, and 
index words are well-formed. No exception 
should have resulted. Timing problems are sus­
pected, but there is insufficient information 
available to isolate the failure. 

Other long-standing transient failures are 
stack operation problems. This usually appears 
as an incorrect execution of subroutine calli 
return instructions or interrupt entry/exit mis­
takes. The most common form of the error is 
having one too many (or few) words pushed (or 
popped) from the stack. The transient is rela­
tively rare, and no method of recovering from it 
has been developed. 

A pleasant surprise is the reliability of the 
crosspoint switch; however, an early problem 
required considerable effort to fix. Certain condi­
tions, characterized by a memory access not 
completed by the UNIBUS master, could cause 
the switch to deadlock, due to lack of a time-out 
circuit in the memory port control logic. Any 
other processor attempting to access the dead­
locked memory port would block until manually 
cleared. This situation was often caused by 
poorly designed I/O controllers that recovered 
from errors by simply aborting the current ac­
cess, with no regard for proper termination of 
UNIBUS or crosspoint switch protocols. While 

the known cases that caused deadlocked mem­
ory ports were isolated and individually reme­
died, the most important result was an apprecia­
tion of the design principle of mutual suspicion. 
The crosspoint switch should never trust that an 
operation started will necessarily' be completed; 
it must be prepared to time-out, clear itself, and 
report a failure condition to the requesting pro­
cessor. 

The interprocessor bus is as unreliable as the 
crosspoint switch is trustworthy. The reliability is 
so poor that, if a cheap and highly effective 
method of software recovery hadn't been found, 
the bus would be nearly unusable. The mode of 
failure is transient loss of interprocessor inter­
rupts and changing interrupt level. 

The data presented below were culled from the 
crash reports produced by the C.mmp's operat­
ing system's suspect/monitor crash logging sys­
tem. These dumps must often be manually ana­
lyzed to determine the reason for the crash. 
Sometimes, the reason cannot be found; always, 
the analysis is error-prone. The crash records 
were never intended as a precise reliability meas­
ure. Rather, they are a programmer's and engi­
neer's tool to isolate trouble spots in the system. 
With this caveat in mind, the data may be 
discussed. 

A failure causing a crash may be the result of 
either hardware or software failure. Of the five 
symptoms listed in Table 2-9, only parity failures 
are necessarily caused by hardware. All the 
others may be brought about py either, and 
analysis is required to determine the actual 
cause. The cause of most failures can be deter­
mined, but a substantial number of crashes of 
unknown origin remain. Figure 2-3 restates the 
data from Table 2-9 to show the contribution of 
each of the five classes of errors. 

The error frequency of software-related errors 
is strongly related to the introduction of new 
features. Being new and relatively untested, new 
features are likely to have previously undetected 
faults. Once the feature is installed, any errors 
due to it are usually found and corrected very 



Table 2-9. A summary of eight months of C.mmp crash data. 

July (1) Aug. (2) Sept. (3) Oct. (4) Nov. (5) Dec. (6) Jan. (7) Feb. (8) 
Date 1977 1977 1977 1977 1977 1977 1978 1978 

Uptime (hrs.) 516.6 610.5 513.8 701.9 538.8 595.6 600.2 478.5 
MTBF (hrs.) 5.9 7.6 2.9 9.4 8.7 16.5 15.4 7.3 

Crashes 

User 32 55 38 27 34 18 15 30 
Nonuser 87 80 175 75 62 36 39 66 

Crash Type 

Software 20 7 35 33 34 11 7 16 
Unknown 32 40 14 4 9 7 8 3 
Hardware 35 33 126 38 18 18 24 47 

~ 

> 
Crash Symptom c: 

r 
-l 

System error 24 10 47 46 31 11 9 15 rJ) 

> 
IllInst** 0 3 3 0 2 0 0 z 

13 33 34 3 4 4 10 
0 

No response 10 -l 

NXM 14 13 32 4 9 5 2 14 J: 
tTl 

Parity 32 24 57 17 18 14 18 21 :::0 

3: 
• MTBF = (Uptime)/(nonuser crashes) > 

Z 
•• IllInst = Illegal Instruction 

~ 
tTl 
rJ) 

-l 
> 
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. .. ... .. Total system crashes 
-- Non-user caused crashes 
_._.- Hardware and non-determined crashes 
...... ........ Parity + NXM + no response crashes 
-- Parity error caused crashes 
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Figure 2-3. C.mmp reliability: distribution of 
crashes. 

quickly. Therefore, the trend is bursts of errors, 
with any particular error becoming less frequent 
as time passes. The four months with high soft­
ware error counts all follow this trend, even 
though new faults kept the counts high for 
several consecutive months. 

FAULT DISTRIBUTIONS 

Probability Review 

Before asking whether the arrival times of faults 
fit a probability distribution, we must review 
some probability theory. Central to the study of 
probability is the notion of randomness. A phe­
nomenon is considered random if its future 

behavior is not exactly predictable. Tossing a 
pair of dice or measuring the time between alpha 
particle emissions by a radioactive sample are 
experiments that involve random phenomena. In 
many cases it is more interesting to know the 
value of a number associated with the experi­
ment under observation rather than the actual 
outcome. Thus, there must be a function that 
associates a number with every possible outcome 
of an experiment. Such a function is called a 
random variable. The time between any two 
failures of an electronic component, the number 
of jobs processed by a computer center in one 
day, or the time to the next crash of a time­
sharing system are examples of random varia­
bles. 

For each random variable, X, its Cumulative 
Distribution Function (CDF), F(x), is defined as 

F(x) = P[X < x] (1) 

That is, F(x) is the probability that the event X 
is less than or equal to x. If X is a discrete 
random variable, all its possible values {Xl' x2' 
x3' ... } can be put into one-to-one correspond­
ence with the positive integers. The probability 
mass function (pmf), f(x), is then defined as 

f(x) = p[X = x] (2) 

If X is a continuous random variable, its proba­
bility density function (pdf), f(x), is defined as 

f(x) = dF 
dx 

such that, in general 

(3) 

P < x < b] = lab f(x)dx (4) 

The two most important parameters used to 
describe or summarize the properties of a ran­
dom variable, X, are the mean or expected value 
E {X} and the variance a;. If X is discrete 

E{X} = L xJ(xi ) = x1f(Xl) 
~ ~) 

+x2f(X2) + ... 



while if X is continuous 

E{X} = f-: xJ(x)dx (6) 

The variance is defined as 

a} = E{(x - E{x})2} (7) 

The mean acts as a kind of summary or-what we 
expect from a random variable, and the variance 
measures the deviations of a random variable 
from its mean. The standard deviation ax (the 
square root of the variance) is also used to 
measure the variability of a random variable 
about its mean. 

Two more functions are of particular interest 
in reliability theory. If the random variable un­
der study is the time, T, to the next failure of a 
system or component the Reliability Function, 
R( t), is defined as 

R(t) = I - F(t) 

= P[T > t] 

(8) 

(9) 

R(t) is thus the probability of not observing any 
failure before time t. 

Finally, the hazard function, z(t), is defined as 

J(t) 
z(t) = I - F(t) (to) 

With renewal processes techniques it can be 
;;hown that z(t - T)Llt is the conditional probabil­
lty that the nth failure occurs in the infinitesimal 
Interval [t, t + Llt) given that the (n - l)st point 
)ccurs at time T [Snyder, 1975]. Hence, the units 
)f z(t) are failures/unit time, and z(t) ptovides a 
iescription of how the instantaneous probability 
)f failure evolves in time. 

:xponential Distribution 

[be exponential distribution is the one most 
:ommonly encountered in reliability models. 
[be probability density function (pdf), Cumula­
ive Distributio.n Function (CDF), reliability 
unction, and hazard (failure rate) function of 
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the exponential distribution are shown in Equa­
tions 11 through 14 (for A > 0): 

pdf = J(t) = Ae-'AI (11) 

CDF = F(t) = I - e-At (12) 

Reliability = R(t) = e-'AI (13) 

Hazard function = z(t) = A (14) 

The parameter A is sometimes referred to as 
the Jailure rate because (in reliability theory) it 
describes the rate at which failures occur in time. 

The failure rate, A, is usually assumed to be a 
constant. In reality, A is usually a function of 
time as depicted in the bathtub-shaped curve in 
Figure 1-4. During early life there is a higher 
failure rate, called infant mortality, due to the 
failure of weaker components. Often these infant 
mortalities result from a defect or stress intro­
duced in the manufacturing process. Once the 
infant mortalities are eliminated, the system set­
tles into operational life, in which the failure rate 
is approximately constant. The system then ap­
proaches wearout, in which time and use (such as 
mechanical stress due to temperature cycling, ion 
or metal migration) cause the failure rate to 
increase. For most cases we will assume a con­
stant failure rate. For the exponential distribu­
tion, the mean is 1/A and the standard deviation 
is I/A. 

Weibull Distribution 

The Weibull distribution has two parameters: a 
(the shape parameter) and A (the scale parame­
ter). The probability density function, cumula­
tive distribution function, reliability function, 
and hazard (failure rate) function of the Weibull 
distribution are shown in Equations 15 through 
18 (for a > 0, A > 0): 

pdf = J(t) = aA(Att- 1 e-(At)a (15) 

CDF = F(t) = 1 - e-(At)a (16) 

Reliability = R(t) = e-('At)a (17) 
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Hazard function = z(t) = lXA(Atyx-l (18) 

Note that the values of all these functions de­
pend on time only through the product of the 
scale factor and time, At. 

Because the failure rate is given by (AfYX, the 
shape parameter directly influences the failure 
rate: 

• if a < 1, the failure rate is decreasing with time; 
• if a = 1, the failure rate is constant with time, 

resulting in an exponential distribution; and 
• if a > 1, the failure rate is increasing with time. 

(a = 2 is the special case of a linearly increasing 
failure rate, known as the Rayleigh distribution.) 

For the Weibull distribution, the mean (denot­
ed by JL where JL = E{x}) and standard deviation 
(denoted by (J where (J = (Jx) are defined as 
follows in terms of a and A: 

JL = f«a + l)/a)/A (19) 

(J = [f«a + 2) fa) - f2«a + 1) /a)]l/2 /A (20) 

where the gamma function, few), is given by 

foX pw-l exp(-p)dp. 

The influence of the Weibull parameters on 
the. mean of the distribution is illustrated in 
Figure 2-4. The maximum likelihood estimates of 
the Weibull parameters for the recorded data are 
indicated in the graph (see the section Distribu­
tions for Transients and System Errors below). 
With only the mean and standard deviation 
available, the Weibull failure rate can be deter­
mined to be decreasing, constant, or increasing 
as follows: 

• if ,... < <1, the failure rate is decreasing; 
• if ,... = <1, the failure rate is constant; 
• if u > <1, the failure rate is increasing. 

Geometric Distribution 

If t takes only the discrete times 0, 1, 2, ... , then 
replacing exp[-A] by q and t by n obtains the 
discrete time geometric distribution correspond­
ing to the continuous time exponential distribu-

tion. The probability mass function, (pmf), cu­
mulative distribution function, and reliability 
function of the geometric distribution are shown 
in Equations 21 through 23 (for ° < q < 1): 

pmf = fen) = qn - q(n+l) = qn(l - q) (21) 

CDF = F(n) = 1 - qn (22) 

Reliability = R(n) = qn (23) 

The mean, JL, and standard deviation, (J, of the 
geometric distribution are defined as follows in 
terms of q: 

JL = 1/(1 - q) 

(J = ql/2/(l - q) 

Discrete Weibull Distribution 

(24) 

(25) 

Like the geometric distribution deriving from the 
exponential distribution, the discrete Weibull 
distribution is obtained from the Weibull distri­
bution by substituting q for exp [-Aa

] and n for t 
[Nakagawa and Osaki, 1975]. The probability 
mass function, cumulative distribution function, 
reliability function, and hazard function of the 
discrete Weibull distribution are shown in Equa­
tions 26 through 29 (for ° < q < 1): 

pmf = fen) = qn"(l - q(n+l)"-n
a

) (26) 

CDF = F(n) = 1 - qn
CX 

(27) 

Reliability = R(n) = qn" (28) 

Hazard function = zen) = I - q(n+l)"-n
a (29) 

The mean, JL, of the discrete Weibull function is 
given by 

(30) 

It is very difficult to derive a closed-form 
formula for this sum for any q and a. In this 
book, the geometric distribution and the discrete 
Weibull distribution are used only to approxi­
mate the exponential and Weibull distributions, 
respectively. 
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Figure 2-4. Means of Weibull distributions. 

MATCHING SAMPLED DATA TO 
MATH DISTRIBUTIONS 
Maximum Likelihood Estimators 
After the decision to characterize the failures of 
a given system or component with a particular 
distribution, the problem is to determine (esti­
mate) the values of the parameters of the distri­
bution from experimental data. One of the sim­
plest methods of estimation is that of maximum 
likelihood [Melsa and Cohen, 1978]. Let xn be a 
vector of observed data and let 0 be a vector of 
llnknown parameters. If P(xn 10) is the probabil­
lty of observing xn given the parameters 0, the 
naximum likelihood estimation of 0, 0MV is the 
value of 0 for which P(xn 10) is maximum, that is 

P(XnllJML ) ~ p(xnIO) (31) 

~or any value of 0. 

Assume, for example, that the time to failure is 
described by an exponential distribution. The 
vector 7' = (Tt, T2' .•• ,TN) is a collection of ob­
served times to failure and is needed to compute 
the maximum likelihood value of A in the expo­
nential distribution. The function P(7'1 A) is given 
by 

P(7'IA) = Ae-AT1 X Ae-AT2 X ... X AeATN (32) 

N 

-A ~ Tj + N In A 
j=t (33) 

e 

The function in Equation 33 will be at a maxi­
mum for A = AML . Maximizing the above func­
tion is equivalent to minimizing the function 
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N 

J(A) = A ~ Ti - N In A 
i=1 

Differentiating with respect to A and setting the 
derivative equal to zero obtains the following 
value of A: 

which is equal to the inverse of the sample mean 
time to failure. 

Maximum Likelihood Estimation 
of Wei bull Parameters 

The Maximum Likelihood Estimators (MLE) 
aML and AML for the Weibull distribution satisfy 
the following equations [Thoman, Bain, and 
Antle, 1969]: 

N 

(N/aML) + L In (XML ) 
)=1 

= N X (f XCi...,L X In (x.))/( f X.a\ll) 
)= 1 j j)= 1 j 

(34) 

N 

CAMLY1ML = N / )~1 X/Ml. (35) 

Once the value of the shape parameter is known, 
Equation 35 can be used to calculate the scale 
parameter AM L. Equation 34 can be used to 
derive a difference equation in the form 

aMLi+ 1 
= Function (aMLi'XN ) 

A quickly converging solution can be found by 
using the Newton-Raphson method [Thoman, 
Bain, and Antle, 1969]. The linear estimate of 
aML found by the linear regression analysis 
described below is useful as an initial value for 
the iterative solution process. 

linear Regression Analysis 

Due to the computational complexity of obtain­
ing the MLE values, graphical linear regression 

analysis of the cumulative distribution function 
is often used to fit data to the Wei bull function 
[Berger and Lawrence, 1974]. This technique is 
based on the transformation of the Weibull 
cumulative distribution function (Equation 16) 
into a linear function of In (t): 

In {In [1/(1- F(t))]} = a In (t) + a In (A) (36) 

If the data are from a Weibull distribution, the 
plot should approximate a straight line. The line 
is fitted to the data by applying the method of 
least squares to the transformed points [Miller 
and Freund, 1965]. The slope of the straight line 
is an estimate of a, and the Y-intercept divided 
by the slope is an estimate of In (A). The value of 
the function F(t) is estimated by 

F(t) = (j - 0.5)/N (37) 

If nothing else, the results of linear regression 
analysis are useful as an indication of the desir­
ability of performing the more involved analyses. 

Confidence Intervals 

Point estimates such as those obtained by linear 
regression or maximum likelihood estimation are 
only approximations and rarely match the values 
they are intended to estimate. Because of this, 
interval estimates are often desirable. These are 
intervals that can be asserted with some certainty 
to contain the actual value of the parameter 
under consideration. The most common applica­
tion of this idea is expressed in "confidence 
intervals." For 0 < p < 1, a p-level confidence 
interval is a range within which the actual value 
of the estimated parameter would fall with prob­
ability p, if the experiment were repeated many 
times. That is, to say that a certain range of 
values is a 0.90 confidence interval for a param­
eter is to say that in repeated sampling, 90 
percent of the confidence intervals so construct­
ed would contain the actual parameter values 
[Miller and Freund, 1965]. 



Goodness-of-Fit Tests 

After a distribution has been chosen to describe 
the probabilistic behavior of failures of some 
system and its parameters have been estimated, 
a Goodness-of-Fit Test can give quantitative 
information about the likelihood that the system 
is actually following that distribution. 

In a Chi-Square Goodness-oj-Fit Test, each 
observed value of a random variable is assigned 
to one of k categories, C1, ••• , C k' Given the 
total number of observed values, the expected 
number of observations in each category is com­
puted according to the hypothetical distribution. 
Let OJ and E j be respectively the number of 
observed and expected observations in category 
i. The X2 (chi-square) statistic is given by 

2 ~ (OJ-Ei )2 
X = £.J 

i=l E j 

The number of degrees of freedom of this X2 
itatistic is m = k - n - 1, where n is the num­
ber of parameters that have been estimated from 
the same experimental data that are being used 
tn the test. A level of significance, a, must be 
~hosen such that the probability that a chi­
iquare random variable with m degrees of free­
:lorn will exceed X~ is a. (The values of X~ can ~e 
round in such tables as Pear, 1954.) If X > Xa' 
:he hypothesis that the failures are properly 
;haracterized by the hypothetical distribution 
nust be rejected. Otherwise, the hypothesis is 
lccepted. Finally, it should be noted that all the 
f,'. must be equal to at least 5. To make each 
r/ ~ 5 it may be necessary to pool categories. A CJ1:P' , 

'easonable level of confidence is 0.05. 

:xample 1 

)ata are collected from the file system of a time­
haring system about the times between tr~nsient 
:rrors in eight disk drives in an effort to dIscover 
vhether the time between transient errors fol­
ows an exponential distribution. The estimated 
'alue of A is 0.1344 (time units in minutes) 
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corresponding to a MTBF of about seven min­
utes. 

The total number of observed errors is 877 in 
a five-day interval. Table 2-10 shows both the 
data's division into categories and the expected 
number of errors in each category according to 
an exponential distribution. For instance, the 
first row in the table means that 548 errors were 
observed with times between errors of 0-5 min­
utes while an exponential distribution with A 
= 0.1344 gives the.expected number of errors in 
that range as 429.20 (given that the total number 
of failures is 877). The remaining categories have 
to be pooled until no E j is smaller than 5. The 
result of this operation is shown in Table 2-11. 

The number of degrees of freedom is m = 

8 - 1 - I = 6 because there are eight different 

Table 2-10. Data from transient errors in a time­
sharing file system. 

Category OJ Ej 

0-5 548 429.20 

5-10 148 219.15 

10-15 63 111.89 

15-20 35 57.13 

20-25 28 29.17 

25-30 18 14.89 

30-35 12 7.60 

35-40 6 3.88 
40-45 3 1.98 
45-50 1 1.01 
50-55 3 0.5178 
55-60 2 0.2639 
60-65 0.1347 
65-70 0.06881 
70-75 0.03514 
75-80 0.01794 
80-85 0.009160 
85-90 0.004690 
90-95 0.002395 
95-100 0.001215 

100-105 0.000627 
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Table 2-11. Combining categories from Table 
2-10. 

Category OJ E j (OJ - Ej)2/Ej 

0-5 548 429.20 32.88 
5-10 148 219.15 23.10 

10-15 63 111.89 21.36 
15-20 35 57.13 8.57 
20-25 28 29.17 0.04 
25-30 18 14.89 0.64 
30-35 12 7.60 2.53 
35-00 25 7.93 36.74 

Total X 2 
= 125.86 

categories and one parameter (A) has been esti­
mated from the data. For six degrees of freedom, 
X6.05 = 12.592 .. Since X2 > X6.05' the hypothesis 
that the time between errors has an exponential 
distribution must be rejected. 

Example 2 

The times between crashes of a time-sharing 
system (see Table 2-12) have been recorded for 
one month of system operation. The goal is to 
find whether the distribution of time between 
crashes follows a Weibull distribution. The max­
imum likelihood estimates of the Weibull param­
eters are A = 0.0888, and ex = 0.98 (time units 
in hours) corresponding to a time between crash­
es of about 11 hours. Table 2-12 gives the 
observed counts in several ranges of time be­
tween crashes. 

Mter the pooling of categories so that no Ei is 
smaller than 5, Table 2-13 is obtained. 

The number of degrees of freedom is m = 9 -
2 .....:. 1 = 6. For a X2 random variable with six 
degrees of freedom, X6.05 = 12.592. Because X2 
< X5.05' the hypothesis that the distribution of 
the time to crash is a Weibull is accepted. 

Another Goodness-of-Fit statistical test is the 
Kolmogorov-Smimov. The Kolmogorov-Smir-

Table 2-12. Time between crashes for a time­
sharing system during one month of operation. 

Category (hours) OJ 

0-1 6 
1-2 3 
2-3 5 
3-4 2 
4-5 7 
5-6 5 
6-7 
7-8 1 
8-9 3 
9-10 4 

10-11' 2 
11-12 1 
12-14 2 
14-15 2 
15-16 
16-17 1 
17-18 3 
18-21 
21-24 4 
24-29 1 
29-38 3 
38-75 2 

Table 2-13. Combining categories from Table 
2-12. 

Category 
(OJ - Ej)2/Ej (hours) OJ E j 

0-2 9 9.97 0.09 
2-4 7 8.17 0.16 
4-6 12 6.79 3.97 
6-8 2 5.67 2.37 
8-11 9 6.80 0.70 
11-15 5 6.66 0.41 . 
15-20 5 5.61 0.06 
20-28 6 5.14 0.14 
28-00 5 5.13 0.003 

Total X2 = 7.95 



nov test has been developed for known parame­
ters or for exponential distribution [Lilliefors, 
1969]. If the parameters of the distribution are 
estimated from the experimental data or the 
distribution is not exponential, the Kolmogorov­
Smirnov test may give extremely conservative 
results. 

DISTRIBUTIONS FOR 
PERMANENT FAULTS: 
THE MIL-HDBK-217 MODEL* 

The Reliability Analysis Center has extensively 
studied statistics on electronic component fail­
ures. The data have led to development of a 
widely used reliability model of chip failures, the 
MIL-HDBK-217. A more detailed explanation 
of the model is found in Appendixes D and E. 

For MIL-HDBK-217B, the reliability function 
is assumed to be an exponential with the failure 
rate for a single chip taking the form: 

where 

A = 'TTL 'TTQ(C1 'TTT + C 2 'TT£) 'TTp 

'TTL = a learning factor based on the 
maturity of the fabrication 
process; it assumes a value of 1 
or 10; 

'TTQ = a quality factor based on incom­
ing screening of components; 
values range from 1 to 150; 

'TTT = a temperature factor based on 
the ambient operating temper­
~ture and the type of semicon­
ductor process; values range 
from 0.1 to 1000; 

'TT£ = an environmental factor based 
on the operating environment; 
values range from 0.2 to 10; 
and 

C1, C2TTp = complexity factors, based on the 
number of gates (for random 
logic) or bits (for memory) in 
the component, and the num­
ber of pins. 

• This section was adapted from Siewiorek et aI., 1978a. 

, FAULTSANDTHEIR MANIFESTATIONS 37 

With the rapid rate of technological advance, 
new component types are continually being in­
troduced. In addition, because the learning curve 
for any component type changes as .field experi­
ence accumulates, there is some question of the 
accuracy of MIL-HDBK-217B, particularly with 
regard to newer technologies such as MOS 
RAMs and ROMs. 

Typical component failure rates are in the 
range of 0.1-1.0 per million hours. Thus, tens of 
millions of component hours are required to gain 
statistically significant results. Two separate ap­
proaches can be used to gather sufficient data for 
comparison with the MIL-HDBK-217B model: 
life-cycle testing of components, and analyzing 
field repair information. The following subsec­
tions summarize typical results from each of 
these approaches. 

Life-Cycle Testing and Field Data 

Life-cycle testing involves a small number of 
components in a controlled environment. Fre­
quently, temperature is elevated to accelerate 
failure mechanisms. A translation factor is then 
used to equate one hour at elevated temperature 
to a number of hours at ambient. The translation 
factor is usually derived from ·the Arrhenius 
equation: 

where 
R = reaction rate constant, 
A = a constant, 
Eo = activation energy in electron­

volts, 
K = Boltzmann's constant, and 
T = absolute temperature. 

These accelerating factors are often extrapolated 
into regions (such as ambient temperature oper­
ations) where there are very few corroborating 
data. Because of the exponential in the Arrhen­
ius equation, accelerating factors can become 
quite large. 
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In addition, there is little consensus on the 
appropriate activation energy. Activation ener­
gies of 0.23-1.92 e V have been used. The temper­
ature factor of MIL-HDBK-217B assumes an 
activation energy of 0.41 e V, whereas MIL­
STD-883A (used to qualify components for 
procurement) assumes 1.02 e V. 

Consider conversion from 12SoC to SO°C. The 
ratio of the MIL-STD-883A acceleration factor 
to the MIL-HDBK-217B acceleration factor is 
62. This means a factor of 62 difference in 
predicted failure rate, A, from the same life-cycle 
test data. Figure 2-S depicts the various acceler­
ation factor models. 

Furthermore, the Arrhenius equation assumes 
only one activation energy, and the acceleration 
factor is assumed to be a uniform function of 
temperature. Assuming a straight line (on a 
semilog scale) can result in substantial errors. 
Figure 2-6, from Signetics, illustrates the nonli­
near behavior. 

Consider three test points, ISO°C, 12SoC, and 
8S0C. Drawing a best-fit straight line through 
these points in Figure 2-6 on the 1970 curve 
yields a rate of about 0.0002 at 2SoC, whereas 
the 2SoC observed point is 0.0013, too low by a 
factor of 7. The same three points on the 197 S 
curve suggest a failure rate of 0.06 instead of 
0.0017, too high by a factor of 3S. 

With the MIL-HDBK-217B model, high tem­
perature testing calibrates only the temperature 
portion. The environmental effects of aging and 
mechanical stress are not measured, even though 

. these effects can range from 10 percent (at high 
temperature) to 70 percent (at low temperature) 
of the predicted failure rate. 

One last problem with using high-temperature 
life-cycle testing is that semiconductor manufac­
turers usually lump test data by process (bipolar, 
MOS), thus hindering comparison with the MIL­
HDBK-217B complexity factors. 

Given the problems listed above, data from 
several field sources were combined, using cer­
tain assumptions to establish commonality. First, 
data for chips with a low-level complexity (that 

is, SSI, MSI) will be discussed. These data repre­
sent over 3 billion hours of operation (of which 
137 million were at high temperatures). The data 
sources were: 

• RADC: A list of life-cycle test data as a function 
of device complexity. Most were from high-temper­
ature testing. Some data about test temperatures 
were missing. 

• Signetics: High-temperature testing with data 
lumped by process; some individual test data by 
component number, but usually a small number of 
component-hours. An activation energy of 0.41 e V is 
assumed and calibrated by experiment for bipolar 
component temperature translation. 

• Sanders Associates: Analysis of field data. 

Figure 2-7 was made using a transistor junc­
tion temperature of SO°C, a temperature-acceler­
ating factor corresponding to 0.41' eV activation 
energy, and adding in the MIL-HDBK-217B 
predicted environmental portion. The RADC 
data are raw and were not temperature translat­
ed because a significant percentage did not have 
a test temperature recorded. The two anomalous 
points in the RADC data (at 20 and S8 gates) 
should be treated as suspect because they had 
the least number of test hours-less than a 
million. 

The temperature-translated data in Figure 2-7 
track the MIL-HDBK-217B model generally 
within a factor of 2; the Sanders Associates data 
were in close agreement. 

The Reliability Analysis Center (RAC) of the 
Rome Air Development Center (RADC) has 
also collected field failure rate data. Figure 2-8 
depicts SO collections of field data representing 
SSI and MSI complexity devices from various 
screening classes and operating in various envi­
ronments [Nicholls, 1979]. Altogether 0.921 
X 109 device operating hours and 328 failures are 
represented. For most of the data collections, no 
failures were observed; hence only an upper 80 
percent confidence limit can be plotted. For 
those data sets with observed failures, both the 
upper 80 percent and lower 20 percent confi-
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NOTES: 
Temperature 0Kelvin x 10-3 

1. Calculated from the Signetics failure Rate vs. 
Temperature Graph in [Signetics, 1975]. Signet­
ics uses acceleration factors of 15 (for +85°C), 
100 (for + 150°C), 200 (for 175°C), 350 (for 
+ 200°C), 970 (for + 250°C) and 2100 (for 
+ 300°C) to relate to + 25°C equivalent am­
bient temperature. The + 25°C to + 125°C 
segment of the graph is based primarily on 
operating life data. The segment of the graph 
above + 125°C is based on high temperature 
storage data. The graph equates to an "activa­
tion energy" Ea = 0.41eV. 

2. Calculated from Mll-HDBK-217B, 20 Septem­
ber, 1974. Table 2.1.5.4. for '!T Ti vs Ti values. The 
graph equates to an "activation energy" Ea = 
0.41eV and is applicable to all bipolar digital 
(except ECl) in the normal mode of operation. 

3. Calculated from Mll-HDBK-217B, 20 Septem­
ber, 1974. Table 2.1.5.4. for '!T T, vs. Ti values. The 
graph equates to an "activation energy" Ea = 
0.70eV and is applicable to all MOS, all linear, 

and bipolar ECl devices in the normal modes 
of operation. 

4. Calculated from Mll-STD-883A, 15 November 
1974. Figures 1005-4 and 1015-1 by extrapolat­
ing the time temperature regression graph from 
+ 78°C back to + 25°C. The Mll-STD-88JA 
graph is the Bell Telephone laboratories graph 
(Specification A-8-689143, 161anuary 1974, etc) 
and as such applies to storage and operating T, 
values and primarily surface inversion failure 
mechanisms. The graph equates to an "activa­
tion energy" Ed = l.02eV. 

5. This curved graph is the result of plotting the 
"rule of thumb" that failure rales (hence accel­
eration factors) double for every + t110°C. 

6. All compelitor data (available to Signetics) pro­
duced graphs falling within these two bounda­
ries. The two boundaries equate to "activation 
energies" Ea = 0.23eV (for lower graph) and Ed 
= 1.92eV (for the top graph). 

Figure 2-5. Failure rate acceleration factor vs. temperature graphs: Signetics and others. 
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1968 

Cat. Both (e) 

HTSL 300°C 2.1 2.1 
HTSL 200°C 0.22 0.48 
HTSL 175°C 0.21 0.29 
HTSL 150°C 0.32 0.40 
HTSL & HTOL 125°C 0.088 0.117 
HTOL 85°C 0.022 0.022 
HTOL 25°C 0.0029 0.0038 

NOTE: 
1. The graphs were constructed to aid in the 

analysis and dramatization of the effect of the 
constituent parts of the failure rate equation. 
AI/ tabulated failure rates were obtained from 

1970 1975 

Cat. Both (A) Cat. Both (0) 

2.1 2.1 2.1 2.1 
0.20 0.46 0.2 0.46 
0.20 0.28 0.2 0.28 
0.182 0.20 0.155 0.24 
0.101 0.125 0.110 0.147 
0.013 0.013 0.104 0.160 
0.0011 0.0013 0.0013 0.0017 

[Signetics, 1975] by combining life test data for 
like temperatures. Note that life test results of 
various die process technologies were indis­
criminately summed together for this study. 

Figure 2-6. Assessed failure rate vs. temperature graphs from 1963 to 1975 for 
catastrophic plus degradational failures. 
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Figure 2-7. Data from life-cycle testing. 
(© 1978 IEEE.) 

ience limits were calculated. The MIL­
rIDBK-217B calculated values in general made 
lssumptions leading to optimistic predictions; 
'or example, data from multiple sources operat­
ng in the 26-50°C junction temperature range 
vere treated as one source operating at 26°C. 
-fence the region where the predicted failure rate 
s greater than the observed failure rate has been 
:xaggerated. Of the 50 data collections, 17 (34 
lercent) have predicted failure rates greater than 
tbserved, 7 (14 percent) have predicted failure 
ates equal to observed, and 26 (52 percent) have 
tredicted failure rates less than observed. Of the 
7 data collections with observed failures, 8 (47 
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percent) had a predicted failure rate greater than 
that observed, and 2 (12 percent) a predicted 
failure rate less than that observed. Even given 
the difficulty in gathering enough data to gener­
ate statistically meaningful comparisons, the 
MIL-HDBK-217B model for older technologies, 
such as TTL, SSI, and MSI, appears relatively 
accurate in absolute terms (i.e., within a factor of 
two of observed data). For comparisons between 
designs, then, the MIL model is more than 
adequate for established technologies. 

Now consider chips of LSI complexity, espe­
cially RAMs, and ROMs. The RAM and ROM 
data, which are less extensive, are reproduced in 
Table 2-14 along with a few points of MaS data. 
The Signetics data were temperature-translated 
to 50°C. The total failure rate and temperature­
dependent portion are listed separately to permit 
comparison with high-temperature translated 
test data. The Signetics data with a < symbol 
are upper bounds in cases in which no failures 
were observed . 

For bipolar RAMs and ROMs, the MIL­
HDBK-217B model for total failure rate tracks 
within a factor of two and is generally pessimis­
tic. The temperature portion tracks less precisely. 
It should be noted that the majority of these data 
are from one source (Signetics). 

For MOS RAMs, ROMs, and random logic 
there are even fewer data, but they clearly indi­
cate that the MIL-HDBK-217B model is a factor 
of 16-64 pesslffilstlC. Because the MIL­
HDBK-217B model, published in 1974, was pro­
bably developed on 1972 data, MaS technology 
was probably insufficiently mature when the 
model was developed. 

Many parameters can be altered in MIL­
HDBK-217B to take into account process matu­
rity. For example, the complexity factor could be 
modified with time because, as the process ma­
tures, more complex components are feasible. A 
general rule is that memory doubles in complex­
ity every 1-1.5 years. To make the state-of-the­
art portion of the curve in 1977 correspond to 
that in 1972, the complexity axis (number of bits) 
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Figure 2-8. Digital-TTL integrated circuit observed vs. MIL-HDBK-217B pre- . 
dieted failure rates of SSI (1-10 gates) and MSI (11-25 gates) complexity. 

should be divided by 24 = 16 (that is, a com­
plexity derating factor of 16). This modified 
MIL-HDBK-2l7B model is shown in the last 
column of Table 2-14. The modified MIL­
HDBK-217B model does poorly on bipolar com­
ponents but is within a factor of three on MOS 
components. 

Figure 2-9 compares 32 collections of field 
data on RAM failures with the failure rate 
predicted by the MIL-HDBK-2l7C model 
[Klein, 1979]. Of the 23 data collections with 

observed failures, 17 (74 percent) have a predict­
ed failure rate greater than observed, 5 (22 
percent) have predicted failure rates equal to 
observed, and only 1 (4 percent) has a predicted 
failure rate less than observed. Thirteen (57 
percent) of the data collections have observed 
failure rates more than a factor of 10 less than 
predicted. Eleven of the 13 data sets are lK and 
4K MOS RAMs. The 217B/217C models are 
extremely pessimistic on predicting LSI-espe­
cially MOS LSI-failure rates. 



Table 2-14. ROM, RAM, and LSI life-cycle test data. 

Failure Rate jrom Failure Rate jrom 
MIL Std 217B per MIL Std 217B per 

Failure Rate Failure Rate jrom Million Hours Million Hours 
Observed per Million MIL Std 217B per Reduced by a Factor Reduced by a 
Hours Million Hours oj 16 in Bits Factor oj 64 in Bits 

Part Temperature Temperature Temperature 
Description Source portion Total portion Total portion Total Total 

Bipolar RA M s 
256 bits Sanders 

Associates l.28 0.635 0.113 
256 bits *Signetics 0.078 0.398 0.313 0.635 0.059 0.113 
576 bits *Signetics <0.544 <0.797 0.511 l.000 0.096 0.173 
lK bits *Signetics 0.068 0.852 0.723 l.51 0.267 0.136 

Bipolar ROMs 
256 bits *Signetics <0.44 <0.668 0.179 0.363 0.034 0.064 
lK bits *Signetics 0.211 0.659 0.414 0.865 0.078 0.153 
2K bits *Signetics l.75 2.45 0.629 l.33 0.118 0.236 
4K bits *Signetics 0.053 l.173 0.955 2.06 0.179 0.364 

Schottky PROMs ." 
>-

256 bits uRAe 0.073 0.265 0.179 0.363 0.034 0.064 c 
lK bits uRAe l.14 1.588 0.414 0.865 0.078 0.153 l 

-l 
[j) 

MOS RAMs >-z 
lK bits Sanders 0 

Associates 0.194 2.504 0.454 0.193 -l 
:r: 

MOS ROMs 
tTl 

:::0 
lK bits Sanders ~ 

Associates 0.078 1.433 0.26 0.111 >-z 
M OS Random Logic ." 

tTl 
8080 Micro- [j) 

uRAe 0.418 0.616 0.293 
-l 

processor >-
-l 

* Temperature translation to 50°C 
(5 
z 

** Reliability Analysis Center, RADC C/) 

"'" (.o.j 
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Figure 2-9. Random access memory (RAM) observed failure rates vs. MIL­
HDBK-217C predicted failure rates. 

Analysis of Permanent Failure 
Data: Estimating the Distribution 
and Its Parameters 

Information about total systems can be analyzed 
and then broken down into failure rate by com­
ponents. The major difficulties in this approach 
are lack of control over the environments of the 
systems and incomplete data. Various systems 
have different configurations and are subjected 
to different operating environments, tempera­
tures, and duty cycles. In addition, current repair 

practices do not lend themselves to component­
level data analysis. Typically, a field engineer 
will fix a system by board replacement. The 
boards are then sent to a repair depot, where 
they lose their identities and where repair actions 
are often not recorded. Furthermore, the repair 
activity may induce additional or future failures 
when the boards return to the field. 

With careful planning and documentation, 
however, these difficulties can be overcome. In 
one case, permanent failure data from the Cm* 
multiprocessor were collected and the Mean 



Time To Failure (MTTF) was calculated assum­
ing that failures were independent [Bellis, 1978]. 
The MTTF was obtained by dividing the total 
time by the total errors. Because of the small 
number of failures per module, a concept called 
"module time" was introduced. Module time 
allows data from all modules to be combined. If 
there are k modules running during a period of 
time, then 

k 

module time = ~ ti 
i=l 

where ti is the amount of time the ith module was 
working. Assuming that all modules of a type are 
identical, then the failures that were recorded in 
real time can be transferred to a "typical" mod­
ule in module time. Table 2-15 depicts the mod­
ule time data for Cm*. The complexity in chips 
referenced in the table is a measure of the actual 
utilization of chips per module. In the DEC 
LSI-II, the actual number of chip sockets used is 
76, of which 72 contain digital ICs. The number 
of chips used is recorded as 68, which implies 
that the unused functions add up to 4 chips. 

The next step was to determine the failure 
distribution from the data. There are two basic 
approaches. The first is to determine the instan-

Table 2-15. Failure data on Cm*. 

Complexity #oJ 
Module (Chips) Modules 

K.bus 138 3 
P.map 106 3 
M.micro 116 6 
M.data 142 3 
L.ine 116 3 

LSI-II 68 14 
S.loeal 126 10 
4K memory 56 21 
16K memory 104 10 
Slu 28 17 
Power board 6 16 
Refresh 14 16 

Source: [Siewiorek et aI., 1978aJ. 
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taneous failure rate or hazard function, which 
indicates the failure distribution. The second 
method is to use statistical tests to differentiate 
between distributions. 

The following equation is used for plotting a 
piecewise linear graph of the hazard function: 

( ) 
_ (n(t) - n(t + ~t)) /n(t) 

z t - ~t 

The number of survivors at any time is given by 
n(t). The choice of ~t is not specified and is 
occasionally chosen to end just after each failure. 
Another method of choosing the size of ~t, that 
smooths out the curve, is to divide the total time 
into equal intervals. The number of intervals is 
given by the following equation [Sturges, 1926]: 

k = I + 3.3 10gIOM 

where k is the number of intervals and M is the 
number of failures. This latter method was used 
for plotting data on the modules. 

Data for these hazard calculations are com­
monly obtained through life tests. The data 
obtained from Cm* differed from those of a life 
test in that, when a failure was detected in a 
module, the module was repaired and put back 
into operation. Thus, some components in the 

Total Time Total MTTF 
(Hours) Failure (Hours) 

36696 8 4587 
37416 12 3118 
68328 4 17082 
37080 2 18540 
22608 0 

163200 10 16320 
120720 5 24144 
260568 5 52003.6 
122280 5 24456 
223248 5 44649.6 
195456 3 65152 
162912 0 
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module were starting their operational life, 
whereas others were in intermediate stages. A 
second difference is that various modules had 
different amounts of operating time. Due to the 
few failures detected and the small number of 
modules being tested, all the failure data must be 
used. To accommodate the data on Cm*, a 
replacement assumption is necessary. 

The replacement assumption postulates that a 
repaired module can be considered new. The 
concept of module time described above is then 
used along with this assumption to make effec­
tive use of the small amount of data available. 
F or example, consider the case of some set of 
modules, {~}. Each time some ~ fails, it is 
repaired and considered new in accordance with 
the replacement assumption. The ith incarnation 
of M j can be considered a new "virtual" module, 
Mj,j' which has a lifetime of tj,j until it fails and 
is in turn reincarnated as the new virtual module 
~',j+ 1 • Thus, at any given time, the set of virtual 
modules {~.,j} is such that each member of the 
set either has suffered an incapacitating failure 
or has not failed at all. Module time for this set 
is then given by: 

t = Lt .. m ., l,} 
l,} 

A "typical" virtual module of the set {Mj } is then 
assumed to have been in use for time tm and to 
have suffered the same number of failures as the 
set {M;}, taken as a whole. The hazard function 
expression previously mentioned is then rede­
fined as follows: 

z(t) = F(t, t + tlt) /n(t) 
tlt 

where F(t, t + tlt) is the number of failures be­
tween time t and time t + tlt. For these cases, 
n(t) is always equal to one, that is, the "typical" 
module. 

There were only enough data on the modules 
to construct four rough hazard functions. Figure 
2-10 shows the modules known as the P.map, 
K.bus, LSI-ll, and the total system. 

1) 
Interval = 309.8 days 

7 

3 
2 

P.map 

2) 
Interval = 382.25 days 

3 

K.bus 

3) 
Interval = 1700 days 

4 
3 
2 
1 

LSI-11 

4) 10 

8 -------------
6 
5 

Interval = 50.6 days 

Cm* system 

Figure 2-10. Hazard curves for P.map, K.bus, 
LSI-11, and the Cm* system. (© 1978 IEEE.) 

The graph of the P.map exhibits a decreasing 
hazard function. This indicates a problem with 
infant mortality; 9 of the 12 failures on the 
P.map were attributed to one chip type, the 
74373. The K.bus displays a constant or slightly 
decreasing hazard function. Assuming it to be 
constant, its value would be around two failures 
per 382.25 days, which corresponds to an MTTF 



of about 191 days. The LSI-II curve indicates. a 
constant hazard function of 2.5 failures per 1,700 
days, or an MTTF of 680 days. The final hazard 
function depicted is that of the system using all 
the modules. It is plotted using the first 304 days 
after commissioning all modules. Over this peri­
od, an MTTF of 155.2 hours is indicated. 

The MTTFs presented in Table 2-15 were 
calculated by dividing the total time by the 
number of failures. In the case of a constant 
hazard rate, the MTTF was calculated by divid­
ing the length of an interval by the average 
number of failures per interval. That these two 
calculations are equivalent can be seen from: 

MTTF for constant hazard rate 

= (length of interval) / (average 

failures per interval) 

= (length of interval) / (total 

failures)/(number of intervals) 

= (total time) / (total failures) 

= MTTF from Table 2-15 

The results presented have been inconclusive in 
predicting the failure distribution. An exponen-
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tial distribution is plausible, but a better test for 
the data is needed. To accomplish this, the data 
should be refitted to a generalized· distribution 
that has the exponential as a special case, such as 
the Weibull. Table 2-16 presents the maximum 
likelihood estimate for a and the 95 percent and 
68 percent confidence intervals on a for the 
various modules. 

The data in Table 2-16 indicate a wide spread 
in the maximum likelihood estimates of a, but in 
all but two cases, a = 1 is enclosed in the 95 
percent confidence interval. The 68 percent con­
fidence interval is able to enclose a = 1 for only 
half the modules. This means that, although an 
exponential failure distribution is plausible, ac­
tual data present enough variation that the im­
pact of an exponential failure assumption on the 
system should be examined. It should be empha­
sized that the parameters above were estimated 
using a small number of data points. 

Table 2-17 gives the Maximum Likelihood 
Estimator (MLE) of A and its 50 percent confi­
dence interval assuming the failure distributions 
are exponential. Again, it should be emphasized 
that this analysis has been based on a small 
number of failures. 

Table 2-16. Estimated parameters of the Weibull from failure data. 

95% Confidence 68% Confidence 
Interval on Interval on 

Module a a(a ± 1.96 ya2(a» a(a ± ya2(a)) 

K.bus 0.721 0.30 : 1.15 0.50 : 0.94 
P.map 0.537 0.29 : 0.79 0.41 : 0.66 
M.micro 1.264 0.23 2.30 0.73 : 1.79 
M.data 0.344 0.0 0.79 0.12 : 0.57 

LSI-ll 0.915 0.41 1.42 0.66 : 1.17 
S.local 0.584 0.1 1.07 0.34 : 0.83 
4K memory 1.320 0.28 2.36 0.79 : 1.85 
16K memory 1.945 0.40 : 3.50 1.15 : 2.74 
Slu 1.348 0.25 3.08 0.79 : 1.91 
Power board 1.295 0.0 : 2.67 0.59 : 2.00 

Source: [Siewiorek et aI., 1978a). 
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.Table 2-17. Calculated failure rates from data on Cm* . 

A 
Module (Fail/106 Hr) 

K.bus 218 
P.map 320.7 
M.miero 58.5 
M.data 53.9 
L.ine 

LSI-ll 61.3 
S.loeal 41.4 
4K memory 19.2 
16K memory 40.9 
Slu 22.4 
Power board 15.3 
Refresh 

Source: [Siewiorek et aI., 1978a]. 

Four variants of the MIL-HDBK-217B model 
were selected for comparison with actual data: 
quality factors of 16 and 150, and LSI chip 
complexity de ratings of 1 and 16. The predicted 
failure rates are shown in Table 2-18. The results 
of comparing the data with various parameter 
changes are shown in Table 2-19. They consist of 

MTTF . 50% Confidence Interval 
(Hours) (on MTTF) 

4587 3397.8 6167.4 
3118 2461.6 3938.5 

17082 10932.5 26953.9 
18540 9459.2 38625.0 

16320 12553.9 21058.1 
24144 16313.5 35822.0 
52113.6 35211.9 77319.9 
24456 16524.3 36284.9 
44649.6 30168.7 66245.7 
65152 38324.7 113307.8 

the observed failure rate, the best-fitting variant 
of the MIL-HDBK-217B model examined, and 
its associated failure rate prediction. This table 
indicates that the modules tend toward a derat­
ing of the complexity of MOS chips by a factor 
of 16. This result coincides with the conclusion 
from life-cycle test data mentioned earlier. 

Table 2-18. Predicted failure rates for Cm* components. 

Quality Factor/Derating Factor 

Complexity 
Module (Chips) 16/16 16/1 150/1 150/16 

K.bus 138 44.1 53.3 499.3 413 
P.map 106 35.6 39.6 371.7 333.7 
M.miero 116 26.6 128.3 1203 249.2 
M.data 142 35.4 146.5 1373.8 332.4 
L.ine 116 35.5 75.1 704.6 332.8 

LSI-II 68 29.9 379350.8 35568289.0 280.3 
S.loeal 126 27.4 31.8 298.4 256.8 
4K memory 56 23.1 99.8 936 216.9 
16K memory 104 74.1 380.9 3571.1 694.7 
Slu 28 4.7 8.7 81.6 43.9 
Power board 6 0.97 0.97 9.1 9.1 
Refresh 14 2.6 2.6 24.9 24.9 

Source: [Siewiorek et aI., 1978a]. 



Table 2-19. Results of maximum likelihood ratio 
test. 

Failure Predicted 
Module Rate Best Fit Failure Rate 

K.bus 218 Q = 150/16 413 
P.map 320.7 Q = 150/16 333.7 
M.miero 58.5 Q = 16/16 26.6 
M.data 53.9 Q = 16/16 35.4 
L.ine 

LSI-II 61.3 Q = 16/16 29.9 
S.loeal 41.4 Q = 16/1 31.8 
4K memory 19.2 Q = 16/16 23.1 
16K memory 40.9 Q = 16/16 74.1 
Slu 22.4 Q = 150/16 43.9 
Power board 15.3 Q = 150/16 9.1 
Refresh 

Source: [Siewiorek et aI., 1978a). 

The data on the P.map indicate a quality 
factor of 150, with a derating factor of 16. As 
was noted above, 9 of the 12 failures were 
attributed to a single chip type. There are seven 
of these chips in each of the three P.maps. The 
MIL-HDBK-217B model predicts that 6.7 per­
cent of failures for the P.map will be due to this 
chip. The failure rate observed for the 74373s in 
the P.map was 9 failures in 37,416 hours, or 240.5 
failures per million hours (fpmh). This corre­
sponds to a quality factor for the 74373s of 516, 
which suggests a possible bad batch of chips. 
Using only the other failures to calculate a 
failure rate results in 80.2 fpmh. This corre­
sponds to a quality factor of 36, which is indeed 
between 150 and 16. 

The S.local module is best fit by a quality 
factor of 16. If a derating of 16 is assumed, then 
the quality factor for the S.locallies between 150 
and 16. In fact, all but the memory boards Gust 
under 16) and the power boards Gust over 150) 
lie within the range of 16 to 150. In general, 
industrially produced components indicate a 
quality factor close to 16. 
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The expected failure rate for a system com­
posed of all the modules using their best fit 
prediction from Table 2-19 is 5360.5 fpmh. This 
is equivalent to an MTTF of 186.5 hours, which 
may be compared to the MTTF of 155.2 hours 
derived from the hazard curve in Figure 2-10. 

MIL-HDBK-217 is constantly being updated, 
and a version called MIL-HDBK-217C is now 
available. It is described in more detail in Ap­
pendix E. 

AUTOMATED FAILURE RATE 
CALCULATION 

Two computer programs, AUTOFAIL and 
FAIL (for MIL-HDBK-217B and MIL­
HDBK-217C, respectively), have been written 
[Elkind, 1980a] that simplify the procedure of 
computing a system's failure rate. A system may 
be described to the programs in the form of a list 
of chips and/or subsystems, which can be like­
wise recursively nested. Table 2-20 is the input 
description of the DEC LSI-ll microcomputer. 
Parameters such as the various MIL-HDBK-217 
factors can be modified to obtain a sensitivity 
analysis. The format of this file is: 

[Module name 

Body] 

where Body is a listing of all the component 
chips and submodules. A chip is identified by an 
integer specifying the number of chips of this 
type used or by an integer followed by an F, 
specifying the number of functions (such as 
NAND-gates) of this chip type that were used. 
This is then followed by a comma and the name 
of the chip. Submodules are constructed on the 
same format as modules. 

Table 2-21 is a listing of the output for the 
LSI-II produced by AUTOF AIL. The top line 
presents the values of the various derating fac­
tors used. The model parameters are on the 
following line. The failure rates for the LSI-II 
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Table 2-20. LSI-11 input file for AUTOFAIL, FAIL. 

[LSI=l1 
[SPEC IAL .FUNCTIONS 

2F ,DM8641 
3F ,7474 
1 ,7442 
5F,7404 
1F,7400] 

[BUS .ARB ITRA TI ON. LOG I C 
1F.7400 
IF ,DM8837 
3F,7474 
1F,DM8641] 

[INTERRUPT .CONTROL .AND .RESET. LOGIC 
4F ,7404 
4F,7474 
2F ,DM8641 
2F,7400 
5F ,DM8837 
1F,7405 
1F,74I74] 

[CLOCK. PULSE. GENERATOR 
1F,7400 
IF,74140 
2F ,7474 
1F,74139 
6F ,7404 
4F ,MH0026] 

[ROM. CHIPS 
3 ,CPI631B] 

[DATA.CHIP 
1 ,CPI611B] 

Source: [Siewiorek et aI., 1978a]. 

Table 2-21. Output from AUTOFAIL for LSI-11. 

[CONTROL.CHIP 
1 , CP1621B] 

[BUS. DR IVERS .AND. RECEI VERS 
4 ,74257 
4 ,DM8641 
1F,DM8641 
4F , 7411 
2F,7405] 

[MEMORY 
16,MK4096] 

[BUS. I 10 .CONTROL. LOG IC 
IF, 7497, 
7F,7400 
7F ,7404 
2F,7411 
4F ,7474 
5F,7410 
5F ,DM8641 
IF,DM8837] 

[I/O.BUS.MEM.READ.DATA.MUX 
4F,7475 
2F,74257 
3F,7410 
3F ,7400 
2F , 74140 
2F,7405 
2F , 74107] 

[FAST.DIN.MUX 
1F,74257 
1F,7400 
IF, 7404]] 

lsi11.rel(x330ds73) LSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 

MODULE 

1.000 Q= 16.000 L = 1.000 T = 25.000 

LSI11 
SPECIAL.FUNCTIONS 
BUS .ARB ITRATION. LOGIC 
INTERRUPT .CONTROL .AND. RESET. LOG IC 
CLOCK.PULSE.GENERATOR 
ROM.CHIPS 
DATA.CHIP 
CONTROL-CHIP 
BUS.DRIVERS.AND.RECEIVERS 
MEMORY 
BUS. 1/0 .CONTROL. LOGIC 
I/O.BUS.MEM.READ.DATA.MUX 
FAST.DIN.MUX 

FAILURE RATE 

29.893 
.669 
.350 
.776 
.851 

3.413 
1.160 
1.160 
1.588 

16.991 
1.500 
1.195 

.241 

PERCENTAGE 

100.000 
2.237 
1.172 
2.596 
2.847 

11.416 
3.880 
3.880 
5.314 

56.837 
5.019 
3.999 

.805 

# of chips = 68.917 # of gates = 7145.083 # of bits = 99328.000 

TYPE # OF CHIPS FAILURE RATES PERCENTAGE 

SSI 
MSI 
LSI 
ROM 
RAM 
MOS 
BIP 

Source: [Siewiorek et aI., 1978a]. 

37.250 
10.667 

2.000 
3.000 

16.000 
21.000 
47.917 

4.899 16.387 
2.272 7.600 
2.320 7.760 
3.413 11.416 

16.991 56.837 
22.723 76.013 

7.171 23.987 



and the sub modules are shown with the percent­
age of the failure rate for each module that is 
attributed to each submodule. In the case of 
partially used chips, AUTOFAIL prorates the 
chip failure rate by the fraction of the total 
number of functions used. It is sometimes desir­
able to examine the behavior of a particular chip 
or chip type. The lower table provides this ability 
by listing the number of chips, failure rates, and 
percentages for the different chip types. 

The parameters of the MIL-HDBK-217 model 
can be varied by subsystem or even chip type, so 
that variations in ambient temperature (such as a 
board near a power supply) or technology (such 
as a new chip for which all parameters are not 
known) can be modeled. At the chip level, it is 
also possible to modify the number of devices on 
a chip to gauge the effect of the size of the new 
chip type on the design. Furthermore, individual 
chip type or entire chip class (RAM, MOS, LSI) 
can be arbitrarily assigned any complexity derat­
ing factors in order to test the sensitivity of the 
system failure rate as a function of the unknown 
parameter. 

DISTRIBUTIONS FOR 
TRANSIENTS AND SYSTEM 
ERRORS 

Data Collection 

PDP-10 

The main source of transient data error for this 
;tudy [McConnel, 1980] is a set of four main­
~rame time-sharing computers operated by Car­
legie-Mellon University. One is a large DECsys­
:em-IO (PDP-IO) that supports research in the 
:omputer Science Department. The other three 
lre DECSYSTEM-20s used by the university's 
::omputation Center for administrative and edu­
:ational needs. Memory sizes on these machines 
ange from 256 K words to 1 M word, and disk 
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storage capacity ranges between 528 and 1,600 
Mbytes. 

The core of the PDP-IO error-reporting system 
is the on-line error log file maintained by the 
TOPS-IO and TOPS-20 operating systems. En­
tries are made in this file for a variety of reasons, 
most notably system reloads and memory and 
I/O errors [DEC, 1978]. Each entry contains the 
date and time at which the error occurred, the 
processor serial !lumber, and the type of error or 
other condition being reported. 

To facilitate statistical analysis of transient 
errors on PDP-lOs, a program named SEADS 
(Statistical Error Analysis Data Summary) has 
been written. It derives interarrival times and 
time-of-day distributions from the system error 
log files. The outputs generated include the fol­
lowing: 

• Lower-bound estimates of system availabilities, in 
total and for each file processed; 

• Graphs of the time-of-day distribution of entries, 
divided into 48 half-hour segments; 

• Graphs of the distributions of interarrival times for 
all entries in total, for each entry individually, and 
for arbitrary sets of entries; and 

• Data files containing the time-of-day distributions 
and the lists of interarrival times and error types. 

Examples of the first three types of outputs are 
shown in Table 2-22 and Figures 2-11 and 2-12. 

L51-11 

In addition to the PDP-IO system error log files, 
data were also collected from Cm* and C.vmp, 
an experimental triplicated microprocessor. The 
data for Cm* were collected by recording tran­
sient errors detected by failures in one of the 
several diagnostic programs executed contin­
uously on idle processors. The data for C.vmp 
were collected by recording all crashes not 
traced to hard failures. Both these systems are 
described fully in the literature [Siewiorek, Cane­
pa, and Clark, 1977; Siewiorek et aI., 1978a; 
Swan, Fuller, and Siewiorek, 1977]. 
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Table 2-22. Sample file/availability output from SEADS. 

SEADS VERSION 3A(lOO) ERROR FILE ANALYSIS 

COUNT OF BAD TIME ERRORS: 0 

TOTAL NUMBER OF ENTRIES FOR ALL INPUT FILES: 16445 
TIME SPAN: 1542 HRS., FROM: 17-Feb-79 5:03:11 TO: 1B-May-79 11:30:59 
APPROXIMATE SYSTEM AVAILABILITY: O.B77 

I 
SYSTEM #2149 NUMBER OF ENTR I ES: 344 
TIME SPAN: 170 HRS., FROM: 17-Feb-79 5:03:11 TO: 1B-Feb-79 7:30:06 
APPROXIMATE SYSTEM AVAILAB ILITY: 0.9B7 

SYSTEM #2227 NUMBER OF ENTRIES: 2045 
TIME SPAN: 150 HRS., FROM: 24-Feb-79 22:22:0B TO: 3-Mar-79 5:09:59 
APPROXIMATE SYSTEM AVAILABILITY: 0.947 

SYSTEM #2326 NUMBER OF ENTRIES: 1149 
TIME SPAN: 140 HRS., FROM: 3-Mar-79 5:43:04 TO: 9-Mar-79 1:55:27 
APPROXIMATE SYSTEM AVAILABILITY: 0.B94 

SYSTEM #10BO NUMBER OF ENTRIES: 12907 
TIME SPAN: lOBI HRS., FROM: 3-Apr-79 10:01 :24 TO: 1B-May-79 11: 30: 59 
APPROXIMATE SYSTEM AVAILABILITY: 0.B47 

Source: [McConnel, Siewiorek, Tsao, 1979]. 

Events recorded 

System reloaded 
Non-reload monitor error 
CPU NXM error 
Data channel error 
Disk unit error 
Magtape statistics 
KL 10 data parity interrupt 
KL 10 data parity trap 
TOPS20 system reloaded 

TOPS20 bughlt-bugchk 
Massbus device error 
Front end device report 
Front end reloaded 
Processor parity trap 
Processor parity interrupt 
NETCON started 
Network down-line load 
Network up-line dump 
Network line stats 
DN64 statistics 

Distribution by time of day (0:00-23:30) 

4,553 

4,239 

3,925 

3,611 

3,297 

2,983 

2,669 

2,355 

2,041 

1,099 

785 

471 

157 

Maximum value: 4782 Scale factor: 157 Number of entries: 88258 

o 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 

Figure 2-11. Sample time-of-day distribution output from SEADS. 

Source: [McConnel, Siewiorek, Tsao, 1979]. 
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Distribution of interarrival times 
Smallest allowed interarrival time is 0.00 sec. 
Minimum value: 0.00 sec. Maximum value: 4.1"16 days Time interval: 3.00 hours 

Mode "bucket #": 1 
Number of entries: 240 

Mean time: 10.99 hours Standard deviation: 15.78 hours 
Maximum value: 103 Scale factor: 3 
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Figure 2-12. Sample interarrival time distribution output from SEADS. 

Graphical Data Analysis* 

The interarrival data can be plotted as a histo­
gram to form an approximation of the probabil­
ity density function of transient errors. This is 
useful in deciding initially on which distributions 
to study. The obvious skew toward the low end 
for all the data collected on these systems indi­
cate that the Weibull distribution should be 
used. 

System reloads were chosen as being likely due 
to transient errors, because reloads are common­
ly caused by crashes, and in systems with stable 
hardware and matured software, the most fre­
quent cause of crashes appears to be transient 
;!rrors. 

The data generated by SEADS make it clear 
that the PDP-IO systems frequently recorded 

, This section is adapted from McConnel, Siewiorek, and 
Tsao, 1979. 

several errors for one fault. To mask out the 
effects of this, error entries within five minutes of 
a previous entry were counted as a part of the 
previous fault. The software allowed any choice 
for the threshold, facilitating examination of the 
sensitivity of the data to threshold values. 
(Threshold values of one minute and ten minutes 
were also tried without changing the results 
presented here.) 

Two groups of system reload data are present­
ed, one from the individual system (TOPSC) that 
had the most complete data, the second from all 
four systems. Figures 2-13 and 2-14 show histo­
grams of the distributions of the interarrival 
times for system reloads on TOPSC and for all 
four systems, overlaid with the MLE Weibull 
probability density function. Figures 2-15 and 
2-16 show the plots of the TOPSC and overall 
PDP-I0 reload data using the transformation of 
the Wei bull into a linear distribution given by 
Equation 36. 
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Figure 2-14. Distribution of PDP-10 system reloads. 
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Figure 2-17. Distribution of PDP-10 parity interrupts. 

The second class of events likely to reflect 
transient errors in the PDP-I0 data was the 
memory parity error interrupt. Except in the case 
of failing devices that cause intermittent, and 
finally permanent, faults, these are always the 
re.sult of transient faults in the memory system. 
Flgures 2-17 and 2-18 show the inter arrival dis­
tribution and the Weibull plot of the data. In this 
case, because too few data points were collected 
from anyone of the four systems to be statisti­
cally significant, only the total data for all four 
systems are shown. 

Figures 2-19 and 2-20 show the adjusted histo­
grams of the interarrivals for Cm* and C.vmp, 
respectively. Figures 2-21 and 2-22 are plots of 
the interarrival data for each system's transient 
errors, drawn according to the linearizing trans­
formation of Equation 36. The linearity of the 
data shows that the samples follow a Wei bull 
distribution. 

Confidence Intervals for the 
Parameters 

Table 2-23 lists some general statistics about the 
interarrival times for the five sets of data: 
TOPSC reloads, PDP-I0 reloads, PDP-IO parity 
errors, C.vmp crashes, and Cm* transient errors. 
In all cases, the mean is less than the standard 
deviation, indicating a decreasing failure rate. 

Confidence intervals of 90 percent for a and A 
were generated for the last three sets using 
methods developed in Thoman, Bain, and Antle 
[1969]. The values are listed in Table 2-24. Note 
that the range of values for a does not include 
1.0 (the exponential distribution) for any of the 
three sets of data. 

Goodness-of-Fit Tests 

To confirm the impression from the Weibull 
plots that the data collected on transient errors 
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2 
Linear regression fit to data 

Ln of data (hrs.) 

-1 

--~ 

-6 

Figure 2-18. Weibull plot of PDP-l0 parity interrupts. 

or the various systems are in fact Weibull, a chi­
quare goodness-of-fit test was performed on 
'ach of the five sets of data. The results are given 
tl Table 2-25. The high P-Ievels for each set of 
lata show very good fits to the Weibull distribu­
lon. 

To complete the testing procedure, a chi­
:J.uare test was done for each of the five sets of 
ata, assuming an exponential distribution. The 
::>mparison of these results is shown in Table 
·26. Although the exponential hypothesis fits 
le data fairly well in a few cases, the Weibull 
ts better in every case. 

UMMARY 

)urces of errors were traced to their origins in 
udware, software, environment, design, and 
lman mistakes. The predominance of transient 
Id intermittent faults was demonstrated. Error 

manifestations were discussed at both the com­
ponent and the system level. The mathematics 
governing the two major statistical fault distribu­
tions (exponential and Weibull) were introduced, 
along with maximum likelihood, regression, con­
fidence interval, and goodness-of-fit tests. 

Permanent faults were shown to follow an 
exponential distribution with the failure rate 
parameter, A, predictable by the MIL­
HDBK-217 model. Some pitfalls in accelerated 
temperature testing were illustrated. 

Transients and system-level error manifesta­
tions (observed over 17,700 hours) follow a 
Weibull distribution across a wide range of sys­
tem size and redundancy. 

The mathematical techniques introduced in 
the analysis of permanent and transient faults 
can be used by the interested reader to confirm 
fault distributions and/or estimate parameters of 
the fault distributions for more accurate reliabil­
ity evaluation. 
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Figure 2-19. Distribution of Cm* transient errors. 
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Figure 2-20. Distribution of C.vmp crashes. 
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Figure 2-21. Weibull plot of Cm* transient errors. 
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Table 2-23. Statistics for transient errors. 

TOPSC PDP-10 PDP-10 
Reload Reload Parity Cm* C.vmp 

. 
Time (hrs) 2646 8576 8596 4222 4921 
Errors 195 636 74 103 50 
Interarrivals 196 640 78 104 51 
IL 13.5 13.4 110.2 40.6 96.5 (328) 
(1 16.5 24.6 244.9 59.8 167.8 (471) 

a (Linear) 0.864 0.684 0.500 0.834 0.711 
a (MLE) 0.826 0.639 0.481 0.779 0.654 
A (Linear) 0.0843 0.109 0.0206 0.0294 0.0149 
A (MLE) 0.0826 0.106 0.0203 0.0288 0.0146 

• Note that the pessimistic value discussed in [Siewiorek et aI., 1978a] is used throughout for C.vmp 
because there were too few interarrivals in the optimistic value (shown in parentheses for the mean 
and standard deviation) to be statistically significant. 
Source: [McConnel, Siewiorek, Tsao, 1979]. 

Table 2-24. 90% confidence intervals for alpha and lambda. 

[a1ow ' a high ] 

[A1ow ' Ahigh ] 

PDP-10 Parity 

[0.421,0.566] 

[0.0134,0.0307] 

Cm* 

[0.693,0.893] 

[0.0231,0.0359] 

Source: [McConnel, Siewiorek, Tsao, 1979]. 

Table 2-25. Chi-square goodness-of-fit test statistics. 

TOPSC PDP-10 PDP-10 
Reload Reload Parity 

Q 23.36 6.40 6.72 

Degrees of freedom d 34 5 11 

P-level 0.90 0.25 0.80 
2 

Xp,d 23.95 6.63 6.99 

Source: [McConnel, Siewiorek, Tsao, 1979]. 

C.vmp 

[0.558,0.806] 

[0.0099,0.0214] 

Cm* C.vmp 

9.46 3.71 

17 7 

0.90 0.80 

10.08 3.82 
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Table 2-26. Chi-square test of exponential distribution. 

TOPSC PDP-} 0 PDP-} 0 
Reload Reload Parity Cm* C.vmp 

Q 30.61 252.55 79.95 15.14 18.35 

Degrees of freedom d 30 6 12 13 7 

Level of significance p 0.40 0.00 0.00 0.25 0.01 
2 

Xp,d 31.32 00 

Source: [McConnel, Siewiorek, Tsao, 1979]. 
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PROBLEMS 

1. The reliability function, R (t) , describes the 
probability of not observing any failure before 
time t. Another reliability metric sometimes 

00 15.98 18.48 

used to compare the reliabilities of two alternate 
designs is the Mission Time Improvement 
(MTI). It is the ratio of the times at which the 
two system reliability functions decay below 
some specified value, say 0.9. Compute MTI 
( Aa , Ab) for a.) an exponential distribution, 
and b.) a Weibull distribution with a constant 
shape parameter. 

2. Using the data in Table 2-10, make the trans­
formation suggested in Equation 36 and estimate 
the Weibull parameters, A and a, by making a 
least-squares fit to the transformed data. Test 
the hypothesis that the data follow this distribu­
tion. Assume that failures occur at the end point 
of each interval. 

3. Consider an MOS RAM, with 'TTL = 1, 'TTQ = 16, 
'TTT = 25, and'TT£ = 1. Plot the failure rate, A, as a 
function of number of bits according to MIL­
HDBK-217B. (See Appendix D.) 





Reliability and Availability Techniques 
Steven A. Elkind 

This chapter presents a spectrum of techniques 
available to the designer of reliable digital sys­
tems. The spectrum spans the range of tech­
niques derived to deal with the problem of 
building computers from unreliable components. 
Although the emphasis is on techniques that deal 
with hard (component) failures, most of the 
techniques are also effective against transient 
and intermittent faults. * 

There are two approaches to increased reli­
ability: fault avoidance (fault intolerance) and 
fault tolerance. Fault avoidance results from 
conservative design practices such as the use of 
high-reliability components, component burn-in, 
and careful signal path routing. The goal of fault 
avoidance is to reduce the possibility of a failure. 
Even with the most careful fault avoidance, 
however, failures will eventually occur and result 
in system failure (hence the name fault intoler­
ance). In fault-tolerant designs redundancy is 
used to provide the information needed to negate 
the effects of failures. The redundancy is mani­
fested in one of two ways: extra time or extra 
components. One form of time redundancy in­
volves extra executions of the same calculation, 
perhaps by different methods. Comparisons or 
other operations on the multiple results (identical 
when no errors are present) provide the basis for 
subsequent action. Time redundancy is usually 
provided by software and thus is not within the 
scope of this chapter. Component redundancy is 
the use of extra gates, memory cells, bus lines, 

* In the reliability and fault tolerance literature, the terms 
fault and failure are sometimes used interchangeably. In 
coding theory literature, failure and error are used inter­
changeably. These practices are followed in parts of this 
chapter, in deference to common usage. 
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functional modules, and the like to supply the 
extra information needed to guard against the 
effect of failures. 

A redundant system may go through as many 
as 10 stages in response to the occurrence of a 
failure. These stages-fault confinement, fault 
detection, fault masking, retry, diagnosis, recon­
figuration, recovery, restart, repair, and reinte­
gration-are explained in the following text. 
Designing a redundant system involves the selec­
tion of a coordinated failure response that com­
bines some or all of these steps. The ordering 
above corresponds roughly to the normal chro­
nology of the steps, although the actual timing 
may be different in some instances. 

• Fault confinement. When faults occur, it is desir­
able to limit the scope of their effects. Fault confine­
ment is the step of limiting the spread of fault effects 
to one area of the system, thereby preventing con­
tamination of other areas. Fault confinement can be 
achieved through liberal use of fault-detection cir­
cuits, consistency checks before performing a func­
tion ("mutual suspicion"), and multiple requests/ 
confirmations before performing a function. These 
techniques may be applied in both hardware and 
software. 

• Fault detection. Most failures eventually result in 
logical faults. Many techniques are available to 
detect faults, such as parity, consistency checking, 
and protocol violation. Unfortunately these tech­
niques cannot be perfect, and an arbitrary period of 
time may pass before detection occurs. This time is 
called fault latency. Fault-detection techniques are 
of two major classes: off-line detection and on-line 
detection. With off-line detection, the device is not 
able to perform useful work while under test. Diag­
nostic programs, for example, run in a stand-alone 
fashion even if executed on idle devices or multi­
plexed with the operations software. Thus, off-line 
detection assures integrity before and possibly at 
intervals during operation, but not during the entire 
time of operation. On-line detection, on the other 
hand, provides a real-time detection capability, for it 
is performed concurrently with useful work. On-line 
techniques include parity detection and duplication. 

• Fault masking. Fault-masking techniques hide the 
effects of failures. In a sense, the redundant informa­
tion outweighs the incorrect information. In its pure 
form, masking provides no detection. However, 
many fault-masking techniques can be extended to 

provide on-line detection as well. Otherwise, off-line 
detection techniques are needed to discover failures. 
Majority voting is an example of fault masking. 

• Retry. In many cases a second attempt at an 
operation may be successful. This is particularly true 
of a transient fault that causes no physical damage. 

• Diagnosis. If the fault detection technique does not 
provide information about the failure location and/ 
or properties, a diagnostic step may be required. 

• Reconfiguration. If a fault is detected and a perma­
nent failure located, the system may be able to 
reconfigure its components to replace the failed 
component or to isolate it from the rest of the 
system. The component may be replaced by backup 
spares. Alternatively, it may simply be switched off 
and the system capability degraded; this process is 
called graceful degradation. 

• Recovery. After detection and (if necessary) recon­
figuration, the effects of errors must be eliminated. 
Normally the system operation is backed up to some 
point in its processing that preceded the fault detec­
tion, and operation recommences from this point. 
This form of recovery, often called rollback, usually 
entails strategies using backup files, checkpointing, 
and journalling. In recovery, error latency becomes 
an important issue because the rollback must go far 
enough to avoid the effects of undetected errors that 
occurred before the detected one. 

• Restart. Recovery may not be possible if too much 
information is damaged by an error, or if the system 
is not designed for recovery. A "hot" restart, a 
resumption of all operations from the point of fault 
detection, is possible only if no damage has oc­
curred. A "warm" restart implies that only some of 
the processes can be resumed without loss. A "cold" 
restart corresponds to a complete reload of the 
system, with no processes surviving. 

• Repair. The component diagnosed as failed is re­
placed. As with detection, repair can be either on­
line or off-line. In off-line repair, either the failed 
component is not necessary for system operation, or 
the entire system must be brought down to perform 
the diagnosis and repair. In on-line repair, the 
component may be replaced immediately by a back­
up spare in a procedure equivalent to reconfigura­
tion or operation may continue without the compo­
nent, as is the case with masking redundancy or 
graceful degradation. In either case of on-line repair, 
the failed component may be physically replaced or 
repaired without interrupting system operation. 

• Reintegration. After the physical replacement of a 
component the repaired module must be reintegrat­
ed into the system. For on-line repair, reintegration 
must be accomplished without interrupting system 
operation. 
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Figure 3-1 depicts one scenario that illustrates 
some of the concepts above. The time line illus­
trates the stages in fault handling for a nonfault­
tolerant system, whereas fault-tolerant systems 
automate one or more of these stages. Upon 
detection, the system is brought down, diag­
nosed, and manually reconfigured to allow a 
restart. Before operation recommences, the soft­
ware process must first be rolled back to a point 
before the errors occurred, and then restarted. 
Finally, after the failed module is repaired and 
put back on line, the system is halted temporarily 
to allow the module to be reintegrated into the 
system. Figure 3-1 also illustrates some of the 
reliability measurement concepts discussed in 
Chapter 5: the Mean Time To Failure (MTTF), 
Mean Time To Detection (MTTD, sometimes 
called error latency), Mean Time To Repair 
(MTTR), and Availability. 

Taking these system-failure response stages 
into account, the spectrum of fault-tolerance 
techniques can be divided into three major class­
es: fault detection, masking redundancy, and 
dynamic redundancy. Figure 3-2 proposes a tax­
onomy of system-failure response strategies. 
Fault detection provides no tolerance to faults, 
but gives warning when they occur. It is used in 
many small systems such as micro- and mini-

computers, some of which may incorporate sim­
ple on-line detection mechanisms. This branch 
does not represent fault tolerance in the strictest 
sense: even though faults are detected they can­
not be tolerated (except for retry upon tran­
sient faults). 

Masking redundancy, also called static redun­
dancy, tolerates failures but gives no warning of 
them. It is used in such systems as computers 
with error-correcting code memories, or with 
majority-voted redundancy in a fixed configura­
tion (that is, the logical connections between 
circuit elements remain constant). 

The rightmost branch of the figure covers 
those systems whose configuration can be dy­
namically changed in response to a fault, or in 
which masking redundancy, supplemented by 
on-line fault detection, allows on-line repair. 
Examples are multiprocessor systems which can 
degrade gracefully in response to processing ele­
ment failures, and triplicated systems which in­
clude disagreement detection in the voter and 
are designed for on-line repair. 

The range in cost of fault-tolerant techniques 
is almost a continuum in terms of percentage of 
redundancy. Figure 3-3 depicts three regions of 
hardware redundancy, each corresponding to 
one of the three major areas of the fault-toler-
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Figure 3-1. Scenario for on-line detection and off-line repair. The measures 
MTTF, MTTD, and MTTR are the average times to failure, to detection, and to 
repair. 
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Figure 3-2. Taxonomy of system fault..:tolerance strategies. 

ance technique spectrum. Even though most 
techniques in each area fit within these regions, 
individual techniques may fall well outside them. 

Because it is mainly a straightforward applica­
tion of conservative design practices, fault avoid­
ance is only covered briefly in this chapter. 
However, it is important to note that most 
successful designs use a balanced combination of 
both fault avoidance and fault tolerance. The 
final design is the result of trade-offs among cost, 
performance, and reliability. Cost, performance, 
and reliability goals are usually incompatible to 

some degree, and their relative importance de­
pends upon the ultimate application of the final 
product. For example, some fault-tolerance tech­
niques may find little application in cost-sensi­
tive commercial computing systems but may be 
required for long-term space missions. 

A summary of the techniques covered in this 
chapter is shown in Table 3-1. The reliability 
techniques spectrum is broken up into four ma­
jor regions: fault avoidance, fault detection, 
masking redundancy, and dynamic redundancy. 
The last three divisions derive from Figure 3-2. 

Fault 
detection 

region 

Dynamic 
redundancy 

region 

Masking 
redundancy 

region 

o 
-~ 

100 200 

Redundancy (percent) 

Figure 3-3. Cost range of fault-tolerance techniques (in terms of the redun­
dancy required). 
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Table 3-1. Classification of reliability techniques. 

Region 

Fault avoidance 

Fault detection 

Masking redundancy 

Dynamic redundancy 

Technique 

Environment modification 

Quality changes 

Component integration 
level 

Duplication 

Error detection codes 

M-of-N codes 

Parity 

Checksums 

Ari thmetic codes 

Cyclic codes 

Self-checking and fail-safe 
logic 

Watch-dog timers and 
timeouts 

Consistency and capability 
checks 

NMR/voting 

Error correcting codes 

Hamming SEC/OED 

Other codes 

Masking logic 

Interwoven logic 

Coded-state machines 

Reconfigurable duplication 

Reconfigurable NMR 

Backup sparing 

Graceful degradation 

Reconfigura tion 

Recovery 

This division is not exact. Some basic techniques 
have properties pertaining to more than one 
region and some, while they should be consid­
ered basic techniques in their own right, require 
concurrent use of other techniques (for example, 
failure detection is needed to invoke replacement 
of a broken module with a spare). Nevertheless, 

the discussion of each technique below treats 
each as a basic entity. Whenever possible, a 
measure of the technique's effectiveness is pro­
vided (such as coverage and/or reliability formu­
la). The application of the technique to different 
areas of digital design is illustrated, often with 
examples from specific systems. The illustrations 
cannot be comprehensive due to lack of space; 
often the techniques have been applied to design 
areas other than those mentioned. 

Table 3-1 is not complete but covers most of 
the major techniques now in use. In many cases 
the technique set forth is only a representative 
from a class of similar techniques; space limita­
tions preclude covering them all. In this event, 
references are given for other techniques in the 
same class. 

FAULT-AVOIDANCE TECHNlqlj~~ 

One method of increasing computer reliability is 
to lessen the possibility of failures. This method 
is called fault avoidance. If fault avoidance alone 
cannot economically meet system design goals, 
fault-detection and/or fault-tolerance techniques 
must be used. Some fault-avoidance techniques 
are intended to decrease the possibility of tran­
sient faults. Careful signal routing, shielding, 
cabinet grounding, and input-line static filters 
are examples of techniques that effectively in­
crease the signal-to-noise ratio. Other techniques 
are useful against both hard and transient faults. 
A design rule that limits the fanout of gates to a 
small number, for example, decreases power 
dissipation (decreasing thermal effects, and thus 
hard failures). Fanout limitation also increases 
the effective noise margin at the inputs of subse­
quent gates and thus decreases the possibility of 
a transient fault. Another concern is the avoid­
ance of human errors through such measures as 
labeling and documentation. In addition, the 
possibility of assembly errors should be mini­
mized. For example, many manufacturers pro­
duce printed circuit boards and connectors that 
are shaped in such a way that they cannot be 
plugged in backward or into the wrong slots. 
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A = 'lTL 'lTQ(C1 'ITT + C2 'ITd 
A = failure rate, failures per million hours 

(fpmh) 
'lTL = learning curve factor 

'lTQ = quality factor 
C1 , C2 = complexity factors 

'lTT= temperature factor 
'lTE = environment factor 

Figure 3-4. MIL-HDBK-217B failure rate 
calculation' for integrated circuits. 

This section presents three techniques for 
avoiding hard failures. The goal is to obtain a 
smaller system failure rate as determined by one 
of the MIL-217 models (Chapter 2). Figure 3-4 
shows the formula for the failure rate of an 
integrated circuit in the MIL-217B model. Fault 
avoidance can be obtained by manipulating fac­
tors that affect the failure rate. The subsections 
below cover possible changes in environment, 
quality, and complexity factors. 

Environmental Changes 

Two of the parameters in the formula of Figure 
3-4 are related to the operating environment. The 
first is "ITE' which is specified for general classes of 
environmental conditions. Table 3-2 gives some 
examples of the MIL-217B environment factor. 
Ground benign environment implies air-condi­
tioned computer rooms; ground fixed implies 
office or factory floor installations. Conditions 
(and "ITE values) between the extremes provided 
by MIL-217B can be estimated. For the full set 
of standard "ITE values, see Appendix D. Usually 
the operating environment is beyond the de­
signer's control and thus is not a means of 
affecting system reliability. 

The other parameter affected by the environ­
ment is "ITT' which is a function of junction 
temperature. The junction temperature is a result 
of several factors: ambient air temperature, heat 
transfer from chip to package and package to air, 
and the heat created by the power consumed on 
the chip. Junction temperature can be modified 

Table 3-2. Examples of 'lTE, environment 
parameter. 

Environment 'IT£ Description 

Ground benign 0.2 Nearly zero environmental 
stress with optimum 
engineering operation and 
maintenance. 

Space, flight 

Ground fixed 

Airborne 
inhabited 

0.2 Earth orbital.. .. [No] access 
for maintenance .... 

1.0 Conditions less than ideal to 
include installation in 
permanent racks with 
adequate cooling air, 
maintenance by military 
personnel, and possible 
installation in unheated 
buildings. 

4.0 Typical cockpit conditions 
without environmental 
extremes of pressure, 
temperature, and vibration. 

Missile, launch 10.0 Severe conditions ... related to 
missile launch and ... space 
vehicle boost into orbit ... 
reentry and landing .... 

Source: MIL-HDBK-217B [U. S. Department of Defense, 
1976] 

by changing power dissipation, heat sinking of 
boards and chips, and controlling air tempera­
ture and air flow. Power dissipation is controlla­
ble to some extent by fan-out limitation. In gate 
array and master slice technologies, power dissi­
pation can be controlled during chip design. 
Heat sinking may be necessary for selected de­
vices, and is sometimes even used for all ICs in a 
given design. 

Complex, expensive fluid cooling systems 
(such as Freon cooling) have occasionally found 
use in systems that require high power dissipa­
tion ECL logic and high component densities. In 
these systems, such as high-speed scientific com­
puters, the cooling design is as much of a chal­
lenge as the logic design. The CRA Y -I com-
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Figure 3-5. Cooling system design for the DEC VAX-11 1780 cabinet. 

puter, for example, has heat-conductive surfaces 
integral to each module and uses Freon to keep 
the machine running at reasonable temperatures 
[Russel, 1978]. 

In most cases, a cabinet ventilation system is 
sufficient. Fans can be installed to increase air 
flow through the cabinet and lower cabinet air 
temperature. Fans also increase air flow across 
the circuit boards, improving heat transfer from 
the component packages to the air. Careful de­
sign of the cabinet itself is also important in 
improving air flow and heat transfer. 

One problem often encountered is "hot spots" 
on circuit boards. These result when heat-pro­
ducing components reside on the lee side (or 
airflow shadow) of other components. Hot spots 
can be designed out of a system. For example, 
the Texas Instruments ASC (Advanced Scientific 
Computer) uses air cooling, unlike most high­
performance machines. Its designers carefully 
studied the properties· of cooling air flow and 
found that empty spaces on the PC board in­
creased board-level air turbulence. The turbu­
lence caused nonuniform heat transfer, and hot 
spots resulted. The outcome of this research was 
the addition of dummy packages in spaces where 
no actual ICs were used. 

The V AX-ll/780 provides a good example of 
cabinet design for improved cooling (Figure 3-5). 
To minimize the air temperature near the circuit 
boards, the power supplies are placed at the 
bottom of the cabinet, away from the logic 
boards. The blower system provides filtered air 
drawn from outside the cabinet. The air is routed 
down across the circuit boards in such a way that 
it passes over only one board before being 
exhausted to the outside. 

The cost of potential ventilation schemes must 
be weighed against potential gains in reliability. 
A PDP-8/e computer will be used to provide an 
example of the range of improvement available 
through temperature modification. Figure 3-6 
shows an AUTOFAIL failure rate analysis of the 
PDP-8/e design assuming an expected ambient 
(package) temperature of 50° C. * This assump­
tion is reasonable with normal room tempera­
tures and no ventilation other than convection 

* In this chapter, AUTOF AIL analyses use the complexity 
factor modification discussed in Chapter 2. For LSI, RAM, 
and ROM devices, the gate (bit) count is divided by 16 
before calculating the MIL-217B complexity factors (C) 
and Cz in Figure 3-4). 
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PDP8E.REL LSI= 16.000 ROM= 

E = 1.000 Q = 16.000 L = 

MK4096 Q = 16.000 
MODULE 

PDP8E 
PROCESSOR 

DATA. PART 
REGISTERS 
ADDER. ETC. 
PATH.SHUNTING 

BUS.CONNECT.OPEN.COLL 
CONTROL. LOG I C 

KM8.MEM.EXT. TIM.SHR 
16K.MEMORY 

MEMORY.CHIPS 
{ONTROL 
BUS.CONN.OC 

16.000 RAM= 

1.000 T = 

16.000 

50.000 

FAILURE RATE 

281.261 
36.559 

16.989 
7.119 
2.065 
7.805 

1.048 
18.522 

9.546 
235.156 

232.487 
2.276 

.393 

PERCENTAGE 

100.000 
12.998 

46.471 
41.903 
12.153 
45.944 

2.867 
50.663 

3.394 
83.608 

98.865 
.968 
.167 

# of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000 

Figure 3-6. AUTOFAIL analysis of PDP-8/e system with no cooling; in-cpbinet 
temperature of 50°C. 

PDP8E.REL LSI= 16.000 

E = 1.000 Q = 16.000 

MK4096 Q = 16.000 

MODULE 

PDP8E 
PROCESSOR 

DATA. PART 
REGISTERS 
ADDER. ETC. 
PATH.SHUNTING 

BUS.CONNECT.OPEN.COLL 
CONTROL. LOG I C 

KM8.MEM.EXT. TIM.SHR 
16K.MEMORY 

. MEMORY.CHIPS 
CONTROL 
BUS.CONN.OC 

ROM= 

L = 

# of chi ps = 285.083 # of gates = 

16.000 
1.000 

RAM= 

T = 

FAILURE RATE 

16.000 
40.000 

167.218 
32.111 

14.592 
5.903 
1. 756 
6.933 

.966 
16.553 

8.509 
126.598 

124.186 
2.050 

.362 

PERCENTAGE 

100.000 
19.203 

45.443 
40.454 
12.034 
47.511 

3.007 
51.549 

5.089 
75.708 

98.095 
1.619 

.286 

2830.000 # of bits = 196608.000 

Figure 3-7. AUTOFAIL analysis of PDP-8/e system with fans installed in 
cabinet; in-cabinet temperature of 40°C. 

PDP8E.REL L,sI= 16.000 ROM= 

E = 1.000 Q = 16.000 L = 

MK4096 Q = 16.000 

MODULE 

PDP8E 
PROCESSOR 

DATA. PART 
REGISTERS 
ADDER. ETC. 
PATH. SHUNTI NG 

BUS.CONNECT.OPEN.COLL 
CONTROL. LOGIC 

KM8.MEM.EXT. TIM.SHR 
16K.MEMORY 

MEMORY.CHIPS 
CONTROL 
BUS.CONN.OC 

16.000 RAM= 

1.000 T = 

16.000 

30.000 

FAILURE RATE 

106.742 
29.064 

12.944 
5.055 
1.543 
6.346 

.910 
15.209 

7.802 
69.876 

67.637 
1.898 

.341 

PERCENTAGE 

100.000 
27.228 

44.537 
39.054 
11. 917 
49.029 

3.132 
52.331 

7.310 
65.462 

96.796 
2.716 

.489 

# of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000 

Figure 3-8. AUTOFAIL analysis of PDP-8/e system with cabinet ventilation 
system; in-cabinet temperature of 30°C. 
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currents within the cabinet. The system failure 
rate is 281 failures per million hours (fpmh), 
which is equivalent to a Mean Time To Failure 
(MTTF) of 3,555 hours. 

Figure 3-7 shows the effect of placing a few 
small fans in the cabinet. If the increased circu­
lation can lower the cabinet temperature by 10 
degrees, the failure rate drops to 167 fpmh, a 
decrease of 41 percent. The MTTF increases to 
5,980 hours, an increase of 68 percent. * Figure 
3-8 shows the effect of using a better ventilating 
system, perhaps including ducting, blowers, and 
filters, which is capable of a 20-degree reduction 
in temperature. This modification more than 
doubles the MTTF of the system. The failure 
rate analyses have ignored the cooling system 
(fan) failure rates because there are usually mul­
tiple fans, and the failure of only one fan will not 
cause immediate system failure. 

Thus, it is possible to obtain reliability im­
provement through an effective ventilation sys­
tem and changes in cabinet design. Noisy fans 
may be considered undesirable in certain envi­
ronments such as an office. A quieter (and more 
expensive) system is possible but cooling is often 
left to convection, and the MTTF loss is ab­
sorbed in exchange for a more saleable product. 

Quality Changes 

Using higher-quality components is an obvious 
strategy for improving reliability. The simplest 
implementation is to buy high-reliability ("hi­
reI") components directly from the manufactur­
er. However, such components may be expensive 
(usually twice as much as commercial grade) 
and/or may have long procurement lead times. 
There are two possible solutions to these prob­
lems. The first is in-house screening and burn-in. 
The second is specification of hi-reI components 
for only those areas of a design where they are 
most economically effective. 

The use of higher quality components is re-

* Note that this example does not quite fit the old rule of 
thumb that a lO-degree temperature drop increases the 
MTTF by a factor of 2. 

flected in the parameter 'lTQ (quality factor) of 
Figure 3-4. Table 3-3 lists some of the standard 
quality factors for integrated circuits III 

MIL-217B. A complete list is in Appendix D. 
The quality level of a component is deter­

mined partly by packaging method and materi­
als, such as a hermetically vs. nonhermetically 
sealed package and ceramic vs. plastic package 
material. Another major factor for determining 
the quality level is the screening done during and 
after component manufacture. Not all the prop­
erties required of military-grade components 
make sense in a commercial environment. For 
example, hermetic package seals are often re­
quired for MIL-spec components, so that when 
the device is unpowered moisture will not con­
dense inside the component. Many commercial 
systems are left on all the time or operate in low­
humidity environments, eliminating the need for 
perfectly hermetic packages. MIL-spec compo­
nents also undergo high-G acceleration screen­
ing in centrifuges. Most commercial systems will 
not be subject to G-stresses such as acceleration 
and impact. 

Table 3-3. Examples of 'lTQI quality factor. 

Class '1TQ Description 

C 16 Procured in full accordance 
with MIL-M-38510, Class C 
requirements. [Parts falling in 
this or higher classifications are 
commonly referred to as "mil-
spec" or "hi-reI" components.] 

D-l 150 Commercial (or non-mil 
standard) part, hermetically 
sealed, with no screening 
beyond the manufacturer's 
regular quality assurance 
practices. 

D-2 300 Commercial (or non mil 
standard) part, packaged or 
sealed with organic materials. 
(e.g., epoxy, silicone, or 
phenolic). 

Source: MIL-HDBK-217B [U.S. Department of Defense 
1976] 
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Process to die mount and bond 

Visual pre-cap 

Stabilization bake (24 hrs @ 150°C) 

Temperature cycling 

Gross leak 

Final electrical test 

Group A lot acceptance 

Preparation for delivery 

Process control and monitoring 

Inspection of die, bonds, etc., for flaws 

High temperature, no electrical stress 

Cycling between temperature extremes 

Resistance to mechanical stress 

Look for missing leads, broken packages, 
damaged lids 

Check for package sealing with pressure 
chamber 

Check package seal 

Check for meeting data sheet specs 

Conformance to electrical specs 
within 10% 

Final visual inspection 

Figure 3-9. Texas Instruments MACH-IV procurement specification for class C 
level component processing. 

Some component users may wish to do their 
own screening, avoiding some of the harsher 
military environmental tests that the component 
manufacturer must perform (and charge for) on 
MIL-rated devices. Figure 3-9 diagrams the 
Texas Instruments Class C qualification process 
for integrated circuits [Texas Instruments, 1976]. 
Table 2-8 lists a set of the possible screening 
tests. Some of these tests are discussed below; 
others were considered in Chapter 2. 

In manufacture, visual inspection of the wafer 
is possible before it is cut into dies. The manu­
facturer can also visually inspect the chip and 
bonds before sealing the package. The compo­
nent buyer can do the same by opening and 
inspecting sample components. Electrical tests 
can be performed. Each wafer often has a special 
test pattern or transistor upon which probes can 
be placed to test the values of various character-

istic parameters. Individual circuits on the wafer 
may also be tested. Electrical testing after pack­
aging checks both the silicon circuit and the pin 
bonding. Stress testing may also be employed. 
Overvoltage, vibration, heat, humidity, and other 
stresses are applied to the component, followed 
by electrical tests to determine resistance to the 
stresses. 

The manufacturer often performs additional 
processing on components subsequent to manu­
facture and testing. The most common is compo­
nent burn-in. This is accomplished by continual 
simulated operation of all the components, pos­
sibly at higher-than-normal temperatures. Slight 
overvoltages are sometimes applied at signal and 
power inputs. The purpose of burn-in is to 
eliminate weak components. The beginning, or 
infant mortality, phase of the bathtub curve of 
Figure 1-4 is traversed during burn-in. Finally, 
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entire assemblies or systems can be burned-in 
before shipment. This last procedure has the 
advantage of eliminating incompatibilities be­
tween components that have passed testing, but 
whose parameters combine to result in poor or 
improper operation (often a cause of intermittent 
faults). 

The final value of TTQ is determined by the 
types and frequency of testing and processing. 
Tests can be performed with varying thorough­
ness: for each component, for sample compo­
nents from each manufacturing lot, or for peri­
odic samples every few lots. Additional tests may 
be performed if higher-quality components are 
needed for special applications. Lower quality­
factor components (i.e., higher 7TQ) are the result 
of less stringent testing and processing, or are 
components that failed testing for higher stan­
dards but still meet lower-quality grade specifica­
tions. 

Research at Carnegie-Mellon University has 
shown that an average component TTQ of 16 is not 
unusual for a manufacturer of commercial sys­
tems [Siewiorek et aI., 1978b]. The components 
in the study were primarily plastic package DIPs. 
This TTQ is obtained through in-house screening 
and burn-in of components and systems. DEC, 
for example, rejects 2.5 percent of its incoming 
components, with the result that only 0.04 per­
cent of the screened components fail during 
subsequent system manufacturing steps [DEC, 
1975c]. In addition, some Ie manufacturers offer 
class C-grade components in their standard 
product lines. 

Another benefit of screening beyond function­
al testing is the reduction of manufacture and 
warranty costs. Replacement costs for a compo­
nent increase by about an order of magnitude for 
each step during the manufacture and warranty 
periods. Craig [1980] reports that the typical cost 
For screening out a bad IC is 50¢. Repair of the 
board resulting from a bad chip cos"ts about $5 
on the plant floor; diagnosis and repair of the 
~ame failure in an assembled system costs $50. 
During the warranty period, when the system is 

in the field where sophisticated, special test set­
ups are not available, the same repair costs the 
manufacturer $500 (and might cost the customer 
$5,000 in lost revenue and time). If only 0.5 
percent of the components used are bad or weak, 
a system with 1,000 components has a 
(I - 0.99510(0

) or 99.3 percent chance that repair 
will be necessary during the assembly process 
(so-called rework) or the warranty period be­
cause of a component that could have been 
screened out. Alternatively, an average of five 
such repair incidents could be expected for each 
system in addition to incidents resulting from 
normal failures (those due to components that 
would survive screening). This is because the 
expected number of weak components in a sys­
tem is 1000 X 0.005. 

The manufacturer of the Vidar/TRW 2900B 
subscriber billing system incorporates testing 
and screening for increased component reli­
ability [McDonald, 1976]. The testing and in­
spection flow in use in 1976 is shown in Figure 
3-10. The component sampling consisted of a 
DC parametric test followed by a test for inter­
mittent lead bonding failures. If more than 5 
percent of an incoming lot of ICs failed the DC 
test or more than 0.1 percent failed the bonding 
test, the lot was rejected. This form of compo­
nent acceptance is called Acceptable Quality 
Level testing (AQL). Next, a 100 percent DC 
parametric test screened all components. In the 
burn-in phase, an assembled board had to oper­
ate for at least 24 error-free hours at 50° C 
before it was removed from the test. In 1977 the 
screening tests for the 2900B changed, partly 
because of changes in chip technologies 
[McDonald and McCracken, 1977]. The testing 
and inspection flow ~emained the same, but 
component burn-in was added. The data in 
Table 3-4, gathered during this later period, show 
the effectiveness of the component burn-in after 
incoming AQL testing. 

Reconsider the PDP-8/e analysis in Figure 
3-7, in which the quality factor for all compo­
nents is 16. The AUTOFAIL analysis shows that 



74 THE THEORY OF RELfABLE SYSTEM DESIGN 

Start 

Component 
I--

Component 
sample screen ! 

Board Visual 
assembly f----. inspection 

PCB t PCB build I-- continuity 
test 

Analog and 
digital board 

PCB = Printed circuit board test (external 
test jigs) 

Using system built-in self-testing 

System 

~ ~~ 
assembly 

Field QA Acceptance Burn-in 
System 

I-- I-- Ship I-- 48-80 hrs I--data audit testing 50°C test 

Figure 3-10. Reliability enhancement in Vidar/TRW 29008 subscriber billing 
system. (© 1976 IEEE.) 

the 4K-bit memory chips have a total failure rate 
of 124 fpmh, accounting for 74 percent of the 
system failure rate (76 percent of the PDP-8 
failure rate is in the memory, and 98 percent of 
that is due to the RAM chips). An improvement 

Table 3-4. Vidar/TRW 29008 burn-in test results. 

Quantity Quantity Percent 
Device Processed Defective Defective 

Linear 123,212 5,011 4.07% 

TTL standard 316,909 3,735 1.18 

TTL low power 379,959 4,982 1.31 

Schottky 7,058 130 1.84 

Low power 86,244 1,670 1.94 
Schottky 

CMOS 56,293 1,240 2.20 

Misc. 63,666 1,833 2.88 

Total 1,033,341 18,601 1.80 

Source: McDonald and McCracken, 1977 

in the quality of this component alone should 
result in a major increase in overall reliability. If 
4K-bit memory chips with a '7TQ of 10 can be 
obtained (MIL-STD quality class B-2), either by 
purchase or by in-house screening and burn-in, 
the system failure rate drops to 121 fpmh, a 28 
percent improvement in the system's failure rate 
and a 39 percent increase in MTTF. Figure 3-11 
shows the AUTOFAIL analysis of this modified 
design. 

Finally, consider the possibility of burning-in 
all PDP-8/e systems before shipment. The burn­
in time is made long enough to improve the 
quality factor of all components by, say, 2 points 
(Ll'1TQ = -2). The '1TQ of the hi-reI RAMs is 
assumed not to be affected, since additional 
burn-in of these will have little effect. As shown 
by the AUTOFAIL analysis in Figure 3-12, the 
system failure rate drops to 115 fpmh, a net 
improvement in system failure rate of 31 percent 
and in MTTF of 45 percent over the design of 
Figure 3-7 (for which '1TQ = 16 for all compo­
nents, including the RAM chips). 
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PDP8E .REl lSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 1.000 Q = 16.000 l = 

MK4096 Q = 10.000 

MODULE 

PDP8E 
PROCESSOR 

DATA.PART 
REGISTERS 
ADDER. ETC. 
PATH .SHUNTING 

BUS .CONNECT. OPEN .COll 
CONTROL. lOG I C 

KM8.MEM.EXT. TIM.SHR 
16K.MEMORY 

MEMORY.CHIPS 
CONTROL 
BUS.CONN.OC 

1.000 T = 40.000 

FAILURE RATE 

120.648 
32.111 

14.592 
5.903 
1. 756 
6.933 

.966 
16.553 

8.509 
80.028 

77.616 
2.050 

.362 

PERCENTAGE 

100.000 
26.615 

45.443 
40.454 
12.034 
47.511 

3.007 
51. 549 

7.053 
66.332 

96.986 
2.561 

.452 

# of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000 

Figure 3-11. AUTOFAIL analysis of PDP-8/e system with hi-rei RAM chips in 
memory. 

PDP8E .REl lSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 1.000 Q = 14.000 l = 

MK4096 Q = 10.000 

MODULE 

PDP8E 
PROCESSOR 

DATA. PART 
REGISTERS 
ADDER.ETC. 
PATH.SHUNTING 

BUS .CONNECT. OPEN .COll 
CONTROL. lOGIC 

KM8.MEM.EXT. TIM.SHR 
16K.MEMORY 

MEMORY.CHIPS 
CONTROL 
BUS.CONN.OC 

1.000 T = 40.000 

FAILURE RATE 

115.279 
28.097 

12.768 
5.165 
1. 537 
6.066 

.845 
14.484 

7.446 
79.727 

77.616 
1.794 

.317 

PERCENTAGE 

100.000 
24.375 

45.443 
40.454 
12.034 
47.511 

3.007 
51.549 

6.459 
69.166 

97.353 
2.250 

.397 

# of chi ps = 285.083 # of gates = 2830.000 # of bits = 196608.000 

Figure 3-12. AUTOFAIL analysis of PDP-8/e system with hi-rei RAM chips and 
preshipment burn-in. 

Component Integration Level 

LSI component technology possesses many well­
known advantages. The cost of a single chip is 
usually less than that of the set of standard SSIj 
MSI components needed to implement the same 
function. Fewer chips means fewer solder joints, 

less board space, and thus lower costs in board 
manufacture and assembly. Normally, power 
consumption is lower and performance benefits 
from shorter signal paths. In sum, more func­
tionality can fit into less space, consume less 
power, operate at least as fast, and cost little or 
no more. 
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Higher integration levels yield another benefit: 
increased reliability. In the MIL-217B model, the 
failure rate of a component does not increase 
linearly with its complexity (measured in gates or 
bits on the chip). The complexity factors CI and 
C2 (Figure 3-4) follow a power-law relationship 
with the number of gates. This relationship is 
reflected in Figure 1-5, which plots the failure 
rate as a function of gates. The individual gate 
failure rate decreases as the gate count per 
package goes up. As a result, total system failure 
rate decreases as the level of integration in­
creases. Thus reliability becomes an additional 
factor in the decision to use LSI components 
where possible. Figure 3-13 demonstrates the 
effect of larger-scale integration. Each module in 
the AUTOFAIL analysis contains 256 gates. 
Changes in integration level from 4 to 256 gates 
per package result in module failure rates rang­
ing from 7.3 fpmh to 0.4 fpmh, or a range of 18 
to 1. 

Standard LSI circuits are often not available 
in the exact functionality a design requires. 
There are alternative solutions to adapt the de­
sign to fit the available components. One of these 
is to fabricate a custom· LSI chip. An increasing 

number of systems manufacturers are developing 
in-house LSI circuit design and production capa­
bilities. Large volume requirements may make 
outside design and manufacture worthwhile. 
Conversely, if only a small volume of custom ICs 
is required, the manufacturing process may not 
have the opportunity to stabilize and traverse the 
learning curve. The result is that the custom chip 
may be more unreliable than the equivalent SSI/ 
MSI circuit ('TTL is 10 instead of I). The learning 
curve problem is avoided in the gate array and 
transistor array approaches to customized LSI 
circuits. These and other technologies are pro­
grammable either in manufacture (such as by a 
final metalization step) or in the field (such as 
electrically alterable ROMs and FPLAs). 

Another solution to the custom LSI problem is 
to design a microcoded machine. Microcoded 
design brings many different benefits, including 
flexibility (ease of modification), design regulari­
ty, and debugging ease. ROMs, a relatively inex­
pensive form of custom LSI, can replace large 
amounts of random SSI/MSI circuitry. Micro­
coded designs bring potential reliability benefits 
other than lower component failure rates. Their 
regularity of structure makes microcoded ma-

INTDEM.REL LSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 1. 000 Q = 16. 000 L = 

MODULES. OF .256.GATES 
CHIP.4.GATES 
CHIP.8.GATES 
CHIP.16.GATES 
CHIP. 32. GATES 
CHIP.64.GATES 
CHIP .128.GATES 
CHIP .256.GATES 

1.000 T = 30.000 

FAILURE RATE 

20.516 
7.282 
4.785 
3.161 
2.479 
1. 709 

.701 

.399 

# of chips = 127.000 # of gates = 1792.000 # of bits = .000 

PERCENTAGE 

100.000 
35.494 
23.324 
15.407 
12.084 
8.328 
3.417 
1.947 

Figure 3-13. AUTOFAIL analysis of modules containing 256 gates. Each module 
is made with ICs having identical gate counts. The first (CHIPA.GATES) is made 
with 551 circuits with 4 gates per chip. The last (CHIP.256.GATES) is made with 
one LSI circuit containing all 256 gates. The number in the module name 
denotes the gate count for each chip used in the module. 
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chines particularly amenable to many of the 
reliability techniques presented in later sections. 

Consider a PDP-8 design based on the 
AMD-2901 bit-slice microprocessor chip [Sie­
wiorek, Bell, and Newell, 1982]. This design is 
only a partial one: I/O and Omnibus facilities 
are not included. Nevertheless, it provides an 
indication of the potential savings resulting from 
increased integration levels via the microcode 
ROMs. The failure rate for this design is 136 
fpmh (Figure 3-14), only 81 percent of the design 
of Figure 3-7. System MTTF is 7,358 hours, up 
23 percent from 5,980 hours. The LSI processor 
MTTF is about 107,000 hours; the SSI/MSI 
processor and KM8 memory extension unit that 
it replaces have a total MTTF of about 25,000 
hours, an improvement of more than 325 per­
cent. 

Table 3-5 summarizes all the PDP-8/e exam­
ples used in the discussion of fault-avoidance 
techniques, showing the effect of the various 
approaches (temperature, quality, and integra­
tion). The table also includes a few designs not 
discussed earlier that demonstrate the combina­
tion of more than one approach. Note that a 5.5 

to I MTTF improvement is attained solely 
through fault-intolerant techniques. 

FAULT-DETECTION TECHNIQUES 

Fault-avoidance techniques attempt to decrease 
the possibility of failures. Fault detection, dis­
cussed in this section, and the techniques dis­
cussed in subsequent sections deal with the inev­
itability of failures. The key to these techniques 
is redundancy: extra information or resources 
beyond those needed during normal system 
operation. 

Most of this section is devoted to techniques 
useful in detecting failures, or more exactly, 
detecting the faults and errors that are caused by 
failures. Action following such detection can 
range from ignoring the failure, to retries, to 
switching in replacement parts. In some real­
time applications, for example, occasional erro­
neous results can be ignored (that is, not used). 
In many cases a retry can be successful, particu­
larly with transient or intermittent faults. Final­
ly, attempts at correction or reconfiguration and 
rollback are possible. Some of those possibilities 

8BS.REL LSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 1.000 Q = 

MK4096 Q = 16.000 

MODULE 

PDP8.BIT .SLICED 
PROCESSOR 

MICROSTORE 
MICROSEQUENCER 
DATA. PATHS 

LINK.BIT 
COND .CODE .MUX 
SKIP .GENERATE 
CONSTANT .MASK 

MISC. 
16K.MEMORY 

MEMORY.CHIPS 
CONTROL 
BUS.CONN.OC 

# of chips = 97.000 

16.000 L = 1.000 T = 40.000 

FAILURE RATE 

135.908 
9.310 

4.259 
1.009 
3.452 

.604 

.689 

.483 

.082 
.590 
126.598 

124.186 
2.050 

.362 

PERCENTAGE 

100.000 
6.850 

45.741 
10.839 
37.077 

17.484 
19.957 
13.987 
2.363 

6.342 
93.150 

98.095 
1.619 
.286 

# of gates = 2545.500 # of bi t s = 202880.000 

Figure 3-14. AUTOFAIL analysis of PDP-8/e with AMD2901 12910 chip set. 
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Table 3-5. Summary of PDP-8/e fault-avoidance designs. 

Analysis Temp. RAM 
Figure (Oc) 'lTQ 'lTQ A (fpmh) 

3-6 50 16 16 281.26 

3-7 40 16 16 167.22 

3-8 30 16 16 106.74 

3-11 40 16 10 120.65 

3-12 40 14 10 115.28 

N/A 30 14 10 76.49 

3-14 40 16 16 135.91 

N/A 30 14 10 51.15 

are considered in the section on Dynamic Re­
dundancy. 

Reliability functions, R(t), and the measures 
derived from them are not very useful in consid­
erations of the effectiveness of failure-detection 
and fail-safe techniques. The redundant hard­
ware actually contributes to a reduced R(t) when 
corrective action does not follow detection. The 
concept of coverage, however, provides the view 
of reliability required when discussing detection 
techniques. This section uses two measure men ts 
of coverage. * The first, called general coverage, 
is more qualitative. Usually general coverage 
specifies the classes of failures that are detecta­
ble, and may include failure detection percent­
ages for different classes of failures. The second 
form of coverage is more explicit. It is the 
probability that a failure (any failure) is detect­
ed, and is denoted by C. C can be determined 
from the general coverage specifications by using 

* The issues involving coverage measurement are discussed 
in detail in Chapter 5. 

MTTF 
(hours) Notes 

3,555 Base design, no cooling 

5,980 Fans installed 

9,369 Cabinet ventilation system 

8,288 Fans installed, hi-rel RAM chips 

8,675 Fans installed, hi-reI RAM chips, system 
burn-in 

13,074 Cabinet ventilation system, hi-reI RAM 
chips, system burn-in 

7,358 Fans installed, LSI bit-slice chips and 
ROMS used in CPU 

19,550 Cabinet ventillation system, LSI bit-slice 
chips and ROMS used in CPU, hi-rel 
RAM chips, system burn-in 

the average of the coverages for all possible 
classes of failures, weighted by the probability of 
occurrence of each fault class. Thus C is more 
difficult to obtain, since the relative probabilities 
are implementation-dependent and indeed may 
not be known. In many instances, simplifying 
assumptions are employed for the possible fail­
ure modes and probabilities. For these reasons, 
the technique discussions below will always have 
the general coverage measure, and when possi­
ble, the explicit coverage C. 

Cost and performance effects of reliability 
techniques are also important. Dollar costs are 
impossible to give here. Even explicit costs in 
numbers of chips will often be hard to predict 
without knowing details of specific implementa­
tions. The same is true of performance effects, as 
shown by the single error-correcting-code mem­
ory example in Chapter 5. Diagnosability is yet 
another important issue when considering fault­
detection and fail-safe techniques. Diagnosabil­
ity is usually considered in terms of diagnostic 
resolution, that is, the size of the region to which 
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the fault can be isolated. In many systems diag­
nostic resolution to the Field-Replacable Unit 
(FRU) is considered necessary. When fault de­
tection techniques are used in conjunction with 
fault-tolerant techniques (see the section on Dy­
namic Redundancy), the diagnostic resolution 
may become crucially important. Diagnostic res­
olution is a function of implementation and is 
difficult to determine accurately without specific 
details. Thus, while cost, performance, and diag­
nosability are considered in the discussions be­
low, the information given will often be vague. 

Duplication 

Conceptually, duplication is the simplest fault 
detection technique. Two identical copies are 
employed. When a failure occurs, the two copies 
are no longer identical and a simple comparison 
detects the fault. The simplicity, low cost, and 
low performance impact of the comparison tech­
nique are particularly attractive. Duplication is 
applicable to all areas and levels of computer 
design and thus is widely used. 

Duplication successfully detects all single 
faults except that of the comparison element. In 
some cases, particularly for memories or multiple 
line output circuits, failures in both copies are 
detected as long as at least one failure results in 
a nonoverlapping failure. An example of non­
overlapping failure is a duplicated eight-bit 
word. If the first copy has a failure in bit position 
o and the second copy has failures in bit posi­
tions 0 and 5, the failures in bit position 0 will 
not be detected if they result in identical errors. 
The bit position 5 failure, however, is nonover­
lapping and will be detected. Identical faults 
from the identical modules are not detectable 
because both copies are in agreement. Thus, in 
many cases physical division and/or separation 
of the modules is a necessity. 

There are many variants on duplication. Some 
combine duplication with other techniques, re­
sulting in increased coverage over some classes 

of faults, or in fault tolerance (such as reconfig­
uration, error correction). Several such combina­
tions are covered in the section on Dynamic 
Redundancy. 

One method for increasing coverage is the 
"swap-and-compare" technique used on the 
C.mmp multiprocessor [Siewiorek et aI., 1978a]. 
Initially used for important data structures in 
memory, the technique can also be applied to 
other areas of a computer. Figure 3-15 illustrates 
the concept. There are two copies of a word, but 
one copy has its two bytes reversed. Error check­
ing involves swapping the bytes of one copy 
prior to comparison. In addition to covering all 
single, nonoverlapping failures, swap-and-com­
pare provides coverage of most identical failures 
affecting both copies (such as bit-plane failure). 

In duplication, both copies may be subject to 
identical failures (common-mode failures), par­
ticularly if both have an identical design error or 
if both reside on the same IC chip. Sedmak and 
Liebergot [1980] propose the use of complemen­
tary functions to solve this problem for VLSI Ie 
chips (Figure 3-16). This approach is similar in 
concept to dual-diversity reception of radio sig­
nals, in which the same signal is received by two 
different antennae and receivers. One copy of the 
logic is the logical dual of the other copy. 
Common failure modes would probably cause 
different error effects, resulting in detection and 
thus coverage of these modes. A similar solution 
is to use both "on-set" and "off-set" realizations 

rBit-slice failure 
I I 

I I 

Copy 1 

Copy 2 

Figure 3-15. Swap-and-compare check scheme 
for critical data structures in c.mmp. 
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Figure 3-16. Proposed use of duplicate circuits on one VLSI chip. Complemen­
tary implementations improve resistance to common mode failures. 
(© 1980 IEEE.) 

for the two copies [Tohma and Aoyagi, 1971]. 
The on-set is the set of input and state variables 
that result in logical one outputs. The off-set 
results in logical zero outputs. 

Duplicate information may already be present 
in a circuit so that the amount of additional 
redundancy needed may be small. An example is 
a possible internal modification to the Advanced 

Micro Devices Am2901 bit-slice ALU chip. In 
the chip are functional units that compute 
A + B, AB, and A E9 B (this last is part of the 
adder). Because A E9 B = (A + B) E9 (A B), the 
two Isets of signals can be used to check each 
other. In this case, the only additional elements 
needed to utilize the duplicate information 
would be two XOR gates (one to form one of the 
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Functional circuit Duplicate complementary circuit 

AND 

A 8 -A -8 

Truth Table Key 

Inputs Outputs Symbol Meaning 
-~--- -----------

A, 8, C, f, G, NOT 

• lOGICAL AND 
l l l H l + LOGICAL INCLUSIVE OR 
l l H H l subscript t Time period t 
l H l H l subscript t - 1 Time period t - 1 
l H H l H Es Enable on low to high 
H l l H l transition of clock 
H l H l H E1- Enable on high to low 
H H l H l transition of clock 
H H H l H 

_b. Example of functional versus duplicate complementary circuits. 

Figure 3-16 -Continued 

duplicate signals, the other to compare the two 
signals}. 

Duplication can also be carried out at the bus 
level. The Sperry Univac 1100/60 (see Chapter 
10) uses comparison at the bus level for its 
instruction processors [Boone, Liebergot, and 
Sedmak, 1980]. The processor is split into two 
36-bit subprocessors. Each subprocessor is dupli­
cated, and only one of the two duplicates drives 
the master data bus during anyone microcycle. 
The other drives the duplicate data bus (Figure 
3-17). Both copies operate in the same way upon 
the same data. At the end of the microcycle the 
results are compared. A disagreement causes 
interruption of operations. Univac's implementa­
tion of this scheme produced a performance 
increase as a result of splitting driven loads 
between the two subprocessors. 

Comparing module outputs is not the only 
way to apply duplication. The Bell ESS-I pro­
cessor demonstrates duplication at the system 
level, but comparison is performed at the regis­
ter-transfer level [Toy, 1978]. Certain key values 
within each of the dual central control units 
(CCs) are compared by matchers residing within 
each CC. Only one CC is on line at a time; the 
other is running in microcycle lockstep. The 
oscillator in the on-line CC drives the clock 
circuits in both. The matcher immediately de­
tects any divergence in operation. This level of 
duplication decreases error latency, increases 
coverage, and has the side effect of making 
system diagnosis easier and quicker. Each of the 
matching circuits compares 24 bits from each CC 
during the 5.5 J.tsec machine cycle. Each CC has 
two matchers, and each matcher has access to six 
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Figure 3-17. Duplication at bus level in Sperry/Univac 1100/60. 

24-bit sets of internal nodes (Figure 3-18). The 
processing performed during the machine cycle 
determines which set is checked, and a mismatch 
generates an interrupt. A diagnostic program is 
run to locate the faulty CC, which is then 
removed from service for repair. 

The cost of duplication is twice that of an 
equivalent simplex system, plus the cost of the 
comparison element. Performance degradation 
can result from at least two sources. The first is 
lack of synchronization between the compared 
signals, which could be remedied by either a 
common clock or a delay period before compar­
ison. Some delay would result in any event from 
the inevitable variance in propagation times and 
other parameters in the circuits of both copies. 
The other source of degradation is the propaga­
tion and decision time required by the compari­
son element. Normally, the performance loss due 
to these factors is small enough not to detract 
from the benefits of duplication. 

At a cost in performance, expenses can be 
halved by using the same hardware to perform 
duplicate operations, one following the other in 
time. This time redundancy at least doubles 

execution time. It also is more susceptible to 
nondetection of faults because the same hard­
ware, with the same problem, is used for both 
operations. Transient faults would not be a prob­
lem, but hard failures would be. Hard-failure 
coverage could be increased somewhat by carry­
ing out the operation with a different ordering or 
algorithm, using as many different resources as 
possible. Although a single failed ALU would 
probably give bad results both times, the results 
would differ for most failures and still result in a 
mismatch and failure detection. For example, a 
string of additions could be performed twice in 
different order, or could be done the second time 
by forming and adding the two's complements 
and negating the result. . 

One frequently perceived problem of duplica­
tion (and some other redundancy techniques) is 
incomplete use of resources. A duplicated com­
puter, for example, is actually two processors 
performing the same task in parallel, with a loss 
of half the available computing power. As a 
result, in some designs only part of the proces­
sing is done in parallel by both copies, and 
checking is performed for only the portion of 
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Figure 3-18. Bell ESS-1 CC match access. 
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processing still performed in duplicate. All other 
processing is performed on only one processor or 
the other. In this case, duplication is usually at 
the task level and the comparison is performed 
between the intermediate and/or final results of 
the two task instantiations. The yield is increased 
utilization of the hardware; the disadvantages 
are decreased coverage and increased error la­
tency. Careful design, however, can minimize 
these disadvantages, and in many instances the 
remaining coverage is more than sufficient. 

',. Another source of performance degradation 
with processors duplicated in this fashion is the 
bus bandwidth consumed by interprocess com­
munication. While this is an expected overhead 
in multiprocessing architectures, the problem is 
i~creased by the bandwidth needed for duplica­
tIon. One possible solution can be found in the 
Tandem Computer. * The Tandem design at­
tacks this problem with its Dynabus, a high­
speed interprocessor bus used solely for interpro­
cessor communication. All I/O and memory 
accesses are handled through a more conven­
tional bus. 

Duplication, like all other reliability tech­
niques, involves the classic dilemma of "who 
shall watch over the guardians?" In the case of 
duplication, failure in the matching equipment 
results either in no error-detection or in an 
occasional or permanent false indication of er­
ror. This problem can be alleviated with addi­
tiona~ cost, complexity, and/or performance deg­
radatIon, as the matching circuit is made more 
reliable using some of the techniques in the 
following sections. The problem, however, can 
never be completely solved. There are decreasing 
returns to adding more and more redundancy. 
Eventually the redundancy becomes a liability 
too large to accept in cost, performance, or even­
reduced net system reliability. This point is dem­
onstrated in Chapter 5, which contains an exam­
ple of an extensive PDP-8/e redesign. 

* The Tandem computer does not use duplication as a means 
of error det~ction. However, the Dynabus design could 
prove useful III a system where duplication is used. 

Error-Detection Codes 

~rror-detection codes are systematic applica­
tIons of re?un~ancy to information. The concept 
of codes IS sImple: for the set of all possible 
combinations of symbols, only a subset of them 
represents valid information (Figure 3-19). The 
valid set is called the set of code words. In 
essence, many redundancy techniques can be 
considered coding techniques. Duplication, for 
example, can be considered a code whose valid 
elements are words consisting of two identical 
symbols. Error detection with codes consists of 
determining whether an input is a valid code 
word. Most of the codes of concern to a com­
puter system designer are binary codes, in which 
the code words are made from a combination of 
Is and Os. 

One of the key concepts in determining code 
p~operties is Hamming distance. The Hamming 
dIstance between two words is the number of bit 
positions in which they differ. The minimum 
distance, d, of a code is the minimum Hamming 
distance found between any two code words. 
Figure 3-20 shows the space of three-bit words. 
Each edge of the cube represents a distance-I 
transition between adjacent words in the space. 
Consider a code taken from this space, in which 
all code words have an odd number of Is. These 
are the boxed words in the figure. The minimum 
d~stance between code words is 2, and any 
dIstance-I transition results in a noncode word. 

Valid 

representations 

~igur.e 3-19. An example code space. The set of 
invalid representations (noncode words) is W-c. 
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101 

Figure 3-20. The 3-bit word space. 

The distance-I transitions from code words re­
present single-bit errors. Thus, for this code 
(called odd parity) any single error is detectable. 
The nonboxed points of this set form another 
code (even parity) with the same coverage of 
single failures. For both codes, any distance-2 
transition (double error) results in another code 
word, and is thus a nondetectable error. 

Another code is formed by joining a 2-bit 
value with its complement. This code is called 
the CD code because the second half is the 
complemented duplicate of the first half. The set 
of valid code words is D = {0011, 0110,1001, 
IIOO}. This code has a minimum distance of 2. 
Detection for this code consists of a check to see 
whether the 4-bit input is an element of D, or 
equivalently, not an element of D'. 

Figure 3-21 illustrates the 4-bit word space 
containing this code. The CD code words are 
marked by &. Each arc in the figure is a dis­
tance-I transition, that is, a single bit flip. Be­
tween 1100 and 1001 at least 2 bit flips (errors) 
must occur. Between 1100 and 0011 4 bit flips 
must occur to produce the wrong code word. 
Some of the intermediate paths consist entirely 
of noncode words. Thus, the code will detect any 
single-bit error, but some double errors will go 
undetected because they result in another code 
word (the wrong one). Herein lies a key to code 
performance: the use of a code with a minimum 
distance, d, allows detection of any terrors, 
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Figure 3-21. Expanded word space cube with 1 bit 
added to the word size. Boxed words are even­
parity words, @ marks a code word in a 2/4 m-of-n 
code, and & marks code words from the comple­
mented duplication code used as an example in the 
text. The unmarked words are odd-parity code 
words. 

where t < d. Duplication, can be considered a 
code with d = 2, triplication (three copies) 'a 
code with d = 3, and, in general, replication 
with n copies a code with d = n. 

Minimum distance is not the only characteris­
tic needed to evaluate a code's performance. The 
CD code of Figure 3-21, for example, is a 
variation on duplication in which the extra copy 
is the complement of the original. This design 
gives protection against all multiple adjacent 
unidirectional faults. For example, if the code is 
used for a register that resides on one IC chip, a 
failure of the chip that results in the grounding 
of some or all outputs would be detected. Simple 
duplication provides no protection against unidi­
rectional faults. In both cases, however, the 
minimum distance for the code is 2. 
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Two other distance-2 codes are shown in Fig­
ure 3-21. The first, called the 2/4 (2-of-4) code, 
consists of all the words (marked by @) contain­
ing exactly two Is. This code requires slightly less 
redundancy than the CD code because it allows 
six code words out of the code space instead of 
the CD code's four. Although the 2/4 code 
detects all adjacent unidirectional errors it de­
tects fewer distance-2 errors than the CD code. 
The other code is an even-parity code (boxed 
words). This code has the least redundancy, for 
it allows eight code words out of the code space. 
However, it has no coverage of distance-2 errors 
and will detect only some multiple adjacent 
unidirectional errors. In particular, it will not 
detect a unidirectional failure affecting all bits. 
The odd-parity code (all the unmarked points 
in Figure 3-21) has the same drawbacks as even 

parity, except that it will detect both the all-Os 
failure mode and the all-Is failure mode. 

Table 3-6 summarizes the properties of the 
four codes shown in Figure 3-21. These four 
codes constitute the spectrum of code choices for 
a 4-bit code word. 

Other error-detection codes, though not as 
simple as replication, are generally better in at 
least some respects. Most require less redundan­
cy to achieve the same minimum distance. For 
many codes, decoding is eased because the code 
word consists of two parts: the original value, 
and the code bits that are simply appended to 
make it a code word. Such a code is called a 
separable code. In linear separable codes, each 
check bit is calculated as a linear combination of 
some of the data bits. Parity-check codes are 
linear separable codes for which each check bit 

Table 3-6. Properties of the codes shown in Figure 3-21. 

Bits in Code 
Code Word Words Distance Coverage 

CD 4 4 2 Any single bit error 

66% of double-bit errors 

Any multiple adjacent 
unidirectional error 

2/4 4 6 2 Any single-bit error 

33% of double-bit errors 

Any multiple adjacent 
unidirectional error 

Even 4 8 2 Any single-bit error 

parity No double-bit error 

Not all multiple adjacent 
unidirectional errors 

Not all-Os or all-Is errors 

Odd 4 8 2 Any single-bit error 

parity No double-bit errors 

Not all multiple adjacent 
unidirectional errors 

All-Os and all-Is errors 
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can be calculated as the parity bit (sum mod­
ulo-2) of some subset of the data bits. Parity­
check codes can be encoded and decoded using 
parity generation and parity-check matrices (for 
details, see Appendix A by Tang and Chien.) 

In discussion of codes the term (n, k) code is 
often used. In this expression n is the number of 
bits in the entire code word, while k is the 
number of data bits. Thus in an (n, k) separable 
code there are (n - k) bits concatenated with the 
data bits to form the code words. 

Some codes can be modified, extended, or 
combined with other codes or redundancy tech­
niques to increase coverage. For example, a 
distance-d code can be modified by a further 
restriction on the valid code words, such as using 
a subset of code words which contains a high 
percentage with a minimum distance greater 
than d. Often, however, increased effectiveness 
may not be reflected in the minimum distance, as 
in the examples of Figure 3-21, where the CD 
code is a subset of the 2/4 code, and the 2/4 code 
is in turn a subset of the even-parity code. 

If some fault classes are more probable than 
others, the code choice is affected. The CD code 
example of Figure 3-21 detects not only single 
faults but also all adjacent unidirectional faults 
up to and including the entire word. 

In addition to the minimum distance and 
error-detection properties of a code, the cost of 
the extra information needed (the redundancy) 
must be considered. Another factor is the diffi­
culty of error detection and decoding. The actual 
value to be communicated is first encoded, or 
transformed into a valid code word. Upon re­
ceipt it must be checked for validity. For nonsep­
arable codes the received quantity must also be 
decoded, or transformed back into its original 
form, before it can be used. 

A final issue is the intended application of the 
code. Most codes, for example, will not be 
invariant or closed with respect to data opera­
tions. In the simple addition of code words the 
result mayor may not be another code word, or 
may not be the correct code word. Conversely, 
there are codes that are invariant with respect to 
some set of operations, or for which there exist. 

simple algorithms for generating the code word 
that should result from the operation (short of 
the process of decode,operate, encode). Further­
more, some codes can be decoded efficiently in a 
serial fashion, bit by bit in a shift register, but 
may be difficult to decode in a parallel fashion. 
These serial-decodable codes are used in applica­
tions that employ serial data streams. 

Codes can also be used for failure detection in 
random logic. In such an application all internal 
logic states or signals must be represented as 
members of a code. This topic is treated below in 
the section Self-Checking, Fault-Secure, and 
Fail-Safe Logic. 

This subsection presents a representative sam­
ple of the more common error-detection codes. 
The references [Tang and Chien, 1969; * Peter­
son and Weldon, 1972; Rao, 1974; MacWilliams 
and Sloane, 1978] provide more complete treat­
ment of the subject. 

M-of-N Codes 

An m-of-n code (m/n code) consists of n-bit code 
words in which m (and only m) bits are ones. 
Thus, there are nCm code words. ** For example, 
the 2/4 code has 4C2' or six possible code words. 
The set of code words for the 2/4 code is 
{1100, 10 10, 1001, 0101, 00 11, OlIO} . This code 
detects all single and unidirectional faults. The 
basic concept for the m-of-n codes is simple, but 
they have several disadvantages. One is that 
circuitry for parallel detection and decoding is 
complex, whereas a serial decoder can be made 
by simply using a counter for the one-bits. 
Another problem is that they often require a 
large amount of redundancy. For example, in the 
case of k data bits with all 2k values possible, 
then at least k extra coding bits are needed if the 
code is to be separable, as in the example of 
Figure 3-22 (that is, detection is necessary, de-

* The paper by Tang and Chien is included as Appendix A. 

** nCm is a shorthand expression for the number of unique 
combinations of n things taken m at a time. A verbal 
shorthand for this term is "n choose m." 
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0011 1101 

Figure 3-22. Four-output control module and val­
id output line states. 

coding is not). Less redundancy can be ·used at 
the cost of adding a decoder and encoder. For 
example, if there are four data bits (k = 4) a 3/6 
code could be used in place of a separable 4/8 
code, since only 16 code words are needed. The 
3/6 code has 20 code words and less redundancy 
than a 4/8 code, which has 70 code words. If 
there are nCm code words and only q < nCm of 
them are to be allowed, there is less coverage of 
multiple faults unless the erroneous code words 
are also detected. In the 3/6 code example there 
are four unused code words that could pass 
undetected as errors, and in the 4/8 code there 

would be 54 undetectable unused code words. 
One common use for min codes is in control 

circuitry. To produce a separable min coding, 
extra lines are used in addition to the output 
control lines. The redundancy lies in extra logic 
for encoding (determining the value of the extra 
lines) and in the detection logic. In some cases 
extra lines are not needed or can be reduced in 
number. For instance, the number of set lines 
may be less than or equal to some maximum 
number. Consider a control module with four 
output lines whose possible output states are 
shown in Figure 3-22. Either two or three lines 
are set at anyone time, and the addition of a 
single line can produce a 3/5 separably coded 
output. Figure 3-23 shows the implementation of 
this scheme, including a TTL error detector. 
Because the control line states (0110, 0101) are 
not valid, the demultiplexer (demux) outputs for 
5 and 6 are not included in the circuit even 
though such a code word is a valid 3/5 code 
word. The logic that generates the redundant 
signal provides fault detection only for signals 
from which it is independent. Thus, the logic for 
~he fifth line would normally not use the other 
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Figure 3-23. 3/5 code used to check control module output lines and 
function. 
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Figure 3-24. 4/8 coding in Bell ESS-3A microstore. 

four module outputs as its inputs. Otherwise, the 
only coverage afforded is over corruption of the 
signals on the wires, not over the logic that 
generates them. 

The Bell ESS-3a uses an m-of-n code in its 
microstore. The TO and FROM control fields in 
the microword are each encoded in a 4/8 code 
and are interlaced with the address field (Figure 
3-24). This arrangement gives coverage of multi­
ple adjacent unidirectional errors and all even 
numbers of bit failures in the address field as 
well. This would not be the case if the address 
were kept separated, for it is covered only by a 
single-parity bit. More complete details of the 
scheme, including decoding/detection imple­
mentation, are given in Toy [1978] (Chapter 12). 
In a paper written about the micros tore alone, 
Cook et al. [1973] present a detailed examina­
'tion of its design. 

Parity Codes 

If a given group of bits has an even number of 
Is, it is defined as having even parity. If the 
number of Is is odd, the group has odd parity. 
Parity codes involve the addition of an extra bit 
to each group of bits so that the resulting word 
has even parity or odd parity, depending on the 
implementation. Parity codes are linear separa­
ble codes and give on-line detection of errors. 

For a b-bit group of bits, the (even) parity can 
be generated by using a b-input XOR gate. 

Because large XOR gates are not available as 
standard logic functions, the parity can be gen­
erated using a b-input tree of 2-input XOR gates 
or one of the standard parity-generation chips 
(such as the 74190, which encodes an 8-bit input, 
decodes a 9-bit input, and can be used in a 
modular fashion for longer words). Parity codes 
are suitable for. serial detection and encoding, 
needing only a single memory cell and a single 
XOR gate to perform the modulo-2 addition of 
the bits in the word. The choice bet~een even 
and odd parity depends upon the prevalent 
failure mode. Even parity gives detection of the 
all-Is failure mode if the parity group (data bits 
and parity bit) is an odd number of bits long, but 
not for an even number of bits. Even parity does 
not detect the all-Os failure mode. Odd parity 
detects the all-Os failure mode for parity groups 
of all lengths, and the all-Is failure for parity 
groups an even number of bits long. Several 
variants of parity encoding are discussed below; 
Figure 3-25 illustrates some of these. 

With bit-per-word parity, one parity bit is 
appended to the entire data word. It is one of the 
least expensive forms of error detection, because 
it requires a minimum of redundancy in terms of 
information transferred, and one parity tree can 
be used for both encoding and detection if 
information is both transmitted and received. In 
addition to the extra bits and parity tree, other 
hardware is needed for such uses as setting parity 
error detection status bits and allowing wrong 
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Bit-per-word parity 

L---L----I __ ----JI......-...JI_p--l-I_....I...--....I. __ -....I._...J1----'p I Bit-per-byte parity 

Interlaced parity, I = 3 

\~ ____ ~\ _____ \~ __ ~l 

Chip-wide parity, 4-bit wide chips 

Chip parity, 
4 data chips 

Figure 3-25. Five parity schemes. 

parity to be written for maintenance (testing) 
purposes. Bit-per-word parity codes detect all 
single-bit errors and all errors that involve an 
odd number of bits. The all-Is and all-Os failure 
coverage is as discussed above, with the entire 
code word becoming the parity group. The costs 
of bit-per-word parity for a b bit word are l/b 
redundancy in data, a b-bit parity tree encoder, 
a (b + I)-bit parity tree decoder (in some cases a 

single encoder/decoder tree is possible), and a 
logic delay of approximately rlog2(b + 1)1 * gate 
levels in the encoding and detection operations. 

In bit-per-byte parity, an extra bit is added to 
each byte of data. Alternating even and odd 
parity in the bytes of the data word gives im-

* The ceiling symbol, r 1, means round the value up to the 
next highest integer. 
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proved coverage, since both wordwide stuck-at-l 
and wordwide stuck-at-O failure modes are cov­
ered. The wordwide failure mode is a common 
result of timing and select-line errors. Also, the 
bit-per-byte code detects all single- or odd-num­
ber errors in each byte. Thus, as long as at least 
one byte contains an odd number of failures, 
many more kinds of multiple errors in a word are 
detectable. The diagnostic resolution is also im­
proved over bit-per-word parity, because fewer 
data bits are covered by each parity bit. Encod­
ing and detection are faster because the parity 
trees have fewer inputs and thus fewer gate levels 
of delay. The extra costs are more parity trees 
and a redundancy of lim where there are m bits 
per byte. The C.mmp multiprocessor used this 
technique for its shared memory [Siewiorek et 
aI., 1978a]. 

In interlaced parity, i parity bits are appended 
to the data word. Each parity bit is associated 
with a group of (b/i) bits, and is generated by 
forming the parity over every ith bit, starting in 
a different bit position for each parity bit. The 
encoded word thus has i separate parity groups. 
Interlaced parity covers single bit errors in each 
group, as well as all multiple errors in which at 
least one group has an odd number of errors. If 
the parity sense (odd/even) is alternated from 
group to group, the code covers a large number 
of unidirectional failures. Thus interlaced parity 
would be particularly useful for buses, where the 
shorting-together of signal lines is a common 
failure mode, as well as for whole-chip failures of 
memory and bus transceiver chips. These failures 
are sure to be detected relatively quickly. The 
diagnostic resolution of interlaced parity is to the 
parity group in error. As for bit-per-byte parity, 
the speed of detection and encoding is increased 
as a result of the smaller parity tree sizes. The 
costs are an i/b redundancy, and i parity trees of 
(r b/i l + 1) bits for detection. 

Chip-wide parity, proposed for memories in 
which each word is spread over (r b/wl )w-bit wide 
chips [McKevitt, 1972], is actually a special case 
of interlaced parity. There are w parity bits 
appended to each data word, and they reside on 

their own w-bit wide memory chip. Each parity 
bit is the parity over the same bit position on all 
the other chips. When single-bit wide chips are 
used, chip-wide parity is the same as duplication. 
The coverage is the same as for interlaced parity, 
with the additional property that any single-chip 
failure is detectable (as long as at least one bit is 
in error). This technique is also applicable to 
many other areas of digital system design in 
which blocks of signals (control, data) are to be 
protected. 

Another way of detecting single-chip failures 
is to use a parity bit for each chip. The chip 
parity bits are stored separately from the chips 
they cover. The advantage of this technique, 
called chip parity, is that a parity error detection 
immediately locates the failed chip. Chip parity 
thus has a more useful diagnostic resolution than 
chip-wide parity. However, if data bit values are 
uniformly distributed and the O-to-l and 1-to-O 
failure modes are equally likely, chip parity has 
only a 0.5 probability of detecting failure of an 
entire chip (for a given data word). This is 
because there is a 0.5 probability that the parity 
bit is the correct one for the erroneous data on 
the chip. Chip-wide parity, on the other hand, 
has a (1 - (0.5 t,) probability of detection in the 
same situation, given w-bit wide chips. The cost 
of chip parity is (b/w) extra bits per word and 
(r b/wl)(w + I)-bit parity trees. 

Table 3-7 summarizes the properties of the five 
basic parity techniques described above. 

The same single-chip failure coverage and 
diagnostic resolution that chip parity provides 
can be obtained with less redundancy by using a 
variant of the Hamming single-error correcting 
(SEC) codes (discussed in the following section 
on Error-Correcting Codes). Assume there are m 
w-bit wide chips for a data word, and that 
cj (i = 1,2, ... , m) is the parity of the ith chip. 
The addition of n parity bits, where 

2n > m + n 

can be used to give detection of any single-chip 
failure and diagnostic resolution to the failed 
chip or parity bit. The parity check bits are 
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Table 3-7. Properties of the basic parity techniques. 

Bit Parity Trees 
Redun-

Technique dancy Number Size 

Bit-per- l/b a=b+l 
word 

Bit-per- l/m b/m a = m + I 
byte 

Interlaced i/b a=rb/il+l 

Chip-wide w/b w a=rb/wl+1 

Chip l/w rb/wl a=w+l 

formed similarly to the Hamming SEC code bits. 
The difference is that the check bits are formed 
from the c/s (chip parities) instead of from 
individual data bits as in the SEC code. The full 
technique will not be given here, and an example 
used instead. This example is a 32-:-bit-wide 
microstore made from four 8-bit-wide chips. 
Three parity bits are used, and are computed as: 

PI = cI ffi c2 ffi c4 

P2 = cI ffi c3 ffi c4 

P3 = c2 ffi c3 ffi c4 

After a micrpword has been read, the parity 
check bits are 'computed and XORed with the 
~tored parity bits. If any of the resultant bits are 
nonzero, the three bits (P3P2PI) form an indica-

Delay Coverage 

rlog2 al All single-bit errors 
All odd-bit errors 

llog2 al All single-bit errors 
All errors with an odd number in at 
least one byte 

llog2 al All single-bit errors 

All errors with an odd number in at 
least one parity group 

Large number of adjacent multiple 
unidirectional errors 

llog2 al All single-bit errors 

All errors with an odd number in at 
least one parity group 

Large number of adjacent multiple 
unidirectional errors 

Any single chip failure 

llog2 al All single-bit errors 

All errors with an odd number on at 
least one chip 

50 percent of single-chip failures 
Points to failed chip for single errors 

tion (called the syndrome) that is uniquely asso­
ciated with a particular chip or parity bit in error 
(001, 010, 100 for parity bits 1, 2, and 3, respec­
tively, and 011, 101, 110, III for data chips 1, 2, 
3, and 4, respectively). The cost for this scheme 
is n extra bits per word, n parity trees with 
(rIog2(m + n)l) inputs, and m parity trees with 
w inputs if w-bit wide chips are used. The 
coding/decoding circuitry is greater than for 
chip parity, but the decrease in redundant bits 
can be significant, especially for large memories. 
On the other hand, coverage of multiple chip 
failures is much lower, and in the case of multi­
ple chip failures the syndrome may point to a 
nonfaulty chip if it is nonzero. 

Parity techniques have been used in many 
systems, most often for main memory and less 
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often for buses. The UNIBUS on PDP-lIs, for 
example, does not have parity but defines two 
extra signal wires for reporting memory or pe­
ripheral device parity errors. One wire carries the 
parity error signal; the other is a parity enabling 
signal, necessary because not all bus devices and 
memories use parity checking. The PDP-II/60 
has parity on its writable control store (WCS), 
main memory, and cache. The WCS has 3 parity 
bits in each word, one for each 16-bit segment of 
the 48-bit word. The cache has 3 parity bits, one 
for the tag field and one for each of the data 
bytes. Starting with the 1108, all of the Univac 
liOO-series systems use parity. The 1108 had 
parity in main memory and on the processor 
general registers. As the 1100 series matured, 
parity was expanded to more parts of the systems 
(see Chapter 10). Finally, the VAX-II systems, 
detailed in Chapter 8, make extensive use of 
parity. 

Standard LSI chips are being used increas­
ingly in systems design. However, they are not 
usually designed fot the external application of 
error-detection codes to check for proper chip 
operation. Data transformations occur internally 
for which codes are not invariant. In some cases, 
however, partial checking can be accomplished 

AlU 

control lines 

without resorting to duplication, as in the DEC­
system 2020 processor. A parity code is used on 
the bus that feeds an Am2901 bit-sliced ALU. As 
the data are gated into the 2901 the bus monitor 
checks them for proper parity. If the data are 
merely being read into the 2901 register file, their 
parity bit is simultaneously stored in an external 
register (Figure 3-26). The external register has 
two bits associated with each register in the 
2901: the parity bit, and a "parity valid" bit, 
which remains set as long as no data transforma­
tions are performed on the contents of the corre­
sponding internal register. The parity-valid bit 
value is determined by the control signals for the 
2901. When the data are brought out to the bus 
from the 2901, their parity is generated before 
they are placed on the bus. If the parity-valid bit 
is still set, the stored parity is used to verify that 
the data have no errors. This scheme provides 
fault detection for the 2901 register file, internal 
data paths, and the parts of the ALU used to 
move data internally without transformation. 

Even though parity (and other) codes are not 
invariant withrespect to data transformations, it 
is possible to use parity as a check on the data 
operation. This is possible when, given the inputs 
to the operation, the parity of the_ result of the 

AlU chip (e.g., Am2901) 

Parity bit from bus 

Bus (with parity) 

Figure 3-26. Use of parity to detect errors during nontransformation opera­
tions in LSI ALU chips in the DEC 2020. 



94 THE THEORY OF RELIABLE SYSTEM DESIGN 

transformation can be predicted. Chinal [1977] 
proposes a high-speed parity prediction circuit 
for binary adders. Khodadad-Mostashiry [1979] 
presents a general method for predicting the 
parity of any transformation, and in particular, 
bit-sliced functional circuits. The resulting pre­
diction circuit, however, is often much more 
complex than the circuit it checks. 

Parity can be used to detect addressing faults 
in a memory by storing the parity of the address 
and data with the memory word. On access, the 
stored parity is compared with that of the data 
and address used. If the parity is wrong, either 
the word retrieved is incorrect, the word re­
trieved was stored in the wrong place, or the 
wrong word was retrieved. In this way all single­
bit addressing errors as well as data errors are 
detected. 

In many applications of redundancy tech­
niques the redundancy needed may already be 
partially or wholly present. The 3/5-coded con­
trol module mentioned in the previous section is 
an example. An example concerning parity is a 
host-to-LSI-ll network for a system containing 
several LSI-II s. This network allows direct host 
communication with the individual LSI-lis. The 
bus for the network has a data field and a 3-bit 
opcode field (Figure 3-27). There are two unused 
opcodes (011 and Ill). If an opcode starting in 
01 is used for data writes and in II for data 
reads, the third bit could carry the parity of the 
data field. Since it is predicted that 90 percent of 
the bus transactions will be data reads and 
writes, this scheme would give bit-per-word par­
ity protection on 90 percent of the bus activity 
without any extra bus wires. 

Finally, in a design analysis for the use of 
parity on a processor-memory bus, three alterna­
tives were considered. The first was simple (17, 
16) parity. The second was the same (17, 16) 
parity with a modification that performs a cumu­
lative parity check of the entire two-way bus 
transaction. The address sent to the memory has 
an appended parity bit. The parity appended to 
the returned data word is formed as the mod-

Bus<1:8) Data 
Bus<9:11) Function 

()()() Write address 
001 Write network CSR 
010 Write data 
011 Unused 
100 Read device characteristics (polling) 
101 Read CSR 
110 Read data 
111 Unused 

Bus(12) Strobe 
Bus(13) Acknowledge 

Figure 3-27. Network bus signals for host-to­
LSI-11 command bus. 

ulo-2 sum of the received address parity bit, the 
computed parity of the received address, and the 
parity of the memory word itself. This scheme 
provides detection of a failure in the memory 
parity checker. The third alternative was an 
interlaced (18,16) parity (i = 2) with alternated 
parity senses, modified as above to provide a 
cumulative parity check on the bus transaction. 
Table 3-8 shows the coverage of several different 
failure classes for this scheme. From the table it 
can be determined that the cumulative (17,16) 
parity is better than the simple (17,16) parity 
because it detects a large number of memory 
unit parity generate/check errors, and that the 
(18,16) cumulative parity provides the best cov­
erage of the three. 

Checksums 

One of the least expensive methods of fault 
detection is checksumming. The checksum for a 
block of s words is formed by adding together all 
of the words in the block modulo-n, where n is 
arbitrary. The block of s words and its checksum 
together constitute a code word in a linear 
separable code. The number of bits in the sum is 
usually limited. This quantity is then compared 
with the checksum formed and stored when the 
block was last transmitted. In memories, the 
checksum must be stored along with the data 
block. If any word within the block is modified, 
the checksum must also be modified at the same 
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Table 3-8. Percentage of coverage of processor-memory bus failures. 

(I 7, 16) 
Error Type Parity 

Hard failure: 

Bus all 1 50% 

Bus all 0 50 

Bus half 1 0 

Bus half 0 0 

Wire-or: 

2 wires 100 

3 wires 0 

4 wires 0 

5 wires 0 

Single bit* 100 

Double bit 

Adjacent 0 

Random 0 

Triple bit 100 

Quadruple bit 

Two pairs adjacent 0 

Two adjacent 0 

Three adjacent 0 

Four adjacent 0 

Random 0 

Parity generate and check 

Stuck-at-ok 0 

Stuck-at-l 50 

Stuck-at-O 50 

·One bit value, not a failed wire 

time. The stored checksum is normally kept 
physically separate from the data block to limit 
the effect of a catastrophic failure on the fault­
detecting capability. 

Although checksumming is inexpensive in 
terms of excess information, it has three disad­
vantages. First, it is best suited to applications in 

Coverage 

(17,16) (18,16) 
Cumulative Cumulative 

50% 100% 

50 too 
0 Near 100 

0 Near 100 

100 lOO 

0 88 

0 100 

0 0 

100 100 

0 100 

0 Near 100 

100 100 

0 0 

0 Near 100 

0 100 

0 50 

0 0 

100 100 

50 Near 100 

50 Near 100 

which data are handled in large, contiguous 
blocks, such as buses that carry data in blocks, 
sequential storage, and block-transfer peripher­
als. 

Second, checksumming in memories takes a 
long time to detect faults even when reading a 
single word, for s words must be read and added, 



96 THE THEORY OF RELIABLE SYSTEM DESIGN 

w/s block 

,--­
I 
I 
I 
I 

: System 

Memory array 

s 

-

i {~----------~ ~~:;: -~~~~~~~~::: 

Checksum storage 

: 

~Err or 

I 

r Adder 1 
T4 Register I 

y 

Added hardware: 
Adder 
Accumulator 
Comparator 
w / s-word checksum store 
Control circuitry 

Figure 3-28. Memory with checksum error detection. 

and the sum compared with the stored value. 
Thus, checksumming is not suited to on-line 
checking when reading from memories. If the 
technique is used in a writable store, the check­
sum must be updated on each write by reading 
the old data and checksum, subtracting the old 
data, adding the new data, and finally storing 
both the data and the updated checksum. 

This cumbersome procedure, however, may 
not be a problem when writing is infrequent or 
when updating is performed in parallel with 
subsequent system operations not involving the 
memory. The memory checksum (and checksum 
update on writes) may be performed by dedicat­
ed hardware without interference to the rest of 
the system (Figure 3-28). The checksum can also 
be performed by the ALU or other system 
component, which will cause a degradation of 
the system's throughput. The Xerox Alto, for 
example, uses the processor ALU to perform the 
checksums for its disk, thus allowing the disk 
controller to be less complex. In this case, if it 
takes Ie seconds to perform a checksum for one 
block, and on the average a block of memory is 
checked every r:: seconds, the system perfor-

mance is degraded by (Ijr::). The additional 
degradation due to a checksum update time of I.,... 

when writes are performed every ~. seconds is, 
on the average, (lwlT:v). 

Though cumbersome for random access writ­
able stores, checksumming is very applicable to 
read-only memory, which can be checked by a 
background process. The Pluribus system (see 
Chapter 13) uses checksum error detection on 
both shared-code storage and local-code storage 
[Ornstein et aI., 1975]. Another application 
would be microstore checks performed by dedi­
cated hardware or console processors. Finally, 
critical data structures and program code could 
occasionally be verified through software-imple­
mented checksumming. 

The third disadvantage of checksumming is 
low diagnostic resolution. In memories, the de­
tected fault could be in the block of s words, the 
stored checksum, or the checking circuitry. In 
data transmission, the fault could be in the data 
source, the transmission medium, or the check­
ing circuitry. 

Four checksumming techniques are presented 
below. The first is a single-precision checksum. 
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fable 3-9. Probability of detection for different errors with single-precision 
:::hecksum. 

Error Types Coverage Ratio Condition 

Single device-multiple word 
-Single column I 

(1 - 2-,1') 
i < Z - log2s 

i = z - log2s 

(1 - 2-,1'(1 + ,\Cs/ 2 )) 

(1 - 2-(:-i) + 2-,1') 
i = z - (log2 s) + I 

Otherwise 

-Multiple adjacent columns I 
(1 - 2-(:-i) + 2-C.\') 

i <; z - (log2 s) - c 

Otherwise 

Multiple device 

-Single word 

-Multiple word adjacent columns (1 - 2-(,1') i <; z - (log2 s) - c 

Otherwise (1 - 2-(:-i)) 

The second is an extended-precision (extended­
word-length) checksum. The third, called the 
Honeywell checksum, is a modified double-pre­
cision technique. More complete information on 
these can be found in Jack et al. [1975], from 
which much of the discussion below was ab­
stracted. The last technique is called a low-cost 
residue code, which gives better coverage than 
the single-precision checksum for about the same 
cost. 

In single-precision checksumming the memory 
is divided into blocks of s words. Each word has 
z bits. The checksum is a z-bit word that is the 
modulo-(2 Z) sum of the s words in the block. The 
memory redundancy for this system is 
(l/(s + 1)). Errors in anyone column will cause 
either the corresponding checksum bit or the 
carry to the adjacent column to be in error. 
Thus, for the most significant column the error 
coverage afforded by the information contained 
in the carry is lost. The bit positions nearby pose 
the same problem in lesser degrees, depending 
on their' distance from the most significant bit. 
Thus, error coverage varies for each bit position, 
with the best coverage available for errors in the 
least significant bit. As the size of the block that 
the checksum guards increases, coverage de-

creases. Thus, coverage is a function of the block 
size and the column(s) in error. 

Table 3-9 summarizes the results for different 
error conditions. The derivations can be found in 
Jack et al. [1975]. In the table, c is the number of 
columns in error, i is the lowest-order column 
that has an error, s is the number of words that 
a checksum guards, and z is the number of bits 
in the checksum (the least significant bit is 
column 0). Unidirectional errors were assumed· 
in the derivation. It is also assumed that multi­
ple-word failures extend over all words in the 
memory block (such as one entire column). If 
this is not the case, s should be replaced by the 
number of words in the block with failures. The 
formulas for multiple adjacent-column faults 
and multiple device*-multiple word faults also 
hold approximately for nonadjacent failures in 
their carry range; that is, the carry from the 
column of the least significant bit faults will 
affect the result of the column holding the other 
failure. The coverage improves if the faults are 
not within carry range. Note that in the case of 

• Multiple device faults can be either a single fault affecting 
multiple devices (such as a stuck address line) or multiple 
independent faults on several devices. 
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multiple column failures, i is the number of the 
least significant failed column. 

If the checksum being formed is A bits longer 
than the memory word length, the coverage is 
greater than that afforded by the single-precision 
checksum. This form of checksum is called the 
extended-precision checksum. In particular, if 
s < 2A

, then the coverage for all columns is the 
same as for the lowest-order column in the 
single-precision checksum, because there can be 
no overflow and thus no loss of information in 
the carry bits from the higher-order columns. 
The probability of detecting any type of error is 
th us 100 percent. 

The Honeywell checksum is a modified dou­
ble-precision checksum technique in which suc­
cessive pairs of memory words in a block are 
concatenated. The checksum is formed by com­
bining douDle-length quantities to form a dou­
ble-length word. Thus any single-column error in 
memory will affect two columns in the checksum 
being formed. Overflow can still cause loss of 
carry-bit information. Provided that s < 2(z+ I) , 

the coverage formulas in Table 3-10 apply to the 
Honeywell checksum. 

Table 3-11 shows an example using the formu­
las from Table 3-9. An analysis is made of a 32-
word X 16-bit read-only memory made from 32-
X 4-bit ROM chips. The probability of successful 
error detection is calculated for each column (or 
chip), assuming that column (chip) is failed. 
These intermediate results are combined to pro­
vide the coverage for a single column (chip) 
failure anywhere in the memory. 

A modification of the single-precision check­
sum with an end-around carry adder is termed a 
low-cost residue code. The end-around carry 
retains the information normally lost with the 
most significant carry bit; it results in modulo-m 
addition where m = 2b - I for a b-bit adder. 
This technique [Usas, 1978] provides about the 
same single-word coverage as the single-preci­
sion checksum. The coverage for double-bit er­
rors is slightly better, and is much better for 
unidirectional errors in one column or two adja-

cent columns. The number of possible undetect­
able 2- and 3-bit errors is: 

U2 = sb(s - I) 

U3 = s2b(s - I) 
for b > 2 and 

for b > 3 

where s is the block length. 
When one column or two adjacent columns 

have unidirectional errors, the total number of 
possible undetectable errors is: 

U\col = bU and U2co1 = (b - 1)(2N - 2U) 

where 

1j = i (2b - 1) + s - 4i - 1, 

P = s/(2b - I), 

Q = 3s/(2b 
- 1), and 

Rj = i(2b 
- 1)/4. 

With these formulas, Usas showed the low-cost 
residue code to be superior to the single-preci­
sion checksum. 

Arithmetic Codes 

An arithmetic code, A, has the property that 
A(b * e) = A(b) * A(e) where band e are non­
coded operands, * is one of a set of arithmetic 
operations (such as addition and multiplication), 
and A (x) is the arithmetic code word for x. Thus, 
the set of code words in A is closed with respect 
to a specific set of arithmetic operations. Such a 
code can be used to detect or correct errors and 
to check the results of arithmetic operations. * 
Some operations (such as logical operations), 

* Other codes are not invariant with respect to arithmetic 
operations. For some separable linear codes other than 
arithmetic codes, the check symbol portion of the result can 
be produced by a prediction circuit. Usually such circuits 
are complex. Wakerly [1978] details check symbol predic­
tion for parity-check codes and checksum codes. 
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'able 3-10. Probability of detection of errors through Honeywell checksum. 

~rror Types 

lingle word 

Jultiple word 

Single column 

Coverage Ratio 

(1 - 2-(s+I)) 

Condition 

i < z - log2(S/2) 

i = z - log2(S/2) 

(I - 2-s (I + s/2Cs/4)) i = z - (log2(s/2)) + 1 

Otherwise (1 - 2-(z-i+(s/2)) + 2-.1') , 

Multiple column I 
(I - 2-(z-i+(cs/2)) + 2-CS ) 

1 < z - (log2(s/2)) - c 

Otherwise 

rable 3-11. Sample calculation using the formulas of Table 3-9 in an analysis of a 32-word X 16-bit ROM 
nade of 32 X 4-bit chips. 

rype of 
r;ailure 

iingle column 

)ne whole chip 

Column 

0,1,2, ... 10 

II 

12 

13 

14 

IS 

0,4 

8 

12 

lOwever, cannot be checked by arithmetic codes 
md must be performed on unencoded operands. 
[he discussion below is just an introduction to 
he topic of arithmetic codes; Appendix B, a 
)aper by A vizienis [1971], examines in detail the 
hree classes of arithmetic codes presented brief­
y here: AN, residue-m, and inverse residue-m 
lrithmetic codes. Other references on arithmetic 
:odes are Rao [1974]; Sellers, Hsiao, and Bearn­
on [1968b]; and Avizienis [1973]. 

Probability of Net Probability 
Error Detection, of Error 
Each Column Detection 

1 11116 

~I 1116 

0.860 0.860116 

0.875 0.875/16 

0.75 0.75/16 

0.5 0.5/16 

0.937 
1 2/4 
0.996 0.996/4 
0.938 0.938/4 

0.983 

The simplest arithmetic codes are the AN 
codes. These codes are formed by multiplying 
the data word by a number that is not a power 
of the radix of the representation (such as two 
for binary). The redundancy is determined by 
the multiplier chosen, called the modulus. AN 
codes are invariant with respect to unsigned 
arithmetic. If the code chosen has A = 2G 

- 1 
and a length that is a multiple of a bits, it is also 
invariant (using one's-complement algorithms) 
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"0" 

n-bit data word 

m m 
s s s s 
b b b b 
,'-__ ---J/ ,'-__ ---J/ 

Addend 1 Addend 2 

Carry 

Sum 
m''-__ ....,,/ I 
s s 
b b 

Code word 

"0" 

n + 1 bit 
adder 

Figure 3-29. Simple encoder for 3N single-error­
detecting arithmetic code. 

with respect to the operations of addition and 
left and right arithmetic shifting. Additionally, 
complementation and sign detection are the 
same [Avizienis, 1973]. An example of a single­
error detecting AN code is the 3N code. An n-bit 
word is encoded simply by mUltiplying by 3. This 
adds at most 2 bits of redundancy and can be 
encoded quickly and inexpensively in parallel 
with an (n + I)-bit adder (Figure 3-29). Error 
checking is performed by confirming that the 
received word is evenly divisible by 3, and can be 

N1 

R(N1) 

N2 

R(N2) 

Arithmetic 
function 
N1 * N2 

accomplished with a relatively simple combina­
tional logic decoder. Although there is one more 
bit than in bit-per-word parity for roughly the 
same coverage, the operation of other system 
functions (such as AL U and address calcula­
tions) can be checked. The hardware cost is a 
(2In) X 100 percent memory element increase, 
an (n + I)-bit adder for encoding, a combina­
tional decoding circuit, and extra control cir­
cuitry. The delay on reads results from a small 
number of gate delays, and on writes from the 
delay of the adder. Avizienis [1973] presents 
algorithms for operations involving AN codes, 
and discusses in detail the design of a 15N code 
arithmetic processing unit used in an early ver­
sion of the JPL STAR computer (see Chapter 
14). 

Residue codes are a class of separable arith­
metic codes. The residue of a data word N is 
defined as R(N) = N mod m. The code word is 
formed by concatenating N with R(N) to pro­
duce NIR (the vertical bar denotes concatenta­
tion). The received word N'I R' is checked by 
comparing R(N') with R'. If they are equal, no 
error has occurred. Figure 3-30 is a block dia­
gram of a residue-code arithmetic unit. A variant 
of the residue-m code is the inverse residue-m 
code. The separate check quantity, Q, is formed 
as Q = m - (N mod m). The inverse residue 
code has greater coverage of repeated-use faults 
than does the residue code. A repeated-use fault 
occurs when a chain of operations is performed 
sequentially on the same faulty hardware before 

Result 
residue 

generator R(N1 * N2) 

Figure 3-30. Block diagram of an arithmetic unit using a separable residue 
arithmetic code. 
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checking is performed. For example, iterative 
operations such as multiplication and division 
are subject to repeated-use faults. Both the resi­
due-m and inverse residue-m codes can be used 
with either one's-complement or two's-comple­
ment arithmetic. The JPL STAR computer, dis­
cussed in Chapter 14 [A vizienis et aI., 1971], uses 
an inverse residue-15 code. Elsewhere, Avizienis 
[1973] describes the adaptation of two's-comple­
ment arithmetic for use with an inverse residue 
code. 

In both the AN and residue codes, the detec­
tion operations can be complex, except when the 
check moduli (A for AN codes, m for residue-m 
codes) are of the form 2a 

- 1. The check opera­
tion in this case can be performed using an a-bit 
adder with end-around carry, serially adding a­
bit bytes of the data word (or code word for AN 
codes) [A vizienis, 1971, 1973]. In effect, this 
operation performs the division of the word by 
the check modulus. The operation can also be 
implemented in a faster, parallel fashion. Arith­
metic codes with check moduli of this form are 
called low-cost arithmetic codes. 

Cyclic Codes 

In cyclic codes, any cyclic (end-around) shift of 
a code word produces another code word. Cyclic 

codes are easily implemented using linear-feed­
back shift registers, which are made from XOR 
gates and memory elements. These codes find 
frequent (though not exclusive) use in serial 
applications such as sequential-access devices 
(tapes, bubble memories, and disks) as well as 
data links. Sometimes encoding is performed 
independently and in parallel over several serial­
bit streams, as for the multiple-wire buses shown 
in Figure 3-31. The bits of each byte are trans­
mitted simultaneously. The CRC (Cyclic Redun­
dancy Check) check bits for each bit stream are 
generated for the duration of the block transmis­
sion and are appended to the end of the block. 

The (n, k) cyclic codes can detect all single 
errors in a code word, all burst errors (multiple 
adjacent faults) of length b < (n - k), and many 
other patterns of errors, depending on the partic­
ular code. A cyclic code is uniquely and com­
pletely characterized by its generator polynomial 
G(X), a polynomial of degree (n - k) or greater, 
with the coefficients either 0 or I for a binary 
code. Appendix A provides a complete discus­
sion of cyclic codes and other polynomial-based 
codes. 

Given the check polynomial G(X) for an (n, k) 
separable code, a linear-feedback shift register 
encoder/decoder can be easily derived.* The 
block check register (BCR) will contain the 
check bits at the end of the encoding process,· 

Multiple-wire 
serial data link 

--f eRe generator H eRe checker 

Bit serial I _ Bit-serial 
data --f eRe generator H eRe checker r-- data 

streams ...... ----~ streams 

--f eRe generator H eRe checker 

'----v---'~ eRe generator H eRe checker ~'-----' ____ ...J 

Byte-serial 
data stream 

Byte-serial 
data stream 

Figure 3-31. Use of cyclic codes for byte-serial bus data transfers (i.e., the bits 
of each byte are transmitted simultaneously). The CRC check bits are generated 
for each bit stream during the block transmission and are appended at the end 
of the block. 



102 THE THEORY OF RELIABLE SYSTJ;<:M DESIGN 

Input data stream­

Generator polynomial G(X) = X12 + X11 + X3 + X2 + X + 1 

Figure 3-32. Block Check Register (BCR) for CRC-12 cyclic code. 

during which the data bits have been simulta­
neously transmitted and fed to the input of the 
BCR. The BCR is an r-bit shift re-gister, where 
r = (n - k), the degree of G(x). In Figure 3-32, 
the register shifts to the right, and its memory 
cells are labeled (r - 1), (r - 2), ... , I, 0, from 
left to right. The shift register is broken to the 
right of each cell i, where i = (r - }) and} is the 
degree of a nonzero term in G(X). At each of 
these points an XOR gate is inserted, and the 
gate output connected to the input of the cell on 
·the right side of the break. The output of the gate 
to the right of cell ° is connected to the input of 
the leftmost memory cell (cell r - I) and to one 
of the inputs of each of the other gates. The 
remaining input of each gate is connected to the 
output of the memory cell to the left. The second 
input of the rightmost gate is connected to the 
serial data input. The result is a feedback path, 
whose value is the XOR of BCR bit ° and the 
current data bit. Figure 3-32 shows the BCR for 
a cyclic code with 

G(X) = X I2 + Xii + X 3 + X2 + X + 1. 

This code, called CRC-12, is often used with 6-
bit bytes of data because the check bits fit evenly 
into two 6-bit bytes. The XOR gates are placed 
to the right of the five shift register cells, 
{(12 - 12),(12 - 11),(12 - 3),(11-2),(12-1)} 

* The following discussion is based in part on the CRC 
chapter in McNamara [1977]. The shift registers described 
here vary slightly in form from those in Appendix A. 

or {O, 1,9,10, II}. The output of the rightmost 
XOR gate is fed back into the register via the 
other XOR gates. 

In operation the BCR is preloaded with an 
initial value (normally all Os). The data are 
simultaneously transmitted and fed to the data 
input of the BCR. When the output of the data­
input XOR gate has stabilized, the shift register 
is clocked. Once the last data bit has been 
transmitted, the BCR contains the check bits of 
the code word. The contents of the BCR are then 
transmitted starting with the rightmost bit, but 
without feedback. 

Figure 3-33 shows a CRC-12 BCR operation 
with a 12-bit data word. The same BCR is used 
at the receiving end. The input stream is fed to 
the BCR input in the same way, with the data 
bits going to both the BCR and the destination. 
The BCR is preloaded with the same value as 
that used in the transmitting BCR. The received 
check bits are input to the BCR following the 
data bits. When preloading involves all Os, the 
result in the receiver BCR should be 0. 

CRC-12 is a (12+k,k) code that provides 
error detection of all burst errors of length 12 or 
less. The data length is arbitrary. Thus, redun­
dancy and coverage probability change with the 
data length. CRC-16 is a (16 + k, k) code based 
on the generator polynomial 

G(X) = X I6 + X I5 + X2 + 1. 

CRC-CCITT is another (16 + k, k) code, with 

G(X) = X I6 + X I2 + X5 + 1. 
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Feedback 
Shift HeR Input (input XOR 
clock contents data bit bit 0) 

0 0000 00000oo 0 

1111 00000oo 1 
0 

2 1000 1 ()()()()()() 1 
0 

3 1011 0100000 1 
1 0 

4 0101 101()()()() 0 
0 0 

5 0010 1101000 0 
0 0 

6 0001 0110100 0 
0 0 

7 0000 10110100 
0 0 

8 0000 0101101 0 
0 0 

') ()()()() 0010110 1 
0 

10 1111 0001011 1 
0 

11 1000 1000101 0 

12 1011 0100010 0 

Transmitted data bits: 1()()()()()()()1001 (right-most bit first) 
Transmitted check bits: 101101000100 (right-most bit first) 

Figure 3-33. BCR calculation of check bits for 
CRC-12 and a 12-bit data word. 

Both CRC-16 and CRC-CCITT provide detec­
tion for all burst errors 16 bits long or less, and 
~9 percent of bursts greater than 16 bits. CRC-16 
lS used by the OOCMP and Bisync protocols, 
while CRC-CCITT is used by the ANSI X.25, 
HOLC, and SOLC protocols. These (16 + k, k) 
:::odes are normally used when the data are in 8-
bit bytes because the check bits consume exactly 
2 bytes; however, k can be any arbitrary length. 
Figure 3-34 shows a BCR for CRC-CCITT. 

IBM's SOLC (Synchronous Data Link Con­
trol) data communications protocol uses the 
CRC-CCITT cyclic code with a small variation: 
the BCR is preloaded with all 1 s instead of ap Os. 
At the end of the data transmission the BCR 
:::ontents are complemented (logical comple­
ment) before being transmitted. This scheme 
allows detection of extra or missing Os at the 

beginning and end of the data fields, which are 
of variable length. At the receiver, the BCR 
result must equal FOB816 • 

CRC encoders/decoders are available as inte­
grated circuit chips. An example is the Fairchild 
F6856 Synchronous Protocol Communications 
Controller chip, which provides communications 
protocol handling for microprocessor systems 
[Kole, 1980]. Embedded on the chip is a CRC 
encoder/decoder. The chip is designed to handle 
CRC-12, CRC-16, CRC-CCITT, and several 
other CRC codes. In addition, the internal BCR 
can be preset optionally with all Os or all Is. 
Another available integrated circuit is the Signet­
ics 2653 intelligent bus monitor, analyzed in 
depth in Weissberger [1980]. In addition to its 
other functions, the circuit provides CRC check­
ing and generation. 

CRC checks are often performed in software 
to detect errors in critical data structures and 
programs. An algorithm for doing this, shown in 
Figure 3-35, is essentially a software implemen­
tation of a linear feedback shift register. A 
processor register is used as a shift register, and 
the XOR feedback gates are replaced by a CRC 
constant, which is XORed with the register. The 
CRC constant is formed by finding the numbers, 
i, for which i = «r - 1) - j), where j is the 
degree of a nonzero term in G (X) (except for the 
X' term). The bits i of the CRC constant are Is, 
and the rest are Os. The bits are labeled (r - I) 
for the leftmost (most significant) bit, to 0 for the 
least significant bit. The constant for CRC­
CCITT is 840816, and is OF01 16 for CRC-12. This 
algorithm would be useful, for example, when a 
separate maintenance or console processor per­
forms occasional checking for microstore cor­
ruption via a CRC check. 

The Interdata 8/32 uses the algorithm of Fig­
ure 3-35 in its microcoded CRC instruction 
[Interdata, 1975]. The Interdata 8/32 CRC in­
struction works for either CRC-12 or CRC-16, 
with any arbitrary pre loading of the check char­
acter. Each invocation of the CRC instruction 
adds only one data byte to the CRC check 
character, so that it must be invoked for each 
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Input data stream-

G(X) = X16 + X12 + X5 + 1 

Figure 3-34. BCR for CRC-COTT cyclic code. 

byte in the data field. The Interdata 8/32 Auto­
driver Channel, used for direct memory-periph­
eral I/O, can be commanded to perform this 
operation automatically on incoming or outgo­
ing blocks of data. The VAX-ll/780 has a CRC 
instruction that performs CRC checking or en­
coding for up to 64K 8-bit bytes in memory. 
G(X) can be any check generator polynomial of 
degree 32 or less [DEC, 1977]. The VAX uses the 
algorithm and constants as described above. 

Cyclic codes can also be encoded and decoded 
in parallel for nonserial applications. Like other 
linear codes, they can be processed with matrix 
techniques. An example of parity-check matrices 
can be found in the section on Hamming codes. 
For more details on forming the parity-check 
and parity-generation matrices for cyclic codes, 
see Appendix A. 

Self-Checking, Fault-Secure, and 
Fail-Safe logic 

Although duplication and codes are general so­
lutions to fault detection, both techniques are 
vulnerable to single-point failures in the compar­
ison element (duplication) or the decoder/detec­
tor element (codes). These single points of failure 
can be eliminated through self-checking, fault­
secure, and fail-safe logic design. These logic 
design techniques can be used for general-pur-

pose logic design as well as for comparators and 
checkers. Due to space limitations the following 
discussion can only serve as an introduction to 
the topic of self-checking and fail-safe logic. The 
field is large and many different approaches have 
been used. Wakerly [1978] has written an excel­
lent text on self-checking logic. Several papers on 
various aspects of self-checking and fail-safe 
logic design are listed at the end of this section 
for further reference. 

Self-checking circuit design is based on the 
premise that the circuit inputs are already encod­
ed in some code, and that the circuit outputs are 
also to be encoded. The inputs and outputs are 
not necessarily in the same code. The following 
definitions from Anderson [1971] and Anderson 
and Metze [1973] are based on this premise. 

Self-Testing Property. A circuit is self-testing if, for 
every fault from a prescribed set, the circuit produces 
a noncode output for at least one code input. 

Fault-Secure Property. A circuit is fault-secure if, for 
every fault from a prescribed set, the circuit never 
produces an incorrect code output for code inputs. 

Totally Self-Checking (TSC) Property. A circuit is 
totally self-checking if it is both self-testing and fault­
secure. 

Thus, to be self-testing, the circuit must expe­
rience a set of inputs during normal operation 
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register temp «r-1):0> ; 
varlable bcr «r-1):0> ; 
variable flag <0> ; 
variable input «b-1):0> ; 
lnteger variable counter; 
loglcal varlable new.code.word ; 
constant bcr.preload «r-1):0>=00 •• 016 

constant crc.constant «r-1):0> = XX •• XX 16 

!rth degree G(X) ; 
twill hold block check character 

!input data byte; 

!would be FFFF 16 for SOLC 

840816 for CRC-CCITT 

OFOl 16 for CRC-12 ; 

begin ! this algorithm updates the block check character 
for a new data byte. new.code.word is TRUE only if 
a new CRC computation is to be commenced, i.e., if 
this is the first byte in a CRG code word. ; 

if new.code.word then bcr - bcr.preload 
temp - 0 ; --
temp «b-1):0> - input; 
temp - temp XOR bcr ; 
for counter ..=-0 to (r-1) do 
- begin -

fl ag - temp <0> ; 
shift.right (temp) ; ! shift temp right one, shifting 0 into temp <r-1> 
if (flag = 1) then temp - temp XOR crc.constant ; 

end ; 

bcr - temp; 
end ; 

! bcr now contaihs current check characters ; 

Figure 3-35. An algorithm for computation of CRC check bits using processor registers. 

that tests for all faults in the prescribed set. If 
such a set of inputs is not assured, the circuit is 
self-testing only for the faults that are tested. 
This same restriction applies to TSC circuits. 

These three properties are illustrated by a TSC 
comparison element (derived from the TSC com­
parison element in Wakerly [1978]). A dual-rail 
signal is a coded signal whose two bits are always 
complementary. This is equivalent to the 1/2 
code. The comparison element checks for the 
equality of the two dual-rail signals at its inputs, 
and outputs a dual-rail signal (01 or 10) only if 
the inputs ~re both equal and properly encoded; 
otherwise it outputs a noncode word, either 00 or 
II. In addition, the comparison element is self­
testing for any internal single fault, and is thus 
rsc as long as all four possible sets of code 
lnputs appear during normal operation. Figure 
3-36 shows the logic circuit for the comparison 
;!lement, while Table 3-12 shows an analysis of 
the possible single stuck-at-faults and the inputs 
that test for them. An input signal tests a fault in 

the circuit if the output is a noncode word: To 
test for all faults in the set (m, n, 0, p: stuck-at-I), 
all four possible input signal sets must appear. 
As a result, all four signal sets must appear at the 
Circuit input during normal operation. Converse­
ly, it can be seen that there is no stuck-at fault 
which is not tested by at least one of these· 
signals. Thus, the comparator is self-testing (giv­
en a guarantee of all four signal sets appearing). 
Finally, further examination of Table 3-12 shows 
that under stuck-at faults at a, b, c, or d, the 
outputs are either noncode words or the correct 
code word (i.e., the code word that would appear 
in normal operation). Since these stuck-at faults 
produce a condition equivalent to having non­
code inputs, the circuit is shown to be fault 
secure as well. Since the circuit is both fault 
secure and self-testing, it is TSC. Note that since 
stuck-at faults of signals a, b, c, and dare 
equivalent to faults in the input signals, these 
conditions show the response of a nonfaulty 
comparator to faulty (noncode) inputs. 
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82 -1---<1..------1 

A, B are dual-rail 
signals 

A2 ----1r-
c
-+--+-_-+-.-I 

A 1---1>-d_ ...... _------:-I 

)O-!-q ;---C2 

Checker output 
dual-rail signal 

p--+---C1 

Figure 3-36. Logic circuit of basic TSC comparison element. 

Some operations are not amenable to the use 
of codes, and full duplication is the least redun­
dant form of checking that can be used. To 
check the logical operations AND and OR, for 
example, duplication can be used with a TSC 
comparator. Wakerly [1974] has proposed par­
tially self-checking logic as a less expensive alter­
native: 

Partially Self-Checking (PSC) Property. A circuit is 
partially self-checking if it is self-testing for a set N of 
normal inputs and a set F; of faults, and is fault-secure 
for a set I (a non null subset of N) and a set F's. 

In normal operation of a PSC circuit, all faults 
from F; are tested. In addition, for a subset I of 
the normal inputs, no incorrect code output can 

be produced by a fault in the set F;. Thus, PSC 
logic provides eventual detection of a fault at the 
cost of introducing fault latency (undetected 
faults produced prior to fault detection). The 
benefit is a redundancy cost lower than that of 
duplication. 

Fail-safe techniques, on the other hand, are 
not concerned with the detection of faults per se. 
Thus, they can result in an even lower redundan­
cy cost. 

Fail-Safe Property. A circuit is fail-safe if, for every 
fault from a prescribed set, any input produces a 
"safe" output, that is, one of a preferred set of 
erroneous outputs. 

A traffic light with a fail-safe output of stuck-

Table 3-12. TSC dual-rail comparator responses to stuck-at-faults. 

Inputs 
Nonnal 

Outputs C2Cl Resulting from Single Stuck-at-l Faults 

B2Bl A2Ai Output a b c d e f g h j k m n 0 p q r 

01 01 10 11 10 11 10 10 10 10 10 10 11 11 10 10 00 10 10 10 11 
01 10 01 11 01 01 11 11 01 01 11 01 01 01 01 01 01 00 01 11 01 
10 01 01 01 11 11 01 01 11 11 01 01 01 01 01 01 01 01 00 11 01 
10 10 10 10 11 10 11 10 10 10 10 11 10 10 11 00 10 10 10 10 11 

Inputs 
Normal 

Outputs C2Cl Resulting from Single Stuck-at-O Faults 

B2Bl A2Ai Output a b c d e f g h j k m n 0 p q r 

01 01 10 10 00 10 00 10 10 00 00 10 10 10 10 10 10 11 11 00 10 
01 10 01 01 00 00 01 01 01 01 01 00 00 01 01 11 11 01 01 01 00 
10 01 01 00 01 01 00 01 01 01 01 01 01 00 00 11 11 01 01 01 00 
10 10 10 00 10 00 10 00 00 10 10 10 10 10 10 10 10 11 11 00 10 
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Inputs in 
Code A 
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I 
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I 
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I 
I 

Outputs in 
code B 

L _______________ _ __ _ ____ --l 

Error indication in 
Code C 

Figure 3-37. A TSC network made from TSC elements. 

at-red on all sides is a good example of a fail-safe 
system [Mine and Koga, 1967]. Stuck-at-red is 
the most desirable failed state because all drivers 
approaching the intersection must stop, and may 
proceed only after realizing the light is broken. 
This state causes the least possible harm, for any 
driver will enter the intersection with extreme 
caution and at a low speed. 

In the remainder of this section general mod­
els will be presented for TSC and PSC networks. 
Some specific examples of TSC and PSC net­
works are included. The examples cover only a 
subset of the possibilities of these techniques, 
and references for more are given at the end of 
the section. Fail-safe techniques will not be 
treated any further although several references 
are included at the end of the section. 

Figure 3-37 shows a general model for a TSC 
network proposed by Anderson [1971], consist­
ing of both a TSC functional circuit and a TSC 
checker. The advantage of this network over the 
TSC functional circuit alone is that a correct 
checker output from the network guarantees that 
the network functional output is correct. 

Conceptually, the simplest form of a TSC 
functional circuit is duplication, in which two 
copies of the function are used. Together, their 
total inputs and outputs are coded (duplication). 
As stated before, for some functions duplication 
may be the least redundant coding alternative 
for achieving TSC. The only other component of 
a duplication-based TSC network is the TSC 
comparator, which performs the checking of the 
functional outputs. The most economical form of 

checker complements one set of the functional 
unit outputs before routing it to the comparison 
element [Anderson, 1971]. In this case a checker 
for an arbitrary number of inputs can use the 
two-signal input dual-rail comparator of Figure 
3-36 as the basic element. These elements are 
assembled in tree fashion, as shown in Figure 
3-38, using log2 n two-input dual-rail signal com­
parators. Figure 3-39 shows the entire TSC du­
plication network scheme. To qualify for the self­
testing property each checker basic module must 
receive the four input signals mentioned above. 
It is not necessary, however, to apply all possible 
combinations of dual-rail signals to the entire 
checker to test it completely. Anderson [1971] 
has shown that for every size comparator built as 

/r---- Dual-rail signals for comparison ---___ \ 

Error signal 

Figure 3-38. Assembly of n-input dual-rail signal 
comparison checker from basic two-input elements. 
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r-----------------------------
Functional 

unit 
copy A 

Duplicate 
inputs 

Functional 
unit 

copy B 

I Duplicate 
I outputs 

~~+-----~------r-~ 

Error signal 

Figure 3-39. TSC network based on duplication as a code. 

a tree of the basic dual-rail checker modules, at 
least one set of four tree input signals will ensure 
complete self-testing for any single fault in the 
checker. If the four signal sets are assured of 
appearing during normal operation, the network 
is TSC. 

The same comparison checker can be used to 
make a TSC separable-code error detector [Ash­
jaee and Reddy, 1976; Wakerly, 1978]. The 
inputs to the checker are the received check 
character and a locally generated check charac­
ter, as shown in Figure 3-40. Wakerly [1978] 
provides the proof of the TSC property for this 
detector. As in the duplication scheme, the self­
test property of the comparison checker must be 
assured by having the check characters that 
appear include a set of four characters that tests 
for all possible faults in the checker. For (n, k) 
codes in which all 2(n-k) possible combinations 
of the check bits appear, this is no problem. 
Other codes, however, may present more diffi­
culty. The residue-3 arithmetic code check char­
acter, for example, has only three possible values 
(00, 01, and 10); thus, all four signals necessary 
for self-testing do not appear and the checker 
cannot be TSC. 

Wakerly [1974] has proposed models for three 
types of partially self-checking networks, shown 
in Figure 3-41. All three have two modes of 
operation: secure or insecure. In the secure 

mode, used during operation with code inputs 
that map into code outputs, the network is TSC. 
The insecure mode, invoked by fixing the error 
outputs to a nonerror indication, is used when a 
noncode output from the functional circuit is the 
correct function of the inputs. An example 
would be the AND and OR functions of an 
ALU operating on residue-m-coded inputs. In 
the insecure mode the PSC network is neither 
self-testing nor fault secure. 

Received code word (to be checked) 

Figure 3-40. TSC detector for separable codes, 
based on a TSC comparator. 
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Figure 3-41. Types of PSC networks. a.) Type 1. b.) Type 2. c.) Type 3. 
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The Type 1 PSC network is the simplest. Its 
disadvantage is that the outputs are necessarily 
noncode outputs in the insecure operating mode. 
The Type 2 PSC network solves this problem by 
reencoding outputs during insecure operation; 
thus, all outputs are coded outputs unless there 
are faults in the encoder. However, there is no 
guarantee that the code outputs are the correct 
outputs during insecure operation. A Type 3 
PSC network causes less delay than a Type 2 
network on secure mode outputs, by using a bus 
switch for the check character. During secure 
operations, the Type 2 network does not output 
the check character until it has been regenerated 
locally; the Type 3 network immediately gates 
the check symbol from the functional circuit. 
Both Types 2 and 3 have the same delay during 
insecure operations. One drawback of the Type 
3 scheme is that a faulty output during secure 
mode may be used before the error is detected by 
the checker. 

Figure 3-42 shows an example of a PSC net­
work due to Wakerly [1974]. It shows an ALU 
made with 4-bit 74181 adder chips, and with 
inputs coded in the distance-2 residue-15 code. A 
single stuck-at fault in one of the 74181s will 
produce a detectable error during addition or 
subtraction. Hence, this ALU network is fault­
secure for the operations of addition and sub­
traction for all single stuck-at faults. In addition, 
the circuit is fault secure for the other circuit 
functions for which the residue-15 code is invari­
ant: A, B, A', B', 0, and 1. The 74181 can be 
shown to be self-testing for all single faults 
provided that all of the following· operations 
occur during normal use: 

I. Addition and subtraction (tests carry logic) 
2. The set of operations A XOR B and (A XOR B)' or 

the set A, B, A', B', or some other combination of 
operations that tests for all possible single faults in 
the logic function circuitry 

3. At least one arithmetic and one logic function, to 
test the carry enable logic 

If all these operations are assured to occur, the 
ALU network is TSC for one's-complement ad­
dition and subtraction, A, B, A', B', 0, and 1. If 

the other 74181 functions are used, the network 
is operating in an insecure mode and is only 
partially self-checking. The circuit in Figure 3-42 
is a Type 2 PSC network: the necessary reencod­
er for outputs during the insecure mode of 
operation is already present in the TSC checker. 

Wakerly's comprehensive text on self-checking 
logic [1978] contains many examples, including a 
paper design of a self-checking processor. Algo­
rithms for the design of TSC min code checkers 
are developed in Anderson and Metze [1973] for 
ml2m codes and in Marouf and Friedman [1977] 
for any min code. The Bell ESS-3a uses a TSC 
4/8 code detector described in Toy [1978] (or see 
Chapter 12) and in Cook et al. [1973]. Algo­
rithms for the design of self-checking sequential 
circui ts are developed in Carter and Schneider 
[1968], Osman and Weiss [1973], Diaz, Geffroy, 
and Courvoisier [1974], Ozgunner [1977], and 
Pradhan [1978a, 1978b]. Other references are 
Ashjaee and Reddy [1976] on TSC checkers for 
separable codes, Marouf and Friedman [1978b] 
for TSC checkers for Berger codes, Wakerly 
[1974] for PSC networks, Smith and Metze [1978] 
for strongly fault-secure networks, and Crouzet 
and Landrault [1980] for a study of the applica­
tion of self-checking techniques to a 4-bit micro­
processor on a chip. 

A good introduction to fail-safe logic can be 
found in Mine and Koga [1967] and Tokura, 
Kasami, and Hashimoto [1971]. Fail-safe se­
quential machines are developed in Sawin [1975], 
Diaz, Geffroy, and Courvoisier [1974], Patterson 
and Metze [1974], Tohma [1974], and Mukai and 
Tohma [1974]. Diaz, Azema, and Ayache [1979] 
present a unified overview of both self-checking 
and fail-safe design schemes. 

Watchdog Timers and Timeouts 

Watchdog timers are a simple and inexpensive 
means of keeping track of proper process func­
tion. A timer is maintained as a process separate 
from the one it checks. If the timer is not reset 
before it expires, the corresponding process has 
probably failed in some way; the assumption is 
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Figure 3-42. Partially self-checking ALU for residue-15 coded operands (Type 2 
PSC network). 

that any failure or corruption of the checked 
Jrocess will cause it to miss resetting its watch­
jog. On the other hand, coverage is limited 
Jecause data and results are not checked. All the 
:imer provides is an indication of possible pro­
:ess failure. The process may be only partially 
:ailed and produce errors, yet still be able to 
reset its timer. The coverage may be improved if 
the checked process has to exercise a large 
proportion of its internal components in order to 
reset its watchdog. 

The watchdog timer concept can be imple­
mented in software or hardware. The process it 
guards can be a software or hardware process. In 
fact, the computing process and the timer could 
be running on the same hardware. In this and 
most other cases, at least one other process 
monitors the timer, or is interruptible by it, to 
b.andle possible failure situations. 

Pluribus [Ornstein et aI., 1975] (or see Chapter 
13), a reliable multiprocessor designed primarily 
for use as a switching node for the ARPANET, 
makes extensive use of both hardware and soft­
ware watchdog timers. These timers have time 
ipans of from 5 JLsec to 2 minutes. Subsystems 
that are monitored by timers go through a cycle 
)f a known length. Part of each cycle is a 
:;omplete self-consistency check. Failure to reset 

the timer is seen as an indication that the subsys­
tem has failed in such a way that it cannot 
recover by itself. Message buffers, for example, 
have 2-minute watchdog timers that are reset 
each time the buffer is returned to the free list of 
unused buffers. If the timer runs out, the buffer 
is forced back to the free list by the process 
which the timer alerts upon expiring. Another 
timer in each processor interrupts the processor 
every 1/15 second if not reset. This timer pre­
vents subsystems from waiting forever for a 
resource that is erroneously allocated and thus 
will not be released. A final example of the timer 
is the bus arbiter. If there is no bus activity for 1 
second, the bus arbiter resets all the processors. 
This is useful, for example, when all processors 
execute a spurious halt command that somehow 
gets planted in the common program store. In 
this case, the 60-Hz processor timers cannot help 
because a halted processor will not respond to 
interrupts. PLURIBUS also has several other 
timers not mentioned above. 

The VAX-ll/780 is a more commercially­
oriented system that makes use of a watchdog 
timer. The console processor monitors the micro­
machine activity. If the micromachine does not 
strobe an interrupt line to the LSI-II console 
processor at least every 200 JLsec, the console 
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processor will try to determine the reason for the 
failure. 

Bus timeouts are also based on the principle 
that some operations should take no more than a 
certain maximum time to complete. Time limits 
are set for certain responses required by the bus 
protocol. Thus, when one device (e.g., master) 
requires a response from another device (e.g., 
slave), a failure to respond in time indicates a 
possible failure. Timeouts are different from 
watchdog timers in that they provide a finer 
check of control flow. 

Timeout detection is provided on the buses of 
most computers, including the PDP-II UNI­
BUS. During the interrupt request/bus grant 
sequence a timeout is generated if the requesting 
device does not respond to the bus grant signal 
in 5-10 Ilsec. Similarly, during data transfers a 
10-20 Ilsec timeout detection occurs if the slave 
device does not respond to the bus master's 
synchronization signal. The UNIBUS bus speci­
fications [DEC, 1979] does not specify the exact 
response to these timeout detections; the re­
sponse depends on the particular PDP-II model. 
Generally, however, the processor response is a 
trap to a bus timeout handling routine. 

Consistency and Capability 
Checking 

Consistency checking is a simple fault-detection 
technique that often requires minimal hardware 
redundancy. A consistency check is performed 
by verifying that the intermediate or final results 
are reasonable, either on an absolute basis (fixed 
test) or as a simple function of the inputs used to 
derive the result. One form of consistency check 
is a range check: confirming that a computed 
value is in a valid range. For example, a comput­
ed probability must lie between 0 and 1. The 
range can be narrowed further if a priori proba­
bilities are known. Weekly paychecks should 
have positive denominations and should not 
exceed some maximum value (such as a function 
of normal and overtime pay rates and the 168 

hours in the week). Similarly, commercial air­
craft altitude sensors should indicate elevations 
between Death Valley and 45,000 feet. 

Most computers use some form of consistency 
checking. Address checking, opcode checking, 
and arithmetic operation checking are the most 
common. In its usual form, address checking 
consists of verifying that the address to be ac­
cessed exists. DEC PDP-lIs provide an NXM 
(nonexistent memory) trap for this purpose. Fur­
ther coverage may be provided by assuring that 
the address for a write is actually a RAM and 
not a ROM location, and that an I/O address is 
consistent with the operation to be performed. 
Checking for a valid opcode occurs before in­
struction execution commences. Without this 
check it is possible to perform unde-fined and 
(usually) undesirable operation sequences in the 
CPU. For example, programmers of some micro­
processors occasionally utilize undocumented 
opcodes with unique actions. This use of unde­
fined processor features is undesirable because of 
possible unknown side effects. Underflow and 
overflow checking of binary arithmetic, a form of 
range checking, is provided in most computers, 
either in hardware or in program run-time sys­
tems. 

Another form of consistency checking is to 
utilize a memory in which the parity bit on any 
word can be arbitrarily set for either parity sense 
(odd or even). In practice, data words would use 
odd parity and instruction words even parity. In 
addition to parity errors, addressing errors and 
programming errors are likely to be discovered. 
Examples are data words accidentally accessed 
during instruction fetch and program code er­
roneously overwritten with data. When an ad­
dressing and a parity error occur simultaneously, 
however, there is a chance that they will comple­
ment each other with no error detection result­
ing. 

Capability checking is also a form of fault 
detection. Usually it is part of the operating 
system, although it may be realized as a hard­
ware mechanism. In this concept, access to ob­
jects is limited to users with the proper authori-
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zation. Objects include memory segments and 
I/O devices; users might be processes or even 
independent physical processors in a system. 
Further functionality is provided by allowing 
multiple levels of access privileges for different 
user/object combinations, such as execute only, 
read only, and read/write privilege levels in a 
disk system. One common means of checking 
access privileges is through the memory-mapping 
mechanism of virtual address machines. An ex­
ample is the virtual address generation mecha­
nism for Cm*, shown in Figure 3-43 [Swan, 
Fuller, and Siewiorek, 1977 a]. A Capability in 
Cm* consists of a 3-bit field specifying access 
rights and a 16-bit field containing the segment 
name. During the address translation, the access 
rights are checked against the operation to be 
performed. If the operation is not permitted, an 
error trap is forced. 

Capability checking provides more than fault 
detection: it also provides some fault isolation by 
locking out corrupted users. For example, it 
should prevent a bad process from erroneously 
overwriting portions of memory to which it has 
no legal access. More information on capability 
checking can be found in texts on operating 
systems design. 

Another method of capability checking is the 
use of passwords. The Pluribus system (see 
Chapter 13) incorporates password protection. A 

Window register 

OP Cap. index 

Read/write 

processor that does not reset its watchdog timer 
will be restarted by an outside process. To pre­
vent spurious resets, the resetting process must 
give the proper password before it can initiate a 
reset. A Boeing duplicated processor system used 
password protection for a similar purpose in its 
reconfiguration hardware; the goal was to pre­
vent spurious reconfiguration of the system 
[Wachter, 1975]. 

MASKING REDUNDANCY 

Fault-detection techniques supply warnings of 
faulty results. They may also provide diagnostic 
capabilities, with a resolution of some finite 
number of possible failure locations (such as a 
device or set of devices causing the fault). How­
ever, the use of fault-detection techniques alone 
does not provide actual tolerance of faults. Fault 
masking, on the other hand, employs redundan­
cy which provides fault tolerance by either iso­
lating or correcting fault effects before they 
reach module outputs. Fault masking is a "stat­
ic" form of redundancy [Short, 1968; Avizienis, 
1977]: the logical interconnection of the circuit 
elements remains fixed, and no intervention oc­
curs from elements outside the module. Thus, 
when the masking redundancy is exhausted by 
faults in the module, any further faults will cause 
errors at the output. 

Capability 

Segment name 

Rights check 

12 

16 Bit, processor generated address 28 Bit, system-wide virtual address 

Figure 3-43. Virtual address calculation with capability checking in Cm*. 



114 THE THEORY OF RELIABLE SYSTEM DESIGN 

Notification of fault occurrence is implicit in 
fault detection. In its pure form, fault masking 
does not provide fault detection: the effects of 
faults are automatically neutralized without noti­
fication of their occurrence.· Pure fault masking 
thus gives no warning of a deteriorating hard­
ware state until enough faults have accumulated 
to cause an error. As a result, most fault-masking 
techniques are extended to provide fault detec­
tion as well. The additional redundancy needed 
for this purpose is usually minor. In the case of 
a few fault-masking techniques, however, fault 
detection is either impossible or too costly. The 
following presentations of fault-masking tech­
niques discuss fault-detection extensions where 
applicable. 

Like fault detection, fault masking can be used 
in combination with other techniques in a dy­
namic redundancy scheme. For example, fault 
masking may be used until its redundancy is 
exhausted, after which spares may be switched in 
to renew the redundancy. This possibility and 
others are the subject of the section on Dynamic 
Redundancy. 

Because fault masking provides fault toler­
ance, the reliability function becomes a meaning­
ful measurement of technique effectiveness. This 
section provides simple reliability models for the 
techniques it presents. More detailed models are 
usually possible, and provide more accurate in­
formation. More detailed reliability models are 
the subject of Chapter 5. 

N-Modular Redundancy with 
Voting 

Duplication with output comparison was consid­
ered as a fault-detection technique in the section 
on Duplication above. If a third copy of thr 
functional circuit is added, enough redundant 
information is available to allow fault masking 
of a failure in anyone of the three copies. This 
is accomplished by means of a majority (two­
out-of-three) vote on the circuit outputs. The 
groundwork for the triple modular redundancy 
(TMR) technique was first laid by von Neumann 

Input 

~ I Module ~ Voter 
B output 

~ 
Figure 3-44. Basic Triple Modular Redundancy 
(TMR) configuration. 

[1956]. He proposed a configuration employing 
independently computed copies of a signal, with 
"restoring organs" placed between logical opera­
tions. 

Figure 3-44 illustrates the basic concept. The 
reliability of the configuration shown is 

R = Rv' (R! + 3R~(l - Rm» 
(1) 

= Rt, • (3R~ - 2R~1) 

where Rv and Rm are the reliabilities of the voter 
and a single copy of the triplicated module, 
respectively. The concept can be extended to 
include N copies with majority voting at the 
outputs. The resulting technique is called N­
modular redundancy, or NMR. Normally N is 
made an odd number to avoid the uncertain 
state in which the output vote is a tie. The 
reliability of an NMR configuration similar to 
that of Figure 3-44 is 

L NI2 J . 

R = Rv' ~ NCi' R~-i) . (1 - Rn)' (2) 
i=O 

The derivations of equations I and 2 are given in 
Chapter 5. The cost of N-modular redundancy is 
N times the basic hardware cost, plus the cost of 
the voter. The voter causes a delay in signal 
propagation, leading to a decrease in perfor­
mance. Additional performance-cost overhead 
results from the necessity to synchronize the 
multiple copies (this problem is discussed later in 
this section). 

The two reliability formulas above are the 
simplest models possible. In most cases they will 
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Figure 3-45. Cascading of TMR modules. 

be pessimistic; that is, some failures in two or 
more copies may occur in such a way that an 
error is avoided. Such failures are called com­
pensating failures. For example, consider a mod­
ule output failed stuck-at-l in a TMR network. 
If the same line fails on another copy, there is no 
error caused if it fails stuck-at-O. In this case, 
whichever value the remaining nonfaulty line 
takes on, it has another to match it and the 
correct voted output results. Another possibility 
is nonoverlapping failures, such as a failure in 
memory location 123 on one memory module 
and a failure in memory location 67 on another. 
Although these failures are on two different 
copies, they do not act together in the voting 
process to cause an error. Models of TMR 
systems that take compensating failures into 
account are discussed in detail in Chapter 5. 

A complex system can be partitioned into 
smaller subsystems, each of which can be trans­
formed into an NMR configuration. Figure 3-45 
shows a system transformed into a cascaded 
series of TMR modules. The reliability of this 
configuration is 

n 

II Rv;· (3R~1; - 2R!) 
i=i 

Input 

The advantage of partitioning is that the result­
ing design can withstand more failures than the 
equivalent configuration with only one large 
triplicated module. However, subdivision cannot 
be extended to arbitrarily small modules, be­
cause voter unreliability ultimately overrides any 
poten tial reliability gains. 

The TMR configurations shown so far have 
single points of failure: the voters. In the circuit 
of Figure 3-44 the only solution is to make the 
voter more reliable through a fault-avoidance 
and/or fault-tolerance technique. In the circuit 
of Figure 3-45, however, all but one of the single 
points of failure can be removed by triplicating 
the voters themselves, as illustrated in Figure 
3-46. If a triplicated output is desired, all single 
points of failure are removed. The reliability of 
the configuration shown in Figure 3-46 is 

R" . (3Rm2 - 2Rm3 ) 
"n I I 

n 2 3 . II {3(Rm;Rv;_I) - 2(Rm;Rv;_I) } 
i=2 

If the last voter is also triplicated, RUn in the 
above formula is replaced by 

3R;1I - 2R:'n· 

Output 

Figure 3-46. The use of TMR voters to remove single points of failure from the 
network of Figure 3-45. 
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If functional considerations allow, the circuitry 
can be broken into modules, and voters can be 
located so as to maximize reliability. Gurzi 
[1965] has shown that for non redundant voter 
configurations (Figure 3-45), reliability is maxi­
mized when Rm = R; that is, when the function­
al modules ha~e identical reliabilities. If all the 
voters have reliability Rv' the maximum system 
reliability is attained when the functional break­
down is such that 

1 
Rv = (3 - 2R)RD:' 

2R 
where a = 3 - 2 R 

(3) 

The upper limit of reliability gain in this case is 

TMR network reliability 
Nonredundant network reliability 

= (3R
2 

- 2R
3r R~ ~ (9/8)Il.Rfl 

Rfl """ [' 

1.00 

0.98 

\ 
\ 
\ 
\ 

The graph of Figure 3-47 can be used to arrive 
at the optimum partitions graphically. If R

L
, and 

R fall within the parabola, the TMR network is 
more reliable than the equivalent nonredundant 
network. The solid line is the optimum decision 
curve of Equation 3. 

Figure 3-48 shows the decision boundaries for 
configurations similar to Figure 3-46, with tripli­
cated voters. In this case, Rm, = R (i = 2, 
3, ... ,n), and RmJ = R . Rv' The two solid lines 

indicate a trade-off between Rand Rv' The 
optimum falls between the two lines. In this case, 
the maximum reliability improvement is also 

R 
TMR < (9/8rR~~ 

Rnonredundant 

Finally, the nonredundant voter scheme is better 
than the TMR voter scheme if 

R < 3 
2(1 + Rv) 

More complex TMR networks are possible .. 
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Figure 3-47. Decision regions for single voter TMR. (© 1965 IEEE.) 
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Figure 3-48. Decision regions for triplicated voter TMR. (© 1965 'IEEE.) 

Figure 3-49 shows a nonredundant network and 
a TMR equivalent. The reliability of such net­
works is more difficult to determine accurately; 
Chapter 5 discusses reliability evaluation of com­
plex TMR structures. 

In digital systems, majority voting is normally 
performed on a bit-by-bit basis. The majority 
function for a single-bit line can be performed by 
a I-bit adder. The triplicated outputs are fed into 
the adder data and carry-in inputs; the carry-out 
output is the majority-voted result (see Figure 
3-50). For a module with n output lines, the 
TMR implementation has three modules and n 
single-bit voters. Threshold logic [Hampel and 
Winder, 1971] has also been used for voting. In 
threshold logic, the output is 1 only if at least a 
minimum number (the threshold) of inputs are 1. 

While voting can be applied at any level in the 
digital system hierarchy, the voter is almost 
always made up of single-bit majority elements. 
Although it has been proposed [Brown, Tierney, 

and Wasserman, 1961], maJonty voting at the 
gate level has had little actual use. At the module 
level, many designs have incorporated triple 
modular redundancy. The Saturn IB and Saturn 
Von-board computers both incorporated TMR 
modules [Cooper and Chow, 1976]. The Saturn V 
computer logic was divided into seven modules, 
each with approximately ten voted outputs. Trip­
licated voters were used between the modules in 
this design [Dickinson, Jackson, and Randa, 
1964]. The Test and Repair Processor (T ARP) of 
the JPL-STAR (see Chapter 14) is an ultrarelia­
ble hard core that controls system configuration. 
The T ARP is triplicated with a majority vote at 
its outputs. (The TARP is actually hybrid redun­
dant. See the section below on hybrid redun­
dancy and other dynamic redundancy variants 
of N-modular redundancy.) The Fault Tolerant 
Spaceborn Computer (FTSC) [Stiffler, 1976; Av­
izienis, 1978] is another aerospace computer. Its 
Configuration Control Unit (CCU) is triplicated. 
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Input Outputs 

I ... E1--
'a. Nonredundant network 

Input 

~ 
1 

Outputs 

j 
B-

h. TMR equivalent 

Figure 3-49. TMR applied to more complex networks. 

Unlike the STAR's TARP, however, the CCU 
output voting is performed locally at each desti­
nation. 

Voting is also possible at the bus level. C.vmp 
(Computer-voted multiprocessor) is implement­
ed with off-the-shelf DEC LSI-II components 
[Siewiorek, Canepa, and Clark, 1977 a]. A single 
voter module divides the LSI-II bus in two and 

TMR input signal x Carry out Voted output 
signal x 

xA Carry in 
xB a 
Xc b ~ 

Figure 3-50. Logic signal voting with a one-bit 
adder. 

employs special bidirectional voters on the bidi­
rectional bus lines. As Figure 3-51 shows, the 
three processors and three memories reside on 
different sides of the voter. Triplicated floppy 
disk drives reside on the memory side of the 
voter. Chapter 7 analyzes the design of C.vmp in 
detail. FTMP (Fault Tolerant Multiprocessor) 
uses triplication with voting [Smith and Hopkins, 
1978; Hopkins, Smith, and Lala, 1978; and 
Chapter 17]. Its processors and memories are 
configured in groups of three to form bus triads 
and memory triads. Each module in a triad 
operates in synchronization with the other two, 
and voting is used to mask the effects of a failed 
module. 

Finally, voting can be applied at the software 
level. For example, a single processor could be 
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Figure 3-51. Basic structure of c.vmp. 

made less susceptible to transient and/or pro­
gramming errors by performing a task three 
times and voting on the result. Making the 
algorithm different for each execution producing 
the results to be voted on may result in some 
protection against hard failures. Chen and Aviz­
ienis [1978] formalized this concept and gave it 
the name N-version programming. The SIFT 
(Software Implemented Fault Tolerance) com­
puter uses software voting in a different way (see 
Chapter 16): each processor uses a two-out-of­
three vote on data from other processors execut­
ing the same task to obtain a correct version for 
further operations. 

As with duplication, synchronization of the 
multiple copies in N modular redundancy is 
necessary to prevent false outputs. Figure 3-52 
illustrates one of the problems that can result 
without proper synchronization. The signal line 
in question carries pulses of fixed duration and is 
used in a master-slave protocol. The first set of 

A-ll r-l 

pulses occurs soon enough for the simple voter of 
Figure 3-50 to provide a valid signal. The second 
set of signals caused a voted output that may be 
too short for proper operation of the slave logic. 
The slave may never respond, resulting in a 
timeout at the master. If the slave device is 
triplicated, the different copies may respond dif­
ferently to the runt pulse, resulting in divergent 
slave behavior, and ultimately, loss of slave 
synchronization. In the third set of pulses, even 
though the voted master request pulse is valid, 
the lagging master may not be ready to receive 
the reply when it is transmitted. In this case the 
operation of the lagging processor may diverge 
from that of the other two, leading to a loss of 
master synchronization. 

The problem of synchronization is often 
solved by using a common clock. Unless the 
clock is fault tolerant, however, a single point of 
failure exists. Another solution is the synchroniz­
ing voter shown in Figure 3-53a. Incoming re-

r-l 

8--11 Il r-l 

C 

Voted~ n n 
signal 

Figure 3-52. Triplicated request line using a pulse signalling convention. 
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quest pulses are latched. If pulses are received 
from two lines, the voter waits for a time for the 
lagging master to catch up. If the third pulse 
comes before the waiting period is over, the 
voted pulse is sent out immediately, minimizing 
delay. The one-shot at the output ensures a voted 
pulse signal of the proper duration. The prob­
lems and solutions of synchronization in C.vmp 
are discussed at length in Chapter 7. More 
detailed consideration of the problems of syn­
chronization and voting can be found in Davies 
and Wakerly [1978] and McConnel and Siewio­
rek [1981]. Davies and Wakerly also discuss the 
design of a fully synchronized TMR clock, in 
which synchronization is achieved by inserting a 
voter into the feedback path of each of the three 
crystal oscillators (Figure 3-53b). 

Fault detection in N-modular redundancy can 
be provided by a disagreement detector that 
usually operates in parallel with the voter. The 
disagreemen t detector is an important elemen t in 
NMR systems that are reconfigurable. Even in 
nonreconfigurable systems they act as an aid in 
diagnosis and can be used to warn of a deterio­
rating hardware state as the redundancy is ex­
hausted. C.vmp, IPL-ST AR, and FTMP are 
among the systems that use disagreement detec­
tors. 

In the earlier consideration of software tripli­
cation, it was mentioned that using three differ­
ent implementations of the same process pro­
vides protection from software design errors as 
well as hard failures. A scheme based on a 
similar principle has been proposed for protec­
tion against both hardware design errors and 
inadequacies in component screening [Platteter, 
1980]. Because only a tiny fraction of a micro­
processor's possible states can be tested in the 
few seconds normally allowed in electrical 
screening tests, complete confidence in a com­
plex LSI chip is almost impossible. Three micro­
processors are employed in a TMR configura­
tion; each is from a different source but imple­
ments the same architecture (such as 8080As 
from three different manufacturers). All three 
share the same clock and inputs, and thus oper-

ate synchronously in lockstep. When employed 
with a disagreement detector to report faults in 
any of the chips, this strategy can also be used 
for more thorough testing of components over a 
long test period. 

As mentioned earlier in the section on Dupli­
cation, when a computing element is replicated 
for voting only a fraction of the available com­
puting power is utilized because all copies are 
performing the same task. As with duplication, 
the solution is to use the multiple processors for 
independent tasks and invoke the voting mode 
only when necessary. Voting might occur period­
ically for critical tasks to ensure that all pro­
cessors are running properly and/or when there 
is some indication of a possible malfunction 
(such as power supply flicker, processor self-test 
warning, or memory parity error). System perfor­
mance benefits from such a scheme, at the cost 
of increased susceptibility to uncorrected (and 
undetected) errors during operation in indepen­
dent mode. C.vmp is an example of a TMR 
system that can trade off performance for reli­
ability. C.vmp can switch between voting and 
independent modes under program control, per­
mitting use as a three-processor multiple pro­
cessor in independent mode. Although this fea­
ture has not been used in C.vmp in an actual 
application, it has been used in SIFT, which also 
has this capability. 

One problem with triplication is the occasional 
occurrence of common-mode transient faults. 
One possible solution is to deliberately skew the 
synchronization of the programs running in the 
three processors, but the data on common-mode 
phenomena are incomplete. C.vmp is currently 
being used to gather statistics on transient faults, 
to help determine what provisions are needed to 
tolerate transient faults. 

Finally, voting on analog signals is a particu­
larly important topic to designers of control and 
data collection systems that require ultrareliable 
sensors. Using multiple analog-to-digital con­
verters and performing bit-by-bit voting on their 
digital outputs is not satisfactory, because the 
least significant bits are almost certain not to 
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Figure 3-54. Pseudo voting by selection of a median analog signal. 

agree even when everything is working properly. 
The normal approach is to perform "voting" in 
the analog domain instead. One possibility is to 
take the mean instantaneous value (average the 
three signals); averaging is the method used for 
the redundant sensor inputs in the NASA Air­
borne Advanced Reconfigurable Computer Sys­
tems [McCluskey and Ogus, 1977]. The average 
could also be weighted by a priori probabilities 
of sensor reliability and accuracy. Another pos­
sibility is to take the mean of the two most 
similar signals [Klaassen and Van Peppen, 
1977a]. Figure 3-54 illustrates yet another 
scheme, called pseudo voting [Dennis, 1974], 
which chooses the median of the three signals. 
Thus, if the three sensors had outputs of 1.0, 2.5, 
and 2.8 volts at a given instant, the median 2.5 
volt value would be used. This approach has the 
advantage of being simple to implement. More 
complete treatment of analog voting, including 
methods and accuracy analysis, can be found in 
Dennis [1974], and Klaassen and Van Peppen 
[1977a, 1977b]. 

Error-Correcting Codes 

Error-correcting codes (ECC codes) are the most 
commonly used means of masking redundancy. 
In particular, a large proportion of current pri-

mary memory designs use Hamming single-er­
ror-correcting (SEC) codes. There are several 
reasons for the popularity of SEC coded memo­
ries. First, they are inexpensive in terms of both 
cost and performance overhead. The redun­
dancy of SEC codes is only 10 to 40 percent, 
depending on the design. Decoding and encod­
ing delays are relatively minuscule. Second, the 
increasingly dense RAM chips in use are more 
prone to soft (transient) faults, such as memory­
cell charge loss caused by alpha-particles and 
cosmic-rays. Third, random access memories 
constitute an increasingly larger part of digital 
systems and currently contribute as much as 60 
to 70 percent of system failure rates. Finally, LSI 
SEC code correction/detection chips have be­
come available, reducing both the dollar and 
performance costs of employing SEC codes. 

Other error-correction codes with different 
characteristics are available. Some provide mul­
tiple-error correction but may prove economical 
only in special applications, because the redun­
dancy and decoding delay of multiple error 
correcting codes increase dramatically with er­
ror-correcting ability. Some error codes are well 
suited for specific applications in which the code 
properties can be used to advantage and the 
code limitations make little or no difference. 
Serial decoding, for example, is usually much 
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less expensive than parallel decoding. Serial de­
coding can be used when data are transmitted 
serially or when performance is not as critical. In 
such an application an efficient multiple-error­
correcting code can be employed that requires 
less redundancy but whose cqmplexity would be 
prohibitive in a parallel decoder. In other situa­
tions, limitations on possible failure modes may 
be used to advantage. For example, in many 
applications multiple errors will almost always 
appear closely grouped in space or time (so­
called burst errors). In these cases, -special codes 
called b'urst-error-correction codes may be em­
ployed. Finally, there are error-correcting codes 
that are invariant with respect to certain arith­
metic operations, and hence are suitable for use 
in checking arithmetic processors. Some of these 
codes are an extension of the arithmetic error­
detection codes mentioned previously. 

The concepts introduced in the section on 
Error-Detection Codes also apply to error-cor­
rection codes. The minimum distance of a code 
determines its error-correction/detection abili­
ties. For example, the code C=(OOlO, 0101) is 
contained in the space of 4-bit words illustrated 
in Figure 3-21 and has a minimum distance of 3. 
This code can detect any single or double error. 
It can instead be used to correct any single error, 
since a word with a single error will be closer to 
the code word it derives from than to the other 
code word. In general, a code with distance d can 
corrrect any pattern of up to I errors, where 
(21 + 1) S d. * All ECC codes can be used to 
provide error detection, error correction, or both 
correction and detection. There is, however, a 
trade-off between detection and correction capa­
bilities. In general, a distance-d code can correct 
up to I errors and detect an additional p errors, 
where (21 + P + I) S d. 

The most important class of error-correcting 
codes is the linear error-correction codes. Linear 
error-correction codes can be described in terms 

* N modular redundancy can be considered an application 
of an (N, 1) distance-N code. 

of their parity-check matrices (PCMs). The PCM 
for an (n, k) linear code is an (n - k) by n matrix 
whose e~ements are Os and Is (for binary codes). 
Each column corresponds to a bit in the code 
word, and each row corresponds to a check bit. 
If the n-element column vector r represents the 
received code word, and the parity check matrix 
is H, the decoding operation is represented by 
the matrix operation 

H· r = s 

s is an (n - k)-element row vector called the 
syndrome. Most codes are formed by the n­
element column vectors with 0 syndromes, or 
expressed more rigorously, the code is the null 
space of H. Note that the all-Os word is always a 
code word when the null space of the PCM 
forms the code. Codes that are formed by the 
null space of a PCM are often called parity­
check codes. If the PCM is binary, the syndrome 
can be calculated using (n - k) binary trees. 
Each tree corresponds to a different row of the 
PCM, with its inputs specified by the bit posi­
tions in the row that are 1 s. 

Now consider the set of n column vectors 
ei (i = 1,2, ... , n), where the vector has a single 
1 located in position i. If f is the code word 
transmitted, a received word with a single error 
in position i can be represented by 

r = f + ej 

If m errors are present in the bit locations 
specified by the set E, the received word can be 
represented by 

r = f + ~ ei 
ieE 

The decoding operation for r is thus 

H . r = H . f + H . (~ e) = H . (~ e) = s' 
ifE ifE 

Note that 

is the same as the all-Os code word with m errors. 
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For I-error correcting codes, the syndrome s' is 
unique for each pattern of I or fewer errors, and 
can thus be used to correct the errors present if 
m < I. If t < m < d (for a distance-d code), the 
syndrome indicates that an uncorrectable error 
has occurred. The actual correction operation 
based on s varies for different codes, particularly 
if the code is used for special error classes (such 
as b-bit burst errors, where b < (n - k)/2). 
Thus, the explanation of the correction operation 
is best left to the references cited later. The 
correction operations for the Hamming SEC 
codes and the orthogonal Latin square codes, 
however, are relatively simple and are explained 
below. 

As for error-detection codes, distance is not 
the only consideration in the properties of error­
correction codes. In many applications, toler­
ance of special classes of failures is often impor­
tant, and codes have been derived to tolerate 
unidirectional errors, burst errors, and multiple 
adjacent unidirectional errors. In addition, the 
properties of the error sources in a given situa­
tion may be used to advantage. For example, in 
most communications channels, errors occur in a 
completely random fashion. In digital circuits, 
however, once a bit value is in error, there is a 
high probability that errors will continue to 

k = number of known failures «d-2) ; 
i = 0 ; 
r = recei ved word ; 
5 = syndrome ; 
for i = 0 to k do 

begin 
for j = ~ to kCi do 

begln 

occur in that bit (such as hard or intermittent 
failures of memory cells, sense amps, and bus 
lines). This form of error (sometimes called an 
erasure) can be put to use if a history of error 
locations is kept [Ingle and Siewiorek, 1973a]. 
Consider a bus with a single-parity bit in which 
a particular bit line is known to be failed. If the 
possibility of additional failures and transient 
faults can be ignored, any parity error that 
occurs must be caused by the bad bit line. Thus, 
the error location is known and the error can be 
corrected. In memories a history may be unnec­
essary, because erasures caused by failed bits in 
a memory word can be found by writing and 
reading an arbitrary word and its complement 
into the memory location. XORing of the two 
retrieved values determines the position of stuck­
at failures. 

An algorithm which allows correction of up to 
(d - 2) errors using a distance-d code is given in 
Figure 3-55 [Ingle and Siewiorek, 1973a]. This 
algorithm assumes that only one new error can 
occur before it is discovered (that is, for a 
received word with a errors in it, a - I of them 
are in already known erasure positions), and that 
at most (d - 2) erasures exist. The algorithm 
uses the code itself to correct only single errors 
at a time. During a given iteration, the algorithm 

pick a new permutation of i of the known failure locations 
and change the corresponding bits of r ; 

end; 

form s ; -
if s "1 0 then 

end; 

- begin 
temp = r corrected usi ng s (change only one bit location); 
reform 5 us i ng temp; -
if s = TI then; ! errors corrected successfully; 

- be"9i n 

end; 

update history of failed bit locations if there is 
a new failure location indicated; 

EXIT 
end; 

signal (uncorrectable error) ; ! a nonzero s could not be found using the 
-known failure locations; 

Figure 3-55. Proposed algorithm to correct up to d-2 errors in a distance-d 
code, using knowledge of erasures present. 
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changes the bit values in locations specified by 
some subset of the known erasures, forms a new 
single error correction syndrome, and then per­
forms the single-bit correction specified by the 
syndrome. Next it forms a new syndrome from 
the corrected word to determine if the correction 
just performed (the combination of erasure posi­
tions and single error correction) was valid. 
Thus, if a (d - l)st error occurs during use of 
this algorithm, it is mistakenly corrected to a 
code word that is at a distance d from the correct 
word and only distance-I from the received 
word. Figure 3-56 shows a table-lookup imple­
mentation of this scheme. Note that the erasure­
correction algorithm of Figure 3-55 can be 
greatly simplified when used with a distance-3 
(single-error-correcting) or distance-4 (single-er­
ror-correcting/ double-error-detecting) code. 

Presumably, the (d - I)st error can be cor­
rected if, when there are (d - 2) erasures, it is 
assumed at the beginning of the correction pro­
cess that at least one error exists in an erasure 
position. The algorithm of Figure 3-55 is 
changed by incrementing i from I instead of 0 
when k = d - I. This modification means, how­
ever, that a single error occurring in a nonerasure 
position will cause an error if d - I erasures are 
known, even if it is the only bit in error. Stiffler 
[1978] proposed a corrector design based on an 
algorithm similar to Figure 3-55. The design can be 
varied to correct up to any e errors, e < d, and 
detect an additional p errors, e < (e + p) < d. 

With the addition of erasure correction, con­
sideration must include the possibility of tran­
sient and soft errors and the ways in which they 
affect the validity of the schemes just presented. 
If an error history is being maintained, there is 
the problem of ensuring that the recorded era­
sure locations are due to hard failures instead of 
transient errors; otherwise, the storage space 
may quickly become saturated with spurious 
erasure locations. 

The following subsections present samples of 
several kinds of ECC codes. Except for the 
Hamming codes, this coverage is neither detailed 
nor complete. Peterson and Weldon [1972], Ber­
lekamp [1968], MacWilliams and Sloane [1978], 

Corrected data 

Figure 3-56. Proposed table look-up implementa­
tion of the error correction algorithm of Figure 3-55. 

and Lin [1970] are excellent general references 
on coding theory as it applies to digital systems. 
A paper by Tang and Chien [1969], reproduced 
in Appendix A, provides a good introduction to 
coding theory, and should be read in conjunction 
with this section. An article by Pradhan and 
Stiffler [1980] is a general discussion of error 
codes: their properties, applications, limitations, 
and possible ways to overcome these limitations. 
The article also contains an extensive bibliogra­
phy on codes and code applications. A book by 
Rao [1974] is a complete treatment of arithmetic 
error codes. Finally, new codes, modifications of 
old ones, and more efficient ways of employing 
codes are constantly being introduced. The 
IEEE Transactions on Computers, the IBM Jour­
nal oj Research and Development, and the pro­
ceedings of the annual Fault Tolerant Comput­
ing Symposiums (published by the IEEE) are 
good ~ources for papers on coding theory and 
applications. 

Hamming SEC Codes 

As mentioned before, Hamming SEC codes are 
the most commonly encountered codes in com­
puter systems. For k data bits, an (n, k) Ham­
ming code requires c additional check bits, where 

Y2c+k+l 
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Data bits Check bits d 1 
II 

dz d 1 dz d 3 d4 C1 C2 C3 

U 
1 1 0 1 0 

n· 
d 3 Syndrome 

0 0 1 
d4 = [5 1 5 2 5 3 ] 

0 0 
C1 

c2 Received 
C3 data word 

51 = d1 EB dz EB d 3 EB C1 

52 = d1 EB d 3 EB d4 EB C2 

53 = dz EB d3 EB d4 EB C3 

a. Parity-check matrix and syndrome formation for a (7,4) Hamming SEC code. 

Data bits Check bits Syndrome 
Code word 

0 0 0 ~ Zero Syndrome) 
(no error) o 0 0 implies no error 

One error QJ 0 0 0 1 1 (Matches d4) 
(box) column 

( M,lch .. d, ~ Two errors [QJ 0 IT] 0 1 1 1 
c~lumn-results 

(boxes) In erroneous 
correction 

b. Received code words and their syndromes for zero, one, and two errors. 

c. Parity-check matrix for (7,4) Hamming code for which syndrome is the binary-coded position 
of the bit in error. 

Figure 3-57. Hamming SEC code examples. 

Thus, n = c + k. These codes are separable. 
They are best described in terms of their parity­
check matrices. Figure 3-57a shows the parity­
check matrix for a (7,4) Hamming SEC code. A 
received code word is decoded by forming the 
dot product of the matrix and the code word 
column vector as shown, using modulo-2 addi­
tion. The result is a c-bit vector called the 

syndrome. If the syndrome is all Os, no correct­
able error is present. If a single error occurs, the 
syndrome matches the column in the check 
matrix corresponding to the bit in error. A 
multiple error results in a false syndrome that is 
indistinguishable from the syndrome for one or 
no errors; thus, Hamming SEC codes have a 
minimum distance of 3. Figure 3-57b shows a 



RELIABILITY AND AVAILABILITY TECHNIQUES 127 

d1 

d1 d 2 d3 d4 
d2 

C1 C2 C3 C4 
d 3 

[i 
1 1 1 1 1 1 

; j. 1 1 0 0 1 0 
d4 = [5 1 5 2 5 3 5 4 ] 

0 1 0 0 1 
C1 

0 0 0 
C2 

C3 

C4 

a. Parity-check matrix for (8,4) Hamming SEC/DED code. 

Number of Received Received 
errors data bits check bits Syndrome 

d1 d2 d3 d4 C1 C2 C3 C4 51 52 S3 54 

Zero 1 1 1 0 0 1 0 0 0 0 0 0 

One @] 1 0 0 0 0 1 0 

Two ill] 0 0 [I] 0 0 

b. Received words and their syndromes. 

Figure 3-58. Hamming SEC/ DED code examples. 

code word and its syndrome for 0, 1, and 2 
errors. 

As stated previously, a syndrome generator for 
this code can be made using c parity trees, wi th 
the inputs for each tree the code-word bits with 
Is in the row corresponding to the syndrome bit. 
Encoding for this code uses the same set of 
parity trees, with the check-bit inputs corre­
sponding to the check bit being generated held at 
0. This matrix is not unique for a (7,4) Hamming 
SEC code; any 4 by 7 matrix will work as long 
as no two columns are alike, none is all Os, and, 
for easier encoding, the columns corresponding 
to the c check bits contain only a single 1 in 
each. 

The most common form of parity-check ma­
trix is of the form shown in Figure 3-57c, origin­
ally proposed by Hamming [1950]. Each column 
of this matrix contains the binary-coded repre­
sentation of the column number containing 
it (columns are numbered starting with 1). 
The check bits are located in bit positions 

2i (i= 0,1,2, ... ,en - k - 1)). Thus, the syn­
drome in the event of an error is actually the 
binary-coded number of the bit position in error. 
This may allow a simpler design for the circuitry 
that uses the syndrome to perform the correction. 

Because a nonzero syndrome is an indication 
of an error, a small amount of extra circuitry will, 
provide a means of error notification, and thus, 
error detection. In addition, a small increase in 
the size of the code word can result in improved 
error-detection capabilities. Most implementa­
tions of the Hamming codes use an extra check 
bit, which allows detection of all double errors. 
This check bit is usually the parity of all the 
other check and data bits in the code word (even 
parity sense). The check matrix is changed by 
adding both an extra check-bit column with a 
single I and a row of all Is that corresponds to 
the extra overall parity bit. A PCM for an (8,4) 
Hamming SECjD ED (single-error-correctingj 
double-error-detecting) code is shown in Figure 
3-58a. A nonzero syndrome not matching any 
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column indicates a double (or greater) error. In 
the case of this (S,4) code, the last three syn­
drome bits point to the column number in error 
(numbered starting with 0) as long as the first bit 
is 1. If the first bit is a 0 and any of the others 
nonzero, a double or greater error has occurred. If 
all the bits are 0, there is no error. This is 
demonstrated in Figure 3-5Sb, which shows the 
syndromes for a received word with 0, 1, and 2 
errors. 

These codes do not detect the all-Os failure 
mode, for the all-Os word is a code word. In the 
many hardware designs prone to an all-Os failure 
mode (such as through a power failure in a 
memory array or a failure in a select circuit), this 
problem can be overcome by a modified Ham­
ming code. The code of Figure 3-5S, for example, 
could. be modified by using the odd instead of 
even parity sense for the overall parity-check bit. 
Pradhan and Stiffler [19S0] give an example of a 
modified Hamming code that detects multiple 
unidirectional failures short of the all-l s or all-Os 
failure. 

It is possible to obtain a Hamming code with 
a lower amount of redundancy, by concatenat­
ing several data words and coding the resultant 
longer word. The (S,4) code above used for a 
4-bit data word has 100 percent redundancy. If 
eight data words are concatenated, the resulting 
32 bits of data can be protected by using a 
(39,32) Hamming SEC/DED code with only 22 
percent redundancy. There is a greater possibili­
ty of a fatal error because the single-bit-correc­
tion ability is now distributed over five times as 
many bits. Also, the parity trees needed for 
decoding have more gate levels and thus a longer 
delay. Finally, if this is a RAM, on writes the old 
code word must be retrieved, the old data byte 
replaced by the new one, and the new code word 
formed and stored. These increases, however, are 
often balanced by the much lower redundancy 
(and cost) needed. An example of this approach 
is the SEC/DED memory option for the 
PDP-l 1/60, whose 16-bit data words are stored 
in 39-bit code words. 

Some subsets of Hamming codes have useful 
special properties. Hsiao [1970] describes a set of 
SEC/DED codes that are equivalent to conven­
tional Hamming codes, in that they require the 
same number of check bits. These codes, called 
optimal odd-weight column codes, use a parity­
check matrix in which the number of Is is 
minimal. Each column has an odd number of Is, 
and the number of Is in each row is as close to 
the average number per row as possible. The 
result is a minimum number of inputs to the 
syndrome generation parity trees, which means 
the syndrome generator has fewer components 
and fewer gate-level delays. The conventional 
Hamming SEC/DED codes, in contrast, require 
an n-input tree for the overall parity check. Thus, 
the codes described by Hsiao result in better 
cost, reliability, and performance. 

There are other possibilities for improving the 
implementation of Hamming SEC/DED code"s. 
Carter, Duke, and J essep [ 1973] propose an 
efficient method of decoding called lookaside 
correction. In this scheme, the SEC/D ED code 
word is translated to a byte-parity encoded 
word. The code employed is a special subset of 
SEC/DED codes called rotational codes. These 
codes also have a minimum number of Is in the 
check matrix. Carter, Duke, and Jessep show 
that a received code word with a correctable 
error translates to a byte-parity encoded word 
with a detectable parity error. Thus, detection of 
byte-parity errors indicates that error correction 
is necessary with the received code word; other­
wise, the data is ready for transmission on a 
byte-parity encoded bus. With no error present, 
the translation-and-check operation is faster 
than the decoding and recoding (into byte-parity 
code) operation required in a conventional Ham­
ming code implementation. 

In the earlier section on parity codes, a mem­
ory design was suggested wherein the parity bit 
stored with the memory word was the parity of 
the combined data word and address. The Intel 
432 (see Chapter IS) employs a similar scheme 
based on the Hamming codes. The check bits 
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stored are for the concatenation of the data and 
address, and thus provide protection against 
both data and addressing faults. 

An erasure correction technique similar to that 
of Figure 3-55 is used in a prototype memory 
described by Carter and McCarthy [1976]. This 
design uses a subset of Hamming SEC/OED 
distance-4 codes called maintenance codes, in 
which the data word Wand its bit-wise comple­
ment W' have identical check bits. The memory 
also utilizes the fact that hard stuck-at-a failures 
can be discovered by writing and reading back 
both a word and its complement, then XORing 
the results to learn the location of the failures 
(pointed to by set bits in the result). (Stuck-at-a 
means a bit is stuck at either I or 0.) As shown 
before, this information can be used to correct 
up to d - 2 errors in a word, or in this case, two 
errors. The memory can detect permanent triple 
faults and recover from all permanent double 
faults. Black, Sundberg, and Walker [1977] de­
scribe a spacecraft computer memory that can 
correct single errors and erasures. 

In the final variation of the Hamming SEC/ 
OED code given here, any single-byte error can 
be corrected and any double-byte error detected. 
This is accomplished (assuming 8-bit bytes) by 
using 8 Hamming codes in parallel in the same 
fashion as for interlaced parity (described in the 
section on Parity Codes above.)* Thus, for a 64-
bit data word with 8-bit bytes, each Hamming 
syndrome is formed using every eighth bit. In 
essence, 8 13-bit Hamming code words are being 
evaluated in parallel. The redundancy is 63 per­
cent. If 16-bit bytes are used, the number of 
parallel code words is 4 (22 bits each), with a 38 
percent redundancy. Even though this scheme is 
easy to implement using readily available stan­
dard-support ICs (discussed below), other codes 
to be discussed later provide similar fault-mask­
ing capability but require lower redundancy. 

* In fact, assuming b-bit bytes, this scheme can correct any 
pattern of errors spanning at most b adjacent bits, even if 
the pattern transcends a byte boundary. Such a pattern is 
known as a b-bit burst error. 

If a Hamming code is employed purely for 
masking purposes (that is, there is no error 
notification if the error is correctable), deteriora­
tion of the hardware may be present but un­
known to the system maintainer. Furthermore, it 
is desirable to be able to test the encoding/ 
decoding hardware. Thus, most implementations 
of Hamming-coded memory systems include the 
ability to write noncode words and to read 
memory words without the correction being per­
formed. This provision aids in the diagnosis of 
memory problems. 

Reliability and performance modeling of 
Hamming (and other) SEC codes is deferred to 
Chapter 5, where the topic is covered in depth. 

A great many commercial computers, over a 
large range of sizes and performance, use Ham­
ming SEC codes for main memory. Among these 
are several models of the IBM 360/370 series, the 
POP-I 1/60 (as an option), the V AX-I 1/780 and 
VAX-ll/750, some models of the POP-IO and 
OECsystem 20, the Univac 1100/60, the Xerox 
Alto, and the Bell ESS-l. In addition, many 
manufacturers of plug-compatible aftermarket 
memories offer SEC add-on memory for various 
computers. Hamming SEC codes see usage in 
other areas of computer design, particularly 
buses. The IBM STRETCH, for example, used 
SEC/OED codes on both its memory and pro­
cessor-memory bus, with encoding/decoding 
performed on the processor end of the bus. 
Finally, several semiconductor manufacturers 
are now supplying LSI support chips for SEC 
code memories. Among these are the Advanced 
Micro Devices Am2960 and AmZ8160, the Mo­
torola MC68540, and the Fujitsu MB1412A. 
Most of these use modified Hamming SEC/OED 
codes. The MB1412A, for example, is an 8-bit 
(data) slice that can also be stacked for data 
words of 2, 4, or 8 bytes. The Am2960 and 
AmZ8160 are 16 bits wide but can be used for 
data words of 2, 4, or 8 bytes. The MC68540 is a 
16-bit wide unit to be used for data words of 1, 
2, or 4 bytes and also detects the all-Os and all-l s 
failure mode. 
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Other frror- Correction Codes 

Although Hamming SEC/OED codes are the 
most commonly used codes in computers, there 
are several others, many of which are effective 
against particular classes of errors. For example, 
Tang and Chien [1969] (see Appendix A) discuss 
classes of cyclic codes for correcting single er­
rors, burst errors, multiple independent errors, 
and multiple-character (i.e., byte) errors. This 
section briefly presents a few other codes as an 
indication of the abundant possibilities that 
codes offer. 

Burst-error-correction codes are uniquely 
suited to some applications in digital systems. A 
b-bit burst error is an error pattern that spans b 
bits in a word. Another form of multiple error is 
a b-adjacent error, in which the errors occur 
within specific b-bit boundaries, such as byte 
boundaries. b-adjacent error correction is partic­
ularly useful in designs organized as several 
parallel byte-wide modules, as in Figure 3-59. In 
such designs, a single failure can affect an entire 
block of signal lines. In a memory of (h X b)-bit 
words organized as h b-bit-wide memory chips, 
for example, a failure of the addressing logic in 
one chip would cause the simultaneous failure of 
b adjacent bits. The interlaced multiple Ham­
ming code of the previous subsection can correct· 
b-adjacent errors. Other codes provide similar 
protection with less redundancy, such as those 
formed from binary-coded characters instead of 
individual bits. Thus, for characters of b bits, 
there are 2b possible characters. The PCM ele­
ments are b-bit characters instead of Os and Is 
and the parity-check summations are performed 
over the characters in the code word, modulo-2b

• 

Thus, the error detection/correction characteris­
tics are in terms of b-bit characters, and the 
codes are effective against b-adjacent errors. 
Since b-adjacent errors are a subset of b-bit burst 
errors, burst error codes are also effective .. Exam­
pIes of this class of codes are the Reed-Solomon 
cyclic codes [Peterson and Weldon, 1972; Tang 
and Chien, 1969]. Also, codes specifically for b­
adjacent errors can be derived from burst error 

Inputs 

h • b output lines 

Figure 3-59. Circuit design of parallel byte-wide 
modules. 

codes. In addition to the general references cited 
earlier, other papers on b-adjacent error correc­
tion are Bossen [1970], Reddy [1978], Srinivasan 
[197Ib], Bhatt and Kinney [1978], Hong and 
Patel [1972], Fujiwara and Kawakami [1977], 
Carter and Wadia [1980], and Kaneda and Fuji­
wara [19801-

Unidirectional errors are a common hazard in 
digital systems. In this type of error, the signal 
lines in error have all made the same transition, 
that is, O-to-I or I-to-O, but not both. These 
errors mayor may not be adjacent. On an open 
collector bus, for example, a gating circuit failed 
in the on state can cause multiple signals to be 
gated onto the bus. The signal lines affected will 
carry the wire-or of the desired and spurious 
signals, resulting in unidirectional O-to-I errors. 
Other possible causes of unidirectional failures 
are power failures, shorts, and loss of charge in 
memory cells. The all-Os and all-Is failure modes 
mentioned previously are a case of multiple 
adjacent unidirectional failures. If multiple uni­
directional errors are likely to occur in an appli­
cation requiring an error-correcting code, the 
best code to use is one that at least detects such 
failures. Pradhan [1980] has developed a class of 
separable random-error-correcting codes that 
also detect any number of unidirectional errors. 

When k data bits are needed, there is often no 
(n, k) code with the desired properties. Thus, 
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many of the codes used instead are shortened 
versions, such as an (n, k') code shortened to an 
(n - i, k' - i) code, where k' = k + i. This can 
be accomplished by assuming that i of the data 
bits are always O. The resultant PCM is that of 
the (n, k') code, with the i columns correspond­
ing to the always-O data bits deleted. Often the 
columns to be deleted can be chosen to minimize 
the decoder complexity. Most implementations 
of Hamming codes are examples of shortened 
codes. Consider a (21,16) Hamming SEC code. 
According to the criteria for Hamming codes, 
the 5 check bits will provide SEC protection for 
up to 26 data bits. Thus, any (21,16) Hamming 
code is actually a shortened (31,26) Hamming 
code. 

Hsiao, Bossen, and Chien [1970] state that 
usually, the less redundancy a code has relative 
to its error-correction ability, the greater are the 
complexity, delay, and cost of the decoder. From 
this principle they derive a class of codes in 
which a systematic addition of redundancy adds 

'error-correction ability. In particular, their or­
thogonal Latin square codes are (m2 + 21m, m2 ) 

codes that can correct any I errors (I < 
(m + 1)/2). Thus, the code length grows linearly 
with I for a given data length. These codes are 
decodable quickly in parallel using simple major­
ity logic-decoding [Peterson and Weldon, 1972; 
Tang and Chien, 1969]. The parity-check matri­
ces are easy to construct. The high redundancies 
result in parity-check matrices with few 1 s, re­
sulting in simple (minimal) decoding circuitry. 
Finally, the systematic nature of the matrix 
allows modular additions to the decoder for 
increased error-correction ability. Needed for 
each bit are I modules, each containing 2 m-bit 
parity trees, and a (21 + 1 )-bit majority voter. 
Figure 3-60 shows the PCMs and one of the bit­
correction slices for the (I5,9) and (21,9) single­
and double-error-correcting Latin square codes. 
For 9 data bits, double-error correction is the 
maximum attainable with this class of codes. 

Product codes are the result of the simultane­
ous application of two codes in a particular 
fashion. (Tang and Chien [1969] refer to these 

codes as N-dimensional codes; see Appendix A.) 
Figure 3-61 illustrates the concept. If the two 
codes used have minimum distance d) and d2, the 
product code formed by them has weight d) d2 • 

This concept can be extended to N dimensions 
(N codes applied simultaneously). One product 
code, often used on tapes and other serial de­
vices, is the result of using single-bit parity along 
both the horizontal and vertical axes. Because 
parity is a distance-2 code, the result is a dis­
tance-4 code. In practice, a single error produces 
a parity error detected by both vertical and 
horizontal parity. The intersection of these two 
parity errors points to the bit in error (see Figure 
3-62). Furthermore, it can be seen that any 
double error is detectable. This code is applica­
ble to random-access memories as well as to 
serial applications, and can result in less redun­
dancy than a comparable Hamming SEC/OED 
code. The section on Single-Error-Correcting 
Memory Models in Chapter 5 examines the use 
of the code in detail and compares its reliability, 
cost, and performance with the Hamming SEC/ 
OED code. 

AN arithmetic error-detection codes were dis­
cussed earlier. With a sufficiently large modulus 
A, an AN code is capable of error correction. 
Table 3-13, from Kautz [1962], lists the check 
modulus, maximum data length, and code word 
length for a number of possible single-error­
correcting AN codes. In practice, these codes are 
decoded like the error-detection AN codes: divi­
sion by the check modulus. If the remainder of 
the division (the residue) is 0, there is no error. A 
single-bit error in the rth bit position results in a 
residue of (±2' modulo A). Kautz suggests that 
the correction be performed by table lookup 
using the residue. Because none of the AN codes 
of Table 3-13 are low-cost check moduli (see the 
previous section on Arithmetic Codes), the divi­
sion operation to obtain the residue is complex. 
Rao [1972] presents a modification of AN codes 
that allows for more efficient decoding. There are 
other arithmetic error-correcting codes. Error 
correction using residue-number-system (RNS) 
codes is the subject of several papers [Watson 
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m 2 = 9 

do d1 d2 d3 

2tm = 6 

d4 d5 d6 

(15,9) Single error correction 

d7 d8 (1 C2 (3 (4 (5 

1 1 1 

~----do 

Majority 
voter 

a. (15,9) Single-error correction 

m 2 = 9 
2tm = 12 (21,9) Double error correction 

do d1 d2 d3 d4 d5 d6 d7 d8 C1 (2 (3 (4 (5 (6 I (7 (8 (9 (10 (11 (12 

1 1 1 1 I 
I 
I 

:--A 
I 
I 
I 
I 

1 1 1 1 I - _______________________________ 1 

1 1 1 

Submatrix A is identical to the SEC parity check matrix, 
and the corresponding parity tree is also unchanged. 

Majority 
Voter 

b. (21,9) Double-error correction. 

,------do 

r-::::::::=::::;;:::::t..-d1 
d2 
(1 

---','--~d3 
d6 

L..~~~r(4 

Figure 3-60. Latin square code parity-check matrix with one bit-slice of 
decoder for nine data bits. Decoding is performed by a majority vote among the 
received value of a data bit and two values calculated for it from the other 
received bits. a.) Single-error correction. b.} Double-error correction. 
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[ 

: Row 1 Data bits I check 
: bits 

C(~I~~~ ~he~kl Che~ks-o~-
bits I check bits 

I 

Figure 3-61. Product code resulting fro~ c?mbi­
nation of two linear codes. The check bits In the 
lower right-hand corner may be formed either as 
row checks on the column check bits or vice versa. 
Either way, they will be consistent. 

and Hastings, 1966; Mandelbaum, 1972a; Barsi 
and Maestrini, 1973, 1974]. The paper by Wat­
son and Hastings also describes the design of a 
microprogrammed general-purpose computer 
that utilizes RNS coding. A paper by Rao [1970] 
discusses biresidue error-correcting codes, a class 
of separable codes. Neumann and Rao [1975] 
explore the application of arithmetic codes to 
byte-sliced arithmetic processors. Finally, Rao 
[1974] has :written a textbook on arithmetic error 
coding. 

Check 
Modulus 
A 

13 
19 
23 
29 
37 
47 
53 
59 
61 
67 
71 
79 
83 

101 
103 

Maximum Data 
Length 
k 

2 
4 
6 
9 

12 
17 
20 
23 
24 
26 
28 
32 
34 
42 
43 

Source: Kautz [1962] 

Code Word 
Length 
n 

6 
9 

11 
14 
18 
23 
26 
29 
30 
33 
35 
39 
41 
50 
51 

1 1 0 0 1 1 0 0 1 1
1

0

r 
1 0 1 1 0 0 0 0 0 011 

1 0 1 1 0 ~ 1 1 1 1! 0 Parity 
1 1 1 1 1 0 1 0 1 0 l1 error 

1 1 1 0 0 0 1 1 1 1J 1 
,-"1-0--1--0-0--;--0--0--1 11 

i 
Parity error 

Figure 3-62. Product code using two even-parity 
codes. 

Reliability models for a code depend upon the 
frequency and types of errors that occur, as well 
as on the properties of the code. Thus, no general 
model can be presented here. However, a model 
is given for an (n, k) t-random-error correcting 
code, when single errors occur randomly (i~ 
random locations, and not in bursts). The relI­
ability of a single code word, given bit reliability 
Rb, is: 

t . 

R d = ~ nCiRg-i(l - RbY 
wor i=O 

More detailed modeling is the subject of Chapter 
5. 

Masking Logic 

Discussion of the two previous masking tech­
niques did not include fault masking at the gate 
level of digital design. NMR with voting is used 
almost exclusively for modules or for functional 
partitions of designs. Coding is normally appli~d 
when some regular strucure is present, as In 

memories or buses. Thus, in both NMR and 
coding applications a single restoring organ (vot­
er, decoder/corrector) normally protects a set of 
hardware that is much more complex and error 
prone than the restoring organ itself. In fact, the 
increased regularity of control logic obtained 
through the use of PLAs and microcode tech­
niques means that error-coding techniques can 
have an important impact on system- reliability. 
However, some random logic always remains 
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that cannot be protected through the straightfor­
ward application of error codes. 

This section discusses techniques other than 
module replication that have been devised for 
random logic. These techniques perform restora­
tion at the gate level or, for sequential machines, 
at the state level, usually with a massive use of 
redundant gates. Because of their high cost, few 
of the techniques have seen actual use. The 
discussion is divided into two parts: the first 
concerns gate-level masking; the second deals 
with the application of error codes to the states 
of tinite-state machines. 

Interwoven Logic 

Several techniques have been proposed for gate­
level fault masking. All employ redundant inputs 
to each gate. Among these are von Neumann's 
original work on circuits with interspersed restor­
ing organs, quadded logic [Tryon, 1962; Jensen, 
1963], and radial logic [Klaschka, 1969]. Pierce 
[1965] combined these variant schemes into a 
general theory of what he termed interwoven 
logic. Some of the basic precepts of interwoven 
logic are briefly presented here, based largely 
upon Pierce [1965]. Armstrong [1961] proposed 
an entirely different technique for fault-tolerant 
combinational logic, presented in the next sec­
tion. 

Faults in logic circuitry are considered to be 
limited to stuck-at-a (where a = 0, 1) faults on 
gate outputs, gate inputs, or input lines to the 
network. The effect on the logic depends on the 
value of the fault and the type of gate whose 
inputs are affected. Consider a NAND gate. If 
one of its inputs is stuck-at-O, its output is forced 
to be 1 regardless of the gate's other inputs. On 
the other hand, a stuck-at-l input does not force 
the output to ° unless the other inputs are also 1. 
Thus, two types of faults exist; critical faults 
which by themselves force a certain gate output: 
and subcritical faults, which alone will not cause 
a gate output error. Table 3-14 lists some com-

Table 3-14. Critical and subcritical input faults 
for some common logic gates. 

Subcritical 
Gate Type Critical Faults Faults 

AND I~O O~I 

OR O~I I~O 

NOT o ~ I, 1 ~ 0 None 
NAND I~O O~I 

Majority None o ~ I, 1 ~ 0 

mon gates and their critical and subcritical input 
faults. In a network of AND gates a critical fault 
is propagated through the network: a critical 
input fault on a gate in one layer forces an 
output error that is critical to the subsequent 
layers of AND gates. If, however, the network is 
composed of alternating layers of AND and OR 
gates, a critical fault may be stopped within two 
layers: a critical input fault to one layer results 
in an output error that is a subcritical input fault 
in the following layer. Similarly, an all-NAND 
(or all-NOR) gate network may stop a critical 
fault within two layers. Finally, majority-logic 
faults may be stopped after only one layer be­
cause there are no possible critical faults. 

Interwoven logic makes use of the properties 
of subcritical and critical faults by assuring that 
the effects of up to t faults in any layer are 
masked by subsequent layers; t is design-depen­
dent, and the circuit so designed is called 
t-fault tolerant. Fault tolerance is accomplished 
by using redundant gates with redundant inputs. 
The interconnections between logic layers are 
interwoven so that critical faults at one stage are 
masked out in subsequent stages, through the 
mixing of faulty and good replicated signals. 
Figure 3-63 illustrates this masking action and a 
necessary condition: the interweaving pattern 
must vary from layer to layer. Without this 
variation, the fault will propagate. * 

*!he inputs to the interwoven logic circuit must also be 
mdependently replicated if the circuit is to tolerate input 
faults. 
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a. Nonredundant circuit 
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b. Fault-tolerent interwoven circuit 

z 

Figure 3-63. Fault tolerance via interwoven logic. 
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Using the principles of critical and subcritical 
faults, interweaving, and weave-pattern varia­
tion, Pierce developed a general theory of imple­
menting interwoven logic. To correct any t criti­
cal errors, the redundancy in gates must be 
R = (t + 1)2 = B2, and each gate must have B 
times the inputs needed for the corresponding 
gate in the nonredundant realization. At least 
three different interweaving patterns are needed 
if the circuit has feedback (such as flip-flops or 
loops). A pattern consists of B groupings. If the 
redundant copies of a gate are numbered from I 
to R, each of the B groupings contains a unique 
set of B different numbers; there are no overlaps 
between groups. Finally, each group in a pattern 
must have elements drawn from at least B differ­
ent groups in any of the other patterns, as Table' 
3-15 shows for t = I, 2, and 3. In the table, a 
grouping, such as (a, b,.c) for t = 2, implies that 
the output from a gate, a, is connected to an 
input on each of the gates a, b, and c in the next 
layer; the same applies for the outputs of gates b 

Table 3-15. Groupings (g;) for interweaving 
patterns for t = 1, 2, and 3. 

Single-Fault Tolerant 
t = I, B = 2, R = 4 

gl = (1,2)(3,4) 

g2 = (1,4)(2,3) 

g3 = (1,3)(2,4) 

Double-Fault Tolerant 
t = 2, B = 3, R = 9 

gl = (1,2,3 )(4,5,6)(7,8,9) 

g2 = (1,4,7)(2,5,8)(3,6,9) 

g3 = (1,6,8)(5,7,3)(9,2,4) 

Triple-Fault Tolerant 
t = 3, B = 4, R = 16 

gl = (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) 

g2 = (1,5,9,13 )(2,6,10,14)(3,7,11,15) 
(4,8, 12, 16) 

g3 = (1,6,12,15)(2,5,11,16)(3,8,9, 14) 
(4,7,10,12) 

Source: Pierce [1965] 

and c. In Figure 3-63, the grouping g2 of the 
single-fault tolerant groupings was used for the X 
inputs, while the grouping gl was used for the 
inputs to the second level of gates. A critical 0-
to-I input fault to one layer is masked out by the 
next layer; thus, the input fault in signal X does 
not cause an error in output Z. If the same 
interweaving pattern had been used in both 
layers, the fault would have been propagated. 

The need for a shorthand notation of inter­
woven logic is demonstrated in Figure 3-63, in 
which a simple nonredundant two-gate logic 
function is transformed into a complex tangle of 
gates and interconnections. Figure 3-64 illus­
trates the notation to be used. A symbol for 
replicated gates is formed by using a double line 
for the gate symbol edge. The term g; inside the 
symbol indicates the weaving pattern that is to 
be used in connecting the replicated gates to the 
previous layer. 

The gate in Figure 3-64 is a gate used in 
quadded logic, where t = I, B = 2, and R = 4; 
however, the notation can also be generalized to 
higher redundancy. Quadded logic was first in­
troduced by Tryon [1962] for use with AND, 
OR, and NOT logic. There are two problems 
with the use of this family of logic gates if two­
level correction is to be assured at all times. 
First, the AND and OR logic levels must be 
strictly alternated. Second, because the NOT 
gate (inverter) has only one input and no subcri­
tical faults, it does not provide any fault mask­
ing. Also, when a NOT is placed between AND 
and OR layers, the effect is to make the two 
layers it joins identical, since what would nor­
mally be a subcritical output fault is inverted 
into a critical input error. The two difficulties can 
be overcome in part by rearrangement of the 
logic function, and in part by the insertion of 
identity-AND or -OR gates (one leg fixed at 1 
and 0, respectively) where appropriate. Figure 
3-66b demonstrates this approach with a quad­
ded logic implementation of Figure 3-65b. Re­
quiring alternating AND/OR gate levels is not a 
problem when NOR [Jensen, 1963] gates or 
NAND gates are used in implementing quadded 
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a. Symbol for quadded gate with inputs 
woven with pattern 8j. 

X42~Z4 
Y41~ 

b. Expansion of quadded gate into four physical 
gates, with inputs Xjk and rjk' 

~ jk g1 g2 g3 
11 1 1 1 

12 2 4 3 

21 1 2 2 

22 2 3 4 

31 3 2 1 

32 4 3 3 

41 3 1 2 

42 4 4 4 

c. Table of interweaving patterns 8j, and the 
relation for each pattern between the inputs 
to gate j(X~k and rjd and the output gate 
number (Ii, of the previous stage. 

Figure 3-64. Weaving notation. 

logic. Figures 3-65a and 3-66a show NAND and 
quadded NAND gate realizations of the same 
circuit. Finally, the principles of two-layer mask­
ing also apply to single-layer fault-correcting 
technologies such as majority gate logic. 

Radial logic [Klaschka, 1969] is a variation of 
interwoven logic that offers single-fault tolerance 
with a gate redundancy factor of only 2. This is 
possible if the gates used fail in a non symmetric 
(fail-safe) manner. In particular, for radial logic 
based on NOR gates, the gates used must be 

unlikely to experience O-to-I failures at their 
outputs. In other words, it is assumed that criti­
cal input faults cannot occur. If this is the case, 
the fault is corrected at the next duplicated stage. 
Klaschka gave RTL implementations of NOR 
gates that are unlikely to have O-to-I output 
failures. 

More recently, Freeman and Metze [1972] 
proposed a form of interwoven logic called dot­
ted logic, derived from the use of dotted outputs 
of NAND and/or NOR gates (such as utilizing 
the wire-or that results from connecting the 
outputs of TTL logic open-collector gates). Al­
though gates are implicit at the dotted connec­
tions, the actual gate count as well as the number 
of interconnections is greatly reduced. 

Finally, Pradhan and Reddy [1974a] propose a 
design method using two-level AND and OR 
logic that can tolerate subcritical faults both on 
its inputs and due to internal failures. As in 
radial logic, gates with asymmetric failure modes 
are required. In this scheme, the inputs that 
result in a logical one output are coded in a 
distance-d code. At most, then, duplication of 
the inputs is required. Further reductions in 
complexity can be achieved through the use of 
don't-care output conditions for some input 

. combinations. The resulting design tolerates up 
to (d - 1) internal subcritical faults, given a 
distance-d coded input. Alternatively, a total of t 
faults (combined internal and external) can be 
tolerated, where (2t + I < d). 

Reliability modeling of interwoven logic can 
be extremely complex, and no models will be 
given here. Pierce [1965] developed a complex 
method of obtaining a lower limit on the reli­
ability. Jensen [1963] developed a cut-set model 
for quadded logic (Chapter 5 discusses reliability 
modeling with the use of cut sets). Abraham 
[1975] developed a combinatorial procedure for 
modeling interwoven logic, as well as an easily 
calculable formula for providing a tight lower 
limit on the network reliability. 

In addition to reliability, there is another 
factor to be considered in the employment of 
interwoven logic. By the very nature of internal 
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b 

(--------------------------~ 

d--------------------------------~ 
a. NAND gates 

a--~ 

b---I 

(----I 

d------~----------------------~ 
b. AND, OR, and NOT gates 

Figure 3-65. Implementations of the logic function f = d( ab + c). 

a ,----I 

b 

(------------------------~~~ 

d------------------------------~ 
a. NAND gate implementation 

a----II 

(-----I 

d------------------------------~ 

b. AND, OR, NOT gates implementation (note the extra inverter, marked 
by an asterisk). 

Figure 3-66. Quadded implementations of the circuit of Figure 3-65. 

fault masking, the logic network that results is 
difficult or impossible to diagnose. When a fault 
occurs, no notice is given unless the outputs are 
in error. Even with outputs in error, diagnosis is 
difficult without probing the internal signals. 
Tryon [1962] suggested a possible solution: re­
moving the power from some of the redundant 
gates, thereby forcing their outputs to values that 

effectively eliminate them from the network. At 
the same time, some of the redundant inputs 
must be neutralized. 

Coded State Machines 

The interwoven logic techniques of the previous 
section can be used to implement sequential 
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Inputs 

:::urrent state 

Combinational 
logic 

Memory: flipflops or delays 

Next state 

igure 3-67. Generic design for a sequential cir­
uit. In asynchronous circuits the memory elements 
Je replaced by delays. 

synchronous or asynchronous) logic. However, 
here are other techniques that could result in 
ower redundancy and simpler designs. The basic 
:oncept, first proposed by Armstrong [1961], is 
hat the state of the machine, represented by its 
:tate variables, can be encoded in an error­
:orrection code. Thus, any fault can be masked 
f it causes a correctable error in the state of the 
nachine.* 

Figure 3-67 shows a generic form for a finite 
,tate machine. If input errors are ignored, there 
lre two sources of error in the machine: the 
:ombinational logic and the memory elements. 
~igure 3-68 demonstrates Armstrong's solution 
:0 faults in the combinational logic. The logic 
letwork is split into k independent units, each· 
ievoted to producing a subset of p of the output 
;ignals. An additional (n - k) subunits produce 
ndependently generated sets of error-code check 
)its for the k functional outputs. Thus, the net 
)utput of this circuit is p parallel (n, k) coded 

$ The following discussion primarily concerns synchronous 
machines. In asynchronous machines, state assignment 
problems occur because of the possibility of races, hazards, 
and the like. However, Pradhan and Reddy [1974b] have 
extended these principles to asynchronous machines, and 
Pradhan [1978b] described a method of realizing fault­
tolerant asynchronous coded-state machines using read­
only memories. 

k Outputs 
(functional) 

(n - k) 
Outputs 
(check) 

Figure 3-68. Division of logic network into sub­
units for outputs in k independent sets. 

signals. If p = 1 the result is a single set of 
output signals that forms an (n, k) code word. 
Conceptually, the check-bit units are not difficult 
to design, for the check-bit functions can be 
derived as the XOR of the appropriate output-bit 
functions. 

Combinational logic of the type illustrated in 
Figure 3-68 is used to provide both coded output 
signals and coded feedback (next-state) signals 
for the machine. The decoder/corrector for the 
state signals is placed betwe.en the memory ele­
ments and the current state inputs to the combi­
national logic. In this way, faults in both the 
combinational logic and the memory elements 
can be tolerated. In a companion paper to Arm­
strong's, Ray-Chaudhuri [1961] developed a class 
of minimally redundant codes tailored to this 
application. 

Armstrong showed that, w~en coupled with 
maintenance (faulty component replacement), a 
state machine implemented in this fashion has a 
greatly improved reliability over that of the 
equivalent nonredundant version. He also stated 
that for some large systems this technique yields 
a redundancy at least as great as for triplication, 
but that for others it may be considerably less. 
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The actual redundancy can be determined only 
by a detailed design. 

Others have worked on this concept since 
Armstrong's paper. Frank and Yau [1966] pro­
posed designing sequential machines using error­
code state assignments. Mandelbaum [1972b] 
suggested a scheme in which, given a sequential 
machine M, a simpler machine M' is derived 
into which the states of M can be mapped. M' is 
operated independently of M, but with the same 
inputs, and supplies the check bits for the state 
encoding. Meye-r [1971] discussed state assign,. 
ment and design realization for tolerance of 
memory-cell faults. Russo [1965] proposed fault­
tolerant counters with distance-3 coded states. 
Reed and Chiang [1970] discussed error-coded 
state counters and also offered a synthesis proce­
dure for fault-tolerant sequential circuits. Larsen 
and-Reed [1972] presented a synthesis procedure 
for fault-tolerant sequential machines. Using an 
analysis based on this procedure, they demon­
strated that for a given ability to tolerate faults, 
replication is more reliable as well as simpler to 
implement. Conversely, they found that for a 
fixed complexity (gate count, cost), schemes that 
use orthogonal (majority-logic decodable) codes 
are more reliable. Osman and Weiss [1973] de­
veloped a technique that can be used to reduce 
the redundancy in fault-tolerant logic. In Figun~ 
3-68 it can be seen that considerable redundancy 
is incurred by separate generation of the outputs; 
their technique allows some of the circuitry to be 
shared between modules generating the output 
functions. If this sharing is performed properly 
the reliability is not affected and there are con­
siderable savings. Osman and Weiss applied this 
technique to triplication and to parity-check 
codes. 

DYNAMIC REDUNDANCY 

Fault-detection techniques provide a means of 
flagging the potential presence of errors emanat­
ing from a digital system. In addition, fault 
detection offers an increase in system availability 

through more rapid failure diagnosis. However, 
because it does not provide tolerance, fault de­
tection alone does not improve system reliability 
(at least not in terms of the reliability function). 
On the other hand, fault-masking techniques 
improve system reliability by allowing a system 
to operate correctly in the presence of failures. 
Also, minor amounts of extra redundancy can 
add the benefits of fault detection (error flagging 
and rapid diagnosis) to a fault-masking design. 
Fault masking in turn is limited by its static 
configuration: a system employing a fault-mask­
ing technique cannot heal itself, but only hide its 
failures. Eventually, the accumulation of failures 
is large enough to saturate the fault-masking 
ability, and the entire system fails. In a TMR 
system, for example, the failure of a second of 
the three modules causes system failure: even 
though a good module is still available, the two 
failed ones outvote it. 

Another approach to increased reliability uti­
lizes redundancy in a dynamic way. Dynamic 
redundancy techniques involve the reconfigura­
lion of system components in response to fail­
ures. The reconfiguration prevents failures from 
contributing their effects to the system operation. 
In many instances reconfiguration amounts to 
disconnecting the damaged units from the sys­
tem. If fault masking is used as part of the 
dynamic redundancy scheme, the removal of 
failed components may be postponed until 
enough failures have accumulated to threaten an 
impending nonmaskable failure. 

Reconfiguration is triggered either by internal 
detection of faults in the damaged subunit or by 
detection of errors in its output. * Thus, fault­
detection techniques (with or without masking) 
form the basis of dynamic redundancy. A sys­
tem's chance of a successful reconfiguration is 

* Reconfiguration can be performed either automatically by 
the system itself (on-line repair) or manually by operations 
or maintenance personnel (off-line repair). In the first case, 
the system experiences a temporary pause before operation 
continues; in the second, the halt is longer and may require 
complete reinitialization. Hence, on-line repair improves 
both reliability and availability, whereas off-line repair 
usually only increases the availability. The emphasis in this 
section is upon on-line repair. 



RELIABILITY AND AVAILABILITY TECHNIQUES 141 

greatly dependent on its fault detection ability. 
Three issues are involved in the employment of 
fault detection in a reconfigurable system. The 
first is the confinement of fault effects before 
unrecoverable damage occurs; the second is 
fault detection; and the third is correct diagnosis 
of the failure location, so that the faulty unit­
and only the faulty unit-is marked for remedial 
action (removal and/or replacement). Thus the 
two fault-detection criteria of coverage and diag­
nosability (see the earlier section on Fault-Detec­
tion Techniques) are important factors in the 
choice of a detection technique. Detection cover­
age in particular is commonly used in deriving 
the reliability formula of a dynamically redun­
dant system. In modeling dynamically redun­
dant systems, coverage is often generalized to 
mean the probability of a successful reconfigura­
tion; successful fault detection then becomes 
only one of the factors in determining coverage 
along with the probabilities of successful error 
confinement and resource switching. 

The following subsections present several dy­
namic redundancy techniques that utilize a com­
bination of fault detection, fault masking, and 
reconfiguration. The first subsection discusses 
methods that use duplication for detection as 
well as for fault tolerance; the second treats N­
modular redundancy-based designs. Duplication 
and N-modular redundancy-based reconfigura­
tion requires massive amounts of redundanc'y J 

solely for error detection (and/or correction). 
Other, less redundant forms of fault detection 
(correction) can also provide a basis for dynamic 
redundancy. The more hardware-efficient detec­
tion techniques (such as parity, ECC codes, 
timers) can be used to monitor the health of 
individual modules. Such detectors can be lo­
cated either inside or outside the modules they 
monitor. They can exist either in hardware or 
software. The subsections on Backup Sparing, 
Graceful Degradation, and Reconfiguration 
present reconfiguration techniques that are 
usually based on the less redundant detection 
methods. Backup sparing is the provision of 
spare units that remain unused until an active 
unit fails. In graceful degradation, the function-

ality and/or performance is allowed to degrade 
as parts of the system fail and are removed 
without replacement. The subsection on recon­
figuration presents miscellaneous dynamic re­
dundancy techniques that do not fit into the 
categories provided by the other sections. 

The effect of transient errors on the various 
reconfiguration techniques is not discussed be­
low. If there is no specific mechanism for deter­
mining that an error is due to a transient, per­
fectly good modules may be switched out when 
a transient occurs. Fortunately, there exists a 
technique which is common to most of the 
reconfiguration methods discussed below. This 
technique, called retry, returns the module ini­
tially diagnosed as failed to the system for anoth­
er chance. Detection of an error immediately 
after the module is returned to service is a good 
indication that the module is in fact defective. 

The final subsection on dynamic redundancy 
discusses recovery, the actions taken after recon­
figuration to erase failure effects and restore the 
state of the system and the process(es) it was 
executing before the failure. Recovery is usually 
performed by special software, but often requires 
some support by hardware mechanisms. 

Reconfigu rable Dupl ication 

Fault detection by duplication and comparison 
was discussed earlier in this chapter. In a static 
configuration, a duplicated system does not pro­
vide fault tolerance, for only disagreement can 
be determined in the presence of a fault. Two 
enhancements to the duplicated system can, 
however, produce fault tolerance. * The first en­
hancement needed is the ability to determine 
which of the two modules is faulty if a disagree­
ment is detected. The second is the ability to 

* In this discussion duplication is considered only as the 
basis for fault detection. This form of duplication should 
not be confused with "duplication," in which an extra copy 
is presented as a standby spare, and is not used for fault 
detection by comparison. The latter form is discussed in 
subsequent subsections. 
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disconnect the faulty module and at the same 
time disable the comparison element. Thus, upon 
fault detection (mismatch), diagnosis determines 
the faulty copy, which is then removed from 
service. The resulting simplex system continues 
to function. 

Figure 3-69 illustrates the concept of reconfig­
urable duplication. In the figure, only one of the 
duplicated units (the active unit) is connected to 
the system outputs. The other (standby) unit is 
functioning in parallel with the active unit but is 
not connected to the outputs. In practice, the 
duplicate modules are often resident on the same 
bus (or buses), and the switching function is 
performed by the bus interface unit in each 
module. 

When a fault is detected by a mismatch, there 
are several means of determining the faulty copy 
and switching it out. Four methods are discussed 
here. The first is to run a diagnostic program. In 
the Bell ESS-2 (Chapter 12), for example, the 
active processor runs a self-diagnostic program. 

Unit 
A 

(on-line) 

Unit 
B 

(off-line) 

Comparison 
signals 

.... -------.... -Inputs 

Figure 3-69. Reconfigurable duplication. A detect­
ed mismatch during comparison of characteristic 
signals triggers reconfiguration. 

If the diagnostic is failed, control is passed to the 
standby processor. The faulty processor is taken 
off line to run maintenance programs that facili­
tate its rapid repair. Figure 3-70 shows a block 
diagram of the ESS-2 organization. 

Another means of identifying the faulty copy 
is to include self-checking capabilities in each 
module. The joint occurrence of an internally 
detected fault and a mismatch provides imme­
diate determination of the faulty copy. The use 
of comparison in addition to self-checking pro­
vides more coverage than self-checking alone. 
The UDET 7116 telephone switching system 
control [Morganti, Coppadoro, and Ceru, 1978], 
for example, uses a set of internal hardware 
checkers (such as parity or timers) to automati­
cally switch a faulty CPU out of service. The 
primary detection mechanism in the UDET 
7116, however, is duplication. When a mismatch 
occurs with no internal alarm indication, both 
CPUs are taken off line and forced to run 
diagnostics. The first to successfully complete its 
self-diagnosis becomes the active CPU. The Bell 
ESS-l, -lA, and -2 processors also use internal 
self-checking in conjunction with duplication. 
Finally, the internal detection mechanisms can 
also be used in conjunction with diagnostic 
software. 

A third approach to determining the faulty 
processor is to use a watchdog timer. In the Bell 
ESS-2, for example, the active processor must 
reset a timer periodically. If it fails to do so, the 
timer automatically invokes a change of control 
to the standby processor. Thus, the timer pro­
tects the system when the active processor be­
comes stuck while attempting to perform the 
diagnostic after a mismatch has occurred. Tim­
ers are used in another fashion in the Bell 
ESS-IA. When the current configuration does 
not function, a set of timers is used to force a 
sequence of reconfigurations until a working 
configuration is found . 

The last method of configuration selection is 
to use an outside arbiter to control the configu­
ration. In the COMTRAC railroad traffic control 
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Maintenance 
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• Run detection 
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control 

Figure 3-70. Reconfigurable duplication in Bell ESS-2. The two processors run 
synchronously; comparison of the call store input registers is performed 
constantly. 

;omputer [Ihara et aI., 1978], a mismatch forces 
)oth processors to run identical test programs. 
[he test program exercises the en tire processor 
n the course of calculating a single constant. If 
1 failure is present, there is a high probability 
:hat the calculation will result in a wrong answer. 
[he results from the two processors are com­
)ared with a stored constant by a special con­
:roller (called the Dual System Controller, or 
DSC), as shown in Figure 3-71a. Based on the 
~esults of the test, the DSC performs the proper 
::onfiguration action. Designers at Boeing Aero­
ipace used a similar concept in a duplication­
based design of a prototype aerospace computer 
:Wachter, 1975]. In the Boeing design, the recon­
tiguration control logic can be accessed only by 
a "good" machine, that is, one that can success­
fully construct two levels of key words. The key 
construction process is designed to make suc­
cessful key construction by a faulty processor 
unlikely. 

The problems of synchronization with repli-

cated processes has been discussed previously 
(see the subsections on Duplication and N-Mod­
ular Redundancy with Voting). Three examples 
of different synchronization methods that can be 
applied to reconfigurable duplication systems are 
presented here. In the first, the duplicated mod­
ules perform in lockstep to a common clock, 
synchronized at the microcycle level. This 
method is used on the Bell ESS-l, -lA, and -2 
processors, as well as the UDET 7116. Compar­
isons in these telephone-switching control pro­
cessors are performed at the end of each clock 
period. 

The AXE telephone switching control [Oss­
feIdt and Jonsson, 1980] uses a different method 
of synchronization. Each of its two processors is 
formed of asynchronous functional units (e.g., 
microinstruction generator, ALU) that commu­
nicate via an internal bus (CPB), as shown in 
Figure 3-72. One of these units is the update and 
match unit (UPM), which performs the detection 
function. On most microinstructions, data from 
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Interrupting 
sig. to computer 
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I 
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L _____________ ...J 

a. Organization of the dual system controller 
with respect to configuration control 

Figure 3-71. Synchronization, matching, and reconfiguration in the COM­
TRAC computer. Synchronization and matching are performed at the task 
level, [lhara et aI., 1978]. (@ IEEE 1978.) 

the active processor CPB is input to a buffer in 
the standby processor's UPM. The data are held 
in the iluffer to await comparison with the data 
on the standby processor's CPB. Synchroniza­
tion of the two pro.cessors is performed by the 
UPMs, which keep a count of the bus cycles. The 
UPM on the faster side periodically brings its 
processor back into synchronization by simulat­
ing a busy signal on the controllin.es of its own 
CPB. 

A third method of synchronization is used by 
the COMTRAC system. Synchronization is 
maintained at the program task level. The Dual 
System Controller (DSC) is used to ensure that 
both processors are performing the same calcula­
tions. When both computers have finished the 
calculation, the DSC compares the two results. If 
a mismatch occurs, the DSC then invokes the 

diagnosis mode discussed earlier. Figure 3-71 b 
illustrates the procedure. 

A simple reliability model for a reconfigurable 
duplication system with individual module reli­
ability Rm is: 

In Equation 4, Rk is the reliability of the control, 
switching, and matching circuitry. C is the cov­
erage factor, and represents the combined prob­
ability of successful fault detection and reconfig­
uration. A system with reconfigurable duplica­
tion can achieve increased reliability and availa­
bility if a faulty module can be repaired while 
the rest of the system remains on line. In such a 
case the model of Equation 4 is pessimistic. The 
more complex modeling techniques of Chapter 5 
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Figure 3-71-Continued 

(such as Markov modeling) are needed to prop­
erly evaluate a system with repair. 

Reconfigurable NMR 

One of the drawbacks of N-modular redundancy 
with voting (NMR) is that fault masking ability 
deteriorates as more copies fail. The faulty mod­
ules eventually outvote the good modules. How­
ever, an NMR system could continue to function 
if the known bad modules could be discounted 
in the vote. Two methods of reconfiguration 
based on NMR realize this potential. The first, 
hybrid redundancy, replaces failed modules with 

previously unused spares. The second is to mod­
ify the voting process dynamically as the system 
deteriorates. The latter method actually encom­
passes a variety of techniques, which can be 
loosely classified under the term adaptive voting. 
Both hybrid redundancy and adaptive voting 
depend upon detection of disagreements and the 
ability to determine the identity of the module(s) 
not agreeing with the majority. 

Hybrid Redundancy 

Hybrid redundancy obtains its name from the 
fact that it is the wedding of two redundancy 
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Figure 3-72. Organization of the duplicated processor in the AXE telephone­
switching control processor. (@ 1980 IEEE.) 

techniques: N-modular redundancy with voting 
( discussed earlier) and backup sparing (discussed 
below). Figure 3-73 illustrates the basic concept. 
A "core" of N identical modules is in use at any 
one time, with their outputs voted upon to 
produce the system output. When a disagree­
ment is detected, the module or modules in the 

minority are considered to be failed and are 
replaced by the equivalent number of spare 
modules. Initially the system contains a total of 
(N + S) modules. As long as there are never 
more than t = LN/2J failed modules in the core 
before reconfiguration can take place, the system 
can tolerate the failure of P = (t + S) of its 
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Figure 3-73. Basic organization of a hybrid­
redundant system. 

modules. Thus, assuming the reliability of the 
modules on standby is the same as for those on­
line, the system reliability is: 

.; (N+S-i) ( )i (5) 
Rsys = Rysd .~ n+sCi Rm 1 - Rm . 

1=0 

Rm is the individual module reliability, and Rysd 

is the reliability of the unit comprised of the 
voter, switch, and disagreement detector (VSD 
unit). Equation 5 is a simple model. It assumes 
that, as long as there are spares remaining, 
reconfiguration occurs before there are enough 
failed modules in the core to outvote the good 
modules. The model also does not take compen­
sating failures into acccount. One final factor not 
considered is that the standby units may be 
unpowered until they are switched in. A module 
in an unpowered state will probably have a lower 
failure rate; if so, Equation 5 will provide a 
pessimistic estimation of the system reliability. 

Mathur and Avizienis [1970] derived a reli­
ability model for hybrid redundant systems that 
takes the standby. failure rates into account. 
They then used the model to examine the trade­
offs between N, S, and Rm' The VSD unit is 
assumed to be perfect (Rysd = 1). Figure 3-74 
demonstrates the use of the model for a hybrid 
TMR system with up to six spare modules. In 
Figure 3-74a, the standby failure rate is assumed 
equal to the active state failure rate, with the 

eC' 

0.60 ~---1-+-++-;-~;ot-=-----+----; 

0.40 I---I--A--:.f---i~r--+----t----i 

0.20 0.40 1.00 
RM 

a. System with standby failure rate equal 
to on-line failure rate 

0.40 I---I--+---V-~~~-+---t-------i 

0.20 f-f+-+-""lIF--+-

1.00 

b. System with standby failure rate 10% of 
on-line failure rate. 

Figure 3-74. Plots of hybrid TMR system reliability 
{Rs} vs. individual module reliability {Rm}. 5 is the 
number of spares. (@ 1970 IEEE.) 

result that a system with one spare is more 
reliable than a simplex system if Rm > 0:23. 
Figure 3-74b assumes that the standby failure 
rate is only 10 percent of the active failure rate. 
The crossover point has shifted, and a system 
with one spare is more reliable than the simplex 
system if Rm > 0.17. Another result of the 
model is that for a system with one spare, a 
TMR system (N = 3) is more reliable than an 
NMR system (N > 3) if Rm < 0.55. For a sys­
tem with two spares, a TMR system is better 
than an NMR system if Rm < 0.62. 

Examination of Equation 5 shows that hybrid 
system reliability is greatly dependent on the 
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switch complexity. If every spare can be con­
nected with every voter (total assignment), it can 
be seen that as the core size (N) and the number 
of spares (S) grow, the switch complexity grows 
even more rapidly. Eventually, the switch unreli­
ability dominates the reliability of the system, 
and the hybrid system becomes less reliable than 
a simplex system. Siewiorek and McCluskey 
[1973a] demonstrated that total assignment is not 
necessary. Assuming a perfect switch, the same 

. reliability is achieved even if only (I N/2l + 1) of 
the voter inputs can be connected to every spare 
module. (Note that for N = 3, this is the same as 
total assignment.) Because no switch can in 

Clock 

Modules 

practice be perfect, such a partial connection 
strategy tends to be more reliable than the total 
assignment strategy; the switch for partial con­
nection is less complex and thus more reliable. 

In a companion paper, Siewiorek and McClus­
key [1973b] presented a design for a low-com­
plexity switch. Figure 3-75 shows the iterative 
cell array switch for a TMR core. The switch 
works in the following fashion. A clock pulse 
causes the outputs of the modules to appear, and 
the outputs of the N core modules are gated to 
the voter inputs. The same clock pulse, suitably 
delayed in accordance with the VSD unit propa­
gation delays, loads disagreement signals into the 

Disagreement 
detectors 

Interconnection 
logic 

Figure 3-75. An iterative cell switch for a TMR core and two standby spares. 
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condition flip-flops. Based on the condition of its 
corresponding module (agree/disagree with the 
voted output) and the condition of the iterative 
cells to its left (0, 1, 2, or [3 or more] good 
modules present), each iterative cell decides 
whether to connect its module to the voter, and 
if so, to which voter input. Table 3-16 contains 
the cell state and output tables for the iterative 
cells used in the design of Figure 3-75. 

One of the problems with an iterative cell 
switch of the form of Figure 3-75 is the propaga­
tion delay through the chain of iterative cells, 
particularly for large Nand S. Siewiorek and 
McCluskey proposed three different solutions to 
the problem: carry bypass, carry lookahead, and 
redesign of the cell. The first two solutions are 
similar to those found in fast adders. The last 

Table 3-16. Cell state and output tables for the 
iterative cell switch network of Figure 3-75. 

Current State 

(number of previous Failed 
cells functional) 0 

A (zero) 
B (one) 
C (two) 
D (three +) 

Current State 

A 
B 
C 
D 

Next State 
(a) Cell state table 

Failed 
0 

Functional 
1 

B 
C 
D 
D 

Functional 
1 

A (zero) 000 100 
B (one) 000 010 
C (two) 000 001 
D (three +) 000 000 

J)i J-2i ~i 

J~/: Connect module i to voter input). 

(b) Output table 

Source: Siewiorek and McCluskey [1973b]. 

solution, cell redesign, was shown to be the 
fastest for (N + S) < 12, while the carry bypass 
method was shown to be the least complex. 

Finally, the iterative cell switch (or any other 
hybrid redundancy switch) was shown to be 
simpler if a threshold voter with (N + S) inputs 
is used. The threshold is set at «N + 1)/2), and 
the switching function is realized merely by using 
AND gates to connect modules to the voter 
inputs. 

Siewiorek and McCluskey [1973b] modeled 
the cost and complexity of several different ap­
proaches to designing switches for hybrid redun­
dancy, and found the iterative cell switch to be 
generally superior. Ingle and Siewiorek [1973b, 
1976] proposed reliability models for various 
switch designs. Assuming that switch complexity 
grows linearly with Nand S (the iterative cell 
method approaches this growth), they found that 
there is a number of spares for which reliability 
is maximized, and beyond which the reliability 
decreases. In addition, they found that maxi­
mum reliability for most hybrid TMR systems is 
reached with one or two spares. Finally, it was 
found that hybrid TMR systems may have lower 
mission times than simple TMR systems. Ogus 
[1973, 1974] obtained similar results in another 
analysis of iterative cell switch reliability. * 

Adaptive Voting 

Adaptive voting is a technique in which, for 
modules i, the voter inputs nj are weighted by the 
factors a j • In the pure form of adaptive voting 
the decision is based on the sum ~ aini, using a 
threshold detector. The aj are modified over time 
by the accumulated history of disagreements and 
fault detection. In practical digital systems the a j 

are usually zero or one, and the voting mayor 
may not be performed by a threshold voter. 

* A derivation of complexity and reliability models for 
hybrid redundancy is presented in Chapter 5. 
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Thus, hybrid redundancy can be considered a 
form of adaptive voting, with the aj determined 
by the switch. Discussed here are two other 
proposed forms of adaptive voting techniques: 
NMR/simplex and self-purging redundancy. 

In NMR/simplex systems [Mathur, 1971a; 
Mathur and DeSousa, 1975], the initial configu­
ration is conventional NMR. When one module 
fails, it and one other module are removed from 
the system, leaving an (N - 2) modular redun­
dancy system. The removal of two modules 
preserves the property that all votes are unam­
biguous; no tie is possible. Eventually, the sys­
tem deteriorates to a simplex system. C.vmp (see 
Chapter 7) or any other TMR system capable of 
independent (nonvoting) mode operation has the 
potential of being a TMR/simplex system with 
only minor modifications. Upon detection of a 
failure, a TMR/simplex version of C.vmp would 
go into independent mode operation, with the 
on-line processor selected from the two remain­
ing processors. The NMR/simplex concept can 
be extended to allow the intermediate step of 
duplicate operation (detection with a standby 
spare) before the final step of simplex operation 
is necessary. 

Figure 3-76 illustrates self-purging redundancy 
[Losq, 1976].* A comparison of Figures 3-75 and 
3-76 shows a similarity between self-purging 
redundancy and hybrid redundancy implement­
ed with an iterative cell switch. This is particular­
ly true if the hybrid redundant design incorpo­
rates the threshold voter simplifications men­
tioned previously. In self-purging redundancy, 
all P modules are initially connected to the voter, 
and are removed only when they disagree with 
the voted output. The delayed clock line avoids 
spurious resets caused by delay in the voter. 
Module retry (in case of transient errors) and 

* The switching circuitry in Figure 3-76 is altered from 
Losq's design by the addition of the delayed clock line and 
the attached AND gates. This is necessary to avoid spu­
rious flipflop resets due to the propagation delay of the 
voter. The AND gates can be eliminated if clocked SR 
flipflops are used. 

system initialization are accomplished via the 
retry line. For hybrid redundancy with a TMR 
core, the iterative cell switch for each module 
requires 8 gates and a flip-flop, including the 
AND gate for gating the module output to the 
voter input. (This is for a threshold voter only. 
The majority voter iterative cell switch requires 
even more gates.) The self-purging switch, on the 
other hand, requires only 3 gates and a flipflop 
for each module, regardless of the number of 
redundant modules in the system. The decreased 
complexity of the self-purging redundancy 
switch is one reason for its being more reliable 
than the hybrid redundancy switch. The other 
factor is that a single failure in the self-purging 
redundancy switch element attached to one 
module will not affect the other switch elements 
and modules. In contrast, a failure in an iterative 
cell may cause an error that will propagate to 
other switch cells via the carry lines. 

The threshold for a P-module self-purging 
system voter can be as low as I if 0-to-1 errors 
cannot occur, and as high as (P - 1) if 1-to-0 
failures are impossible. If O-to-I errors do occur, 
the threshold must be higher than 1. This is 
particularly true if stuck-at-1 failures can occur 
in a switch output. Losq found that in general, 
the optimum threshold for a self-purging system 
is equivalent to half the number of remaining 
good modules. The variable threshold can be 
obtained by using a threshold voter with P 
weight-2 inputs and P weight-I inputs (or a 
threshold voter with 3P weight-1 inputs). The 
weights of the inputs are the weights used when 
summing inputs to determine whether the thresh­
old is reached (weighted sum); thus, a weight-2 
input counts twice as much as a weight-I input. 
The Q' output of each condition flipflop, shown 
unconnected in Figure 3-76b, is connected to a 
weight-1 input; the gated module output is con­
nected to a weight-2 input (or two weight-I 
inputs). 

After deriving an accurate and simple reli­
ability model for self-purging redundancy, Losq 
. demonstrated that if the standby failure rate is 
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Figure 3-76. System using self-purging redundancy. 

equal to the active failure rate, the self-purging 
design is potentially more reliable than the 
equivalent hybrid redundant design. Unfortu­
nately, threshold gates are analog circuit ele­
ments; large threshold gates are not available as 
standard integrated circuits. As a result, either 
threshold voters must be implemented from dis­
crete components or from standard logic gates 
and they become prohibitively complex for even 
moderate numbers of inputs. Though not consid-

ered in the analysis above, this practical limita­
tion on threshold voters must be taken into 
account when considering the use of self-purging 
redundancy or any other technique that includes 
a threshold voter. For a large number (P) of 
redundant modules, a self-purging system re­
quires a complex (thus, less reliable) and expen­
sive threshold voter. In a hybrid system with the 
same number of redundant modules, however, 
the threshold voter complexity is limited because 
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it has only N inputs, not the (N + S) = P inputs 
required for the self-purging system; the hybrid 
system may thus be more reliable and less com­
plex than the self-purging system. Table 3-17, in 
the section on Reconfiguration, gives some ex­
amples of the relative complexities of the restor­
ing organs for hybrid and self-purging redundan­
cies. 

Four examples of actual systems employing 
reconfigurable N-modular redundancy tech­
niques are the JPL STAR, the Space Shuttle 
computer, FTMP, and SIFT. All except the 
Space Shuttle computer are described in detail in 
later chapters. The test and repair processor 
(T ARP) in the JPL STAR spacecraft computer 
(Chapter 14) is hybrid redundant. The T ARP 
must be ultrareliable, because it forms the "hard 
core" -the part of the system that must be 
functioning to enable the system to be reconfig­
ured. The TARP design uses hybrid TMR with a 
threshold voter. 

The Space Shuttle computer [Sklaroff, 1976; 
A WST, 1981] uses four of its five computers as a 
redundant set during critical mission phases, in a 
fashion similar to NMR/simplex; the fifth per­
forms noncritical tasks in simplex mode and acts 
as a simplex backup for the primary system. The 
control outputs of the four primary computers 
are voted on at the control actuators. In addi­
tion, each computer listens to the outputs of the 
three other computers and compares those sig­
nals with its own via special software. If a 
computer detects a disagreement, it signals the 
disagreeing computer. The received disagree­
ment detection signals are voted on in the redun­
dancy management circuitry of each computer; 
if the vote is positive, the redundancy manage­
ment unit removes its computer from service. Up 
to two computer failures can be tolerated in 
voting mode operation. After the second failure, 
the system converts to a duplex system that can 
survive one additonal computer failure by using 

. comparison and self-test methods. The fifth com­
puter contains a backup flight software package 
written by Rockwell International, while the 

package running on the primary computers was 
written by IBM. This is in case program bugs are 
encountered in the primary software during 
flight. 

The FTMP computer (Chapter 17) is imple­
mented from a set of processor/cache, memory, 
and I/O modules, all interconnected by redun­
dant common serial buses (Figure 3-77a). Com­
putations are performed by triads: three pro­
cessor/caches* and three memories performing 
the same operation in voting mode and synchro­
nized at the clock level. Voting is performed in 
each memory and each processor/cache at its 
interface to the bus. Thus, because most proces­
sing utilizes the cache, voting is not necessarily 
performed at every clock cycle, but whenever 
data is transferred over the bus. Multiple triads 
can operate at the same time, thereby affording 
multiprocessing capabilities. Configuration is 
controlled by a redundant "bus guardian" in 
each module that controls access to the bus. 
Upon detection of a module failure, once the 
affected triad has completed its current opera­
tion another triad forces reconfiguration of the 
affected triad. If sufficient spares are available, 
the failed module is replaced. Otherwise, the 
triad is broken up and the good modules are 
added to the pool of spares. 

The SIFT computer (Chapter 16), on the other 
hand, is implemented from a set of self-con­
tained computers and redundant buses (Figure 
3-77b).** Each computer broadcasts its results, 
and software voting is performed in each com­
puter at intermediate points in each NMR task. 
Synchronization and reconfiguration are also 

* The term cache used in this context is misleading, for the 
memory unit attached to the processor does not perform 
quite the same function that a cache in a high-performance 
computer does. A better term would be local or scratchpad 
memory. 

** The bus shown in Figure 3-77b is consistent with the 
SIFT design in Chapter 16. The current implementation 
of SIFT, however, does not use redundant buses. Instead, 
a totally connected scheme is used, in which a pair of 
unidirectional serial links connects each pair of computers 
(one link in each direction). 
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performed by software. Reconfiguration occurs 
through ignoring the broadcasts of known bad 
computers and reallocating tasks to nonfaulty 
computers. Critical tasks are performed in an 
NMR fashion (the redundancy N is variable, 
depending on the criticality); noncritical tasks 
can be executed by single computers. 

Backup Sparing 

In hybrid redundancy there is a core of N 
modules operating in parallel, with a voter deter­
mining the system output. In addition, there is 
initially a set, S, of backup spare modules that 
can be switched in to replace failed modules in 
the core. The concept of backup spares can also 
be combined with redundancy techniques other 
than N-modular redundancy. In general, some 
means of failure detection is used to trigger the 
replacement of a failed on-line unit with a spare. 
The detection means can be internal (either 
through self-test or the use of self-checking cir­
cuitry), external (such as timer, parity check, ' 
reasonability check), or some combination of 
internal and external checks. As with hybrid 
redundancy, the switch complexity is an impor­
tant factor. Another concern is the effectiveness 
of the failure detection techniques used. In 
Chapter 5, a few simple models of standby 
sparing reliability are derived. A more general 
reliability model of a system with standby spar­
ing is [Bouricius et aI., 1971]: 

R(t;s,C,q,A,}-t) = R(t;(s - 1),c,q,A,}-t) 

+ (ta[-R(u;(s-l),I,q,A,}-t)] (6) 
)0 au 

where 

. (cSe-J-LUe-q"A(t-u)du) 

q = the number of on-line mod­
ules required 

s = the initial number of spare 
modules 

(q + s) = the total number of modules 
in the system 

c = the probability of successful 
. replacemen t by a spare 
(coverage) 

A = failure rate of an on-line 
module 

JL = failure rate of a standby 
module* 

The recursive form of Equation 6 can be 
transformed by induction on s: 

S 

R(t;s,C,q,A,JL) = e-qAt [ ~ aCkck(I - e-J-Lt)k] 
k=O 

where a = (qA/p,) + k - 1. This model does not 
explicitly include the reliability of the switch, 
detection elements, and control circuitry (SDC 
unit). If any failure in the SDC unit is assumed 
to cause a system failure, the reliability of the 
system is: 

RSDC(t)· R(t;s,C,q,A,JL). (7) 

If, however, compensating failures can occur (as 
with some switch failures; see Chapter 5 for 
discussion of modeling compensating failures), 
modeling a spares-switching system becomes dif­
ficult. Sometimes the coverage factor (c) is mod­
ified to include the effect of some or all failures 
in the SDC unit, thereby retaining the simplicity 
of the model of Equation 7. The increased ease 
of modeling is gained at the cost of decreas~d 
accuracy. 

One widely used application of spares switch­
ing is in systems that are bit- or byte-sliced (such 
as Figure 3-78). Possibilities include memories 
physically assembled from a set of bit planes, 
and ALUs made from ALU byte slices (such as 
the Am2903). Figure 3-79 shows a possible im­
plementation of a byte-sliced ~ystem containing 
a single spare slice (M4). Initially, all the input 

* Spare modules that are unpowered (cold spares) may have 
a lower failure rate than on-line modules or powered-up 
spare modules (hot spares). 
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Figure 3-78. Circuit design of parallel byte-wide 
modules. 

MUXes are set to connect their right leg inputs 
to the modules, and the output MUXes are set to 
connect their left leg inputs to the system out­
puts. The MUXes could be replaced by pairs of 
open-collector AND gates with outputs tied to­
gether. When a slice fails, the MUXes are reset 
so that a bad slice is bypassed in both input and 
output data paths. If, for example, module M2 
has failed, M2 can be bypassed and M4 switched 
in by resetting input MUX 2 to connect its left 
leg input to M3, while output MUXes 2 and 3 
are reset to select their right leg inputs. Figure 
3-79 shows the states of the MUX control lines 
during normal operation, and when module M2 
is failed. The addition of more spares to the 
circuit of Figure 3-79 requires more complex 
arrangements. For example, the addition of a 
second spare requires replacement of the two-to­
one MUXes by three-to-one MUXes, as well as 
more interconnections. 

In addition to the inclusion of more spares, 
other concerns may affect the design of a spares 
switch. The arrangement in Figure 3-79, for 
example, will not work for memories in which 
the information stored in the nonfailed modules 
must remain in the same relational order both 
before and after the spare is switched in. In the 
example of a failure of module M2, bytes 0 and 

1 are in their correct locations, but byte slice 3 
now contains the byte slice 2 data, and byte slice 2 
is blank. The recovery procedure for this situation 
involves restoring the contents of two byte slices. 
For this reason, an order-preserving switch would 
be better. An order-preserving switch allows a re­
configuration that preserves the logical order of 
the entire system except for the placement of the 
failed module and its replacement. Order­
preserving switches, however, are more complex 
than nonorder-preserving switches. For more com­
plex arrangements (such as order-preserving 
switches with a large number of spares) an itera­
tive cell-switching network such as that proposed 
in Levitt, Green, and Goldberg [1968] could be 
used. The section below on Reconfiguration in­
cludes a brief discussion of such switching net­
works and methods of making the networks 
themselves fault tolerant. 

Bit-slice spares switching is often used for 
memories. The data and program stores in the 
AXE telephone exchange control computer [Oss­
feldt and Jonsson, 1980], for example, incorpo­
rate both a spare bit plane and a parity bit. Other 
designs have combined spares switching with 
error-correcting codes. For example, a design by 
Carter and McCarthy [1976] combines a (22,16) 
single-error-correcting (SEC/OED) code, erasure 
correction, and a spare bit plane. A Boeing aero­
space computer [Wachter, 1975], designed for 
extended missions without maintenance, uses a 
(35,28) SEC code and four spare bit planes, with 
two of the spares hot and two cold. The DEC 
MF20 memory (for the DECSYSTEM-20) uses a 
(44,36) SEC/DED code. In addition, the memory 
has a single spare bit for each 8K words of mem­
ory. The spare bit can be switched in to replace 
any bit in the 8K words that the system software 
has determined to contain a hard failure. 

The Saturn V launch vehicle computer [Dick­
inson, Jackson, and Randa, 1964], which uses 
TMR for its functional modules, uses a backup 
sparing technique for its memory. The Saturn V 
memory operates in a duplex mode. The dupli­
cate copy, however, is not used for error detec-
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Figure 3-80. The shadow box memory backup technique proposed by Arulpra-
gasm and Swarz. 

tion. Error detection is accomplished by the 
parity bit in each memory word and by monitor-· 
ing of memory-access-line drive current. If an 
error is detected in the on-line memory, opera­
tion is transferred to the standby memory with­
out interruption of service or loss of data. 

Arulpragasm and Swarz [1980] proposed an­
other spare-switching memory architecture that 
is able to preserve data through a failure occur­
rence. The concept, illustrated in Figure 3-80, is 
an extension of the principle of product codes 
(discussed earlier.) The spare memory box 
(called the shadow box) is identical to the other 
m memory boxes. However, a word stored at 
address i in the shadow box is actually the XOR 
of the words stored in the locations i in the on­
line memory boxes. The con ten ts of the shadow 
box must be updated every time a word is 
written into the memory. In other words, if MAil 
denotes the contents of location i of the shadow 
box, ~[i] the current contents of the same 
location in box j, and ~'[i] the new contents, 
then at every write into location i in memory box 
j, the following operation is simultaneously exe-
cuted in the shadow box: 

The details of the similar update action required 
in a block-code memory are discussed in Chap­
ter 5. If one of the active memory boxes fails, the 
shadow box replaces it. The contents of the lost 
box can be resurrected by XORing the contents 
of the remaining memory boxes with those of the 

shadow box. In other words, if memory box k 
fails, the following operation is performed: 

k-\ m-\ 

A1s [i] = Ms [i] ED ~ ~[i] ffi ~ ~.[i]. 
j=O j=k+\' 

In its simplest form, the shadow box method 
requires a parity bit in each memory word for 
failure detection. Arulpragasm and Swarz also 
examined the extension of the shadow box con­
cept with the use of error-correction codes and 
multiple spares. Finally, they projected the ef­
fects of the shadow box on system performance 
and cost, and found them to be relatively small. 

In other applications, the JPL STAR (Chapter 
14) uses backup sparing extensively; the configu­
ration is controlled by the hybrid-redundant 
T ARP (test and repair processor). The MECRA 
computer [Maison, 1971] uses backup spares for 
its counters and registers. MECRA has 8 Ham­
ming-coded registers and 4 spare registers. Any 
of the spares can easily be used to replace any of 
the active registers, since both the active and 
spare registers are connected to the same internal 
bus. The spares switching for the MECRA coun­
ters is implemented in the same manner. In 
another application of standby sparing, Lewis 
[1979] proposed a design for a fault-tolerant 
clock for a TMR system, shown in Figure 3-81. 
There are two oscillators, one of which is in 
standby mode. When on-line oscillator failure is 
detected, the spare replaces it. In addition to the 
use of standby sparing for the oscillator, the 
additional clock circuitry (such as failure detec­
tion, control, and shaping) is triplicated, with 
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Figure 3-81. Fault-tolerant clock for TMR system using standby sparing. © IEEE 
1979. 

each copy of the clock circuitry residing in one 
functional module. The unique. feature of the 
clock system is that careful consideration is 
given to the avoidance of glitches, runt pulses, 
pulse width variation, and missing clock pulses 
during the switchover. The goal is to prevent any 
anomaly in the clock output that might cause 
desynchronization of the TMR system using the 
clock. 

In the final reference, Losq [1975a] proposed a 
model for spare-switching systems using Mar­
kov chain techniques (see Chapter 5) and exam­
ined the effects of fault-detection coverage on 
system reliability. He found that for short mis­
sion times a single spare results in the best 
reliability; for longer mission times, the optimum 
number of spares increases with mission time. 
The addition of spares beyond the optimum 
number decreases the chances of mission s.uccess 
(mission reliability). Losq also derived a method 
of determining the optimum number of spares. 

Graceful Degradation 

The dynamic redundancy techniques discussed 
so far have one thing in common: redundant 
units are used for error detection, correction, 
and/or replacement of failed units. They can 
perform no useful work until they have replaced 
a failed on-line unit. Graceful degradation tech­
niques, on the other hand, use the redundant 
hardware as part of the system's normal 
resources at all times. There are two similar but 
distinct graceful degradation perspectives. In the 
first, system resources needed to attain a speci­
fied performance are designed so that continued 
(though degraded) operation is possible in the 
event of failures: degraded operation is prefera­
ble to no operation at all. In the second, extra 
resources are added to a system to ensure that, 
with a high probability of success, a minimum 
performance level can be maintained in the 
presence of failures. The extra resources are also 
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used to boost performance above t~e minimum 
requirements; the augmented performance con­
tinues as long as the extra hardware is not used 
in overcoming failure effects. The major purpose 
of both perspectives is to allow system perfor­
mance to degrade gracefully while compensating 
for failures. The distinction between the two 
perspectives usually lies in the motivations for 
including fault tolerance. The motivation for the 
first perspective is the priority of a certain cost/ 
performance goal, along with some ability to 
continue operation in the presence of failures 
without regard to performance. A computer in­
tended primarily for time sharing is an example 
of such a system. With the second perspective, 
the motivation is that any performance below a 
certain level is not acceptable; the latter is exem­
plified by real-time control processors for critical 
applications (such as aircraft control). In many 
gracefully degrading designs, it may be impossi­
ble to classify the design goals according to one 
or the other perspective. 

The first form of graceful degradation occurs 
in a wide variety of commercial uniprocessor 
systems. * In many computers, portions of mem­
ory can be removed from the address space if 
they contain failures. This is often accomplished 
through virtual address mapping facilities in the 
hardware and/or operating system software. In 
many disk memory subsystems, portions of indi­
vidual disks can be deallocated if they contain 
permanent errors. The Univac 1100 operating 
systems, for example, make a record of bad 
tracks on a disk as soon as they are discovered, 
and avoid using bad tracks when writing files 
onto disk. The DEC V AX-l 1/780 performs a 
similar function on its disk memory (Chapter 8). 
In systems with multiple disk drives, the loss of 
one, two, or more drives can be tolerated as long 
as the data lost are not essential to system 
operation. 

* Many commercial systems contain only some of the aspects 
of graceful degradation. The chief missing factor is the 
ability to tolerate failures; although the systems can operate 
in a degraded fashion, they must be manually reconfigured 
(that is, the operating system is reinitialized after throwing 
a few switches) after the failure causes a system crash. 

Cache memories added to a system to improve 
performance can be bypassed in the event of 
failure. In the V AX-ll/780, set-associative-two 
mapping in the cache allows the disabling of one 
set of the cache when a cache failure is detected 
(effectively turning off one half of the cache, and 
using the other half as a directly-mapped cache.) 
Because the cache is a write-through cache, there 
is no data loss involved in turning off half the 
cache. The VAX-ll/750 has a set-associative­
one cache; thus, it must shut down its entire 
cache if a cache failure occurs, and the perfor­
mance degradation is greater than for the 
V AX-ll/780. The Univac 1100/60 also has the 
ability to shut down portions of its cache (Chap­
ter 10). 

The Cm * and C.mmp multiprocessor systems 
[Siewiorek et aI., 1978a, 1978b] are systems for 
which it is not possible to specify which of the 
graceful degradation perspectives is relevant. 
Both Cm* and C.mmp were designed to exploit 
the high performance possible with multiproc­
essors. Both machines, however, were also de­
signed to benefit from the high reliability that 
results when a multiprocessor system is capable 
of degrading gracefully with failures. Cm * and 
C.mmp are both capable of withstanding multi­
ple processor and memory failures, and tasks can 
be reassigned to other modules. The key to the 
performance/reliability properties in multiproc­
essors like Cm * and C.mmp lies more in the 
systems and application software than in the 
hardware. In other words, the software must be 
written to take advantage of the "hooks" that 
exist in the hardware to provide graceful degra­
dation possibilities. 

The Pluribus multiprocessor (Chapter 13), de­
signed as a modularly expandable interface mes­
sage processor (IMP) for the ARPANET, utilizes 
the second perspective of graceful degradation. 
Redundant Pluribus systems contain only one 
extra processor, which is used to provide extra 
throughput. If any processor fails, only the ex­
cess capacity is lost; although the Pluribus sys­
tem throughput is degraded, the system can still 
supply the required performance. Likewise, the 
SIFT, FTMP, and Tandem computers (Chapters 
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16, 17, and 11) are initially capable of exceeding 
performance requirements but will allow grace­
ful degradation of capacity as portions of the 
system fail. All these systems have a high proba­
bility of maintaining at least a minimum level of 
functionality until the end of a mission (SIFT, 
FTMP) or until repairs can be effected (Tan­
dem). 

Borgerson and Freitas [1975] developed a reli­
ability model for systems using both backup 
spares and graceful degradation. The model is 
based on four different fault classes: solitary 
faults, space domain faults (e.g., simultaneous 
failure of multiple pieces of hardware), time 
domain faults (e.g., a second fault occurring 
before the first is recovered from), and resource 
exhaustion (running out of extra modules). In 
using the model to analyze the PRIME grace­
fully degrading computer system [Baskin, Bor­
gerson, and Roberts, 1972], it was found that 
solitary and space domain multiple faults were 
much more of a factor in system reliability than 
were time domain multiple faults or resource 
exhaustion. 

Evaluation of systems with graceful degrada­
tion involves more factors than does evaluation 
of systems using other redundancy techniques. 
In gracefully degrading systems, performance 
varies widely over time as failures are accumu­
lated but the systems continue to operate. Thus, 
the total amount of work done (computation 
performed) over a time interval is as important 
as a go/no-go reliability determination. Mea:. 
sures of combined performance and reliability 
properties are therefore attracting increasing at­
tention. Proposed measures include probability 
distributions of capacity at time T, mean compu­
tation before failure, and the probability of a 
successful completion of a task started at time T. 
Computing resource availability is not the only 
factor in such measures; consideration must be 
given to additional degradation resulting from 
recovery and/or restart of processes executing 
when a failure occurs. Performance-related reli­
ability measures are discussed in Chapter 5. 

Additionally, recent work on performance/reli­
ability modeling is reported in papers by Losq 
[1977], Troy [1977], Beaudry [1978], Meyer 
[1978], Gay and Ketelson [1979], Mine and Ha­
tayama [1979], and Castillo and Siewiorek [1980]. 
In another paper, Meyer, Furchgort, and Wu 
[1980] evaluated the performance and reliability 
of the SIFT computer in the air transport appli­
cation for which it is designed. 

Reconfiguration 

The four previous sections presented four classes 
of dynamic redundancy techniques: reconfigura­
ble duplication, reconfigurable NMR, backup 
sparing, and graceful degradation. These classes 
include the majority of reconfiguration tech­
niques. Many other dynamic redundancy 
schemes, however, do not fit neatly into the four 
categories discussed. This section presents a sam­
pling of some of these miscellaneous techniques. 

The first technique is sift-out redundancy [De­
Sousa and Mathur, 1978], proposed as an alter­
native to hybrid and self-purging redundancy 
techniques. With N redundant modules in the 
initial configuration, sift-out redundancy can tol­
erate up to (N - 2) module failures. This is 
comparable to the fault tolerance of hybrid 
redundancy with a TMR core and to self-purg­
ing redundancy (voter threshold = 2). The ma­
jor difference in sift-out redundancy is that there 
is no actual voting element; the bad module 
outputs are eliminated as described below. As a 
result, the restoring organ for sift-out redundan­
cy is potentially simpler than that for hybrid and 
self-purging redundancies. Figure 3-82 shows the 
basic configuration for a system with sift-out 
redundancy. The comparator, used to detect 
disagreements between all possible pairs of the 
functional modules, contains NC2 XOR gates. 
Using NC2 signal lines, the comparator signals 
the detector which pairs are not in agreement. 
The detector uses these signals to identify the 
faulty module. Included in the detector are N 
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Figure 3-82. Basic configuration for sift-out redundancy. © IEEE 1978. 

memory cells; the ith cell is set when it is 
determined that the ith module has failed. The 
detector contains N flip-flops and (NC2 + N) 
NOR gates. Finally, the collector uses the N 
detector outputs, each one signaling the state of 
a single module (failed/nonfailed), to determine 
which module outputs to ignore, or sift out. The 
collector requires (N + I) NOR gates. Figure 
3-83 shows the design of a sift-out restoring 
organ, with N = 4. 

If XOR gate implementation requires X ele­
mental (e.g., NOR) gates, the total complexity of 
the sift-out restoring organ is: 

(X + 1) NC2 + 2N + 1 

NOR gates andN flip-flops. If X = I, as as­
sumed previously when comparing iterative cell­
switch hybrid redundancy with self-purging re­
dundancy, the total number of gates required is: 

N 2 + N + 1. 

Table 3-17 compares the restoring organ com-

plexities for self-purging redundancy (voter 
threshold = 2), hybrid TMR redundancy (with a 
threshold gate voter), and sift-out redundancy 
for several amounts of redundancy. All the de­
signs are able to tolerate up to (N - 2) module 
failures. If the complexity of the threshold voters 
(the number of standard logic gates needed to 
implement one) is taken into account, it can be 
seen that sift-out redundancy requires less total 
restoring organ complexity than does hybrid 
redundancy for the range of N considered. Fur­
thermore, sift-out redundancy and self-purging 
redundancy are roughly equal in terms of restor­
ing organ complexity; * the major difference be­
tween the two techniques is that the self-purging 
redundancy scheme is vulnerable to some multi­
ple stuck-at-I failures, while the collector for sift­
out redundancy (as shown in Figure 3-83) is 

* Note that if each XOR gate requires four simpler gates to 
implement, sift-out redundancy is much less attractive 
because of its heavy use ofXOR gates in the comparator. 
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Table 3-17. Comparison of restoring organ complexity for hybrid TMR, self­
purging, and sift-out redundancy techniques. 

Hybrid 

T.V.** Total 
N Gates Gates Gates JJ* 
4 36 10 46 4 

5 45 16 59 5 

6 54 23 83 6 

* ff = flip-flops 
**T.V. gates = approximate number of gates needed to 
implement N-input threshold voter with threshold of 2. 

Assumptions: 
Iterative cell hybrid redundancy, TMR core: 

9N gates, N flip-flops, N-input threshold gate 
(threshold = 2) 

Gates 

12 
15 
18 

vulnerable to some multiple stuck-at-O failures. 
Unlike the self-purging restoring organ, however, 
the collector for sift-out redundancy can be 
designed (with little change in complexity) to be 
vulnerable to· the form of stuck-at failures that 
are less likely to occur; that is, if stuck-at-O 
failures are less likely than stuck-at-l failures for 
the modules being used, then the collector design 
shown in Figure 3-83 should be used. The two 
possible collector designs are logical duals of 
each other. 

Another dynamic redundancy technique is the 
memory reconfiguration approach proposed by 
Hsiao and Bossen [1975]. Assume a bit-sliced 
memory using an SEC/OED code. In the usual 
straightforward design, the memory can tolerate 
any single-bit failure in a given memory word 
but fails if any word contains two or more bit 
failures. If, however, the memory cell addressing 
function can be performed independently on 
each bit slice, reconfiguration of the memory is 
possible without using a spare bit slice. This is 
accomplished by skewing the address mapping 
when a double failure is detected, so that the new 
configuration contains at most a single failure in 
any word. In other words, the address mapping 

Self-purging Sift-out 

T. v.* * Total Total 
Gates Gates JJ* Gates 

10 22 4 21 
16 31 5 31 
23 41 6 43 

Self-purging redundancy: 
2N gates, N flip-flops, N-input threshold gate 
(threshold = 2) 

Sift-out redundancy: 
N 2 + N + I gates, N flipflops 
(threshold = 2) 

JJ* 
4 

5 
6 

is changed so that the same address now maps 
into a different bit location on each module. 
Figure 3-84 illustrates the concept. To get the 
maximum reconfiguration ability possible with 
this approach, the properties of orthogonal Latin 
squares are utilized. * However, if there are 2k 
memory words (with k large), using orthogonal 
Latin squares of order 2k requires considerable 
complexity. Latin squares of a smaller size can 
be used instead, with the address skewing per­
formed on blocks of memory cells in the bit 
plane. When using order-m Latin squares, the 
skewing is performed using only (log2 m) bits of 
the address. Thus, using order-4 Latin squares as 
in Figure 3-84 and skewing by the two most 
significant bits in an address results in addresses 
skewed in contiguous blocks of 2(k-2) words. 

* Definition [Hsiao and Bossen, 1975]: "A Latin square of 
order (size) m is an m X m square array of the digits 
0, 1, ... , (m - 1), with each row and column a permuta­
tion of the [m digits]. Two Latin squares are orthogonal if, 
when [one] is superimposed on the other,every ordered 
pair of elements appears only once." The four matrices in 
Figure 3-84 are the four possible orthogonal Latin squares 
of order 4. Figure 3-85 demonstrates the result of super­
imposing the first two Latin squares in Figure 3-84. 
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Bit planes Bit location on plane mapped into address 
Address 0 1 2 3 SEC code memory 

0 0 0 0 0 Initial configuration: two 
1 1 1 0) [] single-bit failures (boxes) and 
2 2 2 2 2 a third failure (circle) cause 
3 3 3 3 rn a double (noncorrectable) error 

0 0 CD 2 rn Second configuration: 
1 0 3 2 with three tolerable 
2 2 3 0 OJ single-bit failures, a fourth, 
3 3 2 UJ 0 noncorrectable failure occurs (circle). 

0 0 2 3 OJ Third configuration: 
1 1 3 2 0 the fourth failure is 
2 2 0 UJ I]J no longer aligned with 
3 3 CD 0 2 any other failure; however, 

another configuration is 
needed because two old failures are aligned. 

0 0 3 UJ 2 Fourth configuration: 
1 2 0 I1J no double failures 
2 2 OJ 3 0 exist, but any additional 
3 3 0 2 OJ failure is unrecoverable. 

Figure 3-84. Orthogonal Latin squares-based memory address skewing used 
to reconfigure a bit-sliced SEC code memory. 

Hsiao and Bossen suggested a simple imple­
mentation based on linear feedback shift regis­
ters that allows the use of identical modules for 
each bit plane. Each module contains a memory 
bit slice and its associated addressing circuitry. 
The overall design of the Latin squares memory 
is less complex and costly than a memory with a 
spare bit plane. Finally, Hsiao and Bossen dem­
onstrated the power of the technique by simula­
tion of an 8-megabyte memory using order-8 
Latin squares for address skewing. In a popula-

0,0 0,1 0,2 0,3 
1,1 1,0 1,3 1,2 
2,2 2,3 2,0 2,1 
3,3 3,2 3,1 3,0 

Figure 3-85. The superimposition of the upper 
two order-4 Latin squares of Figure 3-84. 

tion of 1,000 memories, 500 failures were as­
sumed to occur over a period of five years. The 
simulation found that a successful reconfigura­
tion was possible for 66 percent of the failures 
that caused multiple errors. 

Through another technique for memory fault 
tolerance, the Univac 1100/60 (Chapter 10) is 
able to tolerate single-bit stuck-at-a failures in its 
microstore. When a parity error is detected in the 
microstore, the system maintenance processor 
attempts to correct the error by rewriting the 
microstore. If the error is due to a failure the 
rewriting will not correct the problem, and the 
maintenance processor makes one final attempt 
at repair. It writes the logical complement of the 
microstore contents into the microstore and sets 
a special designator to indicate that microwords 
must be inverted before use. Complementing the 
microstore contents allows toleration of multiple 
failures as long as all failures cause a bit to be 
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stuck at its inverted value. The 1100/60 uses 
another technique for tolerating transient errors. 
Whenever an: error is detected in the processor, 
the machine pauses until a special timer expires. 
During the pause, any transient phenomenon 
(such as static discharge, power fluctuation) that 
may have caused the error should die out with­
out further interference, because the machine is 
not operating. The timer is variable for periods 
of up to 5 seconds, allowing for adjustment to a 
variety of computing environments. 

The micros tore inversion method could be 
extended so that each microstore location has an 
extra bit indicating whether the word is inverted 
before use. Such an extension would speed up 
reconfiguration because only a failed word 
would have to be rewritten. The fault tolerance 
is also increased, because the chance that multi­
ple failed bits in a micros tore would all be stuck 
at the same values is small. 

Another microstore technique is to use an 
extra bit in each word to denote that the contents 
are bad. A few blank microstore locations are 
included at the end of the memory, and each 
word in the main part of the microstore maps 
into one (and only one) of the locations using a 
fixed mapping. When a word fails, the "re­
mapped" indicator bit is set and a new copy of 
the affected word is written into its backup 
location (providing it is not already occupied). If 
the micros tore is not writable, ROM could be 
used for all of the micros tore except the indicator 
bits and the backup locations. 

The MECRA computer [Maison, 1971] uses its 
main store for micros tore as well. A special bit in 
each memory word denotes whether the location 
is being used for microcode. Recovery from 
failure in the microstore consists of simply re­
writing the microcode in another part of memo­
ry. This approach is similar to the graceful 
degradation of main memory by memory block 
deallocation, discussed in the previous subsec­
tion. In addition, storing the microcode in main 
memory means that it can be easily modified. 

MECRA utilizes this feature to perform system 
reconfiguration, which is done by changing the 
microprogram. For example, there is a separate 
hardware element for each of the logical opera­
tions AND, OR, XOR, and complementation. If 
one of the four logic elements fails, it can be 
replaced by any of a variety of combinations of 
operations using the remaining logical operators. 
The failure of, say, the XOR operator can be 
tolerated by employing the AND, OR, and in­
version operators using the relation: 

A E9 B = A B' + A' B 

The reconfiguration that permits replacement of 
the XOR operator is expensive to provide for if 
hardwired into the hardware, but is readily ac­
commodated by MECRA's easy-to-change mi­
crocode. 

Another technique has applications in fault­
tolerant interconnection networks. Interconnec­
tion networks between component modules are 
needed by many spare-switching and gracefully 
degrading systems. The complexity of the switch­
ing network can cause reliability problems. Le­
vitt, Green, and Goldberg [1968] have proposed 
some methods for realizing fault-tolerant switch­
ing networks. Consider the situation depicted in 
Figure 3-86, in which there are two types of 
elements, processors and memories. * The system 
can be made gracefully degradable because each 
processor can be connected to any memory 
through the crossbar switch. Thus, the network is 
totally connected; that is, any of the N inputs 
can be connected to any of the N outputs (one at 
a time). The network also allows all processors 
and memories to be utilized simultaneously, 
without waiting for a signal path to become free. 

* The fault-tolerant switching networks discussed here are 
equally employable in other applications needing crossbar 
or other types of switching networks, such as multiproc­
essors and telephone systems. For example, the C.mmp 
multiprocessor system [Siewiorek et aI., 1978a, 1978b] uses 
a 16 X 16 crossbar switch to interconnect processor and 
memories. 



166 THE THEORY OF RELIABLE SYSTEM DESIGN 

Crossbar switch 

Processor N1 .... 1 . ~ I~ 

Processor_ ;>2 
2 j~ .L 

~ ~ 

I~ 

· '\.,; rll '"'l.I · · r~ f"'I-J "',., 

Processor ... - ') ) 

N 

J~ l~ 
'- c. .L 

Memory Memory ... Memory 
1 2 N 

Figure 3-86. Totally connected design, in which any processor can be con­
nected to any memory. Shown with each processor i connected to memory i. 

Networks of this type are termed CPCU(N) 
[Complete Permutation-Complete Utilization, N 
x N) networks. CPCU(N) networks can be real­
ized with a crossbar switch, as shown in Figure 
3-86, However, the complexity of the network 
increases as N 2. For large N the design complex­
ity of the network is tremendous, especially when 
it also takes into account control and fan-out 
problems. Fortunately, a switching network such 
as that in Figure 3-86 can be implemented 
economically from basic 2 x 2 crossbar switch­
ing cells, in a fasion which trades increased 
complexity for decreased performance. Each of 
the cell's two inputs (I .. 12) can be connected to 
each of the two outputs (01, O2). The cell thus 
has two operating modes: crossing and bending 
(Figure 3-87a and b). Figure 3-88 demonstrates 

the use of the basic cell in a CPCU(8) network. 
The most efficient procedure for implementing 
CPCU(N) networks, based on an iterative imple­
mentation of the network, requires 

NrIog2 Nl-iogN + I 

cells. The methods of employing the two-mode 
cells for economical and/or high performance 
realization of switching networks are discussed 
in Levitt, Green, and Goldberg [1968], Kautz, 
Levitt, and Waksman [1968], and Waksman 
[1968]; many other references are available, in 
part because switching networks are important 
in telephone systems. 

Figure 3-87c shows a possible implementation 
of the basic cell in which the crossing mode is 
attained by pulsing control input R high with 
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Figure 3-87. Basic two-input-to-two-output 
switching cell for implementing complex switches. 

control input P kept low, thereby resetting the 
flip-flops. The bending mode is invoked by puls­
ing P high, with inputs II and h kept high and R 
low. The cell of Figure 3-87c could be built with 
fewer components, but the circuit shown has one 
of the following two fail-safe responses to a 
single gate or flip-flop failure: 

• Stuck-Functions. The cell is stuck either in bending 
mode or crossing mode, with the outputs valid for 
that mode. 

• Bad-Output. One and only one of the output lines 
may contain faulty data. 

These fail-safe responses can be used to make 
fault-tolerant networks. A CPCU(N) network 
that can compensate for any single stuck-at fault 
can be implemented from two cascaded net­
works, as shown in Figure 3-89. For example, 
both subnetworks could be CPCU(N) networks. 

A fault in one subnetwork could be compensated 
for in the other network, with the good network 
performing the entire switching function. In this 
case, the faulty network is basically performing a 
null function: all its gates except the faulty one 
are being wasted. There are more efficient meth­
ods of making a single fault-tolerant network. 
One uses the same layout of Figure 3-89. In place 
of the CPCU(N) network for subnetwork A, a 
less complex subnetwork suffices. A stuck-at 
fault in subnetwork B results in an interchange 
of the signals on two of the output leads. It is 
possible to compensate for it by designing sub­
network A to be capable of interchanging the 
signals on any two input leads; such a network is 
less complex than a CPCU(N) network. Figure 
3-90 shows a network that performs this function 
for N = 8. The structure, which can be general­
ized to different N, is called a "double tree" 
(TDT(N)) network. A TDT(N) network in gen­
eral requires (3N/2) switch cells. Note that a 
stuck-at fault in subnetwork A can be compen­
sated for by subnetwork B, because it is 
CPCU(N).* 

Levitt, Green, and Goldberg [1968] examined 
several more techniques for making switching 
networks fault tolerant. Among these are single 
stuck-at fault-tolerant CPCU(N) networks, 
which are slightly more efficient (in terms of the 
number of gates needed) than a combination of 

- nonredundant CPCU(N) and TDT(N) networks. 
They also described networks that can tolerate 
bad-output faults, and fault-tolerant networks of 
the following types (in addition to CPCU(N) 
networks): 

• Complete permutation-incomplete utilization 
• Incomplete permutation-order preserving 
• Incomplete permutation-nonorder preserving 

* Note that only data paths have been discussed here. The 
issues of error detection and configuration control logic 
have been totally ignored. The circuitry for performing 
such functions can be quite complex, especially if the paths 
in use at the time of reconfiguration must be left un­
touched. Telephone exchanges, though admittedly more 
complex than computer interconnection networks, require 
computers to control the switching configuration (such as 
Bell ESS-Ia). 
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Figure 3-88. CPCU(8} switching network implemented from basic cells of 
Figure 3-87. 
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Figure 3-89. A fault-tolerant network, in which the damage due to a single 
stuck-at fault in one subnetwork can be compensated for by the other 
subnetwork. 
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Figure 3-90. Compensation network used as subnetwork A (Figure 3-89) for a 
CPCU(8} single stuck function fault-tolerant network. 
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• "Shorting" (connecting outputs of stage i to inputs 
of stage (i + I), or bypassing (shorting around) stage 
(i + I)) 

Finally, Shen and Hayes [1980] examined the 
fault tolerance of several types of networks that 
can be implemented by means of the basic 2 X 2 
crossbar cells. 

The final reconfiguration technique to be men­
tioned is a memory reconfiguration approach, in 
which the memory chips are arranged in a self­
healing network. The technique requires that an 
integral switch be built into each memory chip 
[Goldberg, Levitt, and Wensley, 1974]. 

Recovery 

Fault masking techniques such as TMR and 
error-correcting codes permit uninterrupted sys­
tem operation as long as the masking redundan­
cy is not exhausted. Faults occur but do not 
become errors. When only detection is em­
ployed, perhaps combined with reconfiguration, 
faults become errors unless some kind of error­
correction ability is added. A duplicated memo­
ry, for example, can continue operation follow­
ing error detection only if: 

" both memory copies have been performing the same 
operations in parallel, so that an error-free copy of 
the information is available in one of the memories; 
and 

• it is possible to determine which copy contains the 
erroneous information. 

If these criteria are met, restoration of the mem­
ory state merely requires reconfiguration. In 
many systems, however, the correction ability 
either does not exist or cannot compensate for 
more than a limited number of failures at a time. 
When the correction capability is exceeded, the 
system state is irretrievably in error. As an 
example, consider a Hamming SEC/OED-coded 
memory with a spare bit slice; the bit plane is 
switched in only after a double error is detected. 
The memory is capable of successful operation 
after a double failure occurs, but the information 

it contained is corrupted beyond the hope of self­
correction. As long as the initial data, program 
code, and the information acquired by the pro­
cess prior to a data-corrupting failure are still 
available (such as from backup copies), the pro­
cess can be restarted from scratch after the spare 
bit plane is switched in. The only loss is the 
(possibly costly) time expended during the first, 
unsuccessful, execution of the process. If, howev­
er, the initial data are corrupted and no backup 
copy exists, or if the information acquired during 
the first execution is irretrievably lost (such as 
real-time sampled data), the process cannot be 
successfully restarted from scratch. 

Recovery techniques can restore enough of the 
system state to allow process execution to recom­
mence without a complete restart, and with little 
or no loss of acquired information. Recovery 
techniques are usually implemented in software, 
but may have some hardware basis as well. The 
techniques considered here are all backward 
error recovery techniques [Randell, 1975], in 
.which process execution is restarted at (rolled 
back to) some point before the occurrence of the 
error. Forward error recovery techniques, in con­
trast, attempt to continue operation with the 
system state at hand, even though it may be 
faulty. Forward error correction is usually highly 
application-dependent, as in the case of a real­
time control system in which an occasional 
missed response to a sensor input is tolerable. 
Because loss of sensor information due to a 
failure is not critical, the system can recover by 
skipping its response to the lost sensor input 
sample. After reconfiguration, the process pro­
ceeds immediately to deal with the following 
sensor input samples. Forward error recovery is 
not discussed further here; Randell, Lee, and 
Treleaven [1978] consider the topic briefly. 

All forms of backward error recovery require 
some redundant process-state information to be 
recorded as the protected process executes. The 
information is used to roll back an interrupted 
process to a point for which correct state infor­
mation is known. Three forms of backward error 
recovery are considered, ordered by the length of 
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rollback required: retry techniques, checkpoint 
techniques, and journaling techniques. 

Retry techniques are the fastest form of error 
recovery, and conceptually the simplest. They 
depend upon detection of an error as soon as it 
occurs. Immediately after the error is detected, 
the necessary repairs are effected. If the error is 
transient, repair consists in pausing long enough 
for the transient to die away. If there is a hard 
failure, the system is reconfigured. The operation 
affected by the error is then retried, which neces­
sitates knowing what the system state was imme­
diately before the operation was first attempted. 
If the interrupted operation had already irrevo­
cably modified some data the retry will be unsuc­
cessful, especially if the failure itself caused a 
spurious (and undiscovered) modification. Retry 
techniques are most commonly employed as a 
means of tolerating transient errors. One retry 
application common to many commercial com­
puters is I/O operation retry. Disk-read errors, 
for example, are common occurrences and are 
usually due to transients. Without disk-read retry. 
capabilities, system and/or job failures would 
occur with distressing frequency. In most mod­
ern disk drives, retry on disk-read error detection 
is built into the disk controller itself, removing 
the burden of the retry operation from the host 
system. Other common retry applications are 
retry on memory read errors and bus transaction 
retry (for both data and protocol errors). 

The Univac 1100/60 (Chapter 10) provides 
retry for macroinstructions after a failure. After 
a pause that permits transients to die away, a 
microroutine is invoked that examines the fault 
effects and determines whether the instruction is 
retryable. If a retry is possible, the retry micro­
routine restores the contents of the operand and 
addressing registers from a special retry memory 
provided for the purpose (the retry memory is 
updated every time a register is read). The mac­
roinstruction is then refetched and its execution 
attempted. If the retry is not possible or if it fails, 
the microroutine attempts to transplant the pro­
cess on another processor (assuming a multiproc­
essor configuration is being used). The IBM 

System/360 (Chapter 9) also provides extensive 
retry capability, performing retries for both CPU 
and I/O operations. 

Alternate-Data Retry (ADR), proposed by 
Shedletsky [1978a], is a variation of the retry 
approach that offers tolerance of hard failures as 
well as of transients. The hardware is designed to 
be able to perform the same function using 
different data representations. Upon error detec­
tion, the same operation is retried using an 
alternate data representation; the use of a differ­
ent form for the data is an attempt to ensure that 
the same error will not recur even if there is a 
hard failure. In particular, Shedletsky explored 
the use of C-morphic representations, in which 
there are two possible data representations. Each 
representation is the bitwise complement of the 
other. The design of C-morphic systems that are 
capable of ADR combines the elements of error­
detection codes, complemented duplication, and 
self-checking circuitry. Shedletsky also applied 
ADR principles to the design of a simplified 
processor. The net hardware cost was slightly 
over that of a duplex processor system with only 
normal retry capability. 

Retry techniques require immediate error de­
tection to be successful and usually require sub­
stantial dedicated hardware. In contrast, check­
point techniques allow some error latency, for 
the process is backed up to an earlier point in its 
execution. Checkpointing is most often imple­
mented in software and requires little or no extra 
hardware. These techniques result from a combi­
nation of checkpointing and rollback. In check­
pointing, some subset of the system state is saved 
at specific points (the checkpoints) during pro­
cess execution. The information to be stored is 
the subset of system state (data, programs, ma­
chine state) that is necessary to the continued 
successful execution and completion of the pro­
cess past the checkpoint, and which is not 
backed up by other means. Rollback is part of 
the actual recovery process and occurs after the 
repair (e.g., by reconfiguration) of the physical 
damage which caused the detected error (or after 
the transient causing the error dies out). The 
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Figure 3-91. Scenario of two processes, identical except for checkpoint 
frequency. 

rollback consists of resetting the system and 
process state to the state stored at the latest 
checkpoint. Hence the only loss is the computa­
tion time between the checkpoint and the roll­
back, plus any data received during that interval 
that cannot be recreated. 

Figure 3-91 illustrates graphically some of the 
issues involved in checkpointing. First, consider 
lines Band B'. Line B shows the progress process 
B would make if no errors occurred. Line B' 
shows the actual progress of process B as a result 
of the error occurrence scenario shown. During 
process B execution, checkpoints are reached at 
regular intervals (regular in terms of amount of 
computation, not time). Point X on line B' 
corresponds to an error event. The vertical line 
segment XY is the rollback performed upon 
error detection. Point Y is the point in the 
process immediately following the checkpoint, at 
which execution restarts. Although the actual 
process execution time t(B') is longer than the 

ideal time t(B), the process does not have to start 
from the beginning four times, as it must without 
checkpointing. Line A represents the progress of 
process A in the absence of errors. Process A is 
identical to process B except that in order to 
achieve faster execution, only one-third the num­
ber of checkpoints are used. The use of fewer 
checkpoints lowers the overhead required for 
saving system states and allows process A to r~n, 
say, 20 percent faster than process B. The actual 
performance of process A is actually lower, how­
ever, as shown by line A'. The reason is that the 
rollbacks were longer for process A than for 
process B, and the computation time lost for this 
error scenario outweighed process A's speed ad­
vantage. Thus, it is clear that the correct choice 
of checkpoint locations is important. If the 
checkpoints are too infrequent for the error rate 
encountered, much computation time can be lost 
to rollbacks. On the other hand, too frequent 
checkpointing results in an unnecessary increase 
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Figure 3-92. Cooperating checkpointing pro­
cesses_ A failure at point e forces process C to roll 
back to checkpoint 6_ Because of a message sent by 
process C, process A must then be rolled back to 
checkpoint 5_ Rolling back of the processes in this 
fashion eventually requires all three processes to be 
rolled back to their initial checkpoints_ 

in computation time due to the overhead of 
saving-system states. 

There are other issues in checkpointing design. 
One is the selection of checkpoints to minimize 
the amount of state information that must be 
saved at each checkpoint. A second is deciding 
which information must be backed up for proper 
assurance of successful rollback. A third situa­
tion arises when multiple concurrent processes 
communicate with each other. If one process is 
rolled back, any other process receiving data 
from it since the checkpoint must also be rolled 
back at least that far. This can give rise to a 
"domino effect" [Randell, 1975], illustrated in 
Figure 3-92, which causes multiple rollbacks 
throughout a multiprocess system. Another con­
sideration is avoiding error latency situations in 
which the validity of the state saved at the 
checkpoint is jeopardized by the possibility of a 
previous, undetected error. More detailed exam­
ination of these and other issues is left to other 
sources. Chandy and Ramamoorthy [1972] pro­
posed checkpointing strategies that dynamically 
insert checkpoints when the expected loss of 
computation reaches a certain value. Troy [1978] 
proposed a model for interacting processes oper­
ating concurrently. The model, based on Petri 
net-like representations, allows a determination 
of the rollback actions needed when an error 

occurs in one of the processes. Shedletsky 
[1978b] dealt with the problem of error latency 
when imperfect error detection is present. He 
presented a method for determining a rollback 
length concomitant with the desired probability 
of successful recovery, and demonstrated the 
procedure by analyzing an imperfectly self­
checking AL U. 

The Tandem computer (Chapter 11) uses 
checkpointing extensively. User processes can be 
replicated, with the extra copies used for backup 
(usually only duplication is used). The operating 
system has a check pointing facility through 
which the active process can checkpoint its state 
to a backup process. The Fault-Tolerant Space­
borne Computer (FTSC) employs a checkpoint­
ing scheme in which the only information need­
ed to roll back a process is the program counter 
contents stored at its last checkpoint [DeAngelis 
and Lauro, 1976; O'Brien, 1976; Stiffler, 1976]. 
The COPRA computer [Meraud, Browaeys, and 
Germain, 1976; Meraud et aI., 1979] uses check­
points automatically inserted by its assembler; 
rollback is microprogrammed and is automati­
cally invoked by detection of an error. Finally, 
the JPL STAR (Chapter 14) operating system 
also employs checkpointing. 

Randell [1975] described an approach to the 
design of complex hardware/software systems 
using recovery blocks, which combine elements 
of checkpointing and backup spares to provide 
tolerance of software design faults as well as 
recovery from hard failures and transient errors. 
Figure 3-93 shows a sample recovery block at the 
user level. Recovery blocks are similar in nature 
to blocks in ALGOL. The recovery block shown 
executes a search for a key in a data structure 
and returns the index of the array element that 
matches the key. Checkpointing a variable global 
to the block occurs only if it is altered within the 
block, and is performed automatically just be­
fore the alteration actually takes place. This 
backup procedure not only minimizes the 
amount of state information backed up, but also 
releases the programmer from determining 
which variables should be checkpointed, and 
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ensure 
~ystructure [pointer] = key) or errorflag 

Bl tree.search (pointer, key) --
~ binary. search (pointer, key) 

start of recovery block 
acceptance test 
primary alternate 
second alternate 

elseby linear.search (pointer, key) 
else~y . 
~ 
print ("Not able to find key") 
pointer := nil ; 
errorflag := true ; 
end 

elseerror 

thi rd alternate 

final alternate 

Figure 3-93. Recovery block as seen at program level. 

when. Assume that all the search algorithms use 
the global variable locations.searched as a counter 
during the search, and that upon completion 
locations.searched contains the number of loca­
tions searched by the algorithm. The first time 
the variable is accessed, its old value (0) is 
written into the cache. Upon entry to the block, 
the primary alternate-a tree search algorithm in 
the case of Figure 3-93-first attempts the de­
sired computation. Once the primary alternate 
completes its function, the acceptance test is 
used to detect any errors in the result. If the test 
is passed, the block is exited. If the test is failed, 
or if the primary alternate fails to complete the 
computation, the contents of the recovery cache 
pertaining to this recovery block are automati­
cally reinstated (in the case of Figure 3-93, 
locations.searched is reset to zero) and the second 
alternate is initiated. The cycle of execution, test, 
rollback, and initiation of the next alternate 
continues until either an alternate completes the 
computation successfully or there are no more 
alternates. If the block runs out of alternates, an 
error is signaled to the context containing the 
recovery block. Usually, the first alternate is the 
most desirable (more efficient, more powerful) 
and the desirability of the subsequent alternates 
decreases at each level. In Figure 3-93 the binary 
search takes longer than the tree search but, 
being less complex, may have a lower probability 
of failure; the linear search takes even longer (it 

is assumed that the data structure is universal; 
that is, it supports all three search algorithms.) 
The last alternate does not execute the desired 
task, but instead prints an error message and 
returns an obviously faulty value for the index. 

A graphical representation of recovery blocks 
is shown in Figure 3-94a; the representation is 
used here to briefly illustrate some of the exten­
sions to the recovery block idea that can be 
found in Randell [1975]. Figure 3-94b shows that 
it is possible to nest recovery blocks. Failure by 
exhaustion of alternates in a lower level recovery 
block causes the recovery block containing it to 
invoke the next alternate. Figure 3-94c shows the 
extension of recovery blocks to parallel process­
es, with some restrictions on the times at which 
messages can be passed between processes. Re­
covery blocks can be used at different levels of 
abstraction in a hierarchical system (in the same 
way that there can be a physical computer as 
well as multiple levels of virtual machines) as 
long as proper care is taken when designing the 
interfaces between the levels. 

The strength of the acceptance test is impor­
tant to the successful detection of errors. Thus, if 
weaker alternates which return false or dummy 
results are used, the acceptance test must be 
weakened to allow the recovery block to be 
exited when they complete. Shrivastava and Ak­
inpelu [1978] proposed a method of avoiding this 
trouble by the use of assertion statements in a 
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Figure 3-94. Use of Randell's graphical notation to 
demonstrate extensions beyond the simple recov­
ery block. 

recovery block. Anderson and Lee [1979] consid­
ered means of improving the fault tolerance of 
hardware/software interfaces, making them 
more recoverable by adding extra levels of ab­
straction. Russell and Tiedeman [1979] examined 
message passing among multiple processes with­
in the same recovery block (a "conversation"), 
and its requirements on the degree of couplirig 
between cooperating processes. 

A possible practical implementation of recov­
ery blocks would utilize a form of cache mecha­
nism to store the current values of checkpoint 
variables about to be altered and to keep track of 

the nesting depth of the current recovery block. 
Shrivastava and Akinpelu [1978] evaluated the 
performance of recovery cache scheme, and 
found that the overhead involved was not high. 
Lee, Ghani, and Heron [1980] haye described an 
experimental design of an add-on cache for a 
PDP-II that divides the Unibus between the 
processor and memory, and requires no modifi­
cations to the system other than cutting the bus. 
Because the cache cannot access the registers in 
the processor without modifying the processor 
hardware, it can checkpoint only variables stored 
in the memory. The projected performance deg­
radation is about the same as in C.vmp (Chapter 
7). C.vmp, however, will survive hard processor 
failures, whereas the recovery cache PDP-II will 
not. The recovery cache system is about as 
complex as a C.vmp-type configuration, but with 
full use of recovery blocks it will survive tran­
sient errors and most software design errors. 

Of the three backward error recovery tech­
niques discussed here, journaling is the simplest 
and least efficient; it requires the longest time to 
recover the state attained before an error. In 
journaling, a copy of the initial data (database, 
disk, file) is stored as the process begins. As the 
process executes, it makes a record of all trans­
actions that affect the data. Thus, if the process 
fails, its effect can be recreated by running a 
copy of the backup data through the transactions 
a second time (after any failures have been 
repaired). The recovery takes the same amount 
of time as the initial attempt. Journaling is better 
than completely restarting because it eliminates 
the loss of information involved in a restart. The 
Bravo editor on the Xerox Alto personal com­
puter uses journaling to recover an editing ses­
sion during which an error causes the computer 
to crash [Lampson, 1979]. A special program 
called Bravobug is run when the system is re­
started and can be stopped at any point (up to 
the point where the error occurred) to recreate 
any intermediate states of the edited file. Typi­
cally, a three-hour editing session takes substan­
tially less time to recreate because there are no 
human delays involved the second time. 
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SUMMARY 

The presentation of reliability and availability 
techniques in this chapter followed the organiza­
tion of Table 3-1, which provides a logical pro­
gression of techniques from the simplest methods 
of fault avoidance to the most complex methods 
of dynamic redundancy. However, there are two 
elements missing from this development. First, 
the major emphasis is on techniques, and not on 
the functionality of the system elements they are 
used on. This chapter could also have been 
organized on the basis of function: memories, 
processors, ALUs, operating systems, and so on. 
Organization by function would highlight which 
techniques work best in each area of system 
design and how those techniques can be best 
implemented for that design area. However, or­
ganization by technique has the important ad­
vantage of stressing the universality of tech­
niques. Most techniques can be incorporated 
into several, if not all, areas of design. Thus, 
rather than improving the reliability of isolated 
pieces of a system at a time, the designer can 
choose to apply a single technique over several 
areas. For example, parity error detection can be 
applied to a memory, register set, ALU (with 
parity prediction), and the connecting data 
paths. A single parity checker on each data path, 
monitoring each transaction, is sufficient to mon­
itor system health. By using a single technique 
for all the pieces, the need for multiple transla­
tors, checkers, and encoders of several different 
types has been eliminated. 

The other element missing from the organiza­
tion of this chapter is the simultaneous use of 
multiple techniques. The development followed 
required treating each technique as a separate 
entity. Often, two or more reliability improve­
ment techniques can be synergistically combined 
to provide vastly improved protection. Examples 
of a few such combinations have been briefly 
mentioned, such as the shadow box memory. 
Many other combinations are possible; their 
suitability depends on the application. For this 
reason, the evaluation methods and criteria de-

veloped in the following chapters are necessary 
to ensure successful use of the techniques pre­
sen ted in this chapter. 
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PROBLEMS 

1. There are 32 data lines on a bus protected by four 
interlaced parity bits. Parity bits I and 3 are odd 
parity and parity bits 2 and 4 are even parity. 
a. Sketch the data bus and indicate which lines 

are covered by which parity bits. 
b. List all fault sets that are detected in one bus 

transfer. Illustrate one· fault from each set. 
on your diagram. 

2. Assuming that only transient errors lasting exactly 
one operation cycle of the system can occur, the 
triple modular redundancy is equivalent . to 
(choose one) 
a. a Hamming single-error-correcting, double-er­

ror-detecting code 
b. a simple parity code (odd parity) 

c. a repetition code with a complete decoding 
algorithm 

d. a repetition code with an incomplete decoding 
algorithm. 

3. A Hamming single-error-correcting code has the 
parity-check matrix 

H= 0 1 0 0 I I 1 
[

0 0 I I 1 0 I] 

1001110 

A word [0111011] was received. The word sent 
must be (choose one) 
a. [0110011] 
b. [0111001] 
c. [0111010] 
d. [0001011]. 

4. Below is a parity matrix for a Hamming code. 

d) c) d2 c2 d3 c3 d4 
c) 

[: 
I I 1 0 I !] c2 0 0 I 0 

c3 0 0 

a. Write the parity equations for the three check 
bits. 

b. Using these parity equations, encode the data 
word d) d2 d3 d4 = OliO. 

c. The encoded word 1100001 (d)c)d2c2d3c3d4) 
has a single-bit error. Which bit is in error? 

d. Assuming that bit failures are independent and 
the probability of failure is p, what is the 
probability that the encoded data is not decod­
ed correctly? 

e. If the receiver and support electronics has a 
reliability of k/(I - p), where k is a constant, 
what value of p maximizes the reliability of the 
system? 

5. A binary transmission channel is said to be an 
erasure channel if a received bit may be neither a 
one nor a zero. Such an error is called an erasure. 
To correct up to e erasures, the minimum distance 
between any two code words must be (choose one) 
a. e 
b. e + 1 
c. 2e 
d. 2e + I. 

6. Which of the following cannot be a code word in 
a linear single-error-correcting Hamming code? 
a. 0010110 
b. HOllOO 
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c. 1110110 
d. 0110000 
e. 1010111 

7. A 3-of -6 code was modified by adding two check 
bits that indicated how many ones the 6 informa­
tion bits have. The number of all possible errone­
ous words that go undetected is (choose one) 
a. 20 
b. 22 
c. 32 
d. 42 
e. 41. 

8. The arithmetic distance between the two code­
words [100001] and [010011] is (choose one) 
a. I 
b. 2 
c. 3 
d. 4. 

9. In a 25 N + 15 single-error-correcting arithmetic 
code, a word [100 I 00 II] was received from the 
ALU. Therefore, the corrected output of the ALU 
is (choose one) 
a. 0001011 
b. 1011011 
c. 0111011 
d. 1001100 
e. 1110011. 

10. A biresidue code forms residues modulo 3 and 
modulo 7. An erroneous word is ([01111], 2, 0). 
Assuming that the check bits are correct, the 
corrected information bits are (choose one) 
a. [10000] 
b. [10001] 
c. [OllIO] 
d. [01101]. 

11. In a computing system, memory is one of the chief 
sources of failures. When a high degree of data 
integrity is desired, the overhead for encoding and 
decoding may be tolerated. To correct a single-bit 
error (Hamming error) in an 8-bit byte, speed is to 
be sacrificed in favor of minimizing the total 
storage required for a task. The problem is thus to 
maximize the number of code words. Find a 
single-error-correcting code of block length eight 
with a maximum number of code words. (Hint: A 
linear code of block length eight has 16 code words. 
A code that is made up of a number of cyclic spaces 
has 20 code words but is not the code that 
maximizes the number of code words.) 

12. For the double-error-correcting code with the par­
ity-check matrix 

0 0 I 1 0 I 

0 I 0 0 1 

I 0 0 I I 0 
H= 

0 0 I 0 I 

0 0 1 0 

0 0 0 

the syndrome formed was [101110]. This implied 
(choose one) 
a. no error 
b. single error 
c. double error 
d. more than two errors. 

13. With the same parity-check matrix, if the bits are 
numbered I through 7 from left to right, a syn­
drome [100 Ill] implies (choose one) 
a. a single error in position 3 
b. two bit errors in positions I and 4 
c. two bit errors in positions I and 5 
d. more than two bit errors. 

14. For a double-error-correcting code of block length 
32, the least upper bound on the number of 
information bits is (choose one) 
a. 24 
b. 25 
c. 26 
d. 27 
e. 28. 

15. Given the polynomials h(x) = X2 + 1 and g(x) = 
x4 + x + 1, the circuit 

can be used (with proper initial conditions) to 
obtain from the incoming polynomial f(x) the 
output (choose one) 
a. f/gh 
b. fh/g 
c. fg/h 
d. fgh 
e. f(g + h). 
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16. With the input polynomial x 7 + I and the circuit 

the output polynomial will be (choose one) 
a. x + 1 
b. x 2 + I 
c. x14 + 1 

d. x 7 + x6 + ~5 + x4 + x + 1. 

17. A new disk storage unit is to be added to a 
PDP-1O system. Because the performance of the 
system deteriorates considerably as a result of disk 
failures, the new disk should be as reliable as 
possible. The field was narrowed to two disks, 
DSKRA Wand DSKCRC. Both store up to 200 
million bytes (eight-bit wide), run at a rate of 3,600 
rpm with a byte transfer frequency of 1.25 MHz. 
Both cost approximately the same. The difference 
lies in redundancy techniques. DSKRA W uses a 
Read-After-Write (RAW) to detect (and correct) 
errors in transfer, while DSKCRC uses a cyclic 
redundancy code (CRC). The CRC generates a 
16-bit check word using a generator polynomial 

x l6 + x I2 + x 5 + 1 

on an information frame of any size. Carry out a 
reliability analysis on the two disks and make 
recommendations. 

18. The design goal is an SEC memory for a 16-bit 
minicomputer with memory mapping. The memo­
ry is to be a 128K-word memory, built with lK-bit 
MOS RAMs. Assume that the ambient tempera-

ture is 30° C, components are of quality class C, 

the environment is ground fixed, and single-bit 
failures are the dominant mode of memory-chip 
failures. 
a. To save on m,emory chips, a 39-bit SEC/ 

DED Hamming code is to be used (its 
parity-check matrix is given below). Design 
the correction! detection! encoding tree, hold­
ing register, correction circuit, and other 
data path elements shown in the block dia­
gram in Figure 5-16. Use 7400 series TTL 
and do not bother with pin numbers (this is 
a rough design). Assume control circuitry 
of 10 SSI chips (~ 8 gates per chip) and 5 
MSI chips (~ 15 gates each). Evaluate 
this design using the MIL-217 model and 
techniques discussed in this chapter. 

b. Design a block-coded memory with a better 
MITF. Assess the difference in cost in number 
of chips (if any). Assume 10 MSI and 15 SSI 
chips for auxiliary circuitry, and design the 
data-path elements shown in the block-code 
memory diagram in Figure 5-17. Justify your 
choice of block size. 

c. Discuss the relative performance (not reli­
ability) of the two designs, both with and 
without errors present. Can the vertical parity 
words be kept in a separate memory so that 
they can be accessed in parallel with the data 
on writes? How does this affect the perfor­
mance? Discuss the conditions under which 
you would choose each design. 

19. a. The 8080 microprocessor chip has approxi­
mately 1000 gates. Calculate the failure rates of 
this architecture assuming SSI, MSI, and LSI 
implementation (40°C ambient). 

b. What is the effect of changing 'lTq for the three 
implementations above? Changing the ambient 

Parity-check matrix for 39-bit SEC/DED Hamming code. 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

0 00000 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 0 I I I I I I 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I I I I I 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 I I I I I 0 0 0 0 0 0 0 0 I I I I 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 I I I 0 0 0 0 I I 0 0 0 0 I 0 0 0 0 I I 0 
0 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 0 0 I 0 0 I 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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temperature from 40°C to 30"C? Compare 
these effects over the three different implemen­
tations. 

c. Assume SSI chips cost 20 cents, MSI chips 50 
cents, and LSI chips $10; and that screening 
weeds out all but 0.2 percent of the weak 
components. Also assume that the average 
diagnosis and repair cost due to a bad chip is 
$5 plus the chip cost through the warranty 
period. Compare the expected repair costs for 
the SSI, MSI, and LSI implementations of the 
8080 architecture. 

ZOo a. In a memory made with 1K-bit by four-bit­
wide chips, there are 16 data bits and 2K 
words. Zero and one bit values are equally 
likely. Assume chip failure modes are single­
bit cell (50 percent), single-row all zeros 
(20 percent), single-column all zeros (20 
percent), and whole-chip all zeros (10 per­
cent). Calculate single error detection cov­
erage for this scheme when the following 
detection techniques are used: 
1. interlaced parity (i = 4) 

11. chip parity 
iii. chip-wide parity 
IV. duplication 
v. single-precision checksum (assume check­

sum is stored separately, one sum for the 
entire memory) 

VI. low-cost residue code (checksum stored 
separately). 

b. Estimate costs (chip counts) for the memories 
above, including check circuitry. Comment on 
relative performance overheads. 

21. What is the CRC constant for the CRC code used 
by AUTODIN II, with G (x) = x 32 + x 26 + x 23 

+ x l6 + xn + xlI + x lO + x 8 + x 7 + x 5 + x4 

+ x 2 + x + 1 ? Design a BCR for this code. 

22. In the multiplexer for parity-coded operands shown 
at the top of the next column [Wakeriy, 1978], 
(S) So) = (01) transfers bus A to bus T, while 
(10) transfers bus B to bus T. 

a. Demonstrate that this circuit is totally self­
checking. 

b. Design a totally self-checking multiplexer net­
work around this TSC multiplexer; that is, the 
network serves as a multiplexer with a TSC 
error-detection indicator. 

to 

t1 

23. a. A digital system block diagram is shown on the 
next page. Discuss which fault-detection tech­
niques can be used to prevent undetected errors 
in this system. 

b. Discuss the application of TMR with voting 
to this system. Consider replication at vari­
ous architectural levels. 

c. Discuss the application of error-correcting 
codes to this system in at least five different 
segments of the design. 

24. a. Using the next-state and output-function table 
below, design a single-error-correcting coded­
state machine. Compare its cost and reliability 
with a TMR implementation of the same ma­
chine. The machine is synchronous, with an 
external clock signal. 

Input 
State 01 11 10 00 

a a/I c/O h/O e/l next state/output 
b c/l a/I d/l f/O 
c b/l g/O e/l f/l 
d g/O c/O d/l e/l 
e a/I b/O c/O e/O 
f b/O b/l g/l h/O 
g h/O h/l b/O g/l 
h e/l c/l d/l a/I 
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CPU 

r-----------------M;~~ryAdili~;B~ff~;--

Memory 
r--------------, 

I Ad. decode I 

RO 
R1 

R2 

11/0 Addr 
L 

B 
~------------------l------Control 

--~::.~~- ------r----------- ------------------------ 1/0 

I Control r- Control ~ I Control I-- I Control r-
I Buffer I I Buffer I I Buffer I r Buffer I 

I I I ~ 

--- ---~---------r--+------------j--------- ---1---
11/0 Device I 110 Device 

b. Implement the next-state function in quadded 
logic. Compare the cost with a TMR imple­
mentation. Compare maximum clocking 
speeds. 

25. a. Design restoring organs for a redundant mod­
ule with two output lines and a redundancy 
factor of 5 (five identical modules) using the 
following techniques: 

i. NMR/simplex (N = 5) 
ii. hybrid TMR 

111. duplication with spares switching (assume 
an external diagnostic circuit can correctly 
determine which of the two modules is 
faulty with probability 0.95, and takes 10 
ms to do so) 

IV. self-purging redundancy 
v. sift-out redundancy 

Use standard TTL logic (designs down to pin 
number detail are not necessary). 

11/0 Devicel 11/0 Device 

b. Assume new data are produced synchronously 
every 500 ns, that gate complexities for the 
function modules are 2,000 gates each, and 
that the duplication diagnostic circuit uses 300 
gates. Compare the five designs for complexity, 
cost, performance, and reliability. 

26. Discuss the issues involved in making a multiproc­
essor system such as the Intel 432 (Chapter 18) 
gracefully degradable (cost, extra circuitry, perfor­
mance, computation overhead, detection and 
diagnostic capabilit1); assume that 
a. no modification can be made to the hardware 
b .. simple alterations can be made to the hardware 

28. Redesign the error-correcting code memory of 
Problem 18 to allow it to switch in two spare bit 
planes. Evaluate the effect on the memory system 
cost, performance, and reliability. 
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~9. Select a computer system for which processor and 
operating system documentation is available to 
you. Analyze the fault tolerance, fault detection, 
and recovery techniques and abilities of the hard­
ware/software system. Propose some low-cost im­
provements that might be made. 

~O. a. Pick a technique from each of the subsections 
in Chapter 3 dealing with error detection, fault 
masking, and dynamic redundancy. Use each 
independently in the design of the same (Iogi-

cally) micros tore. Rank the designs in terms of 
cost, performance, and reliability. 

b. Combine the techniques chosen above in 
groups of two (using each technique in only 
one pair) and apply them to the same micro­
store above. Rank the designs in terms of cost, 
performance, and reliability. 

c. Select four of the techniques above to make the 
best possible microstore design. Evaluate the 
cost, performance, and reliability of this de­
sign. 





Maintainability and Testing Techniques 

A significant proportion of maintenance involves 
some form of testing, not only to isolate the 
failed component but also to ensure that the 
repair operation was successful. This chapter 
examines maintainability from the perspective of 
testing. 

Testing can be characterized as a "black box" 
experiment. Each black box has an associated set 
of input and output terminals. The correct func­
tioning of the black box must be determined by 
applying stimuli to the input terminals and ob­
serving responses on the output terminals, called 
terminal characteristics. The terminal character­
istics may be electrical (such as a straight-line 
relationship between voltage and current for a 
resistor), combinational (such as "n AND gate), 
sequential (such as a counter), or even complex 
systems (such as a microprocessor on a chip). As 
the functions of the component become more 
complex the testing problem becomes critical, 
for there is less direct control and less direct 
observability of internal behavior. Manipulation 
of external inputs must establish a certain condi­
tion in a component deep in the recesses of the 
black box, and the outputs of that component 
must be propagated to the output terminals. 
With increasing system complexity, not only are 
there more components, but each component is 
also harder to test. 

Testing covers multiple activities, not just 
maintenance, during the life of a digital system. 
Table 4-1, reproduced from Chapter 1, depicts 
the stages in the life of a system. ·During the 
specification and design phase the faults of most 
concern are logic errors in the algorithms. Dur­
ing prototype development there can be any 
number of failures. Logical design errors, wiring 
mistakes, or incorrect timing can lead to differ­
ent functional behavior. Failed components can 
also cause altered functional behavior. The for­
mer, designated as a logical fault, can be signifi-

183 
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Table 4-1. Stages in the development of a system. 

Stage 

Specification 
and design 

Prototype 

Manufacture 

Installation 

Operational 
field 

Error Sources 

Algorithm 
design 

Formal 
specific a tion 

Algorithm 
design 

Wiring and 
assembly 

Timing 

Component 
failure 

Wiring and 
assembly 

Component 
failure 

Assembly 

Component 
failure 

Component 
failure 

Operator errors 

Environmental 
factors 

Error Detection 
Techniques 

Simulation 

Consistency 
checks 

Stimulus/ 
response testing 

System testing 

Diagnostics 

System testing 

Diagnostics 

Diagnostics 

cantly more difficult to test than the latter, 
termed a structural fault. With logical faults, the 
proper algorithm must be ultimately distin­
guished from any arbitrary algorithm. Here test­
ing involves many similarities to proving pro­
grams correct; however, given a correct design, 
there are many fewer faulty behaviors due to a 
malfunction. The component interconnections 
limit the number of realizable faulty behaviors. 

In prototype development, the final errors in 
the design and proposed implementation are 
sought by testing. Physical connectivity may 
cause timing errors and coupling between multi­
ple signal lines. Subjecting a small number of 
systems to design maturity testing (described in 

Chapter 1) establishes baseline failure manifesta­
tions and MTTF. 

During manufacturing and installation the 
main goal is acceptance testing. At this stage, 
problems of design have been resolved, and 
testing focuses on mass-produced black boxes. 
The faults are primarily structural, but there may 
be any number of them resulting from the assem­
bly process. 

When an installed system malfunctions, main­
tenance testing is used to isolate and repair 
faults. This is perhaps the easiest form of testing, 
for at this stage there are usually few structural 
faults. Frequently, maintenance tests are run 
during system idle time to detect failures and 
increase confidence in the correct functioning of 
the system. As mentioned in Chapter I, there is 
a significant trend toward remote diagnosis, ei­
ther to pinpoint failures before dispatching field 
service personnel or to issue instructions for 
customer repair. 

At any of the stages of system life, testing can 
occur at each level in the system hierarchy 
defined in Chapter I (circuit, logical, program, 
and system). Figure 4-1 classifies the types of 
testing typically performed at each stage. The 
figure has been simplified by combining the 
design/prototype and installation/operational 
stages and the logical/instruction set levels. 

It is extremely important to understand at 
what level and stage a testing technique is aimed. 
Chapter 1 briefly discussed system-level testing 
at all three stages presented in Figure 4-1. This 
chapter focuses on logic-level testing at the pro­
duction and operational stages. Maintainability 
techniques for discovering faults during field 
operation can frequently also be used to isolate 
defects during the production stage. 

PRODUCTION 

As pointed out in Chapter 1, defects should be 
located and eliminated at the earliest possible 
stage of production; the cost of a defect in­
creases by a factor of 10 with each inspection 
stage that fails to identify it [Hotchkiss, 1979; 
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System 
Design maturity 

test 
Process maturity 

test 
Synthetic load/ 

remote diagnosis 

'li 
~ Logic 
-I 

Simulation Acceptance test! 
incoming inspection 

Diagnostics/ 
built-in test 

Circuit Simulation 

Design 

Parametric 

Production 

Stage 

Margining 

Operational 

Figure 4-1. Testing as a function of system level and time. 

Craig, 1980]. Figure 4-2, reproduced here from 
Chapter 1, shows the typical steps in the manu­
facturing process. 

! 
Incoming 

component 
inspection ! 

Printed 
circuit 
board 

fabrication 

! 
Backplane Board Printed 

~ circuit assembly assembly 
board test 

Board 
Backplane inspection 

test and functional 
test 

System 
assembly 

System 
test 

+ 
Figure 4-2. Typical steps in the manufacture of a 
~igital system. (© 1979 IEEE.) 

Parametric Testing 

At the circuit level, incoming inspection may 
vary from simple electrical parametric and func­
tional tests to stress-tests that force infant mor­
talities. Stress testing can include vibration, over­
voltage, burn-in, and thermal shock (see Chapter 
2). The more extensive the testing, the more 
costly the incoming inspection. For mass-pro­
duced, low-cost systems, incoming inspection is 
often less than 100 percent because only ran­
domly selected lots are tested. 

Table 4-2 lists some typical parametric tests 
used to determine whether components meet 
vendors' electrical specifications. Figure 4-3 illus­
trates a computer-driven test station for driving 
and measuring electrical parameters [Howard 
and Nahourai, 1978]. A relay matrix is used to 
configure the sources and measuring instruments 
to the pin configuration of the unit under test. 
Parametric testing is most often done by the IC 
manufacturer or by a system house when it 
initially qualifies an IC vendor's process. 

Acceptance Testing 

The largest body of theory has been developed 
for logic-level acceptance testing. Usually single 
structural stuck-at-Iogical-O/l faults are as­
sumed. A means must be provided for generating 
stimulus and checking responses in the Unit 
Under Test (UUT). Table 4-3 categorizes the 
varied approaches to testing. In general, any 



186 THE THEORY OF RELIABLE SYSTEM DESIGN 

Table 4-2. Typical MOS parametric tests. 

Gate-oxide breakdown voltage 

Drain-to-substrate breakdown voltage 

Drain-to-source punch through voltage 

Gate-to-source threshold voltage 

Drain current at 0 gate voltage 

Drain current at specified operating voltage 

Gate-to-source leakage current 

Drain-to-substrate leakage current 

Transconductance at specified operating voltage 

Drain-source resistance 

stimulus generation approach could be used with 
any response checking approach; however, cer­
tain stimulus/response approach pairs have been 
more widely adopted than others. 

The stimulus/response can. be generated off­
chip or on-chip. If off-chip, they may be dynam­
ically generated or precomputed and stored. 
Table 4-3 provides the framework for <;liscussion 
of the various testing approaches developed. 

The simplest form of response checking is to 
compare the outputs of the UUT with those of a 

known good component (exclusive OR testing). 
The input stimuli could be generated by incre­
menting a counter to produce all possible combi­
nations (exhaustive testing). Exhaustive testing is 
practical for only the smallest circuits. Williams 
and Parker [1979] give an example of an exhaus­
tive test of an LSI circuit with n inputs and m 
latches, which requires a minimum of 2n+m tests. 
For n = 25 and m = 50 there are 275 = 3.8 
X 1022 patterns. At 1 microsecond per pattern 
the test would require over a billion years. 

Alternatively, the stimuli could be generated 
randomly (probabilistic testing). In probabilistic 
testing, a predetermined number of inputs are 
generated and properties of the output observed. 
The output properties are then compared with 
stored characteristics of the good circuit. This 
response checking is termed compact testing 
because responses are not stored or checked in 
detail; only summary statistics are checked. 
Summary statistics include counting the number 
of Is produced and/or the number of transitions. 
If the count exceeds a predetermined threshold, 
the component is declared functional. The num­
ber, arrived at statistically, is chosen to yield a 
specific confidence level [Williams and Parker, 

Voltage 
source 

Current 
source 

Voltmeter 

Ammeter 

Other sources 
and 

measuring 
instruments 

Figure 4-3. Block diagram of an automated parametric test system. 
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rable 4-3. Approaches to stimulus generation 
tnd response checking. 

Wmulus Generation 

:xhaustive 

~andom 

itored 

Simulation 

Deductive 

Parallel 

Concurrent 

Algorithmically 
generated 

Algebraic 

Boolean 
difference 

Path sensitization 

D-algorithm 

)n-chip 

Response Checking 

Exclusive OR 

Stored 

Compact testing 

Transition counting 

Signature analysis 

Predicted response 

Fault dictionary 

On-chip 

1979]. A variation of compact testing is signature 
malysis [Nadig, 1977]. In signature analysis, a 
:et of known inputs is dynamically applied to the 
JUT. The outputs are either displayed for visual 
:omparison with a known good pattern or sensed 
>y computer for comparison with a stored pat­
ern. If the patterns produced by the most likely 
'ailures are stored, signature analysis can also be 
Ised for fault diagnosis. Often output patterns 
lre summarized by feeding the sequence of out­
mts into Feedback Shift Registers (FSR), such 
lS those used in the generation and checking of 
:erial codes (see Chapter 3). The FSR output is a 
'unction of all the response bits, no matter how 
ong the test sequence may be. Although theoret­
cally appealing, compact testing in practice 
Isually provides low fault coverage. In any 
~vent, the fault coverage is extremely hard to 

estimate. Consequently, effort has focused on the 
systematic generation of input stimuli. 

Systematic test-set generation starts with a list 
of all faults of concern. The fault set usually 
consists of all single stuck-at-Iogical 0/1 faults. A 
test for each fault is generated in turn. Once a 
fault list and set of tests have been generated, it 
is possible to select a minimal set of tests to 
detect all faults or to determine which fault is 
present [Kautz, 1968]. 

Tests can be generated by simulation, alge­
braic methods, and path sensitization. In simula­
tion, faults are inserted into the simulation of the 
circuit. Both the faulty and the good circuit are 
simulated until their outputs differ [Seshu and 
Freeman, 1962]. This is primarily a trial-and­
error approach. Faulty behavior may be deduced 
from a logic simulator by comparing the simulat­
ed output of each component with the faulted 
output. Alternatively, the nonfaulty and several 
faulty circuits could be simulated and compared 
in parallel. In concurrent simulation, circuit 
components are copied and simulated every time 
the faulty output differs from the good circuit 
[Grason and Nagle, 1980]. 

For each test, the predicted output is stored 
for use in response checking. If the responses of 
faulty and good circuits are tabulated into a fault 
dictionary, field service personnel can use the 
dictionary to diagnose to the field replaceable 
unit. Chang, Smith, and Walford [1974] describe 
the LAMP system used to create fault dictionar­
ies for the computers used in the Bell System. 

An alternative to simulation is algorithm'ic 
generation of the stimulus. One algorithmic ap­
proach is based upon an algebra of differences. 
Sellers, Hsiao, and Bearnson [1968a] and Suss­
kind [1972] describe an algebraic approach 
called the Boolean Difference. Figure 4-4 illus­
trates a circuit and a minimal test set for all 
single stuck-at faults (see Appendix C). Each line 
has a separate identification number and can be 
stuck-at either logical 0 or 1. The abstract model 
makes no assumption about electrical connectiv­
ity; thus, a stuck-at fault on line 5 does not imply 
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A __ ~~1~~ ____ ~ __ _ 

B .--~~ 

f = ABC + Be 

C 

Test set A B C f 

1 0 0 0 
0 0 1 0 
1 0 1 1 
0 1 0 1 
1 1 1 0 

Figure 4-4. A circuit for test generation. 

Table 4-4. The D-algorithm definition of elementary gate functions in terms of 
the symbol D. 

AND 

Input J Input 2 Output Input J 

1 1 1 1 
1 0 0 1 
0 1 0 0 
0 0 0 0 
1 D D 1 
D 1 D D 
1 15 15 1 

15 1 15 15 
0 D 0 0 
D 0 0 D 
0 l5 0 0 
l5 0 0 l5 
D D D D 
l5 l5 l5 l5 
l5 D 0 l5 
D l5 0 D 

Inverter 

Input Output 

1 0 
0 1 
D l5 
l5 D 

OR 

Input 2 

1 
0 
1 
0 
D 
1 

15 
1 
D 
0 
15 
0 
D 
l5 
D 
l5 

Output 

1 
1 
1 
0 
1 
1 
1 
1 
D 
D 
l5 
l5 
D 
l5 
1 
1 
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anything about line 3. In practice, certain faults, 
such as an open metalization, will comply with 
this abstraction while others, such as a short-to­
ground, may cause several lines to be in error. 

A test for a fault is one in which the faulty 
circuit's output differs from that of the good 
circuit. Consider line 5 stuck-at-l in Figure 4-4. 
The first test, 100, should produce an output of 
O. With line 5 stuck-at-I, the output is 1. Hence, 
100 is a test for line 5 stuck-at-I (as well as for 
other faults). 

The Boolean Difference for a line, i, is defined 
as the exclusive-OR of the function with line i 
taking on the values of both I and 0: 

dF L 

d- = F(XI,X2,··· ,Xi-I' I,Xi+I,··· ,Xn ) 
Xi 

The Boolean Difference generates all tests 
such that a change in the value of Xi results in a 
change in the value of F. For the example in 
Figure 4-4, 

dF 

d- = (Xl X4 + X6 X7) EB X6 X 7 
Xs 

Setting dF/dxs = I yields all the tests for line 5. 

= (Xl X4 + X6 X7) EB X6 X 7 

= (Xl + X4)(X6 + X7 )X6 X 7 

+ (Xl X4 + X6 X 7 )(X6 + X7) 

= Xl X4 X6 + Xl x4 x7 

For Xl X4 X6 = 110, F = xs, and for Xl X4X7 = 
110, F = xs. The corresponding input tests are: 

ABC = 100 for Xs stuck-at-I and 

ABC = 101 for Xs stuck-at-O. 

Path sensitization techniques are essentially an 
intelligent form of simulation. In path sensitiza­
tion, all components along a path from the fault 
to an output are placed in a state such that the 
output changes value only as a function of the 

value of the faulty component. To complete the 
test, the conditions to sensitize the path are 
driven back, by means of consistency checks, to 
corresponding conditions on the network inputs. 
In all these methods, once a test has been 
generated, a post process determines which other 
faults in the fault list have also been detected 
and eliminates them from the list. In Figure 4-4, 
in order to propagate Xs to the output, lines 1 
and 4 have to be I and line 9 has to be o. Driving 
these values back toward the circuit inputs im­
plies that A = 1, B = O. 

The path sensitization approach has been for­
malized in the D-algorithm [Roth, 1966; Roth, 
Bouricius, and Schneider, 1967]. A symbol, D, is 
defined to be equal to 1 in the good circuit and 
to 0 in a bad circuit (15 is 0 in the good circuit 
and 1 in a bad circuit). Each elementary gate has 
its function redefined in terms of the symbol D, 
as shown in Table 4-4. First D is placed on the 
line for which a test is to be generated, and then 
propagated to circuit outputs one step at a time. 
An implication step sets values on other circuit 
lines required to realize the state specified by the 
propagation step. The propagation/implication 
cycle is repeated until either D or 15 is propa­
gated to the circuit outputs. If at least one test 
exists, the D-algorithm is guaranteed to find one. 

Starting with D on line 5 (line 5 stuck -at-I) of 
Figure 4-4, the three propagation steps from line 
5 to line 8 to line 10 could be tabulated as shown 
in Figure 4-5. The D is propagated through each 
elementary gate in turn without regard to the 
state of other gates. The implication steps assign 
values to other circllit lines. For example, in 
order for line 8 to take a value D, lines I and 4 
must be 1. Line 4 being I implies line 2 being o. 
Contradictions (such as a line taking on both a 0 
and a I value) signal the nonexistence of a test. 

In any algorithmic test-generation technique, 
once a test for a fault has been found, the list of 
faults the test has detected is compared with the 
original fault list. Tested faults are thus removed 
and the fault list shortened. Significant work has 
been done to reduce the length of the original 
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Line 

Step 2 3 4 5 6 7 8 9 10 

Initial test on Line 5 x x x x D x x x x x 

Implication on other 
gate inputs x x D x D x x x x x 

Propagate to Line 8 x x D x D x x D x x 

Implication on other 
gate inputs 0 D D x x D x x 

Propagate to Line 10 0 D D x x D x D 
Implication on other 
gate inputs 0 D D 0 0 D 0 D 

a. Forward propagation and implication 

A B ~I~ 
ODD 

b. Test 

Figure 4-5. The D-algorithm applied to Line 5 stuck-at-1 in Figure 4-4. 

fault list by grouping faults into equivalence 
classes (that is, members of the class are indistin­
guishable) [McCluskey and Clegg, 1971]. 

Figure 4-6 shows the relationships among six 
faults for a two-input AND gate and their re­
spective test sets. The test set for lines I, 2, and 
3 stuck-at-O is the same. Hence, these are equiv­
alent faults and it is sufficient to generate a test 
for only one of them. Another relationship be­
tween faults is that of dominance. Because the 
test set for line 3 stuck-at-I includes the tests for 
lines I and 2 stuck-at-I, line 3 stuck-at-I domi­
nates those two faults. The dominating fault is 
automatically tested for if all the dominated 
faults are tested. Thus, instead of six faults on 
the original fault list for this two-input AND 
gate, only three are required: line 3 s-a-O, line I 
s-a-I, and line 2 s-a-l. In general, for elementary 
gates of N inputs, only N + I faults need to be 
on the original fault list instead of the 2(N + I) 
single faults, provided the single-fault assump­
tion is being used. The reduction of fault lists for 
multiple faults has also been addressed [Bossen 
and Hong, 1971]. Circuits exist, however, for 
which a test set for all single structural faults will 
not detect certain multiple faults. Fault models 
other than s-a-O, s-a-I have also been used. The 

bridging fault, frequently caused by a solder 
bridge, is a common fault type in digital system 
fabrication [Mei, 1974]. 

Special fault models developed for memories 
look for sensitivity to multiple-bit patterns. Ta­
ble 4-5 lists some of these tests and their com­
plexity as a function of the number of bits. 

Test-set generation algorithms based on gate 
level and the stuck-at fault m()del are not appli­
cable to VLSI complexity. Williams and Parker 
[1979] have observed that the computer run time 
to perform test generation and fault simulation is 
related to the number of logic gates by a cubic 
law: 

Hence, there have been efforts to test systems at 
higher levels of functionality [Breuer and Fried­
man, 1980; Thatte and Abraham, 1978]. The 
purpose of functional testing is to validate the 
correct functional operation of a digital system 
with respect to its functional specification. Ideal­
ly the tests developed are based solely on the 
specification and are capable of validating any 
implementation that is alleged to perform the 
specified function. Functional testing not only 
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Figure 4-6. Equivalence and dominance relations 
among faults. 

reduces test-generation complexity, but also, be­
ing free of implementation details, allows one 
test set to serve for implementations produced by 
multiple vendors. Indeed, manufacturers of LSI 
chips will not release the implementation details 
of their chips lest they be copied. Thus, the user 
of LSI chips who by necessity deals with multiple 
sources has no recourse but functional testing. 

The literature abounds with surveys on test-set 
generation: Breuer and Friedman [1976], Chang, 
Manning, and Metze [1970], Friedman and Me­
non [1971], Hennie [1968], and Bennetts and 
Lewin [1971] are examples. More recent research 
has focused on generating tests and checking 
responses directly on the semiconductor chip, so 
that chips could test themselves without reliance 
on external support. Such self-testing chips could 
alleviate both production and operational test­
ing. One approach [Bozorgui-Nesbat and 
McCluskey, 1980] partitions the logic into small 

fable 4-5. Tests for pattern sensitivities in 
memory chips. (The test complexity is given in 
terms of the number of memory bits.) 

Test Complexity 

Checkerboard pattern of Is and N 
Os 

Walking pa ttem N 3/2 

Galloping Is and Os (dynamic N 2 

test) 

Ping pong N 2 

groups for exhaustive testing. A counter on the 
group inputs generates all possible input combi­
nations. An FSR on the group's output is com­
pared with a hard-wired constant to provide the 
matching function. 

Design for Testability 

The discussion so far has focused on the problem 
of "Given a circuit~ derive a test set for it." It has 
long been recognized that it is easier to derive 
test sets for some circuits than for others. At­
tempting to define easy-to-test properties has led 
to a new discipline called design for testability. 
Table 4-6 lists four stages of testability design. 
Each stage has an increasing effect upon the 
original design until ultimately a totally new 
design is created. Bennetts and Scott [1976] (see 
Appendix C) and Grason and Nagle [1980] dis­
cuss in detail techniques for each of these stages. 
Only a cursory review will be provided here. 

The first stage in testability is developing test 
sets for an existing design. T~e faults assumed 
are usually of the single stuck-at structural vari­
ety. The Boolean Difference and D-algorithm are 
among the approaches used for combinational 
circuits. Sequential circuits are more difficult to 
test because of feedback. Approaches for combi­
national circuits have been extended to sequen­
tial circuits by replicating logic and treating the 
sequential circuit as a cascade of combinational 
circuits. Figure 4-7a depicts a typical sequential 
circuit. In Figure 4-7b the combinational logic 
has been replicated three times, representing 
three transitions in the state of the original 
circuit. The inputs in Figure 4-7b actually corre­
spond to a sequence of three inputs to the 
original sequential circuit. Note that a single 
fault in the original circuit (such as a stuck-at-l 
on a next-state line) would correspond to a 
multiple fault (a stuck-at-l on all three copies of 
the next-state line) in the expanded circuit. Fur­
thermore, there is no guarantee that the combi­
national logic test generation algorithms can find 
a test in three state transitions. The whole proc-
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Table 4-6. Stages in design for testability. 

Stage Combinational Sequential 

Test set for unmodified 
circuit 

Structural faults Extension of combinational 
approaches for structural 
faults 

Functional faults 

Minimum modification to 
existing circuit 

Add a small number of 
test points 

Add synchronizing sequence 

Add distinguishing sequence 

Break selected feedback 

Extensive modification to 
existing circuit 

Improve controllability Make combinational LSSD 

New design 

Improve observability 

Reed-Muller expansion 

Totally self-checking 
circuits 

Fail-safe design 

ess may have to be repeated for multiple-state 
transitions until a test, if any, can be found. The 
increased number of faults to be considered and 
the additional complexity of the replicated logic 
make sequential circuit testing much more com­
plicated than combinational circuit testing. 

Another approach to sequential testing is 
based on a fault model that is different from the 
structural model. The sequential circuit is repre­
sented as a functional state-table, regardless of 
its implementation. Faults are simply changes in 
the next state or the output for an entry in the 
state table. Single structural faults may exist that 
are not representable by a single functional fault, 
and vice versa. The testing approach is to derive 
a sequence that ensures that each state, and each 
transition between states, exist. By assuming that 
faults cannot introduce new states, a test se­
quence (on the order of N 3 symbols, where N is 
the number of states) is generated such that no 
sequential machine of fewer states could respond 
correctly [Hennie, 1964]. 

The next stage in testability adds a· small 
amount of logic to the existing circuit. For 
combinational logic this usually takes the form 
of insertion of a test point or control point. Test 

points are added at critical pOSItIons (such as 
flip-flop outputs, sources of large fan-out, buses, 
deeply buried components) to increase observa­
bility. Control points (flip-flop inputs, large fan­
in points, buses, deeply buried information 
paths) are added to increase control. 

For sequential circuits, extra pins or logic may 
be added to produce synchronizing (set circuit to 
a known state) or distinguishing sequences. In 
addition, feedback lines may be broken by the 
insertion of independently controlled blocking 
gates. 

The third stage starts with the original circuit 
but adds extensive modifications; any amount is 
possible, but 5 to 20 percent is typical. If suffi­
cient logic is added, only three tests would be 
required for combinational logic circuits [Ben­
netts and Scott, 1976]. Often, however, it is not 
possible to make the extensive modifications, 
and a more practical approach is required. Table 
4-7, from Grason and Nagle [1980], summarizes 
the types of added logic that can assist testing of 
printed circuit boards. 

Test points can utilize pins at the edge of 
boards, sockets accessible to plug-in of automat­
ic test equipment, internal posts accessible by 
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Figure 4-7. A sequential circuit replicated three times as a combinational 
circuit. 

clips, tristate drivers to break or connect a line, 
and signal clips placed over an integrated circuit. 
Pull-up resistors can be used to isolate power 
supplies, providing constant logical values that 
allow the line to be forced to the opposite logical 
value. 

Table 4-7. Design for testability-added hardware 
types, 

Test points 
Edge connectors 
Dual In-line Package (DIP) sockets 
Terminal posts 
Tristate drivers 
IC clips 

Pull-up resistors 
Pin amplification 

Input demultiplexers 
Output multiplexers 
Parity trees 

Blocking gates 
Control and observation switching 
Disconnection structures 

Edge connectors 
DIP sockets 
Tristate drivers 
Blocking gates 

Test-state register 
Power-up reset 
Scan-in/scan-out shift registers 

A major problem is to provide enough pins for 
observing/controlling the circuit. A small num­
ber of output pins can be driven by a multiplexer 
so that a large number of internal points can be 
sequentially observed. Likewise, a demultiplexer 
on a set of inputs can be used to drive a large set 
of controllability points. Parity trees can be used 
to surpmarize the state of a large number of 
points (like the on-board data reduction used in 
signature analysis). Blocking gates can be used to 
break feedback in sequential circuits or to parti­
tion a combinational circuit. Lines that are diffi­
cult to control/observe can be multiplexed with 
an easily controlled/observed line. In test mode, 
the easily controlled/observed line is tied directly 
to the difficult line. 

Often circuits are easier to test if they are 
partitioned into smaller ones. Techniques similar 
to test-point addition can be used to partition 
(disconnect) the circuit. Circuit test-mode con­
trol information (such as the control of blocking 
gates, tristate drivers, multiplexers) may be more 
extensive than the number of test points that can 
be added. Test-mode information is relatively 
static and can often be derived from an on-board 
test-state register. Finally, a power-up signal can 
often be used to set a predetermined state into 
the sequential logic. 
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As mentioned before, many sequential testing 
strategies are based upon transforming the se­
quential circuit into a combinational circuit. One 
such technique uses scan-in/scan-out shift regis­
ters and is termed Level Sensitive Scan Design 
(LSSD) by IBM. Figure 4-8 illustrates the use of 
LSSD in the IBM 4341 [Frechette and Tanner, 
1979]. Every latch is replaced by a latch pair. 
During normal operation the second latch is 
invisible. During test mode, the latch pairs are 
tied together into a shift register controlled by a 
separate clock (in this case provided by a support 
processor). The latch pairs partition the logic 
into sections composed only of combinational 
logic. In test-mode operation the test mode is set, 
test input data are shifted in, the normal mode is 
set, one system clock pulse is applied, the test 
mode is set again, and the result of the test is 
shifted out for analysis. LSSD makes the system 

CPU clock 

Support processor 
clocks -A 

-8 

Scanned data in--------..... rt 

Input; 

Input; + 1 -+-------_~ 

A 

Input; + 2 

state almost completely observable and control­
lable. Test set generation is the same as for 
combinational logic, for which there already 
exist many practical results. Few extra pins are 
required and IBM reports the extra logic cost to 
be 5 to 20 percent. A major disadvantage is that 
stimulus application and response checking is 
slow. A variation of LSSD is the Visibility Bus; 
which provides observability only in the 
VAX-l 1/780 and VAX-ll/750 (see Chapter 8). 

Table 4-8 contains suggestions on where to 
add hardware while Table 4-9 gives some design 
guidelines for testability. Both tables are adapted 
from Grason and Nagle [1980]. 

The final stage in design for testability is to 
develop new designs with unique properties. 
These designs should have a small test-set size 
that is easy to generate. Bennetts and Scott 
[1976] (see Appendix C) describe the Reed-

1---- Output J 

Output J + 1 

Scanned data 
out 

Figure 4-8. An example of LSSD. 
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Table 4-8. Design for testability-added hardware location suggestions. 

I. Make sequential circuit components such as coun­
ters, shift registers, and control flip-flops initializ­
able. Some ways of providing initializability are to 
wire control signals or testpoints to component 
clear or preset inputs, or to provide direct-load 
capabilities. Do not tie both the set and preset 
inputs of flip-flops to a common permanent logic 
signal. 

2. Make counter chains controllable and observable 
in a reasonably short test sequence. For example, 
break long counter chains during test mode by 
inserting testpoints in the carry-propagate/count­
control lines. This is especially important in the 
case of clock countdown circuits that are used to 
provide control inputs for the rest of the circuit. In 
the latter case it may even be wise to provide 
testpoints to bypass the counters entirely during 
portions of the test. 

3. On-board clock oscillators should be made discon­
nectable during test. This can be done by discon­
necting their output with a testpoint or by socket­
ing them for removal during test. 

4. If one-shots are used, control and observe their 
outputs with testpoints. . 

5. Try to break global feedback loops during test 

Muller expansion for realizing combinational 
circuits. This test-set size and contents are de­
rived by inspection. 

Some of the techniques described in Chapter 3 
can be used for on-line testing. In particular, 
Carter, Wadia, and Jessep [1972] introduce an 
algebra for totally self-checking circuits and an 
algorithm for producing them from the regular 
Boolean description. The physical realization of 
these circuits is usually twice as complex as 
nonself-checking circuits (roughly comparable to 
dual-rail logic or duplication). However, there 
are important classes of these checkers that are 
only about as complex as the nonredundant 
Boolean realization. Anderson and Metze [1973] 
explore such a class of check circuits for data 
encoded in m-of-n codes (see Chapter 3). 

For sequential machines, it is possible to en-

mode. Blocking gates can be used for this, rather 
than more costly testpoints. 

6. Use added hardware to partition the circuit into 
functionally independent subcircuits for testing. 
This is especially important for separating digital 
and analog subcircuits. One method is to place 
testpoints between subcircuits. 

7. Break reconvergent fan-out paths when they inter­
fere with testability. 

8. Place testpoints at locations of high fan-out or 
high fan-in. 

9. Route logic drives of lamps and displays to test­
points so that the tester can check for correct 
operation. Make keyboard and switch outputs 
accessible to the test machine by breaking with 
testpoints. 

10. In circuits containing microprocessors and other 
LSI devices, use testpoints to enhance controlla­
bility and observability of address buses and data 
buses, important control signals such as the reset 
and hold inputs to the microprocessor, and bus 
tristate control. In particular, the address and data 
terminals of RAMs and ROMs should be easily 
accessible. 

Table 4-9. Design for testability suggestions not 
requiring added hardware. 

1. Avoid the use of asynchronous sequential circuits. 
Edge-triggered D-type flip-flops are preferable t<? 
other types of flip-flops. These are synchronous, 
and behave merely as clocked data delays during 
testing. 

2. Avoid one-shots when possible. 

3. Avoid unnecessary wired-OR or wired-AND con­
nections. When these must be used, try to employ 
gates from the same Ie package to enhance fault 
locations. 

4. Use elements in the same Ie package when de­
signing a series of inverters. 

5. Try to assign gates in a feedback loop to the same 
Ie package. 
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code states such that the machine does not make 
a mistake. There are two general approaches. 
The first constructs the sequential machine such 
that any error drives the machine into an error 
state from which it cannot escape. Thus, the 
machine remains in essentially a do-nothing 
state and no further outputs are issued. The 
second approach is the so-called fail-safe [Toh­
rna, Ohyama, and Sake, 1971] sequential ma­
chine. One of the two possible outputs is desig­
nated as fail-safe, and the occurrence of that 
output is used in such a way that no damage is 
done if that output is wrong. The other output 
value can always be assumed correct, even in the 
presence of a fault. Consider the example of a 
traffic light, mentioned in Chapter 3 in the 
section on fail-safe logic design. Whenever green 
appears it is correct, even if there are internal 
failures. When red appears it is either correct or 
the result of an internal failure. 

Several theoretical models have been devel­
oped for the application of tests to isolate a 
faulty subsystem. The goal of these models is to 
isolate the faulty component as quickly as possi­
ble [Brule, Johnson, and Kletsky, 1960; Chang, 
1965, 1968]. If subsystems are given the capabil­
ity of diagnosing each other, then it becomes 
possible to construct a system that could diag­
nose (and perhaps reconfigure) itself automati­
cally; but the application of test sets requires the 
setting of inputs and observation of outputs. In 
systems with parallel data paths, the "hooks" 
necessary to set and observe results are many 
bits wide and costly to implement; the number 
of these hooks should be kept to a minimum. 

Preparata, Metze, and Chien [1967] treat the 
case of subsystem interconnection for diagnosis 
when each subsystem is completely capable of 
testing another subsystem. Kime [1970], combin­
ing the work of Kautz [1968] and Preparata, 
Metze, Chien, extends the possible outcomes of 
a test (passed, failed) to include the incomplete 
test-a test whose output is indeterminate under. 
the influence of a fault (that is, it is unknown 
whether the test will pass or fail when the fault is 
present). This corresponds to a don't-know con-

dition. Procedures for determining the diagnostic 
resolution of a set of tests are developed. Subse­
quent work by Kime and others treats the cases 
in which subsystems are not identical. 

FIELD OPERATION 

The final phase of system life is in the field. Field 
service must respond to both real and customer­
perceived failures. Due to the complex nature of 
systems, it is not unusual for the false-alarm rate 
to be two to four times higher than the actual 
fault rate. Therefore, one goal of design for 
maintainability is to decrease the rate of false 
alarm. 

Another problem is illustrated by the typical 
Time-To-Repair (TTR) distribution in Figure 
4-9. It is not unusual for 5 percent of calls to 
consume 35 percent of the time spent in repair. 
Tllis Time-To-Repair "tail" is very costly. Hard 
failures are easy to diagnose and repair; more 
subtle errors are often due to interactions be­
tween systems components and are also a func­
tion of system load. Diagnostics are unable to 
reproduce the events leading up to the error. 

When the Time-To-Repair a system has gone 
beyond a threshold (typically, 4 hours), a second 
person, usually a more experienced trouble­
shooter, can be dispatched to assist in the repair 
process. Subsequently, a third and even a fourth 
person might be dispatched in an attempt to 
limit customer downtime. A more realistic view 
. of the cost of repair is the number of labor hours 
involved in repair; for example, two people for I 
hour yields 2 labor hours. Figure 4-10 depicts a 
typical labor-hour-to-repair (LH) distribution 
corresponding to the TTR distribution in Figure 
4-9. The tail on the LH due to problem systems 
is even more pronounced than the TTR tail. 
Hence, the second goal of design for maintaina­
bility is to decrease the tails on the TTR (affect­
ing customer downtime) and LH (affecting cost 
of maintenance) distributions. 

The maintenance philosophy is a function of 
the total set of design decisions, including design 
choices for fault tolerance and design for testa-
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bility. The great variety of possible combinations 
of design choices makes it very difficult to pro­
vide a comprehensive set of guidelines for design 
for maintainability. Table 4-10 is an incomplete, 
unordered list that may be used to stimulate the 
generation of ideas. 

Once a suspect subsystem has been identified 
(through error detection logic, periodic diagnos­
tics, error reports, and the like), the first consid­
eration is to determine whether a fault is actually 
present. Verification should start with the small­
est set of logic that can perform useful functions. 
In a processor, the minimum functionality might 
be execution of move constant, compare, and 
branch instructions. Functions are verified incre­
mentally. 

Each subsystem should be testable as a stand­
alone environment. For example, communica­
tions devices should have a test mode that wraps 
the sending port around to a receiving port. The 
sending and receiving logic can be tested without 
the aid of other subsystems. 

Table 4-10. Suggestions on design for 
maintainability. 

I. Start small. Verify subsystem operation step by 
step, from the minimal logic configuration through 
the addition of each incremental function. 

2. Provide isolated environments so that each sub­
system is completely exercised without requiring 
other subsystems. 

3. Provide subsystem self tests, including tests of 
error-detection circuitry. 

4. Provide internal observability and controllability 
in subsystems. 

5. Provide error reporting and logging. 

6. Minimize the need for external test equipment 
such as logic state analyzers and probes. 

7. Provide a cabinet structure that facilitates repair. 

8. Base repair strategies on component replacement, 
not on component swap. 

9. Provide a support processor and remote access for 
diagnosis. 

Because of the availability of low-cost LSI 
technology, most subsystems have at least one 
microprocessor. The addition of a microproces­
sor simplifies the design of self-tests for the 
subsystem. These tests should include the micro­
processor (checksumming its memory) as well as 
error detection/reporting circuitry that is nor­
mally not exercised. 

Suggestions 4 and 5 in Table 4-10 attempt to 
provide information that will eliminate lengthy 
repairs. The fourth suggestion· is to increase 
observability and controllability of internal sig­
nals (as with the LSSD and Visibility Bus dis­
cussed under design for testability) and the fifth 
suggestion is to provide error logging and report­
ing. Often a diagnostic program cannot recreate 
an error event because it does not stress the 
system in the same way that the operational 
program does. Indeed, often the operational pro­
gram is the best diagnostic. Error logging cap­
tures information about the state of the system at 
the time of the error, thus providing clues to the 
source of the error. Error logging makes it possi­
ble to perform automatic trend analysis. A pro­
gram can periodically scan. the error log looking 
for patterns (such as multiple-read retries to one 
head of a disk). Trend analysis can be used in all 
systems, whether they contain little or extensive 
error-detection logic. 

Suggestions 6 through 8 are aimed at the 
repair process itself. The use of external test 
equipment should be minimized or eliminated. 
Such test equipment is difficult to transport, 
time-consuming to hook up, and may perturb the 
system to the point of masking the fault. Even 
options such as a diagnostics control store 
should be avoided, because its installation 
changes the system configuration (perhaps even 
necessitating removal of a board to make room). 
A very important factor in maintenance is the 
selection of a Field-Replaceable Unit (FRU). 
Typically FRUs are printed circuit boards or 
LSI chips. The physical layout of the system 
should provide for easy access and replacement 
of the FRUs. If the maintenance strategy calls 
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for verification with the cabinet open or the 
FRU on an extender board, the subsystem 
should operate correctly under these conditions 
(power should still be applied and timing mar­
gins still met). If on-line repair is mandated, care 
should be taken to minimize human error, such 
as the switching off of the wrong power supply. 
Telettra builds telephone switching equipment 
that supports on-line repair [Morganti, 1978]. 
The power pins on each card are slightly longer 
than the signal pins. Furthermore, there is 
enough mechanical resistance in card insertion 
to allow enough time for capacitors to charge up 
and electrical equilibrium to be reached prior to 
logic-signal contact with the rest of the system. 
On removal, the logic signals are disconnected 
prior to power disruption. The cards are keyed to 
prevent incorrect orientation or insertion into the 
incorrect slot; thus, there are never any ill­
formed logic signals in the system due to the 
insertion/removal of a card. In addition, the 
processor is logically notified when a card is not 
present. 

Above all, the repair strategy should be one of 
replacement rather than swap. In replacement 
the faulty FRU is uniquely identified. FRU 
swapping, sometimes called the "shotgun" ap­
proach, removes and substitutes several compo­
nents at a time. Mostly on the basis of guess­
work, components are substituted, sometimes en 
masse, until the system again functions properly. 
Swapping increases TTR/LH averages and 
spare-inventory costs. More spare FRUs are 
required because all removed FRUs are suspect. 
The workload on repair facilities is also in­
creased. The swapping strategy was popular in 
the early days of computing, but it is no longer 
economically justifiable with today's more com­
plex systems. 

The final suggestion in the list is to provide a 
support processor to serve as a hub for mainte­
nance activities. When provided with remote 
access, the support processor can help eliminate 
tails on the TTR and LH distributions and 
decrease both. Given an average transit time of 

one hour from a field service office to a customer 
site and a TTR of two hours, an average field 
service engineer can make two repairs per day. 
Even if the TTR were halved there would still be 
only two repairs per day because of the con­
straint of an eight-hour work day. Thus, savings 
can be realized by reducing transit time and 
eliminating false alarms through use of remote 
diagnosis (RD). As described in Chapter I, con­
sider a PDP-l 1/70 system with an RD option. 
When a customer perceives a failure, the data 
disk is dismounted, a diagnostic disk is mounted, 
the RD option is switched to remote and the 
customer telephones the PDP-ll/70 diagnostic 
center, which dials up the target PDP-l 1/70. The 
RD option gives the engineer visibility to the 
implementation registers, micro sequencer, back­
plane bus, and other internal components. The 
engineer can then run and interpret diagnostics 
as if on-site. The RD option greatly reduces false 
alarms. The experience of the RD center person­
nel tends to ensure that the field engineer is 
dispatched with the appropriate repair kit and 
expertise. Multiple trips for additional spare 
parts or additional expertise are greatly reduced. 
The RD center can also run extensive diagnos­
tics under control of an RD computer when the 
customer is not using his computer. For remote 
diagnosis to be most effective, the system should 
be designed with RD in mind. 

The IBM 4341 also uses a support processor to 
perform on-line analysis of errors [Frechette and 
Tanner, 1979]. The maintenance and support 
processor logs environmental factors such as 
power-line transients, electrostatic discharge, 
and internal machine temperatures. The 4341 
processor is implemented using the Level Sensi­
tive Scan Design (LSSD) technique. There are 
approximately 5,000 latch pairs in the CPU, 300 
of which are used solely to aid fault diagnosis. In 
the diagnostic mode, the data latch is transferred 
to the scan latch, capturing the state of the 
machine for the support processor. The latch 
pairs are linked together to form shift registers 
called scan rings. The support processor subse-
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quently can serially shift out the scan latch data. 
Thus, when the· checking circuitry detects an 
error dynamically (such as with parity or dupli­
cation), the state of the machine is captured. 
There is no need to recreate the failure. 

When error notification occurs, the support 
processor reads the scan latches, determines the 
error type, attempts recovery via retry for tran­
sient errors, records failure information in an 
error log on a diskette, and, in the case of hard 
faults, invokes error-log analysis microcode, 
whose 17,000 bytes analyze the error logs to 
identify the faulty FRU. 
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PROBLEMS 

1. Assume incoming components have a defective 
rate of 0.01. 
a. Without incoming screening, what is the prob­

ability that a 500-chip system will be defective 
after assembly? 

b. What fraction of the defective components 
would have to be removed by incoming screen­
ing if the probability that the 500-chip system 
will not be defective is 0.8? 

c. If the cost of screening incoming chips is one­
tenth the cost of loading a defective chip in 
the assembled system, at what defect rate 
(assuming screening is 100 percent effective) 
is incoming screening more cost effective than 
no screening? 

2. Use the Boolean Difference to find all the tests in 
the circuit below for: 

Line 2 stuck-at-O 
Line 6 stuck-at-O 

A _---I 

2 

B -~---,--~~ 
C --t.----t .1----. 

3. Use the D-algorithm to find a test for: 
A stuck-at-l 
Line 7 stuck-at-l 

f 

in the circuit of Question 2. What other faults do 
these tests also detect? 

4. Find a minimal test set for the circuit in Question 
2. (Hint: This is a minimal cover problem; see 
Kautz [1968] for further information if required.) 

5. Create the Reed-Muller implementation for the 
circuit in Question 2. 

6. Create a controllable version of the circuit (Ap­
pendix C) and list the five required tests (including 
control points) for the circuit in Question 2. 

7. For the circuit pictured below, generate a test for: 
a. Line 8 stuck-at-O 
b. Line 1 stuck-at-O 
Explain your approach in each case. 

A __ ~_O~ ______ ---1 

4 

2 9 
10 

7 
11 

C ___ ~6~--1 ~ ____ ~ 



Evaluation Criteria 

Stephen McConnel Daniel P. Siewiorek 

20m paring redundancy techniques and making 
mbsequent design trade-offs require a method of 
!valuation. Evaluation criteria are often loosely 
~eferred to as reliability. Reliability, however, 
~an mean many things. The difficulty arises in 
:he measurement and interpretation of reli­
ibility. To a businessman, a computer is reliable 
.vhen paychecks are printed on time and contain 
10 errors. To a scientist, the computer is reliable 
.f it has enough computing power available to 
)rocess experimental numerical data. A space 
;cientist considers a spacecraft's on-board com­
)uter reliable when the mission (perhaps years in 
ength) is successfully completed. Finally, an 
iirline on-board control computer is considered 
~eliable if it makes no decisions with fatal conse­
~uences. The major difference among these users 
s the application-dependent interpretation of 
.vhat a reliable system does. The great variety of 
ipplications has engendered a large number of 
~eliability measures, both quantitative and qual i­
:ative. Often several measures are required to 
lescribe a system adequately. 

This chapter introduces several criteria for 
!valuating the dependability of computing struc­
:ures. The chapter also develops techniques for 
nodeling such structures in order to obtain 
·easonable predictions for those criteria. These 
nodels typically divide a computer into various 
mbstructures that are easier to study than the 
.vhole system. There are certain levels at which it 
s customary to model systems. 

The highest level of modeling is the system 
evel, at which the entire system is considered as 
i black box. After statistics are gathered about 
!vents such as failures of a certain kind, a model 
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can be suggested to fit the data as closely as 
possible. Modeling at this level requires an enor­
mous amount of data. 

At the next level, the module leveL the system 
is subdivided into several modules that have 
mutually independent failures. The system mod­
el is obtained by a composite of the models for 
the modules. 

The next lowest level is the gate level. I t is 
seldom necessary to model a system below the 
gate level. However, if the redundancy is intro­
duced at a lower level, the component level of 
modeling is required, where components are 
such items as transistors, diodes, and resistors. 
The failure rate and reliability functions of indi­
vidual components were discussed in Chapter 2. 

Modeling is most often performed at the mod­
ule level. Redundant systems are then modeled in 
terms of their nonredundant subsystems. 

SURVEY OF EVALUATION 
CRITERIA 

Hardware Evaluation 

Deterministic Model 

Table 5-1 lists several evaluation criteria for 
system reliability. The simplest is the determinis­
tic model. In this model, the minimum number 
of component failures that can be tolerated 
without system failure is taken as the figure of 
merit for the system. Deterministic modeling can 
result in wasted resources and unbalanced sys­
tem design because highly reliable components 
must be replicated as many times as the low­
reliability components. The only common use of 
the deterministic model in practice is to specify 
that no single component failure should cause 
the system to fail. 

Probabilistic Models 

Probabilistic Functions. Thus probabilistic 
modeling, based on relative component failure 

Table 5-1. Evaluation criteria for system 
rei iabi lity. 

Deterministic 
Survive at least k component failures 

Probabilistic junctions 
Hazard (failure rate) function-z(t) 
Reliability-R(t) 
Mission Time-MT(r) 
Repair rate-p. 
Availability-A (t) 

Single parameters (probabilistic) 
Mean Time To Failure-MTTF 
Mean Time To Repair-MTTR 
Mean Time Between Failures-MTBF 
Coverage 

Comparative measures (probabilistic) 
Reliability difference R2 (t) - R~ (t) 
Reliability gain R2(t)/R J (t) 

Mission Time Improvement M12(r)/M1((r) 

and repair rates, is the most often used. Failure 
rates of electronic devices vary with time, as 
shown in Figure 1-4. (The theory behind hard­
ware component failure rates was discussed in 
Chapter 2.) This time-dependent failure rate is 
called a hazard junction, denoted as z(t). The 
hazard function is sometimes called the hazard 
rate or the force of mortality, and is usually 
measured in failures per million hours. For a 
known distribution, 

f1 pd] 
z(t) = I - CDF 

For electronic components on the normal-life 
portion of the bathtub curve, the failure rate is 
assumed to be constant. This means that the 
exponential hazard function is applicable: 

z(t) = A 

For the periods of infant mortality and compo­
nent wearout, the Weibull hazard function is 
often used: 

z(t) = lXA(Att- 1 



(As noted in Chapter 2, the exponential function 
is equivalent to the Weibull function with a 
equal to one.) The Weibull shape parameter a 
and the scale parameter A (used in both hazard 
functions), are constants specific to a particular 
component. 

For the nonredundant constant-failure-rate 
model, the system hazard function is the sum of 
the component failure rates. For the combina­
tion of Weibull processes and for redundant 
systems with either model, the relationship is 
much more complex. 

The hazard function is easy to measure in 
ascertaining the operational reliability of physi­
cal systems, because it can be calculated from a 
histogram of times between failures. 

In keeping with the probabilistic nature of the 
concepts of failure rate and hazard function, the 
failure of electronic components is assumed to 
follow a general Poisson distribution: 

• Probability of one failure during an interval M is 
approximately z(t)Llt. 

• Probability of two or more failures during an inter­
val Llt is negligible. 

• failures are independent. 

Defining m{t) = f~ z{x)dx, Ross [1972] has 
shown that the probability of k failures in time 
[O,t] is given by 

e-m(t) [m{t)]k 
k! 

The expected value (or mean) of the number of 
failures in time [0, t] is 

00 -m(t)[ (t)]k 
E[ k] = ~ k e ~ = m(t) 

k=O k. 

The variance is 

Var [k] = E[k 2] - (E[k])2 = m{t) = E[k] 

For a constant failure rate A, m(t) = At. Thus, 

-At (A )k 
Pr {k failures in time [0, tn = e k! t 

E[ k] = Var [k] = At 
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For the Weibull hazard function z(t) 
= aA(Atr- l

, m(t) = (Att. Therefore, 

e-(M)" (At)k(x 
Pr {k failures in time [0, tn = k! 

E[k] = Var [k] = (Att 

The reliability function R(t) of a system is 
mathematically defined as the probability that 
the system will perfo:,m satisfactorily from time 
zero to time t, given that operation commences 
successfully at time zero. It is a monotonically 
decreasing function whose initial value is one. 
The reliability function can be used to derive 
many of the other reliability measures detailed 
below. 

Given the general Poisson distribution devel­
oped above, the reliability function for a single 
componen t becomes: 

R(t) ! Pr {O failures in time [0, t]} 

= e-m(t) 

For a constant failure rate, substitute At for m{t). 
Then, 

R(t) = e-At 

If a system does not contain any redundancy­
that is, if every component must function prop­
erly for the system to work-and if component 
failures are statistically independent, then the 
system reliability is the product of the compo­
nent reliabilities and is thus also exponential. 
Furthermore, the failure rate of the system is the 
sum of the failure rates of the individual compo­
nents. Therefore, 

n n _ -( ± Ai)t 
RSys(t) = II RJt) = II e \t = e i=1 

i=i i=i 

where there are n components. 
For the Weibull hazard function, substitute 

(Atr for m{t): 

R{t) = e-(M)a 

The Weibull model is more flexible but less 
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. tractable than the exponential when large groups 
of components are involved. The reliability func­
tion for a group of c0!llponents is: 

-[f (;\1)";J R (t) = e ;=1 I sys 

The sum must be performed for each new value 
of t, resulting in lengthy calculations. It is also 
difficult, if not impossible, to integrate analyti­
cally, which affects the other reliability measures 
discussed below. 

For the general hazard function, recall that 
met) = f~ z(x) dx. Thus, 

R(t) = e - fo' z(x)dx 

Rsys (t) = e -Ltl (fol Z;(X)dx)J 

As noted earlier, the Wei bull function is more 
accurate than the exponential function for com­
ponents subject to wear and aging (increasing 
failure rates) or those that improve with time, as 
the weaker members of the population are culled 
out (decreasing failure rates). When extremely 
accurate reliability predictions are needed, sam­
ple components are tested to find the underlying 
distribution (Weibull or otherwise) and the value 
of pertinent parameters. This is necessary be­
cause different kinds of components experience 
different distributions, as do similar components 
from different manufacturing lots or manufac­
turers. 

For systems with stringent reliability require­
ments, a different but related measure is some­
times used. The mission time function MT(r) 
gives the time at which system reliability falls 
below the level r. The mission time function is 
particularly well suited for applications with a 
minimum lifetime requirement due either to im­
possible or prohibitively expensive repair or to 
fixed intervals between maintenance. Such appli­
cations include spacecraft computers, undersea 
cable repeaters, and commercial airliner avionics 
systems. 

The relationship between R(t) and MT(r) is 
given by 

R[MT(r)] = r 

MT[R(t)] = t 

For a constant failure rate (z(t) = >..), the com­
ponent mission time function is easily shown to 
be 

-In r 
MT(r) = ->..-

A nonredundant system with n components 
therefore has 

MT(r) = ~ln r 

~\ 
i=1 

For a more complex hazard function or for a 
redundant system, the mission time function is 
much more difficult to compute. 

In most cases it is possible to repair or replace 
failed components, and accurate models of sys­
tem reliability should take this into considera­
tion. Repair activity, however, is not as easily 
modeled analytically as failure mechanisms. 
Many factors affect the rate at which repair 
occurs, including human ability, travel time, 
diagnostic capabilities, and parts availability. 
Despite the lack of strong theoretical backing, 
probabilistic models usually assume a repair rate 
analogous to the failure rate discussed already. 
For the purposes of this text, the repair rate 
function is treated similarly to the hazard (failure 
rate) function and generally denoted zr(t). The 
form and parameter values of this function can 
be measured for existing systems or estimated 
from experience with comparable situations. For 
a Weibull repair rate function, Jl is used for the 
scale parameter (= >.. in the failure rate function) 
and f3 for the shape parameter ( = a in the failure 
rate function). The solution of a reliability model 
with both failure and repair rates requires the use 
of Markov models, discussed later in this chap­
ter. These models usually assume that repair of a 
failed system restores it such that the failure rate 
of the repaired system is the same as if no failure 
had occurred. In the case of the exponential 
model (constant hazard rate) process, this is 



completely true. The assumption is less valid for 
the Weibull process, but is usually made in order 
to provide analytic solutions. 

For systems that can be repaired, a new mea­
sure of reliability is often used: the probability 
that the system is operational at any given time. 
This measure, called availability, is expressed 
symbolically as A(t). Availability A(t) differs 
from (reliability R(t) in that any number of 
system failures can have occurred prior to time t, 
but the system is available if all those failures 
have been repaired. Recall that with reliability 
R(t), the system is considered reliable only if no 
system failures have occurred prior to that time. 
As a result, the availability function has a non­
zero constant (steady-state) term. For a constant 
failure rate A and a constant repair rate 11, the 
steady-state availability can be expressed as 

11 
Ass = A + 11 

The exact form of the availability function re­
quires the solution of the appropriate Markov 
model which will be derived later in the chapter. 

Single-Parameter Models. Reliability and 
availability equations, even for simple systems 
with repair, are often too complex to compre­
hend except (perhaps) in graphic form. There­
fore, single-parameter metrics have been 
proposed to summarize these continuous-time 
equations. 

Mean Time To Failure (MTTF). Measuring the 
Mean Time To Failure (MTTF) for components 
was discussed in Chapter 2. As for components, 
the MTTF of a system is the expected time of the 
first system failure in a population of identical 
systems given successful startup at time zero. It 
assumes a new (perfect) system at time zero. For 
the reliability functions used here, the MTTF is 
defined as: 

MTTF = fooo R(t) dt 

Reliability functions of complex redundant sys­
tems require numeric integration techniques, as 
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do the Weibull reliability functions because of 
their nonintegrability. However, the MTTF is 
still relatively easy to determine by means of 
numerical integration of the reliability function 
on a computer. Although the MTTF, in theory, 
applies only to a large population of systems, it 
is also useful as a measure for a given design 
(population of one). 

For an example of MTTF calculation, consid­
er a non redundant system with n components, 
e.ach with individual constant failure rate Ai: 

MTIF ~ fo'" R(t) dt ~ fo'" e -(t, A) dt 

Hence 

MTTF = _n_
l _ 

~\ 
i=i 

This direct relationship between MTTF and the 
system failure rate is one reason the constant­
failure-rate assumption is often made even when 
supporting data are scanty. 

Mean Time To Repair (MTTR). The Mean 
Time To Repair (MTTR) is often used to mea­
sure the repairability of a system. It is the 
expected time for repair of a failed system or 
subsystem. MTTR is related to the repair rate 
discussed above much as MTTF is related to the 
failure rate. As with the repair rate, MTTR is not 
easily modeled analytically, and must usually be 
measured or estimated. 

As indicated for exponential distributions, 
MTTF = 1/A and MTTR = 1/11. The steady­
state availability, Ass' defined earlier can be 
rewritten in terms of these parameters: 

MTTF 
Ass = MTTR + MTTF 

Mean Time Between Failures (MTBF). The 
term Mean Time Between Failures (MTBF) is 
often mistakenly used in place of Mean Time To 
Failure (MTTF). The MTBF is the mean time 
between failures in a system with repair, and is 
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thus derived from a combination of repair and 
failure processes. The easiest approximation for 
MTBF is 

MTBF = MTTF + MTTR 

This expression should be exact for nonredun­
dant systems, but is only approximate for redun­
dant systems because the interplay of multiple 
failures usually causes the repair rate to change. 

Coverage. Coverage is a concept serving di­
verse purposes, with two major meanings: quan­
titative and qualitative. The quantitative mean­
ing is used most often in reliability modeling of 
redundant systems. In its quantitative sense, 
coverage is the probability that the system suc­
cessfully recovers from a specific type of failure. 
Quite often, coverage is the probability that a 
particular class of fault is successfully detected 
before a complete system corruption occurs. 
Other typical uses include the probability of 
successful takeover by backup systems and non­
corruption of checkpoint (restart) variables. 

The qualitative meaning of coverage specifies 
the types of errors against which a particular 
redundancy scheme guards. For example, the 
coverage of Hamming single error-correcting­
double-error-detecting code is correction for all 
single-bit errors in a code word and detection of 
all double bit errors and some multiple bit errors. 
Jack et al. [1975] develop this measure of cover­
age for a variety of both error-detection and 
corrrection techniques. 

Comparative Measures. A major use of the 
evaluation criteria discussed so far is to compare 
different systems or different models of the same 
system. Such comparisons generally involve ar­
ithmetic differences of the measures or ratios 
between the measures. Three common compara­
tive measures are 

• Reliability difference Rnr,w(t) - Rold(t) 
• Reliability gain Rnew (t) fRoid (t) 
• Mission time improvemen t, M~ew (r) / MT old (r) 

where Mission Time (MT) is the time the system is 
above the reliability, r. 

The use of these and similar measures is illustrat­
ed later in the section "Design Example: The 
PDP-8/e." 

Software Evaluation 

Software reliability assessment is part of the 
more general area of software quality assessment 
[Mohanly, 1973]. Effective mechanisms for meas­
uring software quality are required because of 
the high cost of software development and main­
tenance. Forecasts indicate that by 1985 over 90 
percent of the total computing dollars spent 
annually will be for software [Horowitz, 1975]. 
The development of techniques for measuring 
software reliability has been motivated mainly 
by project managers, who need not only ways of 
estimating the manpower needed to develop a 
software system with a given level of perfor­
mance but also techniques to determine when 
this level of performance has been reached. Most 
software reliability models presented to date are 
still far from satisfying these two needs in a 
general context. 

Most models assume that the software failure 
rate will be proportional to the number of bugs 
or design errors present in the system, without 
taking into account that different kinds of errors 
may contribute differently to the total failure 
rate. Eliminating one significant design error 
may double the mean time to failure, whereas 
eliminating ten minor implementation errors 
(bugs) may have no noticeable effect. 

Even assuming that the failure rate is propor­
tional to the number of bugs and design errors in 
the system, no model considers the fact that the 
failure rate will then be related to the workload 
of the system. For example, doubling the work­
load without changing the distribution of input 
data to the system may double the failure rate . 

Software reliability models can be roughly 
grouped in four categories: time .domain, data 
domain, axiomatic, and other. 



Time Domain Models 

Models formulated in the time domain attempt 
to relate software reliability (characterized, for 
instance, by an MTIF figure under typical work­
load conditions) to the number of bugs present 
in the software at a given time during its devel­
opment. Typical of this approach are the models 
presented in Shooman [1973], Musa [1975], and 
Jelinsky and Moranda [1973]. Removal of imple­
mentation errors should increase MTIF, and 
correlation of bug-removal history with the time 
evolution of the MTTF value may allow the 
prediction of when a given MTTF value will be 
reached. The main disadvantages of time do­
main models are that bug correction can gener­
ate more bugs, and that software unreliability 
can be due not only to implementation errors but 
also to design (specification) errors, characteriza­
tion, and simulation during testing of the typical 
workload. 

The Shooman model [Shooman 1973] attempts 
to estimate the software reliability-that is, the 
probability that no software failure will occur 
during an operation time interval [0, t]-from an 
estimate of the number of errors per machine­
language instruction present in a software system 
after T months of debugging. The model as­
sumes that at system integration there are E· 

• I 

~rrors present m the system and that the system 
IS operated continuously by an exerciser that 
emulates its real use. The hazard function after T 
~onths of debugging is assumed to be propor­
tional to the remaining errors in the system. The 
reliability of the software system is then assumed 
to be 

R(t) = e-c E(r.T) 

where E(r, T) is the remaining number of errors 
in .the system after T months of debugging, and 
~ IS a prop~rtionality constant. The model pro­
VIdes equations for estimating C and E(r, T) 
from the results of the exerciser and the number 
of errors corrected. 

The lelinsky-Moranda model [Jelinsky and 
Moranda, 1973] is a special case of the Shooman 
model. The additional assumption is made that 
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each error discovered is immediately removed, 
decreasing the remaining number of errors by 
one. Assuming that the amount of debugging 
time between error occurrences has an exponen­
tial distribution, the density function of the time 
of discovery of the ith error, measured from the 
time of discovery of the i-I th error, is 

pet) = AU)e -;\(i}ti 

where AU) = j(N - i + 1) and N is the number 
of errors originally present. The model gives the 
maximum likelihood estimates for Nand j. 

An extension of the lelinsky-Moranda model 
has been given by Wolverton and Schick [1974]. 
It assumes that the error rate is proportional not 
only to the number of errors but also to the time 
spent in debugging, so that the chance of discov­
ery increases as time goes on. 

Another extension is given in Thayer, Lipow, 
and Nelson [1978], in which more than one error 
can be detected in a time interval, with no 
correction being made after the end of this 
interval. The new maximum likelihood estima­
tors of Nand j are also given. 

All the models presented so far attempt to 
predict the reliability of a software system after 
a period of testing and debugging. In a good 
example of an application of this type of model 
Miyamoto [1975] describes the development of 
an on-line realtime system for which a require­
ment is that the Mean Time Between Software 
Errors (MTBSE) has to be longer than 30 days. 
The system will operate on a day-by-day basis, 
13 hours a day. (It will be loaded every morning 
and reset every evening.) The requirement is 
formulated such that the value of the reliability 
function, R(t), for t = 13 hours has to be greater 
than e[-13/MTBSE] = 0.9672. 

Miyamota also gives the variations in time of 
the MTBSE as a function of the debugging time. 
The MTBSE remained at a very low value for 
most of the debugging period, jumping to an 
acceptable level oilly at the end. The correlation 
coefficient between the remaining number of 
errors in the program and the failure rate was 
0.77, but the scatter plot shown is disappointing 
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and suggests that the correlation coefficient be- for a subset of input data values. A more de-
tween the failure rate and any other system tailed description of data domain techniques is 
variable could have given the same value. In the given in Thayer, Lipow, and Nelson [1978]. In 
same paper Miyamoto describes in detail how Schick and Wolverton [1978] the time domain 
the system was tested. and data domain models are compared. Howev-

None of the models above takes into account er, different applications will tend to use different 
that in the process of fixing a bug, new errors subsets of all possible input data values, yielding 
may be introduced in the system. The final different reliability values for the same software 
number given is usually the Mean Time Between system. This fact is formally taken into account 
Software Errors, but only Miyamoto points out in Cheung [1980], where software reliability is 
that this number is valid only for a specific set of estimated from a Markov model whose transi-
workload conditions. tion probabilities depend on a user profile. Tech-

Other models to study the improvement in niques for evaluating the transition probabilities 
reliability of a software item during its develop- for a given profile are given in Cheung and 
ment phase exist, such as Littlewood [1975], Ramamoorthy [1975]. 
where the execution of a program is simulated In the Nelson model [1973], a computer pro-
with continuous-time Markov switching among gram is defined as a computable function, F, 
smaller programs. This model also demonstrates defined on the set E = {Ej,i = 1, ... ,N}. E 
that under certain conditions in the software includes all possible combinations of input data 
system structure, the failure process will be values, each E j being a sample of data values 
asymptotically Poisson. Another Markov model needed to make a run of the program. Execution 
is given in Trivedi and Shoo man [1975], where of a program produces, for a given value of E j , 

the most probable number of errors that will the function value F(Ej). 
have been corrected at any time t is based on In the presence of bugs or design errors, a 
preliminary modeling of the error occurrence program actually implements F'. Let Ee be the 
a-m:trep-air rates:Tl1e mO<ielalso pr6videspreaic---serofinpurQaTavalUes~~STIc[lnarF'(E;Jproduc::' 
tions of the availability and reliability of the es an execution failure (execution. terminates 
system at time t. Schneidewind [1975] describes a prematurely, fails to terminate, or the results 
model that assumes that the failure process is produced are not acceptable). If Ne is the num-
described by a nonhomogeneous Poisson pro- ber of E j in E e, then 
cess. The rate of error detection in a time interval 
is assumed to be proportional to the number of 
errors present during that interval. This leads to 
a Poisson distribution with a decreasing hazard 
rate. 

Data Domain Models 

Another approach to software reliability model­
ing is to study the data domain. The first model 
of this kind is described in ~ elson [1973]. In 
principle, if sets of all input data values upon 
which a computer program can operate are iden­
tified, an estimate of the reliability of the pro­
gram can be obtained by running the program 

is the probability that a run of the program will 
result in an execution failure. Nelson defines the 
reliability, R, as the probability of no failures, or: 

R = I-p 

= 1- Ne 
N 

This model, then, takes into account that the 
inputs to a program are not selected from E with 
equal a priori probability, but are selected ac­
cording to some operational requirement. This 
requirement may be characterized by a probabil­
ity distribution {Pj: i = 1, ... ,N}, Pj being the 



probability that the selected input is Ej • If we 
define the auxiliary variables lj to have the value 
zero if a run with E j is successful, and one 
otherwise, 

N 

p= ~ Pjlj 
j=l 

where p is again the probability that a run of the 
program will result in an execution failure. A 
mathematical definition of the reliability of a 
computer program is given as the probability of 
no execution failures after n runs. 

R(n) = Rn = (1 - pr 
The model elaborates on how to choose input 

data values at random from E according to the 
distribution Pj to obtain an unbiased estimator of 
R(n). In addition, if the execution time for each 
Ej is also known, the reliability function can be 
expressed in terms of the more conventional 
probability of no failure in a time interval, [0, t]. 

Chapter 6 in Thayer, Lipow, and Nelson 
[1978] extends the previous models to take into 
account how the testing input data sets should be 
partitioned. Also discussed are the uncertainty in 
predicting reliability values, the effect of soft­
ware errors removal, and the effect of program 
structure. 

Axiomatic Models 

The third category includes models in which 
software reliability (and software quality in gen­
eral) is postulated to obey certain universal laws 
[Ferdinand, 1974; Fitzsimmons and Love, 1978]. 
Although such models have generated great in­
terest, their general validity has never been prov­
en and, at most, they only give an estimate for 
the number of bugs present in a program. 

The best-known axiomatic model is the so 
called Software Science developed by Halstead 
[Fitzsimmons and Love, 1978]. Halstead used an 
approach very similar to that of thermodynamics 
to provide quantitative measures of program 
leveL language leveL algorithm purity, program 
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clarity, effect of modularization, programming 
effort, and programming time. In particular, the 
estimated number of bugs in a program is given 
by the expression 

where K is a proportionality constant, V is the 
volume of the implementation of an algorithm, 
and EO is the mean number of mental discrimi­
nations between errors made by the program­
mer. V is given by 

V = N log2 (n) 

where N is the program length and n the size of 
the vocabulary defined by the language used. 
More specifically, 

where: 

N = Nl + N2 

n = nl + n2 

nl number of distinct operators 
appearing in a program 

n2 number of distinct operands 
appearing in a program 

Nl = total number of occurrences of 
the operators in a program 

N2 = total number of occurrences of 
the operands in a program 

EO has been empirically estimated 
to have a value around 3000. 

Many publications have either supported or 
contradicted the results proposed by the Soft­
ware Science, including a special issue of the 
IEEE Transactions on Software Engineering [Hal­
stead, 1979]. 

Though unconventional, the measures pro­
posed by the Software Science are easy to com­
pute, and in any case it is an alternative for 
estimating the number of bugs in a software 
system. Table 5-2 shows the correlation coeffi­
cient between the real number of bugs found in 
a software project and the predicted number 
according to software science theory for several 
experiments. There are significant correlations 



210 THE THEORY OF RELIABLE SYSTEM DESIGN 

Table 5-2. Correlation of actual experience to 
software bug prediction by axiomatic models. 

Reference 

[Funami and Halstead, 
1975] 

[Cornell and Halstead, 
1976] 

[Fitzsimmons and Love, 
1978] 

Correlation Coefficient 
Between Predicted and 
Real Number of Bugs 

0.98 - 0.83 - 0.92 

0.99 

System A 0.81 
System B 0.75 
System C 0.75 
Total 0.76 

with error occurrences in the programs, although 
the data reported by Fitzsimmons and Love 
(obtained from three General Electric software 
development projects totaling 166,280 state­
ments) show weaker correlation than the original 
values reported by Halstead. 

Other Models 

which the probability density function is assumed 
to be known. If the fault is due to a software 
failure, maintenance takes place, during which the 
error may be removed, more errors may be intro­
duced, or no modifications may be made to the 
software. 

The model computes the availability of the 
system as a function of time by use of semi­
Markovian theory. That is, the system will make 
state transitions according to the transition prob­
abilities matrix, and the time spent in each state 
is a random variable whose probability-density 
function is either assumed to be known or is 
measurable. 

The main result presented in Costes, Land­
rault, and Laprie [1978] is how the availability of 
the system tends towards the asymptotic availa­
bility (availability of the system when all the 
design errors have been removed) as the design 
errors are being removed under some restrictive 
conditions. 

The minimum availability is shown to depend 
only on the software failure rate at system inte­
gration, and not on the order of occurrence of 
the different types of errors. The presence of 

--------.--- ----diff-eTent-tYpe-s-uf--desi-gn--errors-orrly-extends-1he-
The model presented in Costes, Landrault, and time necessary to approach the asymptotic avail-
Laprie [1978] is based on the fact that for well- ability. 
debugged programs the occurrence of a software The mathematics involved for the model are 
error results from conditions on both the input's complex, requiring numerical computation of 
set of data and the logical paths encountered. inverse Laplace transforms for the transition 
These events, then, can be consl·dered random probabilities matrix, and it is not clear that the 
and independent of the past behavior of the parameters needed to simulate a real system 
system, that is, with constant failure rate. Also, accurately can be easily measured from a real 
because of their rarity, design errors or bugs may 
have the same effect as transient hardware faults. system. 

Finally, there have been some attempts to 
The model is built on the foUowl·ng assump-

tions: 

1. The system initially possesses N design errors or 
bugs that can be totally corrected by N interven­
tions of the maintenance team. 

2. The software failure rate is constant for a given 
number of design errors present in the system. 

3. The system starts and continues operation until a 
fault is detected, then passes to a repair state. If the 
fault is due to a hardware transient, the system is 
put into operation again after a period of time for 

model fault-tolerant software through module 
duplication [Hecht, 1976] and warnings about 
how not to measure software reliability [Little­
wood, 1979]. 

None of the models above characterizes sys­
tem behavior accurately enough to give the user 
a figure of guaranteed level of performance 
under general workload conditions. They esti­
mate the number of bugs present in a program 
but do not provide any accurate method to 



characterize and measure operational system un­
reliability due to software. There is a large gulf 
between the variables that can be easily meas­
ured in a running system and the number of bugs 
in its software. Instead, a cost-effective analysis 
should allow precise evaluation of software unre­
liability from variables easily measurable in an 
operational system, without knowing the details 
of how the software has been written. 

MODELING TECHNIQUES 

Redundant systems can be modeled under var­
ious operational assumptions, such as failure to 
exhaustion and failure with repair. Redundancy 
with failure to exhaustion is a simplistic and 
pessimistic model which assumes that all redun­
dant modules fail before any repair. Failure with 
repair, on the other hand, models two separate 
but concurrent processes: the failure process and 
the repair process. Failure to exhaustion can be 
modeled by simple combinatorial probability, 
the first topic in this section. Failure with repair, 
which requires solutions of sets of differential 
equations, is the second main topic. Next, the 
impact on system availability of different as­
sumptions concerning repair strategy is explored, 
followed by models built on the assumption that 
failures affect the performance of redundant 
systems. 

Combinatorial Modeling 

In combinatorial modeling, the system is divided 
into nonoverlapping modules. Each module is 
assigned either a probability of working, Pi' or a 
probability as a function of time, Ri(t). The goal 
is to derive the probability, Psys , or function, 
RsyS (t), of correct system operation. The follow­
ing assumptions are made: 

1. Module failures are independent. 
2. Once a module has failed, it is assumed always to 

yield incorrect results. 
3. The system is considered failed if it does not satisfy 

the minimal set of functioning modules. 
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4. Once the system enters a failed state, subsequent 
failures cannot return the system to a functional 
state. This property, called coherency, is mathemat­
ically defined by Esary and Proschan [1962] in 
terms of a structure function <p(x). x is a vector 
composed of elements XI' x2' ... , X n ' where each 
Xi is I if module i is functional, and ° if module i is 
failed. A coherent system satisfies the following 
properties: 
a. <p(I, I, ... , 1) = I, when all modules function, 

the system must function; 
b. <p(0, 0, ... ,0) = 0, when all modules fail, the 

system fails; and 
c. <p(x) 2 <p(y) whenever Xi 2 Yi 'Vi, i = I, 2, 

... , n 

Failure to exhaustion models typically enu­
merate all the states of the system (where a state 
is a pattern of failed and working modules) that 
meet or exceed the requirements of the minimal 
module set. Combinatorial counting techniques 
are used to simplify this enumeration. The fol­
lowing three subsections treat commonly used 
modeling techniques for series/parallel systems, 
M-of-N systems, and complex systems. 

Series/ Parallel Systems 

Most frequently, reliability evaluation involves a 
series or parallel combination of independent 
systems. Figure 5-1 illustrates a serial string of 
modules, all of which must function for the 
system to function correctly. The modules could 
be resistors, fuel valves, computers, or any other 
components. If Ri(t) is the reliability of module i 
and if the modules are assumed independent, 
then the overall system reliability is: 

n 

Rseries (t) = II R/t) 
i=i 

(1) 

Hence, the failure probability, denoted by Q, of 
a series system can be written as: 

n 

Qseries(t) = 1 - Rseries(t) = 1 - II R/t) 
i=i 

n 
1 - II (1 - Qi(t)) 

i=i 

(2) 
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Figure 5-1. A series connection of n modules. 

The parallel configuration in Figure 5-2 fails 
only if all the systems fail. The probability of 
failure is: 

n 

Qparallel (t) = II Qi(t) (3) 
i=1 

The system reliability is: 
n 

Rparallel(t) = 1 - Qparallel(t) = I - II Qi(t) 
i= I (4) 

n 
= I - II (1 - Ri(t» 

i=1 

Note the duality between R, Q; Equations I and 
3; and Equations 2 and 4. For some systems it 
may be easier to work with failure probability 
than with reliability. Equations I through 4 can 
be applied recursively to complex series/parallel 
configurations to arrive at an overall reliability 
function. Figure 5-3 depicts two different inter-

Figure 5-3a tolerates more patterns of shorted 
components (such as shorted resistors/diodes or 
stuck-at-open fuel valves) than does configura­
tion (b). Both configurations tolerate all single 
shorts and double shorts (ac, bd). Configuration 
(a) also tolerates double shorts (ad, bc). In a dual 
manner, configuration (b) tolerates more pat­
terns of open components (such as open resistors/ 
diodes or stuck-at-closed fuel valves). In particu­
lar, configuration (b) tolerates the double-open 
failures of (ad, bc) for which configuration (a) fails. 

N ow consider the case where blocks (a, c) are 
processors and (b, d) are memories. For the 
system to operate, at least one processor-memory 
pair is required. Configuration (a) represents a 

_{;Qnn~ctio1!~_ ot! oUL CQ1Up-Qn~nls_._Ihes_e~_onfigll .. __ -------t
1
-------- --- ----------------­

rations have been used in aerospace systems for 
providing redundant transmission paths between 
terminals tl and t2 where each working path has 
to contain at least one good component. The 
modules may be resistors or diodes (such as the 
component quadding used in OAO, the Orbital 
Astronomical Observatory) or valves controlling 
fuel flow to a rocket motor. The configuration in 

Figure 5-2. A parallel connection of n modules. 

Shorts tolerated: a, b, c, d, ac, ad, bc, bd 

Opens tolerated: a, b, c, d, ab, cd 

a. 

Shorts tolerated: a, b, c, d, ac, bd 

Opens tolerated: a, b, c, d, ab, ad, bc, cd 

b. 

Figure 5-3. Two forms of series/parallel intercon­
nection designed to tolerate a.) short and b.) open 
failures. 



computer with a standby spare. Figure 5-4a 
illustrates the application of the series reliability 
equation. Now, applying the parallel reliability 
equation: 

Note that the Ri' s may be either a single 
such as a probability of success, or a function of 
time. In this text the function notation R/t) is 
reserved for special cases. The reader may inter­
pret R j as either a single numbered probability or 
a function. Applying the parallel reliability equa­
tion to configuration (b) (Figure 5-4b) results in: 

Ropen = (1 - (I - R) (I - Rc)) 

X (1 - (I - R/J)(l - Rtf)) 

Letting Ra = Rh = Rc = Rd = Rill yields 

Rshort = 2 R'~l - R~l 

and 

(6 ) 

Because there are more combinations of working 
systems in configuration (b), it is obvious that 

Ropen > Rshort 

for all t > O. Now consider the case of n mod­
ules in parallel, only one of which is required to 
function. The other n - 1 modules represent 

a. 

---1 QaQc H QbQd ~ 
b. 

Figure 5-4. Applying a.) the series and b.) the 
parallel unreliability formula to Figure 5-3b. 
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spares. The spares can be operating in parallel 
or, as is more usually the case, standing by to 
replace the operating module when it fails. The 
form of Equation 3 suggests that as n grows 
large, Qparallel becomes close to perfection. For 
example, for Rparallel to be within € of 1.0, choose 
n such that: 

ln€ 
n = InQ 

for € = 10-6 and Qm = 0.1, n = 6. 

(7 ) 

Equations 3 and 4, however, assume that the 
detection of the failed operating module and the 
switchover of a standby spare occur flawlessly. 
This is not a valid asumption in complex sys­
tems, in which even failure detection is far from 
perfect (a typical diagnostic program, for exam­
ple, may detect only 80-90 percent of possible 
faults). As a result, the concept of coverage 
[Wyle and Burnett, 1967; Bouricius, Carter, and 
Schneider, 1969a, 1969b] has been introduced. In 
this context, coverage is defined as the condition­
al probability that a system recovers, given there 
has been a failure. What constitutes proper re­
covery is a strong function of the intended 
application. It may mean merely establishing a 
workable hardware system configuration (such 
as telephone switching processors) or it may 
demand that no data are lost or corrupted (such 
as in transaction processing computers, used in 
banks). Let coverage be denoted by c. Then, for 
a system with two modules: 

Rsys = R) + cR2(I - R)) (8) 

The first term is the probability that the first 
module survives. The second term is the proba­
bility that the first module fails, the second is still 
functioning, and a successful switchover was 
accomplished. Note that if c = I and R\ = R2 

= Rill' Rsys = 2Rm - R~l = 1 - (1 - R,J
2
. If 

the modules are identical, then Equation 8 can 
be generalized to: 

(9) 
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This geometric progression can be evaluated by 
noting that: 

n 1 - x n+ l 

~ x i =---
i=O 1 - x 

For ° < x < 1 
Hence: _ (1 - c

n (I - Rm )n) 
Rsys - Rm 1 - c( 1 - Rm) 

= R (1 - C
nQ:!-') 

m 1 - cQm 

For Rsys to be within £ of 1.0, choose n such that: 

In[1 _ (I - £)(1 - cQm n 
n = Rm J (10) 

In(cQm) 

Returning to the example where Rsys = I -
£ for £ = 10-6 , Rm = 0.9, and c = 1.0, it was 
shown that n = 6 was sufficient. Now assume a 
nonperfect, but still high coverage of c = 0.99. 
Even for n = 00, Rsys from Equation 9 is only 
0.99889. For a more conservative coverage of 
c = 0.9, the maximum value for Rsys with n 
= _oois_O~5l8~ __ __________ ~ __ ~ ______ _ 

Table 5-3 lists the values of system reliability 
expressed by Equation 9 as a function of module 
reliability (RnJ, coverage (c), and number of 
modules (n). Two things should be noted from 
this table. First, as in all redundancy techniques, 
the initial application of redundancy produces a 
major decrease in system unreliability. Factors 
of 10 or more are not uncommon. In a compari­
son of Rm with Rsys for n = 2, the ratios of un­
reliability vary from a high of 9.09 to a low of 1.67. 
However, once n is increased to 4, the great 
majority of the system reliability improvement has 
been realized. Second, the single most important 
parameter is coverage. For high values of cover­
age (such as 0.99) and a moderate number of mod­
ules (say, four to six), system reliability is almost 
independent of module reliability over a wide 
range. Although coverage is a mathematically 
concise concept, it is often impossible to measure 
(or indeed even estimate) in practice because so 
many factors influence the final value of c. 

The MTTF of a standby sparing system can 
be derived by integrating Equation 9. 

MTTF (n modules) 

which can be rewritten for exponential reliability 
as: 

MTTF (n modules) = MTTF (n - I modules) 

+ ('YJ R cn-l Jo m 

x (I - Rmt- l dt 

= MTTF (n - 1 modules) 

+ foX e-At cn- l 

(11) 

x (I - e-Mt- l dt 

= MTTF (n - 1 modules) 

cn- l 

+-­nA 
I n ci 

=-~-;­
AC i=l 1 

The nth spare's contribution to MTTF is cll-Iln 
times that of a single module. If c is not very 
close to 1.0, the added spare's contribution to 
MTTF is negligible. 

The impact of improving coverage can also be 
demonstrated using mission time improvement. 
Setting Equation 4, with t replaced by It, equal 
to Equation 9, yields: 

( )
11 ()( I - cflQm(tt) 

I - Qm It = Rm t 1 - cQm(t) 

Solving for I gives: 

I = ~ln[1 - {I - R (t)( I - cIlQm(tt)}] (12) 
At m I - cQm(t) 

Equation 12 is tabulated in Table 5-4 and plotted 
in Figure 5-5 for the value of Rm(t) = 0.9. Both 
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Table 5-3. Standby system reliability for various values of module reliability, 
coverage, and number of spares. 

~ 0.99 

Rm 2 4 00 2 

0.9 0.9891 0.9988 0.9989 0.9810 

0.8 0.9584 0.9960 0.9975 0.9440 

0.7 0.9079 0.9880 0.9957 0.8890 

0.6 0.8376 0.9689 0.9934 0.8160 

0.5 0.7475 0.9307 0.9901 0.7250 

illustrate the high sensitivity to the coverage 
parameter c. 

M-of-N Systems 

M-of-N systems are a generalization of the par­
allel model. However, instead of requiring only 
one of the N modules for the system to function, 
M modules are required. Consider triple modular 
redundancy (TMR), in which two of three must 
function in order for the system to function. 
Thus for module reliability Rill: 

RTMR = R~ + (~)R~(l - Rm) (13) 

Equation 13 enumerates all the working states. 
The R~ term represents the state in which all 
three modules function. The (DR~l(1 - Rm) 

Table 5-4. Mission time improvement derived 
from increasing coverage from the indicated value 
to 1.0. 

c 
0.8 
0.85 
0.9 
0.95 
0.99 

n = 2 

1.738 
1.579 
10408 
1.218 
1.047 

n = 4 

4.601 
4.208 
3.720 
3.034 
1.957 

Coverage 

0.9 0.8 

4 00 2 4 00 

0.9889 0.9890 0.9720 0.9782 0.9783 

0.9746 0.9756 0.9280 0.9518 0.9524 

0.9538 0.9589 0.8680 0.9180 0.9211 

0.9218 0.9375 0.7920 0.8731 0.8824 

0.8718 0.9091 0.7000 0.8120 0.8333 

term represents the three states in which one 
module is failed and two are functional. Because 
the modules are assumed to be identical, all three 
states need not be enumerated. Any combination 
of two of the three modules is enumerated by the 
3-take-2 combinatorial coefficient, denoted by 
(D where 

( N) N! 
M = (N - M}!M!' 

6.0 

5.0 
1: 
~ 

E 
~ 
:> 
0 4.0 0.. 
.§ 
~ 

.§ 
3.0 c 

0 
.~ 

~ 
2.0 

Current coverage, c 

Figure 5-5. Potential mission time improvement 
with coverage increase from C to 1.0. 
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The M-of-N model can be generalized as: If 
there are N identical modules with the reliability 
of each module Rm (Rm may be a single number. 
such as a probability of success, or may be a 
function of time), and if a task requires k mod­
ules. the system can tolerate up to N - k fail­
ures, and the reliability of such a system is: 

We will use the M-of-N model to make several 
further points about system modeling, including 
incorrect conclusions drawn from single para­
meter summaries and the effect on redundant 
system reliability of extra logic (e.g., voters), 
more detailed modeling, more accurate model­
ing, and nonredundant components. 

Single and Multiple Parameters. To compare 
different redundant systems, it is 'often desirable 
to summarize their models by a single parameter. 
The reliability may be an arbitrarily complex 
function of time and the selection of the wrong 

1.0 

0.9 

summary parameter could lead to incorrect con­
clusions. Consider, for example, TMR and 
MITF. For the n.onredundant system: 

R -At 
simplex = e 

1 
MTTF simplex = X 

For TMR with an exponential reliability func­
tion: 

RTMR = (e-A1 )3 + (i) (e-At )2(l - e-At ) 

= 3e-2M - 2e-3At 

3 2 
MTTFTMR = 2A - 3A 

5 1 
= 6A < X = MTTFsimplex 

Thus, by the MITF summary, TMR is worse 
than a simplex system. 

Figure 5-6 plots the reliability functions for a 
simplex PDP-8 and a redundant PDP-8 (TMR 

O.B -t.--------Mission reliability = O.B 

0.7 

0.6 

~ 
:c 0.5 .::: 
~ 
CII:: 

0.4 

0.3 

0.2 

0.1 

0 

I .... . '. -- PDP-B/E (nonredundant) reliability 
function 

....•..... PDP-B/E with TMR processor, 
SEC memory 

MTI[.B] = MT'[.B]/MT[.B] 
= 2212/1334 
= 1.66 

!-+-- MT[.B] = 1334 hrs ........ . I i-- MT[.B] = 2212 hrs ................ . 

2,000 4,000 6,000 B,OOO 10,000 12,000 14,000 

Hours 

Figure 5-6. Relation of reliability function, mission time, and mission reliability. 



processor and Hamming coded memory}. Even 
though there is more area under the nonredun­
dant curve (e.g., MTTF), the redundant system 
maintains a higher reliability for the first 6,000 
hours of system life. Hence, comparison func­
tions such as Mission Time Improvement (MTI) 
have been utilized to compare redundant sys­
tems in subregions of their operational life. The 
redundant PDP-8 in Figure 5-6 operates at or 
above a probability of success of 0.8, 66 percent 
longer than the simplex PDP-8. The S-shaped 
curve is typical of redundant systems; usually 
there is a well-defined knee. Above the knee, the 
redundant system has spare components that 
tolerate failures and keep the probability of 
system success high. Once the system has ex­
hausted its redundancy, however, there is merely 
more hardware to fail (voters, switches, and 
other elements that support the redundancy) 
than in the nonredundant system. Thus, there is 
a sharper decrease in the redundant system's 
reliability function. 

When modeling redundant systems with re­
pair, single parameters such as MTTF may again 
be appropriate since the repair process replenish­
es the redundancy. There is no exhaustion phe­
nomenon. This topic is discussed later in the 
chapter. 

The Effect of Extra Logic in Redundant Sys­
tems. * In adding redundancy to a system, care 
must be taken that the extra logic to control the 
redundancy does not actually decrease the over­
all system reliability. Ingle and Siewiorek [1976] 
model various switches proposed for hybrid re­
dundancy and show that the switch is a signifi­
cant factor in determining the overall system 
reliability. A hybrid redundancy scheme with a 
TMR core may have a maximum attainable 
reliability for only one or two spares. Adding 
spares complicates the switch enough to cause 
the system reliability actually to decrease. There 
are conditions under which the switch becomes 
so complex that simple TMR would yield a 
better solution. 

* This section is based on Ingle and Siewiorek [1976]. 
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Consider the hybrid redundancy with a TM R 
voter described in Chapter 3. If only one of the 
three TMR core modules (those currently being 
voted on) is assumed to fail at a time, the system 
fails only if all the modules fail or if all but one 
module fails. The reliability of the hybrid system 
with a TMR core and n - 3 spares is: 

x {I - nRmO - Rmt- I 
- (1 - RI/yl} 

where R
l
, and RI'II' are the voter and switch reli­

abilities, respectively. Subtracting the system re­
liability for n modules from that for n + I mod­
ules: 

RIll X (I - (n + 1) x RnJI - Rmt - 0 - R,1JI1+I) 

This expression is positive for any 0 < Rill 
< I and n 2 I. Therefore, under the assump­
tion that Rsw is independent of n, adding mod-

ules increases the system reliability. The switch 
typicafly becomes more complex as more mod­
ules are added, although the dependence of the 
switch complexity on n will be a function of the 
particular design. A reasonable assumption, 
however, is that switch complexity grows nearly 
linearly with n; that is, the addition of each 
module to the system increases switch complex­
ity by a constant amount [Siewiorek and 
McCluskey, 1973]. Consequently, as a more real­
IStlC assumption we will consider the 
Rsw to be pll, where p is the reliability of the 

switch component that must be added when a 
module is added. Further, let p = R~;l' where a 
is used to relate the relative complexities of the 
incremental switch component to the basic mod­
ule. Hence, the system reliability is: 

illY. { ( )11-1 
Rhybrid = Rm I - nRm 1 - Rm 
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Figure 5-7. Rsys as a function of n and module reliability R for hybrid 
redundancy, a = 0.1. (© 1976 IEEE.) 

Figure 5-7 shows the variation of Rhybrid as a 
function of n, Rm (basic module reliability), and 
a. All curves exhibit a definite maximum. The 
optimum value, nmax ' of the number of modules 
for maximum Rsys ' is higher for lower Rm or 
lower a. Differentiating Rhybrid with respect to n 

and equating the resultant expression to zero 
yields: 

alnRm = QIl-1 X {Rm + (aln Rm + In Qn) 

X (nRm + Qm)} 

where Qm = 1 - Rm' 

This equation may be numerically solved for 
nmax ' Values of nmax for hybrid redundancy are 
plotted in Figure 5-8, which shows that nmax is 
about 4 to 6 for most practical cases. This means 
that only one to three spares should be used. In_ 

Figure 5-8, nmax exceeds 6 only for a ~ 10-3 • 

Given that a is the complexity of the switch 
component compared with that of the module, 
more than three modules need be used only 
when the module is more than 1,000 times as 
complex as the switch. For the iterative cell 
switch component that consists of 22 equivalent 
gates [Siewiorek and McCluskey, 1973b], the 
module will contain about 22,000 gates. A cen­
tral processor of a computer has this complexity. 
Figures 5-9 and 5-10 illustrate similar trends for 
variations of the hybrid scheme: 

• Hybrid redundancy (H.simplex) 
• Checker redundancy scheme [Ramamoorthy and 

Han, 1973] (CRS) 
• TMR switch with single voter (H.tmr.sv) 
• TMR switch with triplicate voter (H.tmr.tv) 
• Switch with Hamming coded states [Ogus, 1973] 

(H.hc) 
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a 

Figure 5-8. nmax as a function of a for hybrid redundancy. (© 1976 IEEE.) 
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Figure 5-9. Rsys for various schemes as a function of m {for Rm 
(© 1976 IEEE.) 

0.9, a 0.1). 
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• Switch implemented with radial logic [Klaschka, 
1969] (H.d) 

R.hc does not appear on Figure 5-9 because its 
maximum reliability (at m = 3 for R = 0.9) IS 

only 0.75. 

The Effect of More Detailed Modeling. * 
Equation 13 is the classical model for TMR. The 
effect of nonperfect voters can readily be incor­
porated into Equation 13 if voters are assigned to 
module inputs [von Neumann, 1956; Brown, 

* This section is based on Siewiorek [1975]. 

Tierney, and Wasserman, 1961; Teoste, 1962] . 
Because each voter drives exactly one module 
input, a voter failure has the same effect as a 
module failure. If Rv is the voter reliability, then 
the effective module reliability (for a two input 
module) in Equation 13 becomes R~ Rm' The 
classical model can be rewritten as: 

Equation 14 is still pessimistic, for there are 
many cases in which a majority of the modules 
may have failed and yet the system would not be 
failed. For example, consider two failed modules 



Module 1 

Module 2 1--4-+1 

Module 3 ~_--l 

Figure 5-11. Classical triple-modular redundancy. 
(© 1975 IEEE.) 

for the system shown in Figure 5-11. Assuming 
that module 1 has a permanent logical one on its 
output and module 3 has a permanent logical 
zero output, the network will still realize its 
designed function. Such multiple module failures 
that do not lead to system failures are called 
compensating module failures. 

Taking into account these double, and even 
triple, module failure cases can often lead to a 
substantially higher predicted reliability than the 
classical reliability model. With a better reli­
ability model some systems may be found to be 
overdesigned for their specific mission because 
an inadequate reliability model was used. 

Siewiorek [1975] develops a model based on 
stuck-at interconnection failures. For TMR, the 
model takes the form: 

RTMR = R! + 3R~(1 - Rm) + Rmh + h (15) . 

where hand h are complex expressions for dou­
ble and triple module failures. 

An exact model is based on the concept of 
functionally equivalent faults [McCluskey and 
Clegg, 1971; Schertz and~ Metze, 1972]. A less 
complex and less accurate alternative is based on 
fault dominance [Mei, 1970]. Table 5-5 summa-
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rizes the results. The fault-equivalence model 
increases the predicted mission time by at least 
40 percent over the classical model for even 
simple systems. The fault-dominance model 
shows up to a 75 percent improvement for 
slightly more complex networks. 

The Effect of More Accurate Modeling. * Fig­
ure 5-11 shows TMR in its simplest configura­
tion: triplicated modules followed by triplicated 
voters. Systems whose nonredundant form may 
be represented by a serial cascade of modules are 
referred to as serial TMR. 

Reliability modeling becomes more complex 
when fan-in and fan-out are considered and 
when not all module inputs are driven by voters. 
Several investigators have addressed the problem 
of modeling the reliability of TMR and multiple­
line systems. There have been two basic ap­
proaches. The first is to approximate the system 
by a serial TMR system, modeling the system as 
a cascade of single-input single-output modules, 
adding extra voters if required. [Brown, Tierney, 
and Wasserman, 1961; Teoste, 1962; Rhodes, 
1964; Longden, Page, and Scantlebury, 1966; 
Lyons and Vanderkulk, 1962; Gurzi, 1965]. 

A variation of this first approach [Rubin, 1967] 
models systems as serial cells and inserts ficti­
tious module trios where required to make all the 
cells serial cells, then alters the standard serial 
voter-module reliability formula to approximate 
the effect of these added fictitious modules. 

The second basic approach is to develop a 
bound on the system reliabilty by treating TMR 
as a coherent system. (The concept of coherent 
systems defined above was introduced by Essary 
and Proschan [1962].) One property of coherent 
systems is that, having once failed, the system or 
component cannot work properly again. A sys­
tem cut is defined as a set of components whose 
failure causes system failure. A minimal cut is a 
cut from which no members can be deleted 
without the set losing the property of being a 

* This section is adapted from Abraham and Siewiorek 
[1974]. 
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Table 5-5. Mission time improvement (MTI) of the fault-equivalence reliability 
model and fault dominance reliability model over the classical reliability model 
for various modules. 

Module Type Rill 0.75 

Single-NAND gate 
Equivalence Model 1.476 
Dominance Model 1.358 

Two NAND gates 
Equivalence Model 1.494 
Dominance Model 1.355 

Four-Level Full 
Binary Tree 

Dominance Model 1.405 
Multiple-Fault Model 1.300 
Dominance plus Multiple 1.442 

Exclusive-O R 
Dominance Model 1.196 

Priority Encoder 
Dominance Model 1.228 

system cut. The value obtained by taking the 
product, over all minimal cuts, of the probability 
that the cut does not occur is a lower bound on 
coherent system reliability. 

" ----Jen-sen-[PJ64ruses--mifrii'ma-riipulatiori--To"-' 
establish the minimal cuts of a system. However, 
if there are n modules in the nonredundant 
system, Jensen's method in the worst case re­
quires on the order of n3 operations and on the 
order of n2 storage locations just to set up the 
matrices for determining the minimal cuts. 

Another approach is to use an algorithm that 
divides the system into independent cells; that is, 
any nonfatal pattern of failures in a cell that 
leaves a cell operational does not interact with a 
nonfatal pattern of failures in another cell to 
cause system failures. The system reliability is 
then the product of the reliability of the indepen­
dent cells. Figure 5-12 illustrates the partitioning 
of a complex system into cells (voters are repre­
sented by circles and modules by squares). Voter 
I has to be in the same cell as voter 2. If the 
indicated voters were in different cells, voters I 
and 2 would be nonfatal cell failures, yet the 

0.8 0.85 0.9 0.95 0.99 

1.477 1.481 1.484 1.491 1.496 
1.382 1.405 1.439 1.472 1.491 

1.497 1.510 1.515 1.526 1.539 
1.384 1.414 1.452 1.492 1.531 

1.451 1.505 1.575 1.663 1.766 
1.318 1.389 1.361 1.386 1.408 
1.485 1.535 1.598 1.692 1.771 

1.207 1.214 1.232 1.246 1.259 

1.244 1.263 1.283 1.304 1.32.:1 

system would fail because modules 3 and 4 
receive potentially faulty inputs. The cell reli­
ability is calculated by: 

x (1 - Rm)} 

where Nv and N m are the number of voters and 
modules, respectively, in the cell, F(i,)) is a 
complicated function of the cell structure, and 

k 

Rsys = II Rcelli 
i=i ' 

The algorithm in Abraham and Siewiorek [1974] 
calculates the exact classical reliability of TMR 
networks (that is, the reliability of a coherent 
system as defined in Essary and Proschan 
[1962]). The results of this algorithm can be 
compared with the previously defined approach­
es: serial cell, and minimal cut set. 

Consider a 16-register multiplexed data bus 
system in which the contents of a data register 
can be supplied to anyone of 16 general-purpose 
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Figure 5-12. Partitioning a TMR system network into cells. (© 1974 IEEE.) 

egisters. Figure 5-13 shows a TMR configura­
ion of the data register to register transfer along 
me path. 

In the serial cell reliability model, the reli­
lbility of a serial cell is given by Equation 13. 
:;'or nonperfect voters, Equation 13 becomes: 

~here Rv is the voter reliability. 
Figure 5-13 is more complicated than a cas­

:ade of serial cells. One approach to include fan­
n/-out in the serial cell reliability model is to 
lssign the voters to the modules they drive [Roth 
:t aI., 1967], because a voter failure affects only 
.he module it drives. Cell 2 of Figure 5-13 shows 
me way to assign voters to the driven modules. 
'low the serial cell reliability model for the 
letwork of Figure 5-13 can be developed. 

The reliability of a module "end cell" such as 
;ell 1 can be derived from Equation 16 by letting 
Rv = 1. Similarly, setting Rm = 1 in Equation 
16 yields the reliability of voter end cells such as 
;ell 3. Next assume Rm = Rv' This simplifica­
:ion is not crucial and similar results are obtaina­
)le when Rv and Rm retain their separate identi­
:ies. The end cell reliability is thus 3 R~ - 2 R~l' 
[he serial cell reliability model for the system of 

Figure 5-13 would consist of 17 end cells (16 
voter and 1 module), and 16 serial cells like cell 
2, each of which share the one voter trio. The 
system reliability is thus modeled by: 

- (3R 2 2R 3 )17(3 4 2R6 )16 ( ) Rserial - m - m Rm - m 17 

For the case of fan-in there are still 17 end cells 
(16 module and 1 voter). The fan-in portion 
would consist of 16 overlapping serial cells. 
Thus, Equation 17 represents the serial cell mod­
el for both fan-in and fan-out. 

For the minimal cut set reliability model the 
lower bound on system reliability is given by 
Essary and Proschan [1962]: 

RS\S > IT (1 - Qcut ) 
'.' 'fIlEI / 

such that i is a minimal cut where Qcut is the 
probability that the minimal cut does not occur 
(that is, all the components composing the mini­
mal cut do not fail). Consider Figure 5-13. A 
minimal cut is a set of modules whose failure 
causes the system to fail. All minimal cuts con­
sist of either two voters (Qcut = Q;), two mod­
ules (Qcut = Q~), or one voter and one module 
(Qcut = Qt·QI11)· Note that Qt. = 1 - Rt· and QI/1 
= 1 - Rm' There are three ways in which two 
modules can fail in the module end cell and 



224 THE THEORY OF RELIABLE SYSTEM DESIGN 

Register 16 
General purpose registers 

Figure 5-13. The TMR configuration for one bit of 
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TMR path is shown. (© 1974 IEEE.) 

16 X 3 ways in whidi two voters can cause 
sys-tem failure in the voter end cells. In the fan­
out portion there are three double-voter failures, 
3 X 16 double-module failures, and 3 X 2 X 16 
single-voter and single-module failures (such as 
voter A and module B) whose failure would 
cause system failure. Hence, the minimal cut 
reliability model for fan-out is: 

Rmcs = (I - Q~)51(I - Q~)51(I - QvQm)96 

= (I - (1 - Rm)2)198 (18) 

Now consider the case of fan-in. There are 
16 X 3 ways in which two modules can cause 
system failure in the 16 module end cells and 
three ways for two voters in the voter end cell. In 
the fan-in portion there are three double-module 

failures, 3 X 16 X 2 single-voter and single-mod­
ule failures, 3 X 16 double-voter failures in the 
same voter trio, and 3 X 2 X Ln I i or 720 ways 
in which two-voter failures from different voter 
trios can interact to cause system failure. Thus, 
the minimal cut reliability model for fan-in is: 

Rmcs = (I - Q;)771 (I - Q~)51(I - QvQm)96 

= (I - (I - Rm)2)918 (19) 

The system reliability for the three approaches 
for the system in Figure 5-13 is plotted as a 
function of module reliability in Figure 5-14. 

Now consider a case of 16: 1 fan-in, such as an 
Arithmetic and Logic Unit (ALU) multiplexer 
that takes data from one of 16 registers as an 
input to an ALU. The three models for this fan­
in network are also depicted in Figure 5-14. The 
minimal cut lower bound is a rather poor predic­
tor of system reliability, whereas the serial cell 
approach predicts the same system reliability for 
both fan-in and fan-out systems. 

Figure 5-15 shows a plot of mission time 
improvement when I is the ratio of the exact 

__ m{td~Lt~Lthe __ s_e_riaLc~ILmQd_eJ.JJ_c_an_hese~n that 
a mission time improvement of 50 percent for the 
1: 16 fan-out system can be obtained with the 
more accurate reliability model. If the serial cell 
model is used, the resultant system is overde­
signed by 50 percent, for it could meet its 
mission time specification with less reliable com­
ponents. In the case of 16: 1 fan-in, the system 
has only 50 percent of designed mission time. 

The Effect of Nonredundant Components. * 
As noted before, the first application of a redun­
dancy technique produces the largest improve­
ment in reliability. Furthermore, the application 
of redundancy to one portion of a system may 
significantly change the distribution of unreli­
ability. In particular, a portion of the system that 
formerly had only a small contribution to unre-

* This section is adapted from Elkind and Siewiorek [1978]. 
Also available in Elkind and Siewiorek [1980]. 
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liability may become the dominant contributor. 
This shift in balance is illustrated by the model­
ing of memory and error-correcting codes. 

Current digital systems design is dominated by 
use of memory chips in the form of microstores, 
register files, caches, and main memories. Thus, 
improvement in memory reliability will greatly 
affect overall system reliability. 

The use of Single-Error-Correcting (SEC) 
codes, such as Hamming and block, SEC codes 
[Peterson and Weldon, 1972] is a primary meth­
od of increasing memory system reliability. 
These techniques result in tolerance of single bit­
faults in each memory code word. The decision 
to use SEC is a function of system cost, complex­
ity, performance, serviceability, and reliability. 
The last two factors determine field repair costs. 
Before modeling memory systems with SEC, a 
fault model for memory chips must be proposed. 

Memory-Chip Failure Modes. There are few 
data on semiconductor memory-chip failure 
modes during operating life. Most semiconduc­
tor manufacturers are more interested in the 
physical failure mechanisms than in the func­
tional characteristics of a failure. What data are 
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Figure 5-15. Mission time improvement over seri­
al cell approach with exact reliability model for 1 :16 
fan-out and 16:1 fan-in networks. (© 1974 IEEE.) 

available come mostly from screening, burn-in, 
and, to a lesser extent, high-temperature acceler­
ated-life tests. Table 5-6 summarizes some of the 
data. 

Not surprisingly, the data show that memory­
chip failure modes are dependent on technology, 
process, and device design and thus may vary 
widely. Failure mode distributions also change 
with time for a given device as the fabrication 
process matures. * 

Nevertheless, there is good evidence that the 
whole-chip failure mode (complete inability to 
store and/or retrieve data) is not the dominant 
failure mode for most chips. Rather, single-bit. 
row, and column failure modes seem to be the 
effect of the majority of chip failures. This fact 
motivates the formulation of the error-correct­
ing-code (ECC) memory models presented be­
low. 

Memory Organization and Reliability Models. 
Wang and Lovelace [ 1977] present a model for 
main-memory reliability, based on the use of 
4,096 bit chips in a 16-bit word memory system 

* The Texas Instruments (TI) data indicate that 92 percent of 
the failures observed were single-bit failures. This propor­
tion has since declined as a result of process improvements; 
however, the dominant portion of all failures for these chips 
is still due to partial-array failures. 
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Table 5-6. Chip failure mode data summary, in percentages. 

Source Devices Whole Chip Single Bit Row/Column Not Known 

[Texas Instruments, n.d.] 4K MOS RAM 92% 8% 
[Pascoe, 1975] 4K MOS RAM 11.8% 35.3 29.4% 23.5 
[Rickers, 1975-76] varied PROMs 17.9 53.9 15.3 12.9 
[Gear, 1976] 8K MOS EPROM 100.00 

using a Hamming single-error-correcting/dou­
ble-error-detecting code The model allows a 
combination of different chip failure modes. 

to failure (MTTF), the hazard function z(t), and 
the reliability function R(t). 

Another model, by Levine and Meyers [1976], is Single-Error-Correcting Memory Properties. 
used to prepare numerical charts and tables to The ECC memory reliability models depend on 
allow a designer to predict the Mean Time To the properties of the single-error-correcting 
Failure (MTTF) of Hamming coded memories. schemes used. In the Hamming and block code 
The model is based on the whole-chip failure ECC schemes, two types of memory words are 
mode. Neither model allows for the effect of the considered. The first, called a logical word, is the 
nonredundant memory controller on the total word that the system using the memory requires. 
memory system MTTF. The following models The second, called a physical word, is made up 
cover any single-error-correction scheme for any of one or more logical words in addition to 
size memory, and are developed in such a way whatever coding bits are required. 
that the reliability of all the control, correction, For Hamming codes a k-bit word has c coding 
and interface circuitry for the memory system is bits (which mayor may not include the extra bit 

------ineluded, --thus ... -mode-ling--the---re-lia-bility--ef--the---- -for-double-effo-r-detee-tion1-addeti-to--i-tThetotal-
entire memory system. A formula is derived that number of bits is n = (k + c). Several logical 
can be used to calculate Mean Time To Failure words may be combined into a larger physical 
(MTTF) efficiently under any of the various word for error encoding, thus decreasing the 
failure mode assumptions. A modification of the number of coding bits in the memory. If} logical 
model allows inclusion of the effect of failures words occupy a physical word that includes e 
already present. coding bits, the physical word size becomes 

This section presents three models for error- n = (kj + e), and the number of physical words 
correcting-code (ECC) memory reliability, based in an x-logical word memory is w = 

on a different assumption of dominant memory- (xl}). For a complete explanation of Hamming 
chip failure mode. Two of the models provide codes, see Peterson and Weldon [1972]. 
upper and lower bounds for the reliability of an Block codes are widely used for sequential-
ECC memory. The third, presented for compari- access memory systems but have seen little or no 
son, is a model for a nonredundant memory. All use in other types of memories. In this scheme, 
the models assume that component failures in each word has a parity bit appended (horizontal 
the memory-support circuitry cannot be sur- parity bit) and} words of k bits are grouped to 
vived. Many current commercial memory de- form a block. Each block has an extra word 
signs prove the validity of this assumption. Two associated with it, each of whose (k + 1) bits is 
error-correcting schemes, Hamming codes and the parity bit for the appropriate bit slice of the 
block codes, illustrate the applicability of the block (vertical parity bits). The total number of 
general model. The measures used are mean time bits in the physical word is n = (k + 1) X 



:} + 1), and for an x-logical word memory there 
He w = (x/}) physical words. In the case of a 
~ingle error, a horizontal parity error is found 
:lnd the vertical parity word reconstructed. The 
intersection of the horizontal parity error and 
vertical parity error pinpoint the bit to be cor­
rected. This method also detects double errors 
not in the same logical word. 

Both the Hamming-coded and block-coded 
memories contain n-bit physical words and H' 

physical words in the memory. The only differ­
ence between these two or any other SEC 
schemes as far as the model is concerned is that 
nand w vary. In each case, the memory can 
tolerate no more than one failure in the 11 bits of 
a given word in a w-word memory. This common 
property is the one upon which the followin,g 
development is based. 

Single-Error-Correcting Memory Models. The 
first ECC memory model assumes that single­
memory bit-cell failures dominate, and provides 
an upper bound on system reliability by assum­
ing that individual bit failures are independent. 
In this case, up to one failure per word, or w total 
failures, can be tolerated. The second model 
assumes that the dominant failure mode is com­
plete functional failure of memory chips. It pro­
vides a lower bound on system reliability, since 
bit failures are not assumed to be independent 
but to occur d at a time, where d is the number 
of bits on a chip. Only wid total failures* of this 
type can be tolerated. Between these two ex­
tremes lie row and column failures in the arrays 
internal to the chips, and combinations of whole­
chip, single-cell, and row/column failures. A 
third model for ECC memory reliability assumes 
that the row (column) failure mode is the domi­
nant failure mode. 

Single-Bit-Failure Mode (SBFM) Model. Sin­
gle-bit failures are assumed to be independent 
events, with each cell following the exponential 

* Assuming a d X I-bit memory chip, one bit per physical 
wor~ per chip. 
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failure law with failure rate Ah and reliability 
function Rh• Each n-bit word can tolerate the 
failure of a single bit. Thus, the reliability Rg of 
a given word is: 

For a w word memory the array reliability is: 

( ) ( (n-I) ( ) n)", 
Rasb t = nRh - n - 1 Rh 

Fault-free operation of the memory requires that 
the selection, control, and decoding circuitry be 
functioning correctly. It is assumed that these 
also follow exponential failure processes, with 
total failure rate As. The reliability of the com­
plete memory is then expressed as: 

Rmsb(t) = e-As1(ne-(n-l)Abl - (n - l)e-nAbt)W 

The mean time to failure of the memory is: 

MTTF = rYJ 
e-Ast(ne-(n-I)Aht 

sb )0 

- (n - l)e-nAht)W dt 

The integral is evaluated as: 

MTTF = (00 e-A,te-Ah(n-I)w 
sb )0 

X (n - (n - I)e-Ahtt'dt 

Next, make the substitutions 

xlt~oo = 0, and xlt=o = 1. 

To further simplify the integral, let 

m = (n - I)w + 'AsI'Ab - 1 

and 

v = -en - 1) 

The integral becomes 

1 (0 w 
MTTF sb = - Ab)1 xm(n + vx) dx 

which has the recursive solution 
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_ I {x(m+l)(n + vxt 
MTTF sb - - Ab m + w + I 

nw f m }IO 

+ m + w + I X (n + vx)(w-I) dx I 

After one more recursion, the equation becomes 

_ I {x(m+I)(n + vx)W 
MTTF sb - Ab m + w + 1 

+ nw [x(m+I)(n + VX)(w-I) 
m+w+1 m+w 

More simplifications are now possible. Let 

Ji = (m + w + I) - i = wn + AsiAb - i, 

gj = W - i + I, 

and 

y = n + vx. 

With some rearranging the MTTF sb equation 
reduces-to 

f 
ng x(m+l) 

ngw xm yg(w+ \) dx = w fw 

Thus, x(m+ I) can be factored out, giving 

[ ( )]}I
O ng2 ngw X yg2 +-x ... - ... 

12 fw I 

When x = 0, x(m+l) = 0, while at x = I, x(m+l) 
= I and 

yielding 

I { ngl 
MTTFsb = Ahfo I + T 

A final reorganization yields an iterative formu­
la: 

I (I ngl nWgl .. ·gw) 
MTT~sb = Ab 10 + fofl + ... + foii·· ·fw 

(20) 

The choice of this form of solution is due to its 
easy and direct iterative implementation on a 
computer or calculator. Usually only the first few 
terms need to be computed, for the value of 
successive terms quickly drops to zero and the 
number of terms is bounded by w. 

The MTTF of the memory array alone is 
obtained by setting As/Ab = 0. Equation 20 of­
fers a quicker means of calculating ECC memory 
MTTF than the earlier methods of numerical 
integration or Monte Carlo simulation. Equation 

-2U--arso--len-d-s-ifselr-welr1o--expToriiig-reliaoiTilY 
properties of ECC memories. This topic is dis­
cussed later. 

It is important to note that in solving the 
integral, m is assumed to be an integer, which in 
turn constrains AsiAb to also be an integer. In 
almost all cases this constraint is not a problem, 
because normally As » Ab • 

The hazard function z(t) expresses the instan­
taneous failure rate of a population. At a given 
time it measures the ratio of the instantaneous 
rate of change in reliability to tht; current reli­
ability. A constant hazard function implies that 
the percentage change in reliability is constant 
through time. The corresponding reliability func­
tion is exponential. An increasing hazard func­
tion implies that the percentage change in reli­
ability grows larger with time, and can be 
thought of as accelerating (rather than just in­
creasing) unreliability. An increasing hazard 
function is inherent in redundant systems. Intui-



ively, as a redundant system approaches the 
imit of its tolerance to failures it becomes more 
mreliable than it was when new. The hazard 
'unction for the SBFM model can be shown to 
)e 

fhe Whole-Chip Failure Mode (WCFM) and Row 
Failure Mode (RFM) Models. The whole-chip 
md row (or column) failure mode models have 
:he same form as the SBFM model. These mod­
!ls depend on the additional assumption. An 
;EC memory architecture is intolerant of multi­
Jle-bit failures in a single physical word. A 
nemory design must utilize this fact. If the 
whole-chip failure mode is dominant, the design 
nust apportion no more than one bit per chip 
Jer physical word. A similar restriction applies in 
the case of a dominant-row (or column) failure 
mode. The models here assume these restrictions. 

In the WCFM model, the parameter h replaces 
the parameter w of the SBFM model. For a w­
word memory of n-bit physical words imple­
mented with d-bit chips, h = w/d. In effect the 
memory is organized into rows of n chips each, 
t!very row containing d words; h is then the 
number of such rows. Ac' the memory-chip fail­
ure rate, takes the place of Ab' the bit-failure rate. 
These substitutions apply in the reliability, 
MTTF, and hazard formulas. 

The RFM model also derives from the SBFM 
model. For a w-word memory of n-bit physical 
words implemented with d-bit memory chips 
having q bits per row (column), w of the SBFM 
model is replaced by p = w X q /d, which is the 
number of one-word-wide sets of rows (columns) 
in the memory architecture. Ab is replaced by Ar , 

the row (column) failure rate. 

MTTF Calculation with Failures Present. A 
variation of the MTTF formula above should be 
useful in maintenance planning. Assume that f3 
failures are present at time zero. These failures 
are of the type assumed to be dominant (single-
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bit, whole-chip, or row (column)). The expres­
sion for the MTTF of an SBFM model is: 

I ( I ngl nO: gl ... glY) 
MTTF sb·13 = Ab 10 + 1011 + ... + 10···fa 

where 

and 

.h = nw - f3 + (AjAb) - i, 

gj = w - f3 - i + I, 

a = w - f3. 
The forms for the WCFM and RFM models 
follow using the previously defined substitutions. 

Nonredundant Memory Model. The model for 
nonredundant memory is based on the assump­
tions that components have exponential failure 
processes and that any component failure results 
in complete memory failure. The support and 
storage array circuitry have failure rates Aenr and 
Aa , respectively. The reliability of the entire 
memory is then expressed by 

The MTTF of the memory is: 

I 
MTTFnr = A + A 

enr a 

The nonredundant memory has the constant 
hazard function 

ECC Memory Reliability Exploration via the 
Models. The Single-Bit Failure Mode (SBFM), 
Whole-Chip Failure Mode (WCFM), and Non­
Redundant (NR) memory models will be com­
pared for two SEC schemes, Hamming and 
block coding. The comparison measures are the 
MTTF, the hazard function z(t), and the reli­
ability function R(t). Where specific values for 
memory-chip reliability are used, they are based 
on the failure rates for 4,096-bit chips found in 
Table 5-7. The ranges in Table 5-7 cover ob-
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Table 5-7. Memory-chip failure rates for 4096 bit 
memory chips in failures per million hours. 

Chip 
Ac 

0.005 
0.2 
0.5 
3.0 
5.0 

0.0000122 
0.0000488 
0.000122 
0.000732 
0.00122 

memory. When j logical words are combined 
into a larger physical word to limit the increase 
in array size, extra logic in the form of wider 
data paths, more complex coding/decoding cir­
cuitry, and a final one-of:i switch is needed. 

In the block-coded memory shown in Figure 
5-17 the control circuitry is more complex than 
for the Hamming code. The total support cir­
cuitry required is less, however, because the 
coding/decoding logic for block codes is less 
complex than for a Hamming code. For exam-

served failure rates for state-of-the-art chips. The pIe, only one parity tree is needed whereas the 
reliabilities of control circuitry for error-correct- Hamming-coded memory needs several. The 
ing and nonredundant memories are derived block code also requires fewer redundant bits 
from the models depicted in Figures 5-16 and than the Hamming code. The block code de-
5-17, assuming the use of standard SSI/MSI coder works in the following manner. When a 
logic. These memories are assumed to be "bare- word is read and XORed with zeros being fed 
bones" memories of relatively simple design. into the other leg of the XOR array (zero is the 
Assume a nonredundant k-bit per word memory XOR identity operator), the parity tree calculates 
of w words. Hamming single-error-correcting ca- the parity. If there is an error, the vertical parity 
pabilities are added to it as shown in Figure 5-16 for the block is calculated by successively XOR-
by increasing the array size to include the coding ing words from the memory block with what is 
bits. Extra control and data manipulation facili- already in the register. The results of the new 
ties (MUXes, parity trees, XORs, registers) are vertical parity point to the bit in error. If more 
added to perform error correction and detection, than one horizontal or vertical parity bit in the 

--as--well--as---error -codingwhen--writing---into--the-- -bl-o-ck-indicates--an--error;-a---m-u-lt-iple;;;hit-failure-

Addr. 
Reg. 

Array 
n bits X w words 

(w = xiI) 

I Control 

jk + e 

jk + e 

Figure 5-16. Hamming-coded memory model. (© 1980 IEEE.) 



laS occurred and the error is unrecoverable. In 
he case of a write, the horizontal parity is 
:alculated and the vertical parity updated simply 
)y XORing the new and old data words with the 
)ld vertical-parity word. Because writes to mem­
)ry occur only 10-30 percent of the time, degra­
iation due to vertical parity update is small. 
10wever, the block code is particularly effective 
'or read-only memory because the extra compli­
:ation on writes is not necessary. The vertical 
)arity word could be stored in a separate mem­
)ry array, thus allowing the update of the verti­
:al parity word to proceed in parallel with the 
lata write. 

Block coding of small memories presents some 
Jroblems because of the relatively large physical 
.vord size and the small number of physical 
.vords in the memory. Tolerance of whole-chip 
~ailure modes requires an allocation of no more 
:han one bit per block per chip. When whole­
;hip failure modes are dominant, block codes are 
!fficient only for large memories. For a small 
memory, the number of memory chips is fixed by 
the number of bits in a block. A large number of 
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chips with relatively few bits on each must be 
used. The same disadvantage applies less strin­
gently for row/column failure modes. For single­
bit failure modes there is no such problem. 

The comparisons that follow use support reli­
abilities calculated from these model memory 
designs of Figures 5-16 and 5-17. 

MTTF. In comparisons of the SBFM and 
WCFM models, a normalized MTTF is used in 
order to avoid dependence on specific reli­
abilities of the current or any other technology. 
The normalized measure is obtained by multiply­
ing the MTTF formulas by Ab' When this is done 
the MTTF becomes a function of the ratio AjAh 
instead of being a function of As and Ah' 
MTTF we. norm is still dependent on the number of 
bits per chip . 

It is possible to normalize the nonredundant 
memory MTTF in the same way, assuming that 
the ratio r = Aenr/As is known. The normalized 
MTTF for the nonredundant memory becomes 

MTTF nr.norm 
I 

r Horizontal parity 

--------,,......., I Control 
Memory array I ... __ ......... 

Addr. n bits X w words I 
Reg. (w = x/j) ,I 

Figure 5-17. Block-coded RAM model. (© 1980 IEEE.) 
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• 16 bit 16K NR 

... 16 bit 64K NR 

• 22 bit 16K SBFM 

o 22 bit 64K SBFM 

o 22 bit 16K WCFM 

!:;. 22 bit 64K WCFM 

10-8 L-_---L __ --1-__ -'--_----J'--_--'-__ ...... 

1~ 1~ 1~ 1~ 1~ 1~ 
Ratio ).s/).b 

Figure 5-18. Comparison of MTTF. (© 1980 IEEE.) 

Figure 5-18 shows the normalized MTTF 
curves plotted against the ratio AsiAb. These 
curves are for 16-bit logical word memories of 
16K and 64K words in the SBFM and WCFM 

__ (~_~~J!minK_=tQ2§J2i1~l?_~_LfhiQl. ~~_(: __ JIlQg~!§_'!gg_ 
the nonredundant memory model. 

Figure 5-18 illustrates a factor of 20-30 supe­
riority in MTTF predicted for the SBFM over 
the WCFM model for small values of AslAb' with 
the size memories modeled. As AsiAb increases, 
the ECC memory MTTF becomes essentially 
that of the support circuitry (which would plot as 
a line with unity negative slope). Thus, the 
limiting factor on the memory reliability is the 
support-circuitry reliability. The plot also shows 
that the ratio AsiAb at which the array reliability 
can be ignored in computing MTTF is lower for 
the SBFM than for the WCFM model. This 
difference becomes greater for larger chip size. 
For As in the range from 1 to 100 failures per 
million hours this corresponds to a AsiAb of 104 

to 106 for the Ab values in Table 5-7. This is well 
into the range where the SBFM assumption 
shows that the memory reliability can be mod­
eled as simply as that of the support circuitry, 
and just at or below that range for the WCFM 

assumption. To interpret Figure 5-18 in terms of 
a specific memory-chip technology, divide the 
vertical scale by Ab' 

The normalized MTTF for the nonredundant 
memory (assuming r = AenJAs = 0.1) shows the 
same behavior as the ECC memories: the MTTF 
is limited by the support circuitry MTTF, al­
though at a higher value of AsiAb' It also illus­
trates the fact that by the time 

the nonredundant memory becomes more reli­
able than ECC memory, and that for large AslAb' 
its MTTF is greater by the factor Ilr. Thus, the 
formulas and derived curves such as Figure 5-18 
can be used to select the appropriate memory 
organization as a function of AsiAb and the 
failure mode assumptions. 

Hazard Function. Based on the calculated sup­
port failure rates, the hazard functions for 32-bit 
logical word memories of 16K and 64K words 
were calculated for the SBFM and WCFM mod-
-~"-""---.. -.---------"--.- -~" -- ---" -_ .. _--_._----_._--,.-------_._---_ .. _ ... _. __ .. -- ....... __ ... -...•. "-_. __ ._--

els and the nonredundant memory model. Figure 
5-19 plots the results. The assumed bit failure 
rate is Ab = 0.000122 failures per million hours. 

For the SBFM model the hazard is nearly 
constant for the 80 years shown, and the two 
different-size memories exhibit an almost total 
hazard function dominance by the support cir­
cuitry's constant hazard function z{t) = \~. The 
WCFM model exhibits very different behavior 
for this ratio of AsiAb' For both sizes of memory 
the hazard functions increase throughout the 80 
years, with a rapid rise in the first 10 to 20 years 
as the memory array hazard function grows and 
eventually dwarfs the contribution of the support 
circuitry's constant hazard function. At the end 
of 15 to 25 years the WCFM models have larger 
hazards than do the models for the nonredun­
dant memories of the same (logical) size. The 
nonredundant memories exhibit constant hazard 
functions dominated by the greater constant 
hazard of the memory array alone (Aa » Aenr)' 
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... 64K NR 
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Figure 5-19. Comparison of hazard function. 
(© 1980 IEEE.) 

80 

Figure 5-20 demonstrates the effect of varying 
\b while holding As constant (i.e., more reliable 
nemory for the same support technology, thus 
ncreasing AjAb)' The memory modeled is a 16-
)it logical-word memory of 32K words. For 
arger Ab the memory array hazard function 
)ecomes more important and the SBFM model 
)egins to exhibit the same qualities as the 
NCFM model in Figure 5-19. Below some Ab the 
lOnredundant memory model has a consistently 
ower hazard function. Its hazard function never 
~ets as large as the Hamming code hazard func­
ion. 

A block-coded memory of 64K logical words, 
iVith 16 words per block, was compared against 
1 Hamming SEC-coded memory of the same 
logical) size, but having one logical word per 
)hysical word [Elkind and Siewiorek, 1980]. The 
;BFM model was used for both memories. The 
Hamming-coded memory had a hazard function 
hat was approximately constant at 9 failures per 
nillion hours over 80 years. The block-coded 
nemory, on the other hand, had a hazard func­
ion that increased from 4.5 to 7.5 failures per 
nillion hours over 80 years. The block code's 

3 
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• 16 bit 32K word SBFM model, ~b = 0.00122 
... 16 bit 32K word SBFM model, ~b = 0.000732 
• 16 bit 32K word SBFM model, ~b == 0.0000122 
• 16 bit 32K word NR model, ~b = 0.0000122 

10 20 30 40 50 60 70 80 90 

Time, years 

Figure 5-20. Sensitivity of the hazard function 
to Ab' 

greater departure from a constant hazard func­
tion was due to its larger, and hence less reliable, 
code word size. This was more than compen­
sated for by the less complicated support circuit­
ry: over the entire period modeled, the block 
code memory hazard function remained lower 
than the Hamming code hazard function. Thus, 
the block code memory design is more reliable, 
and requires fewer memory chips than the Ham­
ming code memory design. 

fCC Summary. The way in which memory 
chips fail affects the reliability of single-error­
correcting memories. It also dictates the choice 
of models for memory system reliability. When 
the dominant failure mode, chip failure rate, and 
control failure rate are known, the models pre­
sented above can be used in making trade-off 
analyses in memory system design. 

ECC memories are not inherently more reli­
able than nonredundant memories. With very 
reliable memory chips the limiting factor is the 
reliability of the support circuitry. When using 
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standard SSI/MSI logic, Hamming code support 
circuitry has a failure rate several times that of 
the support circuitry for an equivalent nonredun­
dant memory. Most current commercial designs 
use SSI/MSI support circuitry. Using more reli­
able LSI logic for ECC support would greatly 
improve the total ECC memory reliability. 

Reduction of the 
Nonseriesl Nonparallel Case 

Sometimes a "success" diagram is used to de­
scribe the operational modes of a system. Figure 
5-21a depicts a success diagram that is not 
directly reducible by application of the series/ 
parallel formulas. Each path from terminal x to 
terminal y represents a configuration that leaves 
the system successfully operational. The exact 
reliability can be derived by expanding around a 
single module: 

Rsys = Rm X P(system works I m works) 

(21) 

+ (1 - Rm) X P(system works 1m fails) 

-- - wh-ere-th-e-notation--P(3'lmJ--d-enute-s-the--·con-dition-~ 
al probability "s given m has occurred." 

Selecting module B to expand around, Equa­
tion 21 yields the two reduced diagrams in 
Figure 5-21 b. In one, module B is replaced by a 
"short" (module B works); in the other, module 
B is replaced by an "open" (module B is failed 
and not available). Using the series/parallel re­
ductions on the case where B is failed yields: 

Rsys = R B X P(system works I B works) 

+(1 - RB)(RD[l - (1 - RA RE ) (22) 

X (1 - RFRC)]) 

The case for module B working has to be further 
reduced. Expanding around module C yields: 

P(system works I B works) 

= Rc[RD(I - (1 - RA)(1 - RF ))] 

+ (1 - Rc)[RA RD RE ] 

Thus: 

Rsys = RB[RcRD(RA + RF - RA RF) 

+(1 - Rc)RA RDRE] 

+(1 - RB)[RD(RA RE +RFRC 

- RA RCRERF)] 

Letting 

RA = RB = Rc = RD = RE = RF = Rm: 

R = R6 - 3R5 + R4 + 2R3 
~s m m m m 

If the success diagram becomes too complex 
to evaluate exactly, upper- and lower-limit ap­
proximations on Rsys can be used. An upper­
bound on system reliability is [Essary and Pros­
chan, 1962]: 

Rsys < I - n(l - Rpath i) (23) 

where Rpath i is the serial reliability of path i. 
Equation 23 calculates the system reliability as if 
all paths were in parallel. Placing the paths in 
parallel yields a Reliability Block Diagram 
_(RBn) .. ~Figure. __ 5.::22 __ shQws_Jhe_.RBJ2_ .. Q.f.Eig]JTe_ 
5-21. Equation 23 is an upperbound because the 
paths are not independent; that is, the failure of 
a single module affects more than one path. 
Equation 23 is a close approximation when 
Rpath i is small. 

Hence: 

Rsys < 1 - (1 - RA RB Rc RD)(1 - RA RERD) 

X (l - RFRCRD) (24) 

Letting 

RA = RB = Rc = RD = RE = RF = Rill: 

R < 2R3 + R4 - R6 - 2R7 + RIO 
~s m m m m III 

The RBD method can be altered to yield an 
exact result. 

Because the paths are not independent, per­
- form the multiplication in Equation 23 by re~ 



a. 

b. 

~woru 
B works, C fails 

c. 

Figure 5-21. A system success diagram. a.) Re­
duced diagram replacing module B by a "short" 
(working) and an "open" (failed) b.) and further 
reduction with module B "shorted" (working) and 
module C replaced by an "open" and a "short" c.). 

x y 

Figure 5-22. Reliability block diagram (RBO) of 
Figure 5-21. 
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placing R~l with Rm; that is, an individual mod­
ule can only have its reliability raised to the first 
power. 

Rsys = RA RBRCRD + RA R£RD 

-RA RBRcRDR£ . 

+RCRDRF - RA RcRDR£RF 

-RA RBRCRDRF 

+RA RBRcRDR£RF 

Letting 

RA = RB = Rc = RD = R£ = RF = Rill: 

Rsys = R! - 3R~ + R~l + 2R~1 

which is the same result obtained from Equation 
22. Setting all R;'s to Rm has to occur after the 
multiplication; otherwise, individual R;'s would 
be raised to higher than the first power and the 
result would be a lower bound. For obtaining 
exact reliability, the RBD approach is more 
suitable to noncomputerized calculations, be­
cause simplifying assumptions (such as Rj = Rm 
for all i) can be made before algebraic expan­
sion. 

Essary and Proschan [1962] also d~fine a lower 
bound in terms of the minimal cut sets of the 
system. Given that a minimal cut set is a list of 
components such that removal of any compo­
nent from the list (by changing the component 
from operational to failed) will cause the system 
to change from operational to failed, a lower 
bound is given by: 

Rsys > II Rcut j (25) 

where Rcut j is the reliability of minimal cut set i. 
The minimal cut sets for Figure 5-21a are D, A C, 
AF, CE, and BEF. Hence: . 

For 

RA = RB = Rc = RD = R£ = RF = Rm: 

Rsys > R!? 
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Reliability Calculation Aids 

Existing algorithms and programs for calculating 
computer system reliability may be roughly cast 
into one of two classes based on the form of the 
input data and type of problem being consid­
ered. 

The first class of algorithms and programs 
accepts the graph of the physical (or logical) 
interconnections of system components and cal­
culates fairly simple measures of reliability for 
the system. Typically the system is a computer 
communication network, and the vertices of the 
interconnection graph denote the computers 
while the arcs denote the communication links. 
Either arcs or vertices or both are assumed to fail 
stochastically. Typically, all failing elements are 
considered homogeneous, with identical proba­
bilities of failure. Two common reliability mea­
sures computed for such a system are 

• The probability that some specific pair of vertices 
will have at least one communication path between 
them at all times 

• The probability that the operative arcs always con­
tain a ,spanning of the network 

Analysis (FMECA). Reliability Graphs are more 
often used to compute numerical values of reli­
ability (also termed network reliability analysis 
in the literature). Shoo man [1970] shows that 
these two intermediate representations are equiv­
alent. The kinds of problems addressed here are 
far more general than the simple networks of the 
first class. Generalization is made possible by the 
fact that Reliability Graphs and Fault Trees are 
hand derived from a knowledge of the system. 
Lapp and Powers [1977] describes recent work 
toward automating synthesis of Fault Trees for 
chemical engineering systems. The literature on 
the analysis of Reliability Graphs and, in partic­
ular, Fault Trees is vast; the references here 
serve as a bare introduction [Misra, 1970; Gan­
dhi, Knove, and Henley, 1972; Satyanarayana 
and Prabhaker, 1978; Aggarwal and Rai, 1978; 
Bennetts, 1975]. 

CARE II. CARE II (Computer-Aided Reli­
ability Estimation II), developed at the Raytheon 
Company under contract to NASA [Raytheon 
1974, 1976], implements a very general combina­
torial model for systems consisting of one or 

---------------- -----more--subsystems--or-stages:--E-ach-stage-con tairrs-a-
Frank and Frisch [1970] and Wilkov [1972] are number of identical modules configured as a set 

good tutorial papers on the subject. These types of active devices with spares. CARE II handles 
of network reliability calculation problems have hard and transient faults, reconfiguration with 
been shown to be NP-hard in the case of general degraded performance, and coverage. Two oper-
networks [Rosenthal 1977; Ball, 1980]. ating modes are allowed for each stage: fully 

The second class of algorithms and programs operational and degraded but partially opera-
accepts as input some intermediate representa- tional. The coverage model depends on three 
tion that encodes the reliability behavior of the conditional probabilities: 
system under consideration. This representation, 
from which the system reliability is computed, is 
expected to be derived by human computation 
from the system interconnection structure and 
functionality requirements before being input to 
the program. Reliability Graphs and Fault Trees 
are the most commonly used intermediate repre­
sentations. The system interconnection graph 
mayor may not be isomorphic to the derived 
intermediate representation. Fault Trees are used 
as aids in Failure Modes Effects and Criticality 

1. D = the probability that a fault is detected, given 
that one occurs; 

2. I = the probability that a fault is correctly isolated, 
given that it is detected; and 

3. R = the probability that the system recovers from 
a fault, given that it was properly isolated and that 
sufficient spares still exist. 

The inputs to CARE II are the reliability 
parameters for the modules within each stage, 
and a description of the coverage detection/ 



isolation/recovery mechanisms. The output in­
cludes coverage specification and contributions, 
system reliability and unreliability (both tables 
and plots), MTTF, mission time, and several 
other measures. CARE II is a very versatile 
program, limited largely by its combinatorial 
approach, which precludes repair. 

AD VISfR. Recen t work by Kini [1981] has ad­
vanced the state of the art with respect to 
computation of computer system reliability at 
the Processor-Memory-Switch (PMS) [Bell and 
Newell, 1971] level of design. Kini describes a ' 
program named ADVISER (ADVanced Interac­
tive Symbolic Evaluator of Reliability), which 
computes the symbolic system reliability expres­
SIon gIven: 

1. The interconnection graph (PMS diagram) of the 
system, 

2. The reliability of each class of identical system 
components, and 

3. A simple statement of system functionality require­
ments. 

The program assumes that the arbitrary sys­
tem PMS diagram is represented as a nondirect­
ed graph whose vertices are labeled with the 
corresponding system component names. How­
ev~r, the organization of the program does not 
preclude a directed graph model. Component 
behavior is lumped into the vertices, which are 
subject to stochastic failures, whereas the edges 
of the graph are perfect and represent only the 
topology of the interconnection. Hence, the fail­
ure of a component implies the removal from the 
graph of the corresponding vertex and all arcs 
incident on it. Components are assumed to be 
binary-state entities. The communication axiom, 
fundamental to the reliability calculation para­
digm of ADVISER, states roughly that function­
ing components belonging to the component 
classes distinguished by the statement of func­
tionality requirements must at all times be able 
to communicate in order for the system to be 
functional. Only hard-failure reliability is com-
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PMS DIAGRAM: 

-r--FBUS.1 I I 
IT FBUS.2 -+-t --ti..---t~----4i'-
KS.1 KS.2 KS.3 KS.4 KS.5 KS.6 

\( \( lMS.,J 
IOBUS.1 IOBUS.2 MS.2~ 

[KO.,-MO., [KO.2_MO.2 
ML.1 ML.2 

Key: P = processor, FBUS = fast bus, 

KS = fast bus interface, MS = shared memory, 

lOBUS = processor bus, ML = local memory, 

MD = disk memory, KD = disk controller. 

REQUIREMENTS EXPRESSION: 

1 of P and 1 of ML and 1 of MD and 1 of MS 

Figure 5-23. Sample PMS and requirements ex­
pression input to ADVISER. 

puted, and the effects of coverage are not mod­
eled in the present version of the program. An 
example illustrates the operation of ADVISER. 

Figure 5-23 shows a simple dual-processor 
system with a duplicated fast interprocessor bus 
that also allows access to shared dual-ported 
memories. Each processor also has its own I/O 
bus with a disk and local memory. The Boolean 
requirements expression in the figure distinguish­
es four of the component classes (processor, local 
memory, disk, and shared memory) and states 
that at least one component from each of the 
four classes must be functioning at all times if 
the system is to be functional. A requirements 
expression may also contain a disjunction, such 
as 

1 of P and 1 of MD and (1 of MS or 1 of ML). 

During the course of the reliability computation 
ADVISER takes into account all component 
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classes not mentioned in the requirements ex­
pression, whose members must be functional in 
the various system success states. 

ADVISER begins its analysis by detecting 
symmetries in the interconnection graph. Two 
subgraphs will be symmetric if they are isomor­
phic, and corresponding vertices of the sub­
graphs represent components drawn from the 
same class of identical system components. Any 
symmetries found will enable the calculations for 
one member of a group of symmetric subgraphs 
to be used as templates for the results concerning 
the other members of the group. The graph is 
then segmented into subgraphs for which special 
reliability calculation techniques are known. 
When these known subgraphs are removed from 
the original interconnection graph, the remaining 
vertices and edges form a subgraph, called the 
kernel, for which special techniques are not 
known, and which is therefore treated with sim-

SEGMENTED PMS DIAGRAM: 

Kernel 

hFBUS01 
FBUS.2 

KS.1 KS.2 

\/ 
P.1 

Pendant Trees 

P.1 

I 
IOBUS.1 

tK001-M001 

ML.1 

1 T 1 i 
KS.3 KS.4 KS.5 KS.6 

\/ 
P.2 tMso1j MS.2 

P.2 

I 
IOBUS.2 

lKO.2-MO.2 

ML.2 

ple pathfinding algorithms to compute reliability. Key: P = processor, FBUS = fast bus, 

Currently the only subgraphs for which special KS = fast bus interface, MS = shared memory, 

techniques have been devised are Pendant Tree lOBUS = processor bus, Ml· = local memory, 

Subgraphs. These are rooted tree subgraphs MD = disk memory, KD = disk controller. 

whose root vertices are articulation vertices of ___ ~lg_~r~_~~:!-___ ~~_~_ ~f ~jQ_~~~_~~?_~_~f~~~ ------nTInnferconnecllon--grapn; -tne-patnoetwe-en--any segme nta t i on. 
two vertices in the subgraph is the only such path 
between those two vertices in the interconnec­
tion graph. Pendant tree subgraphs were a natu­
ral starting point in the search for special 
techniques because they occur so frequently in 
typical PMS structures. The design of ADVIS­
ER, however, allows inclusion of other types of 
subgraphs in the scheme as and when special 
reliability calculation techniques are devised for 
them. 

Figure 5-24 shows the example PMS segment­
ed into symmetric Pendant Tree Subgraphs and 
a Kernel. The interface vertices, in this case P.I 
and P.2, are considered only once during reli­
ability calculation although for convenience they 
appear both in the Kernel and in the Pendan t 
Tree Subgraphs of which they are roots. At this 
time ADVISER fragments the requirements ex­
pression into its atoms and analyzes cases in 

which the system satisfies each of those atomic 
requirements. Assume, for example, that one of 
the atomic requirements is "5 of M.shared" and 
the interconnection graph is divided into three 
segments. Then anyone of the different ways in 
which five M.shared components could feasibly 
be chosen from the three graph segments would 
satisfy the atomic requirement "5 of M.shared." 
For each of these cases a symbolic expression 
would be produced representing the probability 
of having five functional M.shared components 
scattered in a different way among the three 
segments. In our example the atomic require­
ment "1 of ML" can be satisfied by the function­
ing either of ML.I in one Pendant Tree 
Subgraph or of ML.2 in the other, but no 
components of class ML are available in the 



Kernel. In the case that M L.l is functioning, 
then, to be useful, it must be available to the rest 
of the system in the other segments. This implies 
that lOBUS. 1 and P.l must be functional. The 
symbolic probability expression for this is 
Rp.l R'OBUS.l RML.l· The probability expression 
in the case of ML.2 functioning in the other 
(symmetric) Pendant Tree Subgraph is identical 
in form. Each satisfaction of an atomic require­
ment produces such a symbolic probability ex­
pression. The atomic requirements "I of P," "I 
of M L," and" 1 of MD" are each satisfied by two 
of the three segments of the graph. The atomic 
requirement" 1 of MS" is satisfied only by the 
Kernel. Thus, there is a total of eight cases in 
which the system is functional. 

ADVISER contains algorithms that accept 
symbolic probabilities of events, such as are 
generated for the cases above, and produces 
other symbolic probabilities for the conjunction 
or disjunction of those events. By using these 
algorithms it is possible to assemble the proba­
bilities of the analyzed functional cases to obtain 
the reliability of the system. The symbolic prob­
abilities and the eventual symbolic system-reli­
ability function are maintained in sum-of-prod­
ucts canonical form within ADVISER. 

The output of ADVISER consists of the text 
of a FORTRAN function that computes the 
symbolic reliability function assembled by the 
program. Optionally, a procedure in the SAIL 
language can also be output. Figure 5-25 shows 
the FORTRAN output from ADVISER for the 
PMS of Figure 5-23. The block of comments 
preceding the function definition of RSYS (the 
name is user-assignable) is simply a reproduction 
of the salient input data for the problem. The 
type definitions identify the classes of identical 
components in the PMS structure and give the 
parameters for the reliability of a representative 
member of each class. Currently, components 
may be described as having exponential, Weib­
ull, constant, and external reliability functions. 
In the last case, ADVISER inserts a user-sup­
plied function that computes the component 
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reliability. Failure rates (or the scale parameter, 
in the Weibull case) are under the LAMBDA 
column and are in units of per-million-hours. 
The numbers in this example were arbitrarily 
chosen. 

The definition of the function itself initializes 
variables to the value of component class reli­
abilities at the time, which is given as the func­
tion parameter. Some expressions are computed 
and assigned to temporary variables. These ex­
pressions represent the templates for the various 
symbolic probabilities derived for symmetric 
subgraphs of the interconnection graph. Finally, 
the expression that gives the system reliability is 
computed and the resultant floating-point num­
ber is returned as the value of the function. 
Continuation lines are preceded by a dollar-sign 
in column six, and the variable MODREL is 
especially useful when printing of the reliability 
function requires more continuation lines than 
are allowed by the FO R TRAN compiler. 

Redundancy to Enhance Chip 
Yield 

As pointed out in Chapter 2, semiconductor 
technology continues to produce increased den­
sities and chip sizes. As chip size increases and 
defect density remains constant, however, the 
chip yield diminishes. Redundancy on the chip 
has been suggested as an effective means to 
increase yield [Tamman and Angell, 1967]. In'­
deed, several semiconductor manufacturers al­
ready provide spare bits and control electronics 
on 16- and 64K-bit memory parts [Posa, 1980]. 
The redundancy is configured after wafer probe 
but before final assembly. Polysilicon fuses or a 
second layer of metallization provide the means 
for handwiring the configuration. The redundan­
cy may vary from as little as 1 percent to over 25 
percent. The redundancy requires additional 
chip area, raising the question of how much 
improvement of chip yield redundancy will ac­
tually provide. This section uses combinatorial 
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C---------------------------------------------------------------------------
C ** FORTRAN Module for Reliability Function evaluation 
C ** produced by ADVISER on Sunday, 18 Jan 81 at 17:32:37 for [4,1367J 
C---------------------------------------------------------------------------
C ** Task Title: EXPMS.PMS -- An example PMS to demonstrate ADVISER. 
C 
C ** Requirements on the Structure were: 
C 
C 
C 

(1-0F-P AND 1-0F-ML AND 1-0F-MS AND 1-0F-MD) 

C ** Component-Type definitions for this task: 
C 
C INDEX TYPENAME PRINTNAME REL.FN. PARAMS 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

o FASTBUS 
1 K.FBUS 
2 M.SHARED 
3 M.LOCAL 
4 CPU 

5 lOBUS 
6 DISK 
7 K.DISK 

FBUS 
KS 
MS 
ML 
P 

lOBUS 
MD 
KD 

Expon. 
Expon. 
Expon. 
Expon. 
Weibull 

Expon. 
Expon. 
Expon. 

Lambda= .00010000 
Lambda=6.00000000 
Lambda=10.00000000 
Lambda=10.00000000 
Lambda=8.00000000 
Alpha= .95000001 
Lambda= .00010000 
Lambda=10.00000000 
Lambda=6.00000000 

C ** PMS Structure Definitions for this task: 
C 
C INDEX NAME TYPE NNEIG NEIGHBORS 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

o FBUS.1 
1 FBUS.2 
2 KS.1 
3 KS.2 
4 KS.3 
5 KS.4 
6 KS.5 
7 KS.6 
8 P.1 

-g-- P-.Z-
10 lOBUS. 1 
11 IOBUS.2 
12 ML.1 
13 ML.2 
14 KD.1 
15 KD.2 
16 MD.1 
17 MD.2 
18 MS.1 
19 MS.2 

FASTBUS 
FASTBUS 
K.FBUS 
K.FBUS 
K.FBUS 
K.FBUS 
K.FBUS 
K.FBUS 
CPU ----CWI------- -
lOBUS 
lOBUS 
M.LOCAL 
M.LOCAL 
K.DISK 
K.DISK 
DISK 
DISK 
M.SHARED 
M.SHARED 

3 
3 
2 
2 
2 
2 
3 
3 
3 ----3 
3 
3 
1 
1 
2 
2 
1 
1 
2 
2 

(KS.1, KS.3, KS.5) 
(KS.2, KS.4, KS.6) 
(FBUS.1, P.1) 
(FBUS.2, P.L) 
(FBUS.1, P.2) 
(FBUS.2, P.2) 
(FBUS.1, MS.1, MS.2) 
(FBUS.2, MS.1, MS.2) 
(KS.1, KS.2, IOBUS.1) 
(KS~3~-R-S-~-4-;--roBUS-:Zr-

(P.1, KD.1, ML.1) 
(P.2, KD.2, ML.2) 
(lOBUS. 1 ) 
(IOBUS.2) 
(MD.1, lOBUS. 1) 
(MD.2, IOBUS.2) 
(KD.1) 
(KD.2) 
(KS.5, KS.6) 
(KS.5, KS.6) 

C---------------------------------------------------------------------------
C 
C *** Begin Reliability Function evaluation code; 

REAL FUNCTION RSYS (T); 
IMPLICIT REAL (A-Z) 

WEIBUL(LAMBDA,ALPHA,TIME)=EXP(-(LAMBDA*lE-6*TIME)**ALPHA) 

FBUS = EXP(-0.000100 * 1E-6 * T) 
KS = EXP(-6.000000 * 1E-6 * T) 
MS = EXP(-10.000000 * 1E-6 * T) 
ML ~ EXP(-10.000000 * 1E-6 * T) 
P = WEIBUL( 8.000000 , 0.950000 , T 
lOBUS = EXP(-0.000100 * 1E-6 * T) 
MD = ~XP(-10.000000 * 1E-6 * T) 
KD = EXP(-6.000000 * 1E~6 * T) 

C ** End of expressions for calculating individual reliabilities; 

Figure 5-25. FORTRAN output from Adviser. 
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XXXO = ML * P * lOBUS 
XXX2 = P * lOBUS * MD * KD 
XXX4 = ML * P * lOBUS * MD * KD 

C ** End of template evaluating-expressions; 

MODREL = 0 

MODREL = 8.0 * FBUS * KS**2 * MS * XXX4 + 8.0 * FBUS * KS**3 
$ * MS * XXXO * XXX2 - 4.0 * FBUS * KS**2 * MS**2 * XXX4 -
$8.0 * FBUS * KS**3 * MS * XXXO * XXX4 - 8.0 * FBUS * KS**3 * 
$MS * XXX4 * XXX2 + 4.0 * FBUS * KS**3 * MS * XXX4**2 - 4.0 
$ * FBUS * KS**3 * MS**2 * XXXO * XXX2 + 4.0 * FBUS * KS**3 * 
$MS**2 * XXXO * XXX4 + 4.0 * FBUS * KS**3 * MS**2 * XXX4 * XXX2 
$ - 2.0 * FBUS * KS**3 * MS**2 * XXX4**2 - 4.0 * FBUS**2 * 
$KS**4 * MS * XXX4 - 4.0 * FBUS**2 * KS**4 * MS * XXX4**2 + 
$2.0 * FBUS**2 * KS**4 * MS**2 * XXX4 - 4.0 * FBUS**2 * KS**6 
$ * MS * XXXO * XXX2 + 2.0 * FBUS**2 * KS**4 * MS**2 * XXX4**2 
$ + 8.0 * FBUS**2 * KS**5 * MS * XXX4**2 + 4.0 * FBUS**2 * 
$KS**6 * MS * XXXO * XXX4 + 4.0 * FBUS**2 * KS**6 * MS * XXX4 
$ * XXX2 - 6.0 * FBUS**2 * KS**6 * MS * XXX4**2 + 2.0 * FBUS 
$**2 * KS**6 * MS**2 * XXXO * XXX2 - 2.0 * FBUS**2 * KS**6 * 
$MS**2 * XXXO * XXX4 - 2.0 * FBUS**2 * KS**6 * MS**2 * XXX4 * 
$XXX2 + 3.0 * FBUS**2 * KS**6 * MS**2 * XXX4**2 - 4.0 * FBUS 
$**2 * KS**5 * MS**2 * XXX4**2 

C ** End of System Reliability computation; 

RSYS = MODREL 
RETURN 
END 

Figure 5-25 -Continued 

modeling techniques to evaluate duplication as a 
means of yield improvement. 

In the absence of redundancy, one or more 
defects in a chip cause it to be discarded. There 
are three basic types of defects [Murphy, 1964]: 

1. Area defects caused by such faults as diffusion or 
masking errors, surface layer inversion and general 
contamination. They affect whole slices or areas 
larger than the chip size. 

Lathrop, 1974]. Using the simple Poisson distri­
bution to illustrate the usefulness of redundancy 
on a chip, let D be the defect density measured 
in number of spot defects per unit area. Assum­
ing that the defect centers obey the Poisson 
probability distribution and are independent, 
then, if the effective circuit area is A, the proba­
bility that the device is good is: 

2. Line defects caused by scratches during the han­
dling of a chip. 

3. Highly localized spot defects, the most common 
defects, caused by imperfections during the diffu­
sion or masking process. 

As the predominant cause for discarding the 
chip, the last category affects the yield most. 

In several attempts to predict chip yield, the 
assumptions for defect density range from a 
simple Poisson distribution to a compound (or 
mixed) Poisson distribution [Murphy, 1964; 
Stapper, 1973; Warner, 1974; Gupta, Porter, and 

(26) 

The defect density D itself is not constant. Let 
J(D) be the normalized distribution function of 
D. Then the overall yield, Y, is: 

Y = foco e-DA j(D) dD (27) 

On the basis of experiences in the field, Mur­
phy [1964] has claimed that the distribution 
function, j(D), may be assumed to be the bell­
shaped curve shown in Figure 5-26. The curve 
can be further approximated by a 8-function, a 
rectangular step function, or a triangular func-
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Figure 5-26. Normalized distribution function of 
chips in defect densities. 

tion. For our purposes, the bell-shaped curve is 
approximated by: 

J(D) = D/D6 for 0 < D < Do (28) 

= (2Do - D)/D6 for Do < D < 2Do 

Evaluating the integral in Equation 27, using 

The probability that there is at least one good 
section to use is: 

e-DaA / n (2e- DA / n _ e-2DA / n ) 

Because there are n such sections, the proba­
bility that the chip is good is: 

p = e-DaA(2e-Da/n - e-2DA / nt (30) 

Again, using the expression for yield: 

Y,. = J pJ(D)dD (31) 

we can determine Y,., the yield of a chip with 
redundancy. 

The integration of terms in Equation 30 pre­
sents difficulties. The solution is obtained by first 
expanding the bracketed terms using the binomi­
al theorem. The expression can then be integrat­
ed with comparative ease. 

where b = A[1 + a + (l/n)]. 
The expression for Y,. remains very complex. It 

___________ is best evaluated numerically, and then com-
---- -p-a~~d-With-Y~-Flgure-5-=29--shows--the--yreI(r-Ora--

J(D) from Equation 28, produces: 
- - - - ~ - --- ---- - - -----

y ~ C -D:;OA) (29) redundant chip as a function of DoA for n = 2. 

Figure 5-27 shows the yield as a function of 
DoA. 

Now consider replication as a means of im­
proving yield. A circuit is logically divided into n 
sections of identical complexity, as shown in 
Figure 5-28. Each section is then duplicated, and 
simple switching circuitry is added to each pair 
of sections to allow selection of a good section 
after testing for spot defects. Assuming that the 
area required for a circuit is directly proportional 
to its complexity, let the complexity of the logic 
added to each section be a times the complexity 
of the section. The parameter a includes the 
additional circuitry required to control the func­
tions of the chip (such as a shift register to 
control which duplicate sections are being used). 

The yield of a nonredundant chip with the same 
DoA is also depicted with the curves for a = 1.0, 
a = 0.5, a = 0.1, and a = O. As expected, the 
Y,. for the worst case of a = 1.0 (the selection 
and switch -circuitry comparable to the original 
circuits) is less than that of the nonredundant 
chip. Significant increases in Y,. are observed as a 
reduces to 0.5, and further to 0.1. Any further 
gains, however, are marginal, for there is only a 
sligh t increase in Y,. as a is allowed to approach 
zero. For a typical LSI microprocessor circuit 
(0.2 in. X 0.2 in.) with mean defect density Do 
about 6.4 defects per sq. cm. [Muehldorf, 1975], 
the yield of a nonredundant chip as predicted by 
Equation 28 is 24 percent. With duplication after 
dividing the circuit into two sections (n = 2) 
and with a = 0.1, the yield will increase to 42 
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-percent, afactor-ofL-7-5-increase-in-yield-for --a 
small increase in complexity. 

In Figure 5-30 Y is plotted allowing n to vary 
with a = 0.5. Again, the yield of the nonredun­
dant chip is also depicted for comparison. Al­
though the yield increases with n, the maximum 
increase is at low values of n (two and four), 
larger numbers of divisions providing diminish­
ing returns. This fact is also obvious in Figure 
5-31, where Y,. is depicted as a function of n for 
DoA = 1.5. Once again, for a = 1.0 the yield is 
less than that of a nonredundant chip. 

Alternatively, redundancy can be used to en­
hance logic complexity while maintaining a giv­
en level of yield (the production point estab­
lished for maximizing return). The equations 
above can be used to estimate the degree to 
which logic complexity can be increased while 
maintaining a constant yield. 

If there are N possibles on a wafer, for the 

-- nonredundantcasetne_numheroLgoodpossibles 
IS _ 

NYo (33) 

where Yo is the nonredundant yield. For the 
redundant case there are NY,./[2(I + €) + a] pos­
sibles, where € represents an increase in logic 
complexity over the nonredundant circuit and Y,. 
is the redundant yield. 

If the redundant and nonredundant number of 
possibles are equated, we have: 

Y,. 
Yo = (2 + a + 2€) (34) 

where Y,. is a function of €. 

The second column of Table 5-8 lists the value 
of Do A beyond which redundancy is better than 
nonredundancy as a function of the number of 
sections, n. For larger values of DoA, redundan­
cy yields more possibles. When these are only 



EVALUATION CRITERIA 245 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 

0.8 

0.6 

0.4 

0.2 

Yield Y,. as a function of 
DoA(a = 0.5) 

1.0 

DoA~ 

Figure 5-30. Yield Y,. as a function of DoA(a 05). 

----
0~------~2--------~4------~6~------~8--------1~0------~12 

n~ 

Figure 5-31. Yield y"as a function of n(DoA = 1.5). 

10.0 



246 THE THEORY OF RELIABLE SYSTEM DESIGN 

Table 5-8. Use of redundancy to increase nonredundant circuit complexity, 
holding number of possibles per wafer constant. 

Limiting Value of 
Original Circuit 

Limiting Value (as Complexity 
Value of DoA Do A approaches Increase (e) for 
(number oj dejects) infinity) of Relative which Compete 
Beyond Which Number of Duplication Yields Chip Size of 
Complete Possibiles Same Number of Resultant Redundant 

Number of Sections in Duplication Yields Complete Possibles Chip Relative to 
Chip, n More Possibles Duplication Wafer Nonredundant Chip 

2 None 0.94 

3 1.78 1.17 0.86 3.90 

4 1.40 1.40 0.91 4.01 

6 1.20 1.80 1.14 4.49 

8 1.10 2.18 1.01 4.22 

two sections (n = 2), the nonredundant design dundant circuit. For a redundant circuit with the 
always yields a larger number of possibles. For same yield and n = 3, the number of extra 
n = 3, DoA = 1.78 for break-even, while DoA possibles would be only 0.04 instead of the 
is as small as 1.1 for n = 8. limiting value of 0.17. 

In order to see what the maximum potential Other redundancy schemes to enhance yield 
gain is through the use of redundancy, DoA was can be evaluated using the Combinatorial Tech-

--- --atlowe-d----to--b-e-com-e----arbitrarily--large~ --The third ---- -niq-ues-presen-ted-in--the--seetions--ab(:)Ve on Series/ 
column of Table 5-8 lists the limiting value of Parallel Systems, M-of-N Systems, and Reduc-
Y,/>O(2 + a) for a = 0.1. For n = 8 the number tion of Nonseries/Nonparallel Cases. 
of possibles increases by almost a factor of 2.2. 

Converting the increased number of possibles 
from redundancy to increase the nonredundant 
circuit size yields solutions to Equation 34. The 
fourth column of Table 5-8 lists the limiting 
value of € for arbitrarily large DoA, and the fifth 
column lists the relative size (nonredundant = 1) 
of the resultant redundant chip. The table shows 
that a potential increase of 114 percent in the 
nonredundant circuit complexity can be 
achieved through use of redundancy and a chip 
4.49 times larger than the nonredundant circuit 
without sacrificing the number of possibles from 
a wafer. This, however, is a maximum potential, 
and the number of possibles (yield) at that point 
might be unacceptably low. If DoA were 2.4, for 
example, the yield would be 0.143 for the nonre-

Markov Models 

A powerful tool for analyzing complex probabi­
listic systems is the Markov process model. The 
two central concepts of such models are state 
and state transition. The state of a system repre­
sents all that must be known to describe the 
system at any instant. For reliability models, 
each state represents a distinct combination of 
working and failed modules. If each module is in 
one of two conditions-working or failed-then 
the complete model for a system of n modules 
has 2n states. As time passes, the system goes 
from state to state as modules fail and are 
repaired. These changes of state are called state 



:ransitions. Discrete-time models require all state 
:ransitions to occur at fixed intervals and assign 
Jrobabilities to each possible transition. Con tin­
lous-time models allow state transitions to occur 
1t varying, random intervals, with transition 
~ates assigned to possible transitions. For reli-
1bility models, the transition rates are the mod­
lIe hazard functions and repair-rate functions, 
Jossibly modified by coverage factors. 

Time-Invariant Markov Models 

fhe basic assumption underlying Markov mod­
!ls is that the probability of a given state transi­
:ion depends only on the current state. For 
:ontinuous-time Markov processes, the length of 
:ime already spent in a state does not influence 
!ither the probability distribution of the next 
;tate or the probability distribution of remaining 
:ime in the same state before the next transition. 
fhese very strong assumptions imply that the 
Naiting time spent in anyone state is geometri­
:ally distributed in the discrete-time case, or 
!xponentially distributed in the continuous-time 
:ase [Howard, 1971]. Thus, the Markov model 
laturally fits with the standard assumption that 
~ailure rates are constant, leading to exponential­
y distributed interarrival times of failures and 
Poisson arrivals of failures. 

Figure 5-32 is a graphic representation of the 
:wo-state discrete-time Markov model. The la­
Jeled nodes correspond to the states of the 
nodeled systems, and the labeled, directed arcs 

O,l-States 
qe' q, - State transition probabilities 

Figure 5-32. Two-state discrete-time Markov 
model. 
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represent the possible state transitions. The in­
formation conveyed by the model graph is often 
summarized in a square matrix p, whose ele­
ments Pi) are the probabilities of a transition 
from state i to state). The probabilistic nature of 
the matrix requires that each row of the matrix 
must sum to one, and that all elements of the 
matrix must be nonnegative. The transition 
probability matrix for the model of Figure 5-32 is 

Current 
State 

o 

New 
State 

o 

[
I - qe qe ] 

qr I - q,. =P 

The discrete-time model is solved by a set of 
linear equations based on the transition proba­
bility matrix. In vector notation, these equations 
are defined as: 

P(k + 1) = P(k) X P 

In more explicit form, the equations for the 
model of Figure 5-32 are: 

[
I - q X e 

qr 

Multiplying into separate equations yields: 

PoCk + 1) = (I - qe)pb(k) + qrP, (k) 

PI (k + 1) = qePO(k) + (I - qr)PI (k) 

The n-step transition probability matrix that 
contains the probabilities of transitions from one 
state to another in exactly n transition intervals 
is given by P". In general, to find the probability 
distribution of a transition from one state to 
another in no more than k steps,Ji;(k), state) can 
be made a "trapping" state, with Pjj set equal to 
one, and the analysis is straightforward. 

The continuous-time Markov model can be 
derived from the discrete.:time model by taking 
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1-Mt 

Aat, p,at-State transition probabilities 

A, ,..-State transition rates 

1 - p,at 

Figure 5-33. Two-state differential Markov model. 

the limit as the time-step interval approaches 
zero. Consider a single system with constant 
failure rate A that can be repaired with constant 
repair rate JL. Let Po (I) and PI (I) be the probabil­
ities of being in the nonfailed state and the repair 
state, respectively. The transactions between 
states can be represented as in Figure 5-33. From 
the figure we can write the following transition 
matrix: 

p = [1 -AD.t 
JLD.t 

The probability of being in state 0 or 1 at time 

.t_± .l}~J_~~P:_ ._~~ J~!~~l~_t_~~._~._!!l~l_tiplX~!lJL!?e 
probability at time 1 by the transition matrix: 

Performing the indicated multiplication yields a 
system of equations 

PO(I + D./) = (I - AD./)Po(/) + P.D.IPI (I) 

PI (t + D./) = AD.IPo(t) + (I - JLD.t)PI (t) 

Rearranging and dividing by D.t produces: 

Po (t + D.t) - Po (t) _ "\ () ( ) 
D.t - -I\Po t + JLPI t 

PI (I + D./) - PI (I) = A (I) - (I) 
D.I Po JL PI 

Taking the limit as D.I approaches zero generates 

A-Failure rate 

,..-Repair rate 

Figure 5-34. Two-state continuous-time Markov 
model. 

a set of simultaneous differential equations (the 
Chapman-Kolmogorovequations): 

dpo(/) . 
-----;Jt = Po(/) = -APo(/) + P.PI (I) 

dPI (I) . 
([t = PI (I) = APo(/) - JLPI (I) 

(35) 

In matrix form 

or 

P(t) = P(/) X T (36) 

The set of equations (continuous time Chap­
man-Kolmogorov equations) can be written by 
inspection of a transition diagram without self­
loops or D.I's. Consider Figure 5-34. The change 
in state 0 is minus the flow out of state 0 times 
the probability of being in state 0 at time 1 plus 
the flow into state 0 from state 1 times the 
probability of being in state I. The equation for 
the change in state I is derived in a similar 
manner. 

The set of equations in 35 can be solved by use 
of the LaPlace Transform of a time domain 
function, given by: 

The LaPlace Transform reduces ordinary, con­
stant-coefficient linear differential equations to 



Table 5-9. Common LaPlace Transforms. 

J(t) 

l.k 
k 
s 

2. 8(t) [Unit Impulse] 

3 -at .e 

n-I 
4 t e-at 

. (n - 1)! 

5. kJ(t) 

6. J(t) + get) 

7. jet) 

8. tj(t) 

9. fcf J(r)dT 

10. fJ(t) 

11. eAt, A = matrix 

s+a 

kJX(s) 

JX(s) + gX(s) 

s1""(s) - J(O) 

_jX(s) 

(1/s)JX(s) 

fsOO J(o) do 

[sf - Ar l 

Note: f(O) denotes the value of f(/) at time 1 = O. 

algebraic equations in s. The algebraic equations 
are solved and transformed back into the time 
domain. 

Taking the LaPlace Transform of Equation 35 
using Table 5-9 gives: 

(37) 
Sp{(S) - PI (0) = APO(S) - JLP(s) 

where PoCO) is the value of poet) at t = 0. The 
algebraic equations in Equation 37 can be solved 
by any linear equation-solving technique such as 
Kramer's rule or Gaussian elimination. Using 
matrix algebra, Equation 37 can be written as: 

x x [s + A -A J [pO(O),PI (0)] = [Po (S),PI (s)] X -J-t S + J-t 
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or 

P(O) = P_\-(s) X [sl - T] = P-\-(s) X A 

where I is the identity matrix and T is the 
differential matrix derived earlier. Thus: 

To derive A-I from A, recall that element 
a'- of A-I can be calculated as: 

Ij 

, cofactor ji (A) 
a-- = 

Ij det A 

where cofactorji (A) is defined as: 

cofactorji (A) g (_l)i+j X determinant of matrix 
formed by removing row j and column i from A 

and det A IS the determinant of A. For our 
example, 

A = [s + A -A J 
-IL S + fl 

det A = s2 + AS + JLs 

[ s : I' S ~ AJ 
A-I 

- s2 + AS + flS 

Assuming that the !ystem starts .out in the oper­
ational state, then P(O) = [1,0]. So: 

]5X(S) = [1,0] 

[ 

S + JL 

X s2 + ~ + I's 

s2 + AS + JLs 

or 

X( ) s + JL 
Po S = 2 +"\ + 

S I\S JLS 

A 
p{(s) = s2 + AS + flS 
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The general form of the transforms calculated by 
this stage in the solution process is that of a 
rational fraction in s, which is a ratio of two 
polynomials in s: 

f X( ) = N(s) 
s D(s) 

The inverse transform of a rational fractional is 
obtained by the following process. 

1. If the degree of the numerator is greater than or 
equal to the degree of the denominator, divide the 
denominator into the numerator until the degree of 
the remainder is one less than that of the denomi­
na tor. The result is: 

fX(s) = N (s) + Nr(s) 
q D(s) 

The inverse transform of Nq(s) can be found by 
using relationships 2 and 7 from Table 5-9 and 
added to the remaining solution because of rela­
tionship 6. (For our example, this step is unneces­
sary, as indeed is usually the case. Even when 
required, the degree of Nq(s) is almost never higher 
than one or two.) 

2. The roots of the denominator polynomial D(s) must 
be ·founa·:liygeneral~-nfer(yorsmay·15eeilherreatur· .. 
complex, and there may be multiple occurrences of 
distinct roots. For our example, we shall assume 
that all roots are real and distinct. This is usually 
the case, and other cases can be found using similar 
techniques. If D(s) is a second degree polynomial, 
the two roots can be found by direct use of the 
quadratic formula. Otherwise, the roots can be 
extracted using such techniques as Horner's meth­
od or Lin's method. 

3. After finding the roots -a), -a2' ... , -ar of D(s), 
the rational fraction Nr(s)/D(s) must be expanded 
into 

Nr(s) Nr(s) 
D(s) = (s + a))(s + a2) .. .o (s + ar) 

~ k2 kr =--+--+ ... +--. 
s + a) s + a2 s + ar 

where r is the degree of D(s) and k i is a constant 
associated with the ith root. This expansion is 
called the partial fraction expansion of the rational 
fraction. The easiest way to find each constant k i is 

to cancel the (s + a;) factor in D(s) and evaluate 
the modified fraction for s = -ai: 

x (a2 - a)··· (ai-I - ai ) 

X (a i+ I - aJ ... (a,. - ai )] 

After obtaining the partial fraction expansion, the 
inverse transform is found by applying relation­
ships 3 through 6 from Table 5-9. 

Returning to our example, after following the 
steps above, we find the partial fraction expan­
sions of the transforms: 

J.L A 
A+" A+" P x (s) = --' + ---=--'--'-° s S+A+J.L 

A A 
x _ A+J.L A+J.L 

PI (s) - -s- - S + A + J.L 

Taking the inverse transforms: 

P (t) = _J.L_ + _A_e-(A+/-t)/ 
........................... _ .... 0_ .... _... A ± l!- l\.±. p.. 

P (t) = _A __ _ A_e-(A+/-t)/ 
I A+J.L A+ll 

-(38) 

poet) is the time-dependent probability that the 
system is in the operational state, defined earlier 
as the availability function A(t). The availability 
consists of a steady-state term and an exponen­
tially decaying transient term. As noted earlier, 
for a nonredundant system with failure rate A 
and repair rate J.L, the steady-state availability is 
J.L/(A + J.L). Figure 5-35 plots A(t) for an MTTF 
of 1,000 hours (A = 0.001) and an MTTR of 10 
hours (ll = 0.1). The steady-state value is 
reached iIi a very short time. 

If only the steady-state solution is sought, the 
required computation is substantially less than 
that for the time-dependent solution. The differ­
ential equations in 35 are changed to algebraic 
equations by replacing poet) and PI (t) by zero, 
poet) by Po, and PI (t) by PI. That is, there is no 
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Figure 5-35. Availability as a function of time. 

rate of change in steady state, and the state 
probabilities have reached their equilibrium 
values. Po is then the steady-state probability of 
proper system operation, if a solution exists. 
Applying these changes to Equation 35 yields: 

o = -APO + f.LPI 

o = APO - f.LPI 

or 

A 
PI = -Po (39) 

f.L 

The condition that Po + PI IS required to 
solve Equation 39. Thus: 

A 
Po + -Po = 

f.L 

or 

1 f.L 
Po = --A = A + f.L 

1+-
f.L 

which is the result obtained earlier. 
The reliability function can also be repre­

sen ted as a Markov model by making the sys­
tem-failed state a trapping state; that is, once the 
failed state is entered, the probability of exiting 
is zero. Figure 5-36 depicts the transition proba­
bilities for the single-system model. The differen­
tial equations become: 

poet) = -APO(t) 

PI (t) = APO(t) 
(40) 
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a. Discrete-time (differential) model 

b. Continuous-time model 

~ 
Figure 5-36. Markov model for single system with­
out repair. 

The T matrix can be written by inspection: 

T = [~A ~ ] 
p(O) = PX(s) X [sl - T] = PX(s) X A 

-" -" [s + ,\ 
P(O) = PX(s) X 0 

pxrsr~-··PTOrx-A=l­

Letting P(O) = [1,0]: 

s 
Po(s) = ---

s2 + '\s 

pres) = 2 ,\ 
s +'\s 

Simplifying and performing partial fraction ex­
pansion yields: 

Po(s) = s 1 ,\ 
X( ) 1 1 

PI S = S - s + ,\ 
Taking the inverse transform gives the final 
solutions: 

poet) = e-A1 

PI (t) = 1 - e-A1 
(41) 

Equation 41 could also have been derived from 
the properties of the exponential distribution and 
the fact that Po + PI = 1. In addition, Equation 
41 is simply Equation 38 with Jl set equal to zero 
(an infinite repair rate). The steady-state solution 
to Equation 40 yields: 

Po = 0 

PI = 1 - Po = 1 

Now consider a dual-processor system with 
repair. Figure 5-37a gives the Markov model. 
There are four states, corresponding to both 
functioning, one functioning and one not, and 
both failed. Two repairmen and perfect coverage 
are assumed. If the processors and repairmen are 
identical, the model can be collapsed as in 
Figure 5-37b. In general, if there are n compo­
nents in a system that may be either functional 
or failed, the Markov model will have 2n states 
and a system of 2n equations to solve. Computa­
tional complexity can be reduced by using sym-

- metry--fo-coalesce-sfafes:-Fur11ierm6re;-soIutions-
may be limited to finding only the probability of 
occupying one state of interest (the all-failed 
state) instead of the probabilities of all states. 

To solve the model in Figure 5-37c, which 
assumes a single repairman (and perfect cover­
age), by inspection: 

[ -2A 
2,\ 

~J T = Jl -,\ - Jl 

0 Jl 

Therefore: 

A = [s~t -2,\ 

o ] s+'\+Jl -,\ 

-Jl s+Jl 

The solution requires finding the inverse of this 
matrix, which also requires finding the determi­
nant (at top of next page): 



det A 

2;\5 + 2;\fl 
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a 
-;\ 

] 
] 

s2 + (2;\ + fl)S + 2;\~t 

f we assume that P(O) = [LO,O], then 

\" ( ) 2;\2 
Di S = ~------:-----c=-----

'- s3 + (3;\ + 2fl)52 + (2;\2 + 2;\fl + fl) S 

(42 ) 

If the initial state is known with certainty, and 
)nly one state probability is of interest. then only 
me element of A-I needs to be calculated, a 
)otentially large savings in effort.) P2 (I) is the 
)robability of the system's being in the failed 
:tate at time t. The availability function A(/) is 
herefore equal to 1 - P2 (t). Alternatively, A (I) 
:ould be calculated by solving for Po(t) + PI (t), 
vhich increases the amount of computation re­
luired. 

Since the degree of the numerator (0) is ob­
riously less than the degree of the denominator 
3), the next step in the solution is to find the 
oots of the denominator. Using the quadratic 
ormula, after noticing that one root is zero: 

-al = 0 

-a2 = -~(3;\ + 2fl) - ~V;\2 + 4;\fl 

-a3 = -~(3;\ + 2fl) + ~V;\2 + 4;\fl 

a. Full four-state model 

b. Collapsed three-state model (~1 = ~21 111 = 1l2) 

2~ ~ 

Co Single repairman model 

II 

d. Reliability model 

Figure 5-37. Markov models for dual system with 
repair. 
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N ext, finding the partial fraction expansion: . 

x k1 k2 k3 
P2 (s) = S + s + a2 + s + a3 

where 

2l\2 2'A2 
k1 =--

a2 a3 2'A2 + 2'Ap, + p,2 

2'A2 
k2 =----­

-a2(a3 - a2) 

'A2 + 4'Ap, + (3'A + 2p,)y'A2 + 4'Ap, 

2'A2 
k3 = -----,----,-

-a3(a2 - a3) 

'A2 + 4'Ap, - (3'A + 2p,)y'A2 + 4'Ap, 

and taking the inverse transform: 

As noted earlier, A(t) = I - P2(t). Therefore: 

A(t) = I - k) - k2 e-a~l - k3 e-a, I 

2'Af.L + p,2 
A (t) - -----=:-----=----'-------,-

- 2'A2 + 2'Ap, + p,2 

4'A2 e-H(3A+2fL)+VA~ +4AfL]1 

'A2 + 4'Ap, + (3'A + 2p,)yP!- + 4'Ap, 

4'A2 e -i[(3A+2fL )-VA~ +4AfL]1 

'A2 + 4'Ap, - (3'A + 2p, )y'A2 + 4'Ap, 

The steady-state availability is: 

A = I _ k = 2 'Ap, + P, 
2 

ss 1 2'A2 + 2'Af.L + p,2 
(43) 

As discussed earlier, the steady-state availability 
alone ca!!,. be foun~ mo~ easily by substituting 
zero for pet) and P for pet) in Equation 36. 

The availability model in Figure 5-37c can be 
transformed into a reliability model by making 
state 2 a trapping state (see Figure 5-37d). Then 
the solution proceeds as follows: 

For P(o) = [1,0,0], we need to calculate only 
a'l3 in order to find R(t) = I - P2(t). 

X( ) _ , _ cofactor3) (A) 
P2 s - a \3 - det A 

. de{ +-~: ~ ~AJ 
P2(S) = (s + 2'A)(s + 'A + f.L)s - 2'Af.Ls 

..................... ..... . "2-A~' ........ ..... . 

P2 (s) = s3 + (3'A + p,)s2 + 2'A2 S 

Y( ) 2l\2 
Pi s = s(s + a2)(s + a3) 

(a) = 0, by inspection) 

where the roots are 

Expanding the partial fractions: 



where 

2'A2 
(I = -- = 

a2 a3 

'A2 + 6'AJL + JL2 - (3'A + JLh/'A2 + 6'AJL + JL2 

2'A2 
( - ---;-----:-

3 - -a3(a2 - a3) 

'A2 + 6'AJL + JL2 + (3'A + JLh/'A2 + 6'AJL + JL2 

:he desired reliability function is 

R(t) = 1 - P2(t} 

fherefore, taking the inverse of the LaPlace 
fransform; 

~(t) = -k2 e-a21 - k3 e-a11 

~(t) = 

In review, continuous-time Markov models 
ire solved using the Chapman-Kolmogorov dif­
~erential equations 

where 

P(t} = />(t) X T 

P(t} is the vector of state probability 
functions 

dP(t} 
dt 

is the differential state transition 
rate matrix 
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The elements of T are easily derived from the 
graph of the Markov model. For i =1= j, t ij is the 
state transition rate (possibly zero) from state i to 
state j. Each diagonal element tii is minus the 
sum of all transition rates leaving state i. Thus, 
the rows of T all add up to zero, making it a 
differential matrix. 

Using LaPlace transforms, the differential 
equations are changed into algebraic equations: 

where 

A = [sI - T] 

After solving the set of linear algebraic equa­
tions, the final solutions are obtained by apply­
ing the inverse LaPlace transform. 

Time- Varying Markov Models 

A useful generalization of the Markov process 
for reliability modeling is to allow state-transi-

'. tion probabilities to change over time. This caus­
es difficulties in analysis, since it generally makes 
the use of transform analysis impossible. N ever­
theless, if failure rates (or repair rates) are func­
tions of time, the techniques discussed in this 
section can be used. 

Discrete- Time Equations. Define qij(m, n} as 
the probability that the system is in state j at time 
n given that it was in state i at time m (m < n). 
For consistency, Q(m, m} = I. With this nota­
tion, in matrix fomi the Chapman-Kolmogorov 
equation is: 

Q(m, n} = Q(m, k}Q(k, n} 

Letting k = n - 1: 

Q(m,n} = Q(m,n - I}Q(n - l,n} 

Defining P(n} = Q(n, n + I}: 

Q(m, n} = Q(m, n - l}P(n - I} (44) 
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This equatien can be expanded recursively: 

Q(m,n) = Q(m,n - 2)P(n - 2)P(n - 1) 

Q(m,n) = Q(m,n - 3)P(n - 3)P(n - 2) 

X P(n - 1) 

yielding the final selutien: 

Il-I 
Q(m, n) = II P{i) (45) 

i=lIl 

Fer m = 0 and all P{i) = P, this becemes pH, 
as given earlier. 

Continuous- Time Equations. Define the dif­
ference eperater as: 

~,J(n) = f(n + 1) - f(n) 

Then: 

~nQ(m,n - 1) = Q(m,n) - Q(m,n - 1) 

From Equatien 44: 

.In Q(m, n - 1) = Q(m, n - l)P(n - 1) 

- Q(m,n - 1) (46) 

.l~I·~(m~·n~-I-)-=-·~(m~n··=+)-[-P(71-~·+1···~-I}-·· 

Defining the differential matrix 

T(n) = P(n) - I 

Equatien 46 is rewritten: 

~nQ(m, n - 1) = Q(m, n - 1) X T(n - 1) (47) 

Equatien 47 is the difference-equatien ferm ef 
the Chapman-Kelmegerev equatien fer discrete­
time Markev precesses. The centinueus-time 
Chapman-Kelmegerev equatiens are directly 
derived from this equatien. Defining Q(T, t) as 
the centinueus-time interval transitien prebabil­
ity matrix analegeus to. the discrete-time multi­
step translatien prebability matrix Q(m, n) 
defined earlier, the matrix ferm ef the Chapman­
Kelmegerov equatien is: 

Q(T, t) = Q(T, p)Q(p, t) 

In differential equatien ferm, this becemes: 

(48) 

Equatien 48 is a mere general ferm ef Equatien 
36. If T = 0, Equatien 36 is obtained by summing 

N 

p)t) = .L qij(O, t)Pi(O) 
/=1 

The selutien to. Equatien 47 cernes from basic 
differential equatien theery: 

Q(T, t) = elf T(p)dp] (49) 

Obtaining explicit selutiens frem this may be 
quite difficult. If T = 0 and T(t) = T fer all 
values ef t, Equatien 49 becemes: 

Q(t) = eTI 

which is a refermulatien ef the selutien using 
LaPlace Transferms that was discussed in the 
sectien en time-invariant Markev medels. 

Numerical integratien techniques are used to. 
selve Equatien 49 because ef its cemplexity 
[Stiffler, Bryant, and Gucciene, 1979]. An alter­
native methed is to. appreximate the centinueus-

.- .time_pIocess_with....dis.cLe.te:-.time .. _e.q.uiy.alents .. _Be:: 
cause numerical integratio.n invo.lves seme de­
gree o.f appreximatien anyway, this is frequently 
a geed cheice. The majer difficulty is that many 
transitien rates that are effectively zero. in the 
centinueus-time differential transitien rate ma­
trix assume small but nenzere prebabilities in 
the discrete-time transitien prebability matrix. 
Censider the me del ef Figure 5-37c selved in the 
previeus sectien. A discrete-time appreximatien 
has to. censider the prebability ef two. failures 
during the same interval. This cress-ceupled 
transitien prebability can be ignered fer centin­
ueus-time medels because ef the infinitesimal 
time-steps invelved. 

Fer cenverting fro.m co.ntinueus-time hazard 
functiens (failure and repair rate functio.ns) to. 
discrete-time hazard functiens, a discrete-time 
prebability distributien must be feund that cer­
respends to. the centinueus-time distributien de-



a. Continuous time model 

2Z(t) 

Z,(t) 

Z(t) = <lA(M)O-l 

Z,(t) = fjp.(p.t)/H 

b. Discrete time model 

A(n) = 2Z(n)~1 - Z(n)) 
B(n) = [Z(n)] 
C(n) = [1 - Z(n)]Z,(n) 
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1.0 

D(n) = Z(n)l1 - {,(n)1 a 

Z(n) = 1 - qtn+1) -n; q( = e-(,\<11) 
Z,(n) = 1 - qJn+l)P-nP; qr = e-("M)il 

Figure 5-38. Dual system with single repairman: time-varying transition rates. 

fined by that hazard function. The correspond­
ing parameters can then be calculated for the 
desired time-step t:.t. For the Weibull distribu­
tion function mentioned earlier: 

pdf = f(t) = aA(Atyx-1 e-(A/)" 

Recall that a corresponding discrete Weibull 
function exists (see Chapter 2): 

pmf = f(k) = qk" _ q(k+I)" 

Given that f(k) is defined as the probability of 
an event (failure) occurring between time t:.t and 
time (k + l)t:.t for some chosen interval size t:.t, 
this probability mass function can be expressed 
as: 

f(k) = Pr[no event by kt:.t] 

- Pr[no event by (k + l)t:.t] 

f(k) = R(k) - R(k + I) 

where R(k) is the reliability function. Substitut­
ing the continuous-time equivalents: 

f(k) = R(kt:.t) - R«k + I)t:.t) 

f(k) = e-(Aktlt)" - e-(A(k+l)tlt)" 

and rearranging terms: 

f(k) = (e-(Mt)o)k<l _ (e-(Mt)Yk+I)<l 

which makes it obvious that 

q = e -(Mt)" 

and that a does not change between the contin­
uous-time distribution and the discrete-time 
equivalent. The transition probabilities are now 
given by: 

z(n) = l_q(n+l)"-n" 

Consider the reliability model of Figure 5-38a, 
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Figure 5-39. Reliability of dual redundant systems. 

which is the same as that shown in Figure 5-37c highlighted in Figure 5-40, which plots the reli-
--- -ex-cept-tha ttlre-fai-lure-and-rep-airrate-s-llaye-bee-n ---- -ability-diff-ere-n-ce-using--{if== --LO-as--rhe -b-aseHne- -

replaced with Weibull hazard functions. In the system. Two features are generally discernible 
equivalent discrete-time model displayed in Fig- from these curves. First, for values of OJ less than 
ure 5-37b the complexity of terms is greater, one, the system reliability is less than that for {Xj 

particularly due to the joint probabilities of state equal to one for some period. This is followed by 
transitions. a much longer period during which the reliability 

After deriving the transition probability ma- of systems with (Xj less than one is greater than 
trix function Pen) from the model graph, Figure the reliability of systems with {Xj equal to one. 
5-39 plots the solution of Equation 45 for repre- (Similar but opposite effects are evident for 
sentative values of {X with f3 = I. systems with (Xj greater than one.) The second 

For purposes of comparison, failure processes feature is that as {Xj gets farther from 1.0, the 
of equal means are used throughout. The values magnitude of deviation in the curves becomes 
of A are changed along with the values of {X to 
maintain a constant value for the mean of each 
process. The reliability curves plotted in Figure 
5-39 are based on a module MTTF of 100 time­
steps and a module MTTR of 10 time-steps. 
Table 5-10 lists discrete Weibull parameter 
values. 

The differences in reliability caused by chang­
ing the value of {Xj (and adjusting other parame­
ters to maintain a constant module MTTF) are 

Table 5-10. Discrete Weibull parameter values. 

a qj f3 q,. 

0.6 0.922319 1.0 0.90 
0.8 0.972515 1.0 0.90 
1.0 0.990000 1.0 0.90 
1.2 0.996285 1.0 0.90 
2.0 0.999921 1.0 0.90 
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Figure 5-40. Reliability differences between exponential and Weibull for a 
dual redundant system. 

larger. Significant deviations in reliability occur 
even for relatively small deviations in aJ' 

These examples of Markov analysis have been 
given to illustrate the analysis procedure. The 
interested reader is referred to more comprehen­
sive analysis such as Howard [1971] and Shoo­
man [1968] for additional solution techniques 
and examples. 

Monte Carlo Simulation 

The techniques considered so far are insufficient 
to obtain results for even quite minor changes in 
the modeling assumptions. In the issue of failure 
process renewal, for example, it seems obvious 
that a repaired module should be "as good as 
new," but that is not the assumption behind the 
model of Figure 5-38. In that model, the failure 
processes z/t)(or z/n» are not reset to time 
t = 0 (n = 0) when a module is repaired. This 
fact can make a dramatic difference in the failure 
rates. In the Weibull hazard function, for a less 

than one, the failure rate asymptotically ap­
proaches zero; for a greater than one, it grows 
without limit. Thus, the failure rate immediately 
following a repair can vary tremendously under 
the two modeling assumptions (of course, for 
constant failure rates there is no difference in 
effect between the two assumptions.) Consider 
the discrete Weibull hazard function: 

zen) = I - q(n+ I)" -n" 

If this failure process is reset (renewed) whenever 
a repair occurs, then the conditional hazard 
function of the process given the renewal time Nr 

is: 

zen) = I - q(n-NR+l)"-(n-NR)" 

In general, the hazard function of the failure 
process with renewal is given by: 

n 
zen) = I - L (q(n-k+W-(n-k)")Pr{N

R 
= kin} 

k=O 

The second factor in the summation is the con­
ditional probability that the renew.:'l.l time has 
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1.0 - [A(n) + B(n) + C(n)] 
.""- --...-. 

o 1.0 

C(n) 

A(n) = Zf(n - NA) [1 - Zf(n - Nb )] 

B(n) = [1 - Zf(n - Na)]Zf(n - NB) 

C(n) = Zf(n - NA)Zf(n - NB) 

D(n) = Zr(n - MA)[1 - Zf(n - NB» 
fen) = Zr(n - MA)Zf(n - NB ) 

fen) = [1 - Zr(n - MA)]Zf(n - NB) 

C(n) = [1 - Zf(n - NA)]Zr(n - M B) 

H(n) = Zf(n - NA)Zr(n - M B) 

I(n) = Zf(n - NA)[1 - Zr(n - M B )) 

Zf(n) = 1 - qJn+1)O-na
; qf = e-p·.:lt)a 

Zr(n) = 1 - q}n+1)/l-nfl; qr = e-(p..:lt)/l 

N A = last repair time for unit A 

MA = last failure time for unit A 

Figure 5-41. Model of dual system with failure and repair process renewals. 

any particular value given the current time. 
Calculation of this value depends on the entire 
past history of the system, which makes it intrac­
table to compute in practice. Therefore, a new 
technique to attack the problem of reliability 
modeling is needed. 

A standard method of studying the reliability 
of systems that are too complex to model analyt­
ically is to simulate their performance and exam­
ine the results [Almassy, 1979; Yakowitz, 1977]. 
The basis of such "Monte Carlo" simulation 
schemes is a pseudo-random number generator 
that produces a sequence of numbers between 0 
and 1. This sequence approximately follows the 
uniform distribution. For good results, simula­
tions should be run on two or more independent 
pseudo-random number generators, and the gen-

era tors used should be thoroughly tested [Knuth, 
vol. 2, 1969]. 

Figure 5-41 shows the reliability model of a 
dual redundant system. Because of the need to 
distinguish between failures and repairs of the 
individual modules, a full four-state model is 
necessary. Otherwise, this models the same sys­
tem as Figures 5-37d and 5-38b. From the model 
graph, the transition probability matrix function 
P (n;NA,NB,MA,MB) is defined. Each simula­
tion run follows this algorithm: 

1. Global initialization 
i = current state = 0 
NA= NB = MA = MB = renewal times = 0 
n = current time = -} 
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Figure 5-42. Simulated reliability of dual system. 

2. Set loop variables 
n = n + I 
j = next state = -I 
x = cumulative probability = 0 
R = next pseudo-random number in sequence 

3. Test for next state 
a)j = j + I 
b) x = x + Pij(n;NA,NB,MA,MB) 
c) if R > x then go to step 3a 

4. Next state found 
a) if i =1= j then set one of {NA , NB , MA , MB} to 

n + I 
b) i = j 

c) if i =1= a trapping (failed) state then go to step 2 
5. Output value of n for this simulation run 

For each value of lX used in the preceding 
example of time-varying Markov processes (0.6, 
0.8, 1.0, 1.2, 2.0), 3,000 simulations were per­
formed, using three pseudo-random number gen-

era tors- for 1,000 simulations apiece. Figure 5-42 
plots the empirical reliability curves for a dual 
redundant system with independent failure and 
repair process renewals, using the same parame­
ter values (qf' lX, qr' {3) as for Figure 5-39: only 
the modeling assumption concerning process re­
newals was changed. Figure 5-43 plots the corre­
sponding reliability difference curves. The reli­
abilities of systems with lXf not equal to one 
diverge quite sharply under the two different 
modeling assumptions. The general shapes of the 
curves remain much the same, but the magnitude 
of the deviation is much smaller in the second 
time period (underestimation for lXf less than one 
and overestimation for lXf greater" than one) for 
the systems with error" process renewals (al­
though comparable in the earlier time frame). 
Also, the crossover points are significantly de­
layed for the systems with error process renew­
als, compared to the systems without renewals. 
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Figure 5-43. Simulated reliability differences between exponential and Weibull 
for a dual redundant system. 

If the exponential (constant error rate) as­
sumption is used for reliability modeling, signifi­
cant deviations between predicted and experi­
mental reliability will occur whenever the data 
indicate that failures follow a nonconstant error 
rate. The extent of deviation from exponential 
model results depends both on the explicit form 
of ,the failure rate (hazard) function and on 
whether the failure process is renewed whenever 
a -repair occurs. 

Modeling a TMR System 

This section applies Markov modeling tech­
niques and assumptions to a common structure, 
a simple TMR (Triple Modular Redundant) 
system. In TMR correct operation continues as 
long as two of the three modules are working 
properly. A second module failure causes the 
system to fail. 

3~ 

p. 

Figure 5-44. Markov model for TMR system 
reliability. 

Constant failure Rates: Markov Model. A re­
pair strategy of calling in a repairman whenever 
a module fails produces a Markov model like 
that shown in Figure 5-44. By inspection, the 
differential transition rate matrix is: 

[

-3A 3A 0] 
T= p. -2A-P. 2A 

o 0 0 

where A is the module failure rate and p. is the 
repair rate. From this~ the LaPlace transformp2 (s) 
is calculated (assuming that p(O) = [1,0,0]): 



Expanding the partial fractions, taking the in­
verse of the LaPlace Transform, and subtracting 
from one produces the reliability function: 

~(t) = 

A + Il - VA
2 

+ 10AIl + 11
2 

e-i(5A+fL+v'A2+ IOAfL+fL2)/ 

2VA2 + 10AIl + 112 

Integrating this function to find the MTTF pro­
duces: 

MTTF = 

5 A + Il + -0\'2 + 10 AP, + Il '2 
~/2 1 1 ) (5 A + Il) V A + 10 All + Il - - A - - 10 All - Il-

5A + Il - VA2 + 10Ail + 1l'2 

Adding together and simplifying: 

Rearranging this expression yields: 

5 Il 
MTTF = 6A + 6A2 

Thus, the MTTF of a TMR system with repair is 
equal to the MTTF of a TMR system without 
repair plus an additional term due to the repair 
activity. 

Consider the effect of redundancy and repair 
on the reliability of a module with a failure rate 
of one per 1,000 hours (A = 0.001) and a repair 
rate of one per 10 hours (Il = 0.1.) Figure 5-45 
plots the reliability curves of a nonredundant 

EVALUATION CRITERIA 263 

system, a TMR system without repair, and a 
TMR system with repair for these parameter 
values. The MTTF calculations show the follow­
ing results: 

1 
Nonredundant MTTF = X = 1000 hours 

M . h· 5 T R WIt out repaIr MTTF = 6A = 833 hours 

TMR with repair MTTF = (5/6A) + (1l/6A2) 

= 17,500 hours. 

Thus, although redundancy alone reduces the 
MTTF by about 17 percent, the strategy of on­
line repair allows the system MTTF to increase 
by a factor of 17. This strongly suggests that 
redundant systems should be designed to allow 
on-line repair whenever possible. 

Time- Varying failure Rates: Time- Varying 
Markov Model. If the failure and repair pro­
cesses vary with time according to the Weibull 
distribution, a model such as that shown in 
Figure 5-46 applies. Solving this model for the 
same parameter values as used earlier in the dual 
redundant system model (Table 5-10), that is, a 
module MTTF of 100 time-steps and an MTTR 
of 10 time-steps, generates the family of reli­
ability curves shown in Figure 5-47. Figure 5-48 
plots the difference between the reliability of 
systems with a not equal to one and systems with 
a equal to one (constant failure rates). The same 
patterns are evident in these plots as appeared in 
the dual redundant system reliability plots in 
Figures 5-39 and 5-40. 

Another comparative measure mentioned pre­
viously in this chapter is the mission time im­
provement. Instead of comparing the system 
reliabilities at fixed intervals, mission time im­
provement compares the amount of time differ­
ent systems require to fall to fixed levels of 
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Figure 5-45. Reliabilities of nonredundant and TMR systems. 

1.0 - [C(n) + D(n)] 

A(n) = 3Zf(n)l1 - Zf(n)]2 

8(n)= 3[Zf(n)f[1 - Zf(n» + [Zf(n)]3 

= 3[Zf(n)]2 - 2[Zf(n»3 

C(n) = [1 - Zf(n»2 Z,(n) 

D(n) = 2Zf(n)[1 - Zf(n)][1 - Z,(n)) + [Zf(n)f 
Zf(n)= 1 - q~n+W-na; qf = e-(>'~oa 
Z,(n) = 1 - q~n+1)/l-n/l; q, = e-(,.~t)/l 

1.0 

Figure 5-46. TMR model with time-varying failure and repair rates. 
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Figure 5-47. Reliabilities of TMR system with Wei bull failure processes. 

reliability. The calculations are performed by 
taking the ratio between the mission time of the 
system under study and the mission time of some 
baseline system. For our purposes, the baseline 
system is the nonredundant system with the 
same parameters as the TMR system under 
consideration. This is the usual way of using 
mission time improvement to evaluate different 
redundant system designs. Table 5-11 lists the 
mission time improvement factors at several reli­
ability levels. Two patterns are broadly discerni­
ble: first, an increasing value for a results in a 
decreasing value of the mission time improve­
ment. Second, whereas the mission time im­
provement values decrease monotonically for a 
greater than or equal to one, they hit a minimum 
point and start increasing again for the values of 
a less than one. 

Failure Process Renewals: Monte Carlo Simu­
lation. If the individual failure processes are 
renewed (reset to time zero) whenever a corre­
sponding repair occurs, then a simulation model 
is needed like the one developed earlier for a 

Table 5-11. Mission time improvement factors for 
TMR systems. 

Reliability 

a 0.90 0.80 0.70 0.60 

0.6 4.50 2.88 3.13 3.62 
0.8 3.33 3.14 3.12 3.23 
1.0 3.30 2.82 2.74 2.70 
1.2 2.93 2.55 2.34 2.27 
2.0 1.97 1.73 1.61 1.53 
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Figure 5-48. Reliability differences for TMR system. 

dual redundant system. Figure 5-49 shows the 
model for the simple TMR system under discus­
sion. The simulation process is similar to that 
discussed for the previous model with 1,000 runs 
from each of three pseudo-random number gen­
erators for five different values of a. A rough 
check on the validity of the simulation results is 
provided by comparing the mission times for 
several levels of reliability of the analytic solu­
tion and the simulation solution for a equal to 
one. The values should be in close agreement, 
because the constant failure rate (exponential) 
process is memoryless, as Table 5-12 confirms. 
Figure 5-50 shows the empirical reliability curves 
for the simulated systems; Figure 5-51 plots the 
empirical reliability difference curves. The same 
patterns are evident in these plots as in the 

earlier dual redundant system and TMR system 
reliability and reliability difference plots. The 
degree of convergence for system reliabilities 
under the assumption of failure process renewals 
is even greater for the TMR systems than for the 
dual redundant systems. 

Although Figures 5-40 and 5-43, the reliability 
difference plots for the dual redundant system, 
show a superficially different pattern from those 
for the TMR system (Figures 5-48 and 5-51), the 
changes from the analytical time-varying Mar­
kov model to the Monte Carlo simulation mod­
els are actually quite similar. In both cases, the 
magnitudes of deviation for the initial period of 
overestimation for a less than one (underestima­
tion for a greater than one) increase slightly with 
the assumption of error process renewals. After 
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1 - [f(n) + F(n) + G(n) + H(n)] 

D(n) 

1 - [J(n) + K(n) + 
L(n) + M(n)] 

V(n) + W(n)) 

A(n) = Zf(n - NA)[1 - Zf(n - NB)][1 - Zf(n - Nd] 

B(n) = [1 - Zf(n - NA)]Zf(n - NB) [1 - Zf(n - Nd] 

C(n) = [1 - Zf(n - NA)][1 - Zf(n - NB)]Zf(n - Nd 

D(n) = Zf(n - NA)Zf(n - NB) [1- Zf(n - Nd] 

+ Zf(n - NA)[1 - Zf(n - NB))Zf(n - Nd + ... 
f(n)= ••• 

Zf(n) = qjn+l)a-na
; qf = e-(Mt)a 

Z,(n) = q!n+l)P-nP; q, = e-(,.at)p 

NA = Time of last transition from state 1A to state 0 

Figure 5-49. TMR model with failure process renewals. 

the initial period of error, the magnitudes after 
the crossover points, are much smaller. These 
crossover points are also delayed for the models 
assuming error process renewals, in contrast with 
the simpler models. 

Table 5-13 lists the mission time improvement 
factors for TMR systems with failure process 
renewals, calculated in the same way as those in 
the previous section. The first trend noted above, 
that an increasing value of ex results in a decreas­
ing value for the mission time improvement, is 
not so evident. The second trend is almost re­
versed: for ex greater than one, the mission time 
improvement hits a minimum point and starts 
increasing again, whereas for ex less than one, the 
decline in mission time improvement values is 
almost monotonic. 

The deviation of the mISSIon time improve­
ment for ex = 0.8 compared with ex = 1.0 is of 
interest because some data collected on transient 
errors have yielded experimental values in that 
range (see Chapter 2 and McConnel, Siewiorek, 
and Tsao [1979]). The TMR model without 
failure process renewal shows a ratio increasing 
from just over 1.0 to almost 1.4. With failure 
process renewals, there is no steady increase in 
the ratio. The ratio between the mission time 
improvement for ex = 0.8 to that for ex = 1.0 
ranges from between 1.1 and 1.2 for the TMR 
model with failure process renewals. If the calcu­
lations had been made assuming ex equal to one 
in the baseline system, the deviations shown by 
these ratios would be even greater. 

These examples show that even in models of 
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0.15 

0.10 

~ . 
c; 0.05: /"\: 

t '~, 
I I :~\ 

"'2 ,:, 
N 0 '.~. J' .-.-. ~ 
cc 200 ~:.~." v9(tO _ .800·,--1,000 '''1,200'"'''1,400' 1,600 
~ / ···:I::rI'········:··~~·#·~·:········ .. Number of time steps 
~ . 
t . .1 I 
~ -0.05 \ l~ / 
~ .... ;' I 
:c . I 
.!! -0.10 I 
~ I 

-0.15 

I 
I 

I 
I 
I 
I 

-0.20 I I 
~J 

-0.25 

Alpha = 2.0 

Alpha = 1.2 

Alpha = 0.8 

Alpha = 0.6 

1,800 2,000 

Figure 5-51. Reliability differences for simulated TMR system. 



Table 5-12. Comparison of mission times for 
analytic and Monte Carlo solutions. 

Times 

Reliability Analytic Monte Carlo 

0.99 7 7 
0.90 34 34 
0.80 63 63 
0.70 97 94 
0.60 136 130 
0.50 182 179 
0.40 238 234 
0.30 310 304 
0.20 412 412 
0.10 587 581 

simple structures serious differences exist be­
tween exponential models and models based on 
Weibull processes with nonconstant hazard 
functions. 

Hybrid Models Using Measured 
Statistics 

The measures traditionally used to compare sys­
tems do not take into account the performance 
of the system whose reliability is being measured. 
Table 5-14 lists the results obtained from seven 
different experiments whose specific goal was to 
gain experience on systems reliability. Data for 
the first system [Y ourdon, 1972] were from a 
summary of failure statistics on a Burroughs 
5500 over a 15-month period starting in April 
1969. Limited information is available about the 
cause of each failure. One category, for example, 
includes system failures resulting from unexpect­
ed I/O interrupts. These failures are recorded 
whenever the software responds to an interrupt 
signifying that some I/O action has taken place 
but discovers that it has no record of having 
initiated such action. Thus, there is an indication 
of some form of hardware or software error, but 
the particular cause for the failure (hardware or 
software) remains unknown. The data for the 
second system, reported in Lynch, Wagner, and 

EV ALUA TION CRITERIA 269 

Table 5-13. Mission time improvement factors 
for TMR systems with failure process renewals. 

Reliabilities 

ex 0.90 0.80 0.70 0.60 

0.6 6.00 2.80 2.33 2.52 
0.8 3.60 3.33 3.18 3.11 
1.0 3.30 2.81 2.66 2.48 
1.2 2.81 2.63 2.49 2.53 
2.0 2.00 1.87 1.82 1.88 

Schwartz [1975] come from the first 13 months of 
operation of a system called Chi/OS developed 
by the Chi Corporation for the Univac 1108 
between 1970 and 1973. There is no explanation 
of how such an accurate distinction between 
hardware and software failures was obtained. 
Reynolds and Kinsberger [1975] reports data 
obtained over three years from a dual IBM 
370/165 installed at Hughes Aircraft Company 
to handle a mixed batch and time-sharing load. 
The fourth system is at the Stanford Linear 
Accelerator Center (SLAC), where the main 
workload is processed as a multistream back­
ground batch. The system consists of a fore­
ground host (IBM 370/168) and two background 
batch servers (IBM 370/168 and IBM 360/91) 
and is designed to be highly available and recon­
figurable. The CMU-IOA is an ECL PDP-IO 
used in the Computer Science Department at 
Carnegie-Mellon University. The data for the 
CRA Y-I were reported in Keller [1976]; those 
for the three generic UNIVAC systems in Sie­
wiorek and Rennels [1980]. 

Table 5-14 gives, when available, a Mean 
Time to reStart (MTTS) value in hours (that is, 
the Mean Time to System Failure), a Mean 
Number of Instructions to Restart (MNIR), 
which is an estimate of the mean number of 
instructions executed from system start up until 
system failure; and the percentages of system 
failures caused by hardware faults, software 
faults, and whose cause could not be resolved. 
The information about execution rates needed to 
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Table 5-14. Reliability experience of several commercial systems. 

System MTTS (hours) MNIR 

B 5500 14.7 2.6 X 1010 

Chi/05 (Univac 17 6.7 X 1010 
1108) 

Dual 370/165 8.86 2.8 X lOll 

SLAC 20.2 2.3 X lOll 

CMU-IOA 10 4.3 X 1010 

CRAY-I 4 1.9 X 1012 

UNIVAC (large) 

UNIVAC 
(medium) 

UNIV AC (small) 

compute the MNIR value was obtained from 
Phister [1979]. 

Obviously, the numbers in Table 5-14 do not 
convey much information. A MTTS figure alone 
does not reveal the impact of unreliability on 
system use. Compare, for example, the CRA Y-l 
[Russel, 1978] with the CMUA [Bell et aI., 1978]. 
Although the CRA Y -1 crashes twice as often as 
the CMUA, it can operate continuously at rates 
above 138 Million Instructions Per Second 
(MIPS), whereas the CMUA operates at 1.2 
MIPS. Hence, the CMUA executes ~ 1010 in­
structions between crashes, whereas the CRA Y-l 
executes ~ 1012 instructions between crashes. 
Inconsistencies like this suggest that reliability 
modeling and measuring should be closely relat­
ed with the characterization of the performance 
of the system under study. Integrated perfor­
mance-reliability models have already started to 
appear in the literature. In Meyer, Furchtgot, 
and Wu [1979], a performance measure called 
performability gives the probability that a system 
performs at different levels of "accomplish­
ment." Gay and Ketelsen [1979] models systems 
with Markov processes to estimate the probabil­
ity of their being in one of several capacity 
states. This approach is similar to the one pre-

Percent Percent 
Hardware Software Percent 
Faults Faults Unknown 

39.3% 8.1% 52.6% 

45 55 

65 32 3 

73.3 21.6 5.1 

51 42 7 

57 41 2 

88 9 3 

viously taken in Beaudry [1978], who introduced 
the concept of "computation reliability" as a 
measure that takes into account the computation 
capacity of a system in each possible operational 
state. Finally, Chou and Abraham [1980] pro­
vides a performance availability model for grace­
fully degrading systems with critically shared 
resources. 

Consider now Figure 5-52, which shows the 
expected elapsed time required to execute a 
program for a time-~haring system at three dif­
ferent times of day. The curves were obtained as 
follows. From April 3, 1979 to July 2, 1979 a 
CPU bound program (basically a loop that com­
putes several FFTs with no I/O involved and 
small memory requirements) was executed three 
times daily. The program required 10 seconds of 
run-time (Tmin = 10 sees.), and the actual 
elapsed time for each execution was recorded in 
the histogram of Tuse at each of these three 
times of day. 

The mean time to system crash was measured 
for the same period. This value of mean time to 
crash was substituted as I/A in the model given 
in Castillo and Siewiorek [1980]. The I/A value 
was measured at noon (mean time to crash 
IjA = 9.6 hours), 4:00 p.m. (I/A = II hours), 
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Figure 5-52. Expected elapsed time versus the 
minimum time required to execute a program. 
(© 1980 IEEE.) 

and 4:00 a.m. (VA = 33 hours). A down-time 
value of five minutes was assumed in all cases. 
These three values of the mean time to fatal 
failure were computed by assigning two-hour 
time slots around each of the three times of day 
and counting the number of system restarts in 
each of the slots during the same three months 
for which the histograms of Tuse was computed. 

Figure 5-52 plots the value of the expected 
elapsed time required to execute a program at 
these three times of day for different values of 
the minimum CPU time required to execute the 
program (Tmin). The expected elapsed time in-
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cludes the effect of workload and unreliability, 
for it takes into account the time wasted by a 
system restart due to software or hardware tran­
sien terrors. 

For each curve, the dashed straight line repre­
sents the values of the expected elapsed time due 
only to workload (the expected elapsed time in 
the absence of errors), and the solid line repre­
sents the total expected elapsed time. The figure 
shows that at 12:00 noon the contribution due to 
restarts for a program requiring 30 minutes of 
CPU time amounts to over 40 percent of the 
total elapsed time. 

The curves have been obtained assuming that 
the time to system crash can be characterized 
with an exponentially distributed random varia­
ble with constant A. But for the same curves 
different values of A are used at different times of 
day. This suggests that in models for time­
sharing systems the failure rate is a periodic 
function of time. 

A workload-dependent model presented in 
Butner and Iyer [1980] assumes a linear depend­
ency between failure rate and workload. The 
workload is characterized by a periodic function 
of time. The pdf becomes an exponential "mod­
ulated" by a periodic function 

I;(t < T) = I - e-KpT e-F" Lj,(T) 

where If; is defined as the load-induced failure 
rate and ~(T) denotes the instantaneous load 
value. This model, referred to as the periodic 
model, assumes a periodic utilization function 
u(t) = met). It further assumes that the instanta­
neous value of the system failure rate is a linear 
function of this utilization function; that is: 

Ap(t) = spm(t) + cp 

Castillo [1980] shows that under this assump­
tion the pdf of the time to system crash is given 
by 

pet < T) = I - e-(spm+cp)T e1n</>(r) 

where cf>( T) is a periodic function of time. 
A closer study of the utilization functions of 
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Figure 5-53. Fraction of time in Kernel mode during five consecutive week­
days. 

critical resources in time-sharing systems reveals, 
however, that it is an oversimplification to as­
sume that they can be approximated by a purely 
periodic function. 

Figure 5-53 shows the sampled values of the 
fraction of time the operating system spends in 
Kernel mode for five consecutive weekdays in a 
time-sharing computing system. There are rea­
sons to assume that the instantaneous value of 
the system failure rate should follow the varia­
tions of the fraction of time in Kernel mode. 

First, assume a constant failure rate for the 
primary memory of a digital computing system 
operating in a stable environment under a time­
sharing policy. That the transient failure rate in 
a memory is constant is a reasonable assump­
tion. There is also justification for thinking that 
certain complex devices may follow an exponen­
tial failure law [Barlow and Proschan, 1965, pp. 
18-22]. Because the physical characteristics of 
the memory ICs do not change with time (at 
least during the effective life cycle of modern 
digital computing systems), the origin of these 
transients must lie either in external sources, 
such as radiation, the presence of noise (possibly 
impulsive) in the power supply, or in the limita­
tions of the manufacturing process. In fact, 
Geilhufe [1979] has reported that MOS memory 
devices exhibit nonrecurring bit failures caused 

by alpha particles emitted from small amounts of 
radioactive elements present in IC packaging 
material. The failure rate for this kind of failures 
is, of course, constant. Now assume that a tran­
sient memory failure has higher probability of 
leading to a system crash when the central 
processor is executing in Kernel mode than when 
it is executing in user mode. A memory failure 
when the CPU is executing in user mode may 
affect a user process but will not crash the 
system. The system failure rate due to transient 
memory failures will then depend on the ratio of 
the number of memory references while in Ker­
nel mode to the total number of memory refer­
ences per unit time. Because it is well known that 
operating system overhead increases 'with work­
load, the previous ratio will also be a nonde­
creasing function of the system workload, in­
creasing in turn the observed system failure rate. 
The result is that the observed system failure rale 
due to transient memory failures should be equal 
to the sum of a component following the operat­
ing system overhead variations in time (or, indi­
rectly, workload variations in time) plus a con­
stant, workload-independent component (even if 
the system is idle, there may still be memory 
errors that corrupt, say, the clock interrupt sub­
routine). 

Even if the fact that a computing system is not 



always equally sensitive to the presence of hard­
ware errors, there are still arguments to support 
the idea that the apparent system failure rate 
should depend on the workload. In practice, in 
most computing systems a component failure 
will be noticed only if the component is used. A 
time-sharing system with no load, spending most 
of its time in a wait state and only a fraction of 
the time executing the clock interrupt routine 
may sustain several failures and still not report 
any errors if the minimal hardware configuration 
required to execute these basic functions is not 
affected. The idea here is not that failures will be 
caused by increased utilization (although in 
some cases this situation is certainly possible), 
but that they will be detected by an increase in 
system utilization. This effect has also been re­
ferred to as error latency [Shedletsky and 
McCluskey, 1973]. 

Analogous arguments lead to the expectation 
that the rate of system failures due to software 
unreliability will depend on how much the soft­
ware is used. System software failures result from 
either of two conditions: the (static) input data 
to a program module present some peculiarities 
that the program is not able to handle, or the 
software is not capable of handling some time­
dependent (dynamic) sequence in the input data 
stream. In a time-sharing system, the only soft­
ware capable of provoking a system failure is the 
Kernel of the Operating System. This software 
executes in a privileged processor state, and a 
software error that corrupts some critical infor­
mation in the Kernel data structures may lead to 
a system crash. However, because nobody knows 
a priori what these errors are,it is less likely that 
the system finds one of these combinations in its 
input stream under low load than in a high load 
situation (that is, small amounts of input data to 
process per unit time probably exercises software 
that has been more thoroughly ·debugged). 
Again, the observed system failure rate has to 
depend on the system load. Furthermore, upon 
correct system operation, a user program is pre­
vented from accessing any resource for which it 
has not been given explicit permission by the 
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Kernel. Consequently it is not necessary to con­
sider the effects of user programs. 

Assuming that the failure rate is workload 
related, and given the workload measured in 
Figure 5-53, a utilization function of the form 

u(t) = m(t) + z(t), 

where m(t) is a periodic function of time and z(t) 
is a zero-mean stationary Gaussian process, is 
thus appropriate for modeling a time-sharing 
system. Castillo [1980] shows that, under the 
assumption 

Ai(t) = si[m(t) + z(t)] + Cj 

the following expression is obtained for the pdf 
of the time to system failure: 

P(t < '7") = I 

_ e ( -(ac+ocl +O(2)T-(°cl/,8I)[ l-e-#' Tj-(Oc2/,82)[ l-e- fi2T j+ln cj>(T)) 

where </>('7") is a periodic function of time depend­
ing only on m(t), and the additional assumption 
is that the autocorrelation function of z(t) is of 
the form 

Rzz(t) = (Xl e-,811 + (X2e-,821 

This model is termed cyclostationary because it 
is obtained from a cyclostationary utilization 
function (that is, the utilization function u(t) is a 
stochastic process with periodic mean and auto­
correIa tion functions). 

Table 5-15 summarizes the reliability func­
tions and hazard functions of the two models 
above (periodic and cyclostationary) along with 
the exponential and Weibull distributions. The 
fifth distribution in Table 5-15 is a simplified 
version of the distribution obtained with the 
cyclostationary model, considering only one ex­
ponential in the hazard function and neglecting 
the periodic component </>('7"). This last distribu­
tion is particularly important because it has a 
known LaPlace Transform that makes it suitable 
for Markov modeling (neither the Weibull distri­
bution nor the distributions obtained from the 
periodic and cyclostationary models have known 
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Table 5-15. Reliability and hazard function of 
five failure models. 

Exponential 

Re(T) = e-Ae'T 

he(T) = Ae 

Weibull 

Rw(T) = e-(A".'T)aW 

h () awAw 
w T = (Awt)l-a". 

Periodic 

Rp(T) = e-Ap 'Tee-FpU(7') 

Cyc1ostationary 

Rc(T) = eX 

where 

-02[1 _ e-P2'T] + _1_ a$(t) 
c $(t) at 

Simplified Cyc1ostationary 

LaPlace Transforms). Castillo [1980] has shown 
that both the cyclostationary and simplified cy­
clostationary models have substantially better 
statistical fits to measured data than the expo­
nential, Weibull, and periodic models. 

Automated Markov Analysis 
Programs 

As with combinatorial modeling, programs have 
been written using Markov modeling to assist in 
evaluating general classes of system structures. 
Two of these programs deserve special mention. 

ARIES. ARIES (Automated Reliability Interac­
tive Estimation System), developed at UCLA by 
Ng and Aviiienis [1980], implements a general 
time invariant Markov model for systems similar 
to those covered by CARE II. The structures 
handled consist of a series of one or more 
independent subsystems or stages, each contain­
ing a number of identical modules that are either 
active or serve as spares. Systems can be recon­
figured by adding, deleting, or replacing stages, 
or by modifying the values of some parameters. 
The inputs to ARIES include the following: 

1. The initial numbers of active and spare modules; 
2. The number of repair facilities for each stage; 
3. The failure rates for active and spare modules, and 

the repair rates for the repair facilities; 
4. The coverage factors for recovery from failed 

spares; 
5. The number and sequence for allowed degrada­

tions, and the coverage factors for degraded config­
urations. 

The program outputs several measures, including 
MTTF, mission time, and reliability plots or 
tables. ARIES is very general in the type of 
redundant structures it can model, limited pri­
marily by the assumption of distinct eigenvalues 
for the Markov differential transition matrix. 

CARE III. CARE III (Computer-Aided Reli­
ability Estimation III), developed at Raytheon 
[Stiffler, Bryant, and Guccione, 1979], imple­
ments a time-varying Markov model for ultrare­
liable redundant systems. The system structures 
handled by CARE III are like those handled by 
CARE II and ARIES. Two new assumptions are 
made, one more restrictive than ARIES and one 
more general. The first assumption is that the 



llser is interested only in extremely reliable (sys­
tem failure rates less than 10- 10 per hour) sys­
tems with short mission times (no longer than 10 
b.ours) and no repair during missions. Typical 
target systems are flight-critical avionics com­
puters for future aircraft. The second, more 
general assumption is that failures follow a 
Weibull distribution. CARE III handles not only 
hard failures but also intermittent and transient 
Faults. It also implements an extensive coverage 
model based on that of CARE II. The inputs to 
CARE III include the module-failure parameters 
(both a and A for the Weibull function) for each 
stage, and the coverage parameters. the output 
includes both tables and plots of the system 
reliability and unreliability. The' generality of 
CARE III is limited both by the assumption of 
extremely high mission reliability and by the 
assumption of no repair during a mission. 

System Availability Models 

In general, modeling the availability of systems 
with repair requires the use of Markov models. If 
certain restrictions are made, however, special 
techniques can be used that are easier to apply. 
This section presents two such methods. The first 
permits calculation of the system availability 
function. Asys (t), given the module availability 
functions Ai(t) for any arbitrary structure, pro­
vided that the module availabilities are indepen­
dent. The second uses queuing theory to obtain 
the steady-state availability for a structure com­
posed of identical modules with constant failure 
rates. Both of these restricted models (as well as 

I' 21' 
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the general Markov model) assume that redun­
dant structures are designed for on-line repair. 

Combinatorial Modeling of 
Systems Availability 

The reliability function R(t) and the availability 
function A(t) are both probability functions, 
although of different asymptotic behavior. Be­
cause they are both probabilities, the combinato­
rial modeling techniques developed earlier in this 
chapter for system reliability calculations apply 
equally well to calculating system availability if 
three basic assumptions are met. The first, natu­
ral assumption is that the system design is coher­
ent-that a module failure never causes the 
system to have increased availability. The second 
assumption is that individual modules are always 
in one of two states-working or failed. The last 
necessary condition is that the individual module 
availabilities must be statistically independent. 
For this condition to hold, there is only one 
allowable repair strategy: one repairman ca'lled 
for each failed module, and repair proceeding on 
failed modules while the remainder of the system 
continues to function (on-line repair). This also 
dictates the size of the subdivision into modules 
that are used in the model. Separate repairmen 
may be a reasonable assumption for minicompu­
ter-sized modules but probably not for individu­
al memory or I/O cards, and certainly not for 
individual memory or logic chips. 

To illustrate the application of combinatorial 
modeling to system availability, consider the 
Markov model of Figure 5-54. The differential 

31' 

Figure 5-54. Markov model of system with three modules. 
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transition rate matrix defined by this model 
graph is 

T= p, 

[

-3A 

° ° 

3A 
-2A - p, 

2p, 

° 

° 2A 

-2p, - A 
3p, 1] 

Solving this for an initial state vector of P (0) 
= [1,0,0,0], using the Markov model solution 
techniques developed earlier, produces the fol­
lowing state probability functions: 

which is the same result as obtained by solving 
the Markov model. 

The second interpretation of the Markov 
model is that it represents a simple TMR system 
such as the one modeled for reliability earlier 
(see Figure 5-44). 

p,3 + 3Ap,2 e-("A+/L)1 + 3A2p,e-2("A+/L)1 + A3e-3("A+/Lll 
poet) = (A + p,)3 

3Ap,2 + 3Ap,(2A - p,)e-("A+/L)I + 3A2(A - 2p,)e-2("A+/tl f - 3A3 e-3("A+/L)f 
PI (t) = (A + p,)3 

3A2 P, + 3A2(A - 2p,)e-("A+/L)f - 3A2(2A - p,)e-2("A+"/L)f + 3A3 e-3("A+/L)f 
P2(t) = (A + p,)3 

A3 _ 3A3e-("A+/L)1 + 3A3e-2("A+fL)f _ A3e-3("A+/L)f 

P3(t) = (A + p,)3 

The Markov model can be interpreted in any 
of three ways. First, it may represent a system 
that requires all three modules in order to work 
properly. For this case, the availability function 
is 

A(t) = poet) 

The alternative way to derive this function (de­
rived earlier in Equation 38 as the solution for 
the two-state Markov model with initial state 
vector P(o) = [1,0]) is to consider the system as 
a series connection of three independent identi­
cal modules, each with availability 

A (t) = -p,- + _A_e-("A+/L)I 
m A+p, A+p, 

The equation for series connection of the 
availability block diagram produces: 

3 3 
ASys(t) = II Ai(t) = [Am(t)] 

i=1 

For the two-of-three model, the availability 
defined by the Markov model solution is 

A(t) = poet) + PI (t) 

The combinatorial solution proceeds as follows: 

ASys(t) = (~)[Am(t)]3 

+ (~)[Am(t)f[1 - Am(t)] 

Asys (t) = 3[Am(t)f - 2[Am(t)]3 

3(p, + Ae-("A+/L)t)2 2(p. + Ae-("A+/L)/)3 
Asys(t) = (A + p,)2 - (A + p,)3 



Careful examination shows that this combinato­
rial solution for Asys (t) is indeed equal to that 
derived from the Markov model. 

The remaining system modeled by Figure 5-54 
is a module with two spares, which is otherwise 
expressed as a parallel structure in the availabil­
ity block diagram. The availability function de­
rived from the Markov model is: 

A(t) = Po(t) + PI (t) + P2 (t) = I - P3 (t) 

The solution as a parallel system with three 
modules is as follows: 

3 
Asys (t) = I - II (I - A;(t)) 

;=1 

1 - [1 - Am(t)f 

1 _ (_"A __ _ "A_ e -(A+/L)t)3 
"A+p, "A+p, 

I - ["A3 - 3"A3 e-(A+/L)t + 3"A3 e-2(A+/L)t 

- "A3 e-3(A+/L)t] If("A + p,)3] 

Again, the results obtained from the ·combinato­
rial and Markov model solutions match. 

The combinatorial M-of-N formula assumes 
that all modules have identical availability. This 
is not necessary for the series-parallel approach. 
Also, the methods discussed obviously apply 
equally to calculating steady-state availability, 
which is the next topic of discussion. 

Modeling Steady-State System 
A vailability: Queuing Theory 
Applications 

Several of the Markov models in Figure 5-55 
have already been discussed in this chapter. All 
are members of an important class of Markov 
process models known as birth-and-death pro-

EVALUATION CRITERIA 277 

cesses. The defining characteristics of birth-and­
death processes are: 

1. State transitions occur only between "adjacent" 
states: that is, for state N (not an end state), 
transitions occur only to state N - 1 or N + 1. 

2. Both "birth" transitions (N to N + 1) and "death" 
transitions (N to N - 1) follow a Poisson process. 

3. The probability of both a "birth" and a "death" 
occurring simultaneously is negligible. 

Figure 5-56a shows the general infinite birth­
and-death process, Figure 5-56b the general fi­
nite birth-and-death process. 

A very fruitful application of birth-and-death 
processes has been the study of waiting-line 
behavior, or queuing theory. Queues, or waiting 
lines, are common in daily life: the checkout line 
at the grocery store, the line of customers waiting 
to be seated at a restaurant, the innumerable 
lines of students at college registration. The 
queue involved here consists of a finite popula­
tion of modules that fail randomly, entering a 
waiting line to be repaired by a finite (possibly 
smaller) number of repair personnel. This queu­
ing model is known as the Machine-Repair, 
Multiple-Repairmen model, and is named the 
M/M/c/K/K Queuing System. This cryptic no­
menclature is decoded as follows: 

1. The first letter describes the interarrival time distri­
bution for failures ("birth"). M (which stands for 
Markov, or the memoryless property of the expo­
nential distribution) means that failures follow an 
exponential distribution. 

2. The second letter gives the distribution for service 
(repair) time, again exponential for this model. 

3. The third term is the maximum number of repair­
men (servers). 

4. The fourth term is the maximum number of failed 
modules that can be serviced, either immediately or 
after waiting for the next available repairman. 

5. The last term (which is always equal to the fourth 
term in this model) is the population size, that is, 
the total number of modules in the system. 



a. Two modules, one repairman 
2,\ ~ 

P P 

b. Two modules, two repairmen 

2,\ ~ 

P 2p 

c. Three modules, one repairman 

d. Three modules, two repairmen 

e. Three modules, three repairmen 

Figure 5-55. Markov models for two and three module systems for different 
numbers of repairmen. 

a. Infinite population model 

~1 ~2 ~3 ~N+1 

x· 
IL1 IL2 IlN 

b. Finite population model 

~1 ~2 ~3 

~ 
P1 P2 ilK 

Figure 5-56. Birth-and-death process Markov models. 



Figure 5-57 shows the general form of the Mar­
kov model that fits the M/M/c/K/K queuing 
system. An modules are assumed to have the 
same (constant) failure rate A, and all repairmen 
work at the same (constant) rate p,. 

For the model shown in Figure 5-57, the 
limiting (steady-state) state probabilities Pn are 
defined by the following recurrence equation: 

_ (An) . 
Pn - P,n Pn-I' n = 1, 2, 3, ... ,K (50) 

with 
K 

Po = 1 - ~ Pn 
n=1 

The specific adaptation of Equation 50 to the 
M/M/c/K/K queue of Figure 5-57 is: 

(K-n+I)(A) 
Pn = n ~ Pn-I; 

n = 1, 2, 3, ... , c 

Pn = (K - ; + 1) (~)Pn-I; 
n = c + I, ... , K 

Solving these in terms of Po: 

Pn = (~)(~)npo, - n = 1,2, ... , c 

n! (K)(A)n 
P n = c! cn-c n ~ Po ; 

n = c + 1, ... , K 

and 

(51) 

(52) 

(53 ) 

DO = C (K)(A)11 1\ n! (K)(A)11 
~ - + ~ --,--n=r -

n=O n P, 11=('+ I c. c n p, 

fhe limiting state probabilities Pn (n = 0, I, ... , 
K) are used to calculate the steady-state availa-
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bility Asys. For an M-of-N system structure, the 
equation for Asys is 

N-M N 
Asys = ~ Pn = 1 - ~ P n (54) 

n=O n=N-M+1 

The first model of Figure 5-55 (two modules, 
one repairman) was solved in the section on 
Time-Invariant Markov Models above. Applying 
Equation 53 to this M/M/I/2/2 queue: 

1 

Po~ l+(DG)+~;(DGY 
p,2 

p,2 + 2Ap, + 21...2 

Using Equation 51 yields: 

_ 2(1...) _ 2Ap, 
PI - ~ Po - Jl2 + 2Ap, + 21...2 

(
A) 21...2 

P2 = ~ PI = P, 2 + 2Ap, + 21...2 

If Figure 5-55 represents a dual redundant sys­
tem, then 

Asys = Po + PI 

p,2 + 2Ap, 
A =-~--~-:::-

sys p,2 + 2Ap, + 21...2 

which is the result obtained in the section on 
Time-Invariant Markov Models, Equation 43 
above. 

If the repair strategy is changed to call a 
second repairman when a second module fails, 
the model of Figure 5-55b results, a M/M/2/2/2 
queue. For this model: 

Po ~ 1 + G)G) + (DGY 
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K>' (K - 1)>' (K - 2)>' (K - C)>. 

···x~ 
'1.1. q.t 

Figure 5-57. Model for M/M/K/K queuing system. 

1 (A) A2 
P2 = 2 ~ PI = JL 2 + 2 AJL + A 2 

The system availability for a dual redundant 
structure now becomes: 

A = JL2 + 2AJL 
sys JL2 + 2AJL + A2 

This new availability is greater than that of the 
previous model because of the smaller A2 term in 
the denominator; that is, access to more repair­
men improves the availability. 

Figure 5-55d shows an example of an 
M/M/2/3/3 queue, where the number of repair­
men is greater than one but less than the number 
of modules. 

Po = 

Using this to model a system with two spares 
(one-of-three), the steady-state system availabili­
ty is: 

A sys = Po + PI + P2 

JL3 + 3AJL2 + 3A2 JL A =---:-----:..--~--'----=---=-----= 
sys JL3 + 3AJL2 + 3A2 JL + 1.5 A3 

Considering the system modeled by Figure 
5-55c to be a TMR structure, the resulting· 
steady-state availability should be the same as 
the constant terms in the example solved using 
combinatorial techniques. For the M/M/3/3/3 
queue: 

Po = I + (DG) + (DGY + (DOY 
JL3 

I (A) ,,-3 
P3 ="3 Ii P2 = JL3 + 3AJL2 + 3A2JL + A3 

JL3 + 3AJL2 
Asys = Po + PI = JL3 + 3AJL2 + 3A2 JL + A3 

_ JL3 + 3AJL2 
- (JL + A)3 

This is indeed the constant term from the solu­
tion derived earlier. 



Modeling Performance Impact of 
Redundancy 

Adding redundancy to a system often affects 
performance. A triplication-with-voting scheme 
such as C.vmp (see Chapter 7), for example, 
incurs the gating delay of the voter. Such gate 
delays are easy to measure and model. Main­
memory cycle time degradation, due to the addi­
tion of error checking logic, is easy to calculate. 
The system degradation is usually small because 
the processor-memory bandwidth is normally 
not fully utilized. Parallel operations and relative 
frequency of use, however, generally make per­
formance degradation modeling more difficult. 

Another difficulty is determining the effect on 
performance when there are (covered) failures 
present in a functioning redundant system. In 
some cases (as in backup systems) there is no 
additional degradation beyond the time required 
for system reconfiguration. In others, perfor­
mance becomes degraded (such as extra time 
required for correction, or fewer resources left to 
accomplish tasks). 

The impact of single-error-correcting codes for 
main memory or micros tore on system reliability 
was discussed above. The effect such ECC mem­
ories have on system performance serves as an 
example of performance-degradation modeling. 
Chapter 7 provides additional examples. 

Because most error checking can be carried 
out in parallel with the use of data, there is 
usually no performance change in an error-free 
state. This is the case if no irreversible actions 
(such as an overwriting of information needed to 
restart the current operation) occur before the 
error checking has been completed, and if the 
hardware has stall/restart capabilities. Most pro­
cessor /main memory systems and vertically cod­
ed microemulators belong in this class. Most 
register-transfer level results are not latched until 
the end of a microcycle, leaving enough time for 
error checking in most designs. On the other 
hand, a horizontally microcoded machine with a 
short microcycle and a very large word width 
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would not allow retry, because the propagation 
time through the several XOR levels required for 
ECC checking would be greater than the micro­
cycle time. This should not very often be the 
case, however. This section focuses on the effect 
of recoverable memory errors on system perfor­
mance. 

Main-Memory Performance in the 
Presence of Errors 

Assume that the access frequency is not uniform 
throughout the memory, so that some memory 
segments, such as those containing parts of the 
operating system kernel, are more likely to be 
accessed than others. Suppose that each location 
i has access probability Pi' and that there are n 
errors in a w word memory. The expected mem­
ory access time can be expressed as a function of 
the cycle time c and the cycle time degradation 
due to an error, €c: 

WnW n 
~ P;{ 1 - - )c + ~ Pi ( - )( c + €c) 
i=i W i=i W (55) 

n€ 
=c(l+-) 

W 

since ~ Pi = I. Thus, the expected degradation 
of the memory access time is n€/w. 

Figure 5-58 illustrates the effects of errors on 
memory access time for several values of nand 
w. Two types of ECC memory are represented: a 
Hamming code memory with an € of one (one 
full extra memory cycle to correct an error) and 
a block-coded me~ory with an € of 64 (reading 
all words in the block to determine the vertical 
parity). The performance degradation is negligi­
ble (less than 1 percent) for the Hamming code, 
whereas the degradation becomes significant for 
the block code only when n becomes large. 

The degradation of system performance de­
pends on how often the memory is accessed. A 
system with a low memory bandwidth utilization 
will exhibit less degradation than one whose 
bandwidth is almost saturated. Table 5-16 com-
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Figure 5-58. Memory access degradation. (© 1980 IEEE.) 

pares the degradation in three different PDP-II 
systems. The data in the first two columns, 
drawn from Snow and Siewiorek [1978], are the 
result of dynamic measurements of PDP-II pro­
grams. Another result from the same source is 
that an average of 2.16 memory references occur 
for each instruction. If Tm is the memory access 
time, ~ the average instruction execution time, 
and Dm the expected memory access time degra­
dation, the expected system degradation Ds is: 

(56) 

Based on this formula, the third column of Table 
5-16 lists the proportion of memory degradation 
that comes through as system degradation. The 

system performance degradation is less than the 
memory performance degradation in all cases. 
For the LSI-ll and the PDP-II/10, a large 
memory degradation must occur before its ef­
fects are noticeable. The system degradation 
effects are more noticeable on the PDP-II/34, 
which comes close to saturating the processor­
memory bandwidth. Therefore, even though the 
memory performance degradation is more seri­
ous for block codes than Hamming codes, as 
shown in Figure 5-58, overall system perfor­
mance is comparable over wide ranges of failure 
situations. Using Equations 55 and 56, the data 
in the last column of Table 5-16 were calculated 
assuming four failures in a 16K word block code 
memory with 64 word blocks. The degradation is 
negligible (I percent) _even in the PDP-I 1/34. 
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Table 5-16. Timing data and resulting degradation for PDP-11 computer 
systems. 

Time in Microseconds Jor: System Degradation: 

Average Instruction D\ D\Jor m = 4, 
System Memory Access Execution (% oj Dill) f = 64, w = 16K 

LSI-II 0.400 

PDP-l 1/40 0.600 

PDP-ll/34 0.940 

Microstore Performance in the 
Presence of Errors 

Microstore reliability is becoming more impor­
tant as the use of microcoded system design 
increases. The growing size of microstores being 
used and the subsequent effect on system reli­
ability make error-coding techniques more at­
tractive. Unlike main memory, in which 
degraded segments can be left unallocated, de­
graded sections of microcode are permanently 
allocated and will continue to affect system 
performance until repaired. 

Table 5-17 summarizes the characteristics of a 
microcoded machine. It is assumed that all F 
fetch and S (interrupt) service microwords are 
executed during each macrocycle. The expected 

Table 5-17. Microstore model: allocation and 
access frequency. 

P # oj Occurrences 
Purpose Size [access] in Microstore 

Fetch F 

Interrupt service S 

Addressing mode Aj Pj a 

Instruction Ik Pk 
a i 

Total memory w = F + S + ~ Aj + ~ Ik 
j=1 k=1 

5.883 14.7% 0.0023 

4.096 31.6 0.0049 

3.129 64.9 0.0101 

macrocycle time Mo with no errors present can 
be shown to be: 

E[Mo] = (F + S + A + l)m 

where m is the microcycle time, A is the average 
number of microwords needed to access the 
operands, and 1 is the average number of mi­
crowords to execute the instruction. 

Formulating the performance degradation 
model entails two additional assumptions: first, 
the probability distribution of errors is uniform 
over all memory words; second, an error code 
with one logical word per physical word is being 
used. If the number of microcycles needed to 
correct a word with an error is € and there are n 
errors in the memory, the expected macrocycle 
time is 

E[Mn] = E[Mo](I + ne). (57) 
w 

The derivation is similar to that of Equation 55. 
Thus, the expected performance degradation is 
ne/w, as with main memory. This result has been 
shown to hold for block codes also. 

Consider three computers with microstores of 
256, 1,024, and 4,096 words, with E = 1 (Ham­
ming code) and E = 16 (block code, 16 words 
per block), and with three failures. The expected 
degradation can be calculated as in Elkind and 
Siewiorek [1978]. Degradation is negligible for 
the Hamming code (1.7 percent for w = 256; 0.3 
percent for w = 1,024; and 0.1 percent for w = 

4,096). In the block-code design, degradation is 
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Figure 5-59. SEC microstore distribution of degradation. (© 1980 IEEE.) 

negligible when the block size is small in relation 
to the memory size (1.2 percent for w=4,096). In 
the other cases it is more noticeable (4.7 percent 
for w= 1,024; 18.8 percent for w=256). 

Given a machine like the one outlined in 
Table 5-17, the probability distribution of the 
performance degradation with n errors present 
can be computed. Figure 5-59 shows this distri­
bution for two slightly different machines; Table 
5-18 lists their characteristics. Addressing mode 
and instruction frequencies were drawn from a 
study of PDP-II program traces [Snow and 
Siewiorek, 1978]. The microstore is divided into 
sections for F, S, and each of th~ addressing 
modes and instructions. A vector, f, represents 
a given error pattern, with an element for each of 
the microstore divisions. Th~ expected degrada­
tion was calculated for each f possible in Elkind 
and Siewiorek [1978, 1980]. 

For the Hamming coded machine, the proba­
bility of negligible (less than 1 percent) degrada­
tion is 93 percent. The probability that the 

degradation is less than the expected degrada­
tion (0.0039) from Figure 5-59 is 86 percent. The 
probability of noticeable degradation (more than 
5 percent), is only 5 percent, whereas severe 
degradation does not occur. 

A second curve in Figure 5-59 details the 
probability distribution for the machine when 
two errors are present. Although there is a possi­
bility of severe degradation (more than 10 per­
cent), the probability is small (0.24 percent) 

Table 5-18. Microstore specifications. 

Hamming Code Block Code 

F = 3 F= 4 
S = 10 s= 12 
Aj = 3 Aj = 4 for all) 
Ik 3 Ik = 4 for all k 
a = 16 a = 16 

65 i = 65 
w = 256 w = 336 

16 words per block 



while there is an 86 percent probability that the 
degradation will be less than I percent. 

The other two curves in Figure 5-59 are for the 
block-coded microstore. Its performance degra­
dation is more severe than that of the Hamming 
coded microstore. With one error present, the 
probability of severe degradation (more than 10 
percent) is about 8 percent, whereas the proba­
bility of negligible degradation (1 percent or less) 
is only 65 percent. When two errors are present, 
the chance of a severe performance loss is 17 
percent, and that of a benign failure drops to 40 
percent. 

Summary of fCC Memory Models 

When data are used in parallel with error check­
ing, error-correcting memories can have perfor­
mance similar to nonredundant memories if no 
failures are present. In the majority of cases, 
error-correcting-code memories experience negli­
gible performance degradation in the presence of 
failures. The results above can be used to predict 
such degradation. These results, coupled with the 
failure-present MTTF predictor developed ear­
lier in the section on the Effect of Nonredundant 
Components, should be useful in planning mem­
ory system maintenance. 

Block-coded memories have several desirable 
properties. When SSI/MSI support circuitry is 
used, they can be more reliable than Hamming 
code memories. The memory redundancy re­
quired is less than that for Hamming codes. Even 
though large Hamming words (many logical 
words per physical word) could be used, the 
decoding/encoding for such large code sizes 
would be complex and slow. The block code, 
however, does have disadvantages that limit ap­
plicability. Writing into a block-coded RAM 
takes longer (although Hamming codes with 
multiple words per physical word have a similar 
problem). This would be offset somewhat if serial 
memory DMA devices are used. The stored data 
are already encoded, for DMA devices usually 
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perform block transfers; thus, reading from tape 
or disk would have no degradation. Block-code 
error correction also takes longer, but the result­
ant degradation is negligible. Another limitation 
is that some double errors (those in the same 
logical word) cannot be detected. Finally, al­
though some chip (or row/column) failure modes 
are to be tolerated, the block coding scheme is 
board-space efficient only for large memories. 
Even with these limitations, the block code is still 
suitable for many RAM and ROM applications. 

TRADE-OFF ANALYSIS IN 
SYSTEM DESIGN 

An incremental improvement method is often 
used to design a cost effective system. This 
technique gives rise to the two related problems 
of choosing which part of the system design to 
improve and deciding how best to improve that 
section in accord with the design goals. The 
MIL-HDBK-217B parts-count model provides 
one way to pinpoint hard-failure problem areas 
in a nonredundant system. The least reliable 
module (or functional area) will necessarily have 
the largest module failure rate. However, the 
most . effective target for improvement is not 
always the one with the highest failure rate. The 
control logic of the PDP-8/e, for example, which 
contributes to about 30 percent of the non­
memory failure rate, is exceedingly difficult to 
add redundancy to without complete redesign. 
The techniques that work for random logic, such 
as quadded logic [Tryon, 1962] and triplication 
with voting (TMR), unfortunately involve mas­
sive amounts of redundancy. Quadded logic uses 
four times the normal number of gates; TMR 
requires three times that number. TMR also 
requires a majority voter on each of the output 
lines, a significant disadvantage if there are a 
large number of output lines. Thus, regularity of 
structure is an important factor in the choice of 
fault-tolerance techniques. 

The failure-rate analysis method becomes at 
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least partially invalid with redundancy, because 
the reliability function is no longer a simple 
exponential. Approximations are feasible in 
practice. Often, the redundant portion of a sys­
tem can be assumed to be perfect with respect to 
other portions of the system. 

Design Example: The PDP-8/ e 

This section illustrates a possible iterative im­
provement method utilizing the PDP-8 and only 
two redundancy techniques. Chapter 8 will illus­
trate the type of analysis that can be performed 
during the design of a system, specifically the 
V AX-1l/750. 

The evaluation criteria for the example are 
cost and MTTF (Mean Time To Failure). Man­
ufacturing cost, in terms of chip count, is the 
easiest property to model. In early design stages 
it is usually taken to be just the materials cost of 
a design. Quite often the design is optimized for 
minimal materials cost alone. Other costs can 
also be used. Total manufacturing costs or user 
purchase price are important. Repair, spare 
parts, and operating costs can also be important. 
Attempts to predict these and other costs over 
the lifetime of a system, or life-cycle cost (LCC) 
models, usually predict present value, total, or 
annual costs of combinations of purchase, fi­
nancing, repair, inflation, and all other possible 
costs and factors. The number of different mod­
els is staggering (IEEE [1977] provides some 
examples). No single LCC model applies to all 
problems and viewpoints. Chapter 6 discusses 
economic criteria in more detail. Chip count will 
be used as the cost function in this example. 

The PDP-8, an early minicomputer, has a one­
address architecture with 12-bit words. The 
PDP-8/e is an SSI/MSI TTL implementation of 
the PDP-8 [DEC, 1971, 1972]. This design exer­
cise will employ a simple algorithm for making 
design changes. The two techniques in the algo­
rithm's catalogue are Single-Error-Correctingl 
Double-Error-Detecting (SEC/DED) codes and 
Triple Modular Redundancy (TMR) with vot-

Memory 
16K words 

Omnibus 

CPU 

Figure 5-60. Simple PDP-8/e system. 

ing, the two most commonly used fault-tolerance 
techniques. The site chosen for applying a redun­
dancy technique is the module with the largest 
percentage failure rate, determined by the AU­
TOFAIL program (discussed in Chapter 2.) The 
site choice can be done in a recursive fashion­
the subarea having the largest failure rate withi~ 
the area having the largest failure rate, and so 
on, until a suitable site is found for applying one 
of the techniques. Finally, if the MTTF shows a 
decline from the previous step, the algorithm 
requires the designer to return to the previous 
step and try again. This algorithm uses only 
MTTF and failure rate as evaluations; it ignores 
other factors such as cost and performance. 

Figure 5-60 shows, the PDP-8/e system dis­
cussed here. It consists of a PDP-8/e processor, 
16K words of MOS memory, and the KM-8 
memory extension and time sharing board. * This 
system model is used as the basic design prior to 
reliability improvement. 

Initial Improvement: Adding 
SEC/ DED Encoding to the 
Memory 

Ev~lu~!ing the initial design is the first step in 
relIabIlIty enhancement. This is accomplished by 
preparing the parts list for the PDP-8/e system, 
categorized by function, then running the list 
through AUTOFAIL. Figure 5-61 shows the 

* The KM-8 is needed to extend the PDP-8 memory space 
beyond the 4K word range directly addressable by its 12-
bit addresses. 
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Plain PDP-8/e 

PDP8e.REL LSI= 16.000 ROM= 16.000 RAM= 16.000 

E = 1.000 Q = 16.000 L = 

MODULE 

PDP8e 
Processor 

data .part 
registers 

MB300.A.MQ .MB. PC .MA 
MB31O.LINKBIT 

adder 
true.compl.one.zero 
path. shunt. in 
path. shunt .out 

bus. connect. open. co 11 
MB300 
MB310 

bus.l oads .MB320 
control.l ogi c 

MB300 
MB310 
MB330 

KM8.Mem. ext. ti m.shr 
16k.memory 

memory .chi ps 
control 
bus.conn.oc 

1.000 T = 40.000 

FAILURE RATE 

167.218 
32.111 

14.592 
5.903 

5.808 
.095 

1.146 
.610 

2.651 
4.282 

.966 
.724 
.241 

.121 
16.432 

.543 
6.868 
9.021 

8.509 
126.598 

124.186 
2.050 

.362 

PERCENTAGE 

100.000 
19.203 

45.443 
40.454 

98.387 
1.613 

7.854 
4.180 

18.167 
29.344 

3.007 
75.000 
25.000 

.376 
51.173 

3.303 
41. 798 
54.899 

5.089 
75.708 

98.095 
1.619 

.286 

# of chips = 285.083 # of gates = 2830.000 # of bits = 196608.000 

MISSION 
Rel iabil ity Time 

.9999 

.999 

.995 

.99 

.98 

.95 

.9 

.8 

.7 

0.57 
6.0 
30.0 
60.1 
121 
307 
630 
1334 
2133 

MTTF = 5984 

tota 1 chi ps = 285 

Figure 5-61. Basic PDP-8/e. 

results. The system has a total failure rate of 
167.2 failures per million hours (fpmh) and an 
MTTF of 5,984 hours. The percentage column 
shows that the memory contributes 76 percent of 
the failure rate, making it the most logical place 
for initial improvement. The strategy chosen is to 
use a Hamming SEC/OED code for the memory 
words. Each 12-bit memory word is encoded into 
an 18-bit code word. The extra circuitry (control, 
encoding/decoding, and so forth) is designed 
assuming a special 18-bit Hamming encoding/ 
decoding tree chip. The approximate model in 

Elkind and Siewiorek [1978] is used to generate 
the parts list. The 18-bit encoding/decoding chip 
replaces the parity chip trees in the model to 
accomplish a considerable reduction in chips. 
The standard 22-bit SEC chips now becoming 
available could also be used, with four data-bit 
inputs held at fixed values. 
. The resulting design is checked by A UTO­

F AIL for the nonredundant part of the system 
(everything except the memory array). Figure 
5-62 shows the resultant failure rate to be 49.6 
fpmb, less than a third of the original. However, 
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PDP-8/e, ECC memory 

8ECC.REL LSI= 16.000 ROM= 

E = 1.000 Q = 16.000 L = 

PDP8e 
Processor 

data.part 
registers 

MB300.A.MQ .MB.PC.MA 
MB310.LINKBIT 

adder 
true.compl.one.zero 
path. shunt. i n 
path .shunt .out 

bus .connect .open. coll 
MB300 
MB310 

bus.l oads .MB320 
control logic 

MB300 
MB310 
MB330 

KM8.Mem. ext. ti m.shr 
16k. ecc .memory 

control 
bus.conn.oc 
extra. support 

# of chips = 264.083 # of gates = 

MISSION 
Rel iabil ity Time 

.9999 

.999 

.995 

.99 

.98 

.95 

.9 

.8 

.7 

2.0 
20.2 
101 
203 
407 
1034 
2123 
4496 
7187 

16.000 RAM= 16.000 

1.000 T = 40.000 

FAILURE RATE 

49.624 
32.111 

14.592 
5.903 

PERCENTAGE 

100.000 
64.708 

45.443 
40.454 

5.808 98.387 
.095 

1.146 
.610 

2.651 
4.282 

.966 
.724 
.241 

.121 
16.432 

.543 
6.868 
9.021 

8.509 
9.004 

2.050 
.362 

6.592 

3365.500 # of bits = 

MTTF = 20,136 

tota 1 chi ps = 336 

1.613 
7.854 
4.180 

18.167 
29.344 

3.007 
75.000 
25.000 

.376 
51.173 

3.303 
41. 798 
54.899 

17.147 
18.145 

22.764 
4.022 

73.215 

.000 

Figure 5-62. PDP-8/e with SEC memory. 

examining the failure process of the entire de­
sign, including the memory array, is necessary to 
ensure an accurate appraisal. To perform this 
examination, the program SEC* is employed 
with the 18-bit ECC memory parameters, using 
49.6 fpmh as the non redundant "control" por­
tion failure rate. The SEC program predicts an 

* The program SEC (Single Error Correcting) uses the mod­
els of the section on the Effect of Nonredundant Compo­
nents to calculate the MTIF of a single"-error-correcting 
code memory. 

MTIF of 20,136 hours (assuming a dominant 
single-bit failure mode in the memory chips)-a 
237 percent improvement over the basic 
PDP-8/e. The MTIF of the nonredundant por­
tion alone is 20,161 hours. Thus, as demonstrat­
ed in the section on the Effect of Nonredundant 
Components, the SEC code memory array can 
essentially be ignored as a contributor to the 
system failure rate. 

The original (nonredundant) design used 285 
ICs; the 18-bit ECC memory version uses 336. 
The difference results from the extra support 



circuitry and the memory chips for the redun­
dant code bits. The AUTOFAIL chip count does 
not include the chips in the redundant portions 
of the design. The result is a total increase in cost 
of around 18 percent. 

The code word size can be increased (and 
extra memory bits for coding decreased) by 
combining two 12-bit memory words into a 30-
bit SEC/OED code word. This represents a 
savings of 12 memory chips over the 18-bit ECC 
version. However, the control and coding/ decod­
ing functions become more complex. The net 
cost savings over the 18-bit code memory are nil. 
The MTTF is also adversely affected (down to 
14,948 hours). The memory cycle time on reads 
increases over the 18-bit code because there are 
more levels in the decoding trees. On writes, the 
30-bit word must first be read, decoded, and then 
re-encoded and rewritten with the new word 
replacing half the code word; this process takes 
almost twice as long as a nonredundant memory. 
Thus, the 18-bit SEC/OED code is the best 
improvement to make for the size of memory 
involved. (For a 64K-word memory, the 30-bit 
code would use 48 chips less than the 18-bit 
code. This results in more attractive cost savings 
and perhaps a different decision would be made 
if cost were an important factor.) 

Triplication of the Processor 

The AUTOF AIL output from the previous step 
(see Figure 5-62) shows that the processor has 
the largest failure rate, contributing 65 percent of 
the nonredundant portion's failure rate. Because 
the processor outputs are limited in number and 
easily identifiable (as the OMNIBUS), the next 
attempt at improvement is to triplicate the pro­
cessor and vote on its OMNIBUS outputs. Tri­
plication requires 78 voters. Of these, four lines 
carry the major clock phase signals. To force 
synchronization of all three copies of the pro­
cessor, synchronizing voters [McConnel and Sie­
wiorek, 1981] will be employed on the four clock 
phase lines. The synchronizing voter is more 

ECC 
memory 

16K words 
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Omnibus 

Figure 5-63. PDP-8/e with triplicated processor. 

complex than the ordinary voter used on the 
other 74 lines. Figure 5-63 is a block diagram of 
the resulting modified system. 

Figure 5-64 shows the evaluation results. The 
overall reliability of this design is more difficult 
to assess. Its complex reliability formula is devel­
oped in Elkind [1980b]. The nonredundant por­
tion's failure rate has dropped to 28.9 fpmh, a 
reduction of 42 percent. Numerical integration 
of the reliability formula, however, yields an 
MTTF of 16,952 hours, a 16 percent decline. 
Thus, by the rules of the algorithm, a return to 
the previous design is required. 

Triplication of the Timing Board 

The AUTOFAIL listing (Figure 5-62) shows that 
the control logic contributes the largest propor­
tion of the processor failure rate. Most of the 
control logic, however, is well integrated into the 
structure of the rest of the processor. Its triplica­
tion would require a large number of voters at 
the interface between the control logic and the 
rest of the processor. However, the timing board 
(MB330), which contributes to over half of the 
failure rate of the pieces of the control logic, has 
only 13 outputs at its interface with the rest of 
the processor. Thus, the timing board is chosen 
as the site for the next improvement. Triplication 
of the board requires installation of synchroniz­
ing voters on the four output lines carrying the 
major clock phase signals; the other nine will 



PDP-8/e, TMR processor, ECC memory 

8TPROC.REL LSI= 16.000 ROM= 

E = 1.000 Q = 16.000 L = 

MODULE 

PDP8E. tri pproc .ecc .mem 
Processor 

omni bus. voters. 78 
synch. voters. 4 
normal. voters 

bus .connect.open .coll 
MB300 
MB310 

bus.l oads .MB320 
KM8.Mem. ext. ti m. shr 
16k. ecc • memory 

control 
bus .conn .oc 
extra. support 

# of chips = 146.333 # of gates = 

MISSION 
Reliability Time 

.9999 3.4 

.999 34.5 

.995 171 

.99 337 

.98 658 

.95 1553 

.9 2911 

.8 5420 

.7 7889 

16.000 

1.000 

RAM= 16.000 

T = 40.000 

FAILURE RATE 

28.865 
11. 351 

10.265 
.777 

9.488 
.966 

.724 

.241 
.121 

8.509 
9.004 

2.050 
.362 

6.592 

2149.500 # of bits = 

MTTF = 16,952 

total chi ps = 696 

PERCENTAGE 

100.000 
39.325 

90.430 
7.568 

92.432 
8.507 

75.000 
25.000 

1.063 
29.480 
31.195 

22.764 
4.022 

73.215 

.000 

Figure 5-64. PDP-8/e with SEC memory, TMR processor. 

PDP -8/ e, TMR t i mi ng, ECC memory 

8TRIP6.REL LSI= 16.000 

E = 

MODULE 

PDP8e 

1.000 Q = 16.000 

Processor 
data. part 

registers 
MB300.A.MQ .MB.PC .MA 
MB31O.LINKBIT 

adder 
true .compl .one .zero 
path. shunt. i n 
path .shunt .out 

bus. connect. open. co 11 
MB300 
MB310 

bus.l oads .MB320 
control. logic 

MB300 • 
MB310 
MB330. tri p. voter 

synced.l i nes 
nonsynced.l i nes 

KM8.Mem. ext. ti m. shr 
16k. ecc .memory 

control 
bus.conn.oc 
extra. support 

ROM= 

L = 

# of chi ps = 221. 917 # of gates = 

MISSION 
Reliability Time 

.9999 2.4 

.999 23.5 

.995 118 

.99 236 

.98 474 

.95 1198 

.9 2444 

.8 5107 

.7 8052 

16.000 

1.000 

RAM= 16.000 

T = 40.000 

FAILURE RATE 

42.534 
25.020 

14.592 
5.903 

5.808 
.095 

1.146 
.610 

2.651 
4.282 

.966 
.724 
.241 

.121 
9.342 
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Figure 5-65. PDP-8/e with SEC memory, TMR timing board. 



~mploy regular voters. The reliability formula for 
this design is developed in Elkind [1980b]. 

Figure 5-65 shows the evaluation results. The 
nonredundant portion's failure rate has dropped 
by 14 percent from the, SEC design (Figure 5-62). 
More important, the MTTF has increased to 
20,774 hours, up 3 percent. According to the 
algorithm, then, this is a successful step in the 
design improvement. 

Triplication of the Data Area 

The processor failure rate still dominates for the 
nonredundant portion of the system, but the 
data area now accounts for the largest share. 
Figure 5-66, a simplified block diagram of the 
PDP-8/e data paths, shows two sets of 12 output 
lines. An SEC code would not work in this case, 
because there are data transformations inside the 
data area. The small number of output lines also 
makes triplication the technique of choice for the 
data area. 

Elkind [1980b] develops the reliability func­
tion for the resulting configuration (SEC memo­
ry, TMR timing board, and TMR data area). 
Figure 5-67 shows the reliability evaluation re-

Figure 5-66. Original PDP-8/e data paths. 
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sults. The nonredundant failure rate has dropped 
by 27 percent. The MTTF, however, has in­
creased by only 0.6 percent, to 20,898 hours. 

Analyses of the Example 

This treatment of the PDP-8/e follows only one 
of the possible routes through the design space. 
Figure 5-68 shows other routes, for which each 
of the design points was evaluated. In the follow­
ing discussion, each point is specified by the 
combination of path and step indexes from the 
figure. For example, the PDP-8/e with ECC 
memory added is denoted equivalently by AI, 
Bl, and Cl, since it belongs in all three paths. 
The PDP-8/e with a TMR processor and ECC 
memory is denoted by the index A2. The subsec­
tions below examine the path through the design 
space followed by the simple redesign algorithm, 
analyze its performance, and compare it with 
other possible paths. 

The Path of the Simple Algorithm 

Path "B of Figure 5-68 portrays the path of the 
simple algorithm through the design space. The 
sole aim of the algorithm is MTTF improvement 
through reduction of the nonredundant portion's 
failure rate. The net improvement in MTTF in 
the example was 249 percent, of which 237 
percent occurred in the first step, adding the SEC 
memory. Thus, the algorithm attained the 
MTTF improvement goal. 

It is necessary to evaluate the performance of 
the algorithm in relation both to the MTTF 
improvement and to the cost of that improve­
ment. One possible measure is: 

MTTF n - MTTF(n_l) 
I = --~~----~~~ 
n (cn - C(n-I) 

MTTF n is the MTTF of the design resulting 
from the nth successful step, and Cn is the cost of 
the design (in this example, the number of inte-
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Figure 5-67. PDP-8/e with SEC memory, TMR timing board, and data part. 

TMR processor and ECC memory 

Path 

A 

ECC memory ECC memory and TMR timing -- ECC memory, TMR timing, B 
TMR data part 

Plain PDP-8/e ECC memory and registers --- ECC memory and registers, C 
TMR timing 

TMR timing D 

Bit Slice 
PDP-8 ---- ECC memory E 

Step 0 2 3 

Figure 5-68. Design space for fault tolerant PDP-8/e. 
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Figure 5-69. Performance of a simple algorithm 
for design improvement. 

grated circuits). The graph of Figure 5-69 shows 
the performance evaluation of the example. The 
plot is monotonic decreasing, which indicates 
that each step is the most cost effective of those 
performed. In this sense, then, the algorithm 
performs well. 

Other Paths through the Design 
Space 

The path followed by the algorithm is not neces­
sarily optimal. In fact, another path attempted 
works better in terms of total cost of the final 
design and the MTTF attained. Path C of Figure 
5-68 portrays an early attempt based on intuition 
and guided by AUTOFAIL. The second step of 
path C was taken because of the better perfor­
mance of SEC codes over TMR in improving 
MTTF. Although the registers have a smaller 
failure rate than the timing board and are in the 
data area, which has a smaller failure rate than 
the control area, the choice was obvious. Figure 
5-70 shows the resultant modification. The final 
design has an MTTF of 21,903 hours, a 266 
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Omnibus 

Figure 5-70. PDP-8/e data paths with SEC register 
modification. 

percent improvement on the original PDP-8/e 
design. The final cost is 457 chips. In contrast, 
the algorithmic path resulted in only a 249 
percent increase in MTTF, with a cost of 565 
chips. Figure 5-71 compares the performance 
measurements of the two algorithms. Not only 
does the intuitive algorithm yield a better end 
result, but In has a steadier decline, implying a 
more consistent performance. 

It is also interesting to look at the design paths 
followed in terms of mission time improvement, 
even though neither algorithm had this as a goal. 
The simple algorithm guided primarily by failure 
rates and not suitability of technique to improve­
ment site. Thus, the simple approach tends to 
choose TMR more often because it works for 
many sites (such as random logic) for which 
SEC/DED codes will not. TMR tends to im­
prove MT[R] for large R, often with the result of 
lower MTTF. The final design of the simple 
algorithm has an MT[.95] of 1,585 hours, versus 
the 1,280-hour MT[.95] for the intuitive ap­
proach. The MTI[.95] is 5.16 and 4.l7 for the 
simple and intuitive approaches, respectively. 
Figure 5-72 plots a modified performance mea-
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Figure 5-71. Performance comparison of the sim­
ple and intuitive approaches. 

surement, I~, with the MTTFn replaced by 
MT n [.95], for the two approaches. Both ap­
proaches performed well in this respect, although 
the simple algorithm's heavier use of TMR 
caused it to do better. 

If MT[.95] had been the goal instead of 
MITF, both approaches would do equally well. 
Both would follow path A of Figure 5-68 to 
design A2. In the case of the simple algorithm, 
the second step to a TMR processor would have 
been deemed successful because the resulting 
MT[ .95] is 1,553 hours, up 406 percent. Previous­
ly, the same step was unsuccessful because it 
resulted in a decline in MITF. Neither ap­
proach, however, reaches the best design in 
terms of MT[ .95]. Design B3 has a slightly better 
MT[.95] of 1,585 hours for 131 fewer chips. 
Design A2, however, has better MTs for values 
of R equal to or greater than 0.98. 

Path D, though not actually followed, is de­
picted in Figure 5-68 for the sake of complete-

20 

18 

16 

14 

c,.12 
~ 
<II 

t 10 
~ 
~ 8 

6 

4 

2 

0 
1 2 

Simple algorithm 

Rejected step, simple algorithm 
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Figure 5-72. Performance of improvement with 
respect to MT[.95]. 

ness. Figures 5-73 and 5-74 show the MTTF and 
MT[.95] for each point in the design space as a 
function of chip count. 

Finally, Figure 5-68 portrays in path E an 
attempt to ascertain the results of a redesign 
using a different design style, created by Tsao 
[1982]. Although it is not a complete implemen­
tation of Figure 5-60, the design demonstrates 
potential improvement resulting from a change 
in design style. The MTTF of design EI, a bit­
slice PDP-8 with SEC code memory, is 54,000 
hours, more than twice as high as the best design 
previously, and with many times fewer chips. 
Thus, even allowing for the added complexity of 
a complete implementation, the potential im­
provement is considerable. 

This exploration of design space minimized 
the number of design trade-offs (such as redun­
dancy techniques) in order to illustrate the meth­
odology. Inclusion of additional redundancy or 
fault-intolerant techniques (such as changing en-
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vironmental, temperature, and quality factors; 
see Chapter 3) would yield a much richer design 
space. The practicing engineer must consider all 
these alternatives. 

SUMMARY 

This chapter introduced a number of evaluation 
criteria for reliable computing structures. Several 
essential considerations in evaluating systems 
are: 

• Frequently, multiple evaluation criteria are required 
for adequate comparison of alternative designs. The 
most frequently used criterion-MTTF-is particu­
larly poor for evaluating massively redundant sys­
tems. The reliability curve for a redundant system 
exhibits a sharp knee when all the fault tolerance has 
been exhausted. The redundant system is much 
more likely to fail, because there are more compo­
nents than in a nonredundant system, and the next 
component failure causes a system failure. 

• The first application of redundancy to a system 
produces the largest absolute increase in reliability. 
The point of diminishing returns is usually reached 
by redundancy factors of five or less. 

• Care must be taken to model the entire system. The 
addition of extra logic to manage redundancy may 
actually result in a less reliable system than the 
non redundant one. 

• Often, apparent system reliability will improve as a 
result of using more detailed models. Although 
modeling effort increases rapidly with the level of 
detail, more effort in modeling can produce a less 
overdesigned, more cost effective system. 

• Values for mathematically concise parameters (such 
as coverage) are often difficult or impossible to 
predict. Indeed, the gross parameters may oversim­
plify the situation. An engineering "guesstimate," 
coupled with a sensitivity analysis (varying the pa­
rameter over a best case, worst case range to deter­
mine effects on the model) can isolate parameters 
that need further refinement. 

• Fault-intolerant techniques should not be neglected. 
Extra care in component specification and screening 
may cost less than many forms of redundancy. 

• Above all, a balanced approach is required. All 
portions of a system should be considered, not 
simply the CPU or memory. Furthermore, a mixture 
of fault-tolerant techniques usually produces a more 
effective design than application of one technique 
throughout the system. Each technique should be 

applied to the portion of the system that best 
matches its properties (such as codes to portions of 
systems that deal in vectors of data-memory, regis­
ters, bus, data paths). 

• System comparison techniques are stressed rather 
than absolute numbers because the reliability func­
tion of a module frequently is not known at system 
design time. 
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ROBLEMS 

I. Assume that the failures of three computers, A, B, 
and C, are independent, exponentially distributed 
random variables with failure rates AA = 1/800, 
AB = 1/1,300, and AC = 1/1,300 failures per 
hour, respectively. 
a. What is the probability that at least one system 

fails in a four-week period? 
b. What is the probability that all three systems 

fail in a four-week period? 

~. Calculate the reliability of the structure below 
between points A and B. Assume all modules have 
a reliability of R. 

A B 

~. Consider the system success diagram below. 

.----~ G 1-----, 

a. List all possible working paths in the form of a 
"Reliability Block Diagram" (RBD). 
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b. Derive the upperbound for system reliability 
given by: . 

) 

Rsys < 1 - .II (I - Rpath) 
/=1 

c. Derive the lowerbound for system reliability 
from the minimal cut set 

k 

Rsys > IT (I - Qcut) 
i=1 I 

d. Derive the exact reliability formula. 
e. Simplify the results above if all modules exhibit 

the same reliability R. 

4. Given the probabilities 10 (probability of a relay or 
MOS transistor failure in open position) and f~ 
(probability of a failure in short position), and that' 
the system can tolerate a short between points A 
and B (that is, a short failure is acceptable but an 
open failure is not), the reliability of 
is given by (choose one) 

a. 1 - 10 
b. (1 - 10)2 
c. 1 - 210 
d. 1 - 15-

5. With 10 and Is as in question 4, and given that a 
short between A and B may be tolerated, the 
reliability of 
is given by (choose one) 

a. 1 - 10 
b. (1 - 10)2 
c. 1 - 210 
d. 1-15-

6. Given that 10 = is, that a short between A and B 
is tolerated, and that Y is known to have failed 
already, the reliability of 

z 
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is given by ( choose one) 
a. 1 - (10/2) 
b. 1 - «10 + Is)/2) 
c. 0.5(2 - 10)P - 10) 
d. 0.5(1 - 10) 
e. 1 - 0.510 - 0.516 . 

7. The connection between points A and B is to be 
controlled. The circuit below is used instead of a 
single relay or MOS transistor in order to achieve 
highly reliable control. 

The probability of failing in an open position is 10, 

and the probability of a failure in a short position 
is IS' Assume that statistically, the reliabilities of 
the relay Itransistors are mutually independent. 
What is the reliability of this network? Find the 
conditions under which this network is more reli­
able than a single relay Itransistor between A and 
B. 

8. If the reliability of a module is Rnt, and if a perfect 
arbiter chooses between the outputs of a pair of 
identical independent modules, the reliability of a 
system is (choose one) 
a. R;l 

b. R~ + 0.5Rm 

c. R;l + 0.5Rm(1 - Rm) 
d. Rm' 

9. The reliability of a nonredundant system ranges 
between (0.2,1); that is, below 0.2 the system is 
considered failed. To achieve unconditional im­
provements in reliability through triple modular 
redundancy, the system is divided into m modules 
of identical reliability. If voters are perfect, the 
minimum value of m is (choose one) 
a. 2 
b. 3 
c. 4 
d. 5. 

10. With an imperfect voter, the maximum Systelll 
reliability in a TMR scheme with triplicated voters 
resulted from dividing the system into eight mod­
ules before triplication. If the mean time to failure 

(MTIF) for the original system was 800 hours, th 
MTIF for a voter must have been (choose one) 
a. 100 hours 
b. 800 hours 
c. 3,200 hours 
d. 6,400 hours. 

11. With a perfect voter and a perfect switch, th 
reliability of a TMR scheme with two spares at th 
time when the reliability of a single module is 0.: 
is (choose one) 
a. 0.5 
b. 0.1875 
c. 0.8125 
d. 1.0. 

12. With a perfect switch but an imperfect voter, ' 
TMR scheme with S spares would show a maxi 
mum reliability (at the time when module reli 
ability is 0.7) at S equal to (choose one) 
a. 1 
b. 2 
c. 3 
d. ·4. 

13. The inputs of an AND gate may be stuck-at-O 0 

stuck-at-l with probabilities 10 and Is' respectively 
If Is = 0 and if the inputs are totally random, th, 
reliability of the output is (choose one) 
a. 1 - 10 
b. (1 - 10)2 
c. 1 - 0.510 + 0.2516 

d. 1 - 1.510 + 0.7516. 
14. With 10 and Is as defined in Problem 13, and i 

10 = 0, the reliability of the output of an ANI 
gate (with Is =1= 0) is (choose one) 
a. 1 - fs 
b. (1 - fs)2 2 
c. 1 - 0.5fs + 0.251s 
d. 1 - I.5fs + .0751/. 

15. The failures in a system are known to alternate 
that is, a stuck-at-O failure is followed by a stuck 
at-l failure, and so on. A 7MR scheme can the] 
tolerate (choose one) 
a. 3 failures 
b. 4 failures 
c. 5 failures 
d. 6 failures. 

16. A variation of a hybrid redundancy scheme as,so 
dates a spare with a specific module; that is, ' 
spare, Si' can replace only the module Mi and nl 



other. For a TMR system with three such spares, 
the difference between the reliabilities of the var­
iant system and of the hybrid system (with reli­
ability of a module = Rm, Qm = 1 - Rm) is 
(choose one) 

a. 0 
b. 1 
c. 3R3 Q3 + 3R4 Q2 m m m m 
d. 3R~Q! 
e. 6R~Q~ + 12R~Q!. 

17. The following reliability model has been proposed 
for the system above: 

Rsys = Rv(3R; - 2R;)(3R~ - 2R~) 

where Rv' Rp' and Rm are the voter, processor, and 
memory reliability, respectively. Several factors 
are ignored in this model. Ignoring each factor 
makes the model either pessimistic or optimistic. 
List at least four of these factors and explain their 
effect on the model. 

18. Consider a TMRed register file composed of eight 
16-bit words. 

a. Assuming only single-bit failures, write the 
system reliability function, RTMR , in terms of 
the bit reliability, Rb, and the voter reliability, 

Rv· 
b. Now assume that the register file is protected 

by a 21-bit (16 data bits and five check bits) 
single-error-correcting Hamming code. Write 
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the system reliability function, RSEC ' in terms 
of the bit reliability, Rb, and the encoder/ 
decoder reliability, Re. 

1 161 51 
r 
8 

L'----~_""7----' 

c. Assume Rv = Re = 1. Pick a value of Rb for 
which RTMR > R SEC • Also pick a value of Rb 
for which RSEC > RTMR • Which scheme, 
TMR or SEC, would you recommend using 
and why? (Hint: The functions are well be­
haved and intersect only at one value of Rb.) 

19. a. Derive the expression given in Chapter 5 for 
the reliability of a hybrid redundant system 
with a TMR core. 

b. Generalize this expression to hybrid redundan­
cy with an NMR core. 

c. What is the effect of including coverage? Con­
sider two cases: TMR with one spare and 
TMR with m - 3 spares: 

20. a. As an alternative to the conventional hybrid 
system with a TMR core and a single spare, the 
following organization is proposed. 

0----~ 
2 V 

3 

In this scheme the spare, a, can replace only 
module 1 and no other. If the voter and the 
switching circuits are perfect, show that the 
reliability of the system is: 

R! + 4R~(1 - Rm) + 3R~(1 - Rm)2 

where Rm is the reliability of a module. (Hint: 
With the three origihal modules denoted by 
numbers 1, 2, 3 and the spare by a, a failure 
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tree showing all permutations for the system 
above is 

123(a) a23(*)1*23(*) 

a*3(*) 

a2*(*) 

1*3(a) 

12*(a) 

123(*) *23(*) 

11*3(*) 

12*(*) 

b. Using the tree approach (or otherwise), what is 
the reliability of the system below? 

0--- 1 

~---

(This is an alternative to a hybrid scheme with 
a TMR core and two spares. The spares are 
once again dedicated, spare a to module 1 and 
spare b to module 2.) 

21. If we denote the expression in Problem 20 by Rd 

(i.e., Rd = R!l + 4R~1(I - Rm) + 3R;1(I - RnJ2
) 

and the reliability of the switching circuits by 
Rswd ' then we may model the system reliability as: 

Rsysd = Rswd . Rm 

We may also model the reliability of a hybrid 
scheme with one spare, R hyb ' as a product of the 
switch reliability, Rswh' and the probability of 
having two or more good modules in the core of 
the system. Assume that all modules are identical 
and that the reliability is Rm( = e-'\t). The ratio of 
the circuit complexity of the switch in the hybrid 
scheme to the complexity of a single module is 
denoted by a. Assuming that failure rates are 
directly dependent on the complexity, we may 
write Rswh = Rc:n. Realizing that the switching 
circuits in a dedicated spare system need to attain 
only half the number of states required by switch-

ing circuits in a hybrid system with a single spare, 
we estimate the complexity ratio to be half also; 
that is, Rswd = R~;h. For a = 0.1, plot the mis­
sion time improvement (MTI) of Rswh over Rswd 
as a function of Rm. (Use Rswd(Rm) as R, 'sn' ,the , Sy, I In 

minimum required system reliability that defines 
, the mission time.) For the plots, use logarithmic 

scale for Rm if you prefer. From the plot, determine 
the range of Rm during which Rswd is better than 
Rswh . Repeat for a = 0.01. (Note: a = 0.01 im­
plies that the basic modules are 100 times as 
complex as the switch in the hybrid system. If the 
switch had 10 gates, the module would have 1,000 
gates. Compared with the LSI-II, how big is the 
module?) 

22. Consider two redundant systems based on voting: 

a. 

b. 

System (a) does bus-level voting on every P-M 
transfer. System (b) is a multiprocessor that votes 
after each sub task by mutual communications 
over interfaces (T). Develop a reliability model for 
each system. State your assumptions. Which sys­
tem is better? (Hint: This is purposely left as an 
open-ended problem. At the highest level of mod­
eling the systems appear identical. Drive the mod­
eling to a low enough level to illustrate the differ­
ences in the systems.) 

23. Figures (a) and (b) on the next page depict two 
compute~ structures, C.mmp and Cm*. Besides 
being multiprocessor systems, the two structures 
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Pc= PDP - 11/40 

Mp = memory (32K words) 

a. C.mmp 

Mp= memory (12K words) 

S.local = local switch interface controller 

K.map = cluster controller 

Linc = inter-cluster communications 

b. Computer module system (Cm*) with two clusters. 

may also be viewed as fault-tolerant structures 
with redundant processing power. Consider the 
16-processor, 16-memory C.mmp, and a two-clus­
ter, 8-processor-per-cluster Cm* organization. For 
a task that requires at least four processors and at 
least 48K words of memory, compare the reli­
abilities of C.mmp and Cm* using various model­
ing techniques. Assume that the recovery pro­
cesses are imperfect and the probability of recov­
ery given a failure is a function of the size of the 
system. Suggest a model for the probability of 
recovery. A parts-count model of the components 
of the two systems yields the failure rates shown in 
the table opposite. Make reasonable assumptions 
where necessary, such as assuming that the failure 
rate of K.map includes that of the inter-Cm bus. 
(Note: Although a single-memory port of 64K 
words of C.mmp seems sufficient for the task, a 
single-port with multiple processors is a highly 
unbalanced system and not only slows down the 
system, but also is extremely susceptible to tran­
sient failures. Therefore, assume that at least as 
many memory ports as the number of processors 
are required for reliable operation of c.mmp.) 

Failure Rate 
(failure per 106 

Component hrs.) 

C.mmp 
PDP-ll/40 56.9 

Processor associated circuitry 
(RELOC box, processor 
interface) 20.3 

Memory box (32K words) 159.6 

Memory associated 
circuitry/port (Priority 
decode, etc.) 9.8 

Switch 507.6 

Cm* 

LSI-ll processor 29.9 

Memory (12K words; 
semiconductor) 69.4 

K.map 131.0 

Linc 34.8 

S.local 24.0 



302 THE THEORY OF RELIABLE SYSTEM DESIGN 

24. Consider a dual redundant system that normally 
operates with both units running. Error detection 
is achieved by comparing the outputs of the two 
units. If either unit fails, the probability that the 
failure is isolated correctly so that the remaining 
unit (and system) continues to run properly is c 
(coverage = c). The system can therefore fail in 
two ways: both units fail (exhaustion of spares) or 
one unit fails in a bad way (coverage failure). 
Assume that each unit exhibits failure rate A and 
repair rate J.I.. 
(Note: Whenever a coverage failure occurs, both 
units are considered to have failed, and repair­
with rate J.I.-starts on each. The first one to be 
repaired brings the system as a whole back up, 
while repair continues on the other.) 
a. Draw the complete four-state transition dia­

gram for the system and give the correspond­
ing T matrix. 

b. Reduce the transition diagram to three states 
and give the corresponding T matrix. 

c. Derive the steady-state availability for the 
three-state model. 

25. Consider the dual redundant system discussed in 
Chapter 5. Assume now that when both systems 
have failed, two repairmen are called in, one for 
each system. Furthermore, assume that the dual 
system is configured as a main unit with a backup. 
Whenever the main unit fails, there is only the 
probability' c (coverage = c) that the backup 
comes on-line successfully to keep the system 
going. Whenever the backup fails, the system will 
continue to operate if the main unit is working, or 
will fail if the main unit has already failed without 
yet being repaired. Both the main unit and the 
backup unit exhibit failure rate A and repair rate J.I.. 
(Note: Whenever the main unit fails the backup 
does not come on-line-coverage failure, both 
units are considered to have failed, and repair­
with rate J.I.-starts on both. The first one to be 
repaired brings the system as a whole back up, 
while repair continues on the other.) 

a. Draw the complete four-state transition dia­
gram. 

b. Draw the three-state transition diagram ob­
tained by merging the states with a single failed 
unit. 

c. Derive the availability function A(t} for the 
three-state model. 

d. Derive the reliability function R(t), first draw­
ing the modified three-state transition diagram. 

26. Tandem Computers, Inc. introduced a multiple 
computer system in 1975 for critical applications, 
characterized by a high cost for loss of computer 
power. A prime example is electronic funds trans­
fer wherein interest is charged by the hour and one 
company estimated a $300,000 revenue loss per 
hour of computer down time. The structure of a 
dual processor Tandem Non-Stop system is shown 
below. 

(C = computer) 

The computers communicate via the intercompu­
ter Dynabus. The system is considered failed only 
if both computers are down at the same time 
(assume the Dynabus never fails). 
a. Assume that the failure rate is exponential with 

A = 1/1000 failures per hour. Also assume that 
computer repair is exponential, with J.I. repairs 
per hour. Develop the Markov model for the 
system with A, J.I. as parameters. What is the 
probability that the system is failed for J.I. 
= 1/48 ? Draw a graph of probability of fail­
ure versus J.I.. 

b. What is the expected time to failure for the 
system? 

27. Reformulate the analysis in the Redundancy to 
Enhance Chip Yield section for a RAM chip 
employing the redundancy technique of your 
choice. 



:inancial Considerations 

~TRODUCTION AND 
JNDAMENTAL CONCEPTS 

l1is chapter discusses several fundamental fi­
lllcial considerations in the development, ac­
lisition, and operation of a computer system 
ld explains why knowledge of these costs is 
lportant to the designer of a computer system 
. component. These concepts can also guide the 
wner or operator of a computer system in 
isessing the effects of a system's reliability and 
.aintainability on the cost of ownership. 
Several fundamental terms and concepts will 

~ defined and used as parameters in mathemat­
al models. Of primary interest are discounted 
lsh-flow cost of ownership models, mainte­
:lllce cost models, life-cycle cost models, and 
laintainability feature-decision analysis tech­
lques. 

lefinitions 

(aintenance cost is the cost associated with 
~eping a computer system functioning accord-
19 to operational specifications. This very com­
lex topic should not be trivialized by the design­
~; maintenance cost constitutes a significant. 
roportion of the cost of owning a computer, 
tld it is under at least indirect control of the 
esigner. 
From the point of view of the maintenance 

rovider, an important factor in the calculation 
f maintenance cost is the installed base. This is 
le number of systems (as a function of time) 
lat the manufacturer is required to service. 
orne customers may elect self-maintenance or 
lird-party service (by someone other than the 
lanufacturer); these are not included in the 
lstalled base. (The fact that some customers 
lay have fixed-price contracts and that others 
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pay for each service call is potentially significant 
in terms of field service revenue but has no real 
importance to the designer.) The installed base 
can be estimated from three basic parameters: 
the shipment rate, contract penetration rate, and 
contract renewal rate. 

The shipment rate is simply the number of 
units sold, shipped, and installed in the field, as 
a' function of time. Typically, the value of the 
frequency distribution is low at the beginning 
and end of product life, and very high in the 
middle. The contract penetration rate is the per­
centage of customers who elect· to have the 
manufacturer service their system. It does not 
include those who either self-maintain or go to a 
third party. This discussion makes no distinction 
between per-call (parts and labor) and fixed­
price contract customers. Contract penetration is 
normally quite high for medium- to large-scale 
systems, ranging from 85 to 95 percent. The last 
important parameter in determining installed 
base is the contract renewal rate. This factor takes 
into account the fact that not all customers 
renew their commitment to service from the 
manufacturer. 

Table 6-1 is an example of an installed base 
calculation with an assumed three-year shipment 
rate (in quarters), a 75 percent contract penetra­
tion rate, and a 90 percent renewal rate. Seventy-

five percent of the customers receiving systems 
take out a contract. Thus, 45 of the 60 systems 
shipped in the first quarter become part of the 
installed base, 150 of the 200 shipped in the 
second quarter, and so on. The last column 
shows the accumulation of these contracts in the 
installed base. 

By the fifth quarter, 90 percent of the 45 
contracts coming up for renewal· are actually 
renewed, resulting in the attrition of approxi­
mately five contracts. The last column in the fifth 
quarter shows the addition of 1,050 contracts 
(from new shipments) to the installed base, mi­
nus the attrition of five. 

In the ninth quarter, the attrition is 10 percent 
of the fifth quarter's new contracts (l05), plus 10 
percent of the 40 remaining contracts opened in 
the first quarter. Figure 6-1 restates Table 6-1 
graphically. 

Sources of Maintenance Costs 

Labor Expense 

The largest expenditure for computer servicing is 
for labor. Even the most efficient field service 
organizations have an average round-trip travel 
time to and from the customer's site (that is, 
totally unproductive time) on the order of 1.5 

Table ~1. Example of installed base calculation. 

New Contract Total 
Quarter Shipments Contracts Attrition Contracts 

1 60 45 0 45 
2 200 150 0 195 
3 1,000 750 0 945 
4 1,400 1,050 0 1,995 
5 1,400 1,050 5 3,040 
6 1,400 1,050 15 4,075 
7 1,400 1,050 75 5,050 
8 1,200 900 105 5,845 
9 600 450 109 6,186 

10 300 225 119 6,292 
11 0 0 173 6,119 
12 0 0 185 5,934 
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Figure 6-1. Example of installed base curve. 

hours. At $50 or more per hour, fully burdened, 
a service call costs the service provider $75 
before any work is performed. Labor expense 
depends on Mean Time Between Failures, Mean 
Time To Repair, Preventive Maintenance (PM) 
interval, Mean Time to PM, travel times, average 
labor cost, and support ratio (a measurement of 
the amount of assistance needed on a particular 
service call). The formula below is a rough 
estimate of the annual labor expense involved in 
servicing a computer system. 

ALE = {CPH}{8760} 

X {(MTTR + TTR)/MTBF 

+(MTPM + TTPM)/MTBP} 

where: 
ALE = annual labor expense, 
CPH = cost per hour for labor, 
8760 == number of hours in a year, 
MTTR = mean time to repair, 
TTR = travel time for a repair call, 
MTBF = mean time between failures, 
MTPM = mean time to perform pre-

ventive maintenance, 
TTPM = travel time for a preventive 

maintenance call, and 
MTBP = mean time between preven­

tive maintenance. 

Assume that the labor cost per hour is $50, the 
MTTR is 2.5 hours, and the MTPM is 4.5 hours. 
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Further assume a travel time of 1.5 hours for a 
repair and 0.5 hours for a PM (it is usually 
assumed that because several simultaneous PMs 
can be scheduled in advance, the cost of travel 
time can be apportioned among several devices). 
For an MTBF of 4,000 hours and an MTBP of 
5,000 hours, the annual labor expense is: 

ALE = {50}{8760}{(2.5 + 1.5)/(4000) 

+(4.5 + .5)/5000} 

= {50}{8760}{(.00I) + (.OOt)} 

= $876. 

Material Expense 

The next largest expense is the cost of the Field 
Replaceable Unit (FRU). The choice between a 
logical and physical partitioning of the system is 
crucial for a system designer, for it directly 
affects both the maintainability and cost of own­
ership of the system. The cost impact can be 
estimated from the cost and reliability of each 
FR U as follows: 

Total Cost = L{(FRU cost)j 

x (FRU failure rate)j} 

This formula, however, estimates only the cost of 
replacing failed hardware. For the service pro­
vider, there are also other costs. 

Inventory Costs. Inventory costs are the costs 
associated with keeping a supply of spare parts; 
they consist of all the costs of maintaining a 
supply depot, including order processing costs 
and the fully burdened cost per square foot of 
the building. 

Level of Service. An important· consideration 
in determining inventory costs is the level of 
service. In this context, level of service is the 
conditional probability that a part is in stock, 
given a failure of that part. If the MTBF of each 
part and its field population are known, a rela­
tively straightforward statistical calculation can 

determine how much of each part to have in 
stock to attain a given level of service. 

Other Expenses 

Training Costs. The persons who service the 
computer must be trained. Whether the owner 
self-maintains the system or purchases field ser­
vice externally, this cost is ultimately borne by 
the system owner. Because training and course 
development can be a significant expense, it is 
important to design a system that minimizes the 
amount of special training necessary. 

Depreciation of Capital Equipment. If special 
test equipment is required to service the comput­
er system, the cost of that equipment may be 
significant and must be taken into account by 
both the system purchaser and the designer. For 
example, such equipment is frequently written 
off during a period of 5 years, using the double­
declining balance method. This method expenses 
the cost of the equipment at a rate double that of 
a linear method, but .it applies this rate to the 
remaining balance instead of to the original 
amount. Thus, a straight-line depreciation over 5 
years would be 20 percent per year. A double­
declining balance would write off 40 percent in 
the first year, 40 percent of the remainder (40 
percent of 60 percent, or 24 percent) the next 
year, and 40 percent of the remainder (40 per­
cent of 36 percent, or 14.4 percent) the third 
year. Because this series is infinite, it is custom­
ary to divide the remainder evenly between the 
la·st 2 years; thus, 10.8 percent of the original 
cost is written off in each of the last 2 years. 

Cost of Customer Ownership 

Cost of ownership is the true total cost of owning 
a computer system, not just the acquisition cost. 
It includes a multitude of factors, such as pur­
chase cost; maintenance cost; and costs of 
downtime, site preparation, storage media and 
supplies, power, environmental conditioning, 



and operating personnel. Maintenance cost 
alone can easily equal the purchase price after 
just 5 years of operation. 

The other costs of operation can render the 
purchase cost relatively insignificant. Consider 
especially the cost of downtime. Presumably, all 
computer systems are purchased in order to 
increase productivity and efficiency. If a comput­
er system is properly utilized (consistently loaded 
at or near full capacity), an interruption in 
service will inevitably lead to a loss of money or 
time, which normally equates to loss of revenue. 

It is difficult to present a generalized model of 
the cost of downtime because it varies greatly 
with the application. In some systems it is negli­
gible; in others, it far outweighs any other finan­
cial considerations. Finally, in some applications 
its value cannot be computed because the surviv­
al of priceless things (such as a human life) 
depends upon the computer's continuous opera­
tion. Below are some examples of systems in 
which the cost of downtime is high. 

On-Line Billing System. In an on-line billing 
system used, say, by a telephone company for 
recording charges on long distance calls, the lost 
revenue when the system is down is practically 
unrecoverable, and typically substantial. In this 
case, a "lost-revenue-per-hour" figure should be 
arrived at by the system's financial analysts and 
factored into the cost of ownership. 

Airline Reservation System. It is more difficult 
to establish a quantitative measure of lost book­
ings due to this system's failure, but it can 
obviously be significant. 

Electronic Funds Transfer. When money is be­
ing transmitted electronically, there is a great 
danger that system failure (including loss of data 
integrity) can lead to large losses. 

Life-Support Systems. In systems such as those 
for monitoring hospital intensive care patients, 
system failure at an inopportune time can lead to 
loss of life. With the increasing use of computers 
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in medical care and biomedical engineering, the 
incidence of loss of life due to computer failures 
is bound to increase. The cost is, of course, 
impossible to assess. Systems that deal with 
transportation (such as flight control systems) 
and building management (such as fire alarm 
and containment systems) also belong in this' 
category. 

National Defense Systems. Computers now 
form the backbone of the defense of entire 
countries. A recent minicomputer failure result­
ed in an indication that a Russian missile attack 
on the United States was taking place. The 
system was designed to fail "safely," that is, to 
indicate an- attack when it failed. (The premise 
adopted is that it is better to indicate an attack 
when none is occurring than not to indicate an 
attack when one is occurring.) Fortunately, an 
adequate system of cross-checks was necessary 
before counteroffensive measures were taken, the 
failure was discovered before any potentially 
devastating actions occurred. 

Net Present Value 

A simplified economic model of the cost of 
computer ownership assumes an initial cash pur­
chase, followed by periodic maintenance pay­
ments. It is possible to compute the true cost of 
ownership as the present value of these outlays. 
Present value is a financial concept that takes the 
time value of money into account; that is, if you 
receive $10 today and put it into a savings 
account for a year at a 10 percent effective 
annual interest rate, in a year you will have $11. 
Conversely, if I promise to give you $11 one year 
from today, its present value is only $10. 

The rate used to calculate present value is 
known as the discount rate. Assuming a discount 
rate of 10 percent, the present value of a dollar 
received or expended one year from now is: 

(1 + 0.10) 
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The present value of a dollar received or expend­
ed two years from now has a present-value factor 
of: 

(1 + 0.10)2 

and so on. 
Assume an initial cost of $1 million, an annual 

maintenance cost of $100,000, an income tax 
rate of 50 percent, a write-off over 5 years using 
the double-declining balance method, and a dis­
count rate of 10 percent. Table 6-2 lists the cost 
of ownership. 

The amount in column 3 is the depreciation on 
the capital outlay according to the double-de­
clining balance method. Column 4 is the differ­
ence between columns 2 and 3, or the net 
expense. Column 5 shows the after-tax cash flow 
(50 percent is deductible from the company's 
income tax). Column 6 shows the present-value 
factors. Column 7 is the product of columns 5 
and 6. 

After subtracting the sum of column 7 from 
the initial outlay of $1 million, the cost of 
ownership is $784,050. 

Alternatives to Net Present Value 

There are several alternatives to assessing cost of 
ownership by the net present value method used 

above. The first is the payback method, which 
assumes no time value of money and thus simply 
adds (or subtracts) the yearly net values to the 
initial investment. The payback period is then 
defined as the time at which the cumulative cash 
flows reach zero. 

A better alternative is Internal Rate of Return 
(IRR). To determine the internal rate of return, 
the discount value is assumed to be unknown, 
and an iterative procedure is performed to dis­
cover the discount rate at which the net present 
value equals zero. The company establishes a 
minimum IRR, and if the IRR is greater than 
this minimum, it is a desirable investment. 

FIELD SERVICE OVERVIEW AND 
COST MODELS 

In many computer companies, field service 
(hardware and software) is a business unit with 
independent responsibility for profit and loss. 
The expense the company incurs when repairing 
equipment under warranty accumulates in the 
field service department. Because each compa­
ny's financial structure varies, it is impossible to 
generalize about the field service business units, 
but it is important to realize that field service 
revenues can be a significant proportion of cor­
porate revenues, in some cases approaching 30 
percent. For a large end-user minicomputer com-

Table 6-2. Example of cost of ownership calculation (in thousands of dollars). 

(1) (2) (3) (4) (5) (6) (7) 
Present 

Maintenance After Tax Value Discounted 
Year Cost Depreciation Net Cash Flow Factor Cash Flow 

1 100 400 -300 -150 0.909 -136.36 
2 100 240 -140 -70 0.826 -57.85 
3 100 144 -44 -22 0.751 -16.53 
4 100 108 -8 -4 0.683 -2.73 
5 100 108 -8 -4 0.621 -2.48 

Total-215.95 



pany or mainframe manufacturer, field service 
personnel typically account for 20-30 percent of 
the total personnel. 

Field service is a labor intensive business, with 
travel time also a very significant part of the 
expense. The cost of field· service is determined 
primarily by product traits (reliability, diagnosa­
lxlity, and the like). The business can be further 
characterized by a potentially lengthy and strong 
commitment to the customer. There are inherent 
risks in charging fixed contract prices: loss of 
profits if the price is set too low, and loss of 
business to third-party maintenance organiza­
tions if the price is too high. 

There is also a growing set of legal considera­
tions about which to worry. What if a client 
company loses substantial revenue because of 
the failure of a computer? What if property 
damage results from a computer malfunction? 
What if personal injury occurs as the result of an 
unsafe design? In one case, a small data proces­
sing company was located near a fire station. 
Electromagnetic emissions from some of the 
computer equipment were interfering with the 
fire department's radio communications. The 
problem was remedied before any damage was 
done, but the consequences of a computer's 
interfering with the reporting of a major fire 
could have been critical. The number of individ­
uallitigations, class action suits, and government 
regulations is likely to increase as computers and 
the consequences of their malfunctions prolifer­
ate. 

Maintenance Cost Models 

Maintenance cost models estimate the variable 
costs associated with servicing a particular sys­
tem or part of a system. A variable cost is one 
that varies in direct proportion to the number of 
service calls received, as distinct from a fixed 
cost, which is incurred independently of the 
number of calls received. Typically, a variable 
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cost is the cost of a particular replacement part 
for a broken computer system. An example of a 
fixed cost is the cost of a piece of test equipment, 
which is required whether or not anything ever 
actually breaks. 

Typical parameters in a maintenance cost mo­
del are: 

• Mean time between failures 
• Mean time to repair 
• Travel time associated with the service call, perhaps 

computed at some average rate 
• Material consumed, such as replacement parts and 

lubricants 
• Preventive maintenance performed, either on a reg­

ular basis or in conjunction with a repair action 
• Cost of labor 

The results of such a calculation would pro­
vide a rough estimate of the cost per unit time of 
maintaining a system or part of a system. This 
type of model ignores fixed (front-end) costs and 
can be expected to estimate only variable costs. 

A comprehensive model that includes these 
fixed costs, as well as items such as salvage value, 
has been developed by Xerox and reported in 
Pierce [1977]. Alternative designs can easily be 
analyzed, as the histograms in Figure 6-2 demon­
strate. This case involved comparison of three 
alternative packaging schemes. The overall life 
costs were shown to be less for one large, rela­
tively expensive board than for a system parti­
tioned into smaller boards; the smaller boards 
had decreased reliability resulting from the in­
crease in number of connectors. 

Sensitivity analyses evaluate the effect of var­
ious parameters on profitability. Figure 6-3 
shows an example. 

Other trade-off studies performed with this 
model include: 

• Should the diagnostic hardware for the system be 
included as part of the system hardware or carried 
by the field engineer? 

• Should a unit replaced in the field be repaired and 
recirculated or discarded? 
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Life cycle costs ~ $ 

Single board { 
configuration 

Servo rep carry-return for repair I 
Servo rep. carry-throwaway J 
No carry-return for repair I 
No carry-throwaway J 

{ 

Servo rep. carry-return for repair I 
Multi-board Servo rep. carry-throwaway J 

configuration No carry-return for repair J 
No carry-throwaway J 

Figure 6-2. Life-cycle costs of alternative configu­
rations. 

• Should a given availability goal for a subassembly 
be achieved by improving its reliability or its main­
tainability? 

• At what level (region, district, branch, individual 
person) should a spare part be stocked? 

Table 6-3 lists the model sensitivity to primary 
categories of input and output data [Pierce 1977]. 

Maintenance Cost Model with 
Risks 

Risk factors could be added to the above model, 
in the form of probability distributions expected 
for each of the parameters. Adding risk factors 
would take into account the fundamentally ran­
dom nature of failures. The model parameters 
could be established to give minimum cost (with 
appropriate confidence levels), average cost, and 
so on. 

The outputs would be a probability distribu­
tion of the expected maintenance costs instead of 
a point estimate. This type of model facilitates a 
simple sensitivity analysis, answering questions 
such as: 

• What happens to the cost. of maintenance if the 
MTBF is 10 percent higher than the estimate? 

• What happens to the cost of maintenance if the 
MITR is decreased by 15 minutes? 

-30 -20 -10 0 +10 +20 +30 
Percent change in assumptions 

Figure 6-3. Profit sensitivities. 

feature failure-Mode Matrix 

A feature failure-mode matrix is a technique to 
evaluate a series of maintainability features for 
their effect on the cost of maintaining a given 
system or device. For example, for a hypothetical 
digital tape unit, engineering can generate a list 
of potential maintainability features such as data 
path loop-around, error simulation, internal par­
ity, speed check, skew check, and power check. 
Field service can provide a list of failure modes 
(projected from experience with previous similar 
designs) such as permanent/intermittent data 
path errors, faulty controller, faulty error logic, 
faulty head preamplifier, faulty servos, and 
faulty power supply. These features and modes 
are then put in matrix form, as shown in Table 
6-4. 

Next to each maintainability feature is the 
estimated percent of failures resulting from each 
of the defined failure modes. At each intersection 
of a feature and a failure mode is an estimate of 
the time that would be saved when repairing this 
failure, were the feature present. A projection of 
the total time saved by each maintainability 
feature can then be obtained by taking column­
wide weigh ted averages. 



FINANCIAL CONSIDERATIONS 311 

Table 6-3. Input and output parameters for a maintenance cost model. 

Primary data inputs are listed by category as follows: 

Part data 
1. Unit cost 
2. Repair cost 
3. Repair transportation cost 
4. Power-on hours 
5. Repair turnaround time 
6. Repair attrition 
7. Part population 
8. Erroneous replacements 
9. Replacement rates (MTBF) 

10. Reliability growth 
11. On-site time to repair 
12. Salvage value 

Business economic factors 
1. Life-cycle period 
2. Corporation-selected depreciation 
3. Corporate tax rate 
4. Service Personnel labor rate 
5. Part cost improvement 
6. Machine placements 
7. Machine workload per service personnel 

Program option controls 
1. Detailed or summarized output 
2. Supplemental quarterly output 
3. Unit cost vs. reliability indifference routine 
4. Part repair or discard evaluation 
5. Service rep carry part or no-carry evaluation 
6. Computations without present value, 

depreciation, and tax influences 

The decision about whether to include a par­
ticular feature in the final design would proceed 
as follows: From an estimate of the base param­
eters of the design (MTBF, MTTR, MTPM), 
calculate the projected decrease in MTTR due to 
the feature. Using an appropriate cost model 
with sales projections, calculate the present value 
of incorporating this feature. Compare this result 
with the cost of including this feature in the 
design, including development cost and the cost 
of the hardware for all the units to be shipped, 
expressed in present value. Incorporate the fea-

Primary data outputs obtained are listed as follows: 

1. Increase in number of service personnel by year 
2. Number of spares replaced per year 
3. Average cost of a spare item 
4. Mean corrective maintenance time 
5. Number of spares returned from the field per year 
6. Number of additional spares needed per year 
7. Number of spares shipped to the field per year 
8. Number of nonrepairable parts 
9. Number of parts in field inventory 

10. Number of parts returned from the repair facility 
11. Initial cost of parts per year 
12. Initial parts depreciation/tax recovery per year 
13. Cost of replaced spare parts per year 
14. Tax recovery from replaced parts per year 
15. Cost of service labor per year 
16. Shipping cost of failed parts per year 
l7. Cost of vendor repair of failed parts per year 
18. Shipping cost of spares per year 
19. Salvage value of nonrepair parts 

ture if the difference between the life-cycle cost 
savings and the feature's cost is positive. 

Life-Cycle Cost (LCC) Models 

Life-cycle cost models take into account the total 
product business profile: the cost of purchase of 
the computer system, maintenance, supplies, en­
vironmental controls, power, and so on. Every 
expense associated with owning a computer is 
considered. 
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Figure 6-4. Cost and income distribution over the life of a system. 

Table 6-4. A feature failure-mode matrix. 

Permanent 
data path 11% 74 24 74 

Intermittent 
data path 2 168 

Controller 6 

Error 
logic 6 24 54 24 

Head 
preamp 10 84 84 

Servos 25 90 210 6 

Power 
supply 5 90 

Minutes 
saved 18 6 21 97.5 52.5 4.5 16.5 



Such a model enables an organization to eval­
late design alternatives with regard to effects on 
ife-cycle cost and to make a choice that mini­
rlizes that cost. Figure 6-4 shows how revenues 
,nd expenses (the difference of which is defined 
.s income) might vary over time. Engineering 
xpenses dominate the first years, and manufac­
uring and service expenses begin to take over as 
ales revenues increase. Even after manufactur­
rlg has ceased, service expenses and revenues 
ontinue for a long time, with (it is hoped) a net 
lositive income. 

Typical inputs to an LCC model might be: 

Shipment forecasts over the planned life of the 
product 
Contract penetration (the percentage of customers 
electing to purchase service contracts) and renewal 
(percentage renewing each year) rates 
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• List price of the system 
• Warranty period 
• Spares requirements (number of spare parts kits 

required per system, cost per kit) 
• Installation expenses (labor and material expense 

per installation), expenses incurred due to DOA 
(dead-on-arrival) parts, and other installation diffi­
culties 

• MTTR, varying over time as experience with repair­
ing the system increases 

• Labor costs per corrective and preventive mainte-
nance action 

• MTBF, several values for a sensitivity analysis 
• Travel time 
• An estimate of average material cost per failure 
• Training costs 
• Capital equipment costs 
• Spare parts inventory carrying expense 

The result of such an analysis would be a 
tabulation of maintenance cost as a function of 
MTBF (or other independent variables), profit 

Table 6-5. Cost of manufacturing three systems as a function of time with 
different MTBFs (base: 6 months, alternative 1: 8.5 months, alternative 2: 10 
months) in thousands of dollars. 

Alternative 1 Alternative 2 
Quarter Shipments Base ($K) ($K) ($K) 

I I 11 11.3 11.8 
2 4 44 45.2 47.2 
3 73 803 824.9 861.4 
4 354 3,894 4,000.2 4,177.2 
5 612 6,732 6,915.6 7,221.6 
6 820 9,020 9,266.0 9,676.0 
7 990 10,890 11,187.0 11,682.0 
8 1,000 11,000 11,300.0 11,800.0 
9 1,000 11,000 11,300.0 11,800.0 

10 1,000 11,000 11,300.0 11,800.0 
II 1,000 11,000 11,300.0 11,800.0 
12 1,000 11,000 11,300.0 11,800.0 
13 1,000 11,000 11,300.0 11,800.0 
14 1,000 11,000 11,300.0 11,800.0 
15 1,000 11,000 11,300.0 11,800.0 
16 1,000 11,000 11,300.0 11,800.0 
17 650 7,150 7,345.0 7,670.0 
18 447 4,917 5,051.1 5,274.6 
19 320 3,520 3,616.0 3,776.0 
20 229 2,519 2,587.7 2,702.2 



314 THE THEORY OF RELIABLE SYSTEM DESIGN 

and loss information, and warranty expense esti­
mates, all with discounted cash flows. 

Table 6-5 lists the five-year expense forecasts 
for manufacturing costs of a hypothetical piece 
of equipment under a base case (6 months 
MTBF) and two alternatives (8.5 and 10 months 
MTBF). The basic assumption is that increased 
reliability requires a higher manufacturing cost 
and results in a higher field MTBF and lower 
field MITR. This example assumes that the 
system manufacturing cost was $11,000 in the 
base case, $300 more for the first alternative, and 
$800 more for the second alternative. 

Table 6-6 lists the service costs for the base 
case and the two alternatives over the five-year 
planned shipments of the product. There is a 
decrease in service costs due to increased 
MTBFs and an asociated increase in manufac­
turing costs. From a life-cycle cost point of view, 
which alternative is preferable? 

Tables 6-7, 6-8, and 6-9 list the discounted 
expenses (manufacturing' and service ') over the 
shipment life of the product. At the bottom of 
the primed columns is the discounted present 
value of service and manufacturing costs and 
their total for the base case and two alternatives. 
In summary: 

• The total discounted present value for the base case 
(6 months MTBF and $11,000 manufacturing cost) 
is $109,277,600. 

• The total discounted present value for Alternative I 
(8.5 months MTBF and $11,300 manufacturing cost) 
is $108,152,300. 

• The total discounted present value for Alternative 2 
(10 months MTBF and $11,800 manufacturing cost) 
is $110,849,300. 

This analysis shows that Alternative 1 has the 
best financial profile, because it has the lowest 
total life-cycle cost, and Alternative 2 has the 
lowest service cost (about 2 percent less than 
Alternative 1). Is it worth the investment? 

Table 6-6. Cost of maintaining three systems 
with different MTBFs (base: 6 months, alternative 
1: 8.5 months, alternative 2: 10 months) (in 
thousands of dollars). 

Base Alternative 1 
Quarter ($K) ($K) 

° 17 17 
1 425 425 
2 196 177 
3 554 493 
4 847 757 
5 909 818 
6 1,179 1,045 
7 1,243 1,075 
8 1,576 1,309 
9 1,777 1,481 

10 1,852 1,527 
11 2,042 1,673 
12 2,194 1,776 
13 2,336 1,876 
14 2,484 1,981 
15 2,626 2,081 
16 2,609 2,044 
17 2,448 1,866 
18 2,345 1,767 
19 2,265 1,677 
20 2,224 1,633 

LCC Model with Generalized 
Data Elements 

Alternative 2 
($K) 

17 
425 
170 
462 
709 
773 
992 

1,007 
1,239 
1,361 
1,401 
1,521 
1,609 
1,693 
1,782 
1,866 
1,831 
1,651 
1,542 
1,464 
1,419 

Common Lce models require detailed and pre­
cise analysis of the system's characteristics and 
its operating environment. It is a difficult task to 
compare alternative designs, for much informa­
tion must be collected and entered in the model 
for each alternative. Eames and Spann [1977] 
have developed a method that uses cursory sys­
tem descriptions to produce timely and compre­
hensive Lee data to support design decisions. 

Implied Characteristics 

The system is first classified according to the 
following implied characteristics: 
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Table &-7. Discounted cost of manufacturing and service for the base system 
(in thousands of dollars). 

Manufacturing Manufacturing' Service Service' 
Quarter ($K) ($K) ($K) ($K) 

° 17 17.0 
1 11 10.5 425 406.1 
2 44 40.2 196 178.9 
3 803 700.4 554 483.2 
4 3,894 3,245.4 847 705.9 
5 6,732 5,360.9 909 723.9 
6 9,020 6,863.1 1,179 897.1 
7 10,890 7,917.0 1,243 903.7 
8 11,000 7,640.9 1,576 1,094.7 
9 11,000 7,300.7 1,777 1,179.4 

10 11,000 6,975.7 1,852 1,174.4 
11 11,000 6,665.1 2,042 1,237.3 
12 11,000 6,368.3 2,194 1,270.2 
13 11,000 6,084.8 2,336 1,292.2 
14 11,000 5,813.8 2,484 1,312.9 
15 11,000 5,555.0 2,626 1,326.1 
16 11,000 5,307.6 2,609 1,258.9 
17 7,150 3,296.4 2,448 1,128.6 
18 4,917 2,165.9 2,345 1,033.0 
19 3,520 1,481.5 2,265 953.3 
20 2,519 1,013.0 2,224 894.4 

Present values .................... 89,806.4 ............................... 19,471.2 

Total present value = $109,277.6 

Table 6-8. Discounted cost of manufacturing and service for the first alterna-
tive with a 42 percent improvement in MTBF (in thousands of dollars). 

Manufacturing Manufacturing 
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K) 

° 17 17.0 
1 11.3 10.8 425 406.1 
2 45.2 41.3 177 161.6 
3 824.9 719.5 493 430.0 
4 4,000.2 3,333.9 757 630.9 
5 6,915.6 5,507.1 818 651.4 
6 9,266.0 7,050.3 1,045 795.1 
7 11,187.0 8,133.0 1,075 781.5 
8 11,300.0 7,849.3 1,309 909.3 
9 11,300.0 7,499.8 1,481 982.9 

10 11,300.0 7,165.9 1,527 968.3 
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Table 6-8 -Continued 

Manufacturing Manufacturing 
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K) 

11 11,300.0 6,846.8 1,673 1,013.7 
12 11,300.0 6,542.0 1,776 1,028.2 
13 11,300.0 6,250.7 1,876 1,037.7 
14 11,300.0 5,972.4 1,981 1,047.0 
15 11,300.0 5,706.5 2,081 1,050.9 
16 11,300.0 5,452.4 2,044 986.3 
17 7,345.0 3,386.3 1,866 860.3 
18 5,051.1 2,225.0 1,767 775.7 
19 3,616.0 1,521.9 1,677 705.8 
20 2,587.7 1,040.6 1,633 656.7 

Present values .................... 92,255.7 ............................... 15,896.6 

Total present value = $108,152.3 

Table 6-9. Discounted cost of manufacturing and service for the second 
alternative with a 67 percent improvement in MTBF (in thousands of dollars). 

Manufacturing Manufacturing 
Quarter Cost ($K) Cost' ($K) Service ($K) Service' ($K) 

° 17 17.0 
1 11.8 11.3 425 406.1 
2 47.2 43.1 170 155.2 
3 861.4 751.4 462 403.0 
4 4,177.2 3,481.5 709 590.9 
5 7,221.6 5,750.8 773 615.6 
6 9,676.0 7,362.3 992 754.8 
7 11,682.0 8,492.8 1,007 732.1 
8 11,800.0 8,196.6 1,239 860.6 
9 11,800.0 7,831.7 1,361 903.3 

10 11,800.0 7,483.0 1,401 888.4 
11 11,800.0 7,149.8 1,521 921.6 
12 11,800.0 6,831.5 1,609 931.5 
13 11,800.0 6,527.3 1,693 936.5 
14 11,800.0 6,236.7 1,782 941.8 
15 11,800.0 5,958.9 1,866 942.3 
16 11,800.0 5,693.6 1,831 883.5 
17 7,670.0 3,536.1 1,651 761.2 
18 5,274.6 2,323.5 1,542 679.3 
19 3,776.0 1,589.3 1,464 616.2 
20 2,702.2 1,086.7 1,419 570.6 

Present values .................... 96,337.8 ............................... 14,511.5 

Total present value = $110,849.3 



, Reliability- developed from a parts stress analysis, 
from past engineering data and estimates, or from a 
parts-count reliability prediction model. 

, Maintainability- determined from maintainability 
scores described in MIL-HDBK-472, Procedure III. 

, Availability-the availability of a nonredundant 
functional entity related to its reliability and main­
tainability by: 

MTTF 
Ae = (MTTF + MTTR) 

The system availability can then be estimated by 
taking the product of the availabilities of each 
functional entity, provided that system operation is 
dependent upon concurrent and continuous func­
tioning of each entity and that the functional entities 
are independent in terms of failures and repairs. 

Cost Categories 

These data are then incorporated in an LCC 
estimate that includes the following cost catego­
ries: 

• Research and development costs 
• Investment costs 

• Acquisition 
• Initial installation 
• Initial and replaceable spares 
• Support equipment 
• Personnel training 
• Management and technical data 
• New facilities 

• Operating and support costs 
• Organizational level maintenance 
• Intermediate and depot level maintenance 
• Inventory manag~ment 

Table 6-10 lists a description of the variables 
used and the resulting equations, with suggested 
typical values for the constants. 

A method of quantifying revenue loss resulting 
from system downtime is: determine the opti­
mum simplex system, and divide the total LCC 
by the number of hours in the system design life. 
The optimum simplex system is defined as a 
system with no redundancy, but with maintaina­
bility and fault-intolerant features optimized for 
minimum life-cycle cost. Eames and Spann 
[1977] cite an example of a system whose design 
life is 10 years, with a total LCC of $10 million. 
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If the system is being used 24 hours a day, the 
user of the system is paying: 

$ 10M $114.16 
87,600 hour 

for the use of the system. Therefore it must be 
worth at least this amount to keep the system 
running. 

Consider a large computer-aided instruction 
(CAl) system *, consisting of keyboards, video 
terminals, tape units, line printers, software, and 
various controllers and display generation' equip­
ment. Each of these system components is first 
assigned to one of two categories: electrome­
chanical and large electronic assemblies, and 
printed circuit boards and small electronic as­
semblies. LCC analyses are performed with the 
parameters described above. The system is first 
considered in its optimum simplex form; Table 
6-11 shows the results for three different part 
quality grades. 

Next, the effects of various kinds and degrees 
of redundancy are considered. Table 6-12 com­
pares the results. Column A restates the results 
of the optimum simplex analysis. Column B 
shows three variations of a 9-out-of-l0 redun­
dancy scheme: 11 percent of the system with 9-
out-of-l0 redundancy, the rest simplex; 63 per­
cent with 9-out-of-l0 redundancy, the rest sim­
plex; and 100 percent with 9-out-of-10 redun­
dancy. Columns C and D show similar analyses 
with 4-out-of-5 and l-out-of-2 redundancies in 
various portions of the system. 

The ratio of LCC change to the change in 
system downtime yields the value of avoiding 
downtime for each of these approaches. Figure 
6-5 shows these values graphically. 

CONCLUSIONS 

It is for a financial reason of one sort or another 
that any fault-tolerant system is designed and 

• This example is adapted from Eames and Spann [1977]. 
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Table 6-10. A simple life-cycle cost model and its parameters. 

Description of Variables: 

NUM Number of 
equipment items 

HOURS Total life cycle 
operating hours 
per equipment 
item 

LABOR Average labor 
rate $/MH 

RPPTIP Ratio of system 
purchase price 
to sum of 
PRICE(I) 

DEVELS Cost of 
development 

INSTAS Cost of initial 
installation 
material and 
equipment, $ 

MTTF Mean Time To 
Failure for the 
whole system 

TQUANT Total quantity 
of systems to be 
made to 
amortize 
development 
costs 

All the Jollowing are arrays oj size 'NUM' 

PRICE Initial price 

TFAIL Failure rate for 
total quantity of 
equipment 
item(I), F /MHR 

QUANT Total quantity 
of equipment 
item(I) 

Equations: 

Acquisition = RPPTIP X L [PRICE (I) 
X QUANT (I)] 

Development = DEVELS/TQUANT 

Initial Installation = INSTAS 

Initial and replaceable spares = 

(0.05 + HOURS X 6.0E-6) X Acquisition 

Organizational level maintenance = 
in! (HOURS/MTTF) X (L [TFAIL (I) 

Input 

Input 

50.00 

0.40 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

X MTTFx I.OE-6 X {I.O - FlXDLQ - FlXILQ} 
X XU)] + TRIP) 
Where X (I) = AOLRTS X PRICE (I) + AOLRT 
X LABOR 

Source: Note this model is a modified version of one 
proposed in Life Cycle Analysis Utilizing Generalized Data 

These are assumed to be constant: 

FIXILQ Fraction of 0.20 
failures repaired 
at intermediate 
level (IL) 
branch office by 
quantity 

FIXDLQ Fraction of 0.20,0.50 
failures repaired 
at depot level 
(DL) by quantity 

AILRS Average IL 0.05 
repair material 
cost percent of 
PRICE 

AILRT Average IL 5.0 
repair time. mh 

ADLRS Average DL 0.10 
repair material 
cost percent of 
PRICE 

ADLRT Average DL 5.0 
repair time. mh 

AOLRT Average 5.0 
organiza tional 
level (OL) 
factory repair 
time. mh 

AOLRTS Average OL 0.20 
repair material 
cost percent of 
PRICE 

TRIP Cost to make 100 
service trip 

Intermediate and depot level maintenance = 

int (HOURS/MTTF) X (L [TFAIL (I) X MTTF X 
I.OE-6 X {FIXILQ X V (I) + FlXDLQ 
X W (I)}] + TRIP) 
Where V (I) = AILRS X PRICE (I) + AILRT X 

LABOR 
and W(I) = ADLRS X PRICE (I) + ADLRTx 
LABOR 

Inventory management = 4.0 X Initial Installation 

Support Equipment = 0 

Personnel Training = 0 

Management and Technical Data = 0 

New Facilities = 0 

Elements by Susan Eames and Al Spann of GTE Sylvania 
Incorpora ted. 



FINANCIAL CONSI DERA TlONS 319 

$13M 

$12M 

$11M 

$10M 

$9M 

$8M 

9_out-of-10 redundancy 

l~~~~;;;;;;;;;;;;;;;;==~~~~~~~~::::~$~39~2~/~H:r~ $7M 
1,785 1,600 1,400 1,200 1,000 800 600 400 200 o 

(-- Ten-year downtime, hours 
I I I I I 

0.97962 0.98173 0.9863 0.99018 0.99543 1.0 

Figure 6-5. Cost-to-reduce downtime. 

Table 6-11. Example of effects of component quality levels on Lee. 

Parts Quality Grade: 
Total LRUs: 
Availability: 
Mean Uptime: 

Acquisition 

Developmen t 

Initial installation 

Initial and replacement spares 

Organization level maintenance 

Branch and depot level 
maintenance 

Inventory management 

Support equipment 

Personnel training 

Management and technical data 

New facilities 

Life-cycle cost 

Commercial 
1,600 
0.979624 
24 Hrs. 

$ 2,560,000 

207,999 

84,979 

2,880,000 

125,974 

430,346 

309,287 

185,000 

o 
200,804 

o 
$ 6,984,389 

MIL 
1,600 
0.993635 
78 Hrs. 

$ 2,900,244 

207,999 

84,979 

3,262,804 

122,017 

147,256 

309,287 

185,000 

o 
196,638 

o 
$ 7,416,224 

Cost to Avoid 
Downtime 
$360/Hr. 

HI-REL 
1,600 
0.997444 
195 Hrs. 

$ 4,400,516 

207,999 

84,979 

4,950,596 

120,968 

84,849 

309,287 

185,000 

o 
195,530 

o 
$ 10,539,720 

Cost to Avoid 
Downtime 
$11,484/Hr. 
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Table 6-12. Example of effects on LCC of reliability improvement via 
redundancy. 

A 

Configura tion: Series 

Total LRUs: 1600 

A vaila hili ty: 0.979624 

Mean uptime: 24 Hrs. 

Acquisition $ 2,560,000 

Development 207,099 

Initial installation 84,979 

Initial and replacement spares 2,880,000 

Organization level maintenance 125,974 

Branch and depot level mainte-
nance 430,346 

Inventory management 309,287 

Support equipment 185,000 

Personnel training 0 

Management and technical data 200,804 

New facilities 0 

Life-cycle cost $ 6,984,389 

built. Calculating the costs and/or benefits of a 
given high reliability, maintainability, or availa­
bility design is a complex task. This chapter has 
explained important financial concepts related to 
the purchase, operation, and servicing of a com­
puter system. Also explained were several math­
ematical techniques, including discounted cash­
flow cost-of-ownership calculations, mainte­
nance cost and life-cycle cost models, and a 
method to assess the cost effectiveness of main­
tainability features. 

.. 

B 
9-out-oJ-IO Redundancy 

11% Redun- 63% Redun- 100% Redun-
dancy dancy dancy 

1617 1706 1777 

0.981619 0.991583 0.999540 

26 Hrs. 58 Hrs. l.085 Hrs. 

$ 2,588,423 $ 2,730,836 $ 2,844,423 

216,412 225,545 235,674 

85,086 85,619 86,046 

2,908,423 3,050,636 3,164,423 

127,374 134,372 139,970 

435,125 459,034 478,163 

309,287 309,287 309,287 

185,000 185,000 185,000 

0 0 0 

202,291 209,710 215,649 

0 0 0 

$ 7,057,421 $ 7,389,939 $ 7,658,635 

Cost to avoid downtime $392/Hr. • 

This chapter should give the design engineer 
an adequate understanding of the principles nec­
essary for a rudimentary analysis of the financial 
considerations for a given system. More sophis­
ticated problems can be handled by financial 
analysts and management scientists. 

REFERENCES 

Eames and Spann [1977]; Pierce [1977]. 



C 
4-out-of-5 Redundancy 

2% Redun- 65% Redun- 100% Redun-
dancy dancy dancy 

1640 1839 2000 

0.981619 0.991562 0.999484 

26 Hrs. 58 Hrs. 967 Hrs. 

$ 2,624,000 $ 2,943,906 $ 3,199,903 

216,527 226,437 237,812 

85,219 86,419 87,379 

2,944,000 3,263,906 3,519,903 

129,122 144,869 157,466 

441,110 494,905 537,931 

309,287 309,287 309,287 

185,000 185,000 185,000 

0 0 0 

204,143 220,845 234,209 

0 0 0 

$ 7,138,408 $ 7,875,624 $ 8,468,890 

"'--Cost to avoid downtime $865/Hr. ~ • 

tROBLEMS 

Suppose that you are issuing maintenance con­
tracts on a new system with the following shipment 
schedule: 

Quarter 
1 
2 
3 
4 
5 

Shipments 
50 

250 
1250 
4000 
5000 
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D 
1-out-of-2 Redundancy 

18% Redun- 75% Redun- 100% Redun-
dancy dancy dancy 

1760 2560 3200 

0.981616 0.991453 0.999186 

26 Hrs. 58 Hrs. 613 Hrs. 

$ 2,816,000 $ 4,095,896 $ 5,119,392 

217,151 231,049 249,533 

85,939 90,739 94,579 

3,136,000 4,415,898 5,439,892 

138,571 201,557 251,946 

473,384 688,559 860,683 

309,287 309,287 309,287 

185,000 185,000 185,000 

0 0 0 

214,167 280,971 334,412 

0 0 0 

$ 7,575,499 $10,498,950 $12,845,220 

Cost to avoid downtime $3,468/Hr. • 

6 5000 
7 5000 
8 2000 
9 1000 

10 500 
11 0 
12 0 

If the contract penetration rate is 50 percent and 
the annual contract renewal rate is 75 percent, 
calculate the resulting number of contracts in each 
quarter. 
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2. What is the cost of owning a system purchased for 
$500,000, with an annual cost of maintenance of 
$40,000? Assume a discount rate of 15 percent and 
a tax rate of 50 percent, with the system depreciat­
ed over 4 years, using the double-declining balance 
method. 

3. Consider the feature failure-mode matrix (Table 
6-4). Suppose that the development costs asso­
ciated with each feature are as follows: 

Data Path Loop-Around $1000. 
Error Simulation $8500. 
Internal Parity $1500. 

Speed Check 
Skew Check 
Power Check 
Reel LEDs 

$2000. 
$5000. 
$7400. 
$9000. 

Assume that the MTBF of the device remains at 
a constant 5,000 hours, and that a minute of re­
pair time saved is worth $1. Ignoring the time 
value of money, which features should be incor­
porated into the device if you are going to ship a 
total of 100 units? 1000 units? 10,000 units? 
Assume the manufacturing cost per unit is $1000 
and the system lifetime is 5 years. 



THE PRAalCE OF RELIABLE 
SYSTEM DESIGN 
The ultimate system goals affect design philosophy and design trade-offs. The 
costs of fault tolerance must be weighted against the cost of error. Error costs 
include downtime as well as incorrect computation. Some system goals that affect 
design philosophy are listed in Table II-I. Is the system to be highly reliable or 
highly available? Do all outputs have to be correct, or only data committed to 
long-term storage? How familiar must the user be with the architecture and 
software redundancy? Is the system dedicated so that attributes of the applica­
tion can be used to simplify fault-tolerant techniques? Is the system constrained 
to use existing components? Even if the design is new, what is the cost and/or 
performance penalty to the user who does not require fault tolerance? Is the 
design stand-alone, or are there other processors that can be called upon to assist 
in times of failure? 

Rennels [19801 has identified five different application types to which fault 
tolerance has been applied: 

1. High Availability. High availability systems share resources when the 
occasional loss of a single user is acceptable but a systemwide outage or common 
data base destruction is unacceptable. These systems are most frequently 
oriented toward general-purpose computing, executing a variety of user programs 
whose demands cannot be anticipated. Because they are targeted for the cost­
sensitive commercial marketplace these systems use minimal modifications to 
existing designs. Hamming-coded memory, bus parity, timeout counters, diag­
nostics, and software reasonability checks are the primary redundancy tech­
niques. Thus, coverage is low. In multiple-processor systems, however, the fault 
can be isolated once it is identified, and the system can continue operation, 
perhaps in degraded mode. Examples of high-availability systems include Tan­
dem (see Chapter 11) and Pluribus (see Chapter 13). 

2. Long Life. Long-life systems, such as unmanned spacecraft, cannot be 
manually maintained over the system operating life (frequently five or more 
years). Often, as in spacecraft monitoring of planets, the peak computational 
requirement comes at the end of system life. These systems are highly redundant, 
equipped with enough spares to survive the mission with the required computa­
tional power. Redundancy management may be performed automatically (on the 
spacecraft) or remotely (from ground stations). STAR (see Chapter 14) and 
Voyager (see Chapter 15) are examples of long-life spacecraft systems. 

3. Postponed Maintenance. Closely related to long-life systems are systems 
designed to survive faults until periodic maintenance can be performed. For 
small systems like spacecraft, maintenance could be postponed for the entire 
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Table 11-1. System goals determine design philosophy. 

• Reliability versus availability 
• Grain of correctness 

• Correct data output 
• No loss of data 

• Transparency to user 
• Dedicated or general purpose 
• New design or add-on 

• Penalty to nonreliability user 
• Stand-alone or multiple processor 

system life. For other systems in which on-site repair is difficult, redundancy is 
more cost effective than unscheduled maintenance. There are many mobile 
systems that depart from a central facility for a period of time and return. 
Stocking spares and maintenance expertise are most cost effective if maintenance 
can be postponed until the mobile unit returns to the central facility. Such 
systems include mass transit, ships, airplanes, and tanks. . 

4. High-Performance Computing. High-performance computing systems (such 
as signal processing) are very susceptible to transient errors (due to close timing 
margins) and permanent faults (due to complexity). As performance demands 
increase, fault tolerance may be the only way of building systems with sufficient 
Mean Time To Error (MTTE) to allow useful computation. Occasional errors 
that disrupt processing for several seconds are tolerable as long as automatic 
recovery follows. Table 11-2 lists some high performance general-purpose com­
puting systems, their Mean Time to Crash (MTTC), and Mean Number of 
Instructions Executed (MNIE) between crashes. 

Table 11-2. Number of instructions executed between system crashes for 
several mainframe systems. 

Mean Time Mean Number 
To Crash Instructions Executed 

System MTTC (hours) MNIE (x 1010 ) 

B5500 
[Yourdon, 1972] 14.7 2.6 

Chi/05 (Univac 1108) 
[Lynch, Wagner, and Schwartz, 1975] 17.0 6.7 

Dual 370/165 
[Reynolds and Kinsberger, 1975] 8.86 28.0 

SLAC 20.2 23.0 

PDP-IO 
[Castillo, 1980] 10.0 4.3 

CRAY-I 
[Keller, 1976] 4.0 190.0 
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5. Critical Computations. The most stringent requirement for fault tolerance 
s in realtime control systems in which faulty computations can jeopardize human 
ife or have high economic impact. Not only must computations be correct, but 
11so recovery time from faults must be minimized. Specially designed hardware 
)perates with concurrent error detection so that incorrect data never leave the 
~aulty module. SIFT (see Chapter 16) and FTMP (see Chapter 17) are examples 
)f avionic computers designed to control dynamically unstable aircraft. Their 
iesign goal is a failure probability of less than 10-9 for a lO-hour mission. 

Part I presented the techniques used in fault-tolerant computer design. It 
'emains to the system designer to combine these techniques into a coherent 
lfchitecture and to evaluate the resultant architecture. The remaining 12 chapters 
)resent a cross-section of existing fault-tolerant architectures; every system has 
been built. Chapter 7 traces the evolution of a simple redundancy technique 
TMR) into a working system. The remaining chapters are roughly arranged in 
)rder of increasingly stringent reliability requirements. Chapters 8 through 10 
iiscuss commercial computing systems. Chapters II through 13 treat high­
lVailability systems. Chapters 14 through 17 describe spacecraft and avionics 
~ystems. Finally, Chapter 18 presents a design methodology for fault-tolerant 
~ystems and traces the use of this design process in a commercially available 
~ystem. 

C.VMP 

C.vmp is a triplicated microprocessor system designed for realtime control 
environments. There are two major reasons for studying this system. First. it 
illustrates the process by which a simple technique (triplication) is translated into 
a working system. Numerous problems require solution before even simple 
techniques are reduced to practice. Auxiliary functions such as error status 
information, enabling/disabling of the redundancy, and initialization must 
support the technique. From the detailed C.vmp implementation the reader may 
be able to extrapolate the higher-level descriptions of more complex systems into 
plausible implementations. Space does not permit a detailed discussion of every 
design. 

The second reason for considering C.vmp is to explore the consequences of 
redundancy on system performance. Chapter 7 presents several methods of 
predicting and measuring performance. 

COMMERCIAL COMPUTERS 

DEC 

The RAMP (Reliability, Availability, and Maintainability Program) features in 
the V AX-I 1/780 and V AX-I 1/750 minicomputers are representative of contem­
porary design. Some RAMP features are defined in the system architecture and 
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must appear in every implementation. Other features are implementation specific. 
Chapter 8 compares the architecture-defined and implementation-specific RAMP 
features of the V AX-I 1/780 and VAX-l 1/750, and describes the typical hard­
ware required to support system maintainability. This hardware includes registers 
for status, control, and error-monitor maintenance, as well as a special visibility 
bus for examining internal signals that are usually not accessible. Discussion of 
the VAX-l 1/750 also considers the early design trade-off studies that led to the 
final RAMP package. 

IBM 

Table 11-3 presents the evolution of IBM's maintenance strategy. Techniques are 
listed for a representative machine from each major era. The techniques can be 
loosely grouped in three major categories: internal hardware error-detection 
circuits, diagnostics (including software and microcode), and display (such as 
lights, error logs, tracing). The IBM strategy has evolved from "failure recreate" 
to "failure capture." Prior to the S/370, IBM customer engineers attempted to 
recreate the failure by rerunning diagnostics, sometimes in conjunction with 
varying voltage and clock frequency, until the failure recurred. The system was 
placed in a tight programmed loop to produce a continuous failure condition for 
analysis. In failure capture, hardware circuits detect errors, and information 
about the current status of the machine state is logged for subsequent analysis. 

Table 11-4 lists the features in the IBM 4300 series. The hardware error­
detection, error-correction, and monitoring circuits described in Table 11-4 are 
used in the following maintenance scenario. The support processor displays a 
diagnostic code. A customer engineer is called to the site and examines the error 
information on the system diskette, executes diagnostics from the system diskette, 
and uses the support processor to monitor results. For additional information the 
customer engineer can telephone a central data base (called RETAIN) for the 
latest service aids and failure data from other sites. A Field Technical Support 
Center specialist can use the telephone link to monitor remotely and/or control 
diagnostics on the 4341. 

Chapter 9 describes in detail the Reliability, Availability, and Serviceability 
(RAS) features of the IBM System/360-System/370. The goal is high availability 
with minimized impact of failures. Four stages of corrective action are identified, 
each with successively larger impact on users: transparent recovery, one user 
affected, multiple users affected, and down. The successively higher-severity stage 
recovery structure is common in systems with high-availability goals or 10 

realtime data processing environments in which temporary loss of data is 
tolerable. 

UNIVAC 

Chapter 10 describes the ARM (Availability, Reliability, and Maintainability) 
features in the Univac 1100/60. ARM at Univac emphsizes on-line error 
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Table 11-3. Evolution of IBM maintenance strategy. 

Machine Era 

650 Late 1950s 

1401 Early 1960s 

S/360-50 Mid-1960s 

370/168 Mod 3 Early 1970s 

303X Mid-1970s 

4341 Late 1970s 

Techniques 

Six internal checkers 

Stand-alone diagnostics on 
punched cards 

Light and switch panel 

20 internal checkers 

Stand-alone diagnostics 

Light and switch panel 

75 internal checkers 

OL TEP-On-Line Test Executive 
Program 

Microdiagnostics 

Log fault data to main memory. 
EREP-Error Recording and 
Edit Program for outputting 
logged data 

Maintenance panel 

Error-detection circui ts 

OLTEP 

Microdiagnostics for fault 
isolation 

Service processor, including trace 
unit-trace up to 199 fixed and 8 
movable logic points over 32 
machine cycles for intermittent 
or environmental faults 

Error-detection circui ts 

OL TS-On-Line Functional 
Tests 

Console and processor 
microdiagnos tics 

EREP 

Scope loops 

Support processor, including 
trace and remote (telephone) 
access to log data and trace 
information 

Error-detection circui ts 

25,000 shadow latches 

Support processor-error logging 
and environmental monitoring 
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Table 11-4. IBM 4300 series RAS (Reliability, Availability, Serviceability). 

Error -detection/correction circuits 
• Single-bit error correction/double-bit error detection in main memory 
• Data-path parity 
• Store-and-fetch memory access protection 
• Instruction retry (4341 only). On an error, processor performs a retry and, if 

successful, loads the machine check interrupt. Options include hardstop on error, 
no retry (but logout), disable error report, and stop after logout. During 
instruction execution, data in certain machine facilities is saved. Prior to 
instruction re-execution this data is restored. 

• Disk error correction 
• I/O retry at both processor and disk controller level 
• Peripheral unit power-off signal (4341 only) 
• Disk self-test 
• Voltage margin under program control 
• Relocatable control storage 
• Level Sensitive Scan Design (LSSD) 
• Microdiagnostic location to Field Replaceable Unit 80 percent of time 
• Halt or trace on address or data match comparisons can be made on any reference, 

I/O reference, data store, or instruction fetch 

Support Processor 
• Separately powered 
• Separate system diskette for microcde loading, system error logging, and storage of 

microdiagnostics . 
• Sensors for monitoring power variances, temperature fluctuations, and electrostatic 

discharge (4341 only) 
• For both retriable and unretriable errors, the support processor performs an internal 

logout. Each logout has an identifer that specifies the number of logouts to date. 
• Support-processor-generated eight digit reference code guide to failing unit. 

Reference code logged on diskette and display console. 
• Display console and data link functions for Remote Support Facility (RSF) 

Remote support facility 
• Remote monitoring (especially of error registers) and control 
• Remote initiation of diagnostics 
• Remote examination of error log on system diskette 
• Distribute microcode updates 

detection. As Table 11-5 indicates, parity on multibit logic and duplication of 
random logic are primary error-detection techniques employed in the 1100/60. 
Based upon the assumption that most errors are transients, recovery consists 
primarily of retry (Table 11-6). Instead of attempting a number of retries 
immediately after an error is detected, the 1100/60 pauses so that the SOl,lrce of 
a transient (such as power supply instability) dies out. The pause can be from five 
milliseconds to five seconds in one-millisecond increments. The pause value is set 
to cope with site-dependent conditions. Hard failures are tolerated in main 
memory through ECC, in cache through performance degradation, and in the 
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control store by inverting the bits in the microinstruction, if required for a bit to 
match a stuck-at value. 

An integral part of the 1100/60 ARM philosophy is the System Support 
Processor (SSP). The SSP combines many features of the IBM 4341 Support 
Processor and the VAX-l 1/780 Console Processor. With the advent of low-cost 
microprocessors, it became cost effective to concentrate in a support processor 
the functionality traditionally provided by front console switches and mainte­
nance panels. Once the basic functionality was provided for system control, 
expansion to ARM functionality followed naturally. A support processor typical­
ly consists of a 50K-IOOK instruction-per-second processor, a small amount of 
nonvolatile ROM (such as 4K words), RAM (up to 256K words), secondary 
storage (floppy disk), remote access port, and interfaces to buses and' control 
signals internal to the CPU. Table 11-7 lists some of the functionality associated 
with support processors [Kunshier and Mueller, 1980]. 

Table 11-5. Error-detection hardware in the UN IVAC 1100/60. 

Memory 
Double-error-detecting code on memory data 
Parity on address and control information 

Cache 
Parity on data, address, and control information 

I/O Unit 
Parity on data and control 

CPU 
Pari ty on data pa ths 
Parity on control store 
Duplication and comparison of control logic 

Table 11-6. Error recovery inthe UNIVAC 1100/60. 

Memory 
Single-error-correction code on data 
Retry on address or control information parity error 

Cache 
Retry on address or control information parity error 
Disable portions of cache on data parity errors 

I/O unit 
Retry on data or control parity errors 

CPU 
Retry on control store parity error 
Invert sense of control store 
Macroinstruction retry 
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Table 11-7. Uses of support processors. 

• System console 
• System boot 
• System quick test of boot path 
• Error logger 
• Diagnostic tool 

• Microdiagnostics 
• Scan/set/compare internal state 
• Fault injection 
• Remote diagnosis 

• Error recovery 
• Writable control store reload 
• Transplant state to another processor 
• Reconfiguration 

HIGH-AVAILABILITY SYSTEMS 

Tandem 

Tandem Computers, Inc., was founded in 1976 for the purpose of building high­
availability computer systems for commercial transaction processing. The Tan­
dem 16, discussed in Chapter 11, is the first commercially available, modularly 
expandable system designed specifically for high availability. Design objectives 
for the system included: 

• "Nonstop" operation wherein failures are detected, components reconfigured out of 
service, and repaired components configured back into the system without stopping the 
other system components. 

• No single hardware failure can compromise data integrity of the system. 
• Modular system expansion through adding more processing power, memory, and 

peripherals without impacting applications software. 

Tandem is composed of up to 16 computers interconnected by two message­
oriented Dynabuses. A loosely coupled architecture was selected instead of a 
tightly coupled, shared-memory architecture because it was felt that the former 
allowed for more complete fault containment. Built-in hardware includes: 

• Checksums on Dynabus messages 
• Parity on data paths 
• Error-correcting-code memory 
• Watchdog timers 

All I/O device controllers are dual ported for access by an alternate path in 
case of processor or I/O failure. Upon this hardware structure the software builds 
a process-oriented system with all communications handled as messages. This 
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lbstraction allows the blurring of the physical boundaries between processors 
md peripherals. Any I/O device or resource in the system can be accessed by a 
)rocess, no matter where the resource and process reside. 

Data integrity is maintained through the mechanisms of I/O "process-pairs": 
)ne I/O process is designated as primary, the other as backup. All file 
nodification messages are delivered to the primary I/O process. The primary 
;ends a message with checkpoint information to the backup so that it can take 
)Ver if the primary's processor or access path to the I/O device fails. Files can 
llso be duplicated on physically distinct devices controlled by an I/O process­
Jair on physically distinct processors. All file modification messages are delivered 
:0 both I/O processes. Thus, in the event of physical failure or isolation of the 
Jrimary, the backup file is up-to-date and available. 

User applications can also use the process-pair mechanism. Consider a 
10nstop application program, A, in Figure II-I. A starts a backup process, A 1, in 
mother processor. There are also duplicate file images, one designated primary 
lnd the other backup. Program A periodically (at user-specified points) sends 
;heckpoint information to A 1. A 1 is the same program as A but knows that it is 
1 backup program. A 1 reads checkpoint messages to update its data area, file 
;tatus, and program counter. A 1 loads and executes if the system reports that A's 
Jrocessor is down (error messages sent from A's operating system image or A's 
Jrocessor fails to respond to a periodic "I'm alive" message). All file activity by 
4 is performed on both the primary and backup file copies. When A 1 starts to 
~xecute from the last checkpoint, it may attempt to repeat I/O operations 
mccessfully completed by A. The system file handler will recognize this and send 
41 a successfully completed I/O message. A periodically asks the operating 
;ystem if a backup process exists. Since one no longer does, it can request the 

A A' 
Backup 
exists? Checkpoint 

• Data 
• File status 
.PC 

OS 

Figure 11-1. Shadow processor inTandem. 
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creation and initialization of a copy of both the process and file structure. More 
information on the operating system and the programming of nonstop applica­
tions can be found in Bartlett [1978]. 

Networking software exists that allows interconnection of up to 255 geograph­
ically dispersed Tandem systems. Tandem applications include order entry, 
hospital records, bank transactions, and library transactions. 

ESS Processors 

The Electronic Switching Systems (ESS) developed by Bell Laboratories over the 
last two decades are the most numerous fault-tolerant digital systems. They are 
discussed in Chapter 12. The ESSs handle routing of telephone calls through 
central offices. They have an aggressive availability goal: two hours down time in 
40 years (three minutes per year). 

Telephone switching has many properties in common with the Pluribus (see 
Chapter 13) ARPAnet IMP application's realtime routing of information. There 
is some natural redundancy in the network and in the data; that is, telephone 
users will redial if they get a wrong number or are disconnected. However, there 
is a user aggravation level that must be avoided: users will redial so long as errors 
do not happen too frequently. User aggravation thresholds are different for 
failure to establish a call (moderately high) and disconnection of an established 
call (very low). Thus an ESS follows a staged failure recovery process, presented 
in Table 11-8. 

A substantial portion of the complexity of an ESS system is in the peripheral 
hardware. Because the telephone-switching application results in a substantially 
different organization from that of general-purpose computers, the following 
extract is included to describe briefly the hardware of the No.4 ESS system. * 

Figure 11-2 contains an overall system diagram of a No.4 ESS office, broken 
down by major functional blocks. Essentially it consists of a digital time division 
network which switches digitally encoded 4-wire long distance telephone traffic. 
This is controlled by a stored program processor abetted by a group of autonomous 
signalling units (signal processors and terminals). The major functional blocks of 
Figure 11-2 can be further segregated into four major areas: lA processor, network, 
signal processors, and transmission interface. 

Each area is reviewed below with a brief functional description of its component 
subsystems. 

1 A Processor 

• Central Control (CC): Main processor performing logic and data manipulation 
associated with calling processing, administrative tasks, and a recovery task . 

• Program Store (PS): Memory complex storing executable instructions. 

* J. J. Kulzer, "Systems Reliability: A Case Study of No.4 ESS," in System Security and Reliability, 
Infotech State of the Art Report, Maidenhead, England, 1977, pp. 186-188. 
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Table 11-8. Levels of recovery in an E55 system. 

Phase Recovery Action Effect 

2 

Initialize specific transient memory. 

Reconfigure peripheral hardware. 
Initialize all transient memory. 

Verify memory operation, establish 
a workable processor 
configuration, verify program, 
configure peripheral hardware, 
initialize all transient memory. 

Established a workable processor 
configuration, configure peripheral 
hardware, initialize all memory. 

Service circuits PCM 

Wire facilities l 
Analog carrier 

1 Digital carrier 
Digroup 
terminal 

01 

Analog Data 
carrier I signalling and 

signalling I control 

Echo 

Temporary storage affected. No 
calls lost. 

Lose calls being established. Calls in 
progress not lost. 

Lose calls being established. Calls in 
progress not affected. 

All calls lost. 

PCM PCM 

l 
Time I suppressor Time slot multiplexed 

interchange switch terminal 
EST 1 

lSI IMS 

PU bus 
PU bus 

Timing 

- .... -""'I""----.... ----~~-----____t Bus interface ...... P_U ...... bu .. s __ _ 

Data links Common 
channel 

interoffice 
signalling 

Master 
control 
console 

MCC 

PUBB 

Figure 11-2. NO.4 E55 system diagram. 
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• Call Store (CS): Memory complex storing transient information related to the 
processing of telephone calls as well as data describing office equipment and 
routing (referred to as translations). 

• File Store (FS): Disk System used to store backup program copies, seldom used 
maintenance programs, and other miscellaneous types of data. 

• Auxiliary Units (AU): Additional units used to reference magnetic tape storage 
media which retain basic restart programs, new input data and· support mainte­
nance. Also possible future use for data link features. 

• Input/Output (I/O): Interface hardware used to reference input and output 
terminal devices. 

• Bus Systems (AU, PS, CS, PU): Bus systems used to interconnect the various 
functional units with the Central Control. 

• Master Control Console (MCC): Control and display console to permit limited 
manual control of system and provide performance information. 

Network 

• Time Slot Interchange (TSI): First and fourth stage of the 4-stage time-shared 
switching network. Performs time division portion of the time-space-time switch­
ing function (described in later paragraphs). 

• Time Multiplexed Switch (TMS): Provides second and third stage of 4-stage 
switching (time-shared space portion). 

• Network Clock (NC): Provides very accurate timing signals for the switching 
network. 

• Peripheral Unit Bus Interface (PUBI): Provides interface between IA processor 
and the peripheral units. 

Transmission Interface 

• Voiceband Interface Frame (VIF): Interfaces analogue transmission facilities with 
the network for converting analogue voiceband channels into digitally encoded 
Pulse-Code Modulated (PCM) signals. 

• Digroup Terminal (DT): Interface digital transmission facilities with the network. 
Provides signalling interfaces with these facilities. 

• Echo Suppressor Terminal (EST): Provides digital 4-wire Echo Suppression 
capability for long distance trunks, both analogue and digital. 

Signal Processors 

• Signal Processor 1 (SPl): Provides scanning and signal distributing functions for 
analogue carrier, metallic trunk, and service circuits. Also can provide miscella­
neous control points for other peripheral units. 

• Signal Processor 2 (SP2): Performs scanning and signal distributing functions for 
digital carrier trunks terminated on DTs. Can also provide miscellaneous scan and 
signal distribution functions similar to the SPl. 

• Common Channel Interoffice Signalling (CCIS) Terminal: Terminates the Inter­
office CCIS data links serving as the interface between these data links and the 
signal processors and lA Processor. 

Briefly, No.4 ESS operates in the following manner. Various types of transmis­
sion channels, analogue and digital carriers, and both 2-wire and 4-wire metallic 
trunks are connected to voice-frequency terminal units. The 4-wire outputs are 
connected to subunits (VIUs) of the Voice band Interface Unit (VIF). These VIUs 
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sample, multiplex, and digitally encode analogue signals in one direction, reversing 
the process for the other. The digital output, a 128 time-slot digital bus, carries 8-
bit Pulse Code Modulated (PCM) signals in each time slot to the Time Slot 
Interchange (TSI). The TSI, among other functions, provides a stage of switching 
PCM signals to different time slots on the bus. The output of the TSI goes to the 
Time Multiplexed Switch (TMS), which permits switching of the PCM signals 
during a particular time slot from any bus to any other. The output of the TMS goes 
to the TSI where PCM signals may be interchanged to another time slot and back 
to a VIU for reconversion to analogue space-divided signals. The VIU does no 
switching. A similar scenario exists for digital lines (TI carrier) which terminate on 
subunits of the Digroup Terminals, called DTUs. However, the DTU also handles 
synchronization and signal extraction/insertion for these facilities, eliminating any 
need for conventional scan and signal distribute interfaces to channel banks in the 
transmission area. 

Four-wire echo suppression can be provided optionally by the Echo Suppressor. 
The EST has subunits, ESUs which reside on the digital bus between the VIF / 

DT and the TSI. These subunits process the digital PCM signals passing in both 
directions of each 4-wire trunk and digitally suppress detected echos. Coordinated 
timing for all of the above functions is critical and is provided by the network clock. 
The wired logic Signal Processor (SP) is used to provide scanning and signal 
distribution functions relieving the central processor of any need to perform these 
duties. Similar functions are provided for digital trunks by the SP2. The Common 
Channel Interoffice Signaling (CCIS) terminal provides a separate data link for 
signalling as an alternative to in-band signalling over trunk facilities. The separate 
signalling system handles digital signals in a special format over a 2-way data 
channel between switching machines. This system handles both supervisory and 
address signals for a group of trunks. The CCIS terminal interfaces to the system 
processor over the peripheral bus. 

The entire complement of peripheral hardware described above is controlled by 
the IA Processor using parallel AC-coupled buses. The processor interfaces with the 
periphery through the Peripheral Unit Bus Interface and has been designed to be 
separable for use in other applications such as No. IA ESS. 

The IA Processor provides overall system control, administration, and call 
processing support. Complete self-contained system maintenance is also provided 
through the IA Processor. Elements of this include automatic isolation of faulty 
units, defensive software strategies, and system supported rapid repair. 

Chapter 12 sketches the evolution of ESS processors, summarized in Table 11-9. 

Pluribus 

Pluribus was conceived as a modular, highly available multiprocessor for the 
I\RPAnet task. Chapter 13 describes the architecture as well as the fault-tolerant 
techniques employed. 

Most of the Pluribus fault tolerance is achieved at the software task level. A 
~elatively long period between fault occurrence and fault detection was accept­
lble because of the nature of the IMP task. The several levels of protocol in the 
t\RPAnet, each with its own error detection and recovery, relieve the Pluribus 
~rom concentrating on data integrity: if a failure occurred, all messages in 
)rogress would be buffered at other ARPAnet nodes until positively acknowl­
!dged, and eventually rerouted past the failed Pluribus. Even if the subnet 
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Table 11-9. Summary of installed ESS systems. 

Year 
Number Intro- Number 

System of Lines duced Installed Processor Comments 

ESS-l 5,000-65,000 1965 1,000 No.1 First processor with 
separate control and 
data memories. 

ESS-2 1,000-10,000 1969 500 No.2 

ESS-IA 100,000 1976 No.lA Four to eight times 
faster than No. 1 

ESS-2B 1,000-20,000 1975 500 No.3 Combined control and 
data store. Microcoded, 

ESS-3 500-5,000 1976 No.3 emulates No.2. 

protocol failed to complete the message transmission reliably, the host-to-host 
protocol would retry the entire message transmission. Thus, the application 
required only that the Pluribus recover gracefully from a failure. This goal can 
be achieved by quick system reinitialization with omission of questionable 
components. 

The Pluribus IMP (Interface Message Processor) software utilizes: 

• Periodic software checks including diagnostics 
• Redundancy in data structures 
• Watchdog timers that must constantly be reset by software 

The multiprocessor structure allows for maximum performance when there are 
no failures (that is, the periodic checks are estimated to degrade performance by 
only 1 percent) and maximum assistance when there are failures (by focusing all 
resources on reaching a consensus on a failure-free configuration). 

The network structure allows for remote diagnostics from the Network Control 
Center (NCC). Even in the case of total destruction of memory contents, the 
Pluribus can request the code be transmitted from the NCC or other Pluribuses 
in the network. Any transitory messages lost will be restored via the retransmis­
sion mechanism in the various levels of protocol. 

It is well known that the best system diagnostic is the normal execution of 
programs. Frequently, normal execution will stress the system in ways not 
reproduced by diagnostics (especially for I/O or timing sensitive problems). The 
"friendly" environment provided by the IMP application allows the Pluribus to 
rotate hardware into use. Any problematic hardware will appear as only a 
transient to the system because the offender will be quickly configured out. 

The Pluribus represents a cost effective fault-tolerant architecture that takes 
fullest advantage of the characteristics of its application environment (realtime 
applications in which data loss and brief outages are tolerable). The Pluribus is 
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:)perational in the ARPAnet and has achieved a measured factor improvement 
:)f five in unavailability (0.32 percent) over the previous generation IMPs (1.64 
percent) [Kleinrock and Naylor, 1974]. 

SPACECRAFT AND AVIONIC SYSTEMS 

Spacecraft are the primary example of systems reqUIflng long periods of 
unattended operation. Unlike most other applications, spacecraft must control 
their environment (such as electrical power, temperature, and stability) directly. 
Thus one must treat all aspects of a spacecraft (e.g., structural, propulsion, power, 
analog, and digital) when designing for reliability. 

Spacecraft missions range from simple (such as weather satellites in low earth 
orbit) to sophisticated (such as deep-space planetary probes through uncharted 
environments). Within this range are low earth-orbit sensing, low earth-orbit 
communication or navigation, low earth-orbit scientific, synchronous orbit 
communication, and deep-space scientific. 

A typical spacecraft can be divided into five subsystems: 

Propulsion. The propulsion system controls the stability and orientation of 
the spacecraft. Multiple, often redundant, chemical or pressurized-gas thrusters 
are most frequently used. Occasionally spacecraft employ a spin for stability 
instead of the active control provided by thrusters. 

Power. The generation and storage of electrical energy' must be closely 
monitored and controlled because all other spacecraft systems operate on 
electricity. Most often, spacecraft electrical systems consist of solar cells and 
battery storage. The batteries carry the system through loss of sun or loss of 
orientation periods. Control of solar cell orientation, battery charging, power 
transients, and temperature is the most time-consuming task for the spacecraft 
computers. 

Data Communications. Data communications are divided into three, often 
physically distinct~ channels. The first is commands from the ground to the 
spacecraft via the uplink. It is even possible to reprogram a spacecraft computer 
by means of the uplink. The other two channels are from the spacecraft to the 
ground (downlinks). One downlink carries data from the satellite payload; the 
second carries telemetry data about the spacecraft subsystems (temperature, 
power supply state, thruster events). 

Attitude Control. A dedicated computer is often used to sense and control the 
orientation and stability of the spacecraft. 

Command/Control/Payload. All aspects of spacecraft control are usually 
centered in a single command/control computer. This computer is also the focus 
for recovery from error events. Recovery may be automatic or controlled from 
the ground via uplink commands. 
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Typically, each subsystem is composed of a string of elements. As an example, 
Table II-IO lists seven stages in a representative power subsystem. Solar panels 
are physically oriented by tracking motors. Power is delivered to the spacecraft 
via slip rings. A charge controller automatically keeps the batteries at full 
potential. A power regulator smooths out voltage fluctuations while a power 
distributor controls the load connected to the power subsystems. At each stage, 
redundancy is used to tolerate anticipated fault modes. To reduce complexity, 
usually only the output of a string is reported via telemetry. 

A typical maintenance procedure would be as follows. When a failure has been 
detected, the spacecraft automatically enters a "safe" or "hold" mode. All 
nonessential loads on the power subsystem are shed. Normal mission sequencing 
and solar array tracking are stopped. The spacecraft is oriented to obtain 
maximum solar power. Meanwhile, ground personnel must infer which failures 
could cause the output behavior of each of the strings. A possible failure scenario 
is selected as most likely and a reconfiguration (termed a "work-around") of the 
spacecraft subsystems devised. A command sequence implementing the work­
around is sent to the satellite. Depending on the severity of the failure, this 
procedure may take days, or even weeks, to complete. 

Spacecraft fault responses vary from automatic in hardware for critical faults 
(such as power, clocks, and computer), to on-board software for serious faults 
(such as attitude and command subsystems), to ground intervention for noncrit­
ical faults. Faults can be detected by one of several means: 

• Self-tests. Subsystems fail self-test, such as checksums on computer memories. 
• Cross-checking between units. Either physical or functional redundancy may be used. 

When a unit is physically duplicated, one is designated as on-line and the other as 
monitor. The monitor checks all outputs of the on-line unit. Alternatively, there may be 
disjoint units capable of performing the same function. For example, there is usually a 
set of sensors and actuators for precision attitude control. Attitude may also be less 
precisely sensed by instruments with other primary functions. The less precise calcula­
tion can be used as a sanity check on the more precise units. 

• Ground-initiated special tests. Used to diagnose and isolate failures. 
• Ground trend analysis. Routine processing and analysis of telemetry detects long-term 

trends in units that degrade or wear out. 

Table II-II lists the major features of each spacecraft subsystem for RCA's 
Defense Meteorological Satellite Program (DMSP) and JPL's Voyager. DMSP 
relays weather photographs from a polar orbit. Voyager is a deep-space probe 
used in the Jupiter and Saturn planetary fly-bys (see Chapter 15). 

Figure 11-3 illustrates the interconnections of the major subsystems in the 
DMSP spacecraft. Standby redundancy is used in all but the sensor payload. The 
standby spares are cross-strapped so that either unit can be switched in to 
communicate with other units. This form of standby redundancy is called block 
redundancy because redundancy is provided at the subsystem level rather than 
internally to each subsystem. The C-MOS command and control computer has 
52 instructions and a 4.68-microsecond Add time. There are four addressing 
modes: direct, indirect, indexed, and relative to the program counter. The 
memory is composed of 16K, 16-bit words protected by parity. Internally 



Table 11-10. Typical power subsystem. 

Element Tracking solar -Solar array drive Slip ring 
array assembly 

Redundancy Extra capacity Redundant 
drive elements 
and motors 

Parallel rings for 
power transfer 

Charge 
controller 

Automatic 
monitoring and 
control of 
battery charge 
state 

Batteries 

Series/parallel 
connections 

Power regulation Power distribution 

Redundant 
spares 

Automatic load 
shedding 

Series/parallel 
connections of 
individual solar 
cells allows for 
graceful 
degradation 

Diode protection 

Table 11-11. Attributes of DMSP and Voyager spacecraft. 

System Data Attitude Command and 
Spacecraft Characteristics Propulsion Power Communications Control Payload 

Defense Meteorological 3- Pressurized N2 Sun-tracking solar Telemetry Star, earth, and Command rate: 
Meteorological axis stabilized and hydrazine array downlink: 2 or 10 sun sensors Kbps 
Satellite Program sun-synchronous, thrusters Kbps 
(DMSP) polar orbit Cd Battery Four reaction Redundant, ground 

Mission life: 2 300W minimum Payload data wheels programmable 
years average power downlink: 3 links computers, 16K 16-

at 1-2.7 Mbps Magnetic torque bit words each 
ring coils 

Uplink: I Kbps Downlink data 
command or 100 Redundant encrypted 
Kbps processors 

6 antennae (I per 
link) 

Voyager Planetary probe Hydrazine 3 radioactive 2 downlinks Redundant sun Command rate: 16 
3-axis stabilized thrusters thermal sensors and bps 
Mission life: 7 generators I uplink Canopus trackers 
years Redundant 

430W at Jupiter 2 antennae (high computers,4K 
gain and low gain) words each 

Data storage on 
board 
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Sensor 
payload 

~----------------------~ 
Communications 

Figure 11-3. Interconnection of major subsystems in RCA's Defense Meteoro­
logical Satellite Program (DMSP) block 5D-1 spacecraft. 

detected error conditions include memory parity, memory address, arithmetic 
overflow, and illegal transfer. DMSP uses block redundancy, cross-checking on 
attitude control, routine self-testin~, automatic load shedding upon undervoltage 
detection, and block switching under ground control. 

Figure 11-4 displays the interconnection of subsystems on the Voyager 
spacecraft. Again, block redundancy is the primary fault-tolerant mechanism. 
The Attitude Control Subsystem (ACS) is composed of redundant computers; 
one is an unpowered standby spare. The Command and Control Subsystem 
(CCS) is also a redundant computer, but the standby is powered and monitors 
the on-line unit. Cross-strapping and switching allow reconfiguration around 
failed components. The CCS executes self-testing routines prior to issuing 
commands to other subsystems. Tables 11-12, II -13 list the error detection 
mechanisms in the Voyager Attitude Control and Command/Control Subsys­
tems: Memory is only 4K words. The tape recorders are used for storage of 
scientific data only. New programs for memory must be loaded from the ground. 

A list of typical redundancy techniques used in contemporary spacecraft is: 

• Propulsion 
Redundant thrusters 
Multiple valves for propellant flow control 
Automatic switchover based on excessive attitude change rates 
Multiple commands required to initiate any firing sequence 

• Power 
Redundant solar cell strings, batteries, power buses 
Automatic load shedding 
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FOS ACS CCS 

,------,Control r--'"'"'"--"'-...... "'--''--{ 
Ten 

scientific 
experiments 

Coded commands 

Telemetry 

11Skbps 
Command 
detector 

Telemetry 
modulator 

Figure 11-4. Voyager system block diagram. 

S-Band 

X-Band 

Table 11-12. Error detection in Voyager attitude control subsystem. 

• CCS fails to receive "I'm healthy" report every 2 seconds 
• Loss of celestial (sun and Canopus) reference 
• Power supply failure 
• Fail to rewrite memory every 10 hours 
• Spacecraft takes longer to turn than expected (thruster failure) 
• Gyro failure 
• Parity error on commands from CCS 
• Command sequence incorrect 
• Failure to respond to command from CCS 

Table 11-13. Error detection in Voyager command and control subsystem. 

Hardware 
• Low Voltage 
• Primary command received before previous one processed 
• Attempt to write into protected memory without override 
• Processor sequencer reached an illegal state 

Software 
• Primary output unit unavailable for more than 14 seconds 
• Self-test routine not successfully completed 
• Output buffer overflow 
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• Data communications 
Redundant transponders 
Digital error detection and correction techniques 
Switch from directional to omni antennae for backup 

• Attitude control 
Redundant sensors, gyros, and momentum wheels 
Automatic star reacquisition modes 

• Command and control 
Hardware testing of parity, illegal instructions, memory addresses 
Sanity checks 
Memory checksums 
Task completion timed 
Watchdog timers 
Memory write protection 
Reassemble and reload memory to map around the memory failures 

Table 11-14 lists typical redundancy in spacecraft subsystems as a function of 
mission. For nondemanding missions, reduced complexity of design is a way of 
meeting system reliability goals. 

The Voyager missions were lower-cost substitutes for a Grand Tour mission, 
which was to take advantage of the alignment of the five outer planets of the solar 
system. In support of the grand tour mission, the Jet Propulsion Laboratory 
(JPL) designed and breadboarded a Self-Test And Repair (STAR) computer. 
Chapter 14 presents the architecture of this unique computer. STAR primarily 
used hardware-subsystem fault-tolerant techniques, such as functional unit 
redundancy, voting, power-spare switching, coding, and self-checks. Task-level 
rollback was also incorporated)n the design, which represented the most 
advanced fault-tolerant techniques in the 1960's decade. 

Another fault-tolerant uniprocessor designed as a satellite computer is the 
Fault Tolerant Spaceborne Computer (FTSC) [FTSC, 1976]. FTSC is a 32-bit, 
general-purpose computer with a 60K-word memory and five-microsecond 
average instruction execution time. Error-detection/correction codes and bit­
sliced sparing are extensively used to tolerate failures. 

With the advent of microprocessors, emphasis has shifted to multiple-computer 
spacecraft. The Fault Tolerant Building Block Computer (FTBBC) is an experi­
mental set of VLSI chips that allow construction of reliable multiprocessors with 
standard microprocessor and memory LSI chips. The new chips provide ECC 
circuitry for memory and duplication/comparison for processors [Rennels, 1980]. 

FTMP and SIFT 

SIFT (Software Implemented Fault Tolerance), designed by SRI International 
(see Chapter 16), and FTMP (Fault Tolerant Multiprocessor), designed by C. S. 
Draper Labs (see Chapter 17), are intended for realtime control of aircraft. Due 
to concerns about fuel efficiency and performance, aircraft in the future will be 
dynamically unstable, and loss of computer control for even a few milliseconds 
could lead to disaster. Thus, these experimental systems are designed for a failure 



Table 11-14. Typical redundancy in spacecraft subsystems as a function of 
mission. 

Mission 
Subsystem 

Low Earth 
Orbit Sensing 

Low Earth 
Orbit Navigation 
or Communication 

Low Earth 
Orbit Scientific 

Synchronous Orbit 
Communications Deep Space Scientific 

Propulsion 

1 
Station keeping maneuvers via ground commands! .. . 
Redundant thrusters and leak detection 

Backup system 

Leak detection and 
automatic switching 

Power 

Data communication 

Attitude control 

Command and payload 

1 
Redundant batteries ~ 
Low-voltage detection and load shedding ~ ----.-

.. Redundant links 

Safe hold and ground fix • 

Multiple repeaters Fault-tolerant on­
board data processing 

Overload protection Overload protection 

Low-voltage dropout 

Low-rate telemetry 
and commands 

Automatic 

Multiple repeaters 
and graceful 
degradation 

Redundant data and 
command channels 

Omni antennae for 
backup 

Automatic 

High reliability design 
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probability of 10-9 during a 10-hour mission. With this reliability goal, verifica­
tion that the systems meet their design specification becomes a major problem: 
10- \0 failures per hour translates into 1.14 million operating years before failure. 

REFERENCES 
Bartlett [1977]; Castillo [1980]; FTSC [1976]; Keller [1976]; Kleinrock and Naylor [1974]; 
Kulzer [1977]; Kunshier and Mueller [1980]; Lynch, Wagner, and Schwartz [1975]; 
Rennels [1980]; Reynolds and Kinsberger [1975]; Yourdon [1972]. 



C.vmp: A Voted Multiprocessor 
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DESIGN GOALS 

<\ design study was initiated in the summer of 
1975 to examine fault-tolerant architectures in 
ndustrial environments. Major attributes of this 
mvironment were electromagnetic noise, less 
mowledgeable users, and nonstop operation. 
From these attributes the following design goals 
were established. 

t. Permanent and Transient Fault Survival. The sys­
tem should have the capability to continue correct 
operation in the presence of a permanent hardware 
failure, i.e., a component or su,bsystem failure, and 
in the presence of transient errors, i.e., a component 
or subsystem is lost for a period of time due to the 
superposition of noise on the correct signal. 

~. Software Transparency to the User. The user 
should not know that he is programming a fault­
tolerant computer, with all fault tolerance being 
achieved in the hardware. This would allow the 
user to rely on established software libraries, in­
creasing the reliability of the software itself. 

~. Capable oj Real-Time Operation. A fault should be 
detected and corrected within a short period from 
the time the fault actually occurs. 

L Modular Design to Reduce Down Time. The hard­
ware should be able to operate without certain 
sections activated. Hence maintenance could be 
performed without having to halt the machine. 
Modularity includes the design of separate power 
distribution networks to be able to deactivate se­
lected sections of the machine. The use of modules 
in the design also has the virtue of allowing the user 
to upgrade from a nonredundant, to a fully fault­
tolerant computer, in steps. 

s: 1978 IEEE. Reprinted, with permission, from Proceedings 
:Jfthe IEEE. Vol. 66, No. 10, October 1978, pp. 1190-1198. 
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5. Off-the-Shelf Components. To decrease the 
. amount of custom-designed hardware, to be able to 

rely on an established software library, and to allow 
systematic upgrading to a fault tolerant system, the 
computer should primarily employ off-the-shelf 
components. Further, as illustrated in a companion 
paper [Siewiorek, et aI., 1978b], advantage can be 
taken of the greater reliability of high production 
volume components. 

6. Dynamic Performance/Reliability Tradeoffs. The 
fault-tolerant computer should have the capability, 
under operator or program control, to dynamically 
trade performance for reliability. 

SYSTEM ARCHITECTURE 

Actual System Configuration 

To be consistent with the design goals of modu­
larity and software transparency, bus level vot­
ing was selected as the major fault tolerance 
mechanism. (See [Siewiorek, Canepa, and Clark, 
1976] for a more detailed discussion leading up 
to the selection of voting.) That is, voting occurs 
every time t~e processors access the bus to either 
send or retrieve information. There are three 

C.vmp 
I 

Front 

processor-memory pairs, each pair connected vi.a 
a bus as depicted in Figure 7-1. A more precise 
definition of C.vmp (for Computer, Voted Multi­
Processor) would therefore be: a multiprocessor 
system capable of fault-tolerant operation. 
C.vmp is in fact composed of three separate 
machines capable of operating in independent 
mode executing three separate programs. Under 
the control of an external event or under the 
control of one of the processors, C.vmp can 
synchronize its redundant hardware, and start 
executing the critical section of code. 

With the voter active, the three buses are voted 
upon and the result of the vote is sent out. Any 
disagreements among the processors will, there­
fore, not propagate to the memories and vice 
versa. Since voting is a simple act of comparison, 
the voter is memoryless. Disagreements are 
caught and corrected before they have a chance 
to propagate. The nonredundant portion of the 
voter does not represent a system reliability 
"bottleneck," as will be shown later. However, 
the voter may be totally triplicated if desired. 
With voter triplication even the voter can have 

end 
computer 

POP-10/0 POP-10/A 

Figure 7-1. C.vmp configuration and connection to C-MU facilities. 



~ither a transient or a hard failure and the 
~omputer will remain operational. In addition, 
provided that the processor is the only device 
~apable of becoming bus master, * only one 
bidirectional voter is needed regardless of how 
much memory or how many I/O modules are on 
the bus. Voting is done in parallel on a bit by bit 
basis. A computer can have a failure on a certain 
bit in one bus, and, provided that the other two 
buses have the correct information for that bit, 
operation will continue. There are cases, there­
fore, where failures in all three buses can occur 
~imultaneously and the computer would still be 
functioning correctly. 

Bus level voting** works only if information 
passes through the voter. Usually the processor 
registers reside on the processor board and so do 
not get voted upon. The PDP-II, for example, 
has six general purpose registers, one stack point­
er, and one program counter. However, after 
tracing over 5.3 million instructions over 41 
programs written by five different programmers 
and using five different compilers, the following 
average program behavior was discovered 
[Lunde, 1977]: 

1. On the average a register gets loaded or stored to 
memory every 24 instructions. 

2. A subroutine call is executed, on the average, every 
40 instructions, thus saving the program counter on 
the stack. 

3. The only register that normally is not saved or 

It Note that this restriction prohibits the use of Direct Mem­
ory Access (DMA) devices. If such devices were only 
allowed to communicate with the processors and the mem­
ory (not other I/O devices), a second voter between the 
memory and the I/O devices on the bus would be sufficient 
to retain fault tolerance. 

It This bus level voting scheme can be contrasted with the 
Draper Laboratory Symmetric Fault Tolerant Multiproc­
essor [Hopkins and Smith, 1975] (see also Chapter 17). In 
SFTMP, memory and processor triads are interconnected 
by a triplicated serial bus. Program tasks are read from a 
memory triad into local memory in a processor triad where 
execution takes place. After execution the results are trans­
ferred back to memory triads. The major architectural 
differences from C.vmp are as follows. Serial bus rather 
than parallel bus, thus degrading performance. Voting only 
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written into is the stack pointer. To maintain fault 
tolerance the system must periodically save and 
reload the pointer. 

Thus normal program behavior can be count­
ed on to keep the registers circulating through 
the voter. 

To present a detailed description of the voter, 
a brief digression to explain the DEC LSI-II 
Qbus is necessary [DEC I975b]. The 36-signal 
bus uses a hybrid of synchronous and asyn­
chronous protocols. 

Every bus cycle begins· synchronously with the 
processor placing an address on the time multi­
plexed Data/Address Lines (DAL). 

1. SYNC goes high and all tp.e devices on the bus 
latch the address from the DAL lines. The address 
is then removed by the processor. This terminates 
the synchronous portion of the bus cycle. 

2. In the event of an input cycle (DATI shown in 
Figure 7-2) the processor activates DIN on the bus. 

3. The addressed slave responds by placing a data 
word on the DAL lines and asserting REPLY. 

4. The processor latches the data word and terminates 
DIN and SYNc. 

5. In the event of an output cycle (DATO), after 
removing the address the processor places a data 
word on the bus and activates DOUT. 

6. When the slave device has read the word it acti­
vates REPLY. 

7. The processor responds by terminating DOUT and 
SYNC. 

takes place on transfers from and to memory triads. Errors 
in the processors may accumulate to the point that their 
results are not comparable. Programmer has to partition 
problems into tasks and provide for transfer to processor 
triads. SFTMP has up to 14 processors that can be dynam­
ically assigned to four triads (two are spares). When a 
processor fails it can be replaced in its triad by another 
processor. However, processors cannot operate indepen­
dently of triads to improve throughput. Another voting 
design is described by Wakerly, [1976]. The described 
system is based on an Intel 8080 microprocessor and has an 
output address and data bus and an input (from memory to 
processor) data bus. The major difference from C.vmp is 
that only a unidirectional voter is employed, on the input 
data bus. Thus only information flow from memory to 
processor is voted upon. There is no consideration of I/O, 
apart from an assertion that each I/O device on the bus 
requires a separate voter. 
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BDAl ==>< AD DR X _____ -JX DATA X'-__ _ 
I I 
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I I 
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I I 

REPl Y --------t:-------------------LJ 
I I 

Figure 7-2. .DA TI cycle for LSI-11 computer. 

Voter Modes of Operation 

The multiplexed paths through the voter are 
shown in Figure 7-3. Figure 7-3a shows the case 
for the (unidirectional) control lines. Signals 
generated by the processor are routed from bus 
receivers to multiplexers which allow either sig­
nals from all three buses, or signals only from 
bus A, to pass to the voting circuit. The output 
of the voting circuit always feeds a bus driver on 
external bus A, but is multiplexed with the 
initially received signals on buses Band C. This 
arrangemen t allows all three processor signals to 
be voted on and sent to all three external buses' 
the signal from only processor A to be "broad~ 
cast" to all three external buses; and the inde­
pendent processor signals to be sent to the 
separate external buses, albeit with extra delay 
on bus A. 

1. Voting Mode. The transmitting portion of 
each of the three buses is routed into the voter 
and the result of the vote is then routed out t~ 
the receiving portion of all three buses. In addi­
tion to the voting elements the voter has a set of 
disagreement detectors. These detectors, one for 
each bus, activate whenever that bus has "lost" a 
vote. By monitoring these disagreement detec­
tors, one can learn about the kinds of failures the 
machine is having. 

2. Broadcast Mode. Only the transmitting 
portion of bus A is sampled, and its contents are 
broadcast to the receiving portions of all three 
buses. This mode of operation allows selective 
triplica~ion and non triplication of I/O devices, 
dependmg on the particular requirements of the 
user. The voter has no idea which devices are 
triplicated and which are not. The only require­
ment is that all nontriplicated devices be placed 
on bus A. To handle non triplicated devices two 
extra lines are added to bus A. One is a special 
copy of REPLY for use by nontriplicated de­
vices instead of the standard bus A REPLY, and 
the other is a special copy of the Interrupt 
ReQuest Line (IRQ). 

3. Independent Mode. Buses Band Care 
routed around the voting hardware. Bus A is 
routed to feed its signals to all three inputs of the 
voting elements. In this mode C.vmp is a loosely 
coupled mulitprocessor. Switching between inde­
pendent and voting modes allows the user to 
perform a performance/reliability tradeoff. 

The unidirectional control signals generated 
by devices on the external buses are handled the 
same way as processor signals, except that the 
direction ( external-processor) has been changed. 

Figure 7-3b shows the more complex case of 
the bidirectional data/address lines. Two sets of 
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EB 

EA 

EC 

PB 

PA 

PC 

a. 

b. 

Figure 7-3. a.) C.vmp unidirectional voter mUltiplexing. b.) C.vmp bidirection­
al voter multiplexing. 
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bus transceivers replace the sets of receivers and 
transmitters used before, and another level of 
multiplexing has been added. The received sig­
nals from both sets of transceivers are fed into a 
set of multiplexers that choose which direction 
the signals are flowing. After passing through the 
set of multiplexers and the voter circuit, the 
voted signal goes through a latch which ensures 
that bus timing specifications are met. From 
there the signals pass onto the opposite bus from 
which they were initially received. (Note that the 
drivers on the receiving bus are disabled to avoid 
both sinking and sourcing the same signal.) 

Peripheral Devices 

In most cases, triplicating a device just means 
plugging standard boards into the backplane, as 
is the case with memory. In some cases, however, 
the solution is not quite so simple. An example 
of a device that has to be somewhat modified is 
the RXO I floppy disk drive. The three floppies 
run asynchronously. Therefore, there can be as 
much as a 360-degree phase difference in the 
diskettes. Since the information does not arrive 
under the read heads of the three floppies simul­
taneously, the obvious solution to this problem is 
to construct a buffer whose size is large enough 
to accommodate the size of the sectors being 
transferred. A disk READ operation would then 
occur as follows [DEC 1975c]: 

1. The track and sector number to be read are loaded 
into the three interfaces and the "READ" com­
mand is issued. 

2. The three floppies load their respective buffers 
asynchronously. 

3. The processors wait until the three buffers are 
loaded and then synchronously empty the buffers 
into memory. A write operation would be executed 
in a similar fashion. 

The main synchronization problem is to find 
out when all three floppies have completed their 
task or when one of the floppies is so out of 

specification that it can be considered failed. 
Once this is determined the "DONE" signals are 
transmitted to the three buses simultaneously. 

When in independent mode, the three pro­
cessors must be able to commmunicate to each 
other. For this reason there are three full duplex 
single word transfer fully interlocked parallel 
interfaces in the system (labeled L in Figure 7-1). 
These interfaces provide data transfer between 
the separate processors (in independent mode) at 
rates up to 180K bytes per second [DEC 1975b]. 
These interfaces are used for software synchroni­
zation of the processors prior to reestablishment 
of voting mode, in addition to straight data 
transfers. 

ISSUES OF PROCESSOR 
SYNCHRONIZATION 

Dynamic Voting Control 

A major goal in the design of C.vmp was to allow 
dynamic tradeoff between reliability and perfor­
mance. Ideally, when reliabilty is of less impor­
tance, the machine should be able to split into a 
loosely coupled multiprocessor capable of much 
greater performance. Conversely, when reli­
ability becomes crucial, the three processors 
ought to be able to resynchronize themselves and 
resume voting. Consideration of dynamic voting 
mode controlled to the following features. 

• In transiting from voting to independent mode, a 
simple change in the multiplexing control signals 
causes the next instruction to be fetched and execut­
ed independently by the three processors; 

• In order to insure proper synchronization of all 
processors in transiting from independent to voting 
mode, a delayed transition forces an interrupt, pre­
sumably after each processor has had ample time to 
execute a "WAIT" instruction. ("WAIT" halts the 
processor until an interrupt occurs.) 

Two bits are provided in the voter control 
register for voter mode control. The first, a read­
only bit, monitors the state, returning "0" if 



voting, and "I" if not. The other, a read/write 
bit, chooses the desired mode. Each processor 
has a copy of the voter control register, and a 
vote is taken on the mode control bit. This 
control register is accessed like any I/O device 
register, as a specific memory location (in this 
case, 167770). 

Dynamic voting mode control has been dem­
onstrated by a test program. When in voting 
mode, setting the appropriate bit in the control 
register causes the three processors to split apart 
and begin executing separately. To resynchro­
nize the processors, a simple handshaking proto­
col is used, in which each processor waits for 
both of the others to signal permission before 
clearing the control bit. (A more sophisticated 
protocol would provide for a timeout if one of 
the processors has failed, with efforts to recover 
from such a situation.) After clearing its copy of 
the control bit. each processor releases control of 
its bus and ceases execution via a "WAIT" 
instruction. The ensuing interrupt generated by 
the voter then serves to resynchronize the three 
processors, and the first instruction of the inter­
rupt service routine is the first instruction execut­
ed in voting (fault-tolerant) mode. 

Bus Control Signal 
Synchronization 

There are two levels of synchronization used in 
C.vmp to keep the three processors in step: bus 
signal synchronization and processor clock syn­
chronization. The first type of synchronization 
deals with the bus control signals. The voter uses 
RPLY to synchronize the three buses, as it is 
asserted by an external device (memory and I/O 
devices) once every bus cycle. Thus processors 
can stay in step if they receive RPL Y concur­
rently. A set of possible voting circuits is shown 
in Figure 7-4. (The boxes labeled V are voters, 
and the boxes labeled T are delays.) The first 
voter is the one used for the data/address lines. 
The other voters attempt to maintain synchroni-

A 
B 
C 
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VT 

Voter C 

Voter 0 

i VT 
Voter E 

Figure 7-4. Synchronizing voter circuits. 

zation of five critical control lines (SYNC, DIN, 
DOUT, IAK, and RPL Y)* by waiting an appro­
priate period of time for a lagging control signal. 
(The delay is not only selected long enough that 
a lagging device is far enough out of specification 
to be suspect, but also short enough not to 
degrade performance severely. For maintaining 
processor synchronization, a value for T of at 
least one microcycle-400 ns-is desirable, as 
processors are most likely to slip just one micro­
cycle in the five to ten microcycles between bus 
cycles rather than to become several microcycles 
out of synchronization.) 

* SYNC is used to clock the address lines, and is left asserted 
for the remainder of the bus cycle; DIN indicates a read 
cycle; DOUT indicates a write cycle; IAK is used to 
acknowledge receipt of an interrupt request; and RPL Y is 
asserted to indicate that the device has responded to the 
request indicated by the previous four signals. 
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The first circuit considered for synchronizing 
the five control lines was voter A in Figure 7-4. 
This was rejected because it provides no syn­
chronization at all: if a signal fails high, the voter 
passes the first of the other two to be asserted 
without regard to the second. Thus, if the two 
remaining processors get at all out of step, the 
voting process fails. 

The second circuit, voter B in Figure 7-4, 
provides a measure of synchronization by wait­
ing a time T for the third signal after two have 
been asserted. However, performance is degrad­
ed because this delay occurs even when all three 
processors are working and synchronized. Also, 
control signals will continue to be asserted after 
they should be in relation to the data on the bus, 
failing to meet bus specific:;ltions. (RPL Y is 

Address 

asserted after DATA is invalid; see Figure 7-5.) 
The third circuit, voter C in Figure 7-4, fixes 

the problem of meeting bus specifications by 
having a slow-rising, fast-falling delay after the 
voter. However, performance is still degraded by 
the presence of the delay even when all is well. 

The fourth circuit, voter D in Figure 7-4, 
addressed the performance problem by provid­
ing a second path through the voter for when all 
three processors are working. However, the delay 
used after the voter to provide synchronization 
still causes the signal to fail bus specifications, 
and also causes some amount of unavoidable 
performance degradation. (RPLY is asserted af­
ter DATA is invalid; see Figure 7-5.) 

The last circuit, and the one used (voter E in 
Figure 7-4), combines the features of the pre-

Data 

~~~C _~ __ .-:.... __ ~r-----+-~==:::;;-! ____ ) Bus A 
RPlY Ii 

SYNC : L-) 
DIN _~ ____ ~ ____ ~---+---~==~~: _______ BusB 
RPlY II 

SYNC : L-) 
DIN ___ --..:.... ________ '--____ ~---+--..!:::::===;+-I:I ___ Bus C 
RPlY II 

SYNC 
I L-) I 

DIN I Voter A 
I 

RPlY Ii 

I L) SYNC I 
DIN :1 Voter B 

RPlY I L-
I L-) SYNC I 

DIN 
I Voter C 
i RPlY I! 

SYNC L) DIN Voter D 

RPlY L-
I I L-) SYNC I I 

DIN 

" 
I Voter E 
I 

'RPlY I II 

Figure 7-5. DATI bus cycle with desynchronized processors. 
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Figure 7-6. a.) Original processor clock synchronization. b.) Current processor 
clock synchronization. 

vious two. Thus, a- slow-rising, fast-falling delay 
is used in order to meet bus specifications; and a 
second path through the voter is provided for 
optimal performance when all is well. Note that 
the fast-falling feature of the delay not only 
allows bus specifications to be met, but also 
removes any performance degradation due to the 
voting process when all three signals are in step. 
This circuit was used for SYNC, DIN, DOUT, 
IAK, and RPL Y in C.vmp. The value for T is 
about 400-500 ns for SYNC, DIN, DOUT, and 
IAK, and about 75-100 ns for RPL Y. This 
method allows the three processors to receive 
RPLY within 5 ns of each other, and thus to stay 
synchronized. 

System Clock 

Perhaps the most critical timing problem en­
countered in the design of C.vmp was the syn­
chronization of the four phase processor clocks, 
and also the memory refresh * timing oscillators. 
This part of the design was left untriplicated in 
C.vmp due to its very small size, hence high 
reliability, relative to the rest of the machine. 
The original design, shown in Figure 7-6a, used 
the oscillators on processor A to drive the clock 

* Note that the LSI-II uses dynamic MOS RAM memory, 
which requires continual refreshing. This is normally done 
by processor microcode at regular intervals of about 1.67 
ms. 
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circuits on all three processors, and the decoded 
clock signals of processor A to feed the voter and 
to synchronize the phases of the other two pro­
cessors by forcing phase one when processor A 
was in phase one. This original design worked 
fairly well, as processors Band C were closely 
synchronized, but the extra loading placed on 
the clocks of processor A caused them to lag 
several nanoseconds behind, a significant figure 
for pulses of less than 100 ns duration. This 
resulted in sufficient unreliability that the mean 
time between crashes in voting mode was never 
more than five minutes. Therefore, a new clock 
circuit, shown in Figure 7-6b, was installed in the 
voter to drive and synchronize the processor 
clocks. All three processors were wired exactly 
the same way, needing only three wires to be 
changed on each board. Since this change was 
made, the mean time between software discern­
ible disagreement has been over 250 hr, with one 
run of more than 900 hr before crashing. 

Ini tial measurements using the disagreemen t 
detection circuit attached to all the bus 'control 
lines showed no errors on any of the three buses 
over periods ranging between eight to forty 
hours. (Note that data/address lines were not 
included.) This indicates that the processors are 
well synchronized by the current design. 

PERFORMANCE MEASUREMENTS 

Processor Execution! Memory 
Fetch Time 

An important parameter in the design of fault­
tolerant computers is the amount of performance 
degradation suffered to obtain greater reliability. 
In a triplicated architecture such as C.vmp, the 
obvious loss of two-thirds of the available com­
puting power is unavoidable. This was the reason 
why C.vmp was made flexible enough to switch 
between voting (fault-tolerant) mode and inde­
pendent (high performance) mode. However, 
this fundamental loss due to triplication is not 

the only loss: the voter cutting and buffering all 
the bus lines introduces delays of 80 to 140 ns in 
the signals between the processors and the mem­
ories. 

Because the LSI -II is a clocked machine, these 
delays are not too significant in and of them­
selves. However, the latching of RPL Y from 
slave devices on the external buses in order to 
preserve processor synchronization turns out to 
be the more dominant degradation factor. The 
voter latches RPLY one clock phase (100 ns) 
before the processors to allow sufficient latch 
settling time for minimizing the probability of a 
runt pulse [Chaney, Ornstein, and Littlefield, 
1972]. The delays in the control lines due to the 
voter cause the external RPL Y to return during 
the phase on which the processors sample RPL Y 
but after the voted RPLY has already been 
latched. Thus, the voted processors must wait 
one more clock cycle (four phases/400 ns) to 
receive their RPLY after asserting SYNC than 
would a nonredundant LSI-II. The same sort of 
delay happens on the falling edge of RPL Y, 
causing up to two clock cycles to be lost in one 
complete bus cycle. These losses could likely be 
prevented by more careful selection of timing 
components within the voter, and more impor­
tant, by choosing different timing on the memory 
boards. 

Measurements were taken on the various bus 
cycles to learn what amount of degradation 
actually was occurring. These measurements, 
and all others presented later, were taken on the 
voted processor (C.vmp) and on either processor 
B (PBB) or C (PCC) in independent mode. (Note 
that in independent mode, bus A passes through 
the entire voter via the broadcast multiplexing, 
while both buses Band C pass only through a 
bus receiver/driver pair. Comparison tests with 
other LSI-II's showed that processors Band C 
operated fully as fast in independent mode as a 
standard LSI-II.) The degradation within bus 
cycles introduced by the voter ranges from 27 
percent to 67 percent, with 40 percent degrada­
tion for the most common (read) cycles. 



Table 7-1. Normalized instruction phases. 

Phase C.vmp pee C.vmp/PCC 

Fetch 7.00 6.00 1.167 
Source 2.69 2.09 1.287 
Destination 3.68 3.22 1.143 
Execution 3.53 3.53 1.000 

Total 16.90 14.84 1.139 

Time (/Lsec) 6.760 5.936 

As the LSI-II does not saturate its bus, the 
above figures are worse than the overall pro­
cessor degradation. A second step in measuring 
degradation was to check the different phases of 
instruction execution. Tests were made using the 
MOV, TST, and BR instructions* as typical 
double operand, single operand, and zero oper­
and instructions. From this data, a prediction 
can be made of performance degradation by 
using instruction frequency data provided by 
Snow and Siewiorek [1978]. Table 7-1 summa­
rizes the calculations, showing that the voting 
process should degrade instruction execution pe­
formance by roughly 14 percent. 

The third stage for measuring performance 
was to run a set of test programs with represen­
tative mixes of instructions and addressing 
modes to test the validity of the above model. 
Table 7-2 compares the triplicated processor 
with a single LSI-ll, both without faults and 
with certain induced faults. These faults were in 
the two most critical bus control signals, SYNC 
and RPLY, and represent worst case failures. 
Each signal was forced to be either always 
asserted (hi) or never asserted (10) on one of the 
three buses. 

As illustrated by Table 7-2, a degradation in 
performance of about 16-19 percent can be ex­
pected, as compared to a standard LSI-II. This 
figure is somewhat larger than predicted by the 

* MOY loads the destination from the source, TST examines 
the destination for various conditions, and BR causes an 
unconditional transfer of control. 
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above model, which can be attributed to the 
greater degree of degradation in such functions 
as memory refresh, which is done by the pro­
cessor microcode (18.5 percent), and also to 
normal deviations of programs from the "stan­
dard" instruction mix. 

The measurements involving the four failure 
modes show that only certain failures will cause 
further degradation: those which cause the pro­
cessor's synchronizing signals (e.g., SYNC, DIN, 
and DOUT) never to be asserted. Even in these 
extreme cases, only another 12-14 percent slow­
down is experienced. Most faults, however, 
would not degrade the speed at all, but just the 
future reliability. For instance, the loss of power 
to a bus would force all signals to ground, which 
is the active assertion level (hi) on the LSI-II 
bus. Only 10 failures in the five bus control 
signals which require synchronization will cause 
any degradation. (Recall that there are a total of 
36 bus lines.) 

Disk Access Time 

The last performance measurements involved the 
floppy disks used for mass storage on C.vmp. 
Access time to a particular position on a rotating 
memory is assumed to be directly proportional 
to the initial position of the disk. Since the 
hardware makes no attempt to synchronize disk 
rotation, access to the triplicated disks will take 
the maximum of the three times. In general, for 
n disks, the access time is given by: 

I:z = MAX (/1,/2" .• , In)' 

Assuming that each access time I is uniformly 
distributed over the normalized range [0, 1], the 
expected value for access time is: 

I:z = n/(n + 1). 

This means that for a single disk (n = 1), we 
can expect to wait 0.5 rotations; for the triplicat­
ed disk (n = 3), 0.75 rotations. This gives a 50 
percent degradation in access time for the tripli-
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Table 7-2. Sample Program Execution Times* 

Unit DVKAA 

ms 
LSI-II 18.51 
C.vmp (normal) 21.4 
C. vmp (RPL Y hi) 21.4 
C.vmp (RPL Y 10) 21.4 
C.vmp (SYNC hi) 21.4 
C.vmp (SYNC 10) 23.6 

C.vmp/LSI-l1 1.157 
C.vmp/LSI-ll 1.324 

• DVKAA is the basic instruction diagnostic, testing all 
instructions and addressing modes. DZKMA is the memory 
diagnostic, and would tend to make more memory refer-

cated disks over the non triplicated disk for ran­
dom accesses. This figure was verified to an 
extent by experimental data. In reading 50 sec­
tors in a random pattern from the same physical 
track, the triplicated machine experienced about 
51 percent degradation, a very close confirma­
tion. However, if the track was also chosen at 
random for each of the 50 sectors, the triplicated 
machine was only 18 percent slower than the 
single disk system. The model failed to consider 
that, although sector access time is affected by 
the diskettes' being out of phase, track access 
time is the same regardless of triplication. 

Another shortcoming of the disk performance 
model based only on consideration of the disk­
ettes being out of phase with each other is the 
impact of the resulting slowdown on nonrandom 
disk access patterns. The impact of this can be 
much more severe (or much less severe) than 
predicted, depending on the pattern of nonran­
dom disk accesses. For instance, the R T -11 
floppy disk software uses a 2: 1 interleaving of 
sectors in order to minimize access time for 
sequential file storage. * The extra delay due to 

* 2: 1 interleaving means that only every other sector on a 
track is read when reading sectors sequentially. As some 
amount of time is necessary to read the data into memory 
after it has been fetched from the diskette, this allows all 26 
sectors of a track to be read in just two revolutions rather 
than in 26 revolutions. 

DZKMA 

min 
7:03 
8:23 
8:23 
8:23 
8:23 
9:20 

1.189 
1.276 

QSORT 

s 
11.9 
14.0 
14.0 
14.0 
14.1 
15.6 

1.176 
1.311 (SYNC 10) 

ences than average. QSORT is an example of compiler­
produced code, being an integer sorting program coded in 
BLISS-II. 

voting causes this interleaving to be insufficient 
for achieving much speedup in accesses, as illus­
trated by Figure 7-7. Waiting for all three drives 
to read a sector can cause the first two drives to 
overrun the next sector in sequence before the 
third drive has read the initial sector. This causes 
part of an additional revolution to be required 
on the next sector read. For the example shown, 
a non triplicated disk drive requires only 0.375 
revolutions to read sectors 1 and 3, while the 
triplicated drive needs 1.75 revolutions. The spe­
cific values depend on the number of sectors per 
revolution, the access pattern (and interleaving 
scheme), and the degree to which the three disks 
of the triplicated drive are out of phase. 

Table 7-3 summarizes timing data collected by 
a program which was written to test different 
interleaving schemes. A number of consecutive 
logical sectors were read, which mapped into the 
same number of physical sectors in the pattern 
dictated by the desired interleaving. In addition, 
a test program was assembled under R T -11, 
using its 2: 1 interleaving, to examine the impact 
of increased disk latency on typical operations. 
Figure 7-8 plots access time versus interleaving 
factor for reading 1000 sectors sequentially. The 
data indicate that perhaps the best sequential file 
access could be achieved for triplicated disks 
using 8: 1 interleaving. The point to be made 
about replicated disk access time is that it is very 
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Figure 7-7. Effects of disk triplication on sequen­
tial access (2:1 interleaving). 

pattern sensitive: very little degradation due to 
replication occurs in sequential accesses without 
interleaving, but great degradation is seen when 
interleaving is used. Instead of the factor of ten 
speedup available with 2: 1 interleaving on a 
single disk, only a factor of roughly 1.5 is possi­
ble (using 8: 1 interleaving) on a triplicated disk. 

Table 7-3. Disk timing tests (in seconds). 

Sectors Interleave C.vmp 

10 1: 1 1.69 
10 2: 1 1.55 
50 1: 1 8.51 
50 2:1 7.66 
1,000 1: 1 171.2 
1,000 2: 1 153.9 
Assembly 2: 1 109.6 
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OPERATIONAL EXPERIENCES 

Operating History 

Implementation of C.vmp has been completed, 
and stable performance achieved. The software 
is a standard, unmodified single-user diskette­
based real-time operating system (RT-II). The 
system has been utilized under actual load con­
ditions with students doing projects in an intro­
ductory real-time programming course. The stu­
dents were supplied with an RT-ll software 
manual and a short paper on C.vmp specific data 
(i.e., location of the power switches, reminder to 
load three diskettes, etc.). To these users, C. vmp 
successfully appeared as a standard LSI-II uni­
processor running standard software. 

C.vmp System Reliability 

C.vmp has repeatedly demonstrated hard-failure 
survival by bus power switching and board re­
moval (see comments later about on-line mainte­
nance). Another aspect of fault tolerance is tran­
sient-fault survival. The only transients which 
should cause C.vmp to crash are those occurring 
simultaneously in more than one module. Ac­
cording to the data from Cm* presented in 
Siewiorek, et aI., [1978a], such transients make 
up 17 percent of the total, occurring roughly 
every 1,000 hr. The mean time to crash should 
equal or exceed this figure. Indeed, as the hard­
ware situation has been stabilizing, C.vmp's reli­
ability has been increasing toward this order of 

PBB C.vmp/PBB 

1.66 1.021 
0.17 9.218 
8.06 1.055 
0.81 9.403 

159.9 1.071 
14.6 10.540 
15.8 6.937 
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Figure 7-8. Disk access time versus interleaving 
factor. 

magnitude. Table 7-4 summarizes C.vmp crash 
data for the nine-month period from August 1, 
1977 to April 30, 1978. Note that software- or 
user-caused crashes have not been included in 
the data. Also, repeated crashes (ones due to the 
same cause) have been removed. Due to uncer­
tainty as to the exact causes of many crashes, 
dual tables have been constructed giving the 
"best case" and "worst case" figures. Crashes 
which may have been software or user caused 
are included in the worst-case but not in the 
best-case data. The voter-induced transient fail­
ures are due mainly to construction. The wire­
wrap boards used in the voter are prone to 
socket failures. These sockets are being systemat­
ically replaced, with a consequent improvement 

Table 7-4. C.vmp crash data (in hours). 

Worst Case 

Month Mean Std. Dev. Median Number Uptime 

August 64.8 91.9 28.0 5 323.8 
September 108.7 139.6 35.6 4 434.9 
October 35.5 51.1 19.8 16 568.3 
November 49.3 33.0 52.0 10 492.9 
December 204.8 191.6 113.1 3 614.5 
January 95.4 104.3 70.5 7 667.7 
February 258.8 78.6 258.8 2 5l7.6 
March 298.3 276.4 298.3 2 596.7 
April 352.4 114.2 352.4 2 704.7 

Total 96.5 167.8 30.6 51 4921.1 

Best Case 

Month Mean Std. Dev. Median Number Uptime 

August 81.0 96.1 34.6 4 323.8 
September 217.4 132.4 217.4 2 434.9 
October 142.1 44.5 125.7 4 568.3 
November 246.5 167.3 246.5 2 492.9 
December 614.5 0.0 614.5 1 614.5 
January 0 667.7 
February 517.6 0.0 5l7.6 1 5l7.6 
March 0 596.7 
April 704.7 0.0 704.7 1 704.7 

Total 328.1 470.8 114.3 15 4921.1 

Note: Std. Dev. is the standard deviation. 



in mean time to crash (MTTC). With permanent 
construction techniques (e.g., printed circuit 
boards) the voter should be removed as a source 
of system crashes. 

One measure of transient fault survival lies in 
the severity of the methods necessary for recov­
ery. Five levels of recovery exist: 

1. CONTINUE execution at the same location with­
out any change to processor registers or memory; 

2. RESTART the program in memory, which will also 
reset the I/O devices and processor registers; 

3. RELOAD the program into memory, also resetting 
the I/O devices and processor registers; 

4. RESET the processors and reload the program; 
and 

5. DEBUG the hardware to whatever extent is re­
quired to restore stable operation. 

Table 7-5. C.vmp crash recovery data. 
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Table 7-5 summarizes this data in correspond­
ence to the entries of Table 7-4. 

It is interesting to note that the majority of 
crashes required relatively little effort to recover 
from. Only a few required the processor to be 
actually reset, and several required only the 
resident monitor to be restarted. All the cases of 
debugging involved socket failures in the voter 
boards and seem to be getting less frequent. 

On-line Maintenance 

The success of the voting mechanism has been 
established by experiments with powering down 
buses and removing components, while still hav­
ing the system as a whole continue operating. 

Worst Case 

Month Continue Restart Reload Reset Debug 

August 0 1 3 0 1 
September 0 0 2 0 2 
October 0 5 7 1 3 
November 0 1 7 1 1 
December 0 0 2 0 1 
January 0 7 0 0 0 
February 0 1 0 0 1 
March 0 2 0 0 0 
April 0 2 0 0 0 

Total 0 19 21 2 9 

Best Case 

Month Continue Restart Reload Reset Debug 

August 0 0 3 0 1 
September 0 0 0 0 2 
October 0 0 1 0 3 
November 0 0 0 1 1 
December 0 0 0 0 1 
January 0 0 0 0 0 
February 0 0 0 0 1 
March 0 0 0 0 0 
April 0 I 0 0 0 

Total 0 4 9 
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With a bus powered down, the associated pro­
cessor and memory are, of course, lost, but the 
system keeps working. Defective components (if 
such exist) can be replaced, and the bus powered 
back up. Contents of the newly restored memory 
can be brought into agreement with the other 
copies by providing a read/write memory back­
ground job. Normal operation suffices to resyn­
chronize the processor, as it starts executing code 
randomly until it gets in execution phase with 
the other two processors. 

Actual experiments have included removing 
memory boards from one, two, or even all three 
buses (different 4K banks of memory from dif­
ferent buses). Also, a processor was removed, 
and the machine kept running. Even with one of 
the processors missing and a different 4K bank 
of memory removed from each bus, the machine 
continued in operation. 

The only problem encountered with these ex­
periments was that restoring power to a bus 
sometimes causes a crash. All three buses, and 
even the voter itself, draw power from the same 

+5 V supply. The transients on the power lines 
associated with turning on an LSI-II processor, 
12K of memory, and assorted I/O interfaces are 
the cause of the crashes. (These transients arise 
from the sudden demand for 7-10 A current for 
the various components on each bus.) Indepen­
dent power supplies, as would be desirable in 
any case for a fault-tolerant computer, are neces­
sary to correct this problem. 

The ability described above to power down 
selective sections of C.vmp in order to remove or 
replace defective modules is certainly a strength 
of the system as regards being a highly available 
machine. 
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~MP in the VAX Family: 
vAX-ll/780 and VAX-ll/7S0 

'he VAX-II (Virtual Address Extension) is an 
xpansion upon the architectural principles in­
orporated in the PDP-II. At the time of the 
[lception of the VAX-II architecture, concerns 
or RAMP were gaining momentum. This chap­
er focuses on the RAMP features in two differ­
nt implementations of the VAX-II architec­
ure: the V AX-ll/780 (ca. 1977) and 
r AX-I 1/750 (ca. 1980). This chapter discusses 
he VAX-II from two viewpoints: architecture* 
md implementation. The first section deals with 
he V AX architecture and architectural-level 
tAMP (Reliability, Availability, and Maintain­
lbility Program) features. The next presents an 
lrchetypical implementation and describes the 
:ommon RAMP implementation features, fol­
owed by two sections on the detailed RAMP 
'eatures of the V AX-I 1/780 and V AX-I 1/750. A 
mmmary of the VAX-ll/780 and VAX-I 1/750 
RAMP features concludes the chapter. 

fHE VAX ARCHITECTURE 

20mpatibility between members of a computer 
family is essential. The need for compatibility at 
the architectural level is the most pronounced, 
but there are also substantial benefits from simi­
larities between implementations. Similarities 
can reduce costs of training, documentation, and 
repair. The original VAX architecture paper 
[Strecker, 1978] reveals the enormous pressure 
for compatibility: 

VAX-II is the Virtual Address extension of 
PDP-ll architecture [Bell et aI., 1970; Bell and 

* The term architecture describes the attributes of a system 
from the viewpoint of the programmer. 

361 



362 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Strecker, 1976]. The most distinctive feature of 
VAX-II is the extension of the virtual address from 
16 bits as provided on the PDP-II to 32 bits. With 
the 8-bit byte the basic addressable unit, the exten­
sion provides a virtual address space of about 4.3 
gigabytes which, even given rapid improvement in 
memory technology, should be adequate far into 
the future. 

Since maximal PDP-II compatibility was a 
strong goal, early VAX-II design efforts focused 
on literally extending the PDP-II: preserving the 
existing instruction formats and instruction set and 
fitting the virtual address extension around them. 
The objective here was to permit, to the extent 
possible, the running of existing programs in the 
extended virtual address environment. While real­
izing this objective was possible (there were three 
distinct designs), it was felt that the extended 
architecture designs were overly compromised in 
the areas of efficiency, functionality, and program­
ming ease. 

Consequently, it was decided to drop the con­
straint of the PDP-II instruction format in design­
ing the extended virtual address space or native 
mode of the VAX-II architecture. However, in 
order to run existing PDP-II programs, VAX-II 
includes a PDP-II compatibility mode. Compatibil­
ity mode provides the basic PDP-II instruction set 
less only privileged instructions (such as HALT) 
and floating point instructions (which are optional 
on most PDP-II processors and not required by 
most PDP-ll software). 

In addition to compatibility mode, a number of 
other features to preserve PDP-II investment have 
been provided in the V AX-ll architecture, the 
VAX-II operating system VAX/VMS, and the 
VAX-I 1/780 implementation of the VAX-II archi­
tecture. These features include: 

1. The equivalent native mode data types and 
formats are identical to those on the PDP-II. 
Also, while extended, the VAX-II native mode 
instruction set and addressing modes are very 
close to those on the PDP-II. As a consequence 
VAX-II native mode assembly language pro­
gramming is quite similar to PDP-II assembly 
language programming. 

2. The V AX-I 1/780 uses the same peripheral buses 
(Unibus and Massbus) as the PDP-II and uses 
the same peripherals. 

3. The VAX/VMS operating system is an evolution 
of the PDP-ll RSX-IIM and lAS operating 
systems, offers a similar although extended set of 
system services, and uses the same command 

languages. Additionally, VAX/VMS supports 
most of the RSX-IIM/IAS system service re­
quests issued by programs executing in compat­
ibility mode. 

4. The VAX/VMS file system supports the 
RSX-llM/IAS operating systems permitting in­
terchange of files and volumes. The file access 
methods as implemented by the RMS record 
manager are also the same. 

5. V AX-ll high level language compilers accept 
the same source languages as the equivalent 
PDP-II compilers and execution of compiled 
programs gives the same results. 

The VAX-II architecture defines the following 
data types: byte, word, longword, 'quadword, 
floating, double-floating, packed decimal, char­
acter string, and bit field. In addition to the basic 
data manipulation and program flow control 
instructions, there are instructions to accelerate 
the performance of special operating system 
functions and to perform high-level language 
constructs. For example, the FORTRAN-com­
puted GOTO and CALL instructions and loop 
control each translate into a single VAX instruc­
tion. Nine addressing modes use the 16 32-bit 
general registers to identify operand locations. 

The architecture defines two ways to invoke 
execution of software outside the explicit flow of 
control. The first, resulting from internal events 
(usually related to the current instruction under 
execution), is called an exception. The second, 
resulting from external events, is called an inter­
rupt. The VAX-II architecture specifies three 
types of exceptions: aborts, faults, and traps. 

Aborts are the most severe form of exception. 
When an instruction is aborted, the machine 
registers and memory may be left in an indeter­
minate state. Because system state is destroyed, 
the instruction cannot be correctly restarted, 
completed, simulated, or undone. 

Faults, on the other hand, leave the machine 
registers and memory in a consistent state. Once 
the fault is eliminated, the instruction may be 
restarted and the correct results obtained. Faults 



able 8-1. Arithmetic exceptions. 

~xception Type 

nteger overflow 
nteger divide by zero 
~loating overflow 
~loating/decimal divide by zero 
~loating underflow 
)ecimal overflow 
:ubscript range 
~loating overflow 
~loating divide by zero 
:loating underflow 

Trap 
Trap 
Trap 
Trap 
Trap 
Trap 
Trap 
Fault 
Fault 
Fault 

·estore only enough state to allow restarting. The 
,tate of the process may not be the same as 
)efore the fault occurred. 

Finally, a trap occurring at the end of the 
nstruction causing the exception. The machine 
·egisters and memory are consistent and the 
lddress of the next instruction to execute is 
;tored on the machine stack. The process can be 
'estarted with the same state as before the trap 
::>ccurred. 

Several arithmetic exceptions are architectur­
l11y defined. These exceptions deal primarily 
with overflow/underflow and illegal operations. 
Table 8-1 summarizes the arithmetic exceptions. 
The floating point faults differ from the traps in 
that the faults do not affect the destination 
operand. 

Table 8-2 lists the defined exception and inter­
rupt vectors. Each vector represents a unique 
memory location where an address is stored. The 
address points to the start of a software routine 
unique to the corresponding exception or inter­
rupt. Exceptions may store information about 
their type on the system stack to help guide the 
software in restarting the system. Some excep­
tions are triggered by consistency checks and 
detect primarily software errors. Other excep­
tions are detected by hardware and represent 
hardware or environmentally induced errors. 
The next few paragraphs provide more details 
for the entries in Table 8-2. 
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Table 8-2. Exception and interrupt vectors. 

Name Type Notes 

Machine check Abort/trap Length parameter 
and error-specific 
data pushed onto 
the stack, if 
possible. 

Kernel stack not Abort No parameters 
valid 
Power fail Interrupt No parameters 
Reserved or Fault No parameters 
privileged 
instruction 
Customer Fault No parameters 
reserved 
instruction 
Reserved operand Fault/abort No parameters 
Reserved Fault No parameters 
addressing mode 
Access control Fault Virtual address 
violation causing the fault 

is pushed onto the 
kernel stack. 

Translation not Fault Virtual address 
valid causing the fault 

is pushed onto the 
kernel stack. 

Trace pending Fault No parameters 
Breakpoint Fault No parameters 
instruction 
Compatibility Fault/abort Type code pushed 
mode onto stack 
Arithmetic Trap/fault Type code pushed 

onto stack 
Corrected Interrupt No parameters 
memory read data 
Memory write Interrupt No parameters 
timeout 
Interval timer Interrupt No parameters 
Console terminal Interrupt No parameters 
receive 
Console Storage Interrupt V AX-ll/750 only 
device 
SBI SILO Interrupt V AX-ll/780 only 
compare 
SBI alert Interrupt V AX-l1/780 only 
SBI fault Interrupt V AX-ll/780 only 
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The machine check is the most damaging 
exception. It is triggered when internal CPU 
error-checking circuitry detects an exceptional 
condition. The processor may be restartable if 
the exception is related to redundant logic whose 
sole purpose is to improve machine performance 
(such as an instruction cache or instruction look­
ahead buffer). 

The VAX-ll has four defined modes of ac­
cess: Kernel, Executive, Supervisor, and User. 
These modes are used to grant or deny privileges, 
such as access to portions of memory or execu­
tion of specific instructions. An exception occurs 
if an access to the kernel, or most privileged 
stack, encounters a memory-access violation 
(such as no access or attempted write to a read­
only page) or if the translation from virtual 
address to physical address is not valid. 

Power failure causes an interrupt so that ma­
chine state can be saved for a clean power-up 
sequence. 

Table 8-3. Address protection. 

Execution of reserved or privileged (such as 
improper system state) instructions triggers 
faults. Faults may be caused by attempted use of 
a reserved operand format or reserved addres­
sing mode (that is, iII-formed instruction and 
addressing mode). 

The VAX-II architecture defines an extensive 
virtual-to-physical address translation. Associat­
ed with each memory page is a protection code. 
The system mode and address request must 
match the code, or a Translation Not Valid fault 
results. Table 8-3 lists the various allowable 
system modes and access rights. 

When the Trace bit is enabled, the system 
faults after every instruction execution. Tracing 
is used for performance evaluation or debugging. 

The breakpoint fault is also associated with 
debugging. The breakpoint instruction can be 
placed anywhere in the software flow and is 
designed to restore control to the user for exam­
ining the state of the program. 

System Mode 

Protection Code Kernel Executive Supervisor User 

0000 No No No No 
0001 Unpredictable 
0010 R/W No No No 
0011 RO No No No 
0100 R/W R/W R/W R/W 
0101 R/W R/W No No 
0110 R/W RO No No 
0111 RO RO No No 
1000 R/W R/W R/W No 
1001 R/W R/W RO No 
1010 R/W RO RO No 
1011 RO RO RO No 
1100 R/W R/W R/W RO 
1101 R/W R/W RO RO 
1110 R/W RO RO RO 
1111 RO RO RO RO 

Key: No-No Access 
R/W-Read/write access 
RO-Read only access 



When executing in PDP-II compatibility 
lOde, errors (those defined in the PDP-II arch i­
~cture) are reported via the compatibility fault/ 
bort. 
Two interrupts report memory-related prob­

:ms: an error on read-from-memory was 
orrected by an error-correcting code, and no 
lemory responded to a write request (such as 
JonExisting Memory). 

Three interrupts are specific to the 
T AX-ll/780 and deal with the bus between 
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processor and memory (the Synchronous Back­
plane Interconnect, or SBI). 

In addition to exceptions, the architecture also 
defines several processor registers, listed in Table 
8-4. Most of the registers deal with the software 
structure. The Translation Buffer is similar to a 
data cache except that it caches virtual addresses 
that have already been translated. 

Of the architecturally defined registers, the 10 
registers detailed in Table 8-5 are related to 
RAMP functionality. The numbers in brackets 

'able 8-4. VAX architecturally defined processor registers. 

{arne 

Cernel Stack Pointer 
~xecutive Stack Pointer 
,upervisor Stack Pointer 
Jser Stack Pointer 
nterrupt Stack Pointer 
)0 Base Register 
)0 Length Register 
) I Base Register 
) 1 Length Register 
;ystem Base Register 
;ystem Length Register 
?rocess Control Block Base 
iystem Control Block Base 
[nterrupt Priority Level 
<\synchronous System Trap Level 
ioftware Interrupt Request 
ioftware Interrupt Summary 
lnterval Clock Control 
Next Interval Count 
lnterval Count 
rime of Year 
Console Receiver Control and Status 
Console Receiver Data Buffer 
Console Transmit Control and Status 
Console Transmit Data Buffer 
Memory Management Enable 
Translation Buffer Invalidate All 
Translation Buffer Invalidate Single 
Performance Monitor Enable 
System Identification 
Processor Status Register 

Type 

R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
W 

R/W 
R/W 
W 
R 

R/W 
R/W 
R 
R/W 
W 
R/W 
W 
W 

R/W 
R 
R/W 

Scope 

Process 
Process 
Process 
Process 
CPU 
Process 
Process 
Process 
Process 
CPU 
CPU 
Process 
CPU 
CPU 
Process 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
CPU 
Process 
CPU 
Process 

Initialized? 

Yes 
Yes 

Yes 
Yes 

No 
Yes 

Yes 

Yes 
No 



Table 8-5. Details of RAMP-related VAX architecturally defined processor registers. 

Name Subfields 

Interval Counter (31 :0) 

Next Interval Counter (31 :0) 

Interval Clock Control and Status Error 

Time of Year (31 :0) 

Console Subsystem Receiver 
Control and Status 

Console Receiver Data Buffer 

Console Subsystem Transmit 
Control and Status 

Interrupt Request 

Interrupt Enable Single CLK 

Transfer 

Run 

Ready, Interrupt Enable 

Data (31 :0) 

Done, Interrupt Enable 

Console Subsystem Transmit Data Data (31 :0) 
Buffer 

System ID 

Processor Status Word 

System Type (7:0) 
ECO Level (7:0) 
Manufacturing Plant (3:0) 
System Serial Number (11 :0) 

Compatibility Mode 

Trace Pending 

First Part Done 

Current Mode (I :0) 

Previous Mode (1 :0) 

Interrupt Priority Level of 
CPU (4:0) 

Enable decimal overflow 
exceptions 

Enable floating underflow 
exceptions 

Enable integer overflow 
exceptions 

T 

N 

Z 

V 

C 

Comments 

I-microsecond resolution 

Loaded into Interval Counter when 
coun ter overflows 

Second overflow occurs before first 
serviced 

Set on counter overflow 

Advances counter one step 

Loads counter from next Interval 
Counter 

Increments counter 

CPU executing PDP-II instructions 

Initiates trace trap at end of current 
instruction 

Set by microcode on certain 
instructions to indicate instruction 
may be restarted from that point if 
instruction is interrupted 

User, Supervisor, Executive, Kernel 

Trace 

Negative condition code 

Zero condition code 

Overflow condition code 

Carry condition code 



tldicate the number of bits in each field. The 
tlterval counter has a one-microsecond resolu­
ion and can be used by diagnostics for timing 
:ritical functions. The Time-Of -Year Clock is 
lsed to put a time stamp on software objects, 
uch as entries of error information into a file 
error log), for post error analysis. 

A console terminal is defined via Data and 
=ontrol/Status register pairs for the Transmit/ 
~eceive functions. A System ID register provides 
nformation that can be used to isolate failures to 
.he manufacturing process. Finally, the Pro­
:essor Status Word contains control for enabling 
:racing and various arithmetic exceptions. 

I\RCHETYPICAL VAX-11 
IMPLEMENTATION 

Figure 8-1 illustrates an archetypical implemen­
tation of a VAX-II. The CPU is interconnected 
to memory and I/O devices by a backplane bus. 
I/O devices reside on either the Unibus or Mass­
bus. The latter is a high-speed block-transfer bus 
used primarily for block-oriented mass storage 
devices such as disks and tapes. Bus adapters 
convert Unibus or Massbus protocols to the 
backpanel bus protocol. 

The backpanel bus is optimized for bandwidth 
rather than for minimum response time. Thus, 
the various ports to the backplane (Unibus, 
Massbus, CPU, and memory) are provided with 
buffers. The buffers can support one of two 
purposes: they can smooth data flow between 

RAMP IN THE VAX FAMILY 367 

buses or devices with different data rates, or they 
can reduce bus accesses by holding frequently 
used data items. 

Two standard options are the Floating Point 
Accelerator (FPA) and the Writable Control 
Store (WCS). Although the CPU microcode im­
plements the full floating-point instruction set, 
the FP A provides data paths specifically tailored 
to executing floating-point operations. The FPA 
is logically invisible to software and affects only 
the instruction execution rate. The Writable 
Control Store supports microcode changes and 
additions. The WCS can also be used for micro­
diagnostics. 

The Console Subsystem serves as a system 
console. The system console terminal provides 
control (halt, restart, initialize, and so on) over 
the CPU, as well as access to internal system 
registers. The Console Subsystem also has a mass 
storage device containing the main system boot­
strap code and some diagnostics. Finally, a port 
is provided for Remote Diagnosis (RD). The RD 
port provides all the functionality of the Console 
Subsystem to a remote site. 

Table 8-6 gives a brief summary comparison 
of the V AX-I 1/750 and V AX-I 1/780 imp lemen­
tations .. The Control Store (CS) of each CPU has 
associated parity bits. Each CPU has three buff­
ers: instruction look ahead, cache, and address 
translation. The Instruction Buffer (IB) serves 
two purposes. First, it decomposes the highly 
variable instruction format into its basic compo­
nents; second, it constantly fetches ahead of 

Floating point accelerator 

Writable control store 

Console VAX-11 
subsystem CPU 

Memory 

Remote Translation buffer array 

diagnosis Cache Memory controller 

f Backplane bus 

Unibus Massbus 

Figure 8-1. Archetypical VAX-11 implementation. 



Table 8-6. Comparison of VAX-11 1750 and -11/780 implementations. 

Component 

Processor 
Relative performance 
Relative cost 
Control store 

Word length 
N umber of words 
Microcycle time 

Data path width 
Instruction lookahead buffer 

Cache 
Size and organization 
Cycle time 
Typical hit ratio 
Effective main memory cycle 
time 

Address Translation Buffer 
Size (number of entries) 
Typical hit ratio 

Main Memory 
Physical address bits 
Physical size (words) 
Battery backup option 
Cycle time 

Read 

Write 
ECC 
Interleaving factor 

I/O 
Max system I/O rate 

Unibus 
Number 
Maximum I/O rate through 
buffered data paths 
Number of buffered data 
paths 

Massbus 
Number 
Maximum I/O rate 
Buffer size 

Weight 
Max. heat dissipation 
Max. AC power consumption 

VAX-lJ/750 

0.6 
0.4 

78 bits + 2 parity 
6K ROM + IK RAM 
320 nsec 
32 bits 
8 bytes 

4 Kbyte direct-mapped 
320 nsec 
.9 
400 nsec/32 bits 

512 
.98-.99 

24 
2 Mbyte in 256-Kbyte increments 
10 minutes for 2 Mbytes 

800 nsec/32 bits 

640 nsec/32 bit 
7-bit ECC per 32-bit word 
I 

5 Mbyte/sec 

1.5 Mbyte/sec 

3 total, 4-byte buffer in each 

up to 3 
2 Mbyte/sec per Massbus total 
32 bytes/Massbus 
4001bs. 
5,800 BTU /hr. 
1,700 watts 

VAX-lJ/780 

1.0 
1.0 

96 bits + 3 parity 
4K ROM + IK RAM 
100 nsec 
32 bits 
8 bytes 

8 Kbyte, 2-way set associative 
290 nsee 
.95 
1800 nsee/64 bits 

128 
.97 

30 
8 Mbyte in 256-Kbyte increments 
10 minutes for 4 Mbytes 

800 nsec/64 bits 
I JOO nsee with single-bit errors 
1400 nsec/64 bit 
8-bit ECC per 64-bit word 
2 wi th 2 independen t memory 
con trollers 

13.3 Mbyte/sec with 2 memory 
con trollers 

up to 4 
1.5 Mbyte/see 

15 total, 8-byte buffer in each 

up to 4 
2 Mbyte/see per Massbus 
32 bytes/Mass bus 
1,100Ibs. 
21,230 BTU 
6,225 watts 



=PU execution to reduce delays in obtaining the 
.nstruction components. The cache stores away 
~requently used data so that subsequent accesses 
[0 a datum do not incur the memory-fetch delay. 
fhe virtual-to-physical address translation speci­
fied in the VAX architecture requires several 
table lookups and memory fetches. The Address 
franslation Buffer (TB) is a cache of recent 
virtual to physical address translations. 

The main memory is protected by Error-Cor­
recting Code (ECC) and has a battery backup 
:)ption that preserves the contents of memory 
:)ver short-term power failures. 

I/O consists of Unibus and Massbus adapters. 
The adapters contain buffers that smooth data 
[low between the slower data rate Unibus/Mass­
bus and the higher data rate Backplane Intercon­
nect, and also serve as assembly/disassembly 
stations for differences in data path widths; for 
example, the Unibus and Massbus deal in 16-bit 
words while the main memory has either 32-bit 
words for the /750 or 64-bit words for the /780. 
The adapters also contain tables for mapping 
Unibus/Massbus physical addresses into Back­
plane Interconnect physical addresses. 

Remote Diagnosis is an integral part of the 
V AX-ll maintenance philosophy. In a typical 
VAX-II maintenance scenario, disk-resident, 
user mode diagnostics periodically execute under 
the VMS operating system to exercise and detect 
functional errors in memory, Massbus Adapters 
(MBA), Unibus Adapters (UBA), device control­
lers, and device drives. Errors reported by User 
Mode diagnostics or hardware check circuits 
prompt a customer call to the Diagnostic Center 
(DC). The customer replaces the removable disk 
media with a diagnostic and scratch disk, turns a 
key on the front console to "remote," and calls 
the DC; unauthorized access is not possible. The 
DC engineer calls the customer's processor, logs 
onto the system, and begins to execute a script of 
diagnostics. Micro- and macrodiagnostics can be, 
loaded from the diagnostic disk and executed, 
the error log can be examined, memory locations 
deposited or examined, and so on. If the diag­
nostic disk is not operable, the diagnostics can be 
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loaded from the Console Subsystem mass stor­
age device or down-line loaded over a telephone 
line. The DC will attempt to isolate the failure 
to a subsystem. If the CPU is faulty, the diagnos­
tic on the Console Subsystem mass storage de­
vice is executed to verify the CPU status. 

The DC advises the local Field Service office 
of the failing subsystem. At the customer's site, 
Field Service replaces the faulty board and re­
verifies the system. If the failing subsystem is the 
CPU, micro diagnostics are loaded into the writ­
able control store. 

Remote diagnosis has at least three major 
advantages: 

• Faster MTTR, especially when the problem is of a 
trivial nature and can be resolved over the remote 
diagnostic link; 

• Faster resolution of difficult problems, because the 
person at the DC is an expert in VAX system fault 
determination; and 

• Much greater certainty that the repairman arrives 
with the correct part. 

All diagnostics can be run either at the site or 
remotely. In a building-block approach, the Con­
sole Subsystem first verifies its own operation; 
then the system hard core (CPU, Backplane 
Interconnect, and memory controller) is checked 
by loading microdiagnostics into the writable 
control store. Macro level tests on the I/O bus 
adapters and peripheral controllers are run next, 
followed by the peripheral device diagnostics. 

Functional level tests-that is, isolation to the 
failing major unit-can generally be performed 
on-line with the operating system. Faulty field­
replaceable units can then be identified by stand­
alone fault-isolation diagnostics. 

Automatic on-line error logging is an integral 
part of every VAX system. A snapshot of the 
system is taken upon occurrence of a CPU, 
memory, I/O, or software error, with two excep­
tions. First, if a long time has elapsed with no 
errors, only the time of day is logged. Second, if 
the number of errors from the ECC memory 
exceeds a certain threshold (due to a permanent 
correctable failure in a frequently accessed loca­
tion), no more entries are made for a period of 
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time. The operating system has a special utility 
routine that converts the log into a readily ana­
lyzed form. 

The next two sections discuss the V AX-I 1/780 
and VAX-I 1/750 implementations in more de­
tail, focusing on the RAMP-related features. 

THE VAX-11/780 IMPLEMENTATION 

The V AX-I 1/780 is the first implementation of 
the VAX-II architecture. Random logic is imple­
mented in standard, low-power Schottky SSI/ 
MSI; memory consists of standard MOS LSI 
memory chips. A committee was formed to es­
tablish RAMP goals, with members representing 
Diagnostic Engineering, Documentation, Field 
Service, Hardware Development, Manufactur­
ing, Marketing, Software Development, Software 
Support, and Software Quality Management. 

Figure 8-2 shows the major functional blocks 
in the VAX-11/780 implementation. The main 
memory array is protected by ECC; the Data 
Cache, Translation Buffer, Control Store, and 
Writable Control Store memory arrays are pro­
tected by multiple parity bits for error detection. 
Several special-purpose buses interconnect the 
various functional blocks. 

The Synchronous Backplane' Interconnect 
(SBI) joins the CPU, memory, and I/O subsys­
tems. As its name implies, the SBI is a synchro-' 
nous bus with a minor cycle time of 200 nanosec­
onds. The data path is 32 bits wide. During each 
200-nsec minor cycle, either 32 bits of data or 30 
bits of physical address can be transferred. Be­
cause read or write operations require the trans­
mission of both address and data, two SBI minor 
cycles are required to complete the transaction. 
The SBI protocol also provides for 64-bit opera­
tions in three minor cycles, one address and two 
data. The CPU and I/O devices use the 64-bit 
mode whenever possible. 

Each minor cycle is checked by two parity 
bits. One covers the 32 address/data lines; the 
other covers 12 control information lines. During 

each minor cycle the receiver checks and con­
firms parity. Each SBI interface checks bus arbi­
tration and SBI protocol. Any irregularities are 
reported to the CPU. The CPU also maintains a 
history of the last 16 SBI cycles. Any SBI error 
condition preserves the history for diagnostic 
purposes. 

To reduce accesses to the SBI, the CPU con­
tains an 8K-byte write-through cache. The cache 
is two-way set associative, as depicted in Figure 
8-3. A portion of the address is used to index two 
arrays. If the tag field of the address matches 
either of the stored tags, the data are resident in 
cache (cache hit) and an SBI/memory cycle can 
be avoided. The cache uses a random replace­
ment policy on a read miss. On a write hit, the 
location is updated in the cache as well as main 
memory. On a write miss, the location is not 
stored in the cache. The typical hit rate is 95 
percent resulting in a 290-nsec effective address­
operand access time. 

The CPU also contains a two-way, set-associa­
tive Translation Buffer (TB). The TB is a cache 
of recent virtual-to-physical address translations. 

The V AX-11/780 maintenance philosophy 
centers on the Console Subsystem. Two impor­
tant RAMP-related buses, the 10 (Internal 
Data) and V (Visibility) Buses are tied into the 
Console Subsystem. The Console Subsystem is 
composed of an LSI-II microcomputer with 16K 
bytes of RAM and 8K bytes of ROM, a hard 
copy terminal, a floppy disk, and a remote 
diagnostic port. The LSI -11 performs a self-test 
on power-up. The LSI-ll can examine and de­
posit values in internal processor registers via the 
10 bus. Registers accessible to the 10 include 
configuration control, error summary, error data, 
and maintenance registers. The V Bus makes 
almost 600 internal logic signal values visible to 
the microdiagnostics. 

The V AX-11/780 maintenance philosophy can 
be understood by examining the registers asso­
ciated with each hardware error-detection or 
-correction element. In general, each element can 
be associated with up to four types of registers: 
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Address 

Data Tag 

Hit Hit 

Figure 3-3. Two-way, set-associative cache. 

configuration/control, status, data, and diagnos­
tic/maintenance. The configuration/control reg­
ister contains information on the state of the 
element (such as checking enabled, reporting 
enabled). The status register contains flags sum­
marizing the state of the element, including error 
reports. Data registers capture relevant informa­
tion about the system state when an error was 
detected (such as the address used on cache 
lookup when a cache parity errOr was detected). 
Finally, the diagnostic/maintenance register con­
tains control and status information relative to 
checking the error-detection/correction logic. 
Although the names of these registers are not 
applied consistently, the generic terms provide a 
means of organizing the many details to follow. 

Registers for processor elements reside either 
internally to the processor or on the ID bus. 
Registers for other ports on the SBI (such as 
memory, Unibus adapters, Massbus adapters) 
reside in the main memory address space. In 
discussing these registers we should look for the 
solutions employed to two maintenance prob­
lems: how to provide a means of testing the 
error-detection/correction circuitry and how to 
alert the system when a second error occurs 
before a first error has been properly handled. 
We will now examine the registers associated 
with each of these areas. 

Table 8-7. VAX-11 1780 implementation-specific 
processor registers. 

Register Access Permitted 

Accelerator Control/ R/W 
Status 

Accelerator R/W 
Maintenance 

Writable Control Store R/W 
Address 

Writable Control Store R/W 
Data 

SBI Fault/Status R/W 

SBI Silo R 

SBI Silo Comparator R/W 

SBI Maintenance R/W 

SBI Error Register R/W 

SBI Timeout Address R 

SBI Quadword Clear W 

Microprogram R/W 
Breakpoint 

Internal Processor Registers 

The implementation-specific internal processor 
registers listed in Table 8-7 are associated with 
the floating point· accelerator (FP A), writable 
control store (WCS), and SBI. The registers are 
accessible by executing the MTPR (Move-to­
Processor Register) and MFPR (Move-From­
Processor Register) macro instructions. Table 
8-8 lists some of their attributes in detail. 

The Floating Point Accelerator has its own 
microprocessor. The FPA Control Status Regis­
ter has a bit for enabling the FPA and recording 
the appearance of reserved operands encoded as 
minus zero. The FP A Maintenance Register has 
facilities for setting microbreakpoints. A Match 
Register is loaded with the Microbreak<8:0) 
contents when the Write Microbreak Bit is set. 
The FP A halts when the FP A microprogram 
counter is equal to the Match Register. An FP A 
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·able 8-8. Details of RAMP-related VAX-11 1780 implementation-specific processor registers. 

~egister 

~loating Point Accelerator 
~ontrol Status 

:;'loating Point Accelerator 
~aintenance 

Write Control Store (WCS) 
\ddress/Control 

WCS Data 

mI Fault Status 

Subfields 

Reserved Operand 

Accelerator Enable 

Accelerator Type (3:0) 

Write Trap Address 

Trap Address (7:0) 

Write Microbreak 

Match 

Micro break/Curren t 
Microaddress (8:0) 

Invert parity 

Counter (I :0) 

Address (12:0) 

Data (31 :0) 

Parity Fault on SBI 

Unexpected Read Response 

Multiple Transmitter 

SBI Fault 

Fault Interrupt Enable 

Error First Pass 

Transmitter During Fault 

Fault Silo Lock 

Comments 

Minus zero error 

Forms FPA ROM address on trap 

Indicates a match has occurred 

Load micromatch register with this 
subfield. FP A halts when 
microprogram counter matches the 
register value. Used for setting 
breakpoints. Reading yields current 
value of microprogram counter. 

When set, inverts writable control 
store parity 

Modulo-3 counter points to 32-bit 
quantity to write 

Microstore word to be written 

When written, causes 32-bit write into 
WCS. When read, indicates number 
of WCS boards available (up to 8). 

Fault on SBI confirmation lines 

Allows interrupts on receipt of SBI 
Fault Signal 

Set by microcode during first pass 
through fault-handling code; detects 
double errors. 

Set if device was the transmitter 
during the fault. 

Indicates Silo is locked due to SBI 
fault 

(Table continues on next page) 



374 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

Table 8-8 -Continued 

Register 

Silo 

Silo Comparator 

SBI Error 

Subfields 

First entry after fault 

Stored SBI fields: 
Interlock (0) 
10 (4:0) 
Tag (2:0) 
CNF 0:0) 
Arbitration (15:0) 
Mask (3:0) or 
Data (31 :28) 

Compare Silo Lock 

Silo Lock Interrupt Enable 

Lock Unconditional 

Conditional Lock (1 :0) 

Command/Mask for 
Comparison (3 :0) 

Tag for Comparison (2:0) 

Count Field (3 :0) 

Interrupt Enable on Read Data 
Substitute (RDS) 

Comments 

16 locations storing data from the 16 
most recent SBI cycles; cleared to 
indicate first SBI cycle after a fault. 

Data bits written when tag has value 
"command address"; otherwise mask 
written. 

Set when certain conditions, other 
than faults, have been met 

Locks when Silo is full (counter = Fi6) 
Locks Silo when certain conditions 
exist. Comparator examines SBI; 
when there is a match, Silo counter 
can increment until counter = Fi6. 
Unlocks by writing Fi6 into counter. 

Interrupts when memory has detected 
an uncorrectable data error 

CPU Corrected Read Data (CRD) Memory-corrected data 
received from memory 

CPU RDS 

CPU Processor Timeout 
Status (2:0) 

CPU SBI 
Error Confirmation 

Instruction Buffer (IB) RDS 

IB Timeout Status (2:0) 

Read Data Substitute received from 
memory 

No device response; device busy, 
waiting for read data 

Set when Processor initiated request 
is responded to by an Error code on 
the SBI confirmation lines 

Read Data Substitute received from 
memory 

No device response: device busy, 
waiting for read data 

(Table continues on next page) 
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~egister 

mI Timeout Address 

;HI Maintenance 

Ubreak (12:0) 

Subfields 

IB SBI Error Confirmation 

Multiple CP Error 

SBI Not Busy 

Mode 

Physical address (27:0) 

Cache Match <I :0) 

Force Timeout 

Force PO Reversal on SBI 

Force Write Sequence Fault 

Force Unexpected Read Data 
Fault 

Maintenance ID (4:0) 

Force SBI Invalidate 

Enable SBI Invalidate 

Reverse Cache Parity (3 :0) 

Force Cache Miss <I :0) 

Cache Replacement < 1:0) 

Disable SBI 

Force PI Reversal on SBI 
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Comments 

Set when Instruction Buffer initiated 
request is responded to by an Error 
code on the SBI confirmation lines 

Set when a second error occurs before 
the first is serviced 

Kernel, executive, supervisor, user 

Address latched when SBI time-outs 

Indicates group that had a cache hit 

Forces read timeouts 

Forces appearance that base register 
PO has an illegal value 

Transmits Read Data command with 
maintenance ID, undefined data, with 
good parity 

ID for forced Unexpected Read Data 

Writes by CPU on SBI forced to 
invalid cache entries 

Allows CPU writes to forced invalid 
cache en tries 

Designates which of 14 parity bits to 
flip; 2 groups of 3 address bytes and 
4 data bytes. 

No miss, group 1 miss, group 0 miss, 
both group I and 0 miss 

Random, group 0 always, group 1 
always. Allows for disabling cache 
halves on permanent error. 

When set, no SBI cycles will be 
started. 

Forces appearance that base register 
PI has an illegal value 

Data used to compare microprogram 
counter for stopping system clock or 
oscilloscope sync 



376 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

trap can be vectored to different microcode 
locations as a function of the FPA trap address. 
Setting the Write Trap Address Bit loads the 
Trap Address Register from the Trap Address 
subfield. 

The Writable Control Store has Address/Con­
trol and Data registers. When the Data 
Register <31 :0) is written, the contents are load­
ed into the control store word designated by 
Address (12:0), and the word location pointed 
to by Counter < I :0) in the WCS Address/Con­
trol Register. The Invert Parity Bit causes the 
parity generated by the Data <31 :0) word to be 
placed in the WCS in a complemented form. 
Thus, the Control Store Bus (see Figure 8-2) 
parity checker and CPU Error Status Register 
(see the section on ID Bus Registers below) can 
be tested by use of this bit. The WCS can be 
loaded with microdiagnostics to assist in fault 
isolation. 

Every port on the SBI has a register that 
summarizes errors detected on the SBI. The SBI 
Fault Status Register records these errors as seen 
by the processor. One bit records parity errors. 
Two bits record SBI protocol errors: the Unex­
pected Read Response Bit is set if data are 
placed on the bus in response to a read com­
mand not seen by the CPU; the Multiple Trans-

. mitter Bit is set if more than one transmitter was 
seen. The SBI Fault Bit is set if the CPU sees a 
fault signal asserted by an SBI port, that is, if the 
SBI port detected an SBI parity error. Setting the 
Fault-Interrupt Enable Bit allows an SBI fault to 
interrupt the CPU. The Transmitter During 
Fault Bit is set if the CPU was transmitting when 
an error was detected. This bit allows the soft­
ware to isolate the error. The Error First Pass Bit 
is used to detect the occurrence of a second SBI 
fault prior to complete handling of the first fault. 

The Silo is a history of a selected 32 bits from 
each of the last 16 SBI cycles. The Silo is frozen 
(locked) whenever a fault is signalled on the SBI 
confirmation lines or when a condition defined 
by the Silo Comparator Register has been· met. 
The Silo can be used in postfault analysis of 
subtle problems such as intermittents. 

The Silo Comparator Register allows the defi­
nition of predetermined conditions to trigger 
loading of the SBI Silo. The Silo can be loaded 
unconditionally or upon matches in SBI sub­
fields: port 10, ID and Tag, 10 and Tag and 
Mask. When the Silo is full it is frozen (locked), 
a bit set, and an interrupt generated if the 
interrupt enable bit is set. 

The SBI Error Register contains further SBI 
status information. Bits indicate whether the 
memory corrected a single-bit error (Corrected 
Read Data: CRD) or detected a double error 
(Read Data Substitute: RDS). RDS errors can 
cause an interrupt to the processor. Also record­
ed are SBI timeouts and parity errors detected 
on cycles requested by the CPU (SBI Error 
Confirmation). The SBI Error Register distin­
guishes whet~er the SBI error was triggered by a 
regular CPU request or an instruction prefetch 
request made by the Instruction Buffer (IB). The 
IB requests are for performance reasons only, 
and errors can be tolerated by simply flushing 
the lB. Errors associated with other perfor­
mance-related buffers such as Translation Buffer 
and Cache, are easily tolerated because they 
cause no change in system state; that is, they are 
logically transparent to the system. 

The SBI Maintenance Register contains bits 
for forcing error conditions in various CPU 
subsystems. The various error-detection circuits 
can be tested by these forced-error conditions. 
Force PO/PI reversal performs bounds checking 
on the system base registers. SBI errors are 
simulated by forcing Write Sequence, Unexpect­
ed Read Data, and Timeouts. Cache operation 
can be checked by observing the Cache Match 
field while invalidating cache entries and forcing 
cache misses. Permanent failures in cache can be 
configured out by disabling Cache halves or 
disabling the Cache altogether. Cache disabling 
is achieved by specifying where new entries are 
to be placed upon a Cache miss (that is, Cache 
Replacement <t :0»). 

Finally, the microbreak register can be used to 
stop the microsequencer in specific regions of 
microcode. 



10 Bus Registers 

The internal processor registers and other regis­
ters listed in Table 8-9 are accessible to the 
Console Subsystem over the ID bus. These regis­
ters may be read or written during local or 
remote diagnosis even if the CPU is halted. Key 
implementation registers such as the Instruction 
Buffer and D/Q (used as register extensions in 
multiple precision operations) are accessible. 

There are status error registers for the CPU 
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and cache. The CPU Error Status Register holds 
the control store parity-error summary (that is, 
which third of the control store caused a parity 
error). In conjunction with the microbreak regis­
ter, the CPU Error Status Register can be used 
to identify the faulty Control Store chip. The 
value of internal condition codes is made avail­
able to facilitate checking of condition code 
operations. Finally, the arithmetic trap code is 
captured to aid software recovery from arithmet­
ic errors. 

Table 8-9. Details of RAMP-related VAX-11 1780 registers available on the ID bus. 

Register 

Instruction Buffer (31 :0) 
D/Q Register 

CPU Error Status 

Cache Parity Error 

Subjields 

Read D (31 :0) or write Q (31 :0) 
register in system data paths 

Control Store Parity Error 
Summary 

Control Store Parity Error 
Bits (2:0) 

ALUN 

Exponent N 

ALU Z 

Exponent Z 

ALU C31 

Arithmetic Trap Codes 

Any error 

CP/IB Error 

Data Parity OK (7:0) 

Address Parity OK (5:0) 

Comments 

OR of Control Store Parity Error Bits 

1 bit for every 32 bits of control store 

Negative condition from ALU 

Negative condition from Exponent 
Unit 

Zero condition from ALU 

Zero condition from Exponent Unit 

Carry bit from ALU 

Decimal divide by zero 
Decimal overflow 
Floating underflow 
Floating divide by zero 
Integer divide by zero 
Integer overflow 

Logical OR of all error indications 

Designates whether CPU or IB 
caused error 

Indicates which of 8 data bytes 
indicates parity error (2 groups of 4 
bits) 

Indicates which of 6 address bytes 
indicates parity error (2 groups of 3 
bits) 

(Table continues on next page) 
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Table 8-9 -Continued 

Register Subfields Comments 

Translation Buffer (TB) Data Valid TB allows matches 

Protection Code (3:0) 

Modify 

See Table 8-3. 

Page has been modified 
Page Frame Number (20:0) Page Frame of Physical Address after 

translation 

TB Hit (1:0) 

Force TB Pari ty Error (3: 0) 

Indicates which group had a TB hit 

Allows parity error to be generated 
independently on each of three data 
bytes or three address bytes in either 
group 0 or group 1 

Translate Buffer Register I 

Enable Memory Management 

TB Parity Error Status (1 1:0) Indicates which of possible 12 parity 
errors: group (2), data byte (3 per 
group), or address byte (3 per group) 

TB Pari ty Error 

Last TB Write 

Translation Buffer Register 0 Force Replace (2:0) 

Force Miss (1 :0) 

USTACK (15:0) 

Others 

The Cache Parity Error Register contains the 
parity bit values of the cache data and tag fields. 
Another bit assists recovery software by indicat­
ing whether the CPU or IB caused the cache 
parity error. 

Three registers are associated with Control, 
Status, and Data of the Translation Buffer (TB). 
Translation Buffer Register 0 can disable TB 
halves (that is, Force Replace). the Force Miss 
and TB Hit Fields (in Translation Buffer Data 
Register) can be used by diagnostics to check TB 

Indicates TB microtrap was requested 
due to error during CPU access 

Indicates which TB group was last 
written 

Forces TB writes to define groups: 
both, group I, or group 2 

Forces TB miss on group 0 or 1. 

Reading pops top address from 
microsequencer stack. Writing pushes 
address onto microsequencer stack. 

26 scratch-pad registers used as 
temporaries by the microcode in 
implementing the VAX instruction set 

functionality; the Force TB Parity Error (in 
Translation Buffer Data Register) coupled with 
the TB Parity Error Status bits (in Translation 
Buffer Register 1) can be used to test the TB 
parity checkers. Finally, the Translation Buffer 
Data Register captures relevant information 
about a virtual address that caused a protection 
violation. 

Because the ID Bus is not accessible to the 
V AX-I 1/780 instruction set, an error log format 
has been defined that places several key registers 



rable 8-10. VAX-11 1780 machine-check error 
nformation logged onto machine stack. 

rnformation 

3yte Count of Error Log 
~rror Summary (see below) 
=PU Error Status 
rrapped Microprogram Counter 
virtual Address 
D Register 
rranslation Buffer Error Register 0 
rranslation Buffer Error Register I 
~BI Timeout Address 
=ache Parity 
~BI Error 
Program Counter 
Program Status Longword 

£rror Summary 

=P lIB Read Timeout or Error Confirmation 
=P lIB Translation Buffer Parity Error 
=PjIB Read Data Substitute Fault 
CP lIB Cache Parity Error 
Control Store Parity-Error Abort 
Microcode "not supposed to get here" Abort 

on the kernel stack when an error occurs. Table 
8-10 details the information placed on the kernel 
stack. ID Bus registers include the CPU Error 
Status, D register, and Translation Buffer Error 
Registers 0 and 1. SBI-related processor registers 
include SBI Error, SBI Timeout Address, and 
Cache Parity registers. The virtual address, pro­
gram counter, and microprogram counters are 
also stored. Finally, an Error Summary, also 
listed in Table 8-10,indicates the type of error 
that caused the machine check. 

Machine checks force the microsequencer to 
trap. The error-handling microcode first copies 
the registers to be logged in to temporary regis­
ters accessible on the ID Bus. Subsequently the 
registers are logged onto the machine stack. If 
the error-handling microcode finds the Error­
First-Pass bit set in the SBI Fault Status Regis­
ter, the CPU is halted. Data related to the first 
error are found in the ID temporary registers; 
those related to the second error are found in the 
corresponding error/status registers. Both sets of 
data are readable by the Console Subsystem. 
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Main Memory Registers 

Registers related to errors in SBI ports-the 
memory, Unibus Adapter, and Massbus Adapter 
registers-are in the main memory address 
space. 

Table 8-11 lists the three main memory regis­
ters. Register A contains the memory port's fault 
status of the SBI. This field is identical to the 
corresponding fields in the CPU SBI Fault Status 
Register. Similar fields reside in the UBA and 
MBA registers. The remaining Register A fields 
deal with memory configuration and power sta­
tus. 

Register B contains additional memory config­
uration (such as Memory Starting Address), sta­
tus (such as ascertaining whether battery backup 
allowed the memory to ride through a power 
loss), and maintenance fields. The memory con­
troller is buffered and can have up to four reads 
and four writes in progress. The File Pointer 
fields can be used to check the functionality of 
these buffers. ECC check logic can be tested by 
forcing the ECC bits to be replaced by the 
contents of the Substitute ECC Bits <7 :0) field. 

Register C has two fields that capture the 
address and syndrome of the memory word in 
error. Both fields are locked until the error is 
serviced. The Error Log Request Bit identifies 
the memory controller in error for the error­
handling subroutine. A set High Error Rate Bit 
indicates that a second error occurred before the 
first was serviced. Finally, error correction on 
reads can be disabled by the Inhibit CRD Bit. 

Table 8-12 lists six registers associated with the 
Unibus Adapter (UBA). The Configuration Reg­
ister records the standard SBI Fault Status. The 
Control Register contains interrupt enable bits 
for reporting Unibus errors to the CPU. 

The Unibus Status Register records several 
situations. The Read Data and Command Trans­
mit timeouts are checks on the Unibus timeout 
circuitry. The bits are set if the SBI has not 
responded within 100 microseconds and the Uni­
bus timeout of 10 microseconds has failed to 
cancel the request. The Read Data Substitute Bit 
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Table 8-11. VAX-11 1780 memory configuration registers. 

Main Memory Register 

Register A 

Register B 

Subfields 

SBI Fault Status (4:0) 

Bus Parity Error 

Write Data Sequence Fault 

Memory was Transmitter 
During a Fault 

Multiple Transmitters on Bus 

Interlock Sequence Fault 

Power Up/Down Status (1:0) 

Power Up Alert 

Power Down Alert 

Memory Size (6:0) 

Memory Type (1 :0) 

4K chips 

16K chips 

Interleave (3:0) 

Interleave Factor 

Interleaving Enable 

File Output Pointer (1:0) 

File Input Pointer (1 :0) 

Memory Starting Address (12:0) 

Enable Write to Memory Starting 
Address Subfield 

Comments 

No interleaving or 2-way interleaving 

Points to which of 4 address buffers is 
next to command the memory to read 

Points to which of 4 buffers will 
receive next write address and data 

Memory Initialization Status (1 :0) Memory data valid or invalid 
following power loss 

Force ERR 

Substitute ECC Bits (7:0) 

Bypass ECC 

When set, replaces ECC bits with 
substitute ECC bits 

Bits to be substituted for ECC bits in 
memory; checks ECC logic. 

Disables ECC generation, checking 

(Table continues on next page) 
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Main Memory Register Subfields 

Register C Inhibit CRD 

High Error Rate 

Error Log Request 
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Comments 

Enables/disables reporting of 
corrected read data 

Bit set if error occurs between time of 
generating first-error message and 
time of invoking error service 
subroutine. 

Indicates whether memory controller 
has recorded an error. When set, 
subsequent corrected Read Data events 
are not reported. 

Error Address < 19 : 0) Indicates address generating read 
error. Field changed only after first 
error serviced. 

Error Syndrome 0:0) Value of error syndrome. Field 
changed only after first error serviced. 

is set if a Unibus request ends in an uncorrecta­
ble error: no data are transmitted to the Unibus, 
the Unibus times out, and a Unibus nonexisting­
memory error is recorded. The Command Trans­
mit Error Bit is set when the SBI cycle causes an 
error on the Confirmation lines. Finally, parity 
errors on the internal UBA data paths or in the 
address translation memory are recorded. Data 
associated with errors are captured in the Failed 
Map Entry and Failed Unibus Address registers. 
Subsequent errors do not overwrite the Failed 
Map Entry Register until the first error has been 
cleared. 

The Diagnostic Control Register has bits to 
inhibit parity on the data and map registers. If 
data with an even number of ones are used, the 
odd-parity checking circuitry is tested. The Mi­
crosequencer OK bit is used to detect when the 
micro sequencer is caught in a loop. 

Table 8-13 lists the four registers of the Mass­
bus Adapter (MBA). The Configuration/Status 
Register records the standard SBI Fault Status. 
The Control Register has a Maintenance Mode 
Bit that allows for testing the Massbus without 
any devices attached. An Interrupt Enable Bit 
allows reporting of Massbus errors to the CPU. 

The Status Register records SBI, device, and 
Massbus parity errors. The Diagnostic Register 
allows exercising of MBA parity-check circuits 
and testing of the Massbus by reading and 
writing of selected Massbus fields. 

Console Subsystem 

Table 8-14 lists several of the RAMP-related 
console commands available to probe and test 
the CPU. The Examine/Deposit command al­
lows reading and setting of most of the CPU 
registers. In addition to the ID Bus Error regis­
ters, almost 600 internal logic signals are observ­
able over the Visibility Bus (V -Bus). 

The V-Bus is composed of seven channels. 
Table 8-15 lists the logic associated with each 
channel. Figure 8-4 depicts the operation of a V­
Bus channel. When requested, the internal logic 
signals are entered in a shift register, which is 
emptied into a register for examination and 
display. To illustrate the type of information 
associated with the V-Bus, Table 8-16 lists the 
signals available on Channel 4. The V-Bus test 
points for Channel 4 are superimposed on logic 
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Table 8-12. RAMP-related VAX-11 1780 Unibus adapter registers. 

U BA Registers 

Configura tion 

Control 

Unibus Status 

F ailed Map En try 

Failed Unibus Address 

Diagnostic Control 

Subfields 

SBI Status (4:0) 

SBI to Unibus Error Interrupt 
Enable 

Unibus to SBI Error Interrupt 
Enable 

Read Data Timeout 

Command Transmit Timeout 

Read Data Substitute 

Command Transmit Error 

Data Path Parity Error 

Map Register Parity Failure 

Lost Error Bit 

Map Register Number (8:0) 

Unibus Address Bits (15:0) 

Defeat Map Parity 

Defeat Data Path Parity 

Microsequencer OK 

Comments 

Records errors detected in SBI 
operation, including parity, write data 
sequence, unexpected read data, 
interlock sequence, multiple 
transmitter, and transmitting 

Enables interrupts when Unibus times 
out 

, Enables interrupts on errors reported 
in Unibus status register 

Set when SBI memory has not 
responded 

Set when SBI has not responded to 
command 

Set if SBI read has an uncorrectable 
error 

Set when error confirmation returned 
on SBI cycle initiated by Unibus 
adapter 

Set when parity error detected on 
data path internal to Unibus Adapter 

Set when address mapping registers 
have incorrect parity when selected 

Set if one of the above error bits has 
been set and another error occurs 
before it is cleared 

Provides number of the map register 
being used during one of the error 
conditions reported in the Unibus 
Status Register 

Captures address that caused a 
Unibus timeout 

When set, inhibits parity bits from the 
map registers from entering the parity 
checkers 

When set, inhibits parity bits of data 
path RAM from entering parity 
checkers 

Set when microsequencer is idle 



Table 8-13. RAMP-related VAX-11/780 Massbus adapter registers. 

Register 

Configura tion/Status 

Control 

Status 

Diagnostic 

Subfields 

SBI Status <4:0) 

Maintenance Mode 

Interrupt Enable 

No Response 

Nonexistent Drive 

Data Late 

Miss Transfer Error 

Massbus Data Parity Error 

Massbus Control Parity Error 

Page Frame Map Parity Error 

Error Confirmation 

Read Data Substitute 

Read Timeout 

Invert Parity <2:0) 

Simulate asynchronous control 
lines (3:0) 

Read Signals <20:0) 
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Comments 

Records errors detected in SBI 
operation, including parity, write-data 
sequence, unexpected read data, 
multiple transmitter, and transmitting 

When set, software can exercise 
Massbus without any attached 
devices. All Massbus devices detach 
from the bus. 

When set, causes an interrupt in CPU 
on the occurrence of any errors 
reported in the status register 

Set if SBI returns a no-response 
confirmation. Causes retry of 
command. 

Set if drive fails to respond within a 
specified time 

Error in parity check of bus data field 

Error in parity check of bus control 
field 

Parity error in memory where page 
map information is stored 

Set when SBI returns an error 
confirmation on a transaction 

Set when SBI indicates an 
uncorrectable error 

Inverts the sense of the bus data, bus 
control, and map register file parity 
generator 

Allows setting, clearing of various 
Massbus signals when in 
Maintenance Mode 

Allows reading of selected Massbus 
fields 
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Table 8-14. Subset of console VAX-11 1780 
commands. 

Command 

Examine( address) 
/Deposi t( address) 
(data) 

Examine IR 
Start (address) / 
Continue/Halt/Boot/ 
Initialize 
Show 

Show Version 

Test 
Test/Com 

Unjam 
Set Step 

Clear Step 
Next(number) 

QClear( address) 

Set/Clear SCMM 

Set Clock Slow/Fast/ 
Normal 
Load(Filename) 

Q(Filename) 

Repeat(any-console­
command) 

REBOOT 
BOOT 

DIAGNOSE 

HALT 

Comments 

Memory: using physical or 
virtual address 
Internal Registers 

General Registers 

V-Bus Channels (read only) 

ID Bus Registers 
Instruction Register 
Action performed on CPU 

Displays CPU and Console 
state 
Displays version of 
microcode and console 
Runs microdiagnostics 
Calls microdiagnostic 
monitor, awaits commands 
Unjams SBI 
Enables single time state, 
bus cycle, or instruction 
mode 
Enables normal mode 
Steps until <number) 
cycles are done. Step type 
depends on last Set Step 
Command. 
Clears 64 bits at (address) 
as well as ECC errors 
Sets/Clears "stop on 
micro break match" enable 
Sets CPU clock frequency 

Loads file to memory or 
WCS 
Processes a file of console 
commands 
Repeat any console 
command until stopped by 
control C 
Reloads console software 
Boots CPU 

Boots Diagnostic 
Supervisor 

Table 8-15. V-bus channels and associated logic. 

Channel 

o 

2 

3 

4 

5 

6 

Logic 

Microsequencer 

Data Paths, Arithmetic 
Section 

Data Paths, Data and 
Exponent Section 

Instruction Decode, 
Instruction Buffer, 
Translation Buffer Data 
Matrix 

Cache and Translation 
Buffer Address Matrix, 
Cache Data Matrix 

SBI Control 

Floating Point Accelerator: 
Control, Exponent 
Processor, and Fraction 
Adder 

Signals 

101 

60 

92 

85 

103 

93 

43 

diagrams for the Cache Address Matrix, shown 
in Figure 8-5; for the Translation Buffer Address 
Matrix, shown in Figure 8-6; and for the Cache 
Data Matrix, shown in Figure 8-7. 

Other Console commands enable execution of 
micro- and macrodiagnostics; single-stepping a 
state, a bus cycle, or an instruction at a time; 
setting microbreaks; and CPU clock margining. 

Micro- and Macrodiagnostics 

The microdiagnostics are stored on, floppy disks 
accessible to the LSI-II console processor, which 
can load them into the Writable Control Store 
(WCS). The field service engineer gives the con­
sole a TEST command. The first portion of the 
microdiagnostics sizes the system and prints out 
system configuration information. Upon comple­
tion, it prompts the engineer to load a new 
floppy disk. Table 8-17 lists a sample of the 
commands available to the engineer. The micro­
diagnostics consist of a series of "go-chains." 
Detection of a disagreement initiates a fault tree 
analysis, which uses the V -Bus to isolate the 



rable 8-16. Signals available on V-Bus, channel 4. 

:ache Address Matrix 

CAML Group 0, Byte Parity Odd <2:0) 

CAML Group 0, Byte Parity Even <2:0) 

CAMK Group 0 Match 

CAMK Group I Match 

CAML Group I, Byte Parity Odd <2:0) 

CAML Group I, Byte Parity Even (2:0) 

CAMM CPT Clock <3:0) 

CAMB Physical Address Latch Valid 

CAMB Physical Address Latch <28: 12) 

CAMB Tag Parity Even <2:0) 

SBHF Force Read Parity Errors <3:0)H, (3)L 

SBHF Force Miss Group 0 from Maintenance 
Register 

SBHN Force Miss Group I from Maintenance 
Register 

SBLN Miss Data Replacement GO 

SBLN Miss Data Replacement G I 

Translation Buffer Address Matrix 

CAMS Group 0 Address Parity Odd <2:0) 

CAMS Group I Address Parity Odd <2:0) 

CAMU TB Parity (I :0) 

CAMV Receiver Parity 

TBMX Force Parity Error <3:0) 

TBMD Enable CDM Data 

Cache Data Matrix 

CDMR Group 0 Data Parity Odd <3:0) 

CDMR Group 0 Data Parity Even <3:0) 

CDMS Group I Data Parity Odd <3:0) 

CDMS Group I Data Parity Even <3:0) 

CDMA Mask <3:0) 

CDMH Address Latch (I 1:2) 

CDMU Clock CPT2-H; CPTI-L 

CAMP Group 0 Write Enable 

CAMP Group I Write Enable 

SBHF Force Read Parity Errors <3:0) L 
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Table 8-17. Sample of microdiagnostic monitor 
commands. 

Command 

HALT 

INIT 

UNJAM 

LOAD <CODE) 

RUN <CODE) 

Diagnose/Test: 2F / 
PASS: 2 

SET/CLEAR SCMM : 
<ADDRESS) 

SET STEP ST A TE/ 
BUS/INSTRUCTION 

SET CLOCK FAST / 
SLOW /NORMAL/ 
EXTERNAL 

EXAMINE 
ID : <ADDRESS) 

Action 

Halts CPU 

Initializes 

Clears SBI 

Loads a macrodiagnostic 

Executes a macrodiagnostic 

Executes microdiagnostic 
test 2F twice in succession. 

Sets/clears micromatch; 
loads address into 
micro match register. 

Enables single-stepping 

Selects CPU clock speed 
and source 

Registers on ID bus 

VB us : <CHANNEL) Displays contents of 
specified V-Bus channel 

RA/RC 

LA/LC 

DR/QR/SC/FE/V A 

PC 

DEPOSIT 

Scratch-pad registers 

Latches 

Registers 

Program counter 

A corresponding deposit 
command exists for all 
except the V-Bus and Pc. 
There is a deposit for the 
PA (physical address) 
register. 

failure. The V-Bus is read only (thus requiring 
the machine to be in a known state before 
applying the next test) and is normally used only 
by the microdiagnostics. 

The Diagnostic Supervisor allows the engineer 
to control and run macrodiagnostic programs 
through a command line interpreter in either 
stand-alone or user (on-line) mode. At the begin­
ning of each diagnostic program, the Diagnostic 
Supervisor requests information from the engi­
neer, such as the unit to be tested. Table 8-18 
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Table 8-18. Sample of macrodiagnostic 
supervisor commands. 

Command 

LOAD (File) 

START 

RESTART 

SUMMARY 

HALT 

LOOP 

QUICK 

TRACE 

LOCK 

SET BREAKPOINT 
(address) 

CLEAR 
BREAKPOINT 
(address) 

EXAMINE/DEPOSIT 
(address) 

Action 

Loads specified file when 
in user mode 

Starts execution of 
program in memory. 
Supervisor enters dialogue 
with user to set values of 
diagnostic switches (such 
as unit to test). 

Reexecutes the previous 
program with the same 
switch values as established 
by the START dialogue 

Prints statistics of tests to 
date 

Halts on detected error 

Enters predetermined 
scope loop when a subtest 
detects an error 

Enters quick-verify mode 

Reports execution of each 
test 

Disables program 
reloca tion. Self -reloca ting 
programs are thus locked 
into their current physical 
memory space. 

Diagnostic supervisor 
assumes control when 
program accesses the 
specified location. 

Examines or deposits the 
specified memory address. 

iists a subset of the Macrodiagnostic Supervisor 
command available to the engineer. A User 
Environment Test Package (UETP) can be em­
ployed for on-line diagnostics. A scratch tape or 
disk is mounted on the peripheral device to be 
tested. The UETP simulates a user load on the 
selected device. The number of simulated users is 

a function of the peripheral device type and the 
amount of memory in the system. 

The Error Log is another tool available to the 
engineer. Information about exceptions is auto­
matically captured by the hardware and entered 
into a disk file. The engineer can select printouts 
of the error log by device and error class. Error 
classes include hardware (such as machine 
checks, corrected read data, read data substitute, 
SBI alerts, and SBI faults), configuration 
changes (such as mount and dismount of periph­
erals), and system information (such as system 
startup time, crashes, software bug checks). The 
engineer can select one of five report formats: 

• Rollup: a summary of the number of errors by each 
device; 

• Brief: brief description of each error entry, including 
device, type of error, and time; 

• Cryptic: contents of associated registers for hard­
ware and device errors; 

• Standard: complete information on each error; and 
• Unknown: full information on unknown, invalid, 

and undefined errors. 

THE VAX-11 1750 IMPLEMENTATION 

The V AX-l 1/750 is the second implementation 
of the VAX architecture. Although the 
V AX-I 1/780 implementation influenced the de­
sign team, the V AX-I 1/750 differs from its pre­
decessor in several major respects. This section 
first discusses the evolution of the V AX-I 1/750 
design with special focus on the RAMP-related 
decisions. This discussion should provide in­
sights on how the material in the first six chap­
ters can be applied in practice. Next, the section 
discusses the details of the VAX-I 1/750 RAMP 
features. 

Design Evolution 

Several global design goals were set even before 
the design team was established. These global 
design goals placed constraints on implementa­
tion and RAMP design trade-offs. 

The targeted market determined the cost and 
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Figure 8-4. V-bus block diagram. 

)erformance goals: one-third to one-half the cost 
md 60-70 percent of the native mode perfor­
nance of the V AX-I 1/780. The 11/750 should 
lave at least 50 percent of the 11/780 perfor­
nance to achieve a performance/cost ratio im­
)rovement so that three years' difference in 
.echnology would be aggressively utilized. 

The improved performance/cost ratio dictated 
:he use of dense circuitry to decrease signal 
ielays and decrease area, which is directly relat­
!d to cost. The design specified the extended hex 
)oard (12" X 15") used on the VAX-I 1/780. To 
ichieve a density increase over the 11/780, a new 
~andom logic technology was selected. Custom­
iesigned 48-pin gate arrays (400 bipolar gates 
::>Ius 44 transceivers per chip) were to be used. 
Each hex board could hold up to 50 gate array 
:hips. The projected cost of the hex board/gate 
uray combination required a three-board basic 
processor if the cost goal was to be met. 

To take advantage of mass production and 
standardization, several 11/780 features were 
adopted, including use of the same operating 
system, functional diagnostics, Unibus/Massbus 
I/O, and-as nearly as possible-the same main­
tenance/repair procedure. 

Also, to reduce cost, the 11/750 was specified 
as a bounded system with limited expansion 
capacity. In contrast with the 1l/780,which can 
be configured with multipled cabinets, the 

11/750 CPU/Memory/10 adapters were to be 
contained in a single cabinet. Figure 8-8 shows a 
preliminary system diagram (devised about four 
months after the design team was formed). The 
synchronous backplane bus was dubbed CMI 
(Comet Memory Interconnect). Primarily for 
performance reasons, the CMI was limited to 
eight ports and a length of six inches. The CPU, 
memory controller, one Unibus Adapter, Writ­
able Control Store (WCS), and the Remote 
Diagnostic Module (ROM) were dedicated 
ports. The other three ports could be allocated to 
Massbus and/or Unibus Adapters, multiport 
memory, or directly interfaced DMA (Direct 
Memory Access) devices. The memory controller 
could handle up to eight memory array cards of 
128 Kbytes or 256 Kbytes each for a maximum 
system memory of 2 Mbytes. 

The three-board goal resulted in a straightfor­
ward functional partitioning: Data Path Module 
(DPM), Microsequencer and Control Store 
(MCS), and Memory Interface (MI). An option­
al Floating Point Accelerator (FP A) was also 
envisioned. Figure 8-9 illustrates this initial par­
titioning. Custom gate array, RAM, and ROM 
chips were used extensively to keep board densi­
ties high. To minimize the number of custom 
gate array designs, a bit-sliced approach was 
adopted. Depending on logic complexity, each 
gate array handled 4, 8, or 16 bits of data. 
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Figure 8-8. Backplane interconnect structure for the VAX-11 1750. 

The DPM consisted of a bit-sliced ALU fed 
Jy two RAM/ROM files. The ROMs supplied 
~requently used constant operands. All the com­
Jlex rotate, mask, and extract functions implied 
Jy the V AX instruction set were handled by the 
Rotate/Mask bit slice, which was driven by a 10-
Jit select code. 

The micro sequencer occupied two chips. One 
~ate array (Instruction Register Decode-IRD) 
:md four PROMs accomplished opcode decod­
.ng for the microsequencer. The control store 
was 8K words by 56 bits per word, composed of 
56 2K X 4-bit chips. 

The Memory Interface accomplished address 
:ranslation and alignment of data to/from mem­
)ry (a VAX instruction stream is composed of a 
;tring of bytes, without any word-boundary 
llignment restrictions). A translated address 
~ache and data cache improve system perfor­
nance. The Unibus Adapter was standard with 
ill processors, providing a minimal I/O and 
iiagnostic load path. 

The Floating Point Accelerator was a set of 
54-bit data paths controlled by a 16-bit extension 
)f the microword to 72 bits. 

Even a preliminary design provides enough 
ietail to make a first order reliability model. The 
:>reliminary design was dominated by LSI, 
ltAM, and ROM chips. Almost 95 percent of the 
;hips were of LSI complexity, and over 45 per­
;ent represented a new technology-the gate 
:trrays. As indicated in Chapter 2, the MIL­
HDBK-217B model was not accurate in predict­
ing failure rates for LSI components. The first 

RAMP-related problem was to devise better 
estimates of component failure rates. Better esti­
mates were essential because of the effect of 
MTTF predictions on maintenance and repair 
stra tegies. 

The failure rate of RAM chips could be esti­
mated from the failure rates observed by Memo­
ry Engineering during their high-temperature, 
accelerated-life testing of memory chips from 

. potential vendors. Although accelerated-life test­
ing has shortcomings, as discussed in Chapter 2, 
it provided the most up-to-date data available; 
data complied by RADC are a few years old by 
the time they are published and hence give little 
information on the newest components. To be 
competitive, components are designed into sys­
tems even prior to general availability. As com­
ponents become more reliable as a result of an 
accumulated learning curve, systems produced 
with these components will experience a general 
reliability improvement throughout their life. 

The gate array failure rate was even more 
difficult to estimate. There was no similar tech­
nology inside Digital Equipment Corporation 
(DEC). Even data on random logic LSI were 
difficult to acquire. The major random logic LSI 
chip used by DEC at that time was the LSI-II 
NMOS chip set. One potential source of infor­
mation was DEC's Field Service Labor Activity 
Reporting System (LARS). Each field service call 
is recorded according to system identity, time to 
repair, type of call (such as installation, preven­
tive maintenance, repair), and module failure 
action (such as adjust, repair, replace, trouble-
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shoot). The total number of DEC systems report­
ed in LARS is not known. A second system, 
Regional Customer Obligation File (RCOF), is 
composed of systems under contract whose con­
figurations were known. With LARS and RCOF, 
MTTR and Mean Time Between Calls (MTBC) 
can be estimated. Because the system duty cycle 
is not known, MTTF calculations are "guessti­
mates" at best. Furthermore, because of the 
small size of systems employing them, LSI-lis 
rarely appear in RCOF or even LARS. One 
solution was to obtain data from a controlled 
environment. Carnegie-Mellon University and 
DEC had entered into cooperative research in 
multiprocessors based on LSI-lis. The LSI-II 
data presented in Chapter 2 were collected and 
compared for consistency with data on RAM 
chip MTTFs culled from several sources. Com­
plexity derating for LSI was developed (see 
Chapter 2) and applied to the preliminary de­
sign. 

Table 8-19 lists estimates for the chip and 
board failure rates. Even though the design 
evolved, the relative failure rates did not change 
significantly. The major changes in the relative 
board failure rates resulted from repartitioning 
the logic functions as some boards became over­
crowded.* The absolute failure rate for the CPU 
changed less than 5 percent in two years. In fact, 
during Design Maturity Testing the basic CPU 
was tested to 90 percent of its initially predicted 
failure rate at a 90 percent confidence level. 
Thus, fairly accurate failure rate predictions can 
be made using even preliminary designs. The 
relative failure rate predictions are accurate 
enough to make RAMP design trade-off deci­
sions. 

* The basic machine evolved to a four-board design parti­
tioned into a Data Path Module (DPM), Microsequencer 
and Unibus Adapter (UBA), Memory Interface (MIC) and 
PROM Control Store (CCS). Although the partitioning 
changed, the design depicted in Figure 8-9 did not substan­
tially change. Minor design changes include removal of the 
ROM array feeding the ALU (constants are generated 
directly from the microstore), a 6K- by 78- (plus two parity) 
bit control store (arranged as 120 lK- by 4-bit chips), and 
the FPA now has its own micro sequencer and control store. 
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Table 8-19. Reliability analysis of preliminary 
VAX-11/7S0 design.* 

Chip Type 

Gate Array 
4K ROMs 
8K ROMs 
64-bit RAMs 
512-bit ROM 
SSI/MSI 

Number 

97 
16 
56 
32 

1 
12 

214 

Percent oj 
Failure 
Rate 

41% 
9 

47 
2 
a 
1 

100 

Percent oj Failure Rate 

Board 

DPM 
MCS 
MI 
FPA 

(initial) 

7% 
57 
15 
21 

100 

*See Figure 8-10 for analysis of final design. 

(aJter two 
years) 

10.4% 
43.6 
29.0 
16.9 

99.9 

One of the first RAMP design studies was the 
sensitivity of system failure rate to the junction 
temperature of the gate array transistors. Where­
as the gate arrays were designed for up to two 
watts of power dissipation, the actual transistor 
junction temperature was unknown. Indeed, no 
gate array chip had been fabricated at that time 
and the semiconductor process was just being 
defined. Table 8-20 lists the results of the temper­
ature-sensitivity study. The sensitivity to high. 
junction temperatures reinforced and economi­
cally justified the addition of heat sinks for the 
gate array chips. 

The following conclusions were drawn from 
the initial reliability study . 

• For a 2-Mbyte system, main memory chips would 
account for 71 percent of the system failure rate. 
The application of Hamming code (which to a first­
order approximation removes the memory chips as a 
source of error-see Chapter 5) improved CPU / 
Memory MTTF (under a failure-to-exhaustion mod­
el) by a factor of almost 3.5. 

• The Control Store board represented 57 percent of 
the CPU failure rate. Of that total, 82 percent was 
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Exploded view of gate array assembly. 

microstore; thus, a total of 47 percent of the CPU 
failure rate was attributable to the microstore. 

• Fifty-six percent of the three-board CPU failure rate 
and 51 percent of the CPU/Memory control failure 
rate consisted of RAM and ROM failures. 

A series of fault-tolerant techniques was pro­
posed for the RAMs/ROMs in the CPU. Figure 
8-10 shows an AUTOFAIL analysis of the stan­
dard V AX-I 1/750 processor as finally imple­
mented (the failure rate groupings thus corre­
spond to the final partitioning, not to the board 
partitioning depicted in Figure 8-9). The control 
store (now 80 bits wide) accounts for 55 percent 
of the RAM/ROM failure rate and 33 percent of 
the total failure rate. Table 8-21 lists the expect­
ed improvements after applications of a series of 
error-correcting codes to the RAM/ROM arrays 
in the three-board CPU plus memory controller. 
With these modifications, a factor of two im­
provements in MTTF was predicted for a cost of 
II gate array chips. * A point of diminishing 
returns was reached after applications of ECC to 

* A gate level design for a Block-Code Corrector chip (see 
Chapter 3) was the basis for this chip estimate. No perfor­
mance degradation was anticipated in the case of no 
failures. The overall parity detection was fast enough to 
freeze the processor and perform microinstruction retry 
after correction in all cases except the mUltiply and divide 
microoperations, which used a double frequency 160 nsec 
cycle clock to produce two results every microcycle time. 

Two complete gate array assemblies. 

the Control Store, Translation Buffer, and Data 
Cache . 

Full Hamming coding was too expensive in 
terms of board area for the Control Store. Block­
code correctors are susceptible to multiple-bit 
failures. Because the Control Store was to be 
implemented by four-bit-wide chips, the relative 
failure rate of multiple bits was an additional 
unknown in establishing the effectiveness of a 
Block -Code Corrector. It was therefore decided 
to disperse the resource commitment to RAMP 
throughout the CPU. In particular, a Visibility 
Bus was implemented to improve MTTR and to 
support chip-level repair (see below). In the 
Control Store, the number of parity bits was 
increased from one to two to improve the diag­
nostic resolution of the chip in error. Field 
Service would have at most 10 suspect ROM 
chips instead of 20 (hardware captures the mi-

Table 8-20. Sensitivity of CPU failure rate to gate 
array junction temperature. 

Gate Array Junction 
Temperature 

50° C 
60° C 
70° C 
80° C 

Relative Failure Rate of 
CPU 

1.00 
1.05 
1.15 
1.30 
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LSI= 16.000 ROM= 16.000 RAM= 16.000 
E = 1.000 Q = 16.000 L = 1.000 T = 40.000 

MODULE 
CLiMET:'"CPU. PLUS.MEMORY .CONTROL 

Data. Path .Modul e 
Misc 
ROM. AND .RAM 
GATE.ARRAY 

Memory. Interface .Cache 
Mi sc 
ROM.AND.RAM 
GATLARRAY 

Uni bus. Interface 
Misc 
ROM. AND .RAM 
GATE .ARRAY 

Control.Store 
Misc 
ROM.AND.RAM 

Memory.Controller 
Misc 
ROM.AND.RAM 
GATE.ARRAY 

PERCENTAGE 
100.000 

16.187 
42.643 
27.007 
30.271 

25.038 
30.003 
48.648 
21.349 

14.158 
58.633 
20.905 
20.462 

29.908 
5.657 

94.343 
14.717 

64.169 
25.237 
10.594 

# of chi ps = 662.000 # of gates = 33361. 000 # of bits = 732416.000 

TYPE 

SSI 
MSI 
LSI 
ROM 
RAM 
MOS 
BIP 

SUMMARY ROLLUP BY COMPONENT TYPE 

# of CHIPS 

180.000 
142.000 
67.000 

150.000 
123.000 

.000 
662.000 

PERCENTAGE 

10.824 
22.809 
14.914 
35.179 
16.274 

.000 
100.000 

Figure 8-10. Relative failure rates in 111750 three 
board CPU and memory controller. 

rable 8-21. Projected improvements in applying 
:CC to the RAM/ROM arrays in the three-board 
11/750 CPU and memory controller. 

Percent 
Change in Relative 
Failure Failure Extra Chips 
Rate Rate Required 

;tock 11/750 1.00 

~CC Control 28% 0.72 4 
itore 

~CC Memory l2 0.58 4 
nterface/Cache 

~CC Data Path 4 

~CC Unibus 3 0.49 3 

nterface 3 

~CC Memory 3 
:ontroller 

croaddress that triggered the parity error as well 
as to which half of the Control Store the error 
occurred in). 

Parity was provided on the Cache and each 
half of the Translation Buffer. Upon error detec­
tion, the appropriate Translation Buffer half 
could be disabled, thus providing a form of fault 
tolerance in exchange for performance degrada­
tion. 

RAMP Features 

Figure 8-11 depicts the final implementation of 
the V AX-I 1/750. The eight CMI ports are occu­
pied by the CPU, memory controller, floating 
point accelerator, three Massbus Adapters, Writ­
able Control Store, and Remote Diagnostics 
Module (RDM). A Unibus Adapter and small 
cassette tape (TU 58)-for logging, bootstrap-
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ping, and software distribution-are provided as 
part of the CPU. 

The V AX-I 1/750 does differ from the 
V AX-I 1/780 in two major ways that affect the 
RAMP philosophy: it has gate-array custom LSI 
chips and a bounded, single cabinet environ­
ment. Table 8-22 lists the characteristics and 
utilization of the gate array chips. The extensive 
use of gate arrays, the decreased visibility of 
logic signals because of LSI gate densities, and 
the higher board costs result in a repair strategy 
based on microdiagnostics, a Visibility Bus, 
sockets for the gate array chips, and chip-level 
repair. The bounded, single-cabinet environment 
results in reduced complexityand the use of fault 
intolerant techniques. To reduce complexity, the 
same microsequencer that implements the V AX 
architecture also services the Console Subsystem. 
Because of the limited, controlled environment 
the six-inch CMI is less likely than the intercabi­
net SBI to pick up noise. Errors are less likely to 
occur and substantial complexity can be saved 
by not implementing parity on the CMI. 

Processor Registers 

Because there is no separate console processor in 
the V AX-I 1/750, there is no equivalent to the ID 
Bus. All registers are located in either the pro­
cessor (accessible by the special Move-To/From­
Processor Register instructions) or the main 
memory address space. 

Table 8-23 lists the implementation-specific 
V AX-ll/750 processor registers. Four registers 
are associated with the control of the TU-58, the 
Console Subsystem mass storage device. These 
registers are absent from the V AX-I 1/780 be­
cause its separate LSI-II console processor di­
rectly manages the Console Subsystem's floppy 
disk. Another consequence of lack of a separate 
console processor is that in the 11/750 the regis­
ters associated with error detection in the pro­
cessor (such as machine check, cache, and trans­
lation buffer) are found as processor registers, 
whereas in the 11/780 they were available only 
on the ID Bus. 
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Table 8-22. VAX-11/750 gate array techology. 

Gate Array Characteristics 

Technology-Low-power bipolar Schottky 

Die Size-.215 inch X .244 inch 

Package-48 pins 

Circuitry-400 identical 4-input NAND gates 
44 I/O transceiver gates 

Speed per gate-5 to 10 nanoseconds 

Gate Array Utilization Total Used Unique Types 

CPU and Memory 
Controller 55 27 

Floating Point 
Accelerator 28 7 

Massbus Adapter 12 5 

As mentioned above, no parity or error check­
ing was deemed necessary on the CMI due to its 
sheltered environment and implementation simi­
larity to other data paths in the CPU. Hence, 
there are no registers to control or report CMI 
errors in the CPU or, for that matter, any CMI 
port. 

Table 8-24 lists details of the RAMP-related 
processor registers. The Machine Check Error 
Summary Register records the region of the 
machine where the error was reported: CMI, 
Translation Buffer, or Unibus. It also records 
whether the error occurred on a CPU fetch or an 
Instruction Buffer (IB) prefetch. Transient errors 
associated with the IB prefetch can be recovered 
from by simply flushing the lB. 

The Machine Check Status Register gives de­
tailed information about bus and Translation 
Buffer errors. The eMI can be disabled. Memory 
errors that are logged include nonresponding 
memory, ECC corrected read data, and uncor­
rectable ECC errors. A Lost Error Bit is set if a 
second error occurs before the first error is 
serviced. Translation Buffer (TB) errors include 
the parity bit in error as well as the status (hit or 
miss) of the last translation. 

The Translation Buffer Disable Register con­
trols the replacement strategy on a TB miss. 
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Table 8-23. VAX-11/7S0 implementation-specific 
processor registers. 

Register Access Permitted 

Console Storage R/W 
Receive Status 

Console Storage R 
Receive Data 

Console Storage R/W 
Transmit Status 

Console Storage W 
Transmit Data 

Machine Check Error R/W 
Summary 

Machine Check Status R/W 

Translation Buffer R/W 
Disable 

Translation Buffer R/W 

Cache Disable R/W 

Cache Error R/W 

I/O Reset R/W 

Memory Management R/W 
Enable 

Replacement can be random or forced to one 
half of the TB. The latter case can be used to 
disable half of the TB and allows reconfiguration 
around a permanent failure. The Force Miss 
Bits, coupled with the TB Hit/Miss Bit (in the 
Machine Check Status Register) can be used by 
diagnostics to check the TB's functionality. Fin­
ally, the Translation Buffer Register records the 
address that caused the last protection violation. 
This datum can be used by system software to 
repair or isolate software errors. 

Because the cache is direct-mapped, the Cache 
Disable Register controls only turning the cache 
on or off. The Cache Error Register records 
whether the Tag or Data recorded the parity 
error. The Lost Error Bit indicates that a second 
cache error occurred before the first one was 
serviced. As in the TB, the Cache Hit/Miss Bit 
indicates the status of the last reference. 

When an internal error is detected, status 
information is automatically placed on the ma-

chine stack for software analysis and error log­
ging. Table 8-25 lists the error status registers 
and other information that is placed on the 
stack. An error summary code pinpoints the 
region of the system where the error occurred. 

Main Memory Registers 

There are registers in main memory associated 
with each CMI port type: memory, Unibus 
Adapter, and Massbus Adapter. 

Table 8-26 details the three registers associated 
with the ECC main memory. Control and Status 
Register 0 (CSR 0) contains the address and 
syndrome of the last detected error. Two bits 
record whether an error was correctable or un­
correctable. The· address and syndrome of an 
uncorrectable error overwrites the address and 
syndrome of a correctable error. The Uncorrec­
table Error, Information Lost Bit records the 
occurrence of a second uncorrectable error be­
fore the first was serviced. The address and 
syndrome of this second error will not overwrite 
the address and syndrome of the first error. 

CSR 1 contains control and maintenance bits. 
Single correctable errors can be ignored by set­
ting the Inhibit Reporting Correctable Errors 
Bit. The Page Mode Address bits specify the 
memory page affected by the other maintenance­
mode bits. The Page Mode Bit controls whether 
the whole memory is involved or just the speci­
fied page. The Check Bits are used to replace or 
make accessible the ECC bits associated with a 
word in main memory. The Diagnostic Check 
Mode allows for substitution on a memory read 
of the Check Bits field for the ECC bits stored in 
memory, providing a means of testing the ECC 
check logic. During writes, the newly generated 
ECC bits are stored in both memory and Check 
Bits<6:0). The Diagnostic Check Mode can 
operate only on a single page whose address is 
specified by the Page Address field. While in 
Diagnostic Check Mode, read errors in other 
memory pages will not be logged into CSR O. 
The Error Disable Mode turns off error detec­
tion, correction, and logging. ECC can be dis-
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Table 8-24. Details of VAX-11 1750 implementation-specific processor registers. 

Registers 

Machine Check Error Summary 

Machine Check Status 

Translation Buffer Disable 

Translation Buffer 

Cache Disable 

Subfields 

Bus Error 

Translation Buffer Error 

Unaligned Unibus Reference 

Operand Fetch/Execution Buffer 
Fetch 

Enable/Disable Buffer 

Translation Buffer 

Group I Tag Parity Error 

Translation Buffer 

Group 0 Tag Parity Error 

Translation Buffer 

Group I Data Parity Error 

Translation Buffer 

Group 0 Data Parity Error 

Translation Buffer Hit/Miss 

Nonexistent Memory Timeout 

Uncorrectable Data Error 

Lost Error 

Replace 

Force GO/GI 

Force Miss G I 

Force Miss GO 

Valid Protection Code (3:0) 

Modify Page Frame 
Number <20:0) 

Cache on/off 

Comments 

CPU or instruction prefetch caused 
error 

Indicates status of last address 
translation 

Second error occurred before first 
serviced 

Replaces entries at random or forced 

Forces replacement to group GO or G I 

If set, forces a miss on group G 1 

If set, forces a miss on group GO 

Value of address translation that 
caused last error 

(Table continues on next page) 
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Table 8-24 -Continued 

Registers 

Cache Error 

Unibus Initialize 

Memory Management Enable 

Subfields 

Tag Error 

Data Error 

Lost Error 

Hit/Miss 

Initialize 

Enable/Disable 

Table 8-25. VAX-11 1750 machine check error 
logout onto machine stack. 

Information 

Byte Count (length of information on stack) 

Error Summary Code (see below) 

Virtual Address Register (operand address) 

Program Counter 

Memory Data Register 

Saved Mode Register (CPU mode during fault) 

Read Lock Timeout Register 

Translation Buffer Group Parity (sub field of 
Machine-Check Status Register) 

Cache Error Register 

Bus Error Register (subfield 9f Machine-Check 
Status Register) 

Machine-Check Error Summary Register 

Backup Program Counter (address of instruction) 

Program Status Word 

Error Summary Code 

Control Store Parity Error 

Cache Parity Error 

Memory Error 

Corrected Memory Data 

Write Bus Error 

Bad Instruction Register Decode 

Comments 

Indicates status of last reference 

abled for the entire memory or a single page, 
depending on the value of the Page Mode Bit. 

CSR 2 contains memory configuration infor­
mation such as the starting address of memory, 
the validity of memory contents after a power 
failure, and the presence of memory array 
boards. 

The Unibus Adapter has only one RAMP 
related-register, the Buffered Data Path Control 
and Status Register detailed in Table 8-27. Only 
nonexisting memory and uncorrectable ECC er­
rors are recorded. 

The Massbus Adapter has three RAMP-relat­
ed registers, detailed in Table 8-28. The Control 
Register has a Maintenance Mode Bit that al­
lows exercising the Massbus without requiring an 
attached peripheral. When the bit is set, all 
Massbus devices detach from the bus. The Inter­
rupt Enable Bit allows reporting of Massbus­
related errors to the CPU. 

The MBA Status Register has three groups of 
signals. The first group records errors associated 
with the CMI portion of the access: corrected 
ECC, no response, and error. The second group 
deals with Massbus-related errors: control bus 
hung, nonexistent drive, data late, miss transfer, 
Massbus parity, and programming. A program­
ming error is logged if a second MBA operation 
is attempted before completion of the first. The 
third group logs errors associated with logic in 



Table 8-26. VAX-11 1750 memory control and status registers. 

Register 

CSRO 

CSR 1 

CSR2 

Subfields 

Page Address 04:0> 

Error Syndrome (6:0> 

Correctable Error 

U ncorrectable-Error 

Uncorrectable-Error, Information­
Lost 

Inhibit Reporting Correctable 
Errors 

Page Mode Address (14:0> 

Page Mode 

Check Bits (6:0) 

Diagnostic Check Mode 

Error Disable Mode 

Starting Address (6:0) 

Battery Backup Failure 

Memory Present Map (15:0) 

RAMP IN THE VAX FAMILY 401 

Comments 

Address of the 512-byte page in 
which the error occurred 

Set when a correctable error occurs 
during a read. Correctable errors 
during a byte write do not affect this 
bit. 

Set when an even number of errors 
occurs in a word, or an odd number 
of errors that generates an invalid 
syndrome 

Set when an uncorrectable error has 
occurred after the setting of the 
Uncorrectable-Error bit 

When set, single errors will be 
corrected but not reported to the 
CPU nor error-related information 
logged in CSR O. 

When set, the ECC Disable or 
Diagnostic Check Modes operate on 
the page specified in Page Mode 
Address (14:0). 

Substituted for the Check Bits in 
Diagnostic Check Mode. In ECC 
Disable Mode, a read replaces these 
bits by the Check Bits in the memory 
array. 

When set, during a read the Check 
Bits (6:0) are substituted for the 
ECC bi ts stored in memory. 

When set, no error detection, 
correction, logging, or reporting is 
done. 

Starting address of memory 

Set when battery backup power has 
been exhausted 

Bits represent amount and location of 
memory in the backplane. There are 8 
possible locations for memory array 
boards. Each board, when inserted, 
sets 2 adjacent bits in this register. 
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Table 8-27. RAMP-related VAX-11 1750 Unibus adapter register. 

Register 

Buffered Data Path Control 
and Status 

Subjields Comments 

Error Logical OR of error bits 

Nonexistent Memory 
Uncorrectable Error 

Set when NXM received from memory 
Set when memory has uncorrectable 
error 

the MBA: page map and data-path parity errors. 
The MBA Diagnostic Register allows setting 

of incorrect parity on the Massbus, page map, or 
MBA data path, and reading or writing of select­
ed Massbus fields. 

Diagnostics and Repair 

Table 8-29 lists the five levels of diagnostics 
employed in the VAX-II/750, ranging from 
User Mode Macrodiagnostics, which execute 
concurrently with user software, to microdiag­
nostics, which require dedicated use of hardware. 
A Micro-Verify routine resident in the PROM 
control store is executed upon system initializa­
tion. 

The Remote Diagnostics Module (RDM) 
plays a critical role in the 11/750 RAMP philos­
ophy. Because the 11/750 console interface is 
provided by microcode executed in the main 
microsequencer, a CPU failure would bring the 
system completely down. A large percentage of 
the CPU hardware would have to be functioning 
correctly in order to respond to console com­
mands such as examine registers, deposit values, 
and single step. The RDM has a separate micro­
processor that can read the W -bus in Figure 8-11 
(for access to the CPU registers) and single-step 
(either single clock . or single instruction) the 
CPU. It can also write via DMA over the CM!. 
The RDM contains a small 64-word Writable 
Control Store (WCS) for executing microdiag­
nostics stored on a TU-58 cassette. It can also 
force arbitrary microaddresses, thus using the 
CPU control store to provide more microdiag­
nostics. A typical scenario would be to set up the 

CPU registers by DMA write into memory, 
execute some CPU microcode through forced 
microaddresses and clock control, set up a mi­
crotest via the forced microaddress and clock 
control, and observe results via the W -bus. 

Another key philosophy is chip-level repair. A 
board-swap repair strategy usually ties up as 
many boards in Field Service repair kits and in 
transit to/from repair depots as there are in 
functioning CPUs. Because of the high cost of 
large, LSI-intense boards, a board-swap strategy 
would have required too large an investment in 
inventory. Given that the gate array chips repre­
sented a complexity comparable to that of an 
early 1970s SSI printed circuit board and that 
those earlier diagnostics were targeted at a 
board-level resolution (that is, the FRU was a 
board), chip-level repair was deemed practical. 
Even if only 20 percent of failures were repaired 
by chip replacement in the field, the reduced 
inventory costs for boards would offset the chip 
socket cost. To facilitate field repair, a special 
leadless chip socket was used. Because sockets 
potentially increase costs and also increase CPU 
failure rate, the question of socket failure rate 
had to be adequately resolved with the socket 
vendor to insure that more problems were not 
introduced than were solved. A special Visibility 
Bus (like that in the 11/780) chains together the 
outputs of the gate array chips. The goal is 
resolution to a path containing three to five gate 
arrays and other MSI chips in 98 percent of the 
cases. When chip replacement fails, the board 
will be swapped. 

In a typical maintenance scenario on the 
V AX-ll/750, disk-resident, User Mode diagnos-



Table 8-28. RAMP-related VAX-11/7S0 Massbus adapter registers. 

Register 

Control 

Status 

Diagnostic 

Subfields 

Maintenance Mode 

Interrupt Enable 

Corrected Read Data 

No response 

Error Confirmation 

Control Bus Hung 

Nonexistent Drive 

Data Late 

Miss Transfer Error 

Massbus Data Parity Error 

Massbus Control Parity ErrQr 

Programming Error 

Page Frame Map Parity Error 

Silo Parity Error 

Invert Parity <3:0) 

Simulate Asynchronous Control 
Lines <4:0) 

Read Signals <20:0) 
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Comments 

When set, software can exercise the 
Massbus without any attached devices. 

When set, causes an interrupt in CPU 
on the occurrence of any errors 
reported in the status register. 

Set when CMI indicates a correction 
was made on data 

Set if CMI returns a no response 
confirmation 

Set when CMI returns an error 
confirmation on a transaction 

Set if MBA Register access times out 

Set if drive fails to respond within a 
specified time 

Indicates error in parity checking of 
bus data field 

Indicates error in parity checking of 
bus control field 

Set if software tries to initiate a data 
transfer while MBA is currently 
performing one 

Indicates parity error in memory 
where page map information is stored 

Set when there is a parity error in 
data transfer buffer 

Inverts the sense of the bus data, bus 
control, map, and Silo parity generator 

Allows setting, clearing of various 
Massbus signals when in maintenance 
mode 

Allows reading of selected Massbus 
fields 
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Table 8-29. VAX-11/7S0 diagnostics. 

Level 

Levell 

Level 2 

Level 3 

Level 4 

Level 5 

Micro-Verify 

Action 

User Mode Macrodiagnostics 
run under the VMS (Virtual 
Memory System) operating 
system, such as line printer, 
card reader, terminal, tape, 
disk, instruction set. 

Macrodiagnostics executed 
under Diagnostic Supervisor 
while VMS is still operational. 
Used in acceptance tests. 

Macrodiagnostics executed 
under the Diagnostic 
Supervisor with the CPU 
operating in a stand-alone 
mode. Used in Unibus diagnostics. 

Macrodiagnostics executing 
stand-alone without the 
Diagnostic Supervisor. Used in 
instruction set diagnostics. 

Microdiagnostics executing in a 
stand-alone mode. 

PROM resident 
microdiagnostics executed upon 
system initialization. A sanity 
check of the Data Path and 
Memory Interconnect Modules. 

tics periodically execute under VMS (Virtual 
Memory System), to execise and detect function­
al errors in memory, MBA, UBA, device control­
lers, and device drives. Errors reported by User 
Mode diagnostics or hardware check circuits 
prompt a customer call to the Digital Diagnostic 
Center (DDC). The customer replaces the re­
movable disk media with a diagnostic and 
scratch disk. The DDC engineer calls the cus­
tomer's processor and loads macrodiagnostics 
from the diagnostic disk. If the disk is not 
operable, the diagnostics can be loaded from the 
TU-58 or down-line loaded over the telephone. 
The DDC attempts to isolate the failure to a 
subsystem. If the CPU is faulty, the diagnostic 

on the TU-58 is executed to verify the CPU 
status. 

The DDC advises the local Field Service Of­
fice of the failing subsystem. At the customer's 
site, Field Service performs a board-swap and 
reverifies the system. If the failing subsystem is 
the CPU, microdiagnostics are loaded into the 
64-word WCS on board the ROM. Multiple 
TU-58 cassettes are used to accommodate the 
extended length of the microdiagnostics (the 
V AX-I 1/780 microdiagnostics occupy five flop­
py disks). Length is also the reason that micro­
diagnostics are not down-line loaded from the 
DOC to attempt CPU failure isolation at the 
board or chip level. The 64-word WCS is loaded 
to set up data paths, registers, and the like, then 
overlaid with a series of tests. Each test exercises 
a single gate-array function. Results of tests are 
observed on the W -bus or Visibility Bus. The 
RDM also monitors output of the control store. 
In the case of control store failure, parity pin­
points the failure to 10 chips. A micros tore image 
stored on the TU-58 is used for comparison 
when the ROM accesses the faulty micros tore 
word. 

The microdiagnostics isolate the failure to 
between three and five gate array chips. If the 
malfunction persits after chip replacement, the 
board is swapped. The board is also swapped if 
one of the nonsocketed SSI/MSI chips fails. 

SUMMARY 

Table 8-30 lists the RAMP features common to 
the V AX-I 1/750 and V AX-l 1/780 implementa­
tions. In addition to describing the benefit of 
each feature, the table indicates whether the 
feature improves MTTF and/or MTTR. 

Table 8-31 lists the RAMP-related features 
that vary in the two implementations. 

REFERENCES 

Bell et al. [1970]; Bell and Strecker [1976]; Strecker 
[1978]. 



Table 8-30. Common VAX RAMP features. 

Feature 

Processor consistency 
checking 

In terval timer 

Disk error correcting 
codes 

Peripheral write-verify 
checking hardware 

Track offset retry 
hardware 

Bad block handling 

On-line error logging 

Example 

Arithmetic traps, memory­
address protection, limit 
checking, reserved opcodes 

I-microsecond resolution 

RP05, RP06, and RK06 
detect all errors up to 11 bits 
and correct single burst up to 
11 bits 

Read after write followed by 
comparison 

Upon error, disk retries read. 
If retry fails, disk head is 
offset for retry. 

VMS operating system 
removes bad disk blocks from 
use. 

Records exceptional 
conditions in an error log, 
including time and system 
state 

Benefit 

Limits damage due to 
hardware or software 
errors 

Used by diagnostics to 
test time-dependent 
functions 

Tolerates transient and 
media related faults 

Detects error 

Aids permanent and 
intermittent fault isolation 

Aids 
MTTF 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

Aids 
MTTR 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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Table 8-31. Comparison of VAX-11I7S0 and VAX-11 1780 features. :r: 

tTl 
"'0 

Aid Aid ;;0 

Feature VAX-ll/750 VAX-ll/780 Benefit MTTF MTTR 
;I;> 
() 
-l 

Fault Intolerance n 
Air flow Blowers Blowers Lowers chip junction Yes No tTl 

temperature 0 
." 

Memory chips, 90% of Memory Chips Fewer chips result in fewer 
;;0 

LSI Yes Yes tTl 

CPU Logic functions boards, more reliable per r 
;; 

implemented as custom function over SSI/MSI, o::l 

gate array lower power consumption, r 
tTl 

hence, cooler junction lfJ 

tempera tures -< 
lfJ 
-l 

Cabling Card cage fixed mounted Fewer pluggable Yes Yes tTl 
~ 

and not on slides. No connectors to fail 10 
internal cables. tTl 

Connections through 
C/1 a 

backplane, no cables to Z 
cards. 

Physically Yes No Limited number of system Yes Yes 
bounded system configurations; CPU and 

memory in one cabinet 
results in greater control of 
environmental factors such 
as temperature and 
electromagnetic 
in terference. 

Sensors and Power loss, temperature, Power loss Protects system from Yes Yes 
indicators air flow damage resulting from 

emergency conditions 

Modular power Yes Yes Easy replacement No Yes 
supply 

Fault Tolerance 

Main memory 7-bit ECC per 32-bit word 8-bit ECC per 64-bit word Tolerates transient and Yes Yes 
permanent failures. 
Logging of error 
information allows quick 
fault isolation. 



Control store 2 parity bits: 1 even parity. 3 parity bits. Provides tolerance of No Yes 
I odd parity. over disjoint 1 per 32 bits of control store transient errors as well as 
subfields of the 78-bit-wide partial isolation to the 
control store failing chip 

Micro-verify Control store resident No Yes 
check of data paths. 
registers. and other 
portions of the system 
boot path. Ensures proper 
boot of system if passed. 

Translation 2-way set-associative. 4 2 way set-associative. 6 parity Provides faulty chip Yes Yes 
buffer parity bits for each set: bits for each set: 3 over 16- isolation. Tolerates 

over 15-bit tag and valid bit tag. valid. modify. and 4- transients by recalculating 
bit; 3 over disjoint bit protection; 3 over 21 bits TB contents. Tolerates 
subfields of 15-bit page of page-frame number permanent failures by 
frame number, 4-bit disabling one set. 
protection, and modify bit 

Cache Direct-mapped cache: 5 2-way set-associative. 7 parity Provides faulty chip Yes Yes 
parity bits, lover 12-bit bits per set: 3 over 12-bit tag isolation. Tolerates 
tag and valid bit; 4 over and valid bit; 4 over 32 data transients by refetching 
32 data bits (byte parity) bits (byte parity) cache contents. Tolerates 

permanent failures by 
disabling cache (I 1/750) or 
one set (11/780). 

Synchronous None 2 parity bits: lover 32-bit Detects errors and isolates No Yes 
Backplane data/address field. lover 12 to faulty bus port. 
Interconnect bits' of control information Transients tolerated by bus 
(SBI) level retry. 

Silo captures last 16 bus Isolates faulty chips No Yes 
cycles :::0 

:> 
Unibus Adapter None Parity on data paths and Provides faulty chip No Yes 3: 

""0 
Unibus Map isolation. Transients Z 

tolerated by retry. ..., 
Massbus Data and Control Bus Data and Control Bus lines Provides faulty chip 

:t 
No Yes tTl 

lines parity. Data buffer parity isolation. Transients < 
parity. tolerated by retry. :> 

X 
Watchdog timer None In LSI-II console processor Detects hung machine and No No "T'] 

> 
allows automatic restart 3: 

r 
(Table continues on next page) -< 
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Table 5-JI -Continued 

Feature 

Clock margining 

Maintenance 
registers 

Visibility Bus 

Chip Sockets 

Remote 
diagnostic 
module 

VAX-ll/750 

None 

Machine Check Error 
Summary 

Cache Error 

Machine Check Status 

Internal signals made 
available to 
microdiagnostics 

Gate array 

Load/examine critical 
machine registers 

Monitor control store 
output for control store 
verification 

Error status registers 
readable over W -bus 

Monitor Memory Data 
Register (MDR) to verify 
memory-CPU transfers 
and opcode undergoing 
execution 
Visibility of cache and 
translation buffer contents 
to insure correct 
functionality 
Access to V-Bus. 
On-board 64-word writable 
control store for 
microdiagnostics. 

VAX-ll/780 

Change clock speed 

SBI Fault/Status 

SBI Silo Comparator 

SBI Error 

SBI Timeout Address 

SBI Maintenance Buffer 

Translation Parity 

Internal signals made 
available to the console or 
microdiagnostics 

None 

Load/examine critical 
machine registers 

Single-step sequencer 

Clock margining 

Error status registers readable 
over ID Bus 

Access to V-Bus 

Microdiagnostics loadable 
into writable control store 

Aid 
Benefit MTTF 

-

Aids isolation of timing No 
problems 

Aids fault isolation No 

Aids fault isolation No 

Allows replacement of No 
individual gate array chips 

Provides remote, expert No 
troubleshooting 

Aid 
MTTR 

Yes 

Yes 

Yes 

Yes 

Yes 

~ oc 
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tTl 
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{ecovery through Programming 
;ystem/360-System/370 

)onald L. Droulette 

NTRODUCTION 

tecovery Management can be defined as the 
Iperational control of those system facilities 
both program and machine) which strive to 
:ffectively deal with detected machine malfunc­
ions within an operating system. Its primary 
:oncern is to maintain total system operation 
vith minimum impact upon the availability of 
ystem resources. 

Recovery Management, defined above and 
rea ted in this report, refers to recovery from an 
mscheduled system interruption resulting from a 
nachine malfunction. As such, Recovery Man-
1gement can be viewed as a consideration which 
eads to a higher degree of total system reli­
lbility, serviceability, and availability. 

Effective Recovery Management is not a luxu­
y; on the contrary, it may, in a given system, be 
l necessity. Without it, what need only be a 
ninor problem becomes a major problem, pos­
:ibly a catastrophe. 

Recovery Management facilities service un­
:cheduled system interruptions originating with­
n an I/O device/unit, channel, processor storage 
mit, or central processing unit. The presence of 
:uch an interruption is indicated by a device/ 
mit, channel, or machine-check condition. No 

)roulette, D., "Recovery Through Programming System/ 
160-System/370," Proceedings oJthe Spring Joint Computer 
';onJerence, 1971, pp. 467-476. 
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410 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

individual Recovery Management facility ser­
vices all machine malfunctions. 

Recovery Management facilities attempt re­
covery at different levels; these levels differ with 
respect to the consequences imposed upon the 
system during the recovery process. Not all of 
the Recovery Management facilities have the 
capability of effecting recovery at each level. 
Recovery Management facilities are optional, 
and as such, must be specified by the user at 
system generation time. Considering that Recov­
ery Management facilities are directed at specific 
types of failures, only after the thorough analysis 
of an installation's applications and require­
ments should a Recovery Management package 
be structured. 

THE RECOVERY MANAGEMENT 
OBJECTIVE 

The objective of Recovery Management is to 
provide the user with a higher degree of system 
availability (more time for more jobs) by mini­
mizing the impact of machine malfunctions upon 
the user's operations. This objective is realized 
with the successful achievement of the following 
goals: 

• Reduce the number of unscheduled system interrup­
tions resulting from machine malfunctions. 

• Minimize the impact of such interruptions in the 
event they do occur. 

Through Programming, interruptions to the 
user can be reduced, their impact minimized and 
their causes isolated. There are a number of 
functions which can be performed to achieve 
these objectives of Recovery Management. Some 
of these are: 

• Instruction Retry. The concept of instruction retry 
is not new. It is something IBM has been doing for 
years, particularly in the I/O area. Instruction retry 
has been standard procedure whenever an error was 
encountered in reading or writing a tape. It is 
possible to extend this retry capability and to em­
ploy it when a CPU or main storage malfunction 
occurs. A relatively large number of malfunctions 
are intermittent in nature, rather than being solid 

failures; therefore, there is a high probability of 
success of execution and recovery if an instruction 
retry can be attempted. 

• Refreshing Main Storage. If instruction retry can­
not be accomplished, one. function which could be 
of value would be the ability to refresh main storage. 
Through this damage which either caused or was 
caused by a malfunction could be repaired. This 
function could be accomplished by loading a new 
copy of the affected module or "Csect" into main 
storage or by a process known as check summing. 

• Selective Termination. This function would enable 
the system to examine the failing environment, de­
termine what problem program was executing and 
then proceed to terminate this program while enter­
ing all other jobs which were executing at the time 
of the malfunction. This is really a type of job which 
"frees" the resources of the system allocated to the 
job and makes them available for future use. This 
process results in the loss of a specific job but it 
keeps the system alive. 

• I/O Recovery. The above functions have been di­
rected mainly to errors which occur in the CPU or 
main storage. From an examination of system inci­
dents, it is evident that a certain portion of errors 
occur in the I/O area. Recovery could be accom­
plished by I/O retry which is available through the 
error recovery procedures for the different I/O de­
vices. Another group of I/O errors-channel control 
checks, channel data checks, and interface control 
checks-may be analyzed and under certain condi­
tions a retry can be attempted. The I/O device or 
medium can malfunction and if retry is not success­
ful the ability to switch data sets may be provided 
and then retry the operation on the new drive. 
Another is to try alternate routes to the same device, 
that is by addressing a device through a different 
channel or control unit. 

• Operator Awareness. A group of system incidents is 
due to procedural and operator errors. Several 
things can be done to decrease these errors such as 
better trained personnel, minimal control informa­
tion and clear and concise operator messages. 

All of these functions are aimed at continuing 
the operation of the system. This is not always 
possible to accomplish. Therefore, the next best 
thing is to minimize the effect of the malfunc­
tion., This can be done by attempting to preserve 
information concerning the malfunction and to 
make it available to assist personnel to determine 
what caused the error and what can be done to 
correct it. Recording, therefore, is a major part 
of recovery management. 
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Recovery Management support has provided 
a number of these functions in the operating 
systems. RMS has provided a hierarchy of recov­
ery which involves four levels of error recovery. 

1. Functional Recovery. Retry the interrupted opera-
tion. 

2. System Recovery. Terminate the affected task. 
3. System-Supported Restart. Prepare for Re-IPL. 
4. System Repair. Require stop for repair. 

Functional Recovery 

Functional recovery is achieved when an inter­
rupted operation is successfully retried. Such 
recovery is extremely desirable from a system 
point of view, because it makes the entire inci­
dent transparent to the user. 

System Recovery 

System recovery is achieved when system opera­
tion is maintained although an interrupted oper­
ation has not been retried. This effort involves: 
an analysis of the failure's environment, a repair 
of the damage associated with the malfunction to 
prevent further interruptions, and/or an attempt 
to associate the malfunction with a particular 
task in order to allow selective termination of the 
affected job and continued processing of the 
unaffected jobs. 

System-Supported Restart 

System-supported restart is achieved when a stop 
for repair is not required and system operation is 
restarted using an Initial Program Load (IPL) 
procedure supported by System Restart facilities. 
(System Restart facilities aid the IPL procedure 
by preserving and using system job and data 
queues.) 

System Repai r 

System repair, the lowest but most critical level 
of error recovery, consists of stopping the system 
and repairing a malfunction which cannot be 

serviced by the particular recovery facility at any 
of the previous levels. Recovery Management 
facilities aid maintenance personnel by provid­
ing them with detailed error analysis records. 
There is always, however, the possibility that 
system damage will be severe enough to preclude 
retrieval of the error records. In those cases, 
personnel will have to make use of the Sys­
tem/360 diagnostics available to them. 

The levels of error recovery applicable to IBM 
Operating Systems operations are illustrated in 
Figure 9-1; the outcome of recovery procedures 
1, 2, or 3 determines the level at which recovery 
will be effected. The bracketed information on a 
given flowline indicates the consequences of re­
covery at that level. 

USER PERSONNEL INVOLVEMENT 

The successful operation of a Recovery Manage­
ment package is directly proportional to the 
planning for and use of sp'ecific facilities in a 
given operating system. 

Once a user has determined what his needs 
and requirements are, the amount of specifica­
tion required to tailor his Recovery Management 
package is minimal. The selection of some recov­
ery facilities is made during the system genera­
tion process. Modifications can be made during 
the IPL/NIP process. 

The programmer's responsibility varies greatly 
with respect to the Recovery Management op­
tions available to him: 

• He may code actual error recovery routines which 
will receive control through macros specifying user 
exits (see Optional User-written Routines). 

• He need not involve himself at all with regard to 
certain Recovery Management facilities. 

Once the system has been set up and is 
running, it is the operator's responsibilIty to be 
aware of and responsive to the parameters re­
quired by, and the messages and wait-state codes 
issued by particular Recovery Management fa­
cilities. 

Maintenance personnel should acquaint them­
selves with the scope and operation of those 
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System 
operation Machine-check System operation 

interruption 5hf.....-----------.f---:....--~-----.-f---------r-f ---
Functional System System System 

supported 
recovery restart repair recovery 

I 
I System ~peration I 

continues 

Perform 
instruction 

retry 

Successful 

Unsuccessful 

Task abnormally 
terminated/task's 

TeB set non­
dispatchable 

System operation 
continues 

II Terminate affected Successful 

Operator notified 
that re-I PL is 

required 
task and continue _---1. _____ -< 
system operation Unsuccessful System is placed 

in wait state 

III Restart system operation­
stop for repair not required 

Re-IPL/system is 
restarted 

Successful 

Unsuccessful 

Operator notified 
that repair of 

system is required 

System is placed 
in wait state 

Personnel repair 
system damage 

Re-IPL/system is 
restarted 

IV Restart syste~ ~perati?n- _______________ ---"-_______ ---' 
stop for repair IS required 

Figure 9-1. Levels of error recovery applicable to IBM operating systems. 

Recovery Management facilities incorporated 
into the systems for which they have responsibil­
ity. They must be familiar with the messages and 
wait-state codes issued, and the error records 
produced, if they are to make effective use of the 
information available to them. 

SUMMARY DESCRIPTION OF FACILITIES 

This section briefly describes the available Re­
covery Management facilities. Included are dis­
cussions of the Machine-Check Handler (M CH), 

the Channel Check-Handler (CCH), and I/O 
Recovery Management-Support (I/O RMS). The 
individual recovery facilities are discussed as 
they apply to specific types of failures, or to 
specific recovery functions. The topics of discus­
sion are: 

• I/O Device/Unit Recovery Facilities 
• Channel Recovery F acili ties 
• I/O Recovery Management Facilities 
• CPU/Processor Storage Recovery Facilities 
• System Associated Recovery Facilities 
• Error Record Retrieval Facilities 
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The following points are made to clarify the 
function and scope of those recovery facilities 
which cross the bounds of two or more failure 
types: 

• The Optional User Routines receive control from the 
IBM supplied Error Recovery Procedures (ERPS) 
on permanent I/O device/unit errors in order to 
determine whether their associated tasks are to be 
terminated. 

• The System Environment Recording Routines (SERO, 
SER1) and the Machine-Check Handler (MCH) pro­
gram can perform recording functions for channel 
and machine-check conditions. However, the limited 
SERI and extensive MCH recovery capabilities deal 
only with machine-check conditions. Therefore, if 
one desires channel recovery, he must also make use 
of the Channel-Check Handler (CCH). CCH may be 
used in conjunction with MCH, SERO, or SER 1. 

o The System Environment Recording Editing and 
Printing (SEREP) program may be used to record, 
edit, and print I/O device/unit, channel, CPU, and 
processor storage conditions. SEREP will be used 
when no automatic recording facility has been in­
voked, the facility invoked has failed in its opera­
tion, or the recorded records cannot be retrieved by 
the Environmental Record Editing and Printing 
(EREP) program. EREP is a utility which edits and 
prints those error analysis records placed on the 
SYSI.LOGREC data set. This data set resides on the 
system residence device and is reserved for the 
exclusive use of all those recovery facilities which 
generate error analysis records. 

I/O DEVICE/UNIT RECOVERY FACILITIES 

The problem of malfunctions occurring within 
I/O device/units has been a concern for quite 
some time. The facilities available for the servic­
ing and detection of these failures are: 

o IBM Standard Error Recovery Procedures 
o Optional User Written Routines 
o On-Line Test System 

IBM Standard Error Recovery 
Procedures 

Standard error recovery procedures (ERPs) exist 
for I/O devices/units in order to maintain device 
performance and to provide uniform recovery 

procedures for all failures. The three types of 
IBM-supplied error routines are: 

• Device-dependent routines 
• Common routines 
• I/O Recording routines 

The device-dependent routines attempt func­
tional recovery for particular device types by 
retrying operations a specific number of times. If 
functional recovery is not possible, control is 
passed to an optional user-written routine for 
further determination. Device-dependent rou­
tines exist for: 

• Teleprocessing Devices 
• Unit Record Devices 
• Tape Devices 
• Direct Access Devices 
• Graphic Devices 

The common routines are used by the device­
dependent routines to analyze the type of error, 
to issue console messages, and to update the 
statistics table. 

The I/O recording routines are the outboard 
recorder (OBR) and the statistical data recorder/ 
channel-check recorder (SDR/CCR). OBR pro­
duces records for permanent I/O device failures 
on the SYS l.LOGREC data set. SDR/CCR up­
dates the statistic counters on the SYS I.LO­
GREC data set whenever one of the error statis­
tics counters in the statistics table overflows, and 
places I/O inboard records produced by the 
optional Channel-Check Handler (CCH) on the 
SYSI.LOGREC data set. The records placed on 
the SYSl.LOGREC aid maintenance personnel 
at the System Repair level. 

Optional User-Written Routines 

Should an installation determine that available 
Recovery Management facilities do not fill a 
need unique to the installation's requirements, 
user-written routines may be added to the sys­
tem. When in the system, user-written routines 
are given control through the DCB macro in-
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struction (SYNAD and EROPT). The user rou­
tine can determine on certain I/O device condi­
tions if its associated task should be terminated. 

On-Line Test System 

The purpose of the On-Line Test System is to 
test the functioning of I/O devices in a con­
trolled environment with minimum interference 
to the operating system. The On-Line Test Sys­
tem consists of an executive program, a series of 
tests for I/O devices/units, and a special SVC to 
perform functions required in the OS nucleus. 
The executive program serves as an interface 
between the operating system and the unit tests. 
It schedules and controls the running of the tests 
and provides communication with the operator. 
The use of the On-Line Test System serves to 
insure the integrity of the system's I/O devices. It 
might be considered preventive Recovery Man­
agement since its use should lead to the repair of 
faulty equipment prior to failure during system 
operation. 

CHANNEL-CHECK HANDLER 
(CCH) 

The Channel-Check Handler is designed to 
increase machine availability by minimizing 
the effects of channel malfunctions for 
2860/2870/2880 and System/370 Model 155 
channels. Without CCH, such malfunctions 
would be system incidents. The Channel-Check 
Handler will (I) determine the effect on the 
system of particular conditions that may have 
occurred, (2) set error indicators in the Error 
Recovery Procedure Interface Bytes (ERPIB) for 
the Error Recovery Procedure (ERP), and (3) 
create a record of the channel-error condition. 

Unlike MCH, which is model dependent, 
CCH is only channel dependent because the 
Channel I/O Logout area is the analysis material 
used by the CCH program. 

CCH includes· the Dynamic Loading feature, 
which enables the main part of CCH (channel 

CCH 
central 

Channel 
support 

according 
to 

channels 
available 

at IPL 

Figure 9-2. CCH dynamic loading. 

and model independent) to link to the various 
channel-dependent analysis routines. (See Figure 
9-2.) Dynamic Loading also allows dynamic 
configuration for the specific channels on-line at 
NIP time, even if more channels were specified 
at SYSGEN time. 

The Channel-Check Handler receives control 
from the I/O Supervisor (lOS) after detection of 
a channel control check, channel data check or 
an interface control check. CCH then completes 
its analysis of the error condition by setting up 
the ERPIB for the ERP or by indicating that 
immediate retry or termination is necessary. If 
termination is indicated, the error is recorded on 
the SYSl.LOGREC data set and a wait-state 
condition is set. If immediate retry is indicated, 
control is then returned to lOS who performs the 
retry and passes control to the next processing 
program on a successful retry. This retry is for 
special I/O operations such as SENSE. If an 
ERPIB has been created, lOS schedules the 
appropriate device ERP which operates in the 
Error Transient Area and receives a pointer to 
the ERPIB. (See Figure 9-3.) Based on the 
ERPIB information, the device ERP can deter­
mine whether a retry of the failing operation can 
be attempted or if the operation must be consid­
ered a permanent error. 
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For permanent error conditions, a message to 
he operator is printed· (WTO Error MSG), the 
tatistical data counters (STAT Update) for the 
levices are updated, a record of the permanent 
~rror condition is made on the SYS I.LOG REC 
lata set by the Outboard Recording Routine 
OBR), and an exit is taken. For errors marked 
lS retryable, a retry is attempted and, if success­
ul, control is passed to STAT Update to update 
he statistical data counters and then to OBR, 
vhich records the successful Channel-check re­
:overy. 

Functional Recovery is achieved on channel 
~rrors that can be successfully retried by CCH or 
he device ERP. CCH enhances the performance 
)f OS/360 by reducing the number of system 
ncidents resulting from channel malfunctions. 

/0 RECOVERY MANAGEMENT SUPPORT 

/0 Recovery Management Support (I/O RMS) 
s an extension to existing functions of the Oper­
lting System that address the availability and 
'eliability needs of IBM customers that may not 
)e realized due to channel, control unit, device, 
md medium failures. 

Initially, these functions encompassed only the 
)evice Dependent Error Recovery Procedures 

lOS 
scheduling 

RTN 

ERP/STAT 
update 

functions 

Figure 9-3. CCH processi ng. 

lOS 
scheduling 

RTN 

ERP/STAT 
update 

functions 

Alternate 
path 
retry 

Dynamic 
device 

reconfiguration 

Figure 9-4. APR/DDR processing. 

(ERP's), which were designed to effect a retry of 
a device failure on a particular path after a unit­
check condition. Subsequently, with the imple­
mentation of the Channel-Check Handler 
(CCH), the utility of the ERP's was extended to 
effect a retry of channel failures (channel 
checks). In order to meet the continuing need for 
higher availability and reliability, I/O RMS pro­
vides two additional optional system functions 
that may be used to address the problem of I/O 
errors: Alternate Path Retry (APR) on the chan­
nel level and Dynamic Device Reconfiguration 
(DDR). (See Figure 9-4.) 

Without these functions, when an ERP is 
unable to successfully retry an I/O operation, 
permanent error is indicated. When a program 
encounters a permanent I/O error, it either ac­
cepts the error and continues, or ABENDS. If a 
critical supervisor function encounters a perma­
nent I/O error, the system terminates. 

APR 

I/O RMS extends recovery from an I/O error 
with APR by ensuring that a different channel 
will be tried (if one exists) during error recovery 
on a channel-detected error. If a permanent error 
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exists on a device with a demountable volume, 
I/O RMS will extend recovery with DDR by 
requesting that the volume be moved to another 
device and the I/O operation retried. 

The maximum number of paths supported by 
anyone device will be four. APR will ensure that 
a different channel will be tried (if one exists, is 
on-line, and ready) only on retry of channel­
detected errors, Retry on other errors will be 
handled as in the past. APR does not support 
tape. 

In addition, APR provides an operator Com­
mand-V AR Y PATH. Through this command an 
opera tor can select a specific channel path and 
remove it from the system. Also, a path that has 
been removed can be put back on line through 
this command. 

Alternate Path Retry is an extension of the 
Channel-Check Handler. 

DDR 

DDR extends I/O recovery when a permanent 
error develops on a device with a demountable 
volume by causing the system to request that the 
volume be moved. 

The operator may also request DDR during 
normal execution to allow a volume to be moved 
from one device to another. A DDR can be 
operator-requested for volume cleaning, etc. 

DDR can also be requested by the operator 
during "intervention required" conditions on 
readers, printers, and punches. 

DDR will support the 2400 tape series, the 
2420-7 tape, the 2311 and 2314 disks, the 2321 
data cell drive, and readers, punches, and print­
ers. 

DDR can be requested by the operator any­
time during execution, or by the system after a 
permanent error for all 2400 (including 2420-7), 
2311, 2314, and 2321 devices. DDR can be 
requested only by the operator for readers, print­
ers, and punches during "intervention required" 
conditions. "Intervention required" is either in­
dicated by the system or may be caused by the 
operator. (The operator may cause an "interven-

tion required" condition by making the unit "not 
ready.") 

DDR's support of the 2314 allows the operator 
to move a volume to a drive on another 2314. It 
also allows the operator to move all data cells 
from the failing 2321 to another 2321. DDR will 
not allow the swapping of data cells on one 
device. 

If the SYSRES option is selected, the SYSRES 
volume may be moved from one device to an­
other at the request of the system or of the 
operator. The system will not request SYSRES 
swap unless a critical I/O operation is involved. 
(A critical I/O operation is one which involves 
the SVC library.) 

If high availability is important to the installa­
tions, a duplicate SYSRES volume would be 
advisable. In order to use such a volume, writing 
on SYSRES would have to be prohibited except 
for the SYS I.LOGREC data set. Therefore, no 
libraries on SYSRES could be updated, no work 
data sets could be allocated on the SYSRES 
device, and SYS I.SYSJOBQE would have to be 
on a volume other than SYSRES. If the installa­
tion had such a duplicate volume, as well as an 
additional available SYSRES device, it would be 
possible to recover from both a device error and 
a media error. 

SYSRES Option: Since some users do not 
have a demountable SYSRES device, DDR sup­
port of SYSRES will be an option at SYSGEN 
time. Thus, the resident code necessary for 
SYSRES DDR is included only when the option 
is taken. 

Dynamic Device Reconfiguration is an exten­
sion of lOS as it applies as much to device errors 
as channel errors. 

With I/O RMS, a device encountering an 
error-prone channel path may be able to con­
tinue operating on a different channel path. A 
volume on an error-prone device may be used 
effectively on a different device. Specifically, bus­
out checks and data checks, along with other 
error types, will have a higher degree of recovery, 
since a path to the volume may be made avail­
able that excludes the source of error. 
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I/O RMS is not model dependent. 
In summary, I/O RMS will extend device 

)erformance in areas that may have previously 
'endered a job or the system inoperative. 

CPU/PROCESSOR STORAGE 
IUCOVERY FACILITIES 

Machine-check conditions which arise within the 
CPU or processor storage are serviced by the 
mutually exclusive recovery facilities MCH, 
SERO, and SER 1. If none of these are chosen at 
SYSGEN time, the default condition is a wait 
state. That is, when a machine check is encoun­
tered, the machine goes into a wait state. If such 
a wait state condition occurs or should a facility 
Fail in its recovery attempt, SEREP may be used 
to access the CPU logout. (MCH is mandatory 
in the System/360 Model 85 and System/370 
Models 155 and 165.) 

Machine-Check Handler (MCH) 

The primary function of the Machine-Check 
Handler is to attempt recovery from main stor­
age or CPU failures which ECC or HIR has not 
previously corrected. An important additional 
function is to record each failure. The goal of 
MCH is total recovery, achieved when the inter­
rupted program is enabled to continue proces­
sing at the point where the interruption occurred. 
When total recovery is not possible, MCH at­
tempts to terminate the effected task without 
halting the entire system. If, however, a stop in 
system processing cannot be avoided, the error 
records produced by MCH aid manual repair. 

MCH processing is inseparable from the oper­
ations of the machine recovery facilities, ECC 
and HIR. Upon detection of a hardware failure, 
either ECC or HIR (depending on the type of 
error) receives control. Only after these circuits 
make their recovery attempt does a machine­
check interruption occur. MCH receives control 
at the interruption by means of the machine­
check new PSW which contains the address of 
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Figure 9-5. MCH gross flow. 

the MCH Resident Nucleus. Figure 9-5 illus­
trates the sequences of operations performed by 
MCH. 

The path followed by MCH processing de­
pends on whether or not the machine facilities 
were successful in their recovery attempt. If so, 
MCH only records the error, after which control 
is returned to the system. If the recovery attempt 
was unsuccessful, MCH analyzes the error and 
attempts recovery. If recovery is achieved, MCH 
records the error, notifies the operator, and re­
turns control to the system. However, should 
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recovery not be effected, MCH attempts to re­
cord the error, informs the operator of the con­
dition of the system, then enters the disabled­
wait state. 

Note: In System/360 Model 65, Instruction 
retry and single bit error correction are per­
formed by the program. 

System Environment Recording 
(SERO and SER1) 

These optional recovery facilities record machine 
malfunctions of the CPU, processor storage, and 
channels in System/360 Models 40, 50, 65, 75, 
and 91 (SERI only). After an error record has 
been placed on the SYSl.LOGREC, the system 
is placed in the wait state. If system repair is not 
required, a message is issued to the operator 
requesting him to re-IPL (System-Supported 
Restart). In addition to the recording function, 
SER 1 attempts to associate the failure with a 
specific task. If the failure affects only the job 
step associated with the current task, the job step 
can be terminated without requiring a complete 
stop of the system (System Recovery). 

SYSTEM ASSOCIATED RECOVERY 
FACILITIES 

While the following facilities do not actually 
record or analyze errors, they are an integral part 
of the Recovery Management scheme in that 
they further reduce the time involved in recover­
ing from a malfunction which has caused an 
interruption in system operation: 

• System Restart 
• Checkpoint/Restart 

System Restart 

The system restart facilities aid the IPL proce­
dures by allowing the system to resume opera-

tion without having to reenter jobs that have 
been enqueued. This is especially time-saving in 
the case of those malfunctions which require a 
halt of system operation without a stop for 
repair. Information concerning input work 
queues, output work queues, and jobs in inter­
pretation, execution, or termination is preserved 
for use when the system is reloaded. When the 
system is restarted, a message is written to the 
operator describing the status of each job in the 
system. 

Checkpoint! Restart 

The checkpoint/restart facility provides the ca­
pability of restarting program processing subse­
quent to an I/O device/unit error, machine 
check, channel check, intentional operator inter­
vention, or similar event. Job step information is 
recorded at user designated checkpoints in a 
problem program; if restart becomes necessary, 
it can be initiated from an available checkpoint. 
Checkpoint/restart can be invoked subsequent to 
system restart or subsequent to the abnormal 
termination of an effected job by one of the 
recovery facilities. 

Use of this facility minimizes time lost in 
reprocessing a job step that has been terminated. 
It is used to best advantage in programs of long 
duration, or with programs where restarting from 
the beginning would be difficult. 

ERROR RECORD RETRIEVAL 
FACILITIES 

Although automatic recovery procedures are ex­
tremely desirable, such recovery is sometimes 
impossible, and human intervention on the part 
of the maintenance personnel is required. The 
following facilities are part of the Recovery 
Management scheme, in that they facilitate sys­
tem repair by providing a means of accessing 
failure data: 
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Environment Record Editing and Printing (EREP) 
utility 
System Environment Recording Editing and Print­
ing (SEREP) program 

:nvironment Record Editing and 
-rinting Utility 

:REP, running under the operating system, edits 
tnd prints error records generated by OBR, 
;OR/CCR, CCH, SERO, SER 1, and MCH and 
'ecorded on the SYSl.LOGREC data set. 

The EREP utility program can edit and print: 

Combinations of the above records 
Records that were generated within a specific period 
of calendar time 
I/O outboard or statistical count records, or both, 
related to a specific channel or unit 
I/O outboard or statistical count records, or both, 
related to a specific I/O device type 

EREP normally clears each selected record to 
:eros in the SYS l.LOGREC data set when pro­
:essing of that record is complete. However, an 
>ption can be specified to prevent the clearing of 
;elected records. Thus, a log of specific error 
:onditions can be retained in the data set. 

EREP output provides information for inter­
)retation by the people performing the repair 
~unction. 

A standard operating procedure in a Com­
)uter Center using MCH and/or CCH should be 
:0 execute EREP on a regular basis and then the 
nformation would be available to repair person­
leI as an aid or indicator to anticipate serious 
:rouble. Upon review, if a particular pattern 
lppears indicating possible degradation, preven­
:ative maintenance may be performed before the 
)ccurrence of a serious incident. 

)ystem Environment Recording, 
Editing and Printing Program 

SEREP is used to access failure information 
when: 

• No automatic error recording facility (SERO, SERI, 
CCH, MCH, OBR, SDR/CCR) has been invoked 

• An automatic error recording facility has failed in 
the performance of its function 

• The SYSl.LOGREC data set cannot be accessed to 
obtain the error analysis records 

SEREP is manually loaded using the standard 
IPL procedure. The program prints the informa­
tion regarding the failure's environment on an 
online printing device. The SEREP procedure is 
aimed at improving the overall performance by 
minimizing unscheduled downtime. The pro­
gram allows maintenance personnel to take full 
advantage of the machine diagnostic capabilities 
of the system in analyzing and correcting the 
following types of machine malfunctions: 

• I/O Channel Failure 
• I/O Device Failure 
• I/O Test Channel Failure 
• I/O Device Not Operational 
• I/O Machine Check Failure 

RMS/65 RELATIONSHIP TO THE 
OPERATING SYSTEM 

The RMS/65 package is comprised of two com­
ponents, the Machine Check Handler (MCH) 
and the Channel Check Handler (CCH). For 
System/360 Model 65, both components are 
optional and a user at SYSGEN time may 
choose (1) CCH only, (2) MCH only, or (3) both 
MCH and CCH, depending on the needs of the 
installation. For System/360 Model 85 and Sys­
tem/370 Models 155 and 165, the MCH and 
CCH are an integral part of the Control System 
and, therefore, are not an option. 

When selected at SYSGEN time, the compo­
nents of RMS are included as part of the resident 
OS Nucleus. See Figure 9-6. 

SYSTEM/370 CONSIDERATIONS 

The current program status word (PSW) bit 13 
has taken on more significance in System/370. In 
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Figure 9-6. RMS relationship to as. 

System/360, bit 13 had sole control of Recovery 
Management functions. In System/370 there are 
recovery submasks in the control registers area 
which function in conjunction with bit 13 of the 
current PSW. Therefore, if bit 13 of the PSW is 
one submask and the subclass mask bit in the 
control register is another, the associated condi­
tion will initiate a machine-check interruption. If 
either bit is zero, an interruption would not be 
initiated. Some subclass condition masks are 
system damage, timer damage, system recovery, 
etc. 

Permanently allocated storage locations have 
been extended in System/370 for machine-check 

168 
ChannellD 

172 
1/0 extended log pointer 

176 
Extended CSW 

180 
Reserved 

232 
Machine check interrupt code 

240 
Reserved 

248 
~ailing storage address 

252 
Region code 

256 
Scratch Pad Log Out 

352 
Floating point registers 

384 
General purpose registers 

448 
Control registers 

512 

Figure 9-7. Permanently allocated storage 
locations. 

handling. Storage locations 168 thru 512 contain 
the added information for handling machine 
checks. (See Figure 9-7.) This information is 
supplied to assist in performing the recovery 
function. Such information consists of Channel 
ID, I/O extended by log-out pointer, limited 
channel log-out, I/O address, machine-check in­
terruption code (discussed below), failing storage 
address, floating point, general and control regis­
ters as well as model dependent areas. 

The Machine-Check Interruption Code is a 
double word starting at location 232. It contains 
such information as the time of interruption 
occurrence, machine-check intended log-out 
length, and subclasses. A subclass identifies the 
machine-check condition which caused the inter­
ruption. Some subclass conditions that can be 
indicated are system damage, instruction proces­
sing damage, timer damage, external damage, 
automatic configuration (When performed by 
hardware) and storage error type (whether cor­
rected or uncorrected). 
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CONCLUSION 

I believe that effective error recovery is a part­
nership between engineering and programming 
and these two must form a partnership and 
attack the problem together in order to provide 
a satisfactory solution. Recovery Management 
Support is a step in the direction which Error 
Recovery must take if the requirements of com-
puter technology are to be met in this area. 
Every sign indicates that this is being accom­
plished. 

It appears that some meaningful steps are 
being taken toward the goal of reducing the 
number of interruptions to which a user is ex­
posed and to minimizing the impact of these 
interruptions when they do occur. 
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~vailability, Reliability, and Maintainability 
~spects of the SPERRY UNIVAC 1100/60 

_. A. Boone H. L. Liebergot 

\bstract 

rhis paper describes the jault tolerant capabilities oj the 
~PERRY UNIVAC 1100/60 Injormation Processing 
-;Ystem, a recently announced medium scale general 
'urpose computer system. In the 1100/60, a variety oj 
echniques is employed jor the detection/correction and 
fiolation oj, and recovery jrom, most single-bit hardware 
aults as well as many multiple-bit jaults. An approach 
'or checking jault detection circuits is implemented using 
r comprehensive jault injection system. A jour level 
naintenance philosophy based around the built-in jault 
randling logic, scan network, and intelligent support 
'rocessor and console provides jor rapid location and 
'epair oj the jailing logic. 

During development, substantial resources were devot­
'd to assure the quality oj the 1100/60 design, recogniz­
ng that jault tolerance strongly complements, but is not 
r substitute jor, design quality and correctness. An 
'valuation oj the various jault handling jeatures was 
'arried out to provide measures oj system availability, 
eliability, and maintainability. 

NTRODUCTION 

\t Sperry Univac, the acronym ARM stands for 
\vailability, Reliability, and Maintainability. 
\RM concepts include the organizational proce­
lures used to develop systems; the tools and 
echniques used during design, development, and 
nanufacturing; and the logic, firmware, and 
,oftware that are included to minimize the effects 

) 1980 I EEE. Reprinted, with permission, from Digest of 
'apers FTCS-IO, The 10th I nternational Symposium on 
'ault-Tolerant Computing, Oct. 1-3, 1980, Kyoto, Japan, pp. 
-9. 
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of a failure. The latter ARM features include 
many of the fault tolerant features developed 
over the years. 

Several important trends in the computer in­
dustry have strongly influenced decisions with 
regard to ARM at Sperry Univac. The evolution 
of computer applications from primarily a batch 
processing orientation to a stronger emphasis on 
demand and real time processing has resulted in 
greater dependence on computers and thus in 
increased sensitivity to their availability and 
reliability. 

The second major trend relates to hardware 
technology. The increase in gate densities in LSI 
and VLSI chips has effectively brought the cost 
of hardware down, to the extent that it is becom­
ing more practical and cost effective to incorpo­
rate fault tolerance in the computer [Sedmak and 
Liebergot, 1978]. 

A third trend lies in the area of field mainte­
nance. The costs of labor for maintenance activ­
ities are increasing at a rate close to that of 
inflation. In addition, as systems become more 
complex, it becomes increasingly more difficult 
for customer engineers to master the detailed 
workings of the entire system. 

The reaction to these industry trends is to de­
emphasize manual field diagnosis procedures 
and to stress the incorporation of built-in auto­
matic fault detection, correction and recovery 
capabilities. The SPERRY UNIVAC 1100/60 
Information Processing System reflects this in­
creased emphasis on fault tolerance in commer­
cial computers. 

ARM PHILOSOPHY FOR 1100/60 

ARM in Previous SPERRY UNIVAC 
1100 Series Systems 

The SPERRY UNIVAC 1108 [Borgerson, Han­
son, and Hartley, 1978; Borgerson et aI., 1979], 
introduced in 1965, was the first SPERRY UNI­
V AC 1100 Series computer to offer both a mul­
tiprogramming operating system and multipro­
cessmg configurations. These two capabilities 

reflect a general ARM approach that has been 
carried forward in other Sperry Univac sys­
tems-the attempt to isolate a problem to either 
a particular job in the system or to a particular 
unit in the configuration. 

The success of this approach is determined 
largely by the error detection attributes of the 
system. For a typical 1108 system, error detec­
tion consists of 'parity in the main storage and 
processor general registers. For the successor 
1100/10 and 1100/20 systems, this coverage was 
enhanced to include parity on the I/O channels 
and in some of the mass storage control units, 
while the main storage utilized an error detec­
tion/correction code instead of parity. Mainte­
nance on the central complex (instruction pro­
cessor, input/output unit, and main storage) is 
performed using a built-in maintenance panel 
and diagnostic programs. 

The 1100/40 system has all of the previous 
error detection capabilities, and in addition, a 
maintenance controller as an adjunct to the 
maintenance panel. The controller incorporates 
a scan compare capability that allows operations 
in the processor to be examined after each clock 
cycle and compared to known correct data from 
a magnetic tape. Any difference can be used to 
indicate the location of the problem area. This 
.was the first automation of the maintenance task 
for 1100 series systems. 

In the 1100/80, additional error detection was 
provided for the input/output unit, and a cache 
memory with parity was added. The mainte­
nance controller was replaced with a mainte­
nance processor-an intelligent unit that can 
write several of the registers in the central com­
plex and read almost all of them. The customer 
engineer's interface to the system is via CRT 
rather than a maintenance panel, and the main­
tenance processor can function even if most of 
the central complex is disabled. 

ARM-"in the 1100/60-General 
Approach 

A fundamental requirement for the 1100/60 was 
to produce a system whose ARM attributes 



.natched the processing modes of the future with 
the technology of today. The price/performance 
~oals allowed the selection of proven EeL tech­
[lology for the instruction processor (IP) and 
~ache, TTL for the input/output unit, and 16K 
MOS chips for the main storage. In addition, the 
IP is microprogrammed and uses four-bit-slice 
microprocessors to achieve a reduction in com­
ponent count. Established design rules allow 
adequate temperature, voltage, and timing mar­
gins. The basic unit processor and most expan­
sion features are packaged in one cabinet and 
air-cooled. A block diagram of the 1100/60 
system is shown in Figure 10-1. 

Error detection has been given increased em­
phasis in the 1100/60 relative to previous sys­
tems. This provides protection from incorrect 
results, aids in system recovery and reconfigura­
tion, and helps to isolate a failure to a replace­
able unit. The 1100/60 uses duplication, coding 
techniques, and parity to provide error detection 
throughout the system. 

The main storage and the IP's microcode 
control storage have error correction capabilities 
to allow error recovery to be transparent to the 
user. The cache memory architecture allows re­
covery from an error by automatically disabling 
an area of the cache and retrieving desired data 
from the main storage. Other solid faults are 

System 
support 

processor 
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handled by reconfiguration. Extensive retry ca­
pabilities are provided to recover from transient 
or intermittent faults in the central complex. 

DETAILED ARM 
IMPLEMENTATION 

System Characteristics 

The 1100/60 instruction processor is micropro­
grammed and is based on a high usage of LSI 
microprocessors. The amount of hardware re­
quired for the IP has been kept low by imple­
menting a large portion of the control functions 
in microcode. The net effect of such an approach 
is to replace the traditional mass of SSI/MSI 
gates with high-density LSI arithmetic and stor­
age components. The high throughput of the 
1100/60 is achieved by the use of multiple micro­
processors, overlap at the microinstruction level, 
prefetch of instructions and operands, and other 
design techniques [Datamation, 1979]. 

Figure 10-2 is a block diagram of the main 
data paths of the IP. Each 1100/60 macroinstruc­
tion and interrupt is performed by executing a 
series of microinstructions. The execution of 
each microinstruction consists of bringing data 
from the general register set, main storage, or 

System 
support 

processor 

Figure 10-1. System block diagram (two processor, two I/O configuration). 
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Figure 10-2. Block diagram of the 1100/60 microexecution section, showing 
sample applications of fault detection techniques. 

other source through the shifter into the subpro­
cessors. Here, using multiple microprocessor 
chips, an arithmetic or logical operation is per­
formed, combining the data from the shifter with 
data from the local storages or the accumulators, 
and placing the results in the accumulators inter­
nal to the microprocessor chips. At this point, 
the data may be placed onto the main data bus 
and written into local storage, the general regis­
ter set, or main storage. These data movements 
are controlled by a microinstruction that parti­
tions the work between microprocessors, selects 
the various resources (registers, local storage, 

etc.) to be used, and initiates selection of the next 
microinstruction. 

The 1100/60 central complex contains, in ad­
dition to the IP, an input/output unit (IOU), an 
optional cache or storage interface unit (SIU), 
main storage unit (MSU), and a system support 
processor (SSP). The functions of each of these 
units are well known except for the SSP, a 
freestanding, intelligent processor that employs a 
CRT and keyboard and serves as the system 
maintenance and operator consoles. In addition, 
this unit carries out the function of system 
partitioning, control storage loading, fault injec-



on, and some assorted system support tasks. 
'he system software and the IP microcode and 
ardware communicate with the SSP through 
lterrupt mechanisms. 

ault Detection 

be philosophy in the 1100/60 is to detect 100 
ercent of all single-bit faults in the data path, 
nd many single faults in control logic. The 
itionale for such a philosophy is based on the 
rinciple of minimizing the probability that a 
ser's data could be corrupted without the sys­
!m detecting or correcting the erroneous opera­
on and signaling the operator. As a general 
llle, faults are detected in storage elements by 
le use of parity codes, while redundancy is used 
)r arithmetic and control circuitry. The various 
etection circuits are strategically placed in an 
trort to achieve a high coverage in hardware 
Llch as storages, which have the highest failure 
ite, and in areas such as the main data path, 
rhich has a high usage and where a large impact 
n the system might be experienced if a failure 
ccurred. 
An overview of the fault detection techniques 

sed in various portions of the 1100/60 IP is 
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given in Figure 10-2. The general register set, 
local storages, and the shifter input selector 
employ conventional parity; the shifter and, as 
discussed previously, the subprocessors (includ­
ing the main data bus) are duplicated and com­
pared. In addition, parity checks are used on 
control storage, while duplication is used on the 
control storage address generation and logic 
function generation circuitry. 

An example of fault detection through redun­
dancy is shown in Figure 10-3. Each of the two 
36-bit master subprocessors is paired with a 
duplicate subprocessor that performs the same 
function on the same data as the master subpro­
cessor. Durip.g each microcycle, only one of the 
master subprocessors can drive the main data 
bus; and when one of them is chosen to drive it, 
its duplicate drives a duplicate bus. At the end of 
the cycle, a comparison is made between the 
data on the two buses; any discrepancy will 

, cause the operation to be interrupted. 
During the development of the 1100/60, an 

observation was made that is contrary to most 
claims about fault detection and its associated 
performance impact. Many sections of the data 
path are duplicated and compared to achieve 
fault detection. However, the duplicated logic 

To fault handling logic 
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Main data bus 

r r 
Master Duplicate Master Duplicate 

sub- sub- sub- sub-
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Figure 10-3. Example of fault detection through duplication in the 1100/60 I P. 
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serves another purpose: it provides additional 
output drive capability (i.e., loading) for the 
functional circuits. For example, if a functional 
circuit has 8 unit loads on its outputs, the 
addition of a duplicate circuit could reduce that 
number to 4 by splitting the loads between the 
functional and duplicate circuits. This allows a 
reduction in the propagation delay time of the 
output stage of the functional circuit. In fact, as 
additional portions of the data path were dupli­
cated to detect faults, it was discovered that the 
combined effect could be an increase in perfor­
mance compared to a strictly simplex design. 
This result points out the fact that fault detection 
need not have an adverse effect on performance. 

Several factors have contributed to keeping 
costs low for the fault detection features: 

• Design approach of incorporating fault detection 
mostly in high-usage and high-failure-rate sections 
of the logic. 

• Incorporation of most of the control functions in 
microcode, which is stored in LSI storage compo­
nents where fault detection is very economical. 

• Heavy use of microprocessors, which are well-or­
dered, bus-oriented logic structures that lend them­
selves to conventional fault detection techniques. 

• The philosophy of designing fault detection circuitry 
at the same time as functional logic, and designing 
functional logic that lends itself to fault detection.· 

As a result of these and other factors, the exten­
sive fault detection mechanisms require about 15 
percent of the total CPU logic. This translates to 
less than 15 percent of the manufacturing costs 
attributable to the detection logic. 

Error Correction 

Error correction techniques are applied in two 
primary areas: the main storage unit (MSU) and 
the IP's control storage. The MSU employs an 
error correction code to correct single-bit faults 
and detect double-bit faults in the storage array 
chips during every read reference. When a dou­
ble-bit fault occurs, an error signal is sent to the 
requesting unit indicating that the data should 
not be used. 

Error correction is also utilized in the micro­
processors' control storage, although a different 
approach is taken than in the main storage. 
When a single-bit fault occurs, the parity code 
stored with each microinstruction will permit the 
detection of a fault. If a fault is detected, a 
macroinstruction retry is attempted. Should the 
retry fail, an interrupt then allows a correction 
procedure to be initiated by the system support 
processor. The procedure involves rewriting the 
failed portion of control storage. After each 
attempt at rewriting, the SSP will read the data 
from the failed portion of the control storage to 
verify the proper correction. When proper cor­
rection is achieved, the SSP signals the IP to 
restart execution. 

Fault Isolation 

There are two major techniques used for fault 
isolation in the 1100/60. One technique relies on 
the high level of coverage provided by the fault 
detection capabilities in the processor. For exam­
ple, referring to Figure 10-2, it can be seen that 
because of the application of the duplication and 
comparison technique to both the shifter and the 
two subprocessors, it is possible to isolate a 
failure in that portion of the microexecution 
section down to one of those three logic sections. 

The other major technique employed in the 
1100/60 for fault isolation is the diagnostic pro­
gram, a tool used after symptoms of the failure 
have surfaced. This approach is usually em­
ployed when the failure has not been isolated 
sufficently by the fault detection logic. Diagnos­
tics are constructed in the form of microroutines 
or macroroutines, which are run on the failing 
unit. Frequently, these diagnostic programs 
make use of a tool in the 1100/60 known as scan 
compare [Stewart, 1977, 1978], which is a method 
of determining the states of major test points in 
the IP. 

Utilizing the two methods, the capability exists 
to isolate automatically (i.e., without the need for 
manual diagnosis) any failure in the main data 
path to one or two printed-circuit cards. The 



)bvious values of such a feature are to reduce the 
:ime to repair the central complex (and hence 
~educe field support costs) and d~amatically im­
:lrove the availability of the system to the user. 

Error Recovery 

The basic requirement in the development of an 
integrated error recovery procedure is that the 
computer system must deal with both solid and 
transient faults. When a solid fault occurs, any 
operation affected will continue to produce in­
correct results. Detection and isolation of such a 
fault is relatively easy, but recovery from it 
without manual intervention and repair is fre­
quently difficult unless some type of error correc­
tion or masking capability exists in the system. 

Restart 1100 Macro 
instruction 
execution 
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In contrast, a transient fault is more difficult to 
detect and isolate due to its lack of persistence 
during diagnosis. However, recovery from tran­
sient faults in many areas can frequently be 
achieved in a more economical way than for 
solid faults. To accomplish this, the main items 
required are the ability to detect the error close 
to the time of occurrence, a mechanism to stop 
processing upon error detection, and the capabil­
ity to reset the operation to a valid state which 
existed prior to the error, utilizing information 
that was saved during execution. 

The error recovery procedure in the 1100/60 
IP is designed to deal with both solid and 
transient faults. An overall picture of the recov­
ery procedure is shown in Figure 10-4. The 
procedure uses a combination of hardware and 

Yes 

No 

Interrupt system 
support processor 

Figure 10-4. Flowchart of CPU error recovery. 
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firmware to implement fault detection, abort the 
operation in progress, analyze the fault, and 
initiate retry. This approach allows the recovery 
procedure to utilize the same microexecution 
resources as the macroinstruction set utilizes, 
resulting in a cost savings and a sharing of fault 
detection capabilities. 

When a fault is detected by any of the detec­
tion circuitry discussed in the section on fault 
detection, microexecution is halted via hardware 
by forcing the control store to execute contin­
uously a no-operation microinstruction and by 
blocking the loading of internal registers and 
storages. Execution is suspended until a hard­
ware timer expires, during which time no execu­
tion or change of machine state occurs. This 
allows time for transient failures to die out. The 
period of the timer may be adjusted for different 
program environments. 

When the period expires, execution restarts in 
a fault recovery microroutine, which analyzes the 
failure and assembles a fault status word to be 
presented to the software. Then a check is made 
to determine whether the failing macroinstruc­
tion can be retried. If no retry is possible, 
macroinstruction execution is restarted and an 
error interrupt is presented to the operating 
software to allow the failure to be logged and 
software recovery of the failing system to be 
attempted. 

If the failure is retryable, another procedure 
occurs. The 1100/60 IP incorporates a "save" 
storage for machine state restoration. The save 
storage is a small memory element which cap­
tures general register set operands and addresses 
during GRS reads. The fault recovery microcode 
can restore original operands to the correct G RS 
location. Thus, even if GRS writes are performed 
by a macroinstruction before it fails, the IP can 
be restored to its original state and a retry can be 
attempted. This approach permits retry of the 
vast majority of the macroinstructions executed 
in a normal program mix. If restoration is possi­
ble so that a retry can be performed, the failing 
macroinstruction is retried by restoring it into its 

original storage location and then refetching ane 
reexecuting it. If the retry is successful, program 
execution continues from the point of the failun; 
and a subsequent interrupt is presented to the 
operating system for logging purposes. 

If the retry or the fault recovery microroutine 
fails, execution in the IP is halted and the system 
support processor is interrupted. Figure 10-5 
shows the SSP fault recovery sequence. The IP is 
scanned to determine the machine state. If the 
failure is in the control storage, correction is 
attempted by rewriting the storage to its original 
values. If this is unsuccessful, control storage is 
rewritten using complemented values, and a des­
ignator is set which causes each control word to 
be reinverted before use. This allows both soft 
failures and single cell solid failures to be cor­
rected. If the correction is successful, the IP is 
restarted and a second retry is attempted. If this 
retry is successful, program execution can con­
tinue. 

If the retry is unsuccessful or if the original 
failure was not in the control store, the failure 

Run 
microdiagnostics 

Figure 10-5. Flowchart of SSP recovery procedure. 



may still be recovered in a multiprocessor config­
uration by "program transplant." Utilizing this 
procedure, the SSP reads the program environ­
ment and GRS contents from the failing IP and 
transmits them to the operating system for use 
by another IP in the configuration. The failing 
instruction sequence can then be restarted in the 
other IP. Effectively, a failure in one IP can be 
retried in another IP. Following program trans­
plant, or if no transplant is possible, the internal 
storages in the failing IP are reinitialized by the 
SSP, and a microdiagnostic program is invoked. 
If the execution completes successfully, the fail­
ing IP can be reintroduced to the system. If the 
microdiagnostics fail, the operator is notified and 
the maintenance techniques discussed in the 
section on maintenance are used to isolate and 
repair the failure. No manual intervention is 
needed in the recovery procedure until recovery 
is as complete as possible and the SSP has 
determined that a solid unrecoverable failure 
exists in the IP. 

Fault Injection 

In the 1100/60 processing system, a capability 
has been included that uses hardware and soft­
ware to verif)' that the fault detection, isolation, 
and recovery mechanisms are operational. The 
capability is provided through fault injection, 
which is the process of deliberately causing a 
fault to occur in a system by inserting erroneous 
data or control signals in a portion of logic 
covered by a fault detection capability. The need 
for such a feature arises because the error han­
dling portion of the design is not frequently 
exercised under normal operation of the system, 
so it could fail with no indication to the software. 
Without periodic verification of the integrity of 
the error handling logic, one could not be confi­
dent of its ability to function when needed. This 
capability is also needed during prototype testing 
to verify the design of the hardware and software 
fault-handling capabilities. 

The 1100/60 system incorporates fault injec-
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tion for fault detection circuits in the processor, 
input/output unit, storage interface unit, and 
main storage unit. In the case of the control 
storage or the small storage used for instruction 
decoding in the IP, the fault injection is under 
control of the SSP. For example, the SSP can 
inject a control storage parity error by writing 
incorrect parity directly into the desired address 
location in order to stimulate one of the associat­
ed parity checkers. Injection of other IP faults is 
initiated by the presence of certain processor 
state bits and a predetermined micro-control 
store bit. During normal system operation, the 
state bits are set via a special 1100 macroinstruc­
tion which is periodically executed during system 
idle time. This instruction causes injection of a 
fault and then monitors for detection of that 
same fault. 

After the fault is detected, the system is purged 
of the fault, and the instruction is retried without 
an injected fault. Successful completion of these 
steps indicates that the particular fault detection 
and retry hardware exercised is operating cor­
rectly. 

In the input/output unit, injection is also 
under the control of the SSP. For example, a 
fault can be injected in the channel control word 
storage registers by setting and clearing flip-flops 
that specify the type of fault desired and the 
device operation during which the fault should 
occur. After the proper logic has been primed for 
the injection, the chosen fault will be triggered 
the next time the preselected device operation 
takes place. 

In the 1100/60 cache (SIU) and main storage 
unit (MSU), the injection process is controlled 
by an IP instruction routine. Forced faults inter­
nal to the SIU are specified by the unit request­
ing or sending data, and that requester then 
expects a certain type of fault at a predetermined 
point in the operation. In the MSU, the routine 
provides the capability to insert an invalid ECC 
code or bad parity on read data. On the access 
cycle of the MSU, the fault should be detected 
and an interrupt signaled. 
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Maintenance 

The maintenance philosophy for the 1100/60 
incorporates four methods of dealing with a 
failure in the system. In the order of priority of 
use, they are: 

1. Automatic error log 
2. Macrodiagnostic tests 
3. Scan compare tests 
4. Manual troubleshooting 

The automatic error log represents a record 
kept by the system of any fault handled by the 
built-in fault detection/correction, isolation, and 
recovery mechanisms. In the majority of cases, 
the log should provide sufficient information for 
the customer engineer to determine the source of 
the problem. 

In those cases when the problem has not been 
completely identified by the error log informa­
tion, macrodiagnostic tests are employed. These 
tests are written on a macroinstruction level; 
they serve to exercise most portions of the system 
establishing either a high level of confidence that 
the system is operating correctly, or determining 
the general area in which it has failed. 

If the previous two techniques have not iden­
tified the trouble area or if a finer resolution of 
the- failure is needed, the scan-compare tests are 
run. These routines are tests run under the 
control of the SSP. They make use of the pre­
viously mentioned scan network (built into the 
processor), permitting access to the state of all 
major storage elements in the IP. The tests will 
exercise the processor and compare the results to 
a table of predetermined correct results to estab­
lish the nature and source of the problem. A 
similar process is applied to the IOU, which is a 
hardwired unit. I/O instructions are executed 
and the scan network is employed under control 
of the SSP without the use of the IP. 

Accessible through the scan network is a built­
in logic analyzer which is available in each 
1100/60 as an additional diagnostic tool for the 
customer engineer. This feature permits auto­
matic storage of 1,024 consecutive states of any 

16 logic points sampled twice during each mi­
croinstruction cycle. The logic analyzer is helpful 
in the diagnosis of a particularly difficult failure 
mode, such as might exist in the presence of an 
in termi tten t fa ul t. 

Should none of the three methods above lo­
cate the failure, the customer engineer will resort 
to manual troubleshooting techniques. These 
manual efforts, however, are greatly enhanced by 
the features available in the SSP. For example, 
the scan network will permit the troubleshooter 
to capture and display on the CRT a substantial 
amount of internal test-point information that in 
the past would only have been available by using 
such tools as oscilloscopes and logic probes. In 
addition, the SSP has a communications capabil­
ity that allows a linkage with a remote mainte­
nance facility staffed with a team of diagnostic 
experts. This feature provides the ability to col­
lect from a remote location any error informa­
tion (for example, the contents of the logic 
analyzer) that is normally gathered and analyzed 
onsite. In addition, this interface can be used for 
remote control of diagnostic execution and trou­
bleshooting procedures. 

As a means of verifying the tolerance of the 
system to reasonable voltage variations during 
operation, the 1100/60 IP incorporates power 
supplies with output levels that can be varied by 
programmable margins under control of the SSP. 
This allows customer engineering personnel at 
the computer site, or at the remote maintenance 
facility, to alter the output voltages easily and to 
observe the IP behavior. Hence, this margin 
testing tool provides one means of identifying 
marginally stable components before they have 
degraded to the level where a system fault may 
occur. 

ARM EV ALUA liON 

To measure how the design goals were being met 
with respect to the ARM characteristics of the 
IP, an evaluation method was developed that 
facilitates a quantitative prediction of the ARM 



behavior of the central complex. Using this 
method, an estimation was made of the fault 
jetection/recovery coverage, the system stability 
:)r mean time between stops (MTBS), the mean 
jown-time (MDT), the mean time to repair 
~MTTR), and the availability of the central 
~omplex. 

The use of the evaluation method requires an 
initial examination of the various elements of the 
system and their anticipated contributions to the 
overall stability and availability of the central 
complex. After such an examination the two 
major ARM measures can be analyzed: MTBS 
and availability. MTBS is a measure of system 
stability and is calculated by evaluating its two 
components: hardware MTBS (MTBSH) and 
software MTBS (MTBSS). 

The hardware stability is determined from 
component failure rates, the coverage of the fault 
detection mechanisms, and the recoverability of 
the system from each of the faults detected that 
do not lead to a system stop. The failure rates are 
obtained by studying vendor, government, and 
internal failure data for each of the integrated 
circuits and components used in the units. Cov­
erage is analyzed by examining the current de­
tailed hardware documentation for the system 
and determining which fault detection circuits 
will capture which faults, and in which chips. 
The recoverability factor is determined by study­
ing what percentage of detected faults can be 
recovered from by each recovery mechanism and 
by analyzing the probability of success of that 
recovery. 

The software stability is calculated by examin­
ing the inherent characteristics of the modules, 
such as size and complexity; considering the 
quality assurance during development; and eval­
uating the environment in which the software 
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will be used based on our experience with the 
stability of similar software systems in the past. 

The other major ARM factor, system availa­
bility, is predicted by considering the MTBFs 
and MTTRs of the various units in the central 
complex, the amount of redundancy of units in 
the system, and the recovery time necessary 
following a system stop. The application of the 
evaluation method described above proved to be 
a valuable tool for management and design 
personnel in gaining visibility of the unfolding 
ARM characteristics of the 1100/60 CPU versus 
the established goals for development. It has 
been encouraging to observe that preliminary 
data gathered from approximately one hundred 
initial installations reflect a very favorable com­
parison with the predicted values. 

SUMMARY 

As the applications of computers become more 
complex and sophisticated, and as new electron­
ic technologies emerge in the industry, the de­
mand, as well as the potential, for increased 
availability, reliability, and maintainability ap­
pears to be growing. The Sperry Univac 1100/60 
Information Processing System reflects the re­
sults of a coherent development effort that takes 
advantage of the current state of the art in 
achieving a high level of inherent quality of 
design and a dramatic increase in the fault 
tolerant attributes of the commercial computer 
system. 
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A Fault-Tolerant Computing System 

James A. Katzman 

Abstract 

A fault-tolerant computer architecture is examined that 
is commercially available today and installed in many 
industries. The hardware is examined in this paper and 
the software is examined in a companion paper [Bartlett, 
1978; also excerpted in the second half of this chapter]. 
References for both papers are at the end of the chapter. 

INTRODUCTION 

The increasing need for businesses to go on-line 
is stimulating a requirement for cost effective 
computer systems having continuous availability 
[Tandem Computers, Inc., 1976; Katzman, 
1977a]. Certain applications such as automatic 
toll billing for telephone systems lose money 
each minute the system is down and the losses 
are irrecoverable. Systems commercially avail­
able today have met a necessary requirement of 
multiprocessing but not the sufficient conditons 
for fault-tolerant computing. 

The greatest dollar volume spent on systems 
needing these fault-tolerant capabilities are in 
the commercial on-line, data base transaction, 
and terminal oriented applications. The design 
of the Tandem 16 NonStop* system was directed 
toward offering the commercial market an off­
the-shelf, general purpose system with at least an 
order of magnitude better availability than exist­
ing off-the-shelf systems without charging a pre­
mium. This was accomplished by using a top 
down system design approach, thus avoiding the 
shortcomings of the systems currently addressing 
the fault-tolerant market. 

~ copyright 1977, Tandem Computers, Incorporated. All 
rights reserved. 

" NonStop is a trademark of Tandem Computers. 
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Except for some very expensive special sys­
tems developed by the military, universities, and 
some computer manufacturers in limited quanti­
ties, no commercially available systems have 
been designed for continuous availability. Some 
systems such as the ones designed by ROLM 
have been designed for high MTBF by "rugged­
izing," but typically computers have been de­
signed to be in a monolithic, single processor 
environment. As certain applications demanded 
continuous availability, manufacturers recog­
nized that a multiprocessor system was necessary 
to meet the demands for availability. In order 
to preserve previous development effort and 
compatibility, manufacturers invented awkward 
devices such as I/O channel switches and inter­
processor communication adapters to retrofit 
existing hardware. The basic flaw in this effort is 

CPU 

Bus 
switch 

~ 

that only multiprocessing was achieved. While 
that is necessary for continuously available sys­
tems, it is far from sufficient. 

Single points of failure flourish in these past 
architectures (Figure 11-1). A power supply fail­
ure in the I/O bus switch or a single integrated 
circuit (Ie) package failure in any I/O controller 
on the I/O channel emanating from the I/O bus 
switch will cause the entire system to fail. Other 
architectures have used a common memory for 
interprocessor communications, creating another 
single point of failure. Typically such systems 
have not even approached the problem of on-line 
maintenance, redundant cooling, or a power 
distribution system that allows for brownout 
conditions. In today's marketplace, many of the 
applications of fault-tolerant systems do not 
allow any down time for repair. 
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Figure 11-1. Example of previous fault-tolerant systems. 
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Figure 11-2. Tandem 16 system architecture. (See page 438.) 
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Expansion of a system such as the one in 
Figure 11-1 is prohibitively expensive. A three 
processor system, strongly connected in a redun­
dant fashion, would require twelve interproces­
sor links on the I/O channels; five processors 
would need forty links; for n processors, 2n X 

(n - 1) links are required. These links often 
consist of 100--200 IC packages and require 
entire circuit boards priced between $6,000 and 
$10,000 each. ,Using the I/O channel in this 
manner limits the I/O capabilities as a further 
undesirable side effect. The resulting hardware 
changes for expansion, if undertaken, are typi­
cally dwarfed in magnitude by the software 
changes needed when applications are to be 
geographically changed or expanded. 

This paper describes the Tandem 16 architec­
ture at the lowest level (the hardware). The first 
section deals with the overall system organiza­
tion and packaging. The second section explains 

the processor module organization and its at­
tachment to the interprocessor communications 
system. The third section discusses the I/O sys­
tem organization. The fourth section discusses 
power, packaging, and on-line maintenance as­
pects that are not covered elsewhere in the paper. 

SYSTEM ORGANIZATION 

The Tandem 16 NonStop system is organized 
around three basic elements: the processor mod­
ule, dual-ported I/O controllers, and the DC 
power distribution system (Figures 11-2, 11-3). 
The processors are interconnected by a dual­
interprocessor bus system: the Dynabus; the I/O 
controllers are each connected with two indepen­
dent I/O channels, one to each port; and the 
power distribution system is integrated with the 
modular packaging of the system. 

I 
---------~ 
=;:---=-====-==~, 

I I, 
~~ 

Figure 11-3. Tandem 16 power distribution. 



The system design goal is twofold: (I) to 
:ontinue operation of the system through any 
ingle failure, and (2) to be able to repair that 
ailure without affecting the rest of the system. 
lhe on-line maintenance aspects were a key 
actor in the design of the physical packaging 
lnd the power-distribution of the system. 

;ystem Packaging 

lhe cabinet (Figure 11-4) is divided into 4 
ections: the upper card cage, the lower card 
:age, cooling, and power supplies. The upper 
:ard cage contains up to 4 processors, each wi th 
Lp to 512K bytes of independent main memory. 
:he lower card cage contains up to 32 I/O 
on troller printed circuit (PC) cards, where each 
:ontroller consists of one to three PC cards. The 
:ooling section consists of 4 fans and a plenum 
hamber that forces laminar air flow through the 

I I I I 

32 1/0 slots 

seee 

Figure 11-4. Tandem 16 physical cabinet. 
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card cages. The power supply section contains 
up to 4 power supply modules. Multiple cabinets 
may be bolted together and the system has the 
capability to accommodate a maximum of 16 
processors. 

Each processor module, consisting of a CPU, 
memory, Dynabus control, and I/O channel, is 
powered by an associated power supply. If a 
failed module is to be replaced in this section its 
associated power supply is shut off, the module 
is replaced, and the power supply is turned on. 
Each card cage slot in the I/O card cage is 
powered by two different power supplies. Each 
of the I/O controllers is connected via its dual­
port arrangement to two processors. Each of 
those processors has its own power supply; 
usually, but not necessarily, those two supplies 
are the ones that power the I/O controller (Fig­
ure 11:3). Each slot in the I/O card cage can be 
powered down by a corresponding switch dis­
connecting power from the slot from both sup­
plies without affecting power to the remainder of 
the system. Therefore, if a power supply fails, or 
if one is shut down to repair a processor, no I/O 
controllers are affected. 

The dual-power sourcing to the I/O control­
lers was originally designed using relay switch­
ing. This plan was abandoned for several rea­
sons: a) to contend with relay failure modes is 
difficult; b) ,the number of contact bounces on a 
switch-over is neither uniform nor predictable 
making it difficult for the operating system to 
handle power-:-on interrupts from the I/O con­
trollers; and c) during the switch-over, control­
lers do lose power, and while most controllers 
are software-restartable, communications con­
trollers hang up their communications lines. We 
therefore devised a diode current sharing scheme 
whereby I/O controllers are constantly drawing 
current from two supplies simultaneously. If a 
power supply fails, all the current for a given 
controller is supplied by the second power sup­
ply. There is also circuitry to provide for a 
controlled ramping of current draw on turn-on 
and turn-off so there are no instantaneous power 
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demands from a given supply causing a potential 
momentary dip in supply voltage. 

Both fans and power supplies are electrically 
connected using quick disconnect connectors to 
speed replacement upon failure. No tools are 
required to replace a power supply. A screwdriv­
er is all that is needed to replace a fan. Both 
replacements take less than 5 minutes. 

Interconnections 

Physical interconnection is done both using front 
edge connectors and backplanes. Communica­
tion within a processor module (e.g., between the 
CPU and main memory) takes place over four 50 
pin front edge connectors using fiat ribbon cable. 
Interprocessor communication takes place over 
the Dynabus on the backplane also utilizing 
ribbon cable. The I/O controllers use etch trace 
on the backplane for communication among PC 
cards of a multicard controller. The I/O chan­
nels are backplane ribbon cable connections 
between the processors and the I/O controllers. 

Peripheral I/O devices are connected via 
shielded round cable either to a bulk-head patch 
panel or directly to the front edge connectors of 
the I/O controllers. If a patch panel is used, then 

I 
X bus 

Y bus 

there is a connection using round cables between 
the patch panel and the front edge connectors of 
the I/O controllers. 

Power is distributed using a DC power distri­
bution scheme. Physically, AC is brought in 
through a filtering and phase splitting distribu­
tion box. Pigtails connect the AC distribution 
box to one of the input connectors of a power 
supply. The DC power from the supply is routed 
through a cable harness to a laminated bus bar 
arrangement which distributes power on the 
backplanes to both processors and I/O control­
lers. 

PROCESSOR MODULE 
ORGANIZATION 

The processor (Figure 11-5) includes a 16-bit 
CPU, main memory, the Dynabus interface con­
trol, and an I/O channel. Physically the CPU, 
I/O channel and Dynabus control consist of two 
PC boards 16 inches by 18 inches, each contain­
ing approximately 300 IC packages. Schottky 
TTL circuitry is used. Up to 5I2K bytes of main 
memory are available utilizing core or semicon­
ductor technology. Core memory boards hold 
32K 17-bit words and each occupies two card 
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Figure 11-5. Tandem 16 processor organization. 



slots because of the height of the core stack. 
Semiconductor memory is currently implement­
ed utilizing 16-pin, 4K dynamic RAMs. These 
memory boards contain 48K 22-bit words per 
board and occupy only one card slot and are 
therefore three times denser than core. 

The processor module is viewed by the user as 
a 16-bit, stack-oriented processor, with a demand 
paging, virtual memory system capable of sup­
porting multiprogramming. 

The CPU 

The CPU is a microprogrammed processor con­
sisting of a bank of 8 registers which can be used 
as general purpose registers, as a LIFO register 
stack, or for indexing; an ALU; a shifter; two, 
memory stack management registers; program 
control registers (e.g., program counter, instruc­
tion register, environment or status register, and 
a next instruction register for instruction pre­
fetching); scratch pad registers available only to 
the microprogrammer; and several other miscel­
laneous flags and counters for the micropro­
grammer. 

The microprogram is stored in read-only 
memory and is organized in 512-word sectors of 
32-bit words. The microinstruction has different 
:ormats for branching, sequential functions, and 
,mmediate operand operations. The Tandem 16 
nstruction set occupies 512 words with the dec i­
nal arithmetic option occupying another 512 
Nords. The address space for the microprogram 
s 2K words. 

The microprocessor has a 100 ns cycle time 
md is a two stage pipelined microprocessor, i.e., 
ill microinstructions take two cycles to execute 
Jut one completes each cycle. In the first stage of 
,he pipeline any two operands are selected by 
wo source fields in the microinstruction for 
oading into the ALU input registers. In the 
;econd stage of the pipeline the ALU performs a 
>rimitive operation on the operands placed in 
he ALU input registers during the previous 
:ycle and performs a shift operation on the 
esults. In parallel, a miscellaneous operation 
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such as a condition code setting or a counter 
increment can be done, the result can be stored 
in any CPU register or dispatched to the memory 
system or I/O channel, and a condition test 
made on the results. Each of these parallel 
operations is controlled by a separate control 
field in the microinstruction. 

The basic set of 123 machine instructions 
includes arithmetic operations (add, subtract, 
etc.), logical operations (and, or, exclusive or), 
bit deposit, block (multiple element) moves/ 
compares/scans, procedure calls and exits, inter­
processor SENDs, and I/O operations. All in­
structions are 16 bits in length. The decimal 
instruction set provides an additional 20 instruc­
tions dealing with four-word operands. 

The interrupt system has 16 major interrupt 
levels which include interprocessor bus data re­
ceived, I/O transfer completion, memory error, 
interval timer, page fault, privileged instruction 
violation, etc. 

Provision is made for several events to cause 
microinterrupts. They are entirely handled by 
the CPU's microprocessor without causing an 
interrupt to the operating system. One event for 
example, is the receipt of a 16-word packet over 
the Dynabus. A packet is the primitive unit of 
data which is transferred over the Dynabus for 
interprocessor communication. The micropro­
cessor puts the information in a predetermined 
area of memory and does not cause a system 
interrupt until the entire message is received. 

The register stack is used for most arithmetic 
operations and for holding parameters for block 
instructions (moves/compares/scans) which 
need the parameters updated dynamically so 
that the instructions may be interruptable and 
restarted. The 8-register stack is a "wraparound" 
stack and is not logically connected to the mem­
ory stack. 

Main Memory 

Main memory is organized in physical pages of 
lK words of 16 bits/word. Up to 256K words of 
memory may be attached to a processor. In the 
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core memory systems there is a parity bit for 
single error detection, and in semiconductor 
memory systems there are 6 check bits/word to 
provide single error correction and double error 
detection. Due to the relative reliability of these 
two technologies, we have found that semicon­
ductor memory, without error corrrection, is 
much less reliable than core, and that with error 
correction, it is somewhat more reliable than 
core. Battery backup provides short term non­
volatility to the semiconductor memory system 
for utility power outage considerations. 

It might be noted that there are some memory 
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systems using a 21-bit error correction scheme (5 
check bits on a 16-bit data word instead of 6). 
While 5 bits are enough to correct all single bit 
errors, it does not detect approximately 1/3 of 
the possible double bit error combinations. In 
these conditions, this 5 check bit scheme will 
incorrectly deduce that some bit (neither of the 
bits actually in error) is incorrect and correct­
able. The scheme will then correct this bit (ac­
tually causing 3 bits to be in error), and deliver 
it to the system as "good," reporting a correct­
able memory error. 

Memory is logically divided into 4 address 

I-

User 
code 
area 

(64 logical 
pages) 

I-

i 
Map 2 
user 
code 

Map entry 

System 
code 
area 

(64 logical 
pages) 

Map 3 
system 
code 

-

-

61 8 o 9 10 11 12 13 14 15 

62 

63 \~-----------------~~----------------------I 
Physical pag~ no. (0:255) 

P = Parity 

R,R',R" = Reference bits-used by 
operating system to select a page for 
overlay 

D = Dirty bit-set whenever a write 
access is made to the page 

A = Absent-1I1" indicates that the page 
is not present in physical memory 

Figure 11-6. Tandem 16 logical memory address spaces, 
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spaces (Figure 11-6). These are the virtual ad­
dress spaces of the machine; both the system and 
the user have a code space and a data space. The 
code space is unmodifiable and the data space 
can be viewed either as a stack or a random 
access memory, depending on the addressIng 
mode used. Each of these virtual address spaces 
are 64K words long addressed by a 16-bit virtual 
address. 

The physical memory address is 16 bits with 
conversion from the virtual address to physical 
address accomplished through a mapping 
scheme. Four maps are provided, one for each 

Memory reference 
instruction in code area: 

8 9 10 11 12 13 14 15 

's' minus rei 

~--------~V~---------JI 

Addressing mode and 
displacement from base 

logical address space; each map consists of 64 
entries, one for each page in the virtual address 
space. The maps are implemented in 50 ns access 
bipolar static RAM. The map access and main 
memory error correction is included in the 500 
nsec cycle time for semiconductor memory sys­
tems. 

The unmodifiable code area provides reen­
trant, recursive, and sharable code. The data 
space (Figure 11-7) can be referenced relative to 
address 0 (global data or G+ addressing), or 
relative to the memory stack management regis­
ters in the CPU. 

'G' 
(256 words) 

'L'minus 
(32 words) 

Data 
area 

Global 
data 

Parameters 

Local 
'L' plus data 

(128 words) 

Top of 
stack 
area 

G (O)! base 

G (255) 

L (-31) 

L (0) ! base 

L (127) 

S (-31) 

~ __ ~ S (0) ! base 

Figure 11-7. Tandem 16 data space. 



444 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

The lowest level language provided on the 
Tandem 16 system is T /TAL, a high-level, block­
structured, ALGOL-like language which pro­
vides structures to get at the more efficient 
machine instructions. The basic program unit in 
T/TAL is the PROCEDURE. Unlike ALGOL, 
there is no outer block, but rather a main PRO­
CEDURE. T/TAL has the ability to declare 
certain variables as global. PROCEDURES can­
not be nested in T /T AL, but a SUBPROCE­
DURE can be nested in a PROCEDURE and 
only in a PROCEDURE. A SUBPROCEDURE 
is limited in local variable access capabilities. 

The memory stack, defined by two registers in 
the CPU, is used for efficient linkage to and from 
procedures, parameter passing, and dynamic 
storage allocation and deallocation for variables 
local to the procedure. 

The L register (Local variables) points to the 
last stack marker placed on the stack. This 
marker contains return information about the 
caller such as the return address and the previous 
location of the L register. The contents of the L 
register are primarily changed by the procedure 
call and exit instructions. 

Addressing relative to the L register provides 
access to parameters passed to a procedure (L-) 
and local variables of the procedure (L+). Pa­
rameters may be passed either by value (using 
direct addressing) or by reference (using indirect 
addressing). 

The S register (stack top pointer) points to the 
last element placed on the stack. It is used for a 
SUBPROCEDURE's sublocal data area when S 
relative addressing (S-) is used. 

There is a special mode of addressing used by 
the operating system, called System Global 
(SG+) addressing. It is used by the operating 
system while it is working in a user's virtual data 
space (on his behalf) and needs to address the 
system data space. The system data space con­
tains many resource tables and buffers and the 
need to access them quickly justifies the exist­
ence of this addressing mode. 

There are three tables known to the operating 
system, the microprogram and the hardware: the 

system interrupt vector (SIV), the I/O Control 
(lOC) table, and the Bus Receive Table (BRT). 
These tables will be explained in later sections as 
appropriate. 

The Dynabus 

The Dynabus is a set of two independent inter­
processor buses. Bus access is determined by two 
independent interprocessor bus controllers. Each 
of these controllers is dual-powered, in the same 
manner as an I/O controller. The Dynabus con­
trollers are very small, approximately 30 IC 
packages, and are not associated with, nor phys­
ically a part of any processor. Each bus has a 
two-byte data path and control lines associated 
with it. There are two sets of radial connections 
from each interprocessor bus controller to each 
processor module. They distribute clocks for 
synchronous transmission over the bus and for 
transmission enable. Therefore, no failed pro­
cessor can independently dominate Dynabus uti­
lization upon failure since in order to electrically 
transmit onto the bus, the bus controller must 
agree that a given processor has the right to 
transmit. Each bus has a clock associated with it, 
running independently of the processor clocks 
and located on the associated bus controller. The 
clock rate is 150 ns on two to eight processor 
systems. The clock does need to be slowed down 
for the longer interprocessor buses of greater 
than eight processors. Therefore each bus on 
small systems transfers at the rate of 13.3M 
bytes/second and on the larger systems at 10M 
bytes/second. Performance measurements have 
shown that under worst case test conditions the 
Dynabus is only 15% utilized in a ten processor 
system. 

Each processor in the system attaches to both 
interprocessor buses. The Dynabus interface 
control section (Figure 11-8) consists of 3 high 
speed caches: an incoming queue associated with 
each interprocessor bus, and a single outgoing 
queue that can be switched to either of the buses. 
All caches are 16 words in length and all bus 
transfers are cache to cache. All components that 
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(2 buses *16 processors) 

Figure 11-8. Tandem 16 Dynabus interface and control. 

Lttach to either of the buses are kept physically 
listinct, so that no single component failure can 
:ontaminate both buses simultaneously. Also in 
his section are clock synchronization and inter­
ock circuitry. All processors communicate in a 
loint to point manner using this redundant 
lirect shared bus (DSB) configuration [Anderson 
.nd Jensen, 1975]. 

For any given interprocessor data transfer, 
me processor is the sender and the other the 
eceiver. Before a processor can receive data 
Iver an interprocessor bus, the operating system 
Gust configure an entry in a table (Figure 11-9) 
:nown as the Bus Receive Table (BR T). Each 
~RT entry contains the address where the in-

coming data is to be stored and the number of 
words expected. To transfer data over a bus, a 
SEND instruction is executed in the sending 
processor, which specifies the bus to be used, the 
intended receiver, and the number of words to 
be sent. The sending processor's CPU stays in 
the SEND instruction until the data transfer is 
completed. Up to 65,535 words can be sent in a 
single SEND instruction. While the sending pro­
cessor is executing the SEND instruction, the 
Dynabus interface control logic in the receiving 
processor is storing the data away according to 
the appropriate BRT entry. In the receiving 
processor this occurs simultaneously with pro­
gram execution. 
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Bus receive 
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15 < SG (%776) CPU = Processor module 0-15 

32768 = Timeout value is the number of 0.8 psec 
units allocated to completing the send example. 

NOTE: % means base 8 notation Timeout value = 0 then 32768-0 * 0.8 = 0.026 Seconds 

Figure 11-9. Bus receive table. 

The message is divided· in to packets of 15 
information words and an LRC check word. The 
sending processor first fills its outgoing queue 
with these packets, requests a bus transfer, and 
transmits upon grant of the bus by the interpro­
cessor bus controller. The receiving processor 
fills the incoming queue associated with the bus 
over which the packet is received, and issues a 
microinterrupt to its own CPU. The micropro­
cessor of the CPU checks the BRT entry, stores 
the packet away, verifies the LRC check word, 
and updates the BRT entry accordingly. If the 
count is exhausted the currently executing pro­
gram is interrupted; otherwise program execu­
tion continues. 

TheBRT entries are two words that include a 

transfer count and buffer address. The SEND 
instruction has as parameters the designation of 
the bus to be used, the intended receiver, the 
data buffer address in the system data space, the 
word count to be transferred, and a timeout 
value. Error recovery action is to be taken in 
case the transfer is not completed within the 
timeout interval. These parameters are placed on 
the register stack and are dynamically updated 
so that the SEND instruction is interruptible on 
packet boundaries. 

There are several levels of protocol, beyond 
the scope of this paper, dealing with the interpro­
cessor bus that exist in software [Bartlett, 1978 
and the second half of this paper], to assure that 
valid data are transferred. The philosophy for 



the hardware/software partitioning was to leave 
the more esoteric decisions to the software, e.g., 
alternate path routing, and error recovery proce­
dures, with fault detection and reporting imple­
mented in the hardware. Fault detection was 
designed in those areas having the highest antic­
ipated probability of error. 

The Input/Output Channel 

The heart of the Tandem 16 I/O System is the I/O 
channel. All I/O is done on a direct memory 
access (DMA) basis. The channel is a micropro­
grammed, block multiplexed channel with the 
block size determined by the individual control­
lers. All the controllers are buffered to some 
degree so that all transfers over the I/O channel 
are at memory speed (4M Bytes/Second) and 
never wait for mechanical motion since the 
transfers always come from a buffer in the 
controller, rather than from the actual I/O device. 

There exists a table in the system data space of 
each processor called the IOC (I/O Control) 
table that contains a two-word entry (Figure 
11-10) for each of the 256 possible I/O devices 
attached to the I/O channel. These entries con­
tain a byte count and virtual address in the 
system data space for data transfers from the 
I/O system. 

The I/O channel moves the IOC entry to 
active registers during connection of an I/O 
controller and restores the updated values to the 
IOC upon disconnection. The I/O channel alerts 
the I/O controller when the count has been 
exhausted and that causes the controller to inter­
rupt the processor. 

The channel does not execute channel pro­
grams as on many systems but it does do data 
transfer in parallel with program execution. The 
memory system priority always permits I/O ac­
cesses to be handled before CPU or Dynabus 
accesses (in an on-line, transaction oriented en­
vironment, it is rare that a system is not I/O 
bound). The maximum I/O transfer is 4K bytes. 
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I/O SYSTEM ORGANIZATION 

The I/O system had a design goal of being very 
efficient in a transaction, on-line oriented envi­
ronment. This environment has constraints dif­
ferent from those of a batch environment. The 
figure of merit in an on-line system is the number 
of transactions/second/dollar that can be han­
dled by the system. We also wanted an I/O 
system that had low overhead, fast transfer rates, 
no overruns, and no interrupts to the system 
until a logical entity of work was completed (i.e., 
no character by character interrupts from the 
terminals). The retiulting design satisfied these 
goals by implementing an I/O system that was 
extremely simple. 

I/O controllers reconnect to the channel when 
their buffers are stressed past a configurable 
threshold, transfer data in a burst mode until 
their buffer stress is zero (buffer empty on input 
operations, full on output operations), and dis­
connect from the channel. When the transfer 
terminates, the I/O controller interrupts the pro­
cessor. Controllers may interrupt for other rea­
sons than an exhausted byte count, e.g., a termi­
nal controller receiving an end-of-page character 
from a page mode terminal, or I/O channel error 
condition, or a disc pack being mounted. 

Dual-Port Controllers 

The dual-ported I/O device controllers provide 
the interface between the Tandem 16 standard 
I/O channel and a variety of peripheral devices 
using distinct interfaces. While the I/O control­
lers are vastly different, there is a commonality 
among them that folds them into the Tandem 16 
NonStop architecture. 

Each controller contains two independent I/O 
channel ports implemented by IC packages 
which are physically separate from each other so 
that no interface chip can simultaneously cause 
failure of both ports. Each port of each control­
ler has a 5-bit configurable controller number, 
and interrupt priority setting. These settings can 
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Figure 11-10. 1/0 control table. 

be different on each port. The only requirement 
is that each port attached to an I/O channel 
must be assigned a controller number and prior­
ity distinct from controller numbers and priori­
ties of other ports attached to the same I/O 
channel. 

Each controller has a PON (power-on) circuit 
which clamps its output to ground whenever the 
controller's DC supply voltage is not within 
regulation. The PON circuit has hysteresis in it 
so that it will not oscillate if the power should 
hover near the limit of regulation. When the 
power is within regulation, the output of the 
PON circuit is at a TTL "1" level. A power-on 
condition causes a controller reset and also gives 
an interrupt to one of the two processors to 
which it is attached. The output of the PON 
circuit is also used to enable all the I/O channel 

bus transceivers so that a controller being pow­
ered down will not cause interference on the I/O 
channels during the power transient. This is 
possible because the PON circuit operates with 
the supply voltage as low as .2 volts and special 
transceivers are used which correctly stay in a 
high impedance state as long as the control 
enable is at a logical "0." 

Logically only one of the two ports of an I/O 
controller is active and the other port is utilized 
only in the event of a path failure to the primary 
port. There is an "ownership" bit (Figure 11-11) 
indicating to each port if it is the primary port or 
the alternate. Ownership is changed only by the 
operating system issuing a TAKE OWNERSHIP 
I/O command. Executing this special command 
causes the I/O controller to swap its primary and 
alternate port designation and to do a controller 
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Figure 11-11. Ownership circuitry. 

reset. Any attempt to use a controller which is 
not owned by a given processor will result in an 
ownership violation. If a processor determines 
that a given controller is malfunctioning on its 
I/O channel, it can issue a DISABLE PORT 
command that logically disconnects the port 
from that I/O controller. This does not affect the 
ownership status. That way, if the problem is 
within the port, the alternate path can be used, 
but if the problem is in the common portion of 
the controller, ownership is not forced upon the 
other processor. 

A controller signals an interrupt on the I/O 
channel if the channel has indicated an ex­
hausted transfer count, if the controller termi­
nates the transfer prematurely, or for attention 
purposes. 

When simultaneous interrupts occur on an 
I/O channel, a priority scheme determines which 
interrupt is handled first. There are two levels of 
priorities, designated "rank 0" and "rank 1." 
Each rank has up to 16 controllers assigned to it. 
Jumper wires on each controller determine the 
rank and position within the rank (positions 0 to 
15). The I/O channel issues a rank 0 interrupt 
poll cycle and each controller assigned to rank 0 
can place an interrupt request, if it needs service, 
on a dedicated data bit of the I/O channel 
determined by the jumper wires. If there are no 
controllers on rank 0 requiring service, the I/O 
channel issues the interrupt poll cycle for rank 1. 
Note, only 32 controllers can be assigned to a 
given channel and each one has a unique rank 
and position designation. The highest priority 
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controller is granted access to the interrupt sys­
tem. Thus a radial polling technique allows the 
processor to resolve 32 different controller prior­
ities in just two poll cycles. Each port of a 
controller has a separate set of configuration 
jumpers so that a controller can have different 
priorities on its primary and alternate path. 

Controller Buffer Considerations 

In the design of the Tandem 16 I/O system, a lot 
of attention was paid to the overrun problem. 
While overruns are possible on this system, they 
have been made a rare occurrence. Each I/O 
controller has 3 configurable settings: the I/O 
controller number, the interrupt priority, and 
buffer stress threshold reconnect setting. 

Each I/O controller is buffered to some extent. 
The asynchronous terminal controller has 2 
bytes of buffering, while the disc controller has 
4K bytes of buffering. Considerations of device 
transfer rate, channel transfer rate, the individual 
controller's buffer depth, the controller's recon­
nect priority, and a given channel's I/O comple­
ment can be used to determine the buffer's depth 
(stress threshold) at which a reconnect request 
should be made to the channel to minimize the 
chance of overrun. Each controller with a signif­
icant buffering (more than 32 bytes) has a con­
figurable stress threshold. Buffer stress is defined 
as the number of cells full on an input operation, 
and the number of cells empty on output opera­
tions. In general, the I/O channel relieves stress 
while the I/O device generates more stress. 
Therefore the higher the stress, the more the 
buffer needs relief from the I/O channel, regard­
less of the direction of data transfer. 

Tandem has developed a program which takes 
a system configuration and determines the ap­
propriate stress threshold settings needed to 
guarantee no data overruns. Since reconnect 
overhead time is known, and all transfers on the 
I/O bus take place at memory speed, and the 
upper bound of the block length is known for 
each type of controller, it is a deterministic 
function as to whether or not an overrun is 

possible. If it is impossible to generate a no­
overrun configuration, the program will output a 
minimum-overrun threshold setting. Most times, 
however, it is possible to iterate on the configu­
ration until threshold settings can be determined 
that prevent overruns. 

Disc Controller Considerations 

The greatest fear that an on-line system user has 
is that "the data base is down" [Dolotta et al., 
1976]. Many of these users are willing to pay the 
premium of having duplicated or "mirrored" 
data bases in case a disc drive fails. To meet this 
requirement, Tandem provides automatic mir­
roring of. data bases. 

A disc volume is a set of data contained on 
one spindle or one removable disc pack. A user 
may declare any of the disc volumes as mirrored 
pairs at system generation time (Figure 11-12). 
The system then maintains these pairs so that 
they always contain identical data. Thus protec­
tion is achieved for a single drive failure. Each 
disc drive in the system may be dual-ported. 
Each port of a disc drive is connected to an 
independent disc controller. Each of the disc 
controllers is also dual-ported and connected 
between two processors. A string of up to 8 
drives (4 mirrored pairs) can be supported by a 
pair of con trollers in this manner. 

Note that in this configuration there are many 
paths to any given data and that data can be 
retrieved regardless of any single disc drive fail­
ure, disc controller failure, power supply failure, 
processor failure, or I/O channel failure. 

The disc controller is buffered for a maximum 
length record which provides several features 
important in an on-line system. First, the disc 
controller is absolutely immune to overruns. 
Second, data to be written on two drives need be 
transferred over the I/O channel only once. The 
data may then be posted twice from the control­
ler's internal buffer. Thus the channel's data 
transfer capacity is little impaired by mirrored 
volumes. 



Figure 11-12. Tandem 16 disc subsystem 
organization. 

This disc controller uses a Fire code [Peterson, 
1961] for burst error correction and detection. It 
can correct II bit bursts in the controller's buffer 
before transmission to the channel. Since over­
lapped seeks are allowed by the controller, when 
data are to be read from a mirrored pair they can 
be read from the drive which has its arm closest 
to the data cylinder. It is interesting to note that 
since the majority of transactions in an on-line 
system are reads, mirrored volumes actually can 
increase performance. 

NonStop I/O System 
Considerations 

The I/O channel interface consists of a two-byte 
data bus and control signals. All data transferred 
over the bus are parity checked in both direc­
tions, and errors are reported via the interrupt 
system. A watchdog timer in the I/O channel 
detects if a nonexistent I/O controller has been 
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addressed, or if a controller stops responding 
during an I/O sequence. 

The data transfer byte count word in the 10C 
entry contains four status bits including a protect 
bi t. When this bit is set to "I" only ou tpu t 
transfers are permitted to this device. 

Because I/O controllers are connected be­
tween two independent I/O channels, it is very 
important that word count, buffer address, and 
direction of transfer are controlled by the pro­
cessor instead of within the controller. If that 
information were to be kept in the controller, a 
single failure could cause both processors to 
which it was attached to fail. Consider what 
would happen' if a byte count register was locat­
ed in the controller and was stuck in such a 
situation such that the count could not decre­
ment to zero on an input transfer. It would be 
possible to overwrite the buffer and cause system 
tables to become meaningless. The error would 
propagate to the other processor upon discovery 
that the first processor was no longer operating. 

Other error conditions that the· channel checks 
for are violations of I/O protocol, attempts to 
transfer to absent pages (it is the operating 
system's responsibility to "tack down" the virtual 
pages used for I/O buffering), uncorrectable 
memory errors, and map parity errors. 

POWER, PACKAGING, ON-LINE 
MAINTENANCE 

The Tandem 16 power supply has 3 sections: a 5 
volt interruptible section, a 5 volt uninterruptible 
section, and a 12-15 volt unin terruptible section. 
The interruptible section will stop supplying DC 
power when AC is lost while the uninterruptible 
sections will continue to supply DC power. The 
interruptible section powers I/O controllers and 
that portion of a processor which is not related 
to memory refresh operation. The uninterrupti­
ble sections provide power for the memory array 
and refresh circuitry. The 5 volt sections are 
switching regulated supplies while the 12-15 volt 
section is linearly regulated. The uninterruptible 
sections have a provision for a battery attach-
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ment so that in case of utility power failure, 
memory contents are kept for l.5 to 4 hours, 
depending on the amount of memory attached to 
the supply. 

The power supply accepts AC input of 110 or 
220 volts ±20% to provide brownout insensitivi­
ty. At nominal line conditions, over 30 msec of 
ride through is provided by storage capacitors. A 
power-fail warning signal is provided when there 
is at least 5 msec of regulated power remaining 
so that the processor can go through an orderly 
shutdown. Some users must remain operational 
through utility power failure and have generator 
systems which provide continuous AC power for 
the entire system, including peripheral devices. 

The power-fail warning scheme in the Tandem 
16 power supply monitors charge in the storage 
capacitors rather than monitoring loss· of AC 
peaks as is conventionally done. This has the 
advantage that the 5 msec to do a power shut­
down sequence in the processor is guaranteed 
even if it occurs after a brownout period. 

The power supply provides all other prudent 
features required in a computer system, such as 
over voltage and over current protection, and 
over temperature protection. 

The power-up sequencing on disc drives has 
been implemented with independent rather than 
daisy chained circuits. In the daisy chained ap­
proach, one bad sequencer circuit can cause the 
remaining drives in the chain not to sequence up 
after a power failure. 

Further Packaging and On-line 
Maintenance Considerations 

Modularity is a key concept in the Tandem 16 
system. The maintenance philosophy is to make 
all repair by module replacement at the user site 
without making the system unavailable to the 
user. Therefore the backplanes, power supplies, 
fans, I/O channels, as well as the PC cards are 
modular and easily replaceable. Thumb screws 
are used when they can be so that a minimum of 
tools are needed for repair. The package is 
designed so that there is easy access to all 
. modules. 

Processors and I/O controllers not only can be 
replaced on-line, but added on-line without sys­
tem interruption if expansion is planned, all 
without application software being changed. 

SUMMARY 

The contribution of the Tandem 16 system lies in 
the synthesis of a system to directly address the 
need of the NonStop application marketplace. 
By avoiding the "onus of compatibility" to any 
previous system, an architecture could be de­
signed from "scratch" that was "clean" and 
efficient. 

The system goals have been met to a large 
degree. Systems have been shipped containing 2 
to 10 processors. Many application programs are 
on-line and running. They recover from failures, 
and stay up continuously. 



A "NonStop" Operating System 

Joel F. Bartlett 

Abstract 

The Tandem 16 computer system is an attempt at 
providing a general-purpose, multiple-computer system 
which is at least one order oj magnitude more reliable 
than conventional commercial offerings. Through sojt­
ware abstractions a multiple-computer structure, desira­
ble jor jailure tolerance, is transjormed into something 
approaching a symmetric multiprocessor, desirable jor 
programming ease. The first section oj this paper provides 
an overview oj the hardware structure. In the second 
section are jound the design goals jor the operating 
system, "Guardian." The third section provides a bottom­
up view oj Guardian. 

Background 

On-line computer processing has become a way 
of life for many businesses. As they make the 
transition from manual or batch methods to on­
line systems, they become increasingly vulner­
able to computer failures. Whereas in a batch 
system the direct costs of a failure might simply 
be increased overtime for the operations staff, a 
failure of an on-line system results in immediate 
business losses. 

System Overview 

The Tandem 16 [Tandem Computers, Inc., 1976; 
Katzman, 1977a] was designed to provide a 
system for on-line applications that would be 

(D copyright 1977, Tandem Computers, Incorporated. All 
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significantly more reliable than currently avail­
able commercial computer systems. The hard­
ware structure consists of multiple processor 
modules interconnected by redundant interpro­
cessor buses. A PMS [Bell and Newell, 1971] 
definition of the hardware is found in Figure 
11-13. 

Each processor has its own power supply, 
memory, and I/O channel and is connected to all 
other processors by redundant interprocessor 
buses. Each I/O controller is redundantly pow­
ered and connected to two different I/O chan­
nels. As a result, any interprocessor bus failure 
does not affect the ability of a processor to 
communicate with any other processor. The fail­
ure of an I/O channel or of a processor does not 
cause the loss of an I/O device. Likewise, the 
failure of a module (processor or I/O controller) 
does not disable any other module or disable any 
inter-module communication. Finally, certain 
I/O devices such as disc drives may be con­
nected to two different I/O controllers, and disc 
drives may in turn be duplicated such that the 
failure of an I/O controller or disc drive will not 
result in loss of data. 

The system is not a true multiprocessor [Ens­
low, 1977], but rather a "multiple computer" 
system. The multiple computer approach is pref­
erable for several reasons. First, since no module 
is shared by the entire system, it increases the 
system's reliability. Second, a multiple computer 
system does not require the complex hardware 
needed to handle multiple access paths to a 
common memory. In smaller systems, the cost of 
such a multiported memory is undesirable; and 
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----.--------------------T---I S.interprocessor 

-----+-----,----------------.,-+---1 S.interprocessor 

Figure 11-13. 

in larger systems, performance suffers because of 
memory access interference. 

On-line repair is as necessary as reliability in 
assuring system availability. The modular struc­
ture of the Tandem 16 system allows processors, 
I/O controllers, or buses to be repaired or re­
placed while the rest of the system continues to 
operate. Once repaired, they may then be reinte­
grated into the system. 

The system structure allows a wide range of 
system sizes to be supported. As many as sixteen 
processors, each with up to 512K bytes of mem­
ory, may be connected into one system. Each 
processor may also have up to 256 I/O devices 
connected to it. This provides for tremendous 
growth of application programs and processing 
loads without the requirement that the applica­
tion be reimplemented on a larger system with a 
different architecture. 

Finally, the system is meant to provide a 
general solution to the problem of providing a 
failure-tolerant, on-line environment suitable for 
commercial use. As such, the system supports 
conventional programming languages and pe­
ripherals and is oriented toward providing large 
numbers of terminals with access to large data 
bases. 

Hardware structure. 

SYSTEM DESIGN GOALS 

Integrated Hardware/Software 
Design 

The Tandem 16 system was designed to solve a 
specific problem. This problem was not stated in 
terms of hardware and software requirements, 
but rather in terms of system requirements. The 
hardware and software designs then proceeded 
in tandem to provide a unified solution. The 
hardware design concerned itself with the con­
tents of each module, their interconnections to 
the common buses, and error detection and 
correction within modules and on the communi­
cation paths. The software design was given the 
problem of control; that is, selection of which 
modules to use and which buses to use to 
communicate with them. Furthermore, as errors 
are detected, it was the responsibility of the 
software to control recovery actions. 

Operating System Design Goals 

The first and foremost goal of the operating 
system, Guardian, was to provide a failure­
tolerant system. This translated into the follow­
ing design "axioms": 



• The operating system should be able to remain 
operational after any single detected module or bus 
failure. 

• The operating system should allow any module or 
bus to be repaired on-line and then reintegrated into 
the system. 

• The operating system should be implemented in a 
reliable manner. Increased reliability provided by 
the hardware architecture must not be negated by 
software problems. 

A second set of requirements came from the 
great numbers and sizes of hardware configura­
tions that are possible: 

• The operating system should support all possible 
hardware configurations, ranging from a two-pro­
cessor, discless system through a sixteen-processor 
system with billions of bytes of disc storage. 

• The operating system should hide the physical con­
figuration as much as possible such that applications 
could be written to run on a great variety of system 
configurations. 

OPERATING SYSTEM STRUCTURE 

To satisfy these requirements, the operating sys­
tem was designed to have the appearance of a 
true multiprocessor at the user level. The design 
of the system was strongly influenced by Dijks­
tra's work on the "THE" system [1968], and 
Brinch Hansen's implementation of an operating 
system nucleus for a single-processor system 
[1970]. The primary abstractions are processes, 
which do work, and messages, which allow inter­
process communication. 

Processes 

At the lowest level of the system is the basic 
hardware as earlier described. It provides the 
capability for redundant modules, i.e., I/O con­
trollers, I/O devices, and processor modules con­
sisting of a processor, memory, and a power 
supply. These redundant modules are in turn 
interconnected by redundant buses. Error detec­
tion is provided on all communication paths and 
error correction is provided within each pro-
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cessor's memory. The hardware does not con­
cern itself with the selection of communication 
paths or the assignment of tasks to specific 
modules. 

The first abstraction provided is that of the 
process. Each processor module may have one or 
more processes residing in it. A process is initial­
ly created in a specific processor and may not 
execute in another processor. Each process has 
an execution priority assigned to it. Processor 
time is allocated on a strict priority basis to the 
highest priority ready process. 

Process synchronization primitives include 
"counting semaphores" and process local 
"event" flags. Semaphore operations are per­
formed via the functions PSEM and YSEM, 
corresponding to Dijkstra's P and Y operations. 
Semaphores may only be used for synchroniza­
tion between processes within the same pro­
cessor. They are typically used to control access 
to resources such as resident memory buffers, 
message control blocks, and I/O controllers. 

When certain low-level actions such as device 
interrupts, processor power-on, message comple­
tion or message arrival occur, they result in 
"event" flags being set for the appropriate proc­
ess. A process may wait for one or more events 
to occur via the function WAIT. The process is 
activated as soon as the first WAITed for event 
occurs. Events are signaled via the function 
AWAKE. Event signals are queued using a 
"wake up waiting" mechanism so that they are 
not lost if the event is signaled when the process 
is not waiting on it. Like semaphores, event 
signals may not be passed between processors. 
Event flags are predefined for eight different 
events and may not be redefined. 

When a process blocks itself to wait for some 
event to occur or for a semaphore to be allocated 
to it, it may specify a maximum time to block. If 
the time limit expires and the event has not 
occurred or the resource has not been obtained, 
then the process will continue execution but an 
error condition will be returned to it. This time­
out allows "watch dog" timers to be easily placed 
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on device interrupts or on resource allocations 
where a failure may occur. 
. Ea~h process in the system has a unique 
IdentIfier or "processid" in the form: < cpu #, 

process # >, which allows it to be referenced on 
a system-wide basis. This leads to the next 
abstraction, the message system, which provides 
a processor-independent, failure-tolerant method 
for interprocess communication. 

Messages 

The message system provides five primitive oper­
ations which can be illustrated in the context of 
a process making a request to some server pro­
cess, Figure 11-14. The process's request for 
service will send a message to the appropriate 
server process via the procedure LINK. The 
message will consist of parameters denoting the 
type of request and any needed data. The mes­
sage will be queued for the server process, setting 
an event flag, and then the requester process may 
continue executing. 

When the server process wishes to check for 
any messages, it calls LISTEN. LISTEN returns 
the first message queued or an indication that no 
messages are queued. The server process will 
then obtain a copy of the requester's data by 
calling the procedure READLINK. 

Next, the server process will process the re­
quest. The status of the operation and any result 
will then be returned by the WRITELINK pro­
cedure, which will signal the requester process 
via another event flag. Finally, the requester 
process will complete its end of the transaction 
by calling BREAKLINK. 

A communications protocol was defined for 
t~e interprocessor buses that would tolerate any 
smgle bus error during the execution of any 
message system primitive. This design assures 
that a communications failure will occur if and 
only if the sender or receiver processes or their 
processors fail. Any bus errors which occur 
during a message system operation will be auto­
matically corrected in a manner transparent to 

..:..: c:: 
Requestor :3 ~ Message ---..~ Server 

...I 

..:..: 
c:: 

Requestor r- Data copied ---. ~ Server 
~ 
~ 

..:..: ..:..: 
:§ :§ 

Requestor ..:..: ~Result copied- <II Server 
~ .t:: 

= ~ ~----~~ ~~----~ 

Figure 11-14. Message system primitive 
operations. 

the communicating processes and logged on the 
system console. The interprocessor buses are not 
used for communication between processes in 
the same processor, which can be done faster in 
memory. However, the processes involved in the 
message transfer are unable to detect this differ­
ence. 

The message system is designed such that 
resources needed for message transmission (con­
trol blocks) are obtained at the start of a message 
transfer request. Once LINK has been success­
fully completed, both processes are assured that 
sufficient resources are in hand to be able to 
complete the message transfer. Furthermore, a 
process may reserve control blocks to guarantee 
that it will always be able to send messages to 
process a request that it picks up from its mes­
sage queue. Such resource controls assure that 
deadlocks can be prevented in complex produ­
cer/consumer interactions, if the programmer 
correctly analyzes and anticipates potential 
deadlocks within the application. 

Process-Pairs 

With the implementation of processes and mes­
s~ges, the system is no longer seen as separate 
modules. Instead, the system can be viewed as a 



:igure 11-15. System structure after the addition 
)f processes and messages. 

.et of processes which may interact via messages 
n any arbitrary manner, as shown in Figure 
ll-15. 

By defining messages as the only legitimate 
nethod for process-to-process interaction, inter­
)rocess communication is not limited by the 
nultiple-computer organization of the system. 
[he system then starts to take on the appearance 
)f a true multiprocessor. Processor boundaries 
lave been blurred, but I/O devices are still not 
lccessible to all processes. 

System-wide access to I/O devices is provided 
>y the mechanism of "process-pairs." An I/O 
)rocess-pair consists of two cooperating process­
~s located in two different processors that control 
l particular I/O device. One of the processes will 
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be considered the "primary" and one will be 
considered the "backup." The primary process 
handles requests sent to it and controls the I/O 
device. When a request for an operation such as 
a file open or close occurs, the primary will send 
this information to the backup process via the 
message system. These "checkpoints" assure that 
the backup process will have all information 
needed to take over control of the device in the 
event of an I/O channel error or a failure of the 
primary process' processor. A process-pair for a 
redundantly recorded disc volume is illustrated 
in Figure 11-16. 

Because of the distributed nature of the sys­
tem, it is not possible to provide a block of 
"driver" code that could be called directly to 
access the device. While potentially more effi­
cient, such an approach would preclude access to 
every device in the system by every process in 
the system. 

The I/O process-pair and associated I/O de­
vice(s) are known by a logical device name such 
as "SDISCI" or by a logical device number 
rather than by the processid of either process. 
I/O device names are mapped to the appropriate 
processes via the logical device table (LDT) in 
every processor, which supplies two processids 
for each device. A message request made on the 
basis of a device name or number results in the 
message's being sent to the first process in the 
table. If the message cannot be sent or if the 
message is sent to the backup process, an error 
indication will be returned. The processid entries 

t----Checkpoints --~ Backup process 

Figure 11-16. Process-pair for a redundantly recorded disc volume. 
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in the LDT will then be reversed and the mes­
sage re-sent. Note two things: first, the error 
recovery can be done in an automatic manner; 
and second, the requester is not concerned with 
what process actually handled the request. Error 
recovery cannot always be done automatically. 
F or example, the primary process of a pair 
controlling a line printer fails while handling a 
request to print a line on a check. The applica­
tion process would prefer to see the process 
failure as an error rather than have the request 
automatically retried, which might result in two 
checks being printed. 

The two primitives, processes and messages, 
blur the boundaries between processors and pro­
vide a failure-tolerant method for interprocess 
communication. By defining a method of group­
ing processes (process-pairs), a mechanism for 
uniform access to an I/O device or other system­
wide resource is provided. This access method is 
independent of the functions performed within 
the processes, their locations, or their implemen­
tations. Within the process-pair, the message 
system is used to checkpoint state changes so 
that the backup process may take over in the 
event of a failure. This checkpoint mechanism is 
in turn independent of all other processes and 
messages in the system. 

The system structure can be summarized as 
follows. Guardian is constructed of processes 
which communicate using messages. Fault toler­
ance is provided by duplication of components 
in both the hardware and the software. Access to 
I/O devices is provided by process-pairs consist­
ing of a primary process and a backup process. 
The primary process must checkpoint state infor­
mation to the backup process so that the backup 
may take over on a failure. Requests to these 
devices are routed using the logical device name 
or number so that the request is always routed to 
the current primary process. The result is a set of 
primitives and protocols which allow recovery 
and continued processing in spite of bus, pro­
cessor, I/O controller, or I/O device failures. 
Furthermore, these primitives provide access to 

all system resources from every process III the; 
system. 

System Processes 

The next step in structuring the system comes in 
assigning functions to processes. As previously 
shown, I/O devices are controlled by process­
pairs. Another process-pair known as the "oper­
ator" is present in the system. This pair is 
responsible for formatting and printing error 
messages on the system console. Here is an 
example of where Guardian has not followed a 
strict level structure. The operator makes re­
quests to a terminal process to print the mes­
sages, yet the terminal process wishes to send 
messages to the operator to report I/O channel 
errors. An infinite cycle is prevented by having 
the terminal process not send messages for errors 
on the operator terminal and having I/O pro­
cesses never wait for message completions when 
sending errors to the operator. While it may be 
preferable to prevent cycles of any type in sys­
tem design, they have been allowed in Guardian 
when it can be shown that they will terminate. 
The ability to reserve message control blocks 
assures that no cycle will be blocked because of 
resource problems. 

Each processor has a "system monitor" pro­
cess which handles such functions as process 
creation and deletion, setting time of day, and 
processor failure and reload cleanup operations. 

A memory management process is also resi­
dent in each processor. This process is responsi­
ble for allocating a page of physical memory and 
then sending messages to the appropriate disc 
processes to do the actual disc I/O. Pages are 
brought in on a demand basis, and pages to 
overlay are selected on a "least recently used" 
basis over the entire memory of the processor. 

The choice of relatively unsophisticated algo­
rithms for scheduling and memory management 
was a result of the fact that the system was not 
intended to be a general-purpose timeshare sys­
tem. Rather, it was to be a system which sup-



orted multiple processes and terminals In an 
I(tremely flexible manner. 

,pplication Process Interface 

,bove the process and communication structure 
lere exists a library of procedures which are 
sed to access system resources. These proce­
ures run in the calling process's environment 
nd mayor may not send messages to other 
rocesses in the system. For example, the file 
),stem procedures do not do the actual I/O 
perations. Instead, they check the caller's pa­
lmeters, and if all is in order a message is sen t 
) the appropriate I/O process-pair. Likewise, 
rocess creation is seen as a procedure call to 
JEWPROCESS, which does nothing but check 
le caller's parameters and then send a message 
) the system monitor process in the processor 
rhere the process is to be created. On the other 
and, a procedure such as TIME which returns 
he current time of day does not send any 
lessages. In either case, the access to system 
esources appears simply as procedure calls, ef­
ectively hiding the process structure, message 
ystem, hardware organization, and associated 
ailure recovery mechanisms. 

nitialization and Processor Reload 

;ystem initialization starts with one processor 
)eing cold loaded from some disc on the system. 
['he load file contains a memory image of the 
)perating system resident code and data, with all 
ystem processes in existence and at their initial 
tates. The system monitor process then creates a 
:ommand interpreter process. 

Guardian may be brought up even though a 
)focessor or peripheral device is down. This is 
)ossible because operating system disc images 
nay be kept on multiple disc drives, I/O control­
ers may be accessed by two different processors, 
md the terminal that has the initial command 
nterpreter on it is selected by using the pro­
;essor's switch register. 
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After a cold load, the system logically consists 
of one processor and any peripherals attached to 
it. More processors and peripherals may be 
added to the system via the command interpreter 
command: 

: RELOAD 1, SDISC 

This command will read the disc image for 
processor 1 from the disc SDISC and send it 
over either interprocessor bus to processor 1. 
Once it is loaded, all processes residing in other 
processors in the system will be notified that 
processor I is up. 

This command is also used to reload a pro­
cessor after" it has been repaired. Guardian does 
not differentiate between an initial load of a 
processor and a later reload. In each case, 
resources are being logically added to the system 
and processes must be notified so that they may 
make use of them. 

The previous example of a reload message 
being sent to all processes is an example of how 
functions are split in Guardian. A mechanism is 
provided for informing a process of a system 
status change. It may then take some unspecified 
action (including doing nothing). Similarly, a 
system power-on simply sets the PON event flag 
for all processes. The operating system kernel 
must only insure that the process structure and 
message system are correctly saved and restored. 
It is then the responsibility of individual process­
es to do such things as reinitialize their I/O 
controllers. 

Operating System Error Detection 

Besides the hardware-provided single error de­
tection and correction on memory, and single 
error detection on the interprocessor and I/O 
buses, additional software error checks are pro­
vided. The first of these is the detection of a 
down processor. Every second, each processor in 
the system. sends a special "I'm alive" message 
over each bus to all processors in the system. 
Every two seconds, each processor checks to see 
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that it has received one of these messages from 
each processor. If a message has not been re­
ceived, then it assumes that that processor is 
down. 

Additionally, the operating system makes 
checks on the correctness of data structures such 
as linked lists when operations are done on them. 
Any processor detecting such an error will halt. 

All I/O interrupts are bracketed by a "watch 
dog" timer such that the system will not hang up 
if an I/O operation does not complete with the 
expected interrupt. If an I/O bus error occurs, 
then the backup process will take over control of 
the device using the second I/O bus. 

As previously noted, the interprocessor bus 
protocol is designed to correct single bus errors. 
In addition to this, extensive checks are made on 
the control information received over the buses 
to verify that it is consistent with the state of the 
receiving processor. 

Power-fail/automatic restart is provided with­
in each processor. A power failure is detected 
independently by each processor module and as 
a result is not a system-wide, synchronous event. 
The system was designed to recover from either 
a complete system power-fail, or a transient 
which will cause some of the processors to 
power-fail and then immediately restart. 

The innovative aspects of Guardian lie not in 
any new concepts introduced, but rather in the 
synthesis of pre-existing ideas. Of particular note 
are the low-level abstractions, process and mes­
sage. By using these, all processor boundaries 
can be hidden from both the application pro­
grams and most of the operating system. These 

initial abstractions are the key to the system's 
ability to tolerate failures. They also provide the 
configuration independence that is necessary in 
order for the system and applications to run over 
a wide range of system sizes. 

Guardian provides the application program­
mer with extremely general approaches to pro­
cess structuring, interprocess communication, 
and failure tolerance. Much has been said about 
structuring programs using multiple communi­
cating processes, but few operating systems are 
able to support such structures. 

Finally, the design goals of the system have 
been met to a large degree. Systems with be­
tween two and ten processors have been installed 
and are running on-line applications. They are 
recovering from failures and failures are being 
repaired on-line. 
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=ault-Tolerant Design of Local ESS 
>rocessors 

N. N. Toy 

Lbstract 

nhe stored program control of Bell System Electronic 
~witching Systems (ESS) has been under development 
ince 1953. During this period, the No.1 ESS, the No.2 
~SS, and the No.3 ESS have been developed and used 
xtensively by Bell System operating companies to pro­
ide commercial telephone service. These systems serve 
'II types of telephone offices: The large-capacity No.1 
~SS serves metropolitan offices, the medium-capacity 
>/0. 2 ESS was designed for suburban offices, and the 
>/0.3 can be found in many small rural offices. The fault 
olerant design of ESS processors provides the same 
righly dependable telephone service established by the 
Irevious electromechanical systems. Pertinent processor 
rrchitecture features used to achieve ESS reliability 
'bjectives are discussed. A detailed discussion of the 
rzaintenance design of the 3A Processor is also included. 

NTRODUCTION 

~ext to computer systems used in space-borne 
rehicles and U.S. defense installations, no other 
lpplication has a higher availability requirement 
han a Bell System Electronic Switching System 
ESS). These systems have been designed to be 
mt of service no more than a few minutes per 
rear. Furthermore, design objectives permit no 
nore than 0.01 percent of the telephone calls to 
)e processed incorrectly [Downing, Nowak, and 
[uomenoksa, 1964]. For example, when a fault 

) 1978 I EEE. Reprinted, with permission, from Proceedings 
if the IEEE, Vo1.66, No. 10, October 1978,pp.1126-1145. 
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occurs in a system, few calls in progress may be 
handled incorrectly during the recovery process. 

At the core of every ESS is a single high-speed 
central processor [Hart, Taylor, and Ulrich, 
1969; Brown et aI., 1969; Staehler, 1977]. To 
establish an ultrareliable switching environment, 
redundancy of system components and duplica­
tion of the processor itself has been the approach 
taken to compensate for potential machine 
faults. Without this redundancy, a single compo­
nent failure in the processor might cause a 
complete failure of the entire system. With dupli­
cation, a standby processor takes over control 
and provides continuous telephone service. 

When the system fails, the fault must be 
quickly detected and isolated. Meanwhile, a rap­
id recovery of the call processing functions (by 
the redundant component(s) and/or processor) is 
necessary to maintain the system's high availa­
bility. Next, the fault must be diagnosed and the 
defective unit repaired or replaced. The failure 
rate and repair time must be such that the 
probability is very small for a failure to occur in 
the duplicated unit before the first one is re­
paired. 

ALLOCATION AND CAUSES OF 
SYSTEM DOWNTIME 

The outage of a telephone (switching) office can 
be caused by facilities other than the processor. 
While a hardware fault in one of the peripheral 
units generally results in only a partial loss of 
service, it is possible for a fault in this area to 
bring the system down. By design, the processor 
has been allocated two-thirds of the system 
downtime. The other one-third is allocated to the 
remaining equipment in the system. 

Field experience indicates that system outages 
due to the processor may be assigned to one of 
four categories shown in Figure 12-1 [Staehler 
and Watters, 1976]. The percentages in this fig­
ure represent the fraction of total downtime 
attributable to each cause. The four categories 
are as follows: 

Figure 12-1. System outage allocation. 

Hardware Reliability 

Before the accumulation of large amounts of 
field data, total system downtime was usually 
assigned to hardware. We now know that the 
situation is more complex. Processor hardware 
actually accounts for only 20 percent of the 
downtime. With growing use of stored program 
control, it has become increasingly important to 
make such systems more reliable. Redundancy is 
designed into all subsystems so that the system 
can go down only when hardware failures occur 
simultaneously in duplicated units. However, the 
data now show that good diagnostic and trouble 
location programs are very critical parts of the 
total system reliability performance. 

Software Deficiencies 

Software deficiencies include all software errors 
that cause memory mutilation, and program 
loops that can only be cleared by major reinitial­
ization. Software faults are the result of improper 
translation or implementation of the original 
algorithm. In some cases, the original algorithm 
may have been incorrectly specified. Program 
changes and feature additions are continuously 
incorporated into working offices. Software ac­
count for 15 percent of the downtime. 



ecovery Deficiencies 

.ecovery is the system's most complex and 
ifficult function. Deficiencies may include the 
lortcomings of either hardware or software 
esign to detect faults when they occur. When 
le faults go undetected, the system remains 
densively impaired until the trouble is recog­
ized. Another kind of recovery problem can 
ccur if the system is unable to properly isolate 

faulty subsystem and configure a working 
{stem around it. 
The many possible system states which may 

rise under trouble conditions make recovery a 
:)mplicated process. Besides those already men­
oned, unforeseen difficulties may be encoun­
~red in the field, and lead to inadequate recov­
ry. Because of the large number of variables 
lVolved and because the recovery function is so 
:rongly related to all other components of main­
~nance, recovery deficiencies account for 35 
ercent of the downtime. 

'rocedural Errors 

luman error on the part of maintenance person­
leI or office administrators can also cause the 
ystem to go down. For example, someone in 
Ilaintenance may mistakenly pull a circuit pack 
rom the on-line processor while repairing a 
.efective standby processor. Inadequate and in­
orrect documentation (e.g., users' manuals) may 
Iso be classified as human error. Obviously, the 
.umber of manual operations must be reduced if 
,rocedural errors are to be minimized. Procedur-
1 errors account for about 30 percent of the 
. owntime. 

The shortcomings and deficiencies of current 
ystems are being continually corrected to im­
,rove system reliability. 

)UPlEX ARCHITECTURE 

Vhen a fault occurs in a nonredundant single 
'rocessor, the system will remain down until the 
,rocessor is repaired. In order to meet the ESS 
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reliability requirement, redundancy is included in 
the system design; continuous and correct oper­
ation is maintained by duplicating all functional 
units within the processor. If one of the units 
fails, the duplicated unit is switched in, maintain­
ing continuous operation. Meanwhile, the defec­
tive unit is repaired. Should a fault occur in the 
duplicated unit during the repair interval, t~e 

system will, of course, go down. If the. :epatr 
interval is relatively short, the probabIlIty of 
simultaneous faults occurring in two identical 
units is quite small. This technique of redundan­
cy has been used throughout each ESS. 

The first-generation ESS processor structure 
consists of two store communities: program store 
(PS) and call store (CS). The program store is a 
read-only memory (ROM) containing the call 
processing, maintenance, and administrat~on 

programs; it also contains long-term translatI.on 
and system parameters. The call store con tams 
the transient data related to telephone calls in 
progress. The memory is electrically alterable to 
allow its data to be changed frequently. In one 
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particular arrangement, shown in Figure 12-2, 
the complete processor is treated as a single 
functional block and is duplicated. This type of 
single-unit duplex system has two possible con­
figurations: Either Processor 0 or Processor I 
can be assigned as the on-line working system, 
while the other unit serves as standby backup. 
The mean-time-to-failure (MTTF), a measure of 
reliability, is given by the following expression 
[Smith, 1972]: 

where J.t is the repair rate (reciprocal of the repair 
time), and J\ is the failure rate. 

The failure rate (J\) of one unit is the summa­
tion of failure rates of all components within the 
unit. For medium and small ESS processors, 
Figure 12-2 shows a system structure containing 
several functional units which are treated as a 
single entity, with J\ still sufficiently small to meet 
the reliability requirement. The single-unit du­
plex configuration has the merit of being very 
simple in terms of the number of switching 
blocks in the system. This configuration simpli­
fies not only the recovery program but also the 
hardware interconnection. It does this by elimi­
nating the additional access required to make 
each duplicated block capable of switching inde­
pendently into the on-line system configuration. 

In the large No. I ESS, which contains many 
componen ts, the MTTF becomes too low to 
meet the reliability requirement. In order to 
increase the value of the MTTF, either the 
number of components (failure rate) or the re­
pair time must be reduced. Alternatively, the 
single-unit duplex configuration can be parti­
tioned into a multiunit duplex configuration as 
shown in Figure 12-3. In this arrangement, each 
subunit contains a small number of components 
and is able to be switched into a working system. 
The system will fail only if a fault occurs in the 
redundant subunit while the original is being 
repaired. Since each subunit contains fewer com­
ponents, the probability of two simultaneous 
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faults occurring in a duplicated pair of subunits 
is reduced. The MTTF of the multiunit duplex 
configuration can be computed by taking into 
consideration the conditional probability of a 
subunit failing during the repair time of the 
original subunit. 

An example of a multiunit duplex configura­
tion is shown in Figure 12-3. A working system 
is configured with a fault-free CCx-CSx-CSBx­
PSx-PSBx-PUBx arrangement, where x is either 
Subunit 0 or Subunit 1. This means there are 26, 

or 64, possible combinations of system configu­
rations. The MTTF is given by the following 
expreSSIOn: 

(1) 



Nhere 

" = V{ ('\cc/,\) 2 + ('\cS/,\)2 + ('\CSB/,\)2 

+ ('\pS/,\)2 + ('\PSB/,\)2 + ('\PUB/,\)2} 
(2 ) 

~he factor r is at a maximum when the failure 
ate (,\) for each subunit is the same. In this case 

)r 

v-here 

'\cc = '\cs = '\CSB = '\ps = '\pSB 

= '\pUB = \ 

,\ 
,\. = -

I S 

s = number of subunits in (2), 
s = 6, and 
r = s. 

(3 ) 

(4 ) 

At best, the MTTF is improved by a factor 
;orresponding to the number of partitioned sub­
lnits. This improvement is not fully realized 
;ince equipment must be added to provide addi­
jonal access and to select subunits. The parti­
joning of the subsystem into subunits as shown 
n Figure 12-3 results in subunits of different 
;izes. Again, the failure rate for each individual 
mbunit will not be the same; hence, the r-factor 
Nill be smaller than 6. Because of the relatively 
arge number of components used in implement­
Ing the No.1 ESS, the system is arranged in the 
multiunit duplex configuration in order to meet 
the reliability requirement. 

Reliability calculation is a process of predict­
mg, from available failure rate data, the achiev­
Ible reliability of a system and the probability of 
meeting the reliability objectives for ESS appli­
;ations. These calculations are most useful and 
beneficial during the early stages of design in 
Jrder to assess various types of redundancy and 
jetermine the system's organization. In the small 
Ind medium ESS's, the calculations have sup­
ported the use of single-unit duplex structures. 
For large ESS's, it was necessary to partition the 
~ystem into a multiunit duplex configuration. 
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FAULT SIMULATION 
TECHNIQUES 

One of the more difficult tasks of maintenance 
design is fault diagnosis. Its effectiveness in 
diagnostic resolution can be determined by sim­
ulation of the system's behavior in the presence 
of a specific fault. By means of simulation, 
design deficiencies can be identified and correct­
ed prior to any system being deployed in the 
field. It is necessary to evaluate the system's 
ability to detect faults, to recover automatically 
back into a working system, and to provide 
diagnostics information where the fault is within 
a few replaceable circuit packs. Fault simulation, 
therefore, is an important aspect of maintenance 
design. 

There are essentially two techniques used for 
simulating faults of digital systems; physical 
simulation or digital simulation. Physical simula­
tion is a process of inserting faults into a physical 
working model. This method produces more 
realistic behavior under fault conditions. A wider 
class of faults can be applied to the system, such 
as a blown fuse or shorted backplane intercon­
nection. However, fault simulation cannot begin 
until the design has been completed and the 
equipment is fully operational. Also, it is not 
possible to insert faults interior to an integrated 
circuit. 

Digital fault simulation is a means of predict­
ing the behavior under failure of a processor 
modeled in a computer program. The computer 
used to execute the program (the host) is gener­
ally different from the processor being simulated 
(the object). Digital fault simulation gives a high 
degree of automation and excellent access to 
interior points of logic to monitor the signal flow. 
It allows diagnostic test development and evalu­
ation to proceed well in advance of unit fabrica­
tion. The cost of computer simulation can be 
quite high for a large, complex system. 

The physical fault simulation method was first 
employed to generate diagnostic data for the 
Morris Electronic Switching System [Tsiang and 
Ulrich, 1962]. Over 50,000 known faults were 
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purposely introduced into the central control to 
be diagnosed by its diagnostic program. Test 
results associated with each fault were recorded. 
They were then sorted and printed in dictionary 
format to formulate a trouble locating manual 
(TLM). Under trouble conditions, by consulting 
the TLM, it was possible to determine a set of 
several suspected circuit packs which might con­
tain the defective component. Using the diction­
ary technique at the Morris system, the average 
repair time was kept low and maintenance was 
made much easier. 

The experience gained in the physical fault 
simulation was applied and extended in the No. 
I ESS development [Downing, Nowak, and 
Tuomenoksa, 1964]. Each plug-in circuit pack 
was replaced by a fault simulator which intro­
duced every possible type of single fault on the 
replaced package one at a time and then record­
ed the, system reaction on magnetic tape. This 
was done for all circuits packs in the system. In 
addition to diagnostic data for dictionaries, addi­
tional data were collected to determine the 
adequacy of hardware and software in fault 
detection and system recovery. Deficiencies were 
corrected tojmprove the overall maintenance of 
the system. 

A digital logic simulator called LAMP [Chang, 
Smith, and Walford, 1974] was developed for the 
No. lA ESS development. It played an impor­
tant role in the hardware and diagnostic develop­
ment of the No. IA Processor. The simulator is 
capable of simulating subsystem with as many as 
65,000 logic gates. All classical faults for stan­
dard logic gates are simulatable with logic nodes 
stuck at "0" or stuck at "1." Before physical 
units are available, digital simulation can be very 
effective in verifying the design, evaluating diag­
nostic access, and developing tests. Physical fault 
simulation has been demonstrated in the No. 1 
ESS to give a very realistic behavior under fault 
conditions. The integration of both techniques 
was employed in the development of the No. lA 
Processor to take advantage of both processes. 
The use of complementary simulation allows 

faults to be simulated physically (in the systerr 
laboratory) and logically (on a computer). Mos1 
of the deficiencies of one simulation process are 
compensated for by the other. The complemen­
tary method provided both a convenient method 
for validating the results and more extensive 
fault simulation data than would have been 
normally if either process were used individually. 
Figure 12-4 shows the complementary process of 
fault simulation used in the No. lA Processor 
development [Bowman et aI., 1977; Goetz, 1974]. 
Maximum diagnostic performance was achieved 
from an integrated use of both simulation meth­
ods. 

FIRST GENERATION ESS 
PROCESSORS 

The world's first ESS provided commercial tele­
phone service at Morris, Illinois, in 1959 for 
about a year on a field trial basis [Keister, 
Ketchledge, and Lovell, 1960]. The system dem­
onstrated the use of stored program control and 
the basic maintenance philosophy of providing 
continuous and reliable telephone service. The 
trial established valuable guides for designing a 
successor, the No. lESS. 

No. 1 ESS Processor 

The No. 1 ESS was designed to serve large 
metropolitan telephone offices, ranging from sev­
eral thousand to 65,000 lines [Keister, Ketch­
ledge, and Vaughan, 1964]. As in most large 
switching systems, the processor represents only 
a small percentage of the total system cost. 
Therefore, performance and reliability were of 
primary importance in the design of the No. I 
Processor; cost was secondary. In order to meet 
the reliability standards established by electro­
mechanical systems, all units essential to proper 
operation of the office are duplicated (see Figure 
12-3). The multiunit duplex configuration was 
necessary to increase the MTTF of the processor 
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Figure 12-4. Complementary fault-simulation system. 

,ecause of the large number of components in 
ach of the functional blocks. 

Even with duplication, troubles must be found 
nd corrected quickly to minimize exposure to 
ystem failure due to multiple troubles. All units 
re monitored continually so that troubles in the 
tandby units are found just as quickly as those 
n. the on-line units." This is accomplished by 

running the on-line and standby units in the 
synchronous and match mode of operation 
[Downing, Nowak, and Tuomenoksa, 1964]. 
Synchronization requires that clock timing sig­
nals be in close tolerance so that every operation 
in both halves is performed in step, and key 
outputs are compared for error detection. The 
synchronization of duplicated units is accom-
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plished by having the on-line oscillator output 
drive both clock circuits. There are two match 
circuits in each central control (CC). Each 
matcher compares 24 bits within one machine 
cycle of 5.5 J-tS. Figure 12~5 shows that each 
matcher has access to six sets of internal nodes 
(24 bits per node). In the routine match mode, 
the points matched in each cycle are dependent 
upon the instruction being executed. The select­
ed match points are those most pertinent to the 
data processing steps occurring during a given 
machine cycle. The two matchers in each CC 

To interrupt 
source 

-} To other 
- CC 

r-~========~--,-------------~o~:er _j cc 

To interrupt 
source 

Figure 12-5. No.1 CC match access. 

compare the same sets of selected test poin ts. 
The capability of each CC to compare a number 
of internal nodes provides a highly effective 
means of detecting hardware errors. 

If a mismatch occurs, an interrupt is generat­
ed, which causes the fault-recognition program 
to run. The basic function of this program is to 
determine which half of the system is faulty. The 
suspected unit is removed from service and the 
appropriate diagnostic program is run to pin­
point the defective circuit pack. 

The No. 1 ESS was designed during the dis­
crete component era (early 1960s) using individ­
ual components to implement logic gates [Cagle 
et aI., 1964]. The CC contains approximately 
12,000 logic gates. Although this number appears 
small when compared to large-scale integration 
(LSI) technology, the No. 1 Processor was a 
physically large machine for its time. 

The match circuits capable of comparing in­
ternal nodes are the primary tools incorporated 
into the CC for diagnosing as well as detecting 
troubles. Specified information can be sampled 
by the matchers and retained in the match 
registers for examination. This module of opera­
tion obtains critical data during the execution of 
diagnostic programs. 

The early program store used permanent mag­
net twister (PMT) modules as basic storage 
elements [Ault et aI., 1964]. They are a form of 
ROM in which system failures cannot alter the 
information content. Experience gained from the 
Morris field test system, which used the less 
reliable flying spot store, indicated that Ham­
ming correction code was highly effective in 
providing continuous operation. At the time of 
development, it was felt that PMT modules 
might not be reliable enough. Consequently, the 
program store word included additional check 
bits for single-bit error correction (Hamming 
code). In addition, an overall parity check bit 
which covers both the data and their address is 
included in the word. The word size consists of 
37 bits of information and seven check bits. 
When an error is corrected during normal oper-



tion, it is logged in an error counter. Also, 
etection of a single error in the address or a 
ouble error in the word will cause an automatic 
!try. 
The call store is the temporary read and write 

lemory for storing transient data associated 
rith call processing. Ferrite sheet memory mod­
les are the basic storage elements used in imple­
lenting the call store in the No.1 ESS [Genke, 
larding, and Staehler, 1964]. The call store used 
1 most No. 1 offices is smaller than the program 
tore. (At the time of design, the cost per bit of 
all store was considerably higher than that of 
Irogram store.) Also, ferrite sheet memory mod­
lIes were considered to be very reliable devices. 
:onsequently, single-bit error detection rather 
han Hamming correction code was provided in 
he call store. 

There are two parity check bits: one over both 
he address and data, and the other over the 
Lddress only. Again, as in the program store, 
Lutomatic retry is performed whenever an error 
s detected, and the event is logged in an error 
:ounter for diagnostic use. 

Troubles are normally detected by fault-detec­
ion circuits, and error-free system operation is 
ecovered by fault recognition programs [Down­
ng, Nowak, and Tuomenoksa, 1964]. This re­
luires the on-line processor to be capable of 
naking a proper decision. If this is not possible, 
tn emergency action timer will "time out" and 
Lctivate special circuits to establish various com­
)inations of subsystems into a system configura­
.ion. A special program which is used to deter­
nine whether or not the assembled processor is 
lane takes the processor through a series of tests 
Hranged in a maze. Only one correct path 
:hrough the maze exists. If the processor passes 
:hrough successfully, the timer will be reset, and 
~ecovery is successful. If recovery is unsuccess­
:ul, the timer will time out again, and the rear­
rangement of subsystems will be tried one at a 
time (e.g., combination of CC, program store, 
:llld program store bus systems). For each select­
;!d combination, the special sanity program is 
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started and the sanity timer is activated. This 
procedure is repeated until a working configura­
tion is found. The sanity program and sanity 
timer determine if the on-line CC is functioning 
properly. The active CC includes the program 
store and the program store bus. 

Operational Results of No.1 ESS 

The No.1 ESS has been in commercial operation 
since 1965. Over 1,000 systems are providing 
telephone service to more than 15 million sub­
scribers. The performance of the No. 1 ESS has 
continually improved over a decade of continued 
effort to improve all phases of software and 
hardware. 

Figure 12-6 shows the result of field data 
accumulated over many machine operating 
hours. This curve was derived from data in a 
paper [Fleckenstein, 1974] presented at the 1974 
International Switching Symposium in Munich, 
Germany, and data supplied by W. C. Jones of 
Bell Laboratories. 

When the No. 1 ESS was first cut into com­
mercial service, many outages occurred because 
of software and hardware inadequacies that 
could only be weeded out with field experience. 
The inexperience of maintenance personnel also 
contributed heavily towards system outages. 
Most hardware and software bugs were correct­
ed during the early years of operation. However, 
deficiencies still exist, and designs are continual­
ly upgraded in working systems. Continual im­
provements include better diagnostic access, 
more complete fault recognition and isolation 
programs, and more effective system recovery. 

Improved diagnostic capability reduces repair 
time and human errors by decreasing the 
amount of human interaction required by the 
machine. Better maintenance procedures and 
more experienced craftpersonnel also contribute 
to improved system performance. The curve in 
Figure 12-6 shows that the outage rate improved 
as machine design and operating personnel ma­
tured. 
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Figure 12-6. No.1 ESS service performance. 

No.2 E55 Processor 

The No.2 ESS processor was developed during 
the mid-1960s [Spencer and Vigilante, 1969]. 
This system was designed for medium-sized of­
fices ranging from' 1,000 to 10,000 lines. The 
processor's design was derived from experience 
with the common stored program of a private 
branch exchange (PBX), the No. 101 ESS [Seley 
and Vigilante, 1964]. Since the capacity require­
ment of the No.2 ESS was to be less than that 
of the No. 1 ESS, cost became one of the more 
important design considerations. (Reliability is 
equally important in all systems.) The No.2 ESS 
contains much less hardware than the No.1 ESS. 
Understandably, its component failure rate is 
also substantially less. Its CC contains approxi­
mately 5,000 gates (discrete components). To 
reduce cost and increase reliability, resistor-tran­
sistor logic (RTL) gates were chosen for the No. 
2's processor since resistors are less expensive 
and more reliable than diodes [the No. 1 Pro­
cessor used diode-transistor logic (OTL)]. 

Because the No. 2's CC, program store, and 
call store are smaller, they are grouped together 

as a single switchable block in the single-unit 
duplex configuration shown in Figure 12-2. Cal­
culations indicate that its MTTF is approximate­
ly the same as the No. 1 multiunit duplex struc­
ture, with each of the functional blocks and 
associated store buses grouped together as a 
switchable block. The use of only two subsystem 
configurations reduces considerably the amount 
of hardware needed to provide gating paths and 
control for each functional unit. Moreover, the 
recovery program is simplified, and the reliability 
of the system is improved. 

The No.2 Processor runs in the synchronous 
and match mode of operation [Beuscher et aI., 
1969]. The on-line oscillator output drives both 
clock circuits in order to keep the timing syn­
chronized. The match operation is not as exten­
sive as it is in the No.1 ESS. For simplicity, there 
is only one IP_atcher in the No. 2 ESS; it is 
located in the nonduplicated maintenance center 
(see Figure 12-7). The matcher always compares 
the call store input registers in the two CC's 
when call store operations are performed syn­
chronously. A fault in almost any part of either 
CC quickly results in a call store input register 



lismatch. This occurs because almost all data 
rlanipulation performed in both the program 
ontrol and the input-output (I/O) control in­
'olves processed data returning to the call store. 
~he call store input is the central point whereby 
lata eventually funnel through to the call store. 
~y matching the call store inputs, an effective 
:heck of the system equipment is provided. 
:ompared to the more complex matching of the 
-.J'o. I Processor, error detection in the No. 2 
>rocessor may not be as instantaneous since 
mly one crucial node in the processor is 
natched. Certain faults in the No.2 Processor 
vill go undetected until the errors propagate into 
he call store. This interval is probably no more 
han tens or hundreds of microseconds. During 
:uch a short interval, the fault would affect only 
l single call. 

The No. 2 ESS matcher is not used as a 
iiagnostic tool as is the matcher in the No. I 
)rocessor. Therefore, additional detection hard­
~are is designed into the No.2 Processor to help 
iiagnose as well as detect faults. 

When a mismatch occurs, the detection pro­
~ram is run in the on-line CC to determine if it 
:ontains the fault. This is done while the standby 
Jrocessor is disabled. If a solid fault in the on-

M--M----+--Error signals 

Maintenance center 

• Halt off-line 
CC 

• Run detection 
programs in 
on-line CC 

Figure 12-7. No.2 CC match access. 
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line processor is detected by the mismatch detec­
tion program, the control is automatically passed 
to the standby processor, causing it to become 
the on-line processor. The faulty processor is 
disabled and diagnostic tests are called in to 
pinpoint the defective circuit pack. 

The program store also uses PMT modules as 
basic storage elements, with a word size of 22 
bits, half the width of the No. l's word size. 
Experience gained in the design and operation of 
the No. 101 ESS (PBX) showed that PMT stores 
were very reliable. The additional protection 
provided in the No. 1 Processor against memory 
faults by error correction was not considered to 
be as essential in the No.2 Processor. This and 
the need to keep the cost down led to the choice 
of error detection only instead of the more so­
phisticated Hamming correction code. 

Error detection works as follo\Ys: one of the 22 
bits in a word is allocated as a parity check bit. 
The program store contains both program and 
translation data. Additional protection is provid­
ed by using odd parity for program words and 
even parity for translation data. This detects the 
possibility of accessing the translation data area 
of memory as instruction words. For example, a 
software error may cause the program to branch 
into the data section of the memory and execute 
the data words as instruction words. The parity 
check would detect this problem immediately. 
The program store includes checking circuits to 
detect multiple-word access. Under program 
control, the sense amplifier threshold voltage can 
be varied in two discrete amounts from its nom­
inal value to obtain a measure of the operating 
margin. The use of parity check was the proper 
choice for the No. 2 ESS in view of the high 
reliability of these memory devices. 

The No.2 Processor call store uses the same 
ferrite sheet memory modules as the No. 1 
Processor. However, the No. 2's data word is 16 
bits wide instead of 24. Fault detection depends 
heavily upon the matching of the call store 
inputs when the duplex processors run in the 
synchronous mode. Within the call store circuit, 
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the access circuitry is checked to see that access 
currents flow in the right direction at the correct 
time and that only two access switches are 
selected in any store operation. This ensures that 
only one word is accessed in the memory opera­
tion. Similarly, threshold voltages of the sense 
amplifiers may be varied under program control 
to evaluate the operating margins of the. store. 
No parity check bit is provided in the call store. 

Each processor contains a program timer 
which is designed to back up other detection 
methods. Normally, the on-line processor clears 
the timer in both processors at prescribed inter­
vals if the basic call processing program cycles 
correctly. If, however, a hardware or software 
trouble condition exists (e.g., a program may go 
astray or a long program loop may prevent the 
timer from being cleared), the timer will tjme out 
and automatically produce a switch. The new 
on-line processor is automatically forced to run 
an initialization restart program which attempts 
to establish a working system. System recovery is 
simplified by using two pO'ssible system configu­
rations rather than the multiunit duplex system. 

SECOND GENERATION OF ESS 
PROCESSORS 

The advent of silicon integrated circuits (IC's) in 
the mid-1960's provided the technological cli­
mate for dramatic miniaturization, improved 
performance,. and cost-reduced hardware. "I A 
technology" refers to the standard set of (IC) 
devices, apparatus, and design tools that were 
used to design the No. 1 A Processor and the No. 
3A Processor [Becker et aI., 1977]. The choice of 
technology and the scale of integration level was 
dictated by the technological advances made 
between 1968 and 1970. Small-scale integration 
(SSI), made possible by bipolar technology, was 
capable of high yield production. Because of the 
processor cycle time, high-speed logic gates with 
propagation delays from 5 to 10 ns were de­
signed and developed concurrent with th~ No. 
1 A Processor. 

No. 1 A Processor 

The No. IA Processor, successor to the No. 1 
Processor, was designed primarily for the control 
of large local and toll ESS with high processing 
capabilities (the No. IA ESS and No.4 ESS, 
respectively) [Budlong et aI., 1977]. An important 
objective in developing the No. IA ESS was to 
maintain commonality with the No.1 ESS. High 
capacity was achieved by implementing the new 
No. IA integrated technology and a newly de­
signed system structure. These changes made 
possible an instruction execution rate that is four 
to eight times faster than the No. 1 Processor. 
Compatibility with the No. I ESS also allows the 
No. IA Processor to be retrofitted into an in­
service No. I ESS, replacing the No. I Processor 
when additional capacity is needed. The first IA 
Processor was put into service in January 1976, 
as control for a No.4 ESS in Chicago. Less than 
one year later, the first No. IA ESS was put into 
commercial operation. By 1980, several hundred 
will be in service [Nowak, 1976]. 

The No. IA Processor architecture is similar to 
its predecessor in that all of its subsystems have 
redundant units and are connected to the basic 
CC via redundant bus systems [Bowman et al., 
1977]. One of the No. IA Processor's major 
architectural differences is its program store 
[Ault et aI., 1977]. It has a writable random­
access memory (RAM) instead of PMT ROM. 
By combining disk memory and RAM, the sys­
tem has the same amount of memory as a system 
with PMT, but at a lower cost. Backup copy of 
program 'and translation data is kept on disk. 
Other programs (e.g., diagnostics) are brought to 
RAM as needed; the same RAM spare is shared 
among different programs. More important is the 
system's ability to change the content of the 
store quickly and automatically. This simplifies 
considerably the administration and updating of 
program and translation information in working 
offices. 

The additional disk (file store) subsystem adds 
flexibility to the No. IA Processor [Ault et aI., 



977], but it also increases the complexity of 
ystem recovery. Figure 12-8 shows the multi­
mit duplex lA Processor. This configuration is 
imilar to the No. I Processor arrangement (see 
~igure 12-3) with a duplicated file store included. 
~he file store communicates with the program 
tore or call store via the CC and the auxiliary 
mit bus. This allows direct memory access be­
ween the file store and the program store or the 
'all store. The disk file and the auxiliary unit bus 
.re grouped together as a switchable entity. 

Error detection is achieved by the duplicated 
.nd matched synchronous mode of operation, as 
n the No. I Processor. Both CC's operate in step 
.nd perform identical operations. The matching 
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Figure 12-8. No. 1A processor configuration. 
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is done more extensively in the IA to obtain as 
complete a check as possible. There are two 
match circuits in each processor. Each matcher 
has the ability to compare 24 internal bits to 24 
bits in its mate once every machine cycle. (A 
machine cycle is 700 ns.) Anyone of 16 different 
24-bit internal nodes can be selected for compar­
ison. The choice is determined by the type of 
instruction being executed. Rather than compare 
the same nodes in both CC's, the on-line and the 
standby CC's are arranged to match different 
sets of data. Four distinct internal groups are 
matched in the same machine cycle. This ensures 
the correct execution of any instruction. 

The No. IA.Processor design is an improve­
ment of the No. I Processor design. The No. I A 
Processor incorporates much more checking 
hardware throughout various functional units in 
addition to matching hardware. Checking hard­
ware speeds up fault detection and also aids the 
fault recovery process by providing indications 
that help isolate the faulty unit. The matching is 
used in various modes for maintenance purposes. 
This capability provides powerful diagnostic 
tools in isolating faults . 

The program store and call store use the same 
hardware technology. The CC contains approxi­
mately 50,000 logic gates. While the initial design 
of the stores called for core memories, they have 
been replaced with semiconductor dynamic 
MOS memories. The word size is 26 bits; 24 data 
bits and 2 parity check bits. In the No. I 
Processor, the program store and the call store 
are fully duplicated. Because of their size, dupli­
cation requires a considerable amount of hard­
ware, resulting in higher cost and increased 
component failures. To reduce the amount of 
hardware in the No. IA Processor's store com­
munity, the memory is partitioned into blocks of 
64K words, as shown in Figure 12-9. Two addi­
tional store blocks are provided as roving spares. 
If one of the program stores fails, a roving 
program store spare is substituted and a copy of 
the program in the file store is transferred to the 
program store replacement. This type of redun-
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Figure 12-9. No. 1A program store structure. 

dancy has been made possible by the ability to 
regenerate data stored in a failing unit. Since a 
program store can be reloaded from the file store 
in less than a second, a roving spare redundancy 
plan is sufficient to meet the reliability require­
ment. As a result, Hamming correction code was 
not adopted in the No. IA program store. How­
ever, it is essential that an error be detected 
quickly. Two parity check bits are generated 
over a partially overlapped, interleaved set of 
data bits and address. This overlapping is ar­
ranged to cope with particular memory circuit 
failures which may affect more than one bit of a 
word. 

The IA call stores contain both translation 
data backed up on the file stores and call-related 
transient data which are difficult to regenerate. 
The roving spare concept is expanded for the call 
stores to include sufficient spares to provide full 
duplication of transient data. If a fault occurs in 
a store that contains translation data, one of the 
duplicated stores containing transient call data is 
preempted and loaded with the necessary trans­
lation data from the duplicated copy in the file 
store. A parity check is done in the same manner 
as in the program store, using two check bi ts. 

The combination of writable program store 
and file store provides a very effective and flexi­
ble system architecture for administrating and 
implementing a wide variety of features which 
are difficult to o~tain in the No.1 ESS. However, 
this architecture also complicates the process of 
fault recognition and recovery. Reconfiguration 
into a working system under trouble conditions 

is an extensive task, depending on the severity of 
the fault. (For example, it is possible for the 
processor to lose its sanity or ability to make 
proper decisions.) An autonomous hardware 
processor configuration (PC) circuit is provided 
in each CC to assist in assembling a working 
system. The PC circuit consists of various timers 
which ensure that the operational, fault recovery, 
and configuration programs are successfully exe­
cuted. If these programs are not executed, the PC 
circuit controls the CC-to-program memory con­
figuration, reloading program memory from file 
store when required, and isolating various sub­
systems from the CC until a working system is 
obtained. 

No. 3A Processor 

The No. 3A Processor was designed to control 
the small No.3 ESS [Irland and Stagg, 1974], 
which can handle from 500 to 5,000 lines. One of 
the major concerns in the design of this ESS was 
the cost of its processor. The low cost and high 
speed of integrated logic circuitry made it possi­
ble to design a cost-effective processor that per­
formed better than its discrete component pred­
ecessor, the No.2 Processor. The No. 3A project 
was started in early 1971. The first system cut 
into commercial service in late 1975. 

Because the number of components in the No. 
3A Processor is considerably less than in the No. 
lA Processor, all subsystems are fully duplicat­
ed, including the main store. The CC, the store 
bus, and the store are treated as a single switch­
able entity rather than individual switch able 
units as in the No. lA Processor. The system 
structure is similar to the No.2 ESS. Experience 
gained in the design and operation of the No.2 
provided valuable input for the No.3 Processor 
design. 

The 3A's design makes one major departure 
from previous ESS processor designs: it operates 
in the nonmatched mode of duplex operation. 
The primary purpose of matching is to detect 
errors. A mismatch, however, does not indicate 



where (which one of the processors) the fault has 
occurred. A diagnostic fault-location program 
must be run to localize the trouble so that the 
defective unit can be taken off-line. For this 
reason, the No. 3A Processor was designed to be 
self-checking, with detection circuitry incorpo­
rated as an integral part of the processor. Faults 
occurring during normal operation are discov­
ered quickly by detecting hardware. This elimi­
nates the need to run the standby system in the 
synchronous and match mode of operation, or 
the need to run the fault recognition program to 
identify the defective unit when a mismatch 
occurs. 

The synchronous and match mode arrange­
ment of the No.1 Processor and the No.2 ESS 
provides excellent detection and coverage of 
faults. However, there are many instances (e.g., 
periodic diagnostics, administration changes, re­
cent change updates, etc.) when the system is not 
run in the normal match mode. Consequently, 
during these periods, the system is vulnerable to 
faults which may go undetected. The rapid ad­
vances in integrated circuit technology make 
possible the implementation of self-checking cir­
cuits in a cost-effective manner. This eliminates 
the need for the synchronous and match mode of 
operation. Self-checking design is covered in 
more detail in the next section. 

Another new feature in ESS processor design 
is the application of microprogram technique in 
the No. 3A [Storey, 1976]. This technique pro­
vides a regular procedure of implementing the 
control logic. Standard error detection is made 
part of the hardware to achieve a high degree of 
checkability. Sequential logic, which is difficult 
to check, is easily implemented as a sequence of 
microprogram steps. Microprogramming offers 
many attractive features: it is simple, flexible, 
easy to maintain, and easy to expand. 

The No. 3A Processor paralleled the design of 
the No. lA Processor in its use of an electrically 
alterable (writable) memory. However, great 
strides in semiconductor memory technology af­
ter the No. lA became operational permitted the 
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use of semiconductor memory in the 3A rather 
than the core memory. 

The 3A's call store and program store are 
consolidated into a single store system. This 
reduces cost by eliminating buses, drivers, regis­
ters, and controls. A single store system no 
longer allows concurrent access of call store and 
program store. However, this disadvantage is 
more than compensated for by the much faster 
semiconductor memory. Its access time is 1 f.Ls 
(the earlier PMT stores had an access time of 6 
f.Ls). . 

Normal operation requires the on-line pro­
cessor to run and process calls while the standby 
processor is in the halt state, with its memory 
updated for each write operation. For the read 
operation, only the on-line memory is read, 
except when a parity error occurs during a mem­
ory read. This results in a microprogram inter­
rupt, which reads the word from the standby 
store in an attempt to bypass the error. 

As discussed previously, the No.2 Processor 
(first generation) is used in the No. 2 ESS for 
medium-size offices. It covers approximately 
4,000 to 12,000 lines, with a call handling capa­
bility of 19,000 busy-hour calls. (The number of 
calls is related to the calling rate of lines during 
the busy hour.) The microprogram technique 
used in the No. 3A Processor design allows the 
No.2 Processor's instruction set to be emulated. 
This enables programs written in the No. 2 
assembly language to be directly portable to the 
No. 3A Processor. The ability to preserve the call 
processing programs permits the No.2 ESS to be 
updated with the No. 3A Processor without 
having to undergo a complete, new program 
developmen t. 

The combination of the No. 3A Processor and 
the peripheral equipment of the No.2 ESS is 
designated as the No. 2B ESS. It is capable of 
handling 38,000 busy-hour calls, twice the capa­
bility of the No.2 ESS [Mandigo, 1976]. The No. 
2B ESS can be expanded to cover about 20,000 
lines. Furthermore, when an existing No.2 ESS 
system in the field exceeds its real-time capacity, 
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the No. 2 Processor can be taken out and 
replaced with the No. 3A Processor. The retrofit 
operation has been carried out successfully in 
working offices without disturbing telephone ser­
vlce. 

MAINTENANCE DESIGN OF 
NO. 3A PROCESSOR 

The 3A Processor is the most recent Bell System 
ESS processor. Self-checking hardware has been 
integrated into the design to detect faults during 
normal system operation. This simplified fault 
recognition technique is required to identify a 
subsystem unit when it becomes defective. Re­
configuration into a working system is imme­
diate, without extensive diagnostic programs to 

I 

determine which subsystem unit contains the 
fault. The problem of synchronization, in a much 
shorter machine cycle (150 ns), is eliminated by 
not having to run both processors in step. The 
No. 3A Processor uses low-cost Ie's to realize its 
highly reliable and flexible design. 

General Systems Description 

The general system block diagram of the No. 3A 
Processor is shown in Figure 12-10. The ee, the 
main store, and the cartridge tape unit are dupli­
cated for reliability. These units are grouped as a 
single switchable entity rather than individual 
switchable units. The quantity of equipment 
within the switchable block is small enough to 
meet the reliability requirement; therefore, the 
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~xpense and complexity of providing communi­
:ation paths and control for switchable units 
vithin the system are avoided. Each functional 
mit was designed to be as autonomous as possi­
)le, with a minimum number of output signal 
eads. This provides the flexibility necessary to 
:xpand the system and make changes easily. 

As shown in Figure 12-10, the standard pro­
~ram store and call store are combined as a 
ingle storage unit to reduce cost. Although the 
)rocessors are not run in the synchronous and 
natch mode of operation, both stores (on-line 
md standby) are kept up to date. This is 
lchieved by having the on-line processor write 
nto both stores simultaneously when call store 
lata are written or changed. Because of the 
'olatile nature of a writable memory, low-cost 
m1k storage backup (cartridge tape) is required 
o reload the program and translation data when 
he latter are lost due to a store failure. The 
mmp-up mechanism or store loader uses the 
nicroprogram control in conjunction with an 
I/O) serial channel to transfer data between the 
:artridge tape unit and the main store. Other 
leferrable, infrequently used programs (i.e., 
liagnostics or growth programs) are stored on 
ape and paged in as needed. 

The system control and status panel, a nondu­
Ilicated block, provides a common point for the 
lisplay of overall system status and alarms. 
ncluded in this unit is the emergency action 
ircuitry which allows the maintenance person­
LeI to initialize the system or force and lock the 
ystem into a fixed configuration. Communica­
ion with the processor takes place via the I/O 
erial channel. 

;eneral Processor Description 

~igure 12-11 shows a detailed block diagram of 
he CC. It is organized to process input data and 
landle call processing functions efficiently. The 
~rocessor's design is based on the register type of 
Tchitecture. Fast-access storage in the form of 
lip-flop registers provides short-term storage for 
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information being used in current data proces­
sing operations. Sixteen general-purpose registers 
(GPRs) are provided as integral parts of the 
structure. 

Microprogram control is the heart of the No. 
3A Processor. It provides nearly all of the com­
plex control and sequencing operations required 
for implementing the instruction set. Other com­
plicated sequencing functions are also stored in 
the microprogram memory. Examples: 

I. the bootstrap operation of reloading the program 
from the backup tape unit 

2. the initializing sequence to restart the system under 
trouble conditions 

3. the interrupt priority control and saving of essential 
registers 

4. the emergency action timer and processor switching 
operation 

5. the craft-to-machine functions 

The regular structure of the microprogram 
memory makes error detection easier. The mi­
croprogram method of implementation also of­
fers flexibility in changing control functions. 

The data manipulation instructions are de­
signed specifically for implementing the call pro­
cessing programs. These instructions are con­
cerned with logical and bit manipulation rather 
than with arithmetical operations. However, a 
binary ADD is included in the instruction reper­
toire for adding two binary numbers and for 
indexing. This allows other arithmetical opera­
tions to be implemented conveniently by the 
software combination of addition and logical 
operations, or by a microprogram sequence if 
higher speed is essential. The data manipulation 
logic contains rotation, Boolean function of two 
variables, first zero detection, and fast binary 
ADD. 

The remaining functional blocks in Figure 
12-11 deal with external interfaces. The 20 main 
I/O channels, each with 20 subchanne1s, allow 
the processor to control and access up to 400 
peripheral units by means of 21-bit (16 data, 2 
parity, and 3 start code bits) serial 6.67-MHz 
messages. The system is expandable in modules 
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of one main channel (20 subchannels). The I/O 
structure allows up to 20 subchannels (one from 
each main channel) to be active simultaneously. 
In addition, the craft-to-machine interface, with 
displays and manual inputs, is integrated into the 
processor. This interface contains many of the 
manual functions which will assist in hardware 
and software debugging. The control logic asso­
ciated with this part of the processor is. incorpo­
rated as part of the microprogram control. Last­
ly, the maintenance channel enables the on-line 
processor to control and diagnose the standby 
processor. The use of a serial channel reduces the 

number of leads interconnecting the two pro­
cessors and causes them to be "loosely coupled." 
This facilitates the split mode or stand-alone 
configuration for factory test or system test. 

Detection Techniques 

Control Circuitry 

The major feature of the No. 3A Processor's 
control logic is that it is microprogrammed. 
Microprogramming provides a more regular ap­
proach than the conventional technique to the 
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Figure 12-12. Microprogram control. 

design of control logic. It also permits checking 
techniques to be applied more readily. The sim­
plified microprogrammed structure of the system 
is shown in Figure 12-12. Each microprogram 
store word contains the address of the next 
instruction and a FROM and TO control field 
which specifies the source and destination for a 
data transfer operation. The store word may also 
specify some other types of operation. The mi­
croprogram address register (MAR) receives its 
contents from either the OPCODE of the main 
machine instruction to be executed (this forms 
the initial address of the microprogram which 
performs the instruction) or the last micropro­
gram store word. One instruction from the main 
store results in the execution of a sequence- of 
microinstructions. System operation consists of 
continually reading instructions from the main 
store and executing the specified sequences of 
microinstructions. 

In designing the hardware check for the mi­
croprogram control, it is essential to recognize 
the types of failures which are most probable. 
Matching the checking techniques with the type 
of faults that actually occur yields the best 
results with the least amount of hardware. The 
microprogram control is constructed from inte­
grated circuits: LSI for the memory and SSI for 
the associated control logic. Because of the 
method of isolating components and because of 
the physical proximity of devices on an integrat­
ed circuit chip, multiple faults within a chip have 
been analyzed and found to be of the type which 
would tend to affect the bits in the unidirectional 
manner: it affects adjacent bits, rather than 
nonadjacent bits in the word [Cook et aI, 1973]. 
Unidirectional error refers to a fault which caus­
es a data bites) to assume a wrong value of one 
type: 0 or 1, but not both simultaneously. (For 
example, 01100 to 01111, not to 01010.) 
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The checking technique used in the implemen­
tation of the microprogram control takes advan­
tage of the error characteristics mentioned 
above. The microprogram store contains two 
types of data: control and address information. 
The control fields are immediately decoded and 
checked to provide control signals. A more effi­
cient nonsystematic check code, such as the m­
out-of-2m code, would give the maximum detec­
tability at the least possible cost in hardware. 
This code can detect all multiple-unidirectional 
errors. However, for the address field, it is desir­
able to maintain the data in binary form for 
addressing and to provide immediate binary data 
to several sources. Consequently, the choice of a 
systematic check code for the address field is 
essential to' give this flexibility. By recognizing 
that the multiple-bit faults tend to affect adjacent 
bits rather than randomly disperse them 

throughout the word, the binary field is inter­
leaved with the m-out-of-2m code as shown in 
Figure 12-13. Any multiple-adjacent-bit fault 
would then affect both the binary and the m-out­
of-2m code. Consequently, a single parity check 
bit is adequate to detect single-bit faults in the 
binary field, and multiple adjacent bit faults 
would be detected by the m-out-of-2m check. 

In checking the binary address field, parity is 
maintained on Jhe address in the MAR and 
checked by 1) storing the correct parity (see 
Figure 12-12) in the word addressed in memory, 
and 2) comparing the two after the word is read 
out. The next address field in the microprogram 
store output register (MIR) also has a parity bit 
which becomes the parity bit of the MAR when 
it is gated into the MAR. The condition branch 
logic is checked by duplication. A match is not 
necessary to check the duplicated logic since its 

Microprogram store 
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code 
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M-out-of N (4/8) 
code 

control 

figure 12-13. Microprogram store coding techniques. 



mtput must change both the low-order bit and 
,he parity bit of the MAR. One of the branch 
ogic circuits feeds the low-order bit, and the 
>ther feeds the parity bit fA (see Figure 12-12) so 
,hat branch logic failure is detected because of 
:he resultant bad parity of the MAR. 

The checking techniques (such as m-out­
>f-2m, interleaves parity, and duplication) are 
ntegrated into the No. 3A's design to detect the 
~ailures that may occur in the microprogram 
;ontrol. These types of checks are provided to 
ietect the multiple-unidirectional type of faults 
:hat are possible with the integrated technology. 

t-out-of-B Decoder and Check 

fhe TO and FROM control fields are each eight 
:>its wide and encoded as a 4-out-of-8 code. 
fhere are 70 valid combinations in an 8-bit field; 
!ach combination has four l's and four O's. The 
ields, which are decoded to drive the control 
:>oints of the processor, are checked by a self­
::hecking checker which detects faults in the 
iecoder and the input codes [Anderson, 1971]. 

Because of the large number of output leads in 
1 fully decoded 4-out-of-8 code to 70 outputs, 
the decoder circuitry is divided into two groups. 
!\. control function is represented by two outputs, 
:me from each group. Figure 12-14 shows the 
iecoding arrangement whereby each group is 
iorted into five logic subgroups with 4, 3, 2, 1, 
:md 0 inputs and designated as 4(1), 3(1), 2(1), 
1(1), and 0(1), respectively. The numbers of gates 
belonging to the respective subgroups are 1, 4, 6, 
~, and 1, as shown in the figure. Similarly, the 
iecond four bits in the 4-out-of-8 code are de­
;;oded and divided into the same sub grouping. 
The A subgroupings are paired with the B sub­
groups to obtain the 70 possible 4-out-of-8 code 
;;ombinations. The 4a (1) group pairs with the 
0b(1) group to give one combination; the 3a(1) 
group pairs with the Ib(1) group to give 16 
;;ombinations; and so on, as indicated in Figure 
12-14. The 0(1) subgroup is redundant, and, 
therefore, it is not used. 
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The total number of decoder outputs from 
each group is 15 instead of 16. Within a decoder 
group, more than one output may be active 
simultaneously. For example, the 1111 input 
code can cause all gates to be active. This is 
entirely satisfactory since only the gate in the 
corresponding subgroup of the second decoder 
(in this case the 0(1) subgroup) would be active; 
gates in the other subgroups would not be active. 
Hence, one and only one pair of decoder outputs 
is active. This condition uniquely defines one of 
the possible 70 combination.s in the 4-out-of-8 
codes. 

The decoder design provides the proper out­
puts which facilitate the implementation of the 
self-checking 4-out-of-8 checker. The self-check­
ing circuit is realized by subdividing the checker 
into two separate independent subcircuits. Each 
subcircuit generates a single output whose values 
are arranged to be complementary for normal 4-
out-of-8 input -codes. For any errors in the input 
code, decoder, or check logic, the two outputs 
are alike (00 or 11). 

A totally self-checking checker has the advan­
tage of not requiring periodic tests in order to 
ensure that any faults occurring in the functional 
circuits will be detected immediately. The check 
scheme involves pairing the subgroups, corre­
sponding to exactly four I's, as follows: 
Oa(1) - 4b(1), la(1) - 3b(1), 2a(1) - 2b(1), 3a(1) 
- Ib(1), 4a(1) - 0b(1). An output is generated 
for each pairing. The alternating pairs are divid­
ed into separate groups, f and g, as indicated in 
Figure 12-15. Since only one pair will be active 
for a correct 4-out-of-8 input, the response from 
f and g will be 10 or 01 for the normal operating 
condition. If the input is other than a 4-out-of-8 
code, the f and g outputs will be 11 or 00. For 
example, if the input is 11100011, the 3a(1), 
2a(1), la(1), and Oa(1) from the A group and the 
2b (1), Ib (1), and 0b (1) from the B group will be 
active. This means two pairs of subgroups will be 
active: 3a(1) - Ib(1) in the f group and 2a(1) -
2b (1) in the g group. The alternating pairs are 
chosen to be in separate groups to ensure that 
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:igure 12-15. General diagram of 4-out-of-8 
:heckero 

when there is more than one pair active, the 
°esultant fg output is 11, representing an input 
with more than four 1 'so If the input contains less 
:han four. 1 's, none of the four pairs will be 
lctive. For example, if the input is 01110000, the 
Ja(1), 2a(1), la(1), and Oa(1) of the A group and 
:he 0b (1) of the B group will be active. These are 
)utputs from each group, but none of them 
l)elong to a pair, hence, the fg output is 00, 
::orresponding to an input combination with less 
than four 1 'so The logic implementation of the 4-
:mt-of-8 checker is shown in Figure 12-16. 

The 0 (1) subgroup represents the condition of 
1 or any number of 1 's in the 4-bit input. This 
means the 0(1) gate is always active and redun­
dant. The pairing of 4a (1) - 0b(1) does not need 
to include the Ob (1) subgroup at all. Its gate and 
output is ignored in the implementation. 

The FROM and TO decoder outputs fan out to 
various functional units for controlling logical 
operations or data transfers within the CC. 
Those that go to the data transfer logic control 
the gating of data from one register to another 
via the data bus. The circuitry of this functional 
block is partitioned on a 2-bit slice; all logic 
gates associated with the two bits are contained 
on a single circuit board. Since the decoder 
outputs fan out to 2 bits, any malfunction of the 
control within a circuit board would affect only 
those 2 bits of data. When the word is used at a 
later time, the error will be detected by the parity 
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check on the data. Consequently, it is sufficient 
to check the control signals prior to entering the 
data transfer block. This is also true for the data 
manipulation block since the circuitry is dupli­
cated. 

A number of microoperations consist of set­
ting or clearing individual flip-flops or enabling 
dedicated paths where the use of a single TO or 
FROM field crosspoint would be inefficient. A 
miscellaneous decoder is provided; it takes in­
puts from both the TO and FROM fields. In this 
way, a 10 X 10 matrix (100 crosspoints) is gener­
ated by assigning only 10 of the 70 combinations 
from each of the TO and FROM fields. Most of 
these types 'of crosspoints control duplicated 
circuitry; hence, the decoding gate itself is dupli­
cated. A fault in this area will result in an error 
in the data path and will be detected by a parity 
check. 

Data Registers 

There are two types of internal data registers: 
general purpose and special purpose. The latter 
type is dedicated to specific function~. Examples 
are the interrupt status register (IS) and the error 
register (ER). The general-purpose registers are 

f 1; 

f = 1a(1) ·3b(1) + 3a(1)· 1b(1) 

8 = 4b(1) + 2a(1)· 2b(1) + 4a(1) 

Figure 12-16. 4-out-of-8 checker. 
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Circuit boards 

DDDDD 

P1 = Parity Over bits 0,1,2,3,4,5,6,7 

P2 = Parity Over bits 8,9,10,11,12,13,14,15 

Figure 12-17. Layout of general registers. 

involved with the handling of data associated 
directly with the instructions. The checking of 
the data transfer logic is done by partitioning 
two bits of the register on a single circuit board 
and then carrying two parity bits. This partition­
ing and the definition of the parity bits is illus­
trated in Figure 12-17, with the first circuit board 
containing two bits of every general-purpose 
register. Partitioning the registers in this way 
ensures that any fault on a circuit board will not 
affect more than two bits of any register. This 
also ensures that the fault will be detected by the 
two parity bits. If all of one register's bits were 
grouped on a single board, a catastrophic failure 
of that board could affect all of the bits, and the 
failure would not necessarily be detectable by 
the two parity bits. The main memory is also 
organized as a 2-bit slice per circuit pack plus 
two parity check bits. A consistent parity check 
is done throughout the entire system; I/O is 
included. 

For any data transfer, the information from 
the source register is checked by the parity 
checker at a common point: the data bus. In a 
register-to-register transfer, the data in the desti­
nation register are not checked. This is satisfac­
tory since it will be checked when the data are 
used either to address the store or to be operated 
on by the data manipulation logic. 

Data Manipulation Logic (DML) 

The DML contains rotation, Boolean function of 
two variables, first zero detection, and fast bi-

Bus 

Error 

Figure 12-18. Duplicated data manipulation logic. 

nary ADD. The DML is duplicated and matched 
to allow full checking in this area. Other coding 
techniques, such as parity prediction and residue 
coding, are available for arithmetical functions. 
However, for all logical functions of two varia­
bles, duplication is the simplest method of check­
ing. Duplication eliminates the need for checking 
if the data arrived at the modification logic 
correctly. 

As shown in Figure 12-18, a match circuit 
detects faults, and a parity generation circuit 
supplies parity on the DML output to interface 
with the rest of the system. 

1/ 0 Channels 

The 20 I/O channels are 6.67-MHz serial chan­
nels. Each channel has 20 subchannels. Figure 
12-19 shows the data flow from the processor to 
the I/O buffers. Three of the general-purpose 
registers, R9 through R 11, are used; R9 loads the 
control buffer (lOS), RIO loads the data buffer 
(100), and RII receives data from the I/O 
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Figure 12-19. I/O channel structure. 



486 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

channel. All command and selection signals are 
encoded in 3-out-of -6 codes and decoded to l­
out-of -20 codes. The channel address stored in 
R9 is used to direct the data and microinstruc­
tions to one of the 20 specified main channels. 
The decoding of the enable address is done 
individually in each main channel, with the 
output returning to a common point for check­
ing. This is done to ensure that only the right 
channel is enabled. The command decoding and 
sub channel selector within each channel are sim­
ilarly checked for proper decoding of 3-out-of-6 
codes. The data messsage containing two parity 
check bits from RIO is transmitted by the chan­
nel and checked by the peripheral unit. In addi­
tion, prior to transmission of the message, the 
data are brought back by the microprogram 
sequence to the data manipultion logic and com­
pared with the content of RIO to ensure that the 
data have been loaded properly. Messages re­
ceived from the peripheral unit also have two 
parity bits, which are checked when they are 
placed on the bus. 

Maintenance Channel (MCH) 

The MCH is used for interprocessor communica­
tion, as well as for the diagnosis of one processor 
by the other processor. The MCH's structure is 
similar to the I/O channel and, therefore, the 
checking technique is the same. The data field 
uses the standard 2-bit parity in order to remain 
consistent with the rest of the processor. The 
command field is encoded in 3-out-of-6 codes. 

Method of Checking Error 
Detection Circuits 

Any circuitry used for checking purposes is 
incorporated as part of the system. Such circuitry 
should be as fail-safe as possible so that a failure 
in the system will cause a failure alarm. It has 
been shown that such a check circuit can be 
realized if the output is in the form of a I-out-

of-2 code, with 01 or 10 for the normal operation 
and 00 or 11 for the error condition [Carter, 
Duke, and Jessep, 1971]. Ultimately, these two 
outputs must be monitored to generate a single 
error output. 

The final gate is not completely fail-safe. A 
failure in this gate will prevent the circuitry from 
giving any error indication, and faults normally 
detected will be ignored. A good design allows 
only a small portion of the detection hardware to 
be non-fail-safe. The checking of the non-fail­
safe portion of the check logic is essential to 
guarantee reliable operation of these circuits. 
This is accomplished by a combination of hard­
ware and software. This approach has been 
proved to be very effective in checking the check 
circuits, with both hardware and software costs 
kept to a minimum. The hardware provides the 
means of simulating test conditions or circuit 
faults which are extremely difficult or awkward 
to set up normally in the system. A flip-flop 
register, called the maintenance state (MS) regis­
ter, is used for this purpose. Each bit represents 
an error or test condition. By appropriately 
setting up the MS register and applying a well 
designed test sequence, the detection circuitry 
can be checked on a periodic basis to ensure its 
proper application. 

Method of Detecting Hard-Core 
Circuit Faults 

Although the system is designed to be nearly 
self-checking, it contains a small hard-core por­
tion which must be operating properly prior to 
running a program sequence. The circuitry 
usually includes the sequencing logic of the 
microprogram control and the addressing and 
fetching of instructions from the main store. For 
example, if the control to advance the program 
counter (PC) cannot be activated, the PC re­
mains in one particular state. The same address 
is used at each reading, resulting in the same 
outputs from the store. The program, therefore, 



; stuck at one location, executing the same 
lstruction repetitively, with no means of ad­
ancing through the program sequence to pro­
.uce any useful work. The amount of hard-core 
ircuitry is strongly dependent upon the system 
.esign and is difficult to eliminate. In a duplicat­
d and matched system, when both processors 
re running in a synchronous mode with imp or­
:mt outputs being matched continuously, any 
rror in the hard-core circuitry will be detected 
lstan taneously. 

In the nearly self-checking design, the system 
loes not run in a synchronous and match mode. 
'his is done to reduce the complexity of soft­
mre, thereby increasing reliability. A hardware 
imer is used to detect faults in the hard-core 
ircuitry and also as a backup to protect the 
ystem from control by an insane CC due to 
ither hardware or software troubles. The use of 
. timer depends upon the program meeting an 
Ibstacle or a series of tests arranged in a maze. 
f the program is successfully completed through 
he maze, the timer is reset by the maintenance 
ontrol program. On the other hand, if the 
Irogram strays off course, the timer will time out 
.nd the emergency action circuit will select a 
lew configuration. The sanity test is repeated to 
·erify a fault-free system. 

The telephone processing program is cyclic in 
lature. It returns to the starting point at each 
can upon completion of a series of tasks re­
luired by the call processing [Andrews et aI., 
969]. Although the scan time may vary from 
can to scan, depending on the amount of work 
equired of the program, the maximum time can 
Ie easily determined. 

The use of a hardware timer is closely tied 
(ith the system program. It is arranged so that a 
eset is generated for the timer only if the 
irogram proceeds through the scan correctly 
vithin the prescribed period. If the program 
leviates from the normal course, no reset will 
Iccur. In this case, the timer automatically times 
lut, stops processing, and switches to the stand­
»y system. 
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There are two timers, one located in each 
processor; both are active at all times. Duplica­
tion is necessary in order to guarantee that the 
system be capable of recovery. It is possible that 
a single fault can disable one processor and its 
timer, thus necessitating the standby to perform 
the function. The timers are periodically reset by 
the on-line program. If they are not reset, the on­
line timers will time out first. If the on-line timer 
does not work, the off-line timer will perform the 
task at a later time. 

Recovery Techniques 

Fault detection is the first and most important 
step in realizing a highly reliable system. Two 
other functions of equal importance are: 1) rapid 
recovery of the system to process calls, and 2) the 
protection of calls in progress in face of either 
hardware or software difficulties. This means the 
mechanism for switching controls must be highly 
reliable. Proper steps have been taken to give a 
smooth transition in the transfer of controls. In 
the design of the system, the combination of 
hardware and software is so intertwined as to 
provide the utmost protection against an insane 
CC from taking control of the system. A rapid 
and successful recovery is achieved by a combi­
nation of hardware and software so that continu­
ity is maintained [Kennedy and Quinn, 1972]. 

Automatic Recovery 

When an error is recognized in the on-line 
processor, several things may happen depending 
on the type of error. Error signals are buffered in 
the error register (ER) for diagnostic purposes. 
In addition, the error signals are sorted out and 
divided into three groups, with each group caus­
ing a different set of system actions. The least 
severe of the three are the errors associated with 
the I/O or MCH. These errors will cause an 
interrupt in which the processor has complete 
control in determining the exact cause of the 
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trouble. If the error is a transient fault, it will be 
recorded and compiled for later analysis. If the 
error is determined to be a hardware fault within 
the switchable block of the processor, the inter­
rupt program will initiate a reconfiguration to 
the standby machine by means of the M CH. 
This would be an orderly switch to the other 
processor; there would be no detrimental effect 
on the system. 

The second type of error involves faults occur­
ring in the standby portion of the system. These 
faults directly influence the on-line operation. 
For example, the system is organized to operate 
both stores asynchronously. Whenever data are 
written into the on-line store, they are written 
into the off-line store simultaneously. The pro­
cessor waits for a store completion signal from 
both stores before proceeding with the next 
operation. If a response signal originates only 
from the on-line store, there is a 32-JLs pause, and 
then a special timer times out and generates an 
error signal, indicating trouble in the off-line 
store. Under this condition, the processor is 
interrupted at the microinstruction level and 
appropriate action is taken to continue call pro­
cessing with the standby store isolated. 

The third type of error involves hardware 
faults within the on-line processor. An extension 
of the previous discussion will serve as a good 
example: If the store completion signal is re­
ceived from the standby store and not from the 
on-line store, this error signal causes the system 
to switch to the standby configuration. In this 
situation, the system momentarily "hangs up." A 
restart in the standby machine would initialize 
the processor and continue with call processing, 
affecting, perhaps, only one call in the transient 
state. 

Numerous check circuits are designed and 
integrated into the system. As soon as an error is 
detected, immediate action takes place to recon­
figure the system into an error-free working 
system. In addition, duplicated hardware timers 
are provided to back up undetected hardware 
faults or software bugs which cause the program 

to go astray. The recovery process involves two 
steps: 

Step I: Reconfiguration 
Step 2: Restart or initialization-to enable the new 

processor configuration a smooth transition 
into full control of the system. 

When a switch to the standby processor oc­
curs, it must be initialized to a known state in 
order to start smoothly. This operation is divided 
into three stages, or levels. The first stage in­
volves the elementary control of the micropro­
gram store, ensuring that it can start and execute 
a sequence of microinstructions properly at a 
predetermined store location. This is done by 
hardware before the first microcycle. The opera­
tion consists of: 

I. Setting the MAR to a predetermined address 
2. Setting clock circuitry to a well-defined state 
3. Setting the block hardware check (BHC) flip-flop to 

inhibit detection hardware from possibly generat­
ing an error signal, thus initiating a switch opera­
tion 

4. Resetting various control flip-flops (e.g., STOP, 

FREEZE) which would directly affect the running of 
the microprogram control. 

The second stage of initialization is done by 
microprogram. The primary function of the mi­
croprogram initialization is to set the various 
control bits or registers which have direct influ­
ence on running the main program sequence. 
F or example: 

I. Set the block interrupt (BIN) flip-flop to inhibit the 
external interrupt from interfering with the initial­
izing program. 

2. Reset the update (UPD) flip-flop to inhibit the 
standby store from being updated. 

3. Set the isolate (ISO) flip-flop to prevent the off-line 
store operation from interfering with the on-line 
operation. 

4. Reset the hardware timer to prevent it from timing 
out. 

In addition, the microprogram decides wheth­
er or not the main store contains valid program 



lata. If it does not, the alternative would be to 
witch the processor and try the other configura­
ion since the program data are duplicated, with 
. copy in each store. The objective is to try to use 
'ach of the two copies before resorting to the use 
.f a tape unit as a final backup. The sanity of the 
nachine depends very heavily on the memory 
ontent. As a result, an arrangement (shown in 
;'igure 12-20) has been implemented to allow a 
ystematic way of recovering from system errors. 
~he scheme uses two initialization sanity check 
.its (ISCI and ISC2) as markers. They are part 
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of the system status (SS) register. Normally, 
these two bits are in the 00 state. During the first 

. time through the microprogram level of initiali­
zation (ISel = 0), this ISCI bit is set to the 1 
condition as a marker for subsequent initializa­
tion. The system then proceeds to the main 
program initialization. If the store contains cor­
rect program data, and if the system is fully 
recovered from the initialization, this marker bit 
will be reset. However, if the program data have 
been badly mutilated, the main program may 
wander aimlessly, executing bad programs. 

Restart 

¢ 1 

Set 
ISC2 

= 

= 1 

Hardware 
initialization 

Microprogram 
initialization 

Reload 
Mainstore 
from tape 

Finish 
initialization 

System 
initialization 

Switch Set 
to other ISC1 = 0 

processor ISC2 = 0 

Restart System program 

Figure 12-20. Initialization sequence. 
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When a second initialization occurs within the 
same CC and the first marker bit is set to the I 
state, the initialization 'at the microprogram level 
will set the second marker bit to 1. It then directs 
the control to be passed on to the other processor 
with the expectation that its main memory and 
the rest of the hardware are in good working 
condition. Otherwise, it will switch back to the 
original processor and try to initialize for the 
third time. Now, with both marker bits set to 11, 
the microprogram initialization sequence will 
recognize this condition and take the drastic step 
of reloading the main memory from the backup 
tape unit. These operational steps are depicted in 
Figure 12-20. 

The third and final stage of initialization is 
done by the main program. This stage covers 
both the internal status of the processor and the 
main store data pertaining to the peripheral 
equipment status, transient data, and various 
data associated with maintenance of the system. 
The internal state of the processor is saved in the 
main memory for subsequent analysis by the 
diagnostic program. Next, the various registers 
are set to a prescribed initial state. All control 
flip-flops, which were set up by the first two 
levels of initialization to inhibit various functions 
(such as block hardware check, block interrupt, 
and inhibit store update, etc.) are now restored 
to normal operation. This handling of the mem­
ory data, which have direct effect on the opera­
tion of the system, depends on the ability of the 
main program to run successfully and the fre­
quency of initialization. Audit programs are 
called in to validate and check for consistent 
data in the memory and peripheral equipment 
status. The initialization and recovery programs 
clear selective portions of memory data and take 
increasingly severe actions on the memory, de­
pending on the rate of system reconfiguration.· A 
high rate indicates the system's inability to main­
tain its sanity. 

Manual Recovery 

Although the system is designed to recover auto­
matically under trouble conditions, it is conceiv-

able for the system to be unable to reconfigun 
into a working mode. This can be caused b~ 

software bugs, hardware faults, or a combinatiOI 
of both. The processor may be switching con tin 
uously, spending all of its available time repeat 
ing initialization work. In other words, the con 
trol unit has gone insane and is incapable 0 

making any rational decisions. In this case, th< 
ultimate control of the system must be left to th< 
judgment of qualified maintenance personnel 
Hardware has been provided to give mainte, 
nance personnel the capability of forcing th< 
system into a fixed configuration and locking i' 
into the mode. Under this condition, the switch, 
ing operation would be made inoperative ane 
any system initialization would be directed'to the; 
locked processor. If both processors are defec· 
tive, but to different degrees, manual contro: 
makes it possible to lock out the most defectivt 
one and hope that the system will limp along. 

In addition to the manual force and lod 
functions of the emergency action panel, provi­
sion has been made to manually generate initial­
ization and cause different categories of data in 
the nonwrite protect area of the store be cleaned. 
These categories include: I) transient data whicb 
are associated with calls in a stable talking state~ 
and 2) recent change data which are associated 
with changing of customer telephone lines. The 
automatic recovery program is only allowed to 
clear the transient data which affect telephone 
calls in the non talking state. If an incomplete cal] 
is interrupted, the caller must try again. On the 
other hand, if the stable data are cleared, calls in 
the talking state are interrupted and the talking 
state is taken down. Hence, maintenance person­
nel are given the final control over recovery by 
taking the additional action of clearing the more 
important stable and recent change data por­
tions of the store. 

Due to the importance of these controls, safe­
guards have been designed into the manual 
switches and circuitry to protect against an acci­
dental switch operation. This is necessary to 
prevent any inadvertent actions which may have 
severe effects on the system. Emergency controls 
are grouped together with system alarms and 



.tatus indicators at the common system control 
)anel, which is readily available to maintenance 
)ersonnel. Additional redundancy has been de­
.igned into the system so that if both processors 
He down a positive indication must be given to 
naintenance personnel before the appropriate 
lction can be taken. This is done by another 
lardware timer in the common system control 
Janel. While the on-line program is progressing 
:hrough the programs correctly, it must periodi­
::ally reset this timer. If the on-line processor 
joes not reset the timer, it will time out and set 
the alarm circuit, immediately bringing the situ­
ition to the attention of the craftperson. 

Diagnostic Hardware 

Fault detection determines whether or not a 
::ircuit is operating correctly, whereas fault diag­
n.osis localizes the failure to a few replaceable 
::ircuit packs. Hardware has been integrated into 
the design of this system to allow a systematic 
approach for identifying failures via software. 
The most commonly used procedure in fault 
diagnosis [Bashkow, Friets, and Karson, 1963; 
Agnew, Forbes, and Stieglitz, 1967] is based 
upon the bootstrap technique. The hard-core 
portion of the machine can apply test sequences 
to itself. With a duplicated processor, the fault­
free machine is used to check or diagnose the 
hard-core portion of the defective machine. Once 
the hard-core portion has been checked and 
found to be fault-free, it is used to start the 
diagnostic test of another portion of the pro­
cessor. Therefore, subunits are tested before be­
ing used to check other subunits. This procedure 
continues until the fault is pinpointed. 

In order to facilitate this diagnostic procedure, 
several important designs have been incorporat­
ed into the system. One is the MCH and its 
associated circuitry. Its primary function is the 
diagnosis of one processor by the other. The 
MCH is an autonomous portion of the processor 
which, under control of the other processor, can 
provide information about the state of the ma­
chine and exercise the machine at its most basic 
level by direct access to the microprogram con-
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trol. Another hardware feature is the mainte­
nance instruction, which provides complete ac­
cess to the system at the most elementary level of 
hardware. 

Maintenance Channel facilities 

The MCH interconnects and provides the main 
source of communication between the two pro­
cessors. As shown in Figure 12-21, the MCH is a 
high-speed (6.67 MHz), serial, full duplex chan­
nel. This method of communication reduces the 
number of leads at the expense of additional 
hardware, making the interface easier to main­
tain. Since there are so few leads, the processors 
can be said to be "loosely interconnected"; they 
are isolated from each other in terms of hard­
ware faults. That is, a fault in one processor will 
not affect the operation of the other processor. 

The basic structure of the MCH shown in 
Figure 12-21 consists of a transmit-receive regis­
ter (MCHTR), a command register (MCHC), 
and a buffer register (MCHB). The format of a 
MCH message is 20 bits of data, 2 parity check 
bits, and 8 bits of command. Although the 
processor is essentially a 16-bit machine, there 
are several 20-bit registers for store addressing. 
Consequently, the MCH message is dictated by 
the widest data word. For 16-bit data fields, the 
high four bits are not used. The commands are 
coded in 4-out-of-8 codes for ease in decoding 
and checking. The decoded outputs are used to 
control the primitive functions of the processor 
so that elementary operations can. be observed 
by the on-line machine. For example, under 
MCH control, the clock can be stopped and 
stepped along one clock phase at a time. In 
between steps, the state of each phase is trans­
mitted back to the other processor for analysis. 
In this way, the very hard-core is exercised to 
permit a systematic check of the clock circuitry. 

Another basic operation involves transmitting 
microinstructions over the main channel and 
executing them one at a time. This is done by 
gating the received data in the MCHTR directly 
into the MIR: The command part of the message 
provides control for gating and executing the 
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Figure 12-21. Maintenance channel. 

microinstruction. This operation allows the on­
line processor to step the off-line machine along 
one microinstruction at a time, thereby gaining 
access to the entire machine at the most elemen­
tary level for fault diagnosis. 

The MCHB is used to temporarily store the 
data transmitted over the MCH. This data 
source can be used for a variety of operations. 
For example, in a READ-STORE operation, assume 
a 20-bit address has been received and buffered 
in the MCHB at the receiving end. When execut­
ed, the maintenance messages which follow (con­
taining microinstructions) will gate the content 
of MCHB to the store address register (SAR) 
and read store at that address. In order to bring 
the store output back into the on-line processor, 
two more maintenance messages must be sent. 
The first message gates the store output to the 
MCHB, and the second message gates the con­
tent of the MCHB to the MCHTR and is then 
transmitted back to the on-line processor. Simi­
larly, the data stored in the MCHB can also be 
used to write into the store. These operations 

allow the on-line processor to check the off-line 
store control circuitry. The MCHB, in addition 
to buffering the incoming data which are to be 
directed to any internal register within the pro­
cessor, may also be used to buffer data which are 
to be returned to the transmitting processor (on­
line processor). 

The MCH registers are connected to the com­
mon data bus to permit data transfer to any of 
the internal registers. Also, there are dedicated 
paths, as shown in Figure 12-21, to allow special 
registers (such as the error register, system status 
register, etc.) to be fetched directly without the 
aid of microinstructions. Some of these registers, 
particularly in the error register and the system 
status register, contain information which may 
be helpful to the diagnostic program, and, hence, 
must be saved prior to any diagnostic procedure. 

Finally, the controller block, as shown in 
Figure 12-21, provides all of the necessary timing 
and sequencing operations that the MCH needs 
to transmit and receive messages. The off-line 
processor must be able to derive timing signals 



directly from the incoming serial data stream 
since the processor's clock may be stopped. 
Therefore, the MCH circuitry, which is closely 
integrated into the processor, is really an exten­
sion of the other processor since the two are 
connected by means of an "umbilical" cord. 

Microdiagnostic Techniques 

After the circuits associated with the micropro­
gram control and the main store operation have 
been checked and verified to be operational, the 
off-line processor can execute instructions and 
initiate diagnostic procedures by itself. The mi­
croinstruction, being the most elementary opera­
tion, provides the best possible access to pinpoint 
faults within the machine. Therefore, if the diag­
nosis is performed at the microprogram level, 
isolating faults to a few replaceable circuit packs 
becomes a more efficient and effective process. 
The ideal situation would be to store the diag­
nostic routines on low-cost units and then page 
them into a writable microprogram store as 
needed [Bartow and McGuire, 1970]. However, 
in this system, the microprogram store is entirely 
ROM. This is necessary for reasons of cost and 
reliability. Therefore, it is not practical to store 
the diagnostic in the ROM because of the in­
crease in the size and cost of the microprogram 
store. 

In order to achieve equivalent microdiagnostic 
capability, a special microinterrupt (MI) instruc­
tion has been incorporated into the design to 
allow the machine to be exercised at the micro­
program level. This is done by allowing the 
microsequences to be stored in the main memo­
ry. The MI instruction simply puts the processor 
in the interpret mode. While in this mode, the 
processor stops using the outputs from the mi­
croprogram memory and fetches microinstruc­
tions from successive main memory words. Any 
number of microinstructions may now be execut­
ed from main memory until the microinstruc­
tion, which turns off the intrepret mode, is given. 

There are several advantages to the microin-
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terpret technique. First, it will allow mainte­
nance routines to be stored in low-cost tape units 
and page.d into main memory as needed at a 
considerable cost reduction. Since the micropro­
gram memory is a ROM, the microprograms 
stored in main memory can be changed much 
more easily than if they were stored in micropro­
gram memory. Secondly, the interpret mode will 
allow microprogram sequences to be checked out 
before they are encoded in ROM. Lastly, and 
most importantly, the maintenance programmer 
has complete access to every control signal that 
exists within the machine. 

Microprogram sequences in the interpret 
mode do run slower than the native mode since 
the main memory is slower than the micropro­
gram memory. This is not an important disad­
vantage since diagnostic programs are normally 
run in the standby machine. However, the mi­
croinstructions are executed at the same speed. 

Repair 

When the fault has been diagnosed and located 
to within a few circuit packs, maintenance per­
sonnel must replace the packs one at a time until 
the defective one has been found. In pack re­
placement, the power must be turned off to avoid 
the harmful effects of breaking current on the 
connector. Since there are a number of leads 
from the processor to various functional units, 
power must be turned off "gracefully" so as not 
to cause any disturbance to the working system. 
Consequently, the operation is arranged in a 
sequence to ensure that no harmful transient 
signals are generated in the process. Similarly, 
the same protection is given in turning power on. 

During the repair process, the working system 
is manually locked into a selected configuration. 
This is done to avoid any error conditions which 
may cause the system to switch control to the 
machine under repair. Since it is under repair, 
the machine is without power. Therefore, if an 
error occurs in the working system, it would be 
better to restart and attempt to run again with 
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the same configuration. The hardware required 
to prevent any interaction from the machine 
under repair is minimal, but it must be integrated 
into the design at the beginning. 

Hardware Implementation 

Maintenance has been made an integral part of 
the 3A CC design. It uses the standard No. lA 
ESS logic family with its associated packaging 
technology [Becker et aI., 1977]. Up to 52 silicon 
integrated circuit chips (SIC's), each containing 
from 4 to 10 logic gates, can be packed on a 3.25 
by 4.00-in. lA ceramic substrate. The substrate is 

mounted on a 3.67 by 7-in. circuit board with an 
82-pin connector for backplane interconnec­
tions. In the 3A CC, the 53 lA logic circuit packs 
average about 44 SIC's, resulting in an average 
of 308 gates per circuit pack, or a total of 16,482 
gates. Figure 12-22 shows a detailed functional 
diagram of the 3A CC and the percentage of 
logic gates used in each functional unit. 

Another insight into how the gates are used in 
the 3A is shown in Figure 12-23. The figure 
shows the relationship between working gates, 
maintenance access gates, and self-checking log­
ic. The working gates are the portion which 
contribute to the data processing functions, 
while the maintenance access gates provide the 
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:igure 12-23. Logic gates in No. 3A Cc. Total gates 
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rlecessary access to make the CC maintainable 
:i.e., maintenance channel and control panel). 
The self-checking gates are required to imple­
ment the parity bits, the check circuits, and the 
duplicate circuits that make the CC self-check­
ing. As indicated, about 30 percent of the logic is 
used for checking. The design covers a high 
degree of component failures. It is estimated 
about 90 to 95 percent of the faults would be 
detected by hardware error detection logic. Cer­
tain portions of the checkers, timers, and inter­
rupt logic are not checked. These circuits are 
periodically exercised under program control to 
ensure that they are fault-free. 

SUMMARY 

In order to achieve the reliability requirements, 
all ESS subsystem units are duplicated. When a 
hardware failure occurs in any of the subunits, 
the processor is reconfigured into a working 
system around the defective unit. The partition­
ing of subsystem units into switching blocks 
varies with the size of the ESS processors. For 
the medium- or small-size processors such as the 
No.2 or the No.3, the central control, the main 
memory, the bulk memory, and the store bus are 
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grouped as a single switch able entity. A failure in 
one of the subunits is considered a failure in the 
switchable block. Since the number of compo­
nents within a switchable block is sufficiently 
small, this type of single-unit duplex configura­
tion meets the reliability requirement. For larger 
processors such as the No. 1 or the No. lA, the 
central control, the program store, the call store, 
the store buses, and the bulk file store are treated 
individually as switchable blocks. This multi-unit 
duplex configuration allows a considerable num­
ber of combinations in which a working system 
can be assembled. The system is down only 
when two simultaneous failures occur, one in the 
subunit and the other in the duplicated subunit. 
A greater fault tolerance is possible with this 
configuration. This type of configuration is nec­
essary for the large processor because each sub­
unit contains a larger number of components. 

The first generation of ESS processors, which 
includes the No. 1 and the No.2, have provided 
commercial service since 1965 and 1969, respec­
tively. The No. 1 ESS serves large telephone 
offices (metropolitan); the No.2 is used in me­
dium-size offices (suburban). Their reliability re­
quirements are the same. Both processors de­
pend on integrated maintenance software, with 
hardware that must 1) quickly detect a system 
failure condition, 2) isolate and configure a 
working system around the faulty subunit, 3) 
diagnose the faulty unit, and 4) assist the main­
tenance personnel in repairing the unit. The 
primary detection technique is the synchronous 
and match mode of operation of both central 
controls. Matching is done more extensively in 
the No. 1 than in the No. 2 since cost is one of 
major considerations in the design of the No.2 
Processor. In addition to matching, coding tech­
niques, diagnostic access, and other check logic 
have been incorporated into the basic design of 
these processors to realize the reliability objec­
tives. 

The widespread acceptance of the No.1 ESS 
and the No.2 ESS has created the need for a 
second generation of ESS processors: the No. IA 
and the No. 3A. They offer greater capability 
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and are also more cost-effective. Both processors 
use the same· integrated technology. The IA 
Processor extends its performance range by ~ 
factor of four to eight times over the No. 1 
Processor by using faster logic and faster memo­
ry. The IA design takes advantage of the experi­
ence gained in the design and operation of the 
No. I ESS. The No. IA Processor provides 
considerably more hardware for error detection 
and more extensive matching of a large number 
of internal nodes within the central control. The 
design of the No. 3A Processor has benefited by 
the experience gained from the No. 2 ESS. A 
major departure in the design of the 3A Pro­
cessor from the design of other ESS processors is 
the nonsynchronous and the nonmatch mode of 
operation. The No. 3A Processor uses self-check­
ing as primary means of error detection. Another 
departure is in the design of the No. 3A Pro­
cessor's control section; it is microprogrammed. 
The No. 3A Processor's flexibility permits emu­
lation of the No.2 Processor quite easily. 
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Abstract 

The authors describe the Pluribus multiprocessor system, 
outline several techniques used to achieve fault-tolerance, 
describe their field experience to date, and mention some 
potential applications. The Pluribus system places the 
major responsibility for recovery from failures on the 
software. Failing hardware modules are removed from 
the system, spare modules are substituted where avail­
able, and appropriate initialization is performed. In 
applications where the goal is maximum availability 
rather than totally fault-free operation, this approach 
represents a considerable savings in complexity and cost 
over traditional implementations. The software-based 
reliability approach has been extended to provide error­
handling and recovery mechanisms for the system soft­
ware structures as well. A number of Pluribus systems 
have been built and are currently in operation. Experi­
ence with these sytems has given us confidence in their 
performance and maintainability, and leads us to suggest 
other applications that might benefit from this approach. 

INTRODUCTION 

The multiprocessor discussed in this paper had 
its beginnings in 1972 when the need for a 
second-generation interface message processor 
(IMP) [Heart et aI., 1970] for the ARPA network 
(ARPANET) [Roberts and Wessler, 1970; Wolf, 
1973b; Heart, 1975] became apparent. At that 
time, the IMP's Bolt Beranek and Newman 
(BBN) already installed at more than thirty-five 
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ARPANET sites, were Honeywell 316 and 516 
minicomputers. The network was growing rapid­
ly in several dimensions: number of nodes, hosts, 
and terminals; volume of traffic; and geographic 
coverage (including plans, now realized, for sat­
ellite extensions to Europe and Hawaii). A goal 
was established to design a modular machine 
which, at its lower end, would be smaller and less 
expensive than the 316's and 516's while being 
expandable in capacity to provide ten times the 
bandwidth of, and capable of servicing five times 
as many input-output (I/O) devices as, the 516 
[Heart et aI., 1973]. Related goals included great­
er memory addressing capability and increased 
reliability. 

We decided on a multiprocessor approach 
because of its promising potential for modula­
rity, for cost per performance advantages, for 
reliability, and because the IMP algorithm was 
clearly suitable for parallel processing by inde­
pendent processors. 

The IMP's communicate with host computers 
and with asynchronous terminals (IMP's with 
terminals attached are called TIP's [Ornstein et 
aI., 1972].) Hosts use the network of IMP's and 
lines to communicate data messages of up to 
about 8,000 bits; the IMP's divide these mes­
sages into packets up to about 1,000 bits long. 
The functions performed by the IMP are those 
of a communications processor; they include 
storing and forwarding packets, generating head­
ers, routing, retransmission, error checking, 
packet and message acknowledgment, message 
assembly and sequencing, flow control, line error 
detection, host and line status monitoring, and 
related housekeeping functions. The IMP's also 
send status and performance data to a network 
control center (NCC) which monitors and con­
trols network operations [McKenzie et aI., 1972; 
Ornstein and Walden, 1975]. The ARPANET 
IMP's operate 24 hours a day, often in unattend­
ed locations. 

In applications of this sort, reliability require­
ments differ from those commonly found in 
other real-time systems. The IMP network forms 

only a part of a larger system; even a perfectly 
operating network is not sufficient to guarantee 
perfect overa]l system performance. Failures in 
the host, or in the interface between the host and 
IMP, may still introduce errors. What this means 
is that some sort of host-process to host-process 
error control is required for critical applications; 
the best that the IMP network can provide is a 
good environment for host-level error recovery 
processes. These processes need a network which 
rarely makes errors and which, when such errors 
do occur, can effectively process host-to-host 
retransmissions. In other words, occasional 
dropped messages and brief outages are accept­
able; outages of more than a few minutes are 
undesirable even if scheduled in advance. 

Once we realized that what was needed was 
not so much reliability as the ability to recover 
gracefully from failures, we began to see ways to 
provide a much more robust network by coding 
this type of fault-tolerance into our operating 
system and application algorithms, and by in­
cluding special mechanisms for bypassing and 
localizing faults in our already-modular' hard­
ware designs. The machine that emerged [Heart 
et aI., 1973, 1976; Bressler, Kraley, and Michel, 
1975; Ornstein and Walden, 1975; Ornstein et 
aI., 1975] we call the Pluribus (Figure 13-1 shows 
a typical Pluribus installation). I t provides simple 
checking procedures such as parity, amputation 
features which allow failing equipment to be 
isolated ana., optionally, redundant components. 
The software uses these features to detect, report, 
and isolate hardware failures. Since the symp­
toms of many subtle software failures are similar 
to those of intermittent hardware errors, fault­
tolerant procedures which adequately recover 
from one can also recover from the other. 

There is a spectrum of fault-tolerant ap­
proaches which are appropriate in various appli­
cations [Avizienis, 1975, 1976]; our approach 
opts for a relatively inexpensive system which 
can quickly reinitialize itself, omitting trouble­
some components. This approach is especially 
suitable for applications in which brief outages 
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Figure 13-1. The Pluribus front-end processor 
at Bolt Beranek and Newman's Research 
Computer Center. 

can be tolerated and where overall correctness 
can be ensured by other techniques. 

PLURIBUS SYSTEM 
ARCHITECTURE 

The Pluribus may be characterized as a symmet­
ric, tightly coupled multiprocessor, designed to 
be flexible and highly modular. Modules are 
physically isolated to protect against common 
failures, and a form of distributed switch is 
employed for intermodule communications. In 
this section, we discuss these characteristics and 
describe the hardware architecture of the Pluri­
bus. 

Major Design Decisions 

In order to make the basic operation of the 
Pluribus clearer, it is useful to examine some of 
the major design decisions that have directed its 
development, and to consider those decisions in 
the context of other options for multiprocessor 
system design. We have identified three areas 
which we believe are key aspects of the Pluribus 

approach to multiprocessing, each of which is 
considered in greater detail below. 

Processor Symmetry 

One dimension of multiprocessing involves the 
degree of inter-processor symmetry within the 
system [Enslow, 1974, p. 83]. In this dimension, 
one extreme might be a typical general purpose 
computer system, including a central processor, 
a front-end processor, and perhaps one or more 
channel processors. Such an asymmetric system 
is relatively inflexible in power 'since increasing 
its central processing capacity requires the intro­
duction of a more po\\::erful central processor. 
Building redundancy into an asymmetric system 
can be expensive, since replication of all critical 
resources involves duplicating virtually the 
whole machine. 

At the other extreme are systems like the 
Pluribus in which all processors are identical. In 
such systems, the advantages of redundancy and 
flexibility are much easier to achieve since they 
include only one type of processing unit. Even 
without explicit redundancy, a symmetric system 
can provide graceful degradation of throughput 
when a processing element fails. Pluribus sys­
tems which are sized for fully redundant opera­
tion include just one extra processing module; 
thus the degradation which results from failure 
of any processing module consists only of a loss 
of excess throughput capacity. 

Processor Coupling 

Another multiprocessing dimension is the level 
at which processors cooperate to accomplish 
overall system requirements. At one extreme the 
processors might run totally separate programs 
under the direction of a supervisor program, 
communicating only at arm's length. Such pro­
cessors may be described as "loosely coupled" 
[Enslow, 1974, p. 15]. At the other extreme, 
which is characterized by array processors such 
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as ILLIAC IV [Barnes et aI., 1968], the pro­
cessors run in lockstep, with a single program 
operating simultaneously on a number of data 
streams. The Pluribus lies between these ex­
tremes. Its processors are tightly coupled in the 
sense that all processors can access all system 
resources and perform all parts of the operation 
program; they operate independently except for 
necessary software interlocks on specific I/O 
devices and data structures. 

flexibility 

Although one of the goals in the creation of the 
Pluribus was to develop a machine with high 
throughput, this goal was complemented by the 
need for a smaller, cheaper machine with rela­
tively low throughput. Similarly, although the 
Pluribus was conceived as having at least two of 
every resource to permit recovery after failures, 
it was also clear that not all applications required 
or could afford a fully redundant system. Thus it 
was desirable for the architecture to be flexible in 
at least two ways: The size-flexibility goal was to 
smooth large incremental steps in the cost-per­
formance curve by utilizing a highly modular 
design, which could provide processing capacity 
well beyond our anticipated needs. Flexibility in 
the area of fault-tolerance and fault-recovery 
was a related goal, since the need for fault­
tolerance involves primarily economic consider­
ations arid we wanted to allow our customers to 
select fault-tolerance features independent of 
their throughput requirements. Also implied in 
each of these goals was the requirement for easy 
expansion to meet changing requirements. 

System Overview 

A central requirement in any multiprocessor is 
that processing elements be able to communicate 
both among themselves and with shared, 
resources such as memories and I/O equipment. 
Ease of communication is always desirable and 
is vital in tightly coupled systems, since any 

delays or unwieldiness would immediately im­
pact system operation and reduce programma­
bility. These considerations, together with a nat­
ural desire for symmetry and simplicity, led us to 
adopt a unified addressing structure in which all 
common memory and I/O devices share the 
same address space. The Pluribus development 
was strongly influenced by previous unified-bus 
architectures in which processing, memory, and 
I/O units share not only a common address 
structure but also a single, time-multiplexed bus 
(the DEC PDP-ll is perhaps the most familiar 
example of this). Although multiprocessors 
based on the unified bus are both extensible and 
conceptually simple structures, they are vulner­
able to single failures anywhere along the bus. In 
addition, the maximum throughput of such mul­
tiprocessors is limited both by the design band­
width of the bus as well as by contention for 
common resources. To avoid these problems we 
used a unified bus to create the functional mod­
ules which make up the system, but not to form 
the main connection structure. We defined three 
basic functional modules which share a common 
address space but have separate intermodule 
communications paths: processor buses, memory 
buses, and I/O buses. A simplified system dia­
gram is shown in Figure 13-2. 

(In the following sections we will often use the 
term bus to mean a logical and physical module, 
as in "processor bus," rather than just an inter­
connection system. All such usages will be itali­
cized for clarity.) 

The system for interconnecting these modules 
had several major requirements. It had to be 
easily extensible to support as many as eight 
memory or I/O buses (common buses) and eight 
or more processor buses. It had to permit the 
operating software to remove malfunctioning 
modules from the system and incorporate newly 
acquired or repaired modules. In addition, it had 
to impose minimal cost penalties for smaller 
systems, while scaling up smoothly to produce 
large systems. Finally, it had to have no common 
point of failure which could lead to total system 
failure. 
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1 MByte common 
p address space 

Figure 13-2. A simplified view of the functional 
modules in a typical Pluribus system showing their 
interconnectivity. No physical relationships are im­
plied. 

~e approach we finally adopted is similar in 
function to a central crossbar switch although it 
differs greatly in implementation. The crossbar 
switch approach allows an extremely high-band­
width interconnection scheme and has been used 
to advantage in several multiprocessors [Wulf 
and Bell, 1972]. However, the usual implementa­
tion techniques are vulnerable to single-point 
failures. To avoid these problems, we distributed 
the components of the switch among the various 
sy~tem modules in such a way that no single 
failure points remain. Switch elements are called 
bus couplers and consist of two circuit boards 
connected by a cable. 

The bus couplers function by recognizing a 
range of addresses on processor or I/O buses, 
and initiating an access request on the appropri­
ate common bus as a result. Since memory and 
I/O buses share a 20-bit address space, bus 
couplers must map l6-bit processor addresses 
into 20-bit ,system addresses under program con­
trol (see Figure 13-3). In addition to handling 
inter-bus communications, bus couplers perform 
several other functions which will be described 
later. 

§ 
32 KByte Address space 
processor of processor on 

space remote bus 

Local 

Figure 13-3. Pluribus system address space, show­
ing the mapping of processor "local" address space 
into the system space. "Backwards bus-coupling" 
path from one processor bus through an I/O bus to 
another processor bus is shown on the right. 

Modularity 

Since the basic Pluribus was modular at several 
levels, an unusual degree of flexibility was avail­
able when we set out to define standard struc­
tures within the system. The three basic system 
modules described above have clear logical func­
tions within the system, but their actual imple­
mentation depended on various tradeoffs be­
tween cost, throughput, and available physical 
componen ts. 

It was decided early that the goals of flexibility 
and symmetry could be achieved by segmenting 
the operational tasks into strips of code (task 



502 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

distribution routines, task-oriented application 
routines, timers, etc.) which could be run by any 
available processor. The concept was that the 
code should be both reentrant and accessible to 
all processors at all times. The primary function 
of the common memory modules is to provide 
space for data buffers, program work areas, and 
inter-processor communication areas. Code stor­
age is divided into two parts: lightly used code is 
stored on common memory buses and is shared 
between processors; heavily used code is repli­
cated in local memory on each processor bus. 
This strategy minimizes contention for access to 
common memory while holding down costs, 
especially since, in most applications, only a 
small part of the code is heavily used. The I/O 
modules were intended to support both polled 
low-speed I/O devices and high-speed interfaces 
capable of direct memory transfers. Couplers 
provide direct paths both from processor buses to 
I/O buses for control and polling, and from I/O 
buses to memory buses for direct memory trans­
fers. 

All normal processor-to-processor communi­
cation occurs through locations in common 
memory. However, to initialize the system, it 
must be possible for one processor to access the 
local memory and control registers of a pro­
cessor on a different bus. To allow this, the bus 
couplers provide a limited reverse path through 
any common I/O bus. 

In the following sections, we describe the 
physical implementation of these system mod­
ules and detail several support functions re­
quired by the architecture. 

Physical System Structure 

As mentioned in previous papers [Heart et aI., 
1973; Ornstein and Walden, 1975], we chose the 
Lockheed SUE minicomputer as the point of 
departure for our system. It is a 16-bit machine, 
generally similar to the DEC PDP-II, which 
incorporates a unified address structure and an 
asynchronous, time-multiplexed bus. It also per­
mits the attachment of a flexible combination of 

processors, memory, and I/O units. In contrast 
to the PDP-II, the SUE has its bus arbitration 
logic physically separated from the processor. 
This feature permits a bus to have one or several 
processors, or none at all. The Pluribus uses the 
bus, arbitration logic, processors, memories, and 
several minor I/O units of the SUE. 

The basic Pluribus building block is the bus 
module. This module contains a modified SUE 
bus and card cage for up to twenty-four cards, 
together with completely self-contained cooling 
fans and power supply. Two bus modules can be 
connected to form an extended bus. A Pluribus 
system rack contains up to five bus modules, and 
each rack is typically supplied with a separate 
source of AC power. Systems sized to be fully 
redundant allow any bus module or any rack to 
be powered down for maintenance without af­
fecting system availability (see Figure 13-4). 

Bus Structure (See figure 13-5) 

A processor bus contains one or two processors 
and their associated local memory, a bus arbiter, 
and one bus coupler per logical path. Our cur­
rent applications require 8 to 12K words of local 
memory for each processor. The flexibility of the 
processor bus allows us to easily vary this param­
eter as memory prices or the requirements of the 
application change. 

The common memory bus contains an arbiter, 
bus coupler cards for all the connected paths, 
and enough memory modules to support the 
application. Up to 512K words of common 
memory can be supported in a system, although 
that amount of memory would probably not be 
concentrated on one memory bus. Typical Pluri­
bus systems have from 32K to 80K words of 
memory on each bus, depending on the applica­
tion. 

In addition to the bus arbiter and bus coupler 
cards, an I/O bus also contains cards for each of 
the various types of I/O interfaces that are 
required, including interfaces for modems, termi­
nals, host computers, etc., as well as interfaces 
for standard peripherals. The I/O bus also houses 
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Figure 13-4. Physical organization of bus modules. Modules are independent Iy supplied 
with power and cooling. 

a number of special units, including I) a real­
time clock (R TC) which is used by the system for 
timing processes and communications links, 2) a 
special hardware task disbursing unit known as 
the pseudo-interrupt device (PID) discussed fur­
ther below, and 3) a reload card which monitors 
up to eight communication lines, watching for 
(and processing) specially formatted reload mes­
sages from the outside world. 

Inter-Bus Connection System 

Since all processors in our system must be able 
to perform any system task, buses are connected 
so that all processors can access all shared 
memory and control the operation and sense the 
status of any I/O unit (see Figures 13-2 and 
13-6). 

To connect processors and common memory, 
one card of a bus coupler is installed on a 
common memory bus, and the other on a pro­
cessorbus. Similar connections are made from 
every processor bus to every common I/O bus. 
Coupler cards are connected by cables which 
may be up to 30 ft. long, although most systems 
require a maximum of 10 ft. 

The memory or I/O end of a bus coupler 
contains address-recognition circuitry and may 
be strapped to recognize and pass on to the 
memories or I/O devices any desired address 
range. When a processor makes a reference to 
common memory or I/O buses, the bus coupler 
cards on the processor bus all map the 16-bit 
address on the processor bus into a 20-bit system 
address and pass it to bus couplers at the other 
ends of the connecting cables. If the address is 
within the recognition range of a memory or I/O 
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Figure 13-5. Local busing structure and contents of the three kinds of bus modules. 

end bus coupler, it will request a service cycle on 
its bus. Data from the selected memory cell or 
device register are then passed back along the 
coupler path to the processor. This feature differ­
entiates the system address space so that requests 
for memory or I/O bus access only cause service 
cycles on appropriate buses, thereby avoiding 
unnecessary contention. 

Given a bus coupler connecting each pro­
cessor bus to each common memory bus, all 
processors can access all common memory; I/O 
devices which do direct memory transfers must 

also access the common m,emories. These I/O 
devices are attached to as many I/O buses as are 
required to physically accommodate the number 
of devices and allow redundancy if necessary. 
Couplers connect each I/O bus to each memory 
bus. This coupler path is much like the processor­
to-memory coupler path except that no address 
mapping needs to be done. I/O devices must 
respond to processor requests for action or infor­
mation and in this respect the I/O devices act 
like memories. Bus couplers are also used to 
connect each processor bus to each I/O bus. Here 
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Figure 13-6. Logical organization of a typical Pluribus system, showing inter- connections of 
the distributed switch (bus coupler) structure. 
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also, a mapping must be done between the 16-bit 
processor address space and the 20-bit system 
space (see Figure 13-3). 

Processor buses need to access each other in 
order to start and stop each other and reload 
local memories. We provide this low bandwidth 
interconnection by allowing a processor to ac­
cess another processor bus via its processor-to­
I/O bus coupler. The coupler provides a small (4-
word) mapping window from I/O space to each 
processor's space. A processor accesses another 
processor on a different bus by setting up and 
referencing this "backwards bus-coupling" win­
dow in the system I/O space. 

The coupler paths that connect processor 
buses into memory and I/O buses have program­
settable enabling switches at their far (memory 
and I/O) ends, thus permitting processors to be 
cut into and out of ("amputated" from) the 
system. The reverse paths in the processor-to­
I/O couplers also have enabling switches; nor­
mally the forward paths are turned on and the 
backwards paths are shut off. Since these paths 
represent a hazard whereby a "sick" processor or 
device could damage the system, we have ar­
ranged that only by storing a password at the 
proper address can a switch be changed. A 
processor can neither enable nor disable its own 
access paths but one processor, deciding that 
another is sick and should be eliminated from 
the system, can amputate the bus of the Qffend­
ing processor. Reinstatement of an amputated 
bus happens in a similar manner. 

Parity 

To aid in detecting faulty bus couplers or defec­
tive memory, we compute and check parity 
across all bus coupler paths using a parity com­
putation based on both data and address [U.S. 
Patent Office, 1977]. The scheme detects both 
"all zeros" and "all ones" failures. For writes to 
common memory, parity is computed at the 
processor or I/O end of the bus coupler and 
stored in the memory cell with the data. When 

the memory cell is read, the stored parity is 
checked at the processor or I/O end of the bus 
coupler. For access from processors to units on 
the I/O buses we use "feedback" parity; for 
writes to I/O the parity is computed by a special 
card on the I/O bus. The parity is then sent back 
up the coupler to the processor bus where it is 
compared with parity computed on that bus. For 
reads from I/O the special I/O parity card 
computes parity and compares it with recomput­
ed parity on the processor bus. 

Pseudo-Interrupt Devices 

Real-time systems or, more generally, systems 
requiring fast response, employ priority interrupt 
mechanisms to direct the attention of the pro­
cessor to the most urgent tasks. Reliability and 
load sharing requirements make it desirable that 
any processor be able to service any I/O device, 
but also raise such questions as which processor 
to interrupt for servicing. We have opted for a 
simple yet flexible method: each "interrupt 
event" (DMA completion, RTC tick, software 
events, etc.), instead of actually interrupting a 
processor, writes a value associated with its 
priority to a hardware queuing device called 
PID. The software is designed to allow each 
processor to put aside the context of its present 
computation periodically and check thePID. 
The PID, upon being read, will produce the 
highest value that has been stored in it and 
simultaneously delete that value from its internal 
queue. The processor can then use that value as 
an index to a table of tasks to be performed. The 
software uses the PID in a similar manner: each 
time a "strip" of code completes, it writes the 
number of the next strip in that task to the PID. 
When that becomes the highest number in the 
PID, the next available processor will execute the 
associated strip. 

Our system does have hyo traditional inter­
rupts, however. One is a 60-Hz clock interrupt. 
Each bus has its own 60-Hz clock, but concep­
tually this is an interrupt going to all processors; 
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.s main function is to timeout locked data 
tructures. The other classical interrupt is the 
ower-fail/power-restore interrupt; each pro­
essor handles a power-fail interrupt from its 
wn bus in the traditional way. Furthermore, bus 
oupler's connected to processor buses will pass 
n any power-fail interrupt detected at their 
lemory or I/O ends. A restoration of power 
auses first a bus master-reset and then a pro­
essor interrupt. We have adapted this interrupt 
lechanism to serve also as a bus activity watch­
og timer. If any bus fails to show access activity 
:)r one second, a hardware timer fires, causing 
n artificial power-restore reset and interrupt. 
'his provides recovery from some illegal hard­
rare and software states. 

~edundancy 

'0 assure that a particular machine has enough 
edundant resources to allow survival in the face 
f component failures, we include at least one 
xtra bus of each type so that a failure of anyone 
esource, or the bus holding that resource, will 
.ot result in system failure. This approach also 
lermits the system to survive many combina­
lons of multiple failures. Thus if a system re­
uires four processors to function at minimum 
cceptable throughput, six processors would be 
Irovided for reliability since the failure of any 
Irocessor bus would disable two processors. Sim­
.arly, if a machine required at least 60K of 
Ilemory to function, we would provide two buses 
ach containing 60K of memory, or three buses 
ach containing 30K of memory. It is important 
o note that redundant resources configured into 
given machine are not idly standing by since 

hey are used by the running machine to produce 
lerformance greater than the acceptable mini­
Ilum. 

I/O ports pose a special problem, since the 
levices and lines to which they are connected are 
requently not doubled. For reliability, I/O inter­
aces can be doubled on separate I/O buses, but 
loth interfaces must usually drive a single cable 

leaving the machine. We allow this by construct­
ing all of our I/O port drivers with circuits that 
present a high impedance while unpowered. In 
addition, each I/O interface has a watchdog 
timer which, if not held off by repeated processor 
accesses, will disconnect the driver circuits with­
in a second. Thus the likelihood that malfunc­
tioning or un powered I/O interfaces will inter­
fere with the signals put on the external cable by 
the backup I/O interface is kept to a minimum. 

THE PLURIBUS OPERATING 
SYSTEM 

Unlike most conventional systems, the principal 
responsibility for maintaining reliability in the 
Pluribus is placed on the system software rather 
than in the hardware structure. The Pluribus 
hardware was designed to provide an appropri­
ate vehicle for software reliability mechanisms. 
Besides normal error checking and reporting in 
the hardware itself, programmed tests using 
known data patterns are run at intervals. When 
hardware errors are detected, system software 
exploits the redundancy of the hardware by 
forming a new logical system configuration 
which excludes the failing resource, using redun­
dant counterparts in its place. 

Pluribus systems also check the validity of 
their software structures. Redundant informa­
tion is intentionally introduced into the data 
structures at various points and checked by 
processes operating upon those structures. An 
example of this technique applied to buffer struc­
tures is described in the next section. In addition, 
periodic background processes are used to re­
compute certain variables which are maintained 
by the operational system. If the recomputation 
uncovers a discrepancy, the variables are fixed 
directly or a more drastic recovery procedure is 
initiated. 

In many cases, a failure is not detected at the 
exact time of occurrence but later when the 
software encounters some failure-induced dis­
crepancy. By this time, the effects of the failure 
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may be more widespread and the actual cause of 
the failure may be difficult to determine. In such 
cases, the system is not able to perform instanta­
neous recovery and seeks instead to restore nor­
mal operation as quickly as possible. 

The remainder of this' section discusses the 
organization of the Pluribus operating system 
and some of the techniques used for achieving 
coordination of multiple processors. These tech­
niques are further explored below where two 
examples of Pluribus fault-tolerant software 
strategies are presented. One of these examines 
the Pluribus IMP buffer system in detail, and the 
other covers strategies for understanding failures 
when they occur and effecting necessary repairs. 

General Responsibility of the 
Operating System 

The software reliability mechanisms for a PI uri-
9US system are coordinated by a small operating 
system (called STAGE) which performs the 
management of the system configuration and the 
recovery functions. The overall goal of the oper­
ating system is to maintain a reliable, current 
map of the available hardware and software 
resources. The map must include accurate infor­
mation not only about the hardware structure of 
the machine, but also about variables and data 
structures associated with the processes that use 
the hardware. Moreover, the operating system 
must function correctly even after parts of the 
system hardware have ceased to be operational. 
New resources, as they are discovered, (e.g., 
because hardware has been added or repaired), 
should be incorporated as part of the ongoing 
operation of the application system. 

Since any component of the system may fail at 
any time, the operating. system must monitor its 
own behavior as well as that of the application 
system. It may not assume that any element of 
hardware or software is working properly-each 
must be tested before it is used and retested 
periodically to ensure that it continues to func-

tion correctly. The operating system must bt 
skeptical of its current picture of the systerr 
configuration and continually check to see if tht 
environment has changed. 

Based on these considerations, the Pluribw 
operating system builds the map of its environ· 
ment step by step. Each step tests and certifie~ 
the proper operation of some aspect of tht 
environment, relying on those resources certifiec 
by previous steps as primitives. Early steps ex· 
amine the operation of the local processor anc 
its associated private resources. Subsequent step~ 
look outward and begin to discover and tesl 
more global resources of the system, giving tht 
checking process a layered appearance. In tht 
Pluribus operating system, each processor begim 
by checking its own operation and by finding c 
clock for use as a time base. Once thest 
resources have been verified, the processor car 
begin to coordinate with the other active pro· 
cessors to develop an accurate picture of tht 
system. 

At the same time, the system must balance tht 
need for reliable primitives with the need tc 
accomplish normal operation efficiently. Wher 
all the environment has been certified, the systerr 
should spend most of its processing power or 
advancing the operational algorithms and returr 
only occasionally to the task of reverifying it~ 

primitives. When failures of the environmenl 
have been detected, however, the power of tht 
system must be brought to bear on the task oj 
reconfiguring to isolate the failure. 

Hierarchical Structure of the 
STAGE System 

The Pluribus operating system is organized as c 
seque,nce of stages which are polled by a centra: 
dispatcher. A processor starts with only the firsl 
stage enabled. As each stage succeeds in estab· 
lishing a proper map of its segment of the systerr 
state, it enables the next stage to run. Each stagt 
may use information guaranteed by earlier stage~ 
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ld thus may run only if the previous stage has 
Lccessfully completed its checks. Once enabled, 
stage will be polled periodically to verify that 
le conditions for successful completion of that 
age continue to apply. The system applies most 
~ its processing power to the last stage that is 
lab led but returns periodically to poll each 
lrlier stage. The application system is the final 
age in the sequence and may run only after the 
lrlier stages have verified all the configuration 
lformation of the applications and the validity 
~ the data structures. 
Table 13-1 lists each stage of the Pluribus 

:Jerating system, together with the aspects of the 
lVironment it guarantees. Many of the func­
ons listed will not be discussed further but are 
rovided to illustrate the layering of stages. 
Since processors continue to perform each of 

Le stages periodically, changes in the environ­
lent will eventually be noted. Any stage detect-
19 a discrepancy in the configuration map will 
isable all later stages until the discrepancy is 
:paired. Then, all the later stages, which might 
epend on data verified by the disabling stage, 
ill be forced to run all their checks, guarantee-
19 that they will make any further modifications 
) the configuration map necessitated by the first 
:lange. A serious failure, such as a nonexistent­
Lemory interrupt, disables all but the first stage. 
1 these cases, some reconfiguration might be 
eeded, and all stages should perform all their 
llecks before the application system is resumed. 

stablishing Communication 

o far, we have described the progress of one 
rocessor through the staged checking proce­
ures of the operating system. All processors in 
le Pluribus perform the same checks, since it is 
nportant that they agree about the state of the 
fstem resources. Coordination of multiple pro­
essors with potentially different views of the 
ardware configuration requires two mecha­
isms: the processors must agree on an area of 

Table 13-1. Pluribus operating system stages. 

Stage Function 

o Checksum local memory code (for 
stages 0, 1, 2). Initialize local 
interrupt vectors, and enable 
interrupts. Discover Processor bus 
I/O. Find some real-time clock for 
system timing. 

Discover all usable common memory 
pages. Establish page for 
communication between processors. 

2 Find and checksum common memory 
code (for stages 3, 4, 5). Checksum 
whole page ("reliability page"). 

3 Discover all common buses, PIDs, 
and real-time clocks. 

4 Discover all processor bus couplers 
and processors. 

5 Verify checksum (form stage 2) of 
reliability page code (for rest of stages 
plus perhaps some application 
routines). External reloading of 
missing code pages is possible once 
this stage is running. 

6 Checksum all of local code. 

7 Checksum common memory code. 
Maintain page allocation map. 

8 Discover common I/O interfaces. 

9 Poll application-dependent reliability 
and initialization routines. Periodi­
cally trigger restarts of halted 
processors. 

10 Application system. 

common memory in which to record the ma­
chine configuration map, and they must cooper­
ate in their decisions to modify that map. 

The first step in coordinating the multiple 
processors of a Pluribus is to agree on a page of 
memory through which to communicate. The 
procedure for initially establishing the page for 
communication is clearly delicate. Prior to estab-
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lishing the page, the processors have no way to 
communicate about where it will be. The proce­
dure must operate correctly in the face of failures 
which might leave some of the processors seeing 
a different set of common memory pages from 
the rest. Processors which are unable to see the 
communication area will attempt to use another 
memory page and must be prevented from inter­
fering with the unaffected processors. 

Any processor that is first starting up (or 
restarting after some massive failure) can assume 
nothing about the location of the communica­
tion page. Any page may be used, and therefore 
a small area for communication control variables 
is reserved on each page of common memory. 
Part of this area is used for a brief memory test, 
which must succeed before the page may be used 
at all. Every processor attempts to establish the 
lowest numbered (lowest address in memory 
space) page that it sees as the page through 
which to communicate. To be valid, any page 
must have a pointer to the current communica­
tion page, and the communication page must 
point to itself. 

Each processor looks at the pointer on the 
lowest numbered page it can see. There are three 
possible states for the pointer. First, if it points 
to the page itself, the processor has found the 
communication page and may now proceed to 
interact with other processors about the common 
environment. If it points to a higher numbered 
page, the processor may just fix the pointer, as 
the requirement that the communication page be 
lowest makes this case inconsistent .. If it points to 
a lower numbered page, the processor must 
attempt to check if the indicated communication 
page is active. It must assume that the data might 
simply be old or invalid and must time it out 
using a dedicated entry in a special array of 
timers which is allocated on each page. The 
processor increments the timer and, if it ever 
reaches a certain threshold, unilaterally fixes the 
communication pointer and starts to use this 
page for communication. The processor is pre­
vented from doing this by any other processor 
which is successfully using the lower numbered 

communication page; all such processors period­
ically zero all the timers on all memory pages in 
the system. 

Consider what happens during various possi­
ble hardware failures. If the memory bus con­
taining the communication page is lost, all 
processors will attempt to establish a new com­
munication page on the other bus. Using their 
timers on the new lowest page (which initally 
points to the old one after the failure), they await 
the threshold. No one is holding the timers to 
zero, so the new page becomes the communica­
tion page when some processor's timer first runs 
out. 

A processor blinded to the communication 
page by a bus or coupler failure will try to 
establish a higher numbered page for communi­
cation. From the point of view of the failing 
processor, this case is indistinguishable from the 
previous case, where the common bus failed. 
Since the rest of the processors are satisfied with 
the cOm1llunication pointer, they will hold all 
timers to zero, and the failed processor will never 
be able to change the communication page 
pointer. If the processor sees a set of pages 
disjoint from the rest of the system, it behaves as 
if no other processors are running, but there is no 
memory where it may interfere and now we have 
two systems operating independently. In this 
case it is likely that the two systems will interfere 
over other resources; since multiple failures are 
required for this situation to occur in a Pluibus, 
we choose not to attempt recovery here. 

The Consensus Mechanism 

When configuration data must be updated, it is 
crucial to coordinate the Pluribus processors 
before making the modification. The mechanism 
to accomplish this goal we call consensus. Each 
stage has a consensus which is maintained as 
part of its environment. The first step in forming 
a consensus is to determine the set of processors 
that is executing the corresponding stage. This 
set has certified the primitives necessary to main-
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lin successfully this stages's portion of the con­
~guration map. In order for the system to re­
pond to failures, the consensus must be kept 
urrent-new processors must be able to join 
apidly and processors that may have halted or 
eased to run the stage must be erased from the 
et. 

Each processor, based on its hardware address 
tl the Pluribus, is assigned a bit in three consen­
us arrays, called "next," "smoothed," and "fix­
t." As part of the corresponding stage, every 
Irocessor periodically sets its bit in the next 
onsensus array to show that it wishes to partic­
pate in the consensus. After enough time has 
lapsed for each properly running processor to 
et its bit, this array is copied into the smoothed 
:onsensus and cleared. The set of processors in 
he smoothed array will then be used as a basis 
or decisions to reconfigure some portion of the 
esource map., 

Any processor which wishes to modify some 
:onfiguration information sets its bit in the ap­
)ropriate fix-it array. Processors that agree with 
he configuration map clear their bits, and bits 
:orresponding to processors not in the smoothed 
lrrays are also cleared. 

In effect, the bits in the fix-it array represent 
he votes of the individual processors in favor of 
l potential modification. In most cases, it is 
lesirable that all processors agree before making 
he change. All processors wait until the fix-it 
lrray matches the smoothed array before imple­
nenting the fix. Other modifications might re­
Iuire only majority or two-thirds agreement. The 
~hoice of policy often depends on some tradeoff 
)etween resources (e.g., should we use more 
nemory or more processors?). The Pluribus ap­
)roach allows us to make this choice indepen­
lently at each stage. 

Since each processor in the Pluribus performs 
!ach stage of the checking code, the consensus 
nechanism provides the coordination needed to 
;hange the configuration map gracefully. When 
i stage detects a failure, the processor sets the 
ippropriate fix-it bit and disables the following 
;tages. When enough processors detect the fail-

ure they implement the fix to the configuration 
map. Now these processors can complete the 
later stages, devoting their attention to any fur­
ther changes required by the failure. A processor 
which sees a different picture of the resources 
and cannot reach agreement with the rest of the 
system hangs forever at the point of detecting the 
discrepancy. This technique effectively prevents 
the processor from damaging the system. 

Application-Dependent Checking 

In general, it is desirable for the application 
system to perform its own checks before initiat­
ing or resuming normal operation. The last stage 
provides a mechanism which polls application­
oriented processes to perform consensus-driven 
checks and repairs of their own data structures. 
This stage uses the results of the hardware (ap­
plication-independent) discovery stages to certify 
its own data structures. For example, it could 
allocate or deallocate device parameter blocks as 
the I/O devices are discovered or disappear and 
initialize spare memory pages for use as data 
buffers as they become available. User-written 
reliability checks can be performed on any of the 
application data structures, and the appropriate 
reinitialization invoked to remedy failures. 

Occasionally, it is possible for a processor 
checking application data structures to imple­
ment minor repairs to the data structures unilat­
erally. For major reconfigurations of the data 
structures, such as complete application system 
reinitialization, the checking routines must signal 
to the stage dispatcher that consensus is needed. 
The last concurring processor is then permitted 
to perform the reinitialization routine. Just as the 
early stages guarantee the hardware map, the 
application-dependent routines have the consen­
sus mechanism at their disposal to validate the 
system data structures before entering the sys­
tem. In addition, the application system data 
structures are rechecked periodically during nor­
mal system operation. 
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AN EXAMPLE OF APPLICATION 
RELIABILlTY* 

We use two general techniques to ensure the 
validity of data structures in the Pluribus. First, 
redundant information, where it exists is 
checked for discrepancies, and appropriat: ac­
tion taken if they exist. Second, since detailed 
examination of all data for inconsistency is 
deemed impossible for any system of nontrivial 
complexity, we use watchdog timers to ensure 
the correct operation of the application system at 
various levels. As an example, we will discuss the 
buffer management strategy for the Pluribus 
IMP system. 

Buffers in the Pluribus IMP circulate through 
the system from queue to queue; in some cases, 
they may be shared between two or more pro­
cesses. Since a compromised queue structure 
may, in general, rapidly degrade the perfor­
mance of the system, elaborate checking meth­
ods are built into the IMP program at various 
levels. In particular, we must be able to detect 
queues that are crossed or looped and buffers 
that have been lost (are on no queue at all.) 

Associated with each buffer in the system is a 
set of use bits corresponding to various processes 
that consume buffers. Any process that enqueues 
a buffer for some other process first sets the use 
bit for that process. When a process dequeues a 
buffer, the appropriate use bit must be on or the 
buffer will not be processed. As a special case, 
buffers on the system free list must have all their 
bits turned off. The buffer-freeing routine only 
'feturns a buffer to the free list if the last remain­
ing use bit is that of the freeing process. 

This technique intentionally generates redun­
dant information and continually validates it as 
a buffer circulates through the system. In other 
words, the existence of a buffer on a queue 
informs the system that some processing is de-

• Porti~ns of the next two sections have appeared in J. G. 
Robinson and E. S. Roberts, "Software Fault-Tolerance in 
~e Pluribus," AFIPS Conference Proceedings, vol. 47, copy­
n~t. AFIPS Press, Montvale, N.J. Reproduced with per­
DllSSlon. 

sired for that buffer. In principle, the use bi 
signals the same thing. Each buffer-processin! 
routine could scan all the buffers in the systen 
for those with its use bit set, but such strateg) 
would clearly be inefficient. The redundanq 
check gives preference to neither the queue no] 
the use bit as an indication of need for service 
but rather requires agreement between the tW( 
indicators. When they disagree, the system as· 
sumes that a failure has indeed occurred anc 
attempts to correct it by forcing the queue to b( 
empty, so that the effects of the failure can b( 
contained as much as possible. 

The use bits allow the prompt detection oj 
looped and crossed queues. In addition, an im· 
proper buffer point will often lead to a failure oj 
the use bit check. 

We must also consider the case of a buffe1 
which has been lost from all queues. This condi· 
tion could arise due to a program bug or as a 
result of a queue being emptied after a use bil 
failure. We could employ a classical garbage· 
collection scheme for this purpose; unfortunate· 
ly, the demand for buffers is often great in a 
high-speed communication system, and the req· 
uisite locking of the buffer resources during such 
a garbage collection would likely result in 10sl 
inputs. 

The recovery scheme we have chosen is a 
watchdog timer mechanism. Each buffer has 
associated with it a flag set by normal activity of 
the buffer which, in this case, is defined to be the 
periodic appearance of that buffer on the free 
list. Whenever a buffer is freed, its flag is set. In 
addition, flags for all the buffers on the free list 
are set periodicaJly. In the high-speed communi­
cations environment, where data passes through 
a network node very rapidly, each buffer must 
appear on the free list at least once every two 
minutes. Therefore, .each buffer flag is checked 
every two minutes to be sure it is set, and then 
cleared. A zero flag indicates that the buffer has 
dropped out of normal activity, and the buffer is 
unilaterally freed and its use bits cleared. In this 
way, any lost buffer is detected within at most 
four minutes and returned to normal usage. 
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~DVANTAGES OF THE PLURIBUS 
~PPROACH TO FAULT-TOLERANCE 

tWO factors help to make our approach a cost­
:ffective one. First, fault-tolerance is implement­
:d primarily in software. This not only allows us 
o use un specialized off-the-shelf hardware for 
nuch of our system, but also gives us consider­
lble flexibility by allowing us to try new ideas as 
he product develops. When the time comes to 
lpgrade machines in the field, a new software 
dease is infinitely preferable to hardware modi­
ication. Implementing most fault detection in 
:oftware also allows more complete error report­
ng than is characteristic of static-redundancy 
lpproaches. 

The second factor is the modular nature of the 
>luribus. Initially, the modular approach was 
:hosen to permit easy expansion of the capabili­
ies of a system to fit an application without 
)eing hampered by system-size boundaries. Our 
:ystem expands by adding the same hardware 
nodules as those which are duplicated to create 
l dynamic fault-tolerant system. Thus any sys­
em with more than the minimum number of 
)rocessors for a given application both performs 
veIl and is fault-tolerant. A processor failure in 
:uch a system merely causes it to run a little 
,lower. Since individual processors are relatively 
nexpensive, the percentage increase in system 
:ost for processor redundancy is usually small, 
:specially in large systems. 

Sometimes the system requirements justify 
mly limited fault-tolerance. An example is the 
arge front-end processor which services the 
JBN Research Computer Center [Mann, Orn­
,tein, and Kraley, 1976]. Here the bulk of the 
nachine is fully redundant, but several of the 
lost interfaces are used only occasionally for 
:xperimental systems, and their users can toler­
lte an occasional outage. Therefore, these inter­
'aces are not duplicated, with a resultant savings 
n cost. 

An additional factor contributing to cost-ef­
'ectiveness is the relatively low percentage of 
)rocessing power spent in explicit error detection 

(about 1 percent for current systems). We de­
pend to a large extent on checks embedded in 
the operating program (such as code checksums) 
to detect errors, since the program is able to 
recover from failures whose effects are detected 
well after the fact. It is common practice for 
large software systems to include checks for 
some "impossible" software states and bad data 
structures. We have expanded checks to be com­
prehensive, including checks which catch many 
types of hardware errors as well as lingering 
software problems. 

One interesting effect of our approach is to 
make even a minimal, nonredundant machine 
significantly more resilient to transient failures 
caused by either hardware or software. All of the 
fault-tolerant mechanisms which run in the large 
systems run also in the small ones, and there are 
many transient failures which cause only mo­
mentary confusion which is usually solved by 
some level of reset or reinitialization. Obviously, 
a· solid failure of some critical component or 
destruction of the program cannot be resolved 
without redundant resources, but these are by no 
means the only possible failures. 

One result of our modular approach is that in 
contrast to the usual state of affairs, we expect 
larger systems to be more reliable than smaller 
ones, since more resources are available to be 
redistributed in case of trouble. 

RECENT FIELD EXPERIENCE 

During the past [1977] year, we have had the 
opportunity to observe eight Pluribus IMP sys­
tems both under general operational conditions 
and in controlled field tests; the availability of 
these machines has been above 99.7 percent (by 
availability we mean uptime divided by sched­
uled uptime, excluding power and air-condition­
ing failures). Almost all!he downtime was 
caused by program bugs which have been cor­
rected since. Most recently, availability has been 
above 99.9 percent and we expect it to improve 
further as the machines reach maturity. 
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In evaluating this experience in terms of fault­
tolerant performance, we feel that it is important 
to go beyond overall availability numbers and 
discuss the kinds of faults that the Pluribus 
system can report, the kinds we observed in the 
field, and the effects these faults had on system 
behavior. 

The concepts of availability and fault-toler­
ance are complex when applied to a Pluribus 
since failure of a component generally results in 
a reduction in, rather than a complete loss of, 
performance. In many applications this is an 
advantage since extra capacity is useful during 
periods of peak load and reduced service is 
tolerable while repairing faults. For example, if 
an I/O interface or an entire I/O bus fails, the 
machine automatically substitutes a spare ele­
ment with only a momentary (often unnotice­
able) interruption of service and with no loss in 
performance. In the case of processors and mem­
ory, however, all resources are normally in use 
(none are in a standby mode) and the loss of any 
one (or several) of them forces a reduction in 
performance, but does not keep the system from 
running. 

When used as an IMP, the principal measure 
of Pluribus performance is throughput. In the 
tests described below, the presence of program 
bugs (since corrected) resulted in somewhat low­
er availability than we had expected, but the 
three machines easily exceeded their contractual 
requirements and were able to deliver better than 
92 percent of their rated throughput capacity 
99.76 percent of the time and better than 50 
percent of capacity 99.83 percent of the time. 

Under normal operating conditions, it is pos­
sible to observe an IMP only by means of its 
reports to the Nee or by the reports of its 
neighbors in the network. Since IMP's often 
operate unattended, emphasis has been placed 
on the ability of each Pluribus to evaluate and 
report its internal hardware and software health. 
Three varieties of trouble-report messages are 
sent to the Nee. 

Since the Pluribus continually evaluates the 
state of its hardware (see the discussion of the 

STAGE system), one type reports trouble in the 
hardware area. Examples of this are I/O errors, 
memory parity errors, power failures, and 
changes in configuration. The second type re­
flects the results of numerous interlocks and 
consistency checks which are made regarding 
tables, queues, variables, and other software en­
tities. The third category concerns the Pluribus's 
role as part of the network. These reports moni­
tor normal throughput statistics and temporary 
discontinuities in the IMP-IMP message han­
dling protocols, and are normally not directly 
pertinent to the fault-tolerance of the Pluribus 
itself. In a few cases the reports are received 
some time after a fault has been detected and 
dealt with by the Pluribus, but most fault mes­
sages appear within a few seconds. 

In the normal course of building and operat­
ing Pluribus systems during the past year [1977], 
we observed a number of unexpected hardware 
and software faults, but to verify our ideas and 
procedures we also wanted to observe a number 
of failure modes which would be -expected to 
occur infrequently under normal operating con­
ditions. To this end, we conducted an extensive 
series of tests over a three-month period using 
three four-processor Pluribus IMP's with redun­
dant I/O interfaces, interconnected by high­
speed terrestrial and satellite links. These tests 
demonstrated how the Pluribus handles many of 
the possible faults that might be encountered 
during the life of the equipment. We believe that 
the combination of the unexpected and planned 
faults we experienced constitutes a valid sample 
of the wide variety of intermittent failures in 
either hardware or software which such systems 
are likely to encounter. Examples of the types of 
fault recovery which were provoked or observed 
during these tests are discussed in the following 
sections. 

Failures on the Processor Bus 

We powered off various combinations of pro­
cessor buses to demonstrate that the system 
would continue with traffic processing. We also 
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ried placing bad instructions in various pro­
:essors' local memories. In power failure situa­
ions, the remaining processors continued to 
)perate without reinitialization. Data handled by 
he failed processor(s) was recovered by network 
)rotocols and a number of trouble-reports indi­
:ated this fact. Data structures which were 
'locked" by the failed processors were "un­
ocked" by a software watchdog timer. When 
)ower was restored, the processors were smooth­
y readmitted to the system. Processors with bad 
ocal memory either halted or looped, and were 
luickly reloaded 'by other processors and 
)rought back into operation automatically. 

:rrors in or Loss of Common 
Wemory 

Ne created situations whereby the system sud­
lenly saw common memory disappear. In some 
:ases we powered off the memory bus; in others 
~e "removed" memory from usability tables. We 
Llso observed some spontaneous parity errors. 
iince common memory pages are assigned spe­
:ific roles at initialization time, loss of one or 
nore pages caused a variety of reactions, de­
lending on the role of the lost memory and the 
Lmount remaining. At one extreme, loss of all 
:ommon memory prevented the system from 
:ontinuing. At the other, loss of one of several 
)ages of message buffers caused only a brief 
ldjustment of memory assignments by the 
iTAGE program. Most Pluribus systems are 
)rganized for fully redundant operation and 
lave spare code and variable pages. Loss of a 
)rimary code or variables area caused a short 
:ransient in operations while the spare was ini­
:ialized. As an example, loss of one-half of 
)hysical common memory (several pages of 
~ode, variables, and buffers) caused a reconfigu­
~ation lasting 15 s or less. During this period, all 
)rocessors agreed on the reallocation of the: 
·emaining memory and reevaluated its usability. 
O\S a further test, we destroyed the integrity of 
rarious pages of common memory by storing 
·andom data in checksummed areas. The system 

reacted by restoring the contents of the affected 
page from the backup copy. This process re­
quired about 10-l2 s. We also created test con­
ditions in which the system found that all copies 
of critical programs in common memory were 
unusable (their checksum was bad). At this time 
the system automatically requested that it be 
reloaded (from another of the Pluribus IMP's or 
the NCC). It should also be emphasized that the 
integrity of message buffers is also protected by 
software checksums; data harmed in any way is 
reported to the NCC, and the originator is 
notified so the retransmission can take place. 

Loss of /I 0 Device 

We both created and observed several situations 
wherein I/O devices were either removed or 
experienced errors. In these cases, the I/O device 
was eliminated from usability tables by all. pro­
cessors and a backup device substituted. The 
system continued to operate, although in some 
cases, depending on the configuration being 
used, reinitialization was required. Loss of an 
entire I/O bus was handled in much the same 
way. 

Loss of Critical Hardware 

We observed that redundantly configured Pluri­
bus systems would survive the loss of the R TC 
and the PID by swapping to the backup. Very 
little time was lost before the system continued. 
Errors in PID and RTC operation also are 
checked for and reported. 

Internal Software Errors 

As previously mentioned, the STAGE system 
and the IMP code are designed to check on the 
internal consistency of various software struc­
tures. In addition, the system ensures that none 
of the asynchronous processors is allowed to 
remain in a waiting state or in a loop. On a very 
infrequent basis, we observed that a Pluribus will 
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report that such a condition was detected and 
corrected. We also forced many of these situa­
tions to occur by destroying key data structures 
or by causing queues to be looped or crossed. 
The system detected these, reported the problem, 
and continued normally, reinitializing if neces­
sary. 

Artificial Pathological Conditions 

We did not attempt to cause pathological behav­
ior of Pluribus hardware components which 
would, for example, write zeros to portions of 
memory or amputate buses at random, although 
we simulated these conditions with the software. 
Our observations of pathological behavior in the 
field, although infrequent, convince us that many 
of these cases can be withstood by the fault­
tolerant software. For example, during field tests 
we observed that some extraneous data appear 
occasionally in certain critical tables causing the 
Pluribus to reinitialize quickly or to suspend 
activity on a communications link briefly. The 
problem was traced to a special reloading device 
which was being improperly activated. This situ­
ation was eliminated by a minor program 
change. 

We now have gained enough experience with 
the Pluribus fault-tolerant mechanisms to have 
confidence in their ability to detect and cope 
with failures. In the field, spontaneous failures 
have been of a relatively minor nature and have 
been successfully dealt with. Under test condi­
tions, all the major and minor failures which 
occurred or which we created were well tolerated 
and the systems continued to function within 
their rated capacities. 

PLURIBUS SYSTEM 
MAINTAINABILlTY* 

Most fault-tolerant systems are designed to be 
repaired, sooner or later, by humans. Maintain-

* Portions of this section have appeared in J. G. Robinson 
and E. S. Roberts, "Software Fault-Tolerance in the Pluri-

ability thus becomes a significant factor in long· 
term system performance. Since many system~ 
are designed to recover from any single failure, 
but not from all multiple failures, the mean timt: 
to repair (MTTR) directly influences on-lint: 
spares requirements and hence the system cost 
for any given performance goal. To minimizt: 
MTTR, the system must provide accurate and 
unambiguous information about the nature of 
the detected fault and the automatic recovery 
process initiated. The environment in which tht: 
system operates is also important since the main­
taining authority must be notified and must 
initiate the repair process as soon as possible. 

The actual repair process may be carried out 
at several levels depending on the accuracy of 
the diagnostics and the obscurity of the failure 
symptoms. At the lowest level, the repair is 
accurately defined by the diagnostic and involves 
only the replacement of a faulty component. At 
the highest level, the failure may be caused by a 
design bug in either hardware or software. For 
the latter," the system must provide sufficient 
tools to permit overriding the operational recov­
ery procedures. They must permit the repair 
personnel to reconfigure the system and run any 
required diagnostic procedures. The more pow­
erful repair tools must be guarded to avoid 
operator-induced errors. Ideally this "fool-toler­
ance" [Goldberg, 1975, p. 32] should extend into 
all phases of repair. In practice we use only a 
two-level protection scheme that relies on ex­
perienced personnel not to make catastrophic 
errors. 

Although we tend to think of hardware mal­
functions as separate from software malfunc­
tions, the symptoms of failure and the recovery 
procedures are frequently similar. In the Pluri­
bus, the first detection of a fault is usually 
through failure of an embedded check in the 
main program, and frequently that is all that is 
required to initiate a correct recovery procedure. 
When the diagnostic value of an embedded 
check is insufficient to define a recovery proce-

bus," AFIPS Conference Proceedings, vol. 47, copyrigh1 
AFIPS Press, Montvale, N.J. Reproduced with permission 
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.ure, various modular diagnostics may be run on 
lIe system. Thus in the case of a memory whose 
hecksum is discovered to be wrong, the recov­
ry action is to run a brief memory diagnostic 
nd, if the memory appears usable, to restore the 
ode from a spare copy. 

Including a spare copy of some resource helps 
ystem recovery only if that spare resource 
fOrks. Although it is traditional to run modular 
jagnostics on spare resources, our strategy has 
leen to force the system to rotate use of 
esources from time to time. In some cases we 
.se manual procedures, but the tendency has 
leen to include automatic rotation procedures in 
lIe operational system software. This technique 
i clearly more appropriate to our application 
lIan it would be to a more traditional fault­
::>lerant requirement, since rotating faulty hard­
rare into the operational system could cause a 
ransient malfunction. On the other hand, it 
Irovides a better test of the hardware than 
[wdular diagnostics would provide. 

One advantage of our reliance on embedded 
hecks for failure detection is that we can detect 
lIat class of failure which is rarely caught by 
liagnostics. It is axiomatic that the operational 
Irogram is the best program for certifying the 
.ardware, but our operational program has also 
lecome the most comprehensive diagnostic for 
lIe hardware. In our experience, some of the 
[lOst subtle hardware failures occur during oper­
tion of the application system, even though 
,ardware diagnostic programs detect no errors. 
~y augmenting the operational system with diag­
lostic capabilities, we have often been able to 
iolate even obscure or intermittent failures with­
lut interrupting normal operation. 

~eporting Facilities 

n the Pluribus IMP, the mechanism for report­
ng errors, recovery operations, and change-of­
tatus information is the system trap (i.e., a 
upervisor call). Traps are reported locally on the 
ystem terminal and are also sent via trouble­
eports to the network log at the NCC, where 

they serve a variety of diagnostic purposes. Un­
derstanding the nature of a failure in the running 
system requires fairly accurate knowledge of the 
state of the machine at the instant of the failure. 
The initial implementation of the trap mecha­
nism recorded only the code number of the trap, 
which set of processors had encountered it, and 
a total occurrence count. This proved inadequate 
for accurate diagnosis and we have augmented 
the original trap mechanism to allow for saving 
a large snapshot of the instantaneous state of the 
processor, including such information as the 
contents of general registers, the global system 
time, map register settings, the last value read 
from the PIO, and other important local data. 
These snapshots allow us to examine diagnostic 
information about the failure after the recovery 
code has taken effect and normal operation of 
the system has resumed. In an operational IMP, 
the snapshot information is sent to a data collec­
tion program at the NCC, where it is both stored 
for future reference and printed out on a log 
terminal. The snapshot facility is usually only 
enabled for that set of traps which indicate 
system malfunctions of some kind, since there 
are many normal traps which indicate such 
things as network topology changes. The same 
da ta collection program also keeps track of the 
current configuration of each machine and re­
ports any changes on the log terminal. Thus the 
reconfiguration resulting from some module fail­
ure is immediately apparent. Correlating a re­
configuration with preceding snapshot error mes­
sages is usually sufficient to isolate· solid failures. 

Remote Diagnosis and Repair 

Where the failure is intermittent, or error indica­
tions are ambiguous, we can make further diag­
nosis from the N CC using the remote connection 
capabilities of the network. This allows person­
nel at the NCC to interact with a system at a 
remote site exactly as if they were using the 
system control terminal at the site. We have 
provided a command structure in the system 
which allows us to make either "soft" or "firm" 
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overrides of the configuration control structure, 
loop communication links, and run a variety of 
special diagnostics, monitors, and traffic genera­
tors. This enables us to diagnose many problems 
from the Nee even before dispatching repair 
personnel to the site (this can be especially 
appropriate for diagnosing program bugs). The 
current software is best at diagnosing the solid 
failures typical of mature hardware and treats 
most long-term intermittents as unrelated tran­
sients. Although we plan to implement heuristics 
which can deal with this type of problem, the 
diagnosis of long-term intermittents currently 
requires human intervention. Fully redundant 
Pluribus systems may be thought of as networks 
of paths and buses, so by causing the system not 
to use a particular path or bus and watching the 
trap log, we are usually able to localize the 
source of a hardware intermittent. Partitioning 
the bus and using some subset of the modules on 
the bus further localizes an intermittent traced to 
a particular bus, and repairs can then proceed. 
The same tools for reconfiguration are, of course, 
also available to maintenance personnel on site 
through the system control terminal, and trap 
reports sent to the Nee are duplicated also. 

Partitioning 

In extreme cases, when all normal diagnostic 
approaches have been exhausted, it is also possi­
ble to partition a fully redundant machine into 
two separate machines and run the operation 
system in one half while running stand-alone 
diagnostics or another copy of the system in the 
other half. We originally expected to use this 
approach quite frequently, but experience has 
shown the technique to be less useful than we 
expected. Splitting a system is a combinatipn of 
many "firm" overrides of the configuration con­
trol which are not currently protected against 
operator error (i.e., deleting the last copy of a 
resource from the use tables, or overlapping 
system resources across the partition). There is 
also the problem of identifying fault-free compo-

nents to include in the operational system half. 
In general, being able to identify a faulty module 
which is to be excluded from the operational 
system implies that we can fix the fault by 
replacing the module, which usually obviates the 
need for partitioning into two machines. And 
finally, once a machine has been split, any new 
failures are likely to cause fatal problems that the 
machine might have been able to cope with had 
it not been split. Our current feeling is that the 
risks of splitting an operational system usually 
outweigh the advantages. 

Reloading and Down-Line Loading 

An important facility provided by the Pluribus 
hardware allows us to load and start the machine 
with no onsite personnel. This is accomplished 
by special-format messages which trigger a sim­
ple reload device when received over the net­
work. This device is used to load a software 
package capable of dumping or reloading the 
operating system and application code. The 
source of reload code may be either some other 
Pluribus IMP on the network, or a disk file at the 
network control center. These reloading facilities 
are also used for distributing software updates to 
the machines in the field. A Pluribus IMP which 
discovers all copies of some application code 
page to be compromised will attempt to get a· 
down-line reload from a neighbor IMP. This 
request is reported to the Nee where an opera­
tor then sets up the reload source for the trans­
fer. Its use enables an IMP without duplicated 
resources to recover quickly from transient fail­
ures caused by hardware or software. 

Maintenance Experience 

The prototype Pluribus systems performed their 
error recovery functions well in many cases. 
Minor problems were often bypassed so effec­
tively that the users and maintenance personnel 
were never' aware of the problem. Even following 
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lrastic failures, such as the loss of a common 
nemory bus, normal system operation was re­
:tored within seconds. From our experience with 
hese early systems, however, certain deficiencies 
n our original strategies have become clear. 

In some failure cases, one repair would lead to 
mother, until eventually a fairly major reinitiali­
:ation would be performed, with obvious effects 
m the users of the system. Unfortunately, the 
nassive recovery often destroyed evidence of the 
>riginal failure, or masked evidence necessary 
'or effective diagnosis. While the goal of restor­
ng the system to normal operation was achieved, 
"e were left without any idea of why the reini­
ialization was required. This was particularly 
'rustrating when the frequency of occurrence 
"as on the order of hours or days. 

In other cases, normal operation seemed to 
:ontinue while some hardware failure occurred 
mdetected. Either the failure was covered by 
~ffective recovery at a fairly low level in the 
;ystem or it occurred in a redundant portion of 
:he hardware which was not being exercised. A 
;econd failure in conjunction with the first would 
·emove the last copy of some critical resource, 
:ausing the system to fail. 

These initial experiences led through several 
ntermediate steps to the current set of mainte­
lance tools and diagnostics. In the prototype 
;ystems, we were forced to remove the system 
;oftware and run stand-alone diagnostics when 
:rouble arose. Development of the original re­
;overy algorithms into early versions of the 
;urrent STAGE system allowed diagnosis and 
·epair while running the operational system; 
lOwever, system programmers were required to 
nterpret the traps and wrestle the system into 
lifferent configurations during repair. The usual 
~epair team during this period included a system 
:>rogrammer (usually at the Nee) watching and 
nterpreting the traps, with a maintenance tech­
Llician on site replacing components. 

At present, the tools and diagnostics are well 
~nough defined and documented so that usually 
lnly maintenance personnel are required for a 
:epair. Hardware and software staff at the Nee 

may offer suggestions when maintenance person­
nel are dispatched to a site and may still direct 
occasional repair efforts if a difficult problem or 
inexperienced personnel require it, but this is the 
exception rather than the rule. 

OTHER APPLICATIONS AND 
EXTENSIONS 

Since the Pluribus has evolved from a communi­
cations application where overall system availa­
bility rather than total fault-coverage is the goal, 
our approach is most obviously suitable for 
similar applications. We have opted for an ap­
proach which depends heavily upon reconfigura­
tion and reinitialization when faults are detected, 
and which requires very little special hardware 
beyond that needed to implement our multiproc­
essor architecture. Our approach would not be 
suitable for applications where absolutely no 
downtime can be tolerated, where total compu­
tational context must be preserved over failures, 
or where overall correctness must be ensured. In 
these cases, traditional approaches involving 
some form of static redundancy or execution 
redundancy are indicated [Avizienis, 1975, 1976]. 
Techniques somewhat similar to ours, but for a 
redundant uniprocessor, are in use in the Bell 
System's latest Electronic Switching System 
[Myers et aI., 1977]. Although we have not 
closely investigated applications outside the 
communications area, we believe our approach is 
suitable for many other tasks, and we discuss 
several of these briefly below. 

Message Systems 

We have made an extensive study of the possibil­
ity of using the Pluribus as the basis for a 
message system. By message system we mean not 
only traditional message-switching such as done 
in the Telex system, but also a system of mail­
boxes and files by which users can exchange and 
file messages without recourse to the U.S. Postal 
Service, secretaries, or filing cabinets, and which 
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will permit complicated searches and sorts of 
message files. Such a system must have high 
availability but could easily tolerate brief outages 
after a failure. 

Real-Time Signal Processing 

We have already built one system which is the 
front-end and control processor for a seismic 
data collection network, and which performs 
some preprocessing of seismic data [Gudz, 1977]. 
We believe this application can be extended to 
other areas of real-time signal processing with 
requirements for high overall system availability. 
Since many signal processing tasks can be bro­
ken into parallel components, the multiprocessor 
architecture would be especially appropriate. 

General-Purpose Timesharing 
Systems 

It seems to us that explicit use of fault-tolerant 
techniques could benefit general-purpose time­
sharing systems and large operating systems. 
These systems could operate continuously and 
are subject to minor hardware errors and subtle 
software bugs, but do not require totally uninter­
rupted operation. Although most large systems 
include some self-checking in the software, soft­
ware fault-tolerance, to be truly effective, must 
be well integrated into the overall system.design, 
and into the special hardware features which are 
usually required. 

One of the primary purposes of most large 
operating systems is to provide disk and tape 
handling features. In this context, reinitialization 
in response to faults is a much more serious 
problem than, for example, in the IMP. Various 
checkpointing procedures may be required to 
restore the overall system state to a point where 
restart is possible [Yourdon, 1972b, pp. 340--353]. 
Large operating systems often support a variety 
of checkpointing services since the best tech-

niques to use under these circumstances depend 
in part on the applications being serviced; in 
cases involving on-line database updates, the 
application programs themselves must be de­
signed around their fault-tolerance requirements. 

Reservation Systems 

Airline, hotel, and car rental reservation systems 
provide good examples of on-line database sys­
tems which could benefit from well-designed 
software fault-tolerance systems. Once a reserva­
tion has been accepted, it must not be lost. 
Backup techniques such as dual updating of two 
copies of the database, perhaps located in differ­
ent cities with independent central processors 
and telecommunications systems, may be worth­
while. On the other hand, minor problems (hard­
ware or software) may be tolerated, especially if 
the problems can be resolved by reentering on­
line transactions which were affected by the 
fault. Even with dual machines in remote loca­
tions, using a machine like the Pluribus would 
increase the reliability of each site separately, 
and provide substantial computing power in an 
expandable package. Further research will be 
required to understand fully the implications to 
the Pluribus of database integrity requirements 
for reservation systems. 

Process Control 

Our approach is clearly more appropriate to 
some areas of process than to others. We envi­
sion a typical application in the area of overall 
supervisory systems coordinating a number of 
subsidiary systems or controllers, and incorpo­
rating tasks such as inventory control and job 
scheduling. Processes that could afford to stop 
momentarily would be controlled directly. End­
to-end error correction and fault-masking hard­
ware would be used in the machine interface for 
applications needing overall fault-tolerance. As 
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with the previous applications, some form of 
checkpointing would be built in to preserve 
context over restarts. 
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Abstract 

This paper presents the results obtained in a continuing 
investigation of fault-tolerant computing which is being 
conducted at the Jet Propulsion Laboratory. Initial 
studies led to the decision to design and construct an 
experimental computer with dynamic (standby) redun­
dancy, including replaceable subsystems and a program 
rollback provision to eliminate transient errors. This 
system, called the STAR computer, began operation in 
1969. The following aspects of the STAR system are 
described: architecture, reliability analysis, software, au­
tomatic maintenance of peripheral systems, and adapta­
tion to serve as the central computer of an outer planet 
exploration spacecraft. 

Index Terms-Fault-tolerant computers, replacement 
systems, self-repairing computers. 

INTRODUCTION: CHRONOLOGY 
AND RATIONALE 

This paper presents a summary of the theoretical 
results and design experience obtained in an 
investigation of fault-tolerant computing which 

© 1977 IEEE. Reprinted, with permission, from IEEE Trans­
actions on Computers, Vol. C-20, No. 11, November 1971, 
pp. 1312-132l. 
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is being conducted at the Jet Propulsion Labora­
tory (JPL). Initial studies (I961-1965) led to the 
conclusion that dynamic (also called standby) 
redundancy offered the greatest promise in the 
design of fault-tolerant digital computer systems 
[Aviiienis, 1967c]. The dynamic redundancy 
[Short, 1968] approach requires a two-step proce­
dure for the elimination of a fault: first, the 
presence of a fault is determined; second, a 
corrective action is taken (e.g., replacement of 
failed unit, repetition of program, reconfigura­
tion of systems, etc.). The alternative to the 
dynamic approach is static (masking) redundan­
cy [Short, 1968], which was already being utilized 
in existing component-redundant [Lewis, 1963; 
Kuehn, 1969] and triple-modular-redundant 
(TMR) [Lyons and Vanderkulk, 1962; Anderson 
and Macri, 1967; Kuehn, 1969] computers. Early 
analytic studies of dynamic redundancy with 
idealized series-parallel system models indicated 
that mean life gains of an order of magnitude 
and more over a nonredundant system could be 
expected from dynamically redundant systems 
with standby spares replacing failed units [Fle­
hinger, 1958; Griesmer, Miller, and Roth, 1962; , 
Reed and Brimley, 1962; Kruus, 1963]. This gain 
compared favorably with the mean life gain of 
less than two in the typical TMR systems. Other 
qualitative advantages of the dynamic over the 
static redundancy were: I) greater isolation of 
catastrophic (nonindependent) faults which is 
especially important for densely packed micro­
electronic circuitry; 2) survival of system until all 
spares of one type are exhausted; 3) ability to 
eliminate errors which are caused by transient 
faults by the use of program rollback; 4) ready 
adjustability of the number and type of spare 
units; 5) utilization of the potentially lower fail­
ure rate of unpowered components in spare 
units; 6) avoidance of the circuit-related prob­
lems of static redundancy: increases in fan-out, 
fan-in, power requirements, and the need for 
isolation and synchronization of separate chan­
nels; and 7) facilitation of the checkout of spare 
units by means of standard diagnostic programs. 

The attainment of the apparent advantages of 
a dynamically redundant system had been 
shown to depend very strongly on the successful 
execution of the detection and replacement oper­
ations [Flehinger, 1958; Griesmer, Miller, and 
Roth, 1962]: these observations have since been 
formalized as the concept of "coverage" [Bouri­
cius, Carter, and Schneider, 1969a]. 

The second phase of the investigation 
(I965-1970) was focused on the identification 
and solution of the problems involved in the 
design of a general-purpose digital computer 
possessing the properties attributed to the ab­
stract model of a dynamically redundant com­
puting system. Three major areas of investiga­
tion were: 1) an investigation of fault-detection 
methods; 2) a study of computer architecture 
with emphasis on partitioning into subsystems 
with minimal interconnection requirements; and 
3) a study of the "hardcore" problem, i.e., the 
alternate technologies and logic organizations 
for implementing the detection and switching 
functions. The choices among feasible alterna­
tives in all three areas are strongly affected by 
assumptions on the available component tech­
nology and on the computing tasks to be re­
quired of the computer. In order to retain con­
tact with the practice of computer design, it was 
decided to design and construct an experimental 
general-purpose digital computer which would 
incorporate dynamic redundancy (i.e., fault de­
tection and replacement of failed subsystems) as 
integral parts of its structure. The design objec­
tives have been carried out and the system, 
called the STAR (self-testing and repairing) 
computer, began operation in 1969. The modular 
nature of the STAR computer has allowed sys­
tematic expansion and modifications that are 
still being continued. 

The first objective of the design is to study the 
class of problems which are encountered in 
transforming the theoretical model of a self­
repairing system into a working computer. State­
of-the-art integrated circuit and memory tech­
nology was employed in the design. The STAR 
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computer characteristics were chosen to satisfy 
all predictable requirements of a spacecraft guid­
ance, control, and data acquisition computer 
which would be used in the very long (ten years 
and more) unmanned missions exploring the 
outer planets of the solar system [Long, 1969]. 
The second objective was to provide a tool for 
laboratory studies of fault-tolerant computing, 
including the injection of transient as well as 
permanent faults of catastrophic nature. Very 
extensive displays of registers, manually con­
trolled clocking, and provisions fo~ convenient 
modification of subsystems were incorporated 
into the· experimental STAR computer bread­
board (Figure 14-1). 

The STAR computer employs a balanced mix­
ture of coding, monitoring, standby redundancy, 
replication with voting, component redundancy, 
and repetition in order to attain hardware-con­
trolled self-repair and protection against tran­
sient faults. The principal goal of the design is to 
attain fault tolerance for a variety of faults: 
transient, permanent, random, and catastrophic. 
The actual construction (rather than simulation) 

Figure 14-1. The STAR computer. 

of the STAR breadboard has two significant 
advantages. First, the design process has uncov­
ered interesting new hardware-related problems 
and led to numerous improvements. Second, the 
computer serves as a vehicle for further experi­
mentation and refinement of the recovery tech­
niques. 

During the studies of fault-tolerant architec­
ture and the design of the STAR computer, 
concurrent investigations were being conducted 
in other closely related areas of fault-tolerant 
computing, including studies of software, reli­
ability prediction, and extension of dynamic 
redundancy to peripheral devices [Avizienis et 
aI., 1969]. A complete redesign of the STAR 
computer is being performed to match the exact 
requirements ofa control computer for the ther­
moelectric outer planet spacecraft (TOPS) 
[TOPS, 1970]. This effort led to the evaluation of 
additional fault-recovery techniques. The results 
of the efforts described above are summarized in 
the following sections of this paper. 

ARCHITECTURE OF THE STAR 
COMPUTER 

Methods of Fault Tolerance 

The STAR computer is a replacement system 
that provides one standard configuration of 
functional subsystems with the required comput­
ing capacity. The standard computer is supple­
mented with one or more spares of each subsys­
tem. The spares are unpowered and are used to 
replace operating units when permanent faults 
are. discovered .. · The principal methods of error 
detection and recovery are the following. 

1. All machine words (data and instructions) are 
encoded in error-detecting codes and fault detec­
tion occurs concurrently with the execution of the 
programs. 

2. The computer is divided into a set of replaceable 
functional units containing their own instruction 
decoders and sequence generators. This decentrali­
zation allows simple fault location procedures and 
simplifies system interfaces. 
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3. Fault detection, recovery, and replacement are car­
ried out by special-purpose hardware. In the case of 
memory damage, software augments the recovery 
hardware. 

4. Transient faults are identified and their effects are 
corrected by the repetition of a segment of the 
current program; permanent faults are eliminated 
by the replacement of faulty functional units. 

5. The replacement is implemented by power switch­
ing: units are removed by turning power off and 
connected by turning power on. The information 
lines of all units are permanently connected to the 
buses through isolating circuits; unpowered units 
produce only logic "zero" outputs. 

6. The error-detecting codes are supplemented by 
monitoring circuits which serve to verify the proper 
synchronization and internal operation of the func­
tional units. 

7. The "hard core" test and repair processor (TARP) 
is protected by triplication and replacement of 
failed members of the triplet. 

Hardware System Organization 

The block diagram of the STAR computer is 
shown in Figure 14-2. Communication between 
the units is carred out on two four-wire buses: 
the memory-out (M-O) bus, and the memory-in 
(M-I) bus. The abbreviations designate the fol­
lowing units. 

COP Control processor, contains the location 
counter and index registers and performs 
modification of instruction addresses before 
execution. 

I 
I L. __ _ 

Control bus (3), 
status lines, 
switch lines 

LOP Logic processor, performs logical operations 
on data words (two copies are powered). 

MAP Main arithmetic processor, performs arith­
metic operations on data words. 

ROM READ-ONLY memory, 16,384 permanently 
stored words. 

RWM READ-WRITE memory unit with 4,096 words of 
storage (at least two copies powered; 12 units 
are directly addressable). 

lOP Input/output processor, contains I/O buffer 
registers. 

IRP Interrupt processor, handles interrupt re­
quests. 

TARP Test and repair processor, monitors the oper­
ation of the computer and implements recov­
ery (three copies are powered). 

The functional units (processors and memories) 
of the STAR computer communicate by means 
of the M-I and M-O (four-wire) information 
buses. The 32-bit words are transmitted on these 
two buses as eight bytes of four bits each. Three 
control signals are sent from the TARP on the 
three-wire control bus to synchronize the opera­
tions of the functional units and to initiate 
recovery. Otherwise the functional units operate 
autonomously. Unless otherwise noted, one copy 
of each unit is powered at a given time. The 
decentralized organization allows a standard in­
terface between each unit and the remainder of 
the computer. Each STAR unit interfaces with 
the computer by the means of 14 signal lines. 
Eleven lines, both in active and spare units, are 

, 
I 
I 
I 
I 
I 
I 

_.J 

Figure 14-2. STAR computer organization. 
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From TARP: 

Control bus inputs 

'ower switch control 

Input from data bus 

Typical 
STAR unit 

(memory or 
processor) 

Output to data bus 

To TARP: 

Unit status 

Figure 14-3. Functional unit of STAR computer. 

)ermanently connected to the computer system 
)Uses, and three are connected to the T ARP 
lrray. An unpowered unit cannot produce logic 
me outputs. The external connections of a 
iTAR unit are shown in Figure 14-3. 

The four input and four output lines are 
;onnected to the data M-I and M-O buses. They 
·eceive and send coded machine words in four­
)it bytes. The power switch control input causes 
)ower to be applied to the unit. The three 
;ontrol bus input signals are: CLOCK, a basic 
:iming input; SYNC, a periodic synchronization 
;ignal; and RESET, a signal that forces the unit 
nto a standard initial state. Two unit status lines 
;end information on the internal operation of the 
lnit to the TARP. These lines carry multiplexed 
nformation which will be discussed in a follow­
ng section. Each functional unit is autonomous 
lnd contains its own sequence generator as well 
lS storage for the current operation code, oper­
mds, and results. The internal design of a unit 
nay be altered without affecting other units as 
ong as the interface specifications are observed. 

It is to be noted that the lOP and IRP units 
lre shown combined in Figure 14-2. 

itandard Operation 

rhe STAR computer has two modes of opera­
:ion: the standard mode and the recovery mode 
,under T ARP control). During the standard mode 
he stored programs are carried out. The T ARP 
)rocessor issues the principal CLOCK signal and 
;YNC signal which occurs when a new step is 

initiated in the execution of an instruction. Ten 
CLOCK periods form the basic time unit (cycle) of 
the computer. During the first period, a four-bit 
"step code" (in 2-out-of-4 encoding) is issued by 
the TARP to the M-O bus. The next eight 
periods are employed to transmit or manipulate 
one eight-byte machine word. During the tenth 
period a four-bit "condition-code" byte may be 
broadcast by one of the functional units. The 
ten-period cycle is needed because of the series­
parallel organization of the computer. 

One instruction is executed in two or three 
steps. In the first step, the address of the instruc­
tion is sent from the location counter in the COP 
to the memory (ROM and RWM) units. In the 
second step, the addressed memory unit broad­
casts on the M-O bus the operation code and 
address of the instruction to all functional units. 
The address is indexed in the COP which trans­
mits to the M-I bus if necessary. The appropriate 
units recognize the operation code, store the 
address, and initiate execution. In the third step 
the instruction is executed: an operand is placed 
on the appropriate bus and accepted by the 
destination unit. The first two steps require one 
cycle each; the duration of the third step de­
pends on the instruction and requires 0, 1, or 
more cycles. Program interrupts begin without 
the first step. During the second step an instruc­
tion is broadcast by the interrupting unit (10-
IRP or TARP). 

The instruction set consists of 180 single­
address instructions, about one-third of which 
are indexable. It includes fixed-point arithmetic, 
mask able logic, and shift operations. Loop-facil­
itating and subroutine link register instructions 
are provided. There are 28 interrupts which can 
be masked out and tested under program con­
trol. A special class of instructions aids in fault 
tolerance. They include diagnostic instructions 
which exercise unit status messages and the 
fault-location logic in the TARP. Others perform 
updating of the "rollback" register in T ARP 
units, name assignment and cancellation of 
R WM units, power control of spare units, du­
plexing of ROMs and processors, and absolute 
read or write operations in RWM units. 
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Computer Words: Formats and 
Encoding 

There are two possible effects of logic faults 
upon the operation of a digital computer. First, 
a data word or an instruction word may be 
altered during storage, transmission, or proces­
sing. The eff~ct is a word error. Second, during 
the execution of an instruction a processor or a 
memory module may act incorrectly, act out of 
turn, or fail to act at all. The effect is a control 
error. Both classes of errors are detected in the 
STAR computer. The present section considers 
coding techniques for word error detection; con­
trol errors are considered later. 

Complete duplication offers the simplest word­
error detection at the highest cost. Low-cost 
arithmetic error-detecting codes [Aviiienis, 
1967a] are attractive because they are preserved 
during arithmetic processing and mandatory du­
plication of an 'ilrithmetic processor is avoided. 
An intensive study of error codes led to the 
choice of modulo 15 arithmetic checking which 
is especially effective for a byte-organized com­
puter with four-bit bytes [Aviiienis, 1971; ap­
pears as Appendix B in this book]. 

All words in the STAR computer are encoded 
as shown in Figure 14-4. The 32-bit numeric 
operand word (Figure 14-4b) consists of the 28-
bit binary number b, and a 4-bit check byte c(b). 
The check byte is a binary number which has the 
value 

c(b) = 15 - Ibits 
where Ibits means "the modulo 15 residue of b." 
This check byte causes the 32-bit word to be a 
multiple of 15. The checking algorithm casts out 
15s, that is, it computes the modulo 15 residue of 
the entire coded word. A zero residue, repre­
sented by 1111, indicates a correct word: all 
other values of the residue indicate a fault. The 
casting out of 15s is implemented with a four-bit 
"end-around carry" adder and takes place con­
currently with the transmission of a word on the 
bus. 

The 32-bit instruction word (Figure 14-4a) 
consists of a 12-bit operation code and a 20-bit 

114f .. ----lnstruction word 32 bits ----~~ 
I c(a) I a3 I a2 I a1 I aO I c2 I c1 . cO I 
~ Address part __ ---IJ ..... ___ Op-Code ----l 
1- c(a) = 15 - iai15 l 2-out-of-4 -I 

a. 

r Numeric operand word 32 bits , 

I c(b) I b6 I b5 I b4 I b3 I b2 I b1 I bO I 
Residue code: c(b) = 15 - ibi15 

b. 

Figure 14-4. a.) STAR instruction word format. b.) 
STAR operand word format. 

residue-coded address part. The 16-bit address is 
encoded in the same residue code as the oper­
ands, and the same checking algorithm is used. 
The operation code is divided into three bytes, 
and each byte is encoded in a 2-out-of-4 code. 
This code permits each byte to be checked 
individually. There are six valid forms of each 
byte, giving a total of 216 valid op-code variants. 
The structure of a bus checker circuit which 
performs word checking is shown in Figure 14-5. 
The single step-code and condition-code bytes 
also use the 2-out-of-4 code and are checked by 
the bus checker. 

The initial choice of error codes in the STAR 
computer emphasized variety for the purpose of 
comparison and evaluation, and the arithmetic 
product (or AN) code was used for operands 
[Aviiienis, 1967a]. Two reasons for the change to 
the present encoding of operands were: 1) the 
residue code is separable and allows the use of 
the more efficient two's complement algorithms 
for binary arithmetic, and 2) multiple precision 
and floating-point arithmetic is much more read­
ily implemented with residue encoding. Residue 
encoding is also suitable for operation codes in 
STAR instructions. Its advantage is that an 
identical checking algorithm is applied to in­
structions and operands; an explicit identifica-
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D ata bus I Sum test I (for 1111) 

I Modulo 15 I adder 

lOP-COde test I 
(2-out-of-4) 

Figure 14-5. The bus checker circuit. 

:ion is not required for checking, and loading of 
)rograms is facilitated. The drawback is that the 
)ytes of the op-code cannot be checked individ­
lally as in the 2-out-of -4 encoding. 

~ontrol Error Detection 

[t has been observed that a large number of 
~aults which cause control errors also cause word 
!rrors and are detectable by the use of error 
~odes. Some critical control errors, however, do 
lot fall into this category and require other 
nethods of detection. 

The principal method of control fault detec­
:ion in the STAR computer is the validation that 
!very unit is active at the proper time and that 
:he proper algorithm is carried out within the 
Init. The initial design [Avizienis, 1968] used a 
~our-wire status line for every replaceable unit to 
:ransmit one of six possible "2-out-of-4" coded 
;tatus messages. Experience has shown that the 
iiagnostic logic in the T ARP is significantly 
;implified when status messages are conveyed to 
:he TARP at predetermined clock times within 
!ach ten-unit cycle of operation. In the revised 
iesign, each status message is conveyed on two 
~res (in 1-out-of-2 encoding) and each message 
~overs the time interval between two messages of 
:he same type. The status-message originating 
~ircuits are duplicated in each unit to allow the 
ietection of a fault in the status message. 

The "output active" message indicates that the 
unit has produced a nonzero output to the bus in 
the preceding time interval. It serves to identify 
improperly active units which otherwise would 
destroy the information being transmitted on a 
bus, and make it impossible to locate the source 
of error. The absence of an expected active 
message is also a fault condition, since the all­
zero word is not a validly coded operand or 
instruction. The checking of output activity is the 
most critical of all status monitoring functions. 

The other status messages are multiplexed and 
sent over the same pair of wires as the output 
active messages because the activity information 
is not required continuously in the byte-serial 
machine structure. The status messages which 
are listed below aid in increasing the probability 
of immediate detection of incorrect operation. 

The "disagree with bus" message is needed for 
duplex operation (discussed in the next section). 
Two identical units produce outputs to a bus 
which acts as an OR gate. Each unit compares the 
bus word to its internally held output word and 
records a disagree message if a mismatch occurs. 
The message is conveyed to the T ARP at a 
specified time. The bus checker result together 
with disagree message permits a rapid identifica­
tion of a faulty unit. In simplex operation this 
message helps to identify improper activity of 
another unit. 

The "complete" message is essential for func­
tional units which have variable-duration algo­
rithms. Memory units issue "write complete" 
and "read complete" messages which are essen­
tial for immediate detection of incorrect storage 
events. 

The "internal fault" message is produced by 
internal monitoring circuits within each unit. Its 
function is to indicate incorrect internal algo­
rithms detected by duplication of critical signals, 
special test circuits, and "inverse microprogram­
ming" in which an operation is deduced from 
active gating signals. 

In addition to the above listed four types of 
messages, time is provided for a "special" status 
message which varies for different units. For 
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example, the IO/IRP uses it to report to the 
TARP the arrival of an external interrupt re­
quest. 

Properties of Functional Units 

The main arithmetic processor (MAP) input 
consists of an operation code followed by a 
coded operand, and the output is a coded result 
followed by a condition-code byte, indicating 
either one of three singularities (sum overflow, 
quotient overflow, zero divisor) or the type of a 
good result (positive, zero, negative). The control 
processor (COP) stores the condition code and 
uses it to implement conditional branches in­
structions. The COP also contains the location 
counter LC, two index registers, and a four-bit 
adder to implement indexing of residue-coded 
addresses and incrementing the LC. The logic 
processor (LOP) performs the bit-by-bit logic 
operations and code conversions on input words. 
The arithmetic coding is removed from the oper­
and before the operation, since error codes are 
not preserved during logic operations, and the 
final result is again encoded. The LOP operation 
is checked by operating two copies which issue 
disagree status messages when their outputs dif­
fer. The la/interrupt processor (IO/IRP) re­
ceives external interrupt requests, initiates allow­
able interrupts, and carries out input/output 
buffering functions. 

The READ-ONLY memory (ROM) contains the 
permanent programs and the associated con­
stants. The present machine uses a "braid" as­
sembly of transformers and wires for the perma­
nent storage of 16,384 words. Complete replicas 
of the ROM are used as replacements. Each 
4,096 word READ-WRITE memory (RWM) unit 
has two modes of operation. In the absolute 
mode a R WM unit recognizes its own wired-in 
absolute name. In the relocated mode a RWM 
unit responds to an assigned name. All relocated 
units with the same assigned name store and 
read out the same locations simultaneously. In 
case of a disagreement with the word on the 
M-O bus, the RWM unit sends a disagree status 

message to the T ARP. The relocated mode pro­
vides duplicate or triplicate storage for critical 
programs and data. When a RWM unit fails, its 
replacement unit can be assigned the same name, 
avoiding a discontinuity in addresses. Assign­
ment and cancellation of assigned names is 
performed under program control; this provision 
allows selective redundancy of storage. A record 
of R WM name assignments is retained (in non­
volatile storage) in all active TARP units. The 
accessing of storage locations within a R WM 
unit is checked by permanently storing the 4-bit 
check byte of its 12-bit internal address in every 
location. This byte is read out and checked 
against the contents of the address register dur­
ing every read and write operation. 

In the STAR computer only the logic pro­
cessor and the RWM memory unit containing 
critical system programs are duplexed for normal 
operation. For experimentation; complete provi­
sions have been made for optional duplex oper­
ation of all memory and processor units under 
program control. The combination of duplica­
tion and coding offers detection of all errors as 
well as a fast identification of one faulty unit. In 
order to permit duplex operation of processor 
and ROM units, active T ARP units hold a 
record of units which are operating in duplex. 

The Test and Repair Processor 
(T ARP) and Recovery Mode 

The "hard core" monitor of the STAR system is 
designated as TARP (test and repair processor) 
in Figure 14-2. The TARP monitors the opera­
tion of the STAR computer by two methods: 
1) testing every word sent over the two data 
buses for validity of its code; and 2) checking the 
status messages from the functional units for 
predicted responses. An incorrect word or a 
deviation from predicted response causes an 
interruption of normal computing and an entry 
into the recovery mode of operation. The block 
diagram of one TARP is shown in Figure 14-6. 
It is functionally divided into two sections. One 
section provides standard mode machine control 
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Figure 14-6. Test and repair processor (TARP) organization. 

md fault location, and the other controls the 
'ecovery mode operation and effects the switch­
ng of replaceable units. 

rhe Control and Test ( CA 1) 

rhis section contains the standard mode control 
ogic consisting of an op-code decoder, a clock, 
md a counter which generates the step-code 
ignals for standard mode operation. The ma­
:hine-state prediction logic uses the current in­
,truction and step-code to predict which status 
nessages should be received from each powered 
unctional unit. It also predicts the information 
,Durce and the type of encoding expected on 
:ach bus. The fault location compares the status 
md bus checker (Figure 14-5) results to the 
)rediction. In most cases, it can localize an error 
o a particular functional unit. Upon detecting 
m error, the CAT section stops the machine and 
ransfers its error information to the recovery 
:ontrol section. 

~ecovery Control (Rfq 

[bis section of the T ARP contains a "rollback 
)oint" address register which specifies the loca­
ion of the instruction at which normal operation 

is to be resumed after a recovery. This register is 
updated under program control. Before every 
updating, the contents of all processor registers 
needed for recovery is stored in duplexed mem­
ory units. Upon receipt of an error message from 
the CAT section, the REC section issues the 
"reset" signal whiCh causes all powered units to 
be set to an initial state, and then broadcasts an 
unconditional jump instruction, which causes the 
program to be resumed at the "rollback" ad­
dress. A repeated fault indication in the same 
unit leads to its replacement. The number of 
repetitions before replacement can be· specified 
in the experimental TARP. To replace, power is 
turned off in the unit, a spare is turned on, and 
another reset (and jump) is issued. For cases of 
temporary power loss and other fault conditions 
which cannot be resolved by the fault location 
logic, the REC section contains a wired-in "dis­
aster restart" procedure. 

The T ARP is the hard core of the system. 
Three fully powered copies of the T ARP are 
operated at all times together with n standby 
spares (n = 2 in the present design). The outputs 
of the TARPs are decided by a 2-out-of- (n + 3) 
threshold vote. When one powered TARP dis­
agrees with the other two, the recovery mode is 
entered and an attempt is made to set the 
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internal state of the disagreeing unit to match the 
other two units. If this T ARP rollback attempt 
fails, the disagreeing unit is returned to the 
standby condition and one of the standby units 
receives power, goes through the TARP rollback, 
and joins the powered triplet. The computer is 
now restarted, a rollback performed, and stan­
dard operation continues. Because of the three 
unit requirement, design effort has been concen­
trated on reducing the T ARP to the least possi­
ble complexity. Experience with the present 
model has led to several refinements of the 
design. 

The replacement of faulty functional units is 
commanded by the T ARP vote and is imple­
mented by power switching. It offers several 
advantages over the switching of information 
lines which connect the units to the bus. The 
number of switches is reduced to one per unit, 
power is conserved, and strong isolation is pro­
vided for catastrophic failures. Magnetic power 
switches have been developed which are part of 
each unit's power supply and are designed to 
open for most internal failures. The threshold 
function is inherent in the control windings of 
the switch. The information lines of each unit are 
permanently connected to the buses through 
component-redundant isolation circuits. The sig­
nal on a bus is the logic OR of all inputs from 'the 
units, and unpowered units produce only logic 
zero outputs. The power switch and the buses 
utilize the component redundancy for protection 
against fatal "shorting" failures. 

COMPARATIVE RELIABILITY 
ANALYSIS 

This section considers the reliability (with re­
spect to permanent failures) which can be ex­
pected for the STAR computer. The approach is 
to estimate the relative reliability with respect to 
an existing reference system. An absolute reli­
ability prediction is not made because the failure 
rates for components which are being developed 
for a flight model are not yet adequately estab­
lished. 

The reference computer for reliability estima, 
tion is the nonredundant Mariner. Mars 196~ 

(MM'69) computer, which was the on-boaT( 
computer for the successful Mariner 6 and ~ 

missions to Mars. It was chosen because a de· 
tailed description and extensive failure rate dat, 
are readily available. With respect to computin~ 
performance it must be noted that the MM'6S 
computer is a bit-serial machine with a bit rat( 
of 2.4 kHz and an instruction set of 16 op-codes, 
whereas the STAR is a byte-serial machine win 
a 0.5 MHz clock and an instruction set of 13( 
op-codes. This gain in performance is not used 
as a factor in reliability estimation. 

Reliability models 1) the MM'69 computer~ 
2) a simplex computer equivalent in performance: 
to the STAR, and 3) the STAR computer as 
shown in Figure 14-7. The MM'69 computer 
(Figure 14-7a) is assigned a complexity of unity. 
It is assumed that the simplex computer (Figure 
14-7b) consisting of eight functional units is 
8 X CF times as complex as the MM'69 com­
puter. The relative complexity factor CF is de­
fined as the ratio of complexity (component 
count) of a single STAR unit to the complexity 
of the entire MM'69 computer. The value CF 
= 1/ 3 was established by detailed comparison 
and is used in the subsequent analysis. The 
comparison is made with respect to MM'69 
technology, i.e., it is assumed that the simplex 
and the STAR computers employ the same com­
ponents and packaging techniques as the MM'69 
computer. 

The STAR model (Figure 14-7 c) consists of 
eight functional units plus the test and repair 
processor (TARP) array in series reliability. All 
units are considered to be of similar complexity 
and are allocated an equal number of spares. 
Results for S = 2 and S = 3 are presented. The 
reliability model applied to all. units except the 
TARP is the standby-replacement redundancy 
model with dormant spares [Bouricius, Carter, 
and Schneider, 1969a; Mathur, 197Ia]. The 
TARP was modeled as a hybrid-redundant 
H(3, S) system [Mathur and AviZienis, 1 970L, 
Details of the reliability models and measures 
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are presented in Mathur [1971a]. The logic pro­
cessor LOP is assumed to have an internal 
duplication of the circuits which are not protect­
ed by the error-detecting codes. Two sets of three 
RWM units each are shown; this is a pessimistic 
assumption, since the computer can function 
with only one of the six R WM units surviving. 

The fault coverage factor [Bouricius, Carter, 
and Schneider, 1969] in the STAR model is 
taken into account in two ways: 1) by including 
the fault detector and recovery initiator as a 
separate processor (the TARP), and 2) by apply­
ing a self-testing factor (STF) to the relative 
complexities of the units. Note that the simplex 
computer (Figure 14-7b) does not contain a 
processor corresponding to the T ARP in the 
STAR computer since the simplex computer is a 
computationally equivalent nonredundant ma­
chine without "test and repair" capabilities. 

Since 4 bits of the 32-bit STAR word serve for 
error detection, a STF equal to 8/7 was chosen. 
The STF expresses the overhead due to the self­
testing and repairing features within each STAR 
unit, that is, a STAR unit has 8/7 of the com­
plexity of the same unit in the "simplex" com­
puter. Applying CF = 1/3 and STF = 8/7 a 
STAR unit has the relative complexity of 8/21 
with respect to the entire MM'69 computer. 

Examples of reliability predictions based on 
the MM'69 data are shown in Tables 14-1 and 
14-2 and Figures 14-8 and 14-9. The lower bound 
(K = 1) assumes equal failure rates of powered 
and spare units (K is the failure rate ratio). The 
upper bound (K = (0) assumes a zero failure rate 
of spare units. Two-spare (S = 2) and three­
spare (S = 3) STAR systems are considered. 
Table 14-1 and Figure 14-8 show the predicted 
reliability as a function of time. Table 14-2 

Table 14-1. Reliability versus time for various configurations (CF = 1/3). 

STAR Computer with S Spares 

Mission Upper Bound Lower Bound 
Time MM'69 Simplex (K = 00) (K = 1) 
(h) Computer Computer S=3 S=2 S=3 S=2 

4,368 
(~ 6 months) 0.928 0.82 0.9999998 0.99997 0.999995 0.99982 
43,680 
(~ 5 years) 0.475 0.14 0.997 0.97 0.966 0.87 
87,360 
(~ 10 years) 0.225 0.019 0.96 0.79 0.71 0.45 

Table 14-2. Mission duration for specified reliability (CF = 1/3.) 

Mission Duration in Years 

STAR Computer with S Spares 

Desired Mission MM'69 Simplex 
Upper Bound Lower Bound 

Reliability Computer Computer S=3 S=2 S=3 S=2 

0.9 0.7 0.3 12.5 7.5 6.7 4.5 
0.8 1.5 0.6 16.0 9.7 8.5 6.0 
0.7 2.4 0.9 18.5 11.7 10.0 7.0 
0.6 3.5 1.3 20.5 13.5 11.3 8.3 
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:igure 14-8. Reliability versus mission time 
v1M'69, simplex, and STAR computers. 

hows the time (in years) for which the reliability 
'emains above a specified value. Figure 14-9 
Iresents the predicted reliability gain, defined as 
he ratio STAR reliability /MM'69 reliability. 

The computing operations for the foregoing 
malysis, the generation of tables, and the plot­
ing of graphs was done with the aid of the 
:omputer-aided reliability estimation CARE 
Irogram [Mathur, 1971b], which was developed 
lS a design tool during the reliability study. 
:ARE is a software package developed on the 
Jnivac 1108 computer system at JPL. CARE 
nay be interactively accessed by a designer from 
l teletype console to calculate his reliability 
:stimates. The input is in the form of a system 
:onfiguration description followed by queries on 
he various reliability parameters of interest and 
heir behavior with respect to mission time, fault 
:overage, failure rates, dormancy factors, allo­
:ated spares, and partitioning. The CARE pro­
~am is extensible, and it may be updated to 
ncorporate new reliablity models as they be­
:ome available. 

.TAR COMPUTER SOFTWARE 

.YSTEM 

~ar1y in the design of the STAR computer it 
)ecame evident that the fault-tolerant architec­
ure would impose unconventional constraints 
m its software. The development of the-software 
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Figure 14-9. Reliability gain of STAR computer 
with respect to the MM'69 computer. 

system for the STAR computer was initiated in 
1968 and-closely followed the hardware develop­
ment. It is partitioned into two subsystems. The 
programming subsystem consists of three mod­
ules:an assembler, a loader, and a functional 
simulator. An executive program facilitates coor­
dinated use of these modules. The operating 
subsystem consists of two modules: the resident 
executive module and the applications program 
module. The programming subsystem has been 
implemented on the Univac 1108 computer of 
the Scientific Computing Facility at JPL. The 
first version of a resident executive for the ST AR 
computer is nearing completion. 

SCAP (the STAR computer assembly pro­
gram) is the first module of STAR software. 
Programs for the STAR computer are written in 
the assembly language SCAL. SCAP is a tradi­
tional two-pass assembler incorporating machine 
instructions, pseudo-operations, and macrofacil­
ities. A unique feature of SCAP is the encoding 
of instruction and data words as required by the 
STAR computer. SCAP calculates the code re­
quired and generates the encoded value of the 
word. Another feature of SCAP is the 
COMPILE pseudo-operation which implements 
automatic compilation of simple arithmetic 
statements by the assembler. 

The second module LOAD (the loader) reads 
the program into the simulated STAR computer 
memory. After all decks have been read, a 
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COMMON area is allocated, relocation is com­
pleted, and external linkage is accomplished. A 
map and cross-reference table are printed to aid 
in debugging and documenting the program. The 
third'module of STAR software is the functional 
simulator, which is modular in nature and fol­
lows the latest STAR hardware configuration. 
Two special features are incorporated in the 
simulator. The first is the facility to simulate 
hardware errors in order to test the software 
aspects of error recovery. The second feature 
provides STAR register and memory dumps. An 
executive program facilitates the coordinated use 
of the assembler, loader, and simulator. 

The modules of the operating subsystem of the 
STAR computer software system consist of the 
resident executive module and the applications 
programs module. The STAR resident executive 
augments the self-testing and repairing features 
of the hardware in addition to its normal func­
tions. The standard features include interrupt 
control, input/output processing, and job sched,;. 
uling. Novel features incorporated due to the 
fault-tolerant architecture of the STAR com­
puter include a "cold start" capability, reconfig­
uration processing, rollback assistance, and diag­
nosis of faulty units. The cold start capability 
resets the hardware and software after a disaster 
restart as well as prior to an initial load. Recon­
figuration processing is required for memory 
replacement, since software assistance is re­
quired to load a newly activated memory unit. 
All programs running on the STAR computer 
require rollback (recovery) points. The resident 
executive provides rollback status storage and 
controls events which are nonrepeatable, i.e., 
they may not occur more than once even if a 
rollback takes place. Finally, it implements diag­
nosis for faulty units to determine the cause and 
extent of failures for possible partial reuse. The 
present application programs module includes 
floating-point arithmetic subroutines, and test 
and demonstration programs. The applications 
programs which will be required for space mis­
sions are a part of the TOPS control computer 
subsystem project discussed later in this paper. 

EXTENSION OF STAR TECHNIQUES 
TO PERIPHERAL SYSTEMS 

The STAR techniques of fault tolerance can be 
systematically extended beyond the boundarie: 
of the computer to effect automatic maintenance 
of various peripheral systems that communicate 
with the computer. The case which was investi 
gated in connection with the STAR compute] 
development is the implementation of automati( 
maintenance for a simplified model of the JPI 
thermoelectric outer planet spacecraft (TOPS 
which is being proposed for the exploration oj 
the outer planets [TOPS, 1970]. The potentiall~ 
lower failure rates of unpowered spare units anc 
the constant power demand of a replacemell' 
system are exceptionally important in mission! 
requiring a ten-year survival of the spacecraf' 
under very strict power constraints. 

The methodology of extending the STAR 
techniques consists of several steps: I) identifica· 
tion of the replaceable peripheral units; 2) selec· 
tion of internal error detection functions whid 
are economically feasible within the units them· 
selves; 3) identification of possible functional 
redundancy, in which either another type oj 
peripheral unit, or the computer itself can take: 
over the function of a failed unit; 4) algorithmic 
description of the monitoring and recovery pro· 
cedures to be performed for each unit by the: 
computer; 5) development of fault-tolerant com­
munication between the peripheral units and the: 
I/O and interrupt processors of the computer; 6~ 
translation of the monitoring and recovery pro­
cedures which have been assigned to the com­
puter into computational requirements: speed: 
instruction set, storage size, input/output, and 
'interrupt system complexity; and 7) estimation 
of reliability and mean life' attainable for each 
peripheral unit. Several iterations of the design 
process lead to a system for which a balanced 
gain in the reliability has been attained by me am 
of computer-controlled automatic maintenance. 
A detailed case study of the application of these: 
techniques is presented in Gilley [1970]. 

The investigation has identified and quantized 
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le computing capability required from the 
TAR computer in order to effect the automatic 
laintenance of the TOPS spacecraft. Further­
lore, the results have shown that: 1) the fully 
utomatic maintenance of a complex long-life 
pacecraft is feasible through a systematic exten­
lon of STAR techniques, and 2) the automatic 
laintenance requirements of the spacecraft sys­
!ms can be algorithmically described to the 
etail required to produce computer programs 
)r their implementation. The results of the 
lVestigation have systematically extended dy­
amic redundancy to various peripheral subsys­
!ms of an information processing system. Be­
ond the specific example of a spacecraft, the 
lethodology is applicable to computer-con­
~olled automatic maintenance of other complex 
ata processing, communication, and control 
ystems. 

)ESIGN OF THE TOPS CONTROL COMPUTER 

lle most recent step in the development of the 
:T AR computer concept has been the design of 

control computer subsystem (CCS) for the 
hermoelectric outer planet spacecraft (TOPS) 
raps, 1970]. After the TOPS requirements were 
luantified as described in the preceding section, 
he CCS design had still to meet four major 
xternally-imposed constraints: I) the weight of 
he subsystem was not to exceed 40 lbs.; 
.) power consumption was not to be greater than 
.0 W; 3) probability of successfully completing a 
OO,OOO-hour mission was to be equal to or 
),eater than 0.95 (using TOPS approved part 
ailure rates; and 4) it could not, as a conse­
luence of any single internal fault, result in a 
ailure mode catastrophic to the mission. 

Because of these constraints, it was not possi­
.le merely to "shrink" the STAR computer into 
, flight package. The STAR design was simpli­
led by retaining only the capabilities needed to 
(leet the TOPS functional requirements. The 
ntire self-test and repair ability of the larger 
(lachine has been retained; in fact, the TOPS 
:CS has expanded failure detection and recov-

erycapability. A variety of advances ansmg 
from the years of work on the STAR computer 
that preceded the TOPS effort have been incor­
porated into its design. 

The CCS operates at a clock frequency of 500 
kHz. The CCS word is the same length as the 
STAR word, 32 bits. The word-processing cycle, 
ten byte-times long in the STAR computer, has 
been reduced to nine in the CCS: eight for 
processing or transferring information and one 
(two in ST AR) for the messages and decision 
making between words. The execution (including 
fetch) of an instruction requires one to three 
cycles. The STAR instruction set with over 200 
variants has been reduced to less than 100. To 
detect word errors, the CCS uses the same resi­
due code as the STAR computer. Unlike the 
STAR, however, the CCS employs the residue 
encoding also for operation codes of instruc­
tions. In addition to these failure detection mea­
sures, the CCS incorporates dual control logic 
and clocking, memory address checking simulta­
neous with all memory accesses, and a nonde­
structive read-after-write option on all store in­
structions. 

The CCS consists of the seven STAR com­
puter functional units designated the COP, LOP, 
lOP, IRP, ROM, RWM, and TARP (Figure 
14-2). The IO/IRP has been split into indepen­
dent lOP and IRP units in order to improve 
failure detection and isolation in a completely 
unattended environment. The MAP is deleted 
because software multiplication and division are 
sufficient, while addition and subtraction are 
done in the LOP. Simplifications in the instruc­
tion set have resulted in reduced hardware in the 
COP, LOP, lOP, and IRP. Conversely, there is 
increased hardware in the R WM and T ARP for 
added failure detection. A 4,096-word ROM and 
two 4,096-word RWM units constitute the pro­
gram storage capability of the CCS. In addition, 
another 4,096-word R WM (designated SHM) is 
shared (by use of two independent ports) by the 
CCS and measurement processor subsystem 
(MPS). All the CCS RWM units are identical; 
anyone of them can be assigned either as a CCS 
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internal memory or as the SHM. The SHM 
contains the MPS operating program and the 
most recent samples of spacecraft variables gath­
ered by the MPS. Because the SHM is available 
to the CCS as part of its own memory, these 
samples are conveniently available to it for fault 
diagnosis and monitoring of spacecraft activity 
[Gilley, 1970]. 

CURRENT RESEARCH 

The research and development program which 
led to the STAR computer is continuing in 
several directions. The design of several im­
proved second-generation STAR functional 
units is under way, including a new arithmetic 
processor, a control processor for medium-scale 
integrated-circuit implementation, and the 
shared READ-WRITE memory unit for the storage 
of automatic maintenance information from the 
spacecraft telemetry system. Analysis of auto­
matic maintenance algorithms and design of a 
command/data bus for their implementation are 
under intensive study. Other current investiga­
tions are concerned with the following areas: I) 
hardware-software interaction in a fault-tolerant 
system with recovery, especially the interaction 
of the TARP and the operating system; 2) stud­
ies of advanced recovery techniques, i.e., post­
catastrophic restart, T ARP replacement 
schemes, recovery from massive interference, 
partial utilization of failed units; 3) advanced 
component technology, especially methods to 
attain bus and power switch (i.e., hard core) 
immunity to faults; 4) heuristic studies of fault 
tolerance by interpretation of extensive experi­
ments with the STAR breadboard as the instru­
ment; 5) design of a second-generation ST AR-

,type computer with universal processor and stor­
t age modules, and their implementation by large­
scale integration; 6) computational utilization of 
the spare units for supplemental tasks in a mul­
tiprocessing mode. 

At the present time it is evident that the STAR 
computer design and construction effort has led 

to valuable new insights into the problem of 
fault-tolerant computing; further results in this 
field are expected from the research program in 
the future. 
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\utomatic Fault Protection in the Voyager 
ipacecraft 

... P. Jones 

~bstract 

)ue to reliability requirements placed on the Voyager 
ryacecraft design and a mission resulting in long two-way 
ght time communication links, on-board automatic fault 
etection and correction capabilities are a significant 
~ature of that spacecraft's design. Most of the protection 
") otherwise mission-catastrophic failures is implemented 
1 the software of the Voyager's central computer, while 
'Jme resides in an attribute control-dedicated processor. 
"'his paper will present the role that automatic fault 
rotection plays in achieving Voyager's overall reliability, 
's design evolution, and how its design was validated 
'uring system testing. In-flight experience will also be 
escribed, and from the lessons learned therein, conclu­
rons and recommendations will be drawn for the benefit 
f future designs. 

NTRODUCTION 

·he Mission 

n August and September of 1977, two Voyager 
pacecraft were launched on four-year-Iong mis­
ions to investigate Jupiter and Saturn, their 
aany satellites, and the traversed interplanetary 
nvironment. Voyager 2 is targeted by navigators 
o eventually rendezvous with Uranus some ad­
litional four years after its encounter with Sat­
lrn. The planetary encounter phases are each 
00 days long and are marked by a 30-day 
'observatory" phase during which regular, peri-

ones, c.P., "Automatic Fault Protection in the Voyager 
;pacecraft," AIAA Paper No. 79-1919, American Institute 
,f Aeronautics and Astronautics. 
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odic observations are made of the planetary 
system. The next 30 days, or "far-encounter" 
phase, include increased observations of the 
planet's satellites and spacecraft reorientation 
maneuvers for the purpose of calibrating the 
various fields and particles instruments. The 
"near-encounter" phase, typically five days in 
length, provides the most intense data gathering 
during the encounter. Experiments utilizing Sun 
and Earth occulations by the planet are conduct­
ed as well as high-resolution observations by the 
spacecraft's remote sensing instruments. A 30-
day "post-encounter" phase follows during 
which the activity pace drops to that of the 
earlier far-encounter phase. 

Between encounters, each spacecraft conducts 
the necessary calibration exercises to ready itself 
for the next encounter while the "cruise science" 
instruments (typically fields and particles) gather 
information about the interplanetary medium. 

The Spacecraft 

The Voyager spacecraft design is a product of (1) 
the early (pre-1970) Thermoelectric Outer Plan­
ets Spacecraft (TOPS) concept, characterized by 
substantial redundancy, and a Self-Test and Re­
pair (STAR) computer; (2) hard fiscal con­
straints of the 1970s; and, to some extent, (3) the 
recognition that earlier Mariner and Viking-class 
spacecraft designs, while not boasting the auton­
omy or operational flexibility of the TOPS de­
sign, could, in fact, meet the mission require­
ments provided that concerns about their long 
lifetime reliability could be allayed. 

At launch, the Voyager spacecraft consisted of 
a Mission Module and a Propulsion Module. 
The Propulsion Module was jettisoned approxi­
mately one hour after launch following its 45-
second thrust period that placed the spacecraft 
on its interplanetary trajectory. The Mission 
Module (henceforth referred to as the space­
craft), shown in Figure 15-1, differs markedly in 
appearance from its Mariner and Viking prede­
cessors.lts configuration is dominated by a 3.7-m 

diameter high-gain antenna (HGA), used for 
transmitting the spacecraft's S-band and X-band 
data links and for receiving the S-band uplink. 
Power is provided by three radioisotopic thermal 
generators (RTGs) that, in combination, output 
approximately 430 watts at Jupiter and 400 watts 
at Saturn. The majority of the spacecraft's elec­
tronics are mounted within the 10-sided bus 
structure behind the HGA. Fields and particles 
science instruments are fixed-mounted on either 
the bus structure or on booms extending from it, 
while remote sensing instruments are mounted 
on a 2-degree-of-freedom articulable "scan plat­
form." 

ACHIEVING RELIABILITY 

The task of maximizing total Voyager spacecraft 
system reliability within the constraints of mis­
sion return, cost, and scheduling was distributed 
among design analysis, design and fabrication 
practices, fault-tolerance design requirements, 
testing, and conservative in-flight operational 
practices. 

The traditional failure modes, effects, and 
criticality analysis (FMECA) was performed on 
the engineering subsystem designs to help identi­
fy design weaknesses and access vulnerability to 
random part failures. Additionally, the radiation 
environment at Jupiter prompted further analy­
sis of the radiation and electrostatic discharge 
susceptibility of the spacecraft design. These 
activities led to a modest amount of circuit 
redesign, a parts hardening and component 
shielding effort, and to the goal of achieving an 
"equipotential" spacecraft through surface-to­
surface grounding. Finally, electronic compo­
nents and structural elements were analytically 
tested to determine if they operated within spec­
ification over environmental (thermal, acoustic, 
vibration, and radio frequency interference) lim­
its, and in the case of electronic components, 
over electrical interface operating margins (input 
voltage variations, conducted· interface noise, 
etc.). 
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Figure 15-1. Voyager spacecraft. 

Parts selection and screening, reliance on 
flight-proven designs where practical, a quality 
assurance program monitoring fabrication and 
assembly processes, and an underlying desire to 
"keep it simple" were significant aspects of the 
Voyager spacecraft reliability program. 

Fault-tolerance, as a characteristic of the 
spacecraft system design, came about as a result 
of top-level design requirements on the system 
that were intended to (l) assure maximum fault­
tolerance during mission-critical activities (dur­
ing post-launch injection, at planetary closest 
approach, during off-Earth point maneuvers, 
etc.); (2) provide spacecraft safing in response to 
faults during unattended (nontracked) cruise; 
and (3) minimize the required ground support in 
the event of an on-board fault. The requirements 

and their implementation had a profound effect 
on the spacecraft's hardware configuration and 
software design. 

A comprehensive test program was conducted 
to validate the hardware and software designs. 
Each subsystem was first tested (in ambient 
conditions, then in a solar-thermal vacuum) to 
verify its performance and interface integrity. 
Next, each subsystem was integrated into the 
system, again with extensive validation of inter­
face performance. Once the spacecraft was fully 
assembled and functionally validated, it was 
subjected to a rigorous set of environmental 
tests. Finally, the system, back in ambient condi­
tions, performed operational sequences that 
demonstrated its mission readiness. The test pro­
gram provided operating time on electronic sys-
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terns, thereby weeding out cases of "infant mor­
tality" failure, identified shortcomings in the 
software design (including that dedicated to fault 
tolerance), and substantiated that much of the 
design analysis that had been performed at the 
subsystem level was valid at the system level. 

Once the spacecraft are in flight, only conserv­
ative operational practices can help protect the 
lifetime of the system. Careful management of 
consumables, a minimization of unit power on/ 
off and thermal cycles, and strict monitoring of 
spacecraft performance all help prevent the fore­
shortening of the spacecraft lifetime. 

AUTOMATIC FAULT PROTECTION 
DESIGN 

The remainder of this paper will focus on the 
fault-tolerant aspects of the Voyager system de­
sign. A comprehensive discussion of fault protec­
tion wholly within the Attitude and Articulation 
Control Subsystem (AACS) can be found in 
Fleischer [1977]. 

Requirements 

The top-level requirements referred to earlier 
include one whOSe intent was to eliminate from 
the design "all single-point failures" whose oc­
currence would result in the loss of all engineer­
ing data or the data from more than one science 
instrument. Any such failure prior to the space­
craft's Saturn encounter would be unacceptable. 
Obviously, the requirement had to be waived 
when considering primary structure, the HGA, 
the major elements of the Propulsion Module, 
and so on; but for electronic subassemblies the 
requirement was to be strictly adhered to. A 
second requirement dictated that whatever pro­
tection was to be provided had to be consistent 
with periods of unattended cruise, lasting up to 
24 hours. This requirement applied primarily to 

cruise phase safing responses; during encounter 
periods, when round-the-clock coverage was 
available, the long light time transmission delays 
became the significant design driver. Finally, 
response priorities were established to direct the 
design. In order of decreasing priority, they 
were: 

1. Spacecraft safety and commandability 
2. Preservation of spacecraft consumables 
3. Downlink telemetry visibility 
4. Ongoing sequence integrity 

Implementation of the 
Requirements in Hardware 

The simplest response the hardware designer can 
give to the requirement of eliminating single 
point failures from his design is to, of course, 
provide two of everything. This approach has 
distinct advantages: 

1. It is patently obvious that the requirement has been 
met. 

2. The integrity of the redundancy is easily tested for 
(in the case of part-level redundancy, there is no 
visibility beyond board-level testing). 

3. Circuit designs are kept simple. 
4. Where inherited designs are to be taken advantage 

of, it is considerably cheaper than adding part-level 
redundancy. 

It was clear from the outset that the Voyager 
spacecraft would employ considerable redun­
dancy. Of course, other steps were taken to 
achieve the same result. Designs were made to be 
as operationally independent as possible (e.g., 
subsystems were provided dedicated on/off relay 
interfaces with the power subsystem, and electri­
cal interfaces between block redundant elements 
of two subsystems were cross-strapped, where 
practical, so that a failure in one subsystem did 
not require reconfiguration of another). Where 
critical decisions were to be made by hardware, 
majority logic was employed. 
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mplementation of the 
tequirements in Software 

n most cases, adding redundant hardware 
loesn't provide fault tolerance. As a rule, redun­
lant units are held in a de-energized, standby 
tate and need to be powered on and, in some 
:ases, initialized before they can perform their 
ask of replacing a failed counterpart. One of the 
)rimary functions of the fault protection soft­
vare then, is to manage the spacecraft's redun-

dant elements. This management function in­
cludes determining if evidence of a problem 
exists, making the decision as to the appropriate 
action to be taken, and then affecting the action 
(executing the response). Table 15-1 itemizes 
those functions or subassemblies in which anom­
alous performance can trigger an automatic fault 
response. The table also shows the roles that 
hardware and software play in the detection­
decision-action process of the various fault rou­
tines. 

'able 15-1. On-board redundancy and fault protection, 

Fault Protection 

;Unction or Subassembly Detection Decision Action Routine 

Receiver S/W S/W H/W 1 
S-band exciter H/W S/W H/W 1,2 
S-band transmitter H/W S/W H/W 1,2 

tFS X-band exciter H/W S/W H/W 1,2 
X-band transmitter H/W S/W H/W 1,2 
Downlink frequency source H/W S/W H/W 1,2 
Antenna control S/W S/W H/W I 

..iDS { Command detector unit S/W S/W H/W 

)WR { 2.4 kHz inverter H/W H/W* H/W & S/W 3 
System low voltage H/W H/W* H/W & S/W 3 

AACS PWR code response S/W S/W S/W 5 
Processor H/W & S/W H/W & S/W S/W 6 

~CS Output unit H/W & S/W H/W & S/W S/W 6 
Event timing S/W S/W S/W 7 
Sequence abort S/W S/W S/W 7 

AACS processor S/W S/W H/W & S/W 5 
AACS electronics S/W S/W H/W & S/W 5 
Sun sensor S/W S/W H/W & S/W 5 

\ACS 
Star tracker S/W S/W H/W & S/W 5 
Attitude control thrusters S/W S/W H/W & S/W 5** 
Gyros S/W S/W H/W & S/W 5** 
Platform slewing S/W S/W H/W & S/W 5 
CCS response to power codes S/W, S/W S/W 5 

RIS { IRIS standby heater units H/W S/W H/W & S/W 4 

, Majority voting circuits Routine Name Identifier Routine Name Identifier 
'*See Fleischer [1977]. 

CMDLOS 1 AACSIN 5 
RFLOSS 2 ERROR 6 
PWRCHK 3 TRNSUP 7 
IRSPWR 4 
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Before describing the fault routines, it is ap­
propriate to establish an understanding of the 
hardware environment in which they operate. 

COMMAND COMPUTER 
SUBSYSTEM FUNCTIONAL 
DESCRIPTION 

The Command Computer Subsystem (CCS) 
serves as the central controller of the Voyager 
spacecraft. It is composed of two computers, 
each of which is used as an interrupt processor, 
reacting to periodic timing interrupts (hours, 
seconds, centiseconds, science data frame tim­
ing, command bit sync, etc.), and external level 
interrupts from other subsystems which are typi-
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cally used to indicate external failures elsewhere 
in the spacecraft. Both processors have an 18-bit, 
plated-wire (hence nonvolatile) memory contain­
ing 4,096 words, half of which are "write protect­
ed" such that a "key" must be employed a'nytime 
this part of memory is to be altered. Fixed 
routines for command decoding and failure de­
tection and correction are typical of the func­
tions located in write-protected memory. The 
remaining half of the memory is used to load 
sequences which control the spacecraft's engi­
neering and science subsystems during trajectory 
correction maneuvers, science data acquisition 
and transmittal, and various calibration exercis­
es. Key system interfaces with CCS are shown in 
the block diagram in Figure 15-2. 
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Figure 15-2. CCS system interfaces. 
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CCS Routine Structure 

The routine structure of the CCS has five essen­
tial parts. 

1. Hardware receives levels and timing interrupts 
from other subsystems on the spacecraft. 

2. Software preprocesses this data as input. 
3. Software performs intermediate processing. 
4. Software generates commands to other subsystems 

and telemetry as output. 
s. Hardware generates switch closures or data pat­

terns to other subsystems on the spacecraft. 

The block diagram in Figure 15-3 depicts this 
structure. When a timing or level interrupt oc­
curs, an element of sequence code (e.g., a com­
mand to be issued to another subsystem) or a 
fixed routine is executed. Following execution, 

the software returns to a "wait" state. During 
normal sequencing activity, the CCS is active 
(executing code) only a small percentage of the 
time. 

FAU L T -PROTECTION SOFTWARE 

The Voyager fault-protection software exists 
within two subsystems; the CCS and the AACS. 
In the former, fault routines are initiated by 
interrupts received from external sources, and 
followed by the preprogrammed response. In 
AACS, however, fault routines are periodically 
executed and are always comparing current per­
formance indicators against preprogrammed 
"norms." When an unfavorable comparison oc­
curs, action is taken (see Fleischer [1977]). 

(1) 

Figure 15-3. CCS routine structure. 
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Fault Protection in CCS 

The fault routines resident in CCS are: ERROR, 
PWRCHK, RFLOSS, CMDLOS, IRSPWR, 
AACSIN, and TRNSUP. 

Error 

Whenever an abnormal condition (hardware or 
software) exists within the CCS, the ERROR 
routine is entered. The response generally is to 
place the CCS in a known, quiescent state. 
Reasons for ERROR entry are: 

I. Hardware 
a. A low voltage condition exists. 
b. A primary command bit sync signal has been 

received before the previous one was processed. 
c. An attempt to write into protected memory 

without a memory-protect override has oc­
curred. 

d. An execute of an execute instruction has been 
attempted. 

e. The processor bit generator has reached an 
illegal state. 

2. Software 
a. The primary output unit has been unavailable 

for 14 seconds or longer. 
b. The self-test subroutine* has not executed cor­

rectly. 
c. A secondary command bit sync signal has been 

received before the previous one was processed. 
d. The sequencing support routine has been to 

activate more than 30 time/event tables. 
e. The output buffer has overflowed. 
f. During the launch phase a processor is counting 

relative to the other processor and Flight Data 
Subsystem (FDS). 

Upon entry, the routine determines the source of 
the error and stores that error condition, the 
value of its hours clock, the status of its two 
interrupt registers, two mask registers, and three 
indicators relating to self-test and power code 
activity, and output unit availability. 

* The self-test routine is primarily a software test of the 
hardware. It must be successfully executed before any 
commands are output from the CCS to any other subsys­
tem. 

If the rollback feature is enabled (rollback 
refers to the capability of restarting a predesig­
nated portion of the sequence), then its particu­
lar time/event region is flagged to be restarted if 
and when the PWRCHK routine requests it. 
Next the ERROR routine: 

I. Clamps the other processor and disables output 
units. 

2. Terminates the following activities: command de­
coding; memory readout; sequence activity (except 
rollback); FDS/ AACS memory load; power code 
processing (momentarily); and Data Storage Sub­
system (DSS) tape positioning. 

3. Clears the following: data received from the other 
CCS processor; output buffer data and not-avail­
able time counters; sequence support routine time 
and block schedules; FDS/ AACS memory load 
pointers; power code processing and DSS tape 
positioning/active indicators; and, power low-volt­
age response enable. 

4. Resets output and telemetry buffer pointers. 
5. Initializes the sequence support routine counters 

and pointers. 
6. Disables interrupts and unmasks the following in­

terrupts: ERROR; DDS tape recorder inputs; pow­
er codes; internal interrupt; checksum; command 
decoding; demand read; one pulse per hour clock 
input; RFLOSS inputs; power inverter switch and 
IRSPWR inputs; and self-test. 

If output unit initialization is enabled and 
ERROR has successfully reenabled itself and the 
power low-voltage response, and if the reason for 
entering ERROR was, in fact, a CCS tolerance 
detection trip or an undervoltage trip indication, 
then the PWRCHK routine is entered. Other­
wise, the rollback table will be disabled and CCS 
will go to a WAIT state. 

PWRCHK 

The PWRCHK routine responds to either: 

• An interrupt from the Power Subsystem (PWR), 
indicating that an undervoltage trip has occurred. 
This action signifies that the spacecraft power de­
mand exceeds the supply such that the PWR can no 
longer maintain a DC bus voltage greater than 29.3 
volts (normally 30 volts), or an AC bus voltage of 
47.5 volts rms (normally 50 volts rms). Upon detect-
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ing this condition, PWR disconnects all nonessential 
loads (those not needed for commanding or assuring 
attitude control) and waits for the CCS, via 
PWRCHK, to restore the loads safely; or 
A CCS tolerance detector trip indicating that the 
CCS input power has dropped below a level where 
the processor can reliably function. 

[f the latter is the case, the PWRCHK response 
.s to: 

l. Assume that all other spacecraft loads have experi­
enced power-on resets and issue mission phase­
dependent reconfiguration commands as required. 

t Reset the CCS hardware clock. 
3. Initiate the special rollback table, if present. 
tEnable RFLOSS and IRSPWR and initiate their 

execution. 
5. Enable the celestial reference loss response portions 

of AACSIN. 

rable 15-2. PWRCHK response matrix. 

6. Restart a search for celestial references if one was 
in progress at the time of PWRCHK entry. 

7. Initiate the sequence abort/safing sequence, if ena­
bled (e.g., during a trajectory correction maneuver, 
TCM). 

If the PWRCHK entry is caused by an under­
voltage trip, the response will depend on two 
other factors: 

• Whether the PWR standby 2.4 kHz inverter has 
been selected. 

• If a return to a science acquisition spacecraft state is 
desired. 

The matrix in Table 15-2 describes the basic 
responses of PWRCHK in terms of the space­
craft loads switched, and the initiating event and 
the option override variable. In general, the 

PWRCHK Entry/Variables 

function 

Radio 
transmitters 

Science 
lnstruments 

Science 
replacement 
h.eaters 

folerance 
ietector trip 
responses 
1-3 

folerance 
ietector trip 
responses 
4-7 

Standby 
Inverter 
Selected 

Redundancy 
selected 

Low power 
mode 

No change 

No change 

Yes 

Yes 

Override 
Option 
Set* 

Redundancy 
selected 

Low power 
mode 

No change 

No change 

Yes 

Yes 

.. PWRCHK automatically resets this variable after it is tested. 

Override 
Option 
Reset 

Redundancy 
selected 

Low power 
mode 

X-band off 

Powered off 

Powered off 

No 

Yes 

Tolerance 
Detector 
Trip 

No change 

No change 

No change 

Yes 

Yes 

Undervoltage 
Trip During 
Launch 

Powered off 

No change 

No change 

Yes 

Yes 
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option override is set during far-, near-, and 
post-encounter phases and reset during cruise. 
During launch, a second variable is used to force 
all PWRCHK entries to be treated as one caused 
by a tolerance detector trip, thereby minimizing 
CCS activity during that critical mission phase. 

Each time a power undervoltage trip signal is 
detected by the CCS, PWRCHK will increment 
a special undervoltage trip counter; likewise, a 
tolerance detector trip counter is provided. In 
addition, a "master counter" whose value is 
te1emetered each hour by CCS is incremented by 
each PWRCHK entry, regardless of the cause. 
These counters provide useful data for subse­
quent ground-based fault analyses. 

RFLOSS 

The RFLOSS routine is designed to restore 
either the S-band or X-band (or both) downlinks 
subsequent to a failure of either an exciter or 
transmitter. Diode detectors within the Radio 
Frequency Subsystem (RFS) monitor the output 
power of the exciters and transmitters. Whenever 
the output power drops below a preset level the 
detector closes a switch. Anyone or more of the 
four interrupts will cause RFLOSS to be entered 
and during the execution of the routine all four 
interrupts will be systematically interrogated. 

Upon entry, the routine will first disable itself 
from reentry, increment the master counter, and 
then wait five seconds before processing the 
exciter interrupts. (This delay permits the routine 
to be tolerant of exciter interrupts produced at 
tum-on.) Following the five-second delay, the 
RFLOSS counter (ex post facto diagnostic trace) 
is incremented and the S-band exciter is checked. 
If the level indicates a failure, a command is 
issued to decouple the exciter's input frequency 
reference from the ground-transmitted uplink. 
This will eliminate the radio's voltage-controlled 
oscillator as a possible failure source. One sec­
ond later, the RFLOSS counter is incremented 
again and the S-band exciter level rechecked. If 
still present, the routine will disable future entry 
into the S-band exciter interrupt subroutine and 

issue the command to select the backup unit. 
The routine will then wait five seconds, incre­
ment the RFLOSS counter, and chec~ the re­
maining three interrupt levels. Also, one second 
after the exciter switch, the S-band exciter level 
input is checked for the last time. If it still 
indicates a failed unit, the ultra-stable oscillator 
is turned off, thereby removing it as the last 
possible source of failure. At this point, the 
radio's auxiliary oscillator becomes the downlink 
frequency source. 

The next interrupt level to be processed is that 
of the X-band exciter. If this interrupt indicates 
a failure, the routine will disable future X-band 
exciter failure checks and issue the command to 
select the redundant X-band exciter. If the fail­
ure indicator is still present one second later, the 
backup S-band exciter (the frequency source for 
the X-band exciter) is selected; future S-band 
exciter checks are then disabled. 

After processing the exciter level inputs, the 
routine moves on to check first the S-band, then 
the X-band transmitter level inputs. As with the 
exciters, a delay (of five minutes) is provided to 
assure tolerance to the transmitter's turn-on 
characteristics. Following the five minute delay, 
if the S-band transmitter failure is indicated and 
it is the first such indication, the routine will 
select the redundant transmitter and proceed to 
the X-band transmitter check. If it is not the first 
indication, then the transmitters have already 
been switched and the suspected cause becomes 
the transmitter's input source, the S-band exciter. 
If the S-band exciter has not yet been switched, 
it will be at this time, future exciter switches will 
be disabled, and the routine will be reentered 
back at the five-second delay point (beginning). 
If the S-band exciter has already been switched, 
then the routine will inhibit future checks of the 
S-band transmitter interrupt, turn off the failed 
transmitter, and turn on the transmitter bay 
heater. The routine will then continue by proces­
sing the remaining X-band transmitter level in­
terrupt in a manner identical to that for the S­
band transmitter. Following this the routine is 
re-enabled and exited. 
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CMDLOS 

fhe purpose of the Command Loss (CMDLOS) 
~outine is to provide a means for the Voyager 
ipacecraft to autonomously correct for a failure 
which is preventing the receipt of ground com­
mands. Such failures can exist in the spacecraft's 
receiver (RCVR), command detector unit 
~CDU) of the Modulation/Demodulation Sub­
)ystem (MDS), or the CCS itself '(which must do 
the actual command decoding). Additionally, 
misorientation of the spacecraft and, therefore, 
the narrow beamwidth HGA can lead to an 
inability to receive commands. Finally, the re­
mote, yet possible, instance in which the receiver 
locks up on an RF spur being generated else­
where within the RFS (i.e., the RF exciters or 
transmitters) is also a failure which must be 
protected against. Since the loss of commanda­
bility generally precludes any ground-based cor­
rective action, the spacecraft is on its own in 
~roviding the needed protection. The only excep­
tIon to this is the case in which one of the CCS's 
is unable to process command data it receives 
from the CD U. Should this happen, the ground 
merely needs to reformat the command so that it 
is executed by the other CCS. By having both 
CCS's always on-line, receiving and decoding the 
commands (only command execution need to be 
specified), protection against a single failure re­
sulting in a permanent loss of commandability is 
provided. 

Entry into the CMDLOS routine occurs when 
the CCS (each half independently) determines 
that a valid command has not been received in 
the last N hours, where N (typically 192 hours) 
reflects the current mission activity level and 
reliance on commandability. N is decremented 
by one each hour, but reset to its initial value 
each time the CCS successfully receives a com­
mand. If it ever underflows, CMDLOS is en­
tered. 

At the start of the routine, commands are 
issued to: 

I. Decouple the downlink frequency source from the 
uplink. 

2. Turn off S- and X-band ranging receivers. 
3. Select the backup RCVR and CDU. 
4. Issue a sun search command. 

These commands reduce the chances of hav­
ing the receiver false lock (1 and 2), select those 
units that are most likely the cause of the prob­
lem (3), and initiate a reorientation back to the 
Earth-line in the event that the spacecraft has 
lost its celestial references (4). The routine then 
waits six hours, at the end of which it checks to 
determine if a valid command has been received. 
If so, the routine is exited. If not, the low-gain 
antenna is selected, and after an additional six 
hours with no commanding, the following events 
occur: 

1. Both S- and X-band transmitters are commanded 
to their low-power modes. 

2. The heater for the transmitter electronics bay is 
turned on. 

3. Commands to turn on the S- and X-band transmit­
ters are issued. 

These commands initialize the transmitter 
power/heater configuration so that subsequent 
events issued by CMDLOS do not result in too 
high a power demand from the spacecraft power 
subsystem or the subcooling of the transmitter 
electronics bay. (The yaw thruster hydrazine line 
thermally coupled to the bay could freeze, which 
would result in a loss of attitude control.) The 
rest of the events issued by CMDLOS are func­
tionally identified in Tables 15-3 and 15-4, as the 
downlink configuration events and uplink con­
figuration events, respectively. These events are 
issued in the following manner. The routine 
issues the first event from the downlink table 
waits six minutes, then issues each of the event~ 
from the uplink table on six-minute centers. 
When the routine completes the uplink table it 
selects the next entry from the downlink table 
and cycles through the' uplink table for a second 
time. This process continues until all the uplink 
events have been issued for all the downlink 
events. Before· each uplink event during the 
above process, CMDLOS checks to determine if 
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Table 15-3. CMDLOS downlink configuration 
events. 

1. Select S-band exciter # 1. * 
2. Select S-band transmitter # 2. 
3. Select S-band transmitter #2. 
4. Select S-band transmitter # 1. 
5. Tum off X-band transmitter and exciter, turn on 

transmitter bay heater. 
6. Turn off S-band transmitter and exciter. 
7. Turn on S-band transmitter and exciter. 
8. Turn on X-band transmitter and exciter, turn off 

transmitter bay heater and ultra-stable oscillator. 
9. Turn on ultra-stable oscillator. 

* All devices except the Itansmitter bay heater and ultra­
stable oscillator have redundant power relays. 

Table 154. CMDLOS uplink configuration events. 

1. Select CDU B.* 
2. Select RCVR #2.* 
3. Select CDU A.* 
4. Select HGA. 
5. Dummy command 
6. Select CDU B.* 
7. Select RCVR # 1.* 
8. Select CDU A.* 
9. Select LGA. 

10. Dummy command 
11. Dummy command 

* These functions have redundant power relays. 

a command has been received; if so, the routine 
is exited and the spacecraft is left in a command­
able state. If not, the routine continues. 

If no ground command has been received, the 
routine restarts the cyclic'tables. This time, com­
mands are issued to redundant relays to preclude 
any relay failure from preventing the attainment 
of a commandable spacecraft state. The routine 
will execute endlessly in this manner (redundant 
relays are selected only on even numbered 
cycles) until a command is received. 

IRSPWR 

The Infrared Interferometer Spectrometer and 
Radiometer Subsystems (IRIS) includes a Casse-

grain optical system and interferometer subas­
sembly whose temperatures are actively main­
tained by redundant proportional thermal 
controllers. If the operating thermal controller 
should fail, its standby redundant counterpart 
must be energized within two hours or the optics 
will supercool and become permanently mis­
aligned. The purpose of the IRSPWR routine is 
to provide on-board selection of the IRIS stand­
by heater unit should the prime unit fail. This 
routine is by far the simplest of all the fault 
routines aboard Voyager. Upon sensing a change 
in a level interrupt provided to CCS by IRIS 
(which indicates either a "normal" or "low" IRIS 
heater power supply voltage condition), the rou­
tine disables reentry, waits 60 seconds, incre­
ments the "master counter," and then examines 
the absolute state of the level input. If it is low, 
the prime supply is turned off, its backup turned 
on and the routine is exited (without re-enabling 
itself). If the level input is high, the routine re­
enables itself and exits. 

AACSIN 

AACS Power Code Processing (AACSIN) con­
trols the CCS half of the CCS/ AACS power code 
interface. Power codes are of two types: func­
tional and informational. Functional power 
codes are requests by AACS to have CCS issue 
specific commands to the power subsystem. 
There is a one-to-one relationship between func­
tional power codes and power commands, and 
no intermediate processing is required other than 
formatting the power command. Informational 
power codes are issued by AACS when certain 
events occur in AACS for which the CCS has a 
"need to know." Those related to fault condi­
tions are: 

• Heartbeat 
• Omen 
• Celestial reference loss/ acquistion 
• Power supply fail 
• Memory refresh fail 
• Thruster branch fail 
• Gyro fail 
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Scan slew abort 
Command parity error 
Command sequence error 
Bad/no echo response 
TCM burn abort 
Turn complete 

'ieartbeat. As its name implies, the Heartbeat 
s a periodic (~ 2 seconds) signal from AACS to 
:CS whose presence is an indication of a healthy 
~CS processor. If a fault occurs (hardware or 
ioftware) which stops the Heartbeat, then the 
:CS is programmed to take corrective action. 
~very ten seconds CCS checks for the reception 
)f any power code. If none have occurred, CCS 
ssues two self-test commands to AACS and 
lisables commanding through the AACS hard­
~are loader (normally not used). If two such 
~vents occur in one hour, CCS will repeat the 
·esponse above, then select and initialize the 
·edundant AACS electronics and processor. 

Omen. The Omen power code triggers the 
:CS to store the next three non-Heartbeat power 
;odes for the purpose of post-failure analysis. 
~CS issues this power code just prior to issuing 
~ach of the next nine power codes discussed 
}elow. The error-indicating power codes referred 
:0 later in the discussion of the Tandem and 
rum Support Routine (TRNSUP) are all pre­
;eded by the Omen power code. 

Celestial Reference Lossl Acquisition. Losses 
)f the Sun reference cause the CCS to select the 
ow-gain antenna (for possible uplink command­
ng while mispointed), slewing the platform so 
hat its sensitive instruments are safely pointed at 
.he calibration target and cannot view the Sun. 
~ext, the FDS is commanded to an engineering­
mly data mode so that science instruments are 
>laced in safe operating modes (high voltage off, 
~tc.). The CCS then commands the AACS to 
~xecute a set of maneuver turns which will result 
n a 4'77" steradian search for the Sun. If the search 
s unsuccessful, the backup AACS processor and 
~lectronics are selected and the search is repeat­
~d. Upon Sun acquisition, the search pattern 

terminates and the scan platform is slewed to a 
"neutral position," from which subsequent slew 
commands in the sequence can reposition it for 
science data taking. 

Loss of the star reference results in selection of 
the low-gain antenna. Reacquisition causes a 
switch back to the high-gain antenna. 

Power Supply, Memory Refresh, Thruster 
Branch, and Gyro fail. These power codes do 
not result in any special processing, but because 
they are preceded by the Omen power code, they 
are stored for subsequent diagnostics. ,. 

Scan Slew Abort. The Scan Slew Abort power 
code indicates the AACS has been unable to 
complete a platform slew within some preset 
value of time. The possible reasons for this 
include: 

• The platform has run up against a mechanical 
obstruction. 

• The electronics controlling the platform actuator 
have failed. 

• The present value was specified too low for that 
particular slew. 

The CCS response to the power code is a 
function of how many have been received in one 
hour's time. The response is summarized in the 
table below. "L" is the software constant con­
trolling the response. 

Number oj 
Aborts per 
Hour 

<L 

=L 
>L 

Scan Slew Abort Response 

In-sequence scans are inhibited 
while the platform is slewed to a 
"neutral position." In-sequence 
scans are then enabled. 

The AACS electronics are switched. 

The routine is disabled from future 
entry, in-sequence scanning is 
inhibited, and the platform is 
commanded first to a "neutral 
position," then a "safe position." 
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Command Parity Error and Command Se­
quence Error. These commands do not result 
in any special processing, but like others preced­
ed by the Omen power code, they are stored by 
CCS for subsequent readout and ground-based 
analysis. 

Bad/ No Echo Response. A feature of the 
AACS/CCS interface design is that CCS 
(through one of its processors designated as 
"prime for power codes") echoes back to AACS 
all the power codes it receives, except the Heart­
beat and NOP (all zeros). When AACS discovers 
a mismatch between a previously sent power 
code and its echo, it issues the Bad/No Echo 
Response power code. The CCS response to this 
is to designate the other CCS processor as "prime 
for power codes," then echo the Bad/No Echo 
Response power code. Like the preceding power 
codes, this one is preceded by an Omen. 

TCM Burn Abort and Turn Complete. These 
two informational power codes are used by the 
CCS routine TRNSUP. They each set an indica­
tor which is tested by TRNSUP at "turn window 
open" and "turn window close" times (see the 
description of TRNSUP that follows). 

TRNSUP. The Tandem and Turn Support Rou­
tine (TRNSUP) is employed whenever a space­
craft sequence is to be executed that requires 
maneuvering away from celestial references or 
includes a trajectory correction propulsive event. 
TRNSUP is loaded with the sequence as a utility 
routine and is called by the executing sequence 
to perform tpe following functions: 

1. To issue CCS "tandem" events. 
2. To check key fault indicators as a go/no-go test for 

subsequent sequenced events. 
3. To check for proper maneuver tum durations. 

Tandem Events. Tandem events issued by the 
CCS require that both CCS processors agree on 
the timing (within 900 msec) and content of the 
command data bits to be issued to the receiving 
subsystem (usually AACS). If either criterion is 

not met, the command is not issued, the execut­
ing sequence is halted, and a safing sequence is 
called. The function of the safing sequence is to 
assure that subsequent recovery data are record­
ed on-board, and that the spacecraft reacquire its 
celestial references. 

Checking Key fault Indicators. Whenever it is 
desired to check the status of fault indicators 
stored in CCS prior to executing an event, 
TRNSUP offers the option for the sequence to 
test for (a) prior celestial reference loss, (b) CCS 
tolerance detector trip status, and (c) error­
indicating power codes from AACS. 

If a prior reference loss has occurred, the 
sequence is terminated. If either a tolerance 
detector trip indication or an error-indicating 
power code trace is present, the sequence is 
terminated and the safing sequence is executed. 

Maneuver Turn Duration. One final capability 
that the TRNSUP affords is checking the dura­
tion of maneuver turns. The sequence can be 
designed to call TRNSUP with a "turn window 
open" and a "turn window close" event. If 
TRNSUP determines that the TURN COM­
PLETE power code from AACS has been re­
ceived at the window open time (too short a 
turn) or has not been received at window close 
time (too long a turn), the sequence is terminat­
ed, a turn abort command is issued to AACS, 
and the general safing routine is executed. 

DESIGN VALIDATION 

From the outset, when requirements were first 
being transformed into design concepts, the de­
sign validation process was at work. At each 
stage in the design of the fault algorithms (prose 
description, top-level flow chart, detailed logic 
flow, and finally, assembly language listing), the 
routines were analyzed for their completeness, 
efficiency, and mutual compatibility. Design 
groups spent hours working with failure models 
to see if the designs were adequate. Project 
reviews were conducted to scrutinize the philos-
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phy, requirements, and designs of the routines 
nd, in the process, they matured. Subsystem­
~vel testing demonstrated their compatibility 
'ith their respective computers. Most productive 
f all were the tests conducted at the systems 
~vel, where all the hardware was integrated and 
perating, and the spacecraft were subjected to 
lmulated faults. The matrix in Table 15-5 iden­
fies to test personnel the minimum number of 
~quired tests to validate the fault protection 
:>ftware design and determine its launch and 
lission readiness. For each test, a procedure was 
rritten specifying: 

· The required initial conditions (spacecraft and sup­
port equipment). 

· A detailed test script, defining event timing, and 
required reporting during the test. 

· The expected final conditions following the test. 

The combination of "initiating events" and 
'mission modes," again referring to Table 15-5, 
vas selected to place the greatest demand on 

"able 15-5. System test fault protection validation. 

~outine* Initiating Event 

CCS tolerance detector trip 
)WRCHK Inverter switch 

Undervoltage trip 

S-exciter fail 
tFLOSS S-transmitter fail 

X-exciter fail 
X -transmi tter fail 

RSPWR IRIS standby heater 

Sun loss 
~CSIN Canopus loss 

Scan slew abort 
AACS processor fail 

:MDLOS Command loss 

Tandem error 
rRNSUP Reference loss 

Undervoltage trip 
Omen power code 

computer processing time and concurrently se­
lect failure situations that were either most likely 
to occur (e.g., undervoltage trips during phases 
of lowest power margin), or present the greatest 
risk to the mission (e.g., attitude control failures 
during TCMs). 

Most "failures" during system test were in­
duced via support equipment interfaces by either 
biasing failure-detecting circuits (in the case of 
RFLOSS tests), reducing the operating power 
margin (for PWRCHK tests), or by loading data 
into CCS or AACS memory corresponding to 
software-sensed failures. Only two tests, that for 
IRSPWR and the CCS tolerance detector trip, 
required special test circuitry at the spacecraft. 

Verification of the proper failure response 
depended heavily on support equipment visibili­
ty into CCS and AACS with secondary reliance 
on the "traces" built into the routines for ex post 
facto diagnosis. Normal engineering telemetry, 
at 40 bits/second, was much too slow to see the 
fast-acting routines. In addition to si~ply verify-

Mission Mode Being Tested 

Launch Cruise TCM Encounter 

x 
x 

x x x 

x 
x 

x 
x 

x 

x 
x 

x 
x x 

x 

x 
x 
x 
x 

, The ERROR routine was validated during CCS subsystem-ievel testing. 
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ing proper event timing, it was also required to 
assure that fault routines which were designed to 
operate independently from ongoing sequences 
did not interfere with sequence execution (or 
vice versa) and that routines which were de­
signed to interrupt ongoing sequences, either 
restarted them properly (e.g., the launch se­
quence) or aborted them and safely secured the 
spacecraft (e.g., TCMs). 

The tests demonstrated that the routine struc­
tures were sound but that in a few cases, subtle 
timing problems would require modifications to 
the design. Each time a change was made to the 
software, the test was rerun. Additionally, as 
hardware or software design changes were made 
(for other reasons), the routines were reviewed 
for impact, revised if needed, and then retested. 

IN-FLIGHT EXPERIENCE 

As of this writing, there have been several occur­
rences of in-flight execution of Voyager's fault 
protection routines. The causes for these events 
fall into three categories: 

• An on-board failure or degraded performance was 
sensed and the appropriate routine was triggered. 

• Unanticipated environmental factors, not accounted 
for in the design or use of the fault routines, led to 
unexpected fault algorithm execution. 

• An error was committed in the sequence design 
process or in the conduct of the mission's real-time 
activities wherein the spacecraft's resulting perfor­
mance appeared to be abnormal, and thus activated 
a routine. 

Failures and Degraded 
Performance 

Two examples in this category are the "stuck" 
scan platform on Voyager I and the failed 
receiver on Voyager 2. In each case, the fault 
routines (the Scan Abort portion of AACSIN 
and CMDLOS, respectively) executed properly, 
providing the needed safing and corrective ac~ 
tion. 

Environmental Factors 

The Voyager fault routines were designed to be 
compatible with a spacecraft specified by its full 
set of design requirements. Some departures of 
the "as built" spacecraft from the design concept 
were uncovered during the test program and 
were either corrected or the software was modi­
fied to make accomodations where necessary. In 
two instances, however, tolerable, out-of-specifi­
cation performance didn't become evident until 
after the first spacecraft was launched. 

The incidents occurred near Earth. The Dry 
Inertial Reference Unit (DRIRU) CHECK rou­
tine (described in Fleischer [1977]) monitoring 
the spacecraft gyro performance during the as­
cent phase treated noise spikes induced by 
launch vehicle events as symptoms of a failing 
gyro. This resulted in several gyro swaps during 
the launch of Voyager 2 (launched first). The 
routine was disabled for the second launch. The 
second near-Earth event occurred as Voyager 
was jettisoning its propulsion module and de­
ploying its R TG and science booms. Large tipoff 
rates, coupled with a reaction control system 
degraded by unexpected structural plume im­
pingement, resulted in a swap of AACS thrust­
ers, electronics, and processors. The backup sys­
tem acquired its celestial references as required. 
For the second launch, the thruster monitoring 
routine was not enabled until time had passed to 
damp out tipoff-induced rates and null the asso­
ciated position errors. 

Sequence Errors 

As discussed earlier, maneuver turn durations 
are checked by TRNSUP so that turns that are 
too short or too long result in a sequence abort 
and general spacecraft safing. Early in the mis­
sion, a sequence was designed in which a space­
craft yaw turn of 10 complete revolutions was to 
be executed. The acceptable turn duration 
checked on-board was determined by ground 
software based on the latest measured gyro scale 
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actors, hence turn rates. Unfortunately, the data 
n the ground software were of insufficient accu­
acy. The difference between the actual yaw 
cale factor and the measured yaw scale factor 
vas great enough (over the course of 10 revolu­
ions) to cause the turn to last too long and abort 
he sequence. Subsequent gyro scale factor cali­
Irations prevented this problem from recurring. 

:ONCLUSIONS AND 
tECOMMENDATIONS 

:;'ault protection software, the automatic man-
1gement of spacecraft redundancy, is key to the 
lchievement of a reliable, fault-tolerant system 
lesign. It forms the bridge between a hardware 
:onfiguration that is driven by a desire to main­
ain its simplicity, and strict mission reliability 
equirements, which lead to a highly complex 
pacecraft autonomy. 

Hardware and design practice inheritance do 
Lot permit the designer to have sufficient flexibil­
ty to perform a classical top-down system de­
ign, one that reflects the "right mix" of hard­
vare and software fault tolerance functions. But 
:onstraints like these also help bound the prob­
em solutions and can force the evolution of fault 
Irotection software techniques. Fault protection 

software design must be compatible with the 
actual hardware operating characteristics. A de­
sign based on performance specifications needs to 
permit reasonable deviations from those specifi­
cations. In addition, failure thresholds should be 
set so that unacceptable performance triggers 
routine initiation, not just anomalous perfor­
mance. 

If a routine is to be active during any given 
mission phase, then it must be tested at the 
system level for proper operation during that 
phase. It should be demonstrated during the test 
that reasonable spacecraft operation does not 
invoke the routine. At the same time, the test 
must properly characterize or simulate the ex­
pected environment. 
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~bstract 

:IFT (Software Implemented Fault Tolerance) is an 
ltrareliable computer jor critical aircrajt control appli­
ations that achieves fault tolerance by the replication oj 
7sks among processing units. The main processing units 
re off-the-shelf minicomputers, with standard microcom­
uters serving as the interface to the 1/0 system. Fault 
rolation is achieved by using a specially designed redun­
'ant bus system to interconnect the processing units. 
~rror detection and analysis and system reconjiguration 
re perjormed by software. Iterative tasks are redundant­
~ executed, and the results of each iteration are voted 
pon bejore being used. Thus, any single failure in a 
rocessing unit or bus can be tolerated with triplication 
f ta.sks, and subsequent jailures can be tolerated ajter 
f?conjiguration. Independent execution by separate pro­
essors means that the processors need only be loosely 
vnchronized, and a novel fault-tolerant synchronization 
1ethod is described. The SIFT software is highly struc­
'.Ired and is jormally specified using the SRI-developed 
:PECIAL language. The correctness of SIFT is to be 
roved using a hierarchy of formal models. A Markov 
wdel is used both to analyze the reliability of the system 
nd to serve as the jormal requirement jor the SIFT 
esign. Axioms are given to characterize the high-level 
ehavior of the system, from which a correctness state-
1ent has been proved. An engineering version oj SIFT is 
urrently being built. 

NTRODUCTION 

'his paper describes ongoing research whose 
oal is to build an ultrareliable fault-tolerant 

1978 IEEE. Reprinted, with permission, from Proceedings 
(the IEEE, Vol. 66, No. 10, October 1978, pp. 1240-1255. 
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computer system named SIFT (Software Imple­
mented Fault Tolerance). In this introduction, 
we describe the motivation for SIFT and provide 
some background for our work. The remainder 
of the paper describes the actual design of the 
SIFT system. The second section gives an over­
view of the system and describes the approach to 
fault tolerance used in SIFT. The third and 
fourth sections describe the SIFT hardware and 
software, respectively. The fifth section discusses 
the proof of the correctness of SIFT. 

Motivation 

Modem commercial jet transports use computers 
to carry out many functions, such as navigation, 
stability augmentation, flight control, and system 
monitoring. Although these computers provide 
great benefits in the operation of the aircraft, 
they are not critical. If a computer fails, it is 
always possible for the aircrew to assume its 
function, or for the function to be abandoned. 
(This may require significant changes, such as 
diversion to an alternative destination.) NASA, 
in its Aircraft Energy Efficiency (ACEE) Pro­
gram, is currently studying the design of new 
types of aircraft to reduce fuel consumption. 
Such aircraft will operate with greatly reduced 
stability margins, which means that the safety of 
the flight will depend upon active controls de­
rived from computer outputs. Computers for this 
application must have a reliability that is compa­
rable with other parts of the aircraft. The fre­
quently quoted reliability requirement is that the 
probability of failure should be less than 10-9 

per hour in a flight of ten hours duration. A good 
review of the reliability requirements associated 
with flight control computers appears in Murray, 
Hopkins, and Wensley [1977]. This reliability 
requirement is similar to that demanded for 
manned space-flight systems. 

A highly reliable computer system can have 
applications in other areas as ·well. In the past, 
control systems in critical industrial applications 
have not relied solely on computers, but have 

used a combination of human and computer 
control. With the need for faster control loops, 
and with the increased complexity of modern 
industrial processes, computer reliability has be­
come extremely important. A highly reliable 
computer system developed for aircraft control 
can be used in such applications as well. Our 
objective in designing SIFT is to achieve the 
reliability required by these applications in an 
economic manner. Moreover, we want the result­
ing system to be as flexible as possible, so it can 
be easily adapted to changes in the problem 
specification. 

When failure rates are extremely small, it is 
impossible to determine their values by testing. 
Therefore, testing cannot be used to demonstrate 
that SIFT meets its reliability requirements. It is 
necessary to prove the reliability of SIFT by 
mathematical methods. The need for such a 
proof of reliability has been a major influence on 
the design of SIFT. 

Background 

Our work on SIFT began with a study of the 
requirements for computing in an advanced 
commercial transport aircraft [Ratner et aI., 
1973; Wensley et aI., 1973]. We identified the 
computational and memory requirements for 
such an application and the reliability required 
for the safety of the aircraft. The basic concept 
of the SIFT system emerged from a study of 
computer architectures for meeting these re­
quiremen~s. 

The second phase in the development of the 
SIFT system, which has just been completed, 
was the complete design of the hardware and 
software systems [Wensley, 1972; Wensley et aI., 
1976]. This design has been expressed formally 
by rigorous specifications that describe the func­
tional intent of each part of the system. A major 
influence during this phase was the Hierarchical 
Design Methodology developed at SRI [Robin­
son et at, 1976]. A further influence has been the 
need to use formal program proving techniques 



:0 ensure the correctness of the software design. 
The current phase of the development calls for 

:he building of an engineering model and the 
;arrying out of tests to demonstrate its fault­
:olerant behavior. The engineering model is in­
:ended to be capable of carrying out the ca1cula­
:ions required for the control of an advanced 
;ommercial transport aircraft. SRI is responsible 
~or the overall design, the software, and the 
:esting, while the detailed design and construc­
:ion of the hardware is being done by Bendix 
:orporation. The engineering model is sched­
lIed to be built by the middle of 1979, with 
:esting to be completed by the end of that year. 
Work is also continuing at SRI on proving the 
~orrectness of the system. 

The study of fault-tolerant computing has in 
the past concentrated on failure modes of com­
)onents, most of which are no longer relevant. 
fhe prior work on permanent "stuck-at-one" or 
"stuck-at-zero" faults on single lines is not ap­
propriate for considering the possible failure 
modes of modern LSI circuit components, which 
~an be very complex and affect the performance 
Jf units in very subtle ways. Our design ap­
proach makes no assumptions about the failure 
modes. We distinguish only between failed and 
tlonfailed units. Since our primary method for 
ietecting errors is the corruption of data, the 
particular manner in which the data are corrupt­
;!d is of no importance. This has important 
:;onsequences for failure-modes-and-effects anal­
ysis (FMEA), which is only required at the 
lnterface between units. The rigorous, formal 
~pecification of interfaces enables us to deduce 
the effects on one unit of improper signals from 
a faulty unit. 

Early work on fault-tolerant computer systems 
llsed fault detection and reconfiguration at the 
level of simple devices such as flip-flops and 
adders. Later work considered units such as 
registers or blocks of memory. With today's LSI 
llnits, it is no longer appropriate to be concerned 
with such small subunits. The unit of fault 
detection and of reconfiguration in SIFT is a 
processor/memory module or a bus. 
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Several low-level techniques for fault toler­
ance, such as error detection and correction 
codes in memory, are not included in the design 
of SIFT. Such techniques could be incorporated 
in SIFT, but would provide only a slight im­
provement in reliability. 

SIFT CONCEPT OF FAULT 
TOLERANCE 

System Overview 

As the name "Software Implemented Fault Tol­
erance" implies, the central concept of SIFT is 
that fault tolerance is accomplished as much as 
possible by programs rather than hardware. This 
includes error detection and correction, diagno­
sis, reconfiguration, and the prevention of a 
faulty unit from having an adverse effect on the 
system as a whole. 

The structure of SIFT hardware is shown in 
Figure 16-1. Computing is carried out by the 
main processors. Each processor's results are 
stored in a main memory that is uniquely asso­
ciated with the processor. A processor and its 
memory are connected by a conventional high 
bandwidth connection. The I/O processors and 
memories are structurally similar to the main 
processors and memories, but are of much smal­
ler computational and memory capacity. They 
connect to the input and output units of the 
system which, for this application, are the sen­
sors and actuators of the aircraft. 

Each processor and its associated memory 
form a processing module, and each of the mod­
ules is connected to a multiple bus system. A 
faulty module or bus is prevented from causing 
faulty behavior in a nonfaulty module by the 
fault isolation methods described in the next 
section. 

The SIFT system executes a set of tasks, each 
of which consists of a sequence of iterations. The 
input data to each iteration of a task are the 
output data produced by the previous iteration 
of some collection of tasks (which may include 
the task itself). The input and output of the 
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Figure 16-1. Structure of the SIFT system. 
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entire system is accomplished by tasks executed 
in the I/O processors. Reliability is achieved by 
having each iteration of a task independently 
executed by a number of modules. After execut­
ing the iteration, a processor places the itera-' 
tion's output in the memory associated with the 
processor. A processor that' uses the output of 
this iteration determines its value by examining 
the output generated by each processor which 
executed the iteration. Typically, the value is 
chosen by a "two out of three" vote. If all copies 
of the output are not identical, then an error has 
occurred. Such errors are recorded in the pro­
cessor's memory, and these records are used by 
the executive system to determine which units 
are faulty. 

SIFT uses the iterative nature of the tasks to 
economize on the amount of voting, by voting on 
the state data of the aircraft (or the computer 
system) only at the beginning of each iteration. 

This produces less data flow along the buses than 
with schemes that vote on the results of all 
calculations performed by the program. It also 
has important implications for the problem of 
synchronizing the different processors. We must 
ensure only that the different processors allocat­
ed to a task are executing the same iteration. 
This means that the processors need be only 
loosely synchronized (e.g., to within 50 p.s,), so 
we do not need tight synchronization to the 
instruction or clock interval. 

An important benefit of this loose synchroni­
zation is that an iteration of a task can be 
scheduled for execution at slightly different times 
by different processors. Simultaneous transient 
failures of several, processors will, therefore, be 
less likely to produce correlated failures in the 
replicated versions of a task. 

The number of processors executing a task can 
vary with the task, and can be different for the 
same task at different times-e.g., if a task that is 
not critical at one time becomes critical at anoth­
er time. The allocation of tasks to modules is in 
general different for each module. It is deter­
mined dynamically by a task called the global 
executive, which diagnoses errors to determine 
which modules and buses are faulty. When the 
global executive decides that a module has be­
come faulty, it "reconfigures" the system by 
appropriately changing the allocation of tasks to 
modules. The global executive and its interaction 
with the individual processors is described in the 
fourth section. 

Fault Isolation 

An important property required in all fault­
tolerant computers is that of fault isolation: 
preventing a faulty unit from causing incorrect 
behavior in a nonfaulty unit. Fault isolation is a 
more general concept than damage isolation. 
Damage isolation means preventing physical 
damage from spreading beyond carefully pre­
scribed boundaries. Techniques for damage iso­
iation include physical barriers to prevent prop': 



gation of mechanical and thermal effects and 
lectrical barriers-e.g., high-impedance electri­
al connections and optical couplers. In SIFT, 
uch damage isolation is provided at the bound­
ries between processing modules and buses. 

Fault isolation in SIFT requires not only dam­
ge isolation, but also preventing a faulty unit 
rom causing incorrect behavior either by cor­
upting the data of the nonfaulty unit, or by 
,roviding invalid control signals. The control 
ignals include those that request service, grant 
ervice, effect timing synchronization between 
mits, etc. 

Protection against the corruption of data is 
Irovided by the way in which units can commu­
licate. A processing module can read data from 
. ny processing module's memory, but it can 
{rite only into its own memory. Thus a faulty 
Irocessor can corrupt the data only in its own 
rlemory, and not in that of any other processing 
rlodules. All faults within a module are treated 
.s if they have the same effect: namely, that they 
Iroduce bad data in that module's memory. The 
ysteni does not attempt to distinguish the nature 
If a module fault. In particular, it does not 
listinguish between a faulty memory and a pro­
essor that puts bad data into an otherwise 
lonfaulty memory. 

Note that a faulty processor can obtain bad 
lata if those data are read from a faulty proces­
ing module or over a faulty bus. Preventing 
hese bad data from causing the generation of 
ncorrect results is discussed below in the section 
m Fault Masking. 

Fault isolation also requires that invalid con­
rol signals not produce incorrect behavior in a 
lonfaulty unit. In general a faulty set of control 
ignals can cause two types of faulty behavior in 
.nother unit. 

The unit carries out the wrong action (possibly by 
doing nothing). 
The unit does not provide service to other units. 

In SIFT these two types of fault propagation 
lre prevented by making each unit autonomous, 
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with its own control. Improper control signals 
are ignored, and time-outs are used to prevent 
the unit from "hanging up" waiting for a signal 
that never arrives. The details of how this is done 
are discussed in the third section. 

Fault Masking 

Although a faulty unit cannot cause a nonfaulty 
processor to behave incorrectly, it can provide 
the processor with bad data. In order to com­
pletely mask the effects of the faulty unit, we 
must ensure that these bad data do not cause the 
processor to generate incorrect results. As we 
indicated above, this is accomplished by having 
the processor receive multiple copies of the data . 
Each copy is obtained from a different memory 
over a different bus, and the processor uses 
majority voting to obtain a correct version of the 
data. The most common case will be the one in 
which a processor obtains three copies of the 
data, providing protection from a single faulty 
unit. 

After identifying the faulty unit, the system 
will be reconfigured to prevent that unit from 
having any further effect. If the faulty unit is a 
processing module, then the tasks that were 
assigned to it will be reassigned to other mod­
ules. If it is a bus, then processors will request 
their data over other buses. After reconfigura­
tion, the syste·m will be able to withstand a new 
failure-assuming that there are enough non­
faulty units remaining. 

Because the number of processors executing a 
task can vary with the task and can be changed 
dynamically, SIFT has a flexibility not present in 
most fault tolerant systems. The particular appli­
cation field-aircraft control-is one in which 
different computations are critical to different 
degrees, and the design takes advantage of this. 

Scheduling 

.The aircraft control function places two types of 
timing requirements on the SIFT system. 
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• Output to the actuators must be generated with 
specified frequency. 

• Transport delay-the delay between the reading of 
sensors and the generation of output to the actuators 
based upon those readings-must be kept below 
specified limits. 

To fulfill these requirements, an iteration rate 
is specified for each task. The scheduling strategy 
must guarantee that the processing of each itera­
tion of the task will be completed within the 
"time frame" of that iteration. It does not matter 
when the processing is performed, provided that 
it is completed by the end of the frame. More­
over, the time needed to execute an iteration of 
a task is highly predictable. The iteration rates 
required by different tasks differ, but they can be 
adjusted somewhat to simplify the scheduling. 

Four scheduling strategies were considered for 
SIFT: 

• fixed preplanned (nonpreemptive) scheduling; 
• priority scheduling; 
• deadline scheduling; and 
• simply periodic scheduling. 

Of these, fixed preplanned scheduling in which 
each iteration is run to completion, traditional 
in-flight control applications, was rejected be­
cause it does not allow sufficient flexibility. 

The priority-scheduling strategy, commonly 
used in general-purpose systems, can meet the 
real-time requirements if the tasks with the fas­
test iteration rates are given the highest priorities. 
Under this condition, it is shown in Melliar­
Smith [1977] that all tasks will" be processed 
within their frames, for any pattern of iteration 
rates and processing times-provided the proces­
sing load does not exceed In (2) of the capacity 
of the processor (up to about 70 percent loading 
is always safe). 

The deadline-scheduling strategy always runs 
the task whose deadline is closest. It is shown in 
Melliar-Smith [1977] that all the tasks will be 
processed within their time frames provided the 
workload does not exceed the capacity of the 
processor (100 percent loading is permissible). 

Unfortunately, for the brief tasks characteristic 
of flight-control applications, the scheduling 
overhead eliminates the advant~ges of this strat­
egy. 

The simply periodic strategy is similar to the 
priority strategy, but the iteration rates of the 
tasks are constrained so that each iteration rate 
is an integral multiple of the next smaller rate 
(and thus of all smaller rates). To comply with 
this requirement, it may be necessary to run 
some tasks more frequently than their optimum 
rate, but this is permissible in a flight control 
system. It is shown in Melliar-Smith [1977] that 
if the workload does not exceed the capacity of 
the processor (100 percent loading is possible), 
then simply periodic scheduling guarantees that 
all tasks will complete wi thin their frames. 

The scheduling strategy chosen for the SIFT 
system is a slight variant of the simply periodic 
method, illustrated by Figure 16-2. Each task is 
assigned to one of several priority levels. Each 
priority level corresponds to an iteration rate, 
and each iteration rate is an integral multiple of 
the next lower one. In order to provide very 
small transport delays for certain functions, and 
to allow rapid detection of any fault which 
causes a task not to terminate, the scheme illus­
trated in Figure 16-2 is modified as follows. The 
time frame corresponding to highest priority 
level (typically 20 ms) is divided into a number 
of subframes (typically 2 ms). The highest prior­
ity tasks are run in specific subframes, so that 
their results can be available to other tasks run in 
the next subframe, and they are required to 
complete within one subframe. 

Processor Synchronization 

The SIFT inter task and interprocessor commu­
nication mechanism allows a degree of asyn­
chronism between processors and avoids the 
lockstep traditional in ultrareliable systems. Up 
to 50 p,s of skew between processors can readily 
be accommodated, but even this margin cannot 
be assured over a ten-hour period with free-
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Figure 16-2. A typical schedule. 

~unning clocks unless unreasonable requirements 
ire imposed on the clocks. Thus, the processors 
nust periodically resynchronize their clocks to 
msure that no clock drifts too far from any 
)ther. 

For reliability, the resynchronization proce­
lure must be immune to the failure of anyone 
;lock or processor, and to a succession of failures 
)Ver a period of time. In order to guarantee the 
ligh reliability required of SIFT, we cannot 
illow a system failure to be caused by any 
;ondition whose probability cannot be quanti­
ied, regardless of how implausible that condi­
:ion may seem. This means that our synchroni­
~ation procedure must be reliable in the face of 
:he worst possible behavior of the failing compo­
lent, even though that behavior may seem un­
~ealistically malicious. We can only exclude be­
lavior which we can prove to be sufficiently 
.mprobable. 

The traditional clock resynchronization algo­
;thm for reliable systems is the median clock 
ilgorithm, requiring at least three clocks. In this 

algorithm, each clock observes every other clock 
and sets itself to the median of the values that it 
sees. The justification for this algorithm is that, 
in the presence of only a single fault, the median 
value must either be the value of one of the valid 
clocks or else it must lie between a pair of valid 
clock values. In either case, the median is an 
acceptable value for resynchronization. The 
weakness of this argument is that the worst 
possible failure modes of the clock may cause 
other clocks to observe different values for the 
failing clock. Even if the clock is read by sensing 
the time of a pulse waveform, the effects of a 
highly degraded output pulse and the inevitable 
slight differences between detectors can result in 
detection of the pulse at different times. 

In the presence of a fault that results in other 
clocks seeing different values for the failing 
clock, the median resynchronization algorithm 
can lead to a system failure. Consider a system 
of three clocks A, B, and C, of which C is faulty. 
Clock A runs slightly faster than clock B. The 
failure mode of clock C is such that clock A sees 
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a value for clock C that is slightly earlier than its 
own value, while clock B sees a value for clock C 
that is slightly later than its own value. Clocks A 
and B both correctly observe that the value of 
clock A is earlier than the value of clock B. In 
this situation, clocks A and B will both see their 
own value as the median value, and therefore not 
change it. Both the good clocks A and Bare 
therefore resynchronizing onto themselves, and 
they will slowly drift apart until the system fails. 

It might be hoped that some relatively minor 
modification to the median algorithm could 
eliminate the possibility of such system failure 
modes. However, such hope is groundless. The 
type of behavior exhibited by clock C above will 
doom to failure any attempt to devise a reliable 
clock resynchronization algorithm for only three 
clocks. It can be proved that, if the failure-mode 
behavior is permitted to be arbitrary, then there 
cannot exist any reliable clock resynchronization 
algorithm for three clocks. The impossibility of 
obtaining exact synchronization with three 
clocks is proved in [Pease, Shostak, and Lam­
port, 1980]. The impossibility of obtaining even 
the approximate synchronization needed by 
SIFT has also been proved, but the proof is too 
complex to present here and will appear in a 
future paper. The result is quite general'and 
applies not only to_ clocks, but to any type of 
integrator which is subject to minor perturba­
tions as, for example, inertial navigation systems. 

Although no algorithm exists for three clocks, 
we have devised an algorithm for four or more 
clocks which makes the system immune to the 
failure of a single clock. The algorithm has been 
generalized to allow the simultaneous failure of 
M out of N clocks when N > 3 M. Here, we only 
describe the single-failure algorithm, without 
proving it correct. (Algorithms of this type often 
contain very subtle errors, and extremely rigor­
ous proofs are needed to ensure their correct­
ness.) The general algorithm, and the proof of its 
correctness, can be found in Pease, Shostak, 
and Lamport [1980]. 

The algorithm is carried out in two parts. In 

the first part, each clock* computes a vector of 
clock values, called the interactive consistency 
vector, having an entry for every clock. In the 
second part, each clock uses the interactive con­
sistency vector to compute its new value. 

A clock p computes its interactive consistency 
vector as follows. The entry of the vector corre­
sponding to p itself is set equal to p's own clock 
value. The value for the entry corresponding to 
another processor q is obtained by p as follows. 

1. Read q's value from q. 
2. Obtain from each other clock r the value of q that 

r read from q. 
3. If a majority of these values agree, then the majori­

ty value is used. Otherwise, the default value NIL 
(indicating that q is faulty) is used. 

One can show that if at most one of the clocks is 
faulty, then: 1) each nonfaulty clock computes 
exactly the same interactive consistency vector; 
and 2) the component of this vector correspond­
ing to any nonfaulty clock q is q's actual value. 

Having computed the interactive consistency 
vector, each clock computes its new value as 
follows. Let 8 be the maximum amount by which 
the values. of nonfaulty processors may disagree. 
(The value of 8 is known in advance, and de­
pends upon the synchronization interval and the 
rate of clock drift.) Any component that is not 
within 8 of at least two other components is 
ignored, and any NIL component is ignored. 
The clock then takes the median value of the 
remaining components as its new value. 

Since each nonfaulty clock computes exactly 
the same interactive consistency vector, each will 
compute exactly the same median value. More­
over, this value must be within 8 of the original 
value of each nonfaulty clock. 

This is the basic algorithm that the SIFT 
processors will use to synchronize their clocks. 
Each SIFT processor reads the value of its own 
clock directly, and reads the value of another 

• In the following discussion, a clock is assumed to be 
capable of logical operations. In SIFT, such a clock is 
actually a processor and its internal clock. 



Irocessor's clock over a bus. It obtains the value 
l1at processor r read for processor q's clock by 
eading from processor r's memory over a bus. 

teliability Prediction 

~ sufficiently catastrophic sequence of compo­
lent failures will cause any system to fail. The 
:IFT system is designed to be immune to certain 
lkely sequences of failures. To guarantee that 
:IFT meets its reliability goals, we must show 
hat the probability of a more catastrophic se­
[uence of failures is sufficiently small. 

The reliability goal of the SIFT system is to 
.chieve a high probability of survival for a short 
leriod of time-e.g., a ten-hour flight-rather 
han a large mean time before failure (MTBF). 
;'or a flight of duration T, survival will occur 
mless certain combinations of failure events 
Iccur within the interval T or have already 
Iccurred prior to the interval T and were unde­
ected by the initial checkout of the system. 
)perationally, failures of the latter type are 
ndistinguishable from faults that occur during 
he interval T. 

To estimate the probability of system failure 
ve use a finite-state Markov-like reliability model 
n which the state transitions are caused by the 
:vents of fault occurrence, fault detection, and 
ault "handling." The combined probability of 
.11 event sequences that lead to a failed state is 
he system failure probability. A design goal for 
aFT is to achieve a failure rate of 10-9 per hour 
or a ten-hour period. 

For the reliability model, we assume that 
lardware fault events and electrical transient 
ault events are uncorrelated and exponentially 
listributed in time (constant failure rates). These 
.ssumptions are believed to be accurate for 
lardware faults because the physical design of 
he system prevents fault propagation between 
unctional units (processors and buses) and be­
:ause a multiple fault within one functional unit 
s no more serious than a single fault. The model 
lssumes that all failures are permanent (for the 
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duration of the flight), so it does not consider 
transient errors. The effects of uncorrelated tran­
sient errors are masked by the executive system, 
which requires a unit to make multiple errors 
before it considers the unit to be faulty. It is 
believed that careful electrical design can pre­
vent correlation of transient errors between func­
tional units. The execution of critical tasks in 
"loose" synchronism also helps protect against 
correlation of fast transient errors. Failure rates 
for hardware have been estimated on the basis of 
active component counts, using typical reliability 
figures for similar hardware. For the main pro­
cessors, we obtain the rate 10-4 per hour; for 
I/O processors and buses, we obtain 10-5 per hour. 

For a SIFT system with about the same num­
ber of main processing modules, I/O processing 
modules, and buses, it can be shown that the 
large difference in failure rates between a main 
processing module and an I/O processing mod­
ule or bus implies that we need only consider 
main processing module failures in our calcula­
tions. We can therefore let the state of the system 
be represented in the reliability model as a triple 
of integers (h, d,j) with h < d < j, where such a 
state represents a situation in which j failures of 
individual processors have occurred, d of those 
failures have been detected, and h of these 
detected failures have been "handled" by recon­
figuration. There are three types of possible state 
transitio.n . 

• (h,d,J) ~ (h,d,J + 1), representing the failure of a 
processor 

• (h,d,J) ~ (h,d + 1,J), d < J, representing the de­
tection of a failure 

• (h,d,J) ~ (h + l,d,J), h < d, representing the 
handling of a detected failure 

This is illustrated in Figure 16-3 . 
The first two types of transition-processor 

failure and failure detection, represented in Fig­
ure 16-3 by straight arrows-are assumed to 
have constant probabilities per unit time. How­
ever, the third type of transition-failure han­
dling, represented in Figure 16-3 by wavy 
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Transitions: 

ft = fault occurrence 

fd = fault detection 

fh = fault handling 

* = double fault 

"'-

Figure 16-3. The reliability model. 

arrows-represents the completion of a realloca­
tion procedure. We assume that this transition 
must occur within some fixed length of time T. 

A state (h,d,J) with h < d represents a situa­
tion in which the system is reconfiguring. To 
make the system immune to an additional failure 
while in this state is a difficult problem, since it 
means that the procedure to reconfigure around 
a failure must work despite an additional, unde­
tected failure. Rather than assuming that this 
problem could be solved, we took the approach 
of trying to insure that the time T that the system 
remains in such a state is small enough to make 
it highly unlikely for an additional failure to 
occur before reconfiguration is completed. We 
therefore made the pessimistic assumpfion that a 
processor failure which occurs while the system 
is reconfiguring will cause a system failure. Such 

Table 16-1. Failure probabilities for as-processor 
system. (T = 10 hours.) 

Failure Cause 

Exhaustion of spares 

Double fault (T = lOOms.) 

Double fault (T = 1 sec.) 

Failure Probability 

5 X 10-12 

7 X 10-11 

7 X 10- 10 

failures are represented by the "double-fault" 
transitions indicated by asterisks in Figure 16-3. 
In our calculations, we assume that each of these 
transitions results in a system failure. 

We have calculated the probability of system 
failure through a double fault transition, and 
also through reaching a state with fewer than two 
nonfaulty processors, for which we say that the 
system has failed because it has "run out of 
spares."* A brief summary of these failure prob­
abilities for a five processor system is shown in 
Table 16-1. 

THE SIFT HARDWARE 

The SIFT system attempts to use standard units 
whenever possible. Special design is needed only 
in the bus system and in the interfaces between 
the buses and the processing modules. 

The major parameters of the SIFT system are 
shown in Table 16-2. The column heading "En­
gineering Model" indicates the system intended 
for initial construction, integration, and testing. 
The column heading "Maximum" indicates the 
limits to which the engineering model can be 
expanded with only the procurement of addi­
tional equipment. 

As described in the previous section, the fault­
tolerant properties of SIFT are based on the 
interconnection system between units and upon 
the software system. The particular design of the 
processors and memories is irrelevant to our­
discussion of fault tolerance. We merely mention 
that the main processors and memories are based 
on the BDmicroX computer-a modern, LSI­
based 16-bit computer designed and manufac­
tured by Bendix Corporation specifically for 
avionics or similar applications. The I/O pro­
cessors are based upon the well-known 8080 
microprocessor architecture. 

To help the reader understand the operation 

* The probability of system failure because of mUltiple 
undetected faults has not been computed precisely, but is 
expected to be comparable ta the double fault values. 



"able 16-2. Major parameters of the SIFT system, 
!ngineering model. 

~stem Parameters Engineering Model Maximum 

Main processors 5* 8 

Main memories 5 8 

I/O processors 5 8 

I/O memories 5 8 

Buses 5 8 

External inter- 5 8 
faces 

~ain processors 

Word length 16 bits Same 

Addressing 32K words 64K 
capability 

Speed 500K IPS Same 

Arithmetic Fixed point Same 
modes Double length 

Floating point 

Type Bendix BD/L Same 

~ain Memories 

Word length 16 bits Same 

Capacity 32K words 64K 

Type Semiconductor Same 
RAM** 

/0 Processors 

Word length 8 bits Same 

Type Intel 8080 Same 

/0 Memories 

Word length 8 bits Same 

Capacity 4K bytes Same 

~uses 

Speed < 10 microsec. per Same 
word 

Bit serial 

/0 Interfaces 

Type 1553A MILSTD Same 

, In addition, a spare unit of each type is to be built. 
'*Program memory would be read only memory (ROM) for 

actual flight use. 
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Figure 16-4. An abstract view of data transfers. 

of the units and their interaction with one anoth­
er, we describe the operation of the interconnec­
tion system in abstract terms. Figure 16-4 shows 
the connections among processors, buses, and 
memories. The varying replications of these con­
nections are shown for each type of unit. Within 
each unit are shown a number of abstract regis­
ters that contain data or control information. 
Arrows that terminate at a register indicate the 
flow of data to the register. Arrows that termi­
nate at the boundary of a unit indicate control 
signals for that unit. 

We explain the operation of the interconnec-
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tion system by describing how a processor p 
reads a word of data from location w of memory 
m via bus b. We assume normal operation, in 
which no errors or time-outs occur. Processor p 
initiates the READ operation by putting m and w 
into the register PREQUEST (p, b). Note that every 
processor has a separate PREQUEST register for 
each bus to which it is connected. When this 
register is loaded, a BUS REQUEST line is set to· 
request attention from the appropriate bus. The 
processor must now wait until the requested bus 
and memory units have completed their part of 
the operation. 

Each bus unit contains a counter-driven scan­
ner that continuously scans the PREQUEST and 
BUSREQUEST lines from processors. When the 
scanner finds a processor that requires its atten­
tion (BUSREQUEST high), it stops and the bus is 
said to have been seized by that processor. The 
bus's counter then contains the identifying num­
ber of the processor that has seized it. When 
seized, the bus transfers the value w from the 
processor to a register connected to memory m. 
When this transfer has been completed, the 
MEMREQUEST line is raised calling for attention 
from the memory. The bus then waits for the 
memory to complete its actions. 

Memory units contain counter-driven scan­
ners that operate in the same manner as those in 
the bus units-i.e., they continuously scan all 
buses to determine which of them (if any) is 
requesting service. When a request is detected, 
the memory is said to be seized, and it reads the 
value w from the bus. The memory then reads 
the contents of its location w into MEMDATA 

register, and raises the MEMREAD line to inform 
the bus that the data are available. The memory 
leaves the state of MEMDATA and MEMREAD un­
changed until it detects that the MEMREQUEST line 
from the bus has dropped, indicating that the 
bus has received the data from the MEMDATA 

register. The memory then drops the MEMREAD 

line and resumes scanning the buses for futher 
requests. 

When. the bus detects that the MEMREAD line 
from the memory is up, it transfers the data in. 
the MEMDATA register to the BUSDATA register, 

drops the MEMREQUEST line, and raises the DA­

TAREADY line-indicating to the processor that 
the data are available. The bus leaves the state of 
the BUSDATA and DATAREADY lines unchanged 
until it detects that the BUSREQUEST line from the 
processor has dropped, indicating that the pro­
cessor has received the data word. The bus then 
drops the DATAREADY line and resumes scanning 
the processors for further requests. 

Meanwhile, the processor that made the origi­
nal request has been waiting for the DATAREADY 

line to be raised by the bus, at which time it 
reads the data from the BUSDATA register. After 
completing this read, it drops the BUS REQUEST 

line and continues with other operations. 
These actions have left the units in their 

original states. They are therefore ready to take 
part in other data transfer operations. 

The precise behavior of the units can be 
described by abstract programs. Table 16-3 is an 
abstract program for the processor to bus inter­
face unit. * It shows the unit's autonomous con­
trol, and the manner in which the unit requests 
service. Note how time-outs are used to prevent 
any kind of bus or memory failure from "hang­
ing up" the unit. Abstract programs for the other 
units are similar. 

The interconnection system units designed 
especially for the SIFT system are: 

1. the processor-to-bus interfaces; 
2. the buses; 
3. the bus-to-memory interfaces. 

These units all operate autonomously and 
contain their own control, which is implemented 
as a simple microprogrammed controller. For 
example, the bus control scanner that detects the 
processors' requests for service is controlled by a 
microprogram in a programmable read-only 
memory (PROM). The contents of this PROM 
are used for two purposes: first, part of the data 
is fed back to the PROM's address register to 
determine which word of the PROM is to be 
read next; second, part of the data is used as 

* This program is only meant to illustrate the unit's main 
features; it does not accurately describe the true behavior 
of the unit. 



SIFT: A COMPUTER FOR AIRCRAFT CONTROL 571 

Table 16-3. Abstract program for processor-to-bus interface unit. 

Data: 
READIN(p,b) 
A set of registers, one for each bus b, that receive data read from another processor. 

PREQUEST(p,b) 
A set of registers, one for each bus b, that hold the parameters of a request to read 
one word from another module's memory over that bus. 

BUSREQUEST(P,b) 
A set of booleans that indicate a request from bus b. 

A constant that is the maximum time a processor will wait for a bus action. 

BUS FAIL(P,b) 
A boolean indicating that processor p timed-out before receiving data from bus b. 

External Data (generated by other units): 
DATAREADY, BUSDATA from BUS module 

Abstract Program: 
REQUEST(P,b) := m,w 
D:= REALTIME 
WAIT ON (DATAREADY (b) OR REALTIME> (D + - - -)) 
IF DATA READY (b) 

THEN BEGIN READIN(p,b) := BUSDATA(b) 
BUSREQUEST(P,b) := FALSE 
WAIT ON ((DATA READY = FALSE) 

OR (REALTIME> (D + - - -) 
END 

ELSE BEGIN BUS REQUEST: = FALSE 
BUSFAIL(p,b) : = TRUE 

END 

logic signals that control the operation of the 
unit in which the PROM resides. For example, 
this second part could contain data to open gates 
to allow the flow of information from one unit to 
another. Input signals to the controller are ap­
plied to some of the bits of the PROM's address 
register, thereby affecting which PROM words 
are read. 

The interface units (items 1 and 3 above) 
consist mainly of a few registers, the controller, 
and the gates necessary to effect the data flow. 
The bus with its controller (item 2) contains a 
larger set of such gates, since each bus can allow 
data flow from every memory to every processor. 
We estimate that the complexity of a bus unit, 

consisting of a bus together with all its interfaces, 
is about 10 percent of that of a main processing 
module. The logical structure is such that an LSI 
version of an entire bus unit will be practical for 
future versions of SIFT. However, the engineer­
ing model will be a mixture of LSI and MSI 
(medium scale integration) technology. 

The design of the interfaces permits simultane­
ous operation of all units. For example, a pro­
cessor can simultaneously read data from its 
memory and from another memory, while at the 
same time another processor is reading from the 
first processor's memory. Such simultaneous 
operation is limited only by contention at a 
memory unit. This contention is handled by 
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conventional cycle-stealing techniques and caus­
es little delay, since the memory cycle time is 
small (250 ns) compared to the time needed to 
transfer a full word through the bus (IO p.s). 

Since several processors may attempt to seize 
the same bus, or several buses may attempt to 
seize the same memory, a processor can have to 
wait for the completion of one or more other 
operations before receiving service. Such waiting 
should be insignificant because of the small 
amount of data that is transmitted over the 
buses. 

THE SOFTWARE SYSTEM 

The software of SIFT consists of the application 
software and the executive software. The appli­
cation software performs the actual flight control 
computations. The executive software is respon­
sible for the reliable execution of the application 
tasks, and implements the error detection and 
reconfiguration mechanisms discussed in the sec­
ond section. Additional support software to be 
run on a large support computer is also provided. 

From the point of view of the software, a 
processing module-with its processor, memory, 
and assocated registers-is a single logical unit. 
We will therefore simply use the term "pro­
cessor" to refer to a processing module for the 
rest of the paper. 

The Application Software 

The application software is structured as a set of 
iterative tasks. As described in the subsection on 
Scheduling, each task is run with a fixed iteration 
rate which depends upon its priority. The itera­
tion rate of a higher priority task is an integral 
multiple of the iteration rate of any lower prior­
ity task. Every task's iteration rate is a simple 
fraction of the main clock frequency. 

The fact that a task is executed by several 
processors is invisible to the application soft­
ware. In each iteration, an application task ob­
tains its inputs by executing calls to the executive 

software. After computing its outputs, it makes 
them available as inputs to the next iteration of 
tasks by executing calls to the executive soft­
ware. The input and output of a task iteration 
will consist of at most a few words of data. 

The SIFT Executive Software 

Formal specifications of the executive software 
have been written in a rigorous form using the 
SPECIAL language [Robinson and Roubine, 
1977] developed at SRI. These formal specifica­
tions are needed for the proof of the correctness 
of the system discussed in the next section. 
Moreover, they are also intended to force the 
designer to produce a well-structured system. 
Good structuring is essential to the success of 
SIFT. A sample of these SPECIAL specifications 
is given in the Appendix. The complete formal 
specification is omitted from this paper. Instead, 
we informally describe the important aspects of 
the design. 

The SIFT executive software performs the 
following functions: 

1. run each task at the required iteration rate; 
2. provide correct input values for each iteration of a 

critical task (masking any errors); 
3. detect errors and diagnose their cause; 
4. reconfigure the system to avoid the use of failed 

components. 

To perform the last three functions, the exec­
utive software implements the techniques of re­
dundant execution and majority voting de­
scribed in the second section. The executive 
software is structured into three parts: 

• the global executive task; 
• the local executive; 
• the local-global communicating tasks. 

One global executive task is provided for the 
whole system. It is run just like a highly critical 
application task-being executed by several pro­
cessors and using majority voting to obtain the 
output of each iteration. It diagnoses errors to 
decide which units have failed, and determines 
the appropriate allocation of tasks to processors. 
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Figure 16-5. Logical structure of the SIFT software system. 

Each processing module has its own local 
!xecutive and local-global communicating tasks. 
[he local-global communicating tasks are the 
!rror reporting task and the local reconfiguration 
task. Each of these tasks is regarded as a separate 
task executed on a single processor rather than 
is a replication of some more global task, so 
there are as many separate error reporting tasks 
ind local reconfiguration tasks as there are pro­
:;essors. 

Figure 16-5 shows the logical structure of the 
SIFT software system. The replication of tasks 
ind their allocation to processors is not visible. 
[asks communicate with one another through 
buffers maintained by the local executives. Note 
that the single global executive task is aware of 
(and communicates with) each of the local exec­
~tives, but that the local executives communicate 
)nly with the single (replicated) global executive 
task and not with each other. In this logical 
)icture, application tasks communicate with 
~ach other and with the global executive, but not 
.vith the local executives. 

Figures 16-6 and 16-7 show where the logical 
:;omponents of Figure 16-5 actually reside within 
SIFT. Note how critical tasks are replicated on 
;everal processors. For the sake of clarity, many 
)f the paths by which tasks read buffers have 
)een eliminated from Figures 16-6 and 16-7. 

The Local-Global Communicating Tasks 

Each processor runs its local reconfiguration task 
and error reporting task at a specified frequency, 
just like any other task. These two tasks commu­
nicate with the global executive via buffers. 

The local executive detects an error when it 
obtains different output values for the same task 
iteration from different processors. * It reports all 
such errors to the error reporting task. The error 
reporting task performs a preliminary analysis of 
these errors, and communicates its results to the 
global executive task. These results ar~ also used 
by the local executive to detect possIbly faulty 
units before the global executive has diagnosed 
the errors. For example, after several error re­
ports involving a particular bus, the local execu­
tive will attempt to use other buses in preference 
to that one until the global executive has diag­
nosed the cause of the errors. 

The local reconfiguration task maintains the 
tables used by the local executive to schedule the 
execution of tasks. It does this using information 
provided to it by the global executive: 

The interaction of the global executIve and the 
local-global communicating tasks is shown in 
Figure 16-8. 

* It can also detect that a time-out occurred while reading 
from the memory of another processing module. 
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Processor 1 Processor 2 Processor 3 

. Figure 16-6. Arrangement of application tasks within SI FT configuration. 

Processor 1 Processor 2 Processor 3 

Figure 16-7. Arrangement of executive within SI FT configuration. 



1. Error handler in each processor 
puts reports in error table. 

2. Error reporter task in each pro­
cessor reads error table and de­
cides what conditions to report to 
the global executive. This report is 
put in a buffer. 

3. Global executive (triplicated) reads 
each processor's buffer over three 
buses (to guard against bus errors) 
and votes for a plurality. 

4. Global executive, using the diagno­
sis provided by the error reporter, 
determines what reconfiguration, if 
any, is necessary. If a reconfigura­
tion is necessary, a report is put in 
a buffer. 

5. Local reconfiguration task in each 
processor reads report from each of 
the global executive buffers and 
votes to determine plurality. 

6. Local reconfiguration task changes 
the scheduling table to reflect the 
global executive's wishes. 

Figure 16--8. Error reporting and reconfiguration. 

The Global Executive Task 

The global executive task uses the results of 
every processor's error task to determine which 
processing modules and buses are faulty. The 
problem of determining which units are faulty is 
discussed in the subsection on Fault Detection 
below. When the global executive decides that a 
component has failed, it initiates a reconfigura­
tion by sending the appropriate information to 
the local reconfiguration task of each processor. 
The global executive may also reconfigure the 
system as a result of directives from the applica,.. 
tion tasks. For example, an application task may 
report a change of flight phase which changes the 
criticality of various tasks. 

To permit rapid reconfiguration, we require 
that the program for executing a task must reside 
in a processor's memory before the task can be 
allocated to that processor. In the initial version 
of SIFT, there will be a static assignment of 
programs to memories. The program for a criti­
cal task will usually reside in all main processor 
memories, so the task can be executed by any 
main processor. 
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The Local Executive 

The local executive is a collection of routines to 
perform the following functions: 1) run each task 
allocated to it at the task's specified iteration 
rate; 2) provide input values to, and receive 
output values from each task iteration, and 3) 
report errors to the local executive task. 

A processor's local executive routine can be 
invoked from within that processor by a call 
from a running task, by a clock interrupt, or by 
a call from another local executive routine. 
There are four types of routines: 

• error handler; 
• scheduler; 
• buffer interface routines; 
• voter. 

The error handler routine is invoked by the 
voter when an error condition is detected. It 
records the error in a processor/bus error table, 
which is used by the error reporting task de­
scribed above. 

The scheduler routine is responsible for sched­
uling the execution of tasks. Every task is run at 
a prespecified iteration rate that defines a se­
quence of time frames within which the task 
must be run. (For simplicity, we ignore the 
scheduling of the highest priority tasks in sub­
frames that was mentioned in the subsection on 
Scheduling above.) A single iteration of the task 
is executed within each of its frames, but it may 
be executed at any time during that frame. 

The scheduler is invoked by a clock interrupt 
or by the completion of a task. It always runs the 
highest priority task allocated to the processor 
that has not yet finished executing the iteration 
for its current time frame. Execution of a task 
may be interrupted by the clock, in which case 
its state is preserved until execution is resumed­
possibly after the execution of a higher priority 
task. A task that has completed its current 
iteration is not executed again until after the 
start of its next time frame. 

The buffer interface routines are invoked by a 
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Figure 16-9. The double buffering mechanism. 

task when it generates output for an iteration. 
These routines put the output into a buffer 
reserved for that task. These output values are 
used by the voter routines described below to 
obtain input for the tasks. Because a task may be 
run at any time during its time frame, the 
double-buffering scheme shown in Figure 16-9 is 
used. Each buffer consists of a double buffer. In 
anyone time frame, one of the buffers is avail­
able for new data being generated by the task 
while the other contains the data generated last 
time frame. It is the latter values that are used to 
provide input to other tasks (and possibly to the 
same task). At the start of the next time frame, 
the buffers are switched around. Provision is .also 
made for communication between processors 
operating at different frequencies. 

The voter routine is invoked by a task to obtain 
the inputs for its current iteration. The task 
requests a particular output from the previous 
iteration of second task-which may be the same 
task. The voter uses tables provided by the local 
reconfiguration task to determine what pro­
cessors contain copies of that output, and in 
which of their buffers. It reads the data from 
each of these buffers and performs a majority 
vote to obtain a single value. If all the values do 

not agree, then an error has occurred, and the 
error reporter is called. 

Fault Detection 

Fault detection is the analysis of errors to deter­
mine which components are faulty. In SIFT, 
fault detection is based upon the processor/bus 
error table, an m by n matrix, where m is the 
number of processors and n the number of buses 
in time system. Each processor has its own 
processor/bus error table that is maintained by 
its local executive's error handler. An entry 
xp(i,}] in processor p's table represents the num­
ber of errors detected by processor p's local 
executive that involve processor i and bus }. 
Suppose that processor p is reading from pro-: 
cessor q using bus r. There are five distinct kinds 
of errors that cause a matrix value to change: 

1. the connection from bus r to processor q is faulty; 
2. the connection from processor p to bus r is faulty; 
3. bus r is faulty; 
4. processor q is faulty; 
5. processor p is faulty. 

Processor p's error reporting task analyzes the 
processor/bus error table as follows to determine 
if any of these cases hold. Let e > 0 be a 
threshold of errors that will be tolerated for any 
processor/bus combination. It can deduce that 
case 1 holds if the following conditions all hold: 
(1) Xp[q,r] > e, (2) there exists a bus} such that 
Xp[q,}] <; e, and (3) there exists a processor i 
such that Xp[i, r] <; e. Either case 2 or 3 may 
hold if Xp[i, r] > e for all active processors i. 
These two cases can only be distinguished by the 
global executive task, which has access to infor­
mation from all the processors. (Case 3 holds if 
all active processors report bus r faulty; other­
wise case 2 holds.) The error handler can deduce 
that case 4 holds if Xp[q,}] > e for all active 
buses}. The error handler cannot be depended 
upon to diagnose case 5, since the failure of the 
processor executing it could cause the error 
handler to decide that any (or none) of the other 
four cases hold. . 



Once the error handler has performed this 
nalysis, the appropriate action must be taken. 
t1 case I, processor p will stop using bus r to talk 
) processor q. In cases 2 and 3, processor p will 
top using bus r, and will report to the global 
xecutive that bus r is faulty. In case 4, processor 
will report to the global executive that pro­

essor q is faulty. 
The global executive task makes the final 

lecision about which unit is faulty. To do this, it 
eads the faulty processor reports provided by 
he error reporting task. If two or more pro­
:essors report that another processor is faulty, 
hen the global executive decides that this other 
)rocessor has indeed failed. If two or more 
)rocessors report that a bus is faulty, then the 
~lobal executive decides that the bus has failed. 

The global executive may know that some unit 
>roduced errors, but be unable to determine 
~hich is the faulty unit. In that case, it must 
lwait further information. It can obtain such 
nformation by allocating the appropriate diag­
lostic tasks. If there is a faulty unit (and the 
~rror reports were not due to transient faults), 
:hen it should obtain the necessary information 
n a short time. 

It can be shown that in the presence of a single 
~ault, the above procedure cannot cause the 
~lobal executive to declare a nonfaulty unit to be 
~aulty. With the appropriately "malicious" be­
lavior, a faulty unit may generate error reports 
without giving the global executive enough infor­
mation to determine that it is faulty. For exam­
ple, if processor p fails in such a way that it gives 
lncorrect results only to processor q, then the 
global executive cannot decide whether it is p or 
7. that is faulty. However, the majority voting 
technique will mask these errors and prevent a 
system failure. 

The Simulator 

An initial version of the SIFT system has been 
coded in PASCAL. Since the avionics computer 
is not available at this time, the executive is 
being debugged on an available general-purpose 
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computer (a DEC PDP-IO). To facilitate this, a 
simulator has been constructed. The simulator 
uses five asynchronous processes, each running a 
SIFT executive and a "toy" set of application 
tasks. The controlling process simulates the ac­
tions of the SIFT bus system and facilitates 
interprocess communications. Faults are inject­
ed, either at the processor or the bus levels, and 
a visual display of the system's behavior is 
provided. This gives us a means of testing soft­
ware in the absence of the actual SIFT hardware. 

THE PROOF OF CORRECTNESS 

Concepts 

Estimates of the reliability of SIFT are based 
upon the assumption that the software operates 
correctly. Since we know of no satisfactory way 
to estimate the probability that a piece of soft­
ware is incorrect, we are forced to try to guaran­
tee that the software is indeed correct. For an 
asynchronous multiprocess system such as SIFT, 
the only way to do this is to give a rigorous 
mathematical proof of its correctness. 

A rigorous proof of correctness for a system 
requires a precise statement of what it means for 
the system to be correct. The correctness of SIFT 
must be expressed as a precise mathematical 
statement about its behavior. Since the SIFT 
system is composed of several processors and 
memories, such a statement must describe the 
behavior of many thousands of bits of informa­
tion. We are thus faced with the problem that the 
statement of what it means for the SIFT software 
to be correct is too complicated to be humanly 
comprehensible. 

The solution to this problem is to construct a 
higher level "view" of the SIFT system that is 
simpler than the actual system. Such a view is 
called a model. When stated in terms of the 
simple model, the requisite system properties can 
be made comprehensible. The proof of correct­
ness is then performed in two steps: I) we first 
prove that the model possesses the necessary 
correctness properties; and 2) we then prove that 
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the model accurately describes the SIFT system 
[Shostak et aI., 1977]. 

Actually, different aspects of correctness are 
best expressed in terms of different models. We 
use a hierarchy of models. The system itself may 
be viewed as the lowest level model. In order to 
prove that the models accurately describe the 
SIFT system, we prove that each model accu­
rately describes the next lower-level one. 

Models 

We now make the concept of a model more 
precise. We define a model to consist of a set S 
of possible states, a subset So of S consisting of 
the set of possible initial states, and a transition 
relation ~ on S. The relation s ~ S' means that 
a transition is possible from state s to state S'. It 
is possible for the relations s ~ S' and s ~ s" 
both to hold for two different states S' and s", so 
we allow nondeterministic behavior. A possible 
behavior of the system consists of a sequence of 
states so' sl' . .. such that So is in So and 
Si ~ si+ I for each i. Correctness properties are 
mathematical statements about the possible be­
haviors of the system. 

Note that the behavior of a model consists of 
a linear sequence of transitions, even though 
concurrent operations occur in the SIFT system. 
Concurrent activity can be represented by tran­
sitions that change disjoint components of the 
state, so that the order in which they occur is 
irrelevant. 

Each state of the model represents a collection 
of states in the real system. For example, in the 
reliability model discussed in the subsection on 
reliability prediction, the state is a triple of 
integers (h, d,j) which contains only the infor­
mation that f processors have failed, d of those 
failures have been detected, and h of the detect­
ed failures have been handled. A single model 
state corresponds to all possible states the system 
could reach through any combination of f fail­
ures, d failure detections, and h reconfigurations. 

We now consider what it means for one mode 
to accurately describe a lower level one. Let S 
So' and ~ be the set of states, set of initial states 
and transition relation for the higher level mod 
el; and let S', So' and ~' be the correspondin! 
quantities for the lower level model. Each statt 
of the lower level model must represent somt 
state of the higher level one, but different lowel 
level states can represent the same higher leve 
one. Thus there must be a mapping REP: S' ~ S 
where REP (S') denotes the higher-level state rep· 
resented by S'. 

Having defined a correspondence between the 
states of the two models, we can require that the 
two models exhibit corresponding behavior. 
Since the lower level model represents a more 
detailed description of the system, it may contain 
more transitions than the higher level one. Each 
transition in the lower level model should either 
correspond to a transition in the higher level one, 
or else should describe a change in the system 
that is invisible in the higher level model. This 
requirement is embodied in the following two 
conditions. 

1. REP (So) is a subset of So. 
2. For all S', (' in S/: if S' ~ (' then either: 

a. REP (S') = REP (t'); or 
b. REP (S') ~ REP «(I). 

If these conditions are satisfied, then we say 
that REP defines the lower level model to be a 
refinement of the higher level one. 

If a model is a refinement of a higher level one, 
then any theorem about the possible behaviors 
of the higher level model yields a corresponding 
theorem about the possible behaviors of the 
lower level one. This is used to infer correctness 
of the lower level model (and ultimately, of the 
system itself) from the correctness of the higher 
-level one. 

A transition in the higher level model may 
represent a system action that is represented by 
a sequence of transitions in the lower level one. 
For example, the action of detecting a failure 



lay be represented by a single transition in the 
igher level model. However, in a lower level 
lOdel (such as the system itself), detecting a 
tilure may involve a complex sequence of tran­
:tions. The second requirement means that in 
rder to define REP, we must define some arbi­
·ary point at which the lower level model is 
onsidered to have detected the failure. This 
roblem of defining exactly when the higher level 
~ansition takes place in the lower level model 
lfns out to be the major difficulty in construct-
19 the mapping REP. 

he Reliability Model 

n the reliability model, the state consists of a 
riple (h, d,J) of integers with h < d < f < p, 
rhere p is the number of processors. The transi­
Ion relation ~ is described in the subsection on 
leliability Prediction above, as is the meaning of 
lle quantities h, d, and f. 

Associated with each value of h is an integer 
r(h) called its safety factor, which has the follow-
19 interpretation. If the system has reached a 
onfiguration in which h failures have been han­
led, then it can successfully cope with up to 
r(h) additional (unhandled) failures. That is, the 
ystem should function correctly so long as f -
, the number of unhandled failures, is less than 
Ir equal to sf(h). The state (h,d,J) is called safe 
f f - h < sf(h). 

To demonstrate that SIFT meets its reliability 
equirements, we must show two things. 

. If the system remains in a safe state (one repre­
sented by a safe state in the reliability model), then 
it will behave correctly. 

. The probability of the system reaching an unsafe 
state is sufficiently small. 

Property 2 was discussed in the subsection on 
teliability Prediction. The remainder of this 
ection describes our approach to proving 1. 

The reliability model is introduced specifically 
o allow us to discuss property 2. The model does 
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not reflect the fact that SIFT is performing any 
computations, so it cannot be used to state any 
correctness properties of the system. For that a 
lower level model is needed. 

The Allocation Model 

An Overview 

SIFT performs a number of iterative tasks. In 
the allocation model, a single transition represents 
the execution of one complete iteration of all the 
tasks. As described in the subsection on Sched­
uling, most tasks are not actually executed every 
iteration cycle. For the allocation model, an 
unexecuted task is considered to perform a null 
calculation, producing the same result it pro­
duced during the previous iteration. 

The input used by a task in its tth iteration is 
the output of the (t - 1 )st iterations of some 
(possibly empty) set of tasks. Input to SIFT is 
modeled by a task executed on an I/O processor 
which produces output without requiring input 
from other tasks. The output which an I/O 
processor produces is simply the output of some 
task which it executes. 

In the allocation model, we make no distinc­
tion between main processors and I/O pro­
cessors. Bus errors are not represented in the 
modeL SIFT's handling of them is invisible in 
the allocation model, and can be represented by 
a lower level model. 

The fundamental correctness property of 
SIFT-property 1 above-is stated in terms of 
the allocation model as follows: if the system 
remains in a safe state, then each nonfaulty 
'processor produces correct output for every crit­
ical task it executes. This implies the correctness 
of any critical output of SIFT generated by a 
nonfaulty I/O processor. (The possibility of 
faulty I/O processors must be handled by redun­
dancy in the external environment.) 

The allocation of processors to tasks is effected 
by the interaction of the global executive task, 
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the local-global communicating tasks, and local 
executives, as described in the previous section. 
The output of the tth iteration of a local-global 
communicating task uses as input the output of 
the (t - I )st iteration of the global executive. 
During the tth iteration cycle, the local executive 
determines what the processor should be doing 
during the (t + I)st cycle-i.e., what tasks it 
should execute, and what processor memories 
contain the input values for each of these tasks. 
The processor executes a task by fetching each 
input from several processor memories, using a 
majority vote to determine the correct value, and 
then computing the task's output.* We assume 
that a nonfaulty processor will compute the 
correct output value for a task if majority voting 
obtains the correct value for each of the task's 
inputs. 

The only part of the executive software that is 
explicitly represented in the allocation are the 
local-global communicating tasks. Although 
each processor's local-global communicating 
task is treated in SIFT as a separate task, it is 
more convenient to represent it in the allocation 
model as the execution on that processor of a 
single replicated task whose output determines 
the complete allocation of tasks to processors. 

The States of the Allocation Model 

We now describe the set of states of the alloca­
tion model. They are defined in terms of the 
primitive quantities listed below, which are 
themselves undefined. (To show that a lower 
level model is a refinement of the allocation 
model, we must define these primitive quantities 
in terms of the primitive quantities of that lower 
level model.) The descriptions of .these quantities 
are given to help the reader understand the 
model: they have no formal significance. 

* The fault diagnosis performed by the global executive is 
not represented in the allocation model. 

P A set of processors. It represents the set of all 
processors in the system. 

K A set of tasks. It represents the set of all (critical) 
tasks in the system. 

LE An element of K. It is the single task that repre­
sents all the local-global communicating tasks, as 
described above. 

e A mapping from the cross product of K and the 
set of nonnegative integers into some unspecified 
set of values. The value of e(k, t) represents the 
correct output of the tth iteration cycle of task k. 
Thus, e describes what the SIFT tasks should 
compute. It is a primitive (i.e., undefined) quantity 
in the allocation model because we are not speci­
fying the actual values the tasks should produce. 
(These values will, of course, depend upon the 
particular application tasks SIFT executes, and 
the inputs from the external environment.) 

sf The safety factor function introduced in the reli­
ability model. It remains a primitive quantity in 
the allocation model. It can be thought of as a 
goal the system is trying to achieve. 

We define the allocation model state to consist 
of the following components. ** (Again, the de­
scriptions are to assist the reader and are irrele­
vant to the proof.) 

t A nonnegative integer. It represents the number of 
iteration cycles that have been executed. 

F A subset of P. It represents the set of all failed 
processors. 

D A subset of F. It represents the set of all failed 
processors whose failure has been detected. 

c A mapping from P X K into some unspecified set 
of values. The value c(p, k) denotes the output of 
task k as computed by processor p. This value is 
presumably meaningless if p did not execute the tth 
iteration of task k. 

The Axioms of the Model 

We do not completely describe the set of initial 
states So and the transition relation ~ for the 
allocation model. Instead, we give the following 
list of axioms about So and ~. Rather than 

** To simplify the discussion, one component of our actual 
model has been omitted. 



;lvmg their formal statement, we simply give 
tere an informal description of the axioms. 
Uninteresting axioms dealing with such matters 
lS initialization are omitted.) 

. The value of c(p, LE) during iteration cycle t, 
which represents the output of the tth iteration of 
processor p's local-global communicating task, 
specifies the tasks that p should execute during 
cycle t + I and the processors whose memories 
contain input values for each such task. 

:. If a nonfaulty processor p executes a task k during 
iteration cycle t, and a majority of the copies of 
each input value to k received by p are correct, then 
the value c(p, k) it computes will equal the correct 
value e(k, t). 

L Certain natural assumptions are made about the 
allocation of tasks to processors specified by 
e(LE, t). In particular, we assume that a) no critical 
tasks are assigned to a processor in D (the set of 
processors known to be faulty), and b) when recon­
figuring, the reallocation of tasks to processors is 
done in such a way that the global executive never 
knowingly makes the system less tolerant of failure 
than it currently is. 

To prove that a lower level model is a refine­
nent of the allocation model, it will suffice to 
{erify that these axioms are satisfied. 

rhe Correspondence with the 
rleliability Model 

[n order to show that the allocation model is a 
refinement of the reliability model, we must 
:lefine the quantities h, d, and J of the reliability 
model in terms of the state components of the 
illocation model-thereby defining the function 
R.EP. 

The definitions of d and J are obvious; they are 
just the number of elements in the sets D and F, 
respectively. To define h, we must specify the 
precise point during the "execution" of the allo­
cation model at which a detected failure is 
considered to be "handled." Basically, the value 
of h is increased to h + 1 when the reconfigura­
tion has progressed to the point where it can 
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handle sf (h + 1) additional errors. (The function 
sf appears in the definition.) We omit the details. 

The Correctness Proof 

Within the allocation model, we can define a 
predicate CF(t) that expresses the condition that 
the system functions correctly during the tth 
iteration cycle. Intuitively, it is the statement that 
every nonfaulty processor produces the correct 
output for every task it executes. The predicate 
CF(t) can be stated more precisely as follows. 

If e(LE, t - 1) indicates that p should execute 
a task k in K during the tth iteration cycle, and p 
is in P - F, then the value of c(p, k) after the tth 
iteration equals e(k, t). 

(A precise statement of how e(LE, t - 1) indi­
cates that p should execute task k requires some 
additional notation, and is omitted.) 

We can define the predicate SAFE(t) to mean 
that the system is in a safe state at time t. More 
precisely, SAFE(t) means that after the tth itera­
tion cycle, sf (h) ~ f - h, where J and hare 
defined above as functions of the allocation 
model state. The basic correctness condition for 
SIFT can be stated as follows. 

If SAFE (t') is true for all t' with 0 < I' < I, 
then CF(/) is true. 

A rigorous proof of this theorem has been 
developed, based upon the axioms for the alloca­
tion model. The proof is too long and detailed to 
include here. It will appear in the final report to 
NASA at the conclusion of the current phase of 
the project. 

Future Work 

The basic correctness property of SIFT has been 
stated and proved for the allocation model. 
What remains to be done is to show that the 
actual system is a refinement of the allocation 
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model. Current plans call for this to be done in 
terms of two lower level models. The first of 
these is the operating-system model. The alloca­
tion model represents all the computations in a 
given iteration cycle performed by all the pro­
cesses as a single transition. The operating sys­
tem model will represent the asynchrony of the 
actual computations. It will essentially be a high­
level representation of the system that embodies 
the mechanisms used to synchronize the pro­
cessors. The proof that the operating-system 
model is a refinement of the allocation model 
will be a proof of correctness of these synchro­
nizing mechanisms. 

The next lower level model will be the program 
model. It will essentially represent the PASCAL 
version of the software. We expect that proving 
the program model to be a refinement of the 
operating-system model will be done by the 
ordinary methods of program verification 
[Floyd, 1967]. 

Finally, we must verify that the system itself is 
a correct refinement of the program model. This 
requires verifying first that the PASCAL pro­
grams are compiled correctly, and second that 
the hardware correctly executes programs. (In 
particular, this involves verifying the fault-isola­
tion properties of the hardware.) We have not yet 
decided how to address these tasks. Although 
most of this verification is theoretically straight­
forward, it presents a difficult problem in prac­
tice. 

CONCLUSIONS 

The SIFT computer development is an attempt 
to use modern methods of computer design and 
verification to achieve fault-tolerant behavior for 
real-time, critical control systems. We believe 
that the use of standard, mass-produced compo­
nents helps to attain high reliability. Our basic 
approach, therefore; involves the replication of 
standard components, relying upon the software 
to detect· and analyze errors and to dyamically 
reconfigure the system to bypass faulty units. 
Special hardware is needed only to isolate the 

units from one another, so a faulty unit does nol 
cause the failure of a nonfaulty one. 

We have chosen processor/memory modules 
and bus modules as the basic units of faul1 
detection and reconfiguration. These units are al 
a high enough level to make system reconfigura­
tion easy, and are small and inexpensive enough 
to allow sufficient replication to achieve the 
desired reliability. Moreover, new advances in 
Large Scale Integration will further reduce their 
size and cost. 

By using software to achieve fault-tolerance, 
SIFT allows considerable flexibility in the choice 
of error handling policies and mechanisms. For 
example, algorithms for fault masking and re­
configuration can be easily modified on the basis 
of operational experience. Novel approaches to 
the tolerance of programming errors, such as 
redundant programming and recovery blocks 
[Randell, 1975] can be incorporated. Moreover, 
it is fairly easy to enhance the performance of 
the system by adding more hardware. 

While designing SIFT, we have been con­
cerned with proving that it meets its stringent 
reliability requirements. We have constructed 
formal models with which to analyze the proba­
bility of system failure, and we intend to prove 
that these models accurately describe the behav­
ior of the SIFT system. Our effort has included 
the use of formal specifications for functional 
modules. We hope to achieve a degree of system 
verification that has been unavailable in previous 
fault-tolerant architectures. 

Although the design described in this paper 
has been oriented toward the needs of commer­
cial air transports, the basic architectural 
approach has a wide applicability to critical real­
time systems. Future work may extend this ap­
proach to the design of fault-tolerant software 
and more general fault-tolerant control systems. 

APPENDIX: SAMPLE SPECIAL 
SPEC. FICA liON 

This appendix contains an example of a· formal 
specification extracted from the specifications of 
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e SIFT executive software. The specification is 
ritten in a language called SPECIAL, a formal-
defined specification language. SPECIAL has 
~en designed explicitly to permit the description 
, the results required from a computer program 
ithout constraining the programmer's decisions 
, to how to write the most efficient program. 
The function that is specified here is the local 
~ecutive's voter routine, described informally in 
e Software System section. This function is 
llled to obtain a value from one of the buffers 
,ed to communicate between tasks. The value 
qui red is requested over the bus system from 
rery replication of this buffer, and a consensus 
tlue that masks any errors is formed and re­
rned to the calling program. Errors are report­
l and provision is made for buses that do not 
)tain a value (due to a nonresponding bus or 
emory) and for the possibility that there is no 
msensus. 

The following notes are keyed to statements in 
the specification. 

Notes 

1. The function 'read_buffer' takes three arguments 
and returns a result. The buffer_name 'i' is the 
name of a logical buffer which may be replicated in 
several processors, while the address 'k' is the offset 
of the required word in the buffer and 'safe' is the 
value to be returned if no consensus can be ob­
tained. The. parameters 'a' and 't' need not be 
explicitly cited by the caller of this function but are 
deduced from the context. 

2. Exception returns will be made if there are no 
active instances of the named buffer or if the offset 
is not within the buffer. 

3. A response is obtained by interrogating a buffer in 
another processor. Each response is a record (also 
known as a "structure," containing a value field 
("val") and flag field ("flag"), the latter set if no 

OVFUN read buffer (buffer name i; address k; va 1 ue safe) 
- [processor a;task tJ 

-> result r; 

EXCEPTIONS 
CARDINALITY(acti vated buffers(a, i) )=0; 
O>k OR k>=buffer_si zeTi); 

EFFECTS 
EXISTS SET OF response 

w=responses(a, activated buffers(a,i),k): 
EXISTS SET OF response -

z=lresponse bib INSET wAND b.flag f : 

IF(EXISTS value v; 
SET OF response x I 
x =-1 response clc INSET (w DIFF z) 

AND c. val = v f : 

FORALL value u: 
SET OF response y I 
Y=lresponse did INSET (w DIFF x DIFF z) 

AND d.val=u}.: 
CARDINALITY (x) > CARDINALITY (y)) 

THEN(EXISTS value v; 
SET OF response x I 
x=lresponse clc INSET (w DIFF z) 

AND c.val=v}: 

FORALL value u; 
SET OF response yl 
y=lresponse did INSET (w DIFF x DIFF z) 

AND d.val=u~: 
CARDINALITY(x) ) CARDINALITY(y); 

EFFECTS OF errors(a, w DIFF x); 
r=v) -

ELSE(EFFECTS OF errors(a,w); 
r=safe); 

[lJ 

[2J 

[3 J 

[4J 

[5 J 

[6J 

[6J 

[7J 

[8J 
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response was obtained from the bus or store. The 
set 'w' of responses is the set obtained from all of 
the activated buffers known to processor 'a.' The 
set 'z' is the subset of no-response responses. 

4. First we must check that a plurality opinion exists. 
This section hypothesises that there exists a consen­
sus value 'v' together with the subset of responses 
'x' that returned that value. 

5. Here we consider all other values and establish for 
each of them that fewer responses contained this 
other value than contained the proposed consensus 
value. 

6. Having established that a consensus value exists, 
we may now validly construct it, repeating the 
criteria of stages [4] and [5]. It is important to note 
that these are not programs but logical criteria. The" 
actual implementations would not repeat the pro­
gram. 

7. This section requires that any responses not in the 
set 'x' (the set 'x' is the set reporting the consensus 
value) should be reported as errors, and the result 
is the consensus value 'v.' The expression 

EFFECTS_ OF errors(a, w DIFF X}) 

indicates a state change in the module that contains 
the O-function "errors." The specification indicates 
that an error report is loaded into a table associated 
with processor "a." 

8. If there is no consensus value, as determined by 
stages [4] and [5], then all the responses must be 
reported as errors, and the safe value returned as 
the result. 
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FTMIL-A Highly Reliable Fault-Tolerant 
"ultiprocessor for Aircraft 

\Ibert L. Hopki ns, Jr. T. Basil Smith, III 

'bstract 

'TM P is a digital computer architecture which has 
'volved over a ten-year period in connection with several 
ife-critical aerospace applications. Most recently it has 
~een proposed as a fault-tolerant central computer for 
'ivil transport aircraft applications. A working emulation 
!llS been operating for some time, and the first engineer­
ng prototype is scheduled to be completed in late 1979. 

FTMP is designed to have afailure rate due to random 
'auses of the order of 10-10 failures per hour, on ten-hour 
lights where no airborne maintenance is available. The 
~referred maintenance interval is of the order of hundreds 
if flight hours, and the probability that maintenance will 
~e required earlier than the preferred interval is desired 
o be at most a few percent. 

The design is based on independent processor-cache 
nemory modules and common memory modules which 
'ommunicate via redundant serial buses. A II information 
~rocessing and transmission is conducted in triplicate so 
hat local voters in each module can correct errors. 
't,fodules can be retired and/or reassigned in any config­
rration. Reconfiguration is carried out routinely from 
econd to second to search for latent faults in the voting 
rnd reconfiguration elements . Job assignments are all 
nade on a floating basis, so that any processor triad is 
'ligible to execute any job step. The core software in the 
"TMP will handle all fault detection, diagnosis, and 
'ecovery in such a way that applications programs do not 
leed to be involved. 

Failure-rate models and numerical results are de­
cribed for both permanent and intermittent faults. A 
{is patch probability model is also presented. Experience 
vith an experimental emulation is described. 

v 1978 IEEE. Reprinted, with permission, from Proceedings 
if the IEEE, Vol. 66, No. 10, October 1978, pp. 1221-1239. 
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INTRODUCTION 

The FTMP (Fault-Tolerant Multiprocessor) is a 
computer architecture that has been studied, 
simulated, modeled, and emulated extensively 
over the past several years. It is scheduled to be 
implemented in an engineering prototype form 
within two years of this writing. The principal 
goal of FTMP is to be extraordinarily survivable 
without being difficult to program, operate, or 
maintain. It is presently predicted that the over­
all FTMP failure rate will be less than 10-9 

failures per hour, provided that maintenance is 
available within no more than ten hours of 
dispatch. In most cases, however, it will not be 
necessary to maintain the FTMP at intervals of 
less than 200-300 hours. 

The FTMP structure can be described as an 
arbitrary number of processor modules with lo­
cal, or cache, memories, and an arbitrary number 
of memory modules, interconnected by redun­
dant serial buses. Modules are associated into 
groups of three to perform triply redundant 
functions. All data is distributed synchronously 
and in triplicate, and every module contains a 
voting element to mask bus disagreements. All 
modules contain special circuits to create logical 
and physical boundaries to halt the propagation 
of faults from one module to another. 

The FTMP is intended for use as one of at 
least two central computers in a redundant dis­
tributed digital system designed to serve as a 
highly survivable avionics system [Deyst and 
Hopkins, n.d.]. 

Background and Context 

The development history of the FTMP dates to 
1965, with a serial-bus multiprocessor concept 
for spaceborne control applications [Alonso, 
Hopkins, and Thaler, 1966, 1967]. Increasingly 
redundant versions were conceived, including 
one in 1969 intended to serve as a preliminary 
design baseline for a manned spacecraft, i:e., the 
space shuttle [Hopkins, 1971]. At that time, a 
concept was stated for the systematic design of a 
redundant, fault-tolerant vehicle, employing 

fault-tolerant "regional" computers, each oj 
which was to be the master of an I/O bw 
connected to a number of dedicated (micro-: 
computers, local to each of a number of sens01 
and effector components or subsystems [Hop· 
kins, 1970]. In the early 1970's, some of the basic 
concepts were tested by simulation in a laborato­
ry multiprocessor arrangement called Cerberus 
The National Science Foundation sponsored 
most of this testing effort. 

There were two particularly significant out­
comes of this work. One was a network I/O data 
communication structure to replace the topolog­
ically leaner, and therefore more vulnerable, I/O 
bus [Smith, 1975]. The second was a significan1 
improvement in the redundancy managemen1 
capability of the architecture [Hopkins and 
Smith, 1975, 1977a]. As a result of these develop­
ments the Draper Laboratory undertook the 
construction of breadboard emulations of the 
new multiprocessor and the network as indepen­
dent Research and Development projects. Eval­
uations of various aspects of these emulatiom 
were sponsored by the National Science Foun­
dation, the Office of Naval Research, the NASA 
Langley Research Center, and Draper itself. 

The Draper study concerned itself with the 
design of a robust integrated avionics systems 
concept suitable for control-configured aircraft, 
and numerous other life-critical applications. 
This concept was to use a fault-tolerant central 
computer with a second remote identical com­
puter available to take over in case of damage to 
the first. The concept also used the I/O network 
as a fault-tolerant and damage-tolerant medium 
for maintaining access to all surviving system 
elements. The third prong of the concept was a 
redundant sensor and effector architecture, with 
algorithms executed centrally to determine 
which, if any, of the sensors and effectors were 
malfunctioning [Deckert et aI, 1977]. _ The entire 
system concept came to be called OSIRIS, (on­
board, survivable, integrated, redundant infor­
mation system [Hopkins and Smith, 1977b].) 

Meanwhile, NASA Langley sponsorship fur­
ther developed the fault-tolerant multiprocessOI 
architecture in the direction of civil transpor1 
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ircraft application, along with a competing ar­
hitecture developed at SRI International, called 
1FT [Murray, Hopkins, and Wensley, 1977] (see 
Iso Chapter 16 in this book). In 1977, a design 
Jecification was drawn up for an engineering 
rototype of the multiprocessor, to be built by a 
lajor avionics manufacturer. At this point, the 
arne FTMP was adopted to signify this particu­
lr architecture and its derivatives. 
The FTMP represents a major architectural 

dvance beyond the contemporary practices of 
omputer redundancy in aircraft systems. All too 
ften, computers have been interconnected in 
Ie simplest possible way, leaving as a program­
ling task the detection and isolation of each 
lUlt and the subsequent recovery. This ap­
roach has serious problems, including the 
leans of granting authority to a valid module 
rithout granting it to an invalid one. It is also 
irtually impossible in such approaches to sepa­
lte the redundancy management software from 
Ie applications programs, with the result that 
oth are greatly complicated. Validation is a 
ifficult problem in these systems. 
The FTMP is quite different from some other 

lUlt-tolerant computers for different applica­
ons. A fault-tolerant spacecraft computer, for 
'(ample, has a similar task, but a dissimilar 
lfvival requirement. Other fault-tolerant archi­
:ctures are meant to serve general data proces­
ng tasks in a benign environment with mainte­
ance available. The next subsection attempts to 
lOW how the architecture of the FTMP corre­
)onds to the class of applications it is designed 
) serve. 

ationale of the FTMP Approach 

'he intended use of the FTMP is to support 
ritical control functions in vehicles, process 
lants, life-support, or any similar application in 
'hich maintenance is available periodically or 
fter a delay, and where loss of control leads 
'ith significant probability to high cost in terms 
f life or property. The failure rate at the system 
:vel must be remote. In civil transport aircraft 

this generally means the order of 10-9 failures 
per hour in flights of up to ten hours. 

One can immediately rule out some of the 
classical approaches to redundant systems on the 
grounds that they do not permit the detection 
and location of faults concurrent with critical 
operation. Other approaches can be dismissed 
because of insufficient redundancy and fault 
coverage. Still others are unusable because they 
depend excessively on the applications software. 

The approach must have the ability to mask, 
i.e., correct, errors without requiring program 
rollback. All resources, including those used only 
in case of malfunction, must be capable of being 
individually verified during system operation. 
The approach must further be capable of surviv­
ing a multiplicity of faults, although not neces­
sarily all at the same time. 

Apparently, the most efficient way to furnish 
the multiple fault tolerance and concurrent test­
ing is in a multiprocessing or multicomputing 
structure. Moreover, in order to provide error 
masking, all critical transactions must be at least 
triplicated. This is the course that has been 
followed in both the FTMP and the SIFT archi­
tectures. The result is a variant of classical 
redundancy of the TMR-Hybrid type [Mathur, 
1971a], in which spare elements are placed in a 
pool so that they can substitute for any element 
in any of several parallel TMR triads. We find it 
convenient to refer to this redundancy form as 
"parallel-hybrid" redundancy. Both FTMP and 
SIFT employ three times the resources nominal­
ly required by the application, plus an arbitrary 
level of spares, plus the hardware and software 
overhead necessary to manage the redundancy, 
i.e., fault detection and isolation, reconfigura­
tion, and recovery. These two architectures em­
ploy graceful degradation as an important means 
of trading system cost against criticality. In 
projected aircraft, the flight critical functions 
account for a minority of the resource utilization. 
These functions are therefore supported with 
highest priority as resource pools diminish due to 
aggregated failures. 

Beyond this point, FTMP and SIFT have gone 
separate ways. The FTMP has adopted a fully 
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synchronous approach, which allows hardware­
implemented bit-by-bit voting of all transactions. 
This in turn allows system management to be 
effected by majority rule, and means that the 
modules can be reassigned under executive con­
trol to different triads, or to spare status. Mod­
ules can be reconfigured in order to diagnose the 
location of a fault, to test the reconfiguration 
mechanisms, to activate spares for purposes of 
test and recovery, and to retire modules diag­
nosed as failed. 

The next section discusses the theory of the 
FTMP architecture, and enlarges on several of 
the points that have been introduced here. 

THEORY OF THE FTMP 

Nominal Organization 

Loosely defined, a multiprocessor is a computer 
with several processors and a single (possibly 
multiport) memory accessible to all processors. 
In the extreme, all instructions and data reside in 
a common memory available to any processor, 
so that processors are "anonymous." Given a 
suitable state vector, any processor can execute 
any procedure from any starting point. Motiva­
tions for multiprocessors are typically to increase 
productivity and availability at the same time, 
although these two purposes are competitive. At 
any rate, parallelism is intrinsic to the multiproc­
essor, as each processor is able to execute a 
different concurrent procedure subject to li:tnita­
tions imposed by resource sharing and sequential 
contraints on the procedures. 

Memory Access 

A "canonical form" of a multiprocessor is illus­
trated in Figure 17-1, which introduces the no­
tion of memory private to each processor in 
addition to the common memory. The rationale 
for this private, or cache, memory stems from the 
limitations imposed on parallel operation by 

Common 
memory 
modules 

Processors 

Cache 
memories 

r--

I I I 
Memory access 

--- --- -- -- --

Interface access 

Input-output 

Figure 17-1. Multiprocessor functional form. 

memory access constraints. In a multiprocessor 
with highly parallel memory access, memory 
conflicts would occur only when individual units 
of data are simultaneously requested, or are 
locked for sequential conflict resolution. This 
would be the optimum structure for parallelism, 
and the cache memory's role is reduced to a 
possible enhancement of processor execution 
speed. 

In the FTMP, on the other hand, the memory 
access is highly serial, for reasons dictated by 
reliability and economy. This essentially means 
that the memory has a single port, and that the 
throughput of the multiprocessor is governed by 
the bandwidth of this memory port. In this case, 
the cache memory has a significant role in en­
hancing parallelism. The combination of pro­
cessor and cache is a true computer, capable of 
performing elaborate operations on input data in 
response to terse commands. This means that the 
common memory can contain programs written 
in a language level higher than the processor's 
machine-language level, and that the processor­
cache unit can interrupt the higher level state­
ments during the time that other processor-cache 
units are accessing the common memory. In this 
mode of system operation, which is really a form 
of "virtual machine," a memory port of moder­
ate bandwidth can support an instruction execu­
tion "bandwidth" that is, at least in principle, 
almost arbitrarily large. 

The degree to which the instruction execution 
bandwidth can exceed the common memory port 
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bandwidth depends on the parameters of the 
cache memory, the terseness of the higher level 
language, and the relative amount of input and 
Dutput data for each independent procedure. 
Clearly, the enlargement of the cache memories 
tends toward a multicomputer organization. In­
deed, at some point the total cache capacity 
becomes adequate to contain everything in com­
mon memory, and the usefulness of common 
memory is reduced to the buffering of interpro­
cess data. Processor anonymity is significant to 
this application because of the frequent recon­
figurations that need to take place in this com­
puter for latent fault exposure. Anonymity also 
provides an intrinsic mechanism for dynamic 
load distribution among available processing 
resources. The cache memory, however, acts to 
reduce the anonymity of the processor. To put it 
another way, the degree of anonymity is deter­
mined by the ease of reloading the cache mem­
ory. With zero cache memory, anonymity is 
greatest. As cache memory is increased to sup­
port instruction bandwidth enhancement, the 
anonymity of the processor-cache units depends 
on the amount of cache memory whose contents 
are unique to one processor. Note that the 
incorporation of identical procedural and other 
constant data, or indeed identical variable data, 
in every cache memory has no adverse impact on 
anonymity. 

The use of a cache memory in a sampled-data 
control application, such as the aircraft applica­
tion considered here, is generally productive. 
The typical job step uses rather few data samples 
as input, and produces one data sample as 
DutpUt. The procedures used tend to lend them­
selves well to expression as macrooperations, i.e., 
higher level operations, such as floating point 
arithmetic, linear combination, elementary func­
tions, vector and matrix operations, and so forth. 
The incorporation of procedures of this level as 
cache subroutines is reasonable and profitable in 
today's technology. The current high annual rate 
of memory density increase prompts one to 
observe that a fairly extensive set of procedures, 
and indeed a hierarchy of procedures, is increas-

ingly appropriate for inclusion in cache memo­
ries. 

The cache memory structure of the FTMP 
includes memories for data and procedures, part­
ly read-write, partly read-only, designed to en­
hance instruction bandwidth with rather little 
loss of processor anonymity. The common mem­
ory, although highly modular, acts as a single­
port paged memory, accessible to one processor 
at a time via a serial bus with a built-in conten­
tion mechanism. 

functional Resource Allocation 

The programmer sees this multiprocessor as a 
machine for executing job steps, largely corre­
sponding to periodic sampled-data updates. The 
magnitudes of these job steps will vary consider­
ably from one control function to another, but 
will require something of the order of a few 
milliseconds, on the average, of processor time 
per job step. The procedure for each job step is 
written in a suitable language, and resides in 
common memory. Typically, each job step is 
scheduled to occur at a given time or following a 
given event. The relevant dispatch data for each 
scheduled job step is kept in a queue, where it is 
frequently examined to see if the job step is 
eligible to be run, or invoked. The frequent 
examinations are conducted by processors that 
have completed their earlier assignments, and 
are available to undertake new ones. When an 
available processor finds one or more eligible job 
steps, it selects one of them to invoke. In this 
way, job allocation is dynamic, and adjusts itself 
to the momentary load distribution and to mod­
ule failures. 

Input-output management in a multiprocessor 
can be more complex than it is in a single 
multiprogrammed computer, because as a single­
port resource, it impinges on program parallel­
ism. Depending on the statistics of external data 
traffic and of internal job steps, different access 
strategies may be appropriate. The most straight­
forward of these is to treat interface access as a 



590 THE PRACTICE OF RELIABLE SYSTEM DESIGN 

single resource that is allocated to a single pro­
cess for its exclusive use for the short period of 
time that a process requires access. Access may 
be granted on ,a priority basis or a first come first 
served basis. That is, when a processor needs 
interface access, it ascertains by means of flags in 
memory whether the interface is free. If not, the 
processor waits (with appropriate safeguards 
against lock-up) until it becomes free. 

Redundant Organization 

The physical organization of the FTMP is sub­
stantially more complex than the nominal organ­
ization outlined in the preceding section. A sim­
plified module diagram of the computer is shown 
in Figure 17-2. Superficially, this diagram ap­
pears much the same as the nominal multiproc­
essor. The principal differences are that the buses 
for memory and interface access are redundant, 
and that the actual number of modules is three 
times the number of nominal modules plus some 
number of spares. 

All activity is conducted by triads of modules 
and triads of buses. A module triad is formed by 
associating any three like modules with one 
another. This means that any module can serve 
as a spare for any triad. Such flexibility permits 
the best possible utilization of surviving modules. 
A single triad of bus lines is active at anyone 
time for each of the memory and interface 
accesses. In other words, a three-member subset 
of N bus lines is chosen on a quasi-static basis to 
serve as a bus triad. 

Every module of every kind is able to receive 
data from all incident bus lines, and contains a 
decision element to formulate a corrected ver­
sion of bus data. It is necessary for each module 
to know which three bus lines are the active 
ones. These three lines are connected to a voter 
in each module, thus constituting a TMR ele­
ment. The three active bus lines carry three 
independently generated versions of the data, 
each version coming from a different member of 
the triad that is transmitting the data. To accom-

plish this, it is necessary to assign each module to 
transmit on one specific bus line. Now if totally 
flexible module configuration is to be possible, it 
follows that the assignment of a module's trans­
mission to a single bus line must be quasi-static 
and reconfigurable. 

Bus Guardians 

In addition to the redundancy described in the 
preceding few paragraphs, the redundant organ­
ization differs from the nominal one by virture of 
the inclusion of independent submodules called 
bus guardian units in each processor, memory, 
and input-output access unit. Guardians are 
charged with governing the status of their asso­
ciated modules. This includes power-on status, 
memory bus triad and transmission selection, 
and certain self-test configuration selections. 

Each of the functions of the guardian has the 
characteristic that its failure modes have safe 
directions as well as unsafe ones. By biasing the 
failure modes toward the safe directions, it is 
possible to increase the probability of system 
survival. In general, the safe failure modes of a 
module are power-off, and bus transmission dis­
connected. To bias in this direction, one can 
employ redundant guardians in each module, 
and require agreement among them to establish 
power-on and bus transmission enable. 

The connection of bus guardians is illustrated 
in Figure 17-3. It should first be noted that the 
guardian principle depends heaviliy on fault 
independence. Therefore, each guardian derives 
its power, its bus inputs, and its timing reference 
independently of all other guardians. It is more­
over physically isolated from all other guardians 
and all modules. A particularly critical area from 
the isolation viewpoint is the control of the 
module's transmission interface onto the various 
bus lines. The bus isolation gates must be highly 
independent of one another, as must the guardi­
an's enable signals to these gates. This is one of 
the crucial electrical and mechanical design as­
pects of the entire computer. 
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Figure 17-2. Simplified physical diagram of the FTMP. 
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Figure 17-3. Bus guardian connections. 

Bus guardians are addressable as part of the 
common memory address space, and are capable 
of receiving messages from 'any processor triad 
via the active memory bus triad. A message to a 
guardian contains commands' which are stati­
cized by the guardian and applied to its outputs 
until superseded by a new command message. In 
this way, the probability is remote that a failed 
module can assert more than one erroneous data 
stream. As a result, correct data can be deter­
mined by the bus voters, and the malfunctioning 
module can be switched to a silent state. It is 
noted in passing that certain failures of a bus 
isolation gate can render a bus line useless, in 
which case the active bus triad must be reconfig­
ured. However, most guardian failures are biased 
to appear as passive failures of the unit to which 
the particular guardian unit pertains. 

Guardians are used as agents to convey the 
computer's configuration authority to all ele­
ments of the computer. They are highly secure 
against the random or willful malfunction of any 
single active transmitting module. They make 
possible the highly flexible reconfiguration on 
which' the FTMP depends. 

Processor and Memory Modules 

All modules and buses are organized into triads. 
In the case of processors and memories, there 
can be numerous triads in existence at the same 
time, but only one memory bus triad and only 
one interface bus triad. Each processor triad acts 
as one functional processor, of which several can 
work in parallel. Each memory triad acts as a 
page of memory, of which several can exist at 
one time, but only one can communicate at a 
time with a processor triad. 

When a processor fails, its triad will attempt to 
complete its current job step, which it will be 
able to do unless a second failure prevents it. 
The period of vulnerability to a second failure 
will be a fraction of a second. When the job step 
is complete, one of the other processor triads is 
assigned the task of reconfiguring the injured 
triad. When the erroneous module is identified, it 
is removed by commands to its guardians. If a 
spare is available, it is connected to the appropri­
ate bus by its guardians, likewise upon command 
by the processor triad assigned to the reconfigu­
ration. Triad identity will be assigned to the 



FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 593 

spare processor by a direct message. If no spares 
are available, the injured triad is retired. The 
resources of the multiprocessor are diminished 
by one processing unit, and the two unfailed 
members of the former triad are now available to 
be used as spares, should further failures occur. 

The situation is much the same for memory 
modules. The principal difference is that memo­
ries are not anonymous. In fact, a read-only 
memory module is totally dedicated to its as­
signed function, and cannot be used as a spare. 
When a read-only memory triad is injured by the 
loss of a memory module, a read-write memory 
module can be used as a spare. It must be loaded 
to agree with the surviving triad members before 
a second failure occurs. If no spare is available, 
the triad is reduced to a dyad, which is vulner­
able to the next failure, at which time one 
memory page is lost. This is a significant depar­
ture from the flexibility offered by the anony­
mous processor triads. The eventuality of read­
only memory failure must clearly be covered by 
the inclusion of adequate spares, either read­
write memories for flexible pooled use, or extra 
dedicated copies of read-only memory. 

Input-Output Access 

Figure 17-2 indicates the existence of input­
output access modules connected to the internal 
interface bus and also the external environment. 

The external interfaces of the computer can 
alternatively support dedicated, bused, or net­
worked link structures to the sensor and effector 
components. The redundancy structure at this 
point depends on the redundancy desired in the 
external interface. 

The simplest conceptual structure is a triple­
redundant interface, such as a redundant exter­
nal bus, where the triple modular redundancy 
structure is extended through to the component 
interfaces. Each external bus line can be dedicat­
ed to a different input-output access module, 
which in turn is assigned by its guardian units to 
transmit on one of the active interface bus lines. 
More complex variants are possible, in which 

each access module performs error correction by 
voting on incoming data from the external bus. 

When an external interface is nonredundant, 
the strategy would be to assign it to a single 
access module, where the module would transmit 
on all three active interface bus lines. A malfunc­
tioning access module could pollute the entire 
interface bus, but with suitable encoding and 
protocol there would be no serious consequences 
to the state of the system. The offending access 
module could be discovered and disconnected 
by bus guardian commands conducted over the 
memory bus, the major penalty being a time loss 
on the remainder of the input-output interface of 
the computer. For dedicated links, the loss of the 
link is noncritical by hypothesis. For a network, 
whose survival is assumed critical [Smith, 1975], 
the computer must interface with the network in 
several places via several distinct access modules. 
Each such interface would be simplex, but the 
system would survive the failure of all but one of 
them. 

Synchronization 

The employment of independent redundancy 
requires some form of synchronization among 
the independent data sources. Soft, or loose, 
synchronization involves such operations as buf­
fering, comparing or voting, signaling consensus, 
and marking completed intervals. These can be 
done by program, given suitable intermodule 
data links. Hard, or tight, synchronization in­
volves hardware comparison or voting, and a 
common time reference, whereas loose synchro­
nization can employ separate time references. 

Tight synchronization is employed in the 
FTMP. It provides the basis for solving some 
problems, and it presents some problems of its 
own. A common time reference, or clock, that 
supports hardware voting, allows instantaneous 
validation of internal data, configuration control, 
and, in some cases, interface data. In this way, it 
helps to make the redundant multiprocessor re­
semble the nominal one, which is advantageous 
to programmers at all levels. 
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The problems of common clocking stem pri­
marily from the fact that it is critical to computer 
operation in the dynamic sense. The timing 
reference must be continuous and must remain 
within tolerances. A second consideration is that 
common clocking results in time-correlated data 
transfer, which is subject to correlated malfunc­
tion if subjected to external radiation of electro­
magnetic energy beyond the levels tolerated by 
shielding. The second problem is intrinsic to all 
synchronization, but is more severe for tight 
synchronization. The problem also exists in prin­
ciple for any degree of shielding. When the 
statistics of such interference are known, the 
problem can be addressed in the time domain by 
encoding for error detection, rerun for recovery, 
or repetition for time independence. 

The problem of maintaining a continuous tim­
ing reference is solved by a fault-tolerant redun­
dant clocking arrangement, based on a majority 
logic algorithm described in Daly, Hopkins, and 
McKenna [1973]. A more recent embodiment, 
using voltage-controlled crystal oscillators, will 
be described in future reports. The basic princi­
ple of the system is shown in Figure 17-4, which 
shows a set of independent phase-locked oscilla­
tors arranged so that the failure of one of the 
oscillators does not destroy the phase lock of the 
survivors. The clock signal from each oscillator is 
distributed to every module and guardian, so 
that each can make an independent-determina­
tion of clocking edges. These independent deter­
minations are made by circuits called clock 
receivers, whose operational principles are close­
ly similar to the clock receivers described in 
Daly, Hopkins, and McKenna [1973]. In normal, 
nonfailed operation, the outputs of all the clock 
receivers are in. phase lock with each other and 
with all the oscillators. The same phase lock 
holds when an oscillator fails. The failure of a 
clock distribution line appears as an oscillator 
failure, and the failure of a clock receiver ap­
pears as a failure of the module or guardian that 
contains it. The approach is discussed further in 
the subsection on the Clock Generator below. 

Malfunction Management 

The unusually high level of dependability re­
quired in the FTMP makes it mandatory to 
consider all possible sources and effects of prob­
able malfunctions. The probabilities associated 
with exposure to hazards are important here, as 
they are in any reliability analysis. The fact that 
reconfiguration and recovery are needed to meet 
reliability goals raises other issues of importance, 
having to do with the probabilities associated 
with the detection and identification of malfunc­
tions, reconfiguration and recovery of the sys­
tem, and the system status following a malfunc­
tion event. All those considerations relate both 
to the design and the evaluation of t?e system. 

Malfunction Sources 

A malfunction is a general term for anomalous 
behavior. Numerous kinds of malfunctions are 
distinguished, ranging from microscopic disor­
ders in an integrated circuit to total aircraft 
impairment. Within the information processing 
segment of the total system, we are concerned 
about avoiding malfunctions that preclude the 
availability of viable contingencies. We can 
think of potential malfunctions as being infinite­
ly rich in number and variety, and tractable 
solely because they can be treated as classes and 
subclasses. 

The first class of malfunctions to be examined 
is that resulting from externally induced phe­
nomena, such as physical penetration, radiation 
(atomic, electromagnetic), temperature extremes, 
or excursion of prime power. The common 
thread in these diverse physical environments is 
that their effects cannot be confined or localized 
to one or a few subportions of the information 
system. The entire system is vulnerable at one 
time, and for an arbitrarily high exposure it 
cannot be made otherwise. That is, the shielding, 
structure, environmental control, and prime 
power generation must all be designed to with-
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CR = Clock receiver 

PlO = Phase-locked oscillator 

L Note: CR may use any 3 of 
the 4 inputs available 

Figure 17-4. Fault-tolerant clock system. 

stand stated levels of exposure to known haz­
ards. Exposures in excess of these levels are 
potentially catastrophic. 

The second malfunction class is that of ran­
dom malfunctions whose sources are internal to 
the system. Typically, these result from circuit 
failures. When idealized, such malfunctions are 
permanent, isolated, unambiguous, visible, and 
recoverable. Actual faults are apt to be marginal, 
intermittent, correlated, hidden, uncovered, and/ 

or not perceived uniformly by multiple observ­
ers. This is the category of malfunctions that 
redundancy addresses, although the nonideal 
attributes of actual faults tend to undermine the 
effectiveness of all redundant systems. 

The third class of malfunction sources will 
simply be denoted as "other sources." The first 
two classes are broadly enough defined to be 
stretched to cover everything, but it is useful to 
emphasize certain sources separately. Thus we 
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include in this third category the deficiencies 
resulting from lapses in system specification, that 
is, where the domain of operation and the do­
main of design are not matched. Software in this 
sense is a specification. It specifies the sequential 
rules of hardware utilization. Logic design is also 
a specification in this sense, as are design factors 
related to the human interfaces and the sensor 
and effector interfaces. The architectural impli­
cations of this category are that the system must 
be tractable and understandable enough to re­
duce the probability of occurrence of such mal­
functions to a negligible level. 

Malfunction Consequences 

I t has been useful to characterize the various 
possible malfunctions according to the levels at 
which they affect the system [Aviiienis, 1975]. 
There are physical malfunctions that occur within 
hardware elements, such as a short circuit in a 
transistor. These have been referred to by var­
ious writers as faults and failures, and in this 
paper the word "failure" refers to this category. 
A physical malfunction mayor may not result in 
a logic malfunction, in which a logic variable is at 
some time or _another complementary to its cor­
rect value. Where authors use the word "fault" 
for physical malfunction, they use "failure" for 
logic malfunction, and vice versa. A logic mal­
function can occur in the absence of a physical 
malfunction, notably from induced sources. 

A logic malfunction mayor may not produce 
a data malfunction, often called an error. A data 
malfunction can occur in the absence of a logic 
malfunction, notably from specification lapses. 
A data malfunction, in turn, mayor may not 
produce a subsystem malfunction, which in turn 
mayor may not produce system malfunction. 

We have portrayed a propagation chain from 
physical malfunctions to system malfunction, 
with some external entry points. Whether propa­
gation takes place from one level to another 
depends on whether a causal link exists in the 
first place, and whether the phenomenon is 
masked by a redundancy. Thus a logic malfunc-

tion produces a data malfunction only if it 
impacts the outcome of an operation. Even then, 
it may not, as for example when the data results 
from the voting of three inputs, only one of 
which suffers a data malfunction. 

A key point, often overlooked in simplistic 
treatments of redundancy, is that redundancy 
always has a limited capacity to mask malfunc­
tions, and this capacity can degrade to zero 
without affecting the apparent behavior of the 
system. Therefore, a system designed to have 
tolerance may in fact have none at the inception 
of a critical mission. Alternatively it may have 
some tolerance, but less than the design level, 
and less than what is assumed. Masking is a two­
edged sword. On one hand it is a mechanism for 
holding malfunctions at a low system level, while 
on the other hand it may obscure the fact that 
the malfunction has occurred and thereby has 
reduced the system's tolerance to future mal­
functions [Hopkins, 1977]. 

Tolerance Renewal Principles 

The primary advantage of hybrid redundancy 
over TMR is that injured triads are,reconfigured 
back to a state where they can once again mask 
malfunctions. This is a process of tolerance 
renewal. In principle, the system failure rate is 
restored to its design value by the reconfigura­
tion process. If reconfiguration were to fail, the 
system failure rate would increase, possibly by 
many orders of magnitude. 

In practice, there are several ways in which an 
injured triad can fail to be reconfigured. These 
include exhaustion of spare modules, malfunc­
tion of the reconfiguration mechanism, failure to 
detect the need to reconfigure, and perhaps the 
use of a defective spare module. We can charac­
terize the process of tolerance renewal as the 
detection and location of any physical malfunc­
tion, the removal of vulnerability from the triad 
containing the malfunction, the replacement, by 
spares, of functions thus removed, and the ini­
tialization of the reconstituted triad. All mecha­
nisms involved in this process are subject to 
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malfunction, of course, and such malfunctions 
constitute injury to their triads, and require that 
tolerance renewal be carried out on the ~ppropri­
ate modules. 

The tolerance renewal mechanism in the 
FTMP is largely contained in the voters and the 
bus guardian units. Both the voters and the 
guardian units possess bus line interfaces, and 
therefore are both capable of degrading elements 
(i.e., bus lines) outside of their own modules 
(e.g., processor, memory, interface access). This 
by itself is not qualitatively different from a 
single malfunction. The important concern is 
that all guardians in a single module may fail in 
such a way as to enable that module to transmit 
on more than one bus line. Design steps are 
taken to minimize the probability of this even­
tuality, but the probability is finite that it will 
happen. A subsequent failure of the module in a 
malevolent state could cause an entire central 
computer to malfunction. 

fault Detection, Identification, 
and Recovery 

The FTMP is designed to have a highly improb­
able loss of capability, with a total failure rate of 
less than 10-9 failures per hour in a flight of up 
to ten hours. This virtually rules out the use of 
ordinary triple modular redundancy, as the 
MTBF's achievable in large scale production 
have been consistently too low for such reli­
ability without replacement of failed modules. 
Therefore some form of hybrid redundancy is 
needed. In a simplistic view, hybrid redundancy 
works by substituting a spare the first time the 
TMR voters disagree. This view has the short­
coming of not taking latency of faults into 
account. That is, the first fault may not result in 
any voter disagreements, whereas when com­
bined with a second fault, it may frustrate recov­
ery. A prerequisite for achieving highly improb­
able failure in a hybrid system is therefore to 
expose latent faults by systematic exercising, or 
"flexing" of all logic elements. The flexing period 
must be of the order of seconds for a reasonably 

sized system with module MTBF's in the 10,000-
hour range. Clearly, then, flexing cannot be 
relegated to preflight checkout, but must rather 
be conducted routinely in flight. An ordinary 
hybrid TMR system cannot routinely test itself 
when performing critical functions, as it is vul­
nerable during these times. A parallel hybrid 
TMR system can do this, however, and this 
becomes an integral part of the computer's archi­
tecture. 

In the FTMP, an error correction mechanism 
exists in every module in the form of a voter. 
Each voter must be tested routinely to ensure 
that its error correcting capability is undimin­
ished. Bus voters under normal conditions will 
correct single bus errors and will set error latches 
to indicate which of the buses was in disagree­
ment. At this time the processor can record the 
identity of the nominal user of the bus for 
diagnostic purposes. A processor triad can flex 
its own voters during a test job step by having 
each triad member purposely utter independent 
bus data that causes all possible kinds of bus 
errors. To pass the test, all triad members must 
receive the same data, form the same corrected 
result, and indicate the same disagreement pat­
terns in their error latches. This is a relatively 
simple test procedure, which can be conducted 
by a processor triad under test while other triads 
carry on normal functions. In a sense it qualifies 
the triad to conduct further testing, in which the 
triad's voters are the decision elements. 

The remainder of the system testing function 
is carried out under the assumption that the 
processor voters and error latches are operation­
al. The test process involves the conversion of 
every fault into an error, by making calculations 
whose results are sensitive to each logic variable. 
Each bus and module, including voters, guardi­
ans, isolation gates, clock receivers, oscillators, 
and data and power interfaces must be exercised 
in depth. 

We might summarize the fault detection pro­
cess as the arrival of disagreement errors at the 
voters of a processor triad, stimulated by normal 
or test activity. The detection of a fault initiates 
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the process of fault identification, which is the 
discovery of the module, bus, or other isolated 
element in which the failure resides. During the 
testing process for latent faults, there is relatively 
little ambiguity in the determiJ?ation of faulty 
modules. In normal operation, however, an error 
on the bus can come from a number of sources. 
The identification of the faulty module generally 
requires the "rounding up of suspects," that is, 
the listing of elements that transmit on the 
disagreeing bus. If a module fault is permanent, 
the module can be found by moving it to another 
bus. If the bus is faulty, reconfiguration will not 
move the error to another bus. 

Intermittent faults are less easy to identify. 
When the source of an error eludes detection by 
disappearing, all of the suspect elements are 
assigned one demerit, and a reconfiguration is 
then made to distribute the suspects evenly on 
different buses. Subsequent error occurrences 
and reconfigurations will cause a preponderance 
of demerits to accumulate in the name of the 
faulty module or bus. 

The recovery process is one of assignment and 
initialization for modules, and voter and trans­
mitter selection for buses. These are all accom­
plished by the bus guardian units upon receipt of 
commands from active triads executing system 
software. Recovery can take place even if single 
errors are present on the buses. In principle, 
therefore, an injured processor triad can recon­
figure itself. 

The use of program restart, or rollback, as a 
recovery mechanism is secondary, because it is 
neither sufficiently effective nor easy to imple­
ment. The first level of system defense is the 
masking of errors by the TMR method. The 
additional system failure rate reduction achiev­
able by rollback cannot be measured, a priori, 
without an understanding of the applications 
software. It should be anticipated, however, that 
any event that defeats the TMR masking is apt 
to destroy the vehicle's state vector, which may 
or may not be catastrophic. In any event, some 
degree of program rerun should be included to 
support power-up initialization and to deal to 
some extent with the eventuality of uncovered 

errors. This will affect both system software and 
application software. 

DESCRIPTION OF AN ENGINEERING 
PROTOTYPE OF THE FTMP 

During the 1978 and 1979 time frame the 
Charles Stark Draper Laboratory is planning the 
construction, for NASA, of an engineering pro­
totype of the FTMP. The hardware is to be built 
by a major avionics manufacturer using specifi­
cations provided by CSDL. CSDL will retain 
program responsibility, provide all system soft­
ware, and will conduct the integration, test, and 
evaluation of the system. The project is being 
sponsored by the NASA Langley Research 
Center as a part of the Energy Efficient Aircraft 
Program. The implementation of the prototype is 
discussed in this section. 

The proposed system is to be constructed of 
ten identical line replaceable units (LRU's) con­
nected as indicated in Figure 17-5. Each LRU 
contains one processor/cache module, one mem­
ory module, one I/O port, one clock generator, 
and related peripheral support and control cir­
cuitry. Figure 17-6 shows how an LRU is divided 
into fault-containment regions. The principle re­
gion is detailed in Figure 17-7. 

Up to three processor triads can be in opera­
tion simultaneously, utilizing nine of ten avail­
able processor/cache modules. The tenth module 
serves as a spare. With three triads operating 
simultaneously, the system is functioning as a 
three-processor multiprocessor. 

Up to three memory triads can be formed 
from nine of the mass memory modules. The 
tenth module is a spare. Each memory triad is 
assigned to service a single 16K work region of 
the shared mass memory address space. With 
three memory triads operating simultaneously, 
48K words of contiguous shared mass memory 
address space can be serviced. 

The I/O ports use MIL-STD-1553 data for­
mats and signaling protocols. MIL-STD-1553 is 
a United States Air Force standard for a bit 
serial, time multiplexed avionics data bus. A 
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single I/O port accepts the bit serial data from a 
processor triad, votes to mask any errors in that 
triad, and generates a single version of the I/O 
transmission. This version is electrically trans­
formed to conform with MIL-STD-1553 specifi­
cations, and is transmitted to the outside world 
on one member of a full-duplex transmission 
pair. Received data from this MIL-STD-1553 
transmission pair is accepted by the I/O port, 
converted to an internal signal level, and distrib-

uted to all processors. At least one port and its 
associated external transmission pair must re­
main functional for the system to remain opera­
tional. Error detection and correction outside the 
multiprocessor relies upon data encoding and 
time redundancy in communications to and 
from remote terminals. 

This engineering prototype differs from the 
basic FTMP design in that it groups aprocessor, 
a memory unit, and an I/O port together in a 
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single LRU with common power supply, bus 
guardians, isolation gates, and other common­
failure elements. The reason for doing this arises 
from the physical form factors involved. Mean­
while, this design preserves the necessary fea­
tures to allow processors, memory units, and I/O 
ports to be assigned independently of each other, 
and for the system to diagnose and recover from 
simultaneous failures of all three. 

The Redundant Bus Structure 

The bus system shown in Figure 17-5 is quintu­
ple-redundant. Each bus has lines dedicated to 
processor transmission, (the two P bus lines); 
memory module transmissions, (the M line); 
clock generator transmission, (the eLK line); 
and I/O transmissions, (the IX and OX lines). 
Subsets of three of the five buses are assigned to 
carry processor and memory triad data. A subset 
of four of the five is used to carry clock generator 
transmissions. A single bus of the five is used to 
carry I/O port transmissions. 

The processor uses two bus lines, P I and P2, 
to transmit data and commands to common 
memory and status register devices. The pro­
cessor triads also contend for control of the bus 
system via a cooperative, competitive allocation 
technique which uses these bus lines. 

A triad of memory modules uses the memory 
bus lines to transmit data requested by a pro­
cessor triad. Since memory triads only speak on 
command, there is no mechanism, such as the 
competitive poll used by the processors, to grant 
permission to transmit. The processor in control 
of the P bus implicitly grants transmission per­
mission by issuing a read request. 

lRU Interfacing to the Bus System 

Each LRU of the system must be interfaced to 
the bus system in a fashion that protects the 
fault-tolerant architectural features of the logical 
design. Several design constraints must be met in 

order to meet this requirement. Figure 17-6 
illustrates a suitable interface. 

Each of the five buses is connected to the LR U 
through a dedicated bus interface. Each of these 
bus interfaces represents an independent fault 
containment region. Design requirements for a 
fault containment region limit the physical im­
pact of a fault in that region. Signal lines into 
and out of the region are buffered at the region's 
edge so that a fault on any of these lines external 
to the region will not affect the correct operation 
of the circuitry within the region, excepting 
possibly these output or input buffers. The prin­
cipal concept of a fault-containment region is the 
containment of physical damage to one region 
by the surrounding regions. The logical contain­
ment of the effects of a fault are provided by 
other means. For example, a fault such as a short 
circuit to power on all lines into and out of a bus 
interface has two partitionable effects. First, data 
transmitted through that bus interface is likely to 
be received incorrectly. This is the logical impact 
of the fault. The logical failure is not contained 
by the fault-containment region. The second 
effect is physical. The fault will electrically stress 
the receiving and transmitting buffers of at­
tached regions. This stress may induce physical 
faults within these buffers, but the design of 
these regions is such that these internal faults do 
not propagate beyond these buffer circuits. 

The remaining portion of an attached region's 
circuitry continues to function correctly, al­
though it may be operating on incorrect data. 
Since there are no fault propagation paths be­
tween regions, a fault within a single bus inter­
face cannot affect the correct operation of anoth­
er bus interface. A single bus interface failure, 
therefore, can at most cause the apparent loss of 
a single bus. 

The remaining portions of the LRU are di­
vided into three additional fault-containment 
regions. Each Bus Guardian Unit is a fault­
containment region. The third region, or princi­
pal region, consists of common voters, processor / 
cache, mass memory, I/O port, clock generator, 



FfMP-A HIGHLY RELIABLE MULTIPROCESSOR 603 

and power supply. The bus interface provides 
separately buffered copies of the PI, P2, and 
CLK lines to both bus guardians and the princi­
pal region. Since a fault within one of these 
attached regions cannot affect the separately 
buffered PI, P2, and CLK lines used by the other 
two regions, they each appear to have indepen­
dent access to the bus system. In order for a bus 
interface to allow principal region transmissions 
onto a system bus line, it must have enabling 
signals from both bus guardians. Thus either 
guardian can block access to a particular bus 
line. Each of the guardians has what is effectively 
independent access to all incoming bus data. It 
can independently mask single bus errors via 
voting, and it processes incoming processor triad 
transmissions, responding only to write com­
mands to its particular address location. The 
contents of these write commands alter the static 
enabling signals from the guardians. Each guard­
ian provides an enable line to each bus interface 
for the P lines, M line, CLK line, and OX line. 

The LRU interfacing is designed to protect the 
integrity of the bus system despite multiple se­
quential faults. A worst case bus interface failure 
can at most disable all of the lines of only one of 
the quintuple bus sets. The system can then be 
reconfigured to use the remaining lines of other 
buses. One element of a triad or the clock quad, 
if it fails, can impact at most one of the active 
bus sets. Again reconfiguration commands can 
isolate that faulty unit from the bus and assign a 
spare to replace it, thereby restoring system 
health. To cause a system failure, four of the five 
bus sets must fail, or two bus guardians within 
the same LRU must fail, enabling the principal 
region to access all bus lines, and in addition, the 
principal region must fail. 

System Control Units 

The bus guardian unit is a particular case of a 
generalized unit called a system control unit. Each 
LRU has four system control units. They are 

designated bus guardian unit 0 (BGU 0); bus 
guardian unit I (BGU 1); configuration control 
unit, (CCU); and the interprocessor triad com­
munication unit, (IPC unit). The CCU and IPC 
units are part of the principal fault containment 
region. As previously stated, BG U 0 and BG U I 
are each a fault-containment region. 

All of these system control unit types are 
similar and can be constructed from the same 
circuit. Figure 17-8 illustrates the functional re­
quirements for such a common circuit. Essential­
ly the circuit must take the serial processor 
command data, PI, P2, and CLK, pass it 
through error-correlation circuitry, if this data is 
in redundant form, and convert it to a parallel 
form. A system control unit only responds to a 
memory write command to its own particular 
memory address. 

Register contents may be supplied as static 
enabling or data signals to circuitry external to 
the system control unit, or they may be used 
internally to control the error correction circuitry 
(if present). 

A power monitoring circuit switches the regis­
ter store to battery power when primary power to 
the unit is not within specification. When battery 
powered, the register contents are protected, and 
the enabling lines from the guardians are in the 
disable state. Total loss of all power to a guardi­
an clears the register contents to the disable 
state. 

The Principal Fault-Containment 
Region 

All of the circuitry of an LRU is within the 
bounds of the principal fault-containment region 
excepting the two bus guardians and the bus 
interfaces. 

The principal region can be viewed as being 
made up of seven subregions. These are: I) input 
processing; 2) configuration control; 3) pro­
cessor/cache; 4) memory; 5) I/O ports; 6) clock 
generator; and 7) power supply, as shown in 
Figure 17-7. 
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Figure 17-8. System control unit. 

Input Processing 

All input to the principal region is from the bus 
interfaces, and is first processed by shared signal 
selectors, voters, and error detection circuits. The 
input circuitry generates a single version of the 
PI, P2, eLK, M, IX, and OX lines to be used by 
all modules within the region. This single version 
of each line is the appropriate majority function 
of the selected group of 3 out of 5 lines. Addi­
tionally, the voting circuitry detects and latches 
any error condition on the bus lines, and pro­
vides this information as input discretes to the 
processor. The selection of one of the ten possi­
ble groups of 3 out of 5 buses to be used by the 
majority circuitry or the selection of which IX 
line to be used, is made by selector discretes 
provided by the Configuration Control Unit. 

Configuration Control Unit (CCU) 

The Configuration Control Unit (CCU) is a 
system control unit. The CCU is used to control 
the INMUX circuitry, is. used to assign the 
processor/cache unit to a processor triad and to 
start and stop the processor, and is used to assign 
the mass memory module to a memory triad. 

Processorl Cache Module 

The processor/cache memory module is the most 
complex of the principal region. It can be parti­
tioned into a number of submodules. These are: 
a) processor, b) cache memory, c) bus controller, 
d) IPC unit, and e) MIL-STD-I553 controller. 
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rhe Processor. The principal design require­
nents of the processor could be met using any of 
l large number of general purpose 16-bit mini­
;omputer architectures. In order to support the 
)rojected computational requirements of aninte­
~rated avionics system, the basic processor has a 
·aw instruction execution rate roughly equivalent 
,0 500,000 16-bit fixed-point adds per second. A 
l6-bit fixed-point multiply has an execution time 
;ix times that of the fixed point add. 

The instruction set of the processor is suitable 
~or avionics applications and, in addition, pro­
rides for the following: 1) code is relocatable 
without modification; 2) code is read-only and 
·eentrant; 3) the CALL and RETURN instruc­
:ions support dynamic program loading efficient­
y; 4) memory protect is supported for a region 
)f the cache RAM; and 5) privileged user modes 
)f operation are provided to prevent the direct 
!xecution of I/O and mass memory access in­
;tructions by applications code. 

The processor is adapted to use the output of 
:he CLK generator as its time base and incorpo­
~ates a microcode interlock with the bus control­
,er which allows three processors to be synchro­
lized by using particular bus events, such as bus 
~rant. 

Cache Memory. The cache memory is a 4K X 

16 semiconductor RAM and 4K X 16 semicon­
juctor PROM array. It interfaces to the pro­
::essor over the processor's internal parallel bus. 
I\ccess time for this memory is 400 ns. There is 
rlO requirement for nonvolatility in the RAM 
portion of this memory. 

flus Controller. The bus controller is responsi­
ble for the bit-by-bit control of the processor side 
:>f bus activity. On command of the processor, 
the bus controller conducts a competitive polling 
iequence to acquire control of the main memory 
bus. The controller then holds the bus until 
tnstructed to release it. It makes use of the' triad 
tdentification provided by the CCU and a prior­
tty field provided by the processor during the 

polling sequence. While holding the bus, it per­
forms memory reads and writes as requested by 
the processor. Data and memory address trans­
fers between the processor and controller are 
handled in parallel. The controller performs the 
necessary timing, serial to parallel and parallel to 
serial conversions for the processor. The pro­
cessor handles block transfers performing the 
necessary housekeeping, streaming parallel 
memory addresses, and accepting whole word 
data streams from the controller and storing 
them in cache memory, or streaming parallel 
addresses and data to the controller for storage 
in the common memory. 

Interprocessor Triad Communication Unit. 
The Interprocessor Triad Communication Unit 
(IPC) is used by the executive for direct pro­
cessor-triad to processor-triad communications. 
The IPC registers are available as discretes to the 
processor. 

MIL-STD-1553 Controller. A MIL-STD-1553 
controller interfaces to the processor over the 
processor's internal parallel bus. It conforms to 
the standard format, except that the outgoing 
and incoming data paths have been split so as to 
provide full-duplex transmission paths. 

Memory Module 

The memory module contains a 16K X 16 CMOS 
memory array with the appropriate control cir­
cuitry to respond to processor triad memory read 
and write commands. 

Input to the memory control circuitry is the 
bit-serial quantity represented by the outputs of 
the P-INMUX outputs and CLK-INMUX. The 
most significant bits of the incoming address are 
compared to the relocation register provided by 
the CCU. If they match, a read or write opera­
tion is performed. If they do not match, the 
incoming command is ignored. Read responses 
are made using the M bus. Responses are 
clocked using the output of the CLK-INMUX. 
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110 Port 

The I/O port is principally a signal level shifter 
and data synchronizer. A single corrected ver­
sion of I/O output data, OX, is accepted by the 
I/O port from the common input module, and is 
buffered to conform to MIL-STD-1553 specifica­
tions. The transmitting processor triad is respon­
sible for formatting the OX lines signal to con­
form to the MIL-STD-1553 format. 

The I/O port receives I/O input data, synchro­
nizes it so that transitions do not occur near 
system clock edges, converts the signal levels to 
an internal standard, and transmits the signal on 
an IX line to all processors. 

Clock Generator 

As discussed in the subsection on Synchroniza­
tion, the entire fault-tolerant multiprocessor rests 
on an assumption of synchronized operation 
based on a common timing reference. Each LR U 
includes a clock generator which can be synchro­
nized to the common reference, and which, if 
gated by the BGU's onto a CLK bus, could serve 
as a contributing element to the common refer­
ence in the manner shown in Figure 17-4. The 
clock generation circuit of an LRU interacts 
with the CLK bus lines, the CLK-INMUX, and 
the other clock generators. To understand the 
function of the clocking system, it is necessary to 
discuss all of these components as they interre­
late with one another. 

The clock bus is a component part of the 
quintuple redundant busing system. Each of the 
five bus sets includes one clock bus line, CLK. 
Normally, four of the five CLK lines are active 
and one is inactive. Four clock generators are 
chosen as the clock sources, each being assigned 
to a different clock bus. Each transmits a clock 
signal which is phase-locked to the other three 
active clock generators. Thus the system has 
available at all points a quad-redundant time 
base. Each clock receiver listens to three of the 
four active clock buses and generates a derived 
clock which remains correct even if one of the 

three input signals fails. It is therefore possible to 
tolerate a single failure of one of the elements of 
the clock quad without affecting the correctness 
of the derived clocks generated throughout the 
system. 

Each bus guardian and each CLK-INMUX 
uses a clock receiver to generate its own correct­
ed version of the system clock, despite single 
faults in the clock quad. 

Each clock generator, whether active or in 
standby mode, phase locks its output to its CLK­
INMUX output. Thus the clock generator out­
puts a clock which is in phase with the majority 
of three CLK buses. When active, the output of 
the clock generator is gated onto one of the four 
CLK buses, and its associated CLK-INMUX is 
adjusted to listen to the other three CLK buses. 
In this configuration the correctly functioning 
clock generators will produce multiple phase­
locked clocks which will remain phase-locked 
despite any failure of a single clock element of 
the quad. 

When a failure is detected, the system recon­
figures, replacing the failed CLK bus or clock 
generator. Standby clock generators are already 
phase-locked to the corrected system clock, so 
that they can be switched in to replace a failed 
clock generator with minimal transients in clock 
frequency and with negligible risks. This restores 
the fault-tolerant character of the clocking sys-

. tern, positioning it to tolerate the next clocking 
component failure. 

Power Supply 

The power supply provides regulated power to 
the LRU. The power supply can draw power 
from any of the four primary 28-V DC power 
buses. A circuit breaker or fuse protects each of 
these buses from a short circuit within the LR U. 
The power supply must have adequate energy 
storage so that its output remains within regula­
tion for the time it takes these protective devices 
to act and the bus voltages to return to normal 
after a short circuit within another LRU. The 
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output of the power supply is overvoltage pro­
tected, possibly with serial redundant protection. 

The bus interface devices will be designed to 
operate safely for all power supply voltages 
beneath the overvoltage protection limit; that is, 
the bus interface will present a high impedance 
load on the bus for all voltage levels if the 
corresponding enables from the BGU's are un as­
serted. 

The BGU's will monitor power supply volt­
ages. If out-of-regulation voltages are detected, 
the contents of the BGU registers will be frozen, 
and all enabling outputs will revert to the unas­
serted state. 

A battery backup is used to provide power to 
the CMOS memory array, and to the BGU and 
CCU register files, when primary power is lost. If 
this battery power fails when primary power is 
down, the register files of the BGU's and CCU 
will be cleared. 

Primary Power 

Power is distributed to all LR U's of the system 
by means of four 28-V DC power buses. Four 
400-Hz 1l0-V DC to 28-V DC power converters 
provide power to these buses. These power sup­
plies are overvoltage and overcurrent protected. 
If an overcurrent condition arises, the 28-V DC 
output will current-limit but return to normal 
when the protective devices within the shorting 
LRU open. Energy storage with the power sup­
ply must be adequate to tolerate momentary 
power interruptions such as are typically caused 
by power switching in aircraft power distribution 
systems. 

SURVIVAL AND DISPATCH 
PROBABILITY MODELS FOR 
THE FTMP 

The FTMP has several different failure modes, 
each of which is amenable to a different mathe­
matical tool. Specifically, the probability of 

failure due to exhaustion of spares can be ade­
quately modeled using combinatorial methods, 
whereas Markov processes are better suited to 
modeling coverage-related problems. Fortunate­
ly, each of these failure modes predominates in a 
different time segment, and therefore can be 
modeled and analyzed independently. 

Survival Probability Models 

The computation of survival probability of the 
FTMP for random hard failures is divided into 
the following three phases: 

• probability of failure due to the lack of perfect 
coverage using a Markov process model; 

• probability of failure due to exhaustion of spares 
using a combinatorial model; 

• probability of failure due to BGU failures in enable 
mode using a combinatorial model. 

In the FTMP some time is required to detect, 
isolate, and recover from any failure. During this 
time a second failure may arrive in such a place 
as to be catastrophic. Therefore, the coverage 
[Bouricius et aI., 1971] is imperfect. This phe­
nomenon is most conveniently modeled using 
Markov processes, as ~ach distinct failure or 
recovery moves the system into a state that is 
dependent only on the present state of the sys­
tem. However, to limit the number of states to a 
reasonable level, it is necessary to make some 
approximations. The most effective of these ap­
proximations is to assume that recovery from a 
failure returns the system to a perfect state, 
which is the initial state of the system, rather 
than to a computationally degraded state. In 
effect, this implies an unlimited supply of spare 
units of each kind. The probability of failure due 
solely to exhaustion of equipment can be com­
puted independently using combinatorial meth­
ods. The basic premise which allows one to 
decouple and model these two modes of failures 
separately is the predominance of each mode 
during a different time span. As will be shown in 
the following sections, in the short run (0-50 hr) 
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it is the threat of near simultaneous failures 
which most affects system survivability, whereas 
in the long run (> 100 hr) the system is likely to 
fail due to a lack of equipment. In addition to 
these, there is a third failure mode peculiar to the 
FTMP architecture that has to be accounted for. 
This relates to two bus guardian units in an LRU 
failing so as to enable a failed unit (processor, 
memory, etc.) to transmit simultaneously on a 
number of buses. It will be shown that this mode 
does not affect the reliability since its probability 
is insignificant at all times. 

The following three subsections describe the 
models and the results. 

Lack of Coverage: Markov Model 

Since all the information as well as all the 
computations in the FTMP computer are triply 
redundant, any single failure in the system is 
completely masked by the majority voters. 
Therefore, if the system starts out in a totally 
fault-free state, it takes at least two successive 
failures without recovery to produce a cata­
strophic system failure . .However, not all double 
failures are catastrophic. In fact, most double 
failures can be tolerated by the FTMP without 
any problem. The following is a list of all the 
catastrophic double failure combinations: 

• two processors in a triad fail; 
• two memory modules in a triad fail; 
• two active buses fail; 
• one active bus fails and a processor or memory 

enabled on another active bus fails; 
• two active oscillators fail; 
• one active bus and an oscillator enabled on another 

bus fails; 
• one LR U . fails in common mode and an associated 

processor, memory, or bus fails; 
• two associated LRU's fail in common mode. 

The . common mode LRU failure refers to a 
failure of any of the LRU components that are 
shared by the processor, memory, and I/O port 

in that LRU. These include the local power 
supply, the oscillator, the two BGU's, and the 
selectors and voters. A local power supply failure 
in an LR U, for example, will result in the 
simultaneous loss of the processor, memory, and 
I/O port in that LRU. The BGU failures include 
only the disable mode, since the enable mode is 
taken care of separately. Finally, the bus failure 
includes a failure of any of the five lines consti­
tuting a bus or a failure of any of the ten bus 
interface gates connected to that bus. 

A Markov model of the FTMP computer 
reliability based on the above discussion is 
shown in Figure 17-9. The system is initially in a 
completely fault-free state or "ALL GOOD" state. 
It will be shown shortly that at time t = 0, such 
as a take-off time, the probability of having a 
latent failure in the system should be about 10-6 

to achieve a system failure rate of 10-9 failures 
per hour. That is, one must be certain with a 
probability of about 0.999999 that the system is 
initially fault-free. In the following discussion, it 
is assumed that the system is initially fault-free. 
Some of the other assumptions used in develop­
ing the model are outlined below. 

As explained earlier, it is assumed that recon­
figuration around a failed unit returns the system 
to the perfect state. It is also assumed that all the 
failed buses are active and that all triple unde­
tected faults cause system failure. These simpli­
fying assumptions reduce the number of states in 
the model considerably without significantly al­
tering the system failure probability. For exam­
ple, contribution of triple faults to the system 
failure probability is found to be less than 2 
percent. 

A baseline set of failure and recovery rates, as 
shown in Table 17-1, was used to obtain a 
numerical solution of the Markov model. The 
values shown in Table 17-1 are the mean values. 
The model uses random values that are exponen­
tially distributed around these means. One may 
argue about the fidelity of exponential distribu­
tions, although it is our contention that they 
represent the actual reconfiguration time distri­
butions sufficiently well for this purpose [Laprie, 
1975]. 
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---- A module fails 

- System recovers 

--.... System fails 

Figure 17-9. Reliability model for lack of coverage. 

Table 17-1. Baseline parameter values. 

Failure Rate MTBF Recovery Time 
System Configuration CMC (per hour) (hrs) (sec) 

# Processors 10 5 2 X 10-4 5,000 0.25 
# Memory units 10 2 2 X 10-4 5,000 0.25 

# I/O units 10 1 5 X 10-5 20,000 
# Buses 5 3 10-5 100,000 0.25 
# Main power 4 10-4 10,000 

Supply units 
# BGUs 20 EN = 10-6 1,000 

DIS = 10-5 100,000 
# LRUs 10 eMF = 1.46 x 10-4 7,000 0.25 
# Oscillators 10 3 10-5 100,000 1.0 
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Figure 17-10. System failure probability. 

The results of the Markov model are shown in 
Figure 17-10 by the curve labeled "lack of cover­
age." It shows the system failure probability as a 
function of time on a log-log scale for the 
baseline hazard and recovery rates. The failure 
probability is seen to be a linear function of time 
(linear and unity slope on the log-log graph) 
which can be explained as follows. After an 
initial transient, which may take several hundred 
seconds to settle down, the state probabilities for 
all states except the system fail state become 
nearly constant. During this equilibrium there is 
a constant leakage of probability into the trap­
ping state since all the transition rates are time 
invariant. Since the total leakage rate is only 
about 10-9 per hour, the state probabilities di­
minish extremely slowly, and a state of equilibri­
um would hold for hundreds of hours. For the 
baseline case, the system failure rate due to lack 
of coverage is found to be about 3 X 10- 10 per 
hour. 

The reason for having an initial latent-failure 
probability of 10-6 now becomes clear. This is 
the probability of the system being in states 2 
through 5, that is, the single-undetected-failure 
states (see Figure 17-9). The transition rate from 
those four states into the system fail state or the 
probability of arrival of a second catastrophic 
failure is of the order of magnitude of 10-3 per 
hour. To prove that the system is initially fault­
free with absolute certainty is not possible. The 

triple redundancy prevalent in the system imme­
diately points to any obvious disagreements and 
component failures, and a systematic exercise of 
all parts of the system using diagnostic routines 
can uncover most undetected faults. But this still 
leaves some types of faults, such as pattern 
sensitive memory locations, which can not be 
uncovered without exhaustive testing. The prob­
ability of such latent failures has to be reduced 
to an insignificant level. 

Exhaustion of Spares 
Combinatorial Model 

In order to compute the probability of not 
having sufficient equipment, it is necessary to 
define the minimum equipment necessary to 
operate successfully. This is mission dependent 
as well as architecture dependent. The minimum 
equipment required to fly an aircraft shall be 
denoted as the Critical Minimum Complement 
(CMC). The architecture-dependent parameters 
of the CMC include the power supply units and 
buses. One main power supply unit is deemed 
sufficient to run the whole computer. Similarly, 
two buses are adequate at the minimum to 
support communication between processors and 
memories, as well as the distribution of the clock. 
However, for one pathological clock failure 
mode it would be necessary to have three buses. 
The minimum number of processors and memo­
ries required is mission dependent. The through­
put of the FTMP computer in a fully operational 
state is estimated to be 500,000 operations per 
second and the minimum throughput necessary 
to support all flight-critical functions is estimated 
to be about 200,000 operations per second. Sim­
ilarly, the total storage capacity of the computer 
is 48,000 words while the critical programs are 
estimated to be less than 16,000 words. Thus two 
processor triads and one memory triad have to 
be operational to support the critical functions. 
There are a number of ways of achieving this, 
one of which uses five processors and two mem­
ories. It is, of course, possible to lose another 
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processor in the fully populated triad and still be 
operational, although the probability of such an 
event is only 3/5. The number of I/O ports 
necessary to interface with the I/O network is 
one. Table 17-1 lists the critical minimum com­
plement based on the above discussion. This 
table lists the minimum number of oscillators as 
three, which is what is needed to generate a 
clock. However, this is dominated by a larger 
requirement of five or more oscillators necessary 
to operate five processors, two memories, and an 
I/O port, all of which may be in different LRU's. 

Figure 17-10 shows the overall failure proba­
bility due to lack of equipment for a period of up 
to 1,000 hr. In the short run, the number of buses 
is critical, while in the long run it is the number 
of LRU's. The number of power supplies is 
adequate at all times. 

Bus Guardian Unit failures­
Combinatorial Model 

This section discusses the system failure proba­
bility due to BGU failures in the enable mode. 
Although this mode can be made about an order 
of magnitude less likely than the normal disable 
failure mode, it is nonetheless present and must 
be accounted for. As explained earlier, one single 
BGU may disable a unit from transmitting on a 
bus, while both BGU's in an LRU unit must 
agree before a unit is enabled on a bus. Under 
the normal circumstances, an active unit (pro­
cessor, memory, etc.) will be enabled on a single 
bus. With two BGU's failed in the enable mode, 
a unit would be enabled on more than one bus. 
This by itself presents little, if any, problem since 
three members of a triad transmit in tight syn­
chronism on three buses. However, if the unit 
enabled on multiple buses fails and does not 
transmit in synchronism, a number of buses 
immediately become useless, and this may result 
in a catastrophic system failure. Thus it takes at 
least three related failures in a single LRU for 
the system to fail. The BGU enable mode fail­
ures are nonrecoverable. That is, the system can 

not be reconfigured around a failed BGU. The 
results for the baseline parameter values are 
shown in Figure 17-10. It is seen that the system 
failure probability due to this peculiarity of the 
architecture is at all times insignificant. 

Unified Survival Probability 
Results 

The following conclusions can be drawn from 
Figure 17-10. 

1. During a typical commercial flight of one to ten 
hours the most likely threat of the FTMP computer 
failure is due to an arrival of two failures so close 
that system reconfiguration is not possible. The 
probability of this event, however, is acceptably 
low (about 3 X 10-10 per hour) because of high 
component MTBF's and fast reconfiguration times. 

2. There is very little chance that the FTMP computer 
will run out of spares during a ten-hour flight, 
assuming that the system initially has all ten LRU's 
fully operational. In longer flights, however, failure 
would be quite possible as evidenced by the sharply 
rising failure probability curve after 50 hours. Lack 
of equipment is a critical item as far as the dispatch 
reliability of the computer is concerned, and is 
discussed in detail in the subsection on Dispatch 
Reliability below. 

3. Finally, the system failure rate due to BGU enable 
mode failures is substantially lower than other 
system failure modes. Therefore it does not contrib­
ute significantly to the overall system failure prob­
ability. 

The overall system failure probability due 
to all causes, up to about 50 hours, is dominated 
by the probability of failure due to near simulta­
neous failures. During this time the probability 
of exhaustion of spares is several orders of 
magnitude lower. Beyond 100 hours the opposite 
is true. Strictly speaking, the overall failure prob­
ability is a complex function of all the contribut­
ing failure probabilities. However, under certain 
circumstances, it can be approximated very 
closely by just the predominant failure probability. 
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Impact of Intermittent Faults 

An intermittent fault in a digital computing 
system may be defined as a fault that persists 
only part of the time. Physically, this may corre­
spond to a loose connection between compo­
nents, a loose bond within a semiconductor 
device, a temperature sensitive device, etc. Since 
an intermittent fault manifests itself only a frac­
tion of the time, it injects an additional level of 
latency to the problem of fault detection. This 
would lead to longer fault detection and isola­
tion times, thereby reducing the system reli­
ability. The actual extent to which the system 
reliability would be degraded due to intermittent 
faults would depend on the degree of latency of 
the fault. That is, the higher the percentage of 
time a fault stays in the good state, the higher the 
chance of it being undetected. With the presence 
of such a lurking fault in a triad, for example, a 
second fault in another member of the triad 
leads to a situation where two out of three 
members of the triad are at one time or another 
malfunctioning. If this situation is not redressed 
promptly by reconfiguration of faulty elements it 
can result in a catastrophic system failure. On 
the other hand, the presence of two intermittent 
faults in two members of a triad can be tolerated 
as long as one or both of them stay in the lurking 
mode. This apparently should result in an in­
creased level of fault-tolerance. The following 
study was undertaken to analyze these contradic­
tory impacts of intermittent faults on the FTMP 
reliability. 

To incorporate intermittent faults in the 
FTMP survivability models, it is necessary first 
to define various states and their transition rates 
corresponding to intermittent faults. In the sim­
plest form, an element with an intermittent fault 
may be represented by two states: a failed state 
and a pseudofailed state [Breuer, 1973]. In the 
first state the fault is actually present, that is, use 
of the element will produce an incorrect output. 
In the second state, the fault is in a benign mode, 
and use of the element will not corrupt the 
output. An intermittent fault will oscillate be­
tween these two states with a frequency that is 

a 

a 
8 = Latency factor 

a, 8 = Frequencies of transition 

Figure 17-11. Intermittent failure model. 

dependent upon the characteristics of the fault. 
In general, the transition rate from the failed to 
the pseudofailed state may not be the same as 
the rate in the other direction (see Figure 17-11). 
The ratio of transition rates, 0./0, is a measure of 
the additional latency due to the intermittent 
nature of the fault. The higher the ratio 0./0, the 
higher is the percent of time a fault stays in the 
pseudofailed state and is invisible a longer time. 
For 0./0 = 0, the intermittent fault really be­
comes a hard fault since all the time is spent in 
the failed state. 

Certain assumptions have been made regard­
ing the use of this basic model to keep the overall 
models and the number of parameters tractable. 
For example, a and 0 are assumed to be constant 
with respect to time. In addition, all faults are 
assumed to be intermittent with the same transi­
tion frequencies and duty cycles. In practice 
there will be faults with various frequencies 
which will most likely vary with time as the 
intermittent faults transition into hard faults. 
However, the present purpose is to get an insight 
into how an intermittent fault affects the system 
survivability. This is best done by simulating a 
situation where all the failures are intermittent 
and stay intermittent during the course of inves­
tigation. 

A Markov process coverage model of a triple 
modular redundant (TMR) system incorporating 
the intermittent failure model was developed, as 
shown in Figure 17-12. The reasons for modeling 
a TMR before going to a full-fledged multiproc­
essor model are twofold. It involves fewer pa­
rameters, making it easier to establish a cau.se 
and effect relationship between reliability and 
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Figure 17-12. Intermittent failure model of a TMR-hybrid system. 

various parameters. It also involves fewer states 
and can be analyzed for a wider range of param­
eter values. Since the FTMP multiprocessor un­
der investigation is a combination of a number 
of triads, the TMR results can generally lead to 
a good understanding of the FTMP reliability 
behavior. 

Figure 17-12 shows three different ways in 
which a catastrophic system failure can result. 
The first is the occurrence of two simultaneous 
failures, that is, the failure of a second element 
before the first failure has been diagnosed and 
recovered from (transition 2-8). This is the only 
mode of failure in a TMR system if all the 
failures were hard failures. However, due to the 
intermittent nature of our assumed failures, the 
system can survive even in the presence of two 
failures as long as at least one of the faulty 
elements is in the pseudofailed state (states 4, 5, 
6, 7). In such a case, the arrival of another failure 
in the third element (transition 4-8), or the 

transition of an element from a pseudofailed to a 
failed state (transition 6-8), leads to a cata­
strophic system failure. The model was solved 
numerically for a number of different values of 
a, B, A, and Jl. Some of the important results are 
shown graphically in Figure 17-13. It is found 
that the failure probability is not a monotonic 
function of a or B. However, if the ratio a/8 is 
held constant, the failure probability increases 
with 8 as shown in Figure 17-13. Similarly, for a 
constant 8, the failure probability generally in­
creases with a/B. In the steady state, the ratio of 
state probabilities P3 to P2 is given by a/B. That 
is 

P3 _ ex 
P

2 
-~. 

This is assuming there is no leakage from state 2 
to the system fail state 8. Physically, the ratio a/8 
represents the relative time a fault stays in the 
lurking mode. That is, the higher the variable 
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Figure 17-13. Influence of intermittency on the system failure rate. 

a/~, the higher is the latency factor of the 
intermittent fault. For a fixed ratio a/~, increas­
ing ~ implies a higher leakage rate from state 4, 
resulting in a higher failure probability. In other 
words, since the ratio a/~ is fixed, the duty cycle 
between failed and pseudofailed states is a con­
stant, and therefore, increasing the frequency of 
transition between these two states only in­
creases the chance of a lurking fault suddenly 
crashing the system. It is evident from these 
results that the worst situation arises where the 
latency of intermittent faults is high (a high a/~) 
and the frequency of transition from pseudo­
failed to failed state is high (a high ~). 

The worst case system failure probability with 
intermittent faults, for the range of parameters 
investigated, is about fifty times higher than that 
due to hard failures (see Figure 17-13). The 
critical frequencies, that is, the worst case a and 
~, depend upon the recovery time. The faster the 
recovery time, the higher these frequencies are. 
For example, for a recovery time of 36 s, the 
critical ~ is 104 per hour or about 3 Hz, while for 

a recovery time of a one-quarter second, it is 
about 30 Hz. Increasing the transition frequen­
cies beyond the critical levels does not further 
deteriorate the reliability appreciably. 

To extend these results to the FTMP com­
puter, a 49-state Markov model was developed. 
This is basically an expanded version of the 14-
state hard failure model described in the subsec­
tion on Lack of Coverage. All the assumptions of 
that model carry forward here. This model was 
solved for the base-line parameter values shown 
in Table 17-1. The FTMP reliability behavior 
with respect to a and ~ was found to be in close 
agreement with that of the TMR-hybrid system 
qualitatively as well as quantitatively. As shown 
in Figure 17-13, the FTMP curve is remarkably 
close to the TMR curve with typical FTMP 
failure and recovery rates. 

Finally, it should be noted that some of the 
high-frequency intermittent faults, which could 
do the most damage, may actually look like hard 
faults. A fault in a processor module, for exam­
ple, may cause that module to go out of synchro-
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Figure 17-14. Dispatch failure probability. 

nism with the other two triad members, thereby 
making its presence felt after it disappears. 
Therefore, the overall impact of the intermittent 
faults may not be as severe as suggested here. 

Dispatch Reliability of the FTMP 
Computer 

Availability of equipment, in general, is an im­
portant concern in the commercial air transport 
industry. Availability of avionics equipment, in 
particular, is economically more important since 
it tends to be at the heart of "Go/NoGo" 
decisions. A central computer with digital "fly­
by-wire" authority certainly falls into this cate­
gory. It is imperative, therefore, that the dispatch 
reliability of the FTMP computer be commensu­
rate with its high survival probability. A prelim­
inary estimate of the dispatch reliability is car­
ried out in this section. 

Let the "dispatch minimum complement" 
(DMC) denote the amount of equipment (pro­
cessors, memories, etc.) necessary to be opera­
tional before take-off for the computer to survive 
through the flight with a given probability. Using 
a trial-and-error approach with the combinato­
rial models of the section on exhaustion of 

spares, the DMC for the baseline case was found 
to be as follows: 

Dispatch Minimum Complement: 
Processors = 8 
Memories = 6 
Buses = 4 
Power Supplies = 3 

The question to be answered at this point is, 
how long would it take an initially fully opera­
tional FTMP to degrade below the DMC and 
thereby fail the dispatch criteria? The probability 
of this event at time t, assuming no maintenance, 
is shown as a functon of time in Figure 17-14. It 
is seen from this figure that there is a 7 percent 
chance that the computer will be below the 
dispatch minimums if the maintenance is sched­
uled every 300 hours. The probability of requir­
ing unscheduled maintenance can be reduced to 
just over two percent by carrying an extra LR U 
or by shortening the maintenance interval to 200 
hours. This would seem to satisfy the needs of 
most airlines as far as the computer dispatch 
reliability is concerned. Beyond this, however, 
the dispatch reliability is bounded by the reli­
ability of main power supply units. That is, the 
dispatch reliability can be improved only by 
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modifying the architecture to include five or 
more main power supply units. 

EXPERIMENTAL RESU L TS 

In order to demonstrate and validate as many of 
the design concepts as possible, a breadboard 
multiprocessor was used to emulate many of the 
design features of the proposed system. This 
demonstration was of an integrated nature in 
that the experimental setup duplicated much of 
the information environment which a final prod­
uct of this nature might encounter, and was 
therefore able to verify not only the separate 
design pieces forming the whole, but was also 
able to confirm predicted interactions between 
disjoint pieces, and in some cases unearth unex­
pected interactions. 

The basic experimental apparatus consisted of 

Fault-tolerant 
multi processor 

emulation 

a fault-tolerant multiprocessor, modeled along 
the lines of the FTMP. The multiprocessor 
served as the control computer for a Boeing 707 
aircraft simulation on a hybrid computer. The 
experimental fault-tolerant multiprocessor con­
sists of 14 National Semiconductor IMP-16-
based processor modules, seven common memo­
ry modules of 2K X 16 words, two I/O ports, and 
ten I/O nodes. The processor modules include 
lK RAM/IK ROM cache memory storage. 
With the 14 processor modules it is possible to 
operate up to 4 triads of processors simulta­
neously. With the seven RAM modules it is 
possible to operate two memory triads. The 
redundant data busing system is triply redun­
dant, and each attached module has two Bus 
Guardian Units associated with it for protecting 
the bus system. An I/O node remote from the 
multiprocessor and local to the hybrid computer 

Figure 17-15. Experimental simulation system. 
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Irovides AjD and OJ A interfacing to the simu­
lted aircraft as shown in Figure 17-15. Figure 
7-16 is a photograph of the multiprocessor 
mulation hardware. 

:ault Diagnostic Capabilities 

~ach processor module of the experimental sys­
em includes special circuitry for noting and 
ecording disagreements among the three copies 
)f each bus line. All other modules or receiving 
:lements have only error masking circuits. The 
:rror detection circuitry functions as expected. 
v10st faults manifest themselves as bus errors, 
md are therefore easily detected. Certain classes 
)f latent faults are detected by diagnostic pro­
~rams which basically force bus errors if a latent 

Figure 17-16. Multiprocessor emulation hardware. 

fault exists. Records kept by diagnostic programs 
and fault isolation procedures enable the loca­
tion of both transient and hard failures. 

Most faults are detectable as one of a large 
class of faults. For example, all processor failures 
are detected at the bus without the aid of special 
diagnostic code to test the processor or knowl­
edge of the fault mechanism. Some special atten­
tion to specific failure modes and effects was 
required to devise latent fault detection pro­
grams. While code was not written for unearth­
ing all possible latent faults, sufficient latent 
testing code was written so as to establish consid­
erable confidence in the method. 

The bus isolation mechanism serves as intend­
ed and is able to isolate processor failures from 
the bus system. 

This integrated system's demonstration illus­
trates all significant aspects of the FTMP archi­
tecture. It demonstrates the hardware capability 
to mask faulty unit outputs in the short run, and 
the capability to detect the fault, isolate the unit, 
and to reorganize so as to restore system health, 
all concurrent with normal program activity. 

Software Experience 

The software for the demonstration consists 
principally of executive or system software and 
applications software. Executive or system soft­
ware was written and debugged by staff thor­
oughly familiar with the experimental hardware 
and design objectives. The applications software 
was provided by a team which was briefed only 
in general terms as to the nature of fault recovery 
mechanisms and the overall system architecture. 
The applications software team ·was provided 
with detailed explanations of the executive-to­
applications interfaces and executive services, as 
well as a reasonably short list of programming 
constraints. 

Multiprocessor Executive 

The multiprocessor executive provides a simple 
task dispatch mechanism. Tasks awaiting their 
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time of execution are organized in a queue sorted 
by scheduled start time. As processor triads 
become free (having finished a previous task) 
they consult this list and take the next scheduled 
job. Jobs may be inserted into any relative 
position of the time queue as long as it remains 
properly sorted. Executive functions provide for 
the routine iterative scheduling of the same job 
step, as might be required for an autopilot itera­
tion, for example. Alternatively, any job, by a 
call to the executive, can insert a job into the 
time queue. The executive also handles the re­
moval of a job from the queue when it is taken 
up for execution. 

In addition to the time queue, the executive 
handles an event queue. Jobs in the event queue 
have their execution blocked waiting for a partic­
ular event to occur. When the event does occur, 
the affected job is moved from the event queue 
to the top of the time queue. Jobs can be inserted 
into the event queue by any job, through a call 
to the executive. Events can be signaled by the 
executive or by another job through a call to the 
executive. 

The executive also provides interfaces for all 
I/O traffic, common memory to/from cache data 
transfers, real-time clock, and for other relatively 
simple functions commonly thought of as execu­
tive-related. 

Critical to the success of the demonstration 
are the executive functions which provide for 
automatic error logging and recovery. Executive 
functions perform all common memory to/from 
cache transfers, and all I/O. During these func­
tions any errors that might occur will become 
visible. The executive handles the proper logging 
of the error, schedules recovery action, and, via 
voting, masks the error for the applications task 
which was using the executive function. Thus, to 
the applications task, error handling is com­
pletely invisible. Additionally, since hardware 
monitoring is used, error checking, error mask­
ing, and majority voting do not impact the 
applications execution speed. 

The executive schedules error diagnostics, la-

tent test routines, and error recovery routines 
using basically the same mechanisms used t( 
schedule applications tasks. These executiv~ 

tasks, running concurrently with the application: 
tasks, but in different processor triads, main tail 
the system, repairing faults, searching out laten 
failures, configuring processor triads and memo 
ry triads, and starting and stopping triads a: 
required. Thus in the background, behind th( 
system application, continuous activity is in prog­
ress to maintain the integrity of the system 
assuring faultless and error-free execution 01 
applications of software. 

An executive providing these functions wa~ 
written for the experimental test hardware. AI· 
though it is not complete, in that only represen· 
tative latent faults were tested, the executive doe~ 
provide the basic facilities for providing errOl 
free execution of both executive and applicatiom 
code. The software framework for latent tes1 
procedures is fully developed although it is only 
sparsely populated. Error detection and recover) 
from all classes of faults is demonstrated in the 
simulated environment without interfering with 
the applications tasks. 

Cache Memory Management 

The experimental hardware and the proposed 
future system both have a common memory 
shared by all processor triads and private cache 
memories which are part of the processor mod­
ules. Programs are executed exclusively out of a 
processor's cache memory. Clearly, the burden 
of program loading from common memory, pro­
gram overlaying, and other functions associated 
with bringing sections of code from common 
memory to the cache for execution could not be 
placed on the applications coding. 

In the experimental computer, a software 
cache-memory management system was provid­
ed as part of the executive. At the subroutine call 
interface, conventions were adopted that provid­
ed for the automatic loading of called routines. 
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, last used, first out algorithm clears space in the 
lche if unused space is not available. If a calling 
)Utine is dropped from the cache to make room 
>r loading of the called routine, it is reloaded by 
le subroutine return interface. 
The efficiency of this process of loading in­

:ructions into the cache before execution de­
ends a great deal on the number of times an 
lstruction is executed each time it is brought 
·om common memory. Each word brought from 
ammon memory will take about 5/ls in the 
TMP. Thus one triad executing 190K instruc­
ons per second could completely fill the bus 
apacity. In the experimental system, it is found 
lat the applications programs execute between 
o and 40 instructions for every instruction 
rought from common memory. If an overall 
verage of 20 can be maintained in the proposed 
ystem, a processor triad now projected to have 
raw computing power of 200K instructions per 
~cond would load the bus with 10K instruction 
!tches per second. With reasonable allowances 
lade for data transfers and queuing overheads, 
lis suggests a maximum capacity of 4 or 5 
rocessor triads before saturating the memory 
'us. 

:ONClUSION 

:ritical Areas of the FTMP Design 

~he following are areas where the FTMP has 
equired, or will require, special care in concep­
ion, analysis, and/or design. 

· The phase-locked redundant clock has presented 
problems in latent fault exposure and in theoretical 
validation. Both of these are believed to be solved. 

· Mechanical and electrical design of bus guardians, 
bus isolation gates, and the buses themselves, must 
be done with care in order to prevent undesired 
fault propagation. The engineering prototype de­
sign to achieve this is partially complete at this 
writing. 

· Cold start capability requires the default formation 
of a triad or the equivalent. This has not yet been 
designed. 

4. Self-test programs must be virtually complete, in­
cluding perhaps attempts at finding pattern-sensi­
tive failures over a period of time that is large 
compared to the basic test cycle. These programs 
will operate by producing bus errors as results of 
logic malfunctions. They do not need to diagnose 
the nature of the fault. 

5. Mechanisms must be provided in hardware and 
software to screen or inhibit interferences caused 
by a lower priority procedure from impinging on a 
higher priority procedure. The opposite mayor 
may not be possible. 

6. Finally, validation must be made effective to a 
higher degree than ever before. Although some 
approaches are available, it remains to show how 
effective they will be. 

Summary 

The FTMP is a complex multiprocessor com­
puter that employs a form of redundancy related 
to TMR-Hybrid redundancy, denoted here as 
Parallel-Hybrid redundancy, in which each ma­
jor module can substitute for any other module 
of the same type. Despite the conceptual simpli­
city of the redundancy form, the implementation 
has many intricacies owing partly to the low 
target failure rate, and partly to the difficulty of 
eliminating single-fault vulnerability. 

An extensive analysis of the computer through 
the use of such modeling techniques as Markov 
processes and combinatorial mathematics shows 
that for random hard faults the computer can 
meet its requirements. It was also shown that the 
maintenance scheduled at intervals of 200 hr or 
more 'can be adequate most of the time. The 
probability of requiring unscheduled mainte­
nance during this time interval can be reduced to 
about 2 percent by carrying one or two spare 
LRU's. 

A study of intermittent faults revealed that the 
longer a fault stays in a pseudofailed state the 
worse is the system failure probability. Further­
more, high frequency faults also tend to affect 
the system failure probability adversely. This 
places an obvious burden upon the computer 
design and production activities to limit the 
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intermittent failure arrivals and/or their duty 
cycles and frequencies to values such that the 
overall failure criterion can be met. 
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A Design Methodology for High Reliability 
Systems: The Intel 432® 

Daniel P. Siewiorek David Johnson 

After the presentation of numerous techniques 
and evaluation criteria, the question remains, 
how can these techniques be applied to produce 
a coherent, balanced system design? This chap­
ter attempts to answer that question by propos­
ing a top-down design methodology and illus­
trating its application in a detailed example, the 
Intel 432. 

A DESIGN METHODOLOGY FOR 
A HIGH RELIABILITY SYSTEM 

The methodology consists of eight steps: 

I. Define system objectives. 
2. Limit the scope. 
3. Define the layers of fault handling. 
4. Define reconfiguration and repair boundaries. 
5. Design the fault-handling mechanisms. 
6. Identify the hardcore. 
7. Evaluate the design against the objectives. 
8. Return to Step 3 and iterate the design if necessary. 

Each of the first six steps is discussed in detail 
in the following subsections. 

Define System Objectives 

As illustrated in Chapter 5, there are multiple 
objectives in the design of computing systems: in 
particular, cost, performance, and reliability. 

Published courtesy Intel Corporation. 
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Figure 18-1. The product evaluation space. 

The first decision in the design of a new system 
is whele in the cost/performance/reliability 
space the system is to be positioned. Figure 18-1 
depicts three generic system types in the evalua­
tion space. The first is the traditional point 
product, which evaluates to a single cost/perfor­
mance/reliability number. The second is a family 
of products that requires more resources (hence, 
cost) to deliver more performance. Examples 
include a computer family such as the IBM 
System/360-System/370 or the DEC PDP-II. It 
is nearly impossible to modify cost and perfor­
mance without altering reliability. Generally, 
higher performance systems have lower reli­
ability because of the extra components. Anoth­
er technique for expanding the performance and 
reliability range is to add resources in a modular 
fashion. In the Tandem and Pluribus systems of 
Chapters 11 and 13, for example, processors, 
memory, and I/O can be replicated to enhance 
performance. These resources can also be uti­
lized to enhance reliability (shadow computers in 
the case of Tandem and spare processor/memo­
ry/switch components in the case of Pluribus). 
Thus, there is a trend toward products that 

occupy a volume in the evaluation space to 
which resources can be added to enhance perfor­
mance or reliability or both. 

Although the cost/performance design space is 
relatively well understood, the reliability dimen­
sion is not. However, it is possible to evaluate 
system reliability and fault-tolerant capabilities 
by using such key measures as: 

• System availability 
• Fault coverage (completeness of-fault detection) 
• Granularity of fault isolation 
• Probability of system survival for a given period 
• Extent of graceful degradation of service 
• Range of applications covered by the design 
• Division of fault-tolerant responsibilities among 

hardware, system software, and application pro­
grams 

The definition of system objectives imposes the 
needs of the selected set of applications 'onto the 
key fault-tolerant metrics. 

It is extremely important to establish the sys­
tem objectives as early as possible. These objec­
tives help to limit the overwhelming number of 
design alternatives by restricting the design 
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Typical error 

Level 
Typical error 
sources 

Typical error 
detection technique 

Typical error response time 
recovery technique (sec.) 

Application • Incorrect coding of algorithm • Reasonability checks • Job retry 

I Consistency checks r 
Incorrect design on data structures 

Operating system .--------'=~----.• ---------- .Process retry 

Alpha particles flip memory I I 
state Memory protection violation • 

Macrocode • ----------. • • Process retry 

Microcode • Race condition .1 '''0' cod;ng I . • • Instruction retry 

Environmentally produced I 1 
transient Replication 

Hardware .----------. .. .Bus cycle retry 

Figure 18-2. Levels in a hypothetical system. 

pace, and by providing the criteria for making 
esign decisions. Without a well-defined set of 
bjectives, the design process will fail to focus, 
nd inconsistent design decisions may be made. 

imit the Scope 

n order to make intelligent design trade-offs, the 
cope of the system objectives must be limited. 
Jumerous environmental factors must be select­
d to refine the system objectives defined earlier. 
'hese environmental assumptions will intensify 
le focus of the design and limit the system 
evelopment effort. Environmental factors in­
lude: 

What is the maintenance strategy? Is field repair 
possible? Is on-line repair required? What is accept­
able as a field replaceable unit (component, module, 
subsystem)? What is the response time of the field 
service people? 
What parts of the system will the fault-tolerant 
design encompass (central system, I/O devices, pow­
er)? 
What are the relative failure rates for various parts 
of the system? 
What are the dominant failure modes in the system? 
What types of failures will be considered? Single or 
multiple concurrent faults? What is the ratio of 

transient to permanent faults? What error sources 
are considered (external environment, hardware, 
software, operator)? 

Define the Layers of Fault 
Handling 

Systems are composed of a hierarchy of levels. 
Faults and errors may be generated at 'any of the 
levels in the hierarchy. Indeed, mechanisms for 
each of the ten stages in handling a fault (con­
finement, detection, masking, retry, diagnosis, 
reconfiguration, recovery, restart, repair, and 
reintegration) can be proposed at each level. 
Figure 18-2 is an incomplete example of a hypo­
thetical system composed of five hierarchical 
levels. Typical errors, typical techniques for the 
detection and recovery stages of fault handling, 
and typical error response times are also given. If 
an error is not detected at the level in which it 
originated, the detection of the error is left to 
higher levels. Likewise, if the current level lacks 
the capacity to recover from a particular detect­
ed error, appropriate information about the de­
tected error must be passed onto a higher level. 

As an undetected error propagates up the 
levels in the hierarchy, it affects an increasing 
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amount of system state and data structures. 
Longer response times to an error mean that the 
error manifestations have become more diverse. 
The error recovery becomes more complex. If 
left totally to software, error recovery routines 
may easily become more complex than the appli­
cation software. 

Error-detection techniques should be estab­
lished at the various boundaries to ensure that 
the coverage holes from one level to the next do 
not align. Figure 18-3 graphically depicts several 
levels in a system, each with "holes" in its 
coverage. The existence of holes represents 
trade-offs between fault-tolerant design goals 
such as speed of recovery and granularity of 
fault isolation, and system constraints such as 
cost and available technology. However, aware­
ness of the system's hierarchical structure allows 
the design to handle all faults, some immediately 

o 

o 

and others after reflection to higher levels of the 
system. 

When error correction is performed at the 
lower levels, a straightforward combinational 
recovery can be attempted. For example, the 
state affected by the current level can be double 
buffered, so that the prior state is released only 
upon successful completion of the operation at 
this level. If an error is detected, the buffered 
prior state can be used to retry. The higher this 
solution is applied in the system hierarchy, the 
more state that has to be buffered and the longer 
the time between checking for errors and the 
greater the opportunity for the error to interact 
with healthy activities, causing incorrect deci­
sions. The longer an error, and hence a physical 
fault, goes undetected, the more data structures 
in the system may be polluted. 

The situation is even more critical in a multi-

o 

o 

0-

Errors 

Figure 18-3. Interception of errors at multiple system levels due to imperfect coverage. 



:>rocessor, where memory and data structures are 
;hared by several concurrently executing pro­
~esses. Errors can be multiplied by nonfailed 
~omponents that make incorrect decisions or 
Initiate incorrect operations based on the errone­
)us information. 

Define Reconfiguration and 
Repair Boundaries 

Next, conceptual and physical boundaries for 
;!rror confinement and isolation must be speci­
fied. In order to produce a coherent design 
;trategy, these boundaries must reflect the pre­
viously defined system objectives, such as modu­
larity and maintenance/repair strategies. Ideally, 
boundaries drawn for each level in the hierarchy 
:lefine nonoverlapping regions. 

The percentage of faults detected is the single 
most important factor in successful recovery. An 
llndetected error usually results in incorrect in­
formation's crossing system boundaries and ulti­
mately to a system failure. 

Once the confinement boundaries have been 
;!stablished, the repair and reconfiguration 
boundaries can be drawn. The repair and recon­
figuration regions are placed to maximize the 
;!ffectiveness of the recovery procedures. Before 
;!stablishing the repair and reconfiguration re­
gions it is important to review the general proce­
:lure for recovery. 

The purpose of reconfiguration/recovery is to 
return the system to an operational state. This 
aew operational state should have as many of the 
)riginal hardware resources available as possible, 
:md the transition to this new state should have 
minimal impact on normal system operation. 
Figure 18-4 depicts the generalized reconfigura­
lion/recovery procedure employed at each level 
. n the system hierarchy. After an error has been 
ietected, the faulted operation is frozen (halted). 
fhis guarantees that corrupted information can­
aot leave the faulty reconfiguration/repair re­
~ion. Next an attempt is made to reestablish the 
;orrect operation of the hardware. If the fault is 
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Stop faulty operation 
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Rollback and re-try faulted operation 
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'------- More alternatives? 

I No 

Lock damaged resources 

Report situation to next higher level 

Restart operation 

Figure 18-4. Generalized recovery procedure. 

transient, correct operation can resume after the 
transient interference has subsided. If the fault is 
permanent, it may be possible to resume opera­
tion by reconfiguring around the faulty reconfig­
uration/repair region. Next the faulted operation 
is rolled back and the operation retried. The 
correction phase of recovery ends when either 
the operation has been successfully retried or 
there are no more alternatives for correcting the 
situation. If the faulted operation cannot be 
completed, any shared resources damaged or left 
in an inconsistent state are locked. Next the error 
is reported by signaling the next higher level in 
the hierarchy. The final step is restart. If recovery 
was successful, control moves to the next opera­
tion. Otherwise control passes up to the next 
higher level in the recovery hierarchy . 

Typically, recovery takes one of two forms: 
retry (good for transient error correction and 
permanent failure detection) and standby-spar­
ing/graceful degradation. In the latter case, the 
computation is moved to another part of the 
system and restarted. Enough information must 
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be retained so that the restart can be executed 
cleanly without interference from the side effects 
of the partially completed first instantiation. 

Design the Fault-Handling 
Mechanisms 

Now mechanisms can be designed for each of 
the ten fault-handling stages at each of the 
system levels. The previous steps in the design 
methodology resulted in the definition of regions 
for fault isolation and subsequent recovery. The 
partitioning establishes the ideal recovery, recon­
figuration, and repair regions in the system. It 
also describes the extent and the completeness of 
detection and recovery mechanisms at each level 
in the system. Hence, system partitioning will 
provide the higher-level guidelines during the 
design of the detection and recovery mecha­
nisms, ensuring that the fault-handling mecha­
nisms are applied in a unified manner in support 
of the system objectives. 

The mechanisms are aimed at containing er­
rors at the defined conceptual boundaries. Gen­
erally, smaller boundaries are more costly in 
terms of hardware or time but allow for more 
complete recovery. At the hardware levels the 
goal is to effect recovery without software inter­
vention. At the software levels the goal is to 
prevent incorrect data from passing across 
boundaries. 

Location and isolation of a failure can be 
achieved by analyzing the state of the system 
when the error was detected. The activity of the 
error-associated components should be stopped 
and their intermediate state frozen. A mecha­
nism should be provided to notify some other 
components in the system of the stoppage. Some 
nonaffected intelligence can examine the state 
information, exercise the components, and ini­
tiate a recovery. Thus, at each conceptual 
boundary the object should be controllable and 
observable. If the fault cannot be resolved by the 
existing state, a diagnostic sequence can be ini­
tiated. 

Identify the Hardcore 

At this point in the design process It IS very 
important to evaluate the effectiveness of the 
fault-tolerant mechanisms. This evaluation is 
based on three checkpoints: 

• Are all the fault-handling mechanisms in the system 
exercised as part of normal operation? 

• Do the detection mechanisms provide the desired 
level of fault coverage? 

• Are there any common-mode failures (single-point 
dependencies) that undermine the detection and 
recovery mechanisms? 

Failures are detected only when an erroneous 
piece of information is processed. If any portion 
of the system is not exercised as a part of normal 
operation, then latent faults may accumulate. 
The presence of these latent faults may violate 
the environmental assumptions (such as no con­
current multiple failures) made earlier in the 
design process. Two areas of a system where 
latent faults could occur are the detection and 
recovery mechanisms, and memory locations 
that are used only during software recovery. An 
evaluation of the system fault coverage is impor­
tant because the detection and recovery circuits 
that were just added to the design may not be 
fault tolerant. Indeed, they may not be covered 
by the fault-detection mechanisms or they may 
have introduced common-mode failures. These 
circuits may need to be self-checking or covered 
by periodic testing. 

THE IMPACT OF TECHNOLOGY 

Ever since the introduction of integrated circuits 
(ICs), their complexity has been doubling every 
one to two years. With the advent of the fourth­
generation microprocessors in 1978 (typified by 
the Intel 8086, Motorola 68000, and Zilog 
Z8000), LSI technology offers, in a small number 
of chips, capabilities that were reserved for 
room-size mainframe computers a scant 15 years 
before. VLSI technology provides the opportuni-



ty to devote hardware complexity to areas such 
as increased functionality, modularity, and reli­
ability. Increased functionality can be achieved 
by implementing traditional software and oper­
ating system functions directly in hardware. Due 
to the exponential relationship between complex­
ity and chip development costs, the number of 
chip types has to be kept small. Hardware com­
plexity can be added to allow an orderly, modu­
lar expansion of system capabilities. Modularity 
also provides at least three cost advantages to the 
system user. First, high-volume production de­
creases the cost per chip. Second, the system 
capacity can be closely matched to the applica­
tion. And third, the system can grow at the pace 
of the application demands-there is no need to 
abandon previous hardware acquisitions in order 
to increase capacity. Another opportunity is to 
devote hardware to error detection and recovery. 
[n fact, the commercial marketplace is becoming 
increasingly concerned with system reliability. 
This concern is manifested by the large market 
demand for special chips (such as for CRC 
checks) and systems (such as Tandem) that offer 
~nhanced reliability. 

THE INTEL 432 DETECTION 
MECHANISMS 

The Intel 432 system is used to illustrate the 
design methodology outlined above. After briefly 
discussing the first three steps (define system 
objectives, limit the scope, and define layers of 
Fault handling) we will examine in detail the next 
three steps (define reconfiguration and repair 
boundaries, design the fault-handling mecha­
nisms, and identify the hardcore) for the lowest 
Fault-handling layer in the system hierarchy. 

Define System Objectives 

One of the primary objectives for the 432 Micro­
mainframe ™ system was to match the expand­
ing needs of fault-tolerant applications with the 
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increasing capabilities of VLSI technology. Spe­
cifically, the Intel 432 detection mechanisms 
have the following objectives. 

• Provide comprehensive and complete fault coverage 
• Provide error confinement and isolation to small 

logic blocks 
• Represent a modular option to the basic 432 system 

functionality 

Limit the Scope 

The objectives were further refined by three 
environmental assumptions. First, it is assumed 
that all fault occurrences are independent, and 
that two or more faults will not occur simulta­
neously; however, it will be possible for a second 
fault to occur while a latent fault is present in the 
system. Second, the design assumes that tran­
sients will be the dominant type of fault occur­
rence (see Chapter 2). The third assumption is 
that the field environment will allow access to 
the system for repair. Although this is not a very 
restrictive assumption, it serves to focus atten­
tion on repairable systems rather than on sys­
tems that must remain operational until every 
resource in the system has been exhausted. 

From this set of objectives and environmental 
assumptions two design decisions were made. 

• The propagation of errors between levels should be 
minimized. 

• The detection and recovery mechanisms must ad­
dress every level of the system. 

The propagation of errors needs to be mini­
mized to prevent information overload at higher 
levels in the system structure. If all failures are 
allowed to propagate to the top, the system loses 
its ability to react to the fault conditions. The 
complexity of the response to diverse failure 
manifestations at higher system levels may make 
implementation impossible, force a reduction in 
the completeness of fault coverage, or force a 
reduction in the generality of operation. 

Placing detection and recovery at every level 
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of the system makes possible a more general and 
complete solution to the problems of handling 
system failures. This approach divides the re­
sponsibilities of fault tolerance, allowing faster, 
simpler, and more general solutions to fault 
detection and recovery. Each level need address 
only the set of faults that can be generated by 
that level. By controlling and reducing the num­
ber of errors propagated to the next level, paral­
lel and independent development may proceed 
on different levels (hardware, system software, 
applications). The designers at one lever can 
assume that lower levels will always provide 
consistent and correct operation. 

Define Layers of Fault Handling 

The goal of the 432 detection mechanisms is to 
prevent any hardware errors from propagating 
into higher levels of the system. Figure 18-5 
shows the levels defined in the system hierarchy. 
The hardware is divided into two levels: memory 
array modules, and hardware system. At the 
module level, detection is provided for the RAM 
arrays inside memory modules. This isolates 
RAM failures from other types of failures (con­
troller, bus drivers, and the like) in the memory 
module. All other internal errors are allowed to 
propagate to the next level. At the hardware 
system level (modules and their interconnection), 
comprehensive detection is present and the goal 
is to prevent any errors from propagating up into 
the software system. These detection mecha­
nisms isolate the errors to a single module or a 
single section of the interconnect system. 

Define Reconfiguration and 
Repair Boundaries 

Two major principles guide the design of 432 
detection mechanisms. 

• The arrangement of the detection mechanisms to 
form confinement areas . 

• The effective use of VLSI technology. 

Application software 

Operating system software 

Hardware system 

Memory array modules 

Figure 18-5. Hierarchy of levels in the Intel 432. 

The purpose of a confinement area is to limi1 
damage by error propagation and to localize the 
faulty area for recovery and repair. A confine· 
ment area is defined as a module of the system 
that has a limited number of tightly controlled 
interfaces. Detection mechanisms are placed a1 
every interface to ensure that no inconsisten1 
data can leave the area and corrupt other con· 
finement areas. 

Confinement areas form a conceptual frame· 
work for the systematic and coherent placemen1 
and definition of the detection mechanisms a1 
each system level. The confinement areas alsc 
provide a conceptual view of the system under 
fault conditions. This clarifies the external (soft­
ware) view of the hardware and eliminates the 
need for diagnostic probing as a method of faul1 
isolation. 

The second principle is the effective use of 
VLSI technology. The cornerstone of this princi­
ple is that VLSI replication will be used to 
achieve the functionality required to implemen1 
the 432 mechanisms. Replication is used because 
it allows a wide range of products to be buill 
from a small set of chip types. The same 
components provide modular expansion of per­
formance, memory storage, and detection capa­
bilities. This approach allows high-volume pro­
duction for each of the components in the set. 

An overview of the Intel 432 architecture will 
help to illustrate how the system responds to the 
remaining steps in the design methodology. We 
omit the numerous synthesis evaluation cycles 
inherent in any design process and present only 
the final system. 
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ey: GOP = Generalized Data Processor 
IP = Interface Processor 
BIU = Bus Interface Unit 
MCU = Memory Control Unit 

igure 18-6. Basic Intel 432 hardware organiza­
on. 

Figure 18-6 shows the basic hardware organi­
ation of the 432. The central system is com­
losed of three different module types: an Inter­
ace Processo~ (IP), a Generalized Data 
»rocessor (GOP), and a memory. These modules 
re connected via a Packet Bus. The GOP is the 
entral processing unit in the machine. It pro­
ides the basic computation power of the 432 
rith a capability-based logical addressing struc­
LIre to provide a secure software run-time envi­
anment. For a complete description of the pro­
essor architecture see Intel [1981]. The GOP 
lodule is composed of the processor and an 
lterface (that is a Bus Interface Unit) between 
h.e local processor bus and the system-wide 
lacket Bus. The IP module provides an interface 
'etween an independent I/O system and the 
entral 432 system. The IP is responsible for 
lanaging all I/O traffic and providing a pro­
!cted, capability-based interface into the central 
ystem. The IP module contains the processor, 
le interface to the I/O system, and the interface 
etween the local processor bus and the system­
ride Packet Bus. The memory module provides 
antrol of a dynamic RAM memory array and 
n interface to the Packet Bus. 
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The Packet Bus provides a high-speed central 
system communications channel. The bus is a 
message based, multiprocessor bus, composed of 
16 data, 3 control, and 3 arbitration lines. The 
bus supports not only processor-to-memory 
transfers but also transfers directly between 
modules (that is, processor to processor). The 
Packet Bus is the only intermodule communica­
tions channel. There are no interrupts or any 
other independent signals between modules. 

The system is composed of five VLSI chip 
types, plus a minimum of TTL support logic for 
electrical buffering. 

• The GDP is a two-chip processing unit. 
• The IP is a single-chip processor. 
• The bus interface unit (BIU) is a single chip that 

provides an interface between the local processor 
bus, which is internal to a processor module, and the 
packet bus, which provides system wide communica­
tion. 

• The memory control unit (MeU) is a VLSI chip that 
manages the dynamic RAM array and provides an 
interface between the memory and the packet bus. 

Figure 18-7 illustrates how a 432 system can 
be expanded to provide increasing processing 
and I/O power as well as increased memory 
space and communication bandwidth. This ex­
pansion is achieved solely through VLSI replica­
tion and is totally transparent to the software 
system. The multiple processors manage them­
selves by a cooperative hardware dispatching 
mechanism that provides transparent multipro­
cessing capabilities. The BIU and MeU provide 
interleaving and distributed control functions 
that act to balance the bus and memory loading 
without any software interaction. 

Figure 18-8 shows the four types of confine­
ment areas in a 432 system. There is a confine­
ment area for each module type and for the 
Packet Bus. These confinement areas were cho­
sen because they match the basic units of system 
expansion. When a module has its confinement 
mechanisms activated, it can be viewed as a self­
checking module. The operation of a self-check­
ing module is designed so that no inconsistent 
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Figure 13-7. Expanded Intel 432 configuration. 

data will be allowed to leave the module and 
corrupt another confinement area. 

Design the Fault-Handling 
Mechanisms 

The Intel 432's fault-handling mechanisms at all 
levels in the system hierarchy are beyond the 
scope of this book. We will focus on the confine­
ment, detection, and isolation/reporting mecha­
nisms at the two hardware levels (memory array 
modules and hardware system). 

The detection mechanisms are separated into 
four distinct groups based on the type of opera­
tion they are designed to cover. 

Transfer of Information 

Information flow in the system is covered by two 
separate detection mechanisms: A two-bit odd/ 
even interlaced parity scheme is used on the 
packet bus. This mechanism detects all single-bit 
errors, all double-bit errors on adjacent lines, an 
all-zero bus, and certain other combinations of 
multiple-bit errors (see Chapter 3). Duplication 
of signal paths (two physical signal lines for each 
logical signal) is used to detect errors in bus 

arbitration lines. Duplication will detect any 
failure along a signal path. 

Storage of Information 

A Hamming code is used to detect and correct 
errors within the memory array. Seven check bits 
are appended to the four-byte storage array 
word. These check bits are computed from the 
data to be stored and the address of the storage 
location. Including the address bits in the ECC 
prevents inadvertent aliasing of one address for 
another. That is, even though two different mem­
ory locations contain the same data, the ECC 
bits will be different. This coding technique 
provides detection for all single, double, and 
multiple odd-bit errors either in the address sent 
to the array or in the data stored in the array; it 
also provides error correction for all single-bit 
errors in the data stored in the array. 

Transformation of Information 

Whenever data undergoes transformation in the 
432 system, error detection is available by com­
plete duplication of all circuitry. Additional cir­
cuitry (also duplicated) is used to compare the 
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Figure 18-3. Multiprocessor configuration of the Intel 432 illustrating confinement areas. 

results of the two operations. This detection 
mechanism (the comparison logic) is implement­
;!d totally in VLSI and is called Functional 
Redundancy Checking (FRC). 

As discussed in Chapter 3, there are several 
:tdvantages to duplication and matching, includ­
mg: 

, Systems that do not need high reliability are not 
penalized by the extra cost of error-detection mech­
anisms. 

, Systems that evolve to higher reliability require­
ments can be upgraded without massive conceptual 
redesign. 

, Fault detection coverage is very high. 
, The number of VLSI component types does not 

increase. 

To provide FRC, the hardware is divided into 
,locks of functionality that may include any 
lumber of components and interconnections. 
Each block is then duplicated and equipped with 
:omparison logic in the VLSI component at 'the 
,lock's external interfaces. One of the pair is 
;elected as the Master; the other functions as the 
::::hecker. The Master logic block is responsible 
~or carrying out the normal operation of the 
)lock. The Checker disables its outputs and 
nstead monitors the outputs of its Master. The 

Checker is responsible for duplicating the opera­
tion of the Master and for using its comparison 
circuitry to detect any inconsistency between the 
two blocks. Figure 18-9 shows the general appli­
cation of FRC to form a self-checking block of 
logic. Figure 18-10 provides a basic schema tic 
for the FRC circuits. These circuits are all lo­
cated inside the VLSI components. 

This detection method detects any operational 
error occurring in either the Master or Checker 
blocks of functionality. The only circuitry that 
must be relied upon in the event of a failure is 
the comparison and fault reporting circuitry of 
the Checker. This circuitry is periodically tested 
to detect any latent faults that may reside in the 
detection or reporting logic (see the section be­
low on Identify the Hardcore). 

Protocols 

There are two timeouts in the system to protect 
against errors in the bus protocols. One timeout 
is used for the local processor bus protocol; the 
other is used for the Packet Bus protocol. The 
BIU and MCU components continually monitor 
for incorrectly formed bus cycles. All requests 
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module 

Figure 18-9. Functional redundancy checking. 

-must eventually be followed by the paired reply. 
If a set number of the bus time slots pass without 
the paired reply appearing, each BIU and MCU 
times out. The detection of any error in the 
system is reported via a network of error report­
ing lines. 

These error-detection mechanisms are used to 
implement the previously defined confinement 
areas. The GDP confinement area, shown in 
Figure 18-11, consists of the GDP components, 
the local processor bus, the BIU components 
(except the Packet Bus arbitration logic), and 
any miscellaneous components used to support 
the GDP. FRC is the only detection mechanism 
used in this confinement area. The FRC detec­
tion is applied at the points where the module 
interfaces with the Packet Buses. 

The IP confinement area, shown in Figure 
18-12, contains the IP component, the local 
processor bus, the BIU components (except the 
Packet Bus arbitration logic), any miscellaneous 
components used to support the IP, and some of 
the support components in the interface between 
the IP and the I/O system. FRC is applied at the 
module interfaces to the Packet Buses and at the 
interface to the I/O subsystem. 

The memory module confinement area, shown 
in Figure 18-13, covers the MCU component, the 
RAM components, the storage array bus, and 
the support logic between the MCU and the 

RAM array. The memory confinement area is 
covered by two independent detection mecha­
nisms. An ECC code provides coverage for fail­
ures in the RAM chips, the address lines, and the 
buffers/latches between the MCU and the array. 
The TTL circuits are covered only for faults that 
manifest themselves as a single- or double-bit 
data or address failure. FRC is applied at both 
the Packet Bus interface and the storage array 
interface to the MCU. This FRC detection com­
pletely covers the operation of the MCU (includ­
ing array control signals). The MCU provides 
further array protection by implementing all 
write requests as a read-modify-write sequence. 
When this approach is combined with the ECC 
coverage of the address lines, it is assured that 
data will never be written into an incorrect 
memory location. The MCU performs the fol­
lowing sequence in response to a write request. 

1. Generate array address. 
2. Read data and ECC. 
3. Check ECC for correct address and valid data. 
4. Generate ECC check bits for new data. 
5. Write the data into the array. 

Figure 18-14 shows the packet bus confine­
ment area. This confinement area covers the 
Packet Bus data, control" and arbitration lines, 
the TTL buffering at each node along the bus, 
and the arbitration logic inside the BIUs and 
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Figure 1S-10. Details for FRC circuitry. 

1CUs. The two-bit interleaved parity scheme is 
sed to provide fault coverage for the data and 
ontrollines plus their associated TTL buffers. 
:very node on the bus checks for correct' parity 
n every bus cycle. This guarantees that parity 
rrors during address transmission cycles will 
till be detected. 
The three arbitration lines and their associated 

TL buffers are covered by duplication. There is 
ne arbitration network for. Master modules, 
nother network for Checker modules. The Mas­
~r modules drive both sets of lines (allowing 
'RC checking), but the master and checker 
~nse the arbitration results independently. A 
tilure in the arbitration network is detected by 
n FRC error in the node's use of the arbitration 
nes during the next arbitration cycle. 
Figure 18-15 pictures a multiprocessor 432 

y'stem with resources dedicated to providing 
mIt detection. A comparison of Figures 18-7 
nd 18-15 shows the flexibility of the 432 expan­
.on. The replication of VLSI can be used to 

increase performance, or fault-tolerant capabili­
ties, or both. 

Identify the Hardcore 

The detection mechanisms described above pro­
vide fault coverage in the 432 central system. 
However, this coverage applies only to informa­
tion being processed or to resources being used 
as a part of normal operation. Latent faults are 
faults that exist in those parts of the system that 
are not exercised in the course of normal opera­
tion. As long as part of the system remains 
dormant, a fault will have no opportunity to 
generate errors in the system. However, if a 
second fault occurs, the dormant part of the 
system may be activated (as part of recovery 
operation, for instance), causing the system to 
face a double-error condition. Thus, latent fault 
detection is desirable for all parts of the system 
not exercised during normal operation. The 432 
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Figure 18-11. GDP confinement area. 

Packet 
buses 

system exposes latent faults by periodically exer­
cising the parts of the system not used. during 
normal system operation. Once a latent fault has 
been exposed, it is handled by the normal fault­
handling mechanisms. 

Two obvious areas of the machine where 
latent faults can occur are the detection mecha­
nisms used in establishing the confinement areas, 
and memory locations not accessed during nor­
mal operation. 

The system software is responsible for period­
ically exercising the detection mechanisms in the 
BIUs and MCUs. The FRC, parity, and ECC 
detection circuits can all be exercised via special 
commands available to the software. The FRC 
and parity circuits are exercised by a command 
that forces an internal disagreement at each 
FRC comparator input and in the two Packet 
Bus parity bits. The outputs from each FRC 
comparator and the two parity trees are checked 
to confirm that they are operating correctly. 
With different values placed in a test register, the 
complete parity tree and FRC circuits can be 
checked. This test of the detection circuits is 
done completely internally; no corrupt informa­
tion propagates outside of the tested component. 

The ECC circuits are checked by a second 
command, which allows software to write bad 
check bits into an ECC field. After writing in a 
bad check field, the periodic correction of every 

I 
Master I Checker 

41RC interface 

Figure 18-12. IP confinement area. 

Packet 
buses 

memory location (the scrubbing mechanism dis· 
cussed below) by the MCU will automaticall) 
exercise the ECC logic when it accesses tha 
memory location. 

The. mechanism for periodically accessing al 
memory locations is called scrubbing. Scrubbin~ 
is tied in with the refresh mechanism to perfonT 
the function totally within the MCU without an) 
additional performance degradation or softwan 
intervention. The MCU reads one location duro 
ing every refresh access. The read data an 
checked and correctly re-stored in the array vi2 
the ECC mechanism. This guarantees access tc 
every location approximately once every second 
In this way, scrubbing virtually eliminates the; 
probability of an access's encountering a wore 
with a double-bit failure. 

THE INTEL 432 ERROR 
ISOLATION AND REPORTING 
MECHANISMS 

Error isolation is achieved by capturing all rele· 
vant information about the error and then reo 
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Figure 18-13. Memory confinement area. 

)orting the error information to all other mod­
des in the system. This reporting procedure 
solates the error to a single confinement area, 
tIl owing recovery to proceed without any diag­
lostic probing of the system. In addition to their 
lormal data paths, all of the local processor 
Juses and the system-wide Packet Buses have an 
ldditional signal for transmitting error report 
nessages. The component detecting the error 
)foadcasts an error report message to the other 
nodules of the system over this network of error 
~eporting lines. 
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Figure 18-14. Packet bus confinement area. 

The error report message has two fields: the 
first specifies the type of error detected, and the 
second identifies the location at which the error 
was detected. The type field assigns the fault to 
one of 16 possible classes. The location field 
uniquely identifies the BIU or MCU that detect­
ed the error by providing the packet bus ID and 
the module ID of the component that detected 
the error. A single-parity bit appended to the end 
of the message provides error detection in the 
error reporting mechanism. 

Upon receiving the error report, each BIU and 
MCU independently determines whether the re-, 
ported error is transient or permanent. An error 
is considered permanent if the same error is 
reported twice within a software-specified time 

Figure 18-15. Multiprocessor system with detection. 
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Error Type: 5 bits 

Permanent/transient: 1 bit 

Error Class: 4 bits 

• Report line parity error 
• Unsafe module 
• Module error 
• Packet bus error 
• Uncorrectable ECC error 
• Correctable ECC error 
• Module! bus error 
• Successful error detection test 
• 8 classes reserved 

Error Location: 9 bits 

Packet bus 10: 3 bits (0-7) 

Module ID: 6 bits (0-62) 

Figure 18-16. Error log content. 

window. The error report message is recorded in 
the error report logs of each BIU and MCU 
component, where is it accessible to the software 
system. Figure 18-16 shows the organization of 
the error report log. 

Consider an example in which an Meu on 
Packet Bus 0 in Figure 18-8 detects an ECC 
error. The MCU serially broadcasts an error 
report message on the Bus 0 error report lines. 
The error message is received by all BIUs and 
MCUs on Bus o. The BIUs on Packet Bus 0 
subsequently propagate the information to all 
BIUs by asserting their processor bus error line 
and serially broadcasting the information to the 
other BIUs in the processor module. Finally, the 
BIUs on Packet Bus 1 assert the Bus 1 error line 
and broadcast the error information to the 
MCUs on Bus 1. Thus, in three cycles all error 
registers hold identical information about the 
error. 

If the error is permanent and uncorrectable, 
the MCU enters Register-Access-Only mode. In 
this mode, the error and status registers can be 
read for diagnosis and reconfiguration purposes, 

but potentially corrupted data in the memory 
array cannot be propagated by good processors. 
Thus, the MCU is frozen and the system is 
notified. 

The error-detection and reporting mechanisms 
of the Intel 432 allow it to meet the objectives of 
excellent fault coverage and fine-grain fault iso­
lation via modular expansion of the 432 func­
tionality. By using VLSI replication to achieve 
modular growth in processing and interconnec­
tion power as well as fault-tolerant functionality, 
the Intel 432 addresses a wide region in the cost/ 
performance/reliability design space. Although 
these error-detection and reporting mechanisms 
may be costly to implement in conventional 
logic, the advent of VLSI minimizes the cost of 
the fault-tolerant functionality. 

SUMMARY 

The trend in applications is toward an expanding 
and diversifying set of fault-tolerant needs. The 
systematic methodology introduced in this chap­
ter provides a method for future designers to 
meet the expanding needs for fault tolerance in 
systems with increasingly complex applications. 
This design strategy provides a top-down meth­
odology for combining the numerous techniques 
described in earlier chapters into a balanced and 
unified system design. The benefits of applying 
VLSI technology and a structured methodology 
to the design of fault-tolerant systems are illus­
trated by the detailed description of the Intel 
432. The authors hope that this book will inspire 
system and chip designers to incorporate reli­
ability features in their next product. 
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Coding for Error Control 

). T. Tang R. T. Chien 

'bstract 

rutorially presented are theoretical and practical con­
'epts that underlie error-control coding for data comput­
ng, storage, and transmission systems. 

Emphasis is on cyclic codes, the most deeply studied 
rnd widely used of the many available codes. Operations 
if typical binary shift registers illustrate the encoding and 
(ecoding processes. 

Strategic considerations for applying coding to com­
mter-communication systems are discussed. Actual ap­
,lications further exemplify the basis for code selection. 

Error rates associated with current digital sys­
:ems are usually extremely low in spite of the 
ncreasingly high speed of processing and trans­
nission. Recent developments in error-correct­
ng codes have contributed toward achieving the 
ligh reliability required by today's digital sys­
:ems, and it is evident that the use of coding 
nethods for error control has become an integral 
:>art in the design of modern computers and 
:;ommunications systems. 

This paper is intended as an introduction to 
:he theory and applications of error-control 
:;odes, involving both error detection and error 
:;orrection. The first two parts of this paper are 
:;oncerned with fundamental definitions in cod­
mg and digital data channels. In the following 
;;ections, concepts of errors, code structures for 
~rror control, and some general properties of 
;;hift-register circuits are introduced. Methods of 
mplementing encoders and decoders as well as 
the functional classes of error-control codes are 
also described. The last two sections deal with 
coding strategy and applications of error-control 

Reprinted by permission from IBM Systems Journal, Vol. 8, 
No.1, 1969, pp. 48-86. @ 1969 by International Business Ma­
;:hines Corporation. 
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schemes in existing data-transmission and stor­
age systems. 

BASIC DEFINITIONS 

Coding is the representation of information (sig­
nals, numbers, messages, etc.) by code symbols 
or sequences of code symbols (often called code 
words). The set of code words and their mapping, 
which determines the set, characterize a code. 
Information is said to be placed into code form 
by encoding and extracted from code form by 
decoding. Certain codes may have a larger aver­
age code length than others. Such codes are said 
to contain "redundancy," which can be used to 
advantage for error control. 

Redundancy 

The development of redundancy schemes, in the 
form of coding suitable for modern digital sys­
tems, took place after the inspiration of Shan­
non's basic theorem in 1948 [Shannon, 1948]. 
Among other things, Shannon showed that even 
in a noisy channel, errors in data transmission 
can be reduced to any desired level if a certain 
minimum percentage of redundancy is main­
tained by means of proper encoding and decod­
ing of the data. Although Shannon's theorem 
does not suggest any procedure for constructing 
such codes, the work of Golay [1949], Hamming 
[1950], Slepian [1956], Prange [1957], and many 
others has contributed a whole body of new 
knowledge-coding theory [Peterson, 1961 ; 
Lucky, Salz, and Weldon, 1968]. Mathematical 
structures have been used to construct codes 
with various types of error control, and these 
structures provide means of analysis as well as 
sophisticated encoding and decoding proce­
dures. 

Source Codes 

Since encoding i~ no more than the digital repre­
sentation of information, a code does not neces­
sarily have error-control capability. Source codes, 
for example, are designed to represent informa-

tion with sequences of code symbols in the most 
efficient way, i.e., using the smallest possible 
number of code symbols on the average [Huff­
man, 1952]. Therefore, source codes usually con­
tain negligible redundancy and should not be 
confused with the error-control channel codes 
used under noisy situations. Typically, a source 
code is first used to represent the output of an 
information source. Then an error-control cod­
ing scheme is implemented to cope with the 
noisy condition in which the resulting code se­
quence is to be transmitted or stored. 

Block Codes 

An important class of error-control codes is that 
of block codes. A block code consists of "code 
words," which are sequences of code symbols of 
fixed length n, often referred to as n-tuples or n­
vectors. In most cases, the information sequence 
to be encoded contains k digits, which are en­
coded as an n-tuple code word. The redundancy 
(normalized) is (n - k)/n, or r/n, where r = n -
k. Such a block code is often denoted as an (n,k) 
code. 

Binary Codes 

Because of their applications in digital data 
transmission, storage, and processing systems, 
binary codes are by far the most important codes 
used. The simplicity of the binary representation 
of information lends itself conveniently to math­
ematical treatments, and as a result, we now 
know much more about binary codes than 
others. We deal almost exclusively with binary 
codes in this paper. Although familiarity with 
basic matrix operations is assumed, other con­
cepts of modern algebra are described as they 
are used. 

ERRORS IN DIGITAL DATA 
CHANNELS 

Transmission and Storage 

The transmission and storage of digital data 
have much in common. They both accomplish 



h.e transfer of digital data from a source to a 
.estination. For transmission, the source and 
lestination are mainly separated in space, and 
or storage, they are mainly separated in time. 
~ransmitting lunar photographs from a distant 
atellite back to earth, transferring data from one 
omputer component to another only inches 
way, and writing and reading data on magnetic 
ape can all be described by the same general 
.rocess consisting of the steps shown in the 
.lock diagram in Figure A-I. 

iource Encoding 

fhe purpose of the source encoder is to produce 
he best digital representation of data originating 
It the information source. Source encoding often 
'equires redundancy removal. When the infor­
nation at the source is in analog form, the. 
luantization of analog signals must also be per­
'ormed. This part of the system is normally 
ndependent of the channel characteristics or 
loise statistics. After the error-control encoder 
:or channel encoder) adds the appropriate 
l.mount of redundancy, the modulator then 
:ransforms the digital code symbols into physical 
;ignals, such as voltage waveforms, ready for 

Digital. data source 

I 
Information Source I 
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I 
I 
I 
I 
I I 
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I 
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I 
I 
I 

ital data destination 
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Information Source I - H-destination decoder I 
I 
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transmission or storage via the noisy channel. On 
the other end of the channel, the exact reversal 
of the above procedure is performed in comple­
mentary steps. 

Modulation and Demodulation 

Both the modulator and demodulator must be 
considered as parts of the digital data channel, 
since an error-control code can only protect 
against errors corresponding to the wrong iden­
tifications of digital symbols. Modulation and 
demodulation techniques designed to produce 
the fewest possible errors are usually analog in 
nature. 

Although the analyses of modulation-demodu­
lation techniques are basically communications 
problems, which are not discussed in this paper, 
several related facts are mentioned here. In order 
to demodulate properly, the demodulation must 
be able to establish the synchronization of re­
ceived signals so that the detection of a digital 
symbol is based on the proper portion of the 
detected waveform. Any small change in detec­
tion threshold level or sampling delay would, 
strictly speaking, result in a different digital data 
channel. However, we may assume that the 

Error 
control 
encoder 

Noise 

'Error 
control 
decoder 

Channel 
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I 
I 
I 
I 
I 
I 
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I 
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I 
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Figure A-l. Generalized data transmission or storage system. 
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system parameters do not change greatly during 
a typical operating period. All temporary effects 
of changes can be regarded as noise afld includ­
ed in the error statistics. In the final analysis, the 
error statistics of the demodulated signals char­
acterize the digital data channel. 

ERROR SOURCES 

Error Statistics 

The distribution of error statistics depends heav­
ily on the following sources of errors: 

• Modulator and demodulator circuit noise is predomi­
nantly thermal in origin and results mostly in uncor­
related errors. 

• Physical disturbances in terminal components include 
changing air gap and changing surface velocity in 
magnetic surface recording. Errors caused by physi­
cal disturbances are highly correlated and tend to 
cluster in bursts. 

• Physical disturbances in transmission or storage media 
are usually sources of bust errors. 

The first two error sources are self-explanato:­
ry, but there are many causes of transmission 
and storage disturbances. The most common 
cause of errors in telephone lines, for example, is 
switching-impulse noise. The duration of such 
impulses is in the order of milliseconds, resulting 
in short error bursts. For microwave and radio 
links, typical fading or dropouts may last from 
milliseconds to seconds or even to minutes. The 
resulting bursts thus tend to be much longer than 
those caused by switching impulses, and they are 
often difficult to control by codes, unless ex­
tremely long blocks are used. 

Storage 

In storage media, such as magnetic tapes, surface 
defects include loss of oxide, scratches, dirt 
particles, and wrinkles. The effect of such dis­
turbances can accumulate until a tape is no 
longer usable. Many of these defects are also 
common to magnetic disks or drums. These 
defects typically assume sizes up to several mils, 

resulting again in short bursts of errors. Core 
storage arrays usually remain reliable after they 
are tested, although breakage or other accidental 
defects may later cause independent errors. Ge­
nerally speaking, burst errors are much more 
likely to be caused by physical disturbances. 
Background noises do exist, but become signifi­
cant only in special cases such as space commu­
nications. 

Channel Models 

A digital data channel is characterized by the 
error statistics associated with the input and 
output alphabets of the channel. Therefore, it is 
often desirable to represent the error statistics in 
terms of a certain simple mathematical model. 
List all the conditional probabilities of receiving 
the symbols in the output alphabet, for all possi­
ble transmitted symbols in the input alphabet. If 
these probabilities are independent of the loca­
tions of symbols, then we have a model com­
pletely characterizing a digital memoryless 
channel [Shannon, 1948]. In such a channel, 
probabilities of erroneous symbols are indepen­
dent of the neighboring transmitted or received 
sequences of symbols. 

When most errors tend to cluster, the channel 
is no longer a memoryless one. A memoryless 
model can at best be considered as an approxi­
mation of the real channel. If the clustering of 
errors is independent of the transmitted symbols, 
a Markov model is the appropriate one. Such a 
model consists of states identified by one or 
more preceding symbols from the "error se­
quence" (the difference between the transmitted 
and received sequences). 

When error bursts are not necessarily solid, or 
when bursts themselves tend to cluster, such as 
in a fading channel, one must either go to 
Markov models of higher orders or use a differ­
ent model, such as one in which the probability 
distribution of the number of digits between 
errors is described by a certain simple function 
[Berger and Mandelbrot, 1963]. 



\ttATHEMATICAL STRUCTURES 
N CODING 

;ome basic concepts of code structure and re­
luirements of error-control are now discussed. 
We choose a subset from the set of all n-tuples to 
~orm a code set. This code set has some error­
;ontrol capability, since the receiver can detect 
:he occurrence of an error when the received n­
tuple is not in the chosen code set. For errors to 
:>e corrected, we must also have a decoding 
:>rocedure that determines the supposedly trans­
mitted code word when an unacceptable n-tuple 
IS received. This can be done by a table lookup 
procedure at the receiving end. 

A mathematical treatment of the encoding­
jecoding process is needed to (1) select a set of 
'1-tuple code words with a specified error-control 
capability, and (2) build a structure so that the 
code set can be decoded systematically without 
table lookup (which is clearly impractical for 
large code sets). Such structures yield properties 
of code sets that facilitate analysis and simplifi­
cation of the encoding-decoding procedure. 

Linear Separable Codes 

It is desirable to divide a code word into an 
information part and a redundant checking part. 
A code with this feature is a separable code. In 
the case of the linear separable codes, each of the 
check symbols is a certain linear combination of 
the information symbols. For example, a binary 
information 4-tuple (i\, i2 , i3 , i4 ) can be coded as 
a binary 7-tuple with three binary check symbols 
(c\ 'C2' c3)' Here, a 7-tuple code word may take 
the general form (i\ , i2, i3, i4, c\ ' c2' c3), with 

c\ = i\ + i2 + i3, c2 = i2 + i3 + i4, 

c3 == i\ + i2 + i4 

where additions are binary operations. * The 

• The addition (+) and the multiplication (.) in a binary field 
are defined by the following equations: 0 + 0 = 0, 0 + I 
= I + 0 = 1, 1 + 1 = 0, O· 0 = 0 . 1 = 1 . 0 = 0, and 
1 . 1 = l. 

CODING FOR ERROR CONTROL 643 

relationship can be conveniently illustrated by 
an example expressed in matrix form as shown in 
Equation 1. A code word vector results when a 
binary information 4-tuple operates on the code 
generator matrix. The configuration of the gener­
ator matrix is obtained from coefficients of the 
corresponding simultaneous equations, which 
depend upon the nature of the code selected. 

[I 0 0 0 0 

il o 1 0 0 
[i\ ' i2, i3, i4] 0 0 1 0 

(1) 
o 0 0 1 0 

= [v\,v3"" ,v7] 

An equivalent way to characterize a linear 
code is to specify a set of simultaneous parity 
equations that must be satisfied by the code 
symbols. Using the example in Equation 1, the 
following three equations must be satisfied by all' 
the code words that take the form (v\' v2' ... , 
v7 ): 

v\ + v2 + v3 + v5 = 0 

v2 + v3 + v4 + v6 = 0 

VI + v2 + v4 + v7 = 0 

Again, this set of linear simultaneous equa­
tions can be conveniently written in matrix form 
as follows: 

1 0 1 

1 1 1 

1 0 

[V\,V2,·",V7] 0 =0 
1 0 0 
0 1 0 

0 0 

In general, a k-tuple information part can be 
coded into an n-tuple code word according to the 
equation 

iG = v 

where the matrix i is 1 by k, G is k by n, and v is 
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I by n. The matrix G is called the generator 
matrix of the code. Alternatively, the parity 
equations may be written in the form 

vHT = 0 

where v is 1 by n, HT is n by r( = n - k), and 0 
is I by r. HT is the transpose of H, which is 
called the parity-check matrix of the code. For 
some basic structural features of linear codes, see 
Appendix I. * 

Polynomial Cyclic Codes 

One way to represent an n-tuple is to consider 
the symbols of the n-tuple to be coefficients of a 
polynomial of degree n - I or less. Specifically, 
an n-tuple (ai' a2' ... ,an) gives rise to a polyno­
mial representation 

n-l n-2 + al x + a2 x + . . . an . 

When the addition and multiplication are both 
defined on the symbols used as the coefficients of 
polynomials, the addition and multiplication of 
polynomials can be carried out in the ordinary 
manner. The addition of two polynomials of 
degree n - 1 or less does not differ from the 
addition of corresponding n-tuples. The product 
of two polynomials a(x) and b(x) of degree n - I 
or less can be defined as another polynomial 
c(x), also of degree n - 1 or less, which is the 
residue of the usual product when divided by 
xn + 1. This operation is written in the form 

a(x)b(x) == c(x)modulo(xn + 1) 

We use the symbol == in this paper to mean "is 
congruent to." 

Any binary polynomial g(x) must divide xn + 
1 for some positive integer n. The set of all 
polynomials that are distinct multiples of g(x) 
. modulo xn + 1 constitutes a cyclic (polynomial) 
code in the sense that if a(x) and b(x) are code 
polynomials then a(x) + b(x) is also a code poly­
nomial. 

* All references are to appendixes at the end of this paper, 
pages 656-669. 

Furthermore, any cyclic (end-around) shift of 
a code word is also a code word, since a cyclic 
shift of a code word is equivalent to the multipli­
cation of xi by the code polynomial modulo 
(xn + 1), resulting in another polynomial in the 
code set. The polynomial g(x) is called the 
generator polynomial of the code, and such a 
polynomial uniquely characterizes a cyclic code. 
The polynomial hex) = (xn + l)jg(x) is called 
the recursive polynomial of the same code. 

If the degree of g(x) is r, then there are 2k 
distinct multiples of g(x) of degree n - 1 or less, 
where k = n - r is also the degree of h(x). Some 
basic structural features of polynomial codes are 
included in Appendix 2. 

GENERAL REQUIREMENTS FOR 
ENCODING AND DECODING 

Thus far we have discussed the generation of 
linear separable and cyclic codes and have ap­
pended some basic structural features of these 
codes. Now, we briefly discuss certain general 
requirements of linear and cyclic codes. It was 
stated that the encoding procedure consists of 
essentially the selection of an n-tuple code word, 
given any number of information symbols. At 
the same time, the decoding procedure essential­
ly consists of determining what these informa­
tion symbols should be when receiving any n­
tuple. Without any code structure, decoding can 
only be done by table lookup. 

Error Syndromes 

When linear codes are used, however, the cor­
rectable error patterns become separable from 
the code words and can thus be identified inde­
pendently of the code words transmitted. To 
show this, let v be a code word, and H be a 
parity-check matrix. If the error is e (an n-tuple), 
then the received n-tuple is v' = v + e. If we 
calculate the syndrome, defined as 

S = v'HT = (v + e)HT = vHT + eHT = eHT 



'lie see that it is an r-tuple independent of the 
;ode word v. The syndrome S contains all the 
nformation regarding the error that has been 
tdded to the code word during the transmission. 
For a deterministic correction scheme, each 
;yndrome must be identified with a unique error 
1-tuple. Since the zero syndrome always means 
'no error," a nonzero syndrome is necessary for 
the detection of any error n-tuple. 

The following observation can now be made 
for a binary code. Since the syndromes are r­
tuples, there are 2' distinct forms. Clearly, we 
~annot expect the code to correct more than 2' 
jistinct errors (including no error). Furthermore, 
If two errors result in the same syndrome, at 
most one of them can be corrected. A condition 
for a set of errors to be correctable is for any two 
~rrors el and e2 from the set to satisfy 

el HT - e2HT = (el - e2)HT i= 0 

[n terms of polynomials, the condition becomes 

el (x) = e2(x) i= 0 modulo g(x) 

where el (x) and e2 (x) are any two correctable 
error polynomials. In particular, if an error takes 
the same form as a code word, then it cannot be 
distinguished from zero error. 

F or a cyclic code, the syndrome of an error 
e(x) usually means the residue of e(x) 
. modulo g(x), the generator polynomial. How­
ever, depending on the specific decoding proce­
dure chosen, the syndrome may take other forms 
such as the residue of x' e(x) modulo g(x). 

Conditional Maximum Likelihood 
Decoding 

It should be noted that the performance of a 
decoding scheme depends on the characteristics 
of the information source and the channel, as' 
well as that of the code used. Generally speaking, 
if we want to minimize the decoding error with a 
specific code, the conditional maximum likelihood 
decision scheme should be used. With this 
scheme, a code word Vi is selected as the decoded 

CODING FOR ERROR CONTROL 645 

message upon receiving v', such that the condi­
tional probability P(Vi I v') is maximum for all vi. 
In evaluating these conditional probabilities, ac­
curate source statistics must be used. This intro­
duces an immediate difficulty since such detailed 
source statistics are usually not available. Fur­
thermore, the calculation of p(vilv/) for all Vi is 
impractical for most cases. 

Maximum Likelihood Decoding 

An alternative method of decoding is to use the 
maximum likelihood decision rule, which selects a 
code word Vi' upon receiving v', such that the 
conditional probability p(v/l v) is maximum for 
all possible code words. The calculation of con­
ditional probabilities p(v/lv) no longer depends 
on the source statistics. This rule is equivalent to 
the conditional maximum likelihood decision 
rule when all source symbols are equally likely. 
F or linear codes, this decoding method requires 
that, among all error n-tuples resulting in the 
syndrome calculated, the one with the highest 
probability of occurrence should be taken as the 
error that occurred. Note that the error can be 
identified independently of the code transmitted. 

Minimum Distance Decoding 

We may consider all possible n-tuples to be 
points in an n-dimensional space, and define a 
dis,tance Junction D(x, y) between two points (n­
tuples) x and y to be the number of places where 
the two n-tuples differ. (In binary cases, this is 
usually called the "Hamming distance.") We 
may then use the following minimum distance 
decoding scheme: upon receiving v', select a 
code word Vi that minimizes D( v', Vi) among all 
code words. Minimum distance decoding is 
equivalent to that obtained by using the maxi­
mum likelihood decision rule, provided that the 
errors are independent. This geometrical inter­
pretation of the coding and decoding procedure 
is often very useful. 

The distance function previously defined has 
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the following "triangular" property: for any 
three points x, y, and z, then D(x, y) + D(y, z) > 
D(x, z). From this property, one can show that, 
if for a given code the minimum distance be­
tween any pair of code words is Dm, then this 
code is capable of correcting I errors and simul­
taneously detecting d errors (d > I) as long as 
d + I < Dm' On the other hand, if I-error cor­
rection is desired, then Dm > 21 + I. 

LINEAR SWITCHING CIRCUITS 
AND SHIFT REGISTERS 

A properly designed electronic linear switching 
circuit is capable of storing and manipulating a 
given digital message sequence algebraically, and 
hence can be used for encoding or decoding 
purposes. The basic elements of a linear switch­
ing circuit are: delay units, adders, and multi­
pliers. In binary cases, no multipliers are neces­
sary because the multiplication of I implies a 
direct connection, and the multiplication of 0 
implies no connection. A switching circuit with 
modulo 2 adders and delay units (or registers) is 
referred to as a shift-register circuit. 

The relationship between input and output 
sequences of a linear switching circuit depends 
upon the connections among the basic elements 
previously described. With respect to a pair of 
input/output points, the behavior of such a cir­
cuit can be described by its unit response. This 
response is the output sequence caused by an 
input sequence wherein the first symbol is I, and 
all the following symbols are O. (The initial 
contents of all delay units must be 0.) 

Polynomials in Delay Operator D 

We may denote a sequence S = (sl' s2' ... ) in 
terms of its transform [Huffman, 1956], which is 
a power series in the delay operator D 

s(D) = sl + s2 D + s3 D2 + ... 
For ease of algebraic manipulation, a code poly­
nomial A(x) representing an n-tuple is usually 

transmitted with the higher-order-first conven, 
tion. Writing 

A(x) = al x n- I + a2 Xn- 2 + ... + an-I x + all 

= x n- I (al + a2x-1 + ... + an-I x 2- n 

+ anxl - n) 

we see that, in a sense, x-I becomes equivalen1 
to the delay operator D. 

Consider the binary shift-register circuits as 
shown in Figure A-2a and b. If s(D) = I, one 
can see from the paths directed from the input to 
the output that, in both cases, 

I(D)ls(D)=1 = T(D) = I + D2 + D3 

If we let D = x-I in T(D), we have 

T(1/x) = I + x-2 + x-3 

or 

x 3 T( 1/ x) = x 3 + x + I = T* (x) 

Here, T* (x) denotes the reciprocal of T(x) and 
is obtained by reversing the order of coefficients 
in T(x). Thus, in terms of polynomials in x, the 
circuits in Figure A-2 are both circuits for multi­
plying the input polynomial by the polynomial 
x 3 + x + 1. The coefficient of the highest degree 
term in the product is obtained at the output 
without any delay. 

A 

B 

~------~ + ~------------~ 

Figure A-2. Multiplication circuits. 

) 

s(D) 

s(D) 



A 

t(O) 

B 

~------~ + ~------------~ 

t(O) 

Figure A-3. Division circuits. 

Figure A-3a and b shows two division circuits 
whose functions can be easily analyzed by first 
observing that the following relationships hold in 
both circuits 

and 

xeD) + seD) = teD) 

Combining the above two equations, we have 

or 

T(D) - teD) - --,,----0--­

- seD) - D3 + D2 + I 

Similarly, for both circuits in Figure A-4, 

teD) _ D3 
s(D) - D3 + D2 + I 

In terms of polynomial representations, all cir­
cuits in Figures A-3 and A-4 are circuits for 
dividing the input polynomial by the polynomial 
x 3 + x + 1. The first bit of the quotient (coeffi­
cient of the highest degree term) is obtained at 
the output without any delay or after three units· 
of delay depending upon whether 1 or D3 ap­
pears in the numerator of the transfer function. 

Figure A-5 shows circuits for respectively mul-

A 

B 
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~------~ + r-------------~ 

s(O) 

Figure A-4. Division circuits that produce 
residues. 

t(O) 

tiplying and dividing the input polynomial by an 
arbitrary polynomial of degree m, 

A(x) = xm + Qm_\xm-\ + ... + Q\x\ + Qo 

The division circuits described perform essen­
tially the long division process. Thus, if the input 
polynomial is a multiple of the dividing polyno­
mial, the output sequence is the quotient fol­
lowed by zeros. Otherwise, the output sequence 
is the infinite sequence corresponding exactly to 
what one obtains in the long division process. 
F or example, if we divide x3 by x3 + x + 1 as 
follows: 

+x-7 + ... 

x 3 + X + 1) x 3 

x 3 + X + 1 

1+ x-I + x-2 

1 +x-2 +x-3 

X-I +x-3 

x-I +x-3+x-4 

The outcome is 1 + x-2 + x-3 + x-4 + x-7 

+ . . .. The division circuit of Figure A-3a or 
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A 

Input 

B 

Output 

FigureA-5. Generalized multiplication and division circuits. 

A-3b, on the other hand, gives a corresponding 
output sequence 1 + D2 + D3+ D4 + D7 
+ .... 

The circuit in Figure A-4a (or the general 
circuit of Figure A-5b) has the following special 
property. The contents of the registers represent 
the residue of the division after the last term of 
the input polynomial has entered the circuit. For 
example, if we consider the register from left to 
right as coefficients of 1, x, and x 2, respectively, 
in Figure A-4a, then a shift to the right is 
equivalent to multiplication by x. The feedback 
connections add the output from the third regis­
ter to the contents of the first and the second 
registers, thus effecting x 3 = 1 + x (or x 3 + 
x + 1 = 0) whenever this reduction becomes 
possible. The final contents of the registers clear­
ly represent the input polynomial minus all mul-

tiples of x 3 + x + 1, that is, the residue of the 
input polynomial modulo x 3 + x + 1. 

The shift-register contents of other types of 
division circuits do not necessarily correspond to 
residues. For example, the shift-register contents 
of the circuit in Figure A-3a represent the resi­
due of the input polynomial multiplied by x 3 

• 

modulo x3 + x + 1. In general, register contents 
represent linear transforms of the residue coeffi­
cients described above. 

ENCODERS AN D DECODERS 

An encoder for an (n, k) linear code produces an 
n-tuple code word when an information k-tuple 
is given. This fact is illustrated by writing the 
symbols in· the n-tuple code word as functions of 
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Figure A-6. Combinatorial encoder for a linear code. 

the given k-tuple and implementing each of these 
functions (as Boolean functions) with logic cir­
cuits. For example, the linear code specified by 
Equation 1 may be implemented by the circuit in 
Figure A-6. Note that the information symbols 
remain unchanged; thus, the code obtained is 
separable. 

When a cyclic polynomial code is used, it is 
convenient to generate the code polynomials in a 
sequential manner. The binary cyclic code with 
generator polynomial g(x) = x3 + X + 1, for 
example, may be encoded with the shift-register 
(multiplication) circuits in Figure A-2 yielding a 
nonseparable code structure. When the code is 
separable, a division circuit capable of producing 
the residue of the input polynomial modulo g(x) 
can be used to produce the check symbols. 
Figure A-7 shows such an encoder. During the 
transmission of the first k bits, information sym­
bols are fed into the encoders shown in Figure 
A-7. The switch K is in the 0 position, allowing 
the same symbols to appear unchanged at the 
output. At the end of k bits, the desired residue 
has formed in the registers and is obtained by 
throwing the switch K to the I position. Since the 
feedback of the division circuit is now nullified, 
the register contents will next appear at the 
output. 

The cyclic code generated by the polynomial 
g(x) = x3 + X + 1 is identical to the linear code 
described by the generator matrix of Equation 1. 
Encoders shown in Figures A-6 and A-7, there­
fore, yield the same code words when fed with 
the same k-tuple input. 

The basic function of a decoder is to establish 
mapping from the syndrome (r-tuple) of the 
received message to an error n-tuple. By sub­
tracting the error from the received message, one 
obtains the transmitted code word which, in the 
case of separable codes, contains the original 
information k-tuple. 

Since the mapping being implemented can be 
completely specified by a table, an immediate 
approach to the design of a decoder is via a logic 
circuit that implements the table lookup proce-

Figure A-7. Sequential encoder for a linear code. 
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dure. When decoding delay must be minimized, 
the logic circuit approach in decoding can be 
quite attractive. The obvious limit to this ap­
proach is that the complexity of the decoding 
circuit tends to grow exponentially with the 
capability of the code used. 

With cyclic codes, simplification in the decod­
ing circuitry is possible. Figure A-8 shows a 
general-purpose decoder which consists of the 
following components: a division circuit that 
serves as a syndrome generator, an n-stage buffer 
storage that retains the message received, and a 
syndrome recognition circuit that usually recog­
nizes the syndromes of error vectors that include 
an erroneous highest-degree digit. 

To see how this decoder works, let al x n- I 

+ ... + an-l x + an be the code polynomial and 
let des) = a(x) + e(x) be the received polyno­
mial, where e(x) represents the error. As men­
tioned earlier, the syndrome of a'ex) generated 
here by a division circuit of g(x) is independent 
of a(x). The syndrome is obtained when the last 
digit of the code word, an' has entered the 
decoder. If the first digit is not in error, the 
syndrome detection circuit maintains a zero out­
put and the highest order bit is obtained unal­
tered at the output. After a shift, the transformed 
syndrome corresponds to xe(x), which is the 
original error with the coefficients advanced one 
position toward the high-degree end. The synd-

Received 
message N-bit 

buffer 
storage 

Syndrome 
generator 

Syndrome 
detection 

circuit 

Corrected 
message 

Figure A-8. General-purpose decoder for cyclic 
code. 

rome recognition circuit then recognizes the 
syndrome if the second digit in the original 
received message is in error. Since the same 
argument applies to the subsequent shifts and 
subsequent errors, we see that erroneous digits of 
a correctable error pattern can all be corrected. 

The decoding circuit of Figure A-8 requires a 
delay of n digits before the decoded message is 
received. The errors are corrected sequentially. 
Although generally applicable to all types of 
cyclic codes, the syndrome recognition circuit 
may in many cases still be too complicated (in 
spite of the relative simplicity in comparison 
with the pure combinatorial circuit). However, 
remarkably simple decoding circuits of this type 
are possible with cyclic burst-error-correcting 
codes (including the Hamming codes). 

If a code is used for error detection only, one 
merely needs a recognition circuit to determine 
whether the residue is zero. A n()nzero indicates 
that an error has been detected. 

FUNCTIONAL CLASSES OF 
ERROR-CONTROL CODES 

Several functional classes of cyclic polynomial 
codes have been found: 

• Singe-Error-Correcting Codes. A single-error-correct­
ing code of length n is capable of correcting any 
error affecting no more than one symbol in a code 
block of n symbols. 

• Burst-Error-Correcting Codes. A burst-error-correct­
ing code of length n is one that can correct any span 
of errors of fixed length b or less in a code block of 
n symbols. 

• Independent-Error-Correcting Codes. An indepen­
dent- (or multiple-) error-correcting code is a code of 
length n that is capable of correcting up to a multiple 
of t errors within a code block of length n. 

• Multiple-Character-Correcting Codes. A multiple­
character-correcting code is a code of length n 
characters, where a character is a group of bits with 
fixed length. Any combination up to a fixed number 
of character errors within a block may be corrected. 

Depending upon channel characteristics, 
members of these code classes may be selected. 



Methods for finding generator polynomials for 
these codes are given in Appendix 3. 

Certain specialized codes are modifications of 
some members of previously mentioned func­
tional classes of codes. Interleaved codes, N­
dimensional codes, and shortened codes, for 
example, are methods of constructing stronger 
codes based on weaker ones. Self-orthogonal 
codes are characterized by their threshold logic 
decodability, which leads to simple decoding 
circuits. Synchronization codes add framing ca­
pability to error control. Convolution codes form 
a class of nonblock codes with various possible 
error-control capabilities and are often used in 
conjunction with the sequential decoding tech­
nique. Constant-weight codes are useful in chan­
nels with some special properties. Arithmetic 
codes are based on arithmetic operations and are 
useful in channels which include arithmetic pro­
cessors. Certain basic properties of such special­
ized codes are included in Appendix 4. 

CODING STRATEGY 

When an error-control code is considered in a 
digital transmission or storage system, one 
should ask not only what can this code do, but 
also what is needed to achieve the capability of 
the code. 

Generally speaking, the longer the block 
length (i.e., larger n), the more storage the decod­
er requires, and the greater the minimum decod­
ing delay. It is also generally true that the longer 
the code block the larger the class of errors to be 
corrected, hence the more complicated the de­
coding circuits. However, the distribution of 
errors in longer code blocks becomes much more 
predictable, thereby permitting the use of codes 
with smaller redundancy while maintaining the 
same relia bili ty. 

The data flow in a complex computer system 
may take different forms at different levels corre­
sponding to the channels described previously. 
Therefore, basic requirements for error-control 
codes may also change in emphasis from one 
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case to another. For example, intermachine data 
transmission may go through many conventional 
communications channels. The primary require­
ments of the preferred error-control scheme are 
high reliability and high information rate. Since 
decoding delay does not reduce throughput, one 
would tend to use longer codes with lower redun­
dancy even though they require more decoding 
complexity. 

For intramachine transmission, such as going 
in and out of an internal random-access storage, 
the primary coding requirements are high reli­
ability and speed. Thus, simple decoding by 
circuitry is essential in keeping storage access­
time small. Another feature of the codes used for 
intramachine transmission is that an error-con­
trol code is often used in the detecting mode, 
since retransmission can usually be effected by 
simple instructions based on the outcome of 
error detection. There are exceptions to such 
generai rules. An optimum coding strategy can 
be achieved, and the best code obtained, only 
after a design engineer evaluates several alterna­
tives. 

We now outline several different courses of 
action he may prefer as an alternative of for­
ward-acting full-power correction with block 
codes. 

Error Detection 

The main advantage of error detection is the 
simplicity of its implementation. An error is 
detected if the received message yields a nonzero 
syndrome. For cyclic codes, a division circuit 
plus a test for zero constitute a complete decod­
er. 

The detection capability of a code is closely 
related to its correction capability. If a code is 
capable of correcting a set {eJ of error n-tuples, 
then the syndromes of any two errors, ej and ej 
from the set must be distinct. This implies that 
any error of the form e j + ej must be detectable. 
It should be pointed out that the code also 
detects many other errors. Any error of the form 
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ej + ej + V is clearly detectable if v is a code 
vector (and vHT = 0). This often results in a 
significant reduction in the undetected and un­
corrected error rate. 

From the preceding, we observe that a t-error­
correcting code is capable of detecting all com­
binations of 2t errors, and aburst-b-correcting 
code is capable of detecting any two bursts of 
length b or less. A Fire code generated by 
g(x) = (XC + l)p(x)-as described in Appendix 
3-when used for detection only, is capable of 
detecting any combination of two bursts of 
which the length of the shorter burst is no greater 
than the degree of p(x). Any cyclic code of 
degree r is capable of detecting all single bursts 
of length up to r. 

Error detection is an attractive means of error 
control provided it is possible to effect retrans­
mission. In the case of data transmission, this 
implies the existence of a reliable feedback chan­
nel, which is used to relay the request-for-re­
transmission message back to the sender [Shan­
non, 1959; Turin, 1965; Schalkwijk and Kailath, 
1966]. Many data links within a computer system 
have the ability to regenerate a message at the 
sending end when it is not cleared at the receiv­
ing end. On the other hand, an error detected 
during a readback process from storage may not 
be successfully avoided by rereading the same 
message when the error is due to permanent 
damage in the storage medium or when the error 
occurred during the writing process. 

When a feedback channel is available, one 
should calculate, from available statistics, the 
probability of requests for retransmission and 
the average time the system is tied up because of 
the requests. Performance of the detection-re­
transmission method can then be evaluated with­
in the context of given system parameters [Frey 
and Benice, 1964]. In general, detection and 
retransmission is effective against highly clus­
tered errors. For random errors or for a combi­
nation of random and burst errors, some error 
will tend to appear regularly in every block. In 
such cases, some forward-acting error correction 

is necessary to maintain the performance of the 
transmission system. 

Partial Correction 

We have seen that, even where a feedback chan­
nel is available, some forward error correction is 
often needed to combat random errors. For most 
codes, there is a trade-off between the numbers 
of correctable and detectable errors. A multiple­
error-correcting code is capable of correcting t 
errors and simultaneously detecting d errors as 
long as the minimum distance of this code is at 
least t + d + 1. A fire code generated by g(x) 
= (XC - 1) g(x) is capable of correcting a burst 
of length up to b and simultaneously detecting 
any other burst of length up to de > b as long as 
b + d - 1 < e and b < m, the degree of p(x). 
See Appendix 3. 

Aside from the need to use partial correction 
in conjuction with the detection-retransmission 
method, there may be other reasons for the use 
of partial correction in the overall error-control 
scheme, namely, to minimize the decoding com­
plexity. We mention here two situations wherein 
partial correction may prove useful. 

1. In the case of multiple-error correction, 
decoding complexity grows exponentially with 
the number of errors corrected. Thus, even if a 
given code can correct t > 1 errors, one may still 
want to go through a single-error-correction pro­
cedure and test the syndrome for possible erro­
neous correction. If single errors account for a 
large portion of the overall error rate, consider­
able reduction in average decoding delay can 
thereby be achieved. Success of single-error cor­
rection eliminates the need to go through the 
more complicated t-error-correction. If two or 
more errors occur, the single-error-correction 
procedure may make an erroneous correction in 
some cases. However, due to the minimum dis­
tance of the code, the result is still a detectable 
error. The correction algorithm specifies return-



ing to the original message received and trying a 
more powerful correction procedure. A similar 
approach also applies to the partial correction of 
multiple errors up to the maximum number of 
correctable errors. 

2. For certain classes of multiple-error-correct­
ing codes, simple circuit implementation is pos­
sible for correcting a small number of errors. 
Since threshold-logic decoding has error detec­
tion and correction capabilities approaching 
those of multiple-error correcting codes, the 
combination of partial correction by logic cir­
cuitry and detection may prove very useful. 

Erasures 

Erasures usually correspond to detected signals 
that are considered to be in a certain "no­
confidence zone." In the case of binary level 
detection, the erasure zone is intermediate be­
tween the 1- and the O-zone. In general, an 
erasure implies an unknown symbol (or charac­
ter) at a known location. 

In a pure erasure channel, locations of errors 
are always known. The error-correction capabil­
ity of a code in an erasure channel is similar to 
its detection capability in a nonerasure channel. 
An erasure pattern is correctable if (and only if), 
by substituting all possible combinations of sym­
bols at these erased digits, only one results in a 
code word. With a t-error-correcting code, any 
pattern of 2t erasures is correctable. This follows 
immediately from the fact that, with 2t erasures, 
any 'two n-tuples resulting from different substi­
tutions can differ at most at 2t digits. However, a 
t-error-correcting code must have a minimum 
distance of at least 2t + 1, which means these 
two n-tuples cannot both be code words. Similar­
ly, with a burst-b-correcting code, any pattern 
consisting of two erasure bursts of length b or 
less is correctable. 

In more realistic channels, erasures are often 
compounded with nonerasure errors. Again, 
there is a trade-off between the numbers of 
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correctable errors and erasures. For example, a 
multiple-error-correcting code is capable of cor­
recting any combination of t errors and e era­
sures as long as the minimum distance of the 
code is at least 2t + e + 1. 

Generally speaking, the use of erasures tends 
to reduce the uncorrectable-error rate. The 
amount of improvement is a function of the 
detailed statistics of the detected signals and of 
the thresholds that define the erasures. The price 
of improvement here is a probable increase in 
decoding complexity. When correcting combina­
tions of errors and erasures with a multiple­
error-correcting code, one must perform the 
additional step of transforming the error syn­
dromes in order to separate the erasures from 
nonerasures before the ordinary decoding proce­
dures can be applied [Forney, 1965]. At least 
part of this added effort is compensated by a 
reduction in the number of errors to be correct­
ed, as compared with forcing all erasures into 
decisions of code symbols. The erasure concept 
can be generalized as an increased number of 
levels at the detector output whereby further 
gain in reliability is possible [Forney, 1966]. 

Adaptive Coding Schemes 

If the noise characteristics of a digital data 
channel tend to change from time to time, an 
adaptive coding scheme may be desirable. In the 
method of detection and retransmission, certain 
forward-acting partial correction becomes neces­
sary if a small number of errors tend to occur 
reg~larly. The amount 'of partial correction can 
be monitored at the receiving end to cope with 
the varying error rate. Recently, an interesting 
method of adaptive decoding without feedback 
has been developed [Frey, 1967]. With this meth­
od, a received message is analyzed to determine 
whether the burst-error correction or the inde­
pendent-error correction should be performed. 
Methods have been studied for changing the 
code used (as well as the decoding algorithm) in 
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such a way as to minimize implementation com,. 
plexity [Tang, 1965; Tang and Chien, 1966]. 

Sequential Decoding 

Although sequential decoding has been success­
fully applied to space communications, its use in 
computer systems is still in an exploratory stage. 
Quantitative performance evaluation of a se­
quential decoding algorithm is difficult without 
actual implementation and testing. As we have 
indicated previously, since the decoding algo­
rithm can only be implemented by a computer, 
sequential decoding is not applicable where suf­
ficient processing capability is not provided. An­
other factor that may limit the use of sequential 
decoding is that decoding effort is a random 
variable without an upper bound. However, the 
sequential decoding algorithm is applicable to a 
wide range of conditions, including those in 
which other block coding schemes do not per­
form satisfactorily. Such conditions exist, for 
example, where the initial error rate is high, or 
where high reliability is required at a high infor­
mation rate. 

SOME ERROR-CONTROL 
APPLICATIONS 

Data Communications 

Many IBM terminals use cyclic codes for error 
detection. Because of their relatively low error 
rates, the codes are mostly burst-detecting codes 
that usually have very little redundancy. 

The IBM 1050 data communication system 
uses an interleaved code, generated by g(x) = 

(x6 + 1), in which six check digits form a char­
acter at the end of each message. Single burst­
errors of length up to six are detectable, as are 
many other error patterns. 

The Binary Synchronous Communication 
(BSC) [Eisenbies, 1967] convention uses a 
burst-2-correcting code generated by g(x) = 
(x + I)p(x), where p(x) is a primitive polynomial 
of degree 15. The BSC code is capable of detect-

ing two bursts of length two. Also, because the 
minimum distance is four, BSC can detect any 
three or fewer independent errors in messages up 
to a length of 21s - 1. 

Although errors.on microwave links used for 
voice-grade channels are effectively eliminated 
by the use of pulse code modulation and repeat­
ers, encoders and decoders for additional error 
control are provided. For example, private lines 
are available with additional coding equipment, 
wherein the code used is a shortened (200, 175) 
BCH type with a minimum distance equal to 
eight. The generator polynomial of this code is of 
the form g(x) = (x + I)ml (x)m3 (x)ms (x), where 
ml (x), m3(x), and ms(x) are polynomials of de­
gree eight. The (200, 175) code is obtained by 
shortening a full-length (255, 230) code. This 
code is capable of correcting three independent 
errors and, in addition, detecting four errors. 
Retransmission is requested if an uncorrectable 
error is detected. The use of a convolutional 
code with one-sixth redundancy is also an option 
with the direct-distance-dialing switched net­
work. 

Data Storage 

Although magnetic cores are highly reliable, 
such storage elements as drivers, sense ampli­
fiers, and read-write gates, which control the 
storage operation, are subject to occasional fail­
ures. The use of an error-control code in the 
CPU of a computing system not only helps to 
locate failures, but also keeps the CPU in opera­
tion when the effect of a failure is within the 
correction capability of the code used. 

The IBM 650 central processing unit uses a 
"bi-quinary" code, which encodes a decimal 
digit into seven binary digits with two I's. This 
code, like the four-of-eight code, .detects all odd 
numbers of errors. 

The IBM 7030 (STRETCH) computer uses a 
single-error-correcting double-error-detecting 
code with 64 data bits and eight check bits. The 
encoding and decoding are implemented by logic 
circuits. 



The IBM 7070 data processing system uses a 
"two-of-five" code with an addtional overall 
parity check. Many other CPU's, including SYS­
TEM/360, use single parity checks for error 
detection. 

Auxiliary Storage 

Disk files, like other magnetic surface-record­
ing systems, are vulnerable to surface irregulari­
ties. Therefore, protection against burst error is 
usually needed. As the recording density in­
creases, more powerful coding schemes are need­
ed. The IBM 1300-series disk storage uses a 
cyclic code, for burst detection, in which there 
are 13 check digits at the end of every record. 
The IBM 2301 drum storage unit also uses a 
cyclic code with 19 check digits for error detec­
tion. Most of the other disk files use similar 
cyclic codes for error detection. 

Magnetic tape units used today contain sever­
al tracks, and a character or a byte is obtained 
by reading one bit from each track. Error control 
is necessary since tapes are relatively less reliable 
than magnetic cores. Control can be achieved in 
a number of ways. The tractor tape unit has 22 
tracks, 16 of which are information bits and six 
are check bits. Each character is a (22, 16) code 
obtained by shortening a (31,25) BCH code with 
minimum distance of four. The IBM 727 and 
729-series magnetic tape units use a two-dimen­
sional coding scheme. One track, which provides 
a vertical redundancy check (VRC), is used for an 
overall check on each character. Also, one char­
acter at the end of each record is used for an 
overall check on each track and is known as the 
longitudinal redundancy check (LRC). The overall 
code detects errors in a single track, plus many 
other errors. 

The IBM 2400-series magnetic tape units use a 
coding scheme involving another character next 
to LRC as a check based on a cyclic code, in 
addition to the VRC and LRC already de­
scribed. This check is called cyclic redundancy 
check (CRC) and is discussed in greater detail in 
Appendix 5. 
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Digital Cypress Error Control 

The photo-digital storage for the IBM 1360 
computer, known as Digital Cypress [Oldham, 
Chien, and Tang, 1968], uses a (366, 300) Reed­
Solomon code, which is one of the most sophis­
ticated codes ever used for storage. With six bits 
in each character, this code is a multiple-charac­
ter-error-correcting code with a minimum dis­
tance (on the character basis) equal to 12, which 
requires II check characters (66 bits). The full 
length of the code is 26 - I characters (i.e., 63 
characters or 378 bits). There are 300 bits (or 50 
characters) of data plus two characters for line 
number and II check characters. The code is 
capable of correcting any combination of inde­
pendent and burst errors representable by five 
characters. A sixth character error, plus many 
others, can be detected. 

Except for the encoder and the syndrome­
generating circuit, the Digital Cypress decoding 
procedure is implemented by programming, the 
strategy for which may be outlined as follows. 
When a nonzero syndrome is detected, a rescan 
is called for first. If the error is still present, the 
program goes to a single-error partial-correction 
subroutine. If that procedure is unsuccessful 
in correcting the error, a two-error 
partial-correction subroutine is called. The full­
power correction routine is used only when both 
the single-error- and the double-error-correction 
subroutines are unsuccessful. 

CONCLUDING REMARKS 

We have developed basic concepts of error­
control coding, with emphasis on the use of 
cyclic codes, which form a subclass of linear 
block codes. The use of an error-control scheme 
should be an integral part of the overall system 
design, rather than a "remedy" or a "bonus" for 
a system with unsatisfactory reliability. To 
achieve a proper error-control scheme, a systems 
engineer needs an extensive knowledge of exist­
ing coding methods and their implementations. 
Since this paper is not intended to give a full 
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treatment of the theory and applications of all 
types of codes, the aim has been to· expose some 
of the underlying principles involved in selecting 
an error-control coding scheme for a realistic 
computer or communication system. 

The demands on overall data-processing and 
communications capacities have been increasing 
and are expected to grow. This implies a prevail­
ing need to fully utilize every communication or 
memory channel available. One approach is by 
way of error-control coding. With advances in 
integrated circuit technology, costs of logic and 
storage elements are declining in comparison 
with increasing rates of data-processing. Thus, 
circuit-implemented error-control schemes are 
expected to become increasingly attractive. One 
objective of system designers is to achieve "ultra 
reliable" components, in which error-control ca­
pabilities are an integral part of the monolitic 
circuit design. 

As applications of more sophisticated error­
control coding schemes for computer and com­
munications systems become more extensive, 
one may expect coding principles to be applied 
to other types of problems. For example, alge­
braic procedures typical of encoding and decod­
ing can be used to obtain solutions in such 
problem areas as file organization and document 
retrieval [Chien and Frazer, 1966; Abraham, 
Ghosh, and Ray-Chaudhuri, 1968]. Since a doc­
ument in a file is usually characterized by a list 
of "descriptors" contained in a "dictionary," a 
binary n-vector can identify a document, where­
in each position of the n-vector represents a 
descriptor. Storage required for such a dictionary 
becomes too large to be practical in most cases. 
However, if we regard the n-vectors as errors, the 
vectors can be transformed into r-tuples (syn ... 
dromes) appropriate to the code selected. The r­
tuples can then be used to identify documents in 
the file. Requests for retrieval can be handled 
with the help of the corresponding decoding 
algorithm. 

The design of matrix switches, such as those 
used in main storage arrays, is another example. 

It has been shown that certain codes can be used 
to determine selection patterns in a matrix switch 
so that all driving power is channeled to the 
selected output only [Constantine, 1958; Chien, 
1960]. 

Coding concepts and techniques are also po­
tentially useful in such other areas as signal 
design, digital modulation, pattern recognition, 
fault diagnosis, image processing, and cryptogra­
phy. 

APPENDIX 1: STRUCTURE OF 
LINEAR CODES 

The first four columns of the four-by-seven coef­
ficient matrix in Equation I form an identity 
submatrix. In general, the generator matrix of a 
separable code is a k by n matrix containing a k 
by k identity submatrix. The columns of the 
submatrix correspond to information positions. 

A fundamental property of a linear code is 
that if Vi and ~ are two code words, then 
Vk( = Vi + ~) must also be a code word, since 

v· + v· = x· G + x . G = (x. + x .)G = xk G I 'j I ) I) 

= vk 

The use of a generator matrix to represent a 
code eliminates the need to list all the n-tuples in 
the code set. In the binary case, a k by n 
generator matrix uniquely specifies the code set 
containing 2k n-tuples. 

With respect to every linear code set V, it is 
possible to find a set U of n-tuples such that U 
and V are "orthogonal" in the sense that for any 
n-tuple code word v in V and any n-tuple code 
word u in U, 

vuT = 0 

Here, v and u are row matrices, and u T denotes 
the transpose of u. The set U is obtained by 
summing all possible combinations of rows of an 
r by n parity-check matrix. The orthogonality 



requirement can, therefore, be written as 

Given the code word v = (Vl,V2'" .,Vn ) in V 
that satisfies the equation 

then the following set of linear simultaneous 
~quations is obtained: 

A parity-check matrix H specifies r linear 
simultaneous parity-check equations that must 
be satisfied by the symbols of every code word 
From V. 

To obtain the parity-check matrix, we can 
write the generator matrix in the standard form 
G = [Ik P], where Ik is a k by k identity subma­
trix and P is a k by r submatrix that describes the 
interdependence between information and par­
ity-check symbols. The parity-check matrix can 
then be written as H = [pT1,]. One can check to 
see that 

Although the specification of either a genera­
tor matrix or a parity-check matrix uniquely 
determines a linear code, neither the generator 
matrix nor the parity-check matrix is unique. In 
general, different generator or parity-check ma­
trices for the same code are obtainable from one 
another by means of nonsingular linear transfor­
mations. 
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APPENDIX 2: STRUCTURE OF 
POLYNOMIAL CODES 

Given a generator of polynomial g(x) of a cyclic 
code, a corresponding generator matrix G can be 
written by listing k n-tuples (corresponding to k 
code polynomials), none of which can be ob­
tained by a linear combination of the others. For 
example, n-tuples corresponding to Xi g(x), i = 

k - 1, k - 2, ... , 0 constitute k rows of a gen­
erator matrix of the same code. The generator 
matrix of the specific form G = [Ik p] can be 
determined as follows. For each xi, where i 
= n - 1, n - 2, ... , r, find the residue Pi(x) 
== xi, modulo g(x). The k polynomials 

(where i = n - 1, n - 2, ... , r) 

are multiples of g(x) and are, therefore, code 
words. Also, by writing the corresponding n­
tuple as rows, the result is a generator matrix of 
the form 

To obtain a parity-check matrix H, si?lply 
write each n-tuple corresponding to Xl hex), 
i = 0, 1, ... , r - 1 in the reverse order. The r 
rows thus obtained form a parity-check matrix. 
This procedure can be checked by identifying 
the product of any row of G corresponding to 
xi g(x), where 0 < i < k - 1, and any row of 
the previously mentioned H to be identical to 
one of the missing coefficients in the equation 
g(x)h(x) = xn + 1. To obtain the specific form 
H = [PTI,], we find the residue qi(x) == xi, 
modulo hex), for each xi, where i = k, k + 1, 
... , n. The reversal of each n-tuple correspond­

ing to the polynomials xi + qi(x), where i = k, 
k + 1, ... ,n, which are all multiples of hex), 
gives the r rows of the parity-check matrix in the 
desired form H = [PTI,]. 

For example, consider the primitive polyno­
mial g(x) = x 3 + X + 1, which as a generator 
polynomial, generates a code of length 23 

- I 
= 7. To write the corresponding generator ma­
trix, calculate the residues of Xi as follows: 
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P3(X) == X3 == X + I,P4(x) == X4 == X2 + x, 

P5(X) == X5 == X3 + X2 == X2 + X + 1, 

P6(x) == x6 == x3 + x 2 + X == x 2 + 1, 

modulo (x3 + X + 1) 

The following generator matrix contains rows 
corresponding to the vector representation of 
polynomials xi + Pi (x ), i = 6, 5, 4, 3: 

[

1 0 0 0 1 0 1] 
o 1 001 1 1 

G= 001 0 1 10 

0001011 

To write the parity-check matrix, first calculate 
hex) = (x7 + I)/(x3 + x + 1) as follows: 

x4 +x2 + x + 1 

x 3 + X + I)x7 

x 7 +x5 + x4 
+ 1 

X4 + x 3 + x 2 + 1 
x4 + x 2 + x 

Thus, hex) = x4 + x 2 + x + 1, and 

q4(x) == x4 == x2 + x + 1, 

q5 (x) == x5 == x3 + x 2 + x, 

o 

Q6(X) == x6 == x4 + x 3 + x 2 == x 3 + x + 1, 

modulo (x4 + x 2 + x + 1) 

Writing, in reverse order, the vector represen­
tation of polynomials Xi + qJx), where i = 4, 5, 
6, we have the parity-check matrix 

H = [~ ~ 1 0 ~ ~ ~] 
1 1 0 0 0 1 

It can be seen that the cyclic code in this 
example is identical to the linear code of the last 
example. 

APPENDIX 3: METHODS FOR 
FINDING GENERATOR 
POLYNOMIALS 

Single-Error-Correcting Codes 

Single-error-correcting codes are often referred 
to as Hamming codes [Hamming, 1950]. In such 
a code, any two distinct single errors xi and xi 
must yield distinct syndromes. ~et ei a~d ei be 
row vectors corresponding to Xl and xl respec­
tively. 

or 

(ei + e)HT =1= 0 

Thus, the generator polynomial g(x) never di­
vides xi + xi for any i and). This condition can 
be satisfied if we choose the code length n to be 
e, where e is the period of g(x). The period e is 
the smallest int)eger such that g(x) divides x e + 1. 
With i and) both smaller than n, g(x) can never 
divide (xi + xi) = xi (xi-j + 1). In particular, if 
an rth degree g(x) is irreducible (i.e., not divisible 
by any other polynomial except 1), then the 
period of g(x) divides 2' - 1. Then, if the period 
of g(x) is 2' - 1, g(x) is said to be primitive. A 
single-error-correcting code generated by a prim­
itive polynomial is "close-packed" in the sense 
that all 2' syndromes are used for the prescribed 
correctable errors, 2' - 1 single errors and one 
zero error. Since primitive polynomials are 
known to exist for all degrees, Hamming codes 
of length 2' - 1 exist for all r. 

Burst -Error-Correcting Codes 

One way to generalize the class of single-error­
correcting codes is to obtain codes to correct any 
error burst within a span of b digits. Such codes 



are called burst-b correcting codes [Abramson, 
1959; Fire, 1959] and are suitable for channels 
with occasional error bursts. 

A class of burst-correcting codes, known as 
Fire codes [Fire, 1959], is best defined as the class 
of cyclic codes wherein the generator polyno­
mials take the form 

g(x) = (XC + l)p(x) 

Here, c > 2b + 1, the length of the code is the 
least common multiple (LCM) of c and the 
period of p(x), and the degree of p(x) is at least 
b. When these conditions are satisfied, the result­
ing code is capable of distinguishing syndromes 
resulting from any two burst errors each of 
length no greater than b. 

There are burst-error-correcting codes other 
than the class of Fire codes; many are optimum 
codes, which are more efficient than the Fire 
codes of the same length and maximum correct­
able bursts [Elspas and Short, 1962]. 

Independent -Error-Correcti ng 
Codes 

It was pointed out earlier that an irreducible 
polynomial p(x) can be used to generate a single­
error-correcting code of a length equal to the 
period e of the polynomial p(x), where e is the 
smallest integer such that p(x) divides x e + 1. If 
we properly combine several irreducible factors 
of x e + I, we can obtain the generator polyno­
mial of an independent (or multiple)-error-cor­
recting code. Given that some a is a root of 
m\ (x) = p(x), i.e.,p(a) = O. Then for any i, only 
one among these factors, denoted by mi (x), 
satisfies mi(ai

) = O. These mi(x), called the min­
imum polynomials of xi, are not necessarily dis­
tinct for different i's. 

BCH Codes 

The binary BCH (Bose-Chaudhuri-Hoqueng­
hem) codes form a class of multiple-error-cor­
recting codes [Hocquenghem, 1959; Bose and 
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Ray-Chaudhuri, 1960a, 1960b; Peterson, 1961] 
that can be described in terms of the minimum 
polynomials mi(x) as follows. Let the generator 
polynomial be defined as 

g(x) = LCM [m\(x),m3(x), ... ,m2t-\(x)] (2) 

then the code generated by g(x) is at-error 
correcting code with a minimum distance at least 
2t + I and a length n = e\, where e\ is the 
period of m\ (x). 

If the generator polynomial is 

g(x) = LCM [mo(x), m\ (x), m3 (x), ... ,m2t-\ (x)] 
(3) 

the corresponding code has a minimum distance 
of at least 2t + 2. The length of this code is again 
n = e\ for t > 1. For t = 0, g(x) = mo(x) = 

x + 1. The code generated by g(x) = x + 1 has 
a minimum distance of 2. This is a code with a 
single parity digit, and the code length can be 
arbitrary. 

Given any ml (x), one could obtain mi(x) for 
any i by using algebraic procedures [Albert, 
1956; Peterson, 1961, pp. 141-142]. However, 
this is generally time consuming and unnecessary 
since tables of binary minimum polynomials are 
available [Peterson, 1961, pp. 254-70]. 

Examples 

As an example, assume that we are generating a 
binary double-error-correcting code of length 
n = 26 - 1 = 63. Since a primitive polynomial 
of degree six has a period equal to 63, we select 
m\ (x) as a primitive polynomial. From Peterson 
[1961, pp. 254-270], if the primitive polynomial 
x6 + x + 1 is chosen as ml (x), then m3(x) = 

x 6 + x4 + x 2 + x + I. From Equation 3, the 
generator polynomial 

g(x) = LCM [m\(x),m3(x)] = m\(x)m3(x) 

= (x6 + x + 1) (x6 + x4 + x 2 + x + I) 

= xl2 + xIO + x 8 + x 5 + x4 + x 3 + 1 

generates a (63, 51) code with a minimum dis-
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tance at least 5, good for double independent­
error correction. Note that the coefficients in the 
product can be obtained by first writing the 
product in the ordinary fashion. Then all even 
coefficients are transformed to O's and all the 
odd ones to 1 'so 

The period of mi(x) may be smaller than that 
of ml (x); the degree of mJx) may also be smaller 
than that of ml (x). Such properties are some­
times useful, as shown in the following example. 

With the same mJx) as used in the last exam­
ple, if we let m; (x) = m3 (x) and (3 = a3, such 
thatm'I({3) = m3(a3) = 0, thenm3(x) = m9(x), 
where m3(x)({33) = m9(a9) = O. From Peterson 
[1961, pp. 254-270] we find that m9(x) = x3 + 
x 2 + 1. From Equation 3, the generator polyno­
mial is 

g(x) = (x + l)(x6 + x4 + x2 + X + 1) 

. (x 3 + x 2 + 1) (4) 

= x lO + x 7 + x6 + x4 + x2 + 1 

which generates a (21, 11) code with a minimum 
distance of 6. 

It should be pointed out that the minimum 
distance d guaranteed by the BCH code in 
Equation 2 is just a lower bound to the actual 
minimum distance of the code. For example, the 
primitive binary polynomial ml (x) = xii + x2 

+ 1 has a period 211 - 1 = 89 X 23. The poly­
nomial m89(x) = xii + x9 + x7 + x6 + x5 + x 
+ 1 has a period of 23. Assuming (3 = a89 and 
m; (x) = m89(x), then the roots of m'l (x) are 
{3, {32, {34, f38, {316, ({332 = (39), {318, ({336 = (313), 
({326 = (33), {36, (312. Since m'l (x) = m2(x) 
= m3(x) = m4(x), as a BCH code, ml (x) gener­
ates a (23, 12) code of minimum distance at least 
5. However, the (23, 12) code is equivalent to the 
Golay code [1958] with a minimum distance 
equal to 7. Other BCH codes have also been 
found to have actual minimum distances exceed­
ing those guaranteed by the theory of BCH 
codes [Lum, 1966]. 

Error-correction procedures of BCH codes are 
rather complicated. They generally involve solv-

ing the roots of a I-degree polynomial and a set 
of I simultaneous equations, where I is the num­
ber of correctable errors. The number of opera­
tions needed to perform these procedures grows 
exponentially with respect to I. Recent research 
suggests ways of significantly reducing the de­
coding complexity of BCH codes [Chien, 1964; 
Berlekamp, 1968; Massey, 1969]. Perhaps decod­
ing complexity will eventually increase only line­
arly with I. 

For many applications where the number of 
errors to be corrected in a code block is small, 
logic implementation of table lookup is a practi­
cal solution to the decoding of BCH codes. 
Another attractive method of implementation by 
means of majority gates can be used for a class 
called "self-orthogonal" codes, which includes 
certain BCH codes. This subject is covered later 
in Appendix 4. 

Another well-known class of multiple-error­
correcting code is the class of Reed-Muller codes 
[Muller, 1954; Reed, 1954]. Although not origin­
ally formulated in terms of cyclic codes, Reed­
Muller codes have been shown to be obtainable 
from a special class of BCH codes [Kasami, Lin, 
and Peterson, 1968; Weldon, 1968]. 

Multiple-Burst-Correcting Codes 

The BCH codes described earlier exist in other 
than binary cases. A q-nary BCH code can be 
generated by a q-nary polynomial (a polynomial 
with q-nary coefficients), provided the q symbols 
can be identified as elements in afield. * A 
character (or a byte) consisting of a binary m­
tuple, for example, may be considered as belong­
ing to a field of 2m elements. 

* There are two operations defined in a field, addition and 
multiplication. If 2m binary m-tuples are represented by 
corresponding polynomials, the addition and multiplication 
of binary polynomials can be taken as field operations, 
provided that we always reduce a product polynomial of 
degree m or higher to its residue modulo, a fixed, irreduci­
ble polynomial of degree m. For a rigorous treatment on 
the theory of finite fields, see Chapter 6 in Peterson [1961]. 



teed-Solomon Codes 

teed-Solomon codes are a special class of BCH 
:odes where the message symbols are m-tuples 
Reed and Solomon, 1960]. When used for bi­
lary messages, binary symbols must be grouped 
lS m-tuples (or characters). A generator polyno­
nial taking the form 

~enerates a code with minimum distance of at 
east d. Note that the coefficients of the generator 
)olynomial and code polynomials are now m­
uples and the distance between two code words 
s the number of places wherein corresponding 
n-tuples differ. The length of this code is 
, = 2m - 1 characters, or m(2m - 1) binary dig­
ts. 

Because of their independent-character-error 
:orrecting capability, Reed-Solomon codes are 
:ffective against multiple bursts of error if they 
)ccur within a code block. The decoding proce­
lure is rather complex and usually requires 
)rogram implementation. The code efficiency is 
Isually attractive when compared with the effi­
:iency of competitive schemes, such as the use of 
nterleaved codes. A Reed-Solomon code with a 
ninimum distance equal to 12 has been used in 
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Digital Cypress [Oldman, Chien, and Tang, 
1968]. 

Example Decoders 

We indicated previously that burst-error-correct­
ing codes can easily be implemented. This is 
illustrated in the following example. A binary 
code having as its generator polynomial 

g(x) = (x + I )(x4 + x + 1) 

= x 5 + x4 + x 2 + 1 

is a burst-2 correcting code of length 15, a 
decoder for which is shown in Figure A-9. The 
registers in the division circuit contain the resi­
due of x3 e(x) modulo g(x), where e(x) is the 
error polynomial. Since the syndrome detection 
circuit must recognize the syndrome when the 
error burst is located at the high-degree end, we 
may write the corresponding error polynomial as 

e(x) = xI5 - 2b(x) 

where hex) is the error-burst polynomial of de­
gree b - 1 = 1. The syndrome of this e(x) is the 
residue of x I5 - 2+5 hex) modulo (x5 + x4 + x2 

+ 1), which is simply x3 b(x). The existence of 

Input 
15-bit buffer storage 

Figure A-9. Decoder for a burst-2 code. 
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Input 
7 -bit buffer storage 

Figure A-10. Decoder for a single-error-correcting code, 

three zeros in this syndrome is taken as the basis 
of syndrome detection as shown in Figure A-9. 
Once the burst location is determined, feedbacks 
in the division circuit can be cut off or, as shown 
in 'Figure A-9, nullified by establishing an addi­
tional feedback path. The detected error pattern 
(including no error) is then gated through and 
removed from the received message coming out 
of the IS-bit buffer storage. Switch N is closed 
only during the second n-bit cycle. 

Another example is the single-error-correcting 
code generated by g(x) = x3 + x + 1, a decoder 
for which is shown in Figure A-IO. The opera­
tion of this decoder is similar to that shown in 
Figure A-9. 

In some applications, the input message may 
not be in the exact serial form. Combinatorial 
decoders or decoders that combine serial and 
parallel operations then become distinct possibil­
ities [Gill, 1966; Sih and Hsiao, 1966]. 

APPENDIX 4: SPECIALIZED 
ERROR-CONTROL CODES 

Interleaved Codes 
The interleaving of codes is just like the time­
division multiplexing of a number of messages. 

Each "subcode" consists of symbols separated 
periodically by m digits; there are m such sub­
codes. Usually all m sub codes are generated by 
the same polynomial g'(x). Clearly, if the length 
of the sub code is n', the overall code length is 
n = mn'. The generator polynomial of the inter­
leaved code can be shown to be 

g(x) = g'(xm
) 

where g'(x) is the generator polynomial of indi­
vidual subcodes. 

Interleaved codes tend to break up error 
bursts, and subcodes interpret them as indepen­
dent errors. Thus, one can use independent­
error-correcting codes of acceptable decoding 
complexity against burst or multiple-burst errors, 
which might otherwise require a multiple-burst­
correcting code with impractical decoding com­
plexity. On the other hand, a single-burst-cor­
recting code with simple implementation cannot 
handle long bursts (e.g., drop-outs) unless the 
code is long. In that case, long code words would 
be exposed to some additional errors not protect­
ed by the cude. The main disadvantage of inter­
leaved codes is that the redundancy requirement 
is relatively high in comparison with that of 
multiple-burst-error-correctirig codes. 



N-Dimensional Codes 

The N-dimensional codes are, as the name sug­
gests, best discussed in geometric terms. Figure 
A-II shows a two-dimensional code format in 
which each row belongs to a subcode and each 
column belongs to another (not necessarily dis­
tinct) subcode. 

If d1 and d2 are respectively the minimum 
distances of row and column subcodes, then the 
two-dimensional code has a minimum distance 
d = d1 d2 • More dimensions can be added to the 
code to further strengthen the correction capa­
bility. 

The above two-dimensional code is equivalent 
to a two-level interleaved code. Columns of 
information symbols can be considered as being 
interleaved with the row subcode, and N itera­
tions of interleaving clearly result in an N­
dimensional code. It is from this point of view 
that N-dimensional codes are often referred .to as 
iterated codes [Birdsall and Ristenblatt, 1958]. 
The geometrical interpretation of N-dimensional 
codes also enables one to obtain simple imple­
mentations of such codes especially for such 
storage devices as tapes and core arrays whose 
geometrical configurations are ideal. 

An N-dimensional code may also suffer from 
the high redundancy requirement when used in 
burst channels because of interleaving. Never­
theless, such a code has the attractive feature 
that as long as the error rate is reduced in each 
level of iteration, more and more iterations will, 
in theory, make the error rate diminish while 

I 
Information I Row 

symbols I checks 
I 
I -------------+------
I 
I Checks 

Column checks I on 
I checks 
I 
I 

Figure A-11. Two-dimensional code format. 
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keeping the information rate nonzero [Elias, 
1954]. 

Shortened Codes 

We have seen that in any cyclic code capable of 
correcting single errors, the code length should 
not exceed e, the period of the generator polyno­
mial. However, an (n, k) code can be shortened 
to become an (n - s, k - s) code by constraining 
the s high-degree digits of the code polynomial to 
be always zero. These s digits are then omitted 
from all code words. The linear sequential en­
coder of Figure A-7 can be used for shortened 
codes without change. However, if the decoding 
delay is to be n' = n - s digits instead of n 
digits, the input of the division circuit in the 
decoder of Figure A-8 should be premultiplied 
by xS. The same syndrome detection circuit can 
then be used [Peterson, 1961, pp. 194-195]. 

Shortened codes are often used because natu­
ral lengths may not be suitable in some applica­
tions. They can also be used to improve reli­
ability, since with the reduced code length (n 
- s), the expected number of errors is reduced 
by a factor (n - s)/n. The most attractive feature 
of shortened codes, however, is that the maxi­
mum correctable errors may now exceed what 
was originally possible with full-length codes 
[Kasami, 1963]. This feature is particularly desir­
able with burst-error correcting codes, since the 
increased correcting capability presents no extra 
decoding complexity. In applications to variable 
length messages, codes that have increased capa­
bilities at shorter lengths can achieve additional 
reduction in overall error rate. 

Threshold-Logic-Decodable 
Codes 

We have seen that decoding complexity is a 
severe limitation to the application of powerful 
BCH codes. It is, therefore, desirable to find new 
classes of codes with structures that enable one 
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to use simple decoding procedure. Codes ob­
tained from projective and Euclidean geometries 
have recently been shown to be decodable by 
threshold logic [Rudolph, 1967]. We shall illus­
trate the basic concept with a special class of 
binary "self-orthogonal" codes [Massey, 1963]. 

Self-orthogonality is defined on the parity­
check matrix as follows: the set of rows (hi' 
h2' ... ,hJ ) in a parity-check matrix H with 1 's in 
a particular column i are self-orthogonal on the 
ith column if, in this set (considered as a sub ma­
trix), no other column contains two or more 1 'so 
To decode the digit corresponding to the ith 
column of H, we first assume that the error at 
this digit is unknown, and that each of the J 
parity equations from the set gives an "estimate" 
of this error. The majority determines the final 
error value. Since an error corresponding to the 
ith column has J votes, while an error at any 
other position has at most one vote (because of 
the self-orthogonality), the majority decision 
must be correct as long as the total number of 
errors does not exceed J/2. If the self-orthogon­
ality condition can be established for every digit 
(not necessarily with the same parity-check ma­
trix), the code is threshold decodable with a 
miminum distance at least J + 1. 

The most interesting case occurs when the 
code is cyclic, because a decoder with the general 
form shown in Figure A-8 can be used. The 
syndrome detection circuit, in this case, contains 
majority logic with inputs from J modulo-2 
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o 0 
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o 
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0 
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1 
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adders performing the set of J parity checks 
found to be self-orthogonal on the highest-de­
gree digit. We now demonstrate this with an 
example. 

Self-Orthogonal Decoding 
Example 

The code generated by g(x) == x lO + X 
7 + x6 

+ x4 + x 2 + 1 of Equation 4 was shown to be a 
(21, ll)-code with minimum distance equal to 
six. Using the division circuit of Figure A-4a in 
the decoder of Figure A-8, the contents of the 
shift-registers (considered as an r-tuple) give the 
syndrome of the error, which, in this case, is the 
residue of the received polynomial modulo g(x). 
The ith column of the parity-check matrix can be 
written as the residue of x i

-
I modulo g(x) as in 

Equation 6. 
This matrix does not satisfy the desired "self­

orthogonality" condition. However, an equiva­
lent parity-check matrix can be obtained by 
cyclicly shifting the first row of H in Equation 6. 
There are five . such cyclic shifts with a 1 in the 
right-most column (because the row has five 1 's) 
as shown in Equation 7. 

The five rows of H' are self -orthogonal on the 
right-most column, since no other column cbn­
tains two 1 'so The minimum distance is 6. Any 
row of H', denoted by hi, is a linear combination 
of a unique collection· of rows in H and can be 

0 0 0 0 1 0 1 

0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 
1 0 1 0 0 
0 1 0 1 

(6) 
1 0 0 
0 1 1 0 0 1 

1 0 0 1 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 



0 0 0 0 0 0 0 0 0 1 I 0 
1 

0 1 0 0 0 0 0 0 0 010 
H'= 0 0 0 0 0 1 0 0 0:0 

1 0 0 0 0 1 0 0 010 

0 0 0 0 0 0 o 11 

'synthesized" from the 10 left-most digits by 
.dding rows of H (or Equation 6) with 1 's at the 
lesired position. These sums are equivalent to 
nodulo-2 additions of the contents of the corre­
ponding shift-registers. A complete implementa­
ion of the decoder is shown in Figure A-l2. 

Self-orthogonal codes, such as the one just 
liscussed, belong to a general class of threshold­
ogic decodable codes, which are derived from 
inite geometries. For more details regarding the 
ecent developments in threshold decodable 
:odes, see Weldon [1966] and Chow [n.d.]. 

;ynchronization Codes 

['he error-control codes discussed thus far deal 
vith additive errors, and we assume that there is 
lO misidentification of locations of symbols. In 
eal transmission or storage systems, however, 
ynchronization errors can occur at a bit level, 
:haracter level, and even at a higher level, where 
he framing of code words is involved. Various 
nethods of controlling synchronization errors 
lave been suggested. The use of a synchroniza­
ion sequence with a sharp autocorrelation func­
ion [Barker, 1953] sets up the word-framing. To 
lvoid subsequent loss of word synchronization 
lue to the possible loss of bit synchronization, 
uch special sequences may be inserted before 
:ach code word, or periodically at longer inter­
rals to avoid the need for excessive redundancy. 

When a cyclic code is to be used for error 
:ontrol, it is possible to incorporate synchroniza­
ion-error control in the code capability. Since, 
n that case, a cyclic shift of a code word is also 
l code word, ordinary coding schemes must be 
nodified if a slip in word framing is to be 
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0 1 1 0 0 0 0 0 
1 0 0 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 1 (7) 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 

controlled within the context of a code. There 
are three possibilities: 

• Add a fixed n-tuple, with a special synchronization 
property, to every code word. (Such a code is known 
as a "coset code.") The same n-tuple is subtracted 
from the received message after the word-framing is 
established [Tong, 1966]. 

• Use a shortened cyclic code to control word-framing 
[Tong, 1966]. 

• Use an extended cyclic code for the same purpose 
[Bose and Caldwell, 1967 ; Weldon, 1967]. 

Recovering errors due to the loss or insertion 
of bits within a code block is a different problem 
and has' yielded relatively few results [Sellers, 
1962; Ullman, 1966]. A more practical method is 
the detection of this type of errors accompanied 
by a possible request for retransmission. 

Convolutional Codes 

The relationship between information symbols 
and code symbols need not be confined to dis­
joint blocks. In a convolutional (or recurrent) 
code, check digits in a given block check some of 
the' information digits .in other blocks as well. 
One may describe a convolutional code as one 
that has overlapping blocks. In a separable linear 
code, the generator matrix may be written in the 
standard form G= [Ik Pl. Similarly, we may 
write the generator matrix for a truncated convo­
lutional code of length n' = m(k + r) as 

G= 

o 
o 
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Figure A-12. Decoder for a self-orthogonal code. 
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Here, the first k information digits are related to 
:he r following check digits in the same block by 
flo and are related to the check digits in the 
n - 1 following blocks by PI' ... , Pm-I- The 
;orresponding parity-check matrix is the follow­
ng: 

[ P~ Ir 

H = pJ 0 

P.J-I 0 

0 

pJ 

PrJ-2 

0 

Ir 

0 pT o J 
Although convolutional codes for correcting 

:mrst errors [Hagelbarger, 1959; Wyner and Ash, 
1963; Berlekamp, 1964] and independent errors 
Bussgang, 1965; Robinson, 1965] have been 
;tudied, at present they are not as well under­
;tood as block codes. As far as theoretical error­
;ontrol capability is concerned, there appears to 
)e no significant difference between block codes 
:md convolutional codes [Freiman and Robin­
ion, 1965]. 

There are two different approaches in decod­
mg a convolutional code. The first is "determin­
Istic decoding," in which syndromes are caIculat­
:!d and algebraic procedures are carried out to 
jetermine the error sequence, similar to the 
jecoding of block codes. However, if the decod­
Lng results of previous blocks are fed back to 
modify syndromes that determine the following 
blocks, any decoding error may "propagate" to 
mcceeding blocks. Although the error propaga­
tion problem may not be serious, it must be 
:malyzed and evaluated when convolutional 
~odes are used. 

Another method of decoding a convolutional 
~ode is known as the "sequential decoding" 
technique [Wozencraft, 1957; Fano, 1963; Jeli­
nek, 1968]. With sequential decoding, one evalu­
ates the accumulated likelihood of correct deci­
~ions at each digit and accepts a digit only after 
a certain number of succeeding digits tend to 
~onfirm (in terms of accumulated likelihood 
measure) that the first digit is correct. If succeed­
Lng digits indicate that the first digit is in error, a 
~earch through the code tree, based on a prede­
termined algorithm follows, with corresponding 
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likelihood evaluated, until a satisfactory decod­
ing of the digit is found. 

The following can be said about sequential 
decoding in general: 

• The decoding algorithm is usually flexible enough to 
be used on a variety of channels. 

• Randomly chosen convolutional codes can be used. 
• A computer with large storage is required. 
• In theory, given sufficient redundancy, the decoding 

error decreases exponentially with the constraint 
length n'. 

• The decoding effort (in terms of computations or 
storage required) is a random variable without an 
upper bound, although the expected decoding effort 
is bounded. 

Constant-Weight Codes 

A constant-weight code consists of all n-vectors 
of a certain fixed weight (number of 1 's) w. Since 
two n-vectors of weight w do not-always result in 
a vector sum of the same we:rt, such codes are 
generally not linear codes. Constant-weight 
codes are useful in asymmetric channels in which 
errors of one polarity dominate, since such errors 
always change the weight of the code vectors 
and, thus, can be detected [Berger, 1961; Frei­
man, 1961]. The minimum Hamming distance 
between any two code vectors is two. Therefore, 
any combination of an odd number of errors can 
also be detected. When n = 2w, the code vectors 
can be used directly to specify the exact bipolar 
signal sequences to be used in the channel. Such 
signals would contain no dc component. This is 
a desirable feature, since it is common for a 
channel frequency characteristic to assume a 
zero at the zero frequency. 

Arithmetic Codes 

Arithmetic codes have been proposed for use 
with computers to control errors that occur in 
arithmetic operations as well as in transmission 
and storage [Brown, 1960]. Code words are con­
sidered integer numbers, and ordinary arithmetic 
operations apply. There is a generator A, similar 
to that of cyclic polynomial codes, and the code 
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words are all integer multiples of A, within a 
certain range of n digits. For binary arithmetic 
codes, the number of redundant digits is the 
smallest integer r > log2A. Such a code is linear 
with respect to arithmetic operations, i.e., ANI 
+ AN2 = A (NI + N2) = A N3 . 

An error in arithmetic code is defined by 
subtracting the transmitted code "number" from 
the received number arithmetically. Because of 
carries, a "single" arithmetic error may appear as 
a burst of errors in the vector representation. 

A single-error-detecting arithmetic code can 
be obtained by letting A = 3. Since a single 
error must assume a magnitude of the form ±2i , 

no single error can change one code number to 
another because code numbers must differ by a 
multiple of three. Such a multiple can never 
assume the form ±i. The arithmetic code length 
can be arbitrary. 

For single-error correction, the residues of ±i 
(i = 0, ... ,n - 1) modulo A (which are similar 
to the syndromes in polynomial codes) must be 
distinct. For example, with A = 19, we have the 
following residues: 

2° == 1,2' == 2, 22 == 4, 23 == 8, 24 == 16, 

25 == 13,26 == 7,27 == 14,28 == 9, _2° == 18 

-21 == 17, _22 == 15, _23 == II, _24 == 3, 

_2 5 == 6, _2 6 == 12, _27 == 5, _28 == to 

modulo 19 

The code length is nine digits with five redun­
dancy digits. Despite their attractive features for 
error control in computer-communication sys­
tems, there are few known classes of arithmetic 
codes. However, some encouraging results in the 
theory of arithmetic codes for multiple-error 
correction have recently been obtained [Chien, 
Hong, and Prep arata, 1968]. 

APPENDIX 5: CYCLIC 
REDUNDANCY CHECKING 

Operation of the CRC in IBM 2400-series mag­
netic tapes is now illustrated. If ai(x), i =0, ... , 
8, indicates the message polynomials on the ith 
track, then the CRC character contains the resi­
due 

where 

c(x) = Co + ci X + ... + c8 x8 

8 
== L x i+1 ai(x) modulo g(x) 

i=O 

g(x) = x9 + x6 + x5 + x4 + x 3 + 1 

The residue c(x) can be obtained from the divi­
sion circuit shown in Figure A-l3. Comparing 
Figure A-l3 with Figure A-4a, it is clear that the 
contribution of xao(x) in the residue c(x) is 
c(O)(x) == xao(x) modulo g(x). Similarly, be­
cause of the successively advanced inputyoints, 
t~e contribution of xai(x) in c(x) is C(l J(x) == 
Xl+ I ai(x) modulo g(x). The complete residue is 

8 (i) _ 
Li=O C (x) - c(x). 

The effect of the premultiplication by x at all 
inputs is equivalent to an additional shift after 
the last digits in a/x) are in the division circuit. 
The CRC-coded message in the ith track is 
m/x) = xa/x) + ci . When the error-free coded 
messages in nine tracks are fed into the division 
circuit of Figure A-l3, the shift-register contents 
correspond to the residue of 

888 
L ximi(X) = L xi+lai(x) + L XiCi 
i=O i=O i=O 

== c(x) + c(x) = ° modulo g(x) 

Figure A-13. Nine-bit division circuit. 



If an error ei(X) occurs in the ith track, then the 
register con ten ts correspond to 

modulo g(x) (8) 

which is not zero if g(x) does not divide ei(x). 
To determine the track i, feed the VRC error 

sequence into a second division circuit similar to 
the one shown in Figure A-l3, but with the input 
point corresponding to that of the eighth track. 
An error appears in the VRC sequence when e(x) 
~ccurs in any single track. Therefore, the register 
:;ontents of the second division circuit corre­
spond to 

s'(x) == x8ei(X) modulo g(x) 

\1aking 8 - i additional shifts in the original 
iivider after s(x) is obtained (and referring to 
Equation 8), the register contents are 

x8- i s(x) = x8- i xi ei(x) == s'(x) modulo g(x) 

matching the register contents of the second 
iivider. After the error track is determined by 
;hifting and matching the divider register con­
:ents, the track is reread with the VRC error 
;equence added to the message. Many errors not 
:orrectable by the above procedure, including 
my single-track error ei(x) that is divisible by 
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g(x) and any combination of odd numbers of bit 
errors, are still detectable. 
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Arithmetic Error Codes: Cost and 
Effectiveness Studies for Application in 
Digital System Design 

Aigirdas Avizienis 

4bstract 

The application of error-detecting or error-correcting 
~odes in digital computer design requires studies of cost 
znd effectiveness tradeoffs to supplement the knowledge 
'1 their theoretical properties. General criteria for cost 
znd effectiveness studies of error codes are developed, and 
-esults are presented for arithmetic error codes with the 
row-cost check modulus 2n - l. Both separate (residue) 
md nonseparate (AN) codes are considered. The class of 
nultiple arithmetic error codes is developed as an exten­
~ion of low-cost single codes. 

\t1ETHODOLOGY OF CODE 
EVALUATION 

;cope of the Problem 

n this paper the name arithmetic error codes 
dentifies the class of error-detecting and error­
:orrecting codes which are preserved during 
lrithmetic operations. Given the digital number 
epresentations, x, y, an arithmetic operation *, 
.nd an encoding f: x ~ x', we say that f is an 
.rithmetic-error code with respect to * if and 
mly if there exists an algorithm A * for coded 
Iperands to implement the operation * such that 

A * (x',y') == (x * yr. 

) 1977 IEEE. Reprinted, with permission, from IEEE Trans­
'ctions on Computers, Vol. C-20, No. 11, 1971, pp. 
322-1331. 
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The definition applies to single-operand opera­
tions and multi operand operations as well. i.e., 

A * (x') == (* x)' 
and 

A * (xI' x2' ... ,x~) == (xI * X2 * ... * x,J 

must be satisfied in those cases. 
Arithmetic error codes are of special interest 

in the design of fault-tolerant computer systems, 
since they serve to detect (or correct) errors in 
the results produced by arithmetic processors as 
well as the errors which have been caused by 
faulty transmission or storage. The same encod­
ing is applicable throughout the entire comput­
ing system to provide concurrent diagnosis, i.e., 
error detection which occurs concurrently with 
the operation of the computer. Real-time detec­
tion of transient and permanent faults is ob­
tained without a duplication of arithmetic pro­
cessors. 

The economic feasibility of arithmetic error 
codes in a computer system depends on their 
cost and effectiveness with respect to the set of 
arithmetic algorithms and their speed require­
ments. The choice of a specific code from the 
available alternatives further depends on their 
relative cost and effectiveness values. This paper 
presents the results of an investigation of the cost 
and effectiveness of arithmetic error codes in 
digital system design. Other new results include 
several classes of multiple arithmetic error codes. 
The investigation was stimulated by the need for 
low-cost real-time fault detection in the fault­
tolerant STAR computer [Avizienis, 1968; Aviz­
ienis et aI., 1971]. Favorable results led to the 
choice of arithmetic encoding of both data words 
and instruction addresses in this machine. Pre­
liminary reports on parts of the results have been 
made on several occasions previously [A vizienis, 
1964, 1965, 1966a, 1966b, 1967a, 1967b, 1969]. 

The Criteria of Cost 

For the purposes of this paper a "perfect" com­
puter is a reference computer in which logic 

faults do not occur. The specified set of arithmet­
ic algorithms is carried out with prescribed speed 
and without errors. For a given algorithm, word 
length, and number representation system of the 
perfect computer the introduction of any error 
code will result in changes that represent the cost 
of the code. The components of the cost are 
discussed below in general terms applicable to all 
arithmetic error codes. 

Word Length 

The encoding introduces redundant bits in the 
number representation. A proportional hardware 
increase takes place in storage arrays, data paths, 
and processor units. The increase is expressed as 
a percentage of the perfect design. "Complete 
duplication" (100 percent increase) is the encod­
ing which serves as the limiting case. 

The Checking Algorithm 

This tests the code validity of every incoming 
operand and every result of an instruction. A 
correcting operation follows when an error-cor­
recting code is used. The cost of the checking 
algorithm has two interrelated components: the 
hardware complexity and the time required by 
checking. The complete duplication case requires 
only bit-by-bit comparison; other codes require 
more hardware and time. Provisions for fault 
detection in the checking hardware itself are 
needed and add to the cost. 

The Arithmetic Algorithms 

An encoding usually requires a more complex 
algorithm for the same arithmetic operation than 
the perfect computer. This cost is expressed by 
the incremental time and hardware required by 
the new algorithm. The reference case of com­
plete duplication does not add any cost of this 
type (the algorithms are not changed, but they 
are performed in two separate processors). The 



set of arithmetic algorithms which is usually 
provided in a general-purpose processor is dis­
cussed in the section on Fault Effects in Binary 
Arithmetic Processors. 

The Criteria of Effectiveness 

An arithmetic error occurs when a logic fault 
causes the change of one or more digits in the 
result of an algorithm. A logic fault is defined to 
be the deviation of one or more logic variables 
from the values specified in the perfect design. 
Logic faults differ in their duration, extent, and 
nature of the deviation from perfect values. The 
effectiveness of an arithmetic error code in a 
computer may be expressed in two forms: as a 
direct value effectiveness, and as a design-depen­
dent fault effectiveness. 

Value Effectiveness 

The most direct measure of effectiveness is the 
listing of the error values that will be detected or 
corrected when the code is used. These values 
are determined by the properties of the code and 
are independent of the logic structure of the 
computer in which the code will be used. Value 
effectiveness for 100 percent detection (or correc­
tion) of some class of error values has been the 
main measure of arithmetic codes. For example, 
single error detection (or correction) is said to 
occur when all (100 percent) errors of value 

±cri 

are detected (or corrected) in an n-digit, radix-r 
number [Brown, 1960; Peterson, 1961, pp. 
236-244]. There is no direct reference for algo­
rithms or their implementation. The present 
study considers value effectiveness with less than 
100 percent detection. Such codes may be useful 
when their cost is low and when other means of 
fault tolerance supplement the codes in a com­
puter. 
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Fault Effectiveness 

The purpose of arithmetic error codes in digital 
systems is to detect the occurrence of logic faults. 
The detection enables the system to initiate 
corrective action (error correction, diagnosis, 
program restart, etc.). In order to assess the 
effectiveness of fault detection, the value effec­
tiveness of a code must be translated into a 
measure of fault effectiveness for one or more 
specified types of logic faults. The translation is 
performed separately for every algorithm and 
requires an error table for every type of fault. The 
error table is generated from the description of 
the logic implementation of the algorithm a. The 
specified fault </> is applied to every logic circuit 
which is used by the algorithm. Every applica­
tion yields an error value E (or a set of error 
values {ED by which the fault will change the 
perfect value S of the result to the actual (incor­
rect) value S* = S + E. The error table T(a, </» 

lists all error values together with their relative 
frequencies of occurrence during the compilation 
of T (a, </». A comparison of T(a, </» with the 
detectable error values of the given code f shows 
which entries of the error table are not detecta­
ble. The fault effectiveness of fwith respect to (a, 
</» is the percentage of all occurrences of </> which 
will be detected (or corrected) when f is em­
ployed. Less than 100 percent fault-effective 
codes are of interest when their cost is low, 
because other methods of fault tolerance (espe­
cially program restarts) can be used to reinforce 
the codes [Aviiienis, 1968; Aviiienis et aI., 1971]. 
If the fault effectiveness for (a, </» is not suffi­
cient, it may be improved by redesigning the 
implementation of a to eliminate some or all of 
the undetectable entries of T(a, </». 

During the compilation of the error table T(a, 
</» an application of the fault </> to a logic circuit 
changes the radix-r, n-digit perfect result s == 
(sn-I' ... , sl' so) to an "actual" (incorrect) result 
s* which differs from the s in at least one digit. 
The digit changes which have taken place are 
described by the error number e == 
(en-I, ... , el, eo) defined digitwise as 
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for 0 ::::; i ::::; n - 1. 

The digits of e are in the range -r + 1 ::::; 
e· < r - 1, and e itself represents the error value I-

E in the range 

-(rll - 1) ::::; E ::::; rll - 1. 

When e is recoded to have the minimum number 
of nonzero digits, this minimum number is de­
fined to be the arithmetic distance between sand 
s* as well as the arithmetic weight of e [Peterson, 
1961, pp. 236-244]. The weight of an error value 
has been employed to indicate its relative proba­
bility (single, double, etc.) The results of follow­
ing sections show that the weight of an error 
number is data dependent in some algorithms 
and therefore not suitable as a general criterion 
of fault effectiveness. 

Classes of Logic Faults 

Single Faults 

A single logic fault is the deviation of one logic 
variable from the design value. During an inter­
val of time d1j (to be called a use) it has two 
possible forms: a) the logic variable is "stuck-on­
zero" (abbreviated SO) when it assumes the ac­
tual value 0 instead of the design value I; and b) 
the logic variable is "stuck-on-I" (abbreviated 
S 1) when it assumes the actual value 1 instead of 
the design value O. 

The circuits that are used to store, transmit, or 
generate digit values during an algorithm will be 
called digit circuits. A single fault is said to be 
local if its immediate effect changes the value of 
only one digit, i.e., the local fault in position 
i(O ::::; i ::; n - 1) of a radix-r operand adds the 
value 

cr i
, -r + 1 ::::; c ::::; r - I 

to the affected number. The value of the error 
number is either cr i

, or an arithmetic function of 
cr i

, determined by the location of the fault and 
the microprogram of the algorithm. A single 

fault which immediately affects more than one 
digit is distributed. Its effect is expressed as the 
cumulative effect of two or more local faults. 

One-Use and Repeated-Use Faults 

With respect to the microprogram of the algo­
rithm, there are one-use and repeated-use faults. 
The fault is a one-use fault when the faulty digit 
circuit is used only once before the checking 
algorithm is performed. Iterative algorithms 
(multiplication, division, byte-serial additio?, 
etc.) employ the same digit circuits repeatedly III 
order to generate the result; if one of these 
circuits is faulty, a repeated-use fault results. 
Repeated-use faults differ according to their one­
use effectiveness, duration, and determinancy. 
The fault is ineffective during the use Ll7j if the 
fault-induced value is identical to the design 
value. The fault is transient if it does not exist 
during one or more of the uses: otherwise it is 
permanent. A transient fault is equivalent to a 
permanent fault that is ineffective during some 
uses; consequently, transient faults are a subset 
of permanent faults. Some types of failures cause 
the logic value at a point to become uncertain, 
and it is interpreted randomly as either one or 
zero during the repeated uses of the faulty cir­
cuit. In these cases neither a constant SO nor a 
constant S 1 fault exists for all uses; the fault is 
indeterminate and is called "stuck-on-X," abbre­
viated SX. An indeterminate fault has the com­
bined effect of two transient faults (one SO, the 
other S 1) affecting the same variable. 

Cumulative Fault Effects 

A multiple (double, triple, etc.) fault occurs when 
two or more faulty logic variables exist during 
the same algorithm. Its effect is expressed as the 
cumulative effect of two or more single faults. A 
review of the fault model shows that the effect of 
any fault is equivalent to the cumulative effect of 



a set of local one-use faults. The basic fault is 
defined to be a local one-use fault (either SO or 
S I at ~7j). In the study of fault effectiveness, the 
effect of a basic fault is determined for every 
digit circuit and every algorithm of a processor 
or storage array. The effect of any other fault is 
then determined in two steps: a) identify the. set 
of basic faults which corresponds to the given 
fault: and b) determine the effect (error value, or 
set of possible error values) of the given fault by 
applying sequentially the basic faults identified 
in step a. 

The classification of faults is summarized in 
Figure B-1. 

Criteria of 
classification 

Number 
of faults } 
Number of } 
digits directly 
altered 

Use of faulty} 
circuit during 
the algorithm 

Duration of } 
fault during 
the algorithm 

Constancy Of} 
the effect of 
a fault 
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FAULT EFFECTS IN BINARY 
ARITHMETIC PROCESSORS 

Basic Faults in Parallel Arithmetic 

The set of arithmetic algorithms which is provid-' 
ed in a general-purpose processor includes at 
least the eight algorithms listed in Table B-1 
either separately or as parts of composite algo­
rithms, multiplication, and division. In this sec­
tion we determine the error magnitudes due to 
the existence of a basic (local, one-use) fault in a 
digit circuit of a radix-2 processor. A parallel 
design is assumed, in which the algorithms of 
Table B-1 use the digit circuits of the processor 

Fault: incorrect logic value 

A 
Multiple Single 

(set of single faults) A 
Local Distributed 
~. of local faults) 

One use Repeated use 
"basic" 

A 
Permanent Transient A (subset of permanent) 

Determinate Indeterminate 
~ d (pair of transient I ~etenninate faults) 

deviation of Stuck on 1 Stuck on 0 Stuck on 1 Stuck on 0 
Direction of } 

logic value 1 
COincidenCe} ./ ~ . 

A (setl of basic 51) (setl of basic SO) 

of fault with Effective Ineffective Effective Ineffective 

the required 
value 

Notes 

* Membership of set determined by logical design of the net and by the nature of the fault 
t Membership of set determined by algorithm being implemented 

Figure B-1. Classification of logic faults. 
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only once, and the faults are single-use faults. 
The error magnitudes I EI which can be generat­
ed by a basic fault and their arithmetic weights 
are presented in Table B-1. The radix-2 operands 
are n binary digits long (0 ~ i ~ n - I). Two 
systems for the representation of negative num­
bers are considered: complements with respect 
to Nl = 211 - I (one's complements), and com­
plements with respect to N2 = 2/1 (two's comple­
ments). All operands and results are treated as 
unsigned integer values for checking purposes. 
The transfer (AI) is included in every other 
algorithm; thus the lEI = 2i of a transfer may 
occur in every case. If the same register is used 
to hold an operand and the result, a repeated-use 
fault may result. 

Table B-1 shows that error magnitudes of 

weights greater than one occur for a single basic 
fault. In (A2)-(AS) they assume the form e2f, 
with I ~ e ~ 2k

+
1 

- I; that is, the nonzero 
digits in the error number are contained in at 
most k + I adjacent positions. In modulo N 
addition and subtraction, every lEI = i with 
weight I has an associated I E I = N - 2i, usual­
ly with weights 2 or 3. The origins of error values 
with weights greater than I are discussed next. 

Arithmetic Shifts (A2, A3) 

These are subject to basic faults that affect the 
values of the end digits. In the k-digit right shift 
(A3) for both complement systems, the left-end 
digit x

l1
-1 is replicated k times. A fault in xn-l or 

Table B-1. Magnitudes due to a basic fault in a parallel binary processor. 

Number System M. = 2n - 1 N2 = 2n 

(one's complement) (two's complement) 

Error Error 
Algorithm Magnitude /E/ Weight W Magnitude / E / Weight W 

Al Transfer (applies also to A2-A7 i i 
below) 

A2 Left shift, k digits 2k - 1 2 2k - 1 2 

A3 Righ t shift, k digits 2n- 1- k (2k + 1 2 2n-l-k(2k+1 2 
- 1) - 1) 

A4 Range extension, 2n- 1 (2k+1 - 1) 2 2n- 1 (2k+1 - 1) 2 
k digits 2n(2k - 1) 2 2n(2k - 1) 2 

A5 Range contraction, c2n- k I<w c2n- k I < w/2 
k digits (I < c < 2k - 1) < Lk/2 < Lk/2 + 1J 

+1J 
2n-l-k(2k+l 2 211- 1- k (2k + I 2 

-1) - 1) 

A6 Modulo N addition or 2n - I - 2i 2, (i = 0, 211 - i 1, (i = n - 1) 
modulo N subtraction n - 1) 

3, (I < i < 2, (0 < i < 
n - 2) n - 2) 

A7 Additive inverse 2i i 
(complementation) Also see (A6) 

A8 Roundoff, k digits 2k 2k 
Also see (A6) for case (a) 



he setting circuit affects k + 1 left-end digits of 
he results, giving 

/I-I 
lEI ~ i. 

/I-I-k 

n the k-digit left shift (A2), k new digits are 
llled in at the right end. They are equal to 
'/I-I for NI = 211 - 1, and they are zero for 
"2 = 211. In both cases, a fault will generate 

k-I 
lEI = ~ 2i. 

o 

~ange Extension and Contraction 

n the k-digit range extension (A4), k identical 
ligits equal to X

I1
-1 are attached at the left end. 

\.n incorrect value of x l1-1 will give 

n-I+k 
lEI = ~ 2i. 

n-I 

\. fault in the sensing circuit will give 

II-I+k 
lEI = ~ 2i. 

11 

rhe value I E I = i (n ~ i ~ n + k - 1) occurs 
vhen one of the new digits is altered by a fault. 
rhe k-digit range contraction (AS) is the inverse 
)peration, in which k identical digits.cx/I_I' ... , 
en-k) are removed at the left end when they are 
~qual to the leftmost remaining digit X/I-A _\ . An 
ncorrect removal gives I E I = c211

-
k , with 1 

::; c ~ 2k - 1. An incorrect value of x/I-k I 
e.g., 1 instead of 0) causes the removal of k 
den tical digits (e.g., all Is), giving 

11-1 
lEI ~ i. 

l1-k-1 

\IIodulo N Addition or 
~ubtraction(A6) 

[his requires the "casting out" of N or of - N 
'rom the sum or difference, respectively. A basic 
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fault which locally generates I E I = 2' may cause 
an error in the "casting out," either by causing it 
unnecessarily, or by inhibiting it when it should 
take place. In both cases I E I = N - 2i occurs; 
its weight is 1, 2, or 3, depending on Nand i. 

The Additive Inverse (A7) 

This is the fixed subtraction N - X, called "com­
plementation." For NI = 211 - 1 it is the digit­
wise negation of x. For N2 = 2/1, the negation of 
x is followed by the addition of 1 to the least 
significant digit, and the addition errors of (A6) 
may also occur. 

Roundoff (AB) 

The, roundoff of k digits (i = 0, ... ,k - 1) is 
implemented by one of three methods: a) range 
test of xk -I' ... , Xo followed by the addition of 
o or 1 to xk; b) always setting xk to 1; and c) 
truncation (without arithmetic). Cases a and b 
both may have lEI = 2k; case a is also subject 
to the addition error of (A6). 

Repeated-Use Faults in Binary 
Processors 

Two classes of algorithms are subject to repeat­
ed-use faults: algorithms (A 1) - (A8) of Table 
B-1 in a byte-serial arithmetic processor, and 
multiplication and division in a parallel pro­
cessor. 

In a byte-serial processor, the kb digits long 
operands enter the processor in a sequence of k 
bytes, and the digit circuits are used k times. The 
length of each byte is b > 1 digits. The value of 
k is variable in some processors. A permanent 
local fault will affect the same relative position 
h(O ~ h ~ b - 1) within each byte. The fault 
may be ineffective during some of the k uses. 

Of the algorithms in Table B-1, byte-serial 
processing directly affects (A 1) - (A3), (A6), and 
(A7). The error magnitudes i and N - 2i are 
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replaced by the sets of possible error magnitudes 
{IEel} and {N - IEel},with 

k-I 

E = L d·2 hj+h 

e )=0) 

where ~ = 0 if the fault is ineffective for the jth 
byte, ~ = I for an effective S I, and dj = -I for 
an effective SO. There are 2k - I nonzero magni­
tudes I Ee I for a determinate (SO or S 1) local 
fault, and (3 k 

- 1)/2 nonzero magnitudes I Ee I 
for an indeterminate (SX) local fault. Which one 
of the 2k - I or 3k - 1 nonzero sets of the 
coefficients dj occurs is determined by the digit 
values of the operand or operands. An equal 
frequency of occurrence is assumed here. The 
arithmetic weights Ware in the following ranges: 
1) for IEel: I ~ W ~ k; 2) for 211 - IEel: 2 
~ W ~ k + I; and 3) for (211 - 1) - I Ee I: 
2 ~ W ~ k + 2. The end-condition errors of 
the shifts (A2) and (A3), the range algorithms 
(A4) and (A5), and the roundoff (A8) do not 
differ from the parallel case (k = 1, b = n - 1) 
and the results of Table B-1 apply. 

Parallel multiplication and division may be 
intolerably slowed down by the checking of 
individual additions and shifts, therefore, the 
repeated-use error magnitudes are of interest. It 
is assumed that the partial products or partial 
remainders are not checked, but returned to the 
accumulator as operands for the next step. The 
effect of a local fault in the digit circuits is 
cumulative, and different positions of the results 
are affected by successive steps because of the 
shifting. The set of expected error magnitudes is 
determined by the details of the algorithm. 

Most readily susceptible to analysis are algo­
rithms that employ fixed shifts of b bits. In this 
case the error numbers caused by a local fault in 
the digit circuits are the same as those developed 
during an addition or shift in a byte-serial pro­
cessor with byte length b. End-condition setting 
in shifts, multiplier digit recoding, and quotient 
digit selection may contribute additional error 
values. More error values are also contributed by 

the multiple-forming circuits which shift the mul­
tiplicand (or divisor) left to obtain the multiples 
2, 4, 8, etc. For example, a fault in the multipli­
cand register with provisions to add cj = 0, ± 1, 
±2 times the operand to the partial product 
during the jth step affects one of two adjacent 
positions (i, i + I) of the sum. The sets of possi­
ble error magnitudes are {I E I} and {N - I E I}, 
with 

k-I 

E = L c·d.2bj 

)=0 .J .J 

where b is the length of one right shift. The set of 
error magnitudes for any given variation of an 
algorithm and logic structure of the processor is 
obtained as the cumulative effect (sum) of appro­
priately shifted contributions of the error magni­
tudes in Table B-1. 

LOW-COST RADIX-2 ARITHMETIC 
CODES 

Implementation of Arithmetic 
Error Codes 

Arithmetic error codes are classified into sepa­
rate and nonseparate codes [Garner, 1966]. Both 
classes possess many common properties, but 
differ significantly in their implementation. The 
nonseparate code considered is the AN code 
[Brown, 1960; Peterson, 1961], which is formed 
when an uncoded operand x is multiplied by the 
check modulus A to give the coded operand Ax. 
The separate codes are the residue code [Peter­
son, 1958], and the inverse residue code [Aviiien­
is, 1967a, 1969], which is a previously unexplored 
variant of the residue code. The inverse residue 
code has significant advantages in fault detection 
of repeated-use faults. The modulo A inverse 
residue encoding for a number x attaches a 
check symbol x" to form the pair (x, x"). The 
value of x" is X": 

X"=A-(AIX)=A-x' 

where A I X designates the modulo A residue of X. 



~Ix is the value X' of the check symbol x' 
~mployed in modulo A residue encoding (x, x'). 
[he inverse residue code is a separate code, since 
t has no arithmetic interaction between x and x" 
Garner, 1966], and should not be confused with 
he nonseparate systematic subcodes of AN codes 
Henderson, 1961; Garner, 1966]. 

The set of undetectable error magnitudes I Em I 
called misses in the subsequent discussion) for 
>oth AN and residue codes consists of all multi­
,les of the check modulus A: 

K = 1,2, ... , L(rn - I)/AJ 

'or n-digit radix-r operands. The effectiveness 
md the cost of arithmetic checking depends very 
;trongly on the choice of the check modulus A. 
rhe checking algorithm which establishes wheth­
!r a detectable (or correctable) error exists in the 
'esult z for both classes of codes computes the 
nodulo A residue A Iz, where Z is the unsigned 
nteger value of z. The increase in word length is 
:he same for both classes of codes. For radix-2 it 
s r log2 Al bits. 

The most significant differences of implemen­
tation are caused by the property of separate­
[less. For residue codes, the operands x, y and 
their check symbols x', y' enter separate (main 
:md check) processors which produce the main 
result z (value Z) and the check result z' (value 
l'). The checking algorithm computes A Iz and 
::ompares it 'to Z'. If the values are equal, either 
the correct result has been obtained, or a miss 
las occurred. Disagreement indicates a fault in 
!ither the main or the check processor; the 
lncertainty precludes fault location and error 
::orrection without supplementary procedures. 
I\.n exception in the check procedure occurs for 
iivision X + Y which produces the quotient Q 
:md the remainder P. The checking algorithm 
::omputes both AIQ and Alp. The check pro­
::essor computes the value (AIQ)' Y' + (AlP) 
which is compared to X' for equality [Garner, 
1958]. The inverse residue code differs from the 
residue code in only one respect: the check result 

ARITHMETIC ERROR CODES 679 

has the value Z" = A - (A IZ) when an error 
has not occurred. The checking algorithm com­
putes A Iz and forms the check sum F 
= A I[(A IZ) + Z"], where F = 0 indicates that 
either the result is correct, or a miss has oc­
curred. 

For the nonseparate AN code the checking 
algorithm computes A IZ, where Z is the value of 
a result. A IZ = 0 indicates either a correct result 
or a miss. A nonzero A Iz indicates a fault: for 
certain choices of A the value of A Iz indicates 
the error value E for error correction [Brown, 
1960; Peterson, 1961; Garner, 1966]. The algo­
rithms of the processor are designed to compute 
with product-coded numbers [Avizienis, 1966b]. 
All intermediate steps of the algorithms must 
preserve product coding in order to retain the 
error-checking properties in the result. The hard­
ware cost of AN codes is in the greater complexity 
of the main processor, while for residue codes it 
is in the separate check processor. 

The Low-Cost Checking Algorithm 

A practical checking method must satisfy both 
cost and effectiveness constraints. For radix-2 
numbers, every odd integer A > 1 will detect 
weight 1 error magnitudes. The search for values 
of A which have a low-cost checking algorithm 
identified the class of low-cost arithmetic codes 
[Avizienis, 1964] which employ check moduli of 
the form 

A = 2£1 - 1, with integer a > 1. 

The parameter a is called the group length of the 
code. Since division is a complex algorithm, the 
checking algorithms for most odd A > 1 are 
relatively costly and slow. The check modulus 
2£1 - 1 is an exception because the congruence 

allows the use of modulo 2£1 - 1 summation of 
the k groups (a-bit segments of value Kj , with 
o ~ K j ~ 2a 

- 1) that compose the ka-bit num-
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ber Z to compute the check sum (2(/ - I) Iz. 
Division by A is replaced by an "end-around 
carry" addition algorithm, which "casts out 2(/ 
- I's" in a byte-serial or parallel implementa­
tion. 

It is also important to note that the low-cost 
check moduli 2a - 1 are .exceptionally compati­
ble with binary arithmetic. A complete set of 
algorithms has been devised for AN-coded oper­
ands [Aviiienis, 1964, 1967a], and an experimen­
tal byte-serial processor with four-bit bytes, ka 
= 32, a = 4, and A = 15 has been constructed 
for the STAR computer [Aviiienis, 1966b, 1968]. 
While AN codes are limited to one's complement 
(N = 2n - 1) algorithms, the two's complement 
(N = 2n) algorithms can be carried out as well 
with the separate residue and inverse residue 
codes, which also display implementation advan­
tages for mUltiple-precision algorithms. A set of 
algorithms for a two's complement inverse resi­
due code processor (including multiple preci­
sion) has been developed to replace the AN code 
processor of the STAR computer [Aviiienis et 
aI., 1971]. 

Fault Effectiveness: One-Use 
Faults 

It was already noted that the check moduli 
2° - 1, with a > 1, will detect all weight 1 error 
magnitudes 2i , with 0 ~) ~ ka - 1. Further­
more, all error values which can be confined 
within a-I adjacent bits of the error number. 
(bursts of length a-lor less) will be detected, 
since their error magnitudes are g2i , with g in 
the range 1 ~ g ~ 2°-I - 1. Only one error 
magnitude (out of 2° - 1 possibilities) confined 
within a adjacent bits is undetectable (that de­
scribed by a adjacent l's); This is important with 
respect to algorithms (Al)-(A5) of Table B-1, 
which contains error magnitudes of the forms 
(2k - 1)2i and (2k +1 - 1)2) The choice of a 
~ k +2 will guarantee complete fault detection 
for these algorithms. 

F or operands of length n == ka bits, the check 

modulus 2a - 1 will detect the one's comple­
ments (2 ka 

- 1) - lEI of all detectable error 
magni tudes I E I. Some weigh t 2 error magni tudes 
will not be detected: the undetectable error 
numbers are caused by one S 1 and one SO basic 
fault with a certain separation. The fraction 12 of 
undetected weight 2 error magnitudes for a > 2 
IS 

12 = (k - 1)a/[2a(ka - 3) + 6/k]' 

For a > 2,12 < 1/2a holds [Aviiienis, 1964]. 
F or example, given ka = 24, a = 3 yields 12 
= 0.166, a = 4 yields 12 == 0.118, and a = 6 
yields 12 = 0.071 . The case of a = 2 is an 
unfavorable exception, yielding 12 -- 0.5 for any 
value of k. The analysis may be continued for 
higher weights, due to several independent basic 
faults; however, errors due to repeated use of a 
single faulty circuit are of more immediate inter­
est. 

Fault Effectiveness: Determinate 
Repeated-Use Faults 

For the case of a determinate local repeated-use 
fault discussed earlier in the section on Re­
peated-Use Faults in Binary Processes above, 
which considers kb bits long operands processed 
in k bytes of b bits each, an analytic solution 
indicates very effective fault detection for the 
choice b = a [AviZienis, 1965]. All possible 
2k - 1 error magnitudes (and their one'scomple­
ments) are detected by the check modulus 2° 
- 1 for k < 2° - 1. Only one miss (undetect­
able error) occurs when k = 2° - 1; the count 
of misses E: for k ~ 2° - 1 is given by the 
expression 

Lk/(2Cl -I)J 

E: = ~ k!j[)(2a - I)]! [k - )(2a - 1)]! . 
i=1 

For example, the ~heck modulus a = 15 with 
byte length b = 4 allows no misses for words up 
to n = 56 bits, and a = 31 with b = 5 up to n 
= 150 bits. The expressions for the miss count E: 



lre derived by considering all possible ways in 
~hich result value 2a 

- 1 consisting of all ones 
:an be generated by modulo 2a 

- 1 summation 
)f k contributions of either 0 or 2 11

, with 0 S 
lSa-l. 

For any choice of the pair (a, b) and the word 
ength n = kb = ca, it has been shown that the 
irst miss occurs when the word length reaches 
he value 

n' = c'a(2a/ k ' - 1) 

where c' a = k'b is the least common multiple of 
1 and b [AviZienis, 1965]. Consequently, the 
naximum value of n' results when k' = I, 
~iving b = c' a, and 

n~ax = c' a(2a - 1) = b(2a - O. 

rhe choice of b = 2a will double the "safe 
ength"; for example, a = 15 and b = 8 allows 
10 misses for words up to 112 bits, and a = 7 
md b = 6 up to 36 bits. The minimum value of 
l' is obtained when a and b are relatively prime: 
n this case we have n~in = abo 

The effectiveness of any choice of the pair 
:a, b) can be expressed in terms of the percentage 
)f misses among all possible 2k - I error magni­
:udes which can be caused by a local determi­
late fault. Given a miss count €, the miss percent-
1ge is obtained as I OO€/ (2k - I), where n = kb 
s the word length of the operands. The miss 
)ercentages for various word lengths are ob­
:ained using a computer program which tabu­
ated all misses for word lengths up to k = 18 
)ytes, check lengths 2 S a S 12, and byte 
engths 2 S b S 10 and b = 12 [AviZienis, 
1965]. The maximum word length of 18 bytes 
'esults in a total of 218 - I = 262,143 possible· 
lOnzero error magnitudes. In selected cases the 
naximum word length was extended to 20 bytes, 
.e., 220 - I = 1,048,575 possible nonzero error 
nagnitudes. The miss percentages (for the same 
ralues of b) were also tabulated for II moduli A 
~hich detect all weight 2 and 5 check moduli 
~hich detect all weight 2 and 3 error magnitudes 
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[Peterson, 1961, pp. 236-44]. The word lengths 
used were n, with the requirement that 2" - 1 
should be divisible by A. 

The results of the tabulation (available in 
Aviiienis [1965]) show that for a and b relatively 
prime, the percentage of misses rapidly becomes 
100/ (2a 

- 1) after the first miss which occurs at 
word length n' = ab (the minimal case). For 
other pairs (a, b), the miss percentages beyond 
the word length n' tend to overshoot 100/ (2([ 
- 1) and then go below 100/(2a - 1) with in­
creasing word length. The weight 2 and weight 2, 
3 detecting check moduli A display miss percent­
ages which are comparable to those of relatively 
prime (a, b). 

Fault Effectiveness: Indeterminate 
Repeated-Use Faults 

A local indeterminate fault (used m times) will 
contribute to the error magnitude in one of 3111 

possible ways. During each use the contribution 
will be 0, i, or - i with various values of i. For 
the same repeated-use model as used in the 
preceding section, the choice b = a, and the 
word length ka, the number of misses €' due to 
the indeterminate fault (excluding the determi­
nate subset) is given by the expression 

Lk/2J 
€' = ~ k!/2[(k - 2j)!](j!)2. 

j=1 

The total count of possible nonzero error 
magnitudes is (3 k - 1)/2. The miss percentage 
100€'/2(3k - 1) is highest for k = 2 and gradual­
ly decreases with increasing k. For values k 
~ 2a - I the determinate subset contributes the 
miss count €, and the total number of misses is 
€ + €'. We also note that the value of €' is 
independent of a. Table B-2 lists the miss per­
centages (excluding the determinate subset) for 
the byte counts 2 S k S 12. 

Given any pair (a, b), the first miss due to an 
indeterminate fault (excluding the determinate 
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Table 8-2. Miss percentages for byte counts 2 < 
k < 12. 

k (3 k - 1)/2 e' Miss % 

2 4 1 25.00 

3 13 3 23.08 

4 40 9 22.50 

5 121 25 20.66 

6 364 70 19.23 

7 1093 196 17.93 

8 3280 553 16.86 

9 9841 1569 15.94 

10 29524 4476 15.16 

11 88573 12826 14.48 

12 265720 36894 13.88 

subset) occurs when the word length exceeds the 
least common multiple of a and b, that is, the 
first miss occurs for the word length n", where 

n" > c'a 

where c'a = k'b is the least common multiple. 
Consequently, the maximum safe length n is 
attained for a and b relatively prime, with n;~ax 

> abo In this case the first miss is due to the 
determinate subset and occurs for n" = abo For 
other choices of the pair (a, b) we observe 

The total miss percentages 100(€' + €)/2(3" 
- 1) are of interest in the cases b =1= a as well. 
An exhaustive tabulation by means of a com­
puter program was performed for word lengths 
up to k = 12 bytes; that is, (3 12 

- 1)/2 
= 265,720 nonzero error magnitudes were con­
sidered. The check lengths were again 2 :::; a 
:::; 12, and the byte lengths were 2:::; b 
:::; 10 and b= 12. It was observed that for rela­
tively prime pairs (a, b) the miss percentages 
were close to 100/(2a - 1), becoming greater for 
pairs with common divisors, and reaching the 

maximal values of Table B-2 for b = a and 
b = c' a. Complete results of the tabulation are 
presented in [Avizienis 1965]. 

It is noted that the most favorable choices of 
pairs (a, b) in the determinate faults are the least 
desirable choices for indeterminate faults, and 
vice versa. The choice of the most suitable values 
therefore depends on the relative frequencies of 
these two types of faults. 

Repeated-Use Faults in Residue 
Codes 

The results of the preceding sections on repeat­
ed-use faults apply directly to the fault effective­
ness of the low-cost AN codes (20 - OX. The 
low-cost residue codes in the byte-serial pro­
cessor suffer a serious disadvantage because of a 
new variety of an undetectable repeated-use de­
terminate fault. The miss occurs when the check 
symbol x' of value (2a - 1) I X uses the same digit 
circuits as the operand X. In this case, the fault 
affects the relative position h(O:::; h :::; 
b - 1) in x' as well as in every byte of x, and a 
compensating error may occur. In the preferred 
choice b = a, the miss will occur whenever the 
position h in x' and exactly one position in x are 
altered by an SO or S 1 fault. For example, 
consider the modulo 15 residue encoding 

x = 0010, 0011, 0101, x' = 1010. 

An S 1 fault sets the rightmost (h = 0) bit to 1 in 
every byte of x and in x' (boldface indicates 
changed bits) to give X*, x'*: 

x* = 0011,0011,0101, x'* = 1011. 

The checking algorithm yields l5lx* = 1011 
which is equal to X'*, and a "compensating 
miss" occurs which is independent of the length 
of x as long as only one byte in x is affected. 

The compensating miss is eliminated by the 
use of the inverse residue code in which 
X" = (2a - 1) - X' is substituted for X'. Con­
sider the preceding example with the inverse 



residue X" = 1111 - 1010 = 0101 replacing 
X'. The same SI fault causes 

x* = 0011, 0011, 0101, x"* = 0101. 

The check yields 151 X * = 1011: adding X"* 
modulo 15 gives the result 0001 which indicates 
an error, since it is not equal to 1111. 

The fault remains detectable even when one 
change each occurs in x and x'. Consider the 
previous example with a new operand y and its 
inverse residue y": 

y = 1000, 1101, 0101, y" = 0100. 

The check gives 151 Y = 1011, and 151 Y + 
Y" = 1111, i.e., no error. The previous SI fault 
causes 

y* = 1001, 1101,0101, y"* = 0101. 

The check gives 151 Y* = 1100 and 151 Y* + 
Y"* = 0010, indicating an error. 

The compensating miss does not occur be­
cause the change 0 ~ 1 in y" corresponds to the 
change 1 ~ 0 in y'. The first miss will occur 
when y * consists of 14 bytes, each containing a 
zero in the rightmost position n = O~ and y" also 
has a zero in h = O. All results of the determi­
nate fault effectiveness study are directly appli­
cable to the low-cost inverse residue codes. This 
result led to the choice of modulo 15 inverse 
residue codes for both data words and address 
parts of instructions in the fault-tolerant STAR 
computer [Avizienis et aI., 1971]. 

MULTIPLE ARITHMETIC ERROR 
CODES 

Multiple LOW-Cost Codes 

The preceding section treated single codes which 
use only one check modulus. A study of fault­
locating properties of the low-cost codes led to 
the observation that the use of multiple codes 
with two or more check moduli could provide 
complete fault location, corresponding to error 
correction [Avizienis, 1965, 1967a]. Continued 
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study of multiple encodings has led to the devel­
opment of several new varieties of arithmetic 
error codes, first discussed in [Avizienis 1969].* 

First it is shown that a single low-cost check 
modulus 2a - 1 has partial error-location prop­
erties in both AN and residues codes. Consider 
the error value pairs (0 ~ i ~ ka - 1): 

{i; _(2ka - 1) + 2i} and 

{_2i;(2ka - 1) - 2i} 

that may be caused by a basic fault during a 
transfer or one's complement additive inverse, 
shift, or addition (the operand is ka bits long). 
Writing the value of 2i as a radix-2a number, we 
have 

h = i - ja. 

The index h = i - )a is called the intra-group 
index and) is called the group index. Their ranges 
are 

O~h~a-l 

I t is evident that 

and O~)~k-1. 

2a12 h2)a = 2al[_(2ka - 1) + 2h2)a] = 211 

2al(_2h~)a) = 2al[(2ka - 1) - 2h2)(1] 

= (2(/ - 1) - 211. 

The sign and the intra-group index h are unique­
ly identified for the error values ±2i

, even if the 
value of the end-around carry is incorrect due to 
the addition of ±2i. The a-bit residue 211 has a 
single 1 digit, and (2a - 1) -:- 2 h has a single 0 
digit. For example, (with h = 3, a = 4) the 

* Multiple arithmetic encodings have been recently described 
in Rao [1970] and Rao and Garcia [1971]. It must be noted 
that the use of multiple check moduli for single-error 
correction was first described in Aviiienis [1965, pp. 12-13] 
and [1967a, pp. 36-37], and details were presented in 
Aviiienis [1969], considerably prior to Rao [1970] and Rao 
and Garcia [1971]. Papers by Aviiienis [1965, 1967a] and 
additional communication on the topic were supplied to 
Garcia at a UCLA short course in April 1968. 
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residue is 1000 for the error 23+4), 

and 0 III for - 23+4}. 

In the case of AN low-cost codes, the mod'ulo 
2a - I checking algorithm directly yields the 
check sum residues described above. In the case 
of residue low-cost codes, the main result X and 
the check result X' are computed. The checking 
algorithm must compute the a-bit check sum F: 

F = (2a 
- 1) I [(2a 

- I)lx + (2a 
- 1) - X']. 

A correct result (X, X ') will yield the all ones 
form of F = O. It is readily shown that an 
erroneous main result X ± i yields F = 

(2a - I)I(±2h ), identical to the check sums of 
the AN code. An erroneous check result (2a - I) 
I(X' ± 2h) yields F = (2a 

- 1) I (+2h), and the 
sign information becomes ambiguous: 1000 indi­
cates the error +23+4) in the main result, or the 
error -23 in the check result. The ambiguity is 
eliminated by the inverse residue codes which 
use X" = (2a - I) - X' as the check result. The 
check sum for the inverse residue code is 

G = (2a 
- I) 1[(2a - I)lx + X"]. 

When X" is correct, G = 0 is represented by the 
all ones form. An error in the main result X gives 
the same check sum as for the residue code. An 
erroneous check result has the value (2a - 1) 
I(X" ± 2h), which replaces X" and yields the 
check sum G = (2a - I)1(±2h

). Both the sign 
and the intra-group index h are known. The 
group index j remains unknown; it is also not 
known whether the check result or the main 
result is in error. 

The preceding result has two applications. 
First, it has been used to derive the miss percent­
age equations for repeated-use faults in the sec­
tion above on Low-Cost Radix-2 Arithmetic 
Codes. Second, it has led to the observation that 
the use of more than one low-cost check modu­
lus will permit the unique identification of the bit 
index i of the error values ±i, and subsequent 
error correction, while using only the low-cost 

check moduli 2al - 1, 2a2 - 1, etc. [Aviiienis, 
1965, 1967a]. 

The check modulus Ai = 2ai - 1 has the 
group length of ai bits. Given the pair (a), 
a2) with GCD (aI,a2) = 1, there will be a) a2 
distinct pairs of intra-group indices 

o ~ hI ~ al - 1, 

o ~ h2 ~ a2 - 1. 

For example, al = 3 and a2 = 4, yield twelve 
pairs of indices: 

hI = 12, 1,012, 1, 012, 1,012, 1, 01 

h2 =13,2,1,013,2,1,013,2,1,01· 

The same observation applies to sets of three or 
more group lengths {aI' a2' ... ,am} which are 
pairwise prime. The length of the binary number 
for which distinct sets of intra-group indices 
{hI' h2' ... ,hm} exist is p bits, while the encoding 
requires s bits, with 

m 

p = II ai 
i=i 

and 

For example, the choice of a) = 3, a2 = 4, a3 
= 5 will give p = 3 . 4 . 5 = 60 distinct sets of 
three intra-group indiCes with s = 3 + 4 + 5 
= 12 bits used for encoding [Aviiienis, 1965, 
I967a]. 

The effect of the m-tuple low-cost code with m 
pairwise prime group lengths {aI' a2' ... ,am} is 
the same as the effect of a 'code with a single 
check modulus 2P - 1 with respect to single­
error correction and double-error detection for 
error values ±iand +(2 P - 1 - 2i) over 0 ~ i 
~ P - 1. Burst-error detection is 100 percent 
effective for all bursts up to and including s - 1 
adjacent positions. Most important, the m sepa­
rate low-cost checking algorithms are retained by 
an m-tuple low-cost code. One low-cost check is 
sufficient to detect the error values for which 
correction is possible; the other checks need to 



be performed only when an error is indicated 
and may share the same hardware. 

Both AN and residue codes are suitable for 
multiple low-cost encoding. In the case of ordi­
nary and inverse residue codes, the use of more 
than one check modulus resolves whether the 
error is in the main or in the check result: if only 
one check result indicates an error, it is incor­
rect; if all check results indicate an error, then it 
is traced to the bit i in the main result by the set 
of intra-group indices. The sign ambiguity of 
single residue codes is eliminated, and correction 
takes place either in the main result, or in the 
incorrect residue. An important difference be­
tween multiple low-cost residue and AN codes is 
the length of the uncoded information word. The 
nonseparate AN codes allow p - s information 
bits, while the separate residue codes allow p 
information bits, with the s check bits added on 
as separate check symbols. Residue codes with 
the same number of check bits provide the same 
performance for a longer information word. The 
separateness of residue codes leads to a simpler 
design of the main processor which deals with 
uncoded operands, rather than with multiples of 
the check moduli which are used in the AN code 
processor. 

The use of two or more low-cost check moduli 
permits multiple "mixed" low-cost encodings.A 
mixed low-cost code is a single or multiple low­
cost AN code (p bits long) with a low-co~t residue 
encoding (single or multiple) of the AN-coded 
words. Given the moduli {A I' ... ,A nJ, the 
mixed codes possess the same error-location 
properties as the corresponding uniform (AN or 
residue) multiple codes. For an example, consid­
er the moduli {7, 15, 31}, with al = 3, a2 = 4, a3 

= 5. The uniform residue code has p = 3 . 4 . 5 
= 60 information bits and s = 3 + 4 + 5 = 12 
check bits. The uniform AN code has p - s = 48 
information bits encoded with A = 7 . 15 . 31 
= 3255; however, the checking algorithms re­
main separate modulo 7, 15, 31 low-cost checks. 
Six versions of the mixed code are available: 
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three with double-residue encoding: (7, IS), (7, 
31), (IS, 31); and three with single-residue en­
coding: (7), (15), (31). In all six cases the AN­
coded word must remain p = 60 bits long; e.g., 
the AN code with A3 = 31 has 55 information 
bits and 5 check bits, plus the 7 check bits of the 
double residue code with Al = 7, A2 = IS. The 
error location algorithm uses the intra-group 
indices as in the uniform codes; an error in the 
main result is identified by the AN code check. 

IIHybrid-Cost" Forms of Multiple 
Codes 

In this section it is shown that the partial error­
location property of the low-cost codes provides 
a low-cost extension of the range of other (non­
low-cost) error-correcting codes. Hybrid-cost ar­
ithmetic error codes are multiple codes with a set 
of moduli {AI ,A 2 , ••• ,Am} which includes one 
or more low-cost check moduli Ai' as well as one 
or more non-low-cost check moduli A j with the 
properties of error correction [Brown, 1960; Pe­
terson, 1961, pp. 236-44; Henderson, 1961; Gar­
ner, 1966]. 

A hybrid-cost code (for example, the double 
code with moduli A, A'), offers two advantages 
over one error-correcting check modulus A'. 
First, the low-cost code (modulo 2a - I) check­
ing algorithm alone is sufficient to detect errors 
which are corrected by A'. Second, suitable 
choices of the pairs (A, A') permit the use of the 
intra-group index h of the low-cost code (h = 0, 
1, ... ,a - 1) to extend the range covered by A'. 
Given a single-error-correcting check modulus 
A' with the period of g bits, and the low-cost 
check modulus A = 2a - 1 such that GCD (g, a) 
= 1, it is evident that the intra-group index h 
extends the range of the hybrid-cost code to 
p' = g . a bits. For example, A' = 23 gives dis­
tinct values of the residue 231(±i) for 0 :::; i 
:::; 10, 11 < i < 21, etc., identifying uniquely 
the index i and the sign of ±i for an II-bit 
operand [Brown, 1960]. Together with A = 2a 
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- I, the length for unique identification of the 
index and sign is Ila bits as long as GCD (I I, a) 
= I [Avizienis, 1969]. The use of i ~ 2 low-cost 
check moduli (AI' ... ,Aj) with some A' will give 
the combined effect of the i-tuple low-cost code 
with the error-correcting properties of A', as long 
as the check moduli have pairwise GCD = I. 

Three distinct classes of i-tuple hybrid-cost 
codes (with J 2 2) can be identified: 1) uniform 
AN codes; 2) uniform residue codes; and 3) 
mixed (AN + residue) codes. The codes are 
similar to low-cost multiple codes described pre­
viously with the exception that one or more 
check moduli A j are non-low-cost. Differences 
between the three classes of codes appear in their 
implementation. The hybrid-cost AN codes AA I X 
have the disadvantage of a costlier and slower 
implementation of arithmetic algorithms, since 
A I is not a low-cost check modulus. The hybrid­
cost residue codes avoid these difficulties be­
cause they are separate. The use of more than 
one check modulus resolves the question whether 
the error is in the main or in the check result. In 
a double hybrid-cost residue code with the check 
moduli (A, A') the low-cost modulo A check is 
carried out each time for error detection. An 
error indication initiates the modulo A I check. If 
the latter does not indicate an error, then the 
modulo A check result is incorrect, and correc­
tion of the check result follows. If the modulo A I 
check result also indicates an error, then the 
main result is corrected, using both check results. 

The mixed hybrid-cost codes have two major 
variants: I) low-cost AN code with modulo A' 
residue encoding; 2) error-correcting A'X code 
with modulo-A low-cost residue encoding. The 
first variant gives simple algorithms in the main 
processor, but must resolve the problem (existing 
also for hybrid-cost residue codes) of checking 
the error-correcting modulo A I residue if the 
modulo A I check is used only after detection 
using low-cost A. The second variant (preferably 
with inverse residue code) gives simple residue 

checking for error detection, but requires com­
plex algorithms in the main processor which 
operates on multiples of the non-low-cost check 
modulus A'. Other minor variants of mixed 
hybrid-cost codes are created when two or more 
check moduli are used for the AN part and/or the 
residue part. Each part, in turn, can be low cost 
or hybrid cost. ' 

In conclusion it is noted that the use of 
multiple low-cost and hybrid-cost arithmetic en­
codings offers a variety of implementations. 
Fault location and error correction by means of 
multiple encodings employs the low-cost codes 
alone as well as to extend the range covered by 
error-correcting codes. It is also important to 
observe that multiple encodings permit the use of 
residue codes for error correction, since they 
distinguish whether the error is in the main result 
or in one of the check results. This information 
is not available with one residue and the gener­
ally less convenient nonseparate AN codes have 
to be used in single encodings. Detailed consid­
eration of multiple en co dings is presented in 
Avizienis [1969]. Finally, it should be noted that 
the concepts of multiple encoding (AN, residue. 
and mixed) are applicable to multiple non-Iow­
cost check moduli as well. 
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Recent Developments in the Theory and 
Practice of Testable Logic Design 

R. G. Bennetts R. V. Scott 

Abstract 

This paper surveys and summarizes the major contribu­
tions to the theory and practice of testable logic design. 
The first part, dealing with the theoretical procedures, 
discusses the design of easily testable combinational, 
sequential, and iterative networks, illustrating major 
techniques with common running examples. The second 
part comments on the more practical aspects such as 
board layout, test point siting, and other facilities for 
easing the problems associated with testing. 

INTRODUCTION 

Interest has been focussed recently on the prob­
lems of designing and implementing logic cir­
cuits that are "easily testable" (a term we will 
define later). This paper is a natural extension to 
the large amount of research effort that has been 
devoted to the generation of test sequences for 
logic circuits [Bennetts and Lewin, 1971] and 
constitutes an attempt to present some of the 
major considerations and techniques that have 
been described in the literature. It has the dual 
objective of both reviewing the literature and 
discussing the concepts of some of the design 
algorithms contained therein. In most cases, de­
tailed descriptions of the algorithms are omitted, 
but their effect on the design of an actual circuit 
is shown, hopefully enabling the reader to make 
some assessment of their value. 

The paper divides into two main sections. The 
first discusses techniques for constraining the 

@ 1976 IEEE. Reprinted, with permission, from COMPUTER, 
June 1976, pp.47-63. 
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logic design itself-the end product being a logic 
circuit schematic-whereas the second relates to 
the more practical aspects of implementation: 
board layout, single-shot facilities, test point 
si ting, etc. 

The paper as a whole, therefore, attempts to 
show what effect "testability" can have on digital 
circuit engineering, and this reflects the short­
comings of test sequence generation algorithms. 
These shortcomings, which have been discussed 
more fully elsewhere [Bennetts, 1974] by one of 
the authors, are due to such factors as circuit 
complexity and size, computational limitations, 
shortcomings of the algorithms and the stuck-at­
model upon which they are based, limitations of 
the testing system, etc. Although considerable 
research effort is being devoted to overcome 
these limitations, it has long been recognized 
that constraints must eventually be placed on the 
actual design, in order to produce logic circuit 
designs that are "easily testable." Reddy [1974] 
has defined an easily testable network as one 
having the following properties: (1) small test 
set; (2) contains no logical redundancy; (3) test 
set can be derived without much extra work, 
either during the design phase or after the net­
work is defined; (4) structure of the test set is 
such that it is both easy to generate and interpret 
the results; (5) faults locatable to the desired 
degree. 

This list is qualitative only, but for the purpose 
of this paper it will serve as a working definition 
for "easily testable" circuits. Various other prop­
erties may also be desirable and can be added to 
the list-e.g.: (6) final gate-count should not be 
excessively high compared with a "normal" im­
plementation; (7) minimum number of addition­
al primary control inputs and observable outputs 
used to enhance testability. 

THEORETICAL DEVELOPMENTS 

This section discusses design algorithms for com­
binational and sequential logic and comments 
briefly on the design of easily tested iterative 
arrays. 

A~---...., 

B 

Z = ABC + BE 

Figure C-1. Simple combinational circuit 
example. 

Combinational Circuits 

The various procedures to be introduced will be 
illustrated where possible by the following simple 
Boolean function: 

z = J(ABC) = A lic + Be (1) 

A normal AND-OR-INVERT implementa­
tion of this function is shown in Figure C-l; a 
minimal test set to detect any single stuck-at-l or 
stuck-at-O (s-a-l, s-a-O) fault on either the pri­
mary inputs, primary input fanout branches, or 
gate outputs is given by: 

T = {A liEjz,AliC/Z,A BCjZ,ABEjz, 

ABCjZ} 
(2) 

(This result is obtained using the Boolean differ­
ence approach [Bennets, 1972] and incorporating 
the concept of pseudo-primary inputs [Bennetts, 
1973] to generate specific tests, if they exist, for 
primary input fanout branches.) 

The Reed-Muller Expansion 
Technique (Reddy) 

In the paper by Reddy already mentioned [1974], 
a design technique is presented for realizing any 
arbitrary n-variable logic function using AND 
and EOR (exclusive-OR) gates only, and having 
the following properties: 

I. If the primary input leads are fault-free, then a 
fault-detection test set of only (n + 4) tests exists. 

2. If the primary inputs themselves could also be 
faulty, then the number of fault-detecting tests is 
increased by 2ne (defined later). It is also shown 
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that this can be reduced back to (n + 4) by the f(A BC) = ABC + Be (already disjoint) 
addition of one extra AND gate whose output is 
observable. = A BC ffi BC 

The basis of the technique is to determine the 
Reed-Muller expansion [Mukhopadhyay and 
Schmitz, 1970] of the function and to implement 
this directly. The Reed-Muller expansion is a 
special case of the more general ring-sum expan­
sion of a logic function-the latter being defined 
in the following manner: 

f(xl x2 ... xn) = Co ffi cl xI ffi c2x2 ffi ... 

ffi cn xn E9 cn+ I xI x2 ffi cn+2 xI x3 ffi . . . (3) 

.ffi C2n-1 xI x2 ... xn 

where Xi is either xi or Xi and Cj a binary constant 
o or l. Note that in the full expression, Xi can 
either take its true (x) or complemented (x;) 
value, but not both. If all x/s take their true 
(uncomplemented) value, then this special case is 
known as the Reed-Muller expansion or, alterna­
tively, complement-free ring sum expansion of 
the logic function. 

The Reed-Muller expansion for a function can 
be formed in two distinct stages. The first uses 
the fact that the OR operators in an s-o-p 
expression can be directly replaced by exclusive 
-OR operators if all the terms are originally 
disjoint-i.e., mutually exclusive. (Bennetts 
[1975], describes a simple test and modification 
procedure for converting any s-o-p to an equiva­
lent· sum of mutually-exclusive products.) Full 
conversion to a complement-free Reed-Muller 
form makes use of the identity 

to replace all complemented literals present in 
any term. Two other identities are used: 

x;(xj ffi Xk) ~ Xi Xj ffi Xi Xk 

and 

o ffif(X) ~ f(X). 

Applying these to f(ABC) in (1) has the follow­
ing result: 

= A C (B ffi 1) ffi B( C ffi 1) (4 ) 

= ABC ffi AC ffi BC ffi B 

= 0 ffi B ffi AC ffi BC ffi ABC 

A direct implementation of (4) is shown in 
Figure C-2; the dotted output will be explained 
later. 

Kautz [1971] has shown that to detect a single 
faulty EOR gate in such an array, it is sufficient 
to supply a set of test inputs which will apply all 
possible input combinations to each cell. For the 
type of array shown in Figure C-2,such a test set 
1) is given by: 

D A B C 

0 0 0 0 

1)=0 four input vectors (5) 

1 0 0 0 

1 1 

The form of the 1) test set is always the same 
independent of the number of input variables n, 
and constitutes four tests only. In addition to the 
EOR gate fault-cover, Reddy demonstrates that 
this test set will also detect (1) any s-a-O fault on 
an AND gate input or output (tests 0111, 111 1) 
and (2) any s-a-l fault on the output of any 
AND gate (tests 0000, 1000). 

Ao-----~----------~--~~-­

Bo-~--~----~----~---+--­

Co-T---4-~--4-~--4-~~~--

Figure C-2. Reed-Muller implementation for 
((ABC). 
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It remains therefore to provide a test set 12 to 
detect s-a-l faults on the AND gate inputs. This 
is achieved by observing that to test an AND 
gate input s-a-l, it is necessary to set that input 
to 0 with all other inputs to 1. The fault-free 
output is then 0 changing to 1 if the s-a-l fault 
exists, and this fault-effect is then further propa­
gated through the EOR gates to the primary 
output. A systematic way of checking for all 
AND gate inputs s-a-l, therefore, is to succes­
sively set one primary input to 0 and all others to 
1. For example, 12 is given by: 

D A B C 

12= 
x 0 1 1 

n input vectors 
x 0 1 (6) 
x 1 0 

(x is "don't care") 

Thus, for an n-variable function, 12 will contain 
n tests and the full test set T( = 1) + 12) will 
contain (n + 4) tests. 

This result is based on the primary inputs 
themselves being fault-free; i.e., single s-a-l, s­
a-O faults are assumed to occur only on the 
fanout branches to the AND gates. If this restric­
tion is lifted, the paper shows that the number of 
tests is increased by a factor 2ne where ne is the 
number of input variables that appear an even 
number of times in the product terms of the 
Reed-Muller expansion-i.e., ne = 1 (input A) 
in (4). Reddy also demonstrates how this addi­
tional set of 2ne tests is removed by an extra 
AND gate with its output made observable. The 
inputs to this AND gate are those appearing an 
even number of times in the Reed-Muller prod­
uct terms, and if the circuit is modified so, the 
original (n + 4) tests in T are then sufficient to 
detect single s-a-O, s-a-I faults on the primary 
inputs themselves. The modification for the ex­
ample is very simple since only one of the 
variables-A-occurs an even number of times. 
It is sufficient, therefore, to allow direct monitor­
ing of A as shown by the dotted output in Figure 
C-2. 

A later extension to this work has been report-

ed by Kodandapani [1974] in which he notes that 
one of the test vectors in the 4-vector test set 1) 
can be removed by assigning the don't-care 
variable D in the test set 12 in a specific manner. 

The input combinations 00, 01, and 11 are 
applied to each EOR gate by the 0000, 0111, and 
1111 vectors of 1) respectively. Kodandapani 
observes that it is possible to apply the remaining 
10 input by assigning values to the don't-care 
variable in 12 rather than by using the 1000 
vector in 1). 

The algorithm is based on a re-ordering of the 
terms in the Reed-Muller expansion with identi­
fication of certain subsets of product terms con­
taining xl' Xl X2' Xl X2 X3' etc. Each subset is then 
ANDed with an appropriate vector of the 12 test 
set, and the result produces the complement of 
the assignment to be given to the don't-care 
variable for that particular vector. The validity 
of the procedure and a description of the algo­
rithm are presented in the paper; the result, in 
this case, is given by: 

T. 
~l 

and 

D A B 

0 0 0 
= 

0 

D A 

1 0 
12=0 

o 

C 

0 

B C 
1 1 
o 1 

o 

thrpp lnnllt "p{'tr"\r~ ("7\ 
-... -- "'r-' .. __ ... "' ... u 

\ I J 

n input vectors (8) 

The two major objections to the Reed Muller 
technique are (1) the prohibitive cost of imple­
mentation (each multi-literal term in the Reed­
Muller expansion implies one EOR gate and at 
least one AND gate) and (2) the corresponding 
excessive propagation delay. 

Reddy comments on the second point in the 
1974 paper. The following section describes an 
alternative technique, again by Reddy, that al­
ways results in a three-level implementation. 
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Three Level OR-AND-OR 
Technique (Reddy) 

This technique [Reddy, 1972b] is a combination­
al circuit design procedure in which any single s­
a-lor s-a-O fault is locatable within certain fault 
indistinguishability constraints and which results 
in networks having up to three levels and em­
ploying only AND and OR gates. The applica­
tion of the procedure is restricted to positive 
unate logic functions* and produces three level 
OR-AND-OR implementations in which every 
distinguishable fault is locatable. The process 
commences with the design of an irredundant 
three-level OR-AND-OR prime tree. The defini­
tion and synthesis of prime trees have been 
presented by Dandapani and Reddy [1974]. 
Briefly, a prime tree is defined as the following: 

• A restricted tree network consists of AND, OR, and 
NOT gates only and has the restriction that any 
input to a NOT gate is a primary input. 

• A restricted prime tree is a restricted tree network 
implementing a function j and satisfying the follow­
ing conditions: 
• If the primary output gate is an OR type and if 

j = 'l\ + 12 + ... + 1'p where 1j is a product of 
literals then 1j is a prime implicant of j, 1 < i 
<po 

• If the primary output gate is an AND type, and 
if j = V\ . V2 • ••• Vq where ~ is a sum of 
literals, then ~ is a prime implicate of 1, 1 < i 
< q. (Examples of restricted prime trees are 
given in Dandapani and Reddy [1974], Figure 
5.) 

· A prime tree is a tree network containing AND, OR, 
NAND, NOR, or NOT gates which is either a 
restricted prime tree in its own right, or whose test­
equivalent network [Kohavi and Kohavi, 1972] is a 
restricted prime tree. 

The procedure presented in Reddy [1972b] 
commences with a prime tree implementation of 
the original unate function and then applies 
certain network modification procedures aimed 

* A logic function j(x) x2 ... xn) is unate if and only if it is 
representable as a sum-of-product or product-of-sum ex­
pression in which no literal Xi appears in both its comple­
mented and uncomplemented form. A positive unate func­
tion is one in which all x;'s are uncomplemented. 

at enhancing the fault distinguishability proper­
ties of the tree. 

In reality, of course, many functions are not 
unate, but Reddy suggests that if true and com­
plemented versions of primary inputs were avail­
able from independent sources, the function 
could be converted to a positive unate form by 
considering the complemented variables to be 
independent. For example, j(ABC) in (1) is not 
unate, but could be converted to such if Ii and C 
are considered to be independent variables a and 
f3 respectively. This would modify the function 
to: 

j(ABC) = AaC + Bf3 (9) 

The prime tree realization of (9) is, unfortu­
nately, a trivial network (it results in a two-level 
rather than three-level network) and does not 
really illustrate the technique. To convey some­
thing of the application of the process, however, 
Figure C-3 is borrowed from Reddy [1972b] and 
demonstrates the totally fault-locatable imple­
mentation for the logic function given by: 

j(AB, . .. , K) = ACEF + BCEF + ADEF 

A 

B 

C 

D 

C 

D 

A 
B 
K 

+ BDEF + GCH + DGH (to) 

+ AI F + BIJ + KIJ 

(A, B, ... , K) 

Figure C-3. Prime tree example [Reddy, 1972b]. 
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Use of Additional Control Logic 
(Hayes) 

Both techniques discussed so far have attempted 
to minimize the number of additional control 
inputs or observable output requirements. A 
procedure by Hayes [1974], however, discusses 
the addition of control logic to increase the 
diagnosability of the circuit-either by rendering 
observable internal conditions that are not nor­
mally so (extra primary outputs) or by allowing 
external control of internal conditions not nor­
mally directly controllable (extra primary in­
puts). The paper examines the systematic use of 
control logic to reduce the number of tests 
assuming that any additional control logic must 
itself be testable if it is to serve any useful 
purpose. 

The main aim is to improve the circuit's 
"controllability," defined as the extent to which 
internal conditions can be controlled by apply­
ing signals to the primary inputs, by the addition 
of extra control inputs and gates. In this case, the 
gate~ used are the EOR type, and the first stage 

Ao----~ 

B~--I 

z 

cO'------I 

Figure C-4. Two-input NAND + INVERTER im­
plementation of ((ABC). 

is to produce a design based solely on 2-input 
NAND gates and inverters. The inverters are 
then replaced by EOR gates and additional EOR 
gates inserted in all other NAND gate input lines 
not containing an EOR gate. The application of 
these two stages to the running example is shown 
in Figures C-4 and C-5. Note that the other 
inputs to the EOR gates are brought out as 
primary inputs and for normal operation as­
signed 1 if the particular EOR gate replaced an 
inverter and 0 otherwise. 

z 

Figure C-S. Fully modified testable network with control lines Kl to Ks. 
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With regard to the generation of tests for such 
a circuit, consider the basic module shown in 
Figure C-6a. In order to fully test such a module, 
it is necessary in the first instance to apply all 
four input combinations to each EOR gate and 
ensure that their outputs produce the four differ­
ent input combinations to the following NAND 
gate. One way of doing this with four tests is 
shown in Figure C-6b-ignoring the additional 
test shown below the dotted line for the moment. 

If x" becomes an input to a following EOR 
gate, however, it is necessary to generate an 
additional 0 on xk to satisfy the following EOR 
input requirement of two 1 's and two O's. The 
extra test shown beneath the dotted line will 
achieve this, and each module now requires a 
minimum of five tests. These tests will (1) ensure 
full fault-cover (Hayes comments that the fault 
cover includes all multiple fault situations as well 
as the single fault ones) and (2) enable all the 
necessary input conditions to be generated for 
successor modules. 

The main problem now is to specify five-bit 
sequences on all primary and control lines so 

a. 
Inputs Outputs 

Xi ki Xi ki Pi Pi xk 

0 0 0 0 0 0 ] 0 1 0 1 0 
1 1 1 0 0 1 1 5 test 

1 0 1 0 ! vectors 

0 1 0 1 1 

b. 

Figure C-6. Basic logic module and possible test 
vectors. 

that module outputs and successor module in­
puts are compatible. Hayes offers an algorithm 
for doing this based on the observation that each 
five-bit sequence on the primary and NAND 
gate inputs in the module must be a permutation 
of the sequence 00 Ill. 

There are only ten such sequences, denoted by 
the set P = {Xo, X) , ... ,X9} where Xo = 00111, 
X) = 01011, etc., and two sequences are compat­
ible if their NAND product, on a bit-for-bit 
basis, produces a result that is also in P, e.g., 
XOX) = 11100(X9 ); therefore Xo is compatible 
with X). Note however that XOX9 = 11011, and 
this is not a permutation of 001.1 1: Xo and X9 are 
therefore incompatible. 

The procedure itself, then, is to arbitrarily 
assign sequences from P to the primary inputs 
and then derive sequences on the control inputs 
to the first set of EOR gates to produce a 
compatible pair of sequences on the following 
NAND gate inputs. The NAND gate outputs 
must themselves be sequences from P (because 
the inputs were compatible), and these become 
the inputs to the next set of EOR gates. So the 
process repeats itself until the primary outputs 
are reached. Applying this to Figure C-5 produc­
es the following possible test set: 

A B C K) K2 K3 K4 K5 K6 K7 Kg Z 
0 0 0 0 0 0 0 0 1 1 1 1 
0 0 0 1 I I 1 I 0 0 0 1 

1 0 1 0 1 0 0 1 
0 I 0 1 0 0 0 0 
0 0 0 0 0 I 1 0 

Hayes also comments on the application of 
this approach to sequential circuits defined by 
the standard Huffman model-i.e., a delay-free 
combinational network and a set of feedback 
lines each containing a unit delay element. 

The procedure here is to convert the combina­
tional network into a two-input NAND gate 
version with additional EOR gates as before, but 
the sequential nature of the circuit introduces 
two additional problems: the first is that the 
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initial value of the feedback lines must be deter­
mined and be compatible with the sequence 
assigned to the primary inputs. The second prob­
lem is similar: the sequences assigned to the 
delay element input must be related to those 
assigned to the delay element outputs both from 
the viewpoint of compatibility and from the unit 
delay property. Both these problems are over­
come by introducing the concept of sequence 
rotation. If the ith sequence in P is defined by 
Xi = cl c2 c3 C4 C s where cl' cb etc., are binary 
constants 0 or I, then the rotation of Xi' denoted 
by r(XJ, is given by the sequence C2C3 C4 Cs Cj and 
is itself a sequence in P. The problems are then 
solved by assigning sequences to the feedback 
line inputs to the combinational circuit so that if 
Xi is assigned to one of the feedback lines-i.e., 
delay element output-this implies the sequence 
r(XJ on the "delay line input. The problem now 
is to find a set of sequences through the combi­
national circuit that finally match at the inputs. 
In some cases, this results in unresolvable con­
flicts. Hayes demonstrates how these may be 
overcome by the insertion into the module of yet 
another pair of EOR gates-between the existing 
pair and the NAND gate-and he concludes 
therefore that the approach is quite general. 

He does note, however, that the cost of im­
proving the diagnosability of the network is a 
large increase in the number of gates and addi­
tional inputs and outputs (it is suggested that, for 
maximum diagnosability, each EOR gate output 
should be directly observable) and comments 
that, in practice, there may be quite severe 
limitations-e.g., restrictions due to the physical 
size, reliability requirements, number of avail­
able input/output lines, propagation delay con­
straints, and length of test vectors. Some of the 
additional EOR gates can be removed-for in­
stance, if they are not needed for normal inver­
sion purposes and if their removal does not 
violate the compatibility constraint. This can be 
applied to Figure C-5 and removes the EOR 
gates with control inputs K1, K3 and Ks. This 
causes a modification to the previous test set and 

a possible reduced sequence is now given by: 

A B C K2 K4 K6 K7 
0 0 0 0 0 1 0 

0 1 1 1 0 0 

0 0 0 I 0 

0 0 

0 

Minimally Tested Logic Networks 
(Sa/uja and Reddy) 

Kg Z 

1 1 

0 

1 

0 
0 

The previous technique by Hayes utilizing extra 
control logic and producing combinational logic 
designs that are fully tested by five tests pro­
voked further investigation into minimally tested 
networks. A paper by Saluja and Reddy [1974] 
presents a design process that produces circuit 
designs that are fully tested by three tests. Their 
procedure is based on the fact that any n-input 
I-output gate of the AND, OR, NAND, NOR 
variety is fully tested for single or multiple stuck­
at fault conditions on its inputs or output by 
(n + 1) tests. Therefore, if the circuit utilizes 
two-input gates throughout, then each gate is 
tested by three tests only. The addition of certain 
control inputs and observable outputs allows this 
idea to be extended to the whole circuit. The 
procedure is illustrated below. 

Consider first the three input AND gate shown 
in Figure C-7a. By replacing the gate with a 
three-level AND-OR-AND using two input 
gates as shown in Figure C-7b, one may derive a 
version that is fully tested by three sets of input 
combinations. These are shown in the figure and 
rely on the provision of an extra control input K j 

and observable outputs 0) and O2. 

Similar circuits exist for three-input OR, 
NAND, and NOR gates, and"obvious extensions 
can be made for n-input gates where n > 3. 

The first step in the procedure, therefore, is to 
replace any n-input AND or OR gates, for which 
n > 2, with cascaded two-input gates-omitting 
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A 

B 

a. 

co-----------------------~ 

b. 

Figure C-7. Minimally-tested 3-input AND 
module. 

0 1 

O2 

for the time being any intermediate control gates 
such as the OR gate in Figure C-7b. This is 
demonstrated in Figure C-S. 

The next step is to assign test sequences to the 
first level gates (those nearest the primary inputs) 
by selecting any two sequences from the follow­
ing sets SI and S2' depending on whether the 
gate is AND or OR: 

AND gate: SI = {OIl, 101, 110} 

OR gate: S2 = {100, 010, 001} 

It can be seen that the application of any two 
sequences from SI will apply the combinations 
01, 10, and II to the AND gate inputs, and that 
this is a necessary and sufficient set to test for 
any single or multiple s-a-I, s-a-O fault set Qn the 
gate inputs and output. A similar result holds for 
the S2 set in relation to the OR gate-the comb i­
na tions in this case being 01, 10, and 00. 

A 

: ~~ G3 Z 

Figure C-8. Two-input gate version of {(ABC). 

Incompatible 

X~110 
010 Z 

Y 

110 
Compatible 

X 

Y 

K 

Z 

0 1 

O2 

Figure C-9. Example of an incompatible set of 
gate input sequences and the necessary modifica­
tions. 

The outputs from the first level gates will 
either be a correct part of the necessary test 
sequences for their successor gates, or not. In the 
event of a gate output being incompatible* with 
the the requirements of a successor gate, the 
successor gate is suitably modified by introduc­
ing extra gates with additional control inputs and 
observable outputs. 

There are many possibilities here; one of them 
is illustrated in Figure C-9. Here, the two-input 
AND gate to the left is assumed to have the 
input sequences shown-these being the outputs 
generated by predecessor gates. Although one of 
these sequences (on x) comes from SI' the other 
on y comes from S2' and the gate must be 
replaced by the OR-AND circuit shown. 

Figure C-IO shows the compatible/incompati­
ble conditions for a certain set of sequences 
applied to the circuits' primary inputs, and Fig­
ure C-li presents the final circuit showing the 
modifications due to the incompatibilities. This 
circuit has an additional five control inputs and 
seven observable outputs. 

Saluja and Reddy note that the number of 
extra control inputs cannot exceed six since only 
six different sequences will ever be required (in 

* The terms compatible and incompatible are used in the same 
sense as in the discussion above. 
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011 o------=-..:....;..r--~--.... 

101 

001 

Compatible 

Figure C-10. Compatible and incompatible gate 
conditions. 

the example K1, K2 and K3 are the same and 
could be joined), and that the additional observ­
able outputs enable fault location to be made 
right down to single gates. 

They also point out that the extension of the 
procedure to cover the combinational section of 
sequential networks is similar to the procedure 
outlined by Hayes [1974]. 

Sequential Circuits 

Apart from the extension to easiiy .tested combi­
national circuit design procedures already men­
tioned, most research workers have concentrated 
on improving the testability of sequential net­
works by modifying the initial reduced state-

011o---------=~ 

101 

0010----+---1 

table description. The underlying objectives here 
stem from the ideas contained in Hennie's paper 
[1964] regarding the derivation of a checking 
experiment from an analysis of the state table. (A 
checking experiment on a sequential machine is 
the application of input sequences to the input 
terminals with observations of the output se­
quences at the output terminals to determine 
whether or not the machine is operating correct­
ly.) 

In his paper, Hennie defines certain types of 
input/output sequences and shows how, subject 
to limitations in the structure and faulty behav­
ior of the sequential machine, they could be used 
to assist in the derivation of a checking experi­
ment capable of demonstrating (a) that all the 
states exist and (b) that all defined transitions 
between the states could be made. 

Foremost among these sequences is the distin­
guishing sequence-an input sequence whose out­
put response enables unique identification of the 
starting state. Hennie shows how distinguishing 
sequences can be used to reduce considerably 
the total length of the checking experiment. 
Unfortunately, not all state-tables possess distin­
guishing sequences, and although this does not 
inhibit the derivation of a checking experiment, 
it does cause the derivation to be more compli­
cated. A significant paper by Kohavi and Laval­
lee [1967] demonstrates how state-tables not pos-

110 

Figure C-11. Fully modified circuit tested by three tests. 
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rable C-1. State table for synchronous 110 
Jattern recognizer. 

Dresent 
~tate 

\. (00) 

~(II) 

= (10) 

Next State/Output zi 
xI = 0 xI = I 

A/O 

A/O 

A/I 

B/O 
C/O 

C/O 

;essing distinguishing sequences could be modi­
ied by the provision of extra outputs. 

They go on to show how a checking experi­
nent could be derived. Before demonstrating 
heir procedure, we will again introduce a rela­
ively simple example to be used as a running 
:xample. 

Table C-I represents the behavior of a syn­
:hronous pattern recognizer whose output zl 

~oes to 1 only when the input pattern xI = 110 
las occurred. This state-table does not possess a 
listinguishing sequence (any sequence beginning 
~ith 0 would not be able to differentiate between 
l state of A or B, and any beginning with 1 
)etween B or C) and a checking experimen t 
vould have to be based on identification of a 
'haracterizing set with the associated locating 
'equences [Hennie, 1964]. For this state-table 
herefore, using the following locating sequences 
with the simplifications suggested by Hennie), 

Clock o--~.....----t--------' 

Yl (D) = Xl: Zl = Yl)72 Xl 

• State A: LA = 000 I 0 (terminating in state A); 
• State B: L8 = 0000 00 I 0 (terminating in state 

A); and 
• State C: Lc = 0 I I 0 I I 0 I I 1 0 (terminating in 

state A); 

and the synchronizing sequence 0 (synchronizing 
to state A), a suitable input sequence for a 
checking experiment is given by 

I I 10 I I 0 I LA 1 L8 I 1 Lc lOLA 0 1 0 I 

lOLA 1 1 0 : 1 0 0 LA 1 0 I 0 : 

I lOLA I I I 0 : I I 0 0 LA I I 0 I 0: (11) 

1 I lOLA 1 1 1 1 0 : 

(100 symbols) 

This has been derived using the procedure in 
Hennie's paper, and it should be recognized that 
other checking experiments could be derived 
that are possibly shorter in length. This is not too 
important, however, since the decrease in length 
would only be marginal and the purpose of 
defining the experiment is for comparison only. 

To complete the picture for this example, 
Figure C-12 illustrates a possible implementation 
using D-type bistables (the dotted output Z2 can 
be ignored for the moment). This and other 
implementations shown later were produced by a 
computer assisted logic design (CAL D) suite of 
programs [Lewin, Purslow, and Bennetts, 1972]. 

Figure C-12. D-type implementation of 110 pattern recognizer. 
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Additional Outputs to Produce 
Distinguishing Sequences (Kohavi 
and Lavallee) 

Kohavi and Lavallee's paper [1967] is but one of 
a number of papers that have appeared since the 
original paper by Hennie and that seek to reduce 
the length of the checking experiment either by 
using special sequences or by optimizing the 
order in which states and transitions are 
checked, or both. This aspect of state-table anal­
ysis is not discussed further here except to say 
that many efficient algorithms are now available. 
The interested reader is referred either to the 
bibliography in Bennetts and Lewin [1971] or to 
more recent publications of which Hsieh [1971], 
Farmer [1973], and Kohavi, Rivierre, and Ko­
havi [1973] are representative. 

The contribution of interest, however, is the 
procedure in Kohavi and Lavallee's paper for 
modifying a state-table to possess a distinguish­
ing sequence if it does not already do so. This 
can be regarded as a design constraint for test­
ability and is based on the provision of extra 
output variables. 

T'h", nrA£'P;tllrp ;~ h~~p;t An ;;tpnt;f,,;no nrp~pnt 
.J..l.l"" pl.'"''''''''''''''" ......... ''''..I.U' '-''''''tJ'''''-&. '-'.I.,&, ..l.",,""".I...I.".I..I.J.I..I..I.6 Y"''''''''''''''.I..&." 

state pairs whose next states are identical for the 
same input condition and output results. Such 
state pairs, called repeated states, are illustrated 
by states (AB) and (BC) in Table C-l. .The 
procedure also identifies any present state pairs 
whose implied entry derivations eventually loop 
back to a predecessor pair. An implied entry for 
any present state pair is the next state pair under 
the same input condition that has the same 
output value. In Table C-l, for instance, the 
present state pair .(AB) implies (BC) for xI = 1 
and (BC) then implies (CC) under xI = 1. These 
implications can be chained together to form a 
testing graph. It is shown that if the testing graph 
ever loops back on itself, the input sequence that 
causes this cannot be a distinguishing sequence. 
(This looping feature is not present in the testing 
graph for the example in Table C-l.) 

The procedure therefore seeks to eliminate all 
repeated states and testing graph loops by selec-

tive addition of extra output variables and, in the 
case of Table C-l, a single output z2 is sufficient 
to break the repeated state pairs (A B) and (BC). 
Shown in Table C-2, this version now possesses 
the very simple distinguishing sequence xI = O. 
Application of Kohavi and Lavallee's algorithm 
for deriving checking experiments produces the 
following much reduced input sequence: 

o 0 0 1 0 1 1 0 1 1 1 0 (12 symbols). (12) 

The modification involves the addition of gates 
G3 and G4 shown in Figure C-12 to produce the 
extra output Z2 (shown dotted). 

Additional Inputs to Improve 
Testability (Murakami, Kinoshita, 
and Ozaki) 

As in easily tested combinational circuit proce­
dures, an alternative approach to improve 
sequential machine testability is to add extra 
control input variables rather than observable 
output functions. This is considered by Mura­
kami, Kinoshita, and Ozaki [1970], who intro-
;tll£'P thp £'on{,pnt of ~ rll1lntor r"rlo r. ;tpfinp;t ;n ....... -... u._ -~··--r· ~ ..... ~~~ ... -. ~J ~.~ ~ I ... _ .... ..., ...... 

the following way: 
A counter cycle CI for an n-state sequential 

machine of the Mealy type is an alternating 
sequence of states si and input symbol I such 
that 

where 

and 

8(sn,I) = Sl and A(sn,I) = 1 

where 8(Si' I) and A(Si' I) are the next state and 
output functions, respectively. 

An application of n consecutive input symboh 
I to the sequential machine will produce an 
output sequence of (n - 1) O's and one 1. Tht 
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·able C-2. State table with additional output z2. 

>resent Next State/Output zl z2 
.tate xI = 0 xI = I 

\. (00) A/OO B/OO 
l (I I) A/OI C/OO 

= (10) A/II C/O I 

elative position of the I in the output sequence 
vill vary with the initial starting state and will 
miquely identify it: e.g., an output response of 
10 ... 01 will identify sl as the start state; 00 ... 
no will identify s2' and so on. Such an input 
equence therefore is a distinguishing sequence, 
md the authors show that if the sequential 
nachine contains a counter cycle (called a CC 
rzachine), then reduced checking experiments are 
:asily derived. 

They also demonstrate how non-CC machines 
nay be converted into CC machines by the 
lddition of an extra symbol £ so that 

md 

8(sj' €) = Sj+ I and A(Sj, €) = 0 

I<i<n-I 

Table C-3. State table with additional input x2. 

Next State/Output zi 
Present xlx2 = xlx2 = xlx2 = 
State OO(a) lO(fJ) 01(£) 

A (00) A/O B/O B/O 
B(II) A/O C/O C/O 
C (10) A/I C/O A/I 

It can be seen that the basic state-table (Table 
C- 1) is non-CC and Table C-3 shows a suitable 
CC version. Note that the extra input symbol E 

has been coded 01 and an extra input variable x2 

introduced so that x2 = 0 for normal operation. 
Denoting xI X2 = 00 by lX, xI x2 = 10 by {3, 

and xI x2 = 01 by €, a suitable checking experi­
ment for Table C-3, using Murakami's proce­
dure, is given by: 

Input 
Output 

€ € € € € E lX € € € 13€€ €lXEE€ 

001001 0001 001 00001 

(31 symbols) (13) 

€{3€ €€lX€€€ €€{3€ 

001 001001 0001. 

A D-type implementation is shown III Figure 
C-13. 

~~~-------------------.------~------------~ 

Clock ~--------"*""-------+--__ ~ ____________ --..J 

Yl(D) = xl + x2Yl + x2Y2: Zl = Y1 Y2 xl 

)2(D) = xlYl + x2Yl 

Figure C':"13. D-type implementation of counter cycle version. 
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This work has been extended by Holborow 
[1972], who has shown that the length of the 
checking experiment can be significantly reduced 
by ordering the states according to the number 
of transitions into them (number of times they 
appear in the state-table) before assigning the 
next state/output values under the E input sym­
bol. This characteristic has been included in the 
derivation of Table C-3. 

Shift Register Modifications for 
Synchronous Circuits (Williams 
and Angell) 

The paper by Williams and Angell [1973] sug­
gests that most problems in sequential circuit 
testing can be overcome if (1) the circuit can 
easily be set to any desired internal state, and (2) 
it is easy to find a sequence of input patterns 
such that the resulting output sequence will 
indicate whether the circuit was in a given state. 

The second property is, of course, the distin­
guishing sequence requirement al1:d, unlike pre­
vious authors, Williams and Angell base their 
.......... ",-l;h£"'·'}t;.A.-nC" "'..." fh.a ; .......... "I"'\ol.a~.n. ......... +nf;;""\,_ ;+~ ..... lf ......... +t.... __ 
111VU111'-'UUVl1;' V11 U1'-' 111.11-'1\,-111\,-11 LUUVll 1 L;)".,Jl J a UJ~J 

than on the state-table. The suggestion is that 
bistables in the circuit can, under the control of 
a signal p, be connected together in a chain to 
behave as a shift-register. This facility can be 
modeled by a double-throw switch in each input 
lead of every bistable and in one or two of the 
circuit's primary output connections. All these 

D Q 

C 

Clock o--+-+-----+-..... 

x 
Combinational 

logic : z 

Figure C-14. Standard model for a synchronous 
sequential circuit. 

switches are ganged together, and the circuit can 
operate either in its "normal" mode or "shift­
register" mode. The principle is illustrated in 
Figures C-14 and C-IS where, for simplicity, two 
D-type bistables have been assumed. For JK and 
other two-input, two-output bistables, the num­
ber of switches would be doubled. Figure C-16 
describes the characteristics of the switch and 
shows a suitable implementation (a two-input 
multiplexer in fact) . 

In the shift-register mode, the first bistable can 
be set directly from one of the primary inputs, 
and the output of the last bistable can be directly 
monitored on one of the primary outputs. This 
means that the circuit can be set to any desired 
state from the primary inputs and that the inter­
nal state can be determined by the signal se-

Control 0-------.----------+-------------, 
p 

Clock O-+--+---_~---+__+_---....J 

x 
Combinational 

logic 
~---.... z 

Figure C-1S. Modified circuit model: includes double-throw switches. 
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[uence appearing on the primary outputs. The 
Irocedure for testing the circuit therefore is as 
ollows: 

Itep I. Switch to shift register mode and check the 
shift-register operation. 

Itep 2. Set the initial state into the shift-register. 
Itep 3. Return to normal mode and apply the test 

input pattern. 
Itep 4. Switch to shift-register mode and shift out 

the final state while setting the starting state 
for the next test. Return to Step 3. 

To demonstrate the approach on the pattern 
ecognizer, Figure C-17 shows a reconfigured 
rersion of Figure C-12 that includes the addi­
ional switches, and Figure C-1S shows the 
'combinational" circuit to be tested, with inputs 
: (the original circuit input), y\ and Y2 (the 
>istable outputs), andp (the mode control input), 
md outputs z, (the original circuit output), and 
(, and d2 (the bistable inputs). A suitable test 
.equence can be derived using any suitable com­
>inational circuit test sequence generation proce­
lure such as has been described by Bennetts 

Control 

Inputs 

a. Schematic 

p 

ao--t---f 

Z = pa + jib 

bO----f 

b. Circuit 

Figure C-16. Schematic and circuit for double­
throw switch. 

[1972, 1973], and can be applied using the four­
step procedure outlined above. 

Obviously, the length of the shift register will 
determine the time spent in Step 4, and this may 

Po--------------.----------------------~ 

D Q 

c 
Clock o---+--.-----+---_+_~ 

d1 Y1 d2 Y2 r--------------------------- ---- ---------1 

I 
I L ___________________________________ J 

Figure C-17. Modified version of Figure C-12 (input switch SW1 is not 
required for this example). 
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pO-------------~--------------~ 

L-------------------------------------------- d1 

Figure C-18. Combinational segment of Figure C-17. 

-
represent an excessive proportion of the total 
testing time. The authors offer suggestions as to 
how this time may de decreased by forming 
~everal shorter shift-registers with the accompa­
nying more complex switches. The paper also 
discusses the application of the approach to 
asynchronous logic. In this case, the strategy is to 
use one feedback line to control the next in 
sequence, so that the chain of feedback lines 
behaves as a shift-register. This requires the 
addition of a sample-and-hold plus latch Gombi­
nation involving eight NAND gates and two 
extra propagation delays per feedback line to­
gether with two additional mode-control primary 
inputs. 

A very similar approach to that of Williams 
and Angell has been described by Toth and Holt 
[1974]. They constrain the initial sequential cir­
cuit design to contain a shift register in the first 
place. The left and right propagation of the shift 
register (known as the DSR or diagnostic shift 
register) is externally controlled by the tester 
and, in the test mode, the combinational network 
inputs come from the DSR parallel outputs. 
Similarly, combinational outputs feed back as 
parallel input data into the DSR. Their testing 
strategy is identical to Steps I to 4 above. 

Other Sequential Circuit 
Procedures 

This section draws attention to three other rela­
tively academic papers of relevance to sequential 
machine testability. The first, by Meyer and Yeh 
[1971], discusses the design of sequential circuits 
oossessine: distinguishing sequences. The second, 
by Fried~an and Menon [1973], demonstrates 
that if there is no shared logic between the state 
logic and the output logic in the implementation 
of a sequential machine possessing a synchroniz­
ing sequence, and if the single fault assumption 
is valid, then the length of the checking experi­
ment can be considerably reduced. In particular, 
Friedman and Menon modify Hsieh's checking 
experiment algorithm [1971]. .. 

The third paper, by Fujiwara and Kmoshlta 
[1974], is an alternative scheme for adding extra 
observable outputs to minimize the length of the 
checking sequence and increase the diagnostic 
resolution. 

Iterative Arrays 

The use of one- and two-dimensional iterative 
arrays of identical cells is attractive because oj 
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le advantages of design regularity and ease of 
lbrication. If they are to realize their full poten­
ai, however, they must also be easily tested. 
everal authors have studied this. In particular, 
andgraff and Yau [1971] have considered the 
esign and testing of arrays based on combina­
onal cells and have specified the following 

• ~nditions for which the array is testable: 

It must be possible to initialize the inputs of each 
cell of the array to all possible input values using the 
array's external inputs only. 
It must be possible to sensitize a path from the 
outputs of the cell to the outputs of the array to 
enable the propagation of a cell fault-effect. 

The paper shows how the design of an array 
lat is not initially testable, as defined above, can 
e modified by additional logic and input/output 
!rminals. This is achieved by inserting test poin ts 
lonitored at the external outputs, or by modify-
19 to ensure that each cell can be set into a 
nown state. Rendering the array testable results 
1 a reduction in the number of tests, and the 
aper includes appropriate test derivation algo­
ithms. 

Two other papers of interest are those by 
:riedman [1973] and Reddy and Wilson [1974]. 
:riedman, who has extended some previous 
IOrk [Menon and Friedman, 1971], considers 
he properties of unilateral combinational arrays 
hat enable them to be tested with a fixed 
:onstant number of tests independent of the 
lUmber of cells. Referring to such systems as C­
estable, he shows how a non C-testable array 
:an be made C-testable by augmenting the state­
able describing the basic cell. * At the most, for 
m arbitrary N-state cell, thIs involves the addi-

The behavior of a two-dimensional combinational cell with 
x (horizontal) and z (vertical) inputs and corresponding x 
and i outputs is usually defined by a table which has a row 
for each x input and a column for each z input. Each row 
is referred to as the state, and the entries in the table consist 
of the corresponding (x,i) pair outputs for each (x,z) 
combination of cell inputs. 

tion of one more row and less than (log2 N )2 
columns. These additions may make use of unas­
signed input/output values or may require fur­
ther inputs or outputs. 

Reddy and Wilson [1974] discuss the design of 
two-dimensional iterative arrays to realize all n­
variable symmetric and elementary threshold 
functions that require, at the most, 2n tests to 
detect all possible permanent stuck-at-faults. 

PRACTICAL ASPECTS OF TESTABLE 
LOGIC DESIGN 

This section is primarily based on two papers 
[Boswell, 1972; Schneider, 1974]. The first, by 
Boswell, suggests (quite rightly) that the efficien­
cy of practical automatic test systems could be 
considerably enhanced if the logic designer in­
cluded testability among his design criteria. Bos­
well presents eight empirical guidelines "that 
have proved highly successful" in practice. The 
present authors make no apology in repeating 
these guidelines here and, in some cases, have 
enlarged upon the comments made by Boswell. 
(A similar set of guidelines has been discussed in 
a General Radio Systems pamphlet [n.d.].) 

Guideline 1: Give the tester 
access to internal circuit board 
nodes 

Boswell suggests that this can be achieved either 
by using spare edge connector pins or by provid­
ing a separate edge connector specifically for test 
purposes. This guideline, which relates to the 
problem of strategic test point siting, has been 
studied by Russell and Kime [1971] and Hayes 
and Friedman [1974]. Their contributions are 
discussed in the following subsection, but before 
this, it is worthwhile summarizing Schneider's 
comments on accessibility. He suggests that the 
outputs of all memory units (bistables) should be 
directly observable and that, furthermore, access 
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to the dc set or reset inputs should be available, 
enabling individual control of each bistable. This 
would obviously take up many extra connector 
positions, but nevertheless is a constraint im­
posed on the design layout of boards tested by 
the system described by Adshead, Jain, and 
Knowles [1972]. 

Schneider demonstrates how the extra facility 
of resetting (or setting) a bistable can be tied in 
with existing reset logic, if it exists, either by 
using an additional gate or by simply using 
wired-OR if the particular logic family permits it. 
Alternatively, if additional edge connector inputs 
are not available, a power-up reset that momen­
tarily remains low as power is applied can be 
used to at least ensure that the initial start state 
is known. This is simply a CR network between 
the power line and ground whose output is 
attached to the DC reset input of the bistable. 
Such a facility would not be accessible by the 
tester; however, by switching the power off and 
on, a crude method of re-initialization could be 
effected. (The authors hasten to add that this is 
not suggested by Schneider and there are other 
obvious considerations in doing this of course!) 
These three techniques are illustrated in Figure 
C-19. 

Strategic Test Point Siting (Russell 
and Kime, Hayes and friedman) 

Russell and Kime [1971] analyze the fault detec­
tability and diagnosability of a combinational 
network by considering it from a purely structur­
al viewpoint-i.e., the logical function of each 
gate is disregarded and is merely considered to 
be a node. This is thought to (1) provide insight 
into the contribution of network structure to the 
diagnosis process, and (2) be useful for purely 
structural problems such as identifying strategic 
sites for test point placement. 

The authors make use of two directed graph 
models for the circuit-the basic and detailed 
models-and, using the mathematical techniques 
of graph theory, they discuss such topics as (1) 
fan-in, fan-out, and the effects of reconvergence 

a. Basic circuit 

c. Wired-OR 

Extra 
test input 

(normally 1) 

b. Additional control gate 

d. Power-up reset 

Figure C-19. Techniques for overriding internal 
reset conditions. 

on fault detectability; (2) fault-equivalence for 
graph condensation purposes; and (3) criteria for 
optimizing the increased diagnostic resolution 
afforded by additional test points. 

Hayes and Friedman [1974] describe an alter­
native scheme for fan-out free and restricted fan­
out combinational networks which does make 
use of the individual gate functions. They 
present a method for labeling the connections 
within the circuit so that a minimal set of tests 
can be derived corresponding to a minimal label­
ing. The labeling is derived from the minimum 
number of essential O's and 1 's that must be 
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)laced on each input to an n-input gate to 
)rovide complete stuck-at fault detection cover. 
rhus the label for ci' the output line of an n-input 
\JAND gate Gi, would be given by (I, n), a 
ogical zero corresponding to the any-or-all in­
)uts s-a-O test and n logical ones corresponding 
:0 the n separate tests for inputs s-a-l. If the test 
;et for the circuit is known, and corresponding 
ine vectors calculated-as in Figure C-7b for 
nstance-then some of the O's and I's in each 
vector may not be essential. This is incorporated 
.nto the labeling and serves to indicate where test 
)oints would be helpful. This idea can then be 
turned around the other way and a minimal test 
set derived from a corresponding minimal label­
ing. 

These concepts form the basis for a branch­
and-bound algorithm for selecting an optimal or 
near-optimal set of q test points, where I < q < 
the maximum number of permissible test points 
determined by the number of available spare 
pins. 

Schneider also discusses test point siting, from 
a more intuitive point of view, suggesting that 
the junctions of large fan-in and fan-out are 
"ideal"-either for logic level monitoring or in­
sertion. Other good candidates are important 
lines such as master clocks or reset lines, and 
logically redundant lines (discussed in the next 
section). 

Guideline 2: As a general rule, 
ilvoid logically redundant circuits 

A. connection in a circuit is logically redundant 
If the output function is independent of the 
binary value on the connection for all input 
:.:ombinations. Any fault on such a connection is 
therefore undetectable. This is of no direct con­
;;equence to the operation of the circuit, but it 
:.:an mask the detection of other stuck-at faults 
that would normally be detected by a particular 
test set. This phenomenon was initially reported 
by Friedman [1967] and has been considerably 
:!xtended by Dandapani, Reddy, and Robinson 

[1970]. Examples are given in Friedman and 
Menon's book [1971]. 

Unfortunately, redundancy is often essential 
to maintain the correct operation of the final 
circuit-the inclusion of bridging terms to re­
move static hazards in combinational logic for 
instance-and although the guideline is sound, it 
is not always possible to follow it. 

Guideline 3: Make faults as easy 
to locate as possible 

The diagnostic resolution of any test set is al­
ways limited by the indistinguishable fault set 
(IFS) grouping [Schertz and Metze, 1972] rela­
tive to the particular implementation of the 
function. Reference to some theoretical work in 
this area has already been made [Reddy, 1972], 
but Boswell demonstrates how, in some cases, 
locational uncertainty can be removed if connec­
tions in the same IFS group are arranged to go 
to the same gate rather than to two or more 
different gates. This would not remove the indis­
tinguishability but would make the fault group 
locatable to the single gate alone. 

Schneider also makes a number of practical 
suggestions regarding the layout and packaging 
of printed circuit boards to assist the location of 
faults. These an; summarized below: 

• Keep analog and digital subsystems physically apart 
if possible because of the different testing strategies 
and test equipment required. 

• If a board contains more than one independent sub­
circuit, try to keep them physically separate-i.e., 
partition the board. 

• In conjunction with this, separate power lines assist 
circuit isolation. Tri-state logic is also useful. 

• Employ a uniform layout for integrated circuits 
(relative position and pin orientation) and board 
edge connectors (same number pin for power input, 
ground, etc.) 

• For easy removal and testing, mount MSI/LSI chips 
in sockets rather than solder directly to the board. 

The reader should note that this list is not 
complete. These and other practical suggestions 
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regarding layout are covered in Boswell [1972] 
and Schneider [1974]. The General Radio Sys­
tems pamphlet [n.d.] is also recommended. 

Guideline 4: Use synchronous 
(clocked) circuitry whenever 
possible 

Boswell's main point here is that every tester 
possesses a latency period (the time lapse be­
tween the tester applying the test and sampling 
the response), which could result in undetected 
output changes if they occurred within this peri­
od. He suggests therefore that asynchronous 
logic should be avoided. 

There are other complications in the testing of 
asynchronous logic apart from those introduced 
by the speed of response. These stem from (I) 
the non-deterministic behavior of asynchronous 
circuits under certain fault conditions, especially 
those that re-introduce critical race possibilities, 
and (2) the fact that repetition of the same input 
value is not recognized by the circuit. This 
obviously inhibits the allowable test sequence 
and generaily compiicates the state-table analy­
sis approach to checking experiment derivation. 

Guideline 5: Take precautions to 
isolate the clock from the logic 

The test application rate of the tester, deter­
mined by the test setup plus latency periods, may 
be less than the operating speed of the logic. It 
makes sense, therefore, to enable the internal 
high-speed clock to be replaced by an external 
lower speed one, including a single-shot facility. 

Guideline 6: Make it possible to 
initialize sequential circuits prior 
to testing 

The reasons for doing this have already been 
discussed in previous sections. Boswell com-

ments on the alternative procedures of eithet 
applying a synchronizing sequence [Hennie. 
1964] or providing a master reset. He claims that. 
of the two, the second is preferable since it doe5 
not imply a decision-making capability within 
the tester itself. This is not strictly true because 
the presence of a fault prior to initialization rna) 
inhibit correct initialization irrespective of the 
means to achieve it. In either case, therefore, the 
test equipment needs to assess the status of the 
circuit and act accordingly-i.e., it must possess 
decision-making capabilities. 

Guideline 7: Take into account 
the operational characteristics of 
the tester to be used for a 
particular board 

Boswell describes the various ways by which 
testers change the binary values of the input 
patterns to the circuit-under-test. This may be 
done simultaneously (parallel), in fixed n-bit 
groups (quasi-parallel), or singly (serial), and it is 
possible for the latter two to have an adverse 
effect on the circuit's operation. In particular, it 
may introduce critical race conditions into asyn­
chronous sequential circuits that would not oc­
cur under normal operating conditions. Knowl­
edge of the tester characteristics, therefore, may 
act as a constraint on the ordering of tests in a 
testing sequence to prevent the possible rejection 
of a fault-free board. 

Guideline 8: Take test economics 
into consideration when 
developing a new logic design 

The physical characteristics and limitations of 
the tester, its voltage level output and interface 
specifications, test application rate, and other 
such factors should all be taken into considera­
tion before embarking upon a new logic design 
exercise. In a way, the economics of testing is 
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ne of the most unstable cost factors in the total 
)st of design and production of a logic board. It 
Hies tremendously with the logic circuit type 
nd complexity, the degree of confidence to be 
laced in the final board or chip, who is doing 
Ie testing (manufacturer or user), whether stan­
ard test generation algorithms are suitable or 
'hether intuitive procedures must be employed, 
nd a host of other factors. What it really comes 
own to in the end is that you only get what you 
ay for, and since integrated circuit technology 
nd digital systems based on it always seem to be 
ne step ahead of the procedure for testable 
esign and test sequence generation, nobody is 
~ally sure of what they're getting. Certainly, 
10S memory arrays seem to be offering new 
hallenges from a testability viewpoint [Chiang 
nd Standridge, 1975; Hnatek, 1975] and many 
~search workers, including the authors [Ben­
etts et al., 1975], are still seeking test sequence 
eneration algorithms for sequential circuits con­
tining 1,000 or more gates and bistables-this 
eing the size of large-scale integrated circuit 
esigns to come. Although test economics is 
nportant, therefore, it is very difficult to accu­
:ttely predict at the moment. All that one can 
:ty is that it will be relatively expensive. 

:ONClUDING REMARKS 

'his paper has described some of the more 
nportant procedures for designing testability 
lto logic networks, and it has been shown that 
lis almost always results in additional logic with 
arying requirements for additional inputs and 
utputs. One of the authors has recently evaluat­
d [Bennetts, 1976] the effect of applying three of 
le combinational circuit techniques to sixteen 
ircuits taken from the series 74 TTL logic 
:tmily and has produced graphs showing the 
istribution of percentage increase of a number 
f circuit parameters. In particular, the graphs 
how the distribution of percentage increases in 
~e number of primary inputs, number of pri-

mary outputs, number of basic gates, propaga­
tion delay, and failure rate, and in some cases 
the percentage increases can be very consider­
able (see graphs 1-10 in Bennetts [1976] for more 
detail). 

These increases are inevitable, but the consol­
idation of microelectronic technology has caused 
a shift in design emphasis from fully minimized 
implementations to those possessing a high reli­
ability and integrity, and the ability to fully test 
the final product is an essential feature of this. 
As always, practical solutions will be a compro­
mise between the costs of design, production, 
and testing on the one hand and the specification 
on the other. It is therefore very necessary that 
the design engineers appreciate the concepts and 
implications of the procedures for including or 
improving testability. We have attempted to pro­
vide the basis for this. 

Finally, the paper has dealt specifically with 
those design constraints that improve the test­
ability properties of the final circuit. The authors 
would like to point out, however, that other 
closely allied constraints may also be imposed on 
the circuit design. These constraints arise from 
general considerations of fault-tolerant design to 
achieve high reliability, and they may well be at 
variance with testability constraints. For this 
reason, therefore, they are drawn to the reader's 
attention. The reference set that is included in 
these lists is a representative selection of recent 
papers and should not be regarded as a complete 
survey: (1) fail-safe logic circuit/system design 
[IEEE Trans. Computers, 1971, pp. 536-542; 
1972, pp. 1189-1196; 1974, pp. 41-47,113-118, 
369-374, 1149-1154]; (2) sequential machine as­
signment procedures for achieving fault-toler­
ance [IEEE Trans. Computers, 1971, pp. 
1270--1275; 1972, pp. 492-495, 1973, pp. 
239-249, 662-669; 1974, pp. 494-500, 651-657, 
736-739]; and (3) design of self-testing, self­
diagnostic logic circuits [IEEE Trans. Computers, 
1971, pp. 1413-1414; 1973, pp. 263-269, 
298-306; 1974, pp. 1100--1102]. 

These and other topics associated with the 
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general area of fault-tolerant hardware and soft­
ware design are also discussed in Proceedings of 
the International Symposium on Fault-Tolerant 
Computing, IEEE Computer Society [1971-1975]. 
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iummary of Mll-HDBK-217B Reliability 
\ltodel 

~xperience has shown that 90 percent or more of 
he failure rate of a typical digital print circuit 
loard is accounted for by the integrated circuit 
hips. To a first approximation the failure rates 
If the printed circuit board, capacitors, and 
esistors can be ignored in design studies. Hence, 
his appendix only summarizes the MIL­
-IDBK-217B model for integrated circuit chips. 
~ or boards populated primarily by discrete de­
-ices, or for nonelectronic components, the read­
:r is referred to U.S. Department of Defense 
1976]. 

The failure rate, A, in failures per million hours 
or monolithic MOS and bipolar chips takes the 
orm of: 

A = 'TTL 'TTQ(C\ 'TTT + C2 'TTE)'TTP 

{alues of each factor will be discussed in turn. 

TL 

[he learning factor has a value of 10 if the device 
s new, if there are major changes in the fabrica­
ion process, or if the fabrication process is being 
'estarted after an extended interruption. Other­
~ise the value of 'TTL is 1.0. 

TQ 

rhe quality factor is a function of the amount of 
levice screening. Table 0-1 lists the values of 'TTQ' 

Whereas most commercial parts are not subject-

From U.S. Department of Defense, "Military Standardiza­
tion Handbook: Reliability Prediction of Electronic Equip­
ment," MIL-HDBK-217B (Washington, D.C., 1976). 

[)) 

709 
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Table 0-1. Quality factors. 

Quality Level Screening Standard 

A Mil-M-3851O Class A 

B Mil-M-3851O Class B 

B-1 Mil-Std-883, Method 
5004, Class B 

B-2 Same as B-1 with some 
tests waived 

C Mil-M-3851O Class C 

C-l Mil-Std-883, Method 
5004, Class C 

2 

5 

10 

16 

90 

For other bipolar (especially TTL): 

'ITT = O.le(-4794[I/(1j'+273)-I/298]) 

If ~ is unknown, it may be approximated as 
follows. 

• Low power TTL, MOS: 

1) = ambient T(OC) + K(OC) 

where K is 13 (OC) if there are more than 30 gates 0] 

120 linear tra:gsistors or the device is a memory 
Otherwise K is 5 (OC). 

• All others: 

1) = ambient T(OC) + L(OC) 
D Commercial, 

hermetically sealed 
150 where L is 25 (OC) if there are more than 30 gates 01 

120 linear transistors or the device is a memory. 
0-1 Commercial, organic 300 Otherwise Lis 10 (OC). 

seal 

ed to Class C screening requirements, their oper­
ational environment does not expose the devices 
to the failure modes that Class C screening is 
designed to stress. The Class C quality factor 
seems the most appropriate for devices used in 
computers built by reputable manufacturers. 

'iTT 

The temperature acceleration factor is a function 
of device technology. If ~ is the worst case 
junction temperature (OC), then: 
For linear (bipolar and MOS), MOS, ECL, bipo­
lar beam lead: 

'ITT = O.le(-8121[Ij(1j'+273)-I/298]) 

Table 0-2. Some useful values of 'ITT' 

Low Power 

Ambient 
TTL MOS 

Temperature Small Large Small Large 

25 (OC) 0.13 0.20 0.l6 0.31 

40 (OC) 0.28 0.40 0.56 1.0 

Table 0-2 gives useful values of 'ITT' 

'iTE 

The application environment factor depends on 
the operational environment, as indicated in 
Table 0-3. 

'iTp 

The pin multiplier is a function of technology as 
depicted in Table 0-4. 

C11 C2 

The complexity factors are a function of density 
and function as given in Table 0-5. 

For initial design evaluations it is convenient 
to have the equations for A available on a 

Technology 

TTL EeL 

Small Large Small Large 

0.17 0.35 0.24 0.82 

0.35 0.67 .82 2.5 
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Table 0-3. Environmental factor, wE' 

Environment Example 

Ground, benign Computer room 

Space flight Satellite 

Ground, fixed Factory floor 

Airborne, inhabited Cockpit 

Naval, sheltered Bridge of a surface ship 

Ground, mobile Jeep 

Airborne, uninhabited Aircraft equipment bay 

Naval,. unsheltered Engine room of a surface ship 

Missile, launch Missile 

Table D-4. Pin multiplier Wp. 

NUtrlper of 
SSI/MSI Pins LSI 

1-23 1.0 1.0 

24 1.1 1.0 
25 1.1 1.0 

26--41 1.1 1.1 

42-64 1.2 1.1 

>64 1.3 1.2 

Table 0-5. Complexity factors Cl , C2 . 

Density/Function 

SSIjMSI 

Linear 

LSI 
(100 < Nc < 13(0) 

ROM memory 

RAM memory 

Key: NG is the number of gates 
NT is the number of transistors 
B is the number of bits 

1.29 (1O)-3(Nc )0.677 

.56 (1O)-3(NT)0.763 

18.7 (10)-3 e[·OO471 Nd 

1.14 (1O)-\B)0.603 

1.99 (1O)-\B)0.603 

WE 

0.2 
0.2 
1.0 
4.0 
4.0 
4.0 

6.0 
5.0 

10.0 

Memories 

1.0 
1.0 
1.1 
1.1 
1.1 
1.1 

3.89 (10) -3 (Nc )0.359 

2.6 (1O)-\NT )0.547 

13(10 )-3 e[·OO423N(,] 

.32 (10)-3 (B)0.646 

.56 (10)-3 (B)0.644 
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programmable calculator or a time-sharing sys­
tem. Tables D-6 through D-IO were produced by 
a BASIC program and have proved helpful when 
programs such as AUTOFAIL and FAIL [El­
kind, 1980a] are not available. Reliability cal­
culations and design trade-offs are tedious and 

Table~. Failure per million hours for TTL and 
MOS as a function of gate complexity. 

Gates/ 
Chip 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 
150 
200 
250 
300 
350 
400 
450 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 

Bipolar 
Lambda 

0.069409 
0.091287 
0.107416 
0.120704 
0.132232 
0.142535 
0.151925 
0.160604 
0.168707 
0.176333 
0.209387 
0.236932 
0.261034 
0.282729 
0.-302623 
0.32i iD5 
0.338442 
0.354827 
0.385285 
0.413295 
0.439380 
0.463902 
0.483965 
0.602949 
0.751283 
0.936233 
1.166869 
1.454514 
1.813312 
2.260923 
2.819410 
4.386130 
6.827237 

10.632875 
16.569166 
25.834288 
40.303211 
62.911668 
98.258928 

MOS 
Lambda 

0.079252 
0.107024 
0.128123 
0.145864 
0.161495 
0.175642 
0.188674 
0.200830 
0.212272 
0.223119 
0.270951 
0.311733 
0.348033 
0.381158 
0.411880 
0.440699 
0.467963 
0.493923 
0.542655 
0.587975 
0.630587 
0.670980 
0.712481 
0.892145 
1.117273 
1.399409 
1.753037 
2.196335 
2.752117 
3.449020 
4.322995 
6.794265 

10.684093 
16.809997 
26.462414 
41.679265 
65.680445 
103.55572 
163.35424 

Note: 'TTQ = 16, 'TTL = I, 'TT£ = I, 1j = 50°C. 

time-consuming and are best handled by AUTO­
FAIL or FAIL. However, the user must be fully 
aware of the model parameters, the significance 
of the parameters, and the model's sensitivity to 
the parameters. Otherwise, the model will not 
produce meaningful, calibratable predictions. 

Table D-7. Failures per million hours for bipolar 
ROM as a function of bit complexity. 

Bits/Chip 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1,024 
2,048 
4,096 
8,192 

16,384 
32,768 
65,536 

Lambda 

0.017635 
0.027153 
0.041818 
0.064418 
0.099253 
0.152961 
0.235782 
0.363528 
0.560611 
0.864732 
1.33413 
2.05878 
3.17774 
4.90595 
7.57570 

11.7009 

Note:'TTQ = 16, 'TTL = I, 'TT£ = 1, 1j = 50°C. 

Table 0-8. Failures per million hours for bipolar 
RAM as a function of bit complexity. 

Bits/Chip 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1,024 
2,048 
4,096 
8,192 

16,384 
32,768 
65,536 

Lambda 

0.030799 
0.047393 
0.072942 
0.112287 
0.172888 
0.266250 
0.410112 
0.631833 
0.973623 
1.500606 
2.313288 
3.566814 
5.500706 
8.484838 

13.090480 
20.200135 

Note: 'TTQ = 16, 'TTL = 1, 'TT£ = 1, 1j = 50°C. 



rable 0-9. Failures per million hours for MaS 
~aM as a function of bit complexity. 

rJits/Chip Lambda 

2 0.030846 
4 0.047220 
8 0.072297 

16 0.110711 
32 0.169566 
64 0.259757 

128 0.397991 
256 0.609903 
512 0.934823 

1,024 1.43311 
2,048 2.19743 
4,096 3.37002 
8,192 5.16935 

16,384 7.93094 
32,768 12.1703 
65,536 18.6794 

Note: 'TTQ = 16, 'TTL = 1, 'TTE = 1, 1) = 50°C. 

REFERENCE 

Elkind [1980a); U.S. Department of Defense [1976]. 
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Table 0-10. Failures per million hours for Mas 
RAM as a function of bit complexity. 

Bits/Chip Lambda 

2 0.053861 
4 0.082421 
8 0.126145 

16 0.193096 
32 0.295627 
64 0.452675 

128 0.693267 
256 1.061909 
512 1.626853 

1,024 2.492778 
2,048 3.820270 
4,096 5.855726 
8,192 8.977270 

16,384 13.765292 
32,768 21.110812 
65,536 32.381991 

Note: 'TTQ = 16, 'TTL = 1, 'TTE = 1, 1) = 50°C. 





Summary of MI L -H DBK-217C Reliability 
Model 

When first released in April 1979, MIL­
HDBK-217C [U.S. Department of Defense, 
1979] followed the same general form as 217B. 
Subsequently an update was released in May 
1980, known as MIL-HDBK-217C Notice 1. 
Notice 1 was subsequently different from 217C, 
primarily in the addition of power dissipation 
and package type in the calculation of junction 
temperature. The failure rate model for mono­
Ii thic devices is summarized for both 217C and 
217C Notice 1. . 

217C MODEL 

The MIL-HDBK-217C is very similar to the 
217B model. Hence, only the differences from 
MIL-HDBK-217B will be presented. If not stat­
ed otherwise, the same equations and parameters 
are used for MIL-HDBK-217C that were speci­
fied for MIL-HDBK-217B. 

'lTE 

The Airborne Inhabited and Airborne Uninhab­
ited environment classes were expanded into 
four classes, as indicated in Table E-1. 

The junction temperature equation for TTL also 
covers Schottky TTL and low power Schottky 
TTL. 

c1 , C2 

The complexity factors for LSI, ROM, and 
RAM were changed as follows: 

LSI 
NG < 1,000 gates 
same as SSI/MSI 

NG > 1,000 gates 
C

1 
= 0.051 e(·OOIN(;) 

C2 = 0.0171 e(.OOINc,) 
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Table E-1. Additional environmental classes in 
MIL-HDBK-217C. 

Class Example 

Airborne, Cockpit of long-
inhabited, transport mission aircraft 

Airborne, Cockpit of high-
inhabited, fighter performance 

aircraft 

Airborne, Equipment bay of 
uninha bited, long-mission 
transport aircraft 

Airborne, Equipment bay of 
uninhabited, high -performance 
fighter aircraft 

ROM 
C) = .285 (10)-3(B)o.603 

C
2 

= .08 (1O)-\B)o.646 

RAM 
C) = .995 (10)-3(B)o.603 
C

2 
= .28 (1O)-\B)o.644 

Value 

2.8 

5.6 

4.2 

8.4 

In the case of LSI devices, the coefficient of N G 

in the exponent decreased by a factor of four 
from MIL-HDBK-217B. C1 and C2 decreased by 
a factor of four for ROMs and a factor of two 
for RAMs. These decreases reflect the increased 
reliability of semiconductor components as fab­
rication experience grows. 

217C NOTICE 1 MODEL 

The failure rate, A, in failures per million hours 
for monolithic MOS and bipolar chips takes the 
form of: 

A = '7TL '7TQ[C1 '7TT'7TV'7TpT + (C2 + C3 )'7TE] 

Values for each factor will be discussed in turn. 

'7TL 

The learning factor has a value of 10 if the device 
is new, if there are major changes in the fabrica-

tion process, or if the fabrication process is being 
restarted after an extended interruption. Other­
wise the value of '7TL is 1.0. 

'7TQ 

The quality factor is a function of the amount of 
device screening. Table E-2 lists the values of '7TQ. 

Note the decreases in '7TQ (ranging from a factor 
of 1.5 to 8.5 lower) over the values, for the same 
classes, in MIL-HDBK-217B. 

'7TT 

The temperature acceleration factor is a function 
of device technology, package type, case temper-

Table E-2. Quality factors for MI L 217C notice 1. 

Quality Level 

S 

B 

B-1 

B-2 

C 

C-I 

D 

D-l 

Screening Standard 

MIL­
M-38510, 
Ciass S 

MIL­
M-38510, 
Class B 

MIL­
STD-883, 
Method 
5004, Class B 

Same as B-1 
with some 
tests waived 

MIL­
M-3851O, 
Class C 

MIL­
STD-883, 
Method 
5004, Class C 

Commercial, 
hermeticc;l.lly 
sealed 

Commercial 

7TQ 

0.5 

1.0 

3 

6.5 

8.0 

13.0 

17.5 

35.0 



lture, and power dissipation. 

'lTT = 0.le(-A[(I/(7;+273))-(1/298)j) 

wrhere A is a function of technology and package 
type as given in Table E-3 and 1) is the worst­
~ase junction temperature. 1) is given by: 

wrhere: 

1) = Tc + 0)c P 

Tc is the case temperature (OC) 
S}C IS the junction to case thermal 

resistance (OC/watt) for a de­
vice soldered onto a printed 
circuit board. 

P is the worst-case power dissipa-
tion. 

If 0)C is unknown, the values in Table E-4 
may be used. Some useful values of 'lTT are given 
tn Table E-5. Early experience suggests that 
2l7C Notice 1 is very sensitive to the junction 
temperature calculation. In particular, the de­
fault values for 0)C lead to questionably large 
values for 1), especially in the case of nonhermet­
ic packages. 

7TV 

The voltage stress factor, 'lTv, is 1.0 for all tech-
nologies other than CMOS. 'lTv is also 1.0 for 
CMOS with JiJD = 5 volts. For supply voltage 
between 12 and 15.5 volts: 

'lTv = O.lle x 

Table E-5. Some useful values of 7fT-

Junction Low-Power TTL 
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Table E-3. Technology and package parameter, 
A, used in calculation of 7fT-

Technology Package Type A 

TTL,ECL Hermetic 4635 

TTL,ECL Nonhermetic 5214 

Schottky TTL Hermetic 5214 

Schottky TTL Nonhermetic 5794 

Low Power Hermetic 5794 
Schottky TTL, 
PMOS 

Low Power Nonhermetic 6373 
Schottky TTL 

PMOS Nonhermetic 8111 

NMOS Hermetic 6373 

NMOS Nonhermetic 9270 

CMOS, Linear Hermetic 7532 

CMOS, Linear N onhermetic 10429 

Table E-4. Default values for thermal resistance, 
Ole-

Number of 
Package Type Pins OJC 

Hermetic DIP < 22 30 

Hermetic DIP > 22 25 

Nonhermetic DIP < 22 125 

Nonhermetic DIP > 22 100 

NMOS TTL 

Temperature Hermetic N onhermetic Hermetic Nonhermetic Hermetic N onhermetic 

25 (OC) 0.1 0.1 0.1 0.1 0.1 0.1 

40 (OC) 0.26 0.28 0.28 0.44 0.21 0.26 

70 (OC) 1.3 1.7 1.7 5.9 0.77 1.0 

90 (OC) 3.25 4.6 4.6 26.2 1.6 2.3 
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where: Table E-6. Environmental factor, 'lTE' 

0.168 ~(~ + 273) 
x = 298 

with ~ the supply voltage. 

'lTpT 

'lTpT is the PROM programming technique factor. 
'lTpT is 1.0 for all devices except PROMs. For 
bipolar PROMs: 

'lTPT = 0.985 + 9.5 X 10-5(B) 

where B is the number of bits. For MaS 
PROMs: 

'lTPT =0.95 + 7.5 X 10-5(B) 

'lTE 

The application environment factor depends on 
the operational environment as indicated in Ta­
ble E-6. 

Environment 

Ground, benign 

Space flight 

Ground, fixed 

Airborne, 
inhabited, transport 

Airborne, 
inhabited, fighter 

Naval, sheltered 

Ground, mobile 

Airborne, 
uninhabited, 
transport 

Airborne, 
uninha bi ted,. figh ter 

Naval, unsheltered 

Missile, launch 

Table E-7. MIL-HDBK-217C, notice 1 complexity factors. 

Density/Function C1 

Bipolar SSI/MSI 7.48 (1O)-4(Nc )0.654 

MOS SSI/MSI 2.17 (1O)-\Nc )0.357 

Linear 1.57 (10)-3 (N
T

)0.780 

Bipolar LSI 1.48 (10)-3 (Ndo.S06 

(100 < Nc < 20,000) 

MOS LSI 1.75 (1O)-\Nc )oA 

(100 < Nc < 20,000) 

Bipolar RAM 2.2 (1O)-\B)0.s76 
(B < 16,384) 

Dynamic MOS RAM 5(1O)-4(B)o.610 

(B < 65,536) 

Example 

Computer room 

Satellite 

Factory floor 

Cockpit of long-
mission aircraft 

Cockpit of high-
performance 
aircraft 

Bridge of a surface 
ship 

Jeep 

Equipment bay of 
long-mission 
aircraft 

Equipment bay of 
high-performance 
aircraft 

Engine room of a 
surface ship 

Missile 

2.19 (10)-4 

· (Nc )0.364 

3.11 (10)-4 
· (Nc )0.178 

'IT£ 

1.0 

1.0 

2.5 

3.5 

7.0 

4.0 

4.0 

4.0 

8.0 

5.0 

10.0 

8( 1 0) -4 (NT )0.535 

3.2 (1O)-4(Nc )0.279 

2.52 (10)-4 
· (Nc )0.226 

(Table continues on next page) 



Table E-7 -Continued 

Density/Function 

Static MOS RAM 
(B < 65,536) 

Bipolar ROM, PROM 
(B < 65,536) 

MOS ROM, PROM 
(B < 65,536) 

Key: Nc is the number of gates 

Cl , C2 

NT is the number of transistors 
B is the number of bits 

C, and C2 are a function of the device complex­
ity and the device function as given in Table E-7. 

C3 

C3 is a function of package complexity as given 
in Table E-8. 

REFERENCE 

u.s. Department of Defense [1979, 1980]. 
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~ 

4( 1O)-\B)o.609 

Table E-8. MIL-HDBK-217C, notice 1 package 
complexity. 

Package Type 

Hermetic DIPs with solder or 2.8 (1O)-4(Np )I.08 

weld seals 

Hermetic DIPs with glass seals 9(10)-5 (Np ) 1.51 

Nonhermetic DIPs 2(10)-4 (Np ) 1.23 

Hermetic Flatpacks 

Hermetic Cans 

3(1O)-\Np ) 1.82 

3(10)-5 (Np )2.01 

Note: Np is the number of pins on the package connected to 
the device substrate. 
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Environment Record Editing and 
Printing (EREP) program, 413, 
419 

Environmental factors, 556 
Equipotential spacecraft, 542 
Equivalent faults, see Fault. 
Erasure, 124, 176 
Erasure correction algorithm, 125 
Error, 17,51,548 

burst, 123-124 
clustering, 11 
design, 206 
disagreement, 597 
Hamming, 177 
intermittent, 17 
main-memory performance, 281 
microstore performance, 283 
multiple adjacent unidirectional, 

124 
permanent, 17 
soft, 11 

software-related, 28 
specification, 207 
transient, 17 
unidirectional, 97, 124, 130 

Error-Correcting-Code (ECC), 369, 
379,417,427, see also Code. 

Error-Correcting-Code (ECC) memory 
Mean Time To Failure (MTTF), 228 
Mean Time To Failure (MTTF) with 

errors present, 229 
Error-Correcting-Code (ECC) memory 

reliability, see Reliability. 
Error-First-Pass, 376, 379 
Error correction 427 
Error detection, 6, 471,525, see also 

Code. 
Error diagnostics, 618 
Error handling routine, 575 
Error latches, 597 
Error latency, 64, 170, 172,273 
Error log, 198,369,386,636 
Error recovery, 429, 525 
Error Recovery Procedure (ERPS), 

413-415 
Error Register (ER), 483 
Error reporting message, 635 
Error Status Register, 377 
Evaluation criteria, 296 
Event queue, 618 
Exception vectors, 363 
Exceptions, 362 
Exclusive OR testing, see Test. 
Exhaustive testing, see Test. 
Expected value, 203, see Value. 
Experimental recovery block cache, 

174 
Exponential distribution, 31 

cumulative distribution function, 31 
hazard function, 31 
probability density function, 31 
reliability function, 31 

Exponential function, 204 
Exponential hazard function, 202 
Extended-precision checksum, see 

Checksum. 
Externally induced malfunctions, 594 

FAIL, 49, see also MIL-HDBK-217B. 
Fail-safe, 196 
Fail-safe circuit, 106, see Circuit. 
Fail-safe logic, see Logic. 
Fail safely, 307 
Failure, 17 

asymmetric modes, 137 
C.mmp,26 
engineering, 12 
infancy, 12 
latent, 610 
manufacturing/inspection, 12 



multiple adjacent unidirectional, 130 
nonoverlapping, 79 
permanent, 17 
physical, 17 
residual, 12 
transient, 272 
whole chip, 91 

Failure mode, II 
Failure Modes and Effects Analysis 

(FMEA),561 
Failure Modes, Effects, and Criticality 

Analysis (FMECA), 236, 542 
Failure process renewal, 259 
Failure rate, 31, 202, 393, 567 
Failure rate dependent on system load, 

273 
Failure rate per function, 9 
Failure to capture, 326 
Failure to recreate, 326 
Fairchild F6856 Synchronous Protocol 

Communications chip, 103 
Far-encounter, 542 
Fault, 17, 362 

bridging, 190 
equivalent, 190 
intermittent, 17, 26, 612-615 
latent, 631,633 
logic, 17, 183 
lurking, 614 
multiple, 191 
permanent, 17 
soft 

alpha particle, 122 
cosmic ray, 122 

structural, 184 
transient, 17, 26 

Fault avoidance techniques, 63, 67-77 
fanout limitation, 67 
human error, 67 
MIL-HDBK-217B model, 68 
noise margin, 67 
signal-to-noise-ratio,67 

Fault confinement, 64 
Fault containment region, 602 

principal, 602 
system control unit, 603 

Fault detection, 64, 141,426,576 
cost of 

board level, 11 
component level, 11 
field service level, II 
system level, 11 

off-line, 64 
on-line, 64 
techniques, 77-113 

diagnosability,78 
duplication, 79 
retry, 77 

Fault dictionary, 187,466 
Fault-handling mechanisms, 630 

Fault handling stages 
time line, 65 

Fault injection, 431, 577 
Fault intolerance, 63 
Fault isolation, 427, 562-563 
Fault list, 190 
Fault manifestations, 19 
Fault masking, 64, 563, see also 

Masking. 
Fault protection software, see 

Software. 
Fault recognition program, 468-469 
Fault-secure circuit, see Circuit. 
Fault-secure logic, see Logic. 
Fault simulation, 465-466 
Fault tolerance, 543 
Fault-Tolerant Building Block 

Computer (FTBBC), 342 
Fault-Tolerant Multiprocessor 

(FTMP), 118, 121, 152,342, 
347,585-620 

automatic error logging, 618 
bit-by-bit voting, 588 
Boeing 707 aircraft simulation, 616 
bus controller, 605 
bus disagreement 

latent fault detection, 617 
Bus Guardian Unit, 152, 590, 602 
bus isolation gate, 592 
bus structure, 602 
cache, 586 
cache memory management, 618, 

see also Memory. 
Cerebus, 586 
clock generator, 606 
combinatorial model, see Mode/. 
Configuration Control Unit (CCU), 

604 
coverage, 607 
Critical Minimum Complement 

(CMC),610 
data malfunctions, 596 
disagreement errors, see Error. 
Dispatch Minimum Complement 

(DMC),615 
dispatch reliability, 615 
Draper Laboratory, 586, 598 
dyad,593 
Energy Efficient Aircraft program, 

598 
error diagnostics, 618 
error latches, 597 
event queue, 618 
externally induced malfunctions, 

594 
failure 

latent, 610 
fault containment region, 602 

principal, 602-603 
system control unit, 603 
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fault-tolerant redundancy clocking, 
594 

flexing, 597 
hybrid redundancy, see 

Redundancy. 
input/output access, 593 
Input/Output (I/O) port, 606 
intermittent fault, see Fault. 
interprocessor triad communication 

unit (lPC), 605 
latency factor, 614 
latent failure, see Failure. 
Line Replaceable Units (LRU), 598, 

602 
logic malfunctions, 596 
lurking fault, see Fault. 
malfunction consequences, 596 
malfunction management, 594 
malfunction sources, 594 
Markov model, see Model. 
memory module, 593, 605 
Memory protect, 605 
MIL-STD-1553, 598,605 
multiprocessor executive, 617 
NASA Langley Research Center, 

586,598 
National Science Foundation, 586 
National Semiconductor 

I MP-16-processor, 616 
Office of Naval Research, 586 
On-board, Survivable, Integrated, 

Redundant Information System 
(OSIRIS), 586 

organization, 590 
parallel-hybrid redundancy, see 

Redundancy. 
phase-locked oscillators, 594 
phase-locked redundant clock, 619 
physical malfunctions, 596 
power supply, 606 
Privileged user modes, 605 
probability models, see Mode/. 
processor modules, 592 
processor-cache memory module, 

585 
processor-cache module, 598, 604 
processor-cache units, 589 
random malfunctions, 595 
redundancy 

parallel-hybrid, 587 
resource allocation, 589 
self-test program, 619 
serial-bus multiprocessor, 586 
subsystem malfunctions, 596 
survival probability, 611 
synchronization, 593 
system exercising, 597 
system malfunctions, 596 
tight synchronization, see 

Synchronization. 
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tolerance renewal mechanism, 597 
triad~ 152,588,590 
Triple Modular Redundancy 

(TMR), 598, see also 
Redundancy. 

Triple Modular Redundancy (TMR) 
hybrid, 587, see also 
Redundancy. 

Fault-tolerant redundancy clocking, 
594 

Fault-tolerant sequential circuits, see 
Circuits. 

Fault-Tolerant Space borne Computer 
(FTSC),.117,342 

checkpoint techniques, 172 
Fault-tolerant switching networks, 165 
Fault-tolerant techniques, 65, 77 

cost, 65 
dynamic redundancy, 65 
fault detection, 65 
masking redundancy, 65 
percentage of redundancy, 65 

Fault trees, 236 
Feature failure-mode matrix, 310 
Feedback Shift Registers (FSR), 187 
Field data, 469, see Data. 
Field experience, 513 
Field Replaceable Unit (FRU), 12, 79, 

198,200,306,402 
Field service, 11 
Field service branch office, 13 
Field service engineer, 13 
Field service plan, 16 
File Store (FS), 334, 472, 474 
Fire code, see Code. 
Fixed cost, 309 
Fixed preplanned scheduling, 564 
Fixed-price contracts, 303 
Fixed-price per call contract, 304 
Fix-it, 511 
Flexing, 597 
Floating Point Accelerator (FPA), 367, 

372,391 
Force Miss, 398 
Formal specifications, 582 
Forward error recovery techniques, 

169 
Forward propagation, 189 
4-out-of-8 checker, 481 
4-out-of-8 code, see Code. 
Freeze state, 626, 636 
FTMP, see Fault-Tolerant 

Multiprocessor. 
Fully burdened, 305 
Function 

cumulative distribution, 30, 31 
gamma, 32 
hazard,31 
probability density, 30, 31 
probability mass, 30 
reliability, 31 

Functional level test, 369 

Functional recovery, 411 
Functional Redundancy Checking 

(FRC),631 
Functional simulator, 536 
Functional test, see Test. 

Garbage collection, 512 
Gate, 

blocking, 192 
threshold, 151 
TTL logic open-collector, 137 

Gate array, 76, 387 
Gate array failure rate, 391 
Gaussian elimination, 249 
Gaussian process, 273 
General coverage, 78 
Generalized Data Processor (GDP), 

629 
Generator polynomial, 101 
Geometric distribution, 32 

cumulative distribution function, 32 
mean deviation, 32 
probability mass function, 32 
reliability function, 32 
standard deviation, 32 

Geometric progression, 214 
Global executive, 572 
Global executive task, 575 
Go chains, 384 
Goodness-of-Fit test, 35 

Chi-square, 35, 57 
Kolmogorov-Smirnov, 36 

Graceful degradation, 64, 158-160, 
499 

Cm*, 159 
C.mmp, 159 
FTMP, 159 
performance availability models, 

270 
Pluribus, 159 
SIFT, 159 
Tandem, 159 
virtual address mapping, 159 

Ground benign environment, see 
Environment. 

Ground fixed environment, see 
Environment. 

Guardian, 454, 458, 460 

Hamming code, see Code. 
Hamming code memories, see 

Memory. 
Hamming distance, see Code. 
Hamming error, see Error. 
Hamming error-correcting codes, see 

Code. 
Hamming Single-Error-Correcting 

code (SEC), see Code. 
Hamming Single-Error-Detecting/ 

Double-Error-Correcting 
(SEC/DED) code, see Code. 

Hardcore, 524,633 
Hardware MTBS (MTBSH), 433 
Hardware reliability, 462 
Hazard function, 202, 203, 228, see 

also Function. 
Hazard rate, 45 
Heartbeat, 553 
Heat sink, 68 
Hex board, 387 
Hierarchical Design Methodology, 560 
Hierarchy, 4 
Hierarchy of models, see Model. 
High availability systems, 323 

Pluribus, 323 
Tandem, 323 

High-error rate, 379 
High-Gain Antenna (HGA), 542 
High-performance systems, 324 
High-reliability components, 71 
Honeywell checksum, see Checksum. 
Horizontal parity bit, 226 
Horner's method, 250 
Hot spots, 69 
Hybrid redundancy, see Redundancy. 
Hybrid reliability models using 

measured statistics, see 
Reliability. 

Hybrid Triple Modular Redundancy 
(TMR), see Redundancy. 

lAS, 362 
IBM,325 
IBM 4300, 326 
IBM 4341, 194 
IBM 4341,199, 
IBM System/360 

retry, 170 
Identifying the hardcore, 626 
Illegal operations, 363 
I'm alive message, 331 
ILLIAC IV, 500 
Impact of technology on Intel 432, 626 
Implementation, 361 
Incoming inspection, 185 
Incoming inspection program, 11 
Incomplete permutation-non-order-

preserving, 167 
Incomplete permutation-order-

perserving, 167 
Independent mode, 348 
Infancy failure, see Failure. 
Infant mortality, 8, 11,31,185,544 
Infrared Interferometer Spectrometer 

and Radiometer Subsystems 
(IRIS),532 

Inhibit Reporting Correctable Errors, 
398 

Initial Program Load (lPL), 411, 418 
Initial screening, 19 
Initialization, 459, 488 
Initialization sanity check bits, 489 
Input/Output access, 593 



Input/Output Channel, 447, 484 
Input/Output Control (l0C) table, 

447,484 
Input/Output Interrupt Processor 

(I/O IRP), 530 
Input/Output loss, 515 
Input/Output port, 606 
Input/Output Processor (lOP), 526 
Input/Output recovery, 410 
Input/Output Recovery Management 

Support (I/O RMS), 412, 415 
Input/Output retry, 410 
Input/Output supervisor, 414 
Input/Output system, 447-451 
Input/Output Unit (IOU), 425 
Inspection stage, 184 
Installed base, 303 
Instruction 

Move From Processor Register 
(MFPR),372 

Move To Processor Register 
(MTPR),372 

Instruction Buffer (lB), 367 
Instruction Processor (lP), 425 
I nstruction Retry, 410 
Instruction set, 527 
Instruction Set Processor (lSP), 5 
Intel 432, 180,621-636 

Bus Interface Unit (BIU), 629 
capability-based addressing, 629 
checker, 631 
combinatorial recovery, 624 
computer family, 622 
confinement areas, 628-629 
confinement boundaries, 625 
cost/ performance / reliability space, 

622 
defining layers of fault handling, 623 
defining reconfiguration and repair 

boundaries, 625 
defining system objectives, 621 
design methodology for a high 

reliability system, 621 
designing fault-handling 

mechanisms, 626 
detection mechanisms, 627 
duplication, 630 
error logging, 636 
error reporting message, 635 
fault-handling mechanisms, 630 
freeze state, 626, 636 
Functional Redundancy Checking 

(FRC),631 
Generalized Data Processor (GDP), 

629 
Hamming code, see Code. 
hardcore, 633 
identifying the hardcore, 626 
impact of technology on Intel 432, 

626 
Interface ProceSsor (IP), 629 
interlaced parity, 630 

latent faults, see Fault. 
layers of fault handling, 628 
limiting scope, 623 
Memory Control Unit (MCU), 631 
multiprocessor, 633 
packet bus, 629 
packet bus confinement area, 632 
reconfiguration and repair 

boundaries, 628 
reconfiguration region, 625 
repair region, 625 
retry, 625 
scope, 627 
scrubbing, 636 
self-checking, 631 
self-checking module, 629 
standby sparing/graceful 

degradation, 625 
system objectives, 622, 627 
time-out, 631 

Intel 8080, 178 
Interactive consistency vector, 566 
Interface Message Processor (IMP), 

336,498,512 
Interface Processor (lP), 426, 629 
Interlaced code 

in ESS No. 3A processor, see Code. 
Interlaced multiple Hamming code, 

see Code. 
Interlaced parity, 630, see also Parity. 
Interleaving of disk sectors, 356 
Intermittent, 518 
Intermittent error, see Error. 
Intermittent fault, see Fault. 
Internal Data (ID), 370 
Internal Data (lD) bus registers, 377 
Internal fault message, 529 
Internal processor register, 372 
Internal Rate of Return (lRR), 308 
International Business Machines, see 

IBM; see also 
System/360-System/370. 

Interprocessor triad communication 
unjt (lPC), 605 

Interrupt Processor (lRP), 526 
Interrupt vectors, 363 
Interwoven logic, see Logic. 
Invariant with respect to data 

operation, see Code. 
Inventory costs, 306 
Inverse residue-m code, see Code. 
Inverse transform, 250 
Ion 

metal migration, 31 
Iteration rate, 564 
Iterative cell switch, see Switch. 

Jet Propulsion Laboratory (JPL), 523 
Journaling,64,174 
Junction temperature, 68 
Junction temperature of the gate array 

transistors, 393 
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K.bus,46 
Kernel model, 272 
Kernel of the operating system, 273 
Key fault indicators, 554 
Kramer's rule, 249 

Labor Activity Reporting System 
(LARS),391 

Labor expense, 304 
Labor-Hour-to-repair (LH), 196 
LAMP,466 
Language level, 209 
Laplace transform, 210, 248 

rational fraction, 250 
Latency factor, 614 
Latent failure, see Failure. 
Latent faults, see Fault. 
Layers of fault handling, 628 
Level of service, 306 
Level Sensitive Scan Design (LSSD), 

194,198 
Life-Cycle Cost (LCC) model, 311 

change, 317 
generalized data elements, 314 

Life-cycle data, see Data. 
Life-cyle testing, 37 
Life-support system, 307 
Limiting scope, 622 
Line Replaceable Units (LRU), 598, 

602 
Linear equation solving, 249 
Linear-feedback shift registers, 101 
Linear regression analysis, 34 
Linear separable code, see Code. 
LINK,456 
Lin's method, 250 
Local executive, 573,575 
Local-global communicating tasks, 573 
Local variable, 444 
Lockheed SUE minicomputer, 502 
Logic 

control part, 5 
data part, 5 
dotted, 137 
fail-safe, 104-110 
fault-secure, 104-110 
interwoven, 134-138 

critical faults, 134 
cut-set reliability model, 137 
subcritical faults, 134 
weave-pattern, 136 

masking, 133-134 
quadded, 134, 136 
radial, 134, 137,220 
self-checking, 104-110 
switching circuit, 5 

Logic analyzer, 432 
Logic circuit 

combinatorial,5 
sequential, 5 

Logic fault, see Fault. 
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Logic-level fault classes, 26 
circuit, 26 

Logic-level fault models, 26 
bridging, 26 
short or open, 26 
stuck-at, 26 
unidirectional, 26 

Logic malfunctions, 596 
Logic Processor (LOP), 526, 530 
Logical Device Table (LDT), 457 
Logical fault, see Fault. 
Logical word, 226 
Long life systems, 323 

STAR,323 
Voyager, 323 

Loose Synchronization, 562 
Loosely coupled, 499 
Lost Error 397 
Lost-revenue-per-hour, 307 
Low-cost residual code, see Code. 
Lower bound on system reliability, 

223, see also Reliability. 
LRC, 446 
LSI, 76, 77 

custom, 76 
LSI-II, 45, 49,51 
LSI-II bus control signals 

DIN, 347, 351, 355 
DOUT, 347, 351, 355 
IAK,351 
Interrupt ReQuest (IRQ), 348 
RPLY, 347, 351, 355 
SYNC, 347, 351, 355 

LSI-II bus cycles 
DATI,347 
DATa, 347 

LSI-II instructions 
BR,355 
MOV, 355 
TST,355 

Lurking fault, see Fault. 

Machine check, 364, 397 
Machine-Check Handler (MCH), 412, 

417 
Machine configuration, 517 
Machine-Repair / Multiple-Repairmen 

model,277 
Machine-state predication logic, 531 
Macrodiagnostic, 384 
Macrodiagnostic tests, 432 
Magnetic power switches, 532 
Main Arithmetic Processor (MAP), 

526,530 
Main memory, 441 
Main memory performance in the 

presence of errors, see Errors. 
Main memory registers, 379-381, 

398-402 
Main Storage Unit (MSU), 425, 427 

Maintainability, 516-514 
Mean Time To Repair (MTTR), 16 

Maintenance, 432, see also Ownership. 
preventive, see Availability. 

Maintenance Channel (MCH), 
486,491 493 

Maintenance cost model, 306, 309, see 
also Model. 

Maintenance mode, 400 
Majority logic-decoding, 131 
Malfunction consequences, 596 
Malfunction management, 594 
Malfunction sources, 594 
Manual recovery, 490 
Manual troubleshooting, 432 
Manufacturing and installation, 184 
Manufacturing/Inspection failure, see 

Failure. 
Manufacturing stage, 7 

incoming inspection, 8 
infant mortality period, 8 
process maturity testing, 12 

Margin testing, 432 
Markov model, 208, 246-247, see also 

Model. 
continuous-time, 247 
discrete-time, 247 
dual-processor system, 2~2 
Poisson arrivals in failures, 247 
simultaneous differential equations, 

248 
state, 246 
state transition, 246 
time-invariant, 247-255 
time-varying, 255-259 
trapping state, 247, 251 
Triple Modular Redundancy 

(TMR),262 
time-varying, 263 

Masking 
fault, 113 

Masking logic, see Logic. 
Masking redundancy, see Redundancy. 
Massbus, 362, 367 
Massbus Adapter (MBA), 369, 381, 

387,400 
Massbus adapter registers, 383 
Match circuits, 473 
Match mode, 467, 470 
Matcher, 468 
Material expense, 306 
Matrix algebra, 249 
Maximum Likelihood Estimators 

(MLE), 32, 33, 47, 207 
MB3300 timing board, 289 
Mean Likelihood Estimators (MLE) 

Weibull,53 
Mean Number of Instructions 

Executed (MNIE), 324 
Mean Number of Instructions to 

Restart (MNIR), 269 

Mean Time Between Calls (MTBC), 
393 

Mean Time Between Errors (MTBE), 
18 

Mean Time Between Failures (MTBF), 
205,313 

Mean Time Between Software Errors 
(MTBSE), 207, 208 

Mean Time Between Stops (MTBS), 
433 

Mean Time To Crash (MTTC), 16, 
269,324,359 

Mean Time To Detection (MTTD), 65 
Mean Time To Error (MTTE), 16,324 
Mean Time To Failure (MTTF), 7,10, 

12,16,18,45-46,65,205,286, 
296;464-465 

consumer's risk, 8 
Hamming coded memories, 226 
normalized, 231 
producer's risk, 8 
redundant systems, 205 

Mean Time To Repair (MTTR), 16, 
65,205,313,433 

Mean Time To reStart (MTTS), 269 
Mean Time To System Crash 

(MTTSC), 270 
Mean value, see Value. 
Median clock algorithm, 565 
MECRA,157 

microstore recovery, 165 
Memory 

block-coded, 285 
cache, 589,605 
Hamming code, 285 
MOSRAM,18 
NonExistent (NXM), 112 
Programmable Read Only (PROM), 

570 
Random Access (RAM), 41, 472 
Read Only (ROM), 5, 41, 76, 77, 

463,493,526,530 
Read-Write (RWM), 526, 530 
single-bit and whole-chip models 

Mean Time To Failure (MTTF), 
232 

hazard failure, 232 
support circuitry, 230 

Memory-chip failure modes, 225 
Memory Control Unit (MCU), 632 
Memory failures, 515 
Memory Interface (MI), 387 
Memory module, 592, 605 
Memory pl~ted-wire, 546 
Memory protect, 605 
Memory refresh, 353 
MEMREQUEST,570 
Mental discrimination, 209 
Merging, 556 
Messages, 456 
Microbreakpoints, 372 



Microdiagnostic monitor, 385 
Microdiagnostics, 369, 384,493 
Microprocessor, 441 
Microprogramming, 475, 478 
Microsequencer, 393 
Microsequencer and Control Store 

(MCS),387 
Microstore performance in the 

presence of errors, see Errors. 
Microstore remap, 165 
MIL-HDBK-217 

complexity derating factor, 41 
complexity factor, 37, 76 
environmental factor, 37 
field data, 42 
learning factor, 37 
quality factor, 37 
RAM failures, 42 
temperature factor, 37 

MIL-HDBK-217A,8 
MIL-HDBK-217B, 8, 285, 391, 

709-714 
AUTOF AIL, 49, 712 
complexity factor, 710 
environment factor, 710 
FAIL, 49, 712 
learning factor, 709 
pin multiplier, 710 
quality factor, 709 
screening. 710 
temperature acceleration factor, 710 

MIL-HDBK-217C, 8,715-719 
complexity factor, 715 
device complexity factor, 719 
environment factor, 718 
junction temperature, 717 
learning factors, 716 
package complexity factor, 719 
Programmable Read Only Memory 

(PROM) programming 
technique factor, 718 

quality factors, 716 
temperature acceleration factor, 716 
thermal resistance, 717 
voltage stress factor, 717 

MIL-HDBK-472, 317 
MIL-STD-1553, 598, 605 
MIL-STD-883, 38 
Minimal cut, 221 
Minimal cut lower bound, 224 
Minimal cut set, 222, 235 
Minimal test set, 187 
Minimum distance code, see Code. 
Mirrored pairs, 450 
Mirrored volumes, 451 
Mission Module, 542 
Mission Time (MT), 204, 216, 293 
Mission Time Improvement (MTI), 

206,217,293 
Model 

allocation, 579 

combinatorial, 607, 610, 611 
hierarchy, 578 
Markov, 607-610, 612,614 

Triple Modular Redundancy 
(TMR),612 

operating system, 582 
probability, 607 
program, 582 
refinement, 578 
reliability, 579 

Modeling a Triple Modular 
Redundancy (TMR) system, see 
Redundancy. 

Models, universe of, 15 
Modular design, 345 
Modularity, 501, 513 
Module reliability, see Reliability. 
Module time, 45 
Monte Carlo simulation, 259-262 
Morris Electronic Switching System, 

465 
MOS,41 
MOSRAM, see Memory. 
Motorola MC6800, 9 
M-out-of-N,566 

availability, see Availability. 
code, see Code. 
systems, 215-216 

MSI,38 
MSU,431 
Multiple adjacent unidirectional 

errors, see Error. 
Multiple adjacent unidirectional 

failures, see Failure. 
Multiple faults, see Fault. 
Multiple requests/confirmation, 64 
Multiple transmitter, 376 
Multiprocessor, 453, 499, 633 
Multiprocessor executive, 617 
Multiunit duplex configuration, 464 

NAND,49 
NASA,560 
NASA Langley Research Center, 586, 

598 
National defense system, 307 
National Science Foundation, 586 
National Semiconductor IMP-16 

processor, 6 16 
Native mode, 362 
Near-encounter, 542 
Net present value, 307 
Network Control Center (NCC), 336, 

498 
Network log, 51 7 
Newton-Raphson method, 34 
n,k code, see Code. 
n,k cyclic code, see Code. 
N-modular redundancy, see 

Redundancy. 
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NMR, 133, 145 
reconfigurable, 145 

NMR/simplex systems, 150, 152 
No.1 processor, 466-470, see also 

Electronic Switching System. 
No. 101 processor, 470, see also 

Electronic Switching System. 
No. lA processor, 332,466,472-474, 

see also Electronic Switching 
System. 

No.2 processor, 470-472, see also 
Electronic Switching System. 

No. 3A processor, 472, 474-476, see 
also Electronic Switching 
System. 

No.4 processor, 332, see also 
Electronic Switching System. 

NonExisting Memory (NXM), 365, 
see also Memory. 

Non-order-preserving switch, see 
Switch. 

Nonoverlapping failure, see Failure. 
Nonredundant components 

effect, 224-234 
Nonredundant memory reliability 

model, see Reliability. 
Nonserial/nonparallel reliability 

model, see Reliability. 
Normal infancy, 12 
Normalized Mean Time To Failure, 

231 
Numerical integration techniques, 256 
N-version programming, 119 

Observability, 192 
Office of Naval Research, 586 
Off-line repair, see Repair. 
Off-set, 79 
Off-the-shelf components, 346 
Omen, 553 
OMNIBUS, 77, 289 
On-board, Survivable, Integrated, 

Redundant Information System 
(OSIRIS), 586 

On-line billing system, 307 
On-line diagnostics, 518 
On-line error detection, 26 
On-line maintenance, 359, 452 
On-line repair, see Repair. 
On-line test system, 414 
On-line transaction processing, 520 
On-set, 79 
Opcode checking, see Checking. 
Operating environment, see 

Environment. 
Operating system, 455,507-512 
Operating system model, see Model. 
Operational life stage, 12 
Operator Awareness, 410 
Optimal odd-weight column codes, see 

Code. 
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Orbital Astronomical Observatory 
(OAO),212 

Order-preserving switch, see Switch. 
Organization, 590 
Original Equipment Manufacturer 

(OEM),14 
Orthogonal (majority-logic decodable) 

code, see Code. 
Orthogonal Latin square code, 162, see 

also Code. 
Outboard Recording Routine (OBR), 

415 
Overflow checking, see Checking. 
Ownership, 448 

cost of, 14 

Packaging, 71 
Packet bus, 629 
Packet bus confinement area, 632 
Page mode, 398 
Parallel decoding, 123 
Parallel-hybrid redundancy, see 

Redundancy. 
Parity alternatives 

processor-memory bus, 94 
Parity, 376,378,395,402,424, 

426-427,442,469,471,473, 
475,480,506 

AMD,93 
bit-per-byte, 90 
bit-per-word, 89 
buses, 93 
chip, 91 

diagnostic resolution, 91 
chip-wide, 91 
cumulative, 94 
DECSYSTEM 2020, 93 
error log, 378 
interlaced, 91 

whole-chip failures, 91 
PDP-I 1/60, 93 
UNIVAC, 93 

Parity-check code, see Code. 
Parity-check matrix, 87, 123, 178 
Parity code, see Code. 
Parity generation, 87 
Parity of address, 94 
Parity of data, 94 
Parity prediction, 94 
Parity valid bit, 93 
Partial fraction expansion, 250, 252 
Partial space assignment, 297 
Partially Self-Checking (PSC) circuit, 

see Circuit. 
Partitioning, 518 
Password protection 

Pluribus, 113 
Path sensitization, 189 
Payback method, 308 

PDP-IO, 51, 53, 56 
PDP-II, 362, 500, 502 

Single-Error-Detecting/ 
Double-Error-Correcting 
(SEC/DED),128 

PDP-I 1/70, 13, 199 
PDP-8,286 
PDP-8/e, 69, 286 

AUTOFAIL failure rate analysis, 69 
Performability,270 
Performance impact of redundancy, 

see Redundancy. 
Performance measurements 354-360 
Performance-related reliability 

measures, 160 
Performance-reliability, 270 
Periodic model, 271 
Periodic scheduling, 564 
Peripheral systems, 536 
Permanent error, see Error. 
Permanent failure, see Failure. 
Permanent fault, MIL-HDBK-217 

model, 37, see also Fault. 
Permanent Magnet Twister (PMT), 

468 
Phase-locked oscillators, 594 
Phase-locked redundant clock, 619 
Physical defect, 19 
Physical failure, see Failure. 
Physical fault simulation, 465 
Physical malfunctions, 596 
Physical word, 226 
PLA,133 
Pluribus, 335-336, 497-521 

amputation, 506 
application-dependent checking, 511 
ARPAnet, 498 
array processors, 499 
asymmetric system, 499 
buffers, 512 
bus arbiter, 502 
bus coupler, 501, 503, 506 
checksum, 96,513 
common address space, 500 
common memory, 502 
communication page, 510 
configuration map, 509, 511 
consensus mechanism, 510-511 
crossbar switch, 501 
diagnostics, 516 
down-line loading, 518 
field experience, 513 
fix-it, 511 
garbage collection, 512 
graceful degradation, 499 
ILLIAC IV, 500 
Input/Output (I/O) loss, 515 
Interface Message Processor (IMP), 

498,512 
intermittent, 518 

Lockheed SUE minicomputer, 502 
loosely coupled, 499 
machine configuration, 517 
maintainability, 516 
memory failures, 515 
modularity, 501, 513 
multiprocessors, 499 
Network Control Center (NCC), 

498 
network log, 517 
on-line diagnostics, 520 
on-line transaction processing, 520 
operating system, 507 
parity, 506 
partitioning, 518 
password protection, 113 
PDP-II, 500, 502 
processor bus failures, 514 
Pseudo-Interrupt Device (PI D), 503, 

506 
redundancy, 507 
Remote Diagnosis (RD), 517 
reservations systems, 520 
seismic processing, 520 
software 

fault tolerance, 513 
STAGE,508 

hierarchical structure of, 508 
strip, 501, 506 
SUE,502 
symmetry, 499 
throughput capacity, 514 
tightly coupled, 500 
TIP, 498 
traps, 517 
use bit, 512 
watchdog timer, 512 

P.map, 46, 49 
PMT,471 
Poisson distribution, 203, 241 
Polysilicon fuses, 239 
Possible behavior, 578 
Post-encounter, 542 
Postponed maintenance systems, 323 
Power dissipation, 68 
Power failure, 364 
Power-on (PON), 448 
Power supply, 439, 451, 606 
Power supply margining, 432 
Power switching, 526 
PREQUEST, 570 
Preventative Maintenance (PM), 305 
Primary process, 457 
Principal fault-containment region, 

603 
Priority-scheduling strategy, 564 
Private Branch Exchange (PBX), 470 
Privileged user modes, 605 
Probabilistic model, 202-206 
Probabilistic testing, see Test. 



Probability Density Function (PDF), 
see Function. 

Probability Mass Function (PMF), see 
Function. 

Probability models, see Mode/. 
Procedural errors, 463 
Process maturity testing, see 

Manufacturing. 
Process-pairs, 456 
Processes, 455 
Processing module, 561 
Processor, 440 
Processor/bus error table, 575 
Processor bus failures, 514 
Processor-cache memory module, 585 
Processor-cache module, 598, 604 
Processor-cache units, 589 
Processor Configuration (PC) circuit, 

474 
Processor/memory module, 582 
Processor Memory Switch (PMS), 237, 

239,453 
Processor modules, 592 
Processor-pairs, 331 
Processor registers, 397 
Processor synchronization, 564-567 
Product codes, see Code. 
Program behavior, 347 
Program clarity, 209 
Program level, 209 
Program model, see Mode/. 
Program Store (PS), 463, 477 
Program transplant, 431 
Programmable Read Only Memory 

(PROM), see Memory. 
Programmable Read Only Memory 

(PROM) Control Store (CCS), 
393 

Programming effort, 209 
Programming time, 209 
Proof of Correctness, 577-582 
Propulsion Module, 542 
Prototype development, 183 
Proving programs correct, 184 
PSC, 110 
Pseudo-Interrupt Device (PID), 503, 

506 
Pseudo-random number generator, 260 
Pulse-Code Modulated (PCM), 334 
Purchase cost, 306 
Purchase price, 14 
PWRCHK,548 

Q-bus, 347 
Quadded logic, see Logic. 
Quality factors, 48 
Queuing model, 277 

Radial logic, see Logic. 
Radio Frequency Interference (RFI), 14 

Radioisotopic Thermal Generators 
(RTG) 542 

RAMP, see Reliability, Availability, 
and Maintainability Program. 

Random Access Memory (RAM), see 
Memory. 

Random malfunctions, 595 
Random phenomena, 30 
Random variable, 30 
Range check, 112 
Read Data Substitute (RDS), 376, 379 
Read Only Memory (ROM), see 

Memory. 
Read-Write Memory (RWM), see 

Memory. 
Reconfigurable duplication, see 

Duplication. 
Reconfigurable NMR, see NMR. 
Reconfiguration, 140, 160-169,64 
Reconfiguration and repair 

boundaries, 628 
Reconfiguration region, 625 
Recovery, 64, 169-175 
Recovery blocks, 172-173,582 

acceptance tests, 173 
assertion statement, 173 

Recovery Control (REC), 531 
Recovery deficiencies, 463 
Recovery Management, 409 

Program Status Word (PSW), 419 
Recovery Management functions, 420 
Recovery techniques, 487 
Redundancy,6,11,63,507 

checker, 218 
chip yield, 239-246 
component, 63 
dynamic, 140-175,524 

memory reconfiguration, 162 
hybrid,145-149,218,596,597 
masking, 65, 113-140 
N-modular, 114-122 
parallel-hybrid, 587 
performance impact, 281 
self-purging, 150, 161 
sift-out, 160 
static,65, 113 
time, 63, 82 
Triple Modular (TMR), 114-115 

compensating module failures, 221 
modeling a system, 262-263 
optimum placement of voters, 116 
serial systems, 221 
testing of components, 121 
use 

Saturn IB, 117 
Saturn V, 117 

Triple Modular (TMR) hybrid, 161, 
619 

Redundancy dynamic 
advantages, 524 
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Redundancy to enhance chip yield, see 
Redundancy. 

Reed-Muller expansion, 194,195 
Reed-Solomon cyclic code, see Code. 
Refinement of models, see Mode/. 
Refreshing Main Storage, 410 
Regional Customer Obligation File 

(RCOF),393 
Register Transfer (RT), 5 
Registers 

configuration/ control, 372 
data, 372 
diagnostic/maintenance, 372 
status, 372 

Reintegration, 64 
Reliability, 7, 78 

comparative measures, 206 
dynamic redundancy, 66 
Error-Correcting-Code (ECC) 

memory, 226 
fault avoidance, 66 
fault detection, 66 
hybrid models using measured 

statistics, 269-274 
importance of, 3 
levels of modeling 

component, 202 
gate, 202 
module, 202 
system, 201 

lower bound, 235 
lower bound for system, 297 
masking redundancy, 66 
Mean Time To Failure (MTTF), 16 
module, 214 
nonredundant memory model, 229 
nonseries/nonparallel model, 234 
R(t),7 
Row Failure Mode (RFM) model, 229 
Single-Bit-Failure Mode (SBFM) 

model,227-229 
software, 206-211 

axiomatic model, 209 
data domain models, 208 
time domain models, 207 

software-based, 497 
system, 214 
upper bound for system, 297 
upper bound on memory system, 227 
Whole-Chip-Failure Mode (WCFM) 

model,229 
workload-dependent model, 271 

Reliability analysis, 532 
Reliability Analysis Center (RAC), 19, 

37 
Reliability and cost 

design space, 29'1 
Reliability, Availability, and 

Maintainability Program 
(RAMP), 325,361-404 
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Reliability, Availability, and 
Serviceability (RAS), 326 

Reliability Block Diagram (RBD), 
234,297 

Reliability calculation aids, 236 
Reliability / cost trade-off, 285 
Reliability curve 

knee,217,296 
Reliability difference, 206 
Reliability Function, 203 

R(t), see Function. 
Reliability gain, 206 
Reliability graphs, 236 
Reliability model, see also Model. 

expanding around a module, 234 
failure to exhaustion, 211 
failure with repair, 211 
fan-in, 221 
fan-out, 221 
fault dominance, 221 
functionally equivalent faults, 221 
hybrid redundancy, 217 
independent cells, 222 
iterative cell switch, 217 
single parameter summary, 216 
success diagram, 234 

Reliability prediction, 567-568 
Reliability techniques spectrum, 66 
RELOAD,359 
Relocate mode, 530 
Remote Diagnosis (RD), 199,367, 

369,517 
Remote Diagnostic Module (RDM), 

387,402 
Remote maintenance, 432 
Repair, 64, 493 

off-line, 64, 140 
on-line, 64, 140 

Repair costs, 3 
Repair rate, 204 
Repair region, 625 
Repair strategy, 199 

replacement, 199 
shot-gun approach, 199 
swap, 199 

Repair time tail, 196 
Reservations systems, 520 
RESET, 359, 527 
Residual failure, see Failure. 
Residue code, see Code. 
Residue-number-system code, see 

Code. 
Resistor-Transistor Logic (RTL), 470 
Resource allocation, 589 
Restart, 64 
RESTART, 359 
Restoring organ, 134, 160 
RETAIN,326 
Retry, 64, 77, 425, 430, 469, 625 
RFLOSS, 550 
RMS, 362 

RMS/65,419 
Roll back, 64, 169-170, 548 

domino effect, 172 
Roll back (recovery) points, 536 
ROLM,436 
ROM, see Memory. 
Rome Air Development Center 

(RADC), 19,38,391 
Roving spares, 473 
Row Failure Mode (RFM) reliability 

model, see Reliability. 
RSX-11M,362 
RT-11,357 
R(t), see Reliability. 
RTL,137 
Ruggedizing, 436 

Safety factor, 579 
Sales forecast, 16 
Sanders Associates, 38 
Sanity timer, 469 
Saturn V launch vehicle computer, 155 
Save storage, 430 
Scan compare, 427, 432 
Scan network, 432 
Scan slew abort, 553 
Scheduler routine, 575 
Scheduling, 563 
Scope,627 
Screening, 71 
Screening test, see Test. 
Script of diagnostics, 369 
Scrubbing, 636 
SEADS, see Statistical Error 

Analysis Data Summary. 
Seismic processing, 520 
Selective Termination, 410 
Self-checking, 475, 631 
Self-checking circuit, see Circuit. 
Self-checking logic, see Logic. 
Self-checking module, 629 
Self-purging redundancy, see 

Redundancy. 
Self-test, 154 
Self-test program, 619 
Self-test subroutines, 548 
Self-testing, see Test. 
Self-Testing and Repairing (STAR) 

computer, 100-101, 117, 121, 
342,523-542 

CARE,535 
check byte, 528 
Code 

residue, 528 
Computer Control Subsystems 

(CCS),537 
Control and Test (CAT), 531 
control error, 528 
control error detection, 529 
Control Processor (COP), 526, 530 

coverage, 524 
diagnostic instruction, 527 
disagree with bus, 529 
dormant spares, 532 
dynamic redundancy, see 

Redundancy. 
error detection, 525 
error recovery, 525 
functional simulator, 536 
hardcore, 524 
Input/Output Interrupt Processor 

(I/O IRP), 530 
Input/Output Processor (lOP), 526 
instruction set, 527 
internal fault message, 529 
Interrupt Processor (IRP), 526 
Jet Propulsion Laboratory (JPL), 

523 
Logic Processor (LOP), 526, 530 
machine-state predication logic, 531 
magnetic power switches, 532 
Main Arithmetic Processor (MAP), 

526,530 
Memory 

Read Only (ROM), 526, see also 
Memory. 

Read-Write (RWM), see 
Memory. 

peripheral systems, 536 
power switching, 526 
Recovery Control (REC), 531 
redundancy 

dynamic, 524 
reliability analysis, 532 
relocate mode, 530 
RESET,527 
residue code, see Code. 
roll back (recovery) points, 536 
Self-Testing Factor (STF), 534 
SHM,537 
software, 535 
standard mode operation, 527 
static (masking) redundancy, see 

Redundancy. 
status messages, 529 
SYNC, 527 
Test and Repair Processor (TARP), 

526,530 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 536 
TOPS,525 c 

Triple Modular Redundancy 
(TMR),524 

2-out-of-4 code, see Code. 
word error, 528 

Self-testing circuit, see Circuit. 
Self-Testing Factor (STF), 534 
Semaphores, 445 
Semi-Markovian model, 210 
Semiconductor chips 

area defects, 241 



line defects, 241 
spot defects, 241 

SEND,445 
Sensitivity analyses, 309 
Separable code, see Code. 
Sequences 

distinguishing, 192 
synchronizing, 192 

Sequence errors, 556 
Sequential circuits as a cascade of 

combinatorial circuits, 191 
Sequential machines 

error-code state assignments, 140 
SEREP, 417 
Serial decoding, 122 
Serial-bus multiprocessor, 586 
Serial Triple Modular Redundancy 

(TMR) systems, see 
Redundancy. 

Series/parallel system modeling, 211 
probability of failure, 212 

Service costs, 16 
SFTMP, 347 
Shadow box, 157 
Shipment rate, 304 
SHM,537 
Shortened code, see Code. 
Shorting, 169 
SIFT, see Software Implemented 

Fault Tolerance. 
SIFT hardware, 568-572 
Sift-out redundancy, see Redundancy. 
SIFT software, see Software. 
Signal Processor (SP), 334 
Signature analysis, 193 
Signetics, 38, 41 
Silo, 376 
Simulation, 187 
Simulator, 577 
Simultaneous differential equations in 

Markov model, 248 
Single-Bit-Failure Mode (SBFM) 

reliability model, see 
Reliability. 

Single-bit and whole-chip memory 
models 

Mean Time To Failure (MTTF), 232 
hazard failure, 232 

Single-bit column failure mode, 225 
Single-bit row failure mode, 225 
Single-Error-Correcting code (SEC), 

see Code. 
Single-Error-Correcting/ 

Double-Error-Detection 
(SEC/DED),442 

Single-precision checksum, see 
Checksum. 

Site preparation, 14 
SIU,431 
Skewing the address mapping, 162 
S.local,49 

Soft errors, 11 
Soft faults, see Fault. 
Software 

debugging, 207 
execution failure, 208 
fault protection, 546-554 
fault tolerance, 513 
SIFT,570,572-577 
STAR,535 

Software-based reliability, see 
Reliability. 

Software deficiencies, 462 
Software failure rate, 210 
Software Implemented Fault 

Tolerance (SIFT), 119, 152, 
160,342,559-584 

Aircraft Energy Efficiency (ACE E) 
program, 560 

allocation model, see Model. 
axioms, 580 
BDmicroX, 568 
Bendix Corporation, 561, 568 
buffer interface routine, 575 
buffers, 573 
BUSDA T A, 570 
BUSREQUEST, 570 
DATAREADY, 570 
damage isolation, 562 
deadline scheduling, 564 
error-handling routine, 575 
Failure Modes and Effects Analysis 

(FMEA),561 
failure rates, 567 
fault detection, 576 
fault injection, 577 
fault isolation, 562 
fault masking, 563 
fixed preplan ned scheduling, 564 
formal specifications, 582 
global executive, 572-575 
Hierarchical Design Methodology, 

560 
hierarchy of models, see Model. 
interactive consistency vector, 566 
iteration rate, 564 
local executive, 573, 575 
local-global communicating tasks, 

573 
loose synchronization, 562 
M-out-of-N, 566 
median clock algorithm, 565 
MEMREQUEST, 570 
NASA,560 
operating system model, see Model. 
periodic scheduling, 564 
possible behavior, 578 
PREQUEST,570 
priority-scheduling strategy, 564 
processing module, 561 
processor synchronization, 564 
processor /bus error table, 575 
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processor / memory module, 582 
program model, see Model. 
Programmable Read Only Memory 

(PROM), see Memory. 
Proof of Correctness, 577 
recovery blocks, 582 
refinement of models, see Model. 
reliability model, see Model. 
reliability prediction, 567 
safety factor, 579 
scheduler routine, 575 
scheduling, 563 
simulator, 577 
SPECIAL language, 572, 583 
time frame, 564 
transition relation, 578 
transition, 578 
voter routine, 576 

Software MTBS (MTBSS), 433 
Software-related errors, see Errors. 
Software reliability, see Reliability. 
Software science, 209 
Software transparency, 345 
Space shuttle computer, 152 
Spacecraft safing, 543 
Spacecraft subsystems, 337, 340 

attitude control, 337 
command/control/payload,337 
data communications, 337 
downlink,337 
power, 337 
propulsion, 337 
uplink, 337 

Spacecraft systems, 337-342 
cross-checking between units, 338 
hold mode, 338 
self-tests, 338 
trend analysis, 338 

Spanning tree, 236 
SPECIAL language, 572, 583 
Specification errors, see Error. 
Sperry Univac, see Univac. 
S-shaped curve, 217 
SSI,38 . 
Stack top pointer, 444 
STAGE,508 

hierarchical structure of, 508 
Standard deviation, 31 
Standard mode operation, 527 
Standby sparing/ graceful degradation, 

625 
Standby sparing system, 212 

Mean Time To Failure (MTTF), 214 
Mission Time Improvement (MTI), 

214 
STAR, see Self Testing and Repairing 

Computer. 
STAR Computer Assembly Program 

(SCAP),535 
Static (masking) redundancy, see 

Redundancy. 
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Statistical Data Recorder / 
Channel-Check Recorder 
(SDR/CCR),413 

Statistical Error Analysis Data 
Summary (SEADS), 51 

Statistical independence, 203 
Status messages, 529 
Steady-state probability, 251 
Steady-state system availability: 

queuing theory applications, 
277-281 

Steady-state· term, 250 
Stimulus/response, 186 
Stimulus/response testing, see Test. 
Storage Interface Unit (SIU), 425 
STRETCH, 129 
Stress testing, 72 
Stress tests, see Test. 
Strip, 501, 506 
Structural fault, see Fault. 
Stuck-at-faults, 105 
Subsystem interconnection for 

diagnosis, see Diagnosis. 
Subsystem malfunctions, 596 
Success diagram, 234, 296 
Success diagram in reliability 

modeling, see Reliability. 
SUE,502 
Support circuitry in memory, see 

Memory. 
Support processor, 329 
Survival probability, 611 
SVC, 414 
Swapped 

board,12 
Switch 

detection elements and control 
circuitry (SDC), 154 

iterative cell, 149, 155 
non-order-preserving, 155 
order-preserving, 155 
total assignment, 148 

Switch complexity, 148 
Symbolic reliability modeling, 237 
Symmetrics, 238 
Symmetry, 499 
SYNC, 527 
Synchronization, 119, 143, 593 

program task level, 144 
tight, 593 

Synchronizing sequence, see Sequence. 
Synchronizing voter, see Voter. 
Synchronous Backplane Interconnect 

(SBI), 366, 370, 376 
Synchronous Backplane Interconnect 

(SBI) Fault Status, 379 
Synchronous Data Link Control 

(SDLC),103 
Syndrome, 124-126, 177 
SYSl.LOGREC, 413, 416, 418-419 
SYSGEN, 414, 417, 419 

SYSRES, 416 
System availability models, 275 
System clock, 353-354 
System control panel, 491 
System downtime, 462 
System Environment Recording, 413, 

418 
System Environment Recording, 

Editing, and Printing (SEREP), 
413,419 

System exercising, 597 
System Interrupt Vector (SIV), 444 
System life 

design errors, 6 
environmental factors, 6 
error-detection techniques, 6 
redundancy, 6 
stages in, 5 

field operation, 6 
installation, 6 
logic design, 5 
manufacturing, 6 
prototype debugging, 5 
specification of input/ output 

relationships, 5 
System malfunctions, 596 
System objectives, 622, 627 
System packing, 439 
System recovery, 411 
System reliability, see Reliability. 
System repair, 411 
System Restart, 418 
System Support Processor (SSP), 329, 

425 
System-supported restart, 411, 418 
System/360, 326 
System/360-System/370, 409-421 

ABENDS,415 
Alternate Path Retry (ARP), 

415-416 
Channel-Check Handler (CCH), 

412,414 
Checkpoint / Restart, 418 
Dynamic Device Reconfiguration 

(DDR),415-416 
Dynamic Loading, 414 
Environment Record Editing and 

Printing (EREP), 413 
Error-Correcting-Code (ECC), 417 
Error Recovery Procedure (ERPS), 

413,414,415 
functional recovery, 411 
Initial Program Load (IPL), 411, 

418 
Input/Output 

recovery, 410 
retry, 410 
supervisor, 414 

Input/Output Recovery 
Management Support (I/O 
RMS), 412, 415 

Instruction Retry, 410 
Machine-Check Handler (MCH), 

412,417 
On-line test system, 414 
Operator Awareness, 410 
Outboard Recording Routine 

(OBR),415 
Recovery Management, 409 
Refreshing Main Storage, 410 
RMS/65, 419 
Selective Termination, 410 
Statistical Data 

Recorder /Channel-Check 
Recorder (SDR/CCR), 413 

SVC, 414 
SYSl.LOGREC, 413, 416, 418, 419 
SYSGEN, 414, 417, 419 
SYSRES, 416 
System Environment Recording, 

413,418 
System Environment Recording, 

Editing, and Printing (SEREP), 
413 

system recovery, 411 
system repair, 411 
System Restart, 418 
system-supported restart, 411, 418 
VARY PATH, 416 
WTO, 415 

System/370, 326 

Tandem, 435-460 
application process interface, 459 
back up process, 457 
buffer stress, 450 
Bus Receive Table (BRT), 444, 445 
cache, 444 
checkpoints, 457 
checkpoint techniques, 172 
communications protocol, 456 
control buffer, 450 
DC power distribution system, 438 
design goals, 454 
disk controller, 450 
DMA,447 
dual-port controllers, 447 
dual-ported Input/Output (I/O) 

controllers, 438 
Dynabus, 439,440, 441,444 
fire code, 451 
Guardian, 454, 458, 460 
I'm alive message, 459 
initialization, 459 
Input/Output Channel, 447 
Input/Output Control (IOC), 444 
Input/Output Control (lOC) table, 

447 
Input/Output (I/O) system, 447 
LINK,456 
local variable, 444 



Logical Device Table (LDT), 457 
LRC, 446 
main memory, 441 
messages, 456 
microprocessor, 441 
mirrored pairs, 450 
mirrored volumes, 451 
multiprocessor, 453 
on-line maintenance, 452 
operating system, 455 
ownershi p, 448 
parity, 442 
Power on (PON), 448 
power supply, 439, 451 
primary process, 457 
processes, 455 
processor, 440 
Processor Memory Switch (PMS), 

453 
process-pairs, 456 
ROLM,436 
ruggedizing, 436 
semaphores, 455 
SEND,445 
Single-Error-Correcting/ 

Dou ble-Error-Detection 
(SEC/DED),442 

stack top pointer, 444 
System Interrupt Vector (SlY), 444 
system packing, 439 
T/TAL,444 
watchdog timer, 456, 460 

Tandem and Turn Support Routine 
(TRNSUP), 553, 554 

Tandem Computers, Inc., 4, 84, 300, 
330, 435-460. 

Tandem events, 554 
Tandem 16 architecture, 438 
Tandem 16 NonStop, 435 
TARP, see Test and Repair Processors. 
Taxonomy of system-failure response 

strategies, 65 
TCM burn abort, 554 
TCM turn complete, 554 
TDT(N) network, 167 
Telettra, 199 
Temperature translation, 37 
Test 

Acceptable Quality Level (AQL), 73 
acceptance, 184, 185 
compact, 186 

signature analysis, 187 
DC parametric, 73 
design for, 191 
Design Maturity (DMT), 184 
electrical parametric, 185 
exclusive OR, 186 
exhaustive, 186 
functional, 185, 190 
goodness-of-fit, 35 
probabilistic, 186 

screening 
electrical, 26 
environmental, 26 
mechanical, 26 

self-, 191 
stimulus/response, 183 
stress, 185 

burn in, 185 
over-voltage, 185 
thermal shock, 185 

Test and Repair Processor (T ARP), 
117,152,157,526,530 

Test mode, 193 
Test point, 192, 703 
Testability 

additional inputs to improve, 698 
additional outputs to produce 

distinguishing sequences, 697 
asynchronous circuits, 706 
characterizing set, 697 
checking experiment, 696 
combinatorial circuits, 688 
compatible, 693 
control logic 

use of, 692 
controllability, 692 
counter cycle, 698 
C-testable, 703 
diagnostic shift register, 702 
distinguishing sequence, 696 
incompatible, 693, 695 
initialization of sequential circuits, 

706 
iterative array, 702 
locating sequences, 697 
minimally tested logic networks, 694 
prime implicant, 691 
prime tree, 691 
Reed-Muller expansion, 688, 690 
restricted tree, 691 
ring-sum expansion, 689 
sequence rotation, 694 
sequential circuits, 696 
shift register modifications for 

synchronous circuits, 700 
synchronizing sequence, 697, 706 
test set, 689 
three-level OR-AND-OR, 691 
unate function, 691 

Testable logic design, 687 
Testing 

Design Maturity (DMT), see 
Manufacturing Stage. 

Testing graph, 698 
Texas Instrument's Advanced 

Scientific Computer (ASC), 69 
Texas Instrument's Class C 

qualification process, 72 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 536, 542 
Third-party service, 303 
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Threshold,53 
Threshold detector, 149 
Threshold gates, see Gate. 
Threshold voter, see Voter. 
Throughput capacity, 514 
Tightly coupled, 500 
Tight Synchronization, see 

Synchronization. 
Time frame, 564 
Time-invariant Markov model, see 

Markov model. 
Time Multiplexed Switch (TMS), 334 
Time out, 469, 488, 631 
Time redundancy, see Redundancy. 
Time Slot Interchange (TSI), 334 
Time-To-Repair (TTR), 196 
Time-varying Markov model, see 

Markov model. 
Timeouts, I 10-112 

UNIBUS, 112 
Timer, 487 

bus arbiter, 111 
TIP, 498 
Tolerance renewal mechanism, 597 
TOPS, 53, 56, 525 
Totally Self-Checking (TSC) circuit, 

see Circuit. 
Trace bit, 364 
Trade-off analysis in system design, 

285 
Trade-off between detection and 

correction capability, see 
Capability. 

Training costs, 306 
Transient, 51 
Transient error, see Error. 
Transient failure, see Failure. 
Transient fault, see Fault. 
Transient term, 250 
Transistor array, 76 
Transition, 578 
Transition probabilities matrix, 210 
Transition relation, 578 
Translation Buffer (TB), 370, 378, 397 
Trap, 363, 517 
Trapping state in Markov model, see 

Markov model. 
Trend analysis, 198 
Triads, 588, 590 

FTMP, 152 
Triple Modular Redundancy (TMR), 

140,148,157,179,215,218, 
286, 524, 598, see also 
Redundancy. 

failure process renewals, 265 
Markov model, see Markov model. 
Mean Time To Failure (MTTF), 216 
Mission Time Improvement (MTI) 

comparision of models, 263 
Mission Time Improvement (MTI) 

with failure process renewals, 267 
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Triple Modular Redundancy (TMR) 
availability, see Availability. 

Triple Modular Redundancy (TMR) 
hybrid, 587, see also 
Redundancy. 

Triple Modular Redundancy 
(TMR)/simplex systems, 150 

Triple Modular Redundancy (TMR) 
time-varying Markov model, see 
Markov model. 

TRNSUP,554 
Trouble Locating Manual (TLM), 466 
TSC, 105, 107, 108 
TSC comparator, 106 
T/TAL,444 
TTL logic open-collector gates, see 

Gate. 
TU 58, 395 
2 x 2 crossbar switching cells, 166 
2-out-of-4 code, see Code. 

UDET 7116,142 
Uncorrectable-Error /Information 

Lost, 398 
Underflow checking, see Checking. 
Unexpected-Read Response, 376 
Unibus, 362, 367 
Unibus Adapter (UBA), 369, 379, 382, 

387,393,400 
Unidirectional errors, 479, see also 

Error. 
Unidirectional faults, 85, 87 
Unidirectional voter, 348 
Uninterruptible Power Supply (UPS), 

14 
Unit Under Test (UUT), 185 
Univac 1100 

bad disk block mapping, 159 
Univac 1100/40,424 
Univac 1100/60,326,423-433 

automatic error log, 432 
Availability, Reliability and 

Maintainability (ARM), 423 
cache, 425 
cache disability, 159 
diagnostic programs, 428 
duplication, 427 
ECL,425 
Error-Correcting-Code (ECC), 428 
error recovery, 429 
failures in the microstore, 163 
fault detection, 427 
fault injection, 431 
fault isolation, 428 
hardware MTBS (MTBSH), 433 
Input/Output Unit (IOU), 426 
Instruction Processor (IP), 425 
Interface Processor (lP), 427 
logic analyzer, 432 
macrodiagnostic tests, 432 

macroinstructions 
retry, 170 

Main Storage Unit (MSU), 426, 428 
maintenance, 432 
manual troubleshooting, 432 
margin testing, 432 
Mean Time Between Stops (MTBS), 

433 
Mean Time To Repair (MTTR), 433 
microstore inversion, 165 
parity, 424, 427, 428 
power supply margining, 432 
program transplant, 431 
remote maintenance, 432 
retry, 425, 431 
save storage, 430 
scan compare, 428, 432 
scan network, 432 
software MTBS (MTBSS), 433 
Storage Interface Unit (SIU), 426 
System Support Processor (SSP), 

426,431 
transient pause, 165 
VLSI chips, 424 

Univac 1100/80,424 
Univac 1108,424 
Universe of models, see Models. 
Update and Match unit (UPM), 143 
Uplink, 542, 550 
Uplink table, 551 
Upper bound on memory system 

reliability, see Reliability. 
Use bit, 512 
User Environment Test Package 

(UETP),386 
User-Mode Diagnosis, 369,404 
User-mode microdiagnostics, 402 

Value 
expected, 30 
mean, 30 

Variable cost, 309 
Variance, 203 
Variance of 2/x, 30 
VARY PATH, 416 
VAX-II, 361 

access mode 
Executive, 364 
Kernel, 364 
Supervisor,364 
User, 364 

Address Translation Buffer (A TB), 
369 

Backplane Interconnect, 369 
breakpoint instruction, 364 
cache, 369 
compatibility mode, 362 
Console Subsystem, 367 
console terminal, 366 
Error-Correcting-Code (ECC), 369 
error log, 369 

exception vectors, 363 
faults, 362 
Floating Point Accelerator (FPA), 

367 
functional level test, 369 
illegal operations, 363 
Instruction Buffer (lB), 367 
interrupt vectors, 363 
machine check, 364 
Massbus Adapter (MBA), 369 
native mode, 362 
NonExistent Memory (NXM), 365 
power failure, 364 
Reliability, Availability, and 

Maintainability Program 
(RAMP), 361--404 

Remote Diagnosis (RD), 367, 369 
Synchronous Backplane 

Interconnect (SBI), 365 
trace bit, 364 
trap, 363 
Unibus Adapter (UBA), 369 
User-Mode Diagnosis, 369 
Virtual Memory System (VMS), 

362,404 
Writable Control Store (WCS), 367 

VAX-Ilj750, 194,325,329,361 
board swap,404 
cache, 398 
cache disability, 159 
chip-level repair, 397,401 
chip socket, 401 
Comet Memory Interconnect 

(CMI), 387, 397 
Data Path Module (DPM), 387, 393 
diagnostic check mode, 398 
Direct Memory Access (DMA), 387 
error-disable mode, 398 
failure rates, 393 
Field Replaceable Unit (FRU), 401 
Floating Point Accelerator (FPA), 

391 
Force Miss, 398 
gate arrays, 387 
gate array failure rate, 391 
Hex board, 387 
implementation, 386 
Inhibit Reporting Correctable 

Errors, 398 
junction temperature of gate array 

transistors, 393 
Lost Error, 397 
Machine Check, 397 
main memory registers, 398 
maintenance mode, 400 
Massbus Adapter (MBA), 387,400 
Memory Interface (MI), 387, 393 
microsequencer, 393 
Microsequencer and Control Store 

(MCS),387 
page mode, 398 



parity, 394,401 
processor registers, 397 
Progammable Read Only Memory 

(PROM) Control Store (CCS), 
393 

Remote Diagnostic Module (RDM), 
387,401 

TU 58, 395 
Translation Buffer (TB), 397 
Uncorrectable-Error /Information 

Lost, 398 
Unibus Adapter (UBA), 387, 393, 

400 
user-mode diagnostics, 401 
user-mode microdiagnostics, 401 
Visibility Bus (V-Bus), 394 
Visibility Bus (V-Bus) socket, 397 
Writable Control Store (WCS), 387 

VAX-ll/750 implementation, 386, 
395 

VAX-II /780,69, 194, 325, 361 
pad disk block mapping, 159 
cache, 370,376 
cache disability, 159 
console subsystem, 370,381 
Corrected Read Data (CRD), 376 
CRC instruction, 104 
Diagnostic Control Register, 381 
Diagnostic Supervisor, 385 
error log, 378, 386 
Error-Correcting-Code (ECC), 379 
Error-First-Pass, 376, 379 
Error Status Register, 377 
Floating Point Accelerator (FPA), 

372 
High-Error-Rate, 379 
instruction 

Move From Processor Register 
(MFPR),372 

Move To Processor Register 
(MTPR),372 

Internal Data (lD), 370 
Internal Data (lD) bus registers, 377 
internal processor register, 372 
macrodiagnostic,384 
main memory registers, 379 
Massbus Adapter (MBA), 381 
microbreakpoints, 372 
microdiagnostics, 384 
Multiple Transmitter, 376 
parity, 376, 378 
Read Data Substitute (RDS), 376, 

379 
registers 

configuration/ control, 372 
data, 372 
diagnostic/maintenance, 372 
status, 372 

Silo, 376 
Synchronous Backplane 

Interconnect (SBI), 370, 376 

Synchronous Backplane 
Interconnect (SBI) Fault Status, 
379 

Translation Buffer (TB), 370, 378 
Unexpected-Read Response, 376 
Unibus Adapter (UBA), 379 
User Environment Test Package 

(UETP),386 
Visibility Bus (V-Bus), 370, 381 
watchdog timer, 111 
Writable Control Store (WCS), 372, 

376 
VAX-II /780 implementation, 

370-386 
Verification, 198 
Vertical parity bit, 226 
Virtual Memory Storage (VMS), 362, 

404 
Visibility Bus (V-Bus), 194, 198,370, 

381,394 
Visibility Bus (V-Bus) socket, 397 
Visual inspection, 72 
VLSI chips, 424 
Voiceband Interface Frame (VIF), 334 
Voltage margining, 472 
Voter routine, 576 
Voter, switch, and disagreement 

detector (VSD), 147 
synchronizing, 119 
threshold, 149 

Voter synchronizing, 289 
Voting, 346 

adaptive, 145, 149-154 
sensors, 121 

Voting mode, 348 
Voyager, 338, 340, 342,541-557 

AACS Power Code Processing 
(AACSIN), 552 

Attitude and Articulation Control 
Subsystem (AACS), 544 

bad/no echo response, 554 
celestial reference loss/acquisition, 

553 
CMDLOSS,551 
Command Computer Subsytem 

(CCS),546 
command parity error, 554 
command sequence error, 554 
cruise science, 542 
design validation, 554 
downlink, 550 
downlink table, 551 
environmental factors, 556 
equipotential spacecraft, 542 
error, 548 
Failure Mode, Effects, and 

Criticality Analysis (FMECA), 
542 

far-encounter, 542 
fault protection software, see 

Software. 
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fault tolerance, 544 
heartbeat, 553 
High-Gain Antenna (HGA), 542 
infant mortality, 544 
Infrared Interferometer 

Spectrometer and Radiometer 
Subsystems (IRIS), 552 

key fault indicators, 554 
memory plated-wire, 546 
merging, 556 
Mission Module, 542 
near-encounter, 542 
Omen, 553 
post-encounter, 542 
roll back, 548 
Propulsion Module, 542 
PWRCHK,548 
Radioisotopic Thermal Generators 

(RTG) 542 
RFLOSS,550 
scan slew abort, 553.". 
self-test subroutines, 548 
sequence errors, 556 
software 

fault protection, 545 
spacecraft safing, 543 
STAR, 542 
Tandem and Turn Support Routine 

(TRNSUP), 553, 554 
Tandem events, 554 
TCM burn abort, 554 
TCM turn complete, 554 
Thermoelectric Outer Planet 

Spacecraft (TOPS), 542 
TRNSUP,554 
uplink table, 551 
uplink, 542, 550 

VSD,148 

WAIT instruction, 350 
Warranty period, 73 
Wa,tchdog timer, 110-12, 142,445, 

460,512 
ARPANET, III 
Pluribus, III 
VAX-ll/780,111 

Wei bull distribution, 31, 53 
cumulative distribution function, 31 
graphical linear regression analysis, 

34 
hazard function, 31 
Maximum Likelihood Estimators 

(MLE),34 
mean deviation, 32 
probability density function, 31 
reliability function, 31 
scale parameter, 31 
standard deviation, 32 

Weibull function, 204 
Weibull hazard function, 202 
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Weighted sum, 150 
Whole-Chip Failure Mode (WCFM), 

225 
Whole-Chip Failure Mode (WCFM) 

reliability model, see 
Reliability. 

Word error, 528 
Workload dependence, 11 
Workload-dependent reliability model, 

see Reliability. 
Writable Control Store (WCS), 367, 

372,377,387 
WTO,415 

Xerox Alto, 96 
Bravo editor, 174 

XOR,89 
modulo-2 addition, 89 

Yield, 244 

Z8080,568 








