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Preface 

Like the first edition of our book, the intention of this second edition is 
twofold: to teach the architecture and organization of computer systems, 
and to provide a single reference on the details of one specific computer 
system, the VAX. Since the first edition, there have been many changes in 
the field and we wanted to reflect those changes in this edition. Also, we 
have used this book for several years to teach an undergraduate course in 
computer architecture and assembly language at the University of Wash­
ington. Based on this experience, we wanted to revise and expand the 
book to further develop our conceptual and pedagogical approach, partic­
ularly with respect to assembly language programming. 

The book is divided into two parts. The first part, Chapters 1 through 
10, is concerned with the architecture of a computer as seen by the 
assembly language or systems programmer. Chapters 1 through 8 cover 
the essentials normally taught in an assembly language or systems pro­
gramming course. We have expanded the material from the first edition, 
added more examples, updated our coverage of the VAX and the VAX 
family, and provided a complete chapter on the assembler and debugger. 
Our examples use the VAX/VMS assembler syntax and I/O routines, but 
for those who wish to use Ultrix or Berkeley VAX/Unix, Appendix A 
describes the Ultrix assembler and how it differs from the VAX/VMS 
assembler. Chapter 9 is a short but unique new chapter on systems perfor­
mance evaluation. It describes methods used to evaluate architectures and 
presents measurements that show how the VAX is used by real programs. 

We believe that the best way to understand computer architecture is 
first to gain detailed experience with one specific architecture, and then to 
examine general principles. Thus, after examining the specifics of one 
machine, the VAX, Chapter 10 turns to architectural concepts that apply to 
all computers. The reader is introduced to instruction set design and the 
instruction-level architectures of four diverse computers for comparison 
with the VAX. The four systems chosen are the IBM 370, the CDC 6400, the 
Intel 80386, and the Berkeley RISC. The final section of that chapter 
examines the move toward reduced instruction set computers and the 
reasons for that trend, as well as describing the Berkeley RISC architec­
ture. 

The second part of the book, Chapters 11 through 16, considers 

xvii 
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system-level issues in computer architecture, including high-level opera­
ting system support and low-level implementation alternatives. We believe 
that these chapters contribute to the unique aspect of our book, and have 
therefore developed them in several directions. Chapter 11 considers 
physical level I/O and related issues, such as network interconnection 
alternatives. Chapters 12 and 13 are a study of the relationship between 
architecture and operating systems. Chapter 12 provides a substantial 
discussion of architectural support for operating systems, and how the 
VAX architecture supports virtual memory, protection, processes, and so 
on. Chapter 13 describes the structure of the VAX/VMS operating system, 
concentrating on how it uses the architectural features described in 
Chapter 12. 

Caches are now essential for increasing system performance, even on 
low-end computer systems, and Chapter 14 concentrates on the design of 
caches and translation buffers. The chapter describes issues and alterna­
tives in cache design. Additionally, the chapter includes a discussion of the 
difficulties encountered with today's high-performance machines, such as 
cache coherency in multiprocessors and the need for multilevel caches. 

To understand how a complex instruction set such as the VAX is 
implemented, and to appreciate alternatives such as the reduced instruc­
tion set (RISC) and very-long instruction word (VLIW) machine designs, 
one must examine the use of microprogramming. Chapter 15 is a new 
addition to the book; it presents the concepts and develops the multiple 
facets of microprogramming. Once the general concepts are presented, 
this chapter describes the microarchitecture of a real VAX implementa­
tion, examines the format and operation of its microinstructions, and 
shows how those microinstructions are used to execute the VAX instruc­
tion set. 

Our final chapter, also new to the second edition, is concerned with 
parallel processing techniques that are becoming commonplace in the 
computer marketplace. Chapter 16 examines the internal use of parallel­
ism within a processor (for example, pipelining), as well as the external 
use of parallelism through different interconnection structures to build 
multiprocessor systems. Examples of important multiprocessor systems 
are presented. 

The reader of this book will most likely have programming experience 
in a high-level language and a knowledge of basic data structures. With 
that background and a thorough reading of our text, the reader will gain a 
sound understanding of computer organization and the important issues 
in contemporary computer architecture. The reader will also come to 
appreciate the relationship between the complex demands of today's 
operating systems and applications and the underlying support that is 
provided by the hardware. 

Although the story is told with the VAX as the main character, we 
believe the book is generally applicable to the understanding of any 
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computer system. The techniques developed should enable the reader to 
quickly master any new machine encountered. It should also aid the 
reader in assessing the strengths and weaknesses of a particular architec­
ture. Therefore, we believe that this book can be used successfully both as 
a teaching text for the college student and as a guide for the practicing 
professional. 
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1 Architecture and Implementation 

There are two major levels at which we usually examine any computer 
system: architecture and implementation. Because we often refer to these 
terms, it is important to understand the distinction between them. 

The architecture of a computer system is the user-visible interface: the 
structure and the operation of the system as seen by the programmer. 
Implementation is the construction of that interface and structure from 
specific hardware (and possibly software) components. There can be 
several different implementations of an architecture, each using different 
components, but each providing exactly the same interface to the user. 

For example, let's examine the architecture of a piano. The definition 
of a piano's architecture is the specification of the keyboard, as shown in 
Figure 1.1a. The keyboard is the user (player) interface to the instrument. 
It consists of eighty-eight keys, thirty-six black keys and fifty-two white 
keys. Striking a key causes a note of specified frequency to be played. The 
size and the arrangement of the keys are identical for all piano keyboards. 
Therefore, anyone who can play the piano can play any piano. 

There are many implementations of the piano, as shown in Figure 
1.1 b. The implementation is concerned with the materials used to build 
the instrument. The kinds of wood used, the selection of ivory or plastic 
keys, the shape of the instrument, and so forth, are all implementation 
decisions made by the piano builder. Regardless of the implementation 
decisions made, however, the final product can be played by any piano 
player. 

In a computer system, the architecture consists of the programming 
interface: the instruction set, the structure and addressing of memory, the 
control of input/output (I/O) devices, and so on. There can be several 
implementations of an architecture, for example, one with vacuum tubes, 
one with transistors, and one with very large scale integrated (VLSI) 
circuits. Clearly, each of these implementations would have different size, 
cost, and performance characteristics. However, a program that runs on 
one machine would run on all of the machines following the architecture. 

Organization of This Book 

This book deals primarily with the architecture of one computer 
system: the VAX. VAX computers are manufactured by Digital Equipment 
Corporation. The best way to learn about the VAX architecture is by using 
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Figure 1. 1 Architecture and implementation of the piano 
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a. Piano keyboard architecture 

b. Piano implementations 
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it, and to use it you must become an assembly language programmer. As 
an assembly language programmer, you will learn how to control the 
operation of the hardware system directly. You will also gain a better 
understanding of how a compiler translates a high-level language pro­
gram, and how the processor executes that program. 

The first half of this book develops the basics of assembly language 
programming on the VAX. First, the elementary concepts of processors, 
memories, and instruction execution are introduced. More sophisticated 
addressing techniques are presented, and we build an instruction reper­
toire suitable for problem solving. From there, you will see how the VAX 
instruction set is used to manipulate more complex data structures. 

Later, we use the concepts developed through the VAX to examine the 
instruction set architectures of several other machines: the IBM 360/370, 
the Control Data Corporation Cyber, the Intel 80386, and the Berkeley 
RISC II. This material provides an interesting basis for comparison and 
helps solidify the material already learned. 

The second half of the book deals with the VAX architectural features 
used by the operating system. We show how the VAX supports the resource 
management activities of the operating system and how the VAX/VMS 
operating system uses these facilities. We also examine caches, which are 
memory buffers used to increase performance; microprogramming, a 
technique used for implementing complex systems such as the VAX; and 
multiprocessing, which is becoming a common technique for building 
cost-effective computer systems. 

Review of Number Systems 

Before beginning our examination of computer structures, it is 
worthwhile to review the basics of number systems. Throughout the book 
we use decimal, binary, and hexadecimal number systems. Therefore, the 
reader should be comfortable with these representations and with con­
verting one to the other. Some readers may want to skip this section. 

Number Systems 

All data stored and manipulated in the computer is stored in binary 
form. Integers, floating-point numbers, characters, and instructions are all 
represented as a sequence of binary zeros and ones. When the value of a 
data item is output to a terminal or printer, or when we specify a value for 
input, we usually display the contents using base 8 (octal), base 10 
(decimal), or base 16 (hexadecimal). These bases are easier for humans to 
deal with than long strings of binary digits. However, the value of a unit is 
the same regardless of the base used to represent it. Different bases are 
suitable for different applications. Bases 8 and 16 are particularly useful 
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for looking for patterns of bits within a word, while base lOis useful for 
understanding the decimal value of a word. 

In the weighted numbering system, the value of a numeral depends on 
its position in a number. For example, in base 10 

347 = 3 x 100 = 300 
+4 x 10 = 40 

+7 x 1 = 7 
347 

The value of each position in a number is its positional coefficient. The 
second factor or power of the base is called the digit-position weighting 
value, weighting value, or simply weight. 

Using the positional coefficients and weights, we can express any 
weighted number system in the following generalized form: 

x = XnWn + Xn-JWn-J + ... + X-JW-J + ... +x-mw-m 

where 

Wi = ri (ri = weighting values and r = radix or base) 

and 

o :5 Xi :5 r-1 (Xi = positional coefficients) 

This formalism makes it clear that the largest value of a positional 
coefficient is always one less than base value. Thus, for base 2 (binary), the 
largest coefficient is one; for base 10 (decimal), it is nine. Although this 
may seem intuitively obvious, it is not uncommon for the novice program­
mer or even some old-timers to write illegal numbers while coding 
programs, for instance, 10853 in base 8 or 102 in base 2. Equally confusing 
are bases greater than 10, in which positional coefficients are denoted by 
letters rather than numbers. In hexadecimal, for example, the letters A 
through F represent the numerical values 10 through 15, respectively. 

Examples of writing the full expressions for weighted number systems 
follow: 

140 = 1 x 102 + 4 x 101 + 0 x 10° (base 10) 
= 1 X 27 + 0 X 26 + 0 X 25 + 0 X 24 + 1 X 23 

+ 1 X 22 + 0 X 21 + 0 x 2° (base 2) 
= 2 X 82 + 1 X 81 + 4 x 8° (base 8) 
= 8 X 161 + C x 16° (base 16) 

In other words, 
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14010 = 100011002 = 2148 = 8C16 

Although these examples assume a positive radix, negative radices are 
also possible. For example, assuming a radix of -3, the value 140 can be 
expressed as 

14010 = 2 X (-3)4 + 1 X (-3)3 + 1 X (-3f + 2 X (-3)1 + 2 X (-3)° = 

21122-1 

It is even possible to conceive of nonweighted number systems-and 
such systems do exist-such as "Excess -3" and "2 out of 5," but 
discussion of these systems is beyond the scope of this book. 

Binary and Hexadecimal Representations 

Because of the inherent binary nature of all computer components, 
modern digital computers are based on the binary number system. 
However, no matter how convenient the binary system may be for 
computers, it is exceedingly cumbersome for human beings. Consequent­
ly, most computer programmers use base 8 or base 16 representations 
instead, leaving it to the various system components-assemblers, compil­
ers, loaders, and so on-to convert such numbers to their binary equiva­
lents. Modern assemblers also permit decimal numbers, both integer and 
real (floating-point), to be input directly, a useful convenience for most 
applications programs. Table 1.1 shows the binary, octal, and hexadecimal 
equivalents of the decimal values zero through sixteen. 

Table 1.1 Conversion Table 
Decimal Binary Octal Hexadecimal 

0 0000 0 0 
1 0001 1 1 
2 0010 2 2 
3 0011 3 3 
4 0100 4 4 
5 0101 5 5 
6 0110 6 6 
7 0111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 
16 1 0000 20 10 
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Base 8 and base 16 representations of binary numbers are not only 
convenient but also easily derived. Conversion simply requires the pro­
grammer to separate the binary number into 3-bit (for octal) or 4-bit (for 
hexadecimal) groups, starting with the least significant digit and replacing 
each binary group with its equivalent. Thus, for the binary number 
010011100001, 

010 011 100 001 2 = 2341 8 

and 

0100 11100001 2 = 4E1 16 

This process is performed so naturally that most programmers can 
mentally convert visual representations of binary numbers (computer 
displays) to their octal or hexadecimal representation without conscious 
effort. Special pocket calculators that operate in both octal and hexadeci­
mal are available as an aid in debugging programs. Fortunately, the tools 
of the assembly language programmer-the program listings, linker maps 
(showing locations of variables and modules), and dumps (displays of the 
contents of memory)-are expressed in at least octal or hexadecimal. 
Programmers need not be concerned with bits and binary numbers unless 
they choose to. However, when examining the bit patterns that make up 
the different data elements within the computer, the programmer has no 
alternative but to use bits and binary numbers. The next section examines 
these patterns. 

Negative Numbers 

For any base, there are three common ways to represent negative 
numbers. Negative binary numbers, for example, can be represented in -
sign-magnitude form, one's-complement form, or two's-complement 
form. One might ask, therefore, which form a computer would use in 
performing arithmetic calculations. 

Sign-magnitude numbers are represented by treating the most signifi­
cant bit as the sign bit and the remaining bits as the magnitude. Therefore, 
the 6-bit representation of ± 18 would be: 

+18 10 

-18 10 

0100102 

1100102 

Addition and subtraction require a consideration of both the signs of 
the numbers to be added as well as the relative magnitudes in order to 
carry out the required operation. 

Complement form for negative numbers takes advantage of the 
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continuum of representation. While the most significant bit remains the 
sign bit, the representation of the magnitude is different for negative 
numbers and positive numbers. The one's-complement representation is 
formed by taking the positive number and inverting all the bits. The 
two's-complement representation is formed by adding one to the one's­
complement representation. For example, the 8-bit representations of ± 18 
are: 

+ 1810 

-1810 

-1810 

000100102 

1110110h 
111011102 

One's-complement form 
Two's-complement form 

Sign-magnitude form is rejected in favor of complement form because 
it is more complex to add or subtract numbers using sign-magnitude 
arithmetic. Thus, the choice of form for negative binary numbers is really 
between one's-complement and two's-complement representations. In 
reality, the choice is frequently one of the designer's preference. Generat­
ing one's-complement numbers is easier than generating two's­
complement form. Moreover, from the computer hardware point of view, 
it is more "uniform" to build a one's-complement adder than a two's­
complement adder. On the other hand, one's-complement notation has 
two representations of zero, both a positive and a negative zero: 

0000 
1111 

Zero 
Minus zero in one's complement 

whereas only one zero exists in two's-complement form: 

discarded ~ 1) 

0000 
1111 

0000 

Zero 
One's complement 
Plus one 
Two's complement of zero 

Mathematically speaking, it is inconvenient to have two representa­
tions for zero. It is also more difficult to test for zero, an operation 
performed frequently on computers. As a result, most machines today use 
two's-complement notation to represent negative numbers. Remember 
that one's-complement and two's-complement are simply methods for 
representing signed integers in binary. Positive integers have the same 
representation in both one's complement and two's complement, but 
negative integers have different representations. 

Forming the complement of a hexadecimal number may seem strange 
at first. Compared with binary, where one simply "inverts" the bits, 
hexadecimal complementation requires a subtraction of each digit from 
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hexadecimal <IF" (and an addition of one for the two's-complement result). 
For example, 

3C8E 
C371 

+1 

C372 

Original number 
One's complement 

Two's complement 

Fortunately, as with all such techniques, familiarity comes with use. 
After this brief digression, we can now turn our attention to the 

general structure of computer systems and the architecture of the VAX. 
You will find that an understanding of hexadecimal and binary number 
systems is helpful to your understanding of computer concepts. 

1. Describe the architecture of a typewriter. What parts of the typewriter are not 
part of the architecture? What are some implementation differences among 
different typewriters? 

2. Why do you think it is important to define precisely a computer's architecture? 

3. Why do you think different computer manufacturers build computers with 
different architectures? What does this imply about the importance of 
high-level languages? Why is there a need for standardizing high-level lan­
guages? 

4. What effect do you think the standardization of operating systems will have on 
computer architectures? 

5. What range of integers can be represented in a 12-digit unsigned binary 
number? In a 12-digit two's-complement signed number? 

6. Why are octal and hexadecimal useful for recognizing patterns of binary digits 
but decimal is not? 

7. Is 10234 a legal value in base 8? base 16? base 5? base 4? Express the value 
102345 in base - 3. 

8. Convert 101010101 into hexadecimal and octal. Convert 10A3416 into octal and 
decimal. Negate both values using 32-bit binary two's-complement form. 

9. Add + 18 and -18 using each of the three representations for negative 
numbers. Use 8-bit arithmetic and either binary or hexadecimal representa­
tions. 

10. Perform the following hexadecimal arithmetic: 
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a. 205 - 6 
b. AF9 + 9 
c. 10 * 10 
d. 1 CFF + F2FF 

11. Write a high-level language program that inputs a decimal number and a radix 
and outputs the value of that decimal number in the specified radix. For 
example, if the inputs are 10 and 16, the output should be A (that is, the value of 
10 decimal is A in base 16). Limit yourself to bases less than or equal to 16. 

12. Subtraction can be implemented by complementation followed by addition. 
Suppose you are to subtract -5610 (C8 16) from 2710 (lBI6). Show how this could 
be done. 



2 Computer Structures 
and the VAX 

Depending on the nature of the application and the language chosen, 
programming a computer requires different levels of understanding. For 
most programmers writing in Pascal, for example, the computer appears 
to be a machine that executes Pascal statements and manipulates high­
level data structures. The structure of the underlying hardware is invisible. 

This chapter introduces the fundamentals needed by the assembly 
language programmer. To program at the assembly level, you need a 
thorough understanding of the structure of a computer system, the 
process of program execution, and the nature of memory addressing. 
Once you have this foundation, you can begin to focus on the basics of 
instructions and elementary programming for a particular machine. 

Computer Structures 

Most general-purpose computers have the same basic structure, 
consisting of the high-speed primary memory, the arithmetic control unit 
(typically called the central processing unit, or CPU), and the peripheral 
input and output devices (the I/O system). One or more buses (described in 
more detail later) move data between these components. Although there 
are other components of interest, these units are directly visible to the 
machine-level programmer and are part of the user architecture. Figure 
2.1 shows an organizational representation of this basic structure. 

The Memory 

10 

The memory of a computer is a repository for both instructions and 
data. Memory can be implemented by any device that can retain two or 
more distinguishable states that can be set and sensed. All common 
memories are composed of two-state devices that can represent the values 
zero and one. Hence, each device-such as a magnetic core, a semicon­
ductor flip-flop, or a two-sided coin -can represent one binary digit, or bit. 

Bits in memory are arranged as an array of information units, with 
each information unit composed of a fixed number of bits. Each informa­
tion unit resides in a distinct location in memory, and each location is 
capable of holding one such unit, as shown in Figure 2.2. 
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Figure 2.1 Basic computer structure 
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All memories share two organizational features: 

1. Each information unit is the same size. 

2. An information unit has a numbered address associated with it by 
which it can be uniquely referenced. 

Thus, we say that a memory unit is characterized by two things: 

1. An address, which is its relative position in memory. 

2. The contents, which is a number that is physically stored at the 
particular location in memory. 

As Figure 2.3 shows, memory can be viewed as a large one­
dimensional array, M(i) , where each element of the array contains one unit 

Figure 2.2 Memory organization 
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Figure 2.3 Memory as an array 
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(word) of information. The index, i, is the address of the unit. Using its 
address, we can determine the contents of any unit. It is important to 
remember, however, the difference between the address of a unit, i, and 
the contents of the unit, M(i). 

When a computer is designed, the size of its information units is 
chosen according to the applications for which the computer is intended. 
On many machines, each information unit is known as a word. Word sizes 
typically range from 8 bits on early microprocessors to 64 bits on large 
scientific computers. A word is usually divided into a number of bytes, with 
each byte representing one character. Machines designed for administra­
tive data processing, in which information to be processed includes names 
and letters as well as numbers, are often byte addressable. In these 
machines, the byte is the basic information unit, and each byte has a 
unique address by which it can be accessed. On the other hand, word­
addressable machines are generally used for scientific calculations in 
which large numbers are manipulated and precise numerical results are 
required. 

The key difference between byte and word machines is the size of the 
smallest addressable information unit. For a byte machine, this unit is one 
byte, that is, a unit of information capable of holding a small number or 
representing a letter of the alphabet or a digit. For a word machine, the 
smallest addressable unit is one word, a unit of information capable of 
holding several characters or a large number. Words can often be 
subdivided into a fixed number of characters or digits. In a true word 
machine, however, we can reference only the collection, not the individual 
characters. Thus, the value of the subdivision is its storage efficiency. 

Th~ address space is the set of all addresses, or the collection of 
distinct information units that a program can reference. The size of the 
address space is determined by the number of bits used to represent an 
address. An address is usually less than or equal to the word size for a given 
machine. Early minicomputers and microprocessors typically used 16-bit 
addresses, yielding 216

, or 65,536, unique memory locations. Programmers 
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quickly discovered, however, that 16 bits of address were insufficient for 
representing large data structures or solving complex problems. Typical 
modern computers, including the VAX, use 32-bit addresses that provide a 
memory address space of 232 , or 4,294,967,296, unique addresses and 
therefore can support much larger programs and data structures. While it 
may be hard to imagine using up 4 gigabytes of address space, program­
mers are ingenious in their ability to consume all available computer 
resources. Some applications do require this much data, and we can 
already see machines with address spaces even larger than 232

• 

The Central Processing Unit 

The central processing unit (CPU) is the brain of the computer. The 
CPU is capable of fetching data from and storing data into memory. It 
requests instructions from memory and executes them, performing arith­
metic and logic operations specified by the instructions. The CPU can 
manipulate addresses as well as data. In addition, the processor can 
examine a memory location and follow different program paths, depend­
ing on its value. Finally, the CPU can execute instructions that initiate 
input and output operations on peripheral devices. 

Internal to the CPU are a number of registers that provide local, 
high-speed storage for the processor. These registers can hold program 
data and memory addresses. Some computers have different sets of 
registers to perform different functions, for example, to address arrays or 
to represent floating-point numbers; others have general-purpose registers 
that can be used for any function. 

Also internal to the CPU are one or more status words that describe 
the state of the processor, the instruction being processed, any special 
conditions that have occurred, and the actions to take for special condi­
tions. 

Instruction Execution 

A computer is controlled by a program, which is composed of a 
sequence of instructions. Each instruction specifies a single operation to 
be performed by the CPU. Instructions can be classified into five basic 
categories: 

1. Data movement instructions move data from one location in memory 
to another or between memory and I/O devices. 

2. Arithmetic instructions perform arithmetic operations on the contents 
of one or more memory locations, for example, they add the contents 
of two locations together or increment the contents of a location. 

3. Logical instructions perform logic operations such as AND, OR, and 
EXCLUSIVE OR. 
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4. Comparative instructions examine the contents of a location or com­
pare the contents of two memory locations. 

5. Control instructions change the dynamic execution of a sequence of 
instructions by causing program execution to be transferred to a 
specified instruction, either unconditionally or based on the result of 
a comparative, arithmetic, or logical instruction. 

Instructions are stored in memory along with the data on which they 
operate. The processor fetches an instruction from memory, interprets 
what function is to be performed, and executes the function on its 
operands. Each computer has its own representation of instructions, but 
all instructions are composed of two basic components: 

1. An operation code (opcode), which specifies the function to be 
performed, for example, Add, Subtract, Compare. 

2. One or more operand specifiers, which describe the locations of the 
information units on which the operation is performed. These infor­
mation units are the operands of the instruction. 

An instruction in memory can occupy several consecutive words (or 
bytes): one for the operation code and, optionally, several more for the 
operand addresses. For instance, an instruction to add the contents of 
memory location 100 to memory location 200, shown symbolically as 

ADD 100,200 

can be represented in computer memory as follows: 

t--__ A_D_D_o..!.p_e-:-ra-:-ti_o_n_co_d_e_~ Instruction word ° (opcode) 
t--____ 1_O_O ____ -I Instruction word 1 (first operand address) 
""--____ 2_0_0 ____ --' Instruction word 2 (second operand address) 

<next instruction> 

The processor executes a program by fetching and interpreting 
instructions. The location (memory address) of the next instruction to be 
executed is held in a special internal CPU register called the program 
counter (PC). When the program is loaded into memory, the PC is loaded 
with the address of the first instruction. Using the PC, the CPU fetches this 
instruction, along with any operand specifiers. The operands themselves 
are then fetched, the operation is performed, and any results generated are 



Computer Structures 

Figure 2.4 Instruction execution 
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stored back in memory. Figure 2.4 shows the complete cycle of fetching, 
interpreting, and executing an instruction. 

Note that each time an instruction is fetched, the PC is modified to 
point to the next instruction. Thus, the processor executes instructions 
one after another. Some instructions, like "branch" (the machine-level 
GO TO), affect the flow of control by explicitly changing the contents of the 
PC so that a new location, not the next one in sequence, is taken to be the 
one containing the next instruction to be executed. Otherwise, instruc­
tions are fetched and executed sequentially from memory. 

A computer program, then, consists of two parts: instructions and 
data. When loaded into memory, each instruction and data element is 
located at a unique address. Looking at the program as a string of words or 
bytes, we are unable to differentiate data from instructions because both 
are merely strings of numbers coded in binary. We are also unable to 
differentiate data types because integers, floating-point numbers, charac­
ter strings, and so on, are represented as strings of binary numbers, too. 
Only in context does the program have meaning. 

The key to making sense of the string of numbers representing a 
program is the starting address of that program, since that tells the CPU 
where to find the first instruction to execute. The first instruction in the 
program can be located anywhere in the memory of the computer. The 
programmer specifies the starting address of the program by means of a 
directive to the language translator or to the program loader. (In a 
high-level language, this is the main program or procedure.) When the 
operating system loads the program into memory, it transfers control to 
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that initial instruction by making sure that the initial contents of the PC 
"point to" the address of the starting instruction. As each instruction and 
operand is fetched in sequence, the PC is incremented so that it points to 
the next byte or word to be fetched. 

Classes of Instruction Architectures 

Computer instruction sets vary greatly from machine to machine. A 
later chapter looks at some different architectures to contrast them with 
the VAX, which is presented in more detail. In general, however, we can 
classify instruction sets into several categories. These categories are 
chosen based on the operand-addressing techniques available in the 
machine. 

Simplest of the ,categories are zero-address instruction sets, also 
known as stack-based instruction sets. Part of the processor state for such 
a machine includes a stack pointer to the top of a stack. The stack, which is 
simply a last-in first-out list, can be stored in memory or in the processor. 
The stack pointer is an implicit operand for most instructions and does not 
need to be specified explicitly. For example, on such a machine, the 
instructions 

PUSH A 
POP B 

cause the contents of memory location A to be placed on the top of the 
stack (as a result of the PUSH); the contents of the top of the stack are then 
removed and copied into memory location B (as a result of the POP). 
Arithmetic instructions always operate on the top one or two elements of 
the stack, depending on whether they are unary or binary operations. For 
example, the instruction 

ADD 

would add the two top elements of the stack together, popping those 
elements from the stack and pushing the sum onto the top of the stack. 
Such machines are called zero-address machines, because arithmetic 
operations such as ADD have no operands; the operands are implicitly 
known to be the top two stack elements. Not only do some computers 
operate in this fashion, but some calculators use stacks also. 

A one-address instruction set has, as its name implies, instructions 
with one address. Typically, such machines have a single register, called 
the accumulator. Just as the stack is an implied operand for instructions 
on the stack machine, the single accumulator is the implied operand for 
instructions on the one-address machine. Suppose we want to add the 
contents of memory locations A and B, putting the result in location C. On 
a one-address machine we would probably write 
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LOAD A 
ADD B 
STORE C 
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The LOAD instruction loads the contents of memory location A into the 
accumulator, while the ADD adds the contents of location B to the 
accumulator. Finally, the STORE instruction copies the contents of the 
accumulator into memory location C. Architectures such as this, in which 
arithmetic can be done only in registers, are known as load and store 
machines. In such machines, it is not possible to add a number directly to 
a memory location. Instead, one operand must first be loaded into a 
register and the summation formed there. 

A two-address instruction set allows two operands to be specified in 
the instruction, for example, 

ADD A,B 

adds the contents of location A to the contents of location B. When the 
addition is completed, the contents of location A are unchanged, and 
location B contains the sum. Finally, three-address instructions such as 

ADD A,B,C 

allow the result of the summation to be written to a third location. 
These are just some of the options available to the designer of an 

instruction set, and many tradeoffs can be made. Some instruction sets 
have characteristics of several of these options. In general, the more 
operands an instruction set allows, the more powerful instructions tend to 
become. But as the instruction set becomes more powerful, the hardware 
required to implement that instruction set becomes more complex. 

The Input/Output System 

Connected to the processor and memory are several input and output 
(I/O) devices. The I/O devices allow the processor to communicate with 
humans, with other processors, and with secondary storage devices that 
are slower than main memory but larger in capacity. 

The most common devices are magnetic disks, magnetic tapes, 
terminals, and printers. Magnetic disks and tapes provide large online or 
backup storage for programs and data. These devices are usually capable 
of transferring large blocks of data directly to primary memory. In 
contrast, the processor must feed or retrieve one character at a time to or 
from most terminal devices. 

Because all these devices are slow compared to the execution speed of 
a modern CPU, systems are designed to overlap processing with I/O. That 
is, the processor begins an I/O operation on a device and then continues 
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executing program instructions. The processor can check later to see if the 
operation is complete, or the device can signal when it is done. 

One or more data buses can be used to interconnect the CPU, 
memory, and I/O devices. Some computers have two (or more) buses, one 
to connect the memory to the CPU, another to connect I/O devices to the 
CPU. Other computers use one bus for all transfers among I/O devices, 
memory, and the CPU. Figure 2.5 shows some alternatives in the intercon­
nection of the CPU, memory, and I/O devices. 

Whether there is one bus or several, the purpose remains the same: to 
carry address, data, and control signals among the devices connected to 
the bus. The address and control signals specify the device and the 
function to be performed on the data. The bus is like a common highway 
for computer information flow. Any device connected to it can place 
information onto the highway; conversely, any device can take informa­
tion from the bus. The bus thus provides an efficient means for passing 
information among the functional units connected to it. 

Describing Computer Structures 

From a structural level, computers consist of the basic components 
we have described: processors, memories, buses, I/O devices, and so on. 
One way to describe the structure of a computer is to use a notation called 
PMS, for processor, memory, and switch. PMS notation is described in 
detail in Computer Structures: Principles and Examples by Siewiorek, Bell, 
and Newell. The objective of PMS is to provide a pictorial means of 
showing the high-level organization of a system. 

A PMS diagram consists of a stick-figure drawing of a system's 
components connected with lines showing the physical interconnection. 
Some of the component types shown are 

• P (processors). The central processor, shown as Pc, controls the overall 
operation of a computer. However, a computer can have other 
processors, for example, an I/O processor, Pi 0, or a slave processor, 
Pslave. 

• M (memories). Computers have several levels of memories, such as 
the primary memory, Mp, or secondary memories, Ms. 

• S (switches). A switch is a bus or any device that interconnects several 
components of the system, transferring information to one or more 
components at a time. 

• L (links). A link is a point-to-point interconnect between two specific 
components of a system. 

• T (transducers). A transducer changes information from one form to 
another, for example, from electrical impulses to mechanical actions. 
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Figure 2.5 Alternative bus structures 
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Terminals, line printers, tape readers, and card readers are all 
transducers . 

• K (controllers). A controller is a unit that manages the actions of 
another device, typically an I/O device. 

Figure 2.6 shows a PMS diagram of a VAX 8800 configuration. A 
component description can be augmented with details about specific 
characteristics of the component, or the details can be listed as a footnote, 
for example, 

Pc['CVAX; 80ns cycle time; technology: CMOS VLSI microprocessor] 
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Figure 2.6 VAX 8800 PMS diagram 
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2. Pe['Second processor on dual processor VAX 8820] 
3. S['Memory interconnect bus; 32-bit; synchronous; 4/16/32 byte transfer; 45ns cycle; 

60 megabytes/second] 

4. Mp[16 megabytes/module; MOS dynamic RAM] 

5. K['Memory bus to BI adapter] 
6. S['BI bus; 32 bit; synchronous; 200ns cycle] 

Introduction to the VAX 

The VAX is a general-purpose digital computer manufactured by 
Digital Equipment Corporation. The VAX architecture was designed to 
extend the addressing capabilities of its predecessor, the PDP-11 mini­
computer; hence, the name VAX, for Virtual Address eXtension. Over a 
dozen VAX implementations have been produced. 
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The VAX has a high-level architecture that contains many features to 
support operating systems and compiler code generation. The VAX in­
struction set currently includes over 300 instructions and over 20 formats 
for operand specifiers, called addressing modes. This flexibility enables the 
programmer and the compiler to select instruction and addressing combi­
nations that are both space- and time-efficient. Thus, algorithms imple­
mented with the VAX instruction set architecture are generally compact 
(compared to the same algorithm implemented on other architectures, 
including the PDP-II) and fast (compared to programs running on other 
machines using the same hardware technology).! 

Figure 2.7 shows the logical organization of a VAX 8810 computer 
system. In fact, each VAX implementation has a different internal struc­
ture that was chosen for the particular price and performance range of the 
machine. Figure 2.7 resembles the structure of the general computer 
shown in Figure 2.1. The VAX CPU shown in the center of Figure 2.7 is the 

Figure 2.7 VAX organizational structure 
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lIn fact, there is controversy as to whether high-level architectures like the VAX or much 
simpler "reduced instruction set computers" (RISCs) will achieve better performance. We 
discuss this further in Chapter 10. 
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master controller of the VAX system. The processor contains sixteen 32-bit 
general-purpose registers that provide high-speed local storage for pro­
grams. Several of these registers have special uses; in particular, one is the 
program counter and one is used as a stack pointer. Also internal to the 
CPU is the 32-bit processor status longword (PSL) that contains informa­
tion about the processor and the current state of the program being 
executed. The PSL is composed of two 16-bit words. The lower 16 bits, 
called the program status word (PSW), contain information about the user 
program and are user accessible. The upper 16 bits contain privileged 
processor information and can be modified only by the operating system. 
Thus, the user program can examine and change program state informa­
tion, but processor state is protected from user modification. 

A common system bus connects the CPU, memory, and I/O buses. 
Through this bus, all input and output devices are connected so that they 
can communicate with each other, as well as with the CPU and memory. 
Indeed, it may be possible for I/O devices to send and receive data among 
themselves and memory without processor intervention. 

A memory controller connects the CPU to the memory subsystem. 
The controller can perform functions such as reading large amounts of 
data at a time in anticipation of future requests, buffering read and write 
requests, and so on. Current large VAX systems allow for several hundred 
megabytes of primary memory; smaller single-user VAXes are typically 
configured with 10 to 20 megabytes. 

New VAXes are typically designed with their own internal system bus 
through which memory and components of the CPU communicate. To 
allow existing I/O devices to be attached to the new bus, special bus 
adapters are designed. These adapters allow existing devices to be connect­
ed to the VAX system without change, thereby offering benefits in 
development cost and time. Devices can thus be made immediately 
available for a new machine by providing an interface between the new 
computer bus and existing I/O buses. 

For example, many VAX implementations use an I/O bus called the 
backplane interconnect (BI), to which numerous device controllers con­
nect. If a user has peripherals that use an older bus called the Unibus, a 
special BI-to-Unibus adapter can be used; the older Unibus devices 
connect to a Unibus, which attaches to the BI-to-Unibus adapter, which 
attaches to the BI bus. 

VAX Information Units and Data Types 

We have already described byte-addressable and word-addressable ma­
chines. In the context of that discussion, it is appropriate to say that the 
VAX is a byte-oriented computer. The basic information unit on the VAX is 
the 8-bit byte. However, the instruction set is also capable of operating on a 
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Figure 2.8 VAX information units 
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number of other information units formed by groups of bytes and bits. The 
multiple-byte units are the 16-bit word (two bytes), the 32-bit longword 
(four bytes), the 64-bit quadword (eight bytes), and the 128-bit octaword (16 
bytes), shown in Figure 2.8. Each of these information units is formed by a 
sequence of contiguous bytes. The unit is always addressed by the 
low-order byte of the group. Note that the bits within any information unit 
are numbered from the least significant bit, bit 0, on the right. The most 
significant bit (bit 7, 15, 31, 63, or 127 for byte, word, longword, quadword, 
or octaword, respectively) is on the left. 

For example, suppose the bytes beginning at location 400 in memory 
have the values shown below: 

I 08 I 07 I 06 I 05 I 04 I 03 I 02 01 I :400 

Location 400 is the address of a byte whose value is 01 16. It is also the 
address of the word whose value is 0201 16, the longword whose value is 
04030201 16, and the quadword whose value is 0807060504030201r6. Simi­
larly, location 401 is the address of the byte whose value is 02 16, the word 
whose value is 0302 16, and so on. Every information unit is addressed by its 
low-order byte; it is up to the compiler or the assembly language program­
mer to determine what information units are stored at which addresses 
and to use the proper instructions to manipulate them. 
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Figure 2.9 Variable-length bit field 
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VAX registers can store any of the VAX information units. Since each 
register is 32 bits, a register typically holds a single longword. However, 
two adjacent registers can hold a quadword and four adjacent registers can 
hold an octaword. In this case, the entire information unit is named by the 
lower numbered of the adjacent registers. That is, if a quadword is stored 
in register 2 (R2) and register 3 (R3), we specify the unit by R2. 

Another information unit found in the VAX is the variable-length bit 
field. The bit field is different in that the basic addressable unit is based on a 
length measured not in bytes but in bits. A bit field can be from 0 to 32 
contiguous bits in length and can be located arbitrarily with respect to the 
beginning of a byte. To describe a bit field, three attributes are required: 
(1) a base address of a particular byte in memory chosen as a reference 
point for locating the bit field; (2) a bit position that is the starting location 
of the field with respect to bit 0 of the base address byte; and (3) a size 
giving the length of the bit field in bits. For example, Figure 2.9 shows a bit 
field with base address A, bit position P, and size S. 

Bit fields are commonly used to pack multiple information fields 
tightly together. For example, Boolean values (sometimes called "flags") 
can be packed eight per byte. In this context, bit field instructions allow the 
programmer to manipulate fields smaller than a byte. 

The byte, word, longword, quadword, and octaword are the funda­
mental information units of the VAX. Built on these information units are 
data types, which are interpretations of the bits contained in the units. All 
information units contain a string of binary digits, but a unit can represent 
an integer, a letter of the alphabet, a real number, and so forth. The VAX 
processor is capable of manipulating a great variety of data types. The 
choice of data type allows the programmer (or the compiler) to produce 
compact programs using those data types most closely tailored to his or 
her needs. There is also a full set of instructions for converting easily from 
one data type to another, which reduces the complexity of many pro­
grams. 

Integers are represented as both unsigned binary numbers and 
two's-complement signed numbers, and can be stored in byte, word, 
longword, quadword, or octaword elements. The choice of storage repre-
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sentation for an integer determines both the maximum value of the 
number to be stored and the efficiency of the representation (that is, the 
number of bits used effectively). Table 2.1 shows the numeric range for the 
various integer sizes. The VAX has a complete set of instructions for 
adding, subtracting, dividing, multiplying, complementing, and shifting 
integers. (In fact, quadword and octaword arithmetic is not fully support­
ed by VAX instructions, for example, there is no single instruction to add 
quadwords or octawords, so programmers should be careful when design­
ing algorithms using those information units. However, the VAX does have 
instructions for implementing multiprecision arithmetic on large un­
signed numbers using multiple longword add with carry instructions.) 

A complete set of conditional branch instructions allows the program­
mer to alter the flow of control based on the result of previous arithmetic 
operations. Because the most significant bit of a two's-complement num­
ber always indicates the sign, the hardware can easily test for positive or 
negative. 

Table 2.1 Integer Data Types 

Range (decimal) 

Integer Type Size Signed Unsigned 

Byte 8 bits -128 to +127 o to 255 
Word 16 bits -32768 to +32767 o to 65535 
Longword 32 bits - 231 to 231 _1 o to 232 _1 
Quadword 64 bits - 263 to 263 _1 o to 264 _1 
Octaword 128 bits - 2127 to 2127_1 o to 2128_1 

Floating-Point Numbers 

Integers are useful for data representation and problem solution in 
many areas, but they often lack the dynamic range necessary for a variety 
of scientific applications. Although integers represent the data with 
sufficient precision, the magnitude of the data or the intermediate results 
may exceed the range defined by the width of the data word. A floating­
point number, like an integer, is a sequence of contiguous bits in memory. 
However, the bits are interpreted as having two distinct parts, the fraction 
(or mantissa) and the exponent. That is, a floating-point number might be 
stored in a computer word as 

s m s n 

Exponent Fraction 

and interpreted as ±O.n x 2±m, where n represents the bits in the fraction 
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field and m represents the bits in the exponent field. Note that we have 
arbitrarily allocated two sign bits to allow positive and negative fractions 
and exponents. It is more common to assign only one sign bit to a word. 
Thus, a different representation is used in which the most significant bit of 
the word is the sign of the fraction and the exponent is represented as a 
positive (biased) value. In other words, although the exponent is a positive 
number in the range 0 through m-1, half of the exponent range (0 to 
ml2 -1) is used to represent negative numbers while the other half (m12 to 
m-1) represents positive numbers. 

The VAX has four floating-point formats: F _floating, DJloating, 
G_floating, and H_floating. The formats of these floating-point data types 
are shown in Figure 2.10, and their range is described in Table 2.2. 
Originally the VAX had only F and D, which were designed to be somewhat 
compatible with the PDP-II (hence, their somewhat unusual format, 
with the sign on a 16-bit boundary instead of a 32-bit boundary). While D 
has more fraction bits than F, it has the same size exponent and therefore 
no more range Gust greater precision). G and H (sometimes called 
"grand" and "huge") were added later to provide a larger exponent range 
in 64 bits and a larger exponent and fraction range in 128 bits, respectively. 
A floating-point data type can start on any byte boundary and is addressed 
by the byte containing bit O. Bit 15 of the first longword contains the sign of 
the number. 

Figure 2. 10 VAX floating-point data type formats 
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Table 2.2 VAX Floating-Point Data Types 

Data Total Exponent Fraction 
Type Size Size Size Range Precision 

F 32 8 23 .29 x 10-38 to 1.7 X 1038 7 digits 
D 64 8 55 .29 x 10-38 to 1.7 X 1038 16 digits 
G 64 11 52 .56 x 10-308 to .9 X 10308 15 digits 
H 128 15 112 .84 x 10-4932 to .59 X 104932 33 digits 

Let's take a close look at G_floating, which is now the standard 
double-precision floating-point representation for VAX high-level lan­
guages. 

• The fraction is expressed as a 53-bit positive fraction, where 0.5 ::::; 
fraction < 1, with the binary point positioned to the left of the most 
significant bit. (This is similar to scientific notation, although in 
scientific notation we typically show a number with the decimal point 
to the right of the most significant digit.) Since the most significant bit 
must be 1 if the number is nonzero, it is redundant and not stored. 
This effectively enables the fraction to be stored in 52 bits. This form is 
called a normalized fraction. 

• The exponent is stored as a biased II-bit positive integer, providing 
what is called an excess 1024 binary exponent. That is, when 1024 (2 10

) 

is subtracted from the exponent, the result represents the power of 2 
by which the fraction is multiplied to obtain the true value of the 
floating-point number. Thus, exponent values of 1 through 2047 
indicate binary exponents of -1023 through + 1023. An exponent of 
zero together with a sign bit of of zero indicates that the value of the 
number is zero, regardless of the value of the fraction. 

• The sign of the number is positive when S, the sign bit, is 0, and 
negative when S = 1. 

A floating-point number represented by the 64-bit G_floating datum is 
described by the equation 

x = (1-2 x S) x fraction X 2(exponent-1024) 

where 

2 -1024 = .56 x 1 0 -308 ::::; X < 21023 = .9 x 10308 
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As an example, suppose we have a G_floating number whose hexa­
decimal representation is 

00000000 18004080 

and we want to convert this to decimal. If we rearrange the digits to 
correspond to the G_floating format shown in Figure 2.10, we have 

15 14 0403 00 

01 408 1 0 

1800 

0000 

0000 

The sign bit is 0, so we know this is a positive number. Next, the 
exponent field contains 408 16 , or 103210• Because this is a biased, excess 
1024 exponent, we know that the value of the exponent is 1032 - 1024, or 
8. The fraction field is formed by concatenating the high-order part in 
bits <0:3> with the low-order bits below, giving us a fraction of 
018000000000016• In binary this is 

0000 0001 1000 0000 ... 0000 

However, the fraction is actually stored as a normalized fraction with the 
decimal point to the left of the most significant one bit, and that one bit is 
not stored. The value of the fraction (in binary) is thus 

.1 0000 0001 1000 0000 ... 0000 

We had an exponent of 28, so we simply shift the decimal point eight digits 
to the right, and the value of our G_floating number in binary is 

10000000.11 

To convert to decimal, 10000000 = 8016 = 12810 and .11 = 1/2+1/4 =.5 
+.25 = .75, so the number stored is 128.75 decimal. 

As with integers, floating-point data types can be stored in registers. 
For D, G, and H floating-point formats, the data types are stored in adjacent 
registers. Once again, a data type stored in multiple adjacent registers is 
addressed by the lowest numbered register. For example, if we move a 
G_floating number to R5 (register 5), the low-order 32 bits of the number 
will be placed in R5 and the high-order bits of the number will be placed 
in R6. 
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Alphanumeric Characters 

Although all information units contain binary numbers, alphanumer-
ic characters can be represented by a numeric code for each character. In 
the VAX, the American Standard Code for Information Interchange 
(ASCII) is used. The ASCII character set includes both uppercase and 
lowercase alphanumeric characters, the numerics (0 through 9), punctua-
tion marks, and special control characters. The ASCII code, shown in 
Table 2.3, was developed by the American National Standards Institute 
(ANSI) to allow the connection of computers and peripherals by different 
manufacturers. Therefore, all ASCII character-oriented peripherals, such 

Table 2-3 ASCII Character Encoding 

Hex ASCII Hex ASCII Hex ASCII Hex ASCII 
Code Char Code Char Code Char Code Char 

00 NUL 20 SP 40 @ 60 
01 SOH 21 41 A 61 a 
02 STX 22 42 B 62 b 
03 ETX 23 # 43 C 63 c 
04 EaT 24 $ 44 D 64 d 
05 ENQ 25 % 45 E 65 e 
06 ACK 26 & 46 F 66 f 
07 BEL 27 47 G 67 g 
08 BS 28 ( 48 H 68 h 
09 HT 29 ) 49 I 69 
OA LF 2A * 4A J 6A j 
OB VT 2B + 4B K 6B k 
OC FF 2C 4C L 6C 1 
OD CR 2D 4D M 6D m 
OE SO 2E 4E N 6E n 
OF SI 2F / 4F 0 6F 0 

10 DLE 30 0 50 P 70 P 
11 DC1 31 1 51 Q 71 q 
12 DC2 32 2 52 R 72 r 
13 DC3 33 3 53 S 73 s 
14 DC4 34 4 54 T 74 t 
15 NAK 35 5 55 U 75 u 
16 SYN 36 6 56 V 76 v 
17 ETB 37 7 57 W 77 w 
18 CAN 38 8 58 X 78 x 
19 EM 39 9 59 Y 79 Y 
1A SUB 3A SA Z 7A z 
1B ESC 3B 5B [ 7B { 
1C FS 3C < 5C \ 7C I 
1D GS 3D 5D ] 7D } 
IE RS 3E > 5E /\ 7E 
IF US 3F ? SF 7F DEL 
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Figure 2.11 ASCII representation of the string My VAX 
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as line printers and terminals, will output an A when the ASCII code for A 
(41 hexadecimal) is presented. The ASCII table also includes values for 
special control characters. When you press a line feed key on a keyboard, 
the terminal transmits the eight-bit value OA (00001010). Another useful 
feature of the ASCII encoding is that the uppercase and lowercase 
characters differ by only a single bit. Uppercase A is 41 hex (01000001), 
and lowercase a is 61 hex (01100001). This simplifies case conversions. 

Figure 2.11 shows the ASCII representation for the alphanumeric 
string My VAX. Note that each character uses one byte of storage, or two 
hex digits. The string is referenced by the address of the first byte, the one 
containing the character M, at symbolic address STRING. The space is an 
ASCII character whose value is 20 hexadecimal. 

The VAX has instructions to manipulate strings of contiguous bytes, 
called character string instructions. A character string has two attributes: 
an address and a length in bytes (or characters). On the VAX, character 
strings can be from 0 to 65,535 bytes in length. 

Decimal Strings 

In addition to binary representations, numbers can be represented 
within the computer as a string of decimal digits. Numbers are usually 
entered in ASCII format and converted to binary for arithmetic opera­
tions. For some applications, however, it may be more convenient to 
operate in a decimal format. This is often true in a business (COBOL) 
environment, where programs require only simple computations. 

The VAX supports two forms of decimal strings. In the form known as 
numeric string, each digit occupies one byte. Numeric strings can be in 
leading separate or trailing numeric format depending on whether the 
sign appears before the first digit or is superimposed on the last digit. The 
second decimal form, known as packed decimal, packs two decimal digits 
per byte. 

Table 2.4 shows the format for a packed decimal string. A packed 
decimal string is composed of a sequence of bytes in memory, with each 
byte divided into two 4-bit nibbles. Each nibble contains a representation 
for one of the decimal digits. The last nibble contains a representation of 
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Table 2.4 Decimal String Representation 

Digit Decimal Hex 
or Sign Value Value 

0 0 0 
1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 6 6 
7 7 7 
8 8 8 
9 9 9 
+ 12 C 

13 D 

the sign of the number. Figure 2.12 shows the packed decimal string 
representation for the number -12345. If we were just writing the 
hexadecimal contents of these three bytes, we would write them as 
5D3412. 

A decimal string is specified by two attributes: the address of the first 
byte of the string (shown as DECIMAL in Figure 2.12) and the length 
specified as the number of digits (not bytes) in the string. The VAX has 
instructions to perform arithmetic operations on decimal strings and to 
convert decimal strings to other formats. For some simple operations on 
numbers entered in ASCII, it is easy to convert from ASCII to a decimal 
string, perform the operation, and convert back to ASCII for output. 

Summary of Data Types 

Although only binary values are contained in memory, we can place 
almost any interpretation on the contents, because the computer instruc­
tion set recognizes and operates on a number of interpretations. Selecting 
the correct representation depends on the intended application and its 
requirements. Figure 2.13 shows the data types supported by the VAX. 

Figure 2.12 Decimal string representation of -12345 
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Interestingly, we can take the same information and represent it in 
many different ways. Figure 2.14 shows how the number 8800 can be 
represented by four different data types: packed decimal string, longword 
integer, G_floating, and ASCII string. Each representation is shown as a 
string of hexadecimal bytes. 

In the same way that we represent alphabetic letters by encoding 
them, we can also encode machine instructions. However, we would still 
refer to the machine instructions by their binary codes if it were not for the 
symbolic assembler that lets us use memory assisting names, or mnemon­
ics, in place of the codes. A later chapter looks at the actual VAX 
encodings. For now, however, it is necessary only to understand the basic 
instructions in their symbolic form. 

This chapter introduced the basic elements of the computer as seen by 
the assembly language programmer. The most important concepts to 
understand at this point are the instruction-execution process, the ad­
dressing of memory, and the encoding of various data types. To be able to 
write assembly language programs, we must be comfortable with the 
fundamentals of computer operations. 

Before you can write assembly programs, you must become familiar 
with the assembler that translates programs into binary machine code. 
Chapter 3 describes the assembler, the assembly process, and the debug­
ger, which can help you to understand and debug your programs dynami­
cally during execution. 

Figure 2.14 Representations of the number 8800 
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Exercises 

Computer Structures and the VAX 

1. Name the three major components of the computer system. Describe the 
function of each. 

2. What is an address? In Figure 2.2, the last address is given as N -1. Why? If a 
memory unit has address 37, how many memory units precede it? 

3. Compare and contrast the computer memory system to the human memory. 

4. What is the address space? How is the size of the address space determined? If a 
machine has a 4-bit address, how many addressable memory units are there? 
How are they numbered? 

5. What are the parts of an instruction? Describe in detail the steps in the 
execution of an instruction. Why are instructions stored (and executed) 
sequentially in memory? Can you think of an alternative? 

6. You have seen the CPU execution cycle: instructions are fetched from sequen­
tial memory locations and executed, one after another, until a branch or 
change of control occurs. Can you imagine a machine in which instructions 
are not fetched sequentially? How would such a machine function? What 
would its instructions look like? 

7. Give a PMS diagram for a computer you have used in the past or for one whose 
structure you can determine. 

8. What are some of the characteristics of I/O devices? What are some of the 
differences between the bus organizations shown in Figure 2.S? 

9. If we wish to run a program with 69,326 bytes of instructions and data, what 
does this imply about the size of addresses (in bits) needed on the computer? 

10. Suppose we have two machines with 16-bit addresses, but one has byte 
addressing and one has word addressing. What does this imply about the size of 
the programs that the two machines can execute? 

11. What are the information units on the VAX? What distinguishes an information 
unit from a data type? What are the VAX data types and what is each data type 
used for? 

12. In Figure 2.11, if the M is stored in a byte with address 1248(hex), what is the 
address of the byte containing the XJ 

13. Show the ASCII representation for this sentence. 

14. We say that the VAX is an ASCII machine. What does this mean? Suppose we 
used another encoding besides ASCII. Would this have any impact on the 
instruction set? 
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15. What is a normalized fraction? Why are normalized fractions used in floating­
point number representations? 

16. Show the hexadecimal VAX G_floating representation for the decimal number 
512.5. Show the hexadecimal VAX G_floating representation for the decimal 
number 512.6. Which was harder to compute and why? 

17. Can all decimal numbers be represented in floating-point format? Why or why 
not? 

18. Why can decimal string digits be stored in 4-bit nibbles, when ASCII characters 
use a byte of storage? 
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The Program Assembler 
and Debugger 

You are probably familiar with one or more high-level languages such 
as Pascal, Modula, FORTRAN, or PL/1. For these languages, programs are 
encoded in an algebraic English-like style. A language translation program 
called a compiler reads the high-level language program (called the source 
program) and translates it into a machine language program (called the 
object program). Because the source language can express concepts not 
directly executable by the computer hardware, the compiler often gene­
rates many machine instructions for a single source-language statement. 

One major advantage of high-level languages, besides the ease with 
which they can express algorithms, is their machine independence. They 
hide the specifics of the hardware machine and the instruction set. 
Programs written in high-level languages are therefore said to be portable, 
that is, they can be easily moved from machine to machine with few if any 
modifications. 

Nonetheless, there are still a number of reasons why understanding 
machine language programming is valuable. First, it gives us a better 
appreciation for computer architecture and the way a computer functions. 
Second, it makes us appreciate how a compiler must generate instructions 
from our high-level language programs, thus allowing us to write better 
high-level programs. Third, there are still a few applications, usually 
involving careful manipulation of specific hardware features of a particu­
lar computer, for which programming at the machine level is required. 
For example, the parts of an operating system that manage memory and 
I/O devices may be written in machine language. If one's goal is to develop 
a basic understanding of the machine, then a knowledge of machine 
language is worthwhile. 

Of course, we would not want to code instructions for a computer in 
their binary machine language form for several reasons. The chance of 
making errors would be extremely high. In addition, because instructions 
specify operand addresses, inserting an extra instruction or data item 
would change the ordering of all succeeding addresses, requiring massive 
changes to those instructions that reference them within the modified 
program. 

Assembly language programming solves those problems by allowing us 
to specify machine operations using symbolic names for memory loca-
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tions and instructions. A program called the assembler translates the 
assembly language program into binary machine code, just as the compil­
er translates the high-level source program into binary machine code. The 
assembler does all the work of remembering the values of symbols and the 
addresses of data elements. However, unlike the high-level language, each 
assembly language instruction corresponds to exactly one machine in­
struction. 

There are two major operating systems that run on the VAX: DEC's 
VAX/VMS operating system, and AT&T's Unix system. Unix is supported 
by different sources, including AT&T, University of California, Berkeley, 
and DEC. VMS and Unix have different VAX assemblers, and the syntax 
supported by each assembler is slightly different. In this book, we use the 
VMS assembler and associated programs. For historical reasons, the VMS 
assembler is probably better suited to assembly language programming 
and has better debugging support. The Unix assembler is intended 
primarily for use as an intermediate language by Unix compilers. We 
believe that it is fairly simple to move between the two assemblers. The 
Unix assembler is described in Appendix A. 

Assembler Statement Types 

The process of programming in assembly language involves using 
imperative, declarative, and control statements to specify what is to be 
produced and how it is to be produced. 

• Imperative statements are the actual machine instructions in symbolic 
form (for example, ADD for the add instruction, CMP for the compare 
instruction, MOV for the move instruction). 

• Declarative statements control assignment of storage for various 
names, I/O, and working areas. These are not really instructions but 
rather reservations of space, definitions of symbols, and assignments 
of contents to locations (for example, .Lb~tialize a longword, 
.BLKW to reserve a block of words). ~~----__ 

• Control statements allow the programmer to have some control over 
portions of the assembly process. 

Declarative and control statements are directives to the assembler. They 
do not generate machine instructions to be executed at run time. 

We use these statement types casually in the following discussion 
without giving careful definitions or precise meanings. Basically, we are 
concerned with understanding computer architecture and organization 
and will therefore leave the actual details of assembly language program­
ming to the VAX Macro and Instruction Set Reference Manual. 
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VAX Instruction Format 

A VAX instruction is specified by an operation code and from zero to 
six operand specifiers. The assembly language format of the instruction is 

LABEL: OPCODE SPECIFIER1,SPECIFIER2, ... ; COMMENT 

where 

• LABEL is an alphanumeric symbol that can be used to refer to the 
address of an instruction. 

• OPCODE is a mnemonic (symbolic name) for one of the VAX 
instructions. 

Table 3-1 Simple VAX Instructions 

Name Symbolic Form Operation 

Move Longword MOVL A,B Copy the contents of the 
longword at address A into the 
long word at address B. 

Move Address of MOVAL A,B Move the address of 
Longword longword A into the longword 

at address B. 

Clear Longword CLRL A Zero the longword at address 
A. 

Add Longwords ADDL A,B Sum the longwords at loca-
tions A and B and store the 
result in B. 

Add Longwords ADDL3 A,B,C Sum the longwords at 
(3 operands) locations A and B and store 

the result in the longword at 
address C. 

Subtract SUBL A,B Subtract the longword at ad-
dress A from the longwQrd at 
address B, storing the result in 
location B. 

Increment INCL A Add one to the longword at 
address A. 

Decrement DECL A Subtract one from the 
longword at address A. 
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• SPECIFIER is the symbolic name or specification for the address of an 
operand . 

• COMMENT is an English-language description of the function of the 
instruction. 

The label and comment fields are optional; the number of required 
specifiers is determined by the opcode. 

To help you understand the form of VAX instructions and to prepare 
you for the addressing fundamentals of Chapter 4, a simple subset of the 
VAX instruction set is given in Table 3.1. These instructions, the ones most 
commonly used by beginning programmers, include one-, two-, and 
three-operand instructions. 

Table 3.1, continued 

Name Symbolic Form Operation 

Compare CMPL A,B Compare the longwords at lo-
cations A and B. This evalu-
ates the quantity A - B. 

Test TSTL A Evaluate the longword at loca-
tion A. This compares the con-
tents of A to zero. 

Branch Equal BEQL X Branch to X if the result of an 
arithmetic operation, com-
pare, or test was equal to zero. 

Branch Not Equal BNEQ X Branch if the result was not 
equal to zero. 

Branch Less Than BLSS X Branch if the result was less 
than zero. 

Branch Less Than BLEQ X Branch if the result 
or Equal was less than or equal to zero. 

Branch Greater Than BGTR X Branch if the result was great-
er than zero. 

Branch Greater BGEQ X Branch if the result 
Than or Equal was greater than or equal to 

zero. 

Jump JMP X Branch unconditionally to lo-
cation X. 
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To understand how instructions operate, examine a simple longword 
Add instruction that sums two 32-bit longword integers in memory. We 
can specify the locations of the operands to be added by their addresses. 
For instance, the instruction 

ADDL 200,204 

causes the longword stored at location 200 to be added to the longword 
stored at location 204. The result for the two-operand arithmetic instruc­
tions is always stored at the second operand address. That is, the contents 
of location 204 are modified by this instruction. 

Suppose memory locations 200 and 204 contain the following values 
before the execution of the ADDL instruction: 

Address 
200 
204 
208 

Contents 
1765 

23 
152 

Following the execution of ADDL 200,204 instruction, the contents of 
the memory will appear as follows: 

Address 
200 
204 
208 

Contents 
1765 
1788 

152 

The VAX also allows three-operand forms of most arithmetic opera­
tions. To preserve the contents of locations 200 and 204 and store the 
result in location 208, we would instead code 

ADDL3 200,204,208 

Following the execution of that instruction, the contents of memory would 
appear as follows: 

Address 
200 
204 
208 

Contents 
1765 

23 
1788 

It is important to remember the order in which operands are evaluated for 
operations that are not symmetric. For example 

SUBL 200,204 

subtracts the contents of the longword at location 200 from the contents of 
the longword at location 204, leaving the result in location 204. 
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We usually do not specify addresses numerically. Instead, we assign 
symbolic names to the data locations and let the assembler keep track of 
the numeric values. A symbolic name is created by labelling a particular 
line of code or data. The resulting symbolic address, or label, provides a 
means of referencing the location. 

In VAX assembly language (called VAX Macro in VAX/VMS), the 
notation LABEL: at the beginning of a line creates a symbol and equates it 
to the address of that statement. VAX Macro also has declarative state­
ments (called pseudo-operations, or pseudo-ops, because they do not 
generate instructions) that allocate and initialize data locations. For 
example, the statement 

A: .LONG 5 

causes the assembler to allocate a 32-bit longword of memory and 
initialize it with the value 5. The symbol A is given the value of the address 
of the longword. 

Using symbolic labels, the previous Add example could be coded as 
shown below: 

Address 
200 
204 
208 

400 

Assembly Statement 
A: .LONG 1765 
B: .LONG 23 
C: .LONG 152 

ADDL3 A,B,C 

The addresses shown to the left appear only for the sake of this 
example and are not part of the instructions coded by the programmer. 
The assembler does all the work of remembering addresses, thus provid­
ing the programmer with a symbolic way to reference them. 

It is important to remember that the symbols A, B, and C represent 
the addresses of three longwords, not the values stored there. The value of 
the symbol A in the preceding example is 200, while the value of the 
longword stored at location 200 is 1765. This is quite different from the 
concept of a symbol A in most high-level languages, where the symbol and 
its value are synonymous. When programming in assembly language, 
always keep in mind the distinction between an address and the data 
stored at that address. 

The Functions of a Symbolic Assembler 

As we have said, the VAX assembler performs the clerical task of 
translating the symbolic assembly language program into the binary 
machine language program. To translate a symbolic assembly program, 
the assembler performs the following functions: 
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1. It generates a symbol table that contains the values of all user-defined 
labels and symbols. 

2. It maintains a location counter that tells where the next instruction or 
data item will be placed in memory. 

3. It translates the symbolic instruction names and operand specifiers 
into binary machine code (called the object program). 

4. It produces a listing for the programmer, showing the instructions 
. and data and how they are translated and assigned to unique memory 
locations. 

To understand how an assembler works, we next look at the mecha­
nisms it utilizes in performing the translation process. These mechanisms 
include the location counter, the definition and use of symbols, storage 
allocation, expression evaluation, and control statements. 

The Location Counter 

Programs are generally written on the assumption that successive 
instructions are stored in successive memory locations. While it is com­
mon to have decision statements or instructions that alter the flow of 
control from one statement to the next, programmers normally write 
blocks of statements in which the implicit flow of control is sequential. 
Consequently, most instructions do not include an address field in which 
the address of the next instruction to be executed is given. 

Because it is implied that instructions are to be executed in sequence, 
they must be stored that way in memory. Then, when the program counter 
is automatically incremented between instructions, it necessarily points to 
the next instruction in memory to be executed after the previous one is 
completed. Analogous to the CPU's program counter, the assembler 
maintains a location counter to keep track of where the next byte of 
instruction or data will be placed. 

The assembler usually assumes that the first byte of a program will be 
placed in the first location of memory, that is, at address zero. As the 
assembler reads the instruction and data specifications from the source 
program, it translates and outputs each byte to the object program. The 
location counter is incremented as each byte is output; thus, it always 
points to the address at which the next byte will be placed. 

In VAX Macro, the period (.) is the symbol for the location counter. 
When used in the operand field of an assembler directive, a period 
represents the address of the current byte. For example, 

MANGO: .LONG . ; refers to location MANGO 

causes the assembler to place the address of the location MANGO in the 
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longword at MANGO. In general, it is preferable to use labels rather than 
to reference bytes through the location counter, because the resulting 
program is easier to read and also because the use of the period can lead to 
errors. For example, the statements 

MANGO: .LONG MANGO 
.LONG MANGO 

and 

MANGO: .LONG 
.LONG 

are not equivalent. In the first set, both longwords are initialized to the 
address of MANGO. In the second set, the second longword refers to its 
own address, which is MANGO+4. 

A symbol is a string of alphanumeric characters. It can contain any of 
the characters of the alphabet (both uppercase and lowercase), the digits 0 
through 9, and the special symbols period (.), underline (_), and dollar sign 
($). A symbol can be up to thirty-one characters long, for example, 
A-LONG_SYMBOL, but its first character cannot be a digit. 

A symbol can be defined in two ways. First, a symbol is defined when it 
is used as a label. For example, the source line 

OAK: SUBL LEAF,TREE ; defoliate 

defines the symbol OAK. The assembler equates OAK with the address at 
which the instruction will be assembled, that is, the value of the location 
counter. 

The second way a symbol is defined is by direct assignment using the 
equal sign (=). For example, the statements 

SIX = 6 
COUNT = 50 
ARRAYSIZE = 100 

equate the symbols with the specified values. Such assignments are 
provided for programming convenience and documentation only. They 
are not assignments in the programming language sense; they are constant 
declarations. They do not generate machine instructions and they are not 
executed by the machine; constant assignments simply equate symbolic 
names to assembly-time constant values. 

Symbols that are defined as labels (by following them with a :) or by 
direct assignment (by equating them with a value through the = sign) are 



44 

Constants 

The Program Assembler and Debugger 

local to the program in which they are defined. To specify a symbol that 
can be referenced globally (that is, outside of the current program), the 
notations :: and = = are used. 

The assembler interprets all constants as decimal integers. However, a 
unary operator can be used to specify a constant in another radix or 
representation, as shown in Table 3.2. For example, the statement 

equates the symbol BYTE_OF _ONES to hexadecimal value FF. To define 
an ASCII constant, a delimiter character must be placed before and after 
the string. All of the statements 

ABC /\A/ABC/ 
ABC /\A .ABC. 
ABC /\ADABCD 

equate the symbol ABC to the ASCII equivalent of the three characters 
ABC. 

Storage Allocation 

The allocation of storage for data is provided by declarative statements 
or assembler directives, some of which are listed in Table 3.3. These 
directives exist for initializing bytes, words, longwords, etc., and for 
allocating large blocks of storage. For instance, the statement 

NUMBERS: .BYTE 1,2,3 

stores three bytes of data containing the integers 1, 2, and 3 into con­
secutive bytes and defines the label NUMBERS as the address of the byte 
containing the 1. The statement 

LIST: .LONG 156,718,0 

stores the integers 156,718, and 0 into consecutive 32-bit longwords. Here 
the symbol LIST can be used to address the first longword, whose initial 
value will be 156. The longword at address LIST+4 will have the value 718, 
and so on, as shown below: 

8§56 :LlST 

718 :LlST + 4 

o :LlST +8 
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Table 3.2 Assembler Unary Operators 

Operator Representation 

Binary 
Decimal 
Octal 
Hexadecimal 
ASCII 
Floating-Point 

Table 3.3 Assembler Storage Allocation Directives 

Directive 

label: .BYTE value_list 

label: .WORD value-list 

label: .LONG value_list 

label: .QUAD value_list 

label: .OCTA value_list 

label: .ASCII /string/ 

label: .ASCIC /string/ 

label: .ASCID /string/ 

label: .ASCIZ / string/ 

label: .ADDRESS address_list 

label: .BLKB count 

label: .BLKW count 

label: .BLKL count 

label: .BLKQ count 

label: .BLKO count 

Meaning 

Store specified values in successive bytes in 
memory at symbolic address "label." 

Store specified values in successive words in 
memory 

Store specified values in successive longwords 
in memory. 

Store specified values in successive quadwords 
in memory. 

Store specified values in successive octawords 
in memory. 

Store ASCII representation of the delimited 
character string in successive bytes in mem­
ory. 

Store the one-byte string length, followed by 
the ASCII representation of the string. 

Store a 64-bit string descriptor that contains 
the string's length, type, and address. 

Store the ASCII representation of the string, 
followed by a zero byte. 

Store the 32-bit address of the specified loca­
tions in memory .. 

Reserve a contiguous block of "count" bytes of 
memory. The bytes are initialized to zero. 

Reserve a contiguous block of words. 

Reserve a contiguous block of longwords. 

Reserve a contiguous block of quadwords. 

Reserve a contiguous block of octawords. 
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To allocate large blocks of storage without specifying the contents of 
each element, the .BLKx directive is used, where x specifies the size of 
each element in the block (B, W, L, Q, 0). The statements 

ARRAYSIZE = 50 
ARRAY: .BLKW ARRAYSIZE 

allocate fifty words of contiguous storage. As a convenient feature of the 
assembler, the storage space is automatically initialized to zero. The value 
of the symbol ARRAY will be the address of the first byte of the data space. 

The assembler also has directives (not listed in Table 3.3) to allocate 
floating-point data or storage blocks with the directives .F _FLOATING, 
.D_FLOATING, . G_FLOATING , . H_FLOATING , .BLKF, .BLKD,.BLKG, and 
.BLKH. Floating-point constants can be specified with or without (if the 
fraction is zero) decimal points, and with or without exponents, for 
example: 

FLOATS: .G_FLOATING 25, 63.556, 40.997E10 
BIGNUM: .H_FLOATING 12345678987654321.123456789 

Finally, you should remember that the assembler is not a typed 
language. The directives defined in this section simply allocate storage; 
that is, they simply place binary data in memory. The assembler does not 
check the data types you declare against the data types you use to access 
data in instructions. At execution time, all data and instructions are just 
indistinguishable bytes in memory; it is impossible for hardware to tell 
where one variable starts and another stops. For example, if we declare 

STUFF: : 
.BYTE 
.LONG 
.BYTE 
.WORD 

1,2,3 
4 
5,6,7 
8 

and at execution time, the linker places STUFF at address 200, then 
memory at address 200 will appear as follows: 

00080706 05000000 04030201 

There is no run-time information to tell the hardware how this 
information was defined or how it should be treated. It is up to you to use 
instructions that produce a correct result. 

Storing Strings 

The VAX Macro Assembler has several ways to represent strings. 
Because strings are typically variable in length, the programmer using a 
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string must know or be able to compute its length. The simplest declara­
tion for strings, .ASCII, simply stores the ASCII representation of the 
characters in consecutive bytes in memory. If the declaration 

MYSTR: . ASCII \hello\ 

was assembled at location 300, ASCII h would be placed in byte 300, ASCII 
e in byte 301, and so on. In this case, the program would probably need to 
know explicitly how long the string is. Note that the string is surrounded 
by a delimiter that is not part of the string (in this case, \). Any character 
can be used to delimit the start and the end of a string, as long as it is not 
part of the string itself. 

There are three other storage methods and corresponding directives 
for strings. A counted ASCII string is a string in which the first byte 
contains the length of the string. Since the count is limited to a byte, the 
string can be no longer than 255 characters. The directive .ASCIC allocates 
a counted ASCII string, automatically storing the length. If the declaration 

MYSTR: .ASCIC \hello\ 

was assembled at location 300, byte 300 would contain the integer 5, byte 
301 would contain ASCII h, etc. A similar directive, .ASCIZ, allocates a zero 
terminated string. In this case, there is no count, but a byte whose value is 
zero is placed following the string. A program processing the string will 
test for zero to know when the string is terminated. Strings are typically 
stored this way in the Unix operating systems. 

Finally, a string can be represented using a string descriptor. String 
descriptors are typically used when passing strings to VMS operating 
system procedures. A string descriptor is 64 bits long and has the format 
shown below: 

31 16 15 00 

Type I Length 

Address 

The descriptor contains the length of the string in the first 16 bits, a type 
indicator in the second 16 bits, and the address of the string in its second 
longword. The string itself can be stored anywhere in memory and can be 
up to 65,535 bytes in length. The declaration 

MYSTR: . ASCID \hello\ 

would have a similar effect to the declaration 
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MYSTR: . WORD 5 
.WORD a 
.ADDRESS HERE 

HERE: .ASCII \hello\ 

string length 
string type 
location of the string 

Always handle the string length field as a 16-bit word, since the following 
16 bits will not necessarily be zero. In the preceding .ASCID declaration, 
the type field might contain an indication that the descriptor points to a 
simple ASCII string (as opposed to a decimal string, for example). 

Expressions are combinations of terms joined by binary operations. A 
term can be either a numeric value or a defined symbol. The binary 
operators are shown in Table 3.4. 

The expression and all terms are evaluated as 32-bit values. The 
expression is processed left to right, with no operator precedence. 
However, angle brackets «» can be used to change the order of 
evaluation. For example, 

A + B * C and A + <B * C> 

have different values. Angle brackets can be nested, as in the expression 

«A! B> @ - C> 

Expressions can be used anywhere within the program that values are 

Table 3.4 Assembler Binary Operators 

Operator 

+ 

* 
I 
@ 

& 

\ 

Example 

A+B 
A-B 
A*B 
AlB 
A@B 

A&B 
A!B 
A\B 

Meaning 

Sum of A and B. 
Difference of A and B. 
Product of A and B. 
Integer quotient of A and B. 
Arithmetic shift of A by B bits. If B is positive, A is 
shifted left, and zeros are shifted into the low order 
bits. If B is negative, A is shifted right and the high 
order bit of A is duplicated in the high order bits. 
Logical AND of A and B. 
Logical OR of A and B. 
Logical EXCLUSIVE OR of A and B. 
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used. As a result, all of the following expressions are legal: 

.LONG 35*<7 + 6> 

.BLKB ARRAYSIZE*4 
LENGTH = 4*8*ARRAYSIZE 
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All terms within an expression must be assembly-time constants or 
symbols. 

Control Statements 

Four assembler control statements are used frequently in this text. 
The title directive 

.TITLE module_name comment 

defines the name of the program module and contains a comment string 
that is printed on the top line of each page of the listing. The subtitle 
directive 

.SBTTL comment 

contains a comment string to be printed on the second line of each listing 
page. The .TITLE directive is always the first line of the module, while the 
.SBTTL directive is used before each routine within a module. The 
assembler also uses the subtitle declarations to produce a table of contents 
on the first page of the listing. 

The entry directive is used to declare procedures in VAX assembly 
language. The .ENTRY directive 

.ENTRY procedure_name, register_mask 

defines the entry point to a procedure whose name is specified as the first 
parameter. As we will see later, an assembly language procedure is 
responsible for saving any registers it modifies. The second parameter to 
.ENTRY is a 16-bit mask that specifies which registers should be saved 
when that procedure is called. 

Finally, the end statement 

.END label 

informs the assembler that this is the last source line to be processed. The 
label operand of the .END statement tells the assembler the starting 
address for the translated program. When the program is executed, it will 
begin at the specified location. This is typically a procedure name defined 
by a .ENTRY statement. If the module contains only subroutines and no 
starting point, the label is omitted. 
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As previously described, an instruction or storage declaration can 
begin with an optional label that refers symbolically to the address at 
which that storage or instruction will be placed. In the VMS assembler, 
there are actually three ways of declaring labels. First are normal alphanu­
meric labels, delimited by a colon (:) from the rest of the line. These 
symbols can be referred to anywhere within the module being assembled. 
However, if the label is to declare a symbol that will be referred to outside 
the current module, for example, a global variable or a globally referenced 
procedure entry point, then the label should be followed by a double colon 
(::). As a general programming style, global variables should be kept to a 
minimum. 

Finally, the VMS assembler has a local label facility. In high-level 
languages, labels are rarely used. This is because the purpose of a label in a 
high-level language is to declare the target of a GOTO, and GOTOs are 
rarely used. In assembly language, however, the assembly equivalent of the 
GOTO is used frequently, since it is the basic control structure. A local 
label is a number followed by a dollar sign. The scope of a local label is 
limited to the instructions between the previous nonlocal label and the 
following nonlocal label. As an example, consider the following code 
skeleton: 

GLOBAL_l:: .LONG 0 
MYVAR: .LONG 0 

visible outside of this module 
visible within this module 

START: : ; global procedure entry point 
<instruction> 

10$: 

20$: 

LOOP: 

10$: 

<instruction> 
<instruction> 
<instruction> 
<instruction> 
<instruction> 
<instruction> 
<instruction> 

Two local labels, 10$ and 20$, are used in the code section begun by 
START and terminated by LOOP. The scope of these labels is limited to 
that code section. A Branch instruction whose target is 10$, which appears 
after START and before LOOP, will branch to the 10$ following START. No 
instruction either before START or following LOOP can refer to these 
labeled instructions. Following the label LOOP, a new local label block 
begins, and the local labels 10$ and 20$ can be reused. Now, however, they 
refer to different instructions. 

There are two reasons for providing local labels in the VMS assem-
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bIer. First, because labels are used so frecjuently in assembly language, 
local labels avoid the need for inventing senseless names that might be 
hard to locate when scanning a listing. Second, the use of local labels 
guarantees that a label cannot be referenced outside its local label block. 

Figure 3.1 shows a typical listing produced by the VAX macro assembler. 
For each line on the listing, the assembler prints the following informa­
tion: 

1. A decimal line number for reference. 

2. The source line from the source input program. 

3. The hexadecimal address at which the first byte generated from the 
source line will be placed (printed as an offset from the start of the 
program section). 

4. The hexadecimal representation for the binary values to be placed in 
memory for data or the generated machine code for an instruction. 

The assembler also prints a symbol table at the end of the listing, 
giving the numeric value for each symbol used in the assembly language 
program. 

The Assembly Process 

Now that we have examined the syntax and the semantics of assembly 
language, we will briefly describe the process of assembling a program. 
The assembly process is easily illustrated by examining a simple, two-pass 
assembler. The two-pass assembler is so named because it reads the 
source program twice. Two passes are required because all symbol values 
must be known before the translation can begin. 

The objective of the assembler is to read the user's symbolic source 
program and to produce the binary object program and the listing. To do 
this, the assembler must be able to perform three functions: 

1. Remember the addresses and values of the symbols used in declara­
tions and instructions. 

2. Translate the symbolic operation names into binary opcodes. 

3. Convert the symbolic operand specifiers into their binary forms. 

The purpose of the first pass, then, is to build a symbol table that 
contains the values of all labels and symbols defined in the program. For 



Figure 3.1 Typical VAX macro listing 

D2 AF 51 

50 
FF77 CF40 

00000064 
00000064 
00000000 
00000000 
00000000 

0000 1 . TITLE CIRCULAR BUFFER ROUTINES 
0000 2 
0000 3 Storage for the buffer and pOinter variables 
0000 4 
0000 5 
0000 6 BUFSIZE = 100 
0000 7 BUFFER: .BLKB BUFSIZE 
0064 8 COUNT: . LONG 0 
0068 9 BOTTOM: .LONG 0 
006C 10 TOP: . LONG 0 
0070 11 

define size of buffer 
define character ring 
initial count is zero 
start bottom at 0 
start top at 0 

0070 12 
0070 13 ++ 
0070 14 

.SBTTL INSBUF - Routine to insert in Circular Buffer 

0070 15 ROUTINE DESCRIPTION: 
0070 16 
0070 17 
0070 18 
0070 19 
0070 20 
0070 21 
0070 22 
0070 23 
0070 24 
0070 25 
0070 26 
0070 27 
0070 28 
0070 29 
0070 30 
0070 31 
0070 32 

This routine inserts a one byte character into the 
circular buffer. 

CALLING SEQUENCE: 

CALLS OR CALLG 

INPUT PARAMETERS: 

CHAR(AP) - the low byte of the first argument contains 
the character to be inserted 

OUTPUT PARAMETERS: 

None 

0070 33 RETURN VALUES: 
0070 34 
0070 35 
0070 36 
0070 37 
0070 38 
0070 39 

RO 
o 
1 

buffer is full 
character successfully inserted 

buffer 

00000004 0070 40 
0070 41 

0000 0070 42 

CHAR 4 ; offset to first argument 

4 50 7C 0072 3 43 1 

A 64 8F Dl \gg~!/ !i/ 
IB 13 007C 46 

E7 AF DO 007E 47 
04 AC 90 0082 48 
D8 AF D6 0089 49 

.ENTRY INSBUF, M<> 
CLRQ RO 2 assume full buffer error and zero 

________ A . .. Rl for EDIV instruction 
'CMPL #BUFSIZE,COUNT is buffer full \ 

BEQL 10$ exit with error if so 
MOVL BOTTOM,RO get last entry index 
MOVB CHAR(AP),BUFFER[RO] ,insert char. in buffer 
INCL COUNT note one more in buffer 

50 00000064 8F 7B 008C 50 
0096 51 

EDIV #BUFSIZE,RO,Rl,BOTTOM wrap pointer by using 
... MOD(pointer,bufsize) 
insert success code 
return to caller 

50 01 9A 0096 52 
04 0099 53 10$: 

009A 54 
009A 55 

MOVZBL 
RET 

. END 

#l,RO 

V1 
N 

-i 
::::r 
(I) 

"'tJ a 
\C 
til 
3 
» 
VI 
VI 
(I) 

3 
tT" 

~ 
Q.J 
~ 
Q. 

C 
(I) 
tT" 
C 

\C 
\C 

~ 
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example, a symbol table for the program listed in Figure 3.1 might contain 
the following information: 

Symbol Value Symbol 
Name (hex) Type 

BOTTOM 68 Label (address) 
BUFFER 0 Label 
BUFSIZE 64 Symbol 
CHAR 4 Symbol 
COUNT 64 Label 
INSBUF 70 Label 
TOP 6C Label 

Figure 3.2 shows the simplified flow of control for the assembler's first 
pass. As the figure shows, the first pass begins by setting the location 
counter to zero. As each line is read, it is syntactically analyzed and 
interpreted to determine what type of statement it contains. If the line 
contains a label, the label is assigned the current value of the location 
counter and is stored in the symbol table. Equated symbols are placed in 
the symbol table with their specified values. If an instruction or storage 
space declaration is found, the assembler increments the location counter 
by the size of the instruction or allocated data. 

The second pass is shown in Figure 3.3. During this pass, the 
assembler uses the symbol table to translate the program. Once again, the 
location counter is initialized to zero and the source program is read. The 
a~sembler composes a listing line for each source line consisting of the 
source text, the line number, the location counter, and hexadecimal 
representation for any instruction or data. As each line is read, it is again 
analyzed for syntax and any errors are noted in the listing line. Label and 
symbol definitions are usually checked against the symbol table for 
consistency. If an instruction is found, the assembler uses the symbol table 
to find the values of any symbolic operand specifiers. The instruction is 
then assembled into binary from the opcode and the specifiers, and is 
output to the object file. If a storage allocation declaration is found, the 
assembler outputs the initial values of the storage items to the object 
program. 

The Program Debugger 

Debugging assembly language programs can be difficult and frustrat­
ing. Of course, as in all programming, the most important step is 
preventing bugs through careful design and reasoning about your pro­
gram. Errors are inevitable, however, and locating them is aggravated by 
the low level of assembly language and the difficulty of producing 
formatted output through assembly language. 
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Figure 3.2 Assembler pass one 
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Figure 3.3 Assembler pass two 

No Invalid 
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note in listing 
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This section provides a brief overview of the VAX/VMS debugger, 
which can be used with high-level languages as well as assembly language. 
More details can be found in the VAX/VMS Symbolic Debugger Reference 
Manual. While some programmers survive without using a debugger, 
learning to use a debugger can greatly increase your productivity. More 
important, a debugger provides an interactive environment that allows 
you to experiment with your program while you learn assembly language. 

Using the Debugger 

The debugger is a powerful program that allows you to interactively 
control the execution of your program. Some of the facilities provided by 
most debuggers include the following: 

• State examination and modification. You can examine variables and if 
needed, change their values. This saves debugging time, since you can 
manually change an incorrect variable in the middle of program 
execution and then allow the program to continue. 

• Execution control. You can control the execution of the program in 
several ways. For example, you can execute the program one or more 
statements at a time (called stepping the program) to follow its 
execution and the results of its operations. Or you can modify the flow 
of execution, for example, by deciding to skip instructions, branching 
to different points in the program, or calling program procedures. 

• Breakpoints, watchpoints, and tracepoints. You can define breakpoints, 
which are specific lines of source code or procedures of interest at 
which program execution should be stopped. When the breakpoint 
occurs, the user can examine program state and make modifications 
or continue. A watchpoint defines a variable of interest, perhaps one 
that is being incorrectly modified by some as yet unknown part of the 
program. The debugger can "watch" the variable and stop execution 
whenever that variable is about to be modified. A tracepoint defines an 
instruction or event whose execution causes the debugger to print a 
message. This produces a record of events that may be useful for 
debugging without stopping program execution following each event. 

An important feature of the debugger is that it allows you to use the 
symbolic names you specified in your program for variables and labels. 
Since this symbol information is not typically stored with object files, a 
program must be assembled specially so that the symbol table is available 
to the debugger. The debugger itself is just a program that must be linked 
with the program to be debugged. So if you want to run the program 
MYPROG.MAR on VAX/VMS, you assemble, link, and run it as 
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$ MACRO/DEBUG MYPROG 
$ LINK/DEBUG MYPROG 
$ RUN MYPROG 
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After the RUN command is entered, the debugger will prompt the user at 
the terminal for commands (its prompt is DBG». 

The following descriptions include some of the most common com­
mands and examples of their use. In these examples, commands are in 
uppercase for emphasis. They can be entered in either uppercase or 
lowercase and can be abbreviated. 

Examining and Depositing 

A common use of the debugger is to examine the values of program 
variables, locations in memory, and processor registers. The EXAMINE 
command is used for this purpose and takes as a parameter the symbolic 
or numeric address of the location to be examined. The debugger assumes 
that any parameter starting with a letter is a symbol and that any 
parameter starting with a number is a value. It also assumes that all values 
are in hexadecimal unless otherwise specified. Thus, the commands 

EXAMINE ABC 
EXAMINE 91FC 

display the contents of the longwords at locations ABC and 000091FC, 
respectively. Note that in the second case, while VAX addresses are 32 bits 
(8 hexadecimal digits), the debugger simply appends zeros to the high­
order part of the address. To display the contents of a location whose 
hexadecimal address begins with one of the characters A through F, you 
must append a leading zero to tell the debugger that this is a value, not a 
symbol. For example, the command 

EXAMINE ABC,91FC,OA772,OD,R3 

displays the contents of five longwords: the longword at symbolic location 
ABC, the longwords at addresses 000091FC, 0000A772, and OOOOOOOD, and 
the contents of register R3. The VAX registers have built-in symbolic 
names RO-Rll, AP, FP, SP, and PC. You can also specify a range of either 
addresses or registers to be examined by separating the symbolic or 
number values by a colon, for example, 200:220 or R3:R6. 

By default, the examined locations are displayed in hexadecimal, but 
you can have them displayed in various representations, for example, 

EXAMINE/DECIMAL/WORD AWORD,ANOTHERWORD 
EXAMINE/ASCII:length MYSTRING 
EXAMINE/BINARY/OCTAWORD FILTER,003F,R4 
EXAMINE/INSTRUCTION DOIT:DOIT+20 
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In addition to changing the representation (for example, from hexa­
decimal to binary or decimal), you can change the size of the information 
unit displayed (by specifying /BYTE,/WORD, /OCTAWORD, and so on). 
For ASCII, you can specify the length of the string if you want to see more 
than four characters. The /INSTRUCTION option is particularly useful. In 
the preceding example, the EXAMINE/INSTRUCTION command prints 
the symbolic instructions between label DOlT and DOIT+ 20 (hexadeci­
mal). Thus, you can ask the debugger to show you some section of your 
program. 

You use the debugger DEPOSIT command to modify a variable, a 
location in memory, or a register. DEPOSIT assumes the same defaults as 
EXAMINE, which again can be changed by options to the command. The 
command 

DEPOSIT/WORD HERE = 1234 

deposits the value 1234 (hexadecimal) into the 16-bit word at the location 
specified by the symbol HERE. To deposit decimal 1234, you can override 
the default radix by specifying the radix converters, %BIN, %OCT, %DEC, 
or %HEX, for example, 

DEPOSIT/WORD HERE = %DEC 1234 
DEPOSIT R8 = %BIN 01011100 

When you use these commands, the debugger always remembers the 
location most recently examined or deposited. That location is referred to 
as ".", which can be used as an abbreviation. For example, the sequence 

EXAMINE MYVAR 
DEPOSIT = %DEC 10 
EXAMINE 
EXAMINE 

first examines the contents of location MYVAR, deposits decimal 10 in that 
longword location, and then examines it again. The final EXAMINE with 
no parameter displays the contents of the longword following MYVAR; that 
is, an EXAMINE command with no parameter increments the current 
location to the next longword. 

Basic Control Flow 

The basic program control operations are provided by GO and STEP. 
Initially, GO tells the debugger to begin· execution of the program at its 
entry point (main program). Following any breakpoints, GO tells the 
debugger to continue execution from the current instruction. GO can also 
be used to continue execution at a specific location. For example, 
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GO NEXTLOOP 

transfers control to the instruction at label NEXTLOOP. 
The STEP command is used to "single-step" the program, one 

instruction at a time. When you give a STEP command, the debugger 
executes a single instruction and then prints the next instruction to be 
executed. You can STEP through multiple instructions by specifying as a 
parameter an integer number of instructions to be executed. Another 
important option is the behavior of STEP at a VAX CALL instruction. 
STEP lOVER will execute that procedure and stop at the next instruction 
following the CALL. STEP IINTO will execute the call and stop at the first 
instruction inside the called procedure. In addition, the options STEP I 
BRANCH and STEP ICALL will continue execution until the next branch 
or call instruction, respectively. 

Setting Breakpoints, Watchpoints, and Tracepoints 

Breakpoints tell the debugger to stop when a specific point in the 
program is reached. The commands 

SET BREAK LOOPSTART 
SET BREAK OFD2 

set breakpoints at the instruction at label LOOPSTART and at the instruc­
tion at address OOOOOFD2. You can examine breakpoints with SHOW 
BREAK and can cancel them with CANCEL BREAK. Using the DO clause, 
you can also supply a list of commands to be executed when the 
breakpoint occurs, for example, 

SET BREAK LOOPEND DO ( EXAMINE I,J 
SET BREAK 0300 DO ( STEP ; GO ) 

DEPOSIT K o ) 

A watchpoint tells the debugger to notify you and to stop execution 
when a specific location is modified. Like breakpoints, a simple SET 
WATCH command specifies the symbolic or numeric name of the location 
to watch. Watchpoints are examined with SHOW WATCH and cancelled 
with CANCEL WATCH. 

A tracepoint follows execution of your program through specified 
instructions or events. SET TRACE sets a tracepoint at a particular 
program instruction. When that instruction is reached, the debugger 
prints a message and continues execution. Tracepoints are examined with 
SHOW TRACE and cancelled with CANCEL TRACE. Tracepoints can also 
be used to trace specific instructions. As a useful example, the command 

SET TRACE/CALL 
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will print a message at the execution of every call instruction, showing the 
address at which the call occurs. 

Using the Screen 

The VAX/VMS debugger has a nice ability to divide the terminal or 
workstation screen into multiple windows. These windows can show a 
symbolic decoding of the instructions being executed, the current values 
of the registers, the user's commands, and the debugger's responses. To 
use the multiple-window debugger, type SET MODE SCREEN after run­
ning the program, and type DISPLAY REG to get a window with current 
register values. As you step through your program, the debugger highlights 
those registers whose values change. 

First Program Example: Simple Output 

As previously stated, one problem with debugging assembly language 
programs is the difficulty, compared to high-level languages, of perform­
ing input and output. This section presents our first complete programs, 
both to show the form of a complete program and to introduce some 
simple library routines for writing to the terminal. The material you need 
to understand these programs fully is covered later in the book. For now 
the goal is to allow you to imitate these programs to perform your own 
input and output. 

The first program, shown in Figure 3.4, outputs two ASCII strings to 
the terminal. The strings are defined using the .ASCID directive, because 
the parameter to the terminal output procedure LIB$PUT_OUTPUT must 
be the address of a string descriptor. The program is actually a procedure 
called by the operating system when the program is run. The .ENTRY 
statement defines the name of the procedure, START, and the zero 
indicates that no registers need to be saved, since this is the main program. 

The body of the program is simply two calls to the procedure 
LIB$PUT_OUTPUT. In a high-level language, you would simply write 

LIB$PUT_OUTPUT("hello there"); 

and the compiler would generate this code for you. In assembly language, 
you must build the string descriptor explicitly and issue the call. On the 
VAX, procedure parameters are passed through the program's stack, as we 
shall see in Chapter 6. In this example, the PUSHAQ (push address of 
quadword) instruction pushes the address of the single parameter on the 
parameter-passing stack. The choice of the PUSHAQ instruction reflects 
the fact that the string descriptor is a 64-bit quadword. The parameter in 
this case is the string descriptor for the string to be output. The CALLS 
instruction calls the library procedure: the # 1 indicates that there is only 
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Figure 3.4 Simple string output program 

.TITLE First Example Program 

; First program to output a simple string to the terminal 

HIMSG: .ASCID \hello there\ 
BYEMSG: .ASCID \bye now\ 

; initial message descriptor 
; final message descriptor 

All Main Procedure entry points are defined 
with a.ENTRY statement. 

.ENTRY START,O main entry point 
.. saves no registers 

Output the initial message to the terminal. 

PUSHAQ HIMSG ; push descr. address on stack 
CALLS #1,GALIB$PUT_OUTPUT; call output routine 

Output the final message to the terminal. 

PUSHAQ BYEMSG ; push descriptor address 
CALLS #1,GALIB$PUT_OUTPUT; call output routine 
RET don't forget to return 

; .. from the main program 

.END START 
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one parameter, while the GA tells the assembler that the addressing of this 
procedure will be resolved by the linker. 

Finally, notice that the main program ends with a RET (return) 
instruction, as does any procedure. The .END assembler directive tells the 
assembler both that the program definition is complete and that the main 
program is called START. When we run this program, the operating 
system will transfer control to the address specified by the .END directive, 
which in this case is START. 

Figure 3.5 is an extension of the simple program in Figure 3.4. 
In addition to the two strings, it prints the integers 10 through 0 in 
decreasing order. This program calls another library procedure, 
OTS$CVT_LTI, which is an object-time system routine that converts a 
binary longword to an ASCII integer. The routine takes two parameters 
and in a high-level language would be called as OTS$CVT_LTI (integer, 
string), where the ASCII value of the integer would be placed in the string. 
In this example, we must build a string descriptor, BUFDSC, to tell the 
procedure the size and the address of the string in which it can write the 
result. The addresses of the two parameters are pushed onto the stack 
before the call using the PUSHAQ and PUSHAL instructions. Note that the 
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Figure 3.5 Simple integer printing program 

.TITLE Second Program 

Program to print integers from 10 down to 0. 
HIMSG: .ASCID \hello there\ ini tial message 

descriptor 
BYEMSG: .ASCID \bye now\ final message descriptor 

COUNTER: .LONG 10 init integer counter to 
10 

Build a string descriptor for the buffer in which 
to hold the ASCII value of the integer for output. 

BUFSIZE=lO 
BUFDSC: .WORD BUFSIZE 

.WORD ° 

.ADDRESS BUFFER 
BUFFER: .BLKB BUFSIZE 

descriptor length field 
descriptor type (unused) 
descriptor address field 
allocate buffer space 

All procedure entry points are defined 
with a .ENTRY statement. 

.ENTRY START,O main entry point 
.. saves no registers 

Output the initial message to the terminal. 

PUSHAQ HIMSG ; push descr. address on stack 
CALLS #l,GALIB$PUT_OUTPUT; call output routine 

Loop to process integers. On each pass a procedure is 
called to convert the integer to printable ASCII 
representation. The ASCII string is then output. 

10$: PUSHAQ BUFDSC push descriptor address 
PUSHAL COUNTER push value to convert 
CALLS #2,G AOTS$CVT-L_TI ; convert to integer ASCII 
PUSHAQ BUFDSC now push dsc for output 
CALLS #l,GALIB$PUT_OUTPUT; call output routine 
DECL COUNTER ; decrement integer 

counter 
BGEQ 10$ ; stop when counter < ° 

Output the final message to the terminal. 

PUSHAQ BYEMSG ; push descriptor address 
CALLS #l,GALIB$PUT_OUTPUT; call output routine 
RET ; return from main program 

.END START 
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parameters are pushed onto the stack from last parameter to first 
parameter. Also, the CALLS instruction for OTS$CVT_LTI specifies that 
there are two parameters. 

For now, these examples will show you how to perform output of 
strings and integers. Table 3.5 describes some other library routines that 
you can use in a similar fashion; others can be found in the VAXjVMS 
Run-Time Library Reference Manual. F~r reading from the terminal, we use 
the routine LIB$GET_INPUT, which takes three parameters: the address 
of a string descriptor for a buffer into which the characters are read, 
the address of a string descriptor for an output string with which to 
prompt the user at the terminal, and the address of a word into which 
LIB$GET_INPUT stores the number of characters read from the terminal. 
We demonstrate the use of this procedure in Figure 3.6, a program that 
simply prompts the user to enter a string and then echoes that string at the 
terminal. 

To get started, we suggest that you type in and execute one of these 
programs. Assemble and link the program with the debugger option and 

Table 3.5 Some Useful VMS Library Procedures 

Name and Parameters 

OTS$CVT _LTB(longword,descriptor) 

OTS$CVT _LTI(longword,descriptor) 

OTS$CVT _LTZ(longword,descriptor) 

OTS$CVT _ TLL( descriptor ,longword) 

OTS$CVT _TZ-L( descriptor ,longword) 

LIB$PUT _OUTPUT( descriptor) 

LIB$GET_INPUT(buffer_dsc,prompLdsc,length) 

Function 

Converts a longword inte­
ger into binary representa­
tion in an ASCII string. 
Converts a signed integer 
to a decimal ASCII string. 
Converts an unsigned inte­
ger to a hexadecimal ASCII 
string. 
Converts the ASCII text 
string representation of a 
decimal number to a 
signed longword. 
Converts the ASCII text 
string representation of a 
hexadecimal value to a 
longword. 
Writes a string to the out­
put device. 
Prompts the user with 
prompLdsc, reads a string 
from the input device into 
buffer_dsc, and returns the 
number of characters read 
into length. 
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Figure 3.6 Simple terminal reading program 

.SBTTL Program to read input 

This program simply prompts the user for a string 
and then echoes the string 

INBUFSIZE = 100 max. input size 

INDSC: . WORD 
. WORD 
.LONG 

INBUFSIZE 
a 
INBUF 

descriptor for 
reading input 

INBUF : . BLKB 
INLEN : . WORD 

INBUFSIZE 
a 

; input buffer itself 
; number of chars read 

IN-MSG: .ASCID \enter a string (exit with "$"): \ 
OUT-MSG: .ASCID \you typed the string: \ 

.ENTRY START,O main entry point 
saves no registers 

Program exits when user types a "$". 
Prompt the user for next input, read the user's 
input into INBUF 

10$: MOVW #INBUFSIZE,INDSG 
PUS HAW INLEN 
PUSHAQ IN-MSG 
PUSHAQ INDSC 
CALLS #3,GALIB$GET_INPUT 

set buffer size for input 
push addr. of ret. length 
push addr. of prompt msg. 
addr. of buffer for read 

; read user input 

The user's string has been read into INBUF, and 
INLEN contains the number of characters read. Copy 
INLEN into the length field of INDSC so we can write 
out the string that has been read. 

MOVW 
PUSHAQ 
CALLS 
PUSHAQ 
CALLS 

INLEN,INDSC insert number of chars read 
OUT-MSG address of string descriptor 
#l,GALIB$PUT_OUTPUT ; print output message 
INDSC ; addr. of user's input 
#l,GALIB$PUT_OUTPUT ; print string user typed 

Check if user wants to exit 

CMPB 
BNEQ 
RET 

#AA/$/,INBUF 
10$ 

.END START 

did user type a $? 
continue if not 
else exit program 
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get a listing file. In VMS, your program actually starts at memory address 
200 hexadecimal, so you will have to add 200 hexadecimal to the addresses 
on the listing when specifying addresses. For example, if a variable 
appears at address 4F on your listing (all addresses are listed in hexadeci­
mal), to examine it you would type EXAMINE 24F. 

Use the debugger to set breakpoints or step through the program to 
see how it operates and what information you can learn from the 
debugger. You can use the debugger to experiment with instructions if you 
are not sure how they work. Once again, when pushing parameters for 
these procedures, the parameters are pushed in reverse order, that is, the 
last parameter listed in the high-level description is pushed first. Because 
these procedures use call by reference, it is always the address of the 
parameter that is pushed. 

Conventions for Writing Programs 

As you become comfortable with a new machine or language, you will 
develop a personal style of programming. This style is exhibited in several 
areas, including 

• the way you structure programs 

• the algorithms you use to solve common problems 

• the instructions or language constructs you choose 

• the format of the source program 

• the language you use in commenting the program 

Library shelves are filled with computer science books that teach you 
how to structure or format programs and what language constructs to use 
and avoid. Since this information is readily available, it is not repeated 
here. We will, however, make some general comments about assen1bly 
language programming. 

Few assembly language programs are written now except for teaching 
purposes and for a small number of systems programs. Whether the 
program is used for a class or for systems programming, the programmer 
should have the following goals in mind: 

1. The program must solve the problem at hand. 

2. The program must communicate both the solution technique and the 
implementation details to the reader. 

3. The program must be easy to understand and modify. 
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Exercises 

The Program Assembler and Debugger 

These goals require that the program be clearly documented and 
described. On a machine with a rich instruction set, such as the VAX, a 
number of different instructions are typically suitable for a given situation. 
Luckily, the simplest solution to a problem is usually the easiest to 
understand and the most efficient. Thus, you should try to select instruc­
tions and solution methods that are straightforward and easily comprehen­
ded. Also, to simplify debugging, we recommend that you do not try to 
optimize storage. For example, always use longwords to contain integers 
where possible, even if you know that the numbers you will manipulate 
will fit in shorter data types. In this way, you are less likely to use the 
wrong instruction to manipulate your data. Performance for byte, word, 
and longword is identical, so it won't cost anything in terms of run-time 
speed, and memory is cheap. 

The comments are as much a part of the program as the instructions. 
It is not the number of comments that is important (particularly in 
assembly language, in which every line is usually commented) but the 
content of the comments. Each instruction should be followed by a 
comment that describes the logical operation or, perhaps, the reason for 
performing the instruction. The comment explains how the instruction fits 
into the problem solution. 

Block comments can describe the flow or the logical function of a 
series of instructions and to break up a complicated section of code into 
smaller, more comprehensible pieces. Form good programming habits 
now, and you will be rewarded the first time you try to modify your own 
programs. 

1. Give an example of a simple high-level language statement and its assembly 
language equivalent. 

2. Why are special symbols used, such as H:" and H;", in writing an assembly 
language statement? 

3. What happens when the following code segment is executed by the VAX 
computer? 

A: 
B: 
C: 

.LONG 

.LONG 

.LONG 

ADDL 
ADDL3 
ADDL 

1948 
13 
1640 

A,B 
B,C,A 
A,B 
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4. What occurs when 

ADDL3 A,A,A 

is executed? What occurs when the two-statement program 

HERE: ADDL3 
JMP 

is executed? 

A,A,A 
HERE 

5. Suppose three longword memory locations are defined as follows: 

Address 

308 
30C 
310 

Assembly Statement 

X: 
Y: 
Z: 

.LONG 20 

.LONG 9 

.LONG 10 
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Show the contents of X,Y,Z following the execution of the following instructions 
or groups of instructions. Assume for each case that the same initial contents of 
X,Y, and Z apply (that is, X is 20, Y is 9, and Z is 10). 

a. MOVL Y,X 
b. MOVAL Y,X 
c. SUBL Y,X 
d. SUBL X,Y 
e. SUBL3 Y,X,Z 
f. INCL Y 

SUBL3 Y,X,Z 
g. MOVAL X,X 

MOVAL Y,Y 
MOVAL Z,Z 

h. SUBL Z,X 
DECL X 
MOVL X,Y 

6. Why can't a symbol begin with a digit? What's the advantage of equating a value 
to a symbol (for example, SIX = 6)? Which of the following takes more bytes of 
storage: 

a. SIX: . BYTE 6 
b. SIX = 6 

7. What hexadecimal numbers are stored in memory for the following statement? 

.LONG 156,AD128,AA.12,3.,AX29, ,A01234,3*5/4 
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8. Show what will be stored in memory starting at location 100 if the following is 
assembled. Assume that HERE is at location 100. Also list all symbols defined by 
these directives and their values . 

HERE: 
THERE 
THIS: 

THING = 
ANOTHER: 

. LONG 102 
= 104 
.BLKL 1 
.BLKB 4 
200 
.LONG 12,34 



4 Instruction and Addressing 
Fundamentals 

Armed with the basic information presented in the previous chapters, 
we can now expand our instruction repertoire to write assembly language 
solutions for typical computer problems. But an understanding of the 
instruction set alone is not enough to write sophisticated assembly 
language programs and to understand how digital computers function. 
Along with the instruction set, we need to become familiar with the 
various techniques for addressing memory. Once we have a firm grasp of 
addressing and instruction formation, we can examine the encoding of 
instructions and learn how instructions are represented in memory. The 
examples and techniques presented here are all based on the VAX. 

This chapter introduces simple programming examples and builds on 
them to demonstrate more advanced techniques. Thus, the first examples 
may seem awkward in retrospect. As the instruction set is developed, 
however, more efficient operations are explained and contrasted to the 
earlier examples. 

VAX Instruction Characteristics 

An important consideration in evaluating an architecture is the 
correspondence between a machine's basic data types and the operations 
(or instructions) that can be performed on those data types. For example, 
if a machine has byte, word, and longword integers, it should have an add 
instruction that operates on each of these data types in a uniform and 
consistent manner. If a longword can contain an integer or an address, 
these two objects may need to be treated differently so that addresses can 
be evaluated at run-time. These are some of the issues one needs to 
consider when examining a particular machine. Chapter 10 considers 
general issues in instruction set design and examines several instruction 
set architectures. 

The VAX has a complete set of instructions that both perform generic 
operations on the primitive data types and allow for conversion from one 
data type to another. In addition,the VAX provides different instructions 
for manipulating numeric data types and addresses. Finally, there are the 
testable results of instruction execution that can be used to determine the 
effect of an instruction. In this way, we can change the order of execution 
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of a sequence of instructions and cause different instruction streams to be 
executed for different data. 

Generic Operations 

The VAX has a relatively symmetric instruction set with respect to 
byte, word, and longword integers. That is, the general instructions can 
operate on any of these VAX data types. Instruction names are formed by 
taking generic operations, like MOV or ADD, and appending the data type 
of the operands, such as B, W, or L for byte, word, and longword integers, 
respectively. While integer arithmetic instructions are available on byte, 
word, and longword data types, quadword and octaword arithmetic are 
not fully supported. 

Some instructions also exist in both two- and three-operand forms. We 
denote the two- and three-operand forms by appending a 2 or a 3 to the 
instruction name following the data type specifier. For the Add instruction, 
which has both two- and three-operand forms, we can construct the 
instructions 

ADDB2 
ADDB3 
ADDW2 
ADDW3 
ADDL2 
ADDL3 

Because the two-operand forms are used more frequently, the VAX/VMS 
assembler allows us to drop the suffix 2 on these instructions. 

Table 4.1 shows some of the general integer arithmetic and data 
manipulation instructions. Note which data types are available for each 
instruction and how many operands can be used. The Move and Clear 
instructions can operate on quadword and octaword elements, as well as 
bytes, words, and longwords. 

Some of these instructions are familiar from Chapter 3. You have also 
seen Branch instructions which change program control flow. At this 
point it is appropriate to look at the branching mechanism in more detail. 

Control Flow 

Perhaps the single most powerful feature of any computer is its ability 
to make decisions. By "decisions," we mean the ability to perform 
different functions or to execute different program sections depending on 
conditions in the program. Generally, the computer does this simply by 
determining whether the result of an operation is positive, negative, or 
zero. The conditional branch instructions transfer control to a different 
program section based on these results. 

The symbolic format of a VAX conditional branch instruction is 

Bcondition destination 
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Table 4.1 VAX Generic Integer Instruction Set 

Data Number of 
Operation Mnemonic Types Operands 

Move data from one location to MOV B,W,L,Q,O 2 
another. 

Clear location (set to zero). CLR B,W,L,Q,O 

Move negative: moves negated MNEG B,W,L 2 
value of the first operand to sec-
ond operand. 

Move complemented: moves the MCOM B,W,L 2 
logical NOT of the source to the 
destination. This is the one's 
complement of the source, i.e., 
the values of all bits comple-
mented. 

Increment location: adds one to a INC B,W,L 
data element. 

Decrement location: subtracts one DEC B,W,L 
from a data element. 

Add operands together: in the ADD B,W,L 2,3 
two-operand form, the result is 
stored in the second operand. In 
the three-operand form, the first 
two operands are added and 
stored in the third operand. 

Subtract operands: in the two- SUB B,W,L 2,3 
operand form, the first operand 
is subtracted from the second, 
and the result is stored in the 
second operand. In the three-
operand form, the first operand 
is subtracted from the second 
and the result is stored in the 
third operand. 

Multiply operands. MUL B,W,L 2,3 

Divide second operand by first DIV B,W,L 2,3 
operand. 

where condition is a mnemonic that indicates for what. conditions a 
branch to the destination is made. For the conditional branches to operate, 
status information must be saved following each instruction so that the 
succeeding instruction(s) can examine it. On the VAX, there are four bits 
of status information, called the condition codes, that reflect the outcome 
of the last instruction executed. These bits are part of the program status 



72 Instruction and Addressing Fundamentals 

word (PSW) , which is the low word of the processor status longword (PSL) 
register. Instructions such as Branch examine the condition codes to 
determine what action to take. 

The condition codes and their functions are as follows: 

• N (Negative Bit). The N bit is set if the result of an instruction is 
negative; it is cleared if the result is positive or zero. For example, 
following a decrement instruction, the N bit is set if the decremented 
value is less than zero. 

• Z (Zero Bit). The Z bit is set when the result of an instruction is exactly 
zero; otherwise it is cleared. For instance, the Z bit is set following a 
decrement instruction if the location decremented contains a one 
before the instruction is executed. 

• V (Overflow Bit). The V bit is set following arithmetic operations if the 
result of the operation is too large to be represented in the data type 
used. 

• C (Carry Bit). The C bit is set following arithmetic instructions in 
which a carry out of or a borrow into the most significant bit 
occurred. 

The difference between overflow and carry is not always obvious. 
Overflow indicates that the result of an operation was too large for the data 
type and that the destination operand contains an incorrect number. It is 
used only for signed arithmetic. For example, in an integer add, if the 
operands are of the same sign but the result is of a different sign, then 
overflow occurred. In that sense, overflow destroys the sign bit. Suppose 
we want to add the following signed 4-bit numbers: 

7 0111 
+6 0110 
13 1101 

When interpreted in two's-complement form, the value of the signed 4-bit 
result is - 3, so overflow occurred. The addition of two positive numbers 
yielded a negative result. 

Carry, which is used for unsigned arithmetic, is (in the case of ADD) a 
carry out of the high-order bit. Suppose we now add two unsigned 4-bit 
numbers: 

11 1011 
+6 0110 
17 1 0001 

Lcarry 
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There is a one-bit carry out of the most significant bit, so the C condition 
code would be set. This condition can be used to implement multiprecis­
ion arithmetic and serves as input to the instructions Add With Carry 
(ADWC) and Subtract With Carry (SBWC). 

For cases in which the programmer or the compiler needs to check 
explicitly for overflow or carry, there are four VAX instructions to test for 
the two possible states of these two possible condition codes: Branch on 
Carry Set (BCS), Branch on Carry Clear (BCC), Branch on Overflow Set 
(BVS), and Branch on Overflow Clear (BVC). Thus, following an arithme­
tic instruction, you can check explicitly for overflow: 

ADDL RO,Rl 
BVS HANDLE_OVF 

The VAX programmer's card provided as an appendix shows how each 
instruction affects condition codes. Some instructions set or clear condi­
tion codes based on the last arithmetic or logic result, some set or clear 
them unconditionally, and some leave them unaffected. 

Because each byte, word, or longword can represent either a signed 
or an unsigned integer, you must be careful to use the correct conditional 
branch instruction following a comparison or an operation on integer 
quantities. Consider the following two bytes, A and B: 

11 : 0 : 0 : 0 : 1 : 1 : 1 : 1 I :A 

I 0 : 1 : 1 : 1 : 1 : 0 : 0 : 1 I :8 

Which is larger? It depends, of course, on whether these bytes are 
being used to represent signed or unsigned 8-bit numbers. If the bytes are 
signed, then A is negative and B is larger. If the bytes are unsigned, A is 
larger. 

Table 4.2 describes the two sets of conditional branches for signed and 
unsigned operands. It lists the instruction mnemonics and the conditions 
on which the branches are taken. For example, the BLSS instruction 
branches if the N bit is equal to one; the BLSSU instruction branches if the 
C bit is equal to one; the BGTR instruction branches if the logical OR of the 
Nand Z bits is equal to zero, in other words, if both Nand Z are zero. 

The conditional branch instructions are the only place in the VAX 
architecture where the difference between signed and unsigned integers is 
visible. In particular, this difference is not visible to arithmetic instruc­
tions, such as ADDL; the ADDL instruction produces the correct result 
whether you intend its operands to be signed or unsigned. That is, when 
adding two two's-complement integers, the binary two's-complement 
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Table 4.2 VAX Conditional Branch Instructions 

Operation 

Signed Branches 

Branch on Equal 
Branch on Not Equal 
Branch on Less Than 
Branch on Less Than or Equal 
Branch on Greater Than 
Branch on Greater Than or Equal 

Unsigned Branches 

Branch on Equal Unsigned 
Branch on Not Equal Unsigned 
Branch on Less Than Unsigned 
Branch on Less Than or Equal Unsigned 
Branch on Greater Than Unsigned 
Branch on Greater or Equal Unsigned 

Mnemonic 

BEQL 
BNEQ 
BLSS 
BLEQ 
BGTR 
BGEQ 

BEQLU 
BNEQU 
BLSSU 
BLEQU 
BGTRU 
BGEQU 

Branch Condition 

z = 1 
z=o 
N=l 
(N OR Z) = 1 
(N OR Z) = 0 
N=O 

z = 1 
Z=O 
C = 1 
(C OR Z) = 1 
(C OR Z) = 0 
C=O 

result is the same whether the operands are being interpreted as signed or 
unsigned. If the operands are being used as signed integers, the result, 
when interpreted as a signed integer, will have the correct sum. If the 
operands are being used as unsigned integers, the result, when interpreted 
as an unsigned integer, will have the correct sum. 

But when comparing two integers, you must specify which condition­
al branch to use so that the branch instruction examines the correct 
condition code bits. If you are using signed integers, the branch instruc­
tion examines only the Z and N bits; the C bit is ignored. If you are using 
unsigned integers, the branch instruction examines only the Z and C bits; 
in this case, the N bit is ignored. 

The Compare and Test instructions specifically set the condition codes 
for program decision making and are usually followed by a conditional 
branch instruction. Each instruction can be used to test one item or 
compare two items of byte, word, longword, or floating-point data types. 

It is important to be careful using conditional branches because 
different instructions affect the condition codes in different ways. When 
you use a Branch instruction following a Compare instruction, you are 
clearly testing the relationship between two data items. For instance, in the 
sequence 

CMPL A,B 
BGTR TARGET 

the branch to TARGET is taken if A > B when A and B are treated as signed 
integers. In the sequence 
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CMPL 
BGTRU 

A,B 
TARGET 
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the branch to TARGET is taken if A > B when A and B are treated as 
unsigned integers. 

However, in the sequence 

SUBL A,B 
BGTR TARGET 

the branch to TARGET is taken if the result of the operation B - A is greater 
than zero (assuming that A and B are signed integers). Following an 
arithmetic instruction, the branches test the relationship of the result to 
zero. Therefore, the following three sequences are all identical in effect: 

1. SUBL A,B 
CMPL B,#O 
BGTR TARGET 

2. SUBL A,B 
TSTL B 
BGTR TARGET 

3. SUBL A,B 
BGTR TARGET 

In example 1 above, the notation #0 means the value zero; # allows us to 
specify the operand value in the instruction instead of its address. From 
this, we see that the Test instruction (TSTL) simply compares an operand 
to zero. Following most arithmetic instructions, the test is superfluous 
because the condition codes are already based on the result. Therefore, 
the Test instruction is normally used to evaluate a data item that is not the 
result of the previous instruction (otherwise the test would be superflu­
ous). 

As an example, Figure 4.1 is a simple program that reads an integer 
from the terminal and tells the user whether it is positive, negative, or zero. 
Note that the branch instructions do not affect the condition codes, so 
several branches may follow an instruction that sets the condition codes. 

In addition to the conditional branches already examined, several 
other branches appear in Figure 4.1. The Branch Byte (BRB) instruction is 
an unconditional branch instruction; that is, it always branches to the 
destination.There is also a Branch Word (BRW) instruction. The difference 
between these two instructions is simply one of encoding efficiency. 
Branch Byte can only branch a small distance within the program, while 
Branch Word can branch a greater distance. 
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Figure 4. 1 Branching program example 

.SBTTL Program to test for positive, negative, or zero 

This program reads an integer from the terminal 
and prints "positive", "negative", or "zero" 
depending on the value of that integer. 

INBUFSIZE = 12 
INDSC: . WORD 

.WORD 

.LONG 
INBUF: 
INLEN: 
VALUE: 
POS~SG: 

NEG~SG: 

ZER~SG: 

USR~SG: 

ERR~SG: 

.BLKB 

. WORD 

.LONG 0 

.ASCID 

.ASCID 

.ASCID 

.ASCID 

.ASCID 

. ENTRY 

INBUFSIZE 
o 
INBUF 
INBUFSIZE 
o 

\input is positive\ 
\input is negative\ 
\input is zero\ 
\enter an integer: \ 
\error in input\ 

START, 0 

Program is an infinite loop. 

descriptor for 
reading integer 

input buffer 
number of chars read 
binary input value 

main entry point 
saves no registers 

Prompt the user for next input, read the user's 
input into INBUF, and then call routine to 
convert the ASCII input to an integer. 

10$: MOVW #INBUFSIZE,INDSC init inbuffer size 
MOVAW 
MOVAQ 
MOVAQ 
CALLS 
MOVW 

INLEN,-(SP) push addr. of ret. length 

MOVAL 
MOVAQ 
CALLS 
BLBS 
MOVAQ 
CALLS 
BRB 

US~SG,-(SP) push addr. of prompt msg. 
INDSC,-(SP) buffer for read 
#3,GALIB$GET_INPUT , read user input 
INLEN,INDSC insert length read into. 

VALUE,-(SP) space to return into 
INDSC,-(SP) ascii integer 
#2,G AOTS$CVT_TI_L ; convert ascii to into 
RO,20$ ; continue if no error 
ERR~SG,-(SP) ; input error occurred 
#l,GALIB$PUT_OUTPUT ; print error msg 
10$ ; back for more input 

VALUE now has the 32-bit signed integer. Check to 
see what it is. 

20$: MOVAL ZER~SG,RO assume it's zero 
TSTL VALUE what do we have? 
BEQL 40$ branch if zero 
BGTR 30$ branch if positive 
MOVAL NEG~SG,RO else it's negative 
BRB 40$ go print message 

30$: MOVAL POS~SG,RO positive message address 
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; RO contains the address of correct message to print. 

40$: PUSHL RO ; push message address 
CALLS #l,GALIB$PUT_OUTPUT; write the message 
BRB 10$ ; and go back for more 
.END START 
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The Branch on Low Bit Set (BLBS) instruction checks bit zero of a 
longword and branches to the destination if that bit is a one. The reason for 
using this instruction following certain system calls is that some proce­
dures return a status value in RO following a call. In VAX/VMS, status 
codes are defined so that if the status value is even (bit zero is zero), an 
error occurred, but if the value is odd (bit zero is one), the procedure 
succeeded. This makes it simple to test for failure or success. 

Operand-Addressing Techniques 
Memory addresses on the VAX are 32 bits in size. However, even 

though addresses are 32 bits, there are other methods for specifying 
operand addresses besides 32-bit values. These other methods, known as 
addressing modes, allow for more efficient representations of addresses 
within instructions. Addressing modes also simplify the manipulation of 
common data structures. 

However an address is specified, the CPU must be able to locate or 
calculate the 32-bit operand address from the specification. This process is 
known as effective address calculation, and the result is the effective address 
of the operand. 

This section examines the various addressing techniques for the VAX 
and the method of effective address calculation associated with each. 
Along with the instructions already examined, these techniques will be 
used to demonstrate the solutions to common programming problems. 

Simple Addressing 

Chapter 3 discussed simple symbolic address specification using 
symbolic labels. In that direct addressing mode, the operand is specified 
by a symbolic name that represents the address of the operand. In 
programming, we often say that the operand specifier <Ipoints to" the 
operand, or that the operand specifier is a pointer. This is shown diagram­
matically in Figure 4.2, where the operand specifier is the address of the 
operand. If we assume an instruction such as 

CLRW ABC 

then the operand specifier is the address ABC, and the operand itself is the 
contents of the symbolically referenced location ABC. 

For the first example of addressing, consider an array-manipulation 
problem: to form the sum of two integer arrays, producing a third array. 
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Figure 4.2 Simple symbolic address 

Operand specifier 

OPERAND OPERAND 

ADDRESS e.g., contents 

e.g., ABC of symbolic 
location ABC 

CLRWABC 

This summation could be expressed with a loop in a high-level language, 
such as Pascal, as shown in Figure 4.3. 

Each of the three arrays for our assembly language example, labeled 
A, B, and C in Figure 4.4, is composed of fifty 32-bit integer elements. 
Instead of using a loop, as in the code in Figure 4.3, we first present a 
simple linear solution to the problem in Figure 4.5. 

The program demonstrates a solution in which fifty three-operand 
Add Longword instructions are used to sum the elements of A and B into 
C. Since the elements added are longwords, we address every fourth byte. 
Notice that this introduces a typical programming problem: what is the 
address of the last element in an array of length N? Since the first element 
is at address A + 0, the last element is at A + 4 x (N - 1) for 4-byte 
longwords. That is, when the first symbolic address is zero, the last address 
is one less than the number of elements, times the number of bytes per 
element. You must be careful to account for both endpoints. 

Notice also that the VAX memory is byte addressable. Each longword 
is specified by the address of its low-order byte. Had the example in Figure 
4.5 used an array of bytes instead of longwords, the following Add Byte 
instructions would be used: 

ADDB3 
ADDB3 
ADDB3 

A,B,C 
A+l,B+l,C+l 
A+2,B+2,C+2 

Figure 4.3 High-level integer array summation 

const n = 50; 
var i: integer; 

A: array[l .. n] of integer; 
B: array [1. . n] of integer; 
C: array[1. .n] of integer; 

begin 
1 to n do for i 

C[i] A[i] + B[i] 

end; 
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Figure 4.4 Longword array 

31 00 

A 
~------------------~ A+4 
r-------------------~ 

r----------------~ A + 8 

A + 196 
r------------~ 
t--________ --I B 

r--------------~ B + 4 

B + 196 
~-----------~ r-_____________ ~C 

~---------------~ C + 4 

--------------------~ 
C + 196 

Figure 4.5 Simple linear array sum example 

A: 
B: 

.BLKL 

.BLKL 

.BLKL 

50 
50 
50 

define array A of 50 longwords 
define array B 

C: 

ADDL3 
ADDL3 
ADDL3 

ADDL3 

define array C 

A,B,C ; C(l) 
A+4,B+4,C+4 
A+8,B+8,C+8 

A+196,B+196,C+196 

A(l) + B(l) 

C(50) A(50) + B(50) 

For a 16-bit word array, the following Add Word instructions would be 
used: 

ADDW3 
ADDW3 
ADDW3 

A,B,C 
A+2,B+2,C+2 
A+4,B+4,C+4 
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In other words, the increment between array elements depends on the 
data representation and is a multiple of the base-addressable unit, the byte. 
It is important to choose the appropriate Add instruction from the generic 
set of all Add instructions. 

Immediate Mode 

Programmers frequently need to specify constants in instructions. 
For example, there may be a need to add integer 5 to a longword or to store 
the character A in memory. One way to do this is to allocate storage 
containing the constant, as follows: 

VALUE: .LONG 5 constant value 5 

ADDL VALUE,A add five to A 

Here the constant 5 is stored in memory at symbolic address VALUE. 
However, a more convenient and efficient notation is to use a literal in the 
instruction. 

A literal is a constant or expression used in the instruction and stored 
as a part of the instruction rather than in a separate data location. The 
format for specifying a literal is #value, where value can be an expression 
(as in symbol definitions, the expression must be an assembly-time 
constant). For example, to add 5 to the longword A, we can now write 

ADDL #5,A 

This is known as immediate mode addressing because the operand itself, 
not the operand address, is specified in the instruction. The number sign 
(#) indicates to the assembler that what follows is the immediate operand 
for the instruction. Figure 4.6 shows that the first operand specifier is the 
operand itself for the instruction CMPW #100,RO. 

Figure 4.6 Immediate mode addressing 

Operand specifier 

OPERAND 
e.g., 100 

CMPW #100,VALUE 
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Figure 4.7 Loop array summation 

Yes 

Zero sum 
accl,lmulator 

Start·· counter 
at upperlimi~ 

Add counter 
to sum 

ARRAYSIZE=50 

LOOP: 

CLRL 
MOVL 
ADDL 
DECL 
BGTR 

SUM ; clear sum accumulator 
#ARRAYSIZE,COUNTER ; initialize counter 
COUNTER,SUM ; add next value to sum 
COUNTER ; decrement counter 
LOOP ; continue while > 0 
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Figure 4.7, a program to form the sum of the integers between 1 and 
50, further illustrates the use of literals. Instead of a linear solution, it uses 
a loop to generate the values to be added. 

Notice that the loop counts downward from 50 instead of upward 
from o. This technique recognizes the fact that the DECL instruction set 
the condition codes, informing the control unit about the results of the last 
arithmetic operation just as the CMP instruction does. By performing the 
additions in reverse order so that COUNTER counts down rather than up, 
it is not necessary to use a CMP instruction to test for the upper limit. 
Instead, the program can test whether COUNTER is greater than zero after 
each iteration and continue to loop as long as COUNTER is positive. 
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The assembler assumes that a literal is a decimal (base 10) number 
unless it is told otherwise. Assembler directives can be used to change the 
radix or representation used, for example: 

MOVL 
MOVW 
MOVF 

#AXFFFFOOOO,STATUS 
#AA/HI/ , MSGBUF 
#AF2 .5 , MYFLOA T 

General-Purpose Registers 

A register is a high-speed storage location that can be used for 
arithmetic, addressing, and, as we will see, for indexing arrays. Some early 
machines had only one register, called the accumulator, in which all 
arithmetic was done. Machines were structured that way because both 
memory and logic were extremely expensive. Since there was only one 
register, it was an implied operand in instructions. To perform the 
high-level statement A:=A+ B on such a machine would require the steps 

LOAD 
ADD 
STORE 

A 
B 
A 

load accumulator with A 
add B to accumulator 
store accumulator result 
... back in A 

On machines like the VAX, all operations can be performed either in 
memory or in registers; the preceding steps can thus be written in 
memory-to-memory form as 

ADDL B,A ; add B to A 

There are still several good reasons for including registers in these 
machines. First, registers on most current computers are used to supply a 
limited amount of high-speed storage. On the VAX, for example, two­
operand ADD instructions like the one just shown execute several times 
faster if both operands are in registers, as in 

ADDL RO,Rl ; add register 0 to register 1 

If a storage location is to be used for a large number of arithmetic 
operations within a routine, it may pay to first load its contents into a 
register, perform all the operations on it, then move it back to memory. In 
fact, one of the most important (and difficult) tasks for a compiler is 
determining what variables to keep in registers. 

A second advantage of registers is that they simplify the addressing of 
data structures such as arrays, as subsequent discussion will show. The 
third important feature of registers is that, because there are few of them, 
they can be addressed using fewer bits. On the VAX, for instance, there are 
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sixteen 32-bit registers called RO, Rl, ... , R15. Because there are only 
sixteen registers, each can be addressed in only 4 bits, compared to 32 bits 
that may be required to represent a memory address. This reduction in the 
size of operand addresses means a further increase in performance, since 
fewer bytes are fetched from memory to interpret the instruction. 

Not all sixteen VAX registers are general purpose; four of them have 
special uses and should not be used for general programming. These four 
registers also have special names: 

1. R12, known as the argument pointer (AP) is used in the subroutine­
calling facility, described in Chapter 6. 

2. R13, the frame pointer (FP), is also used in the subroutine-calling 
facility. 

3. R14, the stack pointer (SP), is used to access the program's stack, a 
data structure described in Chapter 6. 

4. R15 is the program counter (PC). On the VAX,the program counter is 
one of the general-purpose registers. As we will discuss later, this 
simplifies the encoding of some addressing modes. 

The remaining twelve registers, RO through RII, are available for 
general programming use and can be used as operands in place of 
memory locations in almost all VAX instructions. 

Let us now reexamine the program shown in Figure 4.7. Instead of 
using memory locations for COUNTER and SUM, we use the registers RO 
and RI, as shown. 

use RO as SUM, Rl as loop COUNTER 

ARRAYSIZE=50 
CLRL RO 
MOVL #ARRAYSIZE,Rl 

LOOP: ADDL Rl,RO 
DECL Rl 
BGTR LOOP 

clear sum accumulator 
initialize counter 
add next value to sum 
decrement counter 
loop while counter > a 

A careful inspection of this code reveals that replacing the memory 
locations with registers reduces the number of memory references by two 
orders of magnitude. 

A set of two adjacent VAX registers can be used as a 64-bit operand in a 
quadword instruction, or a set of four adjacent registers can be used as a 
I28-bit operand in an octaword instruction. The adjacent registers are 
specified by the low-order register number. For instance, the instruction 
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MOVQ R3,R6 

replaces the following two-instruction sequence: 

MOVL R3,R6 
MOVL R4,R7 

Language compilers and assembly programmers often use this property as 
an optimization technique. For example, the Clear Quadword (CLRQ) 
instruction can be. used to set two adjacent registers to zeros; Clear 
Octaword (CLRO) will set four adjacent registers to zero. 

Indirect Mode 

Besides being used for arithmetic, registers, as well as memory 
locations, can be used to hold addresses of operands. Referencing an 
element through a register or memory location is called indirect address­
ing. This deferred mode of addressing can be combined with other modes, 
described later, to provide sophisticated addressing techniques. 

Indirect addressing can be used in many ways. For example, it can 
help the programmer to pass arguments to subroutines or to create linked 
data structures. These capabilities exist because indirect addressing speci­
fies the "address of the address of the operand" rather than the "address of 
the operand." Figure 4.8 indicates how indirect addressing implies that 
the operand is the "address of the address" by including another operand 
box to point to the actual operand. Assembler syntax for indicating 
deferred addressing is the at sign (@) preceding a memory address for 
indirect addressing through a memory location, and parentheses sur­
rounding a register name for indirect addressing through a register. This is 
shown pictorially in Figure 4.8 for the instruction 

CLRW @PABC 

where it is assumed that the address of the symbolic location ABC is held 
in a memory longword labeled PABC. 

Indirect addressing is used in the following program segment to clear 
the contents of the longword at location TARGET: 

POINTER: .ADDRESS TARGET 
TARGET: .LONG 1234 

CLRL @POINTER 

contains address of TARGET 
contents of TARGET 

clear operand indirectly 
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Figure 4.8 Indirect addressing 

Operand specifier 

ADDR POINTER 
e.g., PABC 

Indirect location 
(PABC) 

OPERAND 
ADDRESS 
e.g., ABC 

CLRW@PABC 
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(ABC) 

OPERAND 
e.g., contents 

of location ABC 

Using a register to hold the address of the item to be cleared, we can use 
the following sequence: 

POINTER: .ADDRESS TARGET 
TARGET: .LONG 1234 

MOVL 
CLRL 

POINTER,R2 
(R2) 

contains address of TARGET 
contents of TARGET 

load address of TARGET in R2 
clear longword at TARGET 

The MOVL instruction loads R2 with the address of the operand to be 
cleared. The notation (R2) indicates that R2 contains the operand address. 

Because the loading of addresses occurs frequently, the VAX has a 
Move Address instruction that loads the address of a specified element into 
a longword. Using the Move Address Longword (MOVAL) instruction, we 
no longer need the POINTER longword: 

TARGET: .LONG 

MOVAL 
CLRL 

1234 

TARGET,R2 
(R2) 

; contents of TARGET 

load address of TARGET in R2 
clear longword at TARGET 

The operation of clearing a memory location can be applied to 
clearing an array of memory locations. The logical flow of operations to be 
performed is shown by the program segment in Figure 4.9. In this 
example, the MOVAL instruction is used to initialize Rl to the address of 
the first item in array A. Rl is advanced each time to point to the next 
element in the array. 

It is possible for some computers to utilize multilevel indirect address­
ing if the location indirectly addressed is itself the address of another 
location to be indirectly referenced. Multilevel indirect addressing re­
quires that each location referenced have a bit that specifies whether the 
location is an address to be used directly or indirectly. 
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Figure 4.9 Indirect addressing example 

Yes 

Program to zero array of N longwords. 

A: 

START: 

LOOP: 

N = 50 
.BLKL N 

MOVL #N,RO 
MOVAL A,Rl 
CLRL (Rl) 
ADDL #4,Rl 
DECL RO 
BGTR LOOP 

define array size 
define array 

initialize loop count 
load array A base address 
clear entry pointed to by Rl 
point to next longword 
decrement loop count 
continue while RO > 0 
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The choice between multilevel and single-level indirect addressing is 
based on user convenience and cost. On a typical machine, every bit must 
be utilized efficiently, and multi-level indirect addressing is not provided. 
The reason is an economic one: multi-level indirection reduces the size of 
the address space by a factor of two. 

Register Autoincrement and Autodecrement Modes 

In Figure 4.9, the constant 4 was added to Rl during each loop 
iteration to advance it to the next longword in the array. Indexing forward 
or backward through an array occurs so frequently that some machines 
have built-in hardware to increment or decrement the contents of registers 
automatically. 

The register autoincrement and register autodecrement addressing 
modes of the VAX provide for automatically stepping a register through 
the sequential elements of a table or array. This mode assumes the 
contents of the selected general register to be the address of, or pointer to, 
the operand. Thus, the pointer is stepped through a series of addresses so 
that it always points to the next sequential element of a table. And since the 
VAX recognizes the data type being addressed, it knows whether to 
increment the register by I, 2, 4, 8, or 16 for byte, word, longword, 
quadword, or octaword operands, and by 4, 8, or 16 for F, G, or H 
floating-point formats, respectively. 

In autodecrement mode, written as - (R), the contents of the register 
are decremented before being used as the address of the operand. In 
autoincrement mode, written (R) +, the contents of the register are 
irfcremented after being used as the address of the operand. 

With this addressing mode, Figure 4.9 can be recoded as shown in 
Figure 4.10. Following each CLRL instruction at LOOP, the contents of Rl 
are automatically incremented by 4. If the instruction were 

CLRW (Rl)+ 

then the value of Rl would be incremented by 2 since this instruction 
operates on word-sized data elements. If the instruction were 

Figure 4. 10 Use of autoincrement addressing 

START: MOVL #N,RO initialize loop count 
MOVAL A,Rl load array base address 

LOOP: CLRL (Rl)+ clear entry and advance 
... pointer to next entry 

DECL RO decrement loop counter 
BGTR LOOP continue until done 
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CLRB (Rl)+ 

then the value of R 1 would be incremented by 1. 
Figure 4.11 shows symbolically how autoincrement addressing is 

performed. In this figure it is assumed that register 8 contains the operand 
address ABC. 

These addressing modes can be illustrated with the following exam­
ple. Suppose the contents of the registers and memory are shown as 
follows. The table shows the contents of the longword beginning at each 
memory location. 

Memory 
Address 
200 
400 
600 
800 

Memory 
Contents 
130FF01D 
00137013 
91EB0810 
00112345 

Register 
RO 
R1 
R2 
R3 

Following execution of the two instructions 

ADDB (RO)+, (Rl)+ 
ADDW (R2)+,-(R3) 

Contents 
200 
400 
602 
802 

the contents of the registers and memory will be 

Memory 
Address 
200 
400 
600 
800 

Memory 
Contents 
130FF01D 
00137030 
91EB0810 
0011B530 

Register 
RO 
R1 
R2 
R3 

Contents 
201 
401 
604 
800 

Now suppose we wish to rewrite Figure 4.10 using auto decrement 

Figure 4. 11 Autoincrement addressing 

Operand specifier Register 

OPERAND OPERAND 
REGISTER ADDRESS e.g., contents 

e.g., R8 e.g., ABC of symbolic 
location ABC 

I 
+ Operand 

size in bytes 
I 

CLRW (R8)+ 
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addressing. We begin by loading Rl with the address of the longword 
following array A since the decrement is done before the operation is 
performed: 

BEGIN: MOVL #N,RO initialize loop count 
MOVAL A+<4*N> , Rl load address of longword 

... following array A 
LOOP: CLRL -(Rl) clear previous entry 

DECL RO decrement loop counter 
BGTR LOOP continue until done 

In the previous autoincrement example, following each execution of 
the CLRL instruction at loop, Rl points to the next element to be cleared. 
Following the execution of the CLRL instruction in this autodecrement 
example, Rl points to the last element cleared. 

Looking back at Figure 4.3, we can now rewrite using a loop and 
autoincrement addressing: 

START: 

LOOP: 

MOVL 
MOVAL 
MOVAL 
MOVAL 
ADDL3 
SOBGTR 

#N,RO 
A,Rl 
B,R2 
C,R3 
(Rl)+, (R2)+, (R3)+ 
RO,LOOP 

initialize loop count 
get address of array A 
get address of array B 
get address of array C 
form C := A+B 
loop until done 

Here we have also introduced an instruction provided specifically for 
loops such as this. The Subtract One and Branch on Greater Than Zero 
instruction (SOBGTR) subtracts 1 from the loop counter (RO) and branch­
es to the supplied address (LOOP) if the counter is still greater than o. 
Otherwise, control continues at the next instruction. The SOBGTR imple­
ments a Pascal for i:=N downto 1 loop. It replaces the DECL and BGTR 
instructions in previous examples. A companion instruction, Subtract One 
and Branch on Greater than or Equal to Zero (SOBGEQ), implements a for 
i:=N downto 0 loop, replacing a DECL and BGEQ pair. More loop 
instructions appear in a forthcoming section. 

Operand Context 

Each operand in a VAX instruction has an implied context that defines 
the type of data element on which it operates. For the more sophisticated 
addressing modes such as autoincrement and indexed (yet to be dis­
cussed), it is important to understand the context to be certain how the 
registers will be used or modified. In the examples in the previous section, 
the context of the operand (R)+ was determined by the instruction; Rl 
was handled differently for CLRL than for CLRW. 

It is sometimes possible for different operands of an instruction to 
have different contexts. For example, the Move Address instruction, used 
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to store the address of a data element in a specified longword, has two 
operands: 

I. The first operand, or source operand, provides the address specifica­
tion of the data element. Its context is specified by the instruction, for 
example, MOVAB, MOVAW, MOVAL, MOVAQ, and MOVAO for byte, 
word, longword, quadword, and octaword elements, respectively. 

2. The second operand, or destination operand, provides the address of a 
longword to receive the calculated 32-bit effective address. Its context 
is always longword, because effective addresses are always 32 bits. 

For example, assume that the variable TEMP is stored at memory 
location 200, that RO contains 300, and that RI contains 400. For the 
instruction 

MOVAW TEMP,RO ; RO <- address of TEMP 

the 32-bit address of the word TEMP is moved to RO. Following this 
instruction, RO will contain 200-the address of TEMP. Had the instruc­
tion been 

MOVAQ TEMP,RO ; RO <- address of TEMP 

the result would be the same. Here, context is unimportant because there 
is no ambiguity about how to evaluate the address of TEMP, and there are 
no side effects on registers (for example, autoincrementing). The address 
of TEMP is the same regardless of whether TEMP refers to the word 
beginning at address 200 or the quadword beginning at address 200; 
hence, whether a MOVAW 'or MOVAQ instruction is used does not affect the 
outcome. The programmer can choose one form over the other to 
enhance readability and to indicate the size of the operand. 

In contrast, for the instruction 

MOVAW (RO)+, (Rl)+ 

the difference is critical. In this instruction, the address of a word pointed 
to by RO is moved into the longword pointed to by the contents of Rl. 
Following the execution of this instruction, RO will be incremented by 2 (a 
word increment), while RI will be incremented by 4 (a longword incre­
ment). Given the initial values, the longword at Inemor:y address 400 
would contain 300 following execution of the instruction, RO would 
contain 302, and RI would contain 404. Had we instead executed the 
instruction 

MOVAQ (RO )+, (Rl)+ 
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the longword at location 400 would still contain the value 300 and Rl 
would still contain 404, but RO would contain 308. 

Note that Move Address simply removes a level of indirection in the 
evaluation of the first operand. Typically, we calculate the effective address 
of an operand and then move the operand. With Move Address, we 
calculate the effective address of an operand and then move the address 
itself. Thus, the instructions 

MOVL RO,R2 

and 

MOVAL (RO) ,R2 

are equivalent. Both copy the contents of RO to R2. In the first case, the 
copy is obvious. In the second case, the indirect addressing mode adds a 
level of indirection in specifying the operand address, while the Move 
Address instruction removes a level of indirection. 

As another example of operand context, consider the instruction 
Move Zero-Extended Byte to Longword (MOVZBL). This instruction 
copies a byte to a longword, filling the top 24 bits of the longword with 
zeros. It can be used when copying a byte into a register to ensure that the 
upper 3 bytes of the register are zero, as in 

MOVZBL MYCHAR,Rl 

For this instruction, the first operand has byte context and the second 
operand has longword context. Therefore, the instruction 

MOVZBL ( R2 ) +, (R3) + 

adds 1 to R2 and adds 4 to R3 following the access of each operand. 
For every instruction, each operand has a specific context that defines 

the data type of the operand. When you use addressing modes with side 
effects, such as autoincrement or autodecrement, you must be certain of 
the context of the operands being addressed. For instructions such as 
ADDL3, the context may be obvious: in this case, all three operands are 
longwords. However, with instructions such as Move Address and Move 
Zero-Extended, different operands may have different contexts. The VAX 
instruction card included in Appendix B shows the operand context for the 
operands of all VAX instructions. 

Displacement Mode 

Another common addressing requirement is to be able to address 
elements in record data structures. Such elements are addressed as offsets 
from the base of the structure. Displacement mode, whose format is 
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displacement(R) 

is provided for this purpose. The displacement is a signed integer offset, 
that is, it can be positive or negative. As shown in the following code 
segment, displacement mode is similar to indirect register mode except 
that the effective address is computed by adding an integer displacement 
to the contents of the register. Figure 4.12 assumes that R2 contains the 
address of LIST in the instruction CLRW 4(R2). In the figure, two 
components of the operand specifier are shown: the register and the 
displacement. 

An example to help us better understand the use of displacements is 
contained in the following data structure: 

USRDATA: 
.BLKQ 1 user's first name 
.BLKQ 1 user's last name 
.BLKB 1 user's age 
.BLKB 1 user's height 
.BLKW 1 user's weight 
.BLKW 1 user's social security number 

which can be pictured in memory as 

First name 

Last name 

Weight I Height I 
Social Security number 

Age 

:USRDATA 

:USRDATA + 8 

:USRDATA + 16 

:USRDATA + 20 

This could be the format of one entry in a large table of entries for 
many users of a system. To access any field for a particular table entry, we 
load the base address of the entry into a register and address each element 
by its offset in bytes from the base. For example, we can define symbolic 
offsets into the data structure as 

Q_FIRSTNAME=O 
Q_LASTNAME=B 
B_AGE=16 
B_HEIGHT=17 
W_WEIGHT=lB 
L_SOC_SEC=20 

where each symbol is the offset in bytes from the start of the structure to 
the given field. Notice that the offset names have been chosen to indicate 
the element size as well as the contents. This is a good convention to use 
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Figure 4. 12 Displacement addressing mode 

Operand specifier Register 

Displacement 
e.g., 4 

I 

REGISTER Base address 
--. :LlST + a 

--. e.g., R2 --+ e.g., LIST 
:LlST + 1 

. I 
+ Displacement 

:LlST + 2 

in bytes 

I 
:LlST + 3 

:LlST + 4 
r-OPERAND-

:LlST + 5 

CLRW 4(R2) 

when you are handling fields of different sizes. Given these symbol 
definitions, we could use displacement mode to access the needed field: 

MOVAL 
MOVL 
MOVB 
MOVQ 

USRDATA,RI 
L_SOC_SEC(RI) ,TEMPI 
B_AGE(RI),TEMP2 
Q_LASTNAME(RI),TEMP3 

load table address 
get SS number 
get user's age 
get user's name 

In this example, notice the advantage of displacement mode for address­
ing variable-length data elements from a fixed address. 

VAX also supports a deferred displacement addressing mode. In this 
mode, specified as 

@displacement(R) 

the displacement is added to the contents of the register to form the 
address of the operand address. A graphical representation of this address­
ing mode would be similar to that for displacement addressing (Figure 
4.12) except that the operand now contains the address of the operand, 
instead of the operand itself. 

The deferred displacement addressing mode is useful for accessing a 
data element whose address is stored in a data structure being accessed 
with displacement mode addressing. For example, if the contents of R6 
and the memory locations are as shown: 
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Memory 
Address 
208 
20C 
210 
810 

Memory 
Contents 
001FDAI0 
13ABFOI0 
00000810 
OFID0234 

Register 
R6 

then, following execution of the instruction, 

CLRW @8(R6) 

the contents of the register and memory will be 

Memory 
Address 
208 
20C 
210 
810 

Memory 
Contents 
001FDAI0 
13ABFOI0 
00000810 
OFIDOOOO 

Register 
R6 

Contents 
208 

Contents 
208 

One of the most powerful addressing features of the VAX is the ability 
to use an index register to specify the index of an array entry. The index 
register specifies which element of the array (for example, first, second, o"r 
third) is being addressed. 

The format for index mode addressing is 

base_address[R] 

where base--address is a general address specification for the first element 
in the array and register R contains the index of the desired element. 
Because the array may be composed of byte, word, longword, quad­
word, or octaword entries (or any of the floating-point data types), the 
index value must be multiplied by the appropriate size-I, 2, 4, 8, or 
16-before being added to the base address. The VAX CPU selects the 
multiplier based on the context of the operand. The specification of the 
base address can use any addressing mode encountered so far, forming 
instructions such as 

MOVL 
MOVAW 
MOVB 

ARRAY [Rl] ,R2 
(RO) [Rl], R2 
-(RO) [Rl] ,R2 

displacement indexed 
register deferred indexed 
autodecrement indexed 

The effective address of the operand is calculated by first computing the 
address of the base of the array or table. Then the value of the index 
register is multiplied by 1, 2, 4, 8, or 16, depending on the data type of the 
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Figure 4. 13 Indexed addressing mode 

Operand specifier 

Index register Base address Element 0 TABLE + 0 

e.g., R6 e.g., TABLE 
Element 1 TABLE + 2 

Multiplied by Element 2 TABLE + 4 
size of 

element in bytes 
Element 3 

I • + 
TABLE + 6 

OPERAND TABLE + 8 

CLRW TABLE[R6] 

operand, and added to the base address. As with autoincrement or 
autodecrement, the context of the operand affects the value of the register. 

In Figure 4.13, we index into element 4 of the array called TABLE 
using the instruction CLRW TABLE[R6] (i.e., the contents ofR6 is 4). Each 
element in the array TABLE is 2 bytes long. 

We can illustrate this technique further by considering the instruction 

MOVW 2(Rl)[R2],2(Rl)[R3] 

Suppose the initial values of the registers and memory are 

Memory Memory 
Address Contents Register Contents 
452 F7 Rl 450 
453 24 R2 2 
454 6C R3 3 
455 10 
456 56 
457 OD 
458 98 
459 73 

ARRAY [0] ~ :452 
ARRAY [1] :454 
ARRAY [2] :456 
ARRAY [3] :458 

This instruction moves the contents of the third element to the 
location of the fourth element of a word array (remember that the first 
index is zero). First, we must compute the address of the base of the array, 
which is specified by 2(Rl). This means that the array base address is 2 
bytes past the address contained in register Rl, or at address 452. Next, 
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because this is a word-sized array, we compute the offset to the element by 
multiplying the value in the index register R2 by 2. Thus, the element is 4 
bytes (2 x 2) past the array base, or at address 452 + 4 = 456. The 
destination address is evaluated in the same manner, giving effective 
address 458 for the operand (this is the adjacent word in the array, since 
the array indices were 2 and 3). Following the execution of this instruction, 
the registers and memory look like this: 

Memory Memory 
Address Contents Register Contents 
452 F7 Rl 450 
453 24 R2 2 
454 6C R3 3 
455 10 
456 56 
457 OD 
458 56 
459 OD 

Returning to the Pascal example in Figure 4.3, 

for i := 1 to 50 do 
C[i] :=A[i] + B[i] ; 

we can now "compile" this higher-level code into VAX assembly code 
using index mode addressing: 

CLRL 
LOOP: ADDL3 

AOBLSS 

RO ; start at index 0 
A[RO],B[RO],C[RO] ; add elements 
#50,RO,LOOP ; loop while RO < 50 

Few machines could translate this Pascal loop into so few machine 
instructions. Notice that another looping instruction has been introduced, 
called Add One and Branch Less Than (AOBLSS). On each execution, 1 is 
added to the index operand (in this case, RO) and the incremented index is 
compared with the limit operand (in this case, 50). If the index is less than 
the limit operand, a branch is taken to LOOP, the destination. Otherwise, 
execution continues at the next instruction. 

A Simple Example 

As a simple example of the use of several addressing modes, let's 
examine the following code segment. The task is to search an employee 
data base to find the average third-year salary of every employee who has 
worked in the company for at least three years. 
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Assume we have a collection of employee records. Each employee 
record has five fields: a 16-byte name field, a longword employee ID 
number, a department number, the length of employment in years, and a 
pointer to an array containing the employee's salary at the start of each 
year of employment. The symbolic names of the record fields might be: 

O_NAME = 0 
L_IO = 16 
L-DEPT = 20 
L_YEARS = 24 
L_SALARY_POINTER 

16-byte employee name string 
employee 10 number 
employee department number 
employment length in years 

= 28 ; pointer to array of salaries 

The main program has an array that contains the pointers to each of the 
employee records, as well as some other variables, such as 

NUM_EMPLOYEES=50 ; number of current employees 
EMP_LIST: .BLKL NUM_EMPLOYEES ; array of record pointers 
TOTAL: .LONG 0 accumulator of total salaries 
COUNT: .LONG 0 ; count of employees accumulated 

The data structure that exists at run time will resemble Figure 4.14. Figure 
4.15 shows part of the program to compute the average third-year salary. 
This demonstrates the use of immediate, autoincrement, displacement, 
and displacement deferred indexed addressing modes. This last addressing 
mode, used for the first operand of the ADDL instruction, is somewhat 
complicated. We want to access the third entry of an array of salaries, the 
entry whose index is 2. Register R3 contains the base address of the 
employee record, while the record entry LSALARY _POINTER has the 
address of the array of salaries. Therefore, we can use the specifier 
@LSALARY_POINTER(R3) to reference the base address of the salary 
array. @LSALARY_POINTER(R3)[Rl] addresses the third array entry, 
since we have preloaded Rl with the correct index value. 

Figure 4. 14 Employee record data structure 

EMP_LlST 

Record 

I-- -
Name 

I-- -

10 
Dept 

Years V Sal-ptr 

Salary array 
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Figure 4. 15 Employee record search example 

Compute average 3rd-year salary 

RO keeps track of the number of records examined 
Rl contains the constant integer 2 to be used to 

index the (zero-origin) salary array 
R2 has the address of the current pointer in EMP_LIST 
R3 has the base address of the current record 

GET_AVERAGE: 

10$: 

20$: 

CLRL COUNT 
CLRL TOTAL 
MOVL #NUM_EMPLOYEES,RO 
MOVL #2,Rl 
MOVAL EMP_LIST,R2 
BRB 20$ 

MOVL (R2)+,R3 

initialize variables for 
... computing average 
number of records to check 
load constant index 
first record pointer addrGss 
start at end of loop 

get record address and 
... advance to next pointer 

CMPL 
BLSS 
ADDL 
INCL 

L_YEARS(R3),#3 here 3 years? 
20$ ; skip this record if not 
@L_SALARY_POINTER(R3)[Rl],TOTAL ; add 3rd-year salary 
COUNT another employee added 

SOBGEQ RO,lO$ continue if more records 

Exercises 

1. Describe the operation of the condition codes. 

2. What are the contents of A and B following the execution of the instructions 
below? 

A: .LONG 5 
B: . LONG -5 

Assume for each case that the same initial contents of A and B apply (that is, A is 
5 and B is -5). 

a. CMPL A,B 
BLSS NEXT 
INCL A 

NEXT: INCL A 

b. CMPL A,B 
BLSSU NEXT 
INCL A 

NEXT: INCL A 
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c. 

NEXT: 

SUBL 
BGTR 
INCL 
INCL 

B,A 
NEXT 
A 
A 
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3. Suppose you want to hand translate the FORTRAN arithmetic IF into VAX 
code, that is: 

IF (K) 10,20,30 

What would you write? Assume K is stored as a 32-bit integer. 

4. Generally speaking, which do you think requires more memory space, immedi­
ate or simple addressing? 

5. What are the contents of Y, Z, RO, and Rl following the execution of the 
following instructions? As before, assume the same initial contents for the 
variable for each instruction. 

Address Assembly Statement Register Contents 

532 Y: .LONG 12 RO 532 
536 Z: .LONG 532 Rl 536 

a. MOVL Z,Y 
b. MOVAL Z,Y 
c. MOVL @Z,Y 
d. MOVAL @Z,Y 
e. MOVAL @Z,@Z 
f. MOVL RO,Rl 
g. MOVL (RO) ,Rl 
h. MOVAL (RO) ,Rl 
i. MOVAL (RO), (Rl) 
j. MOVL (RO), (Rl) 
k. MOVL Y+4,RO 
1. MOVAL Y+IO, (RO) 

6. Rewrite the program of Figure 4.7, which forms the sum of the first 50 integers, 
to count upward from 1 to 50. 

7. What is the difference between one level of indirect addressing and the use of 
general-purpose registers for addressing? 

8. Using autoincrement addressing, write the instructions to initialize a ten­
element longword array A to the values 0 through 9. Perform the same task 
using auto decrement addressing. 

9. For each instruction below, what is the operand context for Rl, and by what 
value will Rl be incremented following the execution of the instruction? 

a. CLRB (Rl)+ 
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h. MOVW ABC, (Rl) + 
c. MOVW #1, (Rl) + 
d. MOVAW ABC, (Rl) + 
e. MOVAW (Rl) +, ABC 
f. MOVAB ( Rl ) + , (Rl) + 

10. What is the effect on R2 and R3 after the execution of the instruction 

MOV AB - ( R3 ) , (R2) + 

11. Which of the following are legal VAX instructions? For any illegal instructions, 
say why they are illegal. 

a. CLRL -(Rl) 
h. CLRL -(Rl)[R4] 
c. CLRL (Rl)+[R4] 
d. CLRL (Rl)[R4]+ 
e. CLRL +(Rl) 
f . CLRL XYZ(R4) 
g. CLRL (Rl) (R2) 
h. CLRL ARRAY [R7] 
i . CLRL ARRAY [XYZ] 
j . CLRL 10(Rl) 
k. CLRL 10 (Rl) [R2] 
1 . CLRL XYZ+IO 
m. CLRL (Rl+lO) 
n. CLRL 10(R4)+ 
o. CLRL Rl[R4] 

12. By what value will Rl be multiplied to compute the array index in the 
following instructions? 

a. CRLB ARRAY [Rl] 
h. MOVAW TEST, (RO) [Rl] 
c. MOVAW (RO) [Rl], TEST 

13. Explain the uses of the following addressing modes and write a short code 
segment to demonstrate the use of each. 

a. Register deferred mode 
h. Displacement mode 
c. Index mode 
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Two features of its architecture make the VAX an interesting machine 
to examine. First is the variety of instructions and addressing modes, 
which allow the programmer or compiler to express complicated con­
structs in only a few machine-language instructions. Second is the 
instruction encoding, which allows these instructions to be represented 
efficiently in memory. This chapter discusses what an instruction looks 
like when it is assembled and stored in the memory of a computer. 

General Instruction Format 

In some machines, instructions are encoded as a series of words, 
where each word is divided into a number of fields. These fields are used to 
describe the operation code and the operand specifiers. Word-based 
instructions often consume more space than needed because they must be 
represented as an integral number of words. 

The VAX instruction set was designed to be both general and highly 
memory-efficient. The result is a variable-length instruction format in 
which instructions are represented as a series of bytes. The first byte of 
each instruction is the opcode (some instructions actually have two-byte 
opcodes). Following the opcode are from zero to six operand specifiers. 
Each operand specifier can be from one to nine bytes long, with the first 
byte describing the addressing mode. Figure 5.1 shows this general format. 

In the execution of an instruction, the CPU examines the first byte of 
the instruction, which contains the opcode. The opcode determines how 

Figure 5.1 VAX instruction format 

Operation code Byte 0 

Operand specifier 1 
addressing mode Byte 1 

Possible additional 
specifier information 

Operand specifier 2 
addressing mode 
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many operand specifiers follow. For each operand specifier, the CPU 
examines the first byte to determine the addressing mode for that specifier. 
Depending on the addressing mode used, the CPU may need to examine 
more bytes to compute the effective address of the operand. This process 
continues until all the specifiers have been evaluated. The operands are 
then fetched, and the operation is performed. 

Encoding an Instruction 

Every instruction consists of an opcode and from zero to six operand 
specifiers. The first byte of each operand specifier always indicates the 
addressing mode. Usually, this byte is broken into halves, one specifying 
the addressing mode, the other specifying the register to be used for 
addressing. 

For example, in register mode, in which the operand is contained in a 
general register, the format of the operand specifier is 

07 04 03 00 

5 I Register I 

where the high-order four bits specify that this is register mode (mode 5) 
and the low four bits specify which register is to be used. 

Let us consider the instruction 

ADDL RO,Rl 

which adds the contents of register 0 to register 1. The opcode for the 
ADDL instruction is CO hex. The operand specifiers for RO and R1 are 50 
and 51 hex, respectively, where the 5 indicates register mode. Each 
one-byte specifier would appear as: 

RO Register Mode R1 Register Mode 

07 04 03 00 07 04 03 00 

5 0 5 

Stored at address 200, this instruction appears in memory as follows: 

Memory 
Address 
200: 
201: 
202: 

Memory 
Contents 
CO 
50 
51 

Interpretation 
ADDL opcode 
RO register mode 
R1 register mode 

Suppose that one operand is autoincrement mode, such as 
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ADDL R3, (R8) + 

The operand specifier format for autoincrement mode is 

Autoincrement Mode 

07 0403 00 

8 I Register I 

The instruction thus appears in memory as 

Memory 
Address 
200: 
201: 
202: 

Memory 
Contents 
CO 
53 
88 

Interpretation 
ADDL opcode 
R3 register mode 
(R8) + autoincrement mode 
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Now let us examine a slightly more complex addressing mode, 
displacement addressing. In displacement addressing, the register con­
tains a base address to which a byte, word, or longword displacement is 
added to determine the operand address. The displacement follows the 
addressing mode in the instruction. Thus, depending on the size of the 
displacement, there are really three displacement addressing modes. 
Their representations are shown in Figure 5.2. 

The displacements in the figure are signed integers. As a result, byte 
and word displacements are sign-extended and then added to the base 
register. If the operand is within ± 127 bytes from the base register 
address, byte displacement is used. If the operand is within ± 32,767 bytes 
from the base register address, word displacement is used. Whenever 
possible, the assembler or compiler chooses the most efficient addressing 
mode. Because displacements are often small, byte displacement is 

Figure 5.2 Displacement address encoding 

15 

07 00 

I Byte displacement I 

00 

Word displacement 

Byte Displacement 

07 0403 00 

A I Register I 
Word Displacement 

07 0403 00 

c I Register I 
Longword Displacement 

31 00 07 0403 00 

Longword displacement E I Register I 
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frequently used, saving up to three bytes in instruction length. As an 
example, look at the following three-operand Add instruction: 

ADDL3 8(R6), (R7)+,R8 

This instruction would be assembled in memory as follows: 

Memory 
Address 
200: 
201: 
202: 
203: 
204: 

Memory 
Contents 
C1 
A6 
08 
87 
58 

Interpretation 
ADDL3 opcode 
byte displacement (R6) 
8 (byte displacement) 
(R7)+ 
R8 

Finally, let us examine an indexed mode example, in which two 
registers are required to specify the addressing mode. In index mode, both 
the index register and the base address specification must be included. 
Therefore, an index mode (mode 4) specifier must be at least two bytes 
long: 

Index Mode 
07 0403 00 07 0403 00 

I DiSPI~~~ment I I Mode I Register I 4 I Register I 
The first byte specifies that this is index mode, with the index register 

number contained in the low four bits. The following byte or bytes specify 
the base address. For instance, the instruction 

INCB 8(R2)[R3] 

would be assembled as 

Memory 
Address 
200: 
201: 
202: 
203: 

Memory 
Contents 
96 
43 
A2 
08 

Interpretation 
INCB opcode 
[R3] index mode 
byte displacement (R2) 
8 (byte displacement) 

Or, the two-operand instruction 

MOVAL ( R 1 ) [R5] , (R2) [R5] 

would be assembled as 
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Memory 
Address 
200: 
201: 
202: 
203: 
204: 

Memory 
Contents 
DE 
45 
61 
45 
62 

Interpretation 
MOVAL opcode 
[R5] index mode 
(Rl) indirect register 
[R5] index mode for second operand 
(R2) indirect register 

Program-Counter Relative Addressing 
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We have yet to discuss how simple symbolic addresses are represent­
ed. Addressing memory in this way is actually quite similar to displace­
ment mode addressing, but it involves a unique feature of the PDP-II and 
VAX family architecture-the use of the program counter as a general 
register. Although we described the symbolic name as a representation for 
the 32-bit operand address, the assembler actually uses a more compact 
encoding. Called relative addressing, this mode represents the data 
element by its displacement or position relative to the program counter 
value, as shown in Figure 5.3. 

Like displacement mode, in relative addressing a signed byte, word, or 
longword offset is added to a register to form the operand address. In this 
case, however, the register used is the program counter (R15 or PC). The 
effective address of the operand is formed by adding a byte, word, or 
longword displacement to the value of the program counter when the 
instruction is being decoded. That is, memory is addressed by its distance 
from the instruction referencing it. The format of relative mode is shown 
in Figure 5.4. 

This style of addressing is useful for two reasons. First, it is efficient 
because most operands are relatively close to the instructions that refer­
ence them, and the offset can be specified in 8 or 16 bits. Second and more 
important is the fact that relative mode addressing is position independent. 
As long as the distance relationship between the instruction and the 
operand remains fixed, the program can be loaded anywhere in memory 
and will still execute correctly without modification. If the instruction 
contained an actual 32-bit address instead of a relative address, the data 

Figure 5.3 PC relative addressing 
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Figure 5.4 PC relative address encoding 

Byte Relative 
07 00 ~07 _____ 04~0_3 ____ 0~0 

I Byte displacement I A F 

Word Relative 

15 00 07 0403 00 

Word displacement C F 

Longword Relative 

31 00 07 0403 00 

Longword displacement E F 

item would always have to be loaded at the same base address. Position 
independence becomes important in a multiprogramming system, in 
which several programs share a single routine. If the routine is position 
independent, it can be loaded in any place within each user's memory 
space, giving the system more flexibility in arranging routines. 

As an example of relative addressing, consider how the instruction 

MOVW MYDATA,Rl 

would be assembled. Suppose the instruction is located at address 600 in 
memory and the word MYDATA is stored at address 804. Memory would 
appear as follows: 

Memory 
Address 
600: 
601: 
602: 
603: 
604: 

804: 
805: 

Effective 

Memory 
Contents 
BO 
CF 
00 
02 
51 

05 
14 

operand address = 

Interpretation 
MOVW opcode 
word relative mode 
displacement 
.. .is 200 hex 
R1, register mode 

MYDATA first byte 
MYDATA second byte 

604 
+ 200 

804 

(program counter) 
(word displacement) 

To understand how the effective address of the operand is calculated, 
consider the following. As the opcode and operand specifiers are fetched 
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and evaluated, the PC is advanced over them to the next operand specifier 
or instruction. When the first operand specifier is fetched, the PC is 
incremented to the next operand specifier at address 604. The relative 
displacement, 200 hex, is added to the updated PC, giving address 804 for 
the operand MYDATA. The second operand is then evaluated, and the word 
at MYDATA is moved to Rl. 

If this routine is moved so that it is loaded at address 1024 instead of 
600, the contents of memory would be 

Memory 
Address 
1024: 
1025: 
1026: 
1027: 
1028: 

1228: 
1229: 

Effective 

Memory 
Contents 
BO 
CF 
00 
02 
51 

05 
14 

operand address = 

Interpretation 
MOVW opcode 
word relative mode 
displacement 
.. .is 200 hex 
Rl, register mode 

MYDATA first byte 
MYDATA second byte 

1028 
+ 200 

1228 

(program counter) 
(word displacement) 

Notice that even though the instruction and the datum have been 
moved, the instruction still executes properly without change because the 
relative distance between the instruction and the operand remains con­
stant. 

Negative displacements are calculated similarly. For example, sup­
pose the MOVW instruction is at location 600 but the word MYDATA is 
stored at location 400. Our example then becomes 

Memory 
Address 
400: 
402: 

600: 
601: 
602: 

Memory 
Contents 
05 
14 

BO 
CF 
FC 

Interpretation 
MYDATA first byte 
MYDATA second byte 

MOVW opcode 
word relative mode 
displacement 

( continued) 
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Memory 
Address 
603: 
604: 

Effective 

Memory 
Contents 
FD 
51 

operand address = 

Interpretation 

.. .is FDFC hex (- 204 hex) 
R1, register mode 

604 
+FDFC 

400 

(program counter) 
(word displacement) 

A common but more complicated example involves the use of relative 
addressing to specify the base of an array, for example, 

TSTL MYLIST[R4] 

where the relative addressing specifier follows the indexed mode specifier 
in the instruction stream. This is shown below: 

Memory 
Address 
1024: 
1025: 
1026: 
1027: 
1028: 
1029: 

1228: 

Memory 
Contents 
D5 
44 
CF 
FF 
01 

Interpretation 
TSTL opcode 
[R4] indexed mode 
word relative mode 
displacement is 
... 01FF hex 
next opcode 

MYLIST first byte 

When an operand is addressed using an indirect memory reference, such 
as 

MOVW @MYDATA,Rl 

relative deferred mode addressing is used. This is similar to relative mode 
except that the effective address calculated is the address of a longword 
containing the operand address rather than the operand itself. 

Immediate Addressing 
When an immediate operand is specified in an instruction, such as 

MOVW #!\X200 , R3 
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immediate mode addressing is used. It is similar to autoincrement mode 
except that the PC is used as the general register. In other words, as the 
operand is decoded, the PC points to the literal (constant value) in the 
instruction stream. The PC is incremented over the operand as the 
operand is fetched. The format for immediate mode is 

be 

Immediate Mode 

For the preceding Move Word instruction, the memory format would 

Memory 
Address 

Memory 
Contents 
BO 
8F 
00 
02 
53 

Interpretation 
MOVW opcode 
immediate mode 
word 
... constant 
R3 register mode 

When the first byte of the operand specifier is fetched, the PC points to 
the 16-bit constant. The constant is then fetched, and the PC is incre­
mented by the size of the constant in bytes. It is the context of the operand 
that specifies how big the constant must be; in the preceding instruction, 
since the first operand had word context, the processor knew that the 
constant was 2 bytes long. If the instruction had been 

MOVO #IIX200, R3 ; initialize octaword 

then the constant in the instruction would have to be 16 bytes long, that is, 
00000000000002001 Obviously this may not be a space-efficient means for 
initializing the octaword to hex 200. 

In fact, because many literals used in programs are small, the VAX has 
a special addressing mode called short literal. In this mode, the constant is 
held in the operand specifier itself. The format of a short literal specifier is 

Literal Mode 

070605 00 

I 0 0 I Literal 

In other words, any operand specifier in which the high two bits are 
zeros contains a literal constant in the low six bits. Because the literal is 
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Figure 5.5 Comparison of short literal and register mode encoding 

07 04 03 00 

I 0 0 10 0 I R3 register mode 

07 04 03 00 

I 0 0 1 I 1 1 I Short literal 63 (decimal) 

unsigned, integer values from 0 through 63 can be represented, avoiding 
the need for immediate mode addressing. For example, the instruction 

MOVL #8,R5 

would be assembled as 

Memory 
Address 

Memory 
Contents 
DO 
08 
55 

Interpretation 
MOVL opcode 
short literal 
R5 

This is four bytes shorter than immediate mode. 
We can see how this works if we look at the encoding of the largest 

short literal (63) compared to a register mode specifier, as shown in Figure 
5.5. Notice that register mode has a nonzero bit in the upper two bits of the 
operand specifier. All addressing modes other than short literal have 
nonzero bits in the upper two bits of the operand specifier because all of 
them have mode codes greater than or equal to 4. Codes 0, I, 2, and 3-the 
only ones with two high-order zero bits-have been reserved for short 
literal. 

Absolute Addressing 

On occasion, instructions must reference an absolute address, that is, 
a location fixed in the address space. This is usually a location defined by 
the operating system to be constant for all processes in the system. For 
absolute mode addressing, the actual 32-bit address is contained in the 
instruction stream. This mode is the same as autoincrement deferred, but 
again the PC is specified as the general register. The format for absolute 
mode is 

Absolute Mode 

31 

Address 

00 07 04 03 00 

9 F 
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The assembler syntax for absolute addressing is @#address, for 
example, 

TSTL @#!\X1234 

This instruction tests the longword at address 00001234 regardless of 
where the instruction is located in memory. The instruction would be 
assembled as 

Memory 
Address 

Branch Addressing 

Memory 
Contents 
D5 
9F 
34 
12 
00 
00 

Interpretation 
TSTL opcode 
absolute mode 
32-bit 
... operand 
... address 
.. .is 00001234 

The last addressing mode we will examine is branch addressing. The 
coding of a conditional branch instruction, shown in Figure 5.6, differs 
from the modes previously discussed in that there is no operand specifier. 
Each conditional branch consists of a one-byte opcode followed by a 
one-byte signed displacement. The signed displacement is used in a 
fashion similar to relative addressing and is added to the program counter 
to form the branch destination address. This different addressing choice 
was made because branches are frequent and most conditional branch 
instructions specify a destination within a short distance. Also, very few 
branches require advanced addressing modes. 

For example, the instruction sequence 

NILL: 

TSTL 
BEQL 
INCL 

RO 
NILL 
RO 

would appear in memory as 

Figure 5.6 Conditional branch encoding 

07 00 

Opcode 

Byte 

check for RO zero 
branch if so 
else add one 
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Memory Memory 
Address Contents Interpretation 
200: D5 TSTL code 
201: 50 RO register mode 
202: 13 BEQL opcode 
203: 02 byte displacement 
204: D6 INCL opcode 
205: 50 RO register mode 
206: <next instruction> 

Branch 204 (program counter) 
destination + 02 (byte displacement) 
address = 206 

Because of this addressing mode, a conditional branch can be used 
only if the branch target is within ± 127 bytes from the instruction. If the 
branch target is farther away, the code sequence must be changed. 
Suppose the location NILL in the preceding example was actually at 
address 600, so that the conditional branch instruction BEQL would not 
reach. We could then recode the instruction as follows: 

TSTL 
BNEQ 
BRW 

NOTNILL:INCL 

RO 
NOTNILL 
NILL 
RO 

check for RO zero 
branch if not zero 
branch to NILL if zero 
add one 

Here, the condition of the branch has been reversed, and an unconditional 
Branch with Word Displacement (BRW) instruction has been inserted. As 
one might expect, the BRW instruction consists of a I-byte opcode 
followed by a 16-bit signed displacement. This technique is used often 
when the target of a conditional branch is more than 127 bytes away. For 
short-distance unconditional branches, there is also a Branch with Byte 
Displacement (BRB) instruction. 

This chapter focused on the encoding of VAX instructions and 
operand specifiers in memory. All the VAX addressing modes, except for 
short literal and branch addressing, use at least one register to specify the 
operand address. The programmer can specify the register explicitly, as in 
the register deferred example, INCL (R5), or the assembler can use a 
register to encode the effective address of an operand or a literal. For 
example, in the instructions 

TSTL VARI 
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and 

MOVL #lOO,R6 

the assembler uses the program counter as a general register to point to 
the operand address displacement or the operand itself within the instruc­
tion. In this way, almost all references on the VAX are position indepen­
dent. 

The indexed addressing modes use two registers, one for the index 
register and one for the specification of the base address of the array. The 
base address of the array can be specified using any mode except for 
literal, indexed, and register. 

Tables 5.1, 5.2, 5.3, and 5.4 contain descriptions of all the VAX 
addressing modes. The notations B/\, W/\, and L/\ indicate byte, word, and 
longword values, respectively. Notice the variety of addressing that is 
provided using only 4 bits of encoding within an operand specifier. The 
flexibility comes from the indexed addressing mode and from the use of 
the program counter as a general register. 

Table 5.1 VAX General Register Addressing Modes 

Name of Assembler 
Mode Notation Hex Description 

Short literal #literal 0-3 The literal value is contained in bits 
o through 5 of the operand specifier. 

Index base[Rx] 4 The effective address of the operand 
is formed by first calculating the ef-
fective address of the array base and 
then adding the value of the index 
register multiplied by the size in 
bytes of each array element. 

Register Rn 5 The register contains the operand. 

Register (Rn) 6 The register contains the address of 
deferred the operand. 

Autodecrement -(Rn) 7 Register is decremented by the size 
of the operand in bytes and then 
used as the address of the operand. 

Autoincrement (Rn)+ 8 Register is used as the address of the 
operand and then incremented by 
the size of the operand in bytes. 

Autoincrement @(Rn)+ 9 Address in register is a pointer to the 
deferred effective address of the operand. Reg-

ister is incremented by 4 after being 
used to access the effective address. 
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Table 5.2 VAX Displacement Addressing Modes 

Name of Assembler 
Mode Notation Hex Description 

Byte BflDisp(Rn) A Displacement is sign-extended to 32 
displacement bits and added to the register to 

form the effective address. 

Byte @BflDisp(Rn) B Displacement is sign-extended to 32 
displacement bits and added to the register to 
deferred form a pointer to the effective ad-

dress. 

Word WflDisp(Rn) C Displacement is sign-extended to 32 
displacement bits and added to the register to 

form the effective address. 

Word @WflDisp(Rn) D Displacement is sign-extended to 32 
displacement bits and added to the register to 
deferred form a pointer to the effective ad-

dress. 

Long LflDisp(Rn) E Displacement is added to the regis-
displacement ter to form the effective address. 

Long @LflDisp(Rn) F Displacement is added to the regis-
displacement ter to form a pointer to the effective 
deferred address. 

Table 5.3 VAX Program Counter Addressing Modes 

Name of 
Mode 

Immediate 

Absolute 

Relative 

Assembler 
Notation 

# literal 

@#address 

address 

Hex 

8 

9 

A,C,E 

Description 

Literal operand follows the operand 
specifier in the instruction stream. As­
sembled addressing mode is (PC) + . 
The address of the operand follows the 
operand specifier in the instruction 
stream. Assembled addressing mode is 
@(PC)+. 

Operand is located at specified address. 
The effective address is formed by add­
ing the contents of the updated PC to 
the byte, word,or longword offset that 
follows the operand specifier in the in­
struction stream. The assembled ad­
dressing mode is Dispiacement(PC). 

(continued) 
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VAX Program Counter Addressing Modes 

Name of 
Mode 

Relative 
deferred 

Assembler 
Notation 

@address 

Hex 

B,D,F 

Description 

The effective address of the operand is 
located at specified address. The effec­
tive address of the pointer is formed by 
adding the updated PC to the byte, 
word,or longword offset that follows 
the operand specifier in the instruction 
stream. The assembled addressing 
mode is @Displacement(PC). 

Table 5.4 VAX Indexed Addressing Modes 

Name of 
Mode 

Register 
deferred 
indexed 

Autoincrement 
indexed 

Autodecrement 
indexed 

Displacement 
indexed 

Displacement 
deferred 
indexed 

Autoincrement 
deferred 
indexed 

Assembler 
Notation 

(Rn)[Rx] 

(Rn)+[Rx] 

-(Rn)[Rx] 

D(Rn)[Rx] 

@D(Rn)[Rx] 

@(Rn)+[Rx] 

Description 

The index register is multiplied by the size 
of the operand in bytes, forming the adjust­
ed index. The result is added to the con­
tents of Rn to form the operand address. 

Same as register deferred indexed except 
that Rn is incremented after the operand 
address is calculated. 

Same as register deferred indexed ,except 
that Rn is decremented before the operand 
address is calculated. 

The base address, formed by adding the 
byte, word, or longword displacement to 
the contents of the register, is added to the 
adjusted index to form the operand ad­
dress. 

The displacement is added to Rn to form 
the address of a pointer to the base ad­
dress. The base address is then fetched and 
added to the adjusted index to form the 
operand address. 

Rn contains the address of a pointer to the 
base address. The base address is fetched 
and added to the adjusted index to form 
the operand address. Rn is then incre­
mented by 4. 
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1. "Reassemble" the following :machine instructions into the symbolic assembly 
instructions from which they were generated. (Bytes are shown right to left. Use 
the programmer's card in Appendix B to find the opcodes and addressing 
modes.) 

Byte 4 3 2 1 a 

a. 50 D4 
b. 56 65 DO 
c. 57 65 45 DE 
d. 82 43 51 60 C1 
e. 50 05 DO 

2. Write an assembly language program segment to compute 

for i 
A[i] 

2 to 49 do 
A[i-1] + A[i+1] 

3. Translate the assembly language program solution for exercise 2 into its 
hexadecimal equivalent VAX machine code. 

4. Explain the difference between PC-relative and absolute addressing. Why is 
PC-relative preferable in most addressing applications? 

5. In a machine such as the VAX, with both indirect and immediate addressing, 
what is the meaning of an indirect immediate operand? 

6. Write a program to inclusively sum all of the positive longwords between the 
addresses held in the longwords FIRST and LAST. For example, the beginning 
and ending of the program might look like 

FIRST: 
SECOND: 
THIRD: 
FOURTH: 
FIFTH: 
SIXTH: 
LAST 
START: 

.ADDRESS THIRD 

.LONG 1123 

.LONG -5471 

.LONG 1770 

.LONG -1122 

.LONG 999 

.ADDRESS FIFTH 

7. Explain how short literal addressing mode works. In particular,why is it that no 
separate operand specifier byte is required for short literal? 

8. Assemble the following instructions into hexadecimal VAX machine code. 
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Assume that each instruction is assembled at address 500 (hex) and that the 
symbols LONGA and LONGB are at addresses 400.and 600 (hex), respectively. 

a. MOVL LONGB,RO 
h. MOVAL LONGB,RO 
c. MOVL 400,RO 
d. MOVL #400,RO 
e. MOVL #4, RO 
£ MOVL LONGA[RO],LONGB[Rl] 
g. BRW LONGA+20 
h. MOVL 255(Rl),R2 
i. MOVL 256 (Rl ) , R2 
j. MOVL lO(Rl)[R2],R3 
k. MOVL ~#LONGB,RO 
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Chapter 4 presented the basics of VAX programming. There are other 
techniques that facilitate good programming in assembly language, and 
these demand additional VAX instructions. This chapter introduces new 
VAX instructions and, more important, it describes the procedure-calling 
facility that permits modular programming and supports high-level lan­
guages. It also discusses macro facilities that allow the programmer to 
extend the instruction set. 

The Jump Instruction 
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Elementary branching and looping were illustrated in Chapter 4. Two 
types of conditional branches were given, signed and unsigned. The two 
unconditional branches, Branch Byte (BRB) and Branch Word (BRW) , 
transfer to locations within 8-bit or 16-bit offsets, respectively, from the 
branch instruction. Although the unconditional branches are efficiently 
encoded, they do not allow the use of sophisticated addressing modes and 
are incapable of transferring control outside the range of the 16-bit offset. 
For requirements such as these, the Jump instruction (JMP) is provided. 
Unlike Branch instructions, in which the destination is a displacement to 
be added to or subtracted from the PC, the destination of a JMP 
instruction can be specified by any of the legal addressing modes. The 
target location can be any location within the address space of the user's 
program. What follows are some examples of legal JMP instructions: 

JMP 
JMP 

JMP 
JMP 

CONTINUE 
@NEXTADDR 

(RI) 
@(R4)+ 

transfer to location CONTINUE 
NEXTADDR contains target 
... address 
RI contains target address 
R4 points to a longword 
... containing the target 
... address. Fetch the target 
... address, increment R4 
... by 4 and jump to the 
... destination. 

A common use of the generalized addressing capability of the JMP 
instruction is for taking a specified action based on a numeric code. The 
computed GOTO of FORTRAN is one example in which transfer of control 
is made to one of several labelled statements, based on the value of the 
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Figure 6. 1 Jump table problem 

TABLE .ADDRESS ADD,SUB,MUL,DIV 

DISPATCH: 

ADD: 

SUB: 

HERE: 

MOVL 
BLSS 
CMPL 
BGTR 
MOVL 
JMP 

JMP 

JMP 

CODE,Rl 
ERROR 
CODE,#MAXCODE 
ERROR 
TABLE[Rl],Rl 
(Rl) 

HERE 

HERE 

variable INDEX, as in 
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addresses of simulated ops 

load the routine indicator 
error if CODE < 0 
is CODE too large? 
error if CODE> MAX 
get routine address 
jump to appropriate routine 
process ADD operation 

return to common exit 
process SUB operation 

return to common exit 

all routines jump here 
when done 

GO TO (100,200,300,400, ... ),INDEX 

Another example might be found in writing a machine simulator, in which 
transfer of control is made to the Add, Subtract, Multiply, or Divide 
routines based on the value of the variable CODE. If the addresses of these 
routines are placed in a table, an indirect jump could be used to transfer 
control to the appropriate arithmetic routine. For instance, suppose codes 
of 0 through 3 indicate ADD, SUB, MUL, and DIV, respectively. The 
dispatching code might appear as in Figure 6.1. 

This example again illustrates the use of indexing on the VAX. If the 
value of CODE is 3, for instance, the MOVL instruction will load the 
longword at TABLE+ 12 (the address of the DIV routine) into Rl. The JMP 
then transfers control to that routine. 

Case Statements 

The problem of dispatching to a routine based on the value of a 
variable occurs frequently enough that some high-level languages include 
special constructs to handle it, such as the computed GOTO in FORTRAN 
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and the Case statement in Pascal. Because of this, the VAX instruction set 
includes a Case instruction so that such control structures can be 
represented efficiently. Not only does Case handle the transfer of control, 
it also handles the initialization and bounds checking for the INDEX 
variable. The general form of the VAX Case statement is 

CASE SELECTOR,BASE,LIMIT 
TABLE: displacement 0 

displacement 1 

displacement n-1 
OUTOFBOUNDS: 

The objective of the Case statement is to transfer control to one of n 
locations based on the value of the integer SELECTOR operand. The BASE 
operand specifies the lower bound for SELECTOR. Following the CASE 
instruction is a table of word displacements for the n branch locations. The 
entries in the table are displacements and not addresses so that CASE can 
be position independent in the same way that other conditional branches 
are position independent. Just as the displacements in branch instructions 
are added to the PC to give the branch destination, these word displace­
ments are added to the address of the first displacement (TABLE, in this 
example) to form the Case branch destinations. 

The instruction subtracts BASE from SELECTOR, producing a zero­
origin index into the table of branch locations. This index is compared 
with LIMIT to check that it is in the table range. Therefore, the LIMIT 
operand specifies the largest legal value of SELECTOR - BASE and is one 
less than the number of branch displacements. 

Although the explanation of this statement is somewhat complex, we 
can represent the instruction with the following description: 

if SELECTOR 
if SELECTOR 
if SELECTOR 

BASE+O then GOTO (TABLE+disp1acement 0) 
BASE+l then GO TO (TABLE+displacement 1) 
BASE+2 then GOTO (TABLE+displacement 2) 

if SELECTOR = BASE+LIMIT then GO TO (TABLE+displacement n-1) 
otherwise 

GO TO OUTOFBOUNDS 

In other words, if the SELECTOR operand is between BASE and BASE + 
LIMIT, then the value of SELECTOR - BASE is used to select a table entry 
with which the branch destination is computed. If the SELECTOR is not 
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between BASE and BASE + LIMIT, the SELECTOR is out of bounds; in this 
case, execution continues at the instruction following the Case table. 
Therefore, immediately following the table there must be instructions to 
handle an index-out-of-bounds error. 

A simple example of the use of the Case statement is the computed 
FORTRAN GOTO of the last section 

GO TO (100,200,300,400,500),INDEX 

which branches to one of the statement labels based on the value of 
. INDEX. We can also represent this example using the Pascal Case 
statement 

case INDEX of 
1: <statement for INDEX=I>; 
2: <statement for INDEX=2>; 
3: <statement for INDEX=3>; 
4: 
5: 

end; 

In VAX assembly language, we would code this as 

CASEL INDEX,#I,#4 range is from 1 to 5 
CASETABLE: 

. WORD LI00-CASETABLE if INDEX 1, go to LI00 

.WORD L200-CASETABLE if INDEX 2, go to L200 

. WORD L300-CASETABLE if INDEX 3, go to L300 

. WORD L400-CASETABLE if INDEX 4, go to L400 

.WORD L500-CASETABLE if INDEX 5, go to L500 
BRW ERROR if INDEX > 5 or < 1, 

... go to ERROR 
LI00: code for INDEX = 1 

L200: code for INDEX 2 

It is important to observe that displacements are used rather than 
actual addresses. Thus, to form the displacement, the difference between 
the branch address and the base address of the Case table is computed and 
stored. Since the branch table elements are differences, the Case instruc­
tion is position independent. In addition, notice that the Case instruction 
specifies the data type of the SELECTOR operand, so there are three 
possible forms: CASEB, CASEW, and CASEL. In the previous example, 
CASEL was used because the variable INDEX is a longword. The branch 
displacements are always 16-bit words, independent of the data type of the 
SELECTOR. (The Jump table example in Figure 6.1 can be recoded 
similarly to use the Case statement. This is left as an exercise.) 
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Case is most useful when the possible values of the SELECTOR are 
relatively compact. If the value space of SELECTOR is sparse, then the 
table becomes large and many elements are wasted. For example, suppose 
we want to jump to one of four places based on the value of the variable 
INDEX, and its possible values are 3, 4, 20, and 21. In this case, we would 
need a table following the Case with nineteen entries, fifteen of which 
would contain the branch displacement to an error routine. Depending on 
whether we value space or time, we might still choose to use the Case, or 
we might instead use a series of Compare and Branch instructions. 

A more serious problem with these techniques for transferring 
control is that there is no automated way for the code at the destination to 
return to the main line following dispatch. Subsequent sections will 
consider more generalized subroutine facilities on the VAX. However, 
before looking at these advanced programming techniques, let us examine 
additional methods of constructing loops for the VAX. 

Chapter 4 introduced several looping examples in the context of 
sample programs, including the Subtract One and Branch and the Add 
One and Branch instructions. There are two versions of each instruction, 
depending on the desired end conditions. Thus, these instructions imple­
ment the following high-level language equivalents: 

SOBGEQ 
SOBGTR 
AOBLEQ 
AOBLSS 

INDEX, LOOP ; for index = initial down to 0 do 
INDEX, LOOP ; for index = initial down to 1 do 
LIMIT,INDEX,LOOP for index initial to limit do 
LIMIT,INDEX,LOOP ; for index = initial to limit-l do 

The flow of control for these instructions is similar. We can demonstrate it 
with the flowchart in Figure 6.2 when the conditions are replaced by the 
appropriate operation for each instruction. 

The use of the AOB instructions is exemplified in the construction of a 
typical bubble sort routine. If LIST is the array of values to be sorted and 
SIZE is the number of elements in the array, then the Sort algorithm in 
Pascal could be expressed as 

for i := 0 to SIZE-2 do 
begin 

end 

for j := i+l to SIZE-l do 
if LIST[i] > LIST [j] then 
begin 

TEMP := LIST [i] ; 
LIST[i] LIST[j] 
LIST[j] TEMP; 

end 
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Figure 6.2 VAX loop instructions 

Step 

Initialize index 

2 LOOP: 

3 # is - for SOBGEO and SOBGTR 
# is + for AOBLEO and AOBLSS 

4 Limit is 0 for SOBGEO and SOBGTR 
# is ;;;. for SOBGEO 

> for SOBGTR 
~ for AOBLEO 
< for AOBLSS 
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In VAX assembly language, we can code this routine as shown in Figure 
6.3. Notice that the VAX assembly language and Pascal routines are not 
equivalent if size :s 1. 

Even more interesting are the Add Compare and Branch (ACB) 
generic instructions that efficiently implement the general FOR or DO 
loops found in higher-level languages. The ACB-which uses a word 
branch displacement and can be used with byte, word, longword, 
F _floating, D_floating, G_floating, and H_floating operands-allows the 
programmer to construct loops with increasing or decreasing index 
values. 

The execution of the instruction 

ACBL LIMIT, INCR, INDEX, LOOP 

first adds the increment value INCR to the index value INDEX. A test is 
then made to determine whether the LIMIT has been reached; if it has not, 
a branch is taken to the branch address LOOP. If INCR is negative, the loop 
continues while INDEX;::: LIMIT; if INCR is positive, the loop continues 
while INDEX :S LIMIT. For example, to implement the FORTRAN 
DO-loop 

DO 30 LCV=lO,O,-2 

30 CONTINUE 

which loops six times while LCV takes on the values 10, 8, 6, 4, 2, and 0, 



Figure 6.3 Bubble sort flowchart and routine 

MOVL 
DECL 
MOVAL 
CLRL 

OUTER: ADDL3 
INNER: CMPL 

BLEQ 
MOVL 
MOVL 
MOVL 

CONTINUE: 
AOBLEQ 
AOBLSS 

SIZE,RO 
RO 
LIST,Rl 
R2 
#1,R2,R3 
( R 1 ) [R2] , (R 1 ) [R3] 
CONTINUE 
(Rl) [R2], TEMP 
( R 1 ) [R3] , (R 1 ) [R2] 
TEMP, (Rl) [R3] 

RO,R3,INNER 
RO,R2,OUTER 

get number of elements 
form index of last entry 
get array base address 
initialize I to first index 
initialize J to I+l 
test for order 
branch if first LEQ second 
save LIST(I) 
exchange LIST(I) 
... and LIST(J) 

update J 
update I 
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the ACBL equivalent instruction would be 

MOVL #lO,LCV ; initialize loop control value 
DO_LOOP: 
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ACBL #0, #-2, LCV,DO_LOOP increment and test LCV 

Before proceeding to more advanced control structures, we will 
examine one of the most important data structures in both systems and 
applications programming: the stack. A stack is an area of memory, that is, 
an array of contiguous data cells, used to store temporary data and 
subroutine invocation information. Data items are dynamically added to 
or removed from the stack in last-in, first-out (LIFO) fashion. When we 
remove or pop an entry from the stack, it is always the last item that was 
added or pushed onto the stack. 

Imagine a stack to be like a spring-loaded cafeteria tray holder in a 
school cafeteria, where the trays are the data items to be saved. If we want 
to save several items, we place (push) them onto the stack (of trays). To get 
them back, we simply pick them up in reverse order, remembering that the 
last we placed onto the stack is the first one we get back. 

For any stack, a variable called the stack pointer always points to the 
last entry pushed onto the stack, as shown in Figure 6.4. This last entry is 
referred to as the top of the stack. 

On the VAX, a register can be used as a stack pointer. The autoincre­
ment and autodecrement addressing modes are convenient for pushing 
entries on or popping them off a stack. By convention, stacks on the VAX 
grow in the negative direction, toward memory location zero. To push a 
new entry onto the stack, we use the auto decrement addressing mode, 
subtracting the element size from the stack pointer and moving the 
element to memory. An example of a stack (containing longwords) is 
shown: 

Address 
(hex) 
100 
104 
108 
10C 
110 

Memory 
? 
? 
? 
? 
20 

Stack 
Pointer 

~R6 

R6 is being used as a stack pointer for a stack that has one entry. The 
current top of the stack is location 110, which contains the value 20. 
Question marks (?) indicate that we do not know or care about the values 
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Figure 6.4 Stack pointer 

t 
Low addresses Empty slot 

Empty slot 

Entry n ~ Stack pointer 

Entry n - 1 . . . 
Entry 1 

High addresses Entry 0 

above the stack pointer. Suppose the location at ITEM contains the value 
65. The instruction 

MOVL ITEM,-(R6) ; save ITEM on R6 stack 

moves the pointer to the next location and inserts the value of ITEM there, 
leaving the stack as follows: 

Address 
(hex) 
100 
104 
108 
10C 
110 

Memory 
? 
? 
? 
65 
20 

Stack 
Pointer 

~R6 

We remove an item from the stack using the autoincrement address­
ing mode. Executing the instruction 

MOVL (R6)+,R8; pop stack to R8 

moves the top entry in the stack to R8 and changes the stack pointer to 
point to the previous top of the stack. The stack now appears as follows: 

Address 
(hex) 
100 
104 
108 
10C 
110 

Memory 
? 
? 
? 
? 
20 

Stack 
Pointer 

~R6 

The stack pointer now points at the first entry, exactly where it was 
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before the push and pop operations. Of course, we know that there is still a 
65 at location lOC, but it will be overwritten by the next Push instruction. 

On the VAX, register 14 is reserved for a stack pointer. R14 is denoted 
as SP, for stack pointer, by the assembler. When a program is loaded, the 
operating system automatically allocates a block of memory in the user's 
address space and loads SP with the address of the block. Some instruc­
tions implicitly use SP and the user's stack. For example, the instruction 

PUSHL R5 

pushes the contents of R5 onto the stack pointed to by SP. This instruction 
is equivalent to 

MOVL R5,-(SP) 

but is shorter because the -(SP) is implied. Likewise, we can write 

POPL R3 

to remove the top entry from the stack and store it in R3. (The VAX does 
not actually have a POPL instruction because, as we shall see, there are a 
number of mechanisms for removing items from the stack automatically. 
However, the assembler recognizes "POPL Destination" and generates 
"MOVL (SP)+ ,Destination" instead.) 

As an example of how the stack can be used to store temporary 
variables, we will use the three-instruction exchange in the sorting routine 
from the previous section: 

MOVL 
MOVL 
MOVL 

( Rl) [R2] , TEMP 
(Rl) [R3] , (Rl) [R2] 
TEMP, (Rl ) [R3] 

; save LIST(I) 
; exchange LIST(I) 
; ... and LIST ( J ) 

Instead of using the variable TEMP to hold LIST[I] during the exchange, 
we easily could have used the stack and written: 

PUSHL 
MOVL 
POPL 

(Rl) [R2] 
( Rl ) [R3] , (Rl) [R2] 
(Rl) [R3] 

save LIST[I] on stack 
replace LIST[I] 
restore LIST[J] 

This is shorter because we need not represent the address of TEMP in the 
instruction stream. It also allows the use of reusable storage space, that is, 
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stack space that any routine can use. The destinations of the push and the 
pop are implied by the register SP. 

The stack is also commonly used to save registers. Often we need to 
use registers for a section of code, but we want to save their current values 
for later use. In the following section of code, registers 4,5, and 6 are saved 
and then restored from the stack: 

PUSHL 
PUSHL 
PUSHL 

R6 
R5 
R4 

(instructions that 
modify R4-R6) 

POPL 
POPL 
POPL 

R4 
R5 
R6 

save R6 
save R5 
save R4 

restore R4 
restore R5 
restore R6 

Notice that the registers are restored in opposite order since the stack is 
last-in, first-out. 

Registers are saved and restored so frequently that the VAX has special 
Push and Pop Registers instructions to store and retrieve multiple registers 
from the stack. The operand to these instructions is a 16-bit mask with 1 bit 
corresponding to each register in the VAX register set. The assembler 
syntax I\M<Ra,Rb, ... ,Rn> automatically generates the mask with the 
proper bits set for the registers to be saved or restored. For example, the 
preceding example can be replaced with the following sequence: 

PUSHR 

POPR 

(instructions that 
modify R4-R6) 

; save three registers 

; restore three registers 

The Push Registers instruction pushes the registers in high-to-Iow 
order, while the Pop Registers instruction restores them in low-to-high 
order. This is done so that contiguous registers will be stored in increasing 
memory addresses on the stack. Registers are pushed and popped in this 
order regardless of the order in which they are specified. Thus, the Push 
Registers instruction will copy the registers as shown in Figure 6.5. 

As we shall see, the stack is often used to contain arguments for a 
subroutine being called. Since addresses as well as values are passed to 
subroutines, the VAX also has Push Address instructions to store addresses 
on the stack. The instruction 

PUSHAL ITEM 
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Figure 6.5 Stack following PUSHR #I\M<R4,R5,R6> 

t 
Empty slot 

R4 ~ Stack pointer 

R5 
R6 

Previous entries 

pushes the address of ITEM onto the stack. This is the same as writing 

MOVAL ITEM,-(SP) 

but shorter. There are Push Address instructions for all VAX data types: 
PUSHAB, PUSHAW, PUSHAL, PUSHAQ, PUSHAO, PUSHAF, PUSHAD, 
PUSHAG, and PUSHAH. Each instruction pushes a 32-bit address onto the 
stack. The data type indication is used to evaluate context-dependent 
addresses, as in the instruction 

PUSHAW ARRAY[R3] 

in which the word-context indication is needed to evaluate the effective 
address. As in the Move Address instruction, the context of the operand is 
determined by the data type specified in the instruction, while the context 
of the implied second operand (that is, the top of stack) is always 
longword. 

We conclude this section with a short code segment that uses the 
stack. This example, shown in Figure 6.6, takes an integer and uses the 
routine LIB$PUT_OUTPUT to write the characters one at a time. 

The stack is used because the algorithm extracts the digits from least 
significant to most significant, although we read numbers in the opposite 
order. When a digit is extracted in binary, the ASCII equivalent is 
computed by adding the value of ASCII zero to the number. This example 
also introduces a new instruction, Extended Divide (EDIV), which divides 
a 64-bit dividend by a 32-bit divisor, producing a quotient and a remainder 
of 32 bits each. The format of EDIV is 

EDIV divisor,dividend,quotient, remainder 

EDIV sets the condition codes based on the quotient produced. Because 
we are using alllongword values, the upper half of the quadword dividend 
is cleared before the loop begins. In addition, the CLRQ instruction, when 
given a register operand, clears two consecutive registers. 

For example, suppose NUMBER contains the value 35. Following the 
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Figure 6.6 Integer-to-ASCII conversion code 

Output an integer in ASCII representation. 

Input: 

NUMBER contains value to be evaluated 

Output: 

ASCII value output by LIB$PUT_OUTPUT 

Register usage: 

R2 number to be evaluated 
R3 upper 32 bits of quadword (64-bit) number 
R4 number of digits to be output 

CHARBUF: .BLKB 16 
CHDSC: .LONG 16 

.ADDRESS CHARBUF 

OUTASC: 

10$: 

PUSHR 
CLRL 
MOVL 
MOVL 
EDIV 

BEQL 
INCL 
BRB 

#!\M<R2,R3,R4> 
R3 
#1,R4 
NUMBER,R2 
#10,R2,R2,-(SP) 

20$ 
R4 
10$ 

output character buffer 
output string descriptor 

save registers to be modified 
zero R3 (upper dividend bits) 
we'll get at least 1 digit 
get number to be evaluated 
push low order decimal digit 
... on stack, R2 gets quotient 
branch if zero quotient 
count one more digit 
continue for next digit 

The digits have been pushed on the stack in reverse order. 
Now pop them off, converting each to ASCII and placing it in 
the next position in CHARBUF. When done, CHARBUF will have 
the ASCII string to be output. 

20$: 

30$: 

MOVL 
MOVAL 
ADDL3 
MOVB 
SOBGTR 
PUSHAQ 
CALLS 
POPR 

R4,CHDSC 
CHARBUF,RO 
#!\A/O/, (SP)+,Rl 
Rl, (RO)+ 
R4,30$ 
CHDSC 
#l,G!\LIB$PUT_OUTPUT 
#!\M<R2,R3,R4> 

set length in descriptor 
RO <- buffer address 
Rl <- digit 
insert digit in buffer 
continue until done 
now output the buffer 

restore registers 
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execution of the EDIV instruction at LOOP 1, the stack appears as 

? 
5 04- Stack pointer 

Saved R2 }s Saved R3 
Saved R4 

aved registers 

The second time through the loop, the stack appears as 

3 ~ Stack pointer 
5 

Saved R2 

Saved R3 
Saved R4 

In LOOP2, the characters are popped off the stack and are converted to 
ASCII. 

Subroutines and Procedures 

The best way to write a program to solve a problem is to subdivide the 
problem into manageable pieces. Experience has shown that large, mono­
lithic programs are difficult to debug and maintain. Building programs in 
smaller units that can be debugged independently allows productivity, 
reliability, and maintainability to be substantially increased. (Of course, 
dividing a program into small pieces does not itself guarantee that the 
program will be productive, reliable, or maintainable.) 

In addition to making programs easier to maintain, subroutines save 
on program space. When a single function must be performed several 
times within a program, the function is made into a subroutine so that the 
same code is not duplicated at each point where it is needed. However, it is 
not required that a routine be called more than once from a program. An 
instruction sequence should be made into a subroutine whenever doing so 
simplifies coding or comprehension of the program. 

One of the more important aspects of dividing a program into 
subprograms is defining the routine interfaces and the standards followed 
for transferring both data and control. A good subroutine facility must 
include the following properties: 

1. The subroutine must be able to be invoked from many different places 
in the program. This is known as It calling" the subroutine. 

2. The subroutine must be able to return to the caller without knowing 
explicitly where it was called from. 
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3. There must be a simple and unambiguous mechanism for transmit­
ting arguments between the calling routine and the called procedure. 

4. The subroutine must be able to operate without knowledge of the 
environment in which it is called or the state of the variables in 
the outside program, except for the information passed explicitly in 
the calling sequence. 

If a subroutine is specified in such a way that it receives its input 
arguments and output arguments explicitly and has no knowledge of the 
outside world, then it will be able to be debugged independently. A special 
test program may easily be written that simply passes arguments to the 
subroutine and examines the results. Both input arguments and results are 
passed via the calling mechanism-neither party has global knowledge. 
Subroutines written in this way can be used without change as part of 
other programs that need the same function. This reusability reduces work 
tremendously because commonplace functions need be written only 
once. A well-defined interface also makes the calling program indepen­
dent of the implementation of the function provided by the subroutine. If a 
sorting procedure is too slow, for example, the algorithm can be changed 
without requiring any modification to the calling program. 

Invoking routines and transmitting arguments are so important in 
programming that the VAX instruction set contains some high-level 
mechanisms to deal with them. Indeed, the VAX has two forms of the 
subprogram call: the procedure call and the subroutine call. The signifi­
cant difference between these two forms is in the linkage mechanism. The 
procedure call, which is discussed first, is much more powerful in its 
handling of the arguments. Several of the sixteen general-purpose registers 
have been reserved for the procedure-calling facility, and the stack is 
heavily used to automate the transfer of control and the passing of 
arguments. On the other hand, the subroutine call, while still using some 
of the registers, is simpler and faster. 

The VAX general procedure-calling facility is provided by the Call 
instruction. The Call mechanism provides the four following features: 

1. Arguments are passed uniformly and consistently. The called routine 
can determine the number of arguments passed and can address them 
as offsets from a fixed pointer called the argument pointer (AP). 

2. Registers are saved so that the called procedure can use registers 
without modifying values left there by the caller. 

3. The called procedure can allocate local storage on the stack and 
address local variables as offsets from a fixed pointer called the frame 
pointer (FP). 
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4. Returning is done uniformly and consistently. The called procedure 
can return at any time. Any values pushed on the stack will be popped 
off, the saved registers will be restored, and control will be returned to 
the instruction following the Call, all automatically. 

The following sections examine how these features are implemented. 

Argument Lists and Call Instructions 

For the VAX, arguments are transmitted to a called procedure in an 
argument list. A VAX argument list is an array of longwords in which the 
first longword contains a count (in the first byte) of the number of 
arguments to follow. The general format is shown in Figure 6.7. 

Each entry in the list can be a value or an address. Passing data to a 
procedure by address is known as call by reference, while passing immedi­
ate values in the argument list is known as call by value. The argument list 
can be allocated in static memory or can be pushed onto the stack prior to 
the call. Consequently, there are two forms of the Call instruction. 

The General form, CALLG, takes as operands the address of an 
argument list anywhere in memory and the address of the procedure to 
call. For example, suppose we want to invoke the routine MYPROC and 
pass it two arguments whose values are 600 and 84. The following code 
shows the allocation of the argument list and the Call instruction: 

; Define Argument list for call to MYPROC 

ARGLIST: .LONG 2 
.LONG 600 
.LONG 84 

BEGIN: 
<code section> 

CALLG ARGLIST,MYPROC 

Figure 6.7 VAX call argument list 

I n 

Argument 1 

Argument 2 . 
. 

Argument n 

argument count 
first argument 
second argument 

call procedure MYPROC 
with ... argument list 
ARGLIST 
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If a second call to MYPROC is needed with different values for the 
arguments, the main procedure could use a different argument list or 
could dynamically move the values into the list starting at label ARGLIST. 

The second form of the call instruction is the Stack form, CALLS, in 
which the argument list is pushed onto the stack; that is, the stack is used 
as space in which to dynamically construct the argument list immediately 
before the call. The following example shows the invocation of MYPROC 
using the CALLS instruction: 

PUSHL 
PUSHL 
CALLS 

#84 
#600 
#2,MYPROC 

push second argument 
push first argument 
call procedure MYPROC 

There are two important details about the use of CALLS. First, the 
arguments are pushed in reverse order because the stack grows toward 
lower addresses. Second, the first operand of CALLS is the count of the 
number of calling arguments; the CALLS instruction itself pushes the 
argument count onto the stack before transferring control. When the 
called procedure terminates by executing a return (RET) instruction, the 
argument list is automatically removed from the stack if a CALLS instruc­
tion was used. Execution of a RET instruction by the procedure returns 
control to the instruction following the Call that invoked it. Thus, following 
the return from the call, the calling routine does not have to remove its 
arguments from the stack, since the stack pointer is restored to its state 
before the arguments were pushed. 

There are a number of tradeoffs between the use of CALLS and 
CALLG. CALLG makes sense where the number of arguments and the 
value of each argument are fixed. CALLG is usually faster because the 
argument list is allocated at the time the calling routine is compiled. No 
instructions need to be executed to push arguments onto the stack. 
Depending on the number of calls used in the program, either form could 
be more space-efficient. On the VAX, the instruction to push a value onto 
the stack is often shorter than the storage required for the value itself 
because of short literal addressing. For example, the instruction to push 
the integer 1 onto the stack takes 2 bytes, while a longword argument 
containing the integer 1 takes 4 bytes. 

CALLG is used by older languages, such as FORTRAN. All modern 
languages use CALLS because it is more dynamic, allows for nested 
routine invocations, and permits recursion and reentrancy (to be dis­
cussed later). In this book, procedure calls are coded using CALLS. 
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The Argument Pointer 

Before transferring control to the procedure, the Call instruction 
loads register 12, the argument pointer (AP), with the address of the 
argument list either in memory (for CALLG) or on the stack (for CALLS). 
The procedure can access arguments as fixed offsets from AP. The first 
longword that AP points to always contains the number of arguments to 
follow. For instance, procedure MYPROC could access its calling argu­
ments with the following code: 

MYPROC: 

MOVL 
MOVL 
MOVL 

RET 

(AP) ,RO 
4(AP), Rl 
8(AP), R2 

get argument count 
get first argument 
get second argument 

; return to caller 

Note that MYPROC cannot tell (and should not care) whether it was called 
by a CALLS or a CALLG instruction. In either case, MYPROC begins 
execution with register AP pointing to the argument list. 

Saving Registers 

The CALLS and CALLG instructions transfer control to the procedure 
at the address specified by the second operand. To make it simple to save 
registers, the first word of the called procedure always contains a save 
mask similar to the one used in the PUSHR and POPR instructions. The 
Call instruction examines the mask and saves on the stack the registers 
corresponding to the bits set in the mask. By convention on VAX/VMS, all 
registers used in a procedure must be preserved by that procedure with 
the exception of RO and R1, which are used to return values to the caller, 
and R12 through R15 (AP, FP, SP, and PC), which are special registers. 
The calling routine, then, does not have to worry about saving or restoring 
registers across procedure calls. The execution of a RET instruction 
restores the saved registers before returning control. 

Each procedure that is called has the same basic format: 

PROC: .WORD /\M<Ra, •.. ,Rn> ; registers to save 

<routine code> 

RET return to caller 
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The VAX hardware always interprets the first word of a called procedure as 
a register mask, so the mask must not be omitted. Because of this, the VMS 
assembler has a special format for declaring procedures. The .ENTRY 
directive declares the start of a procedure and defines both the entry point 
name and the save mask. For example, using .ENTRY we would code the 
previous procedure as 

.ENTRY PROC, AM<Ra, ... ,Rn> procedure PROC 

<routine code> 

RET ; return to caller 

If we leave out the second argument to .ENTRY, the directive will simply 
place a zero-valued mask as the first word of the procedure, causing no 
registers to be saved. 

As already mentioned, procedures do not specify the saving of R12 
through R15, since these are special and are saved automatically by the 
procedure-calling mechanism, as will soon be discussed. Also, RO and Rl 
are not saved by convention, since they are used to return results to the 
calling procedure. This convention is enforced by the assembler, which 
will not allow RO and Rl in the call mask, although the hardware would 
permit these bits to be set in the mask. 

The format of the 16-bit mask for procedure calls is actually as follows: 

15 14 13 12 11 00 

Registers 

Bits 0 through 11 specify the registers to be saved. Bits 12 and 13 are always 
zero. Finally, bits 14 and 15 can be used to set the PSW bits indicating 
whether integer overflow (IV) and decimal overflow (DV) should be 
enabled within the called procedure. This is to permit some procedures to 
easily ensure that they always execute in the same environment with 
respect to overflow. 

Note that when we use a register mask as an argument in a PUSHR or 
POPR instruction, we typically use immediate mode addressing for the 
mask; thus, it must be preceded by a #, for example, 

PUSHR 

However, when used in the .WORD or .ENTRY declaration, the mask is 
not preceded by a # since we are just specifying the mask as a data value in 
a data allocation directive. 
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An Example Procedure 

;++ 

Now that we have seen how arguments are transmitted, how registers 
are saved, how control is transferred with the Call instruction, and how 
control is returned with RET, we will use the sorting example from the 
discussion of loops to build a callable procedure. The Sort procedure will 
be called with an argument list containing two arguments: the address of 
an array of longwords to be sorted and the address of the number of 
elements in the array. This example also shows the style we will use for 
documentation within the program. Normally, procedure values are 
returned in RO and Rl; therefore, these registers are not saved and 
restored by the called procedure . 

. SBTTL SORT - Procedure to Sort a Longword Array 

FUNCTIONAL DESCRIPTION: 

This procedure arranges an array of signed longword integers 
into increasing numerical order. 

CALLING SEQUENCE: 

Called with CALLS or CALLG to Sort. 

INPUT PARAMETERS: 

ARRAY(AP) - the address of the array of longwords to be sorted 
ARRAYSIZE(AP) the address of the number of longwords in ARRAY 

OUTPUT PARAMETERS: 

None 

COMPLETION CODES: 

None 

SIDE EFFECTS: 

All registers except RO and RI are preserved. 

ARRAY=4 
ARRAYSIZE=8 

offset to array address 
offset to array length 

The following implements a bubble-up sort, where the smallest values 
are "bubbled" up to the top of the list . 

. ENTRY SORT,AM<R2,R3> 
SUBL3 #1,@ARRAYSIZE(AP),RO 

procedure SORT, save 2 regs 
subtract I from array size 
... to form last entry index 



138 

10$: 
20$: 

Advanced Control Structures 

BLEQ 
MOVL 
CLRL 
ADDL3 
CMPL 
BLEQ 

40$ 
ARRAY(AP),Rl 
R2 
#1,R2,R3 
( Rl ) [R2] , (Rl ) [R3] 
30$ 

done if 1 entry or less 
get array base address 
I is index of first entry 
initialize J to I = 1 
is first LEQ second? 
branch if so 

Found larger number before smaller one, exchange them. 

30$: 

40$: 

PUSHL (Rl) [R2] save LIST(I) 
MOVL ( Rl ) [R3], (Rl) [R2] exchange LIST(I) 
POPL (Rl) [R3] ... and LIST(J) 

AOBLEQ RO,R3,20$ update J 
AOBLSS RO,R2,lO$ update I 
RET return to caller 

One of the changes made to this code sequence is the introduction of 
local labels. As mentioned before, a local label is a symbol of the form 
integerS that replaces alphanumeric labels. Since a local label is defined 
only within the local symbol block in which it appears, the definition of 
another alphanumeric symbol begins a new block in which local symbols 
using the same number can be defined. In other words, a routine following 
Sort can also use local labels 10$,20$,30$, and 40$. Since another routine 
cannot transfer to Sort at any place except its entry point, local symbols 
enforce the isolation of routines. 

The Call Frame 

On execution of a RET instruction by a procedure, the following four 
functions are performed automatically: 

1. Anything pushed onto the stack by the procedure is removed. 

2. The registers saved on entry are restored. 

3. If the procedure was invoked by a CALLS, the argument list is 
removed from the stack. 

4. Control is returned to the. instruction following the Call statement. 

In other words, the state of the main routine is restored except for any 
output results that may have been written within the procedure (or values 
returned in registers RO or Rl). 

The RET instruction can perform these functions and remember all 
the work being done because, once more, the stack is a convenient 
mechanism for maintaining information. When a CALLS instruction is 
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executed, a data structure known as a call frame is built on the user's stack. 
The call frame contains the state information needed by the RET instruc­
tion to restore the registers, restore the stack, and return control. Register 
13, the frame pointer (FP), is loaded with the address of the call frame. 
Therefore, the RET instruction simply uses FP to locate the call frame and 
restore the previous state. 

The structure of the call frame is shown in Figure 6.8. The compo­
nents of the call frame are: 

1. A longword condition handler address. Here, the calling routine may 
store the address of an error-handling routine to be called if an 
exceptional error condition arises in the procedure. 

2. The saved program status word (PSW) of the calling routine. The PSW 
contains enable bits that indicate how to handle arithmetic-error 
conditions. The condition codes, also part of the PSW, are stored as 
zero and are not preserved over the call. 

3. A copy of the register save mask found at the call site. This mask is 
saved so that the RET instruction knows which registers are to be 
restored from the call frame. 

4. A single bit that indicates whether this call was the result of a CALLS 
or a CALLG. If a CALLS was used, RET removes the argument list 
from the stack and examines the argument count in the first longword 
of the list to determine the number of arguments. 

5. A two-bit field called stack pointer alignment (SPA). The Call instruc­
tion always aligns the call frame on a longword boundary. Therefore, 
if the stack is not aligned at the time of the call, up to 3 spare bytes may 

Figure 6.8 VAX call frame 

31 30292827 161514 

Condition handler (initially 0) 

SPA Isla] Mask IZI PSW<14:5> 
Saved AP 
Saved FP 
Saved PC 

Saved RO ( ... ) 

Saved R11 ( ... ) 

(0 to 3 bytes specified by SPA) 

S = Set if CALLS; clear if CALLG. 

05 04 

I a 

Z = Cleared by CALL. Set by software to force a reserved operand call on RET. 

00 

(FP) 
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be skipped before the first entry in the frame (the highest-numbered 
register saved) is pushed. SPA is used to remember how many bytes 
were skipped so that the stack can be restored when the call frame is 
removed. 

6. All registers specified by the save mask, with the highest-numbered 
register saved first, as in the PUSHR instruction. 

To see what might happen to the stack on a procedure call, consider 
the following example. Suppose that the following code is used to call the 
procedure Sort: 

LISTSIZE: 
.LONG 

AGELIST: 
.BLKL 

MAIN: <code 

10$: PUSHAL 
PUSHAL 
CALLS 

20$: 

20 

20 

sequence> 

LISTSIZE 
AGELIST 
#2,SORT 

size of array 

array of 20 elements 

push address of array length 
push address of array 
call Sort routine 

Assuming the stack is aligned on a longword before the PUSHAL 
instruction at location 10$, the state of the stack following the call is shown 
in Figure 6.9. Although the called procedure may use the stack and the 

Figure 6.9 Stack following CALLS to Sort routine 

t 
0 New FP, SP 

o I 1 I 0 I AM<R2,R3> I PSW I 0 

Call frame 
Saved AP 

• Saved FP 
Address of 20$ (saved PC) 

R2 

{ 
R3 
2 

Address of AGELIST 
Address of LlSTSIZE 

NewAP 

Argument list 

Previous entries 
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value of SP changes accordingly, FP remains fixed. Thus, the call frame 
can always be found. 

Local Variables 

Another advantage of having a fixed FP register for the duration of a 
call is that the procedure can allocate local variables on the stack and 
address them as fixed offsets from FP. The following procedure has two 
local variables, A and B, which are allocated on the stack. The example 
shows the allocation and the addressing of these locals: 

A = -4 
B = -8 

.ENTRY PROC, AM<R2,R3,R8,RlO> 
SUBL #8,SP 

MOVL RO,A(FP) 
MOVL Rl,B(FP) 

RET 

offset to local A 
offset to local B 

registers to save 
make room for 2 longwords 
... on the stack 

store RO in A 
store Rl in B 

; return to caller 

At entry to this procedure, FP and SP both point to the top of the stack, 
which is the top longword in the new calling frame. FP will remain fixed 
for the duration of the call. In the code, the SUBL instruction allocates 
space for two longwords on the stack by subtracting 8 from the stack 
pointer. The stack pointer now points to the first of two longwords on the 
stack preceding the call frame, as shown in Figure 6.10. Had we wanted to 
initialize this local storage to zero, we could have used a Clear instruction 
instead of the Subtract, that is, 

Figure 6. 10 Stack following allocation of locals 

B SP 
A 

o (condition handler) FP 

011 101 AM<R2,R3,R8,R10> \PSW\O 

Saved AP 

Saved FP 

Saved PC 

Saved registers 
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CLRQ -(SP) 

also adjusts the stack pointer and zeros the two locals on the stack. 
The important point to note is that once these locals are allocated, 

they are addressed as fixed offsets from FP, not from SP. After locals are 
allocated at the start of the procedure, the stack can continue to be used 
for local computations without affecting addressing of the locals. If the 
start of the procedure stack is not fixed at FP, we must manually keep track 
of the changing offset between SP and local storage. This can become a 
problem when one procedure calls another. Another advantage of fixing 
FP, illustrated previously, is that the RET instruction automatically deal­
locates the temporary storage for A and B. 

Let's look again at the integer-to-ASCII output code shown in Figure 
6.6. In Figure 6.11, we have converted that code into a procedure. As part 
of the conversion, the local parameters CHARBUF, a 16-byte buffer, and 
CHDSC, a quadword string descriptor, are both stack-allocated as dynamic 
local storage. 

Fast Linkages 

The procedure call is used as the standard interface between routines 
written in all languages. Consequently, it is possible for a FORTRAN 
routine, for instance, to call a Pascal or assembly language routine. 

In assembly language, however, it is sometimes desirable to call a 
short procedure, known in VAX terminology as a subroutine, without 
invoking the overhead of the general Call facility. Compilers could also use 
this linkage for internal subroutines. In this quick linkage, input and 
output arguments are usually transmitted in general registers. There is no 
automatic saving of registers or restoring of the stack. The called subrou­
tine must take care of those tasks explicitly. 

Branch Subroutine Byte and Branch Subroutine Word (BSBB and 
BSBW) instructions are used to invoke such short subroutines. Just like 
Branch instructions BRB and BRW, these instructions transfer to subrou­
tines within byte or word offsets from the current location. When a BSBB 
or BSBW is executed, it simply pushes the PC (the address of the 
instruction to return to) onto the stack and branches to the subroutine. To 
return, the subroutine executes a Return from Subroutine (RSB) instruc­
tion, which merely pops the return address from the stack and returns. 
Because BSB instructions do not use a frame pointer, the subroutine must 
be sure to save and restore registers and to restore the stack to its original 
condition before an RSB is executed. 

In the code sequence on p. 144 using the BSB instruction, the 
problem is to compute the value of 

ARRAY (0)0 + ARRAY (1)1 + ARRAY (2)2 + ... + ARRAY (n)n 



Figure 6. 11 Integer-to-ASCII output procedure 

OUTASC -- Procedure to output an integer in ASCII representation. 
Called with CALLS or CALLG 

Input: 

NUMBER(AP) contains value to be evaluated 

Output: 

ASCII value output by LIB$PUT_OUTPUT 

Register usage: 

10$: 

R2 number to be evaluated 
R3 upper 32 bits of quadword (64-bit) number 
R4 number of digits to be output 

NUMBER 
BUFSIZE 
CHARBUF 
CHDSC 

. ENTRY 
ADDL 

CLRL 
MOVL 
MOVL 
EDIV 

BEQL 
INCL 
BRB 

4 
16 
-BUFSIZE 
CHARBUF-8 

OUTASC,AM<R2,R3,R4> 
#CHDSC,SP 

R3 
#1,R4 
NUMBER(AP),R2 
#10,R2,R2,-(SP) 

20$ 
R4 
10$ 

offset to input parameter 
size of buffer 
offset to start of buffer 
offset to string descriptor 

OUTASC entry point 
allocate space for locals 
(remember, CHDSC is negative) 
zero R3 (upper dividend bits) 
at least one digit of output 
get number to be evaluated 
push low-order decimal digit 
... on stack, R2 gets quotient 
branch if zero quotient 
count one more digit 
continue for next digit 

The digits have been pushed onto the stack in reverse order. 
Now pop them off, converting each ASCII and placing it in 
the next position in CHARBUF. When done, CHARBUF will have 
the ASCII string to be output. 

20$: 

30$: 

MOVL 
MOVAL 
MOVL 
ADDL3 
MOVB 
SOBGTR 
PUSHAQ 
CALLS 
RET 

R4,CHDSC(FP) 
CHARBUF ( FP ) , RO 
RO,CHDSC+4(FP) 
#AA/O/, (SP)+,Rl 
Rl, (RO)+ 
R4,30$ 
CHDSC(FP) 
#l,GALIB$PUT_OUTPUT 

set length in descriptor 
RO <- buffer address 
init address in descriptor 
Rl <- ASCII digit 
insert digit in buffer 
continue until done 
now output the buffer 

return to caller 
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given the address of ARRAY, the number of elements, n, and the address 
into which to write the result. A subroutine is used to raise each entry to 
the necessary power . 

. SBTTL COMPUTE - Calculate Sum of Array[i]**i 

FUNCTIONAL DESCRIPTION: 

This routine computes the sum of Array[i]**i 

CALLING SEQUENCE: 

CALLS OR CALLG 

INPUT PARAMETERS: 

ARRAY(AP) - address of the array 
SIZE(AP) - number of elements in array 
RESULT(AP) - address of longword to receive computed result 

OUTPUT PARAMETERS: 

RESULT(AP) longword pointed to receives computed value 

SIDE EFFECTS: 

None 

ARRAY 
SIZE 
RESULT 

4 
8 
12 

offset to array address 
offset to array size 
offset to address of result 
longword 

Register Usage: 

10$: 

Rl value of current array entry 
R2 address of next array entry 
R3 power to which value will be raised 
R4 sum accumulator 

. ENTRY 
MOVL 
CLRQ 

MOVL 
BSBB 
ADDL 

COMPUTE,AM<R2,R3,R4> 
ARRAY(AP),R2 
R3 

(R2)+,Rl 
POWER 
RO,R4 

COMPUTE entry point 
get first element address 
zero R3 (first power) 
... and R4 (accumulator) 
get next array entry 
compute to proper exponent 
add this element to sum 
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AOBLSS SIZE(AP},R3,10$ 

MOVL R4,@RESULT(AP} 
RET 

continue with next entry 
... and power 
store result 
return to caller 
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Subroutine to raise element to a given power. 

CALLING SEQUENCE: 

BSBB or BSBW 

INPUT PARAMETERS: 

Rl = value 
R3 = power to raise value to 

OUTPUT PARAMETERS: 

POWER: 

10$: 
20$: 
30$: 

RO = (Rl}**R3 

MOVL #l,RO assume result is 1 
PUSHL R3 save register 
BLEQ 30$ branch if power LEQ 0 
MOVL Rl,RO copy value for first power 
BRB 20$ begin loop at end 
MULL Rl,RO compute next power 
SOBGTR R3,10$ continue until done 
POPL R3 restore saved register 
RSB return to main routine 

The BSBB and BSBW instructions, like the BRB and BRW instruc­
tions, can transfer to locations within reach of an 8- or 16-bit offset from 
the current location. If that range is insufficient, the Jump to Subroutine 
(JSB) instruction is used. Like JMP, JSB can use any of the addressing 
modes to specify its target destination; for example, you can specify a 
Jump to Subroutine indirectly through a register. Routines invoked by JSB 
still return with the RSB instruction. 

Recursion 

It is often useful for a routine to be able to call itself. Such routines, 
known as recursive routines, simplify the expression of many mathemati­
cal and syntactical algorithms. Recursive routines may not have any static 
storage (that is, variables allocated with .LONG, .BLK, and so on). All local 
variables must be allocated on the stack so that the variables from one call 
are not modified by another recursive call. Here is another reason why the 
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Figure 6.12 Recursive call frames 

Free stack 

t 
Stack 

Level 1 call frame 
Level 1 locals 

Level 0 locals 
Level 0 call frame 

call frame is so useful. As Figure 6.12 shows, if we look at the stack after 
several levels of recursive calls, we will see the state information for each 
level. 

The classic example of recursion is in the calculation of N factorial, 
denoted by N!. N factorial is the product of all of the numbers from 1 
through N inclusive: 

N! = N x (N-l) x (N- 2) x ... x 1 

The value of zero factorial is defined as 1, so we can write the recursive 
definition of N! as 

(N - I)! N> 0 
N=O 

Because most FORTRAN compilers use static variable allocation 
rather than stacks and call frames, they are not capable of executing 
recursive routines. In Pascal, however, we could code the recursive N! 
routine as follows: 

function FACTORIAL (n: integer: integer; 
begin 

if n < 1 then FACTORIAL :=1 
else FACTORIAL:= n * FACTORIAL (n-l) 

end; 

There are two ways to represent this in VAX assembly language, depending 
on whether the CALLS or BSB instruction is used for linkage. Either 
instruction will work because each uses the stack to store the return 
information and each uses RO to return the value of N!. The CALLS version 
receives N through the call frame, while the BSB version receives N 
through RO (see Figure 6.13). 

Although the recursive definition of N! is notationally nice, it may not 
be a good way to implement the computer calculation. In this case, the 
straightforward solution shown at the top of p. 148 is much faster and 
shorter, as well as making better use of stack space. 
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Figure 6.13 Recursive N! routine using CALLS and BSB 

. ENTRY 
PUSHL 
CALLS 
RET 

START,O 
N 
#l,NFACT 

Recursive routine to compute NJ. 

. ENTRY 

MOVL 
MOVL 
BEQL 

NFACT,AM<R2> 

#l,RO 
4(AP) ,R2 
10$ 
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main program entry 
number to compute factorial 
call factorial routine 
return with result in RO 

factorial entry point, save 
... R2 on recursive call 
assume N is 0, return I 
copy N 
exit if N=O 

Build call frame with N-l for next invocation to 
compute (N-l)J. 

10$: 

a. CALLS 

SUBL3 
CALLS 
MULL 
RET 

#1,R2,-(SP) 
#l,NFACT 
R2,RO 

push N-l on stack 
recursive call 
compute N*(N-l) J 
return to caller 

Recursive subroutine to compute NJ. N is passed to the 
subroutine in RO. At each level, N is saved in RI, and N-l 
is passed to the recursively called subroutine to calculate 
(N-l) J • 

NFACT: PUSHL Rl save Rl 
MOVL RO,RI copy N 
BNEQ 10$ continue if N not 0 
MOVL #l,RO N is 0, return 1 
BRB 20$ exit 

10$: DECL RO compute N-l 
BSBB NFACT recursive call 
MULL Rl,RO compute N* (N-l) J 

20$: POPL Rl restore Rl 
RSB return to caller 

b. SSS 
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NFACT: 

10$: 

20$: 

MOVL 
TSTL 
BEQL 
MOVL 
MULL 
AOBLEQ 
RSB 

#l,RO 
N 
20$ 
#l,Rl 
Rl,RO 
N,Rl,lO$ 

initialize factorial 
test N 
N is 0, return 1 
initialize counter 
compute N*{N-l) 
continue until done 
return to caller 

One problem with recursive routines, then, is that they can require a 
tremendous amount of stack space for the nested call frames and varia­
bles. As another example, in Figure 6.14 we once again present the 
integer-to-ASCII conversion routine seen earlier; however, this time we use 
recursion to accomplish the same result. 

Reentrant Routines 

With recursion, we have seen that several simultaneous invocations of 
a routine can exist, each in its own stage of execution. This is possible 
because each invocation has its own local-state information maintained by 
the call frame and local storage. Whenever a recursive call is made, a new 
state is created by building a new call frame on the stack, thereby 
preserving the state of the calling routine. 

On multiprogramming systems, it is particularly advantageous if 
commonly used programs can be shared. It is desirable for several user 
processes to be able to execute a routine without each needing a private 
copy. This sharing can save memory space, allowing more users to fit in 
memory and thus increasing performance. The biggest gain comes from 
sharing utilities such as editors, compilers, and linkers. Although many 
people may be editing at any time, there need be only one copy of the 
editor code in memory. 

Programs or routines that can be shared among many users are 
known as reentrant. Several different user processes can be in some stage 
of execution at different places within a reentrant routine. For a routine to 
be reentrant, it must consist of pure code and data. In other words, no part 
of the routine can be modified by its execution. Any variables that are 
modified must be part of the private state information belonging to each 
user, such as the registers and stacks. Since each user process has its own 
program counter, stack pointer, general register set, and stack, several 
user programs may be in the process of executing the same code section. If 
one user is interrupted and another begins executing the same code 
sequence, no problems occur because the modified data is unique in each 
user's private state area. 

For example, consider the procedure A: 

. ENTRY 
MOVL 
MULL 
RET 

A 
4(AP), RO 
#2,RO 
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Figure 6. 14 Integer-to-ASCII recursion routine 

Procedure to output an integer in ASCII representation. 
Called with CALLS or CALLG 

Input: 

NUMBER(AP) contains value to be evaluated 

Output: 

ASCII value output by LIB$PUT_OUTPUT 

Register usage: 

R2 number to be evaluated 
R3 upper 32 bits of quadword (64-bit) number 

NUMBER 
BUFSIZE 
CHARBUF 
CHDSC 

. ENTRY 
ADDL 

CLRL 
MOVL 
CLRW 
MOVAL 
MOVL 
BSBB 
PUSHAQ 
CALLS 
RET 

4 
16 
-BUFSIZE 
CHARBUF-8 

OUTASC, "M<R2, R3, R4> 
#CHDSC,SP 

R3 
NUMBER(AP),R2 
CHDSC(FP) 
CHARBUF(FP),RO 
RO,CHDSC+4(FP) 
PUTNUM 
CHDSC(FP) 
#l,G"LIB$PUT_OUTPUT 

offset to input parameter 
size of buffer 
offset to start of buffer 
offset to string descriptor 

OUTASC entry point 
allocate space for locals 
(remember, CHDSC is negative) 
clear R3 (upper dividend bits) 
get number to be evaluated 
zero descriptor length 
RO <- buffer address 
init address in descriptor 
call recursive routine 
output the buffer 

return to caller 

Recursive routine to output a number in ASCII. Each level extracts a 
low-order digit and makes a recursive call if the result is not a o. 
When the last digit is reached, a return is made winding back through 
the levels and writing the digits in high to low order. 

During each recursive call, R4 is used to hold the current digit. 

PUTNUM: 
PUSHL R4 save old R4 
EDIV #10,R2,R2,R4 stack low order digit 
BEQL 10$ branch if done 
BSBB PUTNUM recursive call for next digit 

10$: ADDL3 #"A/O/,R4,Rl Rl <- ASCII digit 
MOVB Rl, (RO)+ insert next digit 
INCW CHDSC(FP) count one more character 
POPL R4 restore saved register 
RSB return to caller 
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This procedure accepts a single parameter and returns in RO that parame­
ter multiplied by 2. The procedure is reentrant because all computation is 
done using the stack and the registers. Because each user process has its 
own stack and registers, several processes can be in some state of 
execution of this procedure without interfering with each other, since 
each executes the instructions of the procedure on their local registers 
and stack. Suppose, on the other hand, that the procedure had been 
written as 

X: .LONG 
. ENTRY 
MOVL 
MULL 
MOVL 
RET 

o 
A 
4(AP} ,X 
#2,X 
X,RO 

In this case, the procedure is not reentrant because it uses a statically 
allocated variable. If several users tried to execute this procedure, they 
could get inconsistent results. For example, if one user begins executing 
procedure A and is interrupted before the MULL instruction, the next user 
who begins execution of A will destroy the first user's value stored in X. 

In general, all operating system procedures are reentrant. In VAX/ 
VMS, all processes in the system share the operating system implicitly, and 
many of them can execute operating system routines at the same time. 

Subroutines and procedures are usually called closed routines. They 
consist of self-contained code that performs a specified function. Only one 
copy of the routine is required, and it can be invoked from many places 
within the program. Control is passed to the site of the routine by a Call 
and is returned to the instruction following the Call upon completion. In 
contrast, a routine embedded at the place of invocation in such a way that 
no linkage mechanism is required to pass values or control is an open 
routine. 

Assembly language programmers often find that certain instruction 
sequences occur frequently within their code. The VAX/VMS assembly 
language macro capability allows the programmer to define a sequence of 
statements to be substituted for the macro name wherever it is used within 
the program. A macro defines an open routine in that the source 
statements are placed in line at each site where the macro is used. 

For example, we frequently need to zero the registers RO through RS. 
Defining the macro CLRREGS, we can simply write CLRREGS in the 
program as if it were a machine instruction: 

.MACRO CLRREGS 
CLRQ RO clear RO and Rl 
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CLRQ 
CLRQ 
.ENDM 

R2 
R4 
CLRREGS 

clear R2 and R3 
clear R4 and R5 
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Macros such as this give us a shorthand notation. At each occurrence of 
CLRREGS within the program, the assembler substitutes the three instruc­
tions contained in the macro. Called macro expansion, this is a simple 
character-string substitution process that allows the programmer to speci­
fy one set of character strings (the macro body) to be substituted for 
another character string (the macro name). 

A macro must be defined before it is used. The pseudo-operation 
.MACRO begins the definition of the macro; .ENDM indicates to the macro 
assembler that this is the end of the source text to be included in the macro 
expansion. When the assembler encounters a .MACRO directive, it adds 
the macro name to its macro name table and stores the source text for 
future use. Normally, macro expansions are not printed in the assembly 
listing unless the special .LIST directive includes the macro expansion 
argument (ME). 

Each time the macro CLRREGS is used, it generates exactly the same 
instructions. It is sometimes useful to write macros that contain parame­
ters so that slightly different sequences can be produced. This can be done 
by using formal arguments with the macro definition. When the macro is 
expanded, any occurrences of the formals are replaced by the actual 
arguments specified when the macro is invoked. For instance, using a 
formal argument, we can write a general macro to push a quadword onto 
the stack: 

.MACRO 
MOVQ 
.ENDM 

PUSHQ ITEM 
ITEM,-(SP) 
PUSHQ 

Whenever the macro is invoked, the actual argument specified replaces 
the formal argument, ITEM, in the expanded macro. A code sequence 
containing 

PUSHQ ARRAY2[R4] 

generates the instruction 

MOVQ ARRAY2[R4],-(SP) 

In this way, macros are used to create an extended instruction set. 
When several arguments are needed, they are separated by commas 

(,). In this case, the actual arguments must be specified in the same order 
as the formals. By using keywords, however, the arguments can be 
specified in any order. A keyword is a formal argument name along with its 
default value. The general format for a macro definition with keywords is 
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.MACRO macro_name keywordl=defaultl,keyword2=default2, ... 

macro body 

.ENDM macro_name 

When the user codes a keyword macro, the actual argument is specified as 
keyword = actual. If no actual argument is given for a formal argument, its 
default value is used. For example, if the macro PUSHQ is frequently used 
to push RO and Rl, it could be recoded with this default as 

.MACRO 
MOVQ 
.ENDM 

PUSHQ ITEM=RO 
ITEM,-(SP) 
PUSHQ 

Now just coding PUSHQ without arguments produces MOVQ RO,-(SP). 
Using the macro with an actual argument, we could write 

PUSHQ ITEM=ARRAY2[R4] 

Of course, keywords are more useful in macros with many arguments, 
because the arguments can be written in any order. 

Creating Local Labels 

Having labels in macros is often useful. Although the programmer 
can specify labels in the macro definition, the labels can be unintention­
ally duplicated in the source code that surrounds the macro call, thereby 
causing errors. Furthermore, each invocation of the macro produces the 
same label. To avoid duplication, the assembler has the ability to create 
unique local labels in the macro expansion. 

To illustrate this point, let us consider the macro that implements the 
new instruction JUMPIFZERO. The macro definition might be given as 

X: 

. MACRO 
TSTL 
BNEQ 
JMP 

.ENDM 

JUMPIFZERO 
A 
X 
TARGET 

JUMPIFZERO 

A, TARGET 
is A O? 
continue if not 
else jump to target 

(Note that macros can contain comments.) Each time the macro is 
expanded, the label X will be redefined, causing an error. While it is 
possible to make the label one of the parameters of the macro definition, a 
better solution is to use a created local label. Local labels created by VAX 
assembly language start at 30000$ and range up to 65535$. Each time the 
assembler generates a new local label, the number part of the label is 
incremented by 1. Consequently, a unique label is generated each time 
that should not interfere with user-defined local labels. 
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Using this facility, the JUMPIFZERO macro can be written as 

JUMPIFZERO A,TARGET,?X 
A is A O? 
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. MACRO 
TSTL 
BNEQ 
JMP 

X 
TARGET 

continue if not 
else jump to target 

X: 
.ENDM JUMPIFZERO 

Placing a question mark (?) in front of a formal argument name specifies a 
created local label. When the macro is expanded, the assembler creates a 
new local label if the corresponding actual argument is blank. If the 
corresponding actual argument is specified, the assembler substitutes the 
actual argument for the formal argument. If JUMPIFZERO is invoked 
twice, 

JUMPIFZERO 
JUMPIFZERO 

FIRST, HERE 
SECOND, THERE 

the resulting code is 

TSTL FIRST 
BNEQ 30000$ 
JMP HERE 

30000$: 
TSTL SECOND 
BNEQ 30001$ 
JMP THERE 

30001$: 

Macro Calls within Macro Definitions 

To build more complex macros, it is often convenient to use one 
macro within the definition of another. In other words, if a macro has been 
defined previously, it can be called by another macro as if it were part of 
the basic instruction set. Consider the simple macros to push and pop 
quadwords: 

.MACRO 
MOVQ 
.ENDM 

PUSHQ A 
A,-(SP) 
PUSHQ 

.MACRO 
MOVQ 
.ENDM 

POPQ A 
(SP)+,A 
POPQ 

These macros can now be used to write a more complex macro that allows 
the contents of two quadwords to be exchanged: 

. MACRO 
PUSHQ 
MOVQ 
POPQ 
.ENDM 

SWAPQ 
A 
B,A 
B 
SWAPQ 

A,B 
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An interesting generalization of this "complex" macro would be to allow it 
to work for either longwords or quadwords. PUSHL and POPL instructions 
already exist in the basic VAX instruction repertoire (POPL is actually an 
assembler-defined macro). Having defined PUSHO and POPO, it is a 
simple matter to modify the macro definition so that one of the arguments 
is the data type. We do so by using argument concatenation. That is, we 
form the operation name by combining the string PUSH with the value 
of a parameter containing the type indicator L or O. This operation of 
constructing a single string from two strings is concatenation. 

Argument Concatenation 

The argument-concatenation operator, the apostrophe ('), concate­
nates a macro argument with some constant text. Apostrophes can 
precede or follow a formal argument name in the macro source. If a 
formal argument name in the macro definition is preceded (or followed) 
by an apostrophe ('), the text before (or after) the apostrophe is concate­
nated with the actual argument when the macro is expanded. The 
apostrophe itself does not appear in the macro expansion. 

Turning to the SWAP macro, we generalize it by including the TYPE 
formal argument: 

.MACRO SWAP 
PUSH'TYPE 
MOV'TYPE 
POP'TYPE 
.ENDM 

A,B,TYPE 
A 
B,A 
B 
SWAP 

This macro exchanges two longword or quadword arguments, using the 
stack for temporary storage. Coding the two lines 

SWAP X,Y,L 
SWAP R,S,Q 

expands into the instructions 

PUSHL X 
MOVL Y,X 
POPL Y 
PUSHQ R 
MOVQ S,R 
POPQ S 

Repeat Blocks 

A programmer occasionally needs to create a table of values. Al­
though every line could be typed individually, it is far easier to write a 
macro to generate the entire table. The repeat-block directive, specified by 
the .REPT and .ENDR pseudo-operations, provides the necessary function. 
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For example, to build a table of ten entries, each entry containing the 
integer five, we can write 

.REPT 10 

.BYTE 5 

.ENDR 

A more interesting example consists of generating ten entries containing 
the integers 1 through 10, each of which is labelled uniquely (for example, 
L1 to L10). To do this, we must pass numeric values as arguments. 

When a symbol is specified as an actual argument in a macro, the 
name of the symbol (the character string), not its value, is passed to the 
macro. It is possible, however, to pass a value provided that a backslash (\) 
precedes the symbol name. The macro assembler then passes the decimal 
value of the symbol. 

To generate the 1 through 10 list, we first create the TABLE macro, 
which generates the label and storage for each integer: 

.MACRO TABLE 
L'VALUE: 

.BYTE 

.ENDM 
VALUE 
TABLE 

VALUE 

To generate the ten-element labelled storage, the TABLE macro is included 
in the following REPEAT block: 

COUNT=l 
.REPT 10 
TABLE \COUNT 

COUNT=COUNT+1 
.ENDR 

The symbol COUNT is used within the assembler REPEAT loop to generate 
the integers from 1 through 10. 

Of more general purpose use is the indefinite repeat block. Indefinite 
repeat allows a list of arguments to be specified. The block is repeated 
once for each argument in the list. The general format is 

.IRP symbo1,<argument list> 

.ENDR 

Each time the block is repeated, symbol is replaced by successive actual 
arguments. The actual argument list must be enclosed in angle brackets 
«» and separated by commas. 
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For example, the following indefinite repeat block pushes a number of 
longwords onto the stack: 

.IRP 
PUSHL 
.ENDR 

ITEM, <VALUE, RO, FROG, SQUAREROOT> 
ITEM 

The assembler expands this repeat loop as 

PUSHL 
PUSHL 
PUSHL 
PUSHL 

VALUE 
RO 
FROG 
SQUAREROOT 

A more sophisticated example, in which the list is passed as an argument 
to a macro, occurs in generating a Case statement. The CASE macro 
automatically generates the Case table from a list of branch destinations 
and calculates the index limit. This macro can be coded as 

. MACRO CASE 
CASE'TYPE 
TABLE: 

.IRP 

. WORD 

.ENDR 
ENDTABLE: 

.ENDM 

SOURCE,DISPLIST,TYPE=B,BASE=#O,?TABLE,?ENDTABLE 
SOURCE, BASE, #«ENDTABLE-TABLE>/2>-1 

DESTINATION, <DISPLIST> 
DESTINATION-TABLE 

CASE 

The CASE macro uses several of the techniques already described, namely, 

• concatenation to form either a CASEB, CASEW, or CASEL instruction 

• use of defaults, so that the default instruction is CASEB (that is, 
TYPE=B) and the default base is 0 

• computation of the expression 

#«ENDTABLE-TABLE>/2>-1, 

producing the limit operand based on the number of elements in 
DISPLIST 

• use· of the indefinite repeat to produce the table of offsets following 
the Case instruction 

• use of created local labels 

For example, the statements 
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CASE APPLE,<A,B,C>,TYPE=W 

A: MOVL TYPE1,RO 
BRB HERE 

B: MOVL TYPE2,RO 
BRB HERE 

C: MOVL TYPE3,RO 
HERE: 

cause the following code to be generated: 

30000$: 

30001$: 

A: 

B: 

C: 
HERE: 

Conditional Assembly 

CASEW 

.WORD 

.WORD 

.WORD 

MOVL 
BRB 
MOVL 
BRB 
MOVL 

APPLE, #0,#«30001$-30000$>/2>-1 

A-30000$ 
B-30000$ 
C-30000$ 

TYPE1,RO 
HERE 
TYPE2,RO 
HERE 
TYPE3,RO 
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A final example of controlling the assembly process involves condi­
tional assembly. Although not strictly a function of a macro assembler, 
conditional directives are usually used within macro definitions. 

The value of conditional code lies in its use in the modification and, 
hence, "customization" of the assembly code generated. Different final 
code can be produced, depending on symbol values or environment 
conditions in the program. For example, some early versions of the 
PDP-II did not have hardware Multiply and Divide instructions. Condi­
tional assembly was often used to generate either Multiply and Divide 
instructions or calls to routines to simulate these instructions, depending 
on a symbol in the program specifying the machine version. 

Conditional assembly should be used with caution. Many programs 
with large amounts of conditional assembly are never fully debugged, 
because so many possible versions can be generated. 

The format for the conditional assembly block directive is 
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.IF condition argument(s) 

. <conditional statements> 

.ENDC 

If the specified condition is met, the assembler generates statements 
contained within the block. If the condition is not met, the statements are 
not generated. The condition codes are shown in Table 6.1. 

The blank and identical tests can be used only within the body of a 
macro. All others can be used anywhere within the assembly program. 
There are other forms of conditional code, but we will not examine them 
here. 

As an example of the use of conditional assembly, the following macro 
implements a general procedure call. Arguments to the macro consist of 
the procedure to call and as many as ten longword parameters for the 
procedure. The parameters are pushed onto the stack in reverse order. 
Since the macro can have a variable number of arguments, the not-blank 
operator (NB) is used to avoid pushing arguments that are not specified . 

. MACRO CALL ROUTINE,PI,P2,P3,P4,P5,P6,P7,P8,P9,PIO 
ARGCOUNT=O ; no arguments pushed yet 
.IRP NEXTARG,<PIO,P9,P8,P7,P6,P5,P4,P3,P2,PI> 
.IF NB NEXTARG if argument is there, then 
PUSHL NEXTARG ... push longword argument 
ARGCOUNT=ARGCOUNT+I count argument pushed 
.ENDC end of conditional 
.ENDR end of indefinite repeat 
CALLS #ARGCOUNT,ROUTINE call ROUTINE 
.ENDM CALL end of MACRO 

The symbol ARGCOUNT keeps track of the number of arguments 
pushed for the CALLS instruction. Arguments are checked in reverse 
order by the .IRP loop and pushed if they are supplied. For example, the 
statement 

CALL FIZZ,RO,ARRAY2[R3],PEANUT,#5,@INDR 

generates the following code sequence: 

PUSHL 
PUSHL 
PUSHL 
PUSHL 
PUSHL 
CALLS 

@INDR 
#5 
PEANUT 
ARRAY2[R3] 
RO 
#ARGCOUNT,FIZZ 

push longword argument 
push longword argument 
push longword argument 
push longword argument 
push longword argument 
call FIZZ 

When the CALLS is assembled, the symbol ARGCOUNT will have the 
value 5. 
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Table 6. 1 Condition Tests for Conditional Assembly Directives 

Condition Tests* 

Condition that 
Positive Complement Format Assembles Block 

EO NE .IF EO expression Expression is equal to 0 
(or not equal to 0). 

GT LE .IF GT expression Expression is greater 
than 0 (or less than or 
equal to 0). 

LT GE .IF LT expression o Expression is less than 
(or greater than or 
equal to 0). 

DF NDF .IF DF symbol Symbol is defined (or 
not). 

B NB .IF B macro~rgument Argument is blank (or 
not). 

IDN DIF .IF IDN argument 1, Arguments are identical 
argument 2 (or different). 

*VAX assembly language also allows long forms for these condition tests such as EQUAL 
for EQ and NOT_BLANK for NB. 

This chapter covered many important concepts in program con­
trol. We saw how the Loop and Case instructions provide capabilities sim­
ilar to those available with high-level languages. We also examined the 
procedure-calling mechanisms. Although somewhat complex, the exis­
tence of these mechanisms helps achieve better program structuring. 
Even more important, the implementation of a procedure call in the 
architecture creates a standard for VAX language compilers. Therefore, a 
program can call procedures written in several different languages. 

We also examined the stack and the useful properties that come with 
using a stack for linkage. The next chapter examines other data structures 
and their manipulation by the VAX. 

1. Recode the Jump table problem of Figure 6.1 to use the Case statement. 

2. Rewrite the sort example in Figure 6.3 to arrange the list in decreasing order. 
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3. Rewrite the sort example in Figure 6.3, but this time replace the AOB 
instructions with SOB instructions. Next, replace the AOB instructions with 
ACB instructions. 

4. The VAX macro routine in Figure 6.3 to sort numbers is not equivalent to the 
Pascal bubble sort. How can the macro routine be rewritten to be equivalent? 

5. Code a routine to sum all the numbers between 0 and 100 that are divisible by 
three. 

6. Suppose that the code segment shown in Figure 6.6 to convert an integer to 
ASCII begins with (R2)= 1578. Show the state ofthe stack at each execution of 
the statements at 10$ and 30$. 

7. Code a routine to convert a numeric ASCII string to binary. Assume that the 
routine receives three input parameters: the number of digits in the string, the 
address of the string, and the address of a longword in which to return the 
binary value. For example, the calling sequence could be as follows: 

SIZE: .LONG 
STRING: .ASCII 
VALUE: .BLKL 

PUSHAL 
PUSHAB 
PUSHL 
CALLS 

3 
/154/ 
1 

VALUE 
STRING 
SIZE 
#3,CVT_TO_BINARY 

number of digits in string 
the string to be converted 
place to hold returned value 

address of returned value 
address of string 
size of string 
call convert procedure 

8. For the previous problem (conversion to binary routine), show what the stack 
looks like after the procedure has been called by a CALLS instruction. Show 
what the stack looks like after the procedure has been called by a CALLG 
instruction. 

9. Suppose we have an application that requires the use of two stacks that grow at 
different rates. To make the maximum use of our memory of size N longwords, 
we want to implement both stacks so that if one has less than N/2 elements, the 
other can have more than N/2 elements. The stacks can be built so that they 
grow from opposite ends of the memory block toward the middle, as shown in 
Figure 6.15. 

Write routines PUSHA, POPA, PUSHB, and POPB to push and pop longwords 
from the stacks A and B. Also write a routine INITSTACKS to initialize the 
stack pointers. Assume the stacks use the array at address STACK that contains 
N longwords. 

10. Write the procedure call for the procedure in Figure 6.14. Show what the call 
frame would look like after the procedure is invoked. 
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Figure 6.15 Data instructions for problem 9 

STACK: Stack A entry 0 t-+--- Bottom of stack A 
Stack entry 1 

. 
Stack A entry M ~ Top of stack A 

t 
Free space 
for growth 

t 
Stack B entry P r+-Top of stack B 

Stack B entry 0 f+- Bottom of stack B 

11. What is the advantage of reserving one register as a frame pointer? What is the 
advantage of a reserved argument pointer? Suppose we didn't have a reserved 
frame pointer and argument pointer. What difference would it make in our 
code? 

12. What are the advantages and disadvantages of using the CALL instruction 
instead of the BSB instruction? When would you use one over the other? 

13. Write a multiply subroutine that computes the product of two 32-bit values 
held in registers RO and Rl. The 64-bit result should be left in R2 and R3. 

14. Show the contents of the stack at each execution of the statement at NFACT for 
both recursive factorial routines in Figure 6.13. Assume that the value of N is 4. 

15. What is the difference between a macro and a subroutine? 

16. Code a macro to initialize a table of longwords to the values 0 through 9. 
Modify the macro to accept the table size, lower bound, and upper bound as 
parameters. 

17. Write a macro to copy N words from the array A to the array B (for example, 
COPY A,B,N). Next write a macro using COPY that switches the contents of the 
arrays A and B using the stack (for example, SWITCH A,B,N). 
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Previous chapters have presented many of the VAX information units 
and data types. This chapter takes a closer look at some of those data types 
and the instructions that manipulate them. In particular, it examines 
single-bit and bit-field instructions, string instructions, floating-point in­
structions, and instructions to convert between data types. 

Bits and Bit Fields 

Bit-manipulation instructions were more meaningful in earlier mini­
computers, in which memory size and instruction sets were limited. Under 
these conditions, it was often necessary to manipulate individual bits 
within a word or a byte (hence the designation of such a programmer as a 
"bit hacker") to conserve space or to mask out individual bytes within a 
word for computers without byte-manipulation instructions. With the 
32-bit address space of the VAX and the large primary memories present 
on modern systems, programmers do not have to be as concerned with bit 
efficiency. However, because of the VAX I/O architecture inherited from 
the PDP-II, these instructions are still needed to test and set individual 
bits contained within I/O device registers. 

Bit-manipulation instructions can be divided into three classes. The 
first includes instructions that perform logical functions on bits contained 
within a byte, a word, or a longword. The second class covers instructions 
that test a single bit within a longword to determine if a branch is to be 
taken. The third class consists of instructions that deal with arbitrary bit 
strings. 

Logical Bit Instructions 

162 

Bit Set (BIS), Bit Clear (BIC), Bit Test (BIT), and EXCLUSIVE OR 
(XOR) are the generic set of logical operations that manipulate byte, word, 
and longword data. These instructions are defined in Table 7.1. 

When using these instructions, we usually think of the first operand as 
being a mask whose bits are applied to the second operand according to 
the instruction. A mask is a sequence of bits used in a logical operation to 
test, set, or clear the corresponding bits of an operand in a bit­
manipulation instruction. For example, the instruction 
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Table 7.1 VAX Logical Bit Instructions 

Operation 

Bit Set (logical OR). In the two­
operand form, set all bits in the sec­
ond operand corresponding to bits set 
in the first operand. In the three­
operand form, the result is written 
to the third operand. 

Bit Clear. Clear all bits in the second 
operand corresponding to bits set in 
the first operand. 

Bit Test. Test the condition of the bits 
in the second operand to determine if 
they correspond to the bits set in the 
first operand. The destination is not 
affected, but the condition codes are 
set based on the logical AND of the 
mask and second operand. 

EXCLUSIVE OR. Form the EXCLU­
SIVE OR of the two operands. 

BICB #3,R4 

or alternatively 

BICB #ABOOOOOOll,R4 

Mnemonic 

BIS 

BIC 

BIT 

XOR 

Data 
Types 

B,W,L 

B,W,L 

B,W,L 

B,W,L 
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Number of 
Operands 

2,3 

2,3 

2 

2,3 

masks, or clears, bits 0 and 1 in R4. These are the bits set in the mask 
operand. Other bits in the destination are unaffected. The Bit Set instruc­
tion 

BISB #3,R4 

sets bits 0 and 1 in R4 to 1. Such instructions are frequently used to zero 
part of an integer. One way to zero the high-order 16 bits of Rl would be 
with the instruction 

BICL #AXFFFFOOOO,Rl 

which uses a mask with the upper 16 bits set. 
The Bit Test instruction tests whether any of the bits set in the mask 

are also set in the destination operand. Neither operand is changed, but 
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the condition codes are set based on the result of the logical AND of the 
two operands. As an example, suppose we want to test whether all of the 
even-numbered bits (0, 2, 4, etc.) in the byte MY_BITS are zero. This could 
be done with the sequence 

BITB #AB0101010l,MY-BITS 
BEQL ALL_ZERO 

If any of the odd-numbered bits in MY_BITS are set, the result of the 
logical AND will be nonzero, the Z condition code will be cleared, and the 
branch instruction will fail. If all the odd-numbered bits are zero, the 
result of the BITB will be zero, the Z condition code will be set, and the 
branch will succeed. In either case, MY_BITS will remain unchanged. 

It is worth noting that the VAX does not have a logical AND instruc­
tion. If we want to form the logical AND of two longwords, we would have 
to do it with a multiinstruction sequence, for example, 

MCOML LONG1,RO 
BICL RO,LONG2 

form complement mask 
"AND" them together 

Here, the Move Complement Longword (MCOML) instruction builds a 
mask in RO of the one's complement of the bits in LONGl. Those bits are 
then used as a mask in the Bit Clear Longword instruction. Thus, to 
perform the logical AND, we are building a mask from LONG 1 that allows 
us to turn off (zero) all bits in LONG2 corresponding to zero bits in LONG 1. 

Single-Bit Instructions 

The VAX has a number of instructions that test the condition of one bit 
or that test and modify the bit in a single operation. As we will see, this 
second form is particularly useful for synchronizing several processes. 
Both types of instructions are listed in Table 7.2. 

A special case of the Bit Test instructions is covered by the Branch on 
Low bit (BLB) pair of instructions. BLBC and BLBS test the least 
significant bit, bit 0, of a longword and branch if it is clear or set, 
respectively. Together with the TSTL instruction, BLBC and BLBS enable 
you to test either the most significant bit (MSB) or the least significant bit 
(LSB) of any longword. These instructions were provided specifically for 
examining values returned from subroutines. In the VAX/VMS operating 
system, for example, all system routines return a code in RO that indicates 
the final status of the routine. The values of these codes are defined such 
that all error codes are even (bit ° is 0) and all success codes are odd (bit ° 
is 1). You can easily test for the success or failure of a routine with the 
BLBC and BLBS instructions. 

The Branch on Bit instructions and the Branch on Bit and Modify 
instructions allow you to test and set a bit within an arbitrary bit field. In 
each case, the single bit specified by the position and base operands is 
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Table 7.2 VAX Single-Bit Instructions 

Operation Mnemonic Operands 

Branch if Low Bit Clear BLBC source, branch_destination 

Branch if Low Bit Set BLBS source, branch_destination 

Branch if Bit Set BBS position, base, branch_destination 

Branch if Bit Clear BBC position ,base, branch_destination 

Branch if Bit Set and Set BBSS position, base, branch_destination 
Bit 

Branch if Bit Set and Clear BBSC position, base, branch_destination 
Bit 
Branch if Bit Clear and Set BBCS position, base, branch_destination 
Bit 

Branch if Bit Clear and BBCC position, base, branch_destination 
Clear Bit 

Branch if Bit Set and Set BBSSI position, base, branch_destination 
Interlocked 

Branch if Bit Clear and BBCCI position, base, branch_destination 
Clear Interlocked 

tested. If it is in the state tested for, a branch is taken to the destination. If 
the instruction so specifies, the tested field is set or cleared regardless of 
the initial state of the bit. The bit is located by specifying the address of a 
byte (base operand) and the offset to the bit to be tested (position 
operand). For example, the following two sequences are equivalent: 

BBC #3,RO,NOTSET BITB 
BEQL 

#8,RO 
NOTSET 

Both test whether the fourth bit in RO (bit number 3) is zero and branch if 
so. Note that the BBC instruction takes a bit position while the BITB 
instruction takes a mask. 

The last two instructions included in Table 7.2, BBSSI and BBCCI, are 
identical to BBSS and BBCC except that the memory location under 
examination is interlocked. These instructions are provided so that if more 
than one VAX processor or I/O device are cooperatively accessing memo­
ry, only one at a time will be able to test and modify the given bit. 

Designers of operating systems will recognize these instructions as 
useful for implementing Dijkstra's P and V operations. For those unfamili­
ar with those operations, a simple example demonstrates how two bit 
fields can be used to coordinate or synchronize two processes within a 
computer. 

Suppose two processes share a resource that only one process can 
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access at a time. The Bit Test and Set Interlocked instructions can be used 
to ensure unique access. First, we define a flag bit in memory shared 
between the processes. When this flag is set, the resource is free. Before 
accessing the shared resource, each process tests the bit and branches to 
its code if the flag is set. If the flag is not set, the process continues to loop 
until the bit becomes set. When a process finds the bit set, it clears the bit 
until it is finished with the resource. This coordination is coded as follows: 

FLAGS: . LONG 1 ; flag initially 1 (free) 

Code for first process 

Start of unique access code for first process 

WAITl: BBCCI #O,FLAGS,WAITl 

<access shared resource> 

BISL #l,FLAGS 

Code for second process 

loop until bit is set 

restore flag bit 
continue processing 

Start of unique access code for second process 

WAIT2: BBCCI #0 ,FLAGS, WAIT2 

<access shared resource> 

BISL #l,FLAGS 

loop until bit is set 

restore flag bit 
continue processing 

Both processes wait for the flag bit. The first process to find the flag bit set 
is allowed to fall into its main body of code. The other process continues to 
clear the already clear flag bit until it is (re )set to 1. Of course, a 
coordination mechanism like this should be used only when the code 
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section to be used exclusively is extremely short. Typically, synchroniza­
tion is accomplished through operating system calls that queue a waiting 
process until the unavailable resource becomes available. 

It is iinportant to note that on all VAX single-bit and variable-length 
bit-field instructions, the bit-position operand is interpreted as a signed 
longword offset from the base address. That is, the selected bit can be in 
the range of - 231 to 231 -1 bits from the base .address. Therefore, the upper 
29 bits of the position operand contain a signed byte offset from the base 
address to the byte containing the selected bit. The low three bits of the 
position operand contain the bit number within the selected byte. 

A good demonstration of the use of this feature is shown in the 
following Sieve of Eratosthenes program for producing prime numbers. 
The program uses a string of N bits to represent the integers from 0 
through N-l, where the bit position of each bit represents an integer (for 
example, bit 6 in the string represents integer 6). The program begins with 
the prime number 2 and marks off all multiples of 2 by setting the bits 
whose position number is a multiple of 2. These cannot be prime, because 
they are evenly divisible by 2. The program then searches for the next zero 
bit in the string. This bit represents a prime number since it is not a 
multiple of any lower number. As each prime is found, all of its multiples 
are marked off, and a search is made for the next zero bit. For writing the 
primes, we use the OUTASC procedure shown previously in Figure 6.11. 

Sieve of Eratosthenes routine for producing prime numbers. 

SIEVE: 

10$: 

SIEVESIZE = 10000 
.BLKB SIEVESIZE/8 

. ENTRY 
MOVL 
PUSHL 
CALLS 
MOVL 

PRIMES,AM<R2,R3> 
#2,R2 
R2 
#l,OUTASC 
R2,R3 

find all primes < 10000 
produce initial table of 
... SIEVESIZE bits (zeroed) 
routine entry point 
start with prime 2 
output the primes 
write it 
use R3 to form multiples 

Set all bits that are multiples of the prime just found. 

20$: 
30$: 

BBCS 
ACBL 

R3,SIEVE,30$ ; eliminate next multiple 
#SIEVESIZE-l,R2,R3,20$ ; form next multiple 

Search for the next zero bit in the string. 

40$: BBC R2,SIEVE,10$ 
AOBLSS #SIEVESIZE,R2,40$ 
RET 

check for next prime 
continue looking for bit 
return to caller 
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Having considered instructions operating on single bits, we next consider 
instructions that operate on bit strings. 

Variable-Length Bit Fields 

The VAX also has instructions to extract, insert, and compare bit 
strings up to 32 bits long. The bit string is described by three arguments: its 
base address, the position of the first byte relative to the base, and the size 
in bits of the string. When extracting a bit field, the bit string, specified by 
the position, size, and base operands, is moved right-justified into the 
longword destination operand. The upper bits of the destination can be 
sign-extended from the field or zeroed, depending on the instruction. 
When inserting a field, the low-order "size" bits of the source are moved to 
the bit field specified by the base and position operands. The bit field 
instructions are listed in Table 7.3. 

Table 7.3 VAX Bit Field Instructions 

Operation 

Extract Field. Move the specified field 
into the destination, right-justified and 
sign-extended to 32 bits. 

Extract Zero-Extended Field. Move the 
specified field into the destination, zero­
extended to 32 bits. 

Compare Field. Compare the sign­
extended field with the source operand, 
setting the condition codes. 

Compare Zero-Extended Field. Compare 
the zero-extended field to the source op­
erand, setting condition codes. 

Insert Field. The size operand specifies 
the number of low-order bits to be 
moved from the source to the field de­
scribed by position, size, and base. 

Find First Set. Locates the first 1 bit in 
the specified field. 

Find First Clear. Locates the first zero 
bit in the specified field. If a zero bit is 
found, findposition is replaced by the 
position of the bit and the Z condition 
code is cleared. Otherwise, Z is set and 
findposition is replaced by the position 
(relative to the base) of the bit one posi-
tion past the specified field. 

Mnemonic 

EXTV 

EXTZV 

CMPV 

CMPZV 

INSV 

FFS 

FFC 

Operands 

position,size,base, 
destination 

position ,size, base, 
destination 

position ,size, base, 
source 

position,size,base, 
source 

source, position ,size, 
base 

position,size,base, 
findposition 

position ,size, base, 
findposition 
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The following example shows the use of the Extract Zero-Extended 
(EXTZV) instruction to print the ASCII hexadecimal value of a 32-bit 
longword. The field instruction is used within a loop to extract the eight 
4-bit digits from left to right. We assume that there is a procedure 
OUTCHAR that prints a single ASCII digit. On each execution of the 
EXTZV, a 4-bit field is extracted from RO and placed, right-justified and 
zero-extended, into R2. Rl specifies the starting bit position for the string. 

Print hexadecimal ASCII representation of a longword. 

RO contains longword to be evaluated 
Rl position of the 4-bit field to be extracted 

HEXDIGITS: 
.ASCII 

PRINTHEX: 
MOVL 
MOVL 

10$: EXTZV 
MOVZBL 
CALLS 
ACBL 

; ASCII names for hex digits 
/0123456789ABCDEF/ 

NUMBER,RO ; get binary number to output 
#«4*8>-4>,Rl ; begin with last hex digit 
Rl,#4,RO,R2 ; R2 <- next binary digit 
HEXDIGITS[R2],-(SP) ; push the ASCII repro 
#l,OUTCHAR print the digit 
#0,#-4,Rl,10$ ; continue left to right 

To reverse this process, we can use the Insert Field (INSV) instruction. 
The following code assumes that we have in HEX-ASCII the 8-character 
ASCII hexadecimal representation of a 32-bit value, including leading 
zeros. This instruction sequence takes the ASCII digits and reproduces the 
32-bit binary value in RO. It relies on the fact that the ASCII values for the 
decimal digits are close to the uppercase letters in the ASCII sequence. 

Produce binary value from 8-character ASCII Hexadecimal 
string 

HEX_ASCII: 
.BLKB 8 ; space for ASCII Hex digits 

The following table has the binary values for the 16 hex 
digits in their ASCII sequence. The 7 blanks are for the 7 
characters between "9" and "A" in the ASCII code. 

HEXVALUES: 
.BYTE 
.BLKB 
.BYTE 

0,1,2,3,4,5,6,7,8,9 
7 
10,11,12,13,14,15 
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GETBINARY: 
MOVL 
MOVAB 
CLRL 

10$: SUBB3 
MOVZBL 
INSV 
ACBL 

#«4*8>-4>,Rl 
HEX_ASCII,R2 
R3 
#AA/O/, (R2)+,R3 ; 
HEXVALUES[R3],R3; 
R3,Rl,#4,RO 
#0,#-4,Rl,10$ 

begin with last hex digit 
load address of ASCII string 
ensure upper part of R3 is zero 
get distance from ASCII "0" 
get digit's binary value 
insert proper RO bits 
continue left to right 

The Find First Set and Find First Clear bit instructions are included in 
Table 7.2 because they also deal with bit fields. However, these instructions 
are used to locate the first 0 or 1 bit in a string of length 0 to 32 bits. The 
instructions return the position of the first bit found in the specified state 
and clear the Z condition code. If a bit is not found in the specified state, 
the instructions return the position of the bit following the field and set the 
Z condition code. For example, the instruction 

FFS #0,#32,ENTRY,RO 

will cause RO and Z to be set to the following values, given the specified 
decimal contents of ENTRY: 

Contents 
of ENTRY RO Z 
1 0 0 
4 2 0 
8 3 0 
9 0 0 
0 32 1 

As noted in the previous section, the starting-position argument can 
be greater than 32 bits from the base address. This is useful for searching 
long bit strings. The string can be searched 32 bits at a time; if the specified 
bit is not found, the findposition argument will contain the position of the 
next 32-bit field to search. We could have used this feature in the Sieve of 
Eratosthenes. At the end of the procedure, a Branch on Bit Clear 
instruction was used within a loop to locate the next zero bit. 

40$: BBC RO,SIEVE,lO$ 
AOBLSS #SIEVESIZE,RO,40$ 

check for next prime 
continue looking for bit 

Using the Find First Clear instruction, we could rewrite this loop to scan 
32 bits at a time. Following each FFC instruction, we check the Z bit to see 
if we should scan the next 32 bits or process the found bit. The code is 
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more complicated because we must now check explicitly to see if RO is out 
of range. Furthermore, we must make sure that the loop at 40$ does not go 
out of bounds; we do this by placing a longword of ones following SIEVE. 

Sieve of Eratosthenes routine for producing prime numbers. 

SIEVE: 

10$: 

SIEVESIZE = 10000 
.BLKB SIEVESIZE/8 

.LONG 

. ENTRY 
MOVL 
PUSHL 
CALLS 
MOVL 

IIXFFFFFFFF 

PRIMES, IIM<> 
#2,RO 
RO 
#1,OUTASC 
RO,Rl 

find all primes < 10000 
produce initial table of 
... SIEVESIZE bits (zeroed) 
ensure search terminates 

routine entry point 
start with prime 2 
output the primes 
write it 
use Rl to form multiples 

; Set all bits that are multiples of the prime just found. 

20$: 
30$: 

BBCS 
ACBL 

Rl,SIEVE,30$ ; eliminate next multiple 
#SIEVESIZE-l,RO,RI,20$ ; form next multiple 

; Search for the next zero bit in the string. 

40$: FYC 
BEQL 
CMPL 
BLSS 
RET 

RO,#32,SIEVE,RO 
40$ 
RO,#SIEVESIZE 
10$ 

Converting Integer Data Types 

look for next zero bit 
not found, go back again 
are we done? 
no, go process this bit 
else exit 

It is often necessary to convert an item of one data type to another, 
whether it is to be stored in a field of a different size, loaded into a register, 
or used in an arithmetic operation. The VAX makes data conversion simple 
with two instructions, Convert and Move Zero-Extended. 

The Convert instructions allow us to move a signed byte, word, or 
longword datum to a field of a different size. The six signed-integer Convert 
instructions are shown in Table 7.4. 

When a shorter data type is converted to a longer data type, a sign 
extension is performed. That is, the high-order bit, which is the sign bit, is 
duplicated in the high-order bits of the longer destination, and the 
low-order bits are copied. Consider the following byte-to-word conversion: 

A: 
B: 

.BYTE 

.WORD 

CVTBW 

IIBll010011 

° 
A,B 

byte of binary data 
word to receive 
sign-extended byte 
extend byte to word 



172 More VAX Data Types 

Table 7.4 VAX Integer Convert Instructions 

Operation Mnemonic Operands 

Convert Byte to Word CVTBW byte_datum, worcLdatum 

Convert Byte to Longword CVTBL byte_datum, longword_datum 

Convert Word to Byte CVTWB worcLdatum, byte_datum 

Convert Word to Longword CVTWL worcLdatum, longword_datum 

Convert Longword to Byte CVTLB 10ngworcLdatum, byte_datum 

Convert Longword to Word CVTLW longword_datum, word_datum 

Following execution of the Convert instruction, the contents of A and B 
would be 

:A 

:B 

Notice that the low-order seven bits of byte A, the magnitude, have 
been copied directly into the low-order seven bits of word B. The sign bit of 
byte A has been extended left to fill the high byte of word B. 

On a conversion from a longer to a shorter data type, the larger 
number is truncated to fit in the snlaller datum. Truncation is illustrated in 
the following conversion: 

A: .BYTE 

B: . WORD 

CVTWB 

o 

ABIIIIIIIIIIOOllll 

B,A 

byte to receive truncated 
... word 
binary word 

; convert word to byte 

Following this instruction, the contents of A and Bare 

o 0 1 :B 

Sign bit 

o 0 1 :A 

In this case, only the least significant eight bits of B are preserved in A. 
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If the upper byte was not all ones as shown, integer overflow would occur. 
In using the convert instruction, you must be careful when the destination 
field is smaller than the source field. Integer overflow will occur unless all 
the upper bits of the source (the bits truncated) are the same as the 
resulting sign bit of the destination field. 

A frequent use of these instructions, particularly smaller-to-Iarger 
conversions, is movement of a byte or word datum to a register in order to 
perform arithmetic. If the datum is moved to the register with a Move 
instruction, the high-order bits of the register retain their old values. 

To extend an unsigned data type, there are three Move Zero-Extended 
instructions that zero-extend bytes to words (MOVZBW), bytes to long­
words (MOVZBL), and words to longwords (MOVZWL). These are also 
frequently used to move a short datum to a register, where we prefer the 
high-order bits of the register to be zeroed first. If we declare 

A: .BYTE 

then instead of coding 

we can write 

CLRL 
MOVB 

MOVZBL 

5 

RO 
A,RO 

A,RO 

; the data byte 

clear register 
move byte to RO<7:0> 

move zero-extend 
... byte to register 

The context of the operand is always determined by its data type. 
Thus, in the instruction Move Zero-Extended Byte to Longword (MO­
VZBL) , the first operand has byte context and the second has longword 
context. Following the execution of the instruction 

MOVZBL (RO)+, (Rl)+ 

the value of RO is incremented by 1, while Rl is incremented by 4. 
The Move Zero-Extended instructions can also be used to save space, 

although this is a minor issue. The instructions 

MOVL #20,RO MOVZBL #20,RO 

are equivalent: both move the value 20 decimal into RO, and both take 3 
bytes to encode because the literal 20 can be encoded as a short literal. On 
the other hand, if we had written 

MOVL #200,RO MOVZBL #200,RO 



174 More VAX Data Types 

then, although the effects of the operation are identical, the MOVZBL 
instruction is shorter to encode, The reason is that 200 is too large for a 
short literal but small enough to be represented in a byte. Both instruc­
tions will encode the 200 as an immediate operand, but because of the 
different contexts of the first operand, MOVL will store 200 as a 32-bit 
literal and MOVZBL will store it as an 8-bit literal. 

Character Strings 

As we have seen, bytes can be used to hold 256 different numerical 
values (00 to FF hex). We can assign representations to these numbers to 
allow us to manipulate characters, decimal numbers, special symbols, and 
so on. Although we could choose any representation we like for the 
characters, we use the ASCII code to allow the connection of computers 
and peripherals made by different manufacturers. 

On some machines that are not byte addressable, handling characters 
is a complex task because several characters can be packed into the 
smallest unit. On the VAX, character handling is aided by the fact that each 
character is uniquely addressable and by the existence of a full set of 
instructions that manipulate strings of characters. These instructions 
move, compare, and search strings of characters up to 65,535 (64K) bytes 
in length. In descriptions of these instructions, the terms "byte" and 
"character" are equivalent because the instructions deal with strings of 
bytes independent of the representations used. However, the instructions 
are called character string instructions because they are usually used with 
character text strings. 

A character string on the VAX is specified by the string length in bytes 
(the length is contained in a word, hence the 64K maximum string length) 
and the address of the first character of the string. The string instructions 
use from two to six of the general registers, RO through R5, to hold 
temporary values and to return updated string pointers. In other words, 
regardless of what registers are specified as operands to the instructions, 
some of the low-numbered registers will be modified to contain values 
returned by the instructions. These are the first instructions we have seen 
that have such a side effect. It is important to set up the registers carefully 
when using string instructions or to save and restore low-numbered 
registers that contain useful information. Therefore, the PUSHR and POPR 
instructions can be used effectively to preserve registers that are modified 
by the character string instructions. 

As an example, look at the string instruction MOVC3. This instruction 
moves a byte string from one location to another, that is, it copies a block 
of memory. The three operands are the length of the string to be moved, 
the address of the source string to move, and the address of the destination 
to receive the string. Thus, the format of the instruction is 

MOVC3 length,srcaddress,dstaddress 
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Following the execution of MOVC3, the registers have the following values: 

• RO, R2, R4, and RS = ° 
• Rl = the address one byte beyond the source string 

• R3 = the address one byte beyond the destination string 

Consider the following example, in which there are three message 
strings, including one that will be moved to the block of memory at 
OUTBUFFER depending on the value contained in R6. Each of the three 
strings is stored as a counted ASCII (.ASCIC) string; in other words, the 
first byte contains the length of the string, not including the count byte. If 
R6 contains a zero, the first message will be moved; if it contains a one, the 
second message will be moved; and so on. 

MAXMSG = 2 maximum message number 
addresses of the messages MSGADDRS: 

.ADDRESS MSGI 

.ADDRESS MSG2 

.ADDRESS MSG3 
MSGI: .ASCIC /THIS IS THE FIRST MESSAGE/ 
MSG2: .ASCIC /THIS IS THE SECOND MESSAGE/ 
MSG3: .ASCIC /THE THIRD MESSAGE IS HERE/ 
OUTBUFFER: ; 100-byte output buffer 

.BLKB 100 

CMPL 
BGTRU 
MOVL 

MOVZBL 

MOVC3 

R6,#MAXMSG 
ERROR 
MSGADDRS[R6],R8 

(R8)+,R7 

R7, (R8),OUTBUFFER 

validate range of msg number 
error if too large 
get address of ASCIC 
... string to be moved 
R7 <- length of string 
R8 now points to first char. 
move string to output buffer 

The MOVCS instruction copies a block of memory in which the source 
and destination strings can differ in length. If the source is longer than the 
destination, only the number of characters specified by the destination 
length is copied (that is, the string is truncated). If the source is shorter 
than the destination, the remainder of the destination is filled with copies 
of a "fill" character specified as one of the operands. The format for 
MOVCS is 

MOVC5 srclength,srcaddress,fillchar,dstlength,dstaddress 
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Following Moves, the registers are the same as for Move3 except that RO 
contains the number of characters not moved if the source was longer than 
the destination. In addition, the condition codes are set based on the 
comparison of the source length and the destination length. Moves is the 
preferred way to fill a block of memory with anyone character because a 
source length of zero causes the entire destination to be filled with the fill 
character. For instance, the instruction 

MOVC5 #0, (RO),#0,#512,OUTBUF 

causes the S12-byte buffer OUTBUF to be zeroed. Note that the source 
operand pointed to by RO is never referenced; therefore, RO need not 
contain a valid address. 

Table 7.5 describes some of the other string instructions. More can be 
found in the VAX Architecture Reference Manual. 

Table 7.5 VAX String Instructions 

Operation 

Compare two strings. These instruc­
tions do a byte-by-byte comparison, 
setting the condition codes based on 
a comparison of the first bytes, if any, 
that do not match. 

Locate a character in a given string. 
Following this instruction, Rl con­
tains the address of the located char­
acter or one byte past the string if the 
character was not found. RO contains 
the number of bytes left in the string. 

Skip over all consecutive occurrences 
of a character in a given string. This 
is like LOCC except the test is for 
inequality instead of equality. The 
registers are set in a manner similar 
to LOCC. 

Find a substring within a string. The 
string specified by src llength and 
src1 address is searched for a sub­
string matching the one specified by 
src2length and src2address. Following 
execution, if a match was found, RO 
contains the number of bytes remain­
ing in string one, including the sub­
string; Rl contains the address of the 
located substring. On no match, RO 
contains zero and Rl points one byte 
past string one. 

Mnemonic 

CMPC3 

CMPCS 

LOCC 

SKPC 

MATCHC 

Operands 

length ,src 1 address, 
src2address 
src llength ,src 1 address, 
fillchar,src21ength, 
src2address 

character ,srclength, 
srcaddress 

character ,srclength, 
srcaddress 

src llength,src 1 address, 
src2length,src2address 
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As a final example, the routine in Figure 7.1 checks an input buffer to 
see whether it contains the name of a chess piece. Leading blanks are first 
removed from the input buffer, and the string is then checked against the 
names of chess pieces stored at NAMES. If a match is found, a variable is 
returned indicating which piece it was. On return, RO indicates whether a 
match was found. 

Figure 7. 1 Subroutine to validate name of chess piece 

.SBTTL VALIDATE - Validate Name of Chess Piece 

;++ 
FUNCTIONAL DESCRIPTION 

This routine locates the next string in a buffer and checks to 
see if it is the name of a chess piece. 

CALLING SEQUENCE 

CALLS OR CALLG 

INPUT PARAMETERS: 

BUFLEN(AP) 
BUFADR(AP) 
RETKEY(AP) 

length of the buffer to be checked 
address of the buffer 
address of a longword to receive the piece number 

OUTPUT PARAMETERS: 

RETKEY(AP) = if name is valid, address pointed to receives the 
piece number with the encoding 
o king, 1 queen, 2 = bishop, 3 = knight, 
4 = rook, 5 = pawn 

RETURN VALUE: 

RO = 0 if no match, 1 if valid name is found 

BUFLEN 
BUFADR 
RETKEY 

4 
8 
12 

offset to length argument 
offset to address argument 
offset to return address 

List of counted string names for pieces. Zero length terminates the 
list. 

NAMES: 
.ASCIC /KING/ 
.ASCIC /QUEEN/ 
.ASCIC /BISHOP/ 
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.ASCIC /KNIGHT/ 

.ASCIC /ROOK/ 

.ASCIC /PAWN/ 

.BYTE 0 ; terminate list 

. ENTRY 
SKPC 

VALIDATE,AM<R2,R3,R4,R5,R6> ;entry, registers to save 

BEQL 
MOVQ 

CLRL 
MOVAL 

MOVZBL 

BEQL 
CMPC5 
BEQL 
ADDL 

INCL 
BRB 

#AA/ /,BUFLEN(AP),@BUFADR(AP) skip leading 

30$ 
RO,R4 

R6 
NAMES,Rl 

(Rl)+,RO 

30$ 
RO, (Rl),#AA/ /,R4, (R5) 
20$ 
RO,Rl 

R6 
10$ 

... blanks 
exit if nothing there 
save input length and 
... address in R4 and R5 
zero piece indicator 
get address of piece list 

RO <- length of piece name 
Rl <- address of first char. 
exit if table is exhausted 
strings match? 
exit if strings match 
form address of next ASCIC 
... string to check 
note next piece number 
continue loop 

Piece was located, return success and piece number. 

20$: 

MOVZBL 
MOVL 
RET 

#l,RO 
R6,@RETKEY(AP) 

success return code 
return piece number 

Valid name not found, return error code. 

30$: 
CLRL 
RET 

RO error code 

Packed Decimal String Instructions 

For some languages, such as COBOL, it is often more convenient to 
treat the computer as a decimal machine rather than a binary machine. 
Consequently, many machines have implemented decimal arithmetic as 
well as binary. The internal representation of a number for decimal 
arithmetic is the packed decimal string. This string is a contiguous 
sequence of 4-bit digits, each representing a decimal digit from 0 to 9, with 
the low digit representing the sign. A decimal string is described by its 
length in digits (not bytes) and the address of the low-order byte. The 
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assembler directive .PACKED is used to store one packed decimal string of 
variable length up to 31 digits in multiple consecutive bytes. 

Corresponding to the set of binary arithmetic instructions, the packed 
decimal instruction set includes Move Packed (MOVP), Compare Packed 
(CMPP), Add Packed (ADDP), Subtract Packed (SUBP), Multiply Packed 
(MULP), and Divide Packed (DIVP). The decimal string instructions always 
treat the decimal strings as integers, with the decimal point immediately 
to the right of the least significant digit of the string. If the result of a 
decimal instruction is to be stored in a string that is larger than the result, 
the most significant digits are filled with zeros. Thus, the only difference 
between these instructions and the binary arithmetic instructions is that a 
length operand is required, since packed decimal strings can be of varying 
length. The formats for these instructions are presented in Table 7.6. 

The setting of the condition codes for packed decimal arithmetic is 
similar to that for binary arithmetic instructions, with decimal overflow 
resulting when the destination string is too short to contain all the nonzero 
digits of the result. If overflow occurs, the destination string is replaced by 
the correctly signed least significant digits of the result. 

Table 7.6 VAX Packed Decimal String Instructions 

Operation Mnemonic Operands 

Move source string to MOVP length,srcaddress,dstaddress 
destination. 

Compare source string CMPP length ,srcaddress ,src2address 
to destination string. 

Add source string of ADDP addlength,addaddress,sumlength, 
length ADDLENGTH to sumaddress 
destination string of 
length SUMLENGTH. 

Subtract source string SUBP sublength,subaddress,diflength, 
from destination string. difaddress 

Multiply multiplier by MULP mulrlength, mulraddress, muldlength, 
multiplicand and place muldaddress,prodlength,prodaddress 
result in product. 

Divide dividend by divi- Drvp divrlength,divraddress,divdlength, 
sor and store result in divdaddress,quolength,quoaddress 
quotient. 

Convert packed deci- CVTPL srclength ,srcaddress ,dstaddress 
mal string to longword 
integer. 

Convert longword inte- CVTLP srcaddress ,dstlength ,dstaddress 
ger to packed decimal. 
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The VAX instruction set includes instructions for converting from 
packed decimal to other formats. Thus, the representation of a number 
can be chosen for a particular application and converted, as necessary, to 
a different internal representation for manipulation. In general, however, 
the decimal string instructions are used by language compilers for COBOL 
and other business languages and are rarely used at the assembly level. 

Multiple-Precision Integer Arithmetic 

Handling large numbers in earlier 16-bit minicomputers or micro­
processors required the programmer to use multiple-precision arithmetic. 
With the advent of minicomputers and microprocessors having longer 
word lengths, multiple precision is not used as frequently. Still, a corollary 
to Murphy's Law holds that whatever the available precision, some pro­
grammers want more. 

For VAX double-precision arithmetic, several adjacent longwords are 
used to hold an arithmetic value. With 32-bit arithmetic on the VAX, the 
range of signed integers is from -2,147,483,648 to 2,147,483,647; for 
64-bit arithmetic, the range is extended from - 263 to 263 -1, almost beyond 
imagination. 

Multiple-precision addition and subtraction are performed using the 
Carry bit, along with the instructions Add with Carry (ADWC) and Subtract 
with Carry (SBWC). To add two 64-bit numbers takes two instructions, one 
to add the low-order 32 bits and another to add the high-order 32 bits and 
any carry from the first addition. 

For instance, if we have two longwords containing the double­
precision operand A and two containing the double-precision operand B, 
we perform a double-precision Add, as follows: 

A: 

B: 

.LONG 

.LONG 

.LONG 

.LONG 

ADDL 

ADWC 

4321 
8765 
1212 
7878 

A,B 

A+4,B+4 

least significant bits of A 
most significant bits of A 
least significant bits of B 
most significant bits of B 

adds least significant bits 
... of A and B together 
adds most significant bits of 
... A and B with Carry bit 
... from previous instruction 

For greater precision, additional ADWCs can be appended. 
In addition to its support for 32-bit integer Multiply (MUL) and Divide 

(DIV) instructions, the VAX has two additional instructions specifically for 
handling multiplication and division of larger integers. Extended Multiply 
(EMUL) multiplies two 32-bit values, producing a 64-bit product, and also 
adds another 32-bit value to the result. The format of EMUL is 
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EMUL multiplier,multiplicand,addend,product 

Extended Divide (EDIV) divides a 64-bit number by a 32-bit number, 
producing a 32-bit quotient and a 32-bit remainder. The format of EDIV is 

EDIV divisor,dividend,quotient, remainder 

This instruction is often used when the remainder of a division is required 
because the integer divide instructions produce only the quotient. 

Finally, there are shift instructions for moving bits within longwords 
and quadwords, as shown in Table 7.7. These complementary instructions 
allow the programmer to shift the bits within longwords (ASHL) and 
quadwords (ASHLQ) using the Arithmetic Shift and to rotate bits within 
longwords (ROTL) using the Rotate Long. Both instructions are capable of 
shifting bits both left and right, depending on the count operand. 

The difference between Rotate and Shift is their treatment of the sign 
bit. The Rotate instruction, as the name implies, rotates the longword 
either left or right. On a rotate to the left, for example, each bit shifted out 
to the left becomes the new low-order bit of the longword. Rotate is a 
"logical" instruction because it assumes that the longword does not 
contain a signed data type, that is, it does not treat bit 31 specially. 

Arithmetic Shift, on the other hand, assumes a signed data type. If the 
source is shifted n bits to the left, n zero bits are fed into the low-order n 
bits of the information unit. Overflow will occur if any of the bits shifted 
into the sign bit position are not identical to the sign bit. On arithmetic 
shift of n bits to the right, the low-order n bits are shifted out and lost, 
while the sign bit is replicated in the high-order n bits that were moved. 
Arithmetic Shift was often used on machines without multiply and divide 
to multiply or divide by a power of two. Each bit shifted left is a multiply by 
2 while each bit shifted right is a divide by a power of 2. Thus, to multiply a 
signed longword in R3 by 8, we could write either 

Table 7.7 VAX Shift Instructions 

Operation 

Arithmetically shift the source operand into 
the destination field. The number of bits shift­
ed is given by the count field. A positive count 
is a left shift; a negative count is a right shift, 
with the bit sign replicated. Destination value 
sets Nand Z bits. 

Rotate logically the source operand into the 
destination field. A positive count rotates to the 
left, a negative count to the right. Destination 
value sets Nand Z bits. 

Mnemonic 

ASHL 
ASHQ 

ROTL 

Operands 

count,source, 
destination 

count,source, 
destination 
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ASHL #3,R3,R3 

or 

MULL #8,R3 

The shift might be faster, depending on the implementation, but the 
multiply is more obvious and is a shorter instruction because it has one 
fewer operand. 

Floating-Point Arithmetic 

Early minicomputers did not include any real floating-point hard­
ware. Rather, software was used to manipulate the signs, exponents, and 
fractions, as well as any required normalization associated with floating­
point values. As hardware became cheaper and instruction sets were 
expanded, floating-point instructions were added but were often incom­
patible with existing instruction sets. The PDP-II series, for example, had 
several different instruction sets using two-word and four-word formats to 
manipulate the same floating-point values. The problem of compatibility 
arose in part because floating-point was added after the basic architecture 
was frozen. As a result, the set of unassigned opcodes was not large enough 
to implement this new set of instructions gracefully. 

Fortunately, the VAX was planned to allow for orderly growth of 
instructions, and floating-point instructions were a part of the basic 
instruction set. Two new formats, G_floating and H_floating, were added to 
the VAX several years after its introduction and were easily integrated into 
the architecture because of the availability of two-byte opcodes and the 
general orthogonality of the instruction set. Table 7.8 lists the floating­
point instructions. Note that the four floating-point formats simply add 
four more data type qualifiers to the standard instruction set. The F, D, G, 
and H data types are appended to the generic arithmetic instructions to 
handle floating-point values. 

Handling floating-point values on the VAX is relatively easy because of 
the existence of a complete set of conversion instructions to convert both 
between the various floating-point data types and also between signed 
integers and floating-point values. The assembly programmer can thus use 
floating-point variables without knowing the details of the floating-point 
format. These instructions are listed in Table 7.9. 

There are three types of conversions, as shown in Table 7.9: exact 
conversions, truncated conversions, and rounded conversions. During 
conversion from an integer to a floating-point data type (for example, 
Convert Longword to G_Floating, CVTLG), or from a smaller floating­
point format to a larger floating-point format (for example, Convert 
G_Floating to H_Floating, CVTGH), sign extension takes place. Here the 
source data type can be represented exactly in the destination data type. 
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Table 7.8 VAX Floating-Point Instructions 

Data Number of 
Operation Mnemonic Types Operands 

Move source operand to destination MOV F,D,G,H 2 
field. Set condition codes Nand Z. 

Move address of floating operand. MOVA F,D,G,H 2 

Zero floating-point destination CLR F,D,G,H 
field. Clear N bit and set Z bit. 

Move negated source to destination, MNEG F,D,G,H 2 
setting Nand Z bits. 

Compare floating operands. CMP F,D,G,H 2 

Test floating operand. TST F,D,G,H 

Add floating operands. ADD F,D,G,H 2,3 

Add Compare and Branch. The ad- ACB F,D,G,H 4 
dend, index, and limit are all of the 
specified floating-point data type. 

Subtract operands. SUB F,D,G,H 2,3 

Multiply operands. MUL F,D,G,H 2,3 

Divide operands. DIV F,D,G,H 2,3 

Extended multiply and integerize. EMOD F,D,G,H 5 
(See VAX Architecture Reference Man-
ual for detailed description.) 

Evaluate polynominal. POLY F,D,G,H 3 

Some other conversions, particularly from floating point to signed integer, 
are done by truncating the fraction. Finally, a third class of conversion is 
performed not by truncating but by rounding up or down as appropriate. 
Conversions from floating point to longword are available in both truncat­
ed and rounded forms: Convert G_Floating to Longword (CVTGL) trun­
cates the fraction while Convert Rounded G_Floating to Longword 
(CVTRGL) rounds to the nearest integer. 

One interesting VAX floating-point instruction is POLY, which pro­
vides polynomial evaluation used in calculation of math functions such as 
SINE and COSINE. POLY takes three operands: a floating-point argument 
(X), an integer degree of the polynomial to be evaluated, and a table of 
floating-point coefficients (C(O) through C(n)). The polynomial instruction 
computes the value of the function: 

C(O) + C(l) x X + C(2) X X2 + ... + C(n) x xn 
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Table 7.9 VAX Floating-Point Conversion Instructions 

Exact Conversion 

CVTBF 
CVTBD 
CVTBG 
CVTBH 
CVTWF 
CVTWD 
CVTWG 
CVTWH 
CVTLD 
CVTLG 
CVTLH 
CVTFD 
CVTFG 
CVTFH 
CVTDH 
CVTGH 

Truncated Conversion 

CVTFB 
CVTFW 
CVTFL 
CVTDB 
CVTDW 
CVTDL 
CVTGB 
CVTGW 
CVTGL 
CVTHB 
CVTHW 
CVTHL 

Rounded Conversion 

CVTLF 
CVTDF 
CVTGF 
CVTHF 
CVTHD 
CVTHG 
CVTRFL 
CVTRDL 
CVTRGL 
CVTRHL 

There are four POLY instructions to support coefficients and arguments in 
the four floating-point data types. 

1. Write a short sequence of instructions to test if bits 15, 12, 3, and 1 are set in a 
word. Write a single instruction to invert all the bits in a longword. 

2. A common data structure used in operating systems is the bit map. A bit map is 
a contiguous string of bits that indicates which blocks of a fixed-size multiblock 
data structure are in use. For example, a disk composed of 1000 512-byte disk 
blocks (discussed in more detail in the next chapter) can have a 1000-bit bit 
map in which a 1 in bit position N indicates that block N is in use. A 0 in bit N 
indicates that the corresponding block is free for use. 
a. Using the Find First Bit instructions, write a routine to locate a free block -­

from a data structure of N blocks using an N-bit bit map. The routine inputs 
the address of the first byte of the bit map and its size in bits and ouputs the 
position (number) of the first free block. The routine should set the bit for 
the block being allocated to note that it is in use. It should return an error 
code if no free block is found. 

b. Extend your routine to locate the first free collection of M contiguous 
blocks. 

3. Write instruction sequences to set the odd-numbered bits in a byte using (1) the 
BIS instruction, (2) the BBC instructions (i.e., BBCC, BBSS, etc.), and (3) the 
INSV instruction. 
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4. One of the convert instructions, Convert Longword to Quadword, does not 
exist in the VAX instruction set. Write a macro to perform this operation. 

5. Code a macro or subroutine to duplicate the EDIV instruction using only 32-bit 
arithmetic. 

6. A simple encoding technique is to translate alphanumeric text into shifted text. 
This is done- by writing the alphanumeric characters twice, one string above 
the other, with the second string shifted by one or more characters, for 
example, 

ABC D E F 
@ $ ABC D 

o 1 2 3 
Y Z 0 1 

@ $ 
% & ! 

A word is encoded then by replacing its representation on the first line by the 
second, for example, CAFE becomes A@DC. Write a procedure to perform this 
encoding using all of the ASCII alphanumeric characters including space. 

7. The Move Characters instructions were described in some detail. The MOVCs 
instruction has five operands: source length, source address, fill character, 
destination length, and destination address. Following the execution of 
MOVCs, the registers are 

R2,R4, and R5 = 0 
Rl Number of unmoved bytes in the source string 
R3 Address 1 byte beyond the last byte moved in the 

source 
R4 Address 1 byte beyond the destination 

and the condition codes are set based on the comparison of the source length 
and destination length, that is, 

N <--
Z <--
V <--
C <--

Source 
Source 
0 
Source 

length LSS destination length 
length EQL destination length 

length LSSU destination length 

Code a routine to emulate the MOVCS instruction without using character­
string instructions. 

8. Modify the routine of Figure 7.1 to validate chess piece names to allow for 
one-character abbreviations of the names. The routine should also accept N for 
Knight and K for King, but still allow KN or KI as valid abbreviations. 

9. Write a subroutine to convert packed decimal strings to longwords, but do not 
use the convert instructions. 
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An important aspect of program design is the definition of the data 
structures to be manipulated. Proper data structuring can make the 
difference between simple and difficult implementation or between supe­
rior and mediocre performance. For many applications, writing code is 
nearly automatic once the data structures are defined, because the 
instructions merely move data between the structures. The ease of coding 
depends on the thought given to the data design. This is especially true for 
operating systems, for which an examination of the data structures often 
tells more about the system than the code itself. 

Among the benefits of high-level languages is the ability to define 
abstract data types. The compilers for these languages can also check to 
see that we use the data types properly. To simplify the generation of code 
by such languages, some computers include more complex data types and 
data structures in their basic instruction sets. 

This chapter examines the manipulation of some more complex data 
types with the VAX instruction set. In particular, it concentrates on linked 
structures, lists, queues, and trees. 

Multi-Element Structures and Records 
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Collections of data items that must be manipulated as a group occur 
frequently in programming. Arrays, lists, queues, and trees are typical 
multi-element data structures commonly used in both high-level and 
assembly language programming. These data structures are alike in that 
they are homogeneous collections of data elements. 

Other multi-element data structures are not homogeneous. Collec­
tions of data items are called records, and a collection of records is called a 
file in COBOL, a structure in PL/I, and a record structure in Pascal. Each 
record is actually a logical data item, with its own characteristics of size, 
type, and initial value, conveniently grouped to form a composite data 
structure. 

Records and files are logical entities that must be manipulated based 
on a knowledge of their structure. Therefore, different sequences of 
instructions, offsets, and pointers may be needed to access the elements of 
different records. For example, we found in the discussion of displacement 
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mode in Chapter 4 that it is necessary to provide the offsets for the 
different elements that make up the structure. In contrast, when we deal 
with arrays, the indexed form of addressing is sufficient to step through the 
elements of the array sequentially. 

The simplest implementation of an array is nothing more than a 
contiguous collection of identical memory elements. In this form, ac­
cessing individual elements is performed by computing an address based 
on the size of the element-byte, word, longword, and so on-and the 
relative position (index) of the element in the array. For example, the 
assembly language code to perform the FORTRAN statement 

J = A*K+B{I) 

in VAX assembly language would be 

MOVL 
CVTLF 
MULF2 
ADDF2 
CVTFL 

I,Rl 
K,RO 
A,RO 
B[Rl],RO 
RO,J 

place subscript in register 
convert integer K to floating 
for A*K as floating value 
add in B to form A*K+B{I) 
store integer result in J 

When multidimensional arrays are used, the problem of accessing a 
particular element becomes one of the mapping of a multidimensional 
array into the linear or one-dimensional form on the computer's memory. 
For instance, arrays in FORTRAN are stored by column. The two­
dimensional array 

2 

3 4 

is stored in memory by the compiler as 

1 

3 

2 

4 

To access the element A (I,J) , we must compute the index to the 
column and then to the elements within the column. This requires 
knowledge of the bounds of the array indices. 
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To make it easier for compilers to address arrays, the VAX instruction 
set contains an Index instruction. This instruction calculates an index for 
an array of fixed-length data types, both integer and floating, and even for 
arrays of bit fields, character strings, and decimal strings. The format of 
the Index instruction is 

INDEX subscript, lower_limit, upper_limit, size, index_in, 
index_out 

We will not examine this instruction in too much detail. Its main value is 
verification of the subscript range, that is, that 

lower_limit ::; subscript ::; upper_limit 

If the condition is false, Index causes a trap. Because the instruction traps 
on an illegal subscript (to be handled by a special trap-handling proce­
dure), a compiler can calculate the proper array index and implicitly 
check the subscript at the same time.The arithmetic performed is 

index-out = (subscript + index-in) X size 

For example, suppose we have a 3x4 array of integers such as 

X: array [0:2,0:3] of integer; 

and we want to zero X[I,J]. We can use two Index instructions to compute 
the correct index and also to perform the bounds check on I and J. 
Assuming that the array is stored in row major form, we might use the 
following instructions: 

INDEX 
INDEX 
CLRL 

I,#0,#2,#4,#0,RO 
J,#0,#3,#1,RO,RO 
X[RO] 

RO gets index to proper row 
RO gets index to proper entry 
zero the entry 

The first instruction forms the index to the start of row I in memory, 
while the second instruction forms the index to entry J in that row. 
Multiple Index instructions can be cascaded to handle arrays of any dim­
ension. If either I or J had been out of bounds, an exception would have 
been generated. 

Circular Lists 

One common application of a list is in the implementation of a 
circular queue or ring buffer, illustrated in Figure 8.la, which passes 
information between two or more routines. One routine is usually a 
producer, the other a consumer. The first feeds information to the list, 
while the latter removes and processes information. 
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Figure 8. 1 Circular list 

Entry 0 f4- TOP 

TOP Entry 1 

Entry 2 
Entry 3 

BOTTOM ~ BOTTOM 

a. Logical structure b. Physical structure in memory 

Two pointers, TOP and BOTTOM (see Figure 8.1b), point to the next 
element to remove and the next slot to insert data, respectively. When the 
producer has data, it places the data in the array slot pointed to by 
BOTTOM and updates BOTTOM to point to the next slot. When the 
consumer wants to process data, it removes the entry pointed to by TOP 
and updates TOP to point to the next entry. Since the circular buffer is 
implemented in linear memory, the routines check for the end of the list 
when updating pointers. If a pOInter is updated past the end of the list, it is 
reset to point to the first list entry, producing a circular effect. The only 
restriction is that the producer must not insert faster than the consumer is 
able to remove. Otherwise, the buffer overflows and data is lost. 

What follows are routines for inserting and removing characters from 
a character ring buffer. Such routines might be used by a terminal handler 
that accepts complete lines from a remote terminal and passes those lines 
to the operating system command interpreter for processing . 

. SBTTL Circular Buffer Management Routines 

Storage for the buffer and pointer variables. 
The variable COUNT keeps the number of entries in the buffer so that 
it is easy to check for empty or full conditions. 

BUFSIZE = 100 
BUFFER: .BLKB BUFSIZE 
COUNT: .LONG 0 

define size of buffer 
define character ring buffer 
initial count is a 

The pointers TOP and BOTTOM contain indices to the current first and 
last data items in the list. 

BOTTOM: . LONG 
TOP: .LONG 

o 
o 

start bottom at 0 
start top at 0 

.SBTTL INSBUF - Routine to Insert In Circular Buffer 
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;++ 
ROUTINE DESCRIPTION: 

This routine inserts a byte into the circular buffer. 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

CHAR(AP) - the low byte of the first argument contains the 
character to be inserted 

OUTPUT PARAMETERS: 

None 

RETURN VALUES: 

10$: 

;++ 

RO = 
o -> buffer is full 
1 -> character successfully inserted 

CHAR = 4 

. ENTRY 
CLRQ 

INSBUF,AM<> 
RO 

offset to first argument 

save no registers 
assume full-buffer error 
· .. and zero Rl for EDIV 
... instruction 

CMPL #BUFSIZE,COUNT is buffer full? 
BEQL 10$ exit with error if so 
MOVL BOTTOM,RO get last entry index 
MOVB CHAR(AP),BUFFER[RO]; insert char. in buffer 
INCL COUNT ; note one more in buffer 
INCL RO ; update bottom pointer 
EDIV #BUFSIZE,RO,Rl,BOTTOM ; wrap pointer by using 

MOVZBL #l,RO 
RET 

· .. MOD (pointer, bufsize) 
... and restore it to 
· .. memory 
insert success code 
return to caller 

.SBTTL REMBUF - Routine to Remove from Circular Buffer 

ROUTINE DESCRIPTION: 

Remove the next character from the front of the circular list. 

CALLING SEQUENCE: 

CALLS or CALLG 
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INPUT PARAMETERS: 

CHARADR(AP) address of byte to receive the removed character 

OUTPUT PARAMETERS: 

Removed character is stored in address pointed to by 
CHARADR ( AP) . 

RETURN VALUES: 

10$: 

RO = 

CHARADR 

. ENTRY 
CLRQ 
TSTL 
BEQL 
MOVL 
MOVB 

DECL 
INCL 
EDIV. 

MOVZBL 
RET 

o -> buffer is empty 
1 -> character removed successfully 

4 

REMBUF,I\M<> 
RO 
COUNT 
10$ 
TOP,RO 

offset to address 
... argument 

save no registers 
assume buffer empty 
is buffer empty? 
exit with error if so 
get top entry index 

BUFFER[RO],@CHARADR(AP) return character 
... caller 

COUNT note one less entry 
RO point to next entry 
#BUFSIZE,RO,Rl,TOP wrap pointer if needed 

to 

. .. and return to memory 
#l,RO insert success code 

return to caller 

EDIV is used in these routines to implement a Modulus function, 
automatically wrapping the pointer back to the beginning of the list when 
it reaches the end. This occurs whenever the pointer reaches BUFSIZE, 
because the remainder on division is zero. Otherwise, the remainder is the 
same as the original index. 

Linked Lists 

We have already seen examples of more advanced data structures: 
arrays, stacks, and circular lists. Implementation of these structures on the 
VAX is aided by the instruction set and the addressing modes. We now turn 
to some more complex linked data structures. 

A linked data structure can be conceptualized as an array in which the 
elements do not occupy consecutive locations in memory. To find the 
array element n or to move from element n to n + 1, we must have a 
pointer to that element, namely, its address. In the simplest scheme, in 
Figure 8.2, there is a fixed-length table of pointers that gives the location of 
each element in the data structure. The elements may be of fixed or 
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Figure 8.2 Pointer table array 

First 

~ element ---- Nth --. 
~ ~ Second 

element 

Third element 
element 

Pointer table 

variable length. A zero in one of the pointer table entries may indicate that 
there is no associated data element. 

By setting up such a data structure, we have simply added a level of 
indirection to the array addressing. This allows us to remove the restric­
tion that the data elements be fixed in length and contiguous in memory. 
We can also now allocate array elements as we need them, which may be 
beneficial if they are large. The pointer table itself must be of fixed 
allocation, however, so we must know the maximum number of entries to 
allocate. The cost, then, is one pointer, or 4 bytes, per entry. 

One way to solve the problem of preallocating the pointer table is to 
include the pointer within each data entry, as in Figure 8.3. A list head is 
needed to locate the first data element, which then points to the next, and 
so on. The last data entry contains a zero pointer indicating that no entries 
follow, that is, it is the end or tail of the list. 

This structure is known as a singly linked list. It sacrifices the ability to 
address or locate an entry directly by its position because we must search 
through the chain of links. However, with a singly linked list, it is easy to 
move from one entry to the next. 

Insertion in a singly linked list is simple. We first locate the entry that 
the new element will follow. If the new element is to be at the head of the 
list, it follows the list header. Figure 8.4 shows a linked list before and after 
the element X is inserted following block 1. On the VAX, the instruction 
sequence is straightforward because indirect addressing modes may be 
used. The instructions of Figure 8.5a will insert a new entry in a list, 

Figure 8.3 Singly linked list 

~ ~ r- .-.... 0 

Listhead First Third 
element Second element 

element 
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Figure 8.4 Insertion in singly linked list 

I Block A pointer 

Listhead 
Block B painter Block C painter ----.. 0 

Block A Block B Block C 

a. Before X is inserted 

I Block A pointer 

Listhead 
Block X painter ~ r+ Block C pointer --. 0 

Block A Block B Block C 

L..- Block B pointer r-

Block X 

b. After X is inserted 

Figure 8.5 Inserting/removing an entry in a singly linked list 

Insert entry in singly linked list. 

MOVL 
MOVAL 

a. Inserting instructions 

(RO), (Rl) 
(Rl), (RO) 

link new entry to next one 
insert new entry 

Remove entry (address in Rl) from previous entry (address 
in RO). 

MOVL (Rl), (RO) link previous to following 

b. Removing instructions 
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assuming that Rl contains the address of the new entry and that RO 
contains the address of the entry that the new one is to follow. The removal 
of a block is even shorter, as shown in Figure 8.Sb. 

The use of a singly linked list is exemplified in the management of a 
dynamic memory pool. In an operating system, one large pool of memory 
may be shared by many programs and users. When a routine needs to 
allocate a block of memory for a dynamic data structure, it calls the pool 
manager and requests a block of the needed size. When the program is 
finished with the block, the block is returned to the pool manager. 
Dynamic allocation saves memory space on the system, because it is not 
necessary for each routine to preallocate storage that is used only 
occasionally. 

The scheme shown in Figure 8.6 is used within the VMS operating 
system. The free memory pool is maintained as a list of memory blocks. 
The first two longwords of each block contain the size of the block and a 
pointer to the next block. When the system is initialized, there is only one 
large block. As users begin to allocate and return memory, the pool 
becomes fragmented and contains many discontiguous pieces of different 
sizes, as shown in Figure 8.7. If memory returned to the pool is adjacent to 
a block already there, the two are joined to form one larger block. If all the 
blocks are returned, the list reverts to the state shown in Figure 8.6. To 
make the consolidation of blocks easier, the list is kept in memory address 
order. 

The routine in Figure 8.8, which is also flowcharted in Figure 8.9, 
allocates a block of memory of variable size from the pool. It scans the list 
for a block of sufficient size. If it finds a block of exactly the right size, that 
block is removed from the chain and returned to the caller. If it finds a 
larger block, that block is split into two pieces, one the size requested and 

Figure 8.6 Initial dynamic list 

I 0 Pointer 
J Pool size 

Memory pool listhead 

Dynamic memory pool 

Figure 8.7 Fragmented memory list 

I Pointer I Pointer r--+- Pointer f-+- 0 
Size Size Size 

Memory pool 
listhead 

Block 1 
Block 2 Last 

block 
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.SBTTL ALLOCATE - Routine to Allocate Dynamic Memory 

;++ 

FUNCTIONAL DESCRIPTION: 

Allocate a block of memory from the dynamic pool list. (Blocks 
requested must be at least 8 bytes long.) 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

SIZE(AP) - size of block requested 

OUTPUT PARAMETERS: 

RETADR(AP) - address of longword to receive address of allocated 
block 

RETURN VALUES: 

10$: 

RO = 0 if no block found, I if block returned 

SIZE = 4 
RETADR 8 

offset to size argument 
offset to return address 

. ENTRY 
MOVAL 
MOVL 
MOVL 
MOVL 
BEQL 
CMPL 
BGTRU 
BEQL 

ALLOCATE,AM<R2,R3> ; registers to save 
LISTHEAD,RO get memory listhead address 
SIZE(AP),RI get size of requested block 
RO,R2 save previous block address 
(R2),RO get next block address 
30$ exit with error if zero 
RI,4(RO) this block large enough? 
10$ if not, try next block 
20$ if EQL, exact size found 

Block of memory was found which is larger than amount needed. Return 
size requested and form new block from remainder. 

ADDL3 
MOVL 

SUBL3 

MOVAL 

20$: MOVL 

MOVL 
MOVL 
RET 

30$: CLRL 
RET 

RO,RI,R3 
( RO ) +, (R3) + 

RI, (RO) , (R3) 

- ( R3 ) , - ( RO ) 

(RO), (R2) 

RO,@RETADR(AP) 
#1,RO 

RO 

compute address of new piece 
copy forward link from old 
... piece to new piece 
store size of new piece in 
... second longword 
move address of new piece to 
... top of old block 
link new piece to previous 
... block 
return allocated block address 
note success 

error exit, note error 
return to caller 
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Figure 8.9 Flowchart for dynamic memory pool allocation 
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one the remainder of the larger block. The requested block is returned to 
the caller, and the remainder is linked into the list with its new size. 

This routine makes good use of the indirect, autoincrement, and 
autodecrement addressing modes to manipulate the list and associated 
pointers. The memory deallocation is left as an exercise at the end of this 
chapter. 

Doubly Linked Lists 

Although singly linked lists are convenient for many applications, 
there are some applications in which such lists are not efficient. These 
applications require scanning both backward and forward in the list or 
inserting at the tail of the list. Inserting at the tail can be made more 
efficient simply by keeping a pointer to the last entry as well as the first. To 
efficiently scan backward, however, a doubly linked list is needed. 

A doubly linked list has both backward and forward pointers in each 
list element, as shown in Figure 8.10. Such a doubly linked list is often 
used to implement a queue, that is, a linear list in which elements are 
added to the end of the list and removed from the beginning of the list. On 
the VAX, each queue element is linked through a pair of longwords; the 
first longword is the forward link, and the second the backward link. A 
queue is described by a queue header, which is simply a pair of longwords. 
A queue header for an empty queue appears in Figure 8.11. 

Note that both the forward and backward links point to the head at 
location H. Figure 8.12 shows the structure of the queue following the 
insertion of queue elements at locations Nand P. The forward pointer of 
the last entry always points back to the queue header. 

Figure 8.10 Doubly linked list 

b X: H: --"'" Y ;:;-
Head pointer (X)I r::;:: H 

I Tail pointer (Y) I--

Y: -- H I---

l....- X 

Figure 8.11 Empty queue header 

H' ~ ____ -:-H-:--___ --tl Forward link 
H +4; H Backward link 
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Figure 8. 12 Queue insertion 

I LH.l 
H + 41 

H 
H+4 

N 
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I 
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~. 
N 
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I 
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P N-J H N+4-

H P 
N P+4-

Inserting and removing entries from a queue requires a little more 
work than from a singly linked list, because three elements with pointers 
must be modified: the element to be inserted or removed, its predecessor, 
and its successor. The steps for inserting an entry are 

1. Store the address of the successor in the new entry's forward link 
field. 

2. Store the address of the predecessor in the new entry's backward link 
field. 

3. Store the address of the new entry in the predecessor's forward link 
field. 

4. Store the address of the new entry in the successor's backward link 
field. 

The steps for removal of an entry are 

1. Store the forward link of the entry to be removed in the forward link 
field of its predecessor. 
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2. Store the backward link of the entry to be removed in the backward 
link field of its successor. 

An element can be removed from a doubly linked list given only the 
address of the element. However, a removal from a singly linked list 
requires the address of the previous element. 

Queue operations are used so frequently that the VAX architecture 
contains the instructions INSQUE and REMQUE to insert and remove 
entries from doubly linked lists. These are provided mainly for the 
operating system, which maintains almost all of its dynamic data struc­
tures as queues. The formats of these instructions are 

INSQUE 
REMQUE 

entrY,predecessor 
entrY,destination 

INSQUE inserts the element specified by entry into the queue follow­
ing the element predecessor. Both entry and predecessor are addresses of 
the two-Iongword queue headers within the specified elements. REMQUE 
removes the entry from the queue and places its address in the operand 
specified by destination. 

To illustrate this, we return to the insertions pictured in Figure 8.11. 
To insert entry N at the head of the list, we use the instruction 

INSQUE N,H insert element N following 
· .. header, that is, at head of 
· .. queue 

Then, to insert element P at the tail of the list, we write 

INSQUE P,@H+4 insert element P following 
... last entry, that is, at tail 
· .. of queue 

The specification H +4 uses the tail pointer in the queue header to 
reference the address of the last element as the predecessor for the 
insertion. Had we known that the last element was at T, we could have 
written 

INSQUE P,T insert element P following 
· .. element T 

with the same effect. However, insertions at the tail of a queue normally 
use the pointer in the queue header. 

For removing entries, the instruction 

REM QUE @H,TEMP ; remove element at head 
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removes the first entry in the queue, loading its address into the longword 
TEMP. The instruction 

REMQUE @H+4,TEMP ; remove element at tail 

removes the tail entry, also loading its address into TEMP. 
INS QUE sets the Z condition code if the entry inserted was the first in 

the queue. REM QUE sets the Z condition code if the entry removed was 
the last one or the queue was already empty. The V bit is set if there was no 
entry to remove. The programmer can thus easily test for special queue 
conditions. 

One important property of the queue instructions is that they cannot 
be interrupted. Queues are often used for communication or synchroniza­
tion among several processes. If several steps were required to insert and 
remove entries, it would be possible for a process to be interrupted before 
the operation was completed, leaving queue pointers in an inconsistent 
state. Because queue manipulation is done with single, uninterruptable 
instructions, cooperating processes do not have to worry about interrupts, 
as long as they insert or delete from the head or tail. 

The routine that follows is an example of the use of queues by two 
cooperating processes. The first process collects experimental data and 
inserts it into a buffer. Because the data arrives quickly, the process does 
not want to take time to write the buffer to disk. Consequently, it queues 
the buffer for a second process that writes the data to the disk. There is also 
a queue of free buffers. When the collection process fills a buffer, it takes a 
new buffer from the free queue. When the writing process empties a 
buffer, it puts it back on the free queue for the use of the collection 
process. 

The writing process dequeues buffers and writes them to disk. When 
the process finds the queue empty, it suspends, or "goes to sleep." The 
collection process wakes it up when a new buffer is placed on the full 
queue. These processes must share the memory that contains the queue 
headers and the data buffers. 

Three routines are shown: an initialization routine that sets up the 
queues, queue headers, and associated variables; the data collection 
routine; and the writing routine from the second process . 

. SBTTL - Common Data Shared by Both Processes 

The data buffers are initially allocated from a shared pool. 
Assume that a routine (ALLOCATE) can be used to allocate them. 
The variables below describe the number and size of the 
buffers. 

Note that the double == and :: are used to define variables that 
are global, that is, known outside of a particular module. 
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BUFSIZE 
NUMBUFS 

512 
10 

size of buffers to allocate 
number of buffers to get 

These are shared variables. The three current pointers describe the 
buffer currently being filled with data. 

CURBUF:: 
.BLKL 1 address of current buffer 

CUREND:: 
.BLKL 1 address of end of buffer 

CURPTR:: 
.BLKL 1 address to put next data item 

... in buffer 

Following are the queue headers for the free and full buffer queues. 

FREELST:: 
.BLKQ 1 free list head 

FULLST:: 
.BLKQ 1 full list queue 

. END 

.TITLE - Collection and Initialization Module 

.SBTTL - Initialization Routine 
;++ 

FUNCTIONAL DESCRIPTION: 

This routine allocates buffers and initializes the queues, queue 
headers, and pointers. 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

None 

IMPLICIT INPUTS: 

FREELST, FULLST, CURBUF, CURPTR, CUREND, BUFSIZ, NUMBUFS 

OUTPUT PARAMETERS: 

None 

. ENTRY INIT, AM<R2> main entry point 
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Initialize queue headers. 

MOVAL 
MOVAL 
MOVAL 
MOVAL 

FREELST,FREELST 
FREELST,FREELST+4 
FULLST,FULLST 
FULLST,FULLST+4 

initialize empty free queue 
... header 
initialize empty full queue 
... header 

Allocate buffers and place them on a free queue. Assume that routine 
ALLOCATE allocates a buffer of the given size and returns its address 
in the longword passed. 

10$: 
MOVL 
PUSHAL 
PUSHL 
CALLS 
BLBC 
INSQUE 
SOBGTR 

#NUMBUFS,R2 
-(SP) 
#BUFSIZE 
#2, ALLOCATE 
RO,ERROR 
@(SP)+,FREELST 
R2,10$ 

number of buffers to get 
save space for buffer addr. 
parameter for routine to 
... allocate a buffer 
check error status 
insert buffer on free queue 
continue until done 

Pull one buffer off the queue and set up pointers for data collection. 
The first data item is stored at 8 bytes past the start of the buffer 
since the first two longwords are used as the queue pointer links. 

REMQUE @FREELST,CURBUF 
ADDL3 #8, CURBUF, CURPTR 

ADDL3 #512,CURBUF,CUREND 
RET 

take one from current buffer 
compute address to store 
... first data item 
remember buffer end addr. 
return to caller 

.SBTTL COLLECT - Data Collection Routine 

;++ 

FUNCTIONAL DESCRIPTION: 

This routine collects 32-bit data items and stores them in a 
buffer. When the buffer is full, it is queued for another 
process to write. 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

None 

IMPLICIT INPUTS: 
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FREELST, FULLST, CURPTR, CURBUF, CUREND 

OUTPUT PARAMETERS: 

None 

.ENTRY COLLECT,AM<> entry point, save no regs 

Assume that GETDATA returns the 32-bit data item in RO. 

CALLS 
MOVL 
MOVL 
CMPL 
BLSSU 

#O,GETDATA 
CURPTR,Rl 
RO, (Rl)+ 
Rl,CUREND 
10$ 

get 32-bit datum 
place to store value 
store datum in buffer 
is buffer full? 
branch if not full 

Buffer is full. Queue on the end of the full queue, and pull off 
another buffer for data collection. 

INSQUE CURBUF,@FULLST+4 queue at end of full queue 
CALLS #O,WAKEPROCESS wake buffer writing process 
REMQUE @FREELST,Rl get next free buffer 
BVS NOBUFFER error if no buffer 
MOVL Rl,CURBUF save current buffer address 
MOVAB BUFSIZE(Rl),CUREND store buffer and address 
MOVAB 8(Rl),Rl address for next datum 

10$: 
MOVL Rl,CURPTR save new data pointer 
RET return to caller 

.SBTTL OUTBUF - Routine to Write Buffer 

FUNCTIONAL DESCRIPTION: 

203 

This routine removes buffers from a queue and outputs them to 
disk. It then sleeps until awakened by the collection process. 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

None 

IMPLICIT INPUTS: 
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FREELST, FULLST 

OUTPUT PARAMETERS: 

None 

.ENTRY OUTBUF, AM<R2> OUTPUT entry point 

Following is an infinite loop to remove and process entries. 

10$: 

20$: 

REMQUE 
BVC 
CALLS 
BRB 

@FULLST,R2 
20$ 
#0, SLEEP 
10$ 

remove from full queue head 
continue if we got one 
else go to sleep 
try again when wakened 

Assume routine OUTPUT writes a buffer to disk with call 

OUTPUT (BUFFERADDRESS, LENGTH) 

PUSHL 
PUS HAL 
CALLS 
INSQUE 
BRB 

. END 

#BUFSIZE 
(R2) 
#2, OUTPUT 
(R2),@FREELST+4 
10$ 

Self-Relative Queues 

push length argument 
push buffer address 
write to disk 
insert on free queue 
look for more buffers 

The previous section described the VAX INSQUE and REMQUE 
instructions and the doubly linked structures they manipulate. These 
instructions operate on queue elements that contain a two-Iongword field 
for storing the forward and backward links, as shown in Figure 8.10. Such 
queues are known as absolute queues because the forward and backward 
link fields are stored as 32-bit absolute addresses. 

As the preceding programming example indicates, queues can be 
shared by several processes, and the instructions cannot be interru,pted. As 
long as insertions and deletions are made from the head or the tail, the 
queue will remain consistent. There are, however, two problems with 
absolute queues: 

1. Because queue link fields are absolute addresses, each process 
sharing a queue must see all queue entries at the same addresses. Or, 
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to look at it another way, absolute queues cannot be easily relocated in 
memory; that is, they are not position independent. 

2. While absolute queue instructions cannot be interrupted, they still 
pose a problem if queues are shared between processes running on 
different processors of a shared-memory multiprocessor. In this case, 
it is possible for two processors to be executing insert or remove 
operations simultaneously on the same queue entry. 

To solve both of these problems, a new queue format and new queue 
instructions were added to the VAX architecture. This format is known as 
self-relative queues. Self-relative queue addressing is similar to PC-relative 
addressing. Instead of containing an absolute address, each forward and 
backward link is stored as a 32-bit displacement. The forward link is stored 
as the displacement of the next queue entry to the current entry; the 
backward link is stored as the displacement of the previous entry to the 
current entry. This is shown in Figure 8.13. 

Four instructions manipulate self-relative queues: Insert Entry into 
Queue at Head, Interlocked (INSQHI), Insert Entry into Queue at Tail, 
Interlocked (INSQTI), Remove Entry from Queue at Head, Interlocked 
(REMQHI), and Remove Entry from Queue at Tail, Interlocked 
(REMQTI). As you might guess, self-relative queues can be accessed only 
at the head or the tail. In addition, the self-relative queue headers must be 
aligned on a quadword boundary (addresses evenly divisible by 8). 

Figure 8.13 Self-relative queue format 
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a. Self-relative queue 
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b. Empty self-relative queue header 
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The reason for the boundary restriction is that, to ensure that only one 
processor accesses a queue at a time, bit zero of the queue header is used 
as an interlock. When a self-relative queue instruction is executed, it 
checks bit zero of the header. If this bit is set, another processor is already 
accessing the entry, so the instruction terminates after setting the C 
condition code. If the bit is clear, the instruction sets the bit and then 
performs the insert or remove operation. Therefore, programs that use 
these instructions must explicitly check the C bit and reexecute the 
instruction if the bit is set. For example, if we were to use self-relative 
queues in procedure COLLECT in the previous shared-queue example, the 
queue manipulate code would be changed to 

Buffer is full. Queue on the end of the full queue, and pull off 
another buffer for data collection. 

2$: 

4$: 

10$: 

Trees 

INSQTI 
BCS 
CALLS 
REMQHI 
BVS 
BCS 
MOVL 
MOVAB 
MOVAB 

CURBUF,FULLST 
2$ 
#O,WAKEPROCESS 
FREELST,Rl 
NOBUFFER 
4$ 
Rl,CURBUF 
BUFSIZE(Rl),CUREND 
8(Rl) ,Rl 

queue at end of full queue 
repeat if queue is locked 
wake buffer writing process 
get next free buffer 
error if no buffer 
repeat if queue is locked 
save current buffer address 
store buffer and address 
address for next datum 

Note that the operands for self-relative queue instructions are speci­
fied differently than for absolute queues. For example, while REMQVE 
specifies as an operand the address of the element to be removed, REMQTI 
and REMQHI specify the address of the queue header, and the opcode 
specifies whether ·to remove the first or the last entry. Similarly, INSQHI 
and INSQTI specify the address of the queue header and the opcode 
indicates whether to insert at the head or tail. Therefore, the formats are 

INSQHI 
INSQTI 
REMQHI 
REMQTI 

entrY,header 
entrY,header 
header,destination 
header,destination 

The final linked data structure we will examine is the tree. A tree is 
simply a linked structure in which there is one special element called the 
root, whose function is analogous to the queue header in a linked list. The 
root points to from zero to n elements, each of which is itself a tree. Figure 
8.14 shows a simple tree structure. 

The relationships between elements, or nodes, of a tree are often 
described using family tree terminology-parent, sibling, offspring, and 
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Figure 8.14 Simple tree 

so on. The terminal nodes are known as leaves. The tree in Figure 8.14 is 
drawn with the root at the top, but this is not the only possible graphic 
representation. Since relationships such as left and right, up and down are 
used to describe tree elements, one must be careful to draw trees in a 
consistent manner. 

Trees are often useful for storing representations of alternatives, 
particularly in game playing, where each path represents the possible 
moves or actions. For instance, following each move in a tic-tac-toe game, 
one subtree describes the remaining possible moves. Searching down the 
tree, we can examine the possible moves and choose one that results in a 
win or a draw. Of course, for more complicated games, it is almost 
impossible to enumerate or search the entire tree. 

One common tree species is the binary tree, in which each node can 
have from zero to two offspring. A binary tree is usually ordered. For 
example, the tree can be maintained so that for the value (N) stored at 
each node, all descendant nodes with values less than N are to the left in 
the tree, and all nodes with values greater than N are to the right. Binary 
trees are often used to maintain tables of names because the ordering 
allows for easy searching and alphabetical listing. 

Suppose we want to build a binary tree to store the following names: 
John, Paul, George, Ringo, Groucho, Chico, Harpo, Zeppo, Othello, 
Hamlet, and Richard III. If we begin with John at the root and insert each 
subsequent name so as to maintain the right or left alphabetical relation­
ship, the tree will appear as shown in Figure 8.15. 

Figure 8.15 Alphabetical binary tree 
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The following routine inserts an element in a binary tree. Each 
element is a five-Iongword block in which the first two longwords are used 
to point to the two offspring, left and right, and in which the last three 
longwords contain a 12-byte name string. The routine searches down the 
tree until it finds a terminal node after which the new entry can be 
inserted. A zero pointer indicates that there is no offspring . 

. SBTTL INSTREE - Routine to Insert Element in Binary Tree 

FUNCTIONAL DESCRIPTION: 

This routine inserts a 5-longword block containing an ASCII 
name string into a binary tree. The longword ROOT contains the 
address of the root node. 

CALLING SEQUENCE: 

CALLS or CALLG 

INPUT PARAMETERS: 

BLOCK(AP) contains the address of the 5-longword node to be 
inserted, structured as follows: 

+----------------------+ 
I LEFT LINK I 
+----------------------+ 
I RIGHT LINK I 
+----------------------+ 
I l2-byte I 
+ 
I name 

+ 
I 

+ + 
I string I 
+----------------------+ 

OUTPUT PARAMETERS: 

None 

RETURN VALUES: 

RO 1 if node inserted successfully 
RO 0 if name already exists in tree, duplication error 

BLOCK 4 offset to argument 
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Offsets into tree element. 

LEFT = 0 
RIGHT = 4 
NAME = S 

. ENTRY 
PUSHL 

MOVL 
MOVAL 
BRB 

INSTREE,AM<R6,R7,RS> 
#0 

BLOCK(AP),R6 
ROOT,RS 
20$ 

define left link offset 
define right link offset 
define name string offset 

INSTREE entry point 
push error code, assume 
... duplicate 
get input block address 
get address of root element 
check if root exists 

209 

Check if new entry is <, > or = to current block. If < or >, then 
continue scanning tree or insert new entry if no successor to current 
node. If =, then return error indication. As tree is scanned, R6 
contains the address of the new entry to insert. R7 contains the 
address of the node in the tree being examined. 

10$: MOVAL 
CMPC3 

BEQL 
BLSS 
MOVAL 

LEFT(R7),RS . 
#12,NAME(R6),NAME(R7) 

40$ 
20$ 
RIGHT(R7) ,RS 

get pointer to < (left) side 
compare new name to node 
· .. value 
branch if same, return error 
continue if < current node 
else get pointer to > 
· .. (right) side 

RS now contains address of the left or right pointer in the current 
node, depending on whether the new name is < or > than the name in this 
node. 

20$: TSTL 
BEQL 
MOVL 
BRB 

(RS) 
30$ 
(RS) ,R7 
10$ 

any offspring in this node? 
insert new entry here if not 
else get offspring address 
· .. and continue tree scan 

Found the place to insert new node. RS contains address of pointer 
in new parent. 

30$: 

40$: 

CLRQ 

MOVL 
PUSHL 

POPL 
RET 

(R6) 

R6, (RS) 
#1 

RO 

zero both pointers in new 
· .. entry 
link new node to parent node 
push success code 

get return code from stack 
return to caller 
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Linked Data Structures 

This chapter examined a number of data structures and how the VAX 
instruction set manages them. We can see how the instruction and 
addressing techniques have evolved to efficiently support the needs of 
compilers and operating systems. 

In one way or another, most operating systems use all data structures 
and manipulation techniques described here. In fact, most of the code in 
an operating system is there to manipulate queues, lists, records, and 
other data structures. The manipulated data elements are usually called 
control blocks. A control block is a data structure composed of a number of 
elements of different sizes that describes a resource or a physical or logical 
entity in the system. For example, there may be control blocks to describe 
each device, each user program, each file, and each I/O request. These 
control blocks are knit together to form a complex web that describes the 
state of the system at any time. 

Figure 8.16 shows a small section of a simple operating system I/O 
data base. Each box is a control block that contains state information 

Figure 8.16 Sample I/O data base organization 

I/O database J------------1M 
pointer 

Device type ~ Next device type 
description control block 

I/O channel 
control block 

~~ __ co_n_t_ro_l_bl_O_Ck __ ~ 

Device unit 
+.-----------------+f.+----1 control block 0 ..... ------1 

I/O 
channel 
request 
control I--

block 

Interrupt 
dispatching 

control 
r- block 

I/O 
request 
control 
block ... ~t---~ 

I/O ~ 
request Next I/O 
control request 
block • 

I/O adapter 
control block 

I/O f----+- Next I/O 

I/O channel 
control block 

Device unit 
'- control block 1 ...... ---1 

Next device 
unit control block 

request 
control 
block 

request 



Exercises 

Summary 211 

about one resource: a device unit, a device controller, a bus or data path, 
or an input or output request. The arrows show which control blocks 
contain pointers to others. Some control blocks are queued to others, 
while some are members of several queues at once. 

With this number of components to manipulate, the design of the data 
structures can clearly have a significant impact on the complexity and 
performance of a system. Careful, detailed analysis is required to ensure 
that data structures can be manipulated efficiently. 

1. Write the Dynamic Memory Deallocation routine corresponding to the Allocate 
Dynamic Memory routine in Figure 8.9. When a block of memory is returned, 
the deallocation routine should check whether it can be combined with any 
adjacent memory blocks. 

2. Suppose the VAX did not have queue instructions to manipulate doubly linked 
lists. Produce INSQUE and REMQVE macros that insert and delete entries from 
doubly linked lists without using the queue instructions. What are the differenc­
es between using the instructions and using the macros? 

3. Figure 8.13 shows the format of a VAX self-relative queue. Write procedures to 
insert and remove entries in a self-relative queue without using the VAX 
self-relative queue instructions. 

4. Suppose you have a singly linked list where each 64-bit list element contains a 
32-bit forward link followed by a 32-bit data element that contains four ASCII 
characters. Write a procedure that is called with two parameters, the address of 
the list header and a 32-bit longword containing four ASCII characters. Your 
procedure will remove the list element whose four-character data field matches 
that specified on the call. If a match is not found, your procedure should return 
an error indication. 

5. Using a recursive method, write a procedure that descends through a binary 
rooted tree and prints the value of each leaf. 
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Analysis of the VAX Instruction Set 

Previous chapters have described the characteristics of the VAX 
instruction set-its operations, data types, addressing modes, and so on. 
The VAX is one of the more complex instruction sets. It is complex first 
because of the number of operations and addressing modes; the VAX has 
over 300 opcodes and over 20 addressing modes. Second, it is complex 
because of the generality with which the addressing modes can be applied: 
any addressing mode can be used for any operand specifier. This leads to a 
very flexible variable-length encoding of instructions. However, this for­
mat is more difficult for the hardware to execute than would be a 
fixed-length format. The next chapter discusses these tradeoffs. 

Now that you understand the VAX and the possible options for 
instructions and addressing, it is interesting to examine how the VAX 
architecture is used in actual applications. This might give you some 
intuition into architecture design. In fact, the VAX design grew out of a 
similar examination of applications on the PDP-II. 

Several studies have measured the dynamic operation of the VAX 
under various workloads. There are a number of techniques that are 
typically used to evaluate an architecture: 

• The most common technique is to build an instruction trace program 
that executes a target program one instruction at a time, collecting 
interesting data as each target instruction is executed. Such a pro­
gram can be simplified with proper hardware support; for example, 
the VAX has a trace trap bit in the PSL that, when set, causes a trap 
following the execution of the next instruction. As the trace program 
executes the target program, it can easily calculate instruction fre­
quencies, addressing mode frequencies, and so on. It cannot, howev­
er, make judgments about real-time properties of the program, 
because it changes the environment in which the program runs. Also, 
it typically cannot trace the operating system . 

• Hardware monitors can be used for measurement. A hardware 
monitor is an external device that is connected through probe wires 
to interesting signals on the target machine. Because the monitor is 
passive, it does not change the environment in which the target 
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programs are run, and it can measure operating systems as well as 
user programs. Hardware monitors are expensive and often require 
the construction of special hardware to capture or regenerate needed 
signals. The hardware monitor needs to be faster than the target CPU, 
since it must both capture and process signals at the same rate at 
which they're generated . 

• Measurement can be made by modifying the machine itself to collect 
data. This has been done in some cases with the VAX and is simplified 
by the fact that the VAX is microcoded. We will examine microcode 
later, but basically, the VAX instruction set is actually interpreted by a 
lower-level microprogram executing on the actual hardware. This 
microprogram can be modified to collect data. 

The first two techniques were used by studies reported in 1982. First, 
Douglas Clark and Henry Levy (1982) used a hardware monitor to gather 
instruction opcode data on a VAX -11/780. The importance of using a 
hardware monitor was to determine both the frequency with which 
opcodes were used and the time spent executing various opcodes. Because 
of the range of complexity of VAX instructions, there is a wide variance in 
instruction execution times. It is interesting to know which instructions 
are most frequent and which account for most of the execution time. To 
optimize the implementation of an architecture, the execution time data is 
crucial. 

For example, Table 9.1 shows the data accumulated by the hardware 
monitor during the execution of the VAX/VMS FORTRAN compiler. First, 
we notice that the most frequent instructions are MOVL and BNEQ. In 
general, over a number of architectures, simple moves have been found to 
be the most frequent operations and control instructions such as branch 
the next most frequent. Second, we notice the difference between frequen­
cy and time. While MOVL accounts for 12.36 percent of the instructions 
executed, it accounts for only 6.76 percent of the time. On the other hand, 
CALLS, which accounts for only 2.54 percent of the instructions, accounts 
for 21.59 percent of the time! So in the FORTRAN compiler, over a fifth of 
the time is spent executing CALLS and almost a third of the time is spent in 
CALLS and RET combined. CALLS consumes so much time because it 
requires many memory writes to build the procedure activation record. 
Information such as this was useful in determining which parts of the VAX 
to optimize, and newer VAXes have more highly optimized CALL and RET 
instructions. Therefore, if the same measurements were run on different 
implementations of the VAX, the frequency order would be identical but 
the time order would be different on each implementation. 

For comparison, Table 9.2 shows opcode data for the Whetstone 
benchmark, which is often used to compare the floating-point perfor­
mance of various machines. There are two things to notice about these 
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Table 9.1 Instruction Distributions for VMS FORTRAN Compiler 

Rank Frequency Order Time Order 

Instruction Frequency (%) Instruction Time (%) 

1 MOVL 12.36 CALLS 21.59 
2 BNEQ 8.72 RET 9.46 
3 MOVAB 5.56 MOVL 6.76 
4 CMPL 5.34 BBC 6.32 
5 BEQL 4.49 MOVC5 4.86 
6 BBC 4.05 BNEQ 3.70 
7 ADDL2 4.03 MOVAB 3.02 
8 MOVZWL 3.10 EXTZV 2.70 
9 MOVZBL 3.01 CMPL 2.64 
10 PUSHL 2.93 MOVZWL 2.41 
11 CMPW 2.71 MOVZBL 2.35 
12 CALLS 2.54 CMPW 1.88 
13 RET 2.52 PUSHL 1.86 
14 BRB 2.33 BEQL 1.46 
15 CMPB 2.21 MOVW 1.23 

Table 9.2 Instruction Distributions for Whetstone Benchmark 

Rank Frequency Order Time Order 

Instruction Frequency (%) Instruction Time (%) 

1 MOVL 21.99 CALLG 13.01 
2 ADDF3 7.15 MOVL 12.81 
3 MULF3 6.42 RET 9.94 
4 AOBLEQ 5.08 CALLS 6.55 
5 MOVAL 3.74 DIVF3 6.28 
6 RET 3.55 MULF3 6.04 
7 ADDF2 3.54 AOBLEQ 4.63 
8 DIVF3 2.79 POLYF 4.41 
9 CMPL 2.60 ADDF3 4.39 
10 SUBL3 2.47 EMODF 2.97 
11 CALLG 2.12 MULL3 2.13 
12 MULL3 1.95 ADDF2 2.11 
13 BLEQ 1.75 SUBL3 1.61 
14 MULF2 1.54 MOVAL 1.53 
15 RSB 1.54 MULL2 1.39 

results. First, we see some different opcodes appearing in the top fifteen. 
So, different programs use the VAX instruction set in different ways. 
Second, while this is a benchmark to measure floating-point per­
formance, notice that CALL and RET still account for about one-fifth of the 
program's execution time. 



Analysis of the VAX Instruction Set 215 

Cheryl Wiecek (1982) used the trace method to measure the dynamic 
execution of several VAX/VMS compilers. Compilers are interesting 
because they are examples of some of the largest application programs, 
and typical compilations of even simple programs can execute millions of 
instructions. In addition to instruction frequencies, Wiecek was able to 
determine frequencies for addressing modes. For example, Table 9.3 
shows the frequencies of the various addressing modes for executions of 
the VAX/VMS FORTRAN and PL/I compilers. Not surprisingly, the most 
frequent addressing mode is register. Second in line among all the 
compilers measured is literal addressing mode; this indicates the impor­
tance of having instruction-stream literals (and short literals) in the VAX. 
These literals reduce the number of required data fetches. 

Table 9.4, also from Wiecek's study, shows the distribution of memory 
references among each of the VAX information units. The data is classified 
by the type of operation: read, write, or modify (a modify operand is an 
operand that is read and rewritten during the instruction, for example, Rl 

Table 9.3 VAX Addressing Mode Frequencies 

Addressing Mode 

Register 
Literal 
Byte Displacement 
Register Deferred 
Autoincrement 
Index 
Long Displacement 
Word Displacement 
Autodecrement 
Autoincr. Deferred 
Long Displ. Deferred 
Word Displ. Deferred 

FORTRAN 

41.0 
18.2 
13.6 
9.1 
4.1 
5.6 
5.5 
1.5 
0.5 
0.3 
0.0 
0.0 

PLjI 

42.2 
10.9 
11.2 
2.5 
4.4 
8.8 
3.5 

13.9 
0.3 
0.0 
0.1 
0.1 

Table 9.4 VAX Operand Accesses by Data Type 

Data Reference Type 

Type Read (%) Write (%) Modify (%) 

Byte 16 4.4 31.4 
Word 17.7 5.8 17.5 
Longword 65.8 88.4 51.1 
Quadword 0.5 1.3 0.0 
Octaword 0.0 0.1 0.0 
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in the instruction INCL R1). It is not surprising that most operations occur 
on longwords, but the distributions are different for the different types of 
operations. Wiecek points out that about 70 percent of data references 
occur to the stack; this would include the procedure activation records, 
dynamically allocated locals, and other stack storage. Only 30 percent of 
data references are to static memory. 

Wiecek found other interesting statistics that help us to understand 
the behavior of the "average" VAX instruction. For example, the average 
instruction is 3.8 bytes long and has 1.8 operand specifiers. Also, on the 
average, the PC is changed due to a branch every 3.9 instructions. Another 
study by Clark (1983) gives us a good characterization of the execution of 
the average VAX instruction on the VAX -11/780. On that machine, the 
average instruction takes between 10 and 12 cycles; VAX -11/780 cycles 
are 200 nanoseconds, so the average instruction takes about 2 microsec­
onds to execute. Of that time, about 75 percent is spent actually comput­
ing, that is, performing the operation, address arithmetic, and so on. The 
remaining 25 percent is spent waiting either for instruction or memory 
data to arrive in the cpu. Finally, Clark found that the average instruction 
does one memory access, with reads twice as likely as writes. 

It is important to remember that with the complex architecture of 
the VAX there is a large variance in the work done for each instruction. 
The preceding statistics were averaged over tens of millions of instruc­
tions. Finally, you must be extremely cautious when you use measure­
ments of any kind to compare different architectures. For example, 
vendors frequently quote the performance of their machines in MIPS: 
millions of instructions per second. During the 1980s, the VAX -11/780 
became the standard of comparison and is known as a 1 - MIP machine. In 
fact, as we can see by the average instruction time on the 780, a 
VAX-11/780 executes at about 1/2 MIPS. However, because of the high 
level of VAX instructions, a VAX executing 1/2 MIPS can do as much work 
as a simpler architecture executing 1 or 2 MIPS, depending on that 
architecture. Therefore, MIPS is not a good unit for comparing different 
architectures, although it is fine for comparing implementations of the 
same architecture. 

1. What are other common units beside MIPS that are used to describe computer 
performance? 

2. Why is it useful to collect instruction usage statistics on computer instruction 
sets? Why is it important to consider both time and frequency order when 
examining instruction usage in a computer instruction set? 

3. Suppose that you had to redesign the VAX to use only four addressing modes. 
Which four would you choose? Why? 
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4. Table 9.4 shows the distribution of memory references among each of the VAX 
information units, giving the reference type (read, write, modify) as well. For 
longwords, most accesses are writes, while for bytes, reads and modifies 
greatly outnumber writes. Can you give any possible explanation for this? 

5. What useful measurements allow one member of the VAX family to be 
compared to another? Can these same measurements be used to compare a 
VAX to a completely different architecture? 
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The preceding chapters have focused on the user-visible architecture 
of the VAX. In the course of those chapters, you became familiar with 
addressing techniques, the instruction execution process, and the forma­
tion of instructions. However, with the knowledge of only one computer, 
you have little basis on which to evaluate its architecture. 

This chapter examines four other instruction set architectures: the 
IBM 360/370, the CDC Cyber series, the Intel 80386, and the Berkeley 
RISC. Each of these systems had different design goals, so different 
tradeoffs were made by the designers. Of course, systems evolve, and 
computers such as the VAX and RISC were designed with the knowledge 
of the successes and shortcomings of previous architectures. 

It is not our intention to describe these architectures completely. 
Rather, we hope that this material will broaden your perspective and 
solidify the material already covered. 

General Issues in Instruction Set Design 

218 

Before presenting the instruction sets, let's consider some general 
issues in instruction set design. In particular, there are three attributes of 
instruction sets that are often discussed. The first attribute is generality. By 
generality, we mean that various aspects of an instruction architecture can 
be used in a general (as opposed to a restrictive) fashion. As an example, 
let's consider the CPU registers. In an architecture that supports generali­
ty, each register could be used for any data type and for any function. In 
contrast, some architectures restrict various registers. The Motorola 
68000 series has separate registers for addresses and data; pointers must 
be kept in address registers. The IBM 360 has separate registers for 
floating-point operands. The Intel 8086 microprocessor has eight registers, 
but almost everyone is dedicated to a specific function. On the VAX, 
twelve of the general-purpose registers are truly general purpose, but four 
have predefined functions. Such restrictions reduce the generality of the 
registers and consequently reduce the number of effective registers, since 
the machine has predetermined how they will be used. 

The second attribute is orthogonality. We say that a machine is highly 
orthogonal if every operator can be applied to every data type. The VAX is 
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orthogonal with respect to byte, word, longword, and floating-point data 
types. That is, nearly all operations are available on all of these data types. 
On the other hand, the VAX is not orthogonal with respect to some of the 
larger data types, such as quadword, which is not fully supported. 
Orthogonality simplifies compiler implementation because there are 
fewer special cases to remember; operations can be applied in straightfor­
ward fashion to any data type. 

The third attribute is symmetry. Symmetry is related to generality and 
is often used to describe the way in which operands can be specified. For 
example, some machines permit register-to-register or memory-to-register 
arithmetic but not memory-to-memory or register-to-memory. Or suppose 
we have a subtract instruction in which the minuend can use any 
addressing mode, but the subtrahend can use fewer addressing modes. 
This would again add complexity to a compiler, which may need to 
generate additional instructions compared to a compiler for a more 
symmetric instruction set. 

Of course, attributes such as generality, orthogonality, and symmetry 
are frequently traded off to reduce instruction size or machine complexity. 
Where to make the tradeoff depends on the requirements for the machine 
and its implementation, as well as the available compiler technology. 
However, these are useful concepts to keep in mind as you examine 
different instruction set architectures. 

The IBM System 360/370 

The IBM System 360/370 (S/370) family, introduced in the 
mid -1960s, is probably the most widely used computer architecture and 
has enjoyed a long life in many implementations. The instruction set has 
been copied by vendors manufacturing S/370 plug-compatible CPUs, and 
has been carried forth by IBM in the 4300 series. This section briefly 
describes the S/370 instruction set architecture and addressing. Our 
objective is to examine some alternatives to the addressing and instruction 
representation to the VAX. 

The S/370, like the VAX, is a byte-addressable computer that operates 
on information units that are multiples of the 8-bit byte. The main S/370 
information units are the 8-bit byte, the 16-bit halfword, the 32-bit word, 
and the 64-bit doubleword, as shown in Figure 10.1. On the S/370, bits are 
numbered from left to right, making bit 0 the most significant bit. 

The S/370 has sixteen 32-bit general registers, numbered from 0 to 15. 
The even-odd pairs can be used as double registers. For example, registers 
2 and 3 can be used to contain a doubleword, but registers 3 and 4 cannot. 
There are also four 64-bit floating-point registers for floating-point opera­
tions, numbered 0, 2, 4, and 6. The adjacent floating-point registers 0, 2, 4, 
and 6 can be used to contain extended floating-point operands. 

Although the original S/360 was a 32-bit system in that it operated 
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Figure 10.1 5/370 information units 
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primarily on 32-bit quantities, program addresses were 24 bits in length. 
When a register was used for addressing, the high-order 8 bits (0-7) were 
ignored in the effective address calculation. Therefore, a program could 
address 224 or 16,777,216 bytes of memory. This restriction was eliminated 
with the S/370 extended architecture, which provides addressing of 231 

bytes. 
Address computation on the S/370 is simpler than on the VAX 

because there are fewer options. A memory address is generally formed as 
the sum of the contents of a general register (known as the base register, 
B) and a 12-bit integer (known as the displacement, D). This is shown 
symbolically as D(B) and is similar to displacement addressing on VAX. 

The second method of address specification uses an index register 
(shown as X) in addition to the base and the displacement. The index 
register can be used to address an element of an array pointed to by the 
base register. The displacement is summed with the contents of the base 
and index registers, yielding the effective operand address. This is shown 
as D(X,B) and is similar to displacement indexed addressing on the VAX, 
except that the index register is not multiplied by the array element size. 
Therefore, to step through an array of 32-bit entries, the index register 
must be incremented by 4 following each step. 

These two modes provide the only method of memory-address specifi­
cation in an S/370 instruction. To address an item in memory, then, a base 
register must always be used. Since displacements are 12 bits, a base 
register can address a memory block of 4096 bytes. In general, one of the 
sixteen general-purpose registers must be reserved as a base register to 
address each 4096-byte segment of contiguous data or code. However, if 
the segments are not in use simultaneously, a single base register can be 
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loaded with the address for a new segment whenever that segment needs 
to be referenced. 

On the VAX, the instruction opcode specifies the size, type, and 
number of operands. In general, each operand specifier contains 1 byte to 
indicate the addressing mode used. On the S/370, the opcode specifies the 
addressing mode of the operand specifiers in addition to the size and type 
of the operands. This reduces the space required for operand specifiers, 
since the addressing mode is implicit. With this approach, a large number 
of opcodes would be required if many types of addressing are desired, but 
as we have stated, the S/370 has chosen to limit the number of addressing 
modes in favor of bit efficient instructions. 

System 370 instructions are 2, 4, or 6 bytes in length. There are five 
instruction formats, allowing for five forms of source and destination 
specification. We will examine each form briefly. 

1. Register-to-register (RR) format. In register-to-register format, both 
operands are contained in registers. 

00 07 08 11 12 15 

Opcode R1 R2 

The assembler syntax for RR instructions is 

apcaDE Rl,R2 

For example, the Add Register (AR) instruction to sum the contents of 
two registers, 

AR 4,5 

adds register 5 to register 4, leaving the sum in register 4. (Note that 
the meaning of source and destination operands is the reverse of that 
used by the VAX, that is, the first operand is the destination.) 

2. Register-with-indexing (RX) format. In register-with-indexing format, 
the first operand is contained in a register, the second is a memory 
location specified by base, index, and displacement. 

00 07 08 11 12 15 16 19 20 31 

Opcode R1 X2 82 02 

The assembler syntax for an RX instruction is 

apcaDE Rl,D2(X2,B2) 
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The opcode determines which is the source and which is the destina­
tion. For example, the memory-to-register Add instruction 

A R,O(X,B) 

adds the contents of the memory location to the register, R, leaving 
the result in the register, while the Store instruction 

ST R,O(X,B) 

stores the contents of the register in the specified memory location. 

3. Register-to-storage (RS) format. The register-to-storage format shown 
has three operands: two registers and one memory location specified 
by a base register and displacement. 

00 07 08 11 12 15 16 19 20 31 

Opcode R1 R3 82 02 

The assembler syntax for RS instructions is 

OPCODE R1,R3,02(B2) 

For example, the Store Multiple (STM) instruction 

STM Ra,Rb,O(B) 

stores the registers Ra through Rb at consecutive memory locations 
beginning with the effective address base + displacement. 

4. Storage immediate (SI) format. In this format, an 8-bit immediate 
operand and a memory location are specified. 

00 07 08 15 16 19 20 31 

Opcode 12 81 01 

The assembler syntax for an SI instruction is 

OPCODE 01(B1),12 

For example, the Move Immediate (MVI) instruction 

MV1 12(7),6 

moves the value 6 to the memory location specified by the sum of the 
contents of base register 7 and the displacement 12. 
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5. Storage-to-storage (SS) format. The storage-to-storage format is used 
only for string operands. The address of each operand is specified by a 
base register and displacement. There are two storage-to-storage 
formats, one where a 4-bit length is specified for each operand, and 
one where a single 8-bit length is specified for both operands. The 
machine formats for SS instructions are as follows: 

00 07 08 11 12 15 16 19 20 31 32 35 36 47 

Opcode L1 L2 B1 01 B2 02 

00 0708 15 16 19 20 31 32 35 36 47 

Opcode L 01 B2 02 

The assembler syntax for SS instructions is 

OPCODE Dl(Ll,Bl),D2(L2,B2) 

or 

OPCODE Dl(L,Bl),D2(B2) 

For example, the Move Character String instruction 

MVC 0(64,4),16(5) 

moves the 64-byte character string from the location specified by base 
register 5 and displacement 16 to the location specified by base 
register 4 and displacement o. 

The S/370 supports both register-to-register and memory-to-register 
arithmetic, but not register-to-memory or memory-to-memory. Therefore, 
an intermediate register must be used to add two storage locations. To add 
memory locations A and B, one must code: 

L 
A 
ST 

R2,A 
R2,B 
R2,B 

load A into R2 
add B to R2 
store result in B 

All three instructions are RX format instructions. Notice, however, 
that the positions of source and destination are specified by the opcode. To 
specify symbolic operands such as A and B, the assembly programmer 
tells the assembler which register is to be used as a base register, and the 
assembler computes the displacement. 

The S/370 instruction set also does not have instructions for all of its 
information units. For instance, there are five integer Add instructions: 
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1. Add two signed 32-bit registers (AR). 

2. Add a signed 32-bit storage location to a register (A). 

3. Add a signed 16-bit storage location to a signed 32-bit register (AH, for 
Add Halfword). 

4. Add two unsigned 32-bit registers (ALR, for Add Logical Registers). 

5. Add an unsigned 32-bit storage location to an unsigned 32-bit register 
(AL, for Add Logical). 

Although this examination of the S/370 has been brief, we can make 
the following observations: 

1. The S/370 architecture has less generality in its instruction encoding 
than VAX, but the equivalent addressing modes have more compact 
representations. 

2. Memory addressing on the S/370 requires a base register that can 
address a block of 4096 bytes. Since a full 31-bit address cannot be 
directly contained in an instruction, random addressing of large 
arrays is not as convenient as it is on the VAX. 

3. The S/370 has index registers similar to the VAX, although the index 
register must be manually incremented by the size of each array 
element. However, the S/370 has instructions for incrementing index 
registers and testing for upper limits that simplify index-register 
handling. 

4. The S/370 general registers cannot be used for floating-point opera­
tions, and only the even-odd pairs can be used as extended registers. 
There is no concept of autoincrement or autodecrement. 

5. The S/370 does not have memory-to-memory arithmetic. Tradeoffs 
were made to reduce the size of instructions and to simplify instruc­
tion encoding. Thus, S/370 instructions are kept short, from 2 to 6 
bytes in length, whereas VAX instructions can be very long. It is 
difficult to compare this with the VAX architecture, because several 
S/370 instructions can be required to represent a single VAX instruc­
tion. 

6. Because of the compactness of instruction representation, there is no 
indirection on the S/370. 
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The CDC Cyber Series 

The Control Data Corporation (CDC) Cyber series is the successor to 
the 6000 series introduced in the early 1960s. It was built initially as a 
scientific processor for Atomic Energy Commission installations. Because 
of its speed and powerful floating-point instructions, it found wider 
acceptance in other computing communities, particularly among academ­
ic institutions. The architecture is unusual because the Cyber is a multi­
processor system with one high-speed central processor and multiple 
peripheral processors. Our interest lies not in that feature of the architec­
ture, but rather in the information units, instruction set, and addressing 
modes of the central processor. While there are several processors, only 
the central processor can be used directly by the programmer. 

The Cyber, unlike the VAX and the S/370, is not a byte addressable 
computer. Rather, its only information unit is the 60-bit word shown in 
Figure 10.2. This word can hold a 60-bit floating-point data type or a 48-bit 
integer value. Indeed, the length of the word was chosen to support 
floating-point values that were common to the type of scientific computing 
expected to be performed on the Cyber. 

The numbering of the bits, as shown in Figure 10.2, is like that of the 
VAX, going from right to left, with bit 59 as the most significant bit. 
Instructions, addresses, and data are all stored within a word, which is the 
basic addressable unit. 

The central processor contains twenty-four operating registers. These 
registers are divided into three eight-register groups: the operand, or X 
registers; the address, or A registers; and the increment, or B registers. 
They are usually referred to as the X, A, and B registers in assembler 
syntax. Figure 10.3 shows these registers and their interaction with the 
arithmetic unit and central memory. 

Addresses for the Cyber are 18-bit quantities. This nominally limits 
program addresses to 218

, or 262,144, words of memory. Effective address 
computation is even simpler for the Cyber than for either the S/370 or the 
VAX. However, since this is basically a register machine, the style of 
memory addressing is rather unusual. 

Figure 10.3 shows that the X register set is 60 bits wide, but the A and 
B registers are only 18 bits wide. This is because all instructions operate 
on 60-bit data words or 18-bit address or index operands. There are no 
special registers for floating-point values as in the S/370. Since the 60-bit 
floating-point value that can be stored in a word has sufficient range, there 

Figure 10.2 Cyber information units 

59 00 
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Figure 10.3 Cyber organization 
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. is no double precision. Double-precision values, while computed (that is, 
the product of two single-precision floating-point values), are not normally 
saved. Instead, truncation is performed to save only the most significant 
bits of the product (or quotient). 
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Figure 10.4 Pass filling instruction 
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To fetch a word from the central memory, one must load the memory 
address into one of the first six A registers (AO to AS). The memory 
reference cycle then automatically causes the memory contents to be 
placed in the corresponding X register. To store a value in memory, the 
value is first placed in X register 6 or 7 (X6 or X7). Then the memory 
address to which the value is to be stored is placed in the corresponding A 
register, causing the memory write to occur. Thus, the reading from and 
writing to memory is a side effect of loading an address into an A register. 
Before giving examples of Cyber instructions, we will first examine how 
addresses are formed. 

A memory address can be contained within an instruction, just as an 
absolute address is held in a VAX instruction. Alternatively, a memory 
address can be computed and/or indexed using a B register. There is no 
indirect addressing in the machine, no autoincrement or autodecrement, 
and no displacement addressing. Immediate values can be stored as 
address constants that are not used to reference memory. That is, any 
18-bit value that is part of an instruction and not used to load an A register 
can be used as an immediate value to be added to or subtracted from a B 
or X register. 

Instructions are either 15 or 30 bits in length, and from two to four 
instructions can be stored in a word. However, if a IS-bit instruction is 
between two 30-bit instructions, a Pass or Loop instruction can be 
necessary to fill a word (see Figure lOA). That is, 30-bit instructions 
cannot be split over two 60-bit words. 

Generally speaking, a IS-bit instruction contains a 6-bit opcode and 
three 3-bit register fields, while a 30-bit instruction contains a 6-bit 
opcode, two 3-bit register fields, and one 18-bit constant, as shown. 

1S-bit Instruction 

Opcode Ri Rj Rk 

30-bit Instruction 

Opcode Ri Rj Constant 
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Symbolic opcodes specify the arithmetic, logical, floating-point, or 
address type of operation, along with the destination register. For exam­
ple, to set X2 to 10, one would write 

SX2 10 

The actual instruction generated is 

SX2 BO+IO 

because two registers are called for in the 30-bit instruction format. 
Fortunately, register BO is hard-wired to contain a zero, and the assembler 
substitutes the correct form for the abbreviated instruction. 

To move a word from one memory location to another on the Cyber 
requires several instructions, as it does for the S/370. On the VAX one 
might write 

MOVL HERE,THERE 

while for the Cyber, one would be forced to write 

SAl HERE 
SX6 Xl 
SA6 THERE 

This series of instructions causes the contents of memory location HERE 
to be placed in register Xl (by the Set Register Al instruction); the logical 
or Boolean transfer of the contents of register Xl to register X6; and the 
storing of the contents of register X6 into the memory address THERE, 
which is Set into register A6. It is worthwhile repeating here that the first 
six A registers serve to read from memory while the last two serve to write 
to memory. That is why the transfer from Xl to X6 (the BX6 instruction) is 
required. 

The split of six A registers for reading memory and two for writing 
memory relates to the number of memory fetches versus the number of 
memory writes. An analysis of typical programs would show that for every 
ten reads from memory there is usually only one write back to memory. 
The ten values read usually will be combined to form some new result, 
which is then stored. One might then argue that there should be a 7 -to-l 
split for the Cyber series. The reason that the 6-to-2 split was chosen was 
that the earlier 6600 computer with its multiple functional units was able 
to perform several operations in parallel, and there were occasions when 
even the two A registers were insufficient to allow all the units to operate 
simultaneously. 

Another interesting example of programming the Cyber series is 
illustrated with the addition of two index array elements ARRAY(i) and. 
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ARRAY (j), equivalent to the VAX instruction 

ADDL ARRAY[Rl],ARRAY[R2] 

which might be coded for the Cyber as 

SAl Bl+ARRAY 
SA2 B2+ARRAY 
IX6 Xl+X2 
SA6 A2 

This series of instructions illustrates several new points about the 
Cyber. First, it shows indexing where B registers contain the indices i andj, 
in the same way that the VAX registers RI and R2 contain them. However, 
all data words are of the same length and the index does not need to be 
multiplied by the number of bytes in the operand type. Second, addition 
can be performed as the sum of two integer values, with the result stored 
in an X register ready for storing back into memory. Third, since the 
address at which the resultant value is to be stored -is already in an A 
register, it can be copied from that register into an output A register. 

Six classes of operations can be performed on the Cyber data types. 
Unlike the VAX and S/370 assemblers, where the opcode is distinct from 
the operands, the Cyber assembler format uses the first letter of the 
symbolic opcode to describe which hardware arithmetic unit and type of 
operation (for example, floating-point, logical shift) is to be performed. 
The actual operation, however, is given by the arithmetic operator between 
the two register operands. For example, a floating-point divide requires the 
multiply/divide unit and the first letter of the opcode is an F; the 
remaining part of the opcode specifies the destination register (say X5), 
and the actual divide operation is then given by writing X3 IX I, where X3 
and Xl specify the dividend and divisor operand. Symbolically, we write 

FX5 X3/Xl 

Some of the first letters used to specify the arithmetic. or logical unit 
that is to perform an operation are 

A Perform arithmetic shift on an X register (shift unit). 

B Perform logical operation on a pair of X registers (the Boolean unit). 

C Count the number of ones in an X register (the divide unit). 

D Perform double-precision arithmetic operation on a floating-point 
value held in two X registers and truncate the result into a single­
precision value (the multiply and divide units). 
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F Perform single-precision arithmetic operation on a floating-point 
value held in two X registers (the multiply and divide units). 

I Integer add and subtract (add unit). 

J Jump to indexed address formed as the sum of a B register and the 
constant field (the branch unit). 

L Perform logical shift on an X register (the shift unit). 

N,P,Z Jump on X value being negative, positive, or zero (the branch 
unit). 

R Round result of floating-point operation (the multiply and divide 
units). 

S Set an A, B, or X register (the increment unit). 

We have already seen a few of the increment and Boolean unit 
instructions (SAl and BX6) and one example of the add unit (lX6). Branch 
instructions on the Cyber must be combined with the appropriate test, 
since the machine has no condition codes in which to store state 
information on arithmetic results. For example, the Branch if Negative 
instruction 

NG X4,THERE 

branches to symbolic location THERE if the contents of X4 are negative. 
Generally there is an adequate instruction set to perform all of the 

functions that could be performed by the VAX. However, it takes careful 
programming to fit 15- and 30-bit instructions into an instruction stream, 
without filling memory with a lot of Pass instructions. 

Earlier versions of the Cyber series (the 6000 series) did not have 
character-manipulation instructions. Indeed, a byte on the Cyber was a 
12-bit quantity, since this was the length of a peripheral processor word, 
although characters themselves were 6 bits, which allowed for the storing 
of ten characters per word. Later versions supported the ASCII character 
set, although not quite as gracefully as the VAX, and there were additional 
character-handling instructions. 

Many VAX instructions used to assist the operating system or to 
perform I/O do not exist for the Cyber central processor. Rather, the 
monitor and all I/O capabilities reside with the peripheral processors. You 
might view the central processor as an attached computing engine fed by 
the peripheral processors. 

The differences between the VAX and the Cyber series are so signifi­
cant that it is difficult to compare them. The Cyber was optimized for 



The CDC Cyber Series 231 

arithmetic calculations using the relatively slow core memories available 
at the time the architecture was designed. Once a value was fetched into 
an X register (a relatively slow process), it could be manipulated much 
more quickly using the register-to-register instructions. By providing 
multiple arithmetic functional units in some versions of the Cyber series, 
along with a fast buffer memory to hold several instruction words to be 
executed, it was possible to overlap operations as well as memory reads 
and writes. In its day, the Cyber was a very fast computing machine. 

The Intel 80386 Microprocessor 

The Intel 80386 is an evolution of several generations of microproces­
sors from Intel, the originator of the microprocessor. Predecessors of the 
80386 are the 8086 and the 80286, both of which are 16-bit processors, that 
is, they have 16-bit instructions, 16-bit addressing, and 16-bit words. The 
80386 extends those addressing capabilities to 32 bits. The 80386 is de­
signed to be compatible with its predecessors, so it has both a 32-bit mode 
and a 16-bit mode. The way in which these modes are implemented makes 
the 80386 somewhat complex; for example, there are two processor-state 
bits to indicate whether addressing is 16 or 32 bits and whether instruc­
tions are 16 or 32 bits. These defaults can even be overwritten on a 
per-instruction basis. This section examines only the 32-bit instruction 
mode of the 80386. More details on the 80386 can be found in the 80386 
Programmer's Reference Manual from Intel. 

As previously stated, the 80386 is a 32-bit microprocessor with full 
32-bit addressing and data types. The basic data types are the 8-bit byte, the 
16-bit word, and the 32-bit doubleword; these can be treated as signed or 
unsigned entities. Instructions are available to deal with single bits, bit 
fields of one to thirty-two contiguous bits, and character strings up to four 
gigabytes in length. While the 80386 does not have on-chip floating-point 
support, a floating-point coprocessor (the Intel 80387) is available to 
handle 32-, 64-, and 80-bit floating-point data types. The bits in these 
various data types are numbered from the least significant bit on the right 
to the most significant bit on the left. The left-most bit is the sign bit. The 
80386 is byte addressable, and a data type is addressed by its low-order 
byte. 

Perhaps the biggest visible hQldover from its predecessors is the fact 
that the 80386 has only eight registers. These registers are 32-bit versions 
of the eight 16-bit registers in the 8086. The eight registers have the names 
EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. In earlier Intel 
microprocessors, each of these registers was dedicated more or less to 
specific purposes. On the 80386, they are somewhat more general purpose 
in function, although ESP is used as a stack pointer and EBP is used as a 
frame base pointer for procedure calls. The processor also contains a 
32-bit program counter and a 32-bit flags register that contains some 
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privileged and some nonprivileged state bits, such as the four condition 
code bits for overflow, carry, zero, and negative. 

Several different memory management schemes are available on the 
80386. At the simplest level, memory is divided into six different segments, 
where a segment is simply a logically contiguous string of memory bytes. A 
program has a code segment (CS), a stack segment (SS), and four data 
segments (DS, ES, FS, and GS). Six segment registers contain the base 
addresses for each of the six segments. As we shall see, different addressing 
modes explicitly specify particular segments. The program counter is 
actually an offset into the code segment, and the stack pointer is an offset 
into the stack segment. Instructions such as PUSH and POP automatically 
change ESP and move data to or from the stack segment. 

The Intel 80386 supports a number of addressing modes for specify­
ing operands. The simplest modes are register mode, in which the operand 
is in a register, and immediate mode, in which the operand is part of the 
instruction. There are several ways to specify an effective address, which is 
always interpreted as an offset into a particular segment: 

1. displacement-A scalar displacement included in the instruction is 
the effective address of the operand. 

2. base-A specified register contains the effective address of the oper­
and. 

3. base + displacement-A scalar displacement is added to the contents 
of a register to form the effective address. 

4. displacement + (index x scale)-The contents of a register (called the 
index register) is scaled by the size of the operand (2, 4, or 8 bytes) and 
added to the displacement to produce the effective address. 

5. base + index + displacement-The effective address is formed by 
summing the contents of the two registers (base and index) and the 
displacement. 

6. base + (index x scale) + displacement-The effective address is 
formed by summing the contents of the base register, the scaled 
contents of the index register, and the displacement. 

Figure 10.5 shows the general format of an 80386 instruction. Not all 
instructions have all these fields, since some of them depend on the 
opcode and addressing mode. The table in Figure 10.5 shows the field sizes 
if they are present. The encoding of some of these fields is often 
complicated. We will describe the meanings of the various fields and their 
encodings, although not in complete detail. 
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Figure 10.5 Intel 80386 instruction format 
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Prefixes 

Preceding an instruction can be one or more special instruction 
prefix bytes, which are opcodes used to override a default for a single 
instruction. For example, as previously mentioned, the 80386 has a 32-bit 
mode and a I6-bit mode. In 32-bit mode, operands can be either 8-bit bytes 
or 32-bit doublewords. In I6-bit mode, operands can be either 8-bit bytes 
or I6-bit words. Therefore, if you want a single instruction operating in 
32-bit mode to manipulate a word, it must switch to I6-bit mode. This can 
be accomplished by prefixing that instruction with a I-byte operand-size 
override prefix. Other override prefixes exist to change segments and to 
ensure locking for instructions that need to synchronize in a multiproces­
sor environment. 

The opcode is an 8- or I6-bit field that indicates the operation to 
perform. Some opcodes contain a I-bit field that indicates the data size of 
the operand. In 32-bit mode, as already described, this bit indicates 
whether the operand is 8 bits or 32 bits. Another I-bit field present in some 
opcodes indicates the direction of the operation; this is needed because of 
the Jack of symmetry. For example, a memory address specification is 
always the second operand of an instruction, which is typically the source 
of the instruction. 

Following the opcode is a byte called mod rim, which specifies the 
addressing mode and can indicate both the source and destination. The 
format of the mod rim byte is 

07 06 05 03 02 00 

I Mod I Reg I RIM I 

The mod rim byte is composed of three fields. The center three bits 
(marked reg) specify the destination register. The 5-bit field formed by 
concatenating the mod field and the rim field indicates one of thirty-two 
possible source addressing modes. The 2-bit mod field indicates whether 
the source is specified by a register, a register indirect, a register with 8-bit 
displacement, or a register with 32-bit displacement addressing mode. For 
each of these, the 3-bit rim field indicates which register is to be used. If 
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the mod field specifies an effective address (that is, not register mode), an 
rim value of binary 100 indicates that this mode uses a scaled index 
register. 

For cases that use scaling, a scale byte follows the mod rim field. The 
format of the scale byte is 

07 06 05 03 02 00 

I ss I Reg I Base I 
where ss is the scale factor (1, 2, 4, or 8), reg is one of the eight registers to 
be used as an index register, and base specifies which segments are to be 
used and whether an 8-bit or 32-bit displacement is added to the effective 
address. 

If a displacement is present, it follows the mod rim or the scale byte if 
one is present. Any immediate data then follows last. 

We will not discuss the 80386 in any more detail, but the preceding 
description should give you some intuition about the basic structure of 
80386 instructions. In general, the 80386 is a complex machine. As an 
example of this complexity, the 80386 chip contains almost twice as many 
components as the CMOS VAX chip. This complexity is the result of 
compatibility, which is often required in the commercial microprocessor 
marketplace. At each generation, chip manufacturers limit their architec­
tures based on the current chip technology. When technology changes, 
manufacturers are able to add more features, but they must do so in a way 
that retains compatibility with their existing products. In contrast, mini­
computer manufacturers are not quite so limited by space as single-chip 
microprocessor manufacturers, so they have been able to design architec­
tures for a longer lifetime. 

Despite its complexity, the Intel 80386 is destined to become a 
successful product. The 80386 is the basis of a generation of personal 
computers and its performance has greatly increased the computing 
capabilities available to personal computer users. The 80386 has also been 
used as the basis of a multiprocessor computer system, the Symmetry, 
made by Sequent Corporation. 

Reduced Instruction Set Computers 

Over the past several years, an important trend has developed in 
computer architecture. This trend has led to a new generation of proces­
sors based on a philosophy of reduced instruction set computers (RISCs). 
As opposed to complex instruction set computers (CISCs), of which the 
VAX is possibly the major example, RISCs take a "less is more" approach. 
While there is debate over exactly what a RISC is, some of the basic 
properties of a hypothetical RISC might include the following: 
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• A small number of instruction operations. A RISC computer might 
have on the order of fifty different instructions. 

• A simple-to-decode instruction format. A RISC would typically have 
fixed-length instructions, for example, all instructions could be 32 bits 
in length with fixed fields for the opcode and operand specifiers. This 
simplifies decoding when compared to the decoding of the variable­
length instructions on the VAX. 

• Direct hardware instruction execution. In contrast, most CISCs are 
microprogrammed (we will discuss microprogramming in some 
depth in a later chapter). 

• A small number of addressing modes. A RISC would have only a few 
ways of specifying operand addresses. 

• A load-and-store architecture, with arithmetic available only in 
register-to-register instructions. 

• A small, fixed instruction cycle time. The objective is to make all 
instructions sufficiently simple that they can all execute in one short 
cycle. Making the cycle time as short as possible is one of the most 
important goals. 

• An open-implementation philosophy. That is, a RISC architecture 
might choose not to hide some "messy" implementation features if 
they can be exploited to gain performance. 

In fact, this approach resembles some of the simplest early 
computers, with instruction sets directly executed by the hardware. Many 
of the reasons for the change to more complex instruction sets, as well as 
for a swing back in the other direction, are technological. For example, 
when CPUs are much faster than memories, it makes sense to do more 
work per instruction; otherwise, the CPU would always be waiting for the 
memory to deliver instructions. This leads to more complex instructions 
that encapsulate what would otherwise be implemented as subroutines. If 
CPU and memory speeds are more balanced, then a simple approach can 
make more sense, assuming that the memory system is able to deliver one 
instruction and some data each cycle. 

Another reason for simplifying computer architectures is the change 
from medium-scale to very-Iarge-scale integrated circuits (VLSI). With 
VLSI, there is a tremendous cost for off-chip communication, so it pays to 
make the architecture simple enough to fit on a single chip. As chips 
become more dense, however, either instruction complexity (to avoid 
going off chip as frequently) or the amount of memory on chip will have to 
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be increased. Most of the latest VLSI microprocessors have chosen to 
increase the amount of on-chip memory to buffer instructions and data. 

Fundamentally, RISC advocates argue that adding a more complex 
instruction or addressing mode often affects the design of a computer by 
complicating, and thus slowing down, important stages of the instruction­
execution process. While the addition of the complex function might make 
that function execute faster than an equivalent sequence of simpler 
instructions, it can lengthen the instruction cycle time. This could make 
all instructions slightly slower. Thus, the addition of a new function had 
better increase the overall performance of the processor enough to 
compensate for the decrease in instruction-execution rate. Compared to a 
CISC, a RISC needs to execute many more instructions to perform the 
same function; if the cycle time of the RISC is fast enough, however, it can 
buy back the time needed for the additional instructions. 

The RISC philosophy has been used even within the realm of more 
complex machines. For example, the DEC Micro VAX II is a single-chip 
version of the VAX architecture. To ensure that the Micro VAX could be 
built on a single chip, DEC simplified the VAX architecture by removing 
many of the complex instructions (for example, commercial instructions), 
emulating them in software instead. A RISC philosophy has been used at 
the microlevel of the VAX 8800 family of machines, where the principal 
goal was a reduced microcycle time. This was achieved by simplifying the 
operations that the hardware can perform. 

In any case, the design of an architecture involves many tradeoffs, 
both technical and marketing, and an architecture must span many 
different technologies and implementations. The current trend is certainly 
toward simplified architectures, but only time will tell whether that is a 
long-term or short-term trend. 

The next section examines the Berkeley RISC II, a reduced instruc­
tion set microprocessor developed at University of California at Berkeley. 
We concentrate on some of the interesting architectural features of the 
RISC II and do not describe its VLSI implementation. If you are interested 
in RISCs and RISC processor design, refer to some of the sources in the 
bibliography, including the paper by Hennessy (1984). The best source on 
RISC II is the fine thesis by Manolis Katevenis, Reduced Instruction Set 
Computer Architectures for VLSI, which is published by MIT Press. 

Berkeley RiSe II 

The Berkeley RISC II, as its name implies, is the second implementa­
tion of a RISC microprocessor at University of California, Berkeley. The 
RISC research project was probably most responsible for publicizing the 
advantages of designing microprocessors with simplified instruction sets. 
In the following discussion, RISC refers to the RISC II implementation, 
although in the aspects that we present, RISC I and RISC II are almost 
identical. 
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RIse is a 32-bit microprocessor; all instructions are 32 bits, and the 
basic data type is the 32-bit word. Each procedure executing on the RIse 
can address thirty-two 32-bit registers. While the basic data type is the 
word, RIse also supports 8-bit bytes and 16-bit halfwords. RIse is byte 
addressable, and addressing is similar to the VAX in that each information 
unit is addressed by its low-order byte. Bits are numbered right to left from 
least significant to most significant. Words and halfwords must be properly 
aligned in memory; that is, halfwords must begin at even addresses and 
words must begin at addresses evenly divisible by 4. 

There are three interesting architectural features of the RIse that we 
will consider: its instructions, its register organization, and its branch 
instructions. 

True to its name, the RIse instruction set consists of only 39 opcodes. 
There are only two instruction formats, called short-immediate and long­
immediate. The opcode indicates which format is used. Short-immediate 
format is as follows: 

31 25 24 23 19 18 14 13 12 00 

Opcode I I Dest RS1 I I Short source 

t t 
Set condition code bit Immediate bit 

The interpretation of most of these fields is straightforward. The opcode 
specifies the operation to perform, dest is a destination register number, 
and rsl is a source register number. 

A short-immediate instruction has two forms as indicated by bit 13, 
the immediate bit. If bit 13 is zero, then bits 0 through12 contain a 13-bit 
immediate value. If bit 13 is set, then bits 0 through 4 of the instruction 
contain a second source register (rs2); in this case, bits 5 through 12 are 
unused. This second format permits three-operand instructions, where all 
operands are in registers. 

The second instruction format, called long-immediate, is shown 
below: 

31 25 24 23 19 18 00 

Opcode I I Dest Immediate 

t 
Set condition code bit 

In this format, there is a single register (dest) and a 19-bit immediate value. 
The RISe has four condition code bits: N, Z, V, and C. Instead of 

setting the condition codes automatically as a side effect following every 
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instruction, the set condition code bit in each instruction indicates 
explicitly whether the condition codes should be set. This makes it possible 
to set the condition codes, execute several instructions, and then branch 
on the result of the instruction that set the condition codes. 

RISC is a load-and-store machine, meaning that arithmetic operations 
can be performed only in registers. Register zero is special in that it always 
returns a value of zero. It can be written but a write to register zero has no 
impact. This fact reduces the number of opcodes. For example, there is no 
register move instruction, since a move is simply accomplished by adding 
register zero to a source register and storing the result in the destination 
register. Moving a register to itself or to register zero can be used to set the 
condition codes, that is, as a test instruction. Subtracting two registers and 
storing the result in register zero is a compare instruction. 

RISC supports only twelve arithmetic and logic instructions: 

• shift left logical, shift right logical, and shift right arithmetic 

• logical AND, OR, and XOR 

• add, subtract, and subtract inverse (all three are also available using 
the carry bit) 

All twelve instructions are short-immediate format; when a 13-bit immedi­
ate is used it is always sign-extended to 32 bits. An inverse subtract is 
needed to permit both register minus immediate and immediate minus 
register. 

Load and store instructions are used to move data between memory 
and registers. On a load instruction, the effective address can be specified 
in one of three ways: 

• in short-immediate form as register + register, 

• in short-immediate form as register + 13-bit immediate, or 

• in long-immediate form as PC + 19-bit immediate. 

The first two forms are called register-indexed and the last form is called 
PC-relative. There are ten load instructions to permit both register-indexed 
and PC-relative loads from words, and register-indexed and PC-relative 
loads from both signed and unsigned bytes and halfwords. Six Store 
opcodes are available to write bytes, halfwords, and words using the last 
two effective address formats shown. 

The other major instruction group is for control transfer. The condi­
tional jump instruction, available with both PC-relative and register­
indexed addressing, uses instruction bits 19 through 22 to specify the 
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condition to be tested. These four bits specify sixteen boolean functions of 
the condition codes for which a true result causes a branch; one of the 
values specifies "branch always" and provides the unconditional branch. 
There are also two subroutine call opcodes (for the two addressing 
formats) and a subroutine return. 

An interesting feature of the RIse branch instruction -and a feature 
that is common to most reduced instruction set computers-is that all of 
the branches are delayed branches. Branch instructions cause a significant 
performance problem in computer implementations. On most computers, 
while one instruction is being executed the next sequential instruction is 
being prefetched so it will be available when the processor is ready. 
Otherwise, the processor would have to wait for memory to deliver each 
instruction. When a branch instruction succeeds, the prefetched instruc­
tion will not be the next instruction to be executed, and the processor 
must wait for the new target instruction to be fetched. 

Delayed branches are one solution to this problem. On the RISe, the 
instruction following a conditional or unconditional branch is always 
executed. For example, if we have the sequence 

ADD R2, R3 (set condi tion codes) 
JUMPEQ P2 
SUB R4,R5 
PI: 

P2: 

then the SUB R4,R5 executes whether or not the JUMPEQ instruction 
succeeds. If the conditional jump does succeed, the SUB executes followed 
by the instruction at P2. If the conditional jump fails, the SUB executes 
followed by the instruction at P 1. In this way, the processor has work to do 
while the next instruction stream is fetched. 

The success of a delayed branch mechanism depends on the ability of 
the high-level language compiler to find instructions that can be placed 
following branches. Basically, these must be instructions that can be 
executed whether or not the branch succeeds, and for which there are no 
dependencies before the branch. If the compiler cannot find such an 
instruction for a particular delayed branch, it simply follows the branch 
with a no-op. 

Perhaps the most unusual architectural feature of the RIse is its 
register window mechanism, which is responsible for much of its perfor­
mance gain. While register windows are implemented on the RISe, they 
are not really related to the reduced instruction set nature of Berkeley 
RIse and could be used equally well on a else. 

The principal objective of the register window mechanism is to 
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reduce the time for a procedure call. As discussed in Chapter 9, the VAX 
Call instructions take a significant portion of the execution time. Part of 
the reason for this is the number of memory writes needed to pass 
parameters and to save registers. These overheads are avoided on the RISC 
by using overlapping register windows, which work as follows. The RISC 
chip actually has 138 registers. Each procedure can address 32 registers, 
which are organized into four groups: 

• Registers 0-9 are global registers, visible to all executing procedures 
in a program. 

• Registers 10-15 are output parameter registers, used to write parame­
ters to be passed to procedures to be called. 

• Registers 16-25 are local registers, used to store local variables within 
a procedure. 

• Registers 26-31 are input parameter registers, used by a procedure to 
receive inputs from its caller. 

When a procedure has to call another procedure, it writes parameters 
for the procedure to be called into registers 10-15. When it executes a 
procedure call, the called procedure is allocated the next set of registers 
on the register stack. This is done in such a way that registers 10-15 of the 
calling procedure become registers 26-31 of the called procedure. Thus, 
the called procedure automatically sees its inputs in the input registers, 
and it is allocated sixteen new registers on the stack for its local variables 
and output parameters. Two special processor registers are used to 
indicate the current state of the register stack for the executing procedure. 
The general organization of the register stack is shown in Figure 10.6. 

Register windows reduce the number of writes on procedure call 
because (1) parameters are passed in registers and (2) the called proce­
dure does not have to save registers because it is allocated new local 
registers. This mechanism works well because most programs make 
frequent procedure calls, but the depth of procedure calls does not vary 
greatly. RISC has space for a call depth of eight procedures. When the 
eighth procedure attempts to call the ninth, a register stack overflow 
occurs and the operating system must migrate one or more register stack 
frames to main memory. As returns occur, an underflow eventually occurs 
and those frames will need to be brought back. Another problem with 
large register files is that the time to context switch between user 
processes increases as the amount of state to be saved increases. 

Berkeley RISC is interesting for a number of reasons, including its 
streamlined instruction set, register windows, and delayed branch mecha­
nism. Since Berkeley RISC, a number of reduced instruction set proces­
sors have appeared on the marketplace. 
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Figure 10.6 Berkeley RiSe register window stack 
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This chapter introduced the instruction set architectures of four 
computer systems. The instruction set for each machine was designed 
based on the goals and constraints of that system and on the available 
technology. The designers for each machine made different tradeoffs in 
addressing capabilities, instruction size, data types, and generality. 

We have focused on the representation of addresses and the coding of 
instructions. This examination gives us a better basis for comparing 
computer systems and for evaluating the architecture of the VAX. Of 
course, the VAX has benefited from analysis of previous instruction sets, 
such as the IBM 360/370 and the PDP-II. Similarly, the RIse processors 
have benefited from analysis of the VAX. 
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Exercises 

Comparative Architectures 

1. How are memory addresses represented in IBM 370 instructions? How can the 
CPU tell which addressing method is being used? 

2. What information about the instruction is given by the opcode in a VAX instruc­
tion? In an S/370 instruction? 

3. What is a System 370 base register? Why are base registers used? 

4. What is the difference between index registers on the S/370 and index registers 
on the VAX? 

5. Why do we say that the S/370 is a load-and-store machine? 

6. The CDC Cyber series has a larger word size than any of the other machines we 
have examined. Why do you suppose that 60-bit words were chosen, as opposed 
to 32- or 16-bit words? 

7. Why do we say that reading or writing memory is a side effect on the CDC 
Cyber computer? 

8. What are some differences of memory addressing among the IBM System 370, 
the Intel 80386, and the VAX? 

9. What is the major difference between the encoding of addressing modes on the 
VAX and the encoding of addressing modes on the Intel 80386? Why would you 
choose one over the other? 

10. Discuss the advantages and the disadvantages of register windows as imple­
mented on the Berkeley RISe. Suppose you had a choice of register windows 
or a single file of 128 registers, which would you choose and why? 

11. What is a delayed branch? What would be the advantages and the disadvantag­
es of having a delayed branch instruction that executes two instructions 
following the branch instead of one? 

12. Describe an interesting feature of each of the architectures presented. Now 
that you have seen several other instruction sets, what features of the VAX do 
you think are most interesting in comparison? What things about the VAX 
would you change if you were able to modify the architecture? 
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So far, we have concentrated on the environment visible to the 
machine language programmer, consisting mainly of the hardware in­
struction set, memory and its addressing, and the functions provided by 
the assembler. This and following chapters will begin to examine how the 
real hardware and the operating system software combine to provide each 
user with a simple, predictable, logical environment in which to create 
and execute programs. 

On a single-user computer, all the physical resources are at the user's 
disposal: the processor, the memory, and the peripherals. Concep­
tually, the user should be able to access these resources directly. In 
general, even single-user computers must permit cooperation between 
several programs running simultaneously on that computer. Similarly, on 
a shared computer, resources must be divided equitably among the users 
so that each user receives a fraction of the total resources available. In 
addition, it is desirable for each program to be unaware of the others, that 
is, for each program to view memory and peripherals as if it were the only 
program in the system. To permit this, the operating system must trans­
form the physical hardware resources into logical resources that the user 
manipulates. 

The system printer, for instance, is a logical device that different users 
(or different programs on a single-user computer) share. Each user sees 
this logical device as being capable of printing program listings and other 
files on command. The printer automatically prints a header page identify­
ing the user and the listing. The physical printer hardware, on the other 
hand, is not so elegant and must be programmed at a basic level. Some 
printers must be fed one character or a line at a time by a controlling 
program. If each user wrote directly to the printer, the output would 
consist of a mess of interspersed lines and characters from different users' 
files. Consequently, the operating system manages the physical printer, 
giving each user access to a logical printer while maintaining the integrity 
of the material being printed. . 

Even though the multiprogrammed operating system does not permit 
direct control of such devices by user programs, it is still valuable to 
examine how input/output (I/O) is performed. It is also useful to under-
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stand the physical characteristics of some typical devices and how they are 
controlled. In this way, we canmore easily understand how software 
transforms physical devices into high-level logical devices that program­
mers can access. 

I/O Processing 

In requesting an I/O operation, the programmer normally specifies 
an operation to be performed (for example, read or write), the main 
memory address that is to receive data or that contains data to be output, 
and the amount of data to be moved. The operating system software 
initiates a data transfer between the device and memory. Early computers 
required that the processor control the entire I/O operation; the processor 
would execute an instruction to transfer the data and would be forced to 
wait until the operation was completed. During that time, thousands of 
instructions could have been executed. However, since the program would 
not continue until the I/O operation was completed, a significant amount 
of processor time was lost. 

To take advantage of this idle processor time, new computers have I/O 
controllers, as shown in Figure 11.1. A controller contains special hard­
ware to handle device operations. Once an operation has been accepted by 
the controller, the CPU is free to continue processing. In this sense, a 
controller is simply a slave computer that performs I/O at the request of 
the master CPU. 

Controllers can control several devices simultaneously; once one 
device is started, the controller is free to start another device. A computer 

Figure 11. 1 Simple I/O structure 
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with several controllers can thus perform computation concurrent with 
I/O processing on multiple devices. 

Instead of waiting in a loop for an operation to complete, some 
computers periodically poll all active devices to check their status. After 
finding a device that has completed an operation, the processor can 
initiate another operation and then process the data read or written. 
Because this still consumes a large amount of CPU processing, interrupts 
were introduced. An interrupt is a signal from a device controller to the 
processor that indicates that the device needs attention. The processor 
starts the operation, and the controller interrupts when the operation is 
done. On the VAX, an interrupt automatically saves the state of the 
running program and causes execution of an operating system routine to 
handle the interrupt. An interrupt is thus similar to a subroutine call 
initiated by the device controller asynchronously to the execution of the 
currently executing program. 

By suspending execution of a program that is waiting for the comple­
tion of an I/O operation and starting another program to be executed, the 
processor resource can be shared and more efficiently utilized. Now, 
however, when an interrupt occurs, the state of the running program must 
be preserved while an operating system routine is run to handle the 
interrupt. This saving of the state is performed automatically on the VAX. 

For VAX peripherals, there are two styles of I/O programming. The 
choice of style depends primarily on the speed of the device. For slow 
devices such as terminals, programmed I/O is used. In programmed I/O, 
the controller contains a special register, called a buffer register, that the 
processor loads with a single character to be written out. The device 
writes the character and then interrupts when it is ready for the next one. 
Or, on input, the device deposits a single character into a buffer register 
and interrupts the processor, which removes it. Although processing can 
be overlapped with the operation, the processor must move each byte to or 
from the controller. 

For high-speed devices such as disks, the controller normally per­
forms direct memory access (DMA) I/O, sometimes called nonprocessor 
request (NPR) I/O. In this mode, the controller performs a block transfer, 
in which large blocks of data are moved directly between the device and 
memory. The entire transfer occurs without processor intervention. To 
handle such an operation, the controller contains special registers that the 
CPU loads with information about the transfer. The controller must be told 
how many bytes to move, where the main memory buffer is located, what 
device unit and device location to operate on, and what operation to 
perform. The controller moves the specified amount of data and then 
interrupts when it is done. 

Even though I/O devices can operate independently of the CPU, at 
times the CPU and the I/O devices contend for the use of main memory. 
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Controllers have internal memories, again called buffers, in which data is 
placed before being read or written. Because the controller needs to 
empty its buffer memory before incoming data overwrites its contents, the 
controller has precedence over the CPU when accessing main memory. 
The I/O controllers simply cause the CPU to pause while the data is 
transferred into memory. This process is called cycle stealing, because the 
I/O units steal cycles from the CPU. Cycle stealing works because I/O 
controllers make memory requests infrequently and tie memory up for 
only short periods of time. 

Control and Status Registers and I/O Space 

We have noted that VAX I/O controllers contain special registers for 
holding control information and for buffering data. These are known as 
control and status registers (CSRs) and data buffer registers (DBRs). Each 
I/O device controller contains a set of registers, which are assigned 
addresses in the physical address space (that is, addresses on the bus). The 
contents of these registers can be manipulated by standard VAX instruc­
tions. Therefore, the VAX, unlike many other computers, needs no special 
I/O instructions. For example, the following instruction could be used to 
store an output character in a device buffer register: 

MOVB CHAR,DEVICE_BUFFER_REGISTER 

An I/O device driver, which is the software that controls the device, 
senses the status of the controller and commands the controller by reading 
and writing the control and status registers. In addition, the device driver 
reads from and writes to the data buffer registers to obtain input and to 
initiate output. 

I/O device registers have fixed addresses in the upper half of the VAX 
physical address space. The physical address space consists of all the 
addresses that can be broadcast on the system memory bus. If the system 
memory bus has thirty address bits, then the system has a 30-bit physical 
address space. Physical addresses are different from the logical addresses 
used by programs, which are called virtual addresses. Virtual addresses 
(the addresses seen by the program) are translated by the processor into 
physical addresses (the addresses put on the bus to access real memory). 

On the VAX, the lower half of the physical address space is used for 
primary memory, as shown in Figure 11.2. Thus, some memory references 
access physical memory locations, while others access device registers. 
The VAX hardware is capable of restricting the access to the I/O registers. 
Normally, user programs are not allowed to read or write CSRs. (For 
historical reasons, most VAX I/O registers must be accessed as 16-bit 
quantities using word context instructions.) 
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Figure 11.2 VAX physical address space 
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Low-speed peripheral devices include line printers, terminals, card 
readers, and some smaller disks. For most of them, device data transfers 
occur one byte at a time. The device driver writes to the device by moving 
a character into the output data buffer register of the controller; it reads by 
moving a character from an input data buffer register. One CSR is 
normally used to indicate errors and command completion. 

The Line Printer 

One of the simplest I/O devices is the line printer. For example, the 
model LP 11 line printer controller has two 16-bit I/O registers-one 
control and status register and one data buffer register-in the physical 
address space. Figure 11.3 shows the format of these registers. The Error 
and Done bits of the status register are read-only bits. Software instruc­
tions cannot modify them, and they can be set or cleared only by the 

Figure 11.3 Line printer I/O registers 

Line Printer Status Register 
15 14 08 07 06 05 00 

f f t 
I 

Error Done Interrupt Enable 

Error - The controller sets this bit when an error condition exists, such as line printer out of 
paper, printer off-line, or printer on fire. 

Done - The controller sets this bit whenever the printer is ready to accept the next character to 
be printed. 

Interrupt Enable- The software sets this bit to tell the controller to interrupt when either D or E 
is set by the device, that is, if an error occurs or the printer is ready for another character. 

Line Printer Data Buffer Register 

15 08 07 00 

Data 

The software loads bits 0 through 7 with the ASCII character to be output. 
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controller. To output a character, the software moves an 8-bit ASCII 
character into the lower byte (bits 0 through 7) of the line printer data 
buffer register using a MOVB instruction of the form 

MOVB CHAR,LP_BUFFER_REGISTER 

Although the LP11 controller requires that characters be moved one 
at a time into the data register, it contains some further internal buffering 
to reduce the number of interrupts. This buffering allows the controller to 
hold several characters at a time. Instead of writing one character to the 
printer and interrupting upon its completion, the controller holds several 
characters and interrupts only when the entire buffer is written to the 
printer. If internal buffer space is available when a character is moved to 
the data buffer register, the controller immediately copies the character 
into internal buffer storage and sets the Done bit. When the internal buffer 
is full, the Done bit remains clear until the controller is ready. 

The following sample routine outputs a string of ASCII bytes to an 
LP 11 line printer. The routine continues inserting characters until the 
controller fails to set the Done bit. It then waits for an interrupt before 
continuing. 

ROUTINE DESCRIPTION: 

This routine outputs a string of ASCII characters to an LPll 
line printer. 

CALLING SEQUENCE: 

BSB or JSB 

INPUT PARAMETERS: 

RO contains the number of characters to output 
Rl contains the address of the string 

OUTPUT PARAMETERS: 

None 

SIDE EFFECTS: 

RO and Rl are modified 

LP_CSR= 
LP-DBR= 

define CSR address 
define DBR address 
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WRITEHELP: 

10$: 

PUSHR 
MOVAW 
MOVAW 
CLRW 

#!\M<R2,R3> 
@#LP_CSR,R2 
@#LP-DBR,R3 
(R2) 

save registers 
copy CSR address to R2 
copy DBR address to R3 
clear Interrupt Enable bit 

Begin writing string. 

20$: 

30$: 

BRB 
BITW 
BLEQ 

MOVB 
SOBGEQ 
BRW 

30$ 
#!\X8080, (R2) 
40$ 

(Rl )+, (R3) 
RO,20$ 
DONE 

start at end of loop 
test Error and Done bits 
branch if Error set or Done 
... clear (printer not ready) 
output character to printer 
continue if more to output 
finish up if done 

Either an error exists or printer is not ready. If not ready, then 
allow interrupts and wait. RO must be incremented because the SOBGEQ 
at 30$ decremented it without outputing a character. 

40$: BLSS 
INCL 
BISB 

ERROR 
RO 
#!\X40, (R2) 

handle error if E set 
update character counter 
set interrupt Enable 

<wait for interrupt after line is printed> 

BRB 10$ ; continue 

Terminal Multiplexing 

A typical controller for video and hard-copy terminals is more 
complicated than a printer controller, because it must handle simultane­
ous input and output. Users often type while output is still being delivered 
to the terminal. In addition, because terminals are among the slowest 
input devices due to human typing speeds, one controller on a VAX 
typically handles four, eight, or sixteen lines at a time, depending on the 
controller. 

An early VAX terminal controller was the DZ 11, shown in Figure 11.4. 
We use the DZ 11 as an example because of its simple structure. The DZ 11 
is an eight-line terminal multiplexer that controls eight asynchronous 
lines for communications with terminals or other computers. Although a 
DZ11 controller contains nine I/O registers, we will examine only a few 
registers and fields to see how a multiplexer is controlled. The registers we 
will discuss are the Control and Status Register (CSR), the Transmit Buffer 



250 Physical Input and Output 

Figure 11.4 DZ11 terminal multiplexer 
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Register (TBUF), and the Receive Buffer Register (RBUF). These registers 
and their important control fields are shown in Figure 11.5. 

Output on the DZ11 is similar to that on the line printer, except that 
the programmer must specify which terminal is to be selected. For each 
line, a single-character buffer holds the character being output. When a 
buffer for any line becomes empty, indicating that the terminal is ready to 
receive the next character, the controller loads the line number into the 
TLINE field of the CSR and sets the TRDY bit. If transmit interrupts are 
enabled (that is, the TIE bit is set), an interrupt is generated. The software 
handling the interrupt must then move the next character for that terminal 
into TBUF. Writing the character to TBUF causes the controller to 
transmit the character to the specified terminal and to clear the TRDY bit 
in the CSR. 

Because several terminals may be sending at once, the DZ11 contains 
a 64-word buffer for input characters called the SILO (for "service in 
logical order"). As each character is received, it is placed in the SILO with 
the line number on which it arrived. RBUF is actually the bottom of the 
SILO. As characters arrive, they are added to the top of the SILO; 
characters move toward the bottom as software removes characters from 
RBUF. Each time RBUF is read, the next character in the SILO is moved to 
RBUF. Whenever a new character is moved into RBUF, the controller sets 
RDONE in CSR and interrupts if receive interrupts are enabled. 

Terminals can be run in either local-echo or remote-echo mode. In 
local-echo mode, the terminal itself displays each character as it is typed. 
In remote-echo mode, the character is merely sent to the computer. The 
computer must then output it again to make it appear on the screen, a 
process called echoing. Remote-echo allows for more complex terminal 
functions, particularly for editing, and shows the user that the correct 
character was received. The echoing can usually be done fast enough that 
the character appears instantaneously. Local-echo is sometimes useful 
when terminals are connected over slow long-distance lines in which the 
echo time is long. 
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Figure 11.5 DZ11 terminal multiplexer I/O registers 
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Receiver Interrupt Enable (RIE) - Software sets this bit to cause the controller to interrupt 
when a character is received. 

Receiver Done (ROONE) - The controller sets this bit when a character becomes available 
in the read buffer. The bit is cleared when the character is read by software. 

Transmitter Line Number (TLlNE) - The controller loads this 3-bit field with the line number 
of the line that is ready for transmission of another character. 

Transmitter Interrupt Enable (TIE) - Software sets this bit to cause the controller to 
interrupt when a line is ready for another character to transmit. 

Transmitter Ready (TROY) - The controller sets this bit when a line is ready to transmit a 
character. 

Transmit Buffer Register (TBUF) 

15 08 07 00 

Transmit character 

Software loads bits 0 through 7 of TSUF with the character to be transmitted to the terminal 
whose number is in the TLINE field of CSA. 

Receive Buffer Register (RBUF) 
15 11 10 08 07 00 

LINE Receive character 

Bits 0 through 7 of RBUF contain the character received from the terminal whose number is 
in the 3-bit LINE field. 

High-Speed Devices 

High-speed devices include primarily magnetic disks and tapes. These 
are known as mass storage devices, because in comparison with primary 
memories, they have large capacities. A single magnetic disk pack can 
store up to 600 million bytes of data, which it can transfer at rates of over a 
million bytes a second. Disks are known as direct or random-access storage 
devices, because any location on a disk is directly addressable. In contrast, 
tapes are sequential-access storage devices, because they must be sequen­
tially scanned to find a given location. 

Magnetic Disks 

A disk is a rotating, flat magnetic platter that resembles a phonograph 
record. Much like the grooves of a record, the surface of the platter is 
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divided into concentric tracks, although the grooves do not spiral toward 
the center. Each track is again subdivided into sectors or blocks, as shown 
in Figure 11.6. The sector, typically the smallest addressable unit, holds a 
fixed amount of data. On the VAX, most disks have sectors of 512 bytes, 
referred to as disk blocks. 

To read or write a sector, a magnetic read/write head senses or 
magnetizes the sequential stream of bits on the track passing beneath it. 
Most common disks are moving-head disks, with one read/write head per 
surface that must be mechanically positioned over the t~ack to be 
accessed. The positioning of the head, called a seek, usually takes from 10 
to 50 milliseconds. In applications in which performance is critical, 
fixed-head disks, which have one read/write head for every track, are used. 
With fixed-head disks, no seeks are required; however, fixed-head disks are 
prohibitively expensive. 

Once the read/write head is positioned to the track, it must wait for 
the correct sector to pass by. Known as latency time, this rotational delay 
can be minimized by increasing the rotational speed of the disk. However, 
increases in speed are limited by physical tolerances in the balancing of 
the rotating mass. Most large disks spin at 3600 revolutions per minute. 

The total transfer time for a disk read or write operation thus has 
three components: 

total time = seek time + latency time + data transfer time 

Two techniques are generally used to increase the storage per disk 
device. The number of bits stored on the surface can be increased either 

Figure 11.6 Single-disk platter surface 
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by storing more bits per inch around a track or by increasing the number 
of tracks. However, there is always a limit to how much information can be 
successfully stored and retrieved from a disk. As densities increase, so do 
error rates. 

To increase the storage of each device, several platters are usually 
mounted together to form a disk pack, as shown in Figure 11.7. A separate 
read/write head is used for each surface of each platter. Another benefit of 
this arrangement is that more data can be read before the heads need to be 
moved. Indeed, for these multiplatter disks, the concept of a track gives 
way to that of a cylinder, formed by the logical grouping of all tracks at the 
same radius on each platter, as Figure 11.7 illustrates. 

Most disks today are built with "Winchester" technology. These are 
sealed drives (that is, the disks are nonremovable), which keeps the 
operating environment cleaner. Alignment problems of heads and platters 
are reduced because one set of read/write heads operates with only one 
physical disk for its lifetime. 

Table 11.1 compares performance characteristics of several disks 
commonly used on VAX systems. 

Simplified Disk Control 
Examining some of the I/O registers for a VAX disk device will help 

you better understand how software handles a disk. This section examines 
the RK07, which was one of the earliest and simplest of disks. Each RK07 
disk drive is connected to an RK711 disk controller, which is capable of 
handling up to eight drives. The controller has DMA capability and can 
move up to 64K 16-bit words of data to or from the disk without processor 
intervention. The controller is also capable of initiating several simultane­
ous seek operations, although only one device can transmit at a time. 

Figure 11.7 Multiplatter disk 

Read/write 
heads 

a. Disk pack 

Tracks 

b. Logical cylinder 
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Table 11. 1 Common VAX Disk Characteristics 

Characteristic 

Form size 

Bytes/pack 

Number of 
platters 

Cylinders/ cartridge 

Tracks / cylinder 

Sectors/track 

Bytes/sector 

Rotational 
frequency, rpm 

Average latency 
(1/2 revolution), ms 

Average seek, ms 

Peak transfer rate, 
bytes/s 

RX53 RD54 RA70 RA81 
Floppy 

5.25 5.25 5.25 10.5 

1.2M 160M 280M 456M 

1 224 
(flex) 

160 1224 1507 1248 

2 15 11 14 

15 17 33 51 

512 512 512 512 

360 3600 3600 3600 

83 8.3 8.3 8.3 

92 30 19.5 28 

512K 625K l.4M 2.2M 

RA82 

14 

622M 

4 

1423 

15 

57 

512 

3600 

8.3 

24 

2.4M 

The RK711 has fifteen I/O registers, several of which are partially 
described in Figure 11.8. To perform a transfer to or from memory, the 
device driver performs the following steps: 

1. It calculates the disk address of the first block of the transfer. The disk 
address is composed of three parts: cylinder number, track number, 
and sector number. The cylinder number is moved to the Desired 
Cylinder Register for head positioning. 

2. It loads the Drive Select field in CSR2 with the number of the disk 
unit. 

3. It loads the Function field in CSRI with the code for a seek function. 

4. It enables interrupts and sets the Go bit in CSRI to execute the seek 
for the desired cylinder. The device interrupts when the seek is 
complete. 



High-Speed Devices 255 

Figure 11.8 RK07 disk I/O registers 

15 10 09 08 07 06 05 04 01 00 

Function Go 

Extended Address bits 

Go- The software sets this bit to cause the controller to execute the specified function on the 
selected unit. 
Function - These bits specify the command to be performed by the controller, that is, read 
data, write data, seek. 

Interrupt Enable - When this bit is set, the controller will interrupt when (1) a command 
completes, (2) a drive indicates an attention condition, or (3) any drive or the controller 
indicates the presence of an error. 

Controller Ready- This bit is set by the controller when it is ready to process a new function. 

Extended Bus Address - The controller transfers data into a memory buffer specified by an 
18-bit address. The low 16 bits are loaded into the Bus Address Register, and the high 2 bits 
are loaded into this field. 

Disk Control and Status Register 2 (CSR2) 
15 

Error and status bits 

03 02 00 

IDrive Selectl 

Drive Select-Software loads this field with the unit number of one of eight possible drives on 
which to perform an operation. 

Disk Desired Cylinder Register (DC) 
15 10 09 00 

Cylinder Number 

Cylinder Number - Software loads this field with the cylinder number of the first sector for the 
operation. 

Disk Address Register (DA) 
15 10 09 08 07 05 04 00 

:IA~d~~~sl I Sector Address I 
Sector Address-Software loads this field with the number of the desired sector on the 
selected track and cylinder. 
Track Address-Software loads this field with the number of the desired track on the selected 
cylinder. 

Disk Word Count Register (WC) 
15 

Word Count 

00 

Word Count - Software loads this register with the two's complement of the number of data 
words to be transferred to or from memory. In other words, the negative word count is stored. 

Disk Bus Address Register (BA) 
15 

Bus Address 

01 00 

I 0 I 
Bus Address-Software loads this register with the low 16 bits of the 18-bit bus address for 
the main memory buffer. The low bit is always 0 because it must be the address of a word. 
The disk transfers only an even number of words. 
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5. When the seek completes, the device drive loads the track number 
and the sector number into the Disk Address Register and reloads the 
cylinder number in the Desired Cylinder Register, in case it has been 
overwritten by another concurrent disk operation. 

6. It then loads the Word Count Register with the number of words to 
transfer and the Bus Address Register with the bus address of the 
main memory buffer. 

7. It loads the Function field in CSRI with the code for the operation, 
whether read or write. 

8. Finally, it enables interrupts and sets the Go bit to start the operation. 
The device interrupts when the transfer completes or an error occurs. 

The following simplified code sequence executes a function on the 
RK07. The routine is passed a control block containing a buffer address 
and length, a unit number, a disk function number, and a disk block 
number. The disk block number must be translated into cylinder, track, 
and sector address. The routine does no initialization or error checking, 
but merely loads the registers and starts the operation. 

ROUTINE DESCRIPTION: 

Routine to execute a specified function on the RK07 disk. 

CALLING SEQUENCE: 

BSB or JSB 

INPUT PARAMETERS: 

RO = address of a control block containing the following 
fields: 

BUFFER(RO) 

BUFLEN(RO) 
BLOCKNUM(RO)= 

UNIT(RO) 
FUNCTION(RO)= 

address of the user's buffer (only 18 
bits are used) 
length of user buffer in words 
logical block number of first disk 
block of the transfer if the disk is 
imagined as a contiguous array of disk 
blocks 
unit number of disk device 
code number of disk function to perform 
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Define Disk I/O Register Addresses 

RK_CSRI 
RK_CSR2 
RK_WC 
RK_BA 
RK-DA 
RK-DC 

define first CSR address 
define second CSR address 
define Word Count Reg. 
define Bus Address Reg. 
define Disk Address Reg. 
define Desired Cylinder 

Define Offsets for Input Control Block Arguments 

BUFFER 0 offset to buffer address 
· .. argument 

BUFLEN 4 offset to buffer length 
BLOCKNUM 8 offset to block number 
UNIT = 12 offset to unit number 
FUNCTION = 16 offset to Function code 

Define Disk Geometry Characteristics for Computing Disk Address 

CYLINDERS = 815 
TRACKS = 3 
SECTORS = 22 
BLOCKS_PER_CYLINDER 

number of cylinders on ,pack 
number of tracks per cylinder 
number of sectors per track 

SECTORS * TRACKS; just as it says 

Calculate the disk address parameters from the disk block number and 
load the appropriate registers. 

RKDISK: 
PUSHR 
MOVL 
CLRL 

EDIV 

CLRL 

EDIV 

MOVW 
MULL 
BISW3 

MOVW 
MNEGW 

MOVW 

#AM<R2,R3,R4,R5> 
BLOCKNUM(RO),Rl 
R2 

save registers 
get logical block number 
clear next reg. for 64-bit 

; ... divide 
#BLOCKS_PER_CYLINDER.Rl.Rl.R2 ; 

R3 

#SECTORS,R2,R2,R3 

Rl,@#RK-DC 
#256,R2 
R2,R3,@#RK-DA 

UNIT(RO),@#RK_CSR2 
BUFLEN(RO),@#RK_WC 

BUFFER(RO),@#DK_BA 

Rl <- cylinder number 
R2 <- sectors left on cyl. 
clear next reg. for 64-bi t 
· .. divide 
R2 <- track number on cyl . 
. .. R3 <- sector num. on track 
load cylinder register 
shift track number left 
load Disk Address Reg. with 
... track and sector numbers 
load unit number into CSR2 
load Word Count Register with 
... 2's complement of 
· .. transfer size 
place low 16 bits of address 
... in Buffer Address Register 
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Construct a mask for CSRI containing the Go bit, the Interrupt 
Enable bit, the Function code field; and the two high order 
address bits from the 18-bit bus address. Load the CSRI to 
initiate function. 

EXTZV 

MULL 
INSV 

BISW3 

#16,#2,BUFFER(RO),R4 

#256,R4 
FUNCTION(RO),#1,#4,R4 

#AX41,R4,@#RK_CSRI 

get two high bits of 
... bus address 
shift bits to bits <9:8> 
insert Function code in 
... bits <4: 1> 
enable interrupts, and 
... execute the function 

This routine is a simplified example showing only the loading of some 
of the important device registers. A real device driver can be extremely 
complicated. The actual function execution is only a small part of the 
work to be done. On disk devices, more than half the driver code may be 
devoted to detecting and recovering from controller or disk unit errors, of 
which there are many varieties. Another large part of the driver is 
concerned with interfacing with the operating system and its data struc­
tures. However, examples like this do give some sense of the complexities 
involved in handling a real device. 

Magnetic Tape 

Magnetic tape is 1/2-inch mylar film with an iron oxide coating on one 
side. A standard 10 1/2-inch reel contains 2,400 feet of tape capable of 
storing up to 140 million characters of data at a density of 6,250 bits per 
inch, although some new cartridge drives can store close to 300 megabytes 
at higher densities of 10,000 bits per inch on a small, 5 1/4-inch cartridge. 

Each data byte is written as 8 data bits plus one parity bit across the 
width of the tape, as shown in Figure 11.9. The parity bit is set or cleared to 
make an even number of ones in the 9-bit character. This is known as even 
parity. When the tape is read, if the character contains an odd number of 
ones, then a I-bit error has occurred. 

A tape with the format shown in Figure 11.9 is known as nine-track 
tape because there are nine data channels. Most drives are also capable of 
producing seven-track tape that uses six data bits and one parity bit. 
However, since ASCII characters are eight bits wide, nine-track tape is 
more useful on the VAX. 

Data characters on tape are stored in variable-length blocks. Industry 
standards allow blocks to be from 18 to 2,048 characters long. Blocks can 
be partitioned into records. Unlike a disk device, which revolves continu­
ously, a tape must be set in motion before it can be read or written. 
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Figure 11.9 Magtape format 
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End of tape 
reflective strip 

Because reaching the proper tape speed requires time, a 1/2-inch space, 
called the interblock gap, is left between blocks. Hence, the tape is better 
utilized if longer blocks are used or if the blocks are grouped together to 
reduce the amount of wasted space. 

A tape controller normally handles several tape drives. Several drives 
at a time can be rewinding or spacing, although only one can transfer data 
at a time. The controller can execute functions to read in the forward or 
reverse direction, write, space forward or reverse, rewind, unload, or 
erase. Transfer to or from the tape are DMA. While the tape handles 
characters one at a time, the controller holds two characters for input or 
output. As a result, transfers between the controller and memory occur 
one word at a time. 

Mass Storage Control Protocol 

An earlier section showed an example of a disk interface and driver 
code to control it. One problem with control and status register interfaces 
on VAXes was the ad-hoc nature of such interfaces. That is, each new disk 
device would have a different interface and would require new driver 
software to be written for each operating system and computer to which 
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that driver could be attached. The work involved in developing these new 
drivers was significant. 

To attack this problem, Digital Equipment Corporation developed a 
standard message-oriented protocol for controlling disks and tapes, called 
the Mass Storage Control Protocol (MSCP). Each new disk controller 
developed for VAXes is required to implement this protocol, so from the 
disk driver's point of view, all devices have the same interface. Coding is 
simplified and time is saved. 

MSCP works, in general, as follows. For each request to the disk, the 
disk driver builds a command packet, which is a data structure whose 
format is specified by MSCP. The packet contains several fields, including 
an operation code that tells the device what function to perform, device 
status information, and parameters required by the operation code. The 
command packet is placed on a command queue in memory, which is 
shared by both the disk driver software and the controller hardware. The 
controller copies the contents of the command packet to its own internal 
memory, examines it, and performs the function. The controller then uses 
the original command packet memory to build a response packet, which 
indicates whether the operation completed successfully. The response 
packet is placed on a response queue maintained by the VAX. The 
controller then interrupts the host processor to notify the driver that a 
response packet has been queued and the operation has completed. 

There are several advantages to this scheme. The most obvious is that 
the differences in specific drives are transparent to host drivers. A disk can 
identify itself and indicate how many disk blocks it contains, but otherwise 
its interface is standardized. MSCP devices present a higher-level interface 
than did CSR-controlled disks; the driver does not worry about sectors and 
cylinders, but views the disk as a contiguous sequence of blocks. Further­
more, bad blocks can be handled by the controller transparently to the 
driver. The controller can replace a bad block with another block while 
making that new block appear to be in the location of the original one. In 
fact, most disks now have "extra" blocks that are available just for this 
purpose. 

Another advantage of this scheme is that it presents the possibility of 
controlling disks remotely. That is, once a command packet is construct­
ed, it is a simple matter to send the packet over a network to the device. 
With CSRs, the communication between the driver and the controller is 
based on shared memory. Moving to a message-oriented scheme greatly 
simplifies distribution, but there is a time penalty associated with the 
network. Another advantage is that the command-queue mechanism 
permits the device to examine several pending requests before choosing 
one. For example, a disk controller could queue commands internally and 
examine the command queue to optimize its use of the disk. The 
controller would order the I/O requests so as to choose next the request 
closest on the disk surface to the current head position. 
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A final type of I/O device we will consider is the network intercon­
nect, which permits a CPU to talk to one or more other CPUs. In a 
network, each CPU is called a node. 

Networked computers are called loosely coupled systems because they 
cooperate over a relatively slow medium and interact on a fairly coarse 
scale. Loosely coupled nodes share large objects such as files or programs 
rather than single bytes or words. It is usually possible, for example, to 
request execution of service programs on remote computers. Over net­
works, nodes communicate by sending either fixed-length or variable-size 
messages. 

In contrast to networking, shared-memory multiprocessors, which we 
will consider in a later chapter, are said to be closely coupled, because 
processor interaction is through shared memory. In these systems, sharing 
of small amounts of data can be very rapid. Closely coupled programs can 
handle fine-grained interaction, for example, accessing one byte or word at 
a time. Because one CPU need only wait until another is through reading 
or writing a single data item, there is little performance degradation when 
data is shared in a multiprocessor. 

Networks are complex structures and present many difficulties for 
system software. An international standard, the ISO model, describes a 
model of the multiple-layered software that is used to transfer programs 
and data between nodes. Because this detail is beyond the scope of this 
book, you should refer to a text specifically on networking for more 
information. This section simply examines some of the high-level alterna­
tives in physical interconnection organization, that is, network topology. 

Figure 11.10 shows several alternative network structures. Figure 
11.10a is a conventional point-to-point network. In this organization, each 
cable connects two nodes. Such a network is often called a store-and­
forward network, because intermediate nodes are responsible for receiv­
ing messages and forwarding them along the way to their destination. For 
example, a message from node D to node A must pass through nodes B 
and C. IfB or C is unavailable, A and D would not be able to communicate. 
This could be solved by building a fully connected point-to-point network, 
that is, one in which each node has a direct point-to-point link with every 
other node. However, such a network is prohibitively expensive and 
complex for even a network of moderate size. Consider that it would 
require on the order of N2 wires to fully connect N nodes. 

Another networking alternative, a star configuration, is shown in 
Figure 11.1 Ob. In this organization, all nodes are connected through either 
a central node or special-purpose central switch. The DEC CI (computer 
interconnect) bus is organized in this fashion. The advantage of this 
structure is that it is logically fully connected, and no failure of a 
processing node will interrupt communications between other nodes. 
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Figure 11. 10 Network topologies 

a. Point to point b. Star 

d. Broadcast 

Also, the average node-to-node wiring distance is reduced compared to 
some other schemes. The obvious disadvantage is the potential complexity 
of the central switch, which must be extremely reliable for the network to 
function reliably. 

A ring network, typically called a token-passing ring, is shown in Figure 
11.10c. In this organization, a single cable in the shape of a circle passes 
through a ring interface connected to each of the nodes. Typically, bits 
circulate around the cable in slots of fixed size. The concept of slots is a 
result of the small and finite amount of time it takes for a data bit to 
traverse the ring from start to finish. Multiple data bits can be inserted into 
the ring until the first bit arrives back at the start. By dividing the stream of 
bits into blocks of n bits, we can arrive at a set number of slots each 
capable of holding the n bits. 

In a token-passing ring, a special token within a slot travels around the 
ring to indicate a free slot. When a node sees this token and it wishes to 
transmit a message, it removes the token and places its message in the 
available slot or slots. The message contains the address of both the sender 
and the receiver, as well as the data to be transmitted. When the receiver's 
interface sees the message, it copies the message from, the ring and 
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replaces the token so that another node can use that slot. Or a message 
may continue around the ring until it arrives back at the original sender; 
the receiver can modify the message slot to indicate that the message has 
been read, so the sender has a definite acknowledgement. 

Finally, Figure 11.10d shows a broadcast network. The most common 
broadcast network is the 10-megabit/second Ethernet, which is a standard 
developed jointly by Xerox, DEC, and Intel. In a broadcast network, all 
nodes sit on a long triaxial cable. When a node sends a message, that 
message is visible to all nodes on the cable. However, only the destination 
node sees its address in the message header and copies the message from 
the cable. By using a special predefined address, it is fairly easy in such a 
network to use the broadcast feature so that a message is received by all 
nodes. Other predefined addresses can be used to multicast to a subset of 
nodes that are listening for that particular multicast address. 

One issue with broadcast cables is resolving contention, since all 
nodes could potentially try to send a message at once. The conventional 
scheme used to resolve contention is called Carrier Sense Multiple Access 
with Collision Detection, or CSMA/CD for short. In this scheme, each 
node has an interface that continually listens for messages. When a node 
wants to send a message, it first listens to see if there is a transmission in 
progress. If the cable is quiet, the node begins sending its message while 
continuing to listen. If two nodes sense that the network is available and 
try to transmit at the same time, a collision occurs and both nodes detect 
the collision as a change in the message being transmitted. Fortunately, a 
collision can occur only in the time it takes for the start of the message to 
propagate the length of the cable. 

When a collision occurs, both sending nodes back off, that is, they stop 
transmitting. Each node waits a random interval and then tries again, first 
listening to see if another transmission is going on and then transmitting if 
it is not. The random interval is different for each node, therefore those 
two nodes will not collide again. If a node retransmits and collides again 
(this time with another node), the sending node once again backs off but 
waits a longer random interval. Multiple consecutive collisions indicate a 
busy network, and the back-offs become longer to try to reduce the 
network load. In typical Ethernet networks, however, the cable is rarely 
utilized more than a few percent of the time. 

Broadcast, token-passing ring, and star networks are typically used to 
build local area networks (LANs). A LAN usually connects nodes located 
only a short distance apart, for example, 1,000 meters or less, typically the 
size needed to lay cable in a small building. These networks rely on full 
connectivity and low message-propagation time. By contrast, the point-to­
point network structure is used to implement long-haul networks, that is, 
networks that connect systems that may be hundreds or thousands of miles 
apart. In this case, the point-to-point links may range from slow-speed 
dial-up telephone line to dedicated data line to satellite transmission. 
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Long-haul networks are typically more complex and have to deal with 
more complex failure modes, such as lost or duplicated message packets, 
network partitioning, unreliable interconnects, and so on. 

The Initial Bootstrap Problem 

Summary 

We have examined the structure of I/O devices such as disks and buses 
and the logic needed to program them. One problem of any computer 
system is how it is started. Given a code required to read a disk, how is the 
machine "smart" enough to load the operating system from disk when it is 
first plugged in and powered on? 

The procedure for bringing up the software from a bare machine is 
known as bootstrapping (booting), because the system is being "brought up 
by its bootstraps." The booting procedure usually has several stages. On 
some early minicomputers, a small program was loaded into memory by 
hand via switches on the front panel of the processor. This program, 
known as the primary bootstrap, was typically only ten or twenty instruc­
tions long. On most modern computers, the primary bootstrap is stored in 
a read-only memory (ROM) chip that can be activated by the push of a 
button. 

Every system must have at least one mass storage device, called the 
boot device, which contains more code for starting the system. This code, 
called the secondary bootstrap program, is stored at a known place on.the. 
device, such as block zero of a disk. The purpose of the primary bootstrap 
is simply to load the secondary bootstrap into memory and transfer 
control. The secondary bootstrap program is large enough to contain logic 
for locating and loading the rest of the operating system. 

Before loading or starting the bootstrap, the computer must be 
brought to a known state. The processor must be halted, devices must qe 
initialized so that no transfers occur into memory, and memory manage­
ment must be turned off. The primary and secondary bootstraps operate 
on a bare processor and physical memory. As more intelligence is loaded, 
devices are initialized, memory management is turned on, and the 
operating system takes control. Finally, users are allowed to access the 
system. 

This chapter considered some of the characteristics of VAX input and 
output devices. We discussed the functions performed by I/O controllers, 
which control several devices concurrently and provide for the buffering 
of data between the device and memory. The differences between pro­
grammed I/O, where the CPU reads and writes data registers, and DMA 
I/O, where the device transfers directly to memory, were discussed in light 
of the speed of the data transfer. We looked at several typical I/O devices, 
their physical characteristics, their programming, and their operation. 
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The complexity of the devices and the need to share them among 
many users or processes precludes executing code that manipulates most 
I/O devices directly. Therefore, a controlling operating system is neces­
sary to manage these and other resources. Subsequent chapters discuss 
how the VAX hardware facilitates the management of resources and 
examine the characteristics of operating systems in general. We will also 
take a closer look at one particular operating system, the VAX Virtual 
Memory System (VAX/VMS). 

1. Explain the concept of contention as it applies to I/O devices using main 
memory. 

2. What is the difference between a device and a device controller? 

3. Sketch out the logical flow for the receiving and the transmitting of characters 
for the DZ 11 terminal controllers. 

4. Explain the difference between a fixed-head disk and a moving-head disk. 

5. Why is it best to make a disk a DMA-type device? 

6. For disk and tape I/O devices, list the functions that should be performed by 
the device drivers. 

7. List several advantages of using a message-oriented interface, such as MSCP, 
over a CSR-oriented interface. 

8. Describe the topological alternatives for network interconnection and list 
some of the essential properties of each alternative. 

9. One popular method of connecting terminals is through a network terminal 
controller and concentrator. The controller sits in a box to which the terminals 
connect. The box is not connected to a computer directly but sits on an 
Ethernet. Describe how such a concentrator might be used and what are its 
advantages and disadvantages. 
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The Support of an Operating System 

Chapter 11 considered some of the physical characteristics of the VAX 
I/O system. The complexity of the I/O devices and the need to share them 
among many users and processes precludes the execution of code that can 
manipulate I/O devices directly. However, even if we could directly access 
the physical devices, most applications would find little utility in doing so. 
Accessing a disk sector is of as little use to the payroll program as it is to 
the Fourier transform program. These programs do not want to handle 
interrupts or errors from the printer controller or worry about sharing the 
printer. Instead, a controlling program, the operating system, is used to 
manage those and other physical resources. 

The need for an operating system is really a matter of economics. 
Early computers were batch-processing systems. A single program, sub­
mitted on a deck of punched cards, was read into the computer memory­
and executed. When a program finished printing its results, the next 
program was loaded and run. 

The main problem with this mode of processing was that a single 
program could not use all of the expensive resources of the computer 
system effectively. Some programs were small in size, and most of the 
memory sat empty while they were executed. Some programs were I/O 
intensive, and since the program had to wait for each I/O operation to 
complete, the processor remained mostly idle. Finally, some programs 
were totally compute-bound, leaving the I/O devices unused while they 
ran. 

Efficiently utilizing expensive hardware resources required the shar­
ing of the processor, memory, and I/O devices by several programs at a 
time. This sharing would allow one program to be computing while 
another waited for its I/O operations to complete. Several programs would 
be loaded into memory so that the processor could be quickly switched 
from one program to another if the current program requested an I/O 
operation or finished processing. 

Sharing of resources was made possible by a multiprogrammed opera­
ting system. The multiprogramming system allows several programs to 
compete for computer resources, which are divided equitably among the 
programs. The multiprogramming system creates a logical environment 
for the programs, where each program operates as if it were the only one 
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using the system. This ability to create a simple, logIcal environment for 
each program is a consequence of sophisticated software that allows such 
conveniences as named files instead of disk cylinders or sectors. 

To provide these features, the operating system must deal with a 
number of complex issues. First, it must handle complex devices at the 
physical I/O level and be able to recover from unexpected device errors 
and conditions. Second, it must create an environment for each program, 
allowing the program to access shared resources but separating it from 
other programs. Since several programs share the hardware, they must be 
protected from each other. Third, the operating system must try to 
schedule resources in a way that provides fair service to each program 
while maintaining high utilization of the resources. This is a difficult 
decision-making process, since fair service and high utilization are often 
mutually exclusive. 

One might argue that as hardware prices decline, the economics will 
no longer justify sharing as they have in the past. Already, it is possible for 
many users to have a stand-alone computer, either a personal computer or 
workstation. However, even a single-user computer needs an operating 
system to perform the myriad of complex physical housekeeping func­
tions. In fact, single-user operating systems may be more complex because 
users' demands for new services are increasing quickly as prices decrease. 
In addition, the single-user computer must cooperate with other comput­
ers in a network to provide communications and informational and 
computational services. 

This chapter examines how an operating system manages the sharing 
of the processor and memory. Then we look at how the VAX architecture 
supports the operating system by providing high-level operating-system 
features in the hardware. 

Sharing the Processor 

As we have said, the multiprogramming system must divide the 
available processor time among its users in a way that is equitable. The 
scheduler is the operating system module that selects the programs to be 
run on the processor and decides how long each should run. The general 
strategy is to subdivide each second of processor time into a number of 
units, called time slices. Each program in the system is given one time slice 
to execute, after which it is interrupted so that another program can run. 
This is shown in Figure 12.1. A new program is also started whenever a 
running program completes or waits for an I/O operation to finish. Thus, 
the scheduler attempts to deliver some fraction of the processor time to 
each program in the system. 

In this way, each of the n programs in the system sees a processor with 
~ times the power of the actual CPU. From the point ofl view of the 
program, it executes continuously on a processor of speed n. However, a 
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Figure 12.1 Division of processor time by the scheduler 
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user at a terminal running a highly interactive program (that is, one that 
issues a large number of terminal I/O operations) may not be able to tell 
the difference, because the I/O operations are overlapped with the 
processing of the user's programs. 

Sharing the Memory 

Just as the operating system manages the sharing of the processor, it 
also manages the sharing of memory among several programs. Sharing of 
memory is more complex because programs address specific memory 
locations. Therefore, in addition to managing the physical division of 
memory among the programs, the operating system and the hardware 
must make each program believe that it is the only program in memory. 
The system must provide a logical environment for each program that 
allows the program to operate as if it had been loaded into contiguous 
physical memory. 

This logical environment. allows every program to be written for a 
contiguous, zero-based physical address space. However, since computers 
must run several programs concurrently to achieve high utilization, the 
operating system must provide the logical environment that the program 
expects. 

There are several techniques for hiding from the program its physical 
location in memory. The simplest scheme for allowing several programs to 
coexist in memory is relocation through the use of a hardware base 
register. With this technique, each program is loaded into contiguous 
physical memory, as shown in Figure 12.2. 

The CPU hardware contains two special registers: a base register and a 
length register. Before a program is started, these registers are loaded with 
the base physical address and the length of the program. When the 
program generates an address, the hardware first checks the length 
register to ensure that the program accesses only its memory. Then, the 
hardware adds the value of the base register to the program-generated 
address, producing the actual physical address. In this way, several 
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Figure 12.2 Relocated programs in physical memory 
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programs can reside in memory simultaneously. A program can be 
located anywhere in physical memory and still address memory as if it 
were loaded at physical address zero. Of course, there must be sufficient 
contiguous memory to contain the entire program. 

Program-generated addresses are called virtual addresses, because 
they refer to the contiguous logical address space, not to the actual 
physical memory locations. The CPU hardware converts a program­
generated virtual address into a physical memory address through the 
addition of the contents of a relocation register. 

A slight extension of the relocation scheme is segmentation. Logically, 
users write programs and subprograms that can be conveniently thought 
of as segments into which a problem has been subdivided. Each program 
segment in the system is written as if it were loaded into a contiguons 
memory space, starting with memory address zero. To support 
segmentation, mapping hardware must include a base register and a 
length register for each possible segment, as shown in Figure 12.3. Ad­
dress translation is more complex because the hardware must locate 
the appropriate base register for each memory reference. Segmentation 
does not require that the program be contiguous in physical memory. 
Since each segment is mapped separately, it could be loaded anywhere 
in memory. 

The problem with the relocation and segmentation schemes is the 
complexity of memory management for the operating system. As pro­
grams exit or wait for the completion of an event, they are removed from 
memory, leaving odd-sized holes. Because of this memory fragmentation, 
unoccupied segments may not be large enough to hold new program 
segments that need to be loaded into memory. The operating system must 
move segments around to compact all free segments into a large contigu­
ous space. This shuffling of memory is expensive and time consuming. 
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Figure 12.3 Program segmentation 
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Since it involves moving resident segments, the base registers must be 
changed to reflect the new virtual-to-physical translation. Because run­
ning programs must be stopped to allow relocation, less useful work is 
accomplished. 

Managing, compacting, and relocating odd-sized segments is time 
consuming. From the operating system viewpoint, a more uniform and 
more easily handled method of memory management is required. One 
solution is paging, which removes the need for the entire program to be in 
physical memory. Paging also solves the problems of fragmentation and 
compaction. In the paging scheme, the program is divided into equal-sized 
blocks called pages. Physical memory is also divided into pages. Because 
both programs and physical memory are divided into pieces of equal size, 
there is no problem fitting the pieces of a program into memory. Any 
program page will fit into any memory page. Since a page is usually 
smaller than a program, many pages are needed to hold the entire 
program. With paging there is no fragmentation problem. However, on the 
average, the last page of a program will be only half filled. This wasted 
space is known as internal fragmentation, as opposed to the external 
fragmentation caused by segmentation. 

For each program there is a list of mapping registers called a page 
table. The elements in the page table are page table entries (PTEs), each 
containing the base physical address for one page. Each PTE also contains 
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one bit, the Valid bit, that indicates whether the page is actually in physical 
memory. The presence of the Valid bit removes the restriction that all of 
the program must be in memory. If a reference is made to a nonresident 
or invalid page (that is, the Valid bit in the corresponding page table entry 
is 0), the hardware initiates an operating system routine that loads the 
page from disk. On a paging system with sufficient address space, the 
programmer need not worry about whether the program fits in physical 
memory. The programmer constructs the program for a large contiguous 
address space, and the operating system does the rest. 

Figure 12.4 shows an example of the physical address computation for 
a paging machine with N-bit addresses and M-bit pages (i.e, 2M bytes per 
page). The virtual address can be viewed as containing two logical 
components, a virtual page number and a byte offset within that page. The 
virtual page number, i, selects the ith page table entry, which contains the 
physical address of that page. The byte offset is appended to the physical 
page address to form the physical memory address of the referenced byte. 

The difference between segmentation and paging is that segmentation 
is convenient for the user, while paging is convenient for the operating 
system. In a strict sense, segmentation is concerned with the logical 
allocation of the program, while paging is concerned with the physical 
allocation of the program. As· with page table entries, it is possible for 
segment registers to contain a Valid bit; a segment fault would be 
generated on an attempt to access a segment not loaded in primary 
memory. With many segment registers (or more likely, with a segment 
table and many segment table entries), the program can be divided into 
many segments that can be scattered throughout physical memory. If the 

Figure 12.4 Address translation in a typical paging system 
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segments are constrained to be of equal size, segmentation degenerates 
into paging. 

Of course, the two concepts are not mutually exclusive, and some 
systems provide both paging and segmentation. In such systems, each 
segment is divided into a number of pages. The uniformity and consisten­
cy of fixed-size pages makes it easier for the operating system to allocate 
and deallocate space for different users. For example, in a segmentation 
scheme with paging, the virtual address can be logically broken into three 
parts, as shown in Figure 12.5. The segment number is used to select one 
of the entries in the segment table. The segment table entry contains the 
address of the page table for that segment. Next, the page number field of 
the virtual address locates one of the page table entries in the selected 
page table. The physical address is formed by concatenating the physical 
page address found in the PTE with the byte offset from the virtual 
address. 

This extra level of indirection provided by segmented paging simpli­
fies sharing of code segments between programs. With the one-level page 
table structure of Figure 12.4, each program would need entries in its own 
page table to map a shared section of code or data. With the segmented 
structure, however, the two programs could share a page table. Each 
program's segment table would have an entry that points to the page table 
for the shared segment. Therefore, a shared physical page would be 
mapped by only one PTE. This type of sharing makes it easier for the 
operating system to account for the page because there is only one 
descriptor (PTE) telling whether the page is in memory or on disk. 

Virtual memory is the term applied to memory systems that allow 
programs to address more memory than is physically available. The system 
disk provides the "virtual" memory by storing pieces of the program that 
are not currently in use. When one of those pieces is referenced, it is 
brought into physical memory by the operating system, and some piece of 
a resident program can, in turn, be moved back to the disk. This loading of 
pages from disk when a nonresident memory location is accessed is called 
demand paging. 

In summary, just as the operating system creates a logical temporal 
environment for each program, it also creates a logical memory environ­
ment using the memory-management schemes described here. Memory 
can be shared by many programs, with each program operating as if it 
were loaded into contiguous physical memory. The management of phys­
ical memory is done by the operating system to increase memory and 
processor utilization in a manner that is transparent to the program. 

Having examined the basic concepts of processor and memory 
sharing, the rest of this chapter describes those parts of the VAX architec­
ture that support the VAX operating system and its management of 
resources. Most of these features are invisible to the executing user 
program. However, an understanding of this level of the architecture will 
give you a better appreciation for how computers and operating systems 
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Figure 12.5 Address translation in a typical segmented paging system 
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provide the logical environment that is visible to the user. This chapter 
deals with the hardware mechanisms that are available for the operating 
system software to use. A later chapter discusses how this support is used 
to implement policies and to produce a higher-level logical structure for 
the convenience of the user. 

A user begins a session with a computer by logging into the operating 
system, that is, by supplying a user identification and a password. After 
validating this information, the operating system provides the user with an 
environment in which to edit, run, and debug programs as well as create, 
update, and maintain a set of permanent files. A process is the environment 
in which these operations are performed. It is the basic logical entity of the 
hardware and software systems, the environment in which programs 
execute, and the basic unit scheduled for execution by the operating 
system. 

Each program in the operating system runs in the context of a 
process. A process is, in effect, a virtual machine that defines the address 
space and the logical resources for the user. By a virtual or logical 
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Figure 12.6 User processes in memory 
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machine, we mean a conceptual environment in which the program sees a 
machine interface that mayor may not exist in physical hardware. 

A process is represented by its state, or context, which tells (1) the 
location in physical memory of the instructions and data of the process, (2) 
the next instruction to execute for the process (that is, its program 
counter), and (3) the contents of the hardware registers of the process. 

Figure 12.6 shows a symbolic representation of the processes in the 
system. As you will see, the VAX hardware directly supports the concept of 
a process. But for the time being, we will use the process concept to 
describe how the VAX architecture allows the operating system to provide 
sharing and protection among processes. 

Processor Access Modes 

The four access modes, known as Kernel, Executive, Supervisor, and 
User, provide the basic protection mechanism of the VAX processor. At any 
one time, a process executes its instructions in one of these modes. The 
mode of the process determines its privilege for accessing memory and the 
types of instructions it can execute. For instance, the instruction to halt the 
processor can be executed only in the most privileged mode, Kernel 
mode. 

Access modes provide layered protection for different levels of system 
software. They are often shown as concentric rings as in Figure 12.7, 
where the inner rings are more privileged than the outer rings. This 
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Figure 12.7 Use of access modes by VMS operating system 
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structure permits several distinct functional layers to be constructed, one 
upon another. Each inner layer provides primitive functions for the next 
outer layer to use. As each layer of software is added, a new logical 
interface is constructed, providing higher-level features. 

Layering of software simplifies its construction. If careful interfaces 
are designed between layers to restrict and control the flow of information, 
layers can be built independently. The VAX access modes allow for the 
layering of software into four levels. Hardware access modes formalize the 
structure by providing protection between levels. 

In general, routines that execute at a particular mode can protect 
their code and data from any less privileged mode. Thus, reading or 
writing certain data structures may require a more privileged access 
mode. Access modes also allow for restricting certain classes of instruc­
tions. Running in Kernel mode, the most privileged mode, the program 
has complete control of the processor and all its instructions, registers, 
and memory. 

Process Access Mode Stacks 
When the concept of the stack was introduced in previous chapters, it 

appeared that a process needed only one stack to handle subroutine and 
system calls. In fact, each process has four stacks, one for each processor 
mode. Each stack can be protected against access by less privileged 
modes. Having separate stacks allows code running at an inner level, that 
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is, in a more privileged mode, to maintain local information on its stack 
without worrying about interference from an outer level. For example, a 
command interpreter that runs in Supervisor mode can use the Supervi­
sor stack for information about its state. Control can be transferred to the 
user, leaving the Supervisor stack intact until control is returned to the 
Supervisor level. 

The VAX hardware maintains copies of the stack pointer for the four 
access modes of the current process. The stack pointer (SP) register always 
contains the stack pointer for the current mode stack. When a mode 
change occurs, the hardware automatically stores the contents ofSP into'a 
temporary location and loads a new value into SP from the copy of the 
stack pointer of the new mode. 

In addition to the four process stacks, there is a fifth system-wide stack 
called the Interrupt stack. While each user process has four stack pointers 
for each of the four access modes, there is only one Interrupt stack in the 
system and only one Interrupt stack pointer. The Interrupt stack services 
events that occur asynchronously to the execution of a process. When the 
interrupt occurs, the processor automatically switches to the Interrupt 
stack. (This is examined further in the sections on interrupts and excep­
tions.) 

Changing Modes 

Some of the processor-state information is maintained in a hardware 
register called the processor status longword (PSL). The upper 16 bits of the 
PSL are protected and cannot be modified by a user program. As shown in 
Figure 12.8, the PSL describes the current and previous modes of the 
processor. The modes are encoded in two-bit fields, where 

00 = Kernel 
01 = Executive 
10 = Supervisor 
11 = User 

The one-bit Interrupt stack field indicates that the processor is 
executing on the Interrupt stack. When this bit is set, the current mode 
field must be 00, that is, the processor must be in Kernel mode. 

Figure 12.8 Processor status longword 
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The processor normally runs at the least privileged mode, User mode. 
To perform a privileged function (for example, an I/O operation), the user 
calls an operating system service routine for assistance. If the system 
service routine needs to run at a more privileged mode, the routine 
executes a Change Mode instruction. For each access mode, there is a 
Change Mode instruction: CHMK, CHME, CHMS, or CHMU for Change 
Mode to Kernel, Executive, Supervisor, or User, respectively. The instruc­
tions have one operand, a code that specifies what privileged function or 
procedure to execute. 

When a Change Mode instruction is executed, the processor switches 
to the stack of the specified mode. It does this by saving the contents of the 
SP in an internal register and loading the SP with the saved stack pointer in 
the new mode. The PSL and the PC of the process are saved on the new 
stack. The processor then inserts the caller's mode in the PSL previous 
mode field and loads the new mode in the current mode field. Now 
running in the new mode, the processor transfers to a predefined routine 
within the operating system. This routine, called the change mode dis­
patcher, examines the code argument and dispatches to the operating 
system procedure, which performs the requested service. For example, 

use operating system Kernel mode procedure 
number 10 

CHMK #10 

changes the processor to Kernel mode and invokes the change mode 
dispatcher to execute a procedure indicated by argument 10. Normally, 
the user does not specify a Change Mode instruction explicitly, but instead 
uses a system call to invoke a system function. The called routine executes 
the Change Mode instruction if needed. 

It is important to note that both the dispatching routine and the final 
service routine execute within the context of the user's process. They 
behave similarly to local subroutines that a user may call. Therefore, even 
though the operating system service routine executes in a more privileged 
mode, it has full access to the user's address space. The Change Mode 
instructions, then, can be thought of as simple routine calls that cross an 
access mode boundary. Because the Change Mode dispatcher (which 
would typically be called a "gatekeeper") intercepts all Change Mode 
instructions, there is no other way for a program to change to a more 
privileged mode. Indeed, if a user does execute a Change Mode instruction 
directly, it will simply call an operating system routine. The routine will 
check to see if correct arguments are supplied and will return an error 
code if they are not; otherwise, it will execute the function. There is 
nothing "privileged" about the Change Mode instruction. 
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When the service routine completes, it must be able to return to the 
caller. Moving to a less privileged mode is done with the Return from 
Exception or Interrupt (REI) instruction. When an REI instruction is 
executed, the top of the current stack must contain the PSL and the PC for 
the new mode. The REI instruction causes the CPU to examine the current 
mode field of the PSL on the stack to ensure that the new mode is the same 
or less privileged than the current mode. Therefore, the REI instruction 
cannot be used to increase privilege. The REI instruction restores the PSL 
and the PC from the stack, changes the processor to the new mode, and 
restores the new mode's stack pointer from the temporary location where 
it had been saved. Execution continues in the new mode at the instruction 
specified by the PC. 

The Change Mode and Return from Exception or Interrupt instruc­
tions are used to increase and decrease processor access mode, respective­
ly. Increases in access mode are controlled because they are intercepted 
by the operating system. Using these mechanisms, the operating system 
itself can be implemented primarily as a collection of routines that the 
user calls to perform various functions. These routines execute within the 
context of the user process either at the user's access mode or at a more 
privileged mode. The routines have the ability to perform functions that 
require privilege without allowing the user to have direct access to the 
privileged resources. 

Checking for Accessibility 

As we discussed, the Change Mode instructions provide a cross-mode 
service call facility. When such a call is made, the caller often pushes 
arguments onto the stack for a service routine. Output arguments are 
specified as the address of a memory location (or locations) in the user's 
program to receive an output value from the service routine. 

Output arguments may cause a problem when the service routine 
executes in a more privileged mode. The service routine must be able to 
verify that the caller had access to the memory locations specified. 
Suppose the service routine executes in Kernel mode and the caller 
specifies an invalid memory location (for example, an address in the 
middle of the operating system). If the Kernel mode routine modifies the 
memory location, it will not be stopped by the hardware, even though the 
user-mode caller had no authority to reference it. 

To protect against such occurrences, two instructions check the 
accessibility of the previous mode (the caller) to read or write a series of 
bytes. These instructions are called Probe Read Accessibility (PROBER) 
and Probe Write Accessibility (PROBEW). A routine executing in a 
privileged access mode must always check the accessibility of input and 
output arguments when it is called by a less privileged mode. The section 
on memory management examines in more detail how memory protec­
tion is provided on the VAX. 
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Process Context Switching 

The operating system allocates processor time to each process in the 
system, scheduling each process to run for a given amount of time. When 
the time expires or if the process waits for an event, the state of the process 
is saved so that it can be continued at a later time. A new process is then 
loaded and run. This operation of changing the processor to a new process 
is called a context switch. 

Context switching is a common occurrence in a multiprogrammed 
environment because processes normally wait for the completion of I/O 
requests. A multiprogramming system may switch processes several 
hundred times per second. Consequently, the time necessary to perform 
this operation has a noticeable effect on system performance. 

To switch from one process to another, the operating system must 
save all the state information of the process, including its registers, stack 
pointers, program counter, and so on. The context is stored in a software 
data structure maintained by the operating system. The context for the 
new process must then be loaded into the hardware registers from its 
software storage space before the new process can execute. The VAX 
architecture has simplified context switching by making the loading and 
storing of these software data structures a hardware operation. 

The process control block (PCB), shown in Figure 12.9, is the data 
structure that contains all the hardware state information when the 
process is inactive. The last four longwords in the PCB contain registers 
that define the address space of the process. These longwords allow the 
processor to locate the physical memory for each process. On a context 
switch, state information is loaded from or stored into the PCB. Loading 
and storing of the state information are assisted in the VAX hardware by a 
privileged register, one that only the operating system can access, called 
the process control block base register (PCBB). The PCBB register points to 
the PCB of the process currently executing. 

To perform a context switch, the operating system first executes a Save 
Process Context (SVPCTX) instruction that causes the hardware to auto­
matically store all the registers of the current process into its PCB, which 
is pointed to by the PCBB register. Next, the PCBB register is loaded with 
the address of the PCB of the new process to be run. The operating system 
executes a Load Process Context (LDPCTX) instruction, which loads all 
the hardware registers from the new PCB. LDPCTX also pushes the PC 
and the PSL of the new process on the Interrupt stack (the operating 
system must run on the Interrupt stack following an SVPCTX, since there 
is no process and hence no process stack). Next, the operating system 
executes a Return From Exception or Interrupt (REI) instruction to 
continue the execution of the new process. 

The simplified code sequence in Figure 12.10 shows the instructions 
executed in a context switch. The Move To Processor Register (MTPR) 
instruction loads the hardware process control block base register with 
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Figure 12.9 Hardware process control block 
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the physical address of the PCB for the new process. Since every process in 
the system has private stacks and stack pointers for all access modes, a 
process can be context switched while executing operating system code in 
Kernel mode. This is unlike systems in which the operating system 
executes in a special context from which it cannot be interrupted. 

Summary of Process Concepts 

We have now covered a number of features that aid the operating 
system in its management of the processor. First, each program runs in the 
context of a process. The process is the entity scheduled by the operating 
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Figure 12.10 Context switch sequence 
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system scheduler. A process is described by its state information, includ­
ing its registers, physical memory, program counter, and so on. 

A process executes instructions in one of four processor access 
modes. Normal applications programs execute in User mode. However, 
the user can call operating system service routines that execute at a more 
privileged mode. The operating system guards the raising of access modes. 
Although a process can request a service that will be performed in a more 
privileged mode, it cannot execute its own code in that mode. 

Finally, the processor maintains the hardware-state information for a 
process in a data structure called a process control block. The operating 
system scheduler interrupts the execution of one process and begins the 
execution of another one through the use of special load and store process 
context instructions. 

Having seen how the operating system allows several programs to 
share the processor, we next examine how the VAX creates a logical 
memory environment for each process. 

VAX Memory Management 

Part of the context of each process in the system is its address space. 
Providing this address space is the job of the operating system memory­
management routines and the underlying hardware. 
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There are two separable functions required of the memory-man­
agement subsystem of the operating system. The first gives each user 
program the impression that it is running in contiguous physical memory, 
starting at address zero. This is how we have viewed memory since Chapter 
2. The second function divides the available physical memory equitably 
among the users of the system. To obtain efficient memory utilization, the 
system must allow several processes to exist in memory concurrently. 

VAX Memory Structure 

One of the most critical decisions in the design of a computer system 
is the number of bits to be used for an address, since this determines the 
amount of memory that can be directly accessed (that is, the size of the 
address space). The address space is the set of unique memory addresses 
that a program can generate. On the VAX, since addresses are 32-bit 
unsigned integers, a program can address 232

, or 4,294,967,296, bytes. 
To the programmer, then, memory is a contiguous array of 232 

individually addressable bytes. Of course, programs and data structures 
are rarely large enough to require even a fraction of that space. Conse­
quently, the VAX address space is divided into several functional regions, 
simplifying the user-operating system interface with little loss in 
addressability. 

Besides the functional regions, the VAX address space is divided into 
512-byte pages. A program is composed of a linear array of pages 
numbered from 0 to some large upper limit (actually 223

, or 8,388,608). 
For example, the first four pages of the address space of a program are 
numbered as shown in Figure 12.11. 

Because pages are 512 (or 29
) bytes, the low-order 9 bits of the 32-bit 

virtual address specify the location of the byte within the page being 
referenced. The high-order bits, called the virtual page number (VPN), 
specify the number of the page within the address space as shown: 

31 0908 00 

Virtual page number Byte offset 

For example, in Figure 12.11, virtual address 514 decimal locates the 
third byte (byte number 2) in the second page (page 1) of the program's 
virtual memory space. This is shown more readily in the binary represen­
tation of address 514: 

31 0908 00 

From this we see that address 514 specifies virtual page 1, byte offset 2. 
Figure 12.12 shows a sample allocation of process virtual pages· to 

physical memory. Like logical memory, physical memory on the VAX is also 
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Figure 12.11 Division of address space into pages 
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divided into 512-byte pages. Physical memory is addressed via a physical 
address. The physical address can also be viewed as having two compo­
nents: the upper 21 bits specifying the physical page number and the 
low-order 9 bits specifying the byte within the physical page: 

29 0908 00 

Page frame number Byte offset 

Notice that the VAX physical addresses are 30 bits, although the 
maximum amount of physical memory allowed on the processor is 
implementation specific. Because physical memory can be viewed as a list 
of physical frames or page-sized slots that hold program virtual pages, the 
physical page number is often called the page frame number (PFN). 
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VAX Page Tables 

On a paged virtual memory system, a program is allowed to execute 
with only some of its pages in physical memory. Because each page is 
addressed independently of the next, the resident pages can be scattered 
throughout physical memory. However, when a program references an 
address in virtual memory, the hardware must calculate the correspond­
ing physical address. The mechanism for this calculation, called virtual 
address translation, uses a data structure called a page table. 

A page table is an array of longword descriptors, one for each page in 
the virtual memory of the program. Each descriptor, called a page table 
entry (PTE), indicates 

• what processor access modes can read or write the page 

• whether the page is in physical memory 

• the page frame number of the corresponding physical page if it is in 
memory 

If the page is not in physical memory, the PTE can specify where to 
find a copy of the page on disk. We sometimes refer to a structure like this 
as a map because it gives the directions to (location of) the data in 
memory. 

The VAX page table entry format is shown in Figure 12.13. Bit 31 of 
the PTE is the Valid bit. When set, the Valid bit indicates that the virtual 
page is in memory and that bits <20:0> contain the physical page frame 
number for that page. If the Valid bit is zero, the PTE does not contain a 
valid page frame number, and the software can use bits <26:0> to keep 
information about the page location on the system disk. If a program 
references a virtual address for which the Valid bit is zero, the hardware 
generates a "translation not valid" fault, or page fault. This fault causes the 
hardware to transfer control to an operating system routine to bring the 
page into physical memory. Faults are described in more detail later in this 
chapter. 

Bit 26, the Modify bit, is set by the hardware on the first write to the 
page. When the operating system wants to write a page back to the disk, it 
first checks the Modify bit to see if the page has been modified. If not, the 
write can be avoided because the disk already contains an up-to-date copy. 

Figure 12.13 VAX page table entry format 

31 30 27 26 25 21 20 00 

Page frame number 

For operating system ] 
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Bits <30:27> of the page table entry contain a protection mask that 
indicates which processor access modes, if any, are allowed read or write 
access to the page. If a process references an address it does not have the 
privilege to access, the hardware generates an access violation fault. Even 
when the Valid bit is zero, the privilege field is checked so that a program 
cannot cause a page to be faulted for which it has no access rights. Table 
12.1 gives the encoding of these bits within the PTE. 

The hardware uses the page table for every program memory access, 
as shown in Figure 12.14. The virtual page number of the virtual address is 
used to locate the appropriate PTE within the page table. If the Valid bit is 
set and the protection check succeeds, then the page frame number in the 
low 21 bits of the PTE is appended to the low 9 bits of the virtual address, 
forming the 30-bit physical address. 

VAX Address-Space Regions 

On the VAX, the virtual address space is actually broken into several 
functional regions or segments. Figure 12.15 shows the division of the 
virtual address space into two halves, called system space and process 
space. Process space is again broken into the program (PO) and control 
(P 1) regions. The high-address half of system space is reserved for future 
use. The arrows in Figure 12.15 show the direction of dynamic growth in 
each region. 

Table 12.1 PTE Protection Encoding 

Code 
Decimal Binary K E S U Comment 

0 0000 No access 
1 0001 Unpredictable Reserved 
2 0010 RW 
3 0011 R 
4 0100 RW RW RW RW All access 
5 0101 RW RW 
6 0110 RW R 
7 0111 R R 
8 1000 RW RW RW 
9 1001 RW RW R 
10 1010 RW R R 
11 1011 R R R 
12 1100 RW RW RW R 
13 1101 RW RW R R 
14 1110 RW R R R 
15 1111 R R R R 

No access K Kernel 
R Read only E Executive 
RW Read write S Supervisor 

U User 
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Figure 12.14 Virtual address translation 
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Each region has its own page table. Each page table is described to the 
hardware by two registers: a base register that contains the page table 
starting address and a length register that contains the number of page 
table entries in the table (that is, the number of pages mapped within the 
region). 

The two high-order bits of a virtual address, as shown in Figure 12.16, 
specify the region that contains the address. When a memory reference is 
made, the hardware examines bits 31 and 30 of the virtual address to 
determine which page table to use. The selected base and length registers 
are then used, along with the virtual page number, to locate the PTE. 
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Figure 12.16 VAX virtual address 
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The high-address half of the address space is called system space 
because it is shared by all processes in the system and because the 
operating system runs in this region. There is only one page table for 
system space, called the system page table (SPT), that translates all system 
space references. All processes referencing a virtual address in system 
space access the same physical location. The operating system is located in 
system space and is shared by all processes. Thus, the operating system is 
in the same section of the address space of each process. In fact, the 
operating system is simply a collection of routines located in the system 
address space that user programs can call on to perform services. 

The system page table is described by its two hardware registers, the 
system base register (SBR) and the system length register (SLR). The op­
erating system loads these registers when it is booted. The system base 
register contains the starting physical address of the system page table, 
which must be contiguous in physical memory. Notice that the hardware 
must reference the system page table directly by physical address, since 
there can be no virtual-to-physical conversion without the page table itself. 

The hardware uses the translation process shown in Figure 12.17 to 
calculate a physical memory address from a system virtual address. The 
physical address of the page table entry is computed using the contents of 
the System Base Register and the virtual page number in the specified 
system virtual address. Figure 12.18 shows an example of the formation of 
a physical address from a system space virtual address. 

Process Space 

The low-address half of the VAX address space, shown in Figure 12.19, 
is called process space. Process space itself is divided in half by bit 30 of 
the virtual address. The lower half of process space (bit 30 = 0) is known as 
the program region, the upper half (bit 30 = 1) as the control region. 

Unlike system space, which is shared by all processes, process space is 
unique to each process in the system. In other words, each process has its 
own page tables for its private program and control regions. Different 
processes referencing the same process space virtual address access 
different physical memory locations. 

The reason for having two process regions is to allow for two 
directions of growth. The program region, PO, holds the user's program. 
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Figure 12.17 System space address translation flowchart 
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Figure 12.18 System space virtual address translation 
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This segment provides the zero-based virtual address space into which 
most programs expect to be loaded. The program can expand dynamically 
toward higher addresses. The control region, on the other hand, conve­
niently accommodates the User mode stack of the process, since stacks 
grow toward lower addresses. Operating systems can also use the control 
region, PI, to contain protected process-specific data and code, as well as 
the stacks for the more privileged access modes. 

The PO and PI page tables are described by the hardware base and 
length registers POBR, POLR, PI BR, and PI LR. These registers are always 
loaded with the address and the length of the page tables for the process in 
execution. Unlike the system page table, which is stored in contiguous 
physical memory and cannot be paged, the process page tables are stored 
in contiguous virtual memory in system space and can be paged. The base 
registers thus contain system space virtual addresses. 

Because the process page tables exist in virtual memory, a process 
space translation demands extra work. The hardware must first use the 
system page table to compute the physical address of the process page 
table. Once the physical address of the process table (PO or PI) is located, 
the translation process proceeds as it does for system space. Figure 12.20 
shows the extra steps in process address translation. 

As shown in Figure 12.9, the PO and PI base and length registers are 
part of the PCB. Thus, the process address space is automatically switched 
by the execution of the VAX context-switch instructions. 

Privileged Processor Registers 

This chapter has referred to a number of special registers that support 
the operating system data structures, for example, the process control 
block base register (PCBB), PO page table base register (POBR), and PO 
page table length register (POLR). These registers are known as privileged 
processor registers, or privileged registers, on the VAX. A privileged register 
is one intended for use only by the operating system. Privileged registers 
cannot be accessed or modified by user programs. 

Each privileged processor register on the VAX has a privileged reg­
ister number, as shown in Table 12.2. The column labelled "Scope" tells 
whether the register contains information about the state of the CPU or the 
state of the current process. 

The Move From Processor Register (MFPR) and Move To Processor 
Register (MTPR) instructions can be used to read and write privileged 
registers. The source (for MFPR) or destination (for MTPR) is specified by 
the register number. For example, to store the current value of POLR in Rl 
and load a new value from R2, the following instructions would be used: 

MFPR 
MTPR 

#9,Rl 
R2,#9 

; load POLR into Rl 
; load new POLR from R2 

The MTPR and MFPR instructions are protected, and execution from 
any mode other than Kernel causes a fault. 
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Figure 12.20 Process space versus system space address translation 
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Table 12.2 VAX Privileged Processor Registers 

Register Name Mnemonic Number Scope 

Kernel Stack Pointer KSP 0 Process 
Executive Stack Pointer ESP 1 Process 
Supervisor Stack Pointer SSP 2 Process 
User Stack Pointer USP 3 Process 
Interrupt Stack Pointer ISP 4 CPU 
PO Base Register POBR 8 Process 
PO Length Register POLR 9 Process 
PI Base Register PIBR 10 Process 
PI Length Register PILR 11 Process 
System Base Register SBR 12 CPU 
System Length Register SLR 13 CPU 
Process Control Block Base PCBB 16 Process 
System Control Block Base SCBB 17 CPU 
Interrupt Priority Level IPL 18 CPU 
Asynchronous System Trap Level ASTLVL 19 Process 
Software Interrupt Request SIRR 20 CPU 
Software Interrupt Summary SISR 21 CPU 
Interval Clock Control ICCS 24 CPU 
Next Interval Count NICR 25 CPU 
Interval Count ICR 26 CPU 
Time of Year TODR 27 CPU 
Console Receive CSR RXCS 32 CPU 
Console Receive DBR RXDB 33 CPU 
Console Transmit CSR TXCS 34 CPU 
Console Transmit DBR TXDB 35 CPU 
Memory Management Enable MAPEN 56 CPU 
Translation Buffer Invalidate All TBIA 57 CPU 
Translation Buffer Invalidate Single TBIS 58 CPU 
Performance Monitor Enable PMR 61 Process 
System Identification SID 62 CPU 
Translation Buffer Valid Check TBCHK 63 CPU 

Summary of Memory Management Concepts 

This section described how the VAX hardware provides for the logical 
program address space and the sharing of memory by several programs. 
VAX programs reference a linear virtual address space. The virtual 
address space, as well as the physical memory address space, is divided 
into 512-byte pages. As part of its private state information, each process 
has data structures, called page tables, that describe the physical memory 
location of each virtual page. While a process is running, the CPU uses the 
process's page table to translate program-generated addresses into physi­
cal memory addresses. 

The VAX process address space is divided into several regions. The 
low-address half is unique to each process. The high-address half is a 
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system-wide address space, used for the operating system, that is shared by 
all processes. Because system space is part of the address space of every 
process, a program can directly call operating system routines for service. 
In addition, since the operating system routine runs in the context of the 
calling process, it has access to that process's virtual memory (and only 
that process's memory). The fact that the operating system exists in the 
process address space and runs in the context of every process greatly 
simplifies operating system construction. 

Now we can understand the need for the processor access modes 
described earlier. The operating system code and data must be protected 
because they can be directly addressed by users. The access modes permit 
the operating system to protect its code and data from user observation 
and tampering, while still allowing users to call operating system routines 
for service. The Change Mode instructions provide a protected crossing 
between user programs and operating system services that operate on 
protected data structures. 

Interrupt and Exception Handling 

So far, we have described the VAX architecture features that support 
the management of the processor and memory. The management of I/O 
devices is handled at a different level than the management of the 
processor and memory. For nonshared devices, the program allocates the 
device while it is in use. The operating system ensures that no other 
program can use the device while it is allocated. For shared devices, such 
as disks, the operating system maintains a logical file structure. A request 
for a file I/O operation is checked against the user's privileges. In either 
case, the operating system does not worry about guaranteeing fair service. 
I/O requests are usually processed in order or sequenced according to the 
priority of the program. 

The problems associated with I/O functions are related to the 
real-time nature of devices. This section looks at how interrupts are used 
to service devices with real-time requirements; it also examines the use of 
exceptions in program execution. 

Interrupts and Exceptions 

Chapter 11 explained that an interrupt is a signal from an I/O device 
to the CPU. The interrupt causes the CPU to suspend the current process 
and execute a special operating system service routine to handle the 
external condition. Interrupts save the processor from having to examine 
(poll) each device periodically to see if there has been a change in its state. 
Other conditions that occur within the running program, called excep­
tions, also require special handling by the operating system. We have 
already seen examples of exception conditions: the page fault and the 
Change Mode instructions. 
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Interrupts 

Exceptions 

The Support of an Operating System 

An interrupt is an external event asynchronous to the current process 
execution that causes the processor to change the flow of control. In a 
sense, it is like an externally triggered subroutine call. Because the 
interrupt is not related to the running process, the routine initiated by the 
interrupt executes on the system-wide Interrupt stack. The PC and the PSL 
of the running process are saved on the Interrupt stack so that the process 
can be resumed later with a Return from Exception or Interrupt (REI) 
instruction. 

Because interrupts occur asynchronously and because there are 
many devices that may require service, the processor must be able to 
arbitrate interrupt requests. Associated with each interrupt request is an 
interrupt priority level (IPL). Because some events have more time-critical 
requirements than others, the processor grants an interrupt to the request 
with the highest priority. When that request is serviced, requests with 
lower priority are granted. 

The VAX architecture recognizes thirty-two interrupt priority levels. 
The lowest priority, IPL 0, is used for all user mode and most operating 
system code. The next fifteen levels are reserved exclusively for the 
operating system. The highest sixteen levels are used for hardware 
interrupts. Peripheral devices interrupt at levels 16 through 23, the system 
clock interrupts at level 22, and levels 25 through 31 are used for urgent 
processor error conditions, such as power failure. 

The IPL of the processor is contained in bits 16 through 20 of the PSL. 
Thus, when the processor is interrupted by a higher-priority interrupt 
request, the current interrupt priority level is saved within the PSL on the 
stack. When a higher-level routine executes an REI instruction, the PSL of 
the lower-priority routine is restored, and the processor returns to the 
lower priority level. 

An exception is an unusual condition that results from the execution of 
an instruction that causes the processor to change the flow of control. 
Because exception conditions are caused by the running process, they are 
usually serviced within the context of that process on one of the process 
stacks. The VAX recognizes three types of exceptions: traps, faults, and 
aborts. When an exception occurs, the processor pushes three longwords 
onto the stack: the current PSL, the PC, and a type code indicating the 
cause of the exception. 

A trap is an exception condition that occurs at the end of an 
instruction. In this case, the PC pushed on the stack is the PC of the 
instruction following the one that caused the trap. Some instructions 
explicitly request an exception. For example, Change Mode instructions 
always trap to an operating system routine for handling, as explained 
previously. However, there are really two kinds of traps that concern the 
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Figure 12.21 Program status word 
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user process. First is the trace trap, used to debug programs. The trace trap 
allows the debugger to gain control following the execution of every 
instruction. Second is the arithmetic trap, which can occur after the 
completion of an arithmetic operation. Examples include the integer 
overflow trap, in which the result is too large to be stored in the given 
format, and integer divide-by-zero trap, in which the supplied divisor was 
zero. Because some routines may not want to take exceptions for all of 
these arithmetic conditions, a programmer can disable some exception 
conditions by clearing bits in the PSW, shown in Figure 12.21. 

There is no way to disable exceptions for division by zero and 
floating-point overflow. Also, because each routine has its own expecta­
tions about arithmetic conditions, the VAX calling mechanism allows the 
called routine to specify the condition of the integer overflow and decimal 
overflow bits. We explained in Chapter 6 that the word call mask at the call 
entry site contains bits specifying which registers should be saved on 
entry. The full format of the call mask is shown in Figure 12.22. Only 
registers 0 through 11 may be specified (the others are automatically saved 
in the call frame). The high two bits of the entry mask specify the condition 
of the integer and decimal overflow bits. Since the PSW is saved in the call 
frame, a Return instruction automatically restores the previous state of the 
overflow bits. 

An exception condition that arises in the middle of an instruction is a 
fault. A page fault, for example, may occur during instruction operand 

Figure 12.22 VAX call entry mask 
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fetching. Floating-point overflow, divide-by-zero, and underflow (in which 
the resulting exponent is too small to be represented in the data type) are 
also defined as faults. The registers and memory must be preserved so that 
the instruction can be restarted and still produce the correct results. 
Therefore, the PC pushed on the stack points to the instruction that caused 
the fault. If the operating system routine is able to clear the condition, the 
instruction is restarted from the beginning. 

Finally, an exception condition that arises in the middle of an 
instruction that cannot be restarted because of the condition of the 
registers or memory is called an abort. Aborts are terminating conditions. 
For example, if, while pushing information onto the Kernel stack, the 
processor determines that the Kernel stack pointer contains an illegal 
address, an abort condition is signaled. This usually indicates an operating 
system error. Because the Kernel stack pointer is invalid, the abort 
condition is handled on the Interrupt stack, and the instruction cannot be 
restarted. 

Traps, faults, and aborts are the three types of exceptions recognized 
by the VAX hardware. Both the exception and the interrupt mechanisms 
handle special conditions and have the same effect, namely, switching the 
processor to a special routine to handle the condition. The differences 
between interrupts and exceptions are summarized in the following list. 

Interrupts 
Asynchronous to the execution 
of a process. 

Serviced on the system-wide 
interrupt stack in system-wide 
context. 

Changes the IPL to that of the 
interrupting device. 

Cannot be disabled, although 
lower priority interrupts are 
queued behind higher priority 
interrupts. 

Exception 
Caused by process instruction 
execution. 

Serviced on the process local 
stack in process context. 

Generally does not alter the 
IPL. 

Some arithmetic exceptions 
can be disabled. 

Interrupt and Exception Vectors 

When an interrupt or an exception occurs, the hardware transfers to a 
predefined routine to service the condition. The hardware discovers the 
address of the service routine by examining a vector specific to the con­
dition that occurred. A vector is a longword that dictates the action to be 
taken when a specific condition occurs. The vector specifies both the 
address of the service routine and the context in which the condition is to 
be handled. 
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The system control block (SCB) is a data structure that contains 
vectors for each of the various traps and exceptions and for each software 
and hardware interrupt level. The system control block base (SCBB) 
register is a privileged register containing the physical address of the 
system control block. Figure 12.23 shows the layout of the imple­
mentation-independent vectors in the SCB (the actual size of the SCB may 
differ on different processors and configurations). 

The vectors are divided into two fields. Bits < 1 :0> contain a code 
specifying how the interrupt should be serviced. The binary encoding is as 
follows: 

• OO-If the processor is already running on the Interrupt stack, it 
continues on the Interrupt stack; otherwise, it services this event on 
the Kernel stack. Bits <31 :2>of the vector contain the virtual address 
of the service routine. For this and the next encoding, the service 
routines must begin on a longword boundary, because the virtual 
address is formed by appending two 0 bits to the address contained in 
bits <31 :2> of the vector. 

• 01-This event is serviced on the Interrupt stack, and the IPL is raised 
to IF hex if this is an exception. Bits<31 :2> of the vector contain the 
virtual address of the service routine. 

• 10-This code is for events handled by writable control store (WCS) 
microcode. Bits <15:2> are passed to the microcode. IfWCS does not 
exist, this operation is undefined. 

• II-This code is reserved. 

Software Interrupts 

As stated earlier, the VAX processor provides 15 interrupt priority 
levels (IPLs) for use by the operating system software. Since the hardware 
contains a separate vector for each IPL, the operating system can use 
software interrupts as routine calls, where the service routine for each 
level performs a specific function. A Kernel mode routine can invoke the 
service by requesting an interrupt at the appropriate level. The IPL at 
which a specific task is performed indicates its relative importance, and 
VMS uses IPLs to ensure that more important tasks are performed before 
less important tasks. 

The management of software interrupts uses three of the privileged 
processor registers. The first register is the software interrupt summary 
register (SISR) as shown in Figure 12.24. SISR contains a bit for each of the 
15 software interrupt levels (1-15). When the processor priority level 
drops below the highest level for which a bit is set in SISR, an interrupt 
occurs at that level. 
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Figure 12.23 System control block 
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Figure 12.24 Software interrupt summary register 
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The software interrupt request register (SIRR) is used to request an 
interrupt at a given level. The software requests an interrupt by writing the 
desired level into the SIRR using the Move To Processor Register (MTPR) 
instruction. If the requested level is less than the the current processor 
priority level, the appropriate bit is set in the SISR described previously. If 
the requested level is higher than the current processor level, an interrupt 
is immediately generated at the requested level. 

Finally, the interrupt priority level register is used to read or set the 
processor priority field of the processor status longword (PSL). Kernel 
mode software can raise or lower its processor level by writing this 
register. If the instruction specifies a higher level than the current IPL, the 
processor is raised to the specified level. If a lower level is specified, the 
processor priority level is lowered. However, lowering the processor level 
may cause an interrupt for any pending levels set in the SISR. 

Summary of Condition and Exception Handling 

Summary 

This section examined the VAX mechanisms for dealing with special 
conditions: interrupts and exceptions. An interrupt is an external device­
generated signal that tells the operating system to service a device. The 
exception is the result of an unusual condition in the execution of a 
program instruction. The existence of exceptions and interrupts reduces 
the work required of the processor. The software does not have to 
constantly check for special conditions, completion of device operations, 
or erroneous arithmetic results. Instead, the hardware automatically 
reports the occurrence and prioritizes its servicing. Through the use of 
vectors, the operating system tells the hardware what action to take when 
a special condition occurs. 

This chapter described how the VAX architecture helps the operating 
system in the physical management of its three major resources-the 
processor, the memory, and the I/O devices. The VAX hardware provides 
process support through the context-switching instructions and layered 
protection through the processor access modes. It supports a virtual 
memory environment that protects process-local data while allowing 
efficient sharing of the operating system. And, it contains an efficient 
mechanism for servicing external events and conditions. All of these 
features greatly simplify the job of the operating system. The following 
chapter examines how the operating system uses these mechanisms to 
build a logical user environment. 
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Exercises 

The Support of an Operating System 

1. List some of the functions provided by an operating system. 

2. What is a process? Why are processes useful? What is the context of a process? 
What operating system data structures describe the context of a process? 

3. What are VAX processor access modes? What are they used for? How are they 
controlled? 

4. What is process context switching? List the steps involved in a VAX context 
switch. 

5. Explain the difference between virtual and physical memory. Can you have 
physical page faults? Why must the VAX system page table (SPT) always be 
resident in contiguous physical memory? 

6. Why is the VAX address space divided into several regions? How many memory 
references are needed to access a location in system space on the VAX? How 
many for a location in process space? 

7. Why do POBR and P1BR contain virtual addresses? 

8. If 90 percent of all references are to process space addresses, what is the 
average number of memory references required to access a location? 

9. Given the process (PO) page table below 

E0000028 Virtual page 0 page table entry 

70000105 Virtual page 1 page table entry 

00000064 Virtual page 2 page table entry 

38000012 Virtual page 3 page table entry 

what will happen when a User mode process attempts to first read and then 
write a 32-bit longword at each of the following virtual addresses? For those 
operations that succeed, what physical address will be accessed? What effect, if 
any, does each access have on the page table entry? 

a. 0000006E 
h. 000001FE 
c. 00000214 
d. 00000721 
e. 00000436 

10. Assume that a VAX operating system is initialized to support 64 simultaneous 
processes, each of which can have a virtual address space of 16 megabytes. 
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How big is the system page table space required to map the user page tables? 
What does this imply about the primary memory cost of supporting user 
virtual memory on the VAX? 

11. What is the difference between a fault, a trap, an abort, and an interrupt? 

12. Why can't all arithmetic traps be disabled? 

13. What is the system control block? Does the SCB reside in physical or virtual 
memory? Why? 

14. The privileged register MAPEN is used to enable VAX virtual memory. When 
the VAX is first powered on, an initial bootstrapping routine is read into 
memory. Memory management is turned off, and the routine executes in 
physical memory. That is, all generated addresses specify physical memory 
locations directly. What must this routine do before it enables the use of virtual 
memory? 

15. What happens if a VAX/VMS Kernel mode routine running at IPL 0 executes 
the following code sequence? 

PR_IPL = 18 
PR$_SIRR = 20 

MTPR 
MTPR 
MTPR 

MTPR 

#8,#PR$_IPL 
#5,#PR$_SIRR 
#3,#PR$_SIRR 

#O,#PR$_IPL 

define IPL privileged reg. 
define interrupt request reg. 



13 The Structure of a VAX 
Operating System 

The previous chapter began to consider an operating system and its 
management of physical resources. It then took an in-depth view of the 
VAX architectural features that support an operating system and its 
creation of a logical programming environment. 

This chapter describes the use of those architectural features by the 
VAX/VMS (Virtual Memory System) operating system. In particular, this 
chapter discusses the strategies used by the VMS operating system kernel 
in its resource-management activities. The material provides a close view 
of the implementation of the VMS operating system. VMS presents an 
interesting example because it was designed in parallel with the VAX 
architecture and takes advantage of the features described in the previous 
chapter. 

Process Scheduling 

302 

We have already seen the details of process management in the VAX 
hardware and briefly described the operating system scheduler, which 
allocates processor time to executable processes. In a multiprogrammed 
system, when the scheduler gives the CPU to a process, the process is 
usually allowed to compute for an interval of time called a quantum. If the 
quantum expires or if the process suspends itself by waiting for an event 
such as an I/O completion, the scheduler saves the state of the current 
process and selects another process to execute. 

The job of scheduling is one of selecting a process to be run in a way 
that gives users equitable service. There are many process characteristics 
that can help select a process to be run, including priority, memory 
residency, size, and readiness to run. The schedulers for different systems 
may favor different user processes, depending on the environment. For 
example, some systems favor computational users, some favor interactive 
users, and still others favor the service of time-critical events. 

In the simplest scheme, a single queue of executable processes is 
maintained, and processes are scheduled round-robin. That is, when the 
processor becomes available, the scheduler chooses the process at the 
head of the execute queue. When that process's quantum expires, the 
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scheduler places that process on the tail of the queue and chooses the next 
process from the head. Thus, the scheduler cycles through all executable 
processes, giving each process an equal chance to execute. 

If the operating system wants to favor different types of processes, it 
usually adopts a priority ordering scheme. Processes with higher priorities 
are favored over lower-priority processes. Each user might have an initial 
fixed priority based on a job class assigned by a system manager (for 
example, depending on the amount of money the user pays), and the 
priority might be modified as a result of the activity of the process. Or 
processes could be given priorities depending on the expected remaining 
service time. Thus, the scheduler may choose to run jobs that are expected 
to complete quickly. This gives users response time commensurate with 
the resource requirements of the job. Regardless of the policy implement­
ed, when the quantum expires, the scheduler must again select the next 
process to run. 

VMS Process Scheduling 

In the VMS operating system, the scheduler maintains a data struc­
ture called the software process control block (PCB). Just as the hardware 
process control block contains all of the hardware context information for 
each process, the software PCB is part of the context for every process and 
describes the condition of a process at any point in time. For example, the 
software PCB contains the user's privileges, accumulated resource usage 
information, user name, and so on. The scheduler keeps track of the 
condition of each process by maintaining queues of software PCBs 
organized by process state and priority. Each process's software PCB is 
linked onto one of the scheduler's queues. 

Picking a new process to run in VMS is simple. Each process in the 
system has an associated priority between 0 and 31. (Process priorities are 
defined by the operating system and are not related to the processor 
interrupt priority levels discussed in the last chapter.) When a memory­
resident process is ready to compute, it is placed on one of the 32 
corresponding runnable priority queues maintained by the scheduler for 
executable processes, as shown in Figure 13.1. When selecting a new 
process to run, the scheduler always chooses the process from the head of 
the highest-priority queue that is nonempty. The software PCB of each 
process contains a pointer to its hardware PCB, which is used in perform­
ing the context switch to restart the program. 

This means of selecting a process to run implies that the highest­
priority processes could execute forever without allowing lower-priority 
processes access to the CPU. The problem does not normally occur, 
however, because the VMS scheduler changes process priorities dynami­
cally. When a process is created during login, it is given the base priority 
assigned to the user by the system manager. As the process runs, its 
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Figure 13.1 VMS executable process queue headers 
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priority can be raised or lowered, depending on its activity. For example, if 
a process computes until its quantum expires, its priority is reduced, and it 
is placed on the tail of a lower-priority queue. (A process is never lowered 
below its initial priority, however.) Alternatively, if an I/O request com­
pletes for a waiting process, the process's priority is raised to a higher level 
so that it has a greater chance of computing. 

The events that cause priority reevaluation include 

1. execution (priority is decreased when a process is placed into execu­
tion) 

2. quantum expiration (priority is decreased) 

3. terminal-input or terminal-output completion (priority is increased) 

4. other input or output completion (priority is increased) 

5. resource availability, wake, resume, or deletion (priority is increased) 

6. acquisition of a lock (priority is increased) 
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As a process runs, then, its priority is modified as events occur. Figure 
13.2 shows a possible graph of process priority fluctuation over time. The 
VMS system favors interactive users by raising a process's priority follow­
ing an interaction (terminal I/O completion) and reducing its priority as 
the process becomes computational (quantum expiration). The largest 
priority boost occurs after the completion of a terminal-input operation. 

The scheduler manipulates only the priorities of processes whose 
base priorities are between 0 and 15. The priorities of these processes 
(known as timesharing processes) are never reduced below their base 
priority or raised above 15. Processes whose base priorities are between 16 
and 31 are real-time processes. Real-time processes deal with time-critical 
events and can be run only by suitably privileged users. They execute until 
they reach completion, suspend themselves to wait for an I/O operation or 
until a higher-priority n~al-time process becomes runnable, and they are 
not interrupted by quantum expiration. 

Besides selecting the next process to execute, the VMS scheduler is 
responsible for managing all process-state transitions. In VMS, the state of 
a process is part of its context that describes its condition. The first process 
state we discussed was the executable and in-memory state, for which the 
scheduler maintains 32 priority queues. There are also 32 queues for 
processes that are in the executable state but are currently out of memory. 
An operating system process called the swapper (which will be discussed 
later) is responsible for moving processes between memory and the disk 
under command of the scheduler. 

The remaining states include nonexecutable processes that are wait­
ing for event occurrences, such as the completion of an I/O operation or 
page-fault or the availability of a hardware or software resource. These 
processes are linked onto one of the eleven scheduler wait queues 
described in Table 13.1. As events occur for a process, the software PCB is 
moved between queues to reflect the state of the process. The differentia­
tion of processes into queues reduces the work needed to locate a waiting 
process when an event occurs that affects it. For example, when a page 

Figure 13.2 Changes in process priority with time 
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Table 13.1 VMS Process Wait Queues 

Process State 

Collided Page Wait 

Common Event Wait 

Free Page Wait 

Hibernate Wait 

Hibernate Wait, swapped out of 
memory 

Local Event Wait 

Local Event Wait, swapped out 
of memory 

Suspended Wait 

Suspended Wait, swapped out of 
memory 

Resource Wait 

Page Fault Wait 

Process Condition 

Processes faulting a shared page in 
transition (usually a page in the process of 
being read or written) 

Processes waiting for shared event flags 
(event flags are single-bit interprocess sig­
nalling mechanisms) 

Processes waiting for a free page of physi­
cal memory 

Processes that have requested hibernation 
and are resident in memory 

Processes that have requested hibernation 
and are swapped out of memory 

Processes waiting for local event flags (most 
likely for I/O completion) that are resident 
in memory 

Processes waiting for local event flags that 
are swapped out of memory 

Processes that are suspended and resident 
in memory 

Processes that are suspended and nonresi­
dent 

Processes waiting for miscellaneous system 
resources 

Processes waiting for a faulted page to be 
read in 

fault completes, the scheduler knows that the WaItIng process can be 
found on the Page Fault Wait queue. Its software PCB would then be linked 
onto the appropriate executable queue, based on its priority and whether 
or not it is in memory. Figure 13.3 shows the possible states and transitions 
for a process in the VMS system. The arrows in Figure 13.3 show the events 
that cause a process to move from one state to another. 

VMS, then, attempts to provide equitable service by preempting 
long-running jobs and by modifying process priorities to allow other 
processes to execute. It does this in a way that favors highly interactive 
users. When a program is preempted, its state information is saved in 
system data structures (the hardware and software process control blocks) 
so that the process can be resumed later. All this is done in a way that is 
invisible to the process and the user. 
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Figure 13.3 VMS process state transitions 
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VMS Scheduler Context-Switch Example 

It is interesting to look briefly at how the VMS context-switch routine 
(called the rescheduler) is implemented. Chapter 12 mentioned the use of 
software interrupts in the operating system as function calls. In VMS, the 
rescheduler is actually a service routine that executes in response to an 
interrupt at software IPL 3. 

Routines that detect a change in process state or a quantum expiration 
execute at software IPLs above 3. If the quantum expires or if a detected 
event causes a process of higher priority than the current process to 
become executable, a context switch is initiated. To cause the context 
switch, the event reporting routine simply requests an IPL 3 interrupt 
using the software interrupt request register, described in Chapter 12. 
When the event reporting routine returns to a priority level below 3, an 
interrupt occurs, causing the rescheduling routine to perform a context 
switch. 

Figure 13.4 is a listing of the VMS rescheduling code. (This is the 
rescheduling code as it existed before symmetric multiprocessing support 
was added to VMS. Multiprocessing makes this routine somewhat more 
complicated; we have retained this earlier version for ease of under­
standing.) This routine is really quite simple, although it may look complex 
because of the long symbol names. The frequently used notation W/\ tells 
the assembler to generate word-relative addressing. (By default, the 
assembler uses longword-relative addressing for variables not defined in 
the same module. Forcing word-relative addressing saves space if the 
variable is within reach.) To understand what the routine does, we must 
first define the following symbols that it uses: 
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Figure 13.4 VMS rescheduling interrupt handler 

51 OOOO'CF 
52 OB Al 

OOOO'CF 52 
00 

30 Al OC 
53 0000'CF42 
93 61 

20 00 
52 OOOO'CF 

3D 
53 0000'CF42 
54 93 

3C 
06 

OOOO'CF 52 
00 

OA A4 OC 
2E 

30 A4 OE 
OOOO'CF 54 

OB A4 33 A4 

08 
OB A4 04 

03 
OB A4 

OOOO'CF OB A4 
10 18 A4 

0000 3200 
0000 3300 
0000 3400 
0000 3500 
0000 3600 
0000 3700 
0000 3800 
0000 3900 
0000 4000 
0000 4100 
0000 4200 
0000 4300 
0000 4400 
0000 4500 
0000 4600 
0000 4700 

07 0003 4800 
DO 0004 4900 
9A 0009 5000 
E2 OOOD 5100 

0012 
80 0013 5200 
7E 0017 5300 
OE 0010 5400 

0020 5500 
0020 5600 
0020 5700 
0020 5800 
0020 5900 
0020 6000 
0020 6100 
0020 6200 
0020 6300 

EA 0023 6400 
0026 

13 002A 6500 
7E 002C 6600 
OF 0032 6700 
ID 0035 6800 
12 0037 6900 
E5 0039 7000 

003E 
003F 7100 

91 003F 7200 
12 0043 7300 
BO 0045 7400 
DO 0049 7500 
91 004E 7600 

0053 7700 
13 0053 7800 
El 0055 7900 

0059 
96 005A 8000 
90 005D 8100 
DA 0063 8200 
06 0067 8300 
02 0068 8400 

.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER 
;++ 

SCH$RESCHED - RESCHEDULING INTERRUPT HANDLER 

THIS ROUTINE IS ENTERED VIA THE IPL 3 RESCHEDULING INTERRUPT. 
THE VECTOR FOR THIS INTERRUPT IS CODED TO CAUSE EXECUTION 
ON THE KERNEL STACK. 

ENVIRONMENT: 
IPL=3 MODE=KERNEL IS-O 

INPUT: 
OO(SP)=PC AT RESCHEDULE INTERRUPT 
04(SP)=PSL AT INTERRUPT. 

SCH$RE~CHED: : 
1 ~ SETIPL 

SVPCTX 
MOVL 
MOVZBL 
BBSS 

RESCHEDULE INTERRUPT HANDLER 
#IPL$_SYNCH 

10$: 

;+ 

2 
MOVW 
MOVAQ 
INSQUE 

W'SCH$GL_CURPCB,Rl 
PCB$B_PRI(Rl),R2 
R2 ,W'SCH$GL_COMQS , 10$ 

SYNCHRONIZE SCHEDULER WITH EVENT REPORTING 
SAVE CONTEXT OF PROCESS 
GET ADDRESS OF CURRENT PCB 
CURRENT PRIORITY 
MARK QUEUE NON-EMPTY 

#SCH$C_COM,PCB$W.STATE (Rl) ;SET STATE TO RES COMPUTE 
W'SCH$AQ_COMT [R2],R3 ;COMPUTE ADDRESS OF QUEUE 
(Rl),@(R3)+ ;INSERT AT TAIL OF QUEUE 

SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION 

THIS ROUTINE SELECTS THE HIGHEST PRIORITY EXECUTABLE PROCESS 
AND PLACES IT IN EXECUTION. 

SCH$SCHED: : 

BEQL 
MOVAQ l
~~~IPL 

3 REMQUE 
BVS 
BNEQ 
BBCC 

20$: 

4 

CMPB 
BNEQ 
MOVW 
MOVL 
CMPB 

BEQL 
BBC 

INCB 
30$ MOVB 

{

MTPR 
5 LDPCTX 

REI 

#IPL$_SYNCH 
#0,#32,W'SCH$GL_COMQS,R2 

SCH$IDLE 
W'SCH$AQ_COMH[R2],R3 
@(R3)+,R4 
QEMPTY 
20$ 
R2,W'SCH$GL_COMQS, 20$ 

#DYN$C_PCB,PCB$B_TYPE(R4) 
QEMPTY 
#SCH$C_CUR,PCB$W_STATE(R4) 
R4,W'SCH$GL_CURPCB 
PCB$B_PRIB(R4),PCB$B_PRI(R4) 

30$ 
#4, PCB$B_PRI (R4) ,30$ 

PCB$B_PRI(R4) 
PCB$B_PRI(R4),W'SCH$GB_PRI 
PCB$L_PHYPCB(R4),#PR$_PCBB 

SCHEDULE FOR EXECUTION 
SYNCHRONIZE SCHEDULER WITH EVENT REPORTING 
FIND FIRST FULL STATE 

NO EXECUTABLE PROCESS?? 
COMPUTE QUEUE HEAD ADDRESS 
GET HEAD OF QUEUE 
BR IF QUEUE WAS EMPTY (BUG CHECK) 
QUEUE NOT EMPTY 
SET QUEUE EMPTY 

MUST BE A PROCESS CONTROL BLOCK 
OTHERWISE FATAL ERROR 
SET STATE TO CURRENT 
NOTE CURRENT PCB LaC 
CHECK FOR BASE 
PRIORITY=CURRENT 
YES, DONT FLOAT PRIORITY 
DONT FLOAT REAL TIME PRIORITY 

MOVE TOWARD BASE PRIO 
SET GLOBAL PRIORITY 
SET PCB BASE PHYS ADDR 
RESTORE CONTEXT 
NORMAL RETURN 
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• SCH$GLCOMQS is the address of the 32-bit Compute Queue Status 
(COMQS) longword. Each bit in COMQS represents one of the 32 
executable process queues shown in Figure 13.1. In the actual 
implementation, both the queues and the bits are ordered from 
highest to lowest priority. Thus, bit 0 and queue header 0 represent 
the highest-priority queue, priority 31. Using the Find First Set (FFS) 
instruction to scan the longword and locate the highest-priority 
nonempty queue is quite effective. (In fact, the FFS instruction, which 
scans a field of 32 bits, was included for just this purpose.) 

• SCH$AQ_COMH is the address of the first header in the array of 32 
computable queue headers shown in Figure 13.1. The bit number 
from a bit found in SCH$GLCOMQS can be used as an index into the 
quadword array to address the queue header of a priority queue. 

• SCH$AQ_COMT is the address of the tail pointer in the first (highest 
priority) of the 32 queue headers. 

• SCH$GLCURPCB is the address of a pointer to the software PCB of 
the process currently executing. (In newer versions of VMS that 
support multiprocessing, this global variable has been replaced by a 
field in a processor-specific data structure, since there is a current 
process executing on each processor.) 

The following notes refer to the numbers in the listing. It is not 
important to understand every instruction. Rather, this routine is a good 
demonstration of the use of the VAX architecture by the operating system. 

1. The routine is entered as a result of an IPL 3 interrupt. It immediately 
raises its IPL to the VMS synchronizing level (IPL 8, shown symboli­
cally as IPL$_SYNCH) to synchronize with event-reporting routines. 
This ensures that no process-state changes or database changes will 
occur while rescheduling is underway. 

2. The routine stores the address of the software PCB of the current 
process into R1 and stores the priority of the process in R2. The PCB 
is placed on the end of the executable queue for its priority. The 
corresponding bit in the Compute Queue Status longword is set to 
note that a process will be placed in the queue. The address of the 
queue header for this priority is computed, and the PCB is added to 
the tail. 

3. The Find First Set (FFS) instruction locates the first bit set in the 
Compute Queue Status longword. This indicates the highest-priority 
nonempty queue. The address of the header for that queue is comput-
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ed and the first software PCB is removed. This is the new process to be 
run. If this PCB was the last entry in the queue, the corresponding bit 
in the Compute Queue Status longword is cleared. 

4. The priority of the process is reduced so that it will automatically be 
placed on a lower-priority queue if its quantum expires. (This is done 
with an increment because the queues, bits, and internal priority 
representations are inverted, that is, 0 is the highest priority.) 

5. The address of the hardware PCB of the process is loaded in the 
process control block base register (PCBB). A Load Process Context 
instruction then causes the hardware registers to be loaded for the 
new process. Finally, the Return from Interrupt instruction returns 
from the original IPL 3 interrupt. If there are no lower-priority 
interrupts pending, the processor returns to IPL 0 and continues 
executing instructions for the new process. 

The Load Process Context (LDPCTX) instruction at the end of the 
reschedule routine is the only use of this instruction in the VAX/VMS 
operating system. The Save Process Context (SVPCTX) instruction does 
not enjoy quite such a restricted usage. The event-reporting routines will 
execute a Save Process Context if the current process must be placed in a 
wait queue. They will then enter the rescheduling code in Figure 13.4 at 
SCH$SCHED to start the next process. 

Process Paging 

Chapter 12 examined the VAX hardware support for memory manage­
ment. The VAX architecture provides for a number of features, including 

• a linear logical program address space 

• protection of memory 

• sharing of operating system code and data 

• trapping of references to nonresident pages 

Although these architecture features provide the basis for the 
memory-management system, there are a large number of issues and 
problem areas in the control of memory. For example, the architecture 
does not help in deciding how program pages should be loaded or 
removed from memory. This support must be handled by software, and 
there are many different strategies that can be chosen for handling 
memory management, depending on the requirements of the system. 



Process Paging 311 

In general, virtual memory is not a performance feature, that is, there 
is a performance cost in providing the virtual-memory service. First, there 
is the cost of the extra memory references introduced by page tables, 
although this can be significantly reduced by additional hardware, as will 
be discussed in Chapter 14. Second, and more important, is the cost of a 
reference to a nonresident page. A page fault can require both a disk read 
and a disk write operation. This is time-consuming to the program and 
requires some amount of processing by the operating system. Thus, the 
difficult job of the virtual memory-management system is to optimize 
performance by trading off the amount of physical memory for each 
process, which reduces its paging activity, with the number of processes 
allowed to share memory, which reduces the swapping activity. 

The number of page faults generated by a program depends on the 
memory reference pattern of the program and on the physical memory 
allocation and page replacement policies of the operating system. Normal­
ly, the operating system places some limits on the physical memory 
available to a program. Figure 13.5 is a graphic representation of program 
page-fault rate plotted against the ratio of virtual-to-physical memory. Of 
course, when the virtual-to-physical ratio is 1, there are no page faults 
once the program is resident in memory (the total number of faults is 
equal to the program size). As the ratio increases, the fault rate increases. 
Figure 13.6 is a similar graph of total program page faults versus the 
program physical memory limit. We see here that there is a point beyond 
which additional physical memory allocation does not provide any signifi­
cant decrease in the number of page faults. This point often occurs much 
before the program becomes fully resident. Therefore, the operating 
system needs to avoid overcommitting memory to a program. Overcom­
mitting memory reduces the memory available to others, while not 
benefitting the receiving process. 

Figure 13.5 Program page-fault rate versus ratio of virtual-to-physical memory size 

Program virtual-memory size 
--------------------~ 
Program physical-memory size 
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Figure 13.6 Program page faults versus physical-size limit 

Program physical-size limit ~ 

As a program executes, pages are faulted into physical memory until 
the program reaches the physical memory limit imposed on it by the 
operating system. At this point, when the program references the next 
nonresident page, the operating system must choose a page to remove 
from memory to bring in the newly referenced page. The strategies for 
selecting a page to remove are known as page replacement algorithms. 

There are two basic classes of page replacement algorithms. Fixed­
space replacement algorithms typically place a quota on the number of 
pages a process may have in memory. The process faults pages into 
memory until that quota is reached, at which point pages are removed as 
specified by the replacement algorithm at each new fault. Variable-space 
replacement algorithms attempt to dynamically adjust the number of 
pages a process has in memory to optimize both fault rate and memory 
utilization. 

The optimal fixed-space replacement strategy, described by Belady, 
requires full knowledge of the program's future behavior. This method 
removes the page that will not be referenced for the longest time in the 
future. Of course, this knowledge is generally not available. Most methods, 
then, use past program behavior as a predictor of future behavior. For 
example, in the least recently used (LRU) scheme, the page removed is the 
one that has not been accessed for the longest time. It is assumed that this 
page will not be needed in the near future. To implement LRU requires 
that the hardware maintain some amount of usage information on each 
page. Usually, each page table entry contains a bit, called the reference bit, 
that is set whenever a reference is made to the page. If the software 
periodically turns off the reference bit, it can keep track of the number of 
periods since a page has been accessed. 

Denning's working set model for program behavior (Denning 1968) 
provides better intuition concerning the pages required by a program to 
execute efficiently. Denning defines the working set of a program, W(T,T), 
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to be the set of pages referenced in the interval (T - T, T). The parameter Tis 
called the window size. For different sizes of the window, T, the working set 
is the set of pages referenced in the last T references, and the working set 
size w(T, T), is the number of pages referenced in that interval. Both the 
membership of the working set and the size of the working set can be 
expected to change during the execution of the program, that is, as T 
increases. In fact, the working set can change at each reference. If the 
window size T has been appropriately selected (by considering CPU speed 
and paging-device capacity), then the objective of the memory-man­
agement mechanism should be to keep the pages belonging to the 
program's working set resident in memory at all times. 

This model describes a basis for selection of program pages to remain 
in memory. For a given window size T, pages that have not been accessed in 
the last T references are removed from memory in an attempt to keep 
exactly the working set in memory at all times. Notice that with this 
definition, a page can be removed without the occurrence of a page fault. 
Working set page replacement is a variable-space algorithm because it 
dynamically adjusts the process's working set either up or down. 

There is a tradeoff between the cost of page faults and the complexity 
of the algorithms required to reduce them. If the replacement algorithm is 
successful in reducing faults, but requires excessive processor time, it may 
not be worth the effort. Some simpler but less successful schemes for 
replacement are random replacement, in which the page to be removed is 
chosen at random, and first in first out (FIFO) replacement, in which the 
page removed is the page that has been in memory for the longest time. In 
FIFO, the system just keeps a queue of pages. A new page is added to the 
bottom of the queue, and the oldest page is removed from the top of the 
queue. FIFO page replacement can suffer from unintuitive anomalies; 
under some circumstances, a program's fault rate can increase when the 
program is given more memory in which to execute. 

No matter how intelligent the replacement strategy, there is no 
substitute for primary memory. Regardless of the strategy, the page-fault 
rate is likely to be high if a process has too little physical memory, as we 
see in Figure 13.5. Therefore, the main advantage of virtual memory is that 
it allows processes to operate on a larger address space than would be 
otherwise possible, but at the cost of performance. The cost, of course, 
rises with the size of the "virtual" memory needed by the process. 

VMS Memory Management 

Memory management in VMS actually consists of two parts. The first 
part of the memory-management system is the pager, which handles the 
reading in of faulted pages and the removing of resident pages from the 
memory of the process. The pager, which executes within the context of 
the process, is basically an exception service routine shared by all 
processes in the system and is invoked by hardware when a nonresident 
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page is addressed. The second part of the VMS memory-management 
subsystem is the swapper, a process whose function is the removal or 
loading of entire processes from or into memory. The swapper is closely 
related to the scheduler, since both must coop'erate to determine which 
processes will be moved, or "swapped," between memory and disk. 

Paging under VMS 

In VMS, each process in the system has a quota or limit for the 
number of pages of physical memory that it may occupy. This number is 
called the resident set limit. The VMS resident set is the set of pages a 
process has in memory. (The resident set is called the working set in 
VAX/VMS documentation.) The memory-management system maintains a 
list for each process, called the resident set list, that points to these pages. 

When a new process is initially run, the process load file is examined, 
and page tables are built from information contained there. At first, all 
page table entry Valid bits are zero, since none of the process pages have 
been loaded. The resident set of the process is empty, and the resident set 
list has no entries. When the operating system transfers control to the 
starting address of the process, a page fault occurs. The page fault causes a 
transfer of control to the pager so that the first page of the process can be 
loaded into memory. 

When the pager gains control following a page fault, the hardware has 
pushed the program counter that points to the faulting instruction and the 
virtual address that caused the fault onto the stack. From the virtual 
address, the pager is able to locate the process page table entry for the 
faulted page. This PTE contains information leading to the disk address of 
the page. The pager obtains an empty page of physical memory and 
initiates a read of the page from disk. The corresponding PTE is changed 
so that the Valid bit is set and the page frame number field points to the 
physical page into which the read will occur. If this is the first faulted page, 
it will be the first page in the resident set of the process and the first entry 
in the resident set list. When the read completes, the pager returns to user 
level to restart the instruction that faulted. 

As the program continues to execute, more and more pages are 
faulted into its resident set. Each time a fault occurs, the pager reads the 
page from disk and creates a valid PTE to map it. If the program has a large 
virtual size, the resident set size will eventually reach the resident set limit 
for the process. At that point, the process cannot use any more physical 
memory, and reading a new page forces it to return a page from its 
resident set to the system. 

VMS does not use a least recently used page-replacement strategy, 
because VAX page tables do not have a reference bit (although the VMS 
operating system avoids removing an active page by checking to see if its 
PTE is in the translation buffer). Instead of selecting pages to be removed 
from the system as a whole, VMS pages the process against itself. That is, 



Process Paging 315 

the page that is removed must come from the process that caused the page 
fault if it has reached its resident set limit. The page removed from the 
resident set is selected in round-robin style (first in, first out) from the 
resident set list. A pointer circles through the resident set list to determine 
the next page to be removed. Although this method is not optimal, the cost 
of making an error (that is, throwing out a page to be referenced) is 
reduced by mechanisms described next. 

The VMS memory-management system maintains two lists of physical 
pages called the free page list and the modified page list. The free page list is 
the source of physical pages for the system. When a process needs a 
physical page to receive a faulted page, it takes the entry from the head of 
the free page list. The system tries to keep at least a minimal number of 
pages free at all times. 

The free page list also acts as a cache (a fast backup store) of recently 
used pages. When a page is removed from a resident set, it is placed on the 
tail of the free page list or the modified page list, depending on the 
condition of the Modify bit in the page's PTE. If the Modify bit is 0, then 
there is already an exact copy of the page on disk and the page need not be 
written back. Such a page is placed on the tail of the free page list. If the 
Modify bit is set, then the page must be written back to disk and is placed 
on the tail of the modified page list. The pages of the modified page list are 
not written back to the disk until the list reaches a predefined threshold. 
After the modified page list is written to disk, its page frames are placed on 
the free list. 

A page removed from a resident set remains on the appropriate list for 
some period of time before it is reused. If a process faults a page that is on 
one of the lists, the page is simply returned to the resident set at little cost. 
Depending on the list sizes and the activity of the system, these caches have 
a significant effect on system and process performance by reducing fault 
time and paging I/O. However, they also have an inherent unfairness 
because a heavily faulting process can cause a rapid turnover of the lists. 

Besides being a cache for pages, the modified page list serves another 
important purpose. By delaying the writing of modified pages, the system 
can write pages to the paging file in clusters or groups instead of 
individually, thus significantly reducing the number of I/O operations and 
thereby minimizing the time the disk is busy. Moreover, by waiting some 
period of time, many pages never have to be written at all because they are 
referenced again or because the program is terminated. 

In addition, because many pages are written at one time, the system 
can attempt to write virtually contiguous process pages on contiguous 
disk blocks. This way, the system can also cluster reads from the paging 
file. When the process accesses a page, the system may choose to bring in 
several pages (a cluster) if they are located together on the disk. 

The biggest gain from the clustering of pages on reads occurs when a 
new program is started. Typically, programs fault heavily when they start 
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until a reasonable working set has been established. When a program 
faults the first page, VMS actually reads many pages into memory, 
reducing the high program startup faulting. 

A common technique for both reducing paging and optimizing the 
sharing of programs is to dynamically adjust the resident set size of a 
program. Some schemes attempt to equalize the fault rate across all 
processes. VMS checks a process's fault rate over a system-specified 
interval of time. Based on that rate, the process's resident set limit may be 
increased or reduced. Processes that are faulting heavily· will receive an 
increment in their physical memory limit, while processes not faulting can 
have their resident set limit reduced. This takes memory away from 
processes that don't need it and gives physical memory to processes that 
make heavy use of virtual memory. 

A VMS process also is allowed to grow its resident set past its resident 
set limit if substantial memory is available. Should the system determine 
that memory is overcommitted, it begins to trim back the size of process 
resident sets. 

Swapping under VMS 

In addition to paging, VMS also swaps entire processes between 
memory and disk. Swapping is performed by the swapper, a separate 
process that runs at a high priority and, of course, is never swapped itself. 

When the resident set of a process is in memory, it is a member of the 
balance set. While the resident set is the collection of pages for a particular 
process, the balance set is the set of all resident processes. VMS swaps 
entire resident sets between the balance set and disk to make room for 
swapping in resident sets of other processes. Some virtual memory 
systems force a nonresident process to page itself back into memory. 
However, before it allows a process to execute, VMS loads the entire 
resident set as it existed when the process was interrupted. This reduces 
the number of page faults and the number of disk I/O operations, since all 
of the resident set pages can be written in or out with a minimal number of 
disk transfers. 

When a process is brought into memory, it will typically execute at 
least one quantum before it becomes eligible to be swapped out. The 
algorithm for determining which process to swap in is quite simple. The 
swapper checks the nonresident executable queues to find the highest­
priority process to be brought in. Having selected a process, the swapper 
must then find enough free pages to hold the resident set of the selected 
process. Free pages can be located by 

• taking them from the free page list 

• writing the modified page list back to disk, thereby freeing those pages 
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• shrinking the resident sets of one or more resident processes 

• swapping out a process of lower or equal priority 

Input and Output Processing 

The input and output processing routines are often the most complex 
in the operating system. This is due in part to the asynchronous nature of 
I/O devices and the synchronization problems caused by the parallelism 
inherent in their operation. In addition, many I/O devices have real-time 
service requirements, and the I/O system must be carefully tuned to meet 
those constraints. 

The control of I/O devices differs significantly in its purpose from the 
processor and memory handling described previously. Generally, proces­
sor and memory management operations are provided invisibly to the 
user. They exist to increase resource utilization. On the other hand, I/O 
operations are initiated at the request of the user program. 

A user requests an I/O operation by calling an operating system 
routine. For high-level languages, the user codes an OUTPUT or WRITE 
statement (for output), and the language run-time system generates the 
low-level operating system call (or calls). The operating system call 
generally specifies the type of operation to be performed (for example, 
read or write) and the address and length of a user memory buffer for 
containing the data to be read or written. The I/O service routine then 
passes the arguments to a separate process, called a device driver, that is 
responsible for invoking the physical I/O operation. In most systems, the 
calling process is then suspended and placed in a process wait queue until 
the I/O request completes. In other systems, the process is allowed to 
continue processing while' the I/O operation is in progress. 

It is possible for several driver processes to be in various stages of I/O 
processing at any time. Before a device driver can initiate a device activity, 
it may need to allocate hardware or software resources. For example, if 
there are several devices on a single-transfer bus, the driver processes 
need a mechanism to determine which driver can cause a transfer. Thus, 
there must be a mechanism that allows a driver to coordinate with other 
driver processes. There must also be a mechanism for informing devices 
when a resource becomes available. 

Next, we examine the basic structure of the VMS I/O system. Because 
the VMS I/O system is quite complicated, we do not cover all of its 
functions or components. In particular, we do not cover the data struc­
tures for handling clustered devices (remote MSCP disks, virtual termi­
nals, and so on). For a complete description of VMS operation and data 
structures, you can refer to Kenah, Goldenberg, and Bate, VAX/VMS 
Internals and Data Structures. Our goal is simply to show how VMS uses the 
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Figure 13.7 VMS file system layers 
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hardware architecture. To this end, we concentrate on the flow of an I/O 
request between the user process and the system and the use of VAX IPLs 
to schedule I/O processing. 

The VMS I/O System 

The VMS I/O system is composed of several layers. Each layer 
provides a higher-level interface to the level above it, as shown in Figure 
13.7. At the highest (most general) level are the record management and 
database systems that manage named objects such as files, records, fields, 
and so on. At the lower levels are the kernel routines that interface directly 
to physical devices. This is the level discussed here. 

In general, VMS I/O is asynchronous. In other words, a program can 
issue an I/O request and continue processing while the request is in 
progress. Sometime later, the program can check to see if the I/O 
operation has completed, or it can be notified when the completion 
occurs. If the program wants to wait until the I/O completes, it calls 
another operating system routine to request suspension until the I/O 
operation is done. However, the suspension is not part of the I/O 
requesting procedure. 
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VMS I/O Database 

Before we examine the functioning of the I/O system components, we 
introduce a simplified model of the I/O database. The I/O data structures 
tell as much about the system as the code does. 

We have already discussed the PCB, which describes the state of each 
VMS process. In the I/O system, there are control blocks that describe 
every bus adapter (for example, UNIBUS, QBUS, or BI), every controller 
(for example, terminal multiplexer), every device unit (for example, 
terminal), and every outstanding I/O request (for example, a terminal read 
operation). These control blocks are linked into a structure that represents 
the topology of the hardware I/O system. 

For example, Figure 13.9 shows a simplified VMS I/O database for the 
hardware configuration shown in Figure 13.8. The arrows indicate point­
ers from one control block to another. The six control blocks shown are as 
follows: 

1. The device data block (DDB) contains information common to all 
devices of a given type connected to a single controller, such as the 
device name string (for example, TTA for terminals attached to 
terminal controller A). 

2. The unit control block (UCB) describes the characteristics and state 
for a single device. It also contains the context for the device driver 
process that controls the device. 

3. The I/O request packet (IRP) describes a single user I/O request. For 
example, the packet contains an identifier for the requesting process, 
the type of operation requested, and the address and length of the 
user's memory buffer. 

Figure 13.8 Sample VMS system hardware structure 
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Figure 13.9 VMS I/O and database 
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4. The channel request block (eRB) defines the state of a controller. The 
eRB arbitrates requests for a shared controller. The eRB indicates 
which device unit is currently transferring and which units are 
waiting to transfer when the current transfer is complete. 

5. The interrupt data block (lDB) describes the current activity on a 
controller and locates the responsible device when an interrupt 
occurs. It is a logical extension to the eRB. 

6. The adapter control block (ADP) defines the characteristics and state 
of a bus adapter. 

The arrows in Figure 13.9 show the static relationship of the database. 
However, some control blocks may contain other pointers or be members 
of other queues, depending on the state of the devices. For example, when 
a unit is waiting for a free controller on which to transfer, its unit control 
block is queued to the channel request block for the controller. Thus, the 
contents of these control blocks precisely define the state of the I/O system 
at any point in time. 

VMS I/O System Components 

The VMS I/O system can be logically separated into three compo­
nents. First is the Queue I/O (QIO) system service, which is called to 
request all I/O operations on VMS. QIO is a procedure called by the user 
program. Although it executes in Kernel mode, QIO runs within the 
context of the user's process and has access to the process address space of 
the caller. The basic functions of QIO are to validate the user-supplied 
arguments and to build a data structure in system dynamic memory called 
an I/O request packet (IRP). The I/O request packet contains all of the 
information needed by the device driver to perform the physical I/O 
function. QIO also checks that the calling process is allowed to perform 
the requested function on the specified device. 

Within the unit control block of each device is a header for a queue of 
outstanding I/O requests, as shown in Figure 13.9. Once QIO has validated 
the request and built the I/O request packet, it inserts the packet onto the 
queue for the proper unit and returns control to the caller. (QIO earns its 
name because it queues the I/O request to the driver.) The calling process 
can then continue processing or request suspension until the I/O com­
pletes. A success indication from QIO means only that the parameters 
were supplied properly and that the I/O request has been queued to the 
driver. To see if the I/O has completed successfully, the user program must 
specify a memory location in which the final status will be placed when 
the operation completes. 

The second component of the I/O system is the device driver. A device 
driver is a set of routines and data structures that control the operation of a 
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single type of device. VMS uses the routines and data structures in the 
execution of an I/O request. 

When an I/O request is issued for an idle device, VMS creates a driver 
process to handle the request. A driver process is a limited-context 
process. By limited context, we mean that the driver is restricted to 
system-space addressing; it does not execute within the context of a user 
process. Its state is completely described by its program counter, several 
registers, and the device database. 

The device driver executes at a high processor-priority level. Since it 
cannot be interrupted by the scheduler, a driver executes until it termi­
nates, performs an explicit wait request, or is interrupted by a driver at a 
higher IPL. User processes do not run until all driver work is completed. 

The context for each driver, its registers and its program counter, are 
kept within the unit control block for the device. Thus, the UCB is to the 
device driver what the PCB is to the process. For each active device, the 
unit's UeB contains the state information of the executing driver process, 
as well as the status of the unit. 

The third component of the VMS I/O system is the I/O postprocessing 
routine that completes the I/O operation within the caller's address space. 
Postprocessing, like 010, is a common routine used for final processing of 
all device requests. Postprocessing routines are used to return the final 
status and data to user process memory. 

I/O Control Flow 

The I/O request begins as a call to 010. 010 creates an I/O request 
packet, queues it onto the device UCB, and returns to the user. The IRP is 
the embodiment of the request and is passed between various components 
of the I/O system. It contains all the information needed to perform the 
operation independently of the requesting process and to later complete 
the operation within the context of the requesting process. 

The operations performed by the VMS I/O system to process a request 
are shown in the flow diagram in Figure 13.10. The user calls the 010 
system service routine, which executes in Kernel mode within the context 
of the user's process. 010 locates the UCB and associated database for the 
device. It checks device-independent parameters and calls driver subrou­
tines to validate device-specific parameters. 010 then builds an I/O 
request packet and queues it for the driver by placing it on the unit control 
block request queue. 

The driver process dequeues the request and starts the device. The 
driver suspends itself so that other processing can continue while the I/O 
operation proceeds. When the device interrupt occurs, the operating 
system resumes the driver process. The driver collects any status informa­
tion from the device and controller registers and copies them into the I/O 
request packet for the request. The IRP is then placed on a queue for the 
I/O postprocessing routines. 
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Figure 13.10 VMS I/O request processing flow 
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I/O postprocessing examines the IRP to determine how the I/O 
should be completed. Because the postprocessing routine returns status 
information into user memory buffers, it must execute with the address 
space (the context) of the requesting process. Finally, the postprocessing 
routine notifies the process that the I/O operation has completed. 

The Use of Interrupt Priority Levels 

The scenario in the previous section showed the sequence of events 
with respect to a single I/O request. Of course, at anyone time there are 
many processes executing, and many I/O requests in various states of 
completion. The I/O system has a number of tasks to perform to manage 
all of the simultaneous operations. It also tries to optimize throughput 
while retaining real-time device responsiveness. It does this by keeping as 
many devices busy as possible. For example, as soon as an I/O transfer 
completes on a device, a new transfer is started ifone is queued for the 
device. 

VMS uses the software interrupt priority levels (IPLs) to keep the 
devices busy while also maintaining responsiveness. This is done by 
performing different I/O processing functions at different priority levels. 
Therefore, the I/O system will not process an I/O request sequentially, but 
will perform all the critical work for each outstanding request at a given 
level. Then the lower-priority work can be done for each request, and so 
on. This requires a mechanism for suspending a driver process at one level 
and continuing its work sometime later at another level. 

Figure 13.11 shows the work done at four levels of processing. The 
VMS I/O system is structured so that all work is completed at the highest 
level before the next level executes. The highest-priority activity in VMS is 
the response to a device interrupt. Figure 13.11 a shows the flow when an 
interrupt occurs. The interrupt dispatcher locates the responsible driver 
and initiates a routine within the driver to service the interrupt. It is a goal 
of VMS driver interrupt service routines to spend as little time as possible 
at the device IPL to avoid blocking other hardware interrupts. Therefore, 
VMS device drivers execute at device IPL only long enough to copy any 
CSR status information into the UCB. Staying at this IPL ensures that the 
registers do not change while being copied. As soon as the registers are 
copied, the driver asks the operating system to continue its execution at a 
lower level. 

The lowering of a driver IPL is known as a fork in VMS. It is a 
continuation of the execution of a process at a different level and time. To 
initiate a fork, the operating system saves all of the driver context (its PC 
and registers) in the unit control block for the device. The UCB is placed 
on a queue for the lower IPL, called the device fork-level queue. The 
operating system requests a software interrupt at the fork IPL and returns 
from the hardware device interrupt, allowing other devices to interrupt. 

When the processor priority level drops below the IPL requested for 



W 
N 
\J1 

Figure 13.11 I/O system use of IPLs 
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the driver, an interrupt occurs. Figure 13.11b shows the actions at this 
level. An interrupt dispatcher dequeues the first VCB from its queue and 
restores the state of the driver process. The driver process continues 
execution and releases any resources which it has acquired, to increase 
the level of concurrency possible. 

Although processing may still be needed to complete the I/O request, 
VMS again defers much of it to a lower level. The driver process places any 
final status in the I/O request packet. This time, the IRP is used to 
propagate the execution of the I/O request. The packet is placed on a 
queue of the I/O postprocessing routine, which executes at the lowest 
priority level once all more crucial work is complete. 

After queuing the I/O packet and requesting a software interrupt at 
the postprocessing IPL, the driver checks its unit control block request 
queue to see if any more requests are waiting. If so, the driver begins 
processing the next request. That way, a new request can be started on the 
device as soon as possible. After the driver initiates the next I/O operation, 
if there is one, it returns to the fork interrupt dispatcher. The dispatcher 
checks to determine if any other driver fork processes are waiting to 
execute at that level. 

Once VMS has seen that all possible I/O requests have been initiated, 
postprocessing can occur. Postprocessing is initiated by a software inter­
rupt. The postprocessing routine dequeues an I/O request packet to finish 
any processing that can be done in the operating system context, as shown 
in Figure 13.11c. Then it must switch to process context to perform any 
final copying of data and status into user memory. 

The switch to process context (address space) is done with an 
asynchronous system trap (AST). An AST is a call of a routine within the 
context of a process, asynchronous to the execution of that process. For 
example, when a process issues an I/O request, it can specify a routine to 
be called when the I/O is completed. This routine is called an asynchro­
nous system trap routine, because it is called when an asynchronous event 
occurs. If the process is executing when the event occurs, it will be 
interrupted and the AST routine will be called. When the AST routine 
returns, program execution continues from the interrupt point. 

The operating system maintains a queue of AST control blocks in the 
software PCB of each process. Each entry in the queue describes one 
requested AST and contains the address of a routine to be called when a 
specific event occurs. The I/O postprocessing routine queues the address 
of one of its subroutines, to be executed in Kernel mode when the 
appropriate process next executes. It also notes in the hardware PCB that a 
Kernel mode AST is pending for the process. When the process next 
executes, the VAX hardware automatically causes an interrupt at the 
AST-Ievel IPL so that the operating system can execute the AST routine. 

This final AST routine executes in Kernel mode in the user's address 
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space to copy any information into the user's memory. It may also inform 
the process that the I/O operation has completed. For example, if the 
process asked to have its own AST routine executed following the I/O 
completion, the Kernel mode routine will queue an AST for the user. 

We have seen that there are two ways to consider I/O processing. First 
is the sequential flow of a single I/O request through the system, as shown 
in Figure 13.10. Second is the actual servicing sequence used by VMS to 
increase response time, as shown in Figure 13.11. Figure 13.11 shows how 
a number of fork queues allow for the propagation of a request through 
several prioritized levels. VMS uses the software interrupt priority levels 
and the software interrupts to schedule work at each level. It is the 
hardware, however, that automatically generates an interrupt at the 
highest level with work to do. 

Synchronizing I/O Database Access 

The VMS I/O system uses one or two mechanisms for synchronizing 
its database, depending on whether it is running on a uniprocessor or a 
multiprocessor. On a uniprocessor, the processor IPL is used to synchro­
nize driver databases. Any driver that wants to access a shared database 
component for a device or controller must operate at the fork IPL of the 
device or controller. By forcing all drivers to queue for access to a given 
level, VMS ensures that only one driver process can access the database at 
a time. Following an interrupt, the operating system queues drivers at the 
lower fork IPL. Thus, the forking mechanism is a forced serialization of 
activity. A driver does not have to worry about synchronizing with other 
driver processes. It knows implicitly that it is the only process active at that 
level. 

On a symmetric, shared-memory multiprocessor, there is a copy of 
the VMS operating system running on each node, each capable of 
addressing the same data structures. Using the processor IPL alone is 
insufficient to synchronize databases. When a driver rasies IPL, it prevents 
other processes on the same processor from accessing a controlled data 
structure; it does not, however, prevent processes on other processors 
from changing their IPLs to the same level or higher. 

To prevent multiple processors from simultaneously accessing shared 
system database, VMS contains a number of semaphores (called spin locks 
because a processor typically busy waits to acquire them) for synchroniz­
ing shared multiprocessor data structures. For example, there are spin 
locks for each of the fork interrupt priority levels. A driver must both 
acquire the spin lock and change IPL to guarantee mutual exclusion at that. 
priority level on the multiprocessor. Once a driver obtains a spin lock, no 
other driver (on any processor) can obtain that lock until it is released. 
Spin locks also exist for various I/O data structures, and these may need to 
be acquired in order to examine or modify a specific data structure. 
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System Service Implementation 

While examining Change Mode instruetions in the previous chapter, 
we discussed the use of an operating system service routine. In this 
chapter we have described the most frequently called system service in 
VMS, the Queue I/O service. This final section discusses how control is 
actually transferred to a VMS service. 

We have already stated that VMS system services are called via the 
Call instruction. In VMS, macros are available at the assembly language 
level to access system services. For example, the $QIO macro generates a 
call to the QIO routine. The name of the QIO entry point in the operating 
system is SYS$QIO. A high-level language program calls this routine as it 
calls any other procedure, for example, CALL SYS$QIO (parameters). 

Once a program containing a system service call is translated and 
linked, it contains the virtual address of the service routine entry point. 
One might ask whether this means that each service routine always 
remains at the same virtual address or whether the user has to reassemble 
or relink the program each time a new version of the operating system 
arrives. The answer to each question is no. VMS was designed so that user 
programs would run without relinking or reassembling across VMS 
versions, even though the service routines might be relocated in the 
system address space. The reason this is possible is that system service 
calls are made to special system service vectors, which are pointers to the 
system service routines. These vectors are similar to the interrupt vectors 
in that they give directions to where a routine or system service actually 
resides in system space. 

It is sometimes useful for non privileged code to be able to intercept a 
program's system service calls transparently to that program. For this 
reason, system service vectors actually appear at two places within a 
process's virtual address space. While vectors appear in the first several 
pages of system space, they also appear in the program's PI region. The 
VMS linker typically links system service calls to the PI vector addresses. 
If a facility wanted to intercept system service calls, it could map the PI 
space vector pages to its own handler without disturbing other processes's 
system service calls. However, under normal circumstances, the PI space 
and system space vectors are mapped to the same physical pages. 

For each system service, there are several instructions in the vector 
region to transfer control to the actual service routine. The instructions in 
the vector region for each service are at fixed virtual addresses for the life 
of VMS. Consequently, if a new version of VMS is issued in which the 
service procedures have moved, user programs can still run unchanged 
because the vectors remain at the same addresses although they transfer 
control to different locations. 

A vector contains instructions to transfer control to a system service 
routine in system space. If the service routine runs with the access mode 
of the caller, the vector contains only the I6-bit register save mask 
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(remember that the vector was called as if it were a procedure) and a Jump 
instruction. The following example of a system service routine called 
NAME executes in the same mode: 

SYS$NAME: 
. WORD 
JMP 

AM<R2,R3,R4,R5> 
@#EXE$NAME+2 

register save mask 
transfer to service 

The Jump instruction transfers control to the first instruction of the 
service routine in system space, which is at address EXE$NAME+2. This 
calling method forces the first instruction of the service to be 2 bytes past 
its entry point, since the actual service routine has a copy of the register 
save mask at its beginning. When the service routine executes a Return 
instruction, it returns directly to the user. 

If the system service routine executes in a different mode than the 
user program, then the vector contains the call mask followed by a Change 
Mode instruction and a Return instruction: 

SYS$NAME: 
.WORD 
CHMK 
RET 

AM<R2,R3,R4,R5> 
#code 

save registers 
dispatch to service 
return to caller 

The Change Mode instruction causes an exception, changing the 
mode of the processor and transferring control to a special dispatching 
routine within VMS. This routine examines the code number, which tells 
which system service should be called. It also builds a new call frame on 
the stack of the new access mode, first checking that the caller's argu­
ments are valid. When the system service routine executes a Return 
instruction, it returns to this dispatcher. The dispatcher executes a Return 
from Exception or Interrupt (REI) instruction, which lowers the access 
mode and returns to the instruction following the Change Mode. Now 
running in the caller's access mode, the Return instruction in the service 
vector executes, returning control to the user. 

This chapter looked closely at the implementation of the VMS 
operating system. In particular, it examined the operating system's use of 
the architectural support for managing the processor, memory, and I/O. 

VMS uses the hardware process as the basis for program execution. 
Processes are scheduled to run by VMS using a preemptive priority 
scheme, where the highest priority process is always run. VMS modifies 
process priorities, however, as a process executes. The VMS scheduler 
maintains a number of data structures to manage the scheduling proce­
dure, including the process control block (PCB) introduced in the previ­
ous chapter. 



330 

Exercises 

The Structure of a VAX Operating System 

The memory-management support implements separate process ad­
dress spaces and allows sharing of the operating system. VMS uses paging, 
to allow processes to access large address spaces, and swapping, to allow 
sharing of memory by many processes. A number of optimizations attempt 
to decrease the number of I/O operations, including the use of memory 
lists of recently used pages, reading and writing of pages in clusters, and 
swapping. 

Finally, in the VMS I/O system, the use of software interrupt priority 
levels (IPLs) helps to schedule the execution of operating system activities 
to reduce the response time to hardware interrupts. 

1. How does an operating system scheduler ensure that a single process does not 
consume the entire CPU, once it has begun executing? 

2. What is meant by a real-time process in VMS? How are real-time processes 
treated differently from timesharing processes? 

3. Contrast the scheduling policies you might use when trying to optimize 
response time with those you would use to optimize throughput. 

4. What are the primary states that a process can be in as it makes progress from 
initiation to completion? 

5. Name three page replacement algorithms. Describe the differences. 

6. What is the resident set? What algorithms are used to change or replace pages 
in the resident set? What is the balance set? 

7. What is the difference between the working set and the VMS resident set? 

8. What is the difference between paging and swapping? Why does VMS use both 
paging and swapping? Are both paging and swapping needed to implement a 
VAX virtual memory system? 

9. What is the difference between a modified bit and a referenced bit in a page 
table entry? What is the use of each? 

10. What are the functions performed by the VMS I/O device driver? 

11. Why does the VMS I/O system use the interrupt priority for processing I/O 
requests? 

12. What is an asynchronous system trap? 

13. Why do users call VMS system service routines through vector instructions, 
instead of calling the routines directly? 
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For any computer architecture, there may be many implementations 
spanning a wide range of price and performance. For example, in Digital's 
VAX family, a four-processor VAX 8800 has over 60 times the computation­
al power of the VAX-II /730, the slowest VAX ever produced. The cost ratio 
between a fully configured four-processor VAX 8800 and the least­
expensive VAX, a desktop VAXstation 2000, is over 200. 

The implementation of each version of an architecture requires that 
the designer choose a computer structure that meets cost constraints 
while providing the best possible performance and reliability. This struc­
ture must be built with readily available component technologies and, 
typically, must be modifiable to accept newer technologies as they become 
proven. 

This chapter considers some of the choices the hardware implemen­
tor has in the design of a member of a computer family. It focuses in 
particular on differences in memory structure that are available to the 
implementor. It also describes some of the mechanisms that VAX design­
ers have used to enhance performance and some of the differences among 
VAX implementations. Although invisible to the executing program, these 
features have a significant effect on system performance and cost. 

Choice of Memory Technology and Structure 

Throughout the rapid evolution of the computer, the cost of memory 
has been a major factor in overall system price. Although memories have 
become relatively inexpensive, there are and always will be memories with 
varying storage capacities and performance characteristics available at 
different costs. Since memory speed substantially influences the execution 
speed of the CPU, selecting a particular memory technology and memory 
structure is a crucial aspect in designing a computer-family member. 

If cost were no object, the entire memory system would be constructed 
from the fastest available memory, as is done for the CRAY computers. For 
low-cost computers, this is obviously impossible. However, one option for 
less expensive systems is organizing the memory system into a layered 
hierarchy composed of different memory technologies. If this is done with 
a knowledge of the statistical characteristics and patterns of typical 
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programs in execution, a significant increase in memory performance can 
be obtained at little added cost. 

The Fastest Technology Approach 

One way to structure the total memory system is to implement one 
segment of the memory with the fastest technology available. Exemplify­
ing this strategy, the PDP-II /55 provides for up to 64 K bytes of bipolar 
memory, which the user can fill with data or executable code. The 
remainder of primary memory is implemented out of slower MaS com­
ponents. For many real-time applications, this is a perfect solution. The 
user locks the most time-critical code and data in high-speed memory at 
program load time, allowing for exact performance prediction. The 
problem with this approach is that memory is non-uniform from the 
programmer's point of view, and the programmer must be familiar with 
the physical-memory structure. This method is unlikely to benefit a 
multiprogrammed system, in which physical memory is allocated and 
reallocated among users and time slices. 

Cache Memory Approach 

Programs, of course, do not execute randomly, but exhibit some 
locality in their generation of addresses and use of memory. Memory 
generally is accessed in a logical order, often sequentially, as in processing 
an array or sequencing through the instructions of the program. Alterna­
tively, a program may repeatedly flow through a loop of instructions, then 
move to another localized area. 

It is possible to take advantage of this locality of reference in programs 
to build a hierarchical memory system with much better performance 
than one might expect. This basic structure, shown in Figure 14.1, is called 
a cache memory (from the French cacher, "to hide") and was first used in 
the late 1960s in the IBM 360/85. The idea is to place a small amount of 
high-speed storage close to the CPU to hold the most recently accessed 
instructions and data items. When a program makes a memory request, 
the CPU first checks to see if the data is in the cache. If the data is in the 
cache, it is returned quickly without using main memory or the bus; this is 
a cache hit. If the data is not in the cache, it is fetched from main memory 
and loaded into the cache on its way to the CPU; this is a cache miss. When 
new data is loaded into the cache, it typically displaces data that was 
previously stored there. 

The performance of a cache memory is stated in terms of its hit ratio 
or miss ratio, where 

and 

hit ratio = number of memory accesses found in the cache 
total # of memory accesses 
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miss ratio = 1 - hit ratio 

Surprisingly, even relatively small caches can achieve hit ratios of 80 to 90 
percent. We can easily see the potential impact this has on system 
performance. The access time of the entire memory system as seen by the 
CPU is a function of cache hit ratio (H), cache access time (Tc), and 
primary memory access time (T M)' as expressed by the formula 

average access time = H x Tc +(1 - H) x TM 

This formula becomes more complicated as we consider different cache 
organizations, but we can see that with cache hit ratios of 90 percent, the 
average memory access time comes very close to the cache access time, 
even if memory is significantly slower than the cache. For example, given a 
system with H=0.9, Tc=200ns, and TM= 1400ns, the average access time is 
only 320 nanoseconds, which is low considering the high cost of a primary 
memory access. 

The following sections look at some of the organizational choices in 
cache design. 

Associative Memories and Cache Organization 

A typical computer memory system is composed of a number of 
consecutive storage elements, usually bytes, each with a unique physical 
address. To read the data from a given storage location, the CPU places this 
unique address in an internal register on the memory bus (often referred 
to as the memory address register) and receives the return data in another 

Figure 14. 1 Structure of CPU with cache memory 

CPU 

Cache 
memory 



334 Caches and Translation Buffers 

register (the memory data register), as shown in Figure 14.2. The address 
specified is used as an index into the memory; each address uniquely 
specifies one memory location to be selected, and no searching is 
required. 

Human memories function by associating or chaining related infor­
mation together, not by using addresses. We often recall an item commit­
ted to memory by remembering something else associated with the item. 
Thus, to recall the name of an acquaintance called Donald, we conjure up 
the image of a duck. Such an associative memory is represented by the 
phone book in Figure 14.3. Here we have a list of names and associated 
information. Although the information could be listed randomly, it is 
usually presented in alphabetical order. For each name, or tag, there is 
some associated information. Each entry is "addressed" not by its number 
or position within the list, but by its name or tag field. 

If the tags do not uniquely identify the object, then duplications can 
occur. For instance, the Chicago phone book contains many entries for the 
name Peter Smith because the name by itself does not uniquely identify 
one person. Thus, an associative search can yield several alternatives from 
which one must be selected based on additional information (for example, 
street name). 

A computer memory structure could be constructed as shown in 
Figure 14.4. Each entry consists of two parts, a tag and an associated data 
item. The computer presents a tag to memory by writing it into the tag 
register. If a match (called a hit) is found anywhere in the A half, the 
associated data item from the B half is returned to the output data register. 
If no match is found, the memory reports a miss. A complete memory 
search would be slow if the comparisons were made sequentially from the 
beginning to the end of the list. Consequently, it is common for the 
memory system to be constructed to perform all of the comparisons in 
parallel, at a substantial increase in complexity. 

Figure 14.2 Random access memory 
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Figure 14.3 Associative list Figure 14.4 Associative memory 

Name or Tag Data Item(s) Tag Tag Data 

Cal Cauliflower 281-5610 Aj Ao Bo 

Bob Blackberry 356-8123 
Input I 

A1 B1 

A2 B2 
Dora Dandelion 413-1213 

Arnold Apple 856-2031 Data 

Output I Bj 

. 
An - 1 Bn - 1 

A half B half 

A cache built in this way with all comparisons done in parallel is 
called a fully associative cache. For the cache, each tag in the A half 
contains a primary memory address, and the associated B half data entry 
contains the data stored at that address. For example, if we were designing 
a simple VAX cache, each tag would be a 32-bit address and the associated 
data would be a longword. Because of the cost and complexity of the 
parallel searching structure, very few fully associative caches have been 
used. 

To reduce cost and complexity, it is also possible to use some bits from 
the tag as an index into the memory, forming a direct-mapped cache as 
illustrated by Figure 14.5. The figure shows a 32-element direct-mapped 
cache. Given an input tag, the five low-order bits of that tag are used to 
select one of the 32 cache entries. For example, if the value of the 5-bit 
field is the integer i, then the ith cache entry will be selected. Many tags 
may have the same low-order five bits, and therefore collisions may occur; 
these will potentially decrease the effectiveness of the cache. For instance, 
if all 5-bit index values are even, only half of the cache will be used. 

Thus, the data for each address (tag) can appear in only one location 
in the cache, as determined by its low-order bits. Once the appropriate 
cache entry is selected, the twenty-seven high-order bits of the tag are 
compared with the contents of the A half of entry i (A). If a match occurs, 
data Bi is returned; if not, we have a miss. 

Figure 14.5 Direct-mapped cache 
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Issues in Cache Design 

One problem with the direct-mapped cache is that each datum can be 
stored at only one location and many data items can map to that same 
cache location. For example, if two data items that map to the same cache 
entry are needed alternately within a tight loop, each access to one of 
them will find the other in the cache, causing a miss and bumping the 
other item out of the cache. 

A solution to this problem is to provide n different .places where a 
particular datum can be stored; such a structure is called an n-way 
set-associative cache. Figure 14.6 shows the basic organization of a set­
associative cache-the organization used by most contemporary caches. 
Each box in this figure operates exactly like a direct-mapped cache with M 
entries, except that all of the boxes operate in parallel. When an input tag 
is presented to the cache, ZOg2 M bits of the tag are used to form a cache 
index, i, as before. In this case, however, entry i of each of the N boxes is 
checked for a match simultaneously. Each row of entries in Figure 14.6 is 
called a set and the number of entries in a set (that is, the number of 
parallel comparisons that must be made) is the set size or set associativity, 
which is always a power of 2. A direct-mapped cache is simply a set 
associative cache with a set size of 1. Caches have been built with set sizes 
of 2,4,8, 16, and 32. As you might imagine, there are diminishing returns; 
a set size of 2 performs much better than direct mapped, while a set size of 
4 performs only a little better than a set size of 2, and so on. 

For example, Figure 14.7 shows a typical graph of hit ratio versus 
cache size for a hypothetical cache memory. As the cache size grows, hit 
ratios increase to nearly 99 percent. Furthermore, as the cache gets larger, 
each doubling of cache size gives a smaller gain. This figure also shows the 
effect of adding associativity. The bottom curve is for a direct-mapped 
cache. Changing the cache to two-way set-associative, that is, two elements 
per set, produces a substantial increase in performance, particularly at 
smaller cache sizes where conflicts are more likely. As we add more 
associativity, we get better performance but the performance gain be­
comes smaller and may not be worth the additional complexity. 

Figure 14.6 Set-associative cache organization 
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Figure 14.7 Typical cache performance 
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Within this basic structure of a set-associative cache are a number of 
design decisions that affect both the complexity and the performance of 
the cache. We consider some of these decisions in the following para­
graphs. 

Each data slot in a cache is called a line or a block. One important 
issue is the cache line size or block size, that is, how much data is stored 
with each address, and how much data is loaded on each miss. If data were 
moved from memory and stored in the cache in one-byte units, time would 
be saved only on a hit to a previously referenced byte. Furthermore, this 
would waste bus bandwidth. A larger line size can make better use of bus 
bandwidth and locality, since it prefetches a small amount of data with 
each miss. On the VAX 6200 family, for example, 32 bytes of contiguous 
data are fetched on each miss. As the line size gets larger, however, the 
potential increases for the newly loaded data to displace possibly useful 
data already in the cache. 

The time to handle a cache miss depends in part on when the memory 
fetch is initiated. In the simplest case, the cache is checked for an item and 
if a miss occurs, the memory fetch is then begun. In this case, the cost of 
the miss is the sum of the cache lookup time and the memory fetch time. 
On the other hand, the memory fetch could be started in parallel with the 
cache lookup; if there is a hit, the memory fetch is simply cancelled. The 
cost of a miss in this case is only the memory fetch time; however, bus 
bandwidth may be wasted performing unnecessary fetches. 

We have discussed the operation of a cache on reads, but what about 
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writes to memory? The simplest write implementation for handling 
memory writes in the cache is called write-through. When a write request 
is made, the new data is written "through" the cache to main memory. In 
this way, both the cache and memory always have valid copies of all data. 
Although some performance loss may occur because of the time to 
perform the write, the processor can continue operation while the write 
into memory proceeds. 

There are actually two cases to consider on write requests: those that 
hit in the cache and those that miss. On a write miss, a write is being 
performed to data that is not currently in the cache. In most designs, that 
data will be written to main memory and the cache will not be modified 
unless that data is subsequently read by the program. On the other hand, 
some caches employ a strategy called write allocate, in which the data is 
written to memory and loaded into the cache at the same time:. On a write 
hit, the data being written is already cached; in this case, both the cache 
and main memory are updated. 

Another method used to handle writes in cached systems is called 
write-back. With write-back, the new data is written only to the cache and 
not to main memory. A separate "dirty" bit that is part of the cache tag is 
set, thereby remembering the cache modification. This method reduces 
the number of writes to main memory. If a datum is heavily read and 
written within a tight loop, the loop can proceed without any access to 
primary memory, saving time, bus bandwidth, and memory cycles. The 
hardware, however, is more complex because the cache must know when 
a write to main memory must occur. For example, if a cache miss occurs, 
the cache must check to see if the data to be displaced is dirty; if so, that 
data must be written to memory before the new data can be loaded. 

If a user with cached data performs a disk write, the memory being 
written may not be up-to-date. Therefore, either the cache must watch the 
I/O traffic or else the operating system must cause dirty data to be updated 
in primary memory before it is output. Similarly, if a user with cached data 
performs a disk read, some cached elements may need to be invalidated 
because they no longer reflect the values stored in memory. For this 
reason, each cache line must have a valid bit to indicate whether the data 
there is valid or not. 

Write-back caches are more complex but offer the potential for higher 
performance. In a multiprocessor with large numbers of processors, a 
write-back cache is almost a necessity to reduce contention for the system 
bus and memory. In this case the caches have an additional problem; if 
one processor writes a datum in its cache, other caches may need to know 
about it. Such caches are often called "snoopy caches" because they 
continually keep track of each other's transactions. 

One final issue to consider is the separation of the common cache for 
instructions and data into two separate caches: an instruction cache 
(I -cache) and a data cache (D-cache). There are two basic reasons for 
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splitting the cache in this way. First, an optimal cache structure for 
instruction fetches may be different from an optimal structure for data 
fetches. Instructions show more locality than data, and the fact that 
instructions are read-only may greatly simplify the I-cache design. Second, 
on reduced instruction set machines, where most instructions can execute 
in only one cycle, the cache will be totally saturated by instruction 
requests. Since the CPU needs to fetch data as well as instructions, a 
separate I -cache and D-cache may be required to provide the needed 
parallelism and to prevent a wasted cycle for instructions that read or 
write memory. On the VAX, this is not an important issue because the 
average VAX instruction takes about eight to ten cycles, during which 
there are plenty of free cache cycles to fetch instructions and data. 

Cache Coherency in Multiprocessors 

As previously stated, a new problem is created by shared-memory 
multiprocessors. On the one hand, as more processors are added, caches 
are required to reduce bus traffic and memory contention. On the other 
hand, the problem of cache coherency becomes significant. In a shared­
memory multiprocessor, it is possible for a single data item to be cached in 
several processors' caches. If the data is read-only, there is no problem. 
However, if one of the processors writes that data, other processors' 
cached copies will be out of date, that is, incoherent. 

There are a number of possible solutions to this problem. One simple 
solution is for each processor to have a write-through cache. Using a 
write-through scheme accomplishes two purposes: all writes are broad­
cast on the bus, and memory always contains the most recent copy of all 
data. All of the caches watch the bus for memory-write transactions. For 
example, when processor A modifies variable m, its cache will send a write 
request to primary memory because the cache is write-through. All other 
caches will see the transaction and will check to see if they have variable m 
cached. If processor B's cache finds that it has a copy of m, it will 
invalidate the cache line containing m. Should processor B subsequently 
try to read m, it will get a cache miss and the correct data will be loaded 
from primary memory. 

The problem with this strategy is that it requires a write-through 
cache, which causes more bus traffic and memory contention than the 
alternative write-back scheme. This is particularly significant in a shared­
memory multiprocessor where the bus can be a bottleneck. With a 
write-back cache, there is additional complexity because writes are not 
automatically sent to memory; hence, other caches would not normally 
see write activity. To achieve better performance, multiprocessors with 
write-back caches typically maintain several additional state bits with each 
cache entry. These bits describe the state of the cached data and can 
permit cache writes without updating memory. For example, such a 
scheme is used in the Firefly, a prototype 7-VAX multiprocessor worksta-
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tion developed by the DEC System Research Center (and described in the 
1987 paper by Thacker and Stewart). Each Firefly processor has a cache; 
each cache line, which holds one 32-bit word, has two special state bits, 
called shared and dirty. These bits are used to reduce write traffic. When a 
cache knows that its entry is exclusively owned (not shared), that cache 
can act as a write-back cache, making updates only locally. However, each 
cache snoops on all bus transactions; when a cache discovers another 
cache trying to read memory that it currently has exclusively, the owning 
cache supplies the data and both caches then consider the data to be 
shared. At that point, all writes to that data item in either cache will be 
broadcast to all caches and to memory. This mechanism reduces the 
number of bus writes required to memory locations that are not actively 
being shared, while maintaining consistency for shared data. 

There are many different cache coherence protocols, and the choice 
of a protocol involves tradeoffs between cache and bus complexity, bus 
traffic, and performance. For an excellent discussion of these protocols, 
see the paper by Archibald and Baer (1986). 

Multilevel Caches 

Several computer systems now employ multilevel caches, that is, two 
separate caches between the processor and main memory. The basic idea 
of a two-level cache is to provide a small but fast cache close to the 
processor; behind that cache is a large, but somewhat slower, second-level 
cache. The second-level cache is connected to the memory bus. Only 
misses at the second level are sent to primary memory. 

Recently, a two-level structure has become viable for a number of 
reasons. First, processor speeds are increasing faster than memory speeds. 
This implies an increasing disparity between processor cycle time and 
memory access time. The larger this disparity, the more room there is for a 
multilevel memory hierarchy. Second, primary memories are rapidly 
increasing in size, and memories of hundreds of megabytes are becoming 
common. Large memories typically have larger access times because of 
packaging and physical design constraints. Cache sizes have increased 
along with memory sizes; but while a large cache reduces misses, it also 
becomes slow; therefore, a small, fast cache can be used in conjunction 
with a large, slower cache. Third, because of increasing on-chip densities, 
it is possible to include small on-chip caches. These caches reduce the 
number of off-chip memory accesses, but they need to be backed up by 
larger caches because of their relatively low hit rates. Fourth, shared 
memory multiprocessors require local caches to reduce bus contention. A 
large second-level cache can help both to reduce access time on misses in 
the first-level cache and to reduce bus traffic. 

The following section examines a specific two-level cache in more 
detail. 
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An Example Cache Organization: The VAX 6200 

The beauty of the cache mechanism is that (1) it greatly increases 
system performance and (2) it is completely invisible to the programmer. 
Each CPU designer is free to use a cache (or no cache, for that matter) that 
suits the needs of the CPU. For example, the MicroVAX II computer has no 
cache, but this system has a relatively balanced CPU speed and memory­
access time. Other VAXes require a cache because of a high ratio of 
memory-access time to CPU cycle time. 

This section examines the cache design of a specific computer: the 
VAX 6200. Two aspects of the VAX 6200 make it interesting to examine. 
First, it is a multiprocessor system and must deal with cache coherency. 
Second, the VAX 6200 uses a multilevel cache. 

Figure 14.8 shows the general structure of a VAX 6200 system. All 
CPUs, the primary memory, and the backplane interconnect (BI) buses, 
which are used to attach I/O and network controllers, are connected 
through a shared high-speed bus. Each CPU in the VAX 6200 is a 
single-chip CVAX microprocessor. The CVAX has a small on-chip cache 
that can hold instructions only or hold both instructions and data. In the 
VAX 6200, this cache is used to hold only instructions. Between each CPU 
and the shared bus is a large cache that holds both instructions and data. 

The small on-chip instruction cache in the VAX 6200 holds lK bytes of 
instruction-stream data. The cache is organized as a two-way set-

Figure 14.8 Organization of the VAX 6200 multiprocessor 
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associative cache, as shown in Figure 14.9. Each cache block holds 8 bytes 
of data. Given a physical memory address, the cache uses the 6-bit index 
field to select a block in each half of the set-associative cache. The upper 20 
bits of the physical address are then compared to the 20-bit tag field in each 
of the cache blocks selected by the index. If a match occurs, the data is 
found in the cache block whose tag has matched. The low-order 3 bits of 
the physical address specify which of the 8 bytes in the cache block is the 
byte being requested. A lookup in this first-level cache takes 80 nanosec­
onds, which is the cycle time of the CVAX processors in the VAX 6200. 

The second-level cache in the VAX 6200 takes 160 nanoseconds for a 
lookup, half the speed of the first level, but it is substantially larger, holding 
256K bytes of instructions and data. The second-level cache is direct 
mapped. As previously stated, a direct-mapped cache is simpler to build 
than a set-associative cache and the associativity becomes less important 
as the cache size increases. Figure 14.10 shows the structure of the 
second-level cache in the VAX 6200. 

The second-level cache in the VAX 6200 contains 4,096 cache blocks. 
Each block holds 64 bytes of data; however, a block is divided into two 
parts that hold 32 bytes each. When a cache miss occurs, 32 bytes of data 
are loaded into the appropriate half of the selected cache block. Because 
of this structure, the cache must contain two valid bits (shown as VO and 
VI in Figure 14.10), one for each half of the block. This structure allows 
the cache to fill in 32-byte units, while reducing by half the tag storage that 
would be needed if the block size were only 32 bytes. 

When a request is made to the second-level cache, the cache extracts a 
12-bit index field from the physical address to select one of the 4,096 cache 
blocks. The cache then compares the high-order 12 bits of the physical 
address with the 12-bit tag stored in the selected block. The 6-bit offset 
must also be examined to determine which valid bit is appropriate for the 

Figure 14.9 First-level cache in the VAX 6200 
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Figure 14. 10 Second-level cache in the VAX 6200 
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requested data. If the tags match and the appropriate valid bit is set, the 
offset field specifies the start of the data element requested. 

The VAX 6200 is a multiprocessor and must implement cache 
coherency. The scheme used is fairly ~imple. All caches are write-through, 
so memory contains a consistent copy of all data. All caches snoop on the 
bus and invalidate local copies of any data that is written. Each memory 
write seen on the bus thus requires a cache lookup. In order to reduce the 
cache interference that would be caused by those cache lookups, each of 
the second-level caches has a replicated tag storage. That is, there are two 
copies of the tag for each block, one copy used for cache lookups from the 
processor, and one copy used by the logic snooping on the bus. No 
coherency control is required in the first-level cache because it caches 
only instructions, which are read-only.! 

The use of write-through, as previously noted, does cause a substantial 
increase in write traffic compared to write-back. To reduce this write 
traffic, the VAX 6200 has a 16-byte write buffer between the second-level 
cache and memory. This buffer can be thought of as a tiny write-back 
cache. The buffer is only written to memory when necessary, for example, 
when a write is made outside of the current 16-byte range of the buffer. 
Due to the high degree of locality for write references (for example, as a 
result of consecutive stack writes on procedure calls), this type of write 
buffer reduces the write traffic to main memory by an average of 
approximately 50% compared with a standard write-through cache. 

'In fact, although it is strongly discouraged, the VAX does permit writing to the 
instruction stream; however, the architecture requires software to execute an REI instruc­
tion prior to executing modified instruction-stream code. The CVAX automatically flushes its 
cache on execution of an REI instruction. 
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The Translation Buffer 

On a virtual-memory system such as the VAX, a reference to a single 
virtual address can cause several memory references to occur before the 
desired information is finally accessed. For example, a reference to a 
system space address requires one reference to the system page table, 
which then yields the final physical address. This extra reference is part of 
the overhead associated with a virtual memory system. Similarly, a 
process space access requires references to the system and process page 
tables to compute the actual physical address. 

To reduce the apparent overhead of these levels of indirection, VAX 
processors contain a high-speed associative memory called the translation 
buffer (TB), which caches the most recently used virtual-to-physical 
address translations. While not all VAXes have caches, all VAXes must have 
a translation buffer, if even a small one; otherwise the virtual-memory 
translation overhead would be intolerable. 

Figure 14.11 shows the general system organization of a CPU with a 
translation buffer. User programs running on the CPU generate virtual 
addresses of instructions or data to be accessed. These virtual addresses 
are passed to the translation buffer. The TB is just a cache whose tags are 
virtual page numbers and whose associated data elements are the page 
table entries corresponding to those virtual pages. If the translation for the 
virtual address is found in the TB, the TB performs the translation and 
sends the correct physical address to the cache. If the TB lookup fails, a TB 
miss occurs and processor microcode attempts to load the appropriate 
translation information from the primary memory page tables into the TB. 

For example, the VAX-ll/780 contains a 128-entry TB whose block 
structure is shown in Figure 14.12. Like the 780's memory cache, the TB is 

Figure 14.11 CPU with cache and translation buffer 
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Figure 14.12 VAX-11/780 translation buffer block structure 
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two-way set associative; as a result, there are two possible slots in which a 
particular page table entry can reside. Moreover, the translation buffer is 
separated into two parts. In Figure 14.12, the upper thirty-two entries are 
used for system space translations (system PTEs), the lower thirty-two for 
process space translations (process PTEs). This structure was chosen 
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because, while system space is shared among all processes, process space 
translations are local and must be invalidated when a context switch 
occurs. If these entries are not invalidated, the next process could access 
the wrong physical-memory location by generating a process virtual 
address when a previous process translation is in the buffer. Dividing the 
translation buffer provides a simple structure for invalidating all process 
translations while leaving system translations unaffected. 

The translation of a virtual address is shown in Figure 14.1.3. Bit 31 of 
the virtual address selects the top or bottom half of the translation buffer 
for system or process space. Because there are 32 entries in each half of 
the buffer, bits <13:9> are used to select one of these entries in both the 
Group 0 and Group 1 buffers. A validity check is made, and address bits 
<30:14> are checked against the tag fieldstored in the buffer. If a match is 
found, the physical page-frame-number bits stored in the associated data 
field for the matching entry are appended in the byte-within-page bits 
<8:0> of the original virtual address, forming the physical address. At the 
same time, the protection field is compared with the current mode to see if 
the process has the appropriate privilege to access that page. If not, an 
access violation fault is generated. 

If the operation to be performed is a write, a check must be made to 
see whether the Modify bit has been set. If it has not, this is the first write 
to the page, and the Modify bit must be set on both the translation buffer 
and main memory versions of the PTE. 

The operation of all VAX translation buffers is fairly similar, although 
some are direct mapped and some are two-way set associative. Table 14.1 
shows a number of the VAX implementations and the characteristics of 
their caches and TBs. The table is listed in order of machine performance. 
The lowest-performance VAX, the VAX-ll/730, has no cache. While the 
Micro VAX II has no cache and only a small on-chip TB, it is a small system 
with memory packaged close to the CPU (one megabyte is actually on the 
CPU board). The VAX 6200 multiprocessor, which uses the CMOS 
MicroVAX chip, has a two-level cache; there is an on-chip cache for 
instructions and a second-level cache on the CPU board. Each second-level 
cache on the VAX 6200 is 256K bytes. All VAX systems use the simpler 
write-through cache structure, except for the VAX 8600/8650, which uses 
write-back. 

Figure 14.13 Translation of a virtual address on the VAX-11/780 
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Table 14.1 VAX Cache and TB Characteristics 

Cycle 
Machine Performance Time Cache TLB 

VAX-11/730 .4 270 ns none 128 entries 

VAX-11/750 .6 320 ns 4KB 512 entries 
direct mapped 

MicroVAX II .9 200 ns none 8 entries 
on chip 

VAX-11/780 1.0 200 ns 8KB 128 entries 
two-way 

VAX-ll/785 1.5 133 ns 32KB 128 entries 
two-way 

VAX 8200 1.0 200 ns 8KB 512 entries 

VAX 3500 3.0 90 ns 1K on-chip 28 entries 
64 KB 2nd level 

VAX 6200 3.0 80 ns 1K on-chip 28 entries 
256KB 2nd level 

VAX 8650 6.0 55 ns 16KB 512 entries 
two-way 
write-back 

VAX 8800 6.0 45 ns 64KB 1024 entries 
direct mapped direct mapped 

The Instruction Buffer 

One area in which the processor particularly benefits from buffering 
and overlapping operations is the fetching and decoding of the instruction 
stream. Instructions are almost always executed in a linear or sequential 
order. If the processor can fetch the next instruction from memory while 
the current instruction is executing, it rarely has to wait for the memory 
system between execution of sequential instructions. 

On some VAXes, this prefetching of instruction bytes is handled by an 
instruction buffer in the CPU. On the VAX 8800, for example, the instruc­
tion buffer is 16 bytes long and is managed as a circular buffer with a read 
pointer and a write pointer. The read pointer specifies the\next byte to be 
read by the CPU, while the write pointer specifies the first free byte 
available to be filled by the cache. As a low-priority background activity, 
the cache continuously attempts to fill the instruction buffer. Such 
instruction buffer fills may cause cache misses, which will cause instruc­
tions to be loaded into the cache before they are accessed. Of course, there 
is a chance that some instructions will be loaded superfluously because 
the program may branch before a prefetched instruction is accessed. 
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Since the average VAX instruction is about 4 bytes long, the VAX 8800 
instruction buffer typically holds several instructions at a time. However, 
whenever a control transfer takes place (as the result of a branch or 
procedure call), the instruction buffer is flushed and the cache begins 
refilling the buffer starting with the target address. 

To aid the cache in filling the instruction buffer, most VAXes have 
another optimization structure called the instruction physical address 
(IPA) register that contains the physical address of the next instruction to 
be executed. This register makes many address translations unnecessary. 
Because most instructions are executed sequentially, the IPA register 
allows the hardware to translate only the first instruction executed within 
a page. Whenever a branch is taken or IPA is incremented across a page 
boundary, a translation must be performed to calculate the physical 
address and to verify protection. Following the translation and loading of 
IPA, subsequent sequential instructions fetched within the same page do 
not require virtual-address translation. 

This chapter examined cache memory techniques that are used to 
increase performance of computer systems. One advantage of the cache 
and its cousins, the translation buffer and instruction buffer, is that they 
are invisible to the user program, which thus sees a consistent architec­
ture across all machine implementations. Hardware designers can choose 
different components and internal structures to obtain machines with 
different price/performance characteristics. 

For more information on caches, read the survey article by Smith 
(1982). The papers by Clark (1983) and Clark and Emer (1985) provide 
measurements of cache and translation buffer performance in the 
VAX"11/780. 

1. Assuming that a reference to main memory (a cache miss) takes 1200 
nanoseconds and a cache hit takes 400 nanoseconds, graph the average access 
time versus cache hit rate for hit rates of 55, 65,75, 85, and 95 percent. 

2. Previously, we presented the formula 

average access time = H x Tc +(1 - H) x TM 

This formula assumes that a cache lookup and memory fetch start simultane­
ously, and the memory fetch is cancelled if the cache lookup succeeds. Modify 
the formula for a cache in which the primary memory fetch is not initiated 
until after the cache lookup fails. Recompute your graph for the previous 
problem and compare the results. 
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3. Discuss the three alternative cache organizations. What are the advantages of 
each? 

4. What are advantages and disadvantages of using a write-back cache strategy? 
Be sure to discuss both the performance and failure implications. 

5. Caches are often used to improve the access time to main memory by the CPU. 
What about using caches for disk I/O to and from main memory? What are the 
alternatives for placing such a cache? What are the advantages and disadvan­
tages of each option? 

6. Describe the similarities and differences between a main memory cache and a 
translation buffer. How can a translation buffer's performance be improved? 
Why might a 64-entry translation buffer be sufficient for the VAX? 

7. Why is it that enlarging the TB may not payoff in a higher TB hit ratio? 

8. Why is organizing a cache as a multiway set-associative cache, as opposed to a 
direct-mapped cache, more important for small caches than for large caches? 

9. The VAX 6200 uses a two-level cache scheme in which the first-level cache is 
used for instructions only. Why was this decision made (using the first level for 
instructions only)? What would be required to make the first-level cache a data 
and instruction cache? What effect would this have on performance of the 
first-level cache? 

10. What must be done to the TB following a process context switch operation? 
Why? How could you design a TB that would avoid this problem? 

11. Is it possible to build a VAX without a cache, TB, or instruction buffer? If you 
could have one but not all three features, which one would you choose? Why? 
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Chapter 2 examined the basic structure common to all digital comput­
ers. Figure 2.1 showed that the central processing unit contains a control 
unit, various registers, and an arithmetic and logic unit (ALU) that 
performs calculations on the data stored in registers under the command 
of the control unit. This chapter takes a more· detailed look at a common 
technique used for designing the CPU and organizing the data and control 
portions of the CPU. This technique, called microprogramming, is common 
to many computer systems, particularly to architectural families with 
sophisticated instruction sets like the VAX, the IBM 370, and the Motorola 
68000 series. 

Introduction to Microprogramming 

350 

The purpose of the CPU is to interpret and execute the instructions 
that reside in the memory of the computer. The control unit is responsible 
for fetching instructions and performing the operations that they specify 
by sending electrical signals to (1) the arithmetic unit to transform data, 
(2) the memory unit to fetch (or store) data and instructions, (3) the 
general or special-purpose registers to select registers to be read or 
written, and (4) the I/O units to access or store aggregate data items. These 
signals are the H command" inputs to logic gates that determine the flow 
and control of information throughout the machine. 

Typically, two types of control units have been built: hardwired and 
microprogrammed. In hardwired machines, the control unit is made up of 
an interconnection of combinatorial and sequential electrical logic cir­
cuits that explicitly execute macro-leveP instructions for the target 
architecture. This is often referred to as "random logic" because it is the 
result of an empirical process that CPU designers go through to design 
machines. Figure 15.1 shows the organization of a hardwired machine. 

Microprogrammed machines have a hardware structure that executes 
a different, and typically simpler, instruction set than that of the macro-

lAs is common when describing microprogramming, we use the term "macro" to mean 
the machine code of the target computer. This implies a higher level, as opposed to the 
microprogramming level. 
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Figure 15. 1 Organization of a 
hardwired CPU 
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level target machine. A program written for that simplified machine 
interprets target-machine instructions. This program, called a micropro­
gram, fetches and interprets macro-level instructions, just as the hardware 
in the hardwired machine interprets macro-level instructions. For exam­
ple, the microprogram would fetch an instruction from memory, examine 
its opcode, and do whatever work the instruction is intended to perform. A 
principal difference between the microprogram and the macro programs 
that it interprets is that the microprogram is completely stored inside the 
CPU, while the user and operating system programs reside in main 
memory. Figure 15.2 shows the structure of a microprogrammed ma­
chine. 

Most early computers were hardwired. Designing these machines was 
simple at first because the basic instruction architectures were fairly 
simple. However, designers quickly sought to build computers with much 
more complex instruction sets. Complex instructions were needed be­
cause memories were slow compared to the speed of the CPU; more 
powerful instructions could increase performance by keeping the CPU 
busy while the next instruction was being fetched. Early designers viewed 
complex instructions as subroutines that were implemented in hardware 
to reduce the number of instruction fetches needed to perform a complex 
operation, such as a floating-point multiply. 

Building random-logic designs of complex instruction sets has several 
problems. First, because complexity of the hardware design increases with 
the complexity of the architecture, it is difficult to design and debug the 
hardware. Second, once the design is complete, it is difficult to make 
changes to the architecture. Adding a new instruction could require a 
major change of the entire hardware design. 

Sensing that this process was not well structured, Maurice Wilkes in 
1954 suggested a more regular approach to designing the CPU. In his now 
classic paper on microprogramming, Wilkes separates the design of the 
CPU into two components: the data path and the microcontrol unit. The 
data path consists of all the storage elements, the arithmetic units, and 
their interconnections. The major innovation is in Wilkes's micro control 
unit, as it is called. The microcontrol unit contains an array of 
microwords. Each microword is an instruction to control the elements of 
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the data path, signalling data to move from registers onto buses, com­
manding the ALU, and so on. High-level functions (for example, macro 
instructions) are implemented as a sequence of microwords that cause the 
data path to perform the high-level functions. 

This structure greatly simplifies the design of the computer control 
unit. Given a description of the instruction-set architecture and the 
machine's data path, a microprogram is written to execute that instruction 
set. That is, for each instruction in the instruction set, the designer writes 
one or more microinstructions to perform that function. Other microin­
structions are written to fetch the next high-level instruction, to examine 
the opcode, and to branch to the microinstruction sequence responsible 
for that opcode. Thus, the computer hardware executes microinstructions. 
A program is then written in these microinstructions to interpret the 
high-level machine instructions. 

In this way, a great deal of flexibility is maintained. New instructions 
can be added simply by writing new microcode. Bugs can be fixed by 
modifying microcode. The basic hardware design is simplified because the 
hardware executes the well-structured microinstructions. Also, the hard­
ware and the architecture can be designed somewhat in parallel-it is not 
necessary to know all the details of the high-level instruction set to design 
the data path and the micro control unit. In fact, different microprograms 
can be run on the same hardware to emulate different high-level instruc­
tion sets. Perhaps different microprograms can be loaded to support 
execution of different high-level languages. Most important, different 
hardware implementations can be built to meet different price/ 
performance goals, and each implementation can be microprogrammed 
to execute the same high-level instruction set. Thus, microprogramming 
leads to the concept of computer families. 

The principal disadvantage of microprogramming is performance. 
Direct hardware instruction execution is generally faster than microcode 
emulation. Therefore, direct execution is often used when high perfor­
mance is a necessity, or on machines with simple instruction-set architec­
tures. Microprogramming is typically used to simplify the design of 
complex instruction-set architectures, at the cost of performance. 

Organization of a Simple Micromachine 

The following sections look at the central parts of the 
microarchitecture-the data path and the control unit-in a little more 
detail. To describe how these components work, we will construct a 
prototype microprogrammed data path and control unit for an extremely 
simple machine. Following the discussion of our simple machine, we will 
examine the organization of a real microprogrammed computer, the 
MicroVAX I. 
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When we examine the microarchitecture of a microprogrammed 
computer, it is easy to lose track of our place in the hierarchy shown in 
Figure 15.2. This chapter is concerned with the organization below the 
user-visible architecture, that is, below the double line in Figure 15.2. The 
purpose of the lowest-level logic circuits is to execute a single microprog­
ram, which is typically only a few hundred or a few thousand microin­
structions. The purpose of that single microprogram is to fetch and 
execute machine code as defined by the user-visible architecture of the 
machine. 

The Data Path in a Simple Machine 

When studying the hardware organization of either a hardwired or a 
microprogrammed machine, we normally begin by examining the data 
path. It is the data path that tells us the basic capabilities of the hardware: 
how much storage there is, how wide the buses connecting various units 
are, how many arithmetic units there are, and how much potential there is 
for parallelism within the computer. 

To understand the structure of data paths, we will construct an 
extremely simple data path for a 32-bit microprogrammed computer 
system. To begin, let's examine some of the components that will make up 
our data path. First, the data path contains buses, parallel collections of 
wires that transmit data and addresses between functional units. For our 
32-bit computer, it is natural to use buses that are 32 bits wide. 

Second, our data path contains storage, which is supplied in the form 
of registers. We will choose an array of sixteen 32-bit registers, which is 
depicted as follows: 

Bus out 

16-register 
array 

Control signals 

Bus out 

For our particular example, we· have chosen a register array that has a 
single bus leading in. During a particular cycle, one 32-bit value can be 
written to one of the registers. The register array has two buses leading 
out. During a particular cycle, two registers (or possibly the same register) 
can be loaded onto the two output buses. The register array also has a 
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number of control signals leading into it. These signals tell the array when 
to load the output buses and which registers to load, when to write from 
the input bus and which register to write, and so on. 

Third, the data path has two functional units, a shifter and an ALU. 
The shifter has an input bus and an output bus. Control signals tell the 
shifter what operation to perform, as well as when to perform it. This 
shifter can shift left by one bit, shift right by one bit, or not shift at all, in 
which case it acts like an intermediate register. 

Bus in 

Control 
'-----.:""IT""---- signals 

The ALU has two 32-bit buses leading into it, and it produces one 
32-bit result that is a function of its inputs. It also outputs several condition 
code bits depending on the result. Control signals leading into the ALU tell 
it when to load its inputs and what function to perform. If we call the two 
inputs A and B respectively, the ALU performs the following operations: 
Nap (no operation), A AND B, A ORB, AXORB, A+B, A+B+1, A-B, and 
A - B-1. The ALU is depicted as follows: 

ALU 
CC's Control 

~--signals 

Finally, we may also need one or more multiplexers. A multiplexer 
takes a number of inputs, usually a power of 2, and selects one of them to 
be passed to its output. N control signals specify one of the 2N inputs, as 
follows: 

Control 
signals 
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Figure 15.3 Simple data path organization 
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Figure 15.3 shows a simple data path constructed from these parts. 
The data path as shown is self-contained and has no access to outside 
memory, but ignore that for the moment and consider what work this data 
path can do. Imagine that each machine cycle is divided into four 
subcycles. During the first subcycle the next microinstruction is fetched, 
and registers are read from the register array, as instructed by control 
signals to the registers. During the second subcycle, the ALU performs an 
operation on its inputs, as instructed by its control signals, producing an 
output. During the third subcycle, the shifter acts on its input to produce a 
shifted (or nonshifted) output, again as instructed by its control signals. 
Finally, during the fourth sub cycle , the shifter result is stored back into 
the register array, as instructed by additional control signals to the 
registers that indicate which register is to be written. 

The reason for dividing the complete cycle into subcycles is that each 
element in the data path has some delay associated with it. For example, it 
takes time, once valid inputs are available to the shifter or the ALU, for the 
outputs to be produced. Dividing the cycle into discrete subcycles ensures 
that each stage of the data path has time to produce correct results. Often 
the stages are separated by registers to "latch" the results between stages, 
before the values are fed to the next stage. 

In one complete cycle, then, this data path is capable of reading out 
the values of two registers, performing a logic or arithmetic operation on 
their values, shifting the result, and storing the final value back in the 
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register array. The arithmetic and shifting functions are simple. However, 
by performing sequences of data-path operations over multiple cycles, we 
could perform complex.calculations on data in the registers, for example, 
multiplication or division. 

Looking at this data path, we see the basic power of our hardware, its 
storage, and the primitive functions it can perform. At this point, we might 
want to ask some questions about how this data path is controlled, for 
example, where do the control signals·come from? How is it possible to 
execute conditional operations? To answer these questions, we must 
design a control unit for our simple data path. 

The Control uni1n a Simple Machine 

The control unit is responsible for issuing commands to the various 
parts of the data path and for timing those commands so that the 
operations are performed correctly. For our simple data path, the control 
signals consist of register selection, ALU function, and shift specifications 
to the data path. Based on what we've seen, we can make a list of the fields 
that supply the control signals needed during each cycle, namely, 

• a 4-bit control field to tell the register array which of the sixteen 
registers to load onto its left output bus 

• a 4-bit control field to tell the register array which register to load onto 
its right output bus 

• a 4-bit control field to tell the register array which register to write 
from its input bus 

• a 3-bit control field to tell the ALU which of its eight functions to 
perform 

• a 2-bit control field to tell the shifter which of its three functions to 
perform 

These control fields provide the basic commands to the functional 
units within the data path. In a microprogrammed control unit, as we 
indicated previously, each microinstruction controls all of the units of the 
data path; therefore, a microinstruction must have fields to specify all of 
these bits. In our microprogrammed machine, each microinstruction will 
specify the actions to be taken in one cycle through our data path. 

Figure 15.4 shows a possible microinstruction format for a micro con­
trol unit for our example data path. Notice that we have added two fields to 
those specified in the preceding list. The branch control field will be used 
to specify under what conditions a microcode branch will occur, and the 
branch address field will specify a destination microinstruction if that a 



The Control Unit in a Simple Machine 357 

Figure 15.4 Example of a microinstruction 

12 

Branch address 

branch is taken. Since the branch address field is 12 bits, the largest 
microprogram that we will be able to write will have 212 (4K) microin­
structions. 

Now we know what the data path looks like and what a microinstruc­
tion looks like. All that's needed to complete our machine is the mecha­
nism for selecting and fetching. microinstructions to execute, so we can 
write sequences of microinstructions. Such a mechanism, called a se­
quencer, issues the control signals for the micromachine. Figure 15.5 
shows a simple sequencer for our micromachine. The sequencer consists 
of 

• the microcode control store, which contains up to 4K microinstruc­
tions 

• a microinstruction register, which holds the current microinstruction 
after it is fetched from the control store 

• a microprogram counter (ILPC) , which contains the 12-bit address of 
the next microinstruction to fetch 

• a "+ 1" unit to increment the microprogram counter 

Figure 15.5 Organization of a simple sequencer 
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• some branch logic and a next address multiplexer, which selects the 
next microinstruction to execute 

The execution of this hardware should be fairly obvious. At the 
beginning of each cycle, the microword whose address is held in the 
microprogram counter is fetched into the microinstruction register. Next, 
during the subcycles that make up a cycle, the control bits-ALU, SH, W 
bus, L bus, and R bus-are fed to the data path to direct its operation. 
Finally, the branch-control field of the microword (BC), which indicates 
whether a conditional branch should take place, is fed to the branch logic 
box along with the condition code bits that were produced by the ALU. The 
branch logic then instructs the next address mutiplexer to load the 
microprogram counter with either the next sequential microinstruction 
address (,uPC+ 1) or with the branch target address specified in the 
microinstruction. Figure 15.6 shows the complete simple machine with its 
sequencer and data path connected. 

This example should give you a basic idea of how a microprogrammed 
control unit can be used to control the data path of a computer system. Of 
course, in real systems, the data path is much more complex, permitting 
high degrees of possible parallelism, multiple functional units, special 
purpose logic, and so on. An important point is that the simple micropro­
grammed control unit we have designed has all the components of any 
computer system, as described in Chapter 2. One major difference is that 
the program for this machine is stor.ed in a special control store. If we 
could write microprograms and place them into this control store, we 
could easily execute user application programs from the microstore. 
However, this structure is typically used for only one purpose; that is, to 
execute a single microprogram whose task is to interpret macro language 
programs stored in primary memory. 

Armed with this basic understanding of the structure of the data path 
and the sequencer for a simple microprogrammed computer, we now 
present a more detailed example: a description of the organization of a 
real microprogrammed computer, the MicroVAX I. Our intention is to 
give you a better understanding of how a microprogrammed organization 
can be used to interpret and execute a complex instruction set, such as the 
VAX. We have chosen the Micro VAX I because it has a straightforward 
implementation. Our presentation of the Micro VAX I is somewhat simpli­
fied; our objective is to show the work that must be done by the control 
unit and the data path to execute VAX instructions. 

The MicroVAX I Microarchitecture 

The MicroVAX I is a 32-bit microprogrammed computer system that 
executes the VAX instruction set. It is interesting for several reasons. First, 
it was the first use of custom VLSI to build a small VAX processor. Second, 
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and more important to this discussion, custom VLSI in the MicroVAX I 
was used solely for the construction of the data path, which is a single-chip 
part. One of the crucial goals for the Micro VAX I was short design and 
development time; in fact, the machine was designed and delivered in 
about 18 months, an extremely short period for a commercial product. 
One reason that this goal was met was that the design of the data path was 
separate from the design of the control section for the microprogrammed 
control unit. 

The Micro VAX I Data Path 

Figure 15.7 is an overview of the complete Micro VAX I CPU. The 
Micro VAX I consists of two boards: the data-path board, shown in the 
lower part of the figure, and the memory controller board, shown in the 
upper part. The memory controller board contains the cache, the transla­
tion buffer, and the instruction prefetch logic, which supplies VAX 
instruction bytes to the data-path board. We will not examine the memory 
controller in any more detail. 

The data-path board has a structure somewhat similar to our simple 
machine. On the right is the data-path chip, which we will discuss in detail 
shortly. On the left are the control structures, including some familiar 
components: the microsequencer; the control store; the control store 
address (CSA) register, also called the MicroPC register; and the condition­
code logic. There is also a microstack for microprocedure calls. On the 
left are logic components that help to interpret VAX opcodes: the IBYTE 
(instruction byte) register and buffer hold the next bytes of the VAX 
instruction stream being interpreted, and the decode ROMS (read-only 
memories) select the proper microcode routine to interpret a particular 
VAX opcode or operand specifier. 

Figure 15.8 shows the structure of the MicroVAX I data-path chip. This 
structure is not that different from the simple data path presented 
previously, but let's look at it in some detail. First, there are two 32-bit 
buses, the A bus and the B bus, that connect all the components in the data 
path. Starting from the top is an I/O port. This port provides the data 
interface from the chip to the outside world; data is read from memory 
into the registers and written from the registers to memory through this 
interface. A register-save stack provides temporary storage for registers. 
This is useful for saving registers that may need to be restored, for 
example, if a page fault occurs in the middle of an instruction. The ROM 
contains thirty-two constants that are needed by the microprogram. 
Remember, in the macro machine (that is, VAX assembly instructions) 
there can be literals of any size in the instructions, so constants do not have 
to be stored in memory. In microinstructions, however, typically there is 
no room to store constants. The Micro VAX I does permit 6-bit constants to 
be stored in its microinstructions, but larger constants, masks, and so on, 
are stored in the ROM. 
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Figure 15.8 MicroVAX I data-path chip 
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The two pointer registers, POINTER I and POINTER2, are used to 
indirectly reference other registers in the data path. These help to 
modularize the microcode. For example, when the microcode examines 
the operand specifiers on a two-operand instruction, it can load POINT­
ERI and POINTER2 with the register numbers of the registers containing 
the operands. The microcode that performs the operation can then access 
its operands indirectly without knowing explicitly where they are located. 

The register file contains forty-seven 32-bit registers. The registers can 
be read onto the A and B buses and can be written from the B bus. The first 
fifteen registers in the register file hold the fifteen VAX general-purpose 
registers, RO, RI, ... , Rl1, AP, FP, and SP (PC is handled specially, as we 
shall see). The remainder of the register file is used for temporaries and 
special registers needed by the microprogram. In other words, from the 
point of view of a VAX programmer, the Micro VAX I hardware consists of 
sixteen registers. From the point of view of the microprogram, the VAX 
registers are just part of the machine state, which includes forty-eight 
general-purpose registers; in fact, most of the machine state is invisible to 
the VAX programmer and even to the VAX operating system. 

The next functional unit exists specifically for handling the VAX 
macro-level program counter (PC). While the microprogram addresses 
the VAX PC as the sixteenth entry in the register file, the PC is actually 
stored in this special program counter unit. The PC unit can increment the 
PC by 1,2, or 4, which is done automatically as the microcode fetches and 
decodes the instruction stream. 

The simple data path presented in the last section had a shifter that 
could shift to the left or the right by one bit. The Micro VAX I data path has 
a barrel shifter, which, in one cycle, can shift left or right a variable 
number of bits. The barrel shifter in the MicroVAX I can read two 32-bit 
inputs (one each from the A bus and the B bus), concatenate them, and 
shift the resulting 64-bit quantity by up to 31 bits. The amount of the shift 
is controlled by either the contents of a shift-count register or a literal in 
the microinstruction. This variable-sized shift is particularly useful for 
extracting specific fields or bytes from a word, which is required to 
execute VAX instructions such as EXTV and INSV. The barrel shifter 
always produces a 32-bit result, which is placed in the RESULT2 register. 

The Micro VAX I ALU reads two inputs from the A bus and the B bus, 
computes one of sixteen functions of those inputs, as shown in Table 15.1, 
and stores the result in either the RESULTO or the RESULT I register. In 
addition, the ALU can execute a "multiply-step" operation, which per­
forms a single shift-and-add step used as part of a 32-bit multiply. The 
multiply-step operation is called thirty-two times to perform a 32-bit 
multiply. 

It is interesting to note that it is possible to implement a VAX, which 
has a complex instruction set, with such a simple ALU. Of course, this 
implies that complex arithmetic instructions will require more microcy­
cles to execute; therefore, this VAX implementation may be slower than 
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Table 15.1 MicroVAX I ALU and Shifter Operations 

ALU Operations 

Logical 

ANOPB 
AANDB 
AORB 
AXORB 
NOTA 
NOTB 
(NOT A) AND B 
A AND (NOT B) 

Arithmetic 

A+B 
A+B+a 
A + B + carry bit 
A-B 
A-B-l 
B-A 
B-A-l 
Compare (set CCs) 

Shifter Operations 

Shift left by count register 
Shift right by count register 
Shift right arithmetic by count reg 
Double (64-bit) shift by count reg 
Shift left by literal 
Shift right by literal 
Shift right arithmetic by literal 

one with more functional units, special-purpose hardware, or a more 
complex ALU. However, whether a particular implementation is in fact 
slower or faster than another depends on both the cycle time of the 
microarchitecture and how much work is accomplished per cycle. In 
many cases "dumb and fast" beats "smart and slow." 

Now that we have described the Micro VAX I data-path chip and the 
operations it can perform, we will look at the control structure of the 
machine, that is, the microinstructions that the machine executes. 

MicroVAX I Data-Path Control 

Figure 15.7 showed the complete MicroVAX I data-path board, which 
contains the data-path chip as well as the sequencer logic. The purpose of 
the sequencer is to fetch a microinstruction from the control store, feed 
signals from that microinstruction to the data path, and select the next 
microinstruction for execution. 

Figure 15.9 shows the format of a Micro VAX I microinstruction. Each 
next microinstruction is 40 bits long. The microinstruction has a parity bit, 
a condition code/data type length field (CC/DT) that controls the macro­
level condition-code setting and specifies the size of an operand being 
processed, a 21-bit data-path control field that is sent to the data-path chip, 
and a next-address field that conditionally selects the next microin­
struction to execute. 

Of particular interest is the data-path control field, which is shown in 
detall in Figure 15.9. Notice that this field has an opcode and two 
operands, much like machine instructions. The 5-bit opcode field can 
specify one of thirty-two possible opcodes, twenty-three of which were 
listed in Table 15 .1 (we will examine some of the other opcodes in a 
moment). Microinstructions actually have three operands: two source 
operands specified by the short- and long-operand fields and a result 
operand specified by the result-register bit (Rl). The Rl bit indicates 
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Figure 15.9 Format of a MicroVAX I microinstruction 
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whether an ALU result is stored in RESULTO or RESULT 1. The register­
save bit specifies whether the short operand should be pushed onto the 
register-save stack. 

The microinstruction has two operand fields: a 6-bit short-operand 
field and a 7 -bit long-operand field. If the L bit is set in the microword, the 
short-operand field contains a 6-bit literal. If the L bit is clear, the 
short-operand field can specify registers 0 to 63. We have already seen that 
the data-path registers 0 through 47 are stored in the register file, and 
register addresses 0 through 47 refer to these. Addresses 48 through 63 
refer to other data-path registers, such as the result registers and barrel 
shifter-count register. The 7 -bit long-operand field can specify any of these 
register's addresses, plus additional on-chip and off-chip registers. Ad­
dresses 64 through 95 refer to the thirty-two constants stored in the data 
path ROM, while higher numbers refer to off-chip registers on the 
data-path module, such as the memory data register and the VAX PSL. 

Looking at this microword format gives us a good idea of how the 
Micro VAX I operates. On each microcycle, a microinstruction is fetched 
from the control store. That microinstruction has fields for the sequencer 
(branch control and next address) as well as fields that control the data 
path. Each microinstruction can specify one data-path operation, which 
typically reads two registers (or a register and a literal), performs an ALU 
or a shifter operation, and stores the result in one of the specified result 
registers. 

Our examination of the Micro VAX I data-path operation is almost 
complete except for three important details that we have ignored up to 
now: memory accessing, VAX instruction decoding, and branching. 

The first detail is how primary memory is accessed. Basically, two of 
the remaining data-path opcodes that we have not discussed are Memory 
Request, used for reading and writing data from and to primary memory, 
and I-stream Request, used for reading instruction bytes. When a Memory 
Request microinstruction is specified, the data-path control field is inter­
preted in a special way. For example, some of the short-operand bits are 
used to specify the type of memory function: is this a read or a write, is 
protection checking needed, are we going to specify a virtual address or a 
physical address, and so on. 
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On a read request operation, the long operand specifies the register 
that contains the virtual address, which is transferred to the memory 
controller module over the memory bus. If the data is available in the 
cache, the data is returned and written into the data buffer register (one of 
the off-chip registers). The data is actually returned two micro cycles after 
the read request. Therefore, the microprogrammer must find useful work 
to do for one microinstruction before the data can be copied into the 
data-path chip. If the data was not in the cache, the memory controller will 
fetch it from primary memory (after performing virtual address transla­
tion) and will cause the data-path module to wait until the data is ready; 
this wait is called a stall. A memory write operation is similar: the long 
operand again specifies the virtual address, and the following microin­
struction causes the data to be moved from a register on the data-path chip 
to the memory data buffer register. 

If the microprogram wants to read from the instruction stream, it 
executes an I-stream Request operation, which fetches the next 1, 2, or 4 
bytes of instruction into the IBYTE register, and automatically updates the 
VAX PC. 

The second detail is how the microprogram decodes VAX macro-level 
opcodes. This could be done using the ALU and the shifter, but special 
hardware support is supplied in the form of the IBYTE register and the 
decode ROM, which can be seen on the left of Figure 15.7. These are a 
crucial part of the Micro VAX I data-path module, because decoding VAX 
opcodes and operand specifiers is the most important task of the micro­
program. 

The Decode microinstruction, which is used to decode both VAX 
opcodes and VAX operand specifiers, works in the following way. When 
the microprogram has fetched the opcode of the next macro instruction 
into the IBYTE register, it executes a Decode microinstruction. The task of 
the Decode microinstruction is simply to select the proper microroutine 
to handle that specific opcode. The Decode microinstruction uses the VAX 
opcode stored in the IBYTE register as an index into the Decode ROM·. The 
Decode ROM contains the 12-bit control-store addresses of the microrou­
tines that handle every VAX opcode. The Decode microinstruction extracts 
the appropriate 12-bit control-store address, which is fed to the microse­
quencer, pushes the current JLPC+ 1 onto the microstack, and continues at 
the selected address. (Note the similarity of this decode operation with the 
jump table example of Figure 6.1.) 

At the next microinstruction, the CPU executes the first microinstruc­
tion of the microroutine for the particular VAX opcode. For example, if the 
opcode is an ADDL3 instruction, the microroutine responsible for ADDL3 
will execute. The first task of that microroutine will probably be to process 
the next instruction byte, which is the operand specifier for the first 
operand. This is also done using a Decode microinstruction that specifies 
an operand specifier decode, as opposed to an opcode decode. When an 
Operand Specifier Decode microinstruction is executed, the operand 
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specifier byte is used as an index into a part of the decode ROM used for 
operand specifiers. In this case, there are two possibilities. If the operand 
specifier is a general-purpose register, the register number is placed in a 
special POINTER register and a signal is generated to cause the next 
sequential microinstruction to be executed. Since this is the more fre­
quent case, it should be the faster to execute. If the operand is not a 
register, the next microaddress is constructed from 8 bits found in the 
decode ROM and 5 bits from the next address field of the Decode 
microinstruction. Essentially, the microsequencer performs a multiway 
branch to the microroutine for the specified addressing mode. In any case, 
the register-number field of the operand specifier is copied to a POINTER 
register in the data path, so that following microinstructions will know 
which register is being used for operand addressing. The return address is 
pushed on the microstack. 

When the Micro VAX I data-path processes a Decode of either an 
opcode or an operand specifier, it automatically increments the VAX PC. 
In this way, the PC always points to the next instruction byte to be 
processed. . 

The last remaining detail to describe is branching, which is examined 
in the following section. 

Microinstruction Branching 

The handling of control flow in a microprogram is one of the 
significant differences between assembly programming and micropro­
gramming. In an assembly program, there are special instructions for 
testing and branching on conditions. At the microprogram level, it is 
crucial to minimize the number of microinstructions executed. For this 
reason, the use of separate microinstructions for branching would be too 
costly. Instead, a singl~ microinstruction is capable of controlling the data 
path, testing several conditions in the micromachine, and branching to 
one of several alternative next addresses based on those conditions. 

Figure 15.9 shows the low-order sixteen bits of a MicroVAX I 
microinstruction are next-address control bits. These bits control the 
selection of the next microinstruction for execution. There are eight 
formats for the next-address control field, each corresponding to a 
different control flow operation (for example, unconditional jump, condi­
tional branch, and jump to microsubroutine). The operation type is 
specified by the upper three bits of the next-address control field; these bits 
are essentially an opcode for the control portion of the microinstruction. 
Thus, each Micro VAX I microinstruction contains a data-path control 
field, including an operation code and operands for the data path, and a 
next-address control field, which includes an operation and operands for 
the next-address selection logic. 

The simplest format of the next-address control field is used for the 
Jump and Jump to Subroutine microcontrol-flow operations. This format 
is as follows: 
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151312 00 

I Typel Jump address <12:0> 

Both formats cause an unconditional jump to the specified 13-bit control 
store address; the only difference is that the Jump to Subroutine saves the 
microaddress of the current microaddress plus 1 on the microstack. 

Most next-address control fields do not contain an entire 13-bit 
microaddress. Instead, they contain only the low-order eight bits of the 
address. Logically the micro control store is divided into thirty-two pages 
of 256 microinstructions each. The low-order eight bits of a control-store 
address specify the instruction within the page, while the high-order bits 
specify the page number. Therefore, some control fields only permit 
branching within the current page. For example, the Branch micro­
control-flow operation has the format 

15 131211 0807 00 

I Type I I JC I Jump address <7:0> I 
where only the low-order eight bits of the transfer address are provided, 
and the high-order five bits are taken from the high-order five bits of the 
current microaddress. The four-bit jump control field (JC) specifies the 
conditions under which the branch should occur. These conditions are 
listed in Table 15.2. By specifying one of the JC values, the microprogram­
mer can test whether anyone of the possible conditions is true. The 
conditions that can be tested include the states of the four condition codes, 
as well as other machine states, such as the occurrence of an interrupt. If 
the tested state is false, execution continues at the next microinstruction 
(]LPC+ 1). 

The Micro VAX I microbranch mechanism also allows multiway 
branches (case microstatements) using a mechanism called the OR 

Table 15.2 Micro VAX I Microinstruction Jump Control Field 

JC Condition JC Condition 

0 Use ORMUX 8 Console Halt 
1 ORMUX = 0 9 Interrupt 
2 ORMUX =1= 0 10 Stack register 
3 IBOK 11 Register Destination 
4 ALU N clear 12 ALU V clear 
5 ALU Z clear 13 ALU C clear 
6 ALU N set 14 ALU V set 
7 ALU Z set 15 ALU C set 
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multiplexor (OR MUX). This mechanism is particularly useful for the 
microprogram to quickly check a set of exceptional conditions. The OR 
MUX is a four-bit value, where the bits are either predefined constants (0 
or 1) or micromachine state bits. There are eight possible configurations of 
the OR MUX, as shown in Table 15.3. Microinstructions that use the OR 
MUX specify which one of the eight configurations to use. It is not 
necessary to understand what all of these bits mean, only how the OR 
MUX is used in multiway branches. For example, the case micro-control­
flow operation has the following format: 

15 1312 10090807 00 

I Type I OR I JC I Jump address <7:0> I 

The OR field (OR) specifies which of the OR MUX configurations to 
use. Suppose that OR is 5; in this case, OR MUX bit 3 is set if there is an 
overflow or trap, bit 2 is set if there is an interrupt, bit 1 is set if the T bit is 
on or there is a console halt, and bit 0 is set if the current instruction buffer 
is invalid. The 2-bit Je field specifies one of the first four conditions from 
Table 15.2. For example, the Je field can specify that a branch should 
occur when all of the selected OR MUX bits are 0 (Je = 1) or when the bits 
are not all zero (Je = 2). 

The most interesting feature of the case-style microinstruction is the 
computation of the branch address. This technique is typical of many 
microarchitectures. If a case micro-control-flow operation succeeds, the 
branch target address (which is on the current microstore page) is 
computed by taking the 8-bit jump address field from the micro­
instruction, and ORing the selected 4-bit OR MUX field with the 4 
low-order bits of the jump address. 

As an example, suppose that the jump address field is 01100000. If the 
selected OR MUX value is 0010, then we will branch to location 01100010; 

Table 15.3 Micro VAX I OR MUX Formats 

OR ORMUX <3> ORMUX <2> OR MUX <1> ORMUX <0> 

0 0 0 0 0 
1 0 0 0 IB invalid 
2 0 0 1 0 
3 MEMERR Page crossing TB miss Modify refuse 
4 0 0 BR false IB invalid 
5 Overflow/trap Interrupt T bit/Console halt IB invalid 
6 INDEX<3> INDEX<2> INDEX<1> INDEX<O> 
7 0 0 SIZE<1> SIZE<O> 
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if the OR MUX value is 0110, then we will branch to location· 01100110, 
and so on. Thus, we will branch to one of sixteen possible target micro­
instructions, depending on the value of the 4-bit OR MUX. Where the 
sixteen target microinstructions are located is determined by the high­
order four bits of the jump address. 

In addition to the case micro-control-flow operation, there is micro­
subroutine call that makes a multi way jump within the current microstore 
page, pushing the ,aPC+ Ion the microstack. A return micro-control-flow 
operation pops that address from the microstack and returns to the 
previous flow. 

Execution of a VAX Instruction 

Now that we have a detailed understanding of how the Micro VAX I 
hardware operates, we are finally ready to follow the microprogram 
through the execution of a single VAX instruction. This simplified instruc­
tion flow will give you some idea of the work done by the microprogram to 
interpret a high-level instruction. 

Let's assume that the current VAX PC contains address 400 and that at 
address 400 is the instruction 

ADDL ( R4) , R5 

so that memory will appear as 

I 55164 1 CO I : 400 

where CO is the opcode (ADDL2), 64 is the first operand specifier (R4 
indirect), and 55 is the second operand specifier (R5 register mode). At 
this point, we make three assumptions: 

1. The PC on the data path contains the address of the first byte of our 
ADDL instruction (400). 

2. The microprogram counter (,aPC) contains the control-store address 
of a Decode microinstruction that decodes opcodes. 

3. The IBYTE register contains CO, the ADDL opcode. 

The following microinstructions are executed by the Micro VAX I to 
decode and process this single VAX macro instruction. Each microinstruc­
tion executes in one Micro VAX I. microcycle. 

1. Instruction Decode. The control store is accessed, and the Instruction 
Decode microinstruction addressed by the ,aPC is fetched. The bits 
from this microinstruction are sent to various parts of the data-path 
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module and data-path chip. As a result of this Instruction Decode 
operation, the opcode (CO) stored in the IBYTE register is used to 
index the Decode ROM. A 12-bit address is read from the ROM; this is 
the control-store address of the first microinstruction of the ADDL2 
microroutine. This microaddress is fed to the sequencer and becomes 
the new ILPC. The PC is incremented by 1 as a result of the Decode and 
now contains address 401, and the second instruction byte, 64, is fed 
into the IBYTE register. The old ILPC+ 1 is stored on the microstack as 
a return address. 

2. Operand Specifier Decode. The first microinstruction in the ADDL2 
microroutine is an Operand Decode microinstruction. The Operand 
Specifier Decode microinstruction causes the IBYTE register to be 
used as an index into the operand-specifier decode portion of the 
ROM, returning some address bits that are used to select the new ILPC. 
The new ILPC will be the control-store address of a micro routine to 
handle register indirect mode. The Operand Specifier Decode micro­
instruction causes the register number (in this case, 4) to be fed from 
the low-order bits of the IBYTE register into a register called POINT­
ERion the data-path chip. In this way, the microroutine for handling 
register indirect will have a pointer to the register to use. The PC is 
incremented by 1 and now contains address 402, and the third 
instruction byte, 55, is fed into the IBYTE register. The old ILPC+ 1 is 
stored on the microstack as a return address. 

3. Memory Request. The first microinstruction in the register indirect 
microroutine is a Memory Request microinstruction. This microin­
struction is fetched and executed. The Memory Request microinstruc­
tion sends the virtual-memory address stored in R4 to the memory 
controller, telling the memory controller to perform a read. The 
sequencer selects the next microinstruction from the next-address 
field of the Memory Request microinstruction. The PC is unchanged. 

4. Move. The next microinstruction simply changes the value of the 
POINTERI register that currently points to R4. The POINTERI 
register is changed to point to a temporary register in which the data 
read from memory will be stored; call this register OPERAND 1. The 
next microaddress is taken from the next-address field of the Move 
microinstruction. The PC is unchanged. 

5. Move Data. It is two cycles since the Memory Request microinstruc­
tion and the data has been returned to the data buffer register by the 
memory controller. This next microinstruction moves that data from 
the data buffer register into the OPERAND 1 temporary register on the 
data-path chip. The next-address field specifies that a microreturn 
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should occur. We have completed processing the first operand, the 
next address is popped from the microstack, and we return to the 
microinstruction following step 2. The PC is unchanged. 

6. Operand Specifier Decode. This microinstruction is an Operand Speci­
fier Decode for the second operand. The second operand specifier, 55, 
is still in the IBYTE register and PC is still 402. The Operand Specifier 
Decode microinstruction is fetched and executed. The Operand 
Specifier Decode moves the register number, 5, into a pointer register, 
called POINTER2, for the second operand. Because this is register 
mode, the next microinstruction address is JLPC+ 1. PC is incremented 
as a result of the Decode and now points to the opcode of the next VAX 
instruction. At this point, both operands have been decoded. Data­
path register POINTER 1 has the register number of the first operand 
(which is a temporary register containing the data read from memo­
ry). Data-path register POINTER2 has the register number of the 
second operand (which is R5). 

7. Add. The next microinstruction, which followed the two Operand 
Specifier Decode microinstructions, is an Add microinstruction that 
performs the actual addition of the operands. The add specifies as 
operands the registers pointed to by POINTER 1 and POINTER2. The 
result is placed in RESULTO. The ALU condition codes are produced 
and sent to the PSL. 

8. Move. The next microinstruction copies the result of the add, RE­
SULTO,to the register pointed to by POINTER2. In this case, the result 
is stored back in its final destination, R5. The next microaddress is 
taken from the Move microinstruction; it is the address of the Opcode 
Decode microinstruction so that processing of the next VAX instruc­
tion can begin. 

While some details have been omitted, the preceding list is approxi­
mately the work that the MicroVAX I must do to process a single, 
two-operand VAX ADDL instruction. The instruction took eight 
micro cycles to execute. One microinstruction completes every 250 nano­
seconds on the MicroVAX I, so this instruction would have taken 2 
microseconds. This is a best case, assuming a cache hit and so on. A 
register-to-register instruction would have been faster; a memory-to­
memory instruction slower. 

The more complex the addressing modes that are used, the slower the 
instruction because the microprogram will have to use the ALU and/or the 
shifter to compute the operand address before fetching the operand. For 
example, if the VAX instruction CLRL (R4)[R5] is processed, the micro­
program will shift R5 left by two bits (to multiply by 4), add the shifted 
value to R4, and use the result to fetch the operand. This address 
arithmetic will take two additional data-path cycles. 
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Microarchitecture Alternatives 

To conclude our discussion of microprogramming, let's examine 
some of the options available at the microlevel. 

One of the most important tasks performed by the micro engine is 
decoding of the opcode. For this reason, some machines have special 
data-path support for decoding. There may be special hardware to extract 
the opcode from an instruction> and to use the opcode to look up a 
microroutine branch address. This hardware assist helps dispatch the 
microprogram to the appropriate instruction-execution flow without hav­
ing to explicitly "parse" the opcode bits. Such support exists in the 
Micro VAX I. Other VAXes have more complex decoding hardware; for 
example, the VAX/780 can decode a register-to-register arithmetic instruc­
tion all at once, so that the instruction can execute in one cycle. 

Microinstruction formats vary greatly, depending mainly on the 
complexity of both the data path and the desired data-path control. In 
general, there are two options to the structure of microinstructions: 
horizontal and vertical. A horizontal microinstruction is typically very 
long. The important characteristic of horizontal instructions is the lack of 
encoding. A horizontal instruction has many fields, and each field is an 
unencoded command to control directly a specific part of the data path. 
Horizontal format is often used to provide lots of concurrency in data 
paths with multiple functional units that can operate in parallel. 

In contrast, a vertical format is a short microinstruction with much 
encoding. Typically, the microinstruction has an opcode and several 
operand fields, somewhat like a macro instruction. Because of this, we 
would say that the Micro VAX I is vertical. Our simple machine presented 
early in the chapter is more horizontal. That machine has no opcode 
-each field of the microinstruction controls one of the functional units. 
With an opcode, as on the MicroVAX I, it might be possible to place a 
memory-read address on the B bus during the same cycle that a value is 
loaded onto the A bus and shifted by the shifter. However, there is no way 
to express this parallelism in the Micro VAX I instruction format, because 
an opcode specifies only one operation. Furthermore, there must be some 
decoding logic between the microinstruction register and the data path to 
turn the opcode into the correct signals to the data path. This decoding 
logic lengthens the cycle time. On the other hand, vertical microinstruc­
tions are easier to program, since there is less parallelism to worry about. 
In either case, the microprogrammer must be concerned with timing 
constraints, for example, how. long it takes to fetch operands from 
memory, and how long it takes for the ALU condition codes to be stable. 

Because horizontal microinstructions typically do more work than 
vertical microinstructions, there is sometimes no automatic incrementing 
of the ,ape in such systems. Instead, each microinstruction carries one or 
more next-instruction address fields. In this case, microinstructions can be 
placed more or less randomly in the microstore. Several next-instruction 
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Table 15.4 Horizontal versus Vertical Microinstructions 

Microword size 
Encoding 
Parallelism 
Branching 

Horizontal 

Long instructions 
Little or none 
Much 
One or more flext addresses 

Vertical 

Short instructions 
Highly encoded 
Little 
Mostly sequential 

Table 15.5 Control Store of VAX Implementations 

CPU 

VAX-ll/730 
VAX-11/750 
VAX-ll/780 
/J-VAXI 
/J-VAX II 
VAX 8200 
VAX 8600 
VAX 8700 
VAX 3500 

Microcode Word 
Size, Bits 

24 
80 
99 
40 
39 
40 
86 
144 
41 

Control Store 
Size, Words 

8K 
6K 
6K 
8K 
1.6K 
16K 
8K 
16K 
1.6K 

address fields permit for multi way branching based on special conditions 
that may need to be tested. 

In reality, most microword formats are somewhere between horizon­
tal and vertical. Table 15.4 reviews some of the differences. Table 15.5 
shows some of the sizes of the control stores in various VAX implementa­
tions. 

1. Contrast the microprogrammed approach with the hardwired approach. What 
are the advantages and disadvantages of microprogramming? 

2. What do you think is the relationship between microprogramming and the 
reduced instruction set approach (described in Chapter 10)? Discuss tradeoffs 
between microprogrammed complex instruction set machines and directly 
executed reduced instruction set machines. 

3. The simple data path shown in Figure 15.3 has no access to memory. Modify 
the data path so that memory can be accessed. Show the changes to the data 
path and the changes to the microword that will be needed. (Suggestion: 
Connect two registers to the W bus, a memory address register and memory 
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data register, as the interface to memory. To read from memory, the memory 
address register must be written with the requested memory address, and 
memory will then deposit the data in the memory data register. On a write to 
memory, the data path must put the address in the memory address register 
and data in the memory data register. You will need control signals to control 
loading of these registers and to tell memory what kind of operation is being 
performed. ) 

4. Describe, in as much detail as you can, what the MicroVAX I microinstruction 
sequence would look like for executing the VAX instruction MOVAL (Rl) + ,R2. 

5. Describe how multiway branching works in the MicroVAX I microarchitec­
ture. What is the advantage of having a next address field in every microinstruc­
tion? How could you imagine using this idea at the macro instruction level? 

6. What are the differences between vertical and horizontal microcode? Why 
would a designer choose one or the other? 
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No matter how powerful the newest computer is, users will eventually 
require more memory (physical and virtual), more processing power (to 
support faster execution and/or more users), and more file space (larger 
disk capacities and more disk drives). Computer vendors often meet these 
needs by offering a family of machines with a range of capacities and 
speeds. As long as your needs can be met by a member of the computer 
family in the middle of its performance range, you have an upward growth 
path. Individual components can be added (such as more disk drives or 
memory), or enhanced (such as the model 35 processor replaced by the 
model 55). But what happens when you acquire the family member at the 
top of the line? Where do you go from there! 

A quick answer might be to switch to a vendor that makes higher­
performance computers. While this might help, in some cases the costs of 
switching vendors may be high in retraining and reprogramming. In any 
case, although it is possible to spend more money to buy a more powerful 
machine, there are diminishing returns. Each additional increment in 
performance costs more to obtain. 

One issue is that a particular design pushes the use of technology as 
far as it can go when that design is committed to manufacturing. At that 
point, its speed can't be easily improved because the logic chosen is at the 
cutting edge and performance has been reached using all the best 
architectural and implementation techniques (caches, memory interleav­
ing, pipelining, and coprocessor support). With a typical cost-performance 
curve, as shown in Figure 16.1, it is clearly prohibitive to go beyond the 
"knee of the curve," where the cost for improved performance rises 
exponentially. A second issue is the relative costs of microprocessors and 
higher-speed but less-dense technologies. Today's microprocessors are 
amazingly fast; a contemporary single-chip microprocessor is 3-10 times 
faster than a large midrange computer of only five years ago. It is possible 
to build computers faster than the fastest microprocessors, but again the 
cost rises exponentially, particularly compared to the cost of just adding 
one or more additional microprocessors to the system. A third issue is that 
the processor may be a small part of the total cost of a computer system. 
Disks, tapes, and other peripherals are often more expensive than the 
processor. Customers want to be able to increase performance while 
saving their investment in peripherals, software, and so on. 
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Figure 16.1 Typical cost-performance curve 

Cost~ 

The best possible solution then is to offer a multicomputer system. We 
use the term "multicomputer system" to describe the wide range of 
possible computer systems where there is more than one central proces­
sor. For example, we have already described networks where ring, star, 
and LAN configurations offer the ability to share programs and data 
among different computers or nodes. Depending on the sophistication of 
the network software, the users mayor may not be aware of all the 
underlying work that goes on to support this added functionality. Howev­
er, in most cases, the users are aware that they must log in to some node 
and operate on some computer, most likely one located physically nearby. 
Programs in a network communicate only on a coarse scale, sending 
messages between them. 

It would be more desirable if we could increase the computational 
power of a computer in the same way that we increase the memory or disk 
space, that is, by simply attaching one or more additional processors. In 
the best case, this addition of more processors in the multicomputer 
system, called a multiprocessor, would be completely transparent to the 
users. Nothing different would be required of users, and the only noticea­
ble change would be an increase in the responsiveness of the system or the 
number of users that could be supported. There are more processors in 
the system, so a user gets more time on anyone of them; in a sense there is 
a larger quantum of time before the user's program is interrupted. The 
addition of more processors introduces parallelism, which is used to 
execute additional user processes. On the other hand, adding additional 
processors typically will not make a single application run faster when that 
application is running stand-alone on the multiprocessor. 

Parallelism can be used in many ways to improve system 
performance. As another example, we could construct each user program 
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so that different parts of a single program can be executed in parallel. 
Thus, if the program adds a constant to each element of an array, such that 
the change to one element doesn't depend on another, then it is easy to 
imagine performing all the adds in parallel ratherthan sequentially, as is 
implied by the way a user typically creates a program. Some computer 
systems, called vector, array, or simply parallel processing systems, permit 
this kind of parallelism. Vector computation is typically associated with 
supercomputer technology; however, as with everything else, the same 
techniques can· be applied to every type of computer system from 
microcomputers to mainframes. 

This chapter describes various ways of introducing parallelism into 
computer systems, to increase both the performance of individual pro­
grams and the number of users that can be supported. First, let's look at 
ways of classifying parallelism in multicomputers. 

Classifying Multicomputer Systems 

Having considered the forms of parallelism, Michael Flynn in 1966 
divided all computer systems into four classes. This separation between 
classes was based on the recognition that parallelism can occur both in the 
instruction stream, with multiple instructions being issued in parallel, and 
in the data stream, with multiple data elements being delivered in parallel. 
Flynn described the possible combinations of instruction and data stream 
parallelism: 

• SISD (single instruction stream, single data stream). The computers 
considered so far in this book are all SISD machines. A control unit 
issues a single instruction to the arithmetic processor, which fetches 
operands to perform that instruction, as shown in Figure 16.2a. 

• SIMD (single instruction stream, multiple data stream). An SIMD 
machine is a parallel processor, typically designed to operate on large 
arrays and data structures. Such a machine has a single control unit 
that fetches and broadcasts a single instruction to multiple arithmetic 
processors. Each arithmetic processor executes that instruction on 
data from its local memory. For example, an SIMD instruction might 
cause all arithmetic processors to add their local memory location 
100 to their local memory location 200. This structure is shown in 
Figure 16.2b. 

• MISD (multiple instruction stream, single data stream). Shown in 
Figure 16.2c, the MISD system consists of multiple control units that 
fetch instructions and issue them to multiple arithmetic units, which 
perform the operation on a single data item. This is more a conceptual 
model for completeness than a practical model on which to build a 
system. 
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Figure 16.2 Flynn's classifications of computer systems 

Control Instruction stream Arithmetic Data stream 
unit processor 

a. Model of an SISD computer 

Arithmetic Data stream 1 
~ processor 1 

Instruction Arithmetic Data stream 2 . r----Control stream processor 2 
unit · · · 

~ 
Arithmetic Data stream N 

processor N 

b. Model of an SIMD computer 

Control Instruction stream 1 Arithmetic 
unit 1 processor 1 

.......-. 

Control Instruction stream 2 Arithmetic 
unit 2 processor 2 f-+- Data stream 

· · · 
Control Instruction stream N Arithmetic 
unit N processor N 

c. Model of an MISD computer 

Control Instruction stream 1 Arithmetic Data stream 1 
unit 1 processor 1 

I Control I Instruction stream 2 Arithmetic 
unit 2 I I processor 2 

~-~--.... 
Data stream 2 

Control Instruction stream N Arithmetic Data stream N 
unit N processor N 

d. Model of an MIMD computer 
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• MIMD (multiple instruction stream, multiple data stream). An MIMD 
machine, shown in Figure 16.2d, has multiple independent control 
units, each of which fetches its own instructions. Each control unit 
then issues instructions to its own arithmetic processor,which fetches 
operands, possibly from a large shared memory. Most contemporary 
microprocessor-based multiprocessors are MIMD machines. The 
MIMD structure accommodates both the execution of multiple inde­
pendent processes (for example, for timesharing) and the execution of 
single, multithreaded applications (that is, parallel programs). 

The significance of Flynn's classification scheme is that it makes it 
easier to describe systems. For example, if a machine is built that includes 
the ability to operate on a vector, such as performing a simple arithmetic 
operation like add, subtract, multiply, or divide, to all the elements of the 
vector at the same time, then this machine can be classified as a SIMD 
machine. Alternatively, if several computers are interconnected so as to 
share the same memory and file space, but they operate independently of 
each other, then that machine can be classified as a MIMD computer. 

There are, of course, many other classifications, depending on the 
underlying architecture of the machine. Gordon Bell described machines 
based on their degree of parallelism. His four categories, shown in Table 
16.1, relate more to the needs of the application than the specific 
hardware. Bell's model is based on the granularity of parallelism permit­
ted by a particular system. A system with fine-grained parallelism permits 
an application to spawn multiple parallel threads, each of which executes 
only a few instructions. In such a system, the overhead of managing the 
parallel activities must be small, so that the benefits of executing such 
small parallel tasks are not dominated by that overhead. At the next level, 
medium-grained parallelism, the system permits parallel activities that 
are, say, the size of a small procedure, that is, several hundred instructions. 

There are many other ways to classify multiple computer systems. For 
instance, you might base a classification on the cost of communication 
between entities executing in parallel. If processors share a common 
memory and can communicate through that memory (typically in nano­
seconds or microseconds), then we say they are tightly coupled. If the 
processors communicate via a network, where messages take tens of 
milliseconds, we say they are loosely coupled. Another dimension might 
have to do with availability and reliability. Clearly, attaching two machines 
together doesn't necessarily make them more reliable, although for a user 
who has automatically been switched from one to the other, availability 
might increase. Suffice it to say that there are many ways to categorize 
multiple computer systems. 

Our examination of parallel computation begins with ways to intro­
duce parallelism into standard SISD computers. Later we look at more 
complex SIMD and MIMD structures. 
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Table 16. 1 Degrees of Parallelism 

Granularity Parallelism Synchronization Interval 
(instructions) 

Fine Instruction <20 

Medium Procedure 20-200 

Coarse Process 200-2000 

Very coarse Environment 2000-1M 
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Pipelined Processors 

Parallelism can be used in many ways to increase the performance of 
computer systems. Pipelining is a common technique that can be applied 
to introduce parallelism both into sequential SISD machines and into 
machines that have more inherent parallelism, for example, multiple 
functional or arithmetic units. 

Looking at the concept of the von Neumann machine (presented in 
chapter 2), we find the genesis of the idea that often constrains us today. 
The concept is that instructions are fetched, interpreted, and executed 
sequentially. Obviously, it makes little sense to execute an instruction 
before it is fetched and interpreted. But carried to its extreme, this 
concept means that there is no overlap between instructions. This made 
sense when computers were first designed, but today we know that 
instruction processing can be broken down into independent steps (such 
as fetch, interpret, and execute), and that these steps can be decoupled. 
Furthermore, it is possible to design a machine so that at any time, 
different instructions are in various stages of processing within the 
machine. 

Figure 16.3a shows the sequential nature of instruction processing in 
a purely sequential machine. The table in Figure 16.3 is a reservation table; 
it tells what functional components are required for each stage of 

Figure 16.3 Pipelined instruction execution 

Time --+ Time --+ 

2 3 4 5 6 7 2 3 4 5 6 7 
Fetch 11 12 13 Fetch 11 12 13 14 15 16 17 

Interpret 11 12 Interpret 11 12 13 14 15 16 
Execute 11 12 Execute 11 12 13 14 15 

a. Nonpipelined execution b. Pipelined execution 



382 Parallelism and Parallel Computer Systems 

instruction processing. Here we see that instruction execution is broken 
into three independent stages: fetch, interpret, and execute. In this figure, 
we assume that each stage takes exactly one time unit to complete. Each 
instruction therefore takes three time units to complete, and we finish one 
instruction every three time units. We also notice that each stage is busy 
only one third of the time; for example, the instruction fetch stage is idle 
during time units 2, 3, 5, 6, and so on. 

Figure 16.3b shows the pipelined processing of the same instruction 
stream. In the pipelined execution, instruction executions overlap. Basi­
cally, as soon as a pipeline stage is idle, the next instruction is fed into that 
stage. The concept seems pretty simple when presented this way, and the 
connotation of a pipeline seems appropriate in that instructions are fed in 
one end and results come out the other end. The pipeline shown in Figure 
16.3 is "perfect"; once the pipe is loaded, there are no idle stages. In 
reality, however, this is often difficult to accomplish. Most pipelines have 
idle stages; in fact, depending on how well different instructions overlap in 
the pipe, performance can sometimes be improved by introducing delays 
during some instruction processing. 

With the pipelined organization, each instruction still takes three time 
units to complete. However, once the pipeline is full, one instruction is 
finished every time unit. The shorter the pipeline stages, the more rapidly 
instructions are completed, on average. In general, if we have a perfect 
m-stage instruction execution process and want to execute n instructions, 
a nonpipelined organization will take n x m time units, while a pipelined 
organization will take (n + m - 1), where the m - 1 units are the cycles 
required to load the pipeline. 

A number of observations are appropriate here. The average time to 
produce the finished result is faster if each stage is specialized than if one 
general-purpose stage does it all, even if the total time to produce each 
result, start to finish, is lengthened. There is an implication that each stage 
takes the same amount of time, and as a result of this constant time per 
stage, we get results on a regular basis. In addition, as a result of the fixed 
time per stage (and many stages), there is no output while the pipe fills up. 
Obviously it also takes a while to empty the pipeline. Finally, any problems 
in the pipeline will cause it to halt, and the result coming off at the end 
when the pipeline halts will not likely be the one that had the problems. 

Thus, we can make the following assumptions: 

• A pipeline is fine once it gets started up. 

• Multiple stages mean more results per unit of time. 

• An exception somewhere within the pipe is more difficult to handle 
because it does not necessarily relate to the current results. 
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• Stopping the pipeline to start up another sequence of instructions 
helps to negate some of the speed-up improvements (this occurs when 
a branch is taken or any change to the PC occurs). 

In fact, if a change to the PC occurs late in the pipeline, in the worst case 
we may need to undo some of the computations that have been carried out 
by partially completed instructions in previous stages. 

There is no reason to believe that instruction execution pipelining can 
be subdivided into only three stages. Pipelines of five, six, or seven stages 
are not uncommon. Pipelining can also be applied in several places within 
a single processor. One common application of pipelining is within a 
floating-point unit, where, for example, each floating-point addition is 
broken down into its various stages of subtracting exponents, aligning the 
mantissas, adding, shifting, normalizing, and so on. 

Pipelining can be applied at several levels. For example, in the VAX 
8600 processors, VAX instructions are pipelined; at any point, several VAX 
instructions are being executed. The VAX 8600 pipeline has four stages: 
instruction fetch and decode, operand-address generation and fetch, 
execute, and result store. On the VAX 8800, however, a five-stage pipeline 
is used for executing microinstructions, that is, the fetching and execution 
of microinstructions is overlapped, and multiple microinstructions are in 
the process of being executed at any given time. The effect is to reduce the 
microcycle time, thereby reducing the instruction execution time. 

Multiple Functional Units and Hazards 

In addition to pipelining, it is possible to increase parallelism in the 
execution of a sequential instruction stream through multiple functional 
units. For example, a computer can contain several arithmetic and logic 
units. These units can be specialized, for example, can have several 
fixed-point adders and multipliers, several boolean logic units, and several 
floating-point multiply and divide units. These functional units can also be 
pipelined, so that if many operands are fed to them one after another, the 
average completion time will be reduced. 

If we imagine a machine with multiple functional units as just 
described, it is clear that the time through these units will be different; a 
floating-point divide will clearly take more time than a boolean operation. 
What is the implication of these timing differences on instruction execu­
tion, particularly if we want to keep as many units busy as possible? For 
example, if we have a floating divide instruction followed by a boolean OR, 
does the OR have to wait for the divide to complete? 

The answer to that question is that it depends on the instructions. 
However, it is not strictly necessary that instructions be executed in the 
order in which they are fetched by the program counter. A number of 
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high-performance computers perform out-of-order execution of a user's 
instructions. The constraint that must be maintained, of course, is that the 
result of the out-of-order computation must be the same as if the 
instructions were executed in order. To ensure this constraint, the hard­
ware or microcode must check for and prevent the occurrence of hazards. 
A hazard is a potential error condition that would result if events 
completed in a different time sequence than that originally intended by the 
programmer. Or, in some cases, the compiler generates code to ensure 
that hazards do not exist. Let's examine some code sequences to demon­
strate the problem. 

Suppose we have the following instruction sequence (we use VAX 
assembly language for expressing instructions): 

ADDL Rl,R2 
DIVL R3,R4 
BIeL R5,R6 
ADDL R7,R8 

In this case, the order in which these instructions is executed is immateri­
al because there are no dependencies among instructions. That is, the 
operands of each instruction are independent of the operands of the 
others. On the other hand, suppose we had written 

ADDL Rl,R2 
DIVL R2,R3 

Here, the ordering does matter because one source of the divide instruc­
tion (R2) is a destination of the add instruction. The add must complete 
first to produce the result needed by the divide. This is called a read after 
write (RAW) hazard. Similarly, we can have a write after read (WAR) hazard 
if we had written 

DIVL R2,R3 
ADDL Rl,R2 

Should the add complete before the division is started, the divide will 
mistakenly use the new value of R2 instead of the old value. 

In any computer with out-of-order execution, the processor must keep 
track of the inputs and outputs of instructions as they are fetched. Before 
an instruction can begin execution, the processor must ensure that no 
hazards exist in the execution of that instruction. Typically this is done by 
keeping track of which registers are used for sources or results. When the 
sources needed by an instruction are available, the instruction can be 
started, as long as its results will not produce hazards for other instruc­
tions. When memory locations are used for sources or results, the check 
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can become more complex, but it's still possible to keep track of several 
operand addresses and how they're being used. 

It is possible for hazards to exist in a pipelined organization, depend­
ing on how the pipeline is structured. For example, a hazard can exist if 
there are many pipeline stages and an instruction in an earlier stage can 
produce a result before an instruction in a later stage can read one of its 
sources. Hazards can even exist within a single instruction. For example, 
the VAX instruction ADDL (R1) +, (R1) + modifies R1 in the middle of the 
instruction, and that modification must complete before R1 is read to be 
used for the second operand. 

Vector Machines: The Cray-1 
An example of a computer that uses both pipelining and multiple 

functional units is the Cray-1, certainly the most powerful supercomputer 
during the late 1970s. In addition to its use of techniques that we have just 
discussed, the Cray-1 is a vector machine, that is, it is designed to operate 
on large vectors of data. 

The basic structure of the Cray-1 is shown in Figure 16.4. On the left of 
the figure is the large primary memory, organized as one million 64-bit 
words. Memory cycle time is 50 nanoseconds. In the center are the 
machine's internal registers. On the right are the multiple functional 
units: twelve different units organized into groups for vector operations, 
floating-point operations, scalar arithmetic, and address arithmetic. These 
functional units are capable of operating in parallel, producing more than 
one result per cycle. 

The basic machine registers are similar to those of the CDC family, 
described in Chapter 10 (Seymour Cray designed both the CDC family and 
the Cray computers). The eight 24-bit A registers are used for addressing 
and address arithmetic. Sixty-four B registers (numbered 0 through 77 
octal) provide buffers between the A registers and primary memory. Eight 
64-bit S registers form the scalar register set for scalar arithmetic. 
Sixty-four T registers provide buffers between the S registers and primary 
memory. Most interesting are the eight vector registers, VO through V7, 
shown at the top of the figure. Each of these is actually an array of 
sixty-four 64-bit registers. 

The Cray-1 is particularly effective at performing vector arithmetic. 
For example, suppose we want to compute the operation 

A = kl * B + k2 

where A and B are vectors and k1 and k2 are constants. The compiler 
would generate code to load one of the vector registers with sixty-four 
elements from array B. The constants would be loaded into two of the 
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Figure 16.4 Organization of the Cray-1 
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scalar registers. The compiler would then generate a single multiply 
instruction to multiply the sixty-four elements of the vector register 
containing part of B by a constant, storing the result in another vector 
register. (The Cray performs instructions of the form vector ~ vector op 
scalar, as well as vector ~ vector op vector.) A second vector instruction 
would add a constant to each element of that result register. Thus, the Cray 
requires only two instructions to perform the sixty-four multiplications 
and sixty-four additions. If the array has more than sixty-four elements, the 
compiler generates code to load parts of the array, sixty-four elements at a 
time. 

The Cray does not have sixty-four parallel functional units to perform 
the multiply operations in parallel, but it has a heavily pipelined multiply 
unit for vectors. Pipelining works well in this case, because we can ensure 
that there are enough operands to be piped through the unit to keep it 
busy. Once the pipeline is full, the Cray vector units will produce a result 
every minor cycle, that is, every 12.5 nanoseconds. The complete time 
through the pipeline (also the time to fill the pipeline) is only six cycles for 
the floating-point add unit and seven cycles for the floating-point multiply 
unit. 

In addition to pipelining, the Cray can also perform Chaining of 
operands, a mechanism by which results from one functional unit can be 
fed to another functional unit, even before the first functional unit has 
completed processing of all its inputs. For example, in our previous 
computation, if instructions were executed strictly in sequence, all sixty­
four multiply operations would have to complete before the additions 
begin. In this case, however, the machine can recognize that the inputs to 
the add vector unit for the second instruction are the outputs of the 
multiply vector unit. By feeding the multiply results directly into the add 
vector unit as they are produced, the time for the additions is mostly 
absorbed into the multiply time. Essentially, the chaining of the multiply 
and add instructions produces one longer pipeline. 

Since the introduction of the Cray-1, Cray has introduced several 
newer supercomputers, including the Cray X-MP, a four-processor super­
computer, and the Cray-2, which has an impressive 4.1-nanosecond clock 
cycle and holds one gigabyte of primary memory. The Cray-2 is completely 
immersed in fluorocarbon liquid to dissipate heat because at only 45 
inches high and 53 inches in diameter, it consumes 195 KW of power. 

Multiprocessors 

Multiprocessor systems are generally designed to increase system 
performance economically, offer more flexibility in terms of the system 
configuration, and provide greater availability or reliability to a particular 
system. Multiprocessors are particularly desirable when it becomes pro­
hibitively expensive to build faster uniprocessors. They offer a solution to 
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the limited amount of memory, number of channels and devices that can 
hang on one processor, and the terminals that can be supported. Finally, 
multiprocessors offer real redundancy, so that if a failure occurs, it is 
possible to isolate failed units and still keep the system running. 

For our purposes, a multiprocessing system is one in which all the 
processors share a global memory, although each is allowed to have some 
small amount of local memory. The processors cannot be highly special­
ized. Thus, an I/O processor, a floating-point processor, or a graphics 
processor attached to the main CPU does not make a system a multipro­
cessor. Each of the processors must be capable of performing significant 
computational work, and each must be capable of accessing or controlling 
all the I/O devices. The processors must share a single, integrated 
operating system that allows intimate interaction at all levels (e.g., process­
es, jobs, data sets, I/O devices, and user-operator interaction). 

Given this definition, there are typically two classes of such systems: 
symmetric and asymmetric. The distinction is really one of style and 
relates to the operating system that controls the multiprocessor, as well as 
to the hardware. In a symmetric system, the operating system can run on 
any of the processors; in fact, several processors may be executing the 
operating system simultaneously. Processors are scheduled dynamically 
so as to keep all of them busy with the highest priority jobs. Programs are 
reentrant and serially queued so that service conflicts are resolved rapidly 
and operating system code and data is shared but without the possibility of 
corruption. 

Asymmetric systems are those where one of the processors, called the 
master, is always selected to run the operating system. Since this environ­
ment is not unlike the typical multiprogramming environment, the 
operating system code need not be changed, because only the master 
processor executes it. Also, since the computational needs of the master 
processor are different from those of the slave processors (the mas­
ter spends most of its time executing the operating system code), the slave 
processors may be more computationally powerful to handle the user 
application workload. Typically, I/O is handled only by the master. 

The advantages and disadvantages of both types of multiprocessor 
systems are many. Generally it is more difficult to modify an old operating 
system to run in a symmetric fashion. However, there is greater availability 
in a symmetric system, since there is true redundancy in the hardware and 
software, and it is possible to reconfigure the symmetric system should the 
hardware or software fail. Symmetric systems may be more expensive to 
build since all components are generally duplicated. However, with many 
identical processors, programs and jobs have more resources for process­
ing and throughput is better. 

Asymmetric systems can offer lower costs to construct if the slaves are 
simply computational engines that are directed by the master. Thus, only 
slight changes to the operating system are needed to schedule the slaves to 
keep them busy. All the overhead associated with I/O and interrupts is 
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handled by the master processor. There is little, if any, redundancy in such 
systems; if the master processor fails, the entire system is down. Historica­
lly, asymmetric systems are often the first to be offered by a computer 
vendor. For obvious reasons of cost, this allows the vendor to "test the 
waters" to see what the market will accept. As users come onboard, such 
systems are often reworked to make them truly symmetric systems. This 
has happened in the VAX line, as the VMS operating system treated the 
first VAX multiprocessors in an asymmetric fashion. Newer VAX multipro­
cessors are supported in a symmetric fashion. In fact, all VAX multiproces­
sors are capable of symmetric operation. The difference is really a change 
to the VMS operating system to support symmetric multiprocessing, 
rather than a fundamental change to hardware. Symmetric multiproces­
sing required a fundamental change to the structure of VMS so that 
operating system data structures could be properly synchronized when 
accessed simultaneously by copies of the operating system running on 
different processors. 

As the number of processors in a multiprocessor increase, the need 
for symmetric processing increases; otherwise the master will not be able 
to service all the needs of the slaves. In a large multiprocessor, it is 
important to distribute the operating system overhead among the proces­
sors, which requires a symmetric operating system. 

Multiprocessor Organizations 

The crucial issue in multiprocessor organization is the interconnec­
tion of processors and memories. Some of the alternative structures are 

• common bus 

• crossbar switch 

• multi port memory 

• interconnection network 

• special-purpose buses for memories arid processors 

The most common structure is a single shared bus, as shown in Figure 
16.5a. All processors, memories, and I/O devices attach to this bus, which 
they timeshare. Bus bandwidth is critical in terms of the speed at which 
processors can access memory and devices on the bus. How the bus is 
controlled and how processors determine when they can transmit or 
receive (called arbitration) are other considerations. Shared buses often 
slow down when several processors simultaneously try to arbitrate for use 
of the bus. One solution is to use multiple shared buses (Figure 16.5b) to 
increase the available bandwidth, but this increases the system complexity 
and cost because devices need multiple ports to connect to each bus. 
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Figure 16.5 Alternative multiprocessor organizations 
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Traffic on a shared bus can be reduced and bus bandwidth increased 
by using a cache on each of the processors. Caches reduce much of the 
memory read traffic and possibly some of the memory write traffic, 
depending on the write strategy used. One problem, discussed in Chapter 
14, is keeping the data in the caches consistent, since multiple processors 
may be attempting to read and write a single word of memory at the same 
time. With large write-back caches using a good distributed-write cache 
coherence algorithm, the number of processors that a bus will support can 
be significantly increased. 

Another means of interconnecting processors and memories is a 
crossbar switch. In the shared bus, a single bus cable connects all 
processors and memories. In a crossbar, a separate bus leads from each 
processor and memory, and these are fully interconnected through a 
switch (Figure 16.Sc). Because of this direct co:nnection, there is no 
timesharing and multiple memory transactions can be done simultaneous­
ly, as long as the transactions are to different memories. If two processors 
attempt to access the same memory at the same time, some arbitration 
must occur, and one processor will retry or its request will be queued. 
With a crossbar, the switching must be done quickly or there is a 
significant penalty in trying to share programs and data. Furthermore, the 
higher the speed of the switch, the more complex it becomes and the more 
costly it is to build. In fact, the major problem with a crossbar is that its 
complexity grows with the square of the number of processor-memory 
pairs, making it unsatisfactory for large multiprocessors. Finally, because 
the switch is a single point of failure, its reliability is important. A primary 
example of the use of a crossbar switch was the C.mmp (multi­
minicomputer), developed at Carnegie-Mellon University in the early 
1970s. C.mmp consisted of sixteen PDP-II minicomputers, interconnect­
ed to sixteen global memory units through a 16x 16 crossbar. 

The multiport and multibus configuration, shown in Figure 16.5d, is 
one where both memory and devices are accessible through different 
paths. Essentially, a fast multiplexor is placed in front of each memory 
module and each I/O device so that access can be granted quickly from 
one port to another. Multiplexors are relatively cheap and reliable, so this 
has been a popular way to build multiprocessing systems. Also, with 
duplication of both memory and I/O devices, it is generally possible to 
reconfigure the system within minutes so that it can remain operational 
after a failure occurs. The difficulty is that the multiplexors cannot be 
added to the memories and devices after the complete computer system is 
installed at the customer's site. Thus, purchasers must buy more hardware 
than required if they expect to eventually upgrade to a multiprocessor 
system. 

Another way to reduce bus traffic and to increase system availability is 
to add a special bus for interprocessor communication. Unlike the 
traditional bus to which the I/O devices are connected, the special bus is 
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used to serialize requests for nonsharable system resources (such as 
operating system queues, I/O devices like printers or locked files, and 
critical sections of operating-system code), as well as to pass high-speed 
messages between processors to maintain system integrity and to pass 
"I'm all right," or "alive," messages as operational checks. The computer 
systems from Tandem and Sequent use this technique. 

Finally, there is the generalized form of interconnection, much like a 
typical communications network. Every processing node, consisting of a 
processor and possibly some local memory, connects to a communica­
tions network of switching nodes. To access nonlocal memory, or to 
communicate with another processor, a connection path has to be built 
from machine to machine or from machine to memory. In a sense, then, 
you can consider such a system as containing a large shared memory with 
an access cost that depends on the distance to the memory. The advantage 
of such a structure is its ability to scale in order to handle large numbers of 
processors. The Butterfly multiprocessor from Bolt Beranek and Newman 
Inc. (BB&N) and the Intel iPSe hypercube, both which are described 
later, use this technique. 

What Is Required for Multiprocessing? 

Regardless of the actual bus configuration and type of multiproces­
sing system, the following basic ingredients are found in many multipro­
cessors: 

1. a locking mechanism 

2. interprocessor communications 

3. processor identification 

4. separate processor address spaces 

5. reconfiguration 

6. failure isolation 

A lock is a mechanism that serializes access to a single resource from 
multiple parallel instruction streams. Locks can be implemented in 
hardware, software, or both. In fact, a lock is usually a combination of 
hardware and software, because that is the easiest way to implement one. 

Typically, a lock is implemented as a single bit in memory. Several 
processes, who are sharing a resource, use the lock to gain exclusive 
access to the resource. Imagine that the bit has a value of 1 to indicate that 
the resource is free, and 0 to indicate that it is in use. To access the shared 
resource, a process must gain exclusive access by first setting the bit to o. 
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The first process to set the bit to 0 can access the resource; other processes 
trying to access the resource will then be forced to wait until the lock bit 
becomes 1 again. When the process using the resource has finished, it sets 
the bit back to 1, making it available again. This is a simple binary sema­
phore. 

The problem on a multiprocessor is guaranteeing that only one 
process can set the bit to zero. For example, suppose that the lock bit is 
implemented as bit 0 of a word and a process attains the lock by 
decrementing the word. The problem is that a decrement normally takes 
several cycles: a read of the word into the processor's memory, a 
decrement of the word within the processor, and then a write of the 
modified value back to memory. It is possible that, while one processor is 
decrementing the word, another processor performs a read of the same 
memory location. Now both processors have read a value of 1, both 
decrement the lock to 0, and both write a 0 back to memory, thinking that 
they now have exclusive access. 

The solution is to make the sequence of actions atomic, that is, 
noninterruptable by other operations, at least to the same data element. 
This is called a read-modify-write sequence. A typical solution is to permit a 
processor performing a read-modify-write to hold the bus for the entire 
transaction, thus prohibiting other processors from accessing memory. In 
general, the system should be able to differentiate lock manipulation 
instructions from other read-modify-write sequences (for example, nor­
mal arithmetic) so that more concurrency is allowed on the bus. 

For example, the VAX has special interlocked bit instructions (BBSSI, 
BBCCI) that perform atomic read-modify-write cycles on a bit in memory. 
Such instructions are often known as test-and-set instructions because 
they atomically test the condition of a bit and set it to a new value. These 
instructions use primitive interlocked bus cycles to perform the opera­
tions atomically. A more complicated example is the VAX interlocked 
queue instructions (INSQHI, REMQHI), which must perform multiple 
reads and writes on the queue data structure in an atomic fashion. The 
trick, in this case, is that hardware uses a single lock bit to guarantee 
mutual exclusion to the data structure. Because interlocked queue ele­
ments must be aligned on quadword address boundaries, it is guaranteed 
that the low-order two bits in the queue header are zero (because the 
address of the forward link is evenly divisible by four). The hardware can 
therefore use one of the two bits in the queue header as a lock to guarantee 
that another processor will not access the queue while an interlocked 
queue manipulation is in progress. Hardware resets the lock bit when the 
operation has completed. Only the setting of the lock bit requires a 
primitive interlocked bus transaction. 

The fourth requirement listed was that address spaces be separate. 
This is not, in fact, an absolute requirement, and it is possible (and 
sometimes desirable) for all processors to share a single address space. 
From a reliability and protection point of view, however, there is often 
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data that is only related to a particular processor, such as its stack, its 
interrupt vectors, and its processor ID, that is not meaningfully shared. 
For this, a separate address space can ensure that a failure in one 
processor does not damage data stored by another processor. 

The need for interprocessor communications has already been de­
scribed. It is useful for any processor to be able to interrupt another 
processor, for example, to force it to reschedule because a higher priority 
job has entered the system. Given an interrupt capability and shared 
memory, processors can communicate through shared message queues, 
with interrupts telling a processor when to look at its queue. Processors 
may have individual queues for processor-specific messages, and may also 
share queues for common work that can be distributed among the 
processors. It is of course important that each processor be uniquely 
identifiable with some unique processor ID. 

Reconfiguration and failure isolation are important because, as the 
complexity of a system increases, the probability of failure increases. 
Multiprocessors are complex for many reasons, including the number of 
processors and devices, the amount of memory, and typically, the complex 
interconnection of those units. Because the components of a multiproces­
sor are often intimately connected, a failure in one component can easily 
lead to a system failure. Some multiprocessors are designed for high 
reliability; such systems implement online error detection and isolation of 
the faulty component. These systems may even permit diagnosis and 
replacement of faulty components while the system is operating. More 
typically, as with uniprocessors, multiprocessors crash when a failure 
occurs. Unlike a uniprocessor, however, in which the system is either all 
up or all down, a single faulty processor can be removed from a 
multiprocessor, and it can reboot and continue operating in a somewhat 
degraded mode. 

Examples of Multiprocessor Systems 

The previous sections described some of the alternatives for multipro­
cessor organization, as well as some of the requirements for multiproces­
sors. This section briefly describes three multiprocessor systems that have 
been constructed: the Connection Machine, the Butterfly, and the hyper­
cube. These are examples of a new generation of highly parallel computers 
with complex interconnection structures. While it is possible to build 
these and other complex structures, the difficult problem for the future is 
how to best produce software thaJ fully utilizes the capabilities of these 
machines. 

The Connection Machine: A Highly Parallel SIMD Machine 

The Connection Machine, a product of Thinking Machines Corpora­
tion, is an example of a new generation of very highly parallel computers. 
By very highly parallel, we mean that it has tens of thousands, rather than 
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tens or hundreds, of processors. In fact, the CM-l, the first prototype of the 
Connection Machine, is iinplemented as four quadrants of 16K processors 
each, for a total of 64K processors. The CM-l is actually a coprocessor to a 
more conventional computer, such as a VAX or Symbolics, which is used 
to control the Connection Machine. 

Figure 16.6 shows the structure of each processor in the CM-I. 
Processors are extremely simple. Each processor consists of a I-bit ALU, 
4K bits of local memory, and 16 local flag bits. During a single instruction, 
the ALU takes three I-bit operands-2 bits from memory and 1 bit from 
the local flags-and produces a I-bit result that is written back to memory 
and possibly to the flags. The result is computed as one of 256 possible 
logical functions of the three I-bit source operands. Although each cycle 
produces only one I-bit result in a processor, the power of the machine 
comes from the huge number of processors. 

The CM-l processors are implemented using VLSI technology with 
sixteen processors per chip. Each chip also has a router through which 
processors are interconnected, allowing processor-to-processor messages. 
On the chip, and across chip boundaries, each chip is connected t!J its four 
neighbors in a grid. However, using the routing network, any processor 
can send a message to any other processor. 

Each of the 4,096 routers (that interconnect the 64K processors) has a 
unique 12-bit address. The structure of the interconnection network is that 

Figure 16.6 Organization of the CM-1 processor 
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of a boolean n-cube. Each of the routers connects to all of the other 
routers whose 12-bit addresses differ by only one address bit. In the worst 
case, therefore, a message from one node to its topologically farthest 
neighbor will travel through 12 routers, since one address can differ from 
another by no more than 12 bits. 

The CM-l is an SIMD computer, meaning that a single instruction 
stream controls the operation of all64K processing elements. Instructions 
are issued by a Lisp or C program running on a host computer to the CM-l 
microcontroller, which is responsible for managing 16K processors in a 
quadrant. The microcontroller translates the high-level instruction into 
one or perhaps hundreds of CM-l nanoinstructions that accomplish the 
action. The nanoinstructions are broadcast to all processors, which 
execute them in parallel. For example, one instruction might tell all 
processors to AND locations i and j in their local memories. While 
nanoinstructions are really I-bit instructions, higher-level operations are 
easily performed on sets of data spread over multiple processors. 

For executing conditional operations, each processor has a context bit 
as one of its flags that tells the processor whether or not to execute the 
current nanoinstruction. Thus, during a particular instruction, some 
processors may be active and others may be passive. The machine context, 
that is, the set of all context bits, can be quickly changed for different 
situations. 

The Butterfly: An Interconnection Network Machine 

The Butterfly, a product of Bolt Beranek and Newman, Inc., is 
probably the best example of a parallel networked multiprocessor. The 
Butterfly is interesting because it is an MIMD machine built from 
conventional multiprocessors, but its switching network interconnection 
structure permits expansion to up to 256 processors. This would be 
difficult to accomplish with a shared-bus approach. 

Each node in the Butterfly consists of a Motorola 68020 microproces­
sor, a floating-point coprocessor, and up to 4 megabytes of local memory. 
Processors execute code out of their local memory; however, a processor 
can address any of the memories in the system, including its own. Thus, 
each processor has a local memory and all the local memories together 
form a global memory. The only difference in accessing local or nonlocal 
memory is performance. 

Attached to each processor is a microprogrammed processor node 
controller (PNC), whose function is the handling of both local and remote 
memory requests. The PNC performs virtual-to-physical address transla­
tion, examines the physical address, and determines whether the reference 
is local or remote. If the reference is remote, the PNC initiates the remote 
reference. The PNC also handles local memory requests from remote 
systems and is used to implement atomic operations. 

The most significant feature of the Butterfly is its interconnection 
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structure. Figure 16.5f shows the structure of a sixteen-node Butterfly 
multiprocessor. While each processor and its local memory are colocated, 
in Figure 16.5f they are pictorially split apart to show the logical intercon­
nection of processors and memories. The Butterfly interconnection net­
work is composed of switching nodes, which are the rectangles in the 
figure. Each switching node has four inputs and four outputs. A switch is a 
custom VLSI part, and eight switches are packaged on a module to 
implement a sixteen input and sixteen output switch. 

The switches perform packet switching of messages from processor to 
memory. When a processor issues a memory request to a remote memory, 
its PNC builds a packet with the request and passes it to the switch. The 
destination memory address in the packet is used to route the packet. At 
each switch, two bits of the address are used to select one of the four 
possible switch output paths. In Figure 16.5f, for example, suppose node 2 
wants to send a request to node 9. Node 2's PNC builds a packet with node 
9's address (1001 in binary). At the first switch, the low-order two bits (01) 
select the second output path of that switch. At the next switch, the next 
two bits (10) select the third output path of that switch, which leads to 
processor 9. 

There are several advantages of a such a switching structure, as 
previously noted, including its scalability and parallelism. Several switches 
can operate in parallel, so several memory accesses can be in progress at a 
time. If two messages for the same destination arrive at a single switch at 
the same time, one of the messages is queued and then retransmitted. 
Redundancy can be added by having multiple paths between nodes. An 
increase to sixty-four nodes is· accomplished by adding another level of 
switches, as shown in Figure 16.7. 

MIMD Hypercube Machines 

The final parallel architecture that we examine is the hypercube. A 
hypercube is an MIMD computer consisting of nodes that are independent 
processors with local memories. Each processor in a hypercube of size 2n 

processors connects directly to n of its neighbor processors througJ;t n 
bidirectional communications channels. This structure is called a binary 
n-cube. For example, in a 4-cube there are sixteen nodes, and each node is 
connected to four neighbors; in a 6-cube there are sixty-four nodes, and 
each node is connected to six of its neighbors. 

Figure 16.8 shows the interconnection structure of a 16-node hyper­
cube. Each node has a 4-bit address, as shown in the figure. Also, each 
node has connections to its four "nearest" neighbors, where a nearest 
neighbor is one whose address differs in only one bit position. The four 
neighbors of node 1111 are thus 1110, 1101, 1011, and 0111. Any node can 
thus communicate with any other node in from one to four hops. An 
important issue in such machines, therefore, is mapping application 
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Figure 16.7 Butterfly 64-element switch 

Processors Switches Memories 
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Figure 16.8 16-node hypercube 

Summary 

Exercises 

0011 

0111 

1011 

1111 

processes onto processors in a way that locates heavily-communicating 
processes onto topologically close processors. 

Two examples of hypercubes are the Cosmic Cube, a prototype 
64-node hypercube implementation designed at Caltech, and the Intel 
iPSC (for Intel Personal SuperComputer), a hypercube product developed 
and sold by Intel Corporation. 

This chapter has described both methods of introducing parallelism 
into sequential (SISD) processors and alternatives for organizing multipro­
cessors. Changes in technology, particularly those leading to the high 
performance that microprocessors currently enjoy, are making multipro­
cessors a cost-effective way to produce high-performance computer sys­
tems. The important issue for the future will be whether software will be 
capable of effectively utilizing the multiprocessor systems that technology 
is providing. 

1. Give an example of each of Flynn's four computer system classifications. Can 
you find an example of an MISD machine? 

2. Explain how a pipeline works. Suppose a computer has a three-stage pipeline 
with fetch, decode, and execute stages that take 1, 1, and 2 time units to 
complete, respectively. Show the reservation table for this pipeline. Once this 
pipeline is full, how frequently are results generated? 
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3. What problems do branch instructions cause on pipelined computers? Des­
cribe how this situation can be helped by a delayed branch mechanism, such as 
that used in the Berkeley RISC (discussed in Chapter 10). 

4. What is the difference between availability and reliability? Give an example of 
an available system that is not reliable and a reliable system that is not 
available. 

5. What is a hazard? Give a code sequence that demonstrates a write-after-write 
hazard and discuss the problem that it presents. 

6. Discuss the advantages and disadvantages of symmetric and asymmetric 
multiprocessor systems. 

7. Find a technical description of a commercially available multiprocessor bus 
and describe the features that specifically support multiprocessing. 

8. What is a critical section as found in a typical operating system? What are the 
differences, if any, between the handling of critical sections in a uniprocessor 
and in a multiprocessor? 

9. If a read-modify-write decrement instruction is used to implement a lock in a 
two-processor system and each executes it at the same time, what are the 
consequences? Also, consider how unlocking is done. 

10. What happens if a processor sets a lock and then fails? What can be done to 
correct this and keep a multiprocessor system running after such a failure? 
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The Ultrix Assembler 

This appendix describes the operation of the Ultrix Assembler. It is intended 
to be an introduction for those who wish to write small assembly language 
programs on Ultrix or Berkeley VAX/Unix. (We'll use the name Ultrix in this 
section to refer·to Ultrix, Berkeley VAX/Unix, or any of its derivatives.) There are a 
number of differences between the Ultrix assembler and the VAX/VMS assembler, 
which we described in Chapter 3. For most programs, however, it should be easy 
for anyone who understands the VAX instruction set to use either assembler. For 
those using this book with Ultrix, we recommend first reading the assembler 
portion of Chapter 3, and then reading this appendix to understand the differences. 

In general, the Ultrix assembler is designed to be a target language for 
compilers and not for hand-coding of assembler. One can assemble Ultrix 
assembly programs using the C compiler. 

Differences Between Ultrix and VAX/VMS Assemblers 

Following are some of the important syntactic similarities and differences 
between the Ultrix and the VAX/VMS assemblers. These differences need to be 
kept in mind when switching from one to the other. 

• The instruction format is similar to that used in VAX/VMS. Each assembler 
statement begins with an optional label, followed by a VAX instruction (or 
assembler pseudo-operation), followed by an optional comment, for example: 

mylabel: add12 rO,r3 # sum two variables 

• Program text should be entered in lowercase. VAX instruction names are 
lowercase, and register names (rO through r15,·ap, £p, sp, and pc) are lowercase. 

• The VAX 2- and 3-operand instruction names must be explicitly listed by 
"proper" name, that is, one must write addl2 or addl3; the assembler does not 
recognize addl without the following digit, 2 or 3, to specify the number of 
operands. 

• Comments use the C comment conventions. Multiline block comments are 
delimited with /* and */. The sharp (#) character, as shown previously, signals 
that the remainder of the current line is a comment (sharp replaces the 
semicolon, used in VAX/VMS assembler). 
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• Immediate mode operands (literals) are specified by a preceding dollar sign ($) 
instead of the sharp used by VAX/VMS. For example, the instruction 

sub12 $5,myint # decrease myint by 5 

su~tracts the integer 5 from the longword myint. 

• Indirect memory addressing is specified by an asterisk (*) instead of the at sign 
(@) used by VAX/VMS, for example, 

sub13 $5,*mypointer, (r2) 

subtracts the integer 5 from the longword whose address is stored in mypointer; 
the result is stored in the longword pointed to by r2. Indirect register addressing 
mode is specified using parentheses. 

• The default radix for numbers is decimal. However, a non-zero number that 
begins with a 0 is assumed to be octal, while a number that begins with Ox is 
assumed to be hexadecimal. For example, 

stuff: .long l24,0124,Ox124 

stores' the values 12410, 1248 (84 decimal), and 12416 (292 decimal) in three 
adjacent longwords starting at symbolic address stuff. 

Storage Allocation 

Storage allocation is similar to the VAX/VMS assembler. The Ultrix storage 
directives are shown in Table A.1. These directives are similar to the VAX/VMS 
directives. Two different directives are .space and . fill. The .space directive simply 
allocates a contiguous number of zero-valued bytes, as specified by the expression 
parameter. The .fill directive has three parameters: a repetition count, a size (of 
value 1-8), and a fill value. The result of .fill is to allocate size*repetition_count 
bytes; each unit of size bytes is initialized to the fill value. 

There are two string directives, .ascii and .asciz. In both cases, these strings 
are delimited by double quotes. In Ultrix, the typical method of storing strings is 
as zero-terminated strings (.asciz). There are no string descriptors. Strings can 
include normal Ultrix backslash escapes. The escapes are newline (\n), tab (\t) , 
backspace (\b), carriage return (\r), form feed (\f), backslash (\\), double quote (\"), 
and single quote (\'). Any arbitrary binary pattern can be inserted in a string using 
the notation \ddd where ddd is one to three octal digits. For example, the string 

str: . ascii "Hello there\n\O" 

contains the characters "Hello there" followed by a newline character, followed by 
a null character. This could have been defined equivalently by using .asciz and 
omitting the final null. 

In addition to these directives, the Ultrix assembler also recognizes the 
floating point allocation directives .ffloat, .dfloat, .gfloat, and .hfloat. 
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Table A. 1 Ultrix Assembler Storage Allocation Directives 

Directive Meaning 

label: .byte value_list 

label: .word value_list 

label: .long value_list 

label: .quad value_list 

label: .octa value-list 

label: .ascii "string" 

label: .asciz "string" 

label: .space expression 

label: .fill rep,size,fill 

Store specified values in successive bytes in memory 
at symbolic address "label." 

Store specified values in successive words in 
memory. 

Store specified values in successive longwords in 
memory. 

Store specified values in successive quadwords in 
memory. 

Store specified values in successive octawords in 
memory. 

Store ASCII representation of the delimited charac­
ter string in successive bytes in memory. 

Store the ASCII representation of the string, fol­
lowed by a zero byte. 

Allocates expression bytes of zeros. 

Allocates rep * size bytes, where each of the size-byte 
units is initialized to fill. Size must be between 1 
and 8. 

The Ultrix assembler uses several different naming conventions for labels, 
primarily for use by compilers. By convention, there are five different types of 
labels. 

1. Labels that begin with capital L are labels that will not be needed at run time. 
That is, they are not retained in the run-time symbol table, cannot be referred to 
globally, and cannot be accessed by a debugger. 

2. Labels that begin with any lowercase or uppercase alphabetic character (except 
L) are labels that are used by assembly language programmers. They cannot be 
referred to by C programs. 

3. Labels that begin with underscore (_) are visible from C programs that are 
linked with the modules in which they are defined. For example, an assembly 
procedure named _myproc can be referred to as myproc within a C program that 
will be linked with that procedure. The main program of an assembly program 
is always named _main. 

4. Labels that begin with two underscores refer to global procedures used by the C 
library. Assembly programmers should not begin labels with two underscores. 
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5. The assembler permits the use of nine local labels "1:" through "9:." The scope 
of a local label is active until that local label is redefined (by using it again). A 
consequence of the small number of local labels and their scoping is that branch 
instructions require a special notation for the branch destination, since a 
branch may be placed between two definitions of a single local label. When a 
local label is used in a branch or jump instruction, it is specified as the local· 
label number followed by the letter b or f for backward or forward, respectively. 
For example, in the code 

1: incl r5 
cmpl r5,r6 
bgtr Ib 

1: movl r5,saveit 

the label "1:" has been used in two places. The statement bgtr lb branches to the 
previous "1:" because the b specifies a branch backwards. 

Input and Output 

Terminal input and output are performed using the standard C library 
routines, printf and scanf. (These routines are named _printf and -scanf inside of 
an assembly program because they refer to procedures in the global C library.) 
These procedures are defined in most Ultrix, Unix, and C manuals. Printf is an 
output procedure that takes a variable number of arguments. In a high level 
language call, a call to printf might look like 

printf (control_string, paraml, param2, ... , paramN) 

The first argument is the address of a zero-terminated control string. If the control 
string contains no special control codes, it is simply output to the terminal. 
However, special control codes can be used to cause additional parameters to 
printf to be converted to ASCII and output as part of the string. The standard 
conversion characters are shown in Table A.2. In C, if we wished to print the ASCII 
decimal and hexadecimal equivalent of an integer xyz, we would simply write 

printf ("xyz is %d in decimal and %x in hex", xyz, xyz ) 

Note that the control string contains two special control codes, so we need to pass 
two parameters, in this case both are the integer xyz. In assembly language, we 
need to perform the call by pushing the parameters on the stack in reverse order, 
and then executing the proper call instruction. We also need to remember that 
integers are passed by value (using push£) while strings would be passed by 
reference (using pushab). 

As an example of the use of printf, and to demonstrate how Ultrix assembler 
programs are written, Figure A.l is a simple output program that corresponds to 
Figure 3.4. The program simply outputs two messages. 

To run this program, first create a file named progl.s. The .s is the file exten­
sion required for assembler programs. Now compile the program with the C 
compiler using the command line: 

cc -0 progl.x progl.s 
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Table A.2 Simple printf Control Codes 

Code 

%d 
%0 
%x 
%u 
%c 
%s 

Meaning 

Decimal 
Octal 
Hexadecimal 
Unsigned decimal 
Single character 
Zero-terminated string 

Figure A. 1 Simple string output program 

407 

/* First Example Program 
* 
* First program to output a simple string to the terminal 
*/ 

.data 0 
himsg: .asciz "hello there\n" 
byemsg: . asciz "bye now\n" 

# begin data segment 
# initial message descriptor 
# final message descriptor 

# The main program entry point is defined as _main. 

.text 0 # begin text segment 

.globl _main # define _main as external 

_main: .word 0 # main entry point 
# saves no registers 

# Output the initial message to the terminal. 

pushab 
calls 

himsg 
$l,_printf 

# push control string address 
# call output format routine 

# Output the final message to the terminal. 

pushab 
calls 
ret 

byemsg 
$l,_printf 

# push control string address 
# call output format routine 
# return from _main to system 
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This invokes the C compiler (named cc), specifies the production of an 
executable output file named progl.x (using the -0 switch), and specifies an input 
file named progl.s. Seeing that the input is an assembler program (because of its 
name), the C compiler invokes the assembler on progl.s and links the resulting 
object file with the C run-time library. The program can then be run simply by 
typing progl.x. 

The program in Figure A.l illustrates some other important issues in using 
the Ultrix assembler. First, each program consists of up to four data segments and 
up to four text segments (numbered 0 through 4). A text segment is read-only and 
normally contains program instructions. Our first sample program has only one 
data segment and one text segment, as defined by the .data and .text statements. 
Second the entry point for your program is defined by the label _main, as 
previously described. In order to define the symbol _main externally, the .globl 
directive is used; this permits the linker or loader to find the address of the symbol 
_main. Third, because _main is a procedure entry, it must begin with a word 
register save mask. The Ultrix assembler has no special notation for specifying a 
procedure entry point or a register mask, so the mask must be specified using the 
. word directive followed by the correct decimal or hexadecimal value. For 
example, to save registers r2 and r3, we would specify .word OxOOOc, which sets bits 
2 and 3 and therefore causes registers 2 and 3 to be saved. Fourth, note that the 
.asicz strings contain the \n control character to ensure that a newline is output at 
the end of the line. 

Figure A.2 shows the Ultrix version of Figure 3.5. This program simply outputs 
the integers 10 through O. In this case, print! is used both to output strings and to 
convert and output the integers in ASCII format. Note that in Figure A.2 we use the 
local label "1:" and the branch backward to that label. 

As our final example, we show the use of the procedure scant for reading 
terminal input. Scant takes a control string and several parameters, all of which 
are passed by reference. The control string specifies the format in which input is to 
be processed and converted, and each parameter is the address of the place to 
store the next input item. For example, in Figure A.3, we use scanf to read an 
integer and a string from the terminal. The C high-level call would look like 

scanf ("%d %s", &in_int, &inbuf) 

where the & implies that the address of these variables is to be passed. As a result 
of this call, the integer typed on the terminal is converted to binary and placed in 
the variable in_int, and the string typed on the terminal is stored as a zero­
terminated string in inbuf. Notice that when we use print! to output the integer and 
string, the integer is passed by value and the string is passed by reference. 

For more detailed information on the use of print! and scant, we recommend 
looking at books on C, such as the one by Kernighan and Ritchie [1978J. 

Finally, the Ultrix assembler does not produce a listing file. However, to find 
the load addresses of defined labels and variables, the nm utility will dump all 
labels and addresses (just type nm prog.x to display the symbols in the executable 
program prog.x sorted alphabetically, or nm -n prog.x to sort the symbols 
numerically). Because the program is linked with the C library, there will be many 
symbols in the list. There are several Ultrix debuggers which we do not describe 
here. Documentation can be found in the Berkeley VAX/Unix or Ultrix manual set 
(for example, see the tutorial by Maranzano and Bourne [1985]). 
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Figure A.2 Simple integer printing program 

/* Second Program 
* 
* Program to print integers from 10 down to O. 
*/ 

.data 
himsg: .asciz 
byemsg: .asciz 
numstring: 

.asciz 
counter: .long 

# Define main 

.text 

.globl 

_main: .word 

0 
"hello there\n" 
"bye now\n" 

"%d\n" 
10 

entry point. 

0 
_main 

0 

# initial message descriptor 
# final message descriptor 
# printf control string ... 
# ... to print decimal value 
# init integer counter to 10 

# begin text segment 
# define _main as external 

# main entry point 
# saves no registers 

# Output the initial message to the terminal. 

pushab himsg 
calls $l,_printf 

# push control string address 
# call output format routine 

# Loop to process integers. On each pass printf is 
# called to print the integer in ASCII format. This 
# call looks like printf(numstring,counter) where 
# numstring is the control string address and counter is 
# the value to be converted as specified in the string. 

1: 

# Output 

pushl 
pushab 
calls 
decl 
bgeq 

counter 
numstring 
$2,_printf 
counter 
lb 

the final message 

pushab byemsg 
calls $l,_printf 
ret 

to 

# push parameter to printf 
# push control string address 
# output next integer 
# decrement counter 
# branch back if \ 0 

the terminal. 

# control string ... 
# ... for final message 
# return from _main to system 
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Figure A.3 Simple terminal reading program 

/* Program to read input 
* 
* This program simply prompts the user for an integer 
* 
* 

and a string, and then echoes both. The string cannot contain 
blanks. The program exits if the string entered is a $. 

*/ 

.data 
inbuf: . space 
in_int: .long 
in_msg: . asciz 
read_it: .asciz 
out_msg: .asciz 

# Define main 

.text 

.globl 

_main: .word 

o # begin data segment 
100 # space for input string 
o # space for integer 

"enter an integer and a string (exit wi th a \"$\"): " 
"%d %s" 
"you typed the integer %d and the string \"%s\"\n" 

entry point. 

0 # begin text segment 
_main # define _main as external 

0 # main entry point 
# saves no registers 

# Output the initial message to the terminal. 

loop: pushab 
calls 

in_msg 
$l,_printf 

# push control string address 
# print the prompt message 

# Read user's string and integer 

/* 

*/ 

pushab 
pushal 
pushab 
calls 

inbuf 
iILint 
read_it 
$3,_scanf 

# push address of user string 
# push address of integer 
# scanf control string 
# read input into inbuf 

The user's string has been read into inbuf, and 
the binary integer is in in_into 
Write out the user's input to the terminal 
and then check if we're finished. 

pushab inbuf # push address of string 
pushl in_int # push address of integer 
pushab out_msg # printf control string 
calls $3,_printf # echo what was typed 

cmpb $Ox24, inbuf # did user type a "$"? 
bneq loop # continue if not 
ret # else return 
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VAX Instruction Set Description 

Operand Specifier Notation Legend 

The standard notation for operand specifiers is: 

<name>. <access type><data type> 

where: 

1. Name is a suggestive name for the operand in the context of the instruction. It is 
the capitalized name of a register or block for implied operands. 

2. Access type is a letter denoting the operand specifier access type. 

a Calculate the effective address of the specified operand. Address is re­
turned in a pointer which is the actual instruction operand. Context of 
address calculation is given by data type given by <data type>. 

b No operand reference. Operand specifier is branch displacement. Size of 
branch displacement is given by <data type>. 

m Operand is modified (both read and written). 

r Operand is read only. 

v If not "Rn," same as a. If "RN," R[n + 1]R[n]. 

w Operand is written only. 

3. Data type is a letter denoting the data type of the operand. 

b denotes byte data 

d denotes DJIoating data 

f denotes F _floating data 

g denotes G_floating data 

h denotes H_floating data 
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denotes longword data 

o denotes octaword data 

q denotes quadword data 

w denotes word data 

x denotes the first data type specified by instruction 

y denotes the second data type specified by instruction 

4. Implied operands, that is, locations that are accessed by the instruction, but not 
specified in an operand, are denoted in enclosing brackets,[]. 

Condition Codes Legend 

= conditionally cleared/set 
- = not affected 

Table B.1 List of VAX Instructions by Mnemonic 

OP Mnemonic Description 

9D ACBB Add compare and branch byte 

6F ACBD Add compare and branch 
D_floating 

4F ACBF Add compare and branch 
F_floating 

4FFD ACBG Add compare and branch 
G_floating 

6FFD ACBH Add compare and branch 
H_floating 

F1 ACBL Add compare and branch long 

3D ACBW Add compare and branch word 

58 ADAWI Add aligned word interlocked 
80 ADDB2 Add byte 2-operand 
81 ADDB3 Add byte 3-operand 

60 ADDD2 Add D_floating 2-operand 
61 ADDD3 Add D_floating 3-operand 

40 ADDF2 Add F _floating 2-operand 
41 ADDF3 Add F _floating 3-operand 

40FD ADDG2 Add G_floating 2-operand 
41FD ADDG3 Add G_floating 3-operand 

o = cleared 
= set 

Arguments 

limit.rb, add.rb, 
index.mb, displ.bw 
limit.rd, add.rd, 
index.md, displ. bw 
limit.rf, add.rf, 
index.mf, displ.bw 
limit.rg, add.rg, 
index.rg, displ.bw 
limit.rh, add.rh, 
index.rh, displ.bw 
limit.rl, add.rl, 
index.ml, displ.bw 
limit.rw, add.rw, 
index.mw, displ.bw 
add.rw, sum.mw 
add.rb, sum.mb 
add1.rb, add 2.rb, 
sum.wb 
add.rd, sum.md 
add1.rd, add2.rd, 
sum.wd 
add.rf, sum.mf 
addl.rf, add2.rf, 
sum.wf 
add.rg, sum.mg 
addl.rg, add2.rg, 
sum.wg 

Condition 
Codes 

N Z V C 

o 
o 

o 
o 

o 
o 

o 
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Condition 
Codes 

OP Mnemonic Description Arguments N Z V C 

60FD ADDH2 Add H_floating 2-operand add.rh, sum.mh 0 
61FD ADDH3 Add H_floating 3-operand addl.rh, add2.rh, 0 

sum.wh 
CO ADDL2 Add long 2-operand add.rl, sum.ml 
C1 ADDL3 Add long 3-operand addl.rl, add2.rl, 0 

sum.wl 
20 ADDP4 Add packed 4-operand addlen.rw, addaddr.ab, 0 

sumlen.rw, sumaddr.ab, 
[RO-3.wl] 

21 ADDP6 Add packed 6-operand addllen.rw, addladdr.ab, 0 
add2Ien.rw, add2addr.ab, 
sumlen.rw, sumaddr.ab, 

AO ADDW2 Add word 2-operand 
[RO-5.wl] 
add.rw, sum.mw 

A1 ADDW3 Add word 3-operand addl.rw, add2.rw, 
sum.ww 0 

D8 ADWC Add with carry add.rl, sum.ml 
F3 AOBLEQ Add one and branch limit.rl, index.ml, 

on less or equal displ.bb 
F2 AOBLSS Add one and branch limit.rl, index.ml, 

on less displ.bb 
78 ASHL Arithmetic shift long count.rb, src.rl, dst.wl 0 
F8 ASHP Arithmetic shift count.rb, srclen,rw, 0 

and round packed srcaddr.ab, round.rb, 
dstlen.rw, dstaddr.ab, 
[RO-3.wl] 

79 ASHQ Arithmetic shift quad count.rb, src.rq, dst.wq 0 
E1 BBC Branch db. bit clear pos.rl, base. vb, 

displ. bb, [field.rv] 
E5 BBCC Branch on bit pos.rl, base.vb, 

clear and clear displ.bb, [field.mv] 
E7 BBCCI Branch on bit clear pos.rl, base.vb, 

and clear interlocked displ. bb, [field.mv] 
E3 BBCS Branch on bit pos.rl, base. vb, 

clear and set displ.bb, [field.mv] 
EO BBS Branch on bit set pos.rl, base.vb, 

displ.bb, [field.rv] 
E4 BBSC Branch on bit set pos.rl, base. vb, 

and clear displ.bb, [field.mv] 
E2 BBSS Branch on bit set pos.rl, base.vb, 

and set displ.bb, [field.mv] 
E6 BBSSI Branch on bit set pos.rl, base. vb, 

and set interlocked displ.bb, [field.mv] 
1E BCC Branch on carry clear displ.bb 
1F BCS Branch on carry set displ.bb 
13 BEQL Branch on equal displ.bb 
13 BEQLU Branch on equal unsigned displ.bb 
18 BGEQ Branch on greater or equal displ.bb 
1E BGEQU Branch on greater displ.bb 

or equal unsigned 
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14 BGTR Branch on greater displ.bb 
lA BGTRU Branch on greater unsigned displ.bb 
8A BICB2 Bit clear byte 2-operand maskrb, dst.mb 0 
8B BICB3 Bit clear byte 3-operand maskrb, src.rb, dst.wb 0 
CA BICL2 Bit clear long 2-operand maskrl, dst.ml 0 
CB BICL3 Bit clear long 3-operand maskrl, src.rl, dst.wl 0 
B9 BICPSW Bit clear processor maskrw 

status word 
AA BICW2 Bit clear word 2-operand maskrw, dst.mw 0 
AB BICW3 Bit clear word 3-operand maskrw, src.rw, dst.ww 0 
88 BISB2 Bit set byte 2-operand maskrb, dst.mb 0 
89 BISB3 Bit set byte 3-operand maskrb, src.rb, dst.wb 0 
C8 BISL2 Bit set long 2-operand maskrl, dst.ml 0 
C9 BISL3 Bit set long 3-operand maskrl, src.rl, dst.wl 0 
B8 BISPSW Bit set processor status word maskrw 
A8 BISW2 Bit set word 2-operand maskrw, dst.mw 0 
A9 BISW3 Bit set word 3-operand maskrw, src.rw, dst.ww 0 
93 BITB Bit test byte maskrb, src.rb 0 
D3 BITL Bit test long maskrl, src.rl 0 
B3 BITW Bit test word maskrw, src.rw 0 
E9 BLBC Branch on low bit clear src.rl, displ.bb 
E8 BLBS Branch on low bit set src.rl, displ.bb 
15 BLEQ Branch on less or equal displ.bb 
IB BLEQU Branch on less displ.bb 

or equal unsigned 
19 BLSS Branch on less displ.bb 
IF BLSSU Branch on less unsigned displ.bb 
12 BNEQ Branch on not equal displ.bb 
12 BNEQU Branch on not displ.bb 

equal unsigned 
03 BPT Break point fault [-(KSP).w*] 0 0 0 0 
11 BRB Branch with byte displacement displ.bb 
31 BRW Branch with word displ.bw 

displacement 
10 BSBB Branch to subroutine with displ.bb, [-(SP).wl] 

byte displacement 
30 BSBW Branch to subroutine with displ.bw, [-(SP).wl] 

word displacement 
FDFF BUGL Bugcheck longword message.bx 
FEFF BUGW Bugcheck word message.bx 
lC BVC Branch on overflow clear displ.bb 
ID BVS Branch on overflow set displ.bb 
FA CALLG Call with general arglist.ab, dst.ab, 0 0 0 0 

argument list [ -(SP).w*] 
FB CALLS Call with argument numarg.rl, dst.ab, 0 0 0 0 

list on stack [ -(SP).w*] 
8F CASEB Case byte selector.rb, base.rb, 0 

limit.rb, displ.bw-list 
CF CASEL Case long selector.rl, base.rl, 0 

limit.rl, displ.bw-list 
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AF CASEW Case word selector.rw, base.rw, 0 
limit.rw, displ.bw-list 

BD CHME Change mode to param.rw, [-(ySP).w*] 0 0 0 0 
executive y=MINU(E, 

PSLcurrent-mode) 
BC CHMK Change mode to kernel param.rw, [-(KSP).w*] 0 0 0 0 
BE CHMS Change mode to param.rw, [-(ySP).w*] 0 0 0 0 

supervisor y=MINU(S, 
PSLcurrent-mode) 

BF CHMU Change mode to user param.rw, [-(SP).w*] 0 0 0 0 
94 CLRB Clear byte dst.wb 0 1 0 
7C CLRD Clear D_floating dst.wd 0 1 0 
D4 CLRF Clear F _floating dst.wf 0 1 0 
7C CLRG Clear G_floating dst.wg 0 1 0 
7CFD CLRH Clear H_floating dst.wh 0 1 0 
D4 CLRL Clear long dst.wl 0 1 0 
7CFD CLRO Clear Octoword dst.wo 0 1 0 
7C CLRQ Clear quad dst.wq 0 1 0 
B4 CLRW Clear word dst.ww 0 1 0 
91 CMPB Compare byte srcl.rb, src2.rb 0 
29 CMPC3 Compare character len.rw, srcladdr.ab, 0 

3-operand src2addr.ab, 
[RO-3.wl] 

2D CMPC5 Compare character srcllen.rw, srcladdr.ab, 0 
5-operand fill.rb, src2Ien.rw, 

src2addr.ab, [RO-3.wl] 
71 CMPD Compare D_floating srcl.rd, src2.rd 0 0 
51 CMPF Compare F _floating srcl.rf, src2.rf 0 0 
51FD CMPG Compare G_floating srcl.rg, src2.rg 0 0 
71FD CMPH Compare HJloating srcl.rh, src2.rh 0 0 
D1 CMPL Compare long srcl.rl, src2.rl 0 
35 CMPP3 Compare packed len.rw, srcladdr.ab, 0 0 

3-operand src2addr .ab, 
[RO-3.wl] 

37 CMPP4 Compare packed srcllen.rw, srcladdr.ab, 0 0 
4-operand src2Ien.rw, src2addr.ab, 

[RO-3.wl] 
EC CMPV Compare field pos.rl, size.rb, base. vb, 0 

[field.rv], src.rl 
Bl CMPW Compare word srcl.rw, src2.rw 0 
ED CMPZV Compare zero -pos.rl, size.rb, base.vb, 0 

extended field [field.rv], src.rl 
OB CRC Calculate cyclic tbl.ab, initialcrc.rl, 0 0 

redundancy check strlen.rw, stream.ab, 
[RO-3.wl] 

6C CVTBD Convert byte to D_floating src.rb, dst.wd 0 
4C CVTBF Convert byte to F _floating src.rb, dst.wf 0 
4CFD CVTBG Convert byte to G_floating src.rb, dst.wg 0 
6CFD CVTBH Convert byte to H_floating src.rb, dst.wh 0 
98 CVTBL Convert byte to long src.rb, dst.wl 0 
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99 CVTBW Convert byte to word src.rb, dst.ww 0 
68 CVTDB Convert D_floating to byte src.rd, dst.wb 0 
76 CVTDF Convert DJloating src.rd, dst.wf 0 

to floating 
32FD CVTDH Convert D_floating src.rd, dst.wh 0 

to H_floating 
6A CVTDL Convert D_floating to long src.rd, dst.wl 0 
69 CVTDW Convert D_floating to word src.rd, dst.ww 0 
48 CVTFB Convert F Jloating to byte src.rf, dst.wb 0 
56 CVTFD Convert F Jloating to double src.rf, dst.wd 0 
99FD CVTFG Convert F _floating src.rf, dst.wg 0 

to G_floating 
98FD CVTFH Convert F _floating src.rf, dst.wh 0 

to H_floating 
4A CVTFL Convert F _floating to long src.rf, dst.wl 0 
49 CVTFW Convert F _floating to word src.rf, dst.ww 0 
48FD CVTGB Convert G_floating to byte src.rg, dst.wb 0 
33FD CVTGF Convert G_floating src.rg, dst.wf 0 

to F _floating 
56FD CVTGH Convert G_floating src.rg, dst.wh 0 

to HJloating 
4AFD CVTGL Convert G_floating src.rg, dst.wl 0 

to longword 
49FD CVTGW Convert G_floating to word src.rg, dst. ww 0 
68FD CVTHB Convert H_floating to byte src.rh, dst.wb 0 
F7FD CVTHD Convert H_floating src.rh, dst.wd 0 

to D_floating 
F6FD CVTHF Convert H_floating src.rh, dst. wf 0 

to F _floating 
76FD CVTHG Convert H_floating src.rh, dst.wg 0 

to G_floating 
6AFD CVTHL Convert H_floating src.rh, dst.wl 0 

to longword 
69FD CVTHW Convert HJloating to word src.rh, dst.ww 0 
F6 CVTLB Convert long to byte src.rl, dst.wb 0 
6E CVTLD Convert long to DJloating src.rl, dst.wd 0 
4E CVTLF Convert long to F _floating src.rl, dst.wf 0 
4EFD CVTLG Convert longword src.rl, dst.wg 0 

to G_floating 
6EFD CVTLH Convert longword src.rl, dst.wh 0 

to H_floating 
F9 CVTLP Convert long to packed src.rl, dstlen.rw, 0 

dstaddr.ab, [RO-3.wl] 
F7 CVTLW Convert long to word src.rl, dst.ww 0 
36 CVTPL Convert packed to long srclen.rw, srcaddr.ab, 0 

[RO-3.wl], dst.wl 
08 CVTPS Convert packed to leading srclen.rw, srcaddr.ab, 0 

separate dstlen.rw, dstaddr.ab, 
[RO-3.wl] 

24 CVTPT Convert packed to trailing srclen.rw, srcaddr.ab, 0 
tbladdr.ab, dstlen.rw, 
dstaddr.ab, [RO-3.wl] 
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6B CVTRDL Convert rounded src.rd, dst.wl 0 
D_floating to long 

4B CVTRFL Convert rounded src.rf, dst.wl 0 
F _floating to long 

4BFD CVTRGL Convert rounded src.rg, dst.wl 0 
GJIoating to longword 

6BFD CVTRHL Convert rounded src.rh, dst.wl 0 
H_floating to longword 

09 CVTSP Convert leading separate to srclen.rw, srcaddr.ab, 0 
packed dstlen.rw, dstaddr.ab, 

[RO-3.wl] 
26 CVTTP Convert trailing to packed srclen.rw, srcaddr.ab, 0 

tbladdr.ab, dstlen.rw, 
dstaddr.ab, [RO-3.wl] 

33 CVTWB Convert word to byte src.rw, dst.wb 0 
6D CVTWD Convert word to DJIoating src.rw, dst.wd 0 
4D CVTWF Convert word to F _floating src.rw, dst.wf 0 
4DFD CVTWG Convert word to G_floating src.rw, dst.wg 0 
6DFD CVTWH Convert word to H_floating src.rw, dst.wh 0 
32 CVTWL Convert word to long src.rw, dst.wl 0 
97 DECB Decrement byte dif.mb 
D7 DECL Decrement long dif.ml 
B7 DECW Decrement word dif.mw 
86 DIVB2 Divide byte 2-operand divr.rb, quo.mb 0 
87 DIVB3 Divide byte 3-operand divr.rb, divd.rb, quo.wb 0 
66 DIVD2 Divide D_floating 2-operand divr.rd, quo.md 0 
67 DIVD3 Divide D_floating 3-operand divr.rd, divd.rd, quo.wd 0 
46 DIVF2 Divide F _floating 2-operand divr.rf, quo.mf 0 
47 DIVF3 Divide F _floating 3-operand divr.rf, divd.rf, quo.wf 0 
46FD DIVG2 Divide G_floating 2-operand divr.rg, quo.mg 0 
47FD DIVG3 Divide G_floating 3-operand divr.rg, divd.rg, quo.wg 0 
66FD DIVH2 Divide H_floating 2-operand divr.rh, quo.mh 0 
67FD DIVH3 Divide H_floating 3-operand divr.rh, divd.rh, quo.wh 0 
C6 DIVL2 Divide long 2-operand divr.rl, quo.ml 0 
C7 DIVL3 Divide long 3-operand divr.rl, divd.rl, quo.wl 0 
27 DIVP Divide packed divrlen.rw, divraddr.ab, 0 

divdlen.rw, divdaddr.ab, 
quolen.rw, quoaddr.ab, 
[RO-5.wl,-16(SP): 
-1 (SP).wb] 

A6 DIVW2 Divide word 2-operand divr.rw, quo.mw 0 
A7 DIVW3 Divide word 3-operand divr.rw, divd.rw, quo.ww 0 
38 EDITPC Edit packed to srclen.rw, srcaddr.ab, 

character string pattern.ab, dstaddr.ab, 
[RO-5.wl] 

7B EDIV Extended divide divr.rl, divd.rq, 0 
quo.wl, rem.wl 

74 EMODD Extended mulr.rd, mulrx.rb, 0 
modulus double muld.rd, int.wl, fract.wd 

54 EMODF Extended mulr.rf, mulrx.rb, 0 
modulus F _floating muld.rf, int.wI 

fract.wf 
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54FD EMODG Extended modulus mulr.rg, mulrx.rb, 0 
G_floating muld.rg, int.wl, 

fract.wg 
74FD EMODH Extended modulus mulr.rh, mulrx.rb, 0 

H_floating muld.rh, int.wl, 
fract.wg 

7A EMUL Extended multiply mulr.rl, muld.rl, add.rl, 0 0 
prod.wq 

EE EXTV Extract field pos.rl, size.rb, base. vb, 0 
[field.rv], dst.wl 

EF EXTZV Extract zero -pos.rl, size.rb, base.vb, 0 
extended field [field.rv], dst.wl 

EB FFC Find first clear bit startpos.rl, size.rb, 0 0 0 
base.vb, [field.rv], 
findpos.wl 

EA FFS Find first set bit startpos.rl, size.rb, 0 0 0 
base.vb, [field.rv], 
findpos.wl 

00 HALT Halt (Kernel Mode only) [ -(KSP).w*] 
96 INCB Increment byte sum.mb 
D6 INCL Increment long sum.ml 
B6 INCW Increment word sum.mw 
OA INDEX Index calculation subscript.rl, low.rl, 0 0 

high.rl, size.rl, 
entry.rl, addr.wl 

5C INSQHI Insert at head of queue, entry.ab, header.aq 0 0 
interlocked 

5D INSQTI Insert at tail of queue, entry.ab, header.aq 0 0 
interlocked 

OE INS QUE Insert into queue entry.ab, addr.wl 0 
FO INSV Insert field src.rl, pos.rl, size.rb, 

base. vb, [field.wv] 
17 JMP Jump dst.ab 
16 JSB Jump to subroutine dst.ab, [-(SP)+.wl] 
06 LDPCTX Load process context (only [PCB.r*, -(KSP).w*] 

legal on interrupt stack) 
3A LOCC Locate character char.rb, len.rw, addr.ab, 0 0 0 

[RO-l.wl] 
39 MATCHC Match characters len l.rw, addr l.ab, 0 0 0 

len2.rw,addr2.ab, 
[RO-3.wl] 

92 MCOMB Move complemented byte scr.rb, dst.wb 0 
D2 MCOML Move complemented long scr.rl, dst.wl 0 
B2 MCOMW Move complemented word src.rw, dst.ww 0 
DB MFPR Move from processor register procreg.rl, dst.wl 0 

(Kernel Mode only) 
8E MNEGB Move negated byte src.rb, dst.wb 
72 MNEGD Move negated D_floating src.rd, dst.wd 0 0 
52 MNEGF Move negated F _floating src.rf, dst.wf 0 0 
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S2FD MNEGG Move negated G_floating src.rg, dst.wg 0 0 
72FD MNEGH Move negated G_floating src.rh, dst.wh 0 0 
CE MNEGL Move negated long src.d, dst.wl 
AE MNEGW Move negated word src.rw, dst.ww 
9E MOVAB Move address of byte src.ab, dst.wl 0 
7E MOVAD Move address of D_floating src.aq, dst.wl 0 
DE MOVAF Move address of F _floating src.al, dst.wl 0 
7E MOVAG Move address of G_floating src.ag, dst.wl 0 
7EFD MOVAH Move address of H_floating src.ah, dst.wl 0 
DE MOVAL Move address of long src.al, dst.wl 0 
7EFD MOVAO Move address of octa src.ao, dst.wl 0 
7E MOVAQ Move address of quad src.aq, dst.wl 0 
3E MOVAW Move address of word src.aw, dst.wl 0 
90 MOVB Move byte src.rb, dst.wb 0 
28 MOVC3 Move character 3-operand len.rw, srcaddr.ab, 0 0 0 

2C MOVCS Move character S-operand 
dstaddr.ab, [RO-S.wl~ 
srclen.rw, srcaddr.a , 0 
fill.rb, dstlen.rw, 
dstaddr.ab, [RO-S.wl] 

70 MOVD Move D_floating scr.rd, dst.wd 0 
SO MOVF Move F _floating src.rf, dst.wf 0 
SOFD MOVG Move G_floating src.rg, dst.wg 0 
70FD MOVH Move H_floating src.rh, dst.wh 0 
DO MOVL Move long src.d, dst.wl 0 
7DFD MOVO Move octa src.ro, dst.wo 0 
34 MOVP Move packed len.rw, srcaddr.ab, 0 

dstaddr.ab, [RO-3.wl] 
DC MOVPSL Move processor dst.wl 

status longword 
7D MOVQ Move quad src.rq, dst.wq 0 
2E MOVTC Move translated srclen.rw, srcaddr.ab, 0 

characters fill.rb, tbladdr.ab, 
dstlen.rw, dstaddr.ab, 
[RO-S.wl] 

2F MOVTUC Move translated srclen.rw, srcaddr.ab, 
until character escape.rb, tbladdr.ab, 

dstlen.rw, dstaddr.ab, 
[RO-S.wl] 

BO MOVW Move word src.rw, dst.ww 0 
9A MOVZBL Move zero-extended src.rb, dst.wl 0 0 

byte to long 
9B MOVZBW Move zero-extended src.rb, dst.ww 0 0 

byte to word 
3C MOVZWL Move zero-extended src.rw, dst.wl 0 0 

word to long 
DA MTPR Move to processor register src.d, procreg.d 0 

(Kernel Mode only) 
84 MULB2 Multiply byte 2-operand mulr.rb, prod.mb 0 
8S MULB3 Multiply byte 3-operand mulr.rb, muld.rb, 0 

prod.wb 
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64 MULD2 Multiply D_floating mulr.rd, prod.md 0 
2-operand 

65 MULD3 Multiply D_floating mulr.rd, muld.rd, 0 
3-operand prod.wd 

44 MULF2 Multiply F _floating mulr.rf, prod.mf 0 
2-operand 

45 MULF3 Multiply F _floating mulr.rf, muld.rf, 0 
3-operand prod.wf 

44FD MULG2 Multiply G_floating mulr.rg, prod.mg 0 
2-operand 

45FD MULG3 Multiply GJioating mulr.rg, muld.rg, 0 
3-oper~md prod.wg 

64FD MULH2 Multiply H_floating mulr.rh, prod.mh 0 
2-operand 

65FD MULH3 Multiply H_floating mulr.rh, muld.rh 0 
3-operand prod.wh 

C4 MULL2 Multiply long 2-operand mulr.rl, prod.ml 0 
C5 MULL3 Multiply long 3-operand mulr.rl, muld.rl, prod.wl 0 
25 MULP Multiply packed mulrlen.rw, mulradr.ab, 0 

muldlen.rw, muldadr.ab, 
prodlen.rw, prodadr.ab, 
[RO-5.wl] 

A4 MULW2 Multiply word 2-operand mulr.rw, prod.mw 0 
AS MULW3 Multiply word mulr.rw, muld.rw, 0 

3-operand prod.ww 
01 NOP No operation 
75 POLYD Polynomial evaluate arg.rd, degree.rw, 0 

D_floating tbladdr.ab, [RO-5.wl] 
55 POLYF Polynomial evaluate arg.rf, degree.rw, 0 

F_floating tbladdr.ab, [RO-3.wl] 
55FD POLYG Polynomial evaluate arg.rg, degree.rw, 0 

GJioating tbladdr.ab, [RO-5.wl] 
75FD POLYH Polynomial evaluate arg.rh, degree.rw, 0 

H_floating tbladdr.ab, [RO-5.wl, 
-16(SP): -l(SP).wb] 

BA POPR Pop registers mask.rw, [(SP)+ .r*] 
OC PROBER Probe read access mode.rb, len.rw, base.ab 0 0 
OD PROBEW Probe write access mode.rb, len.rw, base.ab 0 0 
9F PUSHAB Push address of byte src.ab, [-(SP).wl] 0 
7F PUSHAD Push address of D_floating src.aq, [-(SP).wl] 0 
DF PUSHAF Push address of F _floating src.al, [-(SP).wl] 0 
7F PUSHAG Push address of G_floating src.ag, [ -(SP).wl] 0 
7FFD PUSHAH Push address of H_floating src.ah, [-(SP).wl] 0 
DF PUSHAL Push address of long src.al, [-(SP).wl] 0 
7FFD PUSHAO Push address of octa src.ao, [-(SP).wl] 0 
7F PUSHAQ Push address of quad src.aq, [-(SP).wl] 0 
3F PUSHAW Push address of word src.aw, [-(SP).wl] 0 
DD PUSHL Push long src.rl, [ -(SP).wl] 0 
BB PUSHR Push registers mask.rw, [-(SP).w*] 
02 REI Return from exception [(SP) + .r*] 

or interrupt 
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SE REMOHI Remove from head of queue, header.aq, addr.wl 0 
interlocked 

SF REMOTI Remove from tail of queue, header.aq, addr.wl 0 
interlocked 

OF REMOUE Remove from queue entry.ab, addr.wl 
04 RET Return from procedure [CSP)+ .r*] 
9C ROTL Rotate long count.rb, src.rl, dst.wl 0 
05 RSB Return from subroutine [CSP) + .rl] 
D9 SBWC Subtract with carry sub.rl, dif.ml 
2A SCANC Scan for character len.rw, addr.ab, 0 0 0 

tbladdr.ab, mask.rb, 
[RO-3.wl] 

3B SKPC Skip character char.rb, len.rw, addr.ab, 0 0 0 
[RO-I.wl] 

F4 SOBGEO Subtract one and branch on index.ml, displ.bb 
greater or equal 

FS SOBGTR Subtract one and index.ml, displ.bb 
branch on greater 

2B SPANC Span characters len.rw, addr.ab, 0 0 0 
tbladdr.ab, mask.rb, 
[RO-3.wl] 

82 SUBB2 Subtract byte 2-operand sub.rb, dif.mb 
83 SUBB3 Subtract byte 3-operand sub.rb, min.rb, dif.wb 0 
62 SUBD2 Subtract D_floating sub.rd, dif.md 0 

2-operand 
63 SUBD3 Subtract D_floating sub.rd, min.rd, dif.wd 0 

3-operand 
42 SUBF2 Subtract F _floating sub.rf, dif.mf 0 

2-operand 
43 SUBF3 Subtract F _floating sub.rf, min.rf, dif.wf 0 

3-operand 
42FD SUBG2 Subtract G-floating sub.rg, dif.mg 0 

2-operand 
43FD SUBG3 Subtract G_floating sub.rg, min.rg, 0 

3-operand dif.rg 
62FD SUBH2 Subtract H_floating sub.rh, dif.mh 0 

2-operand 
63FD SUBH3 Subtract H_floating sub.rh, min.rh, 0 

3-operand dif.rh 
C2 SUBL2 Subtract long 2-operand sub.rl, dif.ml 
C3 SUBL3 Subtract long 3-operand sub.rl, min.rl, dif.wl 0 
22 SUBP4 Subtract packed sublen.rw, subaddr.ab, 0 

4-operand diflen.rw, difaddr.ab, 
[RO-3.wl] 

23 SUBP6 Subtract packed sublen.rw, subaddr.ab, 0 
6-operand minlen.rw, minaddr.ab, 

diflen.rw, difaddr.ab, 
[RO-S.wl] 

A2 SUBW2 Subtract word 2-operand sub.rw, dif.mw 
A3 SUBW3 Subtract word 3-operand sub.rw, min.rw, dif.ww 0 
07 SVPCTX Save process context [CSP) + .r*, -CKSP).w*] 
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(Kernel Mode only) 
95 TSTB Test byte src.rb 0 0 
73 TSTD Test DJloating src.rd 0 0 
53 TSTF Test F _floating src.rf 0 0 
53FD TSTG Test G_floating src.rg 0 0 
73FD TSTH Test H_floating src.rh 0 0 
D5 TSTL Test long src.rl 0 0 
B5 TSTW Test word src.rw 0 0 
FC XFC Extended function call user defined operands 0 0 0 0 
8C XORB2 Exclusive OR byte 2-operand mask.rb, dst.mb 0 
8D XORB3 Exclusive OR byte 3-operand mask.rb, src.rb, dst.wb 0 
CC XORL2 Exclusive OR long 2-operand mask.rl., dst.ml 0 
CD XORL3 Exclusive OR long 3-operand mask.rl, src.rl, dst.wl 0 
AC XORW2 Exclusive OR word 2-operand mask.rw, dst.mw 0 
AD XORW3 Exclusive OR word 3-operand mask.rw, src.rw, dst.ww 0 

Table 8.2 List of VAX Instructions by Opcode 

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic 

00 HALT IB BLEQU 36 CVTPL 
01 NOP lC BVC 37 CMPP4 
02 REI ID BVS 38 EDITPC 
03 BPT IE BGEQU 39 MATCHC 
04 RET IE BCC 3A LOCC 
05 RSB IF BLSSU 3B SKPC 
06 LDPCTX IF BCS 3C MOVZWL 
07 SVPCTX 20 ADDP4 3D ACBW 
08 CVTPS 21 ADDP6 3E MOVAW 
09 CVTSP 22 SUBP4 3F PUSHAW 
OA INDEX 23 SUBP6 40 ADDF2 
OB CRC 24 CVTPT 41 ADDF3 
OC PROBER 25 MULP 42 SUBF2 
OD PROBEW 26 CVTTP 43 SUBF3 
OE INSQUE 27 DIVP 44 MULF2 
OF REM QUE 28 MOVC3 45 MULF3 
10 BSBB 29 CMPC3 46 DIVF2 
11 BRB 2A SCANC 47 DIVF3 
12 BNEQ 2B SPANC 48 CVTFB 
12 BNEQU 2C MOVC5 49 CVTFW 
13 BEQL 2D CMPC5 4A CVTFL 
13 BEQLU 2E MOVTC 4B CVTRFL 
14 BGTR 2F MOVTUC 4C CVTBF 
15 BLEQ 30 BSBW 4D CVTWF 
16 JSB 31 BRW 4E CVTLF 
17 JMP 32 CVTWL 4F ACBF 
18 BGEQ 33 CVTWB 50 MOVF 
19 BLSS 34 MOVP 51 CMPF 
lA BGTRU 35 CMPP3 52 MNEGF 
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53 TSTF 81 ADDB3 B5 TSTW 
54 EMODF 82 SUBB2 B6 INCW 
55 POLYF 83 SUBB3 B7 DECW 
56 CVTFD 84 MULB2 B8 BISPSW 
57 Reserved 85 MULB3 B9 BICPSW 
58 ADAWI 86 DIVB2 BA POPR 
59 Reserved 87 DIVB3 BB PUSHR 
SA Reserved 88 BISB2 BC CHMK 
5B Reserved 89 BISB3 BD CHME 
5C INSQHI 8A BICB2 BE CHMS 
5D INSQTI 8B BICB3 BF CHMU 
5E REMQHI 8C XORB2 CO ADDL2 
SF REMQTI 8D XORB3 Cl ADDL3 
60 ADDD2 8E MNEGB C2 SUBL2 
61 ADDD3 8F CASEB C3 SUBL3 
62 SUBD2 90 MOVB C4 MULL2 
63 SUBD3 91 CMPB C5 MULL3 
64 MULD2 92 MCOMB C6 DIVL2 
65 MULD3 93 BITB C7 DIVL3 
66 DIVD2 94 CLRB C8 BISL2 
67 DIVD3 95 TSTB C9 BISL3 
68 CVTDB 96 INCB CA BICL2 
69 CVTDW 97 DECB CB BICL3 
6A CVTDL 98 CVTBL CC XORL2 
6B CVTRDL 99 CVTBW CD XORL3 
6C CVTBD 9A MOVZBL CE MNEGL 
6D CVTWD 9B MOVZBW CF CASEL 
6E CVTLD 9C ROTL DO MOVL 
6f' ACBD 9D ACBB Dl CMPL 
70 MOVD 9E MOVAB D2 MCOML 
71 CMPD 9F PUSHAB D3 BITL 
72 MNEGD AO ADDW2 D4 CLRL 
73 TSTD Al ADDW3 D4 CLRF 
74 EMODD A2 SUBW2 D5 TSTL 
75 POLYD A3 SUBW3 D6 INCL 
76 CVTDF A4 MULW2 D7 DECL 
77 Reserved AS MULW3 D8 ADWC 
78 ASHL A6 DIVW2 D9 SBWC 
79 ASHQ A7 DIVW3 DA MTPR 
7A EMUL A8 BISW2 DB MFPR 
7B EDIV A9 BISW3 DC MOVPSL 
7C CLRQ AA BICW2 DD PUSHL 
7C CLRD AB BICW3 DE MOVAL 
7C CLRG AC XORW2 DE MOVAF 
7D MOVQ AD XORW3 DF PUSHAL 
7E MOVAQ AE MNEGW DF PUSHAF 
7E MOVAD AF CASEW EO BBS 
7E MOVAG BO MOVW El BBC 
7F PUSHAQ Bl CMPW E2 BBSS 
7F PUSH AD B2 MCOMW E3 BBCS 
7F PUSHAG B3 BITW E4 BBSC 
80 ADDB2 B4 CLRW E5 BBCC 
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Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic 

E6 BBSSI 4AFD CVTGL 7DFD MOVO 
E7 BBCCI 4BFD CVTRGL 7EFD MOVAH 
E8 BLBS 4CFD CVTBG 7EFD MOVAO 
E9 BLBC 4DFD CVTWG 7FFD PUSHAH 
EA FFS 4EFD CVTLG 7FFD PUSHAO 
EB FFC 4FFD ACBG 80FD Reserved 
EC CMPV 50FD MOVG 
ED CMPZV 51FD CMPG 
EE EXTV 52FD MNEGG 
EF EXTZV 53FD TSTG 8FFD Reserved 
FO INSV 54FD EMODG 90FD Reserved 
Fl ACBL 55FD POLYG 
F2 AOBLSS 56FD CVTGH 
F3 AOBLEQ 57FD Reserved 
F4 SOBGEQ 97FD Reserved 
F5 SOBGTR 98FD CVTFH 
F6 CVTLB 99FD CVTFG 
F7 CVTLW 5FFD Reserved 9AFD Reserved 
F8 ASHP 60FD ADDH2 
F9 CVTLP 61FD ADDH3 
FA CALLG 62FD SUBH2 
FB CALLS 63FD SUBH3 9FFD Reserved 
FC XFC 64FD MULH2 AOFD Reserved 
FD Reserved 65FD MULH3 
FE Reserved 66FD DIVH2 
FF Reserved 67FD DIVH3 
OOFD Reserved 68FD CVTHB EFFD Reserved 

69FD CVTHW FOFD Reserved 
6AFD CVTHL 
6BFD CVTRHL 

31FD Reserved 6CFD CVTBH 
32FD CVTDH 6DFD CVTWH F5FD Reserved 
33FD CVTGF 6EFD CVTLH F6FD CVTHF 
34FD Reserved 6FFD ACBH F7FD CVTHD 

70FD MOVH F8FD Reserved 
71FD CMPH 
72FD MNEGH 

3FFD Reserved 73FD TSTH 
40FD ADDG2 74FD EMODH FFFD Reserved 
41FD ADDG3 75FD POLYH OOFF Reserved 
42FD SUBG2 76FD CVTHG 
43FD SUBG3 77FD Reserved 
44FD MULG2 
45FD MULG3 FCFF Reserved 
46FD DIVG2 FDFF BUGL 
47FD DIVG3 7BFD Reserved FEFF BUGW 
48FD CVTGB 7CFD CLRH FFFF Reserved 
49FD CVTGW 7CFD CLRO 
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Aborts, 294, 296 
Absolute addressing, 110-111, 115 
Absolute queues, 204-205 
ACB, 123, 183 
ACBL,125 
Access modes, 274-280, 293 
Access violation fault, 285 
Accumulator, 16-17, 82 
Adapter control block (ADP), 321 
ADD, 71, 72, 183 
Add Byte instructions, 79-80 
Add Compare and Branch (ACB), 

123, 183 
Add instructions 

S/370, 223-224 
ADDL, 38, 40, 73, 79 
ADDL3,38, 
Add Longword (ADDL), 38, 40, 73, 79 
Add microinstruction, 372 
Add One and Branch (AOB), 122 
Add One and Branch Less Than 

(AOBLSS), 96, 122 
ADDP, 179 
.ADDRESS, 45 
Addresses 

branch, 111-112 
physical, 246, 269, 283 
program starting, 15 
virtual, 246, 269 

Addressing 
S/370, 220-221 

Addressing modes, 21, 77-98 
absolute, 110-111, 115 
autodecrement, 91, 114, 125 
autodecrement indexed, 115 
autoincrement, 89, 91, 102-103, 

114, 125-126 
autoincrement deferred, 114 
autoincrement deferred indexed, 

116 
autoincrement indexed, 115 
byte displacement, 114 
byte displacement deferred, 114 
deferred, 84 

deferred displacement mode, 
93-94 

displacement, 91-94, 103-104, 
114 

displacement deferred indexed, 
116 

displacement indexed, 116 
general register, 105-114,215 
immediate, 80-82, 109-110, 115 
indexed, 89, 94-96, 104-105, 

108, 113, 15-116 
indirect, 84-87 
long displacement, 114 
long displacement deferred, 114 
longword-relative, 307 
operand specifier and, 102-104 
program counter, 115 
register, 114, 215 
register auto decrement, 87-89 
register autoincrement, 87 -89, 

102-103 
register deferred, 114 
register deferred indexed, 115 
relative, 105-108, 115 
relative deferred, 108, 115 
short literal, 109-110, 113 
simple, 77 -80 
specifying, 101-102 
word displacement, 114 
word displacement deferred, 114 
word-relative, 307 

Address space, 292 
defined, 12-13 
memory management and, 281 
multiprocessors and, 395 
regions, 285-286 
size of, 282 

Add With Carry (ADWC), 73, 180 
ADP, 321 
ADWC (Add With Carry), 73, 180 
Alphanumeric characters, 29-30 
ALU, 354, 355 
American National Standards 

Institute (ANSI), 29 
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American Standard Code for 
Information Interchange 
(ASCII). 
See ASCII character set 

AND, 164 
Angle brackets «», 48 
AOB, 122 
AOBLEQ,122 
AOBLSS, 96, 122 
AP, 83, 132, 135 
Apostrophe ('), 154 
Architecture 

classes of, 16 -17 
comparative, 218-241 
defined, 1 

Argument concatenation, 154 
Argument list, 133-134 
Argument pointer (AP), 83, 132, 

135 
Arithmetic control unit, 10. See 

also CPU 
Arithmetic instructions, 13, 16 
Arithmetic Shift, 180-181 
Arithmetic traps, 295 
Arrays, 108, 113, 187-188 
.ASCIC, 45, 47, 175 
.ASCID, 45, 47, 60 
.ASCII, 45, 47-48 
ASCII character set, 29-30, 

129-131,174 
conversion to, 142-145 
printing, 169-170 

ASCII constants, 44 
ASCII strings. See also Character 

strings 
counted, 47 
storage of, 47-48 
string descriptors, 47-48 
zero terminated, 47 

.ASCIZ,45 
ASHL,181 
ASHQ, 181 
Assembler, 36-53 

binary operators, 48 
control statements, 49 
defined, 37 
statements, 37, 41 
two-pass, 51-53 

Assembly language 
debugging, 53-65 
instructions, 37 
programs, 3, 65-66 
value of, 36-37 

Assembly process, 51-53 
Associative memory, 333-335 
AST, 326-327 

Asymmetric multiprocessing 
systems, 388-389 

Asynchronous system trap (AST), 
326-327 

At (@) sign, 84 
Autodecrement addressing mode, 

91, 114, 125 
indexed, 115 
register, 87-89, 102-103 

Autoincrement addressing mode, 
89,91,102-103,114,125-126 

deferred, 114 
deferred indexed, 116 
indexed, 115 
register, 87-89 

Backplane interconnect (BI), 22 
Backslash (\), 155 
Backward pointers, 197 
Balance set, 316 
Barrel shifter, 363 
Base 2. See Binary number 

systems 
Base 8. See Octal number systems 
Base 10. See Decimal number 

systems 
Base 16. See Hexadecimal number 

systems 
Base address, 24, 94-96 
Base operand, 165 
Base registers, 268, 270 
Batch processing, 266-299 
BBC, 165, 170 
BBCC,165 
BBCCI, 165,394 
BBCS,165 
BBS,165 
BBSS,165 
BBSSI 165,394 
BCC,73 
BCS,73 
Belady, Les, 312 
Bell, Gordon, 380 
BEQL, 39, 112 
Berkeley RISC, 218 
Berkeley RISC II, 236-241 
BGEQ,39 
BGTR, 39, 73 
BI,22 
BI bus, 22 
Biased values, 26 
BIC, 162-164 
Binary number systems, 3-7 
Binary operators, 48 
Binary trees, 207 -209 
BIS, 162-163 
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BIT, 162-164, 166 
Bit Clear (BIC), 162-164 
Bit fields, 24, 162, 168-171 

variable-length, 168-171 
Bit-manipulation instructions, 162 
BI-to-Unibus adapter, 22 
Bit position, 25, 166, 167 
Bits, 162-168 

Carry, 72-73, 74, 180 
defined, 10 
Modify, 284, 315 
reference, 312 
single-bit instructions, 164-

168 
Valid, 271, 284-285 

Bit Set (BIS), 162-163 
Bit strings, 168 
Bit Test (BIT), 162-164, 166 
BLBC, 164, 165 
BLBS, 164, 165 
BLEQ,39 
.BLKB,45 
.BLKL,45 
.BLKO,45 
.BLKQ,45 
.BLKW, 45, 46 
.BLKx,46 
Block comments, 66 
Blocks, 252 

magnetic tape, 258-259 
Block transfers, 245 
BLSS, 39, 73 
BLSSU,73 
BNEQ, 39, 213 
Bolt Beranek and Newman, Inc., 

393, 397 
Boolean values, 24 
Boot device, 264 
Booting, 264 
Branch address, 111-112 

calculation of, 369-370 
Branch Byte (BRB), 75-77, 118 
Branch Equal (BEQL), 39, 112 
Branch Greater Than (BGTR), 39, 

173 
Branch Greater Than or Equal 

(BGEQ),39 
Branch if Bit Clear (BBC), 165, 

170 
Branch if Bit Clear and Clear Bit 

(BBCC), 165 
Branch if Bit Clear and Clear 

Interlocked (BBCCI), 165 
Branch if Bit Clear and Set Bit 

(BBCS), 165 
Branch if Bit Set (BBS), 165 

Branch if Bit Set and Clear Bit 
(BSC), 165 

Branch if Bit Set and Set Bit 
(BBSS), 165 

Branch if Bit Set and Set 
Interlocked (BBSSI), 165, 394 

Branch if Low Bit Clear (BLBC), 
164, 165 

Branch if Low Bit Set (BLBS), 
164, 165 

Branching, 70-77 
conditional, 118 
delayed, 239 
MicroVAX I, 365, 367-370 
unconditional, 118 

Branch instructions, 15, 142 
Berkeley RISC II, 239 
CDC Cyber Series, 230 
jump instruction and, 118 

Branch Less Than (BLSS), 39 
Branch Less Than or Equal 

(BLEQ),39 
Branch Not Equal (BNEQ), 39, 

213 
Branch on Bit and Modify 

instructions, 164-165 
Branch on Bit Clear (BBC), 170 
Branch on Bit instructions, 

164-165 
Branch on Carry Clear (BCC), 73 
Branch on Carry Set (BCS), 73 
Branch on Low Bit (BLB), 164 
Branch on Low Bit Set (BLBS), 77 
Branch on Overflow Clear (BVC), 

73 
Branch on Overflow Set (BVS), 73 
Branch Subroutine Byte (BSBB), 

142-145 
Branch Subroutine Word (BSBW), 

142-145 
Branch with Byte Displacement 

(BRB), 112 
Branch with Word Displacement 

(BRW), 112 
Branch Word (BRW), 75-77, 118 
BRB,112 
Breakpoints, 56, 59 
Broadcast networks, 263 
BRW, 75-77, 118 
BSBB, 142-145 
BSBW, 142-145 
Buffers 

I/O controllers, 245-246 
queues and, 200-204 

Bus adapters, 22 
Buses, 10 
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CI, 261 
I/O devices and, 18 
in multiprocessor systems, 389, 

392 
notation for, 18 
system, 22 

Butterfly multiprocessor, 393, 
397-398 

BVC,73 
BVS,73 
.BYTE, 44-46 
Byte addressable machines, 12 
Byte-based instructions, 101-102 
Byte displacement addressing 

mode, 103-104, 114 
deferred, 114 

Byte-manipulation instructions, 
162 

Byte offset, 271 
Bytes, 12, 22, 174 

Cache hit, 332 
Cache miss, 332 
Caches, 3, 332-343 

coherency, 398-400 
defined, 332 
design, 336-339 
direct-mapped, 335 
fully associative, 335 
multilevel, 340 
multiprocessor, 392 
organization, 333-335 
set-associative, 336-337 
snoopy, 338 
translation buffer, 344-346 

Called procedure 
overlapping register windows 

and, 240 
Call frame, 138-141, 146 
CALLG, 133-135, 139 
Calling 

procedures, 131-132, 240 
by reference, 133 
subroutines, 131 
by value, 133 

CALLS, 60-61, 63, 134-135, 
138-139, 146, 213, 214 

Caltech, 400 
CANCEL BREAK, 59 
CANCEL TRACE, 59 
CANCEL WATCH, 59 
Carrier Sense Multiple Access with 

Collision Detection 
(CSMA/CD),263 

Carry bit (C), 72-73, 74, 180 
CASE, 120 
Case microstatements, 368 

Case statements, 119-122 
macro for, 156 
Pascal, 120, 121 
VAX, 120-122 

C bit, 72-73, 74, 180 
CDC Cyber Series, 218, 225-231 

branch instructions, 230 
indexing, 228-229 
memory addressing, 225-227 
opcodes,229 

Central processing unit (CPU). See 
CPU 

Chaining, 387 
Change Mode, 277 -278, 329 
Characters, alphanumeric, 29-30 
Character strings, 30,174-178 
Chips, RISCs and, 235-236 
CHME,277 
CHMK,277 
CHMS,277 
CHMU,277 
CI bus, 261 
Circular lists (buffers), 188-191 
CISCs,234 
Clark, Douglas, 213, 216 
Clear (CLR), 71, 141-142, 183 
Clear Longword (CLRL), 38 
Clear Octaword (CLRO), 84 
Clear Quadword (CLRQ), 84 
Closed routines, 150 
Closely coupled systems, 261 
CLR, 71, 141-142, 183 
CLRL,38 
CLRO,84 
CLRQ,84 
Clusters, 315-316 
C.mmp crossbar switch, 392 
CMP, 81, 183 
CMPC3,176 
CMPC5,176 
CMPL, 39, 74 
CMPP,179 
CMPV,168 
CMPZV,168 
COBOL, 178, 180, 186 
Code segment (CS) 

Intel 80386, 232 
Collisions, 263 
Command packet, 260 
Command queue, 260 
Comments, in debugging, 66 
Comparative architectures, 218-241 
Comparative instructions, 14 
Compare (CMPL), 39, 74 
Compare Field (CMPV), 168 
Compare Zero-Extended Field 

(CMPZV), 168 
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Compilers, 36 
Complement-form numbers, 6-8 
Complex instruction set 

computers (CISCs), 234 
Computer structures, 10-33 

central processing unit (CPU), 
13 

classes of instruction 
architectures, 16-17 

describing, 18-20 
input-output system, 17-18 
instruction execution, 13-16 
memory, 10-13 
notation for, 18-20 

Conditional assembly, 157 -159 
Conditional branching, 70-75, 

111-112,118 
Conditional jump instruction, 

238-239 
Condition codes, 139 

Berkeley RISC II, 237 -238 
C (Carry Bit), 72-73, 74, 180 
conditional branch instruction 

and,71-73 
N (Negative Bit), 72 
V (Overflow Bit), 72 
Z (Zero Bit), 72 

Connection Machine, 395-397 
Constants, 44, 80 
Contents, 11,78 
Context, of operand, 89-91, 95, 

129 
Context switching, 279-280 

VMS, 307-310 
Control and Status Register (CSR), 

246, 249-251 
Control blocks, 210-211 
Control Data Corporation (CDC), 

225. See also CDC Cyber 
Series 

Control flow, 70-77 
conditional branch, 70-75 
unconditional branch, 75-77 

Controller, I/O, 244-246 
Controllers notation (K), 19 
Control (PI) region, 285, 287 -290 
Control statements, 14, 37, 49 
Control unit, 356-358 

hardwired,350 
microprogrammed, 350 

Conventions for writing programs, 
65-66 

Convert, 171-174 
Cosmic Cube, 400 
Counted ASCII strings, 47 
CPU, 10, 13 

functions of, 350-351 

I/O devices and, 17 -18 
networks and, 261 
notation for, 18 
RISCs and, 235 
sharing, 267 -268 
VAX 8700, 21-22 

Cray, Seymour, 385 
Cray computers, 385-387 
Crossbar switch, 392 
CSMA/CD, 263 
CVTBL,172 
CVTBW, 172 
CVTLB,172 
CVTLP, 179 
CVTLW, 172 
CVTPL,179 
CVTWB,172 
CVTWL,172 
Cycle stealing, 246 
Cylinder, 253 

Data, 15 
Data buffer registers (DBRs), 246 
Data movement instructions, 13 
Data path, 353-356 

defined,351 
MicroVAX I, 360-367 

Data segments, 232 
Data structures, linked, 186-211, 

191-192 
Data types, 15,23-24, 162-184 

arithmetic, 24-28 
conversion between, 162 
floating point, 25-28 
integers, 171-174 
string, 29-31 
summary of, 31-33 
VAX, 22-32, 162-184 

Debugging, 53-66 
basic program control 

operations, 58-59 
comments in, 66 
depositing, 58 
examining, 57-58 
screen in, 59-60 
setting breakpoints, watchpoints, 

and tracepoints, 59-60 
simple program for, 60-66 
subroutines and, 131 
using, 56-57 

DEC CI, 261 
Decimal number systems, 3-4 

converting to, 28 
Decimal overflow, 136 
Decimal strings, 30-31 

packed, 178-180 
DECL, 38, 71, 81 
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Declarative statements, 37, 41 
Decode microinstruction, 366 
Decrement, 71 
Decrement longword (DECL), 38, 81 
Deferred addressing mode, 84 
Deferred displacement addressing 

mode, 93-94 
Delayed branches, 239 
Delimiters, 44, 47 
Demand paging, 272 
Denning, Peter, 312-313 
Dependencies, 384 
DEPOSIT,58 
Destination, 199 

address, 96 
operand,90 

Device drivers, 246, 317, 321-322 
Device registers, 246 
D_floating, 26 
Digital Equipment Corporation 

(DEC), 1,20 
Digit-position weighting, 4 
Dijkstra's P and V operations, 165 
Direct-access storage, 251 
Direct-mapped cache, 335 
Direct memory access (DMA) I/O, 

245 
Disk blocks, 252 
Disks, 251-258 
Displacement addressing modes, 

91-94, 114 
indexed, 116 
indexed deferred, 116 
instruction encoding in, 

103-104 
Displacements, 205 
Divide (DIV) , 71, 183 
DIVP, 179 
Double-precision arithmetic, 180 
Doubly linked lists, 197 - 204 
Driver process, 322 
DV,136 
Dynamic memory pool, 194 
DZll,249-250 

Echoing, 250 
EDIV, 129-131, 181, 191 
Effective address, 95-96, 105 

calculation of, 77, 107, 225 
Cyber series, 225 
defined, 77 

EMOD,183 
EMUL,180-181 
.END, 49, 61 
.ENDM,151-154 
.ENDR, 154-155 
End statement, 49 

.ENTRY, 49, 60, 136 
Entry, 49, 199 
Entry point, 49 
Error codes, 164 
Error-handling routines, 139 
Ethernet, 263 
EXAMINE,57-58 
EXAMINE/INSTRUCTION,58 
Exceptions, 293, 294-296, 299 

defined, 294 
vs. interrupts, 296 

Exception vectors, 296-297 
Excess 1024 binary exponent, 27 
EXCLUSIVE OR (XOR), 162, 163 
Execution time, 213 
Executive access mode, 274, 

276-277 
Exponent, 25 
Expressions, 48-49 
Extended Divide (EDIV), 129-131, 

181,91 
Extended Multiply (EMUL), 

180-181 
External fragmentation, 270 
Extract Field (EXTV), 168 
Extract Zero-Extended Field 

(EXTZV), 68, 169 
EXTV (Extract Field), 168 
EXTZV (Extract Zero-Extended 

Field), 168, 169 

Fast linkages, 142-145 
Faults, 294, 295-296, 296 
Fetching, 14-15 
FFC (Find First Clear), 168, 170 
F _floating, 26 
FFS (Find First Set), 168, 170 
Fields, 24, 101 
FIFO replacement, 313 
Files, 186 
Find First Clear (FFC), 168, 170 
Find First Set (FFS), 168, 170 
First-in, first-out (FIFO) 

replacement, 313 
Fixed-head disks, 252 
Fixed-space page replacement 

algorithms, 312 
Flags, 24, 166 
Floating-point numbers, 25-28 

arithmetic, 182-184 
CDC Cyber Series and, 225 
constants, 46 
formats, 26-28 
instructions, 162, 182-184 
performance, 213-214 

Flynn, Michael, 378 
Fork, 324, 327 
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Fortran, 119, 213 
arrays in, 187-188 
CALLG,134 
GOTO,121 
loops in, 123 
recursive routines and, 146 

Forward pointers, 197 
FP, 83,132,139,141-142 
Fraction (mantissa), 25 

normalized, 27 
sign of, 26 

Fragmentation 
external, 270 
internal, 270 
memory, 269-270 

Frame pointer (FP), 83, 132, 139, 
141-142 

Free page list, 315 
Fully associated cache, 335 
Fully connected point-to-point 

networks, 61 

Generality, of instruction sets, 218, 
19 

General-purpose registers, 82-84 
program counter as, 105-116 

General register addressing modes, 
113-114 

Generic instructions, 70, 71 
G_floating, 26-28,182-183,190 
Global variables, 50 
GO, 58-59 
GOTO 

FORTRAN, 119, 121 
labels and, 50 

Hardware monitors, 212-213 
Hardwired machine, 350 
Hazards, 384-385 
Head (disk), 192 
Hexadecimal number systems, 3-6 

negative numbers in, 7-8 
H_floating, 26,182-183,190 
High-level languages, 36 
High-speed devices, 251-259 
Hit ratio, 332-333 
Hypercube machines, 398-400 

IBM System 360/370, 218 
Add instructions, 223-224 
addressing, 220-221 
architecture of, 219-224 
instruction formats, 221-224 
registers, 219-220 
vs. VAX architecture, 224 

Immediate addressing mode, 
80-82, 109-110, 115 

Intel 80386, 232 

Imperative statements, 37 
Implementation, defined, 1 
INC, 71 
INCL,38 
Increment (INC), 71 
Increment (INCL), 38 
Indefinite repeat block, 155-156 
Indexed addressing mode, 89, 

94-96, 115-116 
general register, 113 
instruction encoding in, 

104-105 
INDEX, 120-122, 188 
Index registers, 94-96 

S/370, 220 
Indirect addressing mode, 84-87 

multilevel, 85-87 
uses of, 85-86 

Indirect jump, 119 
Input/Output (I/O). See I/O 
Insert Entry into Queue at Head, 

Interlocked (INSQHI), 
205-206 

Insert Entry into Queue at Tail, 
Interlocked (INSQTI), 
205-206 

Insert Field (INSV), 168, 169-170 
INSQHI,205-206 
INSQTI,205-206 
INSQUE, 199-200, 204 
Instruction architectures, 16-17 
Instruction buffers, 347 -348 
Instruction decoding, MicroVAX I, 

365, 366-367, 370-371 
Instruction encoding, 101-116 
Instruction execution, 13-16 

MicroVAX I, 370-372 
time, 213 

Instruction physical address (IPA) 
register, 348 

Instructions, 69-77 
byte-based, 101-102 
components of, 14 
control flow, 70-77 
defined, 13 
generic operations, 70 
VAX, 38-41 
word-based, 101 

Instruction sets 
Berkeley RISC II, 237-238 
CDC Cyber, 225-231 
classes of, 16-17 
design of, 69, 218-219 
generality of, 218, 219 
Intel 80386, 231-234 
orthogonality of, 218-219 
S/370, 221-224 

435 



436 Index 

symmetry of, 219 
VAX, 21, 212-216 

Instruction trace program, 212 
Instruction types, 13-14 
INSV, 168, 169-170 
Integer overflow (IV), 136, 295 
Integers, 24-25 

converting to another data type, 
171-174 

multiple-precision integer 
arithmetic, 180-182 

Integer-to-ASCII conversion, 
142-145, 148-149 

Intel Corporation, 400 
Intel 80386 Microprocessor, 218, 

231-234 
instruction format, 232-234 
registers, 231-232 

Intel iPSC, 400 
Interblock gap, 259 
Interconnection network, 393, 

397-398 
Interlocks, 165-166,205-206 
Internal fragmentation, 270 
Interprocessor communications, 

395 
Interrupt priority levels (IPLs), 

294, 324-327 
Interrupts, 245, 293-294, 299 

vs. exceptions, 296 
software, 297-299 

Interrupt stack, 276, 294, 297 
Interrupt vectors, 296-297 
1/0,10,17-18,243-265,318 

buses, 22 
components, VMS, 321-322 
control, 244-246, 322-324 
database, 319-321, 327 
postprocessing, 322, 324 
processing, 18, 244-246, 

317-327 
types of, 245-246 

I/O devices, 17-18 
drivers, 246 
high-speed, 251-259 
low-speed, 247 - 251 
MSCP, 259-260 
networks, 261-264 
operating systems and, 266-267 
registers, 246 

I/O request packet (IRP), 319 
IPA register, 348 
IPLs, 294, 297, 324-327 
IRP,319 
ISO network, 261 
I-stream Request microinstruction, 

365-366 

IV, 136 

JMP (Jump), 39, 118-119,329, 
367-370 

JSB (Jump to Subroutine), 145 
Jump (JMP), 39, 118-119, 329, 

367-370 
indirect, 119 
MicroVAX 1,367-370 

Jump to Subroutine (JSB), 145 

Kernel access mode, 274, 275, 
276-277 

Kernel stack, 297 

LABEL, 41 
Labels, 50-51 

declaring, 50 
local, 50-51, 138, 152-153 
symbolic, 41, 43-44 

LANs,263 
Last-in, first-out (LIFO), 125 
Latency time, 252 
Layered protection, 274-275 
LDPCTX, 279, 310 
Leading separate decimal strings, 

30 
Least recently used (LRU) scheme, 

312 
Least significant bit (LSB), 164 
Leaves, 207 
Length register, 268 
Levy, Henry, 213 
LIB$GET_INPUT,63 
LIB$PUT_OUTPUT, 60, 129 
Library procedures, 60-63 
LIFO, 125 
Line printers, 247 - 249 
Linked data structures, 186-211 
Linked lists, 191-197 

doubly, 197-204 
singly, 192-194 

Links notation (L), 18 
Listing, 51 
Literals, 80-82 

allocating storage for, 80 
short, 109-110 

Load and store instructions, 238 
Load Process Context (LDPCTX), 

279, 310 
Local area networks (LANs), 263 
Local-echo mode, 250 
Local labels, 50-51, 138, 152-153 
Local variables, 141-142, 145 
Location counter, 42-43 
LOCC, 176 
Locks, 393-394 
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Logical instructions, 13, 162-164 
Long displacement addressing 

mode, 114 
deferred, 114 

Long-haul networks, 263-264 
Long immediate instructions, 237, 

238 
.LONG,44-46 
Longword condition handler 

address, 139 
Longword-relative addressing, 307 
Longwords, 23 
Loops, 122-125 
Loosely coupled systems, 261, 380 
Low-speed devices, 247 -251 
LPII line printer, 247 -248 
LRU scheme, 312 
LSB,164 

Machine language, 36 
.MACRO, 150-154 
Macro expansion argument (ME), 

151 
Macros, 150-159 

body, 151 
complex, 153-154 
conditional assembly, 157-159 
name, 151 

Magnetic disks, 17,251-253 
Magnetic tape, 17,258-259 
Mantissa, 25 
Map, 284 
Masks 

defined, 162-163 
saving, 139 
saving registers and, 135-136 

Mass Storage Control Protocol 
(MSCP),259-260 

Mass storage devices, 251 
MATCHC, 176 
MCOM,71 
MCOML, 164 
MCS, 223 
ME, 151 
Memory, 10-13 

associative, 333-335 
cache, 332-343 
contents, 11 
controller, 22 
cost of, 331-332 
data register, 334 
fragmentation, 2(>9-270 
MicroVAX I, 365-366 
physical, 283 
sharing, 268-273 
structure, 282-283 
units, 10-12 

virtual, 272, 284, 311 
Memory address, 11 

Cyber series, 225-227 
register, 333 

Memory management 
Intel 80386, 232 
summary of concepts, 292-293 
VAX, 281-293 
virtual, 311 
VMS, 313-314 

Memory notation (M), 18 
Memory pool, dynamic, 194 
Memory request microinstruction, 

365, 371 
MFPR,290 
Microarchitecture, 352-356, 

358-372 
alternatives, 373-374 

Microcode, 352 
Microcode control store, 357 
Microcontrol unit, 351-352 
Microinstructions, 352, 356-358 

branching, 367-370 
formats, 373 
register, 357 
MicroVAX I, 364-365 

Microprocessors 
Intel 80386, 231-234 

Microprogram counter, 357 
Microprogramming, 3, 213, 

350-374 
defined, 350, 351 
introduction to, 350-352 

MicroVAX I, 352 
data path, 360-364 
data-path control, 364-367 
instruction execution, 370-372 
microarchitecture, 358-372 

MicroVAX 11,236,346 
Microwords, 351-352 
MIMD computers, 380, 397 

hypercube, 398-400 
MIPS, 216 
MISD computers, 378 
Miss ratio, 332-333 
MNEG, 71, 183 
Modified page list, 315 
Modify bit, 284, 315 
Mod rim byte, 233-234 
Modulus function, 191 
Most significant bit (MSB), 164 
Motorola 68000 series, 218 
MOV, 183 
MOVA,183 
MOVAB, 90 
MOVAL, 38, 85, 90, 129 
MOVAO, 90 
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MOVAW,90 
MOVC3, 174-175 
MOVC5, 175-176 
Move (MOV), 71 
Move Address instructions, 85, 

89-91 
Move Address Longword (MOVAL), 

38, 85, 90, 129 
Move Complemented (MCOM), 71 
Move Complement Longword 

(MCOML), 164 
Move Data microinstruction, 

371-372 
Move From Processor Register 

(MFPR),290 
Move instructions, 173 
Move Longword (MOVL), 38,71, 

85, 126, 127, 174, 213 
Move microinstruction, 371, 372 
Move negative (MNEG), 71, 183 
Move to Processor Register 

(MTPR), 279-280, 290 
Move Zero-Extended Byte to 

Longword (MOVZBL), 91, 
173,174 

Move Zero-Extended instructions, 
i71-174 

Moving-head disks, 252 
MOVL, 38,71,85,126,127,174, 

213 
MOVP, 179 
MOVQ,84 
MOVW, 106-108, 109 
MOVZBL, 91,173,174 
MOVZBW,173 
MOVZWL,173 
MSB,164 
MSCP, 259-260 
MTPR, 279-280, 290 
MUL, 71, 150, 183 
MULP,179 
Multicasting, 263 
Multicomputer systems, 377, 

378-380 
Multidimensional arrays, 187 
Multi-element structures, 186 
Multilevel caches, 340 
Multilevel indirect addressing, 

85-87 
Multiple functional units, 383-385 
Multiple-precision integer 

arithmetic, 180-182 
Multiplexers, 354-356 
Multiply (MUL), 71, 150, 183 
Multiport memory, 392 
Multiprocessors, 3, 387-398 

asymmetric, 388-389 

cache coherence in, 398-400 
defined, 377 
examples of, 395-398 
organization, 389-393 
requirements for, 393-395 
symmetric, 388-389 

Multiprogramming systems, 
266-267 

context switching in, 279 
position independence and, 106 
reentrant programs and, 148 

Multiway branches, 368-369 
MVI,222 

Nanoinstructions, 397 
N bit, 72, 74 
Negative Bit (N), 72 
Negative numbers, 6-8 
Networks, 261-264 
Nibbles, 30-31 
Nodes, 206-207 

networks, 261 
Nonprocessor request (NPR) I/O, 

245 
Nonweighted number systems, 5 
Normalized fraction, 27 
Not-blank operator (NB), 158 
Number sign (-), 80 
Number systems, 3-8 

binary, 3-6 
decimal, 3-4 
hexadecimal, 3-6 
nonweighted, 5 
octal, 3-6 
weighted, 3-4 

Numeric strings, 30-31 
N-way set-associative cache, 336 

Object program, 36, 42 
.OCTAL,45 
Octal number systems, 3-6 
Octawords, 23, 25 
Offset in bytes, 92 
One-address machines, 16-17 
One's complement notation, 6-7 
Opcodes, 14, 101-102, 107 

Berkeley RISC, 218 
CDC Cyber series, 229 
Intel 80386, 218 
S/370, 221 
VAX, 101 

Open routines, 150 
Operand addressing, 77-98, 105, 

113. See also Addressing 
Operand context, 89-91,95 
Operands, 14 

base, 165 
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bit-position, 166 
destination, 90 
position, 165 
S/370,221 
source, 90 

Operand Specifier Decode micro­
instruction, 366-367, 371, 
372 

Operand specifiers, 14, 78, 
101-102, 107 

addressing mode and, 102-104 
Operating systems, 266-267, 

266-299 
memory sharing and, 268-272 
multiprogramming, 266-267 
processor sharing and, 267-268 
service implementation, 

328-329 
structure of, 302-330 

Operation code. See Opcodes 
Orthogonality, of instruction sets, 

218-219 
OTS$CVT_LTB, 63 
OTS$CVT_LTI,61-63 
OTS$CVT_LTZ, 63 
OTS$CVT_TLL,63 
OTS$CVT_TZ_L, 63 
Overflow Bit (V), 72 
Overlapping register windows, 240 

Packed decimal strings, 30-31, 
178-180 

Page faults, 284, 295,311,313,314 
Page Fault Wait queue, 306 
Page frame number (PFN), 283 
Pager, 313, 314 
Page replacement, 311, 312-313 
Pages, 282-283 
Page table entries (PTEs), 

270-271, 272-274 
defined, 284 

Page tables, 270-274, 284-285, 
286,287,292,311 

Paging, 270-272, 310-317 
segmentation and, 271-272 
under VMS, 314-316 

P and V operations (Dijkstra), 165 
Parallelism, 377 -378 

computer classification and, 
378-380 

degrees of, 380 
via pipelining, 381-383 

Parity, 258 
Pascal, 120, 186, 121, 122, 146 
PC. See Program counter 
PCB, 279-280,290,303 

software, 303, 306 
PCBB,279 
PC-relative addressing, 205 
PC-relative instructions, 238 
PDP-11, 20, 21, 182 
PDP-II/55, 332 
Period (.), 42 
PFN,283 
Physical addresses, 246, 269, 272, 

283, 292 
Physical page number, 283 
Pipelined processors, 381-383 
PL/I, 186 
PMS notation, 18-20 
Pointer, 77 
Polling, 245 
POLY, 183-184 
POPL, 127, 154 
POPQ, 153-154 
POPR, 128, 136, 174 
Pop registers, 128 
Positional coefficients, 4 
Position independence, 105-106, 

113 
Position operand, 165 
Postprocessing, 322, 324 
Predecessor, 199 
Prefetching, 239, 347 
Primary bootstrap, 264 
Primary memory, 18 
Prime numbers, routine for 

producing, 167, 170-171 
Printers, line, 247-249 
Privileged instructions, 275 
Privileged processor registers, 

290-292 
Privileges, 274 
PROBER, 278 
Probe Read Accessibility 

(PROBER), 278 
PROBEW,278 
Probe Write Accessibility 

(PROBEW),278 
Procedure calls, 132-133, 142 
Procedures, 131 

argument list and, 133-134 
argument pointer and, 135 
Call instructions and, 132-134, 

138-140, 142 
local variables and, 141-142 
RET instruction and, 138-139 
saving registers and, 135-136 
sort, 137-138 

Process access mode stacks, 
275-276 

Process context switching, 
279-280 
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Process control block (PCB), 
279-280, 303 

Process control block base register 
(PCBB),279 

Processes, 273-274, 280-281 
real-time, 305 

Processor 
access modes, 274-280, 281 
identification, 395 
sharing, 267 -268 
space, 285, 287-290 

Processor node controller (PNC), 
397-398 

Processor notation (P), 18 
Processor status longword (PSL), 

22,72,276-277,294 
Processor status word (PSW), 139 
Process paging. See Paging 
Process scheduling. See 

Scheduling 
Program assembler. See Assembler 
Program counter (PC), 14-16, 142, 

83, 142 
absolute addressing and, 111 
addressing modes, 115 
as general register, 105-107, 113 
immediate mode addressing 

and, 109 
Intel 30386, 232 
relative addressing, 105 -1 08 

Program execution. See 
Instruction execution 

Programmed 1/0,245 
Program (PO) region, 285 
Program (PI) region, 287 -290 
Programs, 13 
Program status word (PSW), 22, 

71-72 
Protection, 274 
Pseudo-operations, 41 
PSL, 22, 72, 276-277, 294 
PSW (program status word), 22, 

71-72, 139 
PTEs, 272-274, 284, 314 
Push Address (PUSHAL), 128-129, 

140 
PUSHAL, 128-129, 140 
PUSHAQ,60 
PUSHAW,129 
PUSHL, 127, 154 
PUSHQ, 153-154 
PUSHR, 128, 136, 174 
Push registers, 128 

QIO, 321, 322 
.QUAD,45 
Quadwords, 23, 25 

Quantum, 302 
Queue header, 197 
Queue I/O (QIO), 321 
Queues 

absolute, 204-205 
doubly linked lists and, 197 - 204 
self-relative, 204-206 

Random-access storage devices, 
251 

Random logic, 350 
Read after write (RAW) hazard, 

384 
Read-only memory (ROM), 264 
Real-time processes, 305 
Receive Buffer Register (RBUF), 

250-251 
Record structures, 91-92, 186 
Recursion, 145-148 
Reduced instruction set 

computers. See RISCs 
Reentrant routines, 148-150 
Reference bit, 312 
Register addressing mode, 114, 

215 
autodecrement, 87-89 
autoincrement, 87-89,102-103 
deferred, 114 
deferred indexed, 115 
instruction encoding in, 102 
Intel 30386, 232 

Register masks, 135-136, 139 
Registers. See also Program 

counter; Index registers 
advantages of, 82-83 
base, 268, 270 
Berkeley RISC 11,237-240 
comparative architecture and, 

218 
defined, 13, 82 
general-purpose, 82-84 
Intel 80386, 231-232 
length, 268 
pop, 128 
for procedure-calling facility, 

132-133 
push, 128 
S/370,219 
saving, 128, 135-138 
special, 83 
as stack pointer, 125 
storage of floating-point data 

types in, 28 
VAX, 24 

Register-to-register (RR) format 
(S/370), 221 

Register-to-storage (RS) format 
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(S/370), 222 
Register windows, Berkeley RISC 

II, 239-240 
Register-with-indexing (RX) 

format (S/370), 221-222 
REI, 278, 279, 294, 329 
Relative addressing, 105 -1 08, 115 

deferred, 108, 115 
Relocation, 269 
Remote-echo mode, 250 
Remove Entry from Oueue at 

Head, Interlocked 
(REMOHI), 205-206 

Remove Entry from Oueue at Tail, 
Interlocked (REMOTI), 
205-206 

REMOHI, 205-206 
REMOTI,205-206 
REMOVE, 199-200,204 
Repeat blocks, 154-157 
.REPT, 154-155 
Rescheduler (VMS), 307 -310 
Reservation table, 381 
Resident set 

size of, 316 
VMS, 314 

Resident set limit, 314 
Resident set list, 314 
Response packet, 260 
Response queue, 260 
RET, 61, 134, 135, 138-139, 142, 

213,214,295 
Return from Exception or 

Interrupt (REI), 278, 279, 
294, 329 

Return from Subroutine (RSB), 
142-145 

Return instruction. See RET 
Ring buffers, 188 
Ring networks, 262-263 
RISC. See Berkeley RISC 
RISCs, 234-240 

Berkeley RISC, 218 
Berkeley RISC II, 236-241 

RK07 disk drive, 253-258 
RK711 disk controller, 253-258 
ROM, 264 
Roots, 207 
Rotate instructions, 181 
ROTL,181 
RSB, 142-145 

Save Process Context (SVPCTX), 
279, 310 

Saving masks, 139 
Saving registers, 135-138 
SBR,287 

.SBTTL,49 
SBWC, 73, 180 
SCB,297 
SCBB,297 
Scheduler, 267 
Scheduling, 302-310 

priority-ordering, 303 
round-robin, 302-303 
VMS, 303-310 

Secondary bootstrap program, 264 
Secondary memory, notation for, 

18 
Sectors, 252 
Seeks, 252 
Segmentation, 232, 269 

paging and, 271-272 
Self-relative queues, 204-206 
Sequencer, 357 
Sequential-access storage devices, 

251 
Set-associative caches, 336-337 
SET BREAK, 59 
Set Interlocked instructions, 166 
SET TRACE, 59, 59-60 
Shared-memory multiprocessors, 

261 
Shifter, 354 
Shift instructions, 181 
Short immediate instructions, 237, 

238 
Short literal addressing, 109-110, 

113 
SHOW BREAK, 59 
SHOW TRACE, 59 
SHOW WATCH, 59 
Sieve of Eratosthenes program, 

167, 170-171 
Sign bits, 6-7 
Signed displacement, 111 
Signed integers 

conditional branch instructions 
and, 73-75 

overflow and, 72 
Sign-magnitude numbers, 6 
SILO, 250 
SIMD computers, 378,380,397 
Simple addressing, 77-80 
Single-bit instructions, 162, 

164-168 
Single-user computers, 267 
Singly linked lists, 192-194 
SIRR,299 
SISD computers, 378 
SISR, 297, 299 
16-bit addresses, 12-13 
Size, 24 
SKPC, 176 
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Slave processors, 18 
SLR,287 
Snoopy caches, 338 
SOBGEQ, 89, 122 
SOBGTR, 89, 122 
Software interrupt priority levels 

(IPLs), 324-327 
Software interrupt request register 

(SIRR), 299, 307 
Software interrupts, 297 - 299 
Software interrupt summary 

register (SISR), 297, 299 
Software process control block 

(PCB), 303, 306 
Sort procedure, 137-138 
Source operand, 90 
Source program, 36, 51-53 
SP. See Stack pointer 
SPA, 139-140 
Spin locks, 327 
SPT,287 
Stack-based instruction sets, 16 
Stack pointer (SP), 16, 83, 

125-128, 141-142 
defined, 125 
Intel 30386, 232 
register, 125, 276 

Stack pointer alignment (SPA), 
139-140 

Stacks, 16, 125-131 
defined, 125 
local variables on, 141-142 
popping an entry from, 125 
privileged, 275 
process access mode, 275-276 
pushing an item onto, 125 

Stack segment (SS), 232 
Stall, 366 
Star networks, 261, 263 
Starting address, 15 
States, 274 
Status information, 71 
Status words, 13 
STEP, 58-59 
Stepping, 56 
Storage, of strings, 46-48 
Storage allocation, 44-46 

called procedure and, 132 
directives for, 44-46 

Storage immediate (SI) format 
(S/370), 222 

Storage-to-storage (SS) format 
(S/370), 223 

Store-and-forward network, 261 
Store Multiple (STM) (S/370), 222 
String descriptors, 47-48 

String instructions, 162, 174-178 
packed decimal, 178 -180 

Strings 
character, 30 
decimal, 30-31 
storing, 46-48 

Structures, 186 
SUB, 71, 183 
SUBL, 38, 141 
SUBP,179 
Subroutines, 131-141 

calling, 131, 132-133 
debugging and, 131 
fast-linkages, 142-145 
invoking, 142-145 
recursive, 145-148 
reentrant, 148-150 

Subtitle directive, 49 
Subtract (SUB), 71, 183 
Subtract (SUBL), 38, 141 
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