
In this report: 

Environments and 
Platforms .. . .............. .... -104 

Common User Access 
(CUA) Architecture ...... -107 

CPI: The Common 
Programming Interface -111 

AD/Cycle Extensions 
to CPI ........................... -121 

Common 
Communications 
Support (CCS) 
Architecture ................. -122 

SystemView as an 
Extension of SAA 
C&SM ........................... -126 

OfficeVision, lmagePlus, 
and Other SAA Common 
Applications ................. -127 

SAA, OSI, and AIX ...... -129 

Compatibility ....... ....... .. -130 

DATAPRO Datapro Reports on 723-101 
Technology Reports 

PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

Synopsis 

Editor's Note 
SAA development intensifies every year. 
The introduction ofSystem/390 in Septem
ber 1990 upgraded all mainframe environ
ments and added many new SAA 
elements-only one month after expansion 
of OS/400 midrange SAA offerings. In 
March 1991, APPN networking was desig
nated a key CCS element, with provisions 
for OS/2 EE as a powerful Network Node. 
Significant architectural extensions include 
the Print Manager Interface, the Resource 
Recovery Interface, Distributed Relational 
Data Access (DRDA), and the System View 
management architecture. 

Report Highlights 
SAA is IBM's most ambitious architectural 
undertaking, because it attempts to orga
nize many types of compatibility and then 
implement full compliance in six leading 
operating environments (MVS/TSO, MVS/ 
CICS, MVS/IMS TM, VM/CMS, OS/400, 
and OS/2 EE) and partial compliance in 
several others (VSE, AIX, etc.). In order for 
programs to be portable and distributable, 
each environment must have correspond
ing languages and services while upgrading 
or creating an enormous number of soft
ware products. 

There are now two areas of intense activity: 

• Expansion of the SAA model through 
auxiliary architectures. 

This report was prepared exclusively for 
Datapro by Elinor Gebremedhin, an indepen
dent data communications consultant and free
lance writer. Ms. Gebremedhin possesses a 
wide background in IBM midrange and main
frame systems; her current areas of focus in
clude IBM and IBM-compatible systems, SAA, 
distributed processing, and communications 
software. 

• A constant flow of new products that sup
ply missing elements of the basic architec
ture. 

This report provides an introduction to 
SAA. It also provides an overall picture of 
the expansion of the SAA model and tracks 
how the various products supplied in each 
environment reflect the level of overall de
velopment. Understanding what SAA is 
meant to do in the final analysis is not so 
difficult. Understanding how it stacks up 
right now relative to its goals will probably 
never be simple, because of the number of 
programs, standards, and architectures it is 
controlling. 

Analysis 

What Drives SAA? 
SAA is advertised as IBM's developing 
standard for architecting solutions to com
patibility problems in its major environ
ments. User interest is driven by two 
factors-the need to develop new types of 
processing (cooperative and distributed) 
and the need for solutions to problems cre
ated by mergers of new companies or his
torically independent operating divisions, 
or other situations which lead to the need 
for interaction between incompatible envi
ronments. In addition, as IBM develops 
SAA, and users begin to use it in a variety of 
contexts, new needs appear. 

Processing Goals 
Initially, SAA development must pass 
through four processes in order to reach its 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

JANUARY 1992 



723-102 
Technology Reports 

goals. Currently, IBM is focused at architecting the third 
level, implementing the second level, and putting the fin
ishing touches to the first level. These levels are fundamen
tally hierarchical because the solution to one type of pro
cessing problem/user need has been an essential 
foundation for work on the next level. The four types of 
processes involved are as follows. 

Porting of Standalone Programs: Porting programs in
volves moving them from one IBM environment to an
other or converting to a new version of an operating sys
tem that includes substantive changes affecting the 
application programs. A communications subsystem need 
not be involved. When the user base involved has been 
large enough, the time-honored solution has been assis
tance by special converters, usually developed by third
party vendors. The most recent example involves the up
grading of System/36 applications for the AS/400. The 
SAA solution is to standardize high-level language compil
ers, data formats, and supporting services to the extent 
that the program can be recompiled and run. Where the 
fundamental system architecture prevents this solution 
from being reached, differences are carefully documented 
so that users can tailor individual applications. 

Cooperative Processing: Cooperative programs split func
tions between a front-end workstation and a back-end pro
cessor. The front end usually supports an end-user inter
face that supports graphics, other ease-of-use features, and 
perhaps some of the processing. The rest of the applica
tion, plus some traditional server functions, runs in the 
host. This differs from pure client/server computing, 
where the client does nearly all of the application process
ing and the server usually performs application
independent services such as communications, data stor
age and management, and backup/restore functions. 

Since the front-end and back-end processors are likely 
to be different architectures, SAA portability solutions 
have something to offer. In addition, front-end worksta
tions can be attached to hosts through LAN s as well as 
direct connections, so SAA definitions of the relationship 
and management of LANs become important. IBM sees 
cooperative processing, which is viable now, as the trend 
of the 1990s. Most of the programs providing services for 
the Applications Development/Cycle (AD/Cycle) architec
ture are themselves cooperative, requiring a PS/2 worksta
tion to interface to the host or server. 

Distributed Databases: Databases are distributed when an 
end user can access data automatically from one of several 
possible locations in a network, without the end user 
knowing which database served the request. There are a 
number of levels of definition for this capability, such as 
bringing database segments to the end user to work on lo
cally, or doing the work on the remote system and bringing 
the results to the end user. The requisite database logic has 
become available for mainframes and OS/2 EE systems, 
but not the OS/400. The state of the art in IBM SNA main
frame peer-to-peer networking imposes restrictions on 
flexibility, integrity, and performance. Ironically, 
midrange APPN networks are much more suited to sup
port of distributed databases, but only PS/2s with the new 
N etworking/2 and distributed database software can take 
full advantage at this point in time. 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAAJ 

Datapro Reports on 
PC & LAN Communications 

Distributed Processing: Distributed processing provides 
for locating (and relocating) programs or program seg
ments on different systems transparently, so that the end 
user need not know where the program is or whether its 
location has changed. Distributed processing is a step up 
from the distribution of data, because it implies program 
portability; a system for tracking and managing the pro
grams or program segments; and, as with distributed data
bases, dynamic addressing and rerouting in the underlying 
communications subsystem. In addition to the networking 
issues in common with data distribution, it has become 
clear that distributed processing will not work well without 
a higher level of system and network automation than is 
currently available. 

What has made users so interested in the newer forms 
of processing? Why not stick with the tried and true? Some 
factors driving this development are forward looking, like 
the interest in better sharing of data and in supplying more 
timely analyses from more reliable sources. The more pro
cessors linked together to swap programs and data, the 
more likely it is that processors from multiple architec
tures will participate. Nonproprietary architectures like 
OSI or UNIX become more attractive, even if individual 
implementations are not perfectly compatible with one an
other. This is especially true for the more than half of 
IBM's user base that lives outside of the United States. 

These factors tend to affect new users or existing users 
of smaller systems which have a small enough base that a 
conversion is not a financial disaster. 

Immediate Problems 
The drive toward better program portability and sub
system compatibility arises not only from changes in the 
types of applications being developed. One of the most 
common reasons is an immediate practical need to merge 
systems from two incompatible networks as the result of a 
company merger. This can affect larger systems because 
the computers inherited from the merged company may be 
highly incompatible, yet need to interact with one another. 

Companies that ordinarily would not want to pay the 
cost of converting find themselves forced to do so in order 
to run an integrated business. In addition, governments 
the world over are interested in networking a variety of 
system types, talking to one another across national 
boundaries, and swapping data at a variety oflevels. Many 
of them, including the United States government, have set
tled on OSI networking rather than favor one vendor over 
another. As of August 1990, the U.S. government has stip
ulated that new networking acquisitions must conform to 
OSI specifications. 

This decision is undoubtedly part of the reason IBM has 
been driven into incorporating the upper levels of OSI into 
SAA. 

Specific Architectural Goals 
The SAA architecture defines specific characteristics and 
international standards to be used for SAA elements such 
as high-level language compilers; their supporting service 
programs and databases; supporting communications net
work and data flows; development and testing tools; end
user interface formats; and all kinds of management sys
tems, production cycles, program development cycles, and 
networking. These are arranged in a core hierarchy consist
ing of Common User Access (CUA) standards, Common 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

Figure 1. 
SAA Flows toward SNA 

IBM 
Systems Application 
Architecture (SAA) 

723-103 
Technology Reports 

Common 
User 
Appllcatlon 
Interfaces: 

End-User CUA Interface 

Common 
Programming 
Interface 
(CPI) 
Services: 

SAA OfficeVlslon Application Core; (SAA Language Compilers and Libraries) 

Local 

Flat 
Fiie 
l/O 

Request 

Common 
Communications 
Support (CCS): 

DOM 
Distributed 

Data 
Management 

SOL VO 
Request 
(Query, 

Repository) 

Remote 

002,SCL/DS 
Distribution 
Facilities 

0:. l'*O,••."•"oJ'l'*"o"''•'•}"O,•o'' 

CPl-C 

SNADS 
Distribution 
Services 

Presentation 
and/or 
Dialog 

Request 

Data Streams: 
3270 Display, 
IPDS Printer, 

DIAIDCA Document 
OCA and llA Objects 

Local 

LU6.2 Advanced Program-to-Program Communications (APPC) 

EN and LEN Networking (Compatible with SNA and APPN) 
... ·""· ...... ,.: ... 

Data Unk Level: Token-Ring TCP-IP 

Office Vision applications typically call on the full range of CPI and CCS services and even SNA networking facilities not yet part of 
SAA. 

Programming Interface (CPI) standards, Common Com
munications Support (CCS) standards, National Language 
standards, and adjunct architectures such as AD/Cycle. 
Figure 1 shows how a comprehensive communications ap
plication like IBM's OfficeVision can involve most or all 
of the core standards. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

SAA promises that eventually every SAA core element 
will be available for every SAA environment. Naturally, the 
user does not need to buy it all to create an SAA-compliant 
program. Users need to be careful to implement the appro
priate corresponding subsets on each system in order to set 
the stage for the desired levels of program portability and 
distributability. 

JANUARY 1992 



723-104 
Technology Reports 

SAA works because elements (languages, services, etc.) 
on all systems have firm protocol boundaries to separate 
and/or translate the system's unique characteristics into 
SAA functions and characteristics. The end users, applica
tions programmers, and to some extent systems program
mers are presented with high-level system-independent in
terfaces. They will view the same types of screens, create 
programs using the same .instruction set, call on the same 
supporting functions, and invoke printing in the same way. 
They deal with the same "shell," no matter which of the 
SAA computing environments are being used. 

Ultimately, all SAA elements will have the correspond
ing Application Programming Interfaces (AP Is) in each en
vironment and open, detailed source code descriptions al
lowing development of portable third-party or end-user 
programs. 

IBM as a Multivendor 
At this point, it is probably obvious that even the basic 
SAA core impacts an enormous number of program prod
ucts. All the existing Cobol, Fortran, PUI, and other SAA 
compilers need to be adjusted; new compilers need to be 
added; database software regulated; and communications 
software developed. What put IBM into the position where 
it was willing to take on these tasks? 

IBM may have been the vendor that introduced the idea 
of upward compatibility with System/360 and System/ 
370, but when the minicomputer market gathered impetus 
in the mid-1970s, IBM found that it did not compete well 
for certain types of applications. IBM management felt 
that the company had gotten too big, so it set up several 
independent divisions to compete with each other as a way 
to compete with other vendors like Digital. System/36 and 
System/38 were the result, as well as Series/1 and several 
other less successful products. 

Later, for different reasons, IBM PCs were engineered 
from off-the-shelf components. The result: development 
money was spread too thin. There were so many product 
lines that IBM looked like a vendor that had gone through 
a series of mergers. The amalgamation of System/36, Sys
tem/38, 8100, and 5100 product lines into the AS/400 
helped, but it was not good enough to satisfy all the com
patibility requirements of IBM customers and IBM itself. 
SAA was introduced on March 17, 1987, a year before the 
AS/400 was announced. 

The company that needs SAA the most may be IBM. 
Once the foundations exist, software development will be 
more cost effective because of the ability to port programs 
from one system to another. 

New Needs 
Ideally, the use of SAA high-level language compilers 
would mean that the same source code could be compiled 
on different systems and run on each of them without need 
for further alteration. This would mean that once distrib
uted networking was implemented, changes in work load 
or in system or network availability could result in an au
tomatic relocation of that program to a system that was 
SAA compatible, but not necessarily compatible at the ma
chine level. 

In actuality, as we will see later on, there are a number 
of ways in which SAA compilers, at their present level of 
development, can cause unexpected or unreliable results 
when the same instructions are recompiled on another sys
tem. SAA documentation openly describes these problems 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

so that users can adjust applications accordingly. Further
more, compatibility can be compromised if a program uses 
interlanguage calls or calls on a service in one environment 
that are not supported in another. Thus, SAA drives IBM 
not only to implement the same programs in each environ
ment but also to upgrade those programs as new ways are 
developed to smooth out fundamental system incompati
bilities. 

As IBM users try these system and processing relation
ships, new needs develop, driving IBM toward new SAA 
adjunct architectures and supporting program products. 
Two examples of reactive announcements include: 

• AConnS Application Connectivity Services, for support
ing connection of cooperative workstations. 

• System View, a management architecture combining sys
tem and network management under one umbrella. 

As we investigate SAA in more depth, the reasons for these 
new needs will become more apparent. 

Environments and Platforms 
The core of SAA development revolves around IBM's 
commitment to implement a full set of standard functions 
or elements in each of the designated SAA software envi
ronments. 

Regardless of whether it works, the concept itself 
should be simple enough to understand. As it turns out, 
however, grasping how it is to be implemented is compli
cated by four factors. First, as key environments have 
evolved, IBM names for the latest version have not always 
been the best for distinguishing an entity from its forebears 
and associates. Second, IBM and its user base have 
evolved a veritable alphabet soup of acronyms that are rec
ognized by insiders in each environment as the real names, 
but are unintelligible to outsiders. Third, users sometimes 
begin to use historically specific acronyms loosely or ge
nerically to indicate several later versions. Fourth, the dis
tinction between element and environment is not really 
apparent for CICS, which is treated as primary under MYS 
but as subordinate elsewhere. 

Table 1 untangles these identification problems by pre
senting the evolution of the formal names of the SAA
related mainframe operating systems, the acronyms that 
users recognize as their real names, and the most likely 
alternate designations. 

The alternates are either designated by IBM (as in 
MYS/SP Versions 1, 2, 3, and 4) or have come to be used in 
a loose generic sense to include more than one operating 
system version (as in VM/CMS). In most cases, under
standing the unique identity of a particular version is best 
grasped by associating it with its primary platform, rather 
than all the different platforms it runs on. 

The esoteric quality of the language ofIBM'ers is largely 
due to their gravitation toward the use of acronyms, to the 
point where recognition of the original name of a piece of 
software is practically lost (MYS is a case in point). This is 
not only a problem for outsiders: people thoroughly famil
iar with the language of their own IBM environment will 
have problems with another-a situation that should im
prove as a side effect of SAA! The changing usages of acro
nyms in each is also a problem area, making the 
"historical" data of Table 1 surprisingly important to the 
understanding of current usage. A midrange user steeped 
in the relationships between Systems/36, /38, and the AS/ 
400 may hear a mainframe user complaining today about 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

723-105 

Technology Reports 

Table 1. The Evolution of IBM Mainframe Environment Designations 

Key Alternate Primary Other 
Acronym Full Name Usage* Platforms Platforms** 

Most Current Generics 

MVS Multiple Virtual System OS All All 
VM Virtual Machine VM/CMS All All 
VSE Virtual System Extended DOS All All 

DOS and VSE Environments 

DOS Disk Operating System System/360 System/370 
DOS/VS DOS/Virtual System DOS System/370 3030 
DOS/VSE DOS/Virtual System Extended VSE 4300 3030, 3080, 

3090,9370 
VSE/SP VSE/System Product VSE 9370, 4381 3080, 3090, 
VSE/ESA VSE/Enterprise Systems VSE 9000 3090, 4381 

Architecture 

OS and MVS Environments 

OS Operating System System/360 System/370 
OS/VS OS/Virtual Storage OS System/370 
svs Single Virtual Storage System/370 
MVS Multiple Virtual Storage System/370 3030 
MVS/SE MVS/System Extended MVS/370 3030 3080 
MVS/SP MVS/System Product MVS 3080, 4300 3090 
MVS/370 MVS/370 Architecture MVS/SP 3080, 4300 3090 

Version 1 (& 3030) 
(& MVS/SE) 

MVS/XA MVS/Extended Addressing MVS/SP 3080, 4381 3090, 3080, 
Version 2 9000 

MVS/ESA MVS/Enterprise Systems MVS/SP 3090, 4381 3080,9000 
Architecture Version 3 

MVS/ESA SP MVS/ESA System Product MVS/SP ES/9000; 3080, 3090, 
Version 4 3090-9000T 4381 

VM/CMS Environments 

VM/SP VM/System Product VM 4300 9370, 3080, 
3090,9000 

VM/IS VM/lntegrated System VM 9370 4300, 3080, 
3090, 9000 

HPO High Performance Option 4381 3080, 3090, 
9000 

VM/XA SP VM/Extended Addressing VM/XA 3080 4381, 3090, 
System Product 9000 

VM/ESA VM/Enterprise Systems VM 9000 4381,3090 
Architecture 

*Not exhaustive; only the most likely alternative is listed. 
•*"Other Platforms" excludes guest operating systems running under VM. 

having to do a DOS-to-OS conversion. The midrange user 
thinks this is referencing something about old System/360 
systems, or perhaps even PCs, when actually what is going 
on is a change from VSE to MVS/ESA on a 4381 or 3090. 

Environments 
The SAA environments that are currently earmarked for 
complete development are as follows. 

TSO/E: This is the Time Sharing Option/Extended sub
system, running in conjunction with the MVS/ESA SP op
erating system. TSO/E is a straightforward environment 
comparable to the CMS component ofVM. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

CICS/ESA: This is the Customer Information Communi
cation System/BSA transaction processing subsystem, run
ning in conjunction with MVS/ESA SP. The earlier CICS/ 
MYS version is also supported. 

IMS/ESA TM· The Information Management System/ 
ESA Transaction Manager, running in conjunction with 
the MVS/ESA SP, is now a standalone product that can 
access either DB2 or IMS databases. Its predecessor, 
IMS/VS DC (Data Communications), required that the 
IMS database be present. Both are currently supported as 
SAA environments. The close association of DC and 
IMS/VS leads one to believe that IMS itself is an SAA stan
dard, but it is not. 

JANUARY 1992 



723-106 
Technology Reports 

Table 2. SAA Transaction Processing 

MVS/ESA 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

Host 
Environment 

MVS/ESA 
TSO/E 

MVS/ESA 
CICS/ESA IMB/VS TM VM/CMS OS/400 OS/2 EE VSE/CICS 

SAA Support 
Interactive 
Applications 

Transaction 
Processing (2) 

Cooperative 
Workstations: 

OS/2 EE 
CICS OS/2 

Resource Recovery 
Interface (RRI) 

Extended Recovery 
Facilities (XRF) 

•=Supported. 
P =Partial support. 
- =Not supported yet. 

p 

(1) 

(1) 

(1) VM/CMS itself is an interactive timesharing system. However, there are non-SAA VM versions of CICS that can turn VM into a 
transaction processing environment. SAA ignores them, so this table does too. 
(2) TPF2, IBM's most powerful transaction processing program, is not included because its participation in SAA is minimal at 
present. 

Acronyms: 
GIGS-Customer Information Control System. 
CMS-Conversational Monitor System. 
EE-Extended Edition. 
ESA-Enterprise Systems Architecture. 
IMS-Information Management System. 
MVS-Multiple Virtual Storage. 
TM-Transaction Manager. 
TSO/E-Time Sharing Option/Extended. 
VM-Virtual Machine. 
VS-Virtual Storage. 
VSE-Virtual Storage Extended. 

VM/CMS: The Virtual Machine/Conversational Monitor 
System, in its VM/ESA version, has replaced the capabili
ties of both VM/SP and VM/XA. IBM has designated VM/ 
CMS as the front-running SAA VM environment for SAA 
but continues to support VM/SP. VM/XA has been 
dropped. VM systems are not only interactive timesharing 
systems in their own right but are also capable of running 
other operating systems under them, each in separate par
titions, but with shared 1/0 and memory facilities. VM/SP 
must operate in conjunction with HPO on many processor 
models and all multiprocessor systems. 

OS/400: The Operating System/400 multipurpose 
midrange operating system is closely tied to AS/400 hard
ware and firmware and is unlikely to admit additional 
non-SAA environments. 

OS/2 EE: This refers to the Operating System/2 Extended 
Edition for PS/2 programmable workstations. Other PS/2 
environments, such as OS/2 SE and DOS, are not included 
as full SAA environments even though they can run some 
SAA software elements. 

In addition, two environments have been specially ear
marked for development as distributed systems, with par
tial implementation of SAA interfaces. They are: 

VSEIESA CICS: This is the current DOS version of CICS 
running under Virtual System Extended/BSA, which can 
develop and exchange programs with CICS systerris run
ning under VM and OS/2 EE as well as MYS. 

JANUARY 1992 

AIX- AIX refers to the Advanced Interactive Executive, 
particularly the version on the RISC/6000 series. AIX will 
eventually have a CICS interface, as well as the current set 
of lower level SAA elements. Because of the widespread 
acceptance of UNIX as a nonproprietary architecture, 
AIX is discussed together with OSI at the end of this re
port. 

When SAA was announced on March 17, 1987, it was 
targeted at specific core environments; the existing main
frame MVS/XA, TSO/E, and VM/CMS (VM/SP or VM/ 
XA) operating environments; the then newly introduced 
PS/2 systems when running under OS/2 Extended Edition; 
and the anticipated "Silverlake" follow-on to the S/3X 
minicomputers. Within the next four years, SAA evolved 
together with dramatic changes at all levels except for the 
new OS/2. Key events were as follows. 

• March 1987: MVS/XA TSO, VM/CMS (VM/SP, VM/ 
XA), and OS/2 EE were designated as SAA environ
ments. 

• October 1987: IMS/VS DC and CICS/MVS environ
ments were added, also to run under MVS/XA. 

• March 1988: MVS/ESA was introduced as an upgrade to 
MVS/XA and was designated as the SAA operating sys
tem for the TSOIE, CICS/MVS, and IMS/VS DC envi
ronments. 

• June 1988: The AS/400 (Silverlake) product line was in
troduced as an SAA environment, with many SAA ele
ments bundled into the OS/400 operating system. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

• September 1988: A Statement of Direction was issued 
formulating an SAA-compatible DOS/VSE CICS subset 
of the full SAA facilities. VSE SAA will be capable of 
generating programs that can be ported into CICS/MVS 
environments. 

• October 1988: A restructured IMS/ESA Version 3 with a 
separate Transaction Manager {TM) replaced IMS/VS 
with its separate Data Communications (DC) manager. 

• February 1990: A statement of intent to increase interop
erability between SAA and RISC/6000 AIX included de
tailed schedules on specific languages, services, and com
munications facilities. 

• September 1990: System/390 (the 9000 series) was intro
duced, together with new MVS/ESA SP (MYS/SP Ver
sion 4), VM/ESA, and VSE/ESA operating systems; a 
new CICS/ESA; and new releases of TSO/E and IMS/ 
ESA TM. The new names reflect a significant capability 
to exploit 9000 series features, whereas the new releases 
reflect fewer changes. 

MVS 
The MVS/ESA operating systems support three SAA envi
ronments. Although TSO/E, CICS/ESA, and IMS/ESA 
TM all have some capability to communicate across 
boundaries, each has its own work flow control that is log
ically independent of the others, governing its own lan
guages, file structures, applications programs, and user in
terfaces. Both CICS and the Transaction Manager for IMS 
set up transaction processing environments, while TSO is a 
timesharing system more suited for program development. 
(See Table 2). 

These environments are like operating systems loosely 
nested within an operating system. If MYS is running on a 
processor with a single instruction stream, it must, in fact, 
continuously interleave the execution of code from each of 
these environments as if they were multilevel application 
programs. (Multiprocessor systems with PR/SM partition
ing can provide more integrity and better performance.) 

Although they may all have some things in common, 
such as access to the DB2 database, each of the interfaces 
still has individual and unique characteristics in spite of 
SAA. 

VSE 
In the last few years, the DOS/VSE user base has success
fully resisted IBM's attempts to "stabilize" the environ
ment and channel upward growth into MYS. Although 
VSE is not a full SAA system, IBM has formally declared it 
the primary environment for distributed SAA transaction 
processing on small and medium systems. The VSE archi
tecture was close enough to MYS and VM to support ongo
ing development from fallout programs during the lean 
years, and now the VSE user base is simply too large to be 
abandoned. 

A CICS-oriented subset of SAA programming inter
faces and communications services is supported under 
VSE. The communications interface defines an LU6.2-
based protocol and related services for a consistent way of 
writing workstation-to-CICS programs, using the OS/2 EE 
as a front end. CICS programs can use the CPIC interface. 
This will allow creation of applications that conform to the 
Common User Access standards and that can be easily 
ported to other CICS environments. 

© 1992 McGraw-Hill. Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

Product Platforms 

723-107 
Technology Reports 

Supporting platforms are separated out into the primary 
product line(s) that the environment was designed for and 
other product lines with which it is upward and downward 
compatible. The 4381, originally just another member of 
the 4300 series, evolved into a separate series in its own 
right in the middle of the market as the introduction of the 
9370 at the low end and 3080 at the high end. 

The six fully implemented SAA software environments 
are associated with four hardware architectures. 

PS/2: This workstation platform supports the OS/2 EE en
vironment, a key environment for developing cooperative 
function-spEtting applications using SAA. Although PS/2 
is a workstation primarily for single-user client applica
tions, cooperative front ends, or server functions on a 
LAN, it implements all SAA host elements and has the ca
pability to operate as an APPN network node. 

AS/400: This midrange platform supports the OS/400 en
vironment. 

System/390: The System/390 includes the 9000 and 3090/ 
9000T series. The mainframe architecture introduced in 
September 1970 replaced all previous product lines (ex
cept low-end 9370 models) because of its 100-fold range of 
power. 

System/370: The System/370 comprises the 3080, 3090, 
4381, and 9370 series. Although System/390 is now the 
primary mainframe platform, SAA still supports older 
platforms loosely grouped as belonging to the System/370 
architecture and its Extended Addressing and Enterprise 
System Architecture extensions. 

Common User Access (CUA) 
Architecture 
CUA defines a set of three types of user interfaces for SAA 
applications to be implemented regardless of differences in 
operating environment and hardware. It also gives guide
lines on how to create and maintain the models it specifies. 
The intended result is that end users moving from one sys
tem to another will need little training as to how keyboards 
work or what screen formats represent as they encounter 
programs on different systems. The "look" and "feel" is 
the same. 

The complete CUA specification does a lot more than 
provide guidelines on how the user terminal interface 
should look and feel, however. Manuals describe a frame
work for the development of consistent applications as 
well as consistent ways for applications to use windows, 
icons, direct screen manipulation, action bar choices, pull
down menus, dialog boxes, and color palettes. 

The tools and interfaces that IBM supplies are only the 
beginning of developing and maintaining consistent CUA 
interfaces within an organization. Much of the CUA's 
characteristics will necessarily be tailored to the users' own 
environments. The keys to success, according to IBM, are 
establishing: 

• Common Presentations: What users see should always 
be consistent as to visual appearance, and wherever pos
sible, location. 

JANUARY 1992 



723-108 
Technology Reports 

IBM 
Systems Application 
Architecture (SAAJ 

Datapro Reports on 
PC & LAN Communications 

Table 3. System Programs Used for CUA Development 

Type and Level of 
CUA Development 
CUA Capability 

NPT Terminal 
PWS Workstation 
Texts, menus, prompts 
Full graphics, icons 
Text, graphics for NPT 
Complex procedures 

System Program for 
CUA Development 
VM/CMS ISPF 3.2 

CSP/AD 3.3 
MVS TSO/E ISPF 3.2 

CSP/AD 3.3 
MVS IMS/VS MFS 
MVS CICS/MVS BMS 

CSP/AD 3.3 
OS/400 DDS 
OS/2 EE Dialog Manager 

Presentation Manager 
EASEL 
CSP/AD 3.3 

Entry 
Model 

Graphical 
Model 

• Common Interactions: When interaction techniques as
sociated with images and components are consistently 
supported, users develop an "ease of use" familiarity 
with them. 

• Common Process Sequences: Maintaining consistent 
object-action interaction sequences trains users' expecta
tions as to how the computer will respond. It is impor
tant that new applications remain compatible with the 
conceptual framework. 

• Common Actions: Certain predefined actions have been 
given specific meanings by IBM. For example, selecting 
the "OK" bar tells the computer the user is done with a 
current task and wants to continue with the application. 

Observations are also supplied as to the nature of the user 
interaction process and which interactions are best suited 
to CUA standards. For example, IBM finds it desirable not 
to focus on the mechanics of operations and observes that 
when users have to cancel what they are doing in order to 
do something else, they are "in a mode." Modes distract 
from the ability to conceptualize the application itself, just 
as complex interfaces do. IBM suggests providing good vi
sual cues when it is impossible to avoid being in a mode, 
making the interface forgiving and responsive, and allow
ing the users to control the dialog as much as possible. 

CUA Evolution 
CUA is probably the only element of SAA that is univer
sally recognized as a requirement for every single SAA ap
plication. It has undergone three levels of development. 

1. 1987: The original guidelines provided models for ba
sic nonprogrammable terminals (NPTs) as well as for 
programmable workstations (PWSs) that might or 
might not include graphics capabilities. 

2. 1989: An expanded definition, which included icon
based processing and models for integrating CUA in 
the workplace, was introduced at the same time as Of
fice Vision. 

JANUARY 1992 

Graphical; Workplace On 
Text Subset Extension NPT 

On 
PWS 

3. 1990: A key role for the SAA PWS was clarified as that 
of a front end in cooperative processing applications; 
host-controlled NPTs were not go~ng to support com
plex graphics capabilities. Programs providing sup
port for program development of full graphics CU As 
were going to be provided for OS/2 EE-based worksta
tions, but not for host systems. 

End-User Interface Definition 
Specified screen layouts, menu presentations and selection 
techniques, keyboard layouts, and display options for SAA 
programmable workstations (PWSs) resemble those pro
vided as standard features for OS/2 EE, while those for 
nonprogrammable terminals (NPTs) have evolved from 
3270-type terminal keyboards. This means that in order to 
be SAA compliant, previously existing software including 
IBM's own system software will have to either convert the 
element of the program which sets up and controls user 
interfaces or supply two interface options, the old and the 
new. IBM has been changing the interfaces to its own sys
tem software for several years now. 

The announcements in 1987 and 1989 defined three ba
sic CUA architectural models, plus one subset, as follows. 

Entry Model: Entry-level panels use the menus and 
prompts, familiar to keyboard operators working on data 
entry-intensive applications. This model, which is suitable 
for both NPTs and PWSs, is recommended for DOS-based 
PCs. 

Graphical Model: Graphical-level panels make use of 
PWS windowing, graphics, and icon processing, so they are 
oriented toward OS/2 workstations. Also defined are ac
tion bars, pull-down menus, pop-up windows, checkboxes, 
and other graphical cues. DOS-based PCs can make lim
ited use of this model if care is exercised not to impose on 
PC memory limitations. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on IBM 
PC & LAN Communications Systems Application 

Architecture (SAA) 

Figure 2. 
Basic CUA Panel Format with Two Implementations 

Panel Body Area 

Mail 
Documents 
File cabinets 
Address Book 
Calendars 
Telephone 
Spreadsheet 
Data Tables 
Business Graphics 
ReJ!OrlS 
Project Managment 

9Mtm8 
Spadshe1t D111 Tabl• llulftnGrapta 

The implementation at the center shows a basic alphanu
meric panel, while the bottom one is a graphical panel with 
icons. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-109 
Technology Reports 

Graphical Model Text Subset: This interface is an NPT 
version that closely follows the graphical interface, al
though it cannot be precisely identical. Graphics may be 
limited or nonexistent, with textual phrases substituting 
for the diagrams and icons presented by the fully devel
oped Graphical Model interface. It includes action bars, 
pull-down menus, and pop-up windows. Since processing 
is done on the host system, this model presents no diffi
culty for DOS-based PCs emulating NPTs. 

Workplace Extension: Workplace extends the Graphical 
Model from a simple panel description to a model for inte
grating a variety of PWS applications. The relationship of 
the processes behind the icons for mail baskets, file cabi
nets, telephones, printers, and more is described. Each is 
treated as a separate service application (i.e., separate 
"object") that all end-user applications can invoke by 
means of the icon. Workplace is meant to be used with a 
mouse, so objects on the screen can be directly manipu
lated. OfficeVision/2 implements this interface. 

CUA provides for both standardization and flexibility. 
As shown in Figure 2, the basic format can be manipulated 
to evoke the same interaction patterns between the user 
and the screen, despite the significant differences in the 
look of text-oriented and graphical screen designs. Screen 
designers can make use of windowing capabilities as well 
as graphics on both programmable and nonprogrammable 
systems, as shown in Figure 3. 

Icons and Workplace Procedures 
Icon input was originally introduced on personal comput
ers like Apple's Macintosh so nontechnical users could cut 
down on the need for keyboard activation of simple local
ized functions. The user activates a cursor or mouse posi
tioned over the icon that indicates a desired function. The 
procedure is easy to grasp intuitively. On the other hand, 
some users who are already adept with the use of key
boards complain that icons slow them down. 

The use of an icon-oriented shell (or its equivalent) can 
invoke a considerable amount of behind-the-scenes activ
ity that in itself invites the use of PWSs. If the workstation 
is tied into a distributed system and a function is activated, 
there is no need to know where the processing of the func
tion occurred (unless the knowledge is desired). 

Generating and maintaining the icons themselves, pro
cessing the mouse input, and routing it to the proper sub
routines are usually controlled by PWS code. There is no 
technical reason a traditional mainframe-controlled 
graphics terminal could not be coupled with mainframe
or mini-based icon processing. 

However, it is less practical, not only because of the 
dropping price of general-purpose PWSs and the better re
sponse time achieved by having the graphics processing 
logic localized, but also because this configuration reduces 
the impact on host system performance caused by multi
programming, contention for resources, and time
consuming 1/0 activity. 

The use of the icon pictures themselves is not impera
tive to an icon-oriented system. Not all terminals need to 
use them. There is no reason why the word "printer" can
not be substituted for the iconographic picture of a printer, 
without disrupting any other procedure. The software that 
allows transparent, cooperative processing would work the 
same way, regardless of whether processes are activated by 
word symbols or picture symbols. It is the extra shell of 

JANUARY 1992 



723-110 
Technology Reports 

Figure 3. 
CUA Panels with Windows 

The top panel shows a typical 
CUA panel with windows for a 
programmable terminal, 
while the bottom panel is 
more typical of a nonpro
grammable terminal. 

Window Tll1e Bar 

Action Bar 

Pul~Down 

Panel Body 

Pop.Up Window 

Entry Field 

Radio Buttons 
(Slngfe.Cholc& 
Selection Field) 

Checkboxes 
(Multiple-Choice 
Selection Field) 

Scroll Bar 

Function Key Area 

Mnemonic Entry Field 

Action Bar 

Pull-Down 

Panel Body 

Pop-Up Window 

Entry Field 

Single-Choice Selection Field 

Multiple-Choice Selection Field 

Function Key Area 

code, separating the end user from the process, that really 
matters-not whether the shell generates words or pic
tures. 

Tools for CUA Creation and Control 
The primary tools used for creation and control of SAA 
CUA panels for NPTs and PWSs are the OS/2 EE Dialog 
Manager and Presentation Manager. Mainframes use the 
SAA-compatible Interactive System Productivity Facility 
(ISPF) program in MVS/TSO and VM/CMS environments 
and internal program modules in CICS and IMS/ESA TP 
environments for dialog management functions. 

The OS/2 EE Dialog Manager on OS/2 EE-based sys
tems and its mainframe counterparts are all interactive 
productivity tools for developing procedural programs 
that in turn create and control the CUA for a particular 
application. As Table 3 shows, these tools are suitable for 
developing Entry model CUA interfaces for NPTs and 
PWSs, or for Graphic subsets for NPTs, but are not suit
able for developing full graphics and workplace-level inter
faces. 

Although the ubiquitous mainframe Graphical Data 
Display Manager (GDDM) program is capable of handling 

JANUARY 1992 

IBM Datapro Reports on 
Systems Application 
Architecture (SAA) 

PC & LAN Communications 

File Edit <_?pUons Ex.!' H!lp 

1.~ F2 

Novem 2. Move F6 

Memo 3. Qelete F9 

From: Esc • Cancel 

Subject: Apex 

Paul, 

The contract will 
over the detail 
with engineering, 

File Edit 

1.~opy 

Novem 2. !!love 

Memo 
3. Qeiete 

Page Header Options 

Header text • • • 
Use Headers On Emphasis 
@ All pages 181 Bold 

0 All but 1st 181 Underilned 

~ ( Esc-cancei) ( F1 .Help ) 

<.?Ptlons Exit H~lp 

F2 

F6 

F9 

From: F12·Cancel 
Page Header Options 

Subject: Apex Header text • • • 
Use Headers On Emphasis 

Paul, 1 1. All pages .,L1.Bold - ..L 2. Underilned The contract will 2. All but 1st 
over the detail 
with engineering, 

Enter F1 •Help F12-cancal 

F1 •Help F3• Exit F12. Cancel 

'°' fr 
t 

-

complex graphics and is accessible to all SAA environ
ments, IBM has decided not to enhance its support pro
gram any further. Current industry trends toward cooper
ative processing and the off-loading of graphics processing 
have undoubtedly influenced the decision to restrict pro
gram development for these types of interfaces to the PWS 
on which they will eventually run. On OS/2 EE systems, 
IBM supplies not only the OS/2 EE Presentation Manager 
but also EASEL for support of program development. EA
SEL can be used to assist in the development of any type of 
CUA interface and was designed specifically to change ex
isting applications with 3270 NPT interfaces into cooper
ative applications with PWS interfaces. 

Furthermore, both EASEL and the Presentation Man
ager can handle event-driven graphics, not just procedural 
programming. 

The Presentation Manager: The Presentation Manager is 
a CPI service program that provides for an event-driven 
object action process sequence, where an object is pro
vided to be acted upon, rather than entering an action or 
mode and then determining which one of a universe of 
objects'that action or mode will affect. The focus of atten
tion is first upon any object that can be manipulated as a 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

single unit, and then next on the ways that users can mod
ify, manipulate, or further create objects. 

The Dialog Manager: The Dialog Manager is a productiv
ity tool with a Dialog Tag Language (DTL) for program
mers familiar with procedural techniques. It is not as well 
suited to developing graphical interfaces as the various 
types of SAA and non-SAA Presentation Managers, but it 
typically deals with checkboxes, list boxes, entry fields, 
and radio buttons in its panels. It supports three types of 
windows-primary windows, modal (pop-up) windows, 
and help windows-with the correct types of borders and 
components automatically supplied as circumstances dic
tate. 

EASEL: EASEL is an application enabler that assists in 
developing cooperative front ends for existing programs 
that previously used 3270 NPTs, as well as for new pro
grams. It is suitable for producing any of the CUA models, 
including Workplace. IBM has exclusive marketing rights 
to this program, which was developed in conjunction with 
American Software. 

CUA Problem Areas 
The first and foremost problem with CUA is that the user 
is the one who has to implement it. IBM can engineer its 
language compilers, services, communications sub
systems, and so forth so that the user receives them unwit
tingly, but CUA has to be consciously engineered in keep
ing with SAA guidelines. 

A second problem lies not so much in the interface it
self, but in the timing of its introduction. If it had been 
here years ago, the weight of IBM's reputation in the mar
ket would have resulted in rapid acceptance of a de facto 
standard. Now there are a number of standards; IBM itself 
has maintained two major standards for screen and key
board layouts for mainframe (3270 type) and midrange 

. (5250 type) systems. 

CUA Future Trends 
Inevitably, CUA will evolve, but CUA standards will prob
ably be more stable than CCS or CPI from the outset. IBM 
has stated that the company sees immediate requirements 
for the following: 

• User ability to tailor the mouse interface, so that a trade
off can be made between the simplicity of a single mouse 
button and the increased function available with multi
ple buttons. 

• User ability to tailor the keyboard interface. 

• Use of alternative input, such as touch. 

• Use of context menus, which pop up next to icons. 

• Augmentation of the action bar as screens increase in 
size and resolution. 

• Additional techniques for dealing with database applica
tions. 

CPI: The Common Programming 
Interface 
CPI currently specifies standards for the Application Gen
erator (CSP/AE), C, Cobol, Fortran, PL/l, Procedures 
(REXX), and RPG language compilers or interpreters, as 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-111 
Technology Reports 

well as for interfaces to LU6.2-based CPI Communica
tions (CPIC), Database (SQL and DRDA), Dialog, Dis
tributed Data Management (DDM), Presentation, Print
Manager, Query, Repository, and Resource Recovery 
services. This set of programs is the core of SAA, since they 
are the tools that are used to produce portable or distribut
able programs. 

Standardization needs for the CPI include not only the 
elements of the compilers in and of themselves but also 
standardization of interlanguage communications and 
calls to supporting services. Supplying a comparable com
piler for each environment is the first wave of compatibil
ity (see Table 4). 

Supplying comparable services in each environment is 
the second wave of compatibility (see Table 5). Creating a 
matching web of interlanguage calls is the third wave, the 
one that is least developed, as Table 6 shows. 

The need to create a matching set of interlanguage calls 
on each system in order to remain compatible is what 
makes CPI like a single composite language interface, or a 
"shell." The SAA architecture emphasizes that programs 
should be modular and makes use of freestanding services 
with callable interfaces whenever possible. 

When a program has imbedded calls to external facili
ties, making it portable means that there is a lot more to 
consider than just whether the source code written by the 
programmer will recompile on the new system. The exter
nal facility called upon must be there, too, and must re
spond in the same way when the recompiled calls are exe
cuted. For the same reasons, when IBM develops the 
capability to mix two languages in the same program, the 
same mix must be available for all SAA systems. At 
present, none of the current languages can call on every 
one of the services in every one of the environments. 

CIPI as a Key to Distributed Processing 
Distributed processing is, in effect, a type of online porta
bility. Programs or program segments must be capable of 
residing on more than one system. The difference is in the 
delivery system, which is usually a communications sys
tem that delivers updated changes to programs and data at 
regular intervals. 

The trend toward distributed processing involves two 
elements: distribution of programs and distribution of 
data. In theory, the programs and data should be every
where alike. In order to make this as close to reality as 
possible, a number of checks and balances need to be 
added to otherwise inviolate systems, and methods of effi
cient distribution, evaluation of possible communications 
overload, identification of possibly invalid versions of pro
grams/data/transactions, and other unique procedures 
need to be developed. 

CPI Language Compilers 
In addition to the venerable Cobol and Fortran compilers, 
IBM included the young but fast-growing "C" compiler, 
the REXX procedures language, and the CSP Application 
Generator in the initial suite of SAA languages. C comple
mented the older compilers because of its all-around ver
satility, its capacity for bit manipulation, and its useful
ness in developing system software. Despite the fact that 
REXX' previous history was limited to VM environments, 
IBM included it because it was so useful in its own niche. 
RPG, which had been previously used only at the 
midrange level, was added later in response to needs of 

JANUARY 1992 



723-112 
Technology Reports 

midrange systems to port their many RPG programs as 
they moved up. PUl was the last general-purpose com
piler to be added. 

c 
"C" is a high-level language originally intended to simplify 
systems programming over multiple environments. As a 
result, it combines the ease of control, data structuring, 
and manipulation associated with high-level languages, 
with access to low-level, machine-related objects. The lan
guage is popular with engineers and scientists as well as 
systems programmers and is associated with the highly 
portable UNIX environments. 

Standards for C continue to develop, but ANSI docu
mentation is sufficient for a vendor to issue "standard 
versions" reasonably worthy of their names. The IBM ver
sions of C closely follow the ANSI standard as described in 
the CBEMS X3Jl 1 document dated April 1985. Since this 
standard differs in some respects from the versions imple
mented in most UNIX systems-and from the original de
scription in "The C Programming Language" by B. Ker
nighan and D. Richie-IBM has also supplied a compiler 
option to select the desired set of conversions/coercions. 

The Level 1 IBM mainframe C compilers that were in
troduced in August 1986 were SAA precursors classified as 
"Program Offerings," which is to say they were supported 
at a lower level than are IBM's "Program Products." SAA 
Level 2 C/370 compilers, introduced in September 1988, 
are upward compatible with Level 1. In February 1991, 
C/370 Version 2 added a global optimizer; features for 
user tailoring; and calls to CSP, QMF, and the ESSL librar
ies (in addition to those previously available). The VM/ 
CMS compiler and the MYS compiler both produce the 
same object code, so each compiler can, in effect, be used 
as a cross-compiler for the other environment. C programs 
can dynamically link with supported MYS environments, 
such as IMS and TSO, and can directly invoke routines 
like GDDM. Since IBM itself is using C to write some of 
the SAA system software, the language is likely to be im
portant for other SAA developers. 

The OS/2 C/2 compiler, shipped first-quarter 1988, has 
been formally designated as an SAA compiler. C/2 has 
some searching/sorting and some string operations not 
supported on mainframe C. 

Cobol 
As today's primary high-level, business-oriented language, 
Cobol is a mature, well-known language. Even though it 
was first implemented in the early 1960s, its fairly English
like syntax has kept it popular during its evolution and 
expansion. The version of Cobol implemented for SAA 
systems is based largely on IBM's understanding of the 
ANSI Standard X3.23-l 985 Intermediate Level, with four 
optional modules omitted (Report Writer, Communica
tion, Debug, and Segmentation). Some elements of the 
ANSI 1985 High Level have been included, and IBM has 
added a few enhancements of its own, such as the COMP-4 
and COMP-4 data items. 

The SAA Cobol compilers and their related libraries are 
VS Cobol II Release 2 and later for MVS/ESA and VM/ 
CMS (upward compatible from OSNS Cobol}, Cobol/400 
for the OS/400, and Cobol/2 for OS/2 (upward compatible 
with PC Cobol Versions 1 and 2). Cobol/2 can run under 
PC-DOS 3.30 as well as under OS/2. 

The Cobol compilers present more compatibility differ
ences than do the other SAA general-purpose language pro
cessors. Although the mainframe VS Cobol II compiler 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAAJ 

Datapro Reports on 
PC & LAN Communications 

runs under either MVS/ESA or VM/CMS, the two envi
ronments handle some operations differently, even though 
the OP code is the same. OS/2 Cobol 2 is 
based on the same standard but implements a greater num
ber of features than the mainframe versions, even though 
its syntax for some operations is described by IBM as a 
subset of prior mainframe and PC versions. In addition, 
some differences are bound to occur in operations that are 
affected by machine-dependent characteristics, such as ba
sic code type, internal representation of numeric opera
tors, and others. For instance, native collating sequences, 
and any procedures which rely on them, use ASCII code 
sequences under OS/2 and EBCDIC under MYS and VM. 

SAA manuals imply that many of the differences be
tween Cobol/2 and VS Cobol II will disappear in the fu
ture; the trend will be to extend mainframe capabilities to 
match the greater flexibility and added features available 
in Cobol/2. For instance, every SAA Cobol program must 
have an Identification division; however, the Environ
ment, Data, and Procedure divisions are all optional under 
OS/2, but required under MYS and VM. 

One area of difference that illustrates the problems that 
can occur due to inherent differences in architecture, 
rather than the availability of specific instructions, con
cerns handling of numeric operands. Internal representa
tions of numeric operands are system dependent by na
ture, since they involve approximations of decimal 
numbers by the computer's binary arithmetic facility, 
which varies in level of precision, etc., from system to sys
tem. Since intermediate results can thus be implementa
tion specific, it is better to use Add, Subtract, Multiply, and 
Divide operators to achieve comparable results, rather 
than Compute, because the latter is a more complex state
ment and hence more likely to compromise program port
ability. Also, comparisons between numeric and nonnu
meric operands may not be portable. 

Despite these differences and, of course, depending on 
the nature of the application, the detailed documentation 
for each of the Cobol environments means that program
mers can create highly portable applications. They must 
use care, however, to keep to the "lowest common 
denominator" of the instruction and, where system
dependent code must be used, to modularize the program 
so that the code is easy to convert. 

CSP/ AE Application Generators (but Not CSP/ AD, 
EZ-PREP, or EZ-RUN) 
The SAA Application Generator is based on the existihg 
Cross System Product (CSP) sets, a product line that has 
developed over 30XX and 43XX mainframes, 81 OOs, 
and/or PCs for almost two decades. The announcement of 
IBM's AD/Cycle architecture in September 1989 increased 
CSP's importance. 

Previously, it was not considered a crucial building 
block, due to its limited flexibility, slow development pat
tern, and only moderate popularity ( 4000 CSP/ AD devel
opment systems installed in all possible environments). 
With AD/Cycle, however, the Application Generator be
came a key CPI component for joining together IBM and 
non-IBM programs that will control application develop
ment processes. As soon as IBM interfaces CSP to the re
pository product (which is planned for the near future), 
CSP will become a central alternative to third-generation 
languages like Cobol, Fortran, or C for SAA mainframe 
program development within the AD/Cycle architecture. 

© 1992 McGraw-Hiii, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

Table 4. SAA CPI High-Level Languages 

Host MVS/ESA MVS/ESA 
Environment TSO/E CICS/ESA 
c 
Latest Version 2.1.0 2.1.0 
Introduced 2/91 2/91 
Available 5/91 5/91 

Cobol 
Latest Version 3.2.0 3.2.0 
Introduced 9/90 9/90 
Available 12/90 12/90 

CSP/AE Generator 
Latest Version 3.3.0 3.3.0 
Introduced 9/90 9/90 
Available 9/90 12/90 

Fortran 
Latest Version 2.5.0 
Introduced 9/90 
Available 12/90 

PL/I 
Latest Version 3.1.0 2.3.0 
Introduced 1990 9/90 
Available 1990 12/90 

REXX Procedures 
Latest Version Level 2 
Introduced 1990 
Available 1990 

RPG 
Latest Version 1.1.0 1.1.0 
Introduced 2/91 2/91 
Available 5/91 5/91 

- =Not available. 

MVS/ESA VM/ OS/ 
IMS/VS TM CMS 400 

2.1.0 2.1.0 1.3.0 
2/91 2/91 8/90 
5/91 5/91 9/90 

3.2.0 3.2.0 1.3.0 
9/90 9/90 8/90 
12/90 12/90 9/90 

3.3.0 3.3.0 1.3.0 
9/90 9/90 8/90 
12/90 12/90 9/90 

2.5.0 1.3.0 
9/90 8/90 
3/91 9/90 

3.1.0 3.1.0 1.3.0 
9/90 9/90 8/90 
12/90 12/90 9/90 

Level 2 Level 2 
1990 8/90 
1990 9/90 

1.1.0 1.1.0 1.3.0 
2/91 2/91 8/90 
5/91 5/91 9/90 

OS/2 
EE 

INA 
INA 
INA 

1.2.0 
1988 
3/90 

1.3 
9/90 
12/90 

1.2.0 

3/90 

1.3.0 
10/90 
3/91 

1.3.0 
10/90 
3/91 

non-SAA 

723-113 
Technology Reports 

VSE/ 
CICS 

2.1.0 
2/91 
5/91 

3.2.0 
9/90 
10/90 

3.3.0 
9/90 
10/90 

1.6.0 
9/90 
10/90 

3. 1.0-Positional notation for Version 3 Release 1 Modification Level 0. 

Acronyms: 
GIGS-Customer Information Control System. 
Cobol-Common Business Oriented Language. 
CSP/AE-Cross System Product/Application Execution. 
CMS-Conversational Monitor System. 
CPI-Common Programming Interface. 
EE-Extended Edition. 
ESA-Enterprise Systems Architecture. 
Fortran-Formula Translation Language. 
IMS/VS-Information Management System. 
/NA-Information not available. 

These changes imply increases in IBM's CSP developmen
tal activity that have already occurred and will continue to 
occur over the next few years. 

CSP base programs combine productivity aids, a 
unique high-level language, and a cross-assembler to allow 
applications to be developed more rapidly or to be devel
oped by less technically oriented programmers or end us
ers. Critics claim that CSP sophistication has not quite 
reached the level where it could be called a "true" fourth
generation language, but that is clearly the direction of its 
development. CSP design is intended to cloak system
dependent characteristics, both in terms of the process of 
programming itself and the program created by the pro
cess. Program developers and users are buffered from the 
complexities of system and data management through the 
use of interactive, dialog-oriented procedures and syntax 
checking, fill-in-the-blank menus, prompting, tutorials, 
and a help facility. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

MVS-Multiple Virtual Storage. 
PL/I-Programming Language I. 
REXX-Restructured Extended Executive. 
RPG-Report Generator. 
SAA-Systems Application Architecture. 
TM-Transaction Manager. 
TSO/E-Time Sharing Option/Extended. 
VM-Virtual Machine. 
VS-Virtual Storage. 
VSE-Virtua/ Storage Extended. 

CSP comes in two forms: an "AD" Application Devel
opment program and an "AE" Application Execution run
time system to provide what is needed to allow AD
developed programs to run. All CSP application 
development (AD) environments are designed to create 
one portable program that will run on a variety of applica
tion execution (AE) environments with a minimum of ad
justments. 

It is the CSP/AE environments which are the SAA stan
dard, not CSP/AD. That is to say, CSP/AE versions will be 
provided for runtime control in all SAA environments, but 
not all SAA systems are guaranteed to support CSP/AD 
development systems. Obviously, the existence of 
CSP/ AD is implied-or there would not be anything to 
run-but SAA itself does not architect this element. On 
the other hand, AD/Cycle does include CSP/AD. 

The EZ-PREP and EZ-RUN programs for DOS and 
OS/2 environments have a number of differences from 
their CSP/ AE equivalents on other systems. Among them 

JANUARY 1992 



723-114 
Technology Reports 

Table 5. SAA CPI Service Interfaces 

Host MVS/ESA MVS/ESA MVS/ESA 

IBM 
Systems Application 
Architecture (SAA) 

VM/ESA 

Datapro Reports on 
PC & LAN Communications 

Environment TSO/E CICS/ESA IMS/VS TM CMS OS/400 OS/2 EE VSE/CICS 
CPl-C Communications 

Earliest Version 2.3.0 3.2.0 3.2.0 
Introduced 9/90 9/90 9/90 
Available 3/91 6/91 6/91 
Alternatives LU6.2 LU6.2 LU6.2 

Database-SOL 
SQL Program DB2 DB2 DB2 
Latest Version 3.3.0 3.3.0 3.3.0 
DRDA Version 3.3.0 3.3.0 3.3.0 
Introduced 9/90 9/90 9/90 
Available 10/90 10/90 10/90 

Dialog Manager 
Primary Program ISPF BMS TM MFS 
Latest Version 3.2.0 3.2.0 3.2.0 
Introduced 9/90 9/90 9/90 
Available 12/90 12/90 12/90 
Alternatives ISPF 

Presentation Manager 
Primary Program 
Latest Version 
Introduced 
Available 
Alternatives GDDM GDDM GDDM 

PrintManager 
Latest Version 1.1.0 
Introduced 9/90 
Available 6/91 

Query Manager 
Primary Program QMF QMF 
Latest Version 3.1.0 3.1.0 
Introduced 9/90 9/90 
Available 12/90 12/90 

Repository Manager 
Latest Version 1.2.0 Via TSO 
Introduced 9/90 9/90 
Available 3/91 3/91 

Resource Recovery 
Primary Program IMSTM 
Latest Version 3.2.0 
Introduced 9/90 
Available 6/91 

- =Not applicable. 
3.1.0-Positional notation for Version 3 Release 1 Modification Level 0. 

Acronyms: 
BMS-Basic Mapping Support. 
CICS-Customer Information Control System. 
CMS-Conversational Monitor System. 
CPI-Common Programming Interface. 
CPl-C-Common Programming Interface for Communications. 
D. Mgr.-Dialog Manager. 
DB Mgr. -Database Manager. 
DB2-Database2. 
DRDA-Distributed Relational Data Access. 
EE-Extended Edition. 
ESA-Enterprise Systems Architecture. 
GDDM-Graphical Data Display Manager. 
IMS-Information Management System. 

are differences in the way SQL-related calls, file changes, 
and file recovery are handled. Other differences involve 
calls to non-CSP programs, limitations in map variable 

JANUARY 1992 

1.1.0 
9/90 
12/90 
LU6.2 

SQL/DS 
3.3.0 
3.3.0 
9/90 
6/91 

ISPF 
3.2.0 
9/90 
12/90 

GDDM 

1.1.0 
9/90 
6/91 

QMF 
3.1.0 
9/90 
12/90 

SQL/DS 
3.3.0 
9/90 
6/91 

SOD 

LU6.2 

SQL/400 
1.3.0 
SOD 
8/90 
9/90 

SOD 

P. Mgr. 

1.3.0 
8/90 
9/90 

Q. Mgr. 
1.3.0 
8/90 
9/90 

SOD 

LU6.2 

DB Mgr. 
1.3.0 
1.3.0 
10/90 
3/91 

D. Mgr. 
1.3.0 
10/90 
3/91 

P. Mgr. 
1.3.0 
10/90 
3/91 
EASEL 

Q. Mgr. 
1.3.0 
10/90 
3/91 

1.2.0 
9/90 
3/91 

LU6.2 

SQL/DS 
3.3.0 

9/90 
10/90 

BMS 
3.2.0 
9/90 
10/90 

GDDM 

LU6.2-Logical Unit 6.2 protocol (base of CPl-C). 
MVS-Multiple Virtual Storage. 
P. Mgr.-Presentation Manager. 
Q. Mgr.-Query Manager. 
QMF-Query Management Facility. 
SAA-Systems Application Architecture. 
SOD-Statement of Direction for Future Support. 
SOL/OS-Structured Query Language/Data System. 
TM-Transaction Manager. 
TSO/E-Time Sharing Option/Extended. 
VM-Virtual Machine. 
VS-Virtual Storage. 
VSE-Virtual Storage Extended. 

field edit routines, and reversed order of storage of binary 
fields (yielding different results on the PC than in other 
environments). 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

The introduction ofOS/400 Version 1Release2, which 
predated AD/Cycle by a few months, had also provided for 
an integrated CSP/AE module capable of running pro
grams developed by a mainframe CSP/AD Version 2 Re
lease 2 Modification Level 1 or later program. This is the 
first time CSP has generated programs for midrange sys
tems based on S/3X architectures. 

The AD/Cycle standard extended architected CSP sup
port to include the CSP/AD 3.3.0 or later application gen
erators. The needs of AD/Cycle dictate that the CSP prod
uct set must evolve into true 4GLs that can generate 
running code from a minimum of information, supplied in 
English-like interactive conversations. 

CSP/AD Version 3 Release 3, released in the same 
month as AD/Cycle, includes two important features-an 
external source format (ESF) facility first introduced at the 
3.2.0 level and a programmable workstation (PWS) access 
facility. Both are required ifthe application generator is to 
be used with AD/Cycle. 

CSP/ESF provides a standardized way of handling ex
ternal source formats (ESFs), which allow interfacing of 
CASE tools, importing of application tools from other ven
dors, external object manipulation, and better library and 
configuration management. However, CSP still lags be
hind other CPI components in the accommodations pro
v!ded for interfacing with other SAA languages and ser
vices. 

The CSP/PWS workstation feature (ship date June 
1990) is particularly significant, since it allows CSP itself 
to run as a cooperative processing system, in a limited way. 
Previously, only interactions with nonprogrammable ter
minals (NPTs) or workstations that emulated them were 
accommodated. 

Fortran 
Fortran is to the scientific and technical user what Cobol is 
to the business user-a language that is equally venerable 
and important for its sphere of operations. This language 
was originally developed by IBM. The current SAA com
pilers conform to the specifications of the ANSI X3.9-
1978 (Fortran '77) standard and the ISO 1539-1980 speci
fication but include some enhancements to these 
standards. For instance, all the IBM SAA versions are ca
pable of using names up to 31 characters long. The SAA 
mainframe compiler is VS Fortran Version 2 (5668-806), 
which runs under both MVS/ESA and VM/CMS. 

Compared with the number of problems a Cobol pro
grammer faces, at least initially, there are relatively few 
differences between OS/2 and mainframe Fortran imple
mentations to cause SAA compatibility problems. The 
most noticeable difference is that the Include statement, an 
extension available to Cobol/2 users, is not implemented 
for mainframe environments. For VS Fortran Version 2, 
users are advised to use the OCSTATUS execution option, 
while OS/2 users are advised not to use the /I compiler 
option, in order to maintain SAA conformance. 

Since IBM frames are coded in EBCDIC, whereas PCs 
use ASCII, difficulties arise with any instruction that deals 
directly with system codes. For example, external files with 
system-dependent names can be referred to))y some in
structions. Unformatted records with values in system
dependent forms are not converted to internal forms when 
read or written, but formatted records coded in EBCDIC 
or ASCII (as appropriate) are converted to internal values 
when written or read. The basic system code also affects 
collating sequences. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-115 
Technology Reports 

One highly significant set of differences to Fortran pro
grammers lies in the range of values and level of precision 
possible for approximations of real numbers, due to the 
different ways real (floating point) arithmetic can be im
plemented. For example, the range of values for main
frame VS Fortran II includes 10 ( - 78) to 10 ( + 7 5), 0, and 
-10 (- 78) to -10 ( + 75) (bracketed numbers represent ex
ponents). These limits remain the same for single
precision (four bytes) and double-precision (eight bytes) 
numbers. The Fortran/2 range of values varies depending 
on whether single- or double-precision types are used and 
whether the value is normalized or denormalized. Normal
ized single-precision numbers include 1.2 x 10 ( -38) to 3.4 
x 10 (+38), 0, and -1.2 x 10 (-38) to -3.4 x 10 (+38), 
whereas normalized double-precision numbers include 
2.23 x 10 ( -308) to 1.79 x 10 ( + 308), 0, and -2.23 x 10 
( - 308) to -2.23 x 10 ( + 308). The OS/2 single-precision 
range is half that of the mainframe, but the double
precision range is four times greater. Fortran/2, moreover, 
provides positive infinity, negative infinity, and NaN (not 
a number), data types not supported under VS Fortran IL 

The differences in the two compilers are interesting 
since one would expect the mainframe compiler to be the 
more flexible and the more powerful. Of course, main
frames used for scientific and engineering work can access 
special vector-processing options and extended Fortran 
capabilities, but these facilities are not found in SAA. Us
ers who employ OS/2 systems for Fortran program devel
opment should avoid double-precision arithmetic if the 
program is to run on a mainframe. 

IBM has dutifully released a Fortran compiler for the 
AS/400 series, in order to keep the SAA "on all systems" 
promise, but it is unlikely to be widely used because the 
internal architecture of the AS/400 does not lend itself to 
technical applications. IBM has, in fact, said that this com
piler will not be developed further. 

PL/l 
Although Programming Language/l (PL/ 1) has been used 
at all levels of the market for many years, it was not added 
to SAA until 1989. It was designed as an attempt to create 
a programming language that would combine the virtues of 
both Cobol and Fortran without their vices, but it never 
succeeded in supplanting the two older languages. The 
smaller overall user base may be why IBM did not initially 
include it in SAA. Mainframe PL/l supports calls to C, 
Cobol, GDDM, ISPF, REXX, and SQL. OS/400 PL/l sup
ports calls to SQL. 

Procedures Language: REXX 
The Procedures Language for organizing system develop
ment and run-time procedures is based on the "REXX" 
System Product Interpreter that had been an inherent part 
of the VM operating system. It was originally designed for 
character string manipulation. In SAA, it operates as an 
application macro processor as well as a system procedure 
language for developing portable procedures, even though 
SAA systems are not inherently compatible. 

Until after the introduction of SAA, this language had 
not been offered as a separate, freestanding entity in envi
ronments outside ofVM, but IBM itself has used it within 
the organization in conjunction with the VM operating 
system and the internal IBM VNET network. Now REXX 
is available in all SAA environments except CICS and IMS 
TM and has been broken out as a freestanding compiler 
underVM. 

JANUARY 1992 



723-116 
Technology Reports 

REXX is a clear, easy-to-learn language that makes it 
amenable not only as a macro and command language but 
also as a full-function development language. It includes 
structured programming constructs, external and internal 
calling mechanisms, a wide variety of expressions and 
built-in functions, extensive string parsing by pattern 
matching, exception handling and tracing mechanisms, 
presentation of host commands to the system, and many 
more features. 

REXX was added as an integral part ofTSO/E in 1988 
and can be used by NetView together with or in place of 
CLISTS. It was added to the OS/400 operating system in 
August 1990. It has not been included as an element of 
CICS or IMS environments. The ship date for the OS/2 EE 
was March 1990, since the procedures language was in
cluded as part of OS/2 EE R.1.2. The OS/2 EE version can 
call C, the Query Manager, and SQL. 

RPG General-Purpose Language Compiler 
The RPG Report Generator, as its name implies, started 
out as an easy-to-use way of generating reports for users of 
midrange systems like System/36 and System/38. An 
entry-level user could specify input and output formats 
through fill-in-the-blank menus, and the highly structured 
compiler turned this data into the necessary code for pro
cessing input and generating output. 

From these beginnings, RPG has evolved into a full
function, nonprocedural general-purpose language. Pro
grammers who want to create complex batch or interactive 
programs can structure programs using a full set of file con
trol operations and facilities like DO, IF, and ELSE. 

The SAA RPG specification is based on the RPG/400 
compiler, which was immediately available for AS/400 
systems at first delivery in August 1988. The WORKSTN 
device type is not a part of SAA RPG but can be used for 
compatibility with RPG III. This version can call C, the 
OS/400 Presentation Manager (which is partially SAA 
compliant), and SQL. 

PS/2 systems do not have a compatible SAA RPG com
piler but have an interpreterithat allows them to run RPG 
programs developed on another system. The big news for 
RPG occurred in February 1991, when an RPG/370 com
piler was released for MVS/XAMVS/ESA and VM/SPVM/ 
ESA environments. The lack of this compiler made it un
likely that midrange system users would move applications 
up to mainframes, because RPG is more prevalent than 
Cobol at the midrange level. This compiler, which requires 
the C/370 library for both program development and exe
cution, can run in conjunction with SQL/DS or IMS data
base managers, ISPF dialog manager for MYS/TSO or 
VM, and the REXX procedures language. In MYS envi
ronments, it operates on TSO/E and IMS/VS DC or IMS/ 
ESA TM subsystems, but not CICS. 

CPI Services 

CPIC Communications Interface and LU6.2 APPC 
Program-to-program communications, in which two pro
grams interact without having to specify details of the un
derlying communications vehicles, is the core technology 
for SAA. As of September 1991, most of the Advanced 
Program-To-Program Communications (APPC) in SAA 
environments that support this type of interaction supply 
not one but two possible ways to invoke this capability. 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

First, there is the SAA standard, the CPIC Communica
tions Interface, which involves instructions and data for
mats that are standardized for every environment (al
though not for every language). The same CPIC is 
available on OS/2 EE as on MYS. CPIC in the SAA CPI 
level is processed by LU6.2 code in the SAA CCS level, but 
it presents an easier to use interface than the LU6.2 inter
face. Second, there is the more modular LU6.2 standard 
which has been endorsed as part of the CCS communica
tions subsystem. However, since it is modular, it can vary 
considerably from system to system. There are a number 
ofLU6.2 applications programming interfaces (APis) that 
differ because of the modularity of the underlying support 
subsystem and because they are essentially a lower level 
interface than CPIC. SAA users could use them, but doing 
so might compromise program portability if the usage 
were not carefully controlled to stay within the bounds of 
the facilities held in common with CPIC. 

SAA applications can function without CPIC and/or 
LU6.2, but handling cooperative or distributed applica
tions without them is not IBM's intention for SAA. 

Database Interfaces (DBis) 
The Structured Query Language (SQL) residing in DB2, 
SQL/DS, SQL/400, and OS/2 EE is a nonprocedural, 
English-like language used to address IBM's relational da
tabase products, in either an interactive mode or through 
program calls. The Distributed Relational Data Access 
(DRDA) interface, which is part of some versions of SQL, 
provides additional instructions needed for access and 
control of distributed database versions. SQL (and its cor
ollary standards) is one of the truly core components of 
SAA (the other is CPIC). Nearly every one of the CPI lan
guages and services has precompilers or other facilities for 
calling or integrating SQL code. 

Structured Query Language (SQL): SQL is a language that 
was developed in IBM laboratories together with the rela
tional model. It has proven to be one of IBM's real suc
cesses in cross-environmental implementations. Further
more, SQL is widely accepted as a standard by third-party 
developers and is the basis for standards endorsed by both 
ANSI and the ISO standards organizations. 

The implementing products for the SAA SQL Database 
Interface are as follows. 

• Database 2 (DB2)-Version 1 Release 3, Version 2 and 
up for MYS (TSO/E, CICS, and IMS environments). 

• SQL/Data System (SQL/DS)-Version 2.1 and up for 
VM and VSE environment. 

• SQL/400-A separate SAA-compatible interface to OS/ 
400, which has an imbedded nonstandard relational da
tabase manager. 

• OS/2 Database Manager-Integral to OS/2 Extended 
Edition Version 1.1 and up. 

As previously noted, a high degree of standardization does 
not mean that a language operates identically in every en
vironment. With SQL, storage structures, such as spaces 
for tables and indexes, differ in each implementing prod
uct; so do the maximum precision of a decimal number 
and the floating-point approximations of real numbers. 
Some of the other environment-dependent differences in
clude the syntax of graphic string constants and the com
parison of varying length strings. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

OS/2, for example, does not support the SQL authoriza
tion scheme, graphic strings in the single-byte version, and 
Date/Time arithmetic operands in SQL or the UNION op
erator. In the VM environment, Describe and Using De
scriptor statements are not supported in Cobol or Fortran 
environments, and the imbedded Select (or the INTO 
clause of the SELECT statement) cannot be used with For
tran. In most cases a host variable can be up to 18 charac
ters long, but the limit is 6 characters for Fortran in a VM 
environment. 

For the most part, however, correlation between the en
vironments is high, both in terms of the specific operations 
supported and in the way operations behave. The advent 
of the S/390 9000 series was accompanied by a new ver
sion ofDB2 that included a new, open, high-level language 
interface. This allows not only C, Cobol, Fortran, and PL/1 
to directly interface to DB2 but also the new MYS/ APPC, 
which includes the CPIC SAA communications interface. 
Previously, an assembler code module was required be
tween these high-level language calls and the call interface. 
The QMF SAA query language, SAA CSP application gen
erator, and ISPF dialog manager can also interact with 
DB2. 

DB2 Version 2 Release 3 complies with FIPS 127.1, 
ANSI X3.135 1989, ANSI X3.168 1989(E), and ISO 9075 
1989 standards. In VM systems, SQL interfaces with C, 
Cobol, CPIC/APPC, CSP, ISPF, PL/1, RPG/370, and 
QMF. The SQL/DS database Version 3 Release 2 complies 
with FIPS 127.1 standards, as well as ANSI X3.135 1989, 
ANSI X3.168 1989, and ISO 9075 1989. 

SQL/400 interfaces with Cobol, CSP, and RPG lan
guages, while the SQL facilities in OS/2 EE R.1.2 and later 
interface with C, the EZ-RUN version of CSP, Query, Co
bol, and REXX. A Statement of Direction was issued Feb
ruary 15, 1990 to provide AIX systems with databases 
which will conform to SQL standards and will interoperate 
with SAA distributed database capabilities. 

CP/DBI Distributed Relational Database Architecture 
(DRDA): DRDA defines an aspect of an SAA relational 
database architecture that is accessed and manipulated 
through instructions which are extensions of SQL. These 
include a connect statement and coded character set con
versions, several language extensions, referential integrity, 
and common SQL return codes. Distribution of data and 
related types of processing involve a number of permuta
tions and various levels of access capability. In addition to 
new elements provided in SQL, the SAA QMF query facil
ity has new distributed retrieval functions allowing trans
parent access to distributed relational data. 

The procedures currently available allow the user to: 

• Retrieve data from another system and work on it locally 

• Work on data on a remote system and retrieve the result 

• Swap relational data among systems in order to keep all 
up to date 

The individuality of the terminal-to-computer interaction 
and the standards already developed (LU6.2, etc.) have re
duced the architectural problems for implementation of 
the first two interactions. However, swapping relational 
data among previously incompatible databases has re
quired much development work. 

Up until September 1990, distributions were only pos
sible between selected SAA databases of the same type, but 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-117 
Technology Reports 

on that date, the first exchanges between nonidentical da
tabases were announced. (See Table 7.) This capability is 
developing slowly at the low end: OS/2 EE database facili
ties cannot swap relational data with DB2 or SQL/DS da
tabases, and nobody swaps anything with the AS/400 yet. 

One of the justifications for data distribution is to send 
it close to the source of processing when the source is far 
from the centralized point of overall control. If the source 
is nearby, why not just have users access the central data
base? Thus, data distribution implies networking, espe
cially to very remote locations. The best of all possible 
worlds for very remote locations would be a situation 
where data could be rapidly handed from network to net
work, regardless of network type, until the data reached its 
final destination, rather than requiring a far-flung system 
to run a long, expensive direct-connect line into a central 
network. 

AS/400 APPN's dynamic addressing features are much 
better adapted to handling the type of communications un
derpinnings needed by distributed databases than the cur
rent level of mainframe SNA. With APPN, if a database 
cannot be located on the local network, it is even possible 
to broadcast the needed address to an unknown destina
tion on another attached APPN network in an attempt to 
find it. Although APPN and SNA can interconnect, doing 
si:> limits each of them, in terms of extensions that users are 
usually unhappy to give up. 

The end result is that problems have been resolved to 
the point of allowing flexible dynamic exchanges only 
within SNA subareas, or if the mainframe is treated as a 
Low Entry Networking (LEN) node within APPN. Yet, to 
automatically send relational files back and forth between 
the AS/400 and DB2, or SQL/DS, or OS/2 EE suggests that 
passage through multiple SNA and APPN networks would 
become a commonplace need, rather than the rarity it is 
now. At the present level of network development, APPN 
or SNA can handle data distribution passing within and 
through its own type of network, transparently. It is possi
ble to hop to each other's network, but hopping through 
each other's networks is definitely not a transparent oper
ation, especially several in succession. It is likely that even 
when the distribution of data is architected for all database 
exchanges, true transparent distributions across multiple 
network types will not be immediately forthcoming. 

Dialog Interfaces (Dis) to Dialog Manager, ISPF, and 
EZ-VU 
SAA dialog services are enablers for the development of 
interactive applications, especially those that will be using 
the Entry or Graphical Subset types of CUA user inter
faces. The dialog panels control user interactions by means 
of menu selections, help information, data requests, and 
messages. A dialog tag language (DTL) allows the program
mer to define dialog objects (panels, help panels, messages, 
keylists, commands) which are independent of the operat
ing environment. 

The SAA Dialog Interface is based on the PC EZVU II 
facility, which is, in turn, an outgrowth of the mainframe 
Interactive System Productivity Facility (ISPF) programs. 
ISPF is an important productivity aid for developing inter
active applications; assisting in the development of panels, 
menus, help, data requests, system messages, etc.; and in 
buffering against many device-dependent considerations. 
Most VM and TSO/E environments use ISPF, but it is not 
yet supported in CICS or IMS/VS environments. 

ISPF is functionally equivalent to a subset of OS/2 EE 
Dialog Manager, but the syntax of the corresponding calls 

JANUARY 1992 



723-118 
Technology Reports 

is different, so it is not being labeled a full SAA facility. 
ISPF Version 3 Release 1.0 added CUA capabilities to ear
lier releases; Version 3.2.0 added "Workstation Platform," 
a feature that can assist in developing SAA cooperative 
processing. This feature downloads code extensions from 
ISPF's Program Development Facility (PDF) Version 3 
Release 2 to allow OS/2 EE 1.2 workstations to "check 
out" (receive) objects controlled by a host's ISPF Software 
Configuration and Library Manager (SCLM). SCLM li
brary function (and control) is extended directly to the 
workstation. 

The result is flexibility. Programmers or users can uti
lize their workstation to view and operate on objects while 
they reside in the host, as was done before, or make the 
same type of interchanges locally in the workstation, with 
the option of uploading the result. Data communications 
for file download/upload is controlled by the communica
tions manager that is an integral part of OS/2 EE 1.2. 

However, the change in emphasis toward having the 
PWS itself be the core for development of cooperative pro
cessing (especially graphics) front ends has downplayed 
the importance of this feature. ISPF 3.3.0 continued sup
port but did not enhance the facility. 

The SAA Dialog Interface for the AS/ 400 series is a sep
arate facility that extends the capabilities of the native di
alog manager. The new combination was released in Au
gust 1990. The ship date for the OS/2 EE Dialog Manager 
was March 1990, as part of OS/2 EE 1.2.0. 

Distributed Data Management (DDM) 
Interface Distributed Data Management (DOM) is an 
evolving SAA architecture which allows systems of differ
ent types to exchange records, files, or relational data. It 
specifically defines system-independent structures, com
mand formats, parameters, objects, and messages so that 
applications programs can access files from different types 
of systems. The DOM Level 1.0 implementation enables 
different systems to exchange record-oriented files; DOM 
Level 2.0, introduced in June 1988, adds exchanges of 
stream files (documents) and directories (folders). DOM 
Level 3.0, introduced in September 1990, enables ex
change of relational data in conjunction with DRDA inter
faces. To some extent, systems can also perform remote 
operations on each other's files without an exchange. 

DOM uses three programs to add another processing 
layer to the basic file request procedures on both the re
questing and the serving system. In addition to a commu
nications server on all systems, an SDDM program on the 
source/requestor/client system and a TDDM program on 
the target/server system work together like elaborate pro
tocol converters. (See Figure 4.) These modules establish 
conversations with each other by means of IBM's LU6.2 
Advanced Program-to-Program Communications (APPC) 
standard, using SNA, LEN, APPN, or X.25 networks as 
transport mechanisms. 

The basic procedure is as follows. When an application 
wants a file, local system software first verifies that it does 
not have it in the usual local directory, and then the re
quest is trapped and sent to a supplemental DOM side di
rectory, which must be maintained by the system adminis
trator. The SDDM translates the request into standardized 
DOM commands to ask for the desired file and uses its 
own command set and communications modules and the 
system's APPC facilities to establish a session between it
self and the TDDM program on the system that has the 
desired file. 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA} 

Datapro Reports on 
PC & LAN Communications 

The targeted system's TDDM server program receives 
the standardized DOM code and translates it into com
mands specific to its own system in order to retrieve the 
files. After obtaining the file, the TDDM reverses the 
translation process, changing local commands and struc
tures back into standardized DOM commands and struc
tures so that a copy of the file can be sent to the requesting 
SDDM. The requesting system, when it receives the code, 
again has to go up the translation ladder to present it in an 
acceptable form to the original requesting application. 

The theoretical goal of DOM is that an applications 
programmer can ask for a file without knowing its location 
or its characteristics. DOM does achieve this to a high de
gree, but differences in the way instructions, files, and di
rectories are handled in various native architectures now 
make it difficult to achieve fully. 

The primary arena for DOM activity has been the 
midrange, where systems can function as both Target 
DOM file servers (TDD Ms) for each other and for PCs, or 
as Source DOM (SDDM) requestors from each other and 
from mainframes. Mainframes running CICS (MYS or 
VSE) environments can only support a TDDM server pro
gram, and mainframes cannot be requestors. PCs, on the 
other hand, can only be DOM requestors. 

It is not yet clear whether designating DOM as an SAA 
element means that all SAA environments will eventually 
operate as both requestors and servers, since the software 
for these two functions is always implemented in separate 
SDDM and TDDM modules. Adding relational data ex
changes seems to indicate that this may be the case, since 
exchanges will be needed in many distributed systems. 

Although this double-conversion procedure would 
seem to provide an opportunity for completely transparent 
data transfers, there are in fact many problem areas. To 
give some examples, Delete instructions may work in one 
context but not in others. If one of the various types of 
VSAM data sets is not allowed to be deleted in its native 
CICS architecture, but its equivalents elsewhere can be, a 
programmer must remember that a Delete instruction that 
works elsewhere will not work when sent to this file on a 
CICS system. Keyed files containing zoned, packed, or 
other than character fields can return unexpected results 
when created by an AS/400 on a System/36 or System/38 
because the latter systems do not support these types of 
fields. System/36 allows copying a remote file to another 
remote file, but the AS/400 allows only one of the files to 
be remote. 

There are other ways to transfer files. DOM is oriented 
toward interactive processing at the record level, although 
it is fully capable of large file transfer operations as well. 
When transferring all the records in a file, where there is to 
be no application processing of the data, alternatives in
clude user-written APPC programs, system-specific object 
distribution programs, and SNADS. APPC programs (of 
which SNADS and DOM are examples) can operate over 
APPN networks as well as over traditional mainframe 
SNA network backbones. IBM states that in general, file 
transmission times using DOM, SNADS, and user-written 
APPC programs are usually within 10 percent of each 
other. 

Use of the SNDNETF (Send File) CL command via 
SN ADS offers the advantage of transmitting one copy of 
the data to more than one system through a multiple-node 
network. Distribution can also be time-scheduled using the 
SNADS distribution queue parameter. SNADS transmis
sions require a copy of SNADS on all source, target, and 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

Figure 4. 

IBM 
Systems Application 
Architecture (SAA) 

DDM Clients (SDDMs) and Servers (TDD Ms) 

S/36, 
S/38 

SDDM 
TDDM 

TDDM 

GIGS, DB2 
(MVS or VSE) 

'/ 
/'-. 

AS/400 

TDDM 
SDDM 

SDDM 

PG,XT, AT, 
PS/2 

intermediate nodes. Target systems require processing by 
a RCVNETF Receive File, a step that would not be re
quired by DOM. 

DOM file conversion and file operations occur at both 
ends of the DOM connection, where most system
dependent and operation-dependent variables reside, but 
in general, performance impact comes predominantly 
from the communications line usage. 

Presentation Interfaces (Pis) to Presentation Manager and 
GDDM 
Many end users feel a standardized presentation interface 
for control of graphics is probably second in importance 
only to the overall end-user access interface standard. This 
is logical, since a Presentation Manager is needed to code 
the more complex types of graphics and workplace CUA 
interfaces. 

Although the SAA Presentation Interface is based 
largely on the mature Graphical Data Display Manage
ment (GDDM) set of System/370/390 programs, IBM has 
decided to restrict SAA endorsement of the CUA program 
development facilities to the OS/2 EE Presentation Man
ager. This decision was ostensibly based on the idea that 
the Presentation Manager is used to develop the type of 
interface that runs on programmable workstations 
(PWSs), not on nonprogrammable terminals (NPTs). It is 
more logical to use a cooperative PWS to develop a PWS 
interface than it was to use an NPT and a host and then 
download the interface into a PWS. That being so, GDDM 
might be used to support NPT graphics, but there was no 
need to endorse GDDM for CUA development. 

The OS/2 EE presentation interface merges the equiva
lent of GDDM with a windowing capability based on Mi
crosoft's Windows. The GDDM presentation standard 
specifies a set of functions that allows display and printing 
of alphanumeric data, vector graphics, raster graphics, and 
image data on a variety of devices, including plotters, per
sonal computers, color displays and printers, monochrome 
displays and printers, and so on. Major functions include 
comprehensive graphics support, limited image support, 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-119 
Technology Reports 

saving and restoring of graphics pictures, and implementa
tion of keyboards and mouse devices in such a way that 
applications can also conform to the Common User Access 
standards. 

The main GDDM subroutines can be directly called as 
part of major programs in many environments. Examples 
are OS/370 Assembler, Cobol, PL/1, VS APL Release 4, 
and, in some cases, Fortran and Basic; IMS, CICS, TSO, 
and CMS each support direct access to GDDM by some of 
these languages and not others. GDDM's applications pro
gramming interface (API) is consistent across displays, 
printers, scanners, and graphics devices. Datastreams sup
ported include the 3270 Extended Data Stream, the SCS 
SNA Character String, and the IPDS Intelligent Printer 
Data Streams, all of which are specified by the SAA archi
tecture. 

The GDDM-Restructured Extended Executor 
(GDDM-REXX) and GDDM Graphical Kernel System 
(GDDM-GKS) are particularly noteworthy in terms of the 
interlocking standardization efforts of the SAA architec
ture. GDDM-GKS supports ISO and ANSI international 
standards for graphics file definition (as described in ISO 
7942-1985[E], ANSI X3.124-1985, and ANSI X3.124.1-
1985 documents) as an adjunct to the base GDDM pro
gram. GDDM-REXX provides a direct interface between 
the base GDDM/VM program and the REXX/VM Inter
preter facility ofVM/CMS CMS, the basis of the SAA pro
cedures language. GDDM-REXX allows systems pro
grammers to add GDDM calls to REXX EXECS, 
including calls to the GDDM base API, GDDM-PGF API, 
and GDDM-GKS API, but not to the GDDM/graPHIGS 
APL It is thus one of the important bridges linking SAA 
parts. 

The complex of interlocking programs can provide a 
wide variety of capabilities, but the inevitable question is, 
at what cost? One of the important rationales for adding 
PWS is to download graphics processing from a high price
per-MIPS system like a mainframe to a low price-per
MIPS system like a PC or PS/2. This trend is undoubtedly 
another reason why IBM does not want to promote 
GDDM as a candidate for full-scale SAA development. 

PrintManager Interface 
PrintManager services provide a uniform software inter
face for a variety of types of printers, in order to standard
ize printer interactions and operations. Standards are es
tablished for print instructions, formats, fonts, and so 
forth, so that the programs are dealing with logically iden
tical printers rather than the individual characteristics. 

PrintManager goals are closely relat!!d to System View's 
integrated system management strategies and the CPI Re
source Recovery Interface (RRI). The overall goal is to 
have automatic detection of a failed resource and provi
sion of an alternative, so that when a user tries to use it, the 
system software automatically routes requests to the alter
native device. Then, when the device is restored, user re
quests automatically revert to their originally intended 
destination. 

The roles played by these three components are: 

• System View describes the overall operation and how the 
pieces fit together with other system operations. 

• RRI Services manage the pool of shared devices which 
needs to be established to be able to automatically switch 
a request from one to the other. The fundamental mech
anism is similar for all device types. 

JANUARY 1992 



723-120 
Technology Reports 

Figure5. 
SAA Model Compared with SNA Model 

SNAModel 

End-User AppRcatlons 

(Outside 
SNA 
Model-
not 
archltected) 

SNA Definition 
Starts Here 

Leval 7: Transac
tion Services (TS) 

Logical Unit 
6.2 Protocal 
Boundary 

Level 6: Presenta
tion Services (PS) 
& resource sharing 

Level 5: Data Flow 
Control (DFC) 

Level 4: Transmis
sion Control (TC) 

Logical/ 
Physical 
Bcll.lldary 

Level 3: Path Control 
(PC) for network 
routing 

Level 2: Data Link 
Control (DLC) to 
adjacent nodes 

Level 1: Physical 
Control (CS) 

SAA Common 
Programming 
Interface (CPI) 
Standards 

SAA Common 
Communication 
Subsystem 
(CCS), using 
partsof SNA 

SAA CCS Session 
Services 

SNA/SAACCS 

IBM Datapro Reports on 
Systems Application 
Architecture (SAA) 

PC & LAN Communications 

SAA Model 

End-User AppHcatlons 

+ 
SAA Common Appllcatlons 

SAA Language Compilers 

CPl-C 
Commun!-. 
catlonsAPI 
orAPPC 
precursor 

..,. -1-

IBM SAA CPI service 
APls such as SOL DBMS 
or DOM Fffle l/O 

CCS Appllcatlon Services: 
DIA, Net MgL, SNADS. 
Data Streams, etc. 

LU6.2 services the CPl-C Interactions as well as 
program-to-program communications needs for 
service programs 

....... -

1 

Network Addressable Unit Functlons 

I I SNA/SAACCS 
Transport Subsystem Functions 

..I. .I 
LEN or EN Network Control: 
SAA doesn't specify complex 
Indirect routing yet 

I 
Data Link Control: 
SDLC, X.25, Token-Ring 
and others 

(SNA physical standards assumed: 
SAA does not spell them out) 

IBM has established firm boundaries between CPI-C and CCS-LU6.2 and between LU6.2 and the Transport Subsystems. Because 
of these firm boundaries, it is feasible for IBM to specifY OSI as an alternate Transport Subsystem. CPI and CCS services, however, 
would need adjusting in order to hop back and forth between SNA and OSI protocol stacks. · 

JANUARY 1992 © 1992 McGraw-Hiii, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

• PrintManager provides the uniform software interface 
needed specifically by printer resources in order for them 
to be managed by RRI services and SystemView soft
ware. 

SAA PrintManager for MYS and VM was announced in 
September 1990; the OS/ 400 PrintManager was intro
duced as part of OS/ 400 Release 3 in August 1990. 

Query Interface (QI) 
Query, and the report writing associated with it, is prima
rily an interactive service that allows users to access and 
summarize information, and format the results, using 
menus. In this way, printed results can be obtained with
out having to write a program. 

The SAA Query facility also specifies a program-to
program interface that allows programs to call upon Query 
facilities. Applications programs can use this interface to 
manipulate queries, procedures, and report specifications. 

In VM as well as MVS/ESA TSO/E, CICS, and IMS en
vironments, the existing Query Management Facility 
(QMF) base program evolved into SAA Query. In OS/400, 
no SAA version has been announced yet; eventual support 
has been affirmed, but no Statement of Direction about 
the time frame. OS/2 EE includes the query interface in its 
database management facilities and provides interaction 
with SQL. The first SAA version ship date was July 1988. 
OS/2 EE 1.2 Query, shipped in March 1990, added inter
faces to C and REXX languages as well as running as an 
application under the Presentation Manager. 

Repository Interface (RI) 
The SAA interface to Repository Manager Services for 
MYS TSO/E was announced on September 19, 1989, when 
IBM introduced its extension of SAA into the Application 
Development/Cycle (AD/Cycle) architecture. The Reposi
tory Interface is an element crucial to both the proper func
tioning of AD/Cycle and the extension of SAA into distrib
uted processing. Like a greatly extended data dictionary, it 
can provide a centralized directory of all the data process
ing structures available in an organization, centralizing 
and managing information about data structures so that it 
is possible to create records and files that can be used by a 
number of programs. Using the Repository, programmers 
do not have to create data structures-they can extract 
them. Repository-related services can result in significant 
increases in programmer productivity, better management 
of security, and better cost control. 

The information about data structures, file organiza
tions, subroutine locations, and database structures is it
self stored in relational databases. Repository Manager 
Services is a separate set of two software packages (Repos
itory Manager and Dictionary Model Transformer) that 
create and make use of these databases. The programs are 
initially available only in MYS TSO/E DB2-based systems, 
callable from C, Cobol, PL/1, or REXX languages. IBM 
has made formal statements of its intent to develop Repos
itory Managers on VM (SQL/DS) and AS/400 hosts, with 
cross-communication and (eventually) file exchanges 
among all hosts as well as between hosts and workstations. 

One of the biggest problems with the Repository as it 
exists in the context of the new AD/Cycle architecture is 
that some of the older software embraced by AD/Cycle al
ready has its own data dictionaries and repository-like fa
cilities. For example, packages for Computer Assisted 
Software Engineering (CASE) from Bachman, Index Tech
nology, and Knowledgeware, which IBM has designated as 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-121 
Technology Reports 

standard components of AD/Cycle, all have their own data 
dictionaries at present. From Day One, IBM is faced with 
the problem of migrating existing software based on poten
tially incompatible data dictionaries. 

Release 1 of the RI was implemented only in TSO/E 
environments, but Release 2 (September 1990) allowed 
downloading of a subset RI code to a PS/2 system, so as to 
provide for a cooperative processing front end. 

Resource Recovery Interface (RRI) 
The RRI is a new interface supporting resource manage
ment by coordinating multiple local resources in such a 
way as to automatically provide backup when one resource 
fails. Initially, RRI is implemented only in IMS/ESA TM 
Version 3 Release 2 environments, which were introduced 
in September 1990 without a specific delivery date. 

AD/Cycle Extensions to CPI 
AID Cycle is an extension of SAA that provides a concep
tual framework and compatible tools for managing the on
going process of applications modeling, design, develop
ment, testing, and maintenance of programs. It is oriented 
toward the fact that before an application can be pro
grammed, it has to be designed. Then, after a program 
starts running, it may have to be frequently adjusted to 
changing situations, thus repeating the development cycle 
to some extent. 

AD/Cycle tools involve most (but not all) CPI languages 
and make use of some CPI services and CU A interfaces. 

Whether or not designs are portable depends not only 
on how they adhere to programming standards but also on 
how well they fit within the operating characteristics of an 
organization. Developing portable programs is a two-way 
street. In order to handle the level of portability involved 
with distributed processing, some organizations with 
highly independent divisions might require a degree of En
terprise Modeling that has never really been done for or by 
them before. 

AID Cycle attempts to provide a framework for this 
whole process, not just SAA-type building blocks having to 
do with programming, production, and communications 
support. In other words, SAA describes tools used in the 
programming and the execution of programs, while AD/ 
Cycle is involved with control of the background planning, 
programming, and workflow processes, particularly when 
they occur in a complicated context. Large enterprises with 
multiple subsidiary organizations scattered over a wide 
area may find AD/Cycle particularly helpful, while small, 
centralized businesses may find it unnecessary. 

The extension of SAA into AD/Cycle is a change that 
involves a new perspective with regard to some of the 
pieces of SAA. AD/Cycle divides up the world into catego
ries that reposition some SAA products and add quite a 
few new products and categories that did not exist before. 
The hitherto unremarkable CSP application generator and 
the brand-new Repository Manager Interface assume par
ticular significance. Also, most AD/Cycle products are co
operative, requiring a PS/2 workstation "front end" that 
interfaces to a host S/370, S/390, or AS/400. 

Since many products of this type have not previously 
been available from IBM itself in any form on any product 
line, IBM has turned to some of its Business Partners to 
supply the missing pieces. Most are successful third-party 
products that have been used for MYS TSO/E mainframe 
environments. Endorsing them within the context of the 
AD/Cycle architecture means the vendor is committed to 

JANUARY 1992 



723-122 
Technology Reports 

at least some SAA-oriented developments, such as adding 
graphical PWS-level CUA front ends and interfaces to ap
propriate SAA languages and services. It appears that IBM 
will have comparable programs in each host environment, 
rather than porting the same program through all SAA en
vironments. 

Common Communications Support 
(CCS) Architecture 
The Common Communications Support Subsystem forms 
the underpinnings of distributed processing or cooperative 
processing with SAA, but it is not the primary focus of 
most users interested in SAA. This is partly because it is 
largely seen as emerging out of SNA, so its identity is lost, 
and partly because it is not meant to be directly accessed 
by the end user or applications programmer. CPI Services 
provide access software for the applications programmer, 
whereas the communications systems programmer is the 
primary one concerned with CCS. 

Regardless, CCS is very important because its limita
tions curtail the operations of all the levels that rely on it. 
The strong movement of the market toward function split
ting, cooperative and distributed processes, and data 
would not be possible without adding to the versatility of 
these communications facilities. 

At present, CCS/SNA, together with Net View manage
ment functions, represents the most developed environ
ment for complex networks in the world. CCS is SNA's 
heir, but not exclusively-there are other developments. 
At this point in time, IBM software for joining remote sys
tems also includes Low Entry Nodes (LENs), Advanced 
Peer-to-Peer Networking (APPN), Network Nodes (NNs), 
SNA Distribution System (SNADS), and Open Systems 
Interconnection/Communications Subsystem (OSI/CS). 

SNA, like OSI, uses a seven-layer architectural model. 
SAA Common Communications Support (CCS) embraces 
pieces of SNA and APPN as well as providing OSI as an 
alternative (see Figure 5). How do all these architectures 
relate to one another? 

SNA: Based on IBM's SDLC packet-switching protocol, 
SNA is a fully developed wide area network with an inher
ently hierarchical seven-layer structure that enables it to 
handle large networks efficiently. System Subarea Control 
Points (SSCPs) in Type 4 Nodes (usually 37XX front ends) 
operate in conjunction with Type 5 hosts to control the 
network; SNA Network Interconnect (SNI) software in the 
Type 4 node provides for interconnection of multiple net
works. SNA's LU6.2 program-to-program communica
tions facility predated a similar OSI requirement and is 
partly responsible for SNA's reputation for "richer" facili
ties, even though the LU6.2 user base is growing more 
slowly than IBM would like. Recent changes to SNA have 
provided for expansions in network size, better peer-to
peer networking within a single sub area, and more flexibil
ity in initiating exchanges. SNA is still expected to govern 
most of the future development of communications be
tween IBM mainframe product lines, subordinate 
midrange systems, and programmable workstations 
(PWSs). 

APPN: APPN is an extension of SNA that has been rap
idly developing since its introduction in the midrange in 
1986, but IBM only just endorsed it as an important exten
sion of SNA in March 1991. APPN uses most of SNA's 
upper layers and its data link controls, but the transport 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

subsystem routing scheme is different, relying on Control 
Points (CPs) in Network Nodes (NNs). Its peer-to-peer 
communications among midrange systems functions in a 
dynamic, flexible network that is completely independent 
from the one which connects the midrange system as a sub
ordinate to a mainframe. APPN uses the SNA concept of 
architectural layers and many specific SNA elements, like 
SDLC and LU6.2 protocols. 

LEN: Both SNA and APPN support peer-to-peer net
working of Low Entry Nodes (LENs), a subclass of what 
SNA calls "Type 2.1" nodes and APPN calls a more lim
ited form of "End Nodes." SNA LENs as well as SNA 
hosts can interact in peer-to-peer relationships within an 
SNA subarea or when attached to an APPN network. 
Within APPN, LENs are capable of the least flexible peer
to-peer interactions. 

OSI /CS: The International Organization for Standardiza
tion (ISO) has been developing its own vendor
independent, seven-level Open Systems Interconnection 
network architecture. An architecture is just a blueprint 
for a real-life network implementation; it was not until 
IBM introduced OSI/CS (communications subsystem) and 
OSI FIS (file transfer subsystem) that IBM could say that it 
had its own OSI network. Previous ISO X.25 data link pro
tocols were used in SNA lower levels, but upper levels are 
resistent to merged identities. 

SNADS: SNADS is a store-and-forward communications 
facility which is not, strictly speaking, a full-blown net
work routing facility, but rather a part of SNA, APPN, or 
LEN. When used in conjunction with APPC LU6.2 
program-to-program communications, it resembles a sep
arate network to the point that it is frequently called a 
"SNADS Network." 

SAA 's CCS Standards: These standards are both more and 
less than SNA: they include part ofSNA and add OSI net
working. Most of the individual facilities are straight out 
of mainframe SNA (see Figure 2). However, the single 
most important key to a network's identity, its routing 
mechanism, is a surprise. It is not the full-blown SNA 
router, but instead, the LEN node logic which is endorsed 
in CCS. This brings up a lot of developmental questions 
about the relationships among IBM network types. 

SNA, APPN, and LEN Routing and Network 
Identity 
In view of the differences in capacity between SNA proper 
and LEN as a separate entity, the current relationship be
tween CCS and SNA is peculiar. LEN, like APPN, uses 
elements of mainframe SNA in a peer-to-peer networking 
context, but only between adjacent systems. Since LEN is 
what has been endorsed, this is equivalent to saying that 
SAA has not yet endorsed standards which link multiple 
networks together or which handle routing through one or 
more nodes operating as intermediaries between two end 
points. 

The addition of APPN End Nodes (ENs) as an SAA 
standard, yet with full APPN networking (including NN 
nodes) to OS/2 EE systems, further confuses the issue. 

Since SAA's goals involve cooperative processing, dis
tributed processing, and transparencies of all sorts at vari
ous levels, communications options must not only be nu
merous, they must also be flexible, transparent, and far 
reaching. What happens in a "pure" SAA network when an 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

723-123 
Technology Reports 

Table 6. Callable Interfaces for SAA Service Facilities 

Host 
Environment 
CPl-C Communications 
c 
Cobol 
082 
DOM File Distrib. 
Dialog/ISPF 
Fortran 
PL/I 
REXX/Procedures 
RPG 

Query Management 
c 
Cobol 
Dialog/ISPF 
Fortran 
PL/I 
Repository 
REXX/Procedures 
RPG 
SQL 

PrintManager 
c 
Cobol 
Dialog/IS PF 
RPG 

Repository Manager 
c 
CSP Generator 
Cobol 
Dialog/I SPF 
PL/I 
REXX/Procedures 

SQL Database 
c 
CSP Generator 
Cobol 
PL/I 
Query 
REXX/Procedures 
RPG 

Dialog Manager 
c 
CSP Generator 
Cobol 
Fortran 
PL/I 
REXX/Procedures 
RPG 

•=Supported. 
- =Not supported. 

MVS/ESA 
TSO/E 

SOD 

MVS/ESA 
CICS/ESA 

MVS/ESA 
IMS/VS TM 

• (1) 

VM/ESA 
CMS OS/400 

INA 

SOD 

SOD 

INA 

OS/2 EE 

INA 

EZ-RUN 

INA 
INA 

VSE/CICS 

INA 
INA 

INA 
INA 

INA 

(1) The Transaction Manager is now a freestanding program that can access DB2 and operate independently of the IMS database. 

Acronyms: 
C-"C" language-not an acronym. 
Cl-Communications Interface. 
CICS-Customer Information Control System. 
Cobol-Common Business Oriented Language. 
CP/-C-Common Programming Interface for Communications. 
CSP-Cross System Product. 
CMS-Conversational Monitor System. 
CPI-Common Programming Interface. 
DOM-Distributed Data Management. 
EE-Extended Edition. 
ESA-Enterprise Systems Architecture. 
Fortran-Formula Translation Language. 
l/F-lnterface. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Dataoro Information Services Grouo. Delran NJ 08075 USA 

/MS/VS-Information Management System. 
/SPF-Interactive System Productivity Facility. 
MVS-Multiple Virtual Storage. 
PL/I-Programming Language I. 
REXX-Restructured Extended Executive. 
RPG-Report Generator. 
SAA-Systems Application Architecture. 
SOL-Structured Query Language. 
TM-Transaction Manager. 
TSO/E-Time Sharing Option/Extended. 
VM-Virtua/ Machine. 
VS-Virtual Storage. 
VSE-Virtual Storage Extended. 

JANUARY 1992 



723-124 
Technology Reports 

Figure 6. 
SNADS Networks 

When routing through an in
termediate node, APPC and 
SNADS can be used without 
APPN or another large-scale 
network facility even through 
APPC handles only point-to
point conversations and 
SNADS does not contain true 
routing facilities. SNADS 
logic on the intermediate node 
stores incoming transmissions 
on its own disk and then for
wards them. If APPN control 
is added to the SN ADS logic, 
network performance is likely 
to improve because the disk 
storage step is not necessary. 

Source 
Node 

Application 

SNADS 

APPN 
(option) 

APPC 
(LU6.2) 

LU6.2 
SDLC 

application wants to address another application or re
trieve a file which is not directly connected but can be 
reached by passing through an intermediate node? 

If the SAA purist must ignore his or her highly versatile 
SNA or APPN networking software (which, by the way, 
must be there anyway ifthe fundamental CCS facilities are 
there), the only facilities for handling this situation at 
present are the store-and-forward SNA Distribution Sys
tem (SNADS), and ironically, OSI/CS. Alternatively, the 
situation could be redefined by adding a direct line be
tween the end points, making them adjacent. 

Adding a line can be expensive, and it also seems ridic
ulous in cases where a network exists and there is a conve
nient route through an intermediate node. 

It seems clear that IBM wants to endorse a single, coher
ent network router for both mainframes and midrange, or 
it would have already set up another double standard by 
fully endorsing both SNA and APPN. So many parts of 
mainframe SNA have been borrowed by LEN and APPN 
that at first it seems that this master network ought to be 
easy to engineer. However, the thing that is needed to bring 
the two together here is the same thing that is the key dif
ference between the two networks. It is safe to assume that 
IBM has something in the pipeline, but whatever the final 
solution is going to be, it is not one that IBM found earlier. 

SHADS 
The SNADS store-and-forward communications system is 
called an "asynchronous" facility by IBM, because it does 
not require that a communications session be established 
and then remain open between two end points until com
munications is accomplished. Instead, a set of "hops" is 
defined, which can be individually controlled by point-to
point APPC logic. Thus, even though the path passes 
through several intermediate nodes, each step of the way is 
treated like a separate communications procedure. The 
message or file makes one hop and is stored on disk until 
the intermediate system can arrange the next hop, which 
may or may not be immediately. 

Applications using SNADS on midrange systems that 
also have APPN can use the APPN logic if they desire. In 
this instance, a continuously open session would be estab
lished, and the passage through the intermediate node 
would be controlled by APPN instead of SNADS. This 
may improve network performance, since the disk storage 
step may be circumvented. (See Figure 6.) 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA) 

Intermediate 
Node 

Choose 
SNADS 
(option) 

and/or 
APPN 

(option) 

APPC 
(LU6.2) 

Topographies 

LU6.2 
SDLC 

Datapro Reports on 
PC & LAN Communications 

Destination 
Node 

Application 

SNADS 

APPN 
(option) 

APPC 
(LU6.2) 

At all levels of the marketplace, multiple processors are 
being linked together in various ways into a single-system 
image. Of course, this was always done, in a way, when 
specialized I/O processors and communications proces
sors were added to a mainframe, but the "single-system 
image" concept implies that when a user interfaces to what 
is apparently a single system, multiple main processors 
and even multiple operating system environments may 
have been connected together in such a way that they can 
function automatically as a coherent entity. At all levels, 
the concept of a single-system image presented to the user 
is a common element behind concepts of function split
ting, cooperative processing, and distributed processing. 
The use of higher level services of communications sub
systems is almost always involved, but the lower level 
transport subsystems do not necessarily have to be in
voked. 

The development of versatile intelligent workstations 
like the OS/2 EE and RISC System/6000 series has been a 
key step toward the possibility of cooperative processing 
applications, where programs are split into some proce
dures which run on the host and others which run on a 
programmable workstation, but they have not been a driv
ing force until the turning of the decade into the 1990s. 
The reason is practical: the expensive front-end worksta
tions have to justify themselves. Lowering prices for 
higher-powered workstations, more and more user interest 
in the advantages of PC use, and the recognition of the 
need for better control of those PCs within an organization 
are the major factors that have brought about market con
ditions enabling the cooperative concept to become viable. 

At the present level of development, the typical division 
oflabor is to use intelligent workstations as an interactive 
user interface, and host systems or LAN servers for han
dling shared data or services. The core of the application 
tends to be on the intelligent workstation. This deduced 
definition, which seems to be what IBM is producing most 
commonly at present, implies that any program that makes 
use ofDDM, distributed SQL, or workstations attached by 
PC Support or Extended Connectivity Facilities or similar 
products, would be involved in cooperative processing. 

Distributed processing is a natural extension of some of 
the larger cooperative processing applications, but it still 
needs architectural work before it can take off. Distributed 

© 1992 McGraw-Hiii, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

Figure 7. 

IBM 
Systems Application 
Architecture (SAA) 

Four Key Cooperative Processing Topographies 

Mini 
or 

Mainframe 

Workstation-Based 
Standalone 

Mini 
or 

Mainframe 

Direct-Connect 
Standalone 

Mini 
or 

Mainframe 

Networked 

LAN 

723-125 
Technology Reports 

IBM intends to write its SAA applications so that any one of these topographies can move to any other topography. Distribution of 
function is presented here; distribution of data may or may not be involved. The Networked and LAN topographies are also suitable 
for fully distributed applications. 

processing among dissimilar system architectures implies 
enormous standards requirements and architectural devel
opments in order to achieve the capacity to distribute pro
cesses as well as data. It has taken IBM almost 15 years to 
work up the SNA architectural ladder to fully develop the 
upper level standards, and the OSI organization has not 
caught up yet. Distributed processing has traditionally 
been associated with remote data communications sys
tems because this is the context in which it is most likely to 
be required, although there is no reason that distributed 
processing cannot (and will not) occur across LAN connec
tions. 

The communications/usage patterns resulting from the 
new cooperative and function-splitting software enabled 
by SAA are initially falling into several distinct topologies. 
These are governed by IBM's intention to build software 
that can be swapped around in both of these respects. With 
this in mind, Office Vision products have been designed to 
fit into four types of usage patterns. 

Standalone OS/2 EE-Based LAN Servers: Talking only to 
locally attached OS/2 EE and DOS workstations on the 
LAN, these servers are simple two-tiered structures with 
no remote communications. OS/2 EE systems are "hosts" 
as well as workstations. 

OS/2 EE-Based LAN Servers: These servers talk to other 
OS/2 EE-based servers as well as their own terminals. This 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

is a communicating two-tiered structure that allows dis
tributed processing and begs for peer-to-peer communica
tions. 

OS/2 EE-Based LAN Servers: These servers talk to MYS/ 
XA, MVS/ESA, VM/SP, and/or OS/400 hosts which may 
or may not be running Office Vision. Here the LAN server 
occupies the middle tier of a three-tiered structure, very 
much like a departmental system. Traditional centrally 
controlled SNA communications will do quite well, but so 
would peer to peer. 

OS/2 EE, DOS, or Nonprogrammable Terminals (NPT
s): These terminals are directly connected to Office Vision 
running on a MVS/XA, MVS/ESA, VM/SP, or OS/400 
host. This two-tiered structure is like the standalone OS/2 
EE LAN structure except that the link between terminal 
and server can be either a local attachment or a remote 
communications link. In either case, "direct connection" 
means a hierarchical interchange between a subordinate 
terminal and a dominant host. 

These usage patterns do not have to be isolated into 
different networks but may be combined, as shown in Fig
ure 7. They imply interactions between four distinct types 
of functional elements, each with different roles, which 
taken together may open the door to new software devel
opment patterns in the future. The functional elements 
are: 

JANUARY 1992 



723-126 
Technology Reports 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

Table 7. SAA Distributed Relational Data Access (DRDA) Support 

Distributed 
Environment/ 
Database 

MVS/ESA 
TSO/E 
DB2 

MVS/ESA 
CICS/ESA 
DB2 

MVS/ESA 
IMS/VS TM 
DB2 

VM/ 
CMS 
SQL/DS 

OS/ 
400 
DB 

OS/2 
EE 
DB 

VSE/ 
CICS 
SQL/DS 

Distributions 
Can Come from: 

082 Host 
SQL/DS Host 
OS/400 Host 
OS/2 EE Host 

•=Supported. 
- =Not supported. 
P =Partial Support. 

p 

Acronyms: 
CICS-Customer Information Control System. 
CMS-Conversational Monitor System. 
DB2-Database2. 
EE-Extended Edition. 
ESA-Enterprise Systems Architecture. 
IMS/VS-Information Management System. 
MVS-Multiple Virtual Storage. 

p 

• Traditional hosts, which may be MYS or VM main-
frames or OS/400 midrange systems 

• LAN servers, which must be OS/2 EE based 

• Intelligent PC terminals running OS/2 EE or PC-DOS 

• Nonprogrammable terminals 

Notice that the OS/2 EE acting as a simple LAN server is a 
host to its own terminals, but is a Type 2.1 peer to another 
LAN server. When communicating with mainframe Of
fice Vision, it can still act as a Type 2.1 node, or it can again 
shift personality into that of a subordinate terminal. 

SystemView as an Extension of SAA 
C&SM 
The foundation for SAA Communications and System 
Management (C&SM) has always been mainframe 
Net View. Net View has always been seen as a comprehen
sive management system, but above all, as a network man
agement system. IBM, on the other hand, has realized for 
years that in order to properly handle system management 
(configuration management, production and scheduling 
management, etc.), console management, and network 
management in a distributed environment, the three had 
to be integrated. 

Furthermore, as distributed processing networks devel
oped in size and complexity, they would be unmanageable 
unless expert systems and other forms of artificial intelli
gence were employed to support analyses and sometimes 
initiate automatic diagnosis and resolution of problems. 
Automation was viewed as operating in three contexts, as 
follows. Since all three are equally part of the work load of 
system management and network management, this model 
represents a slight alteration of the obvious, or "intuitive," 
one. 

JANUARY 1992 

SOD 

SOL/OS-Structured Query Language/Data Systems. 
SOD-Statement of Direction for Future Support. 
TM-Transaction Manager. 
TSO/E-Time Sharing Option/Extended. 
VM-Virtual Machine. 
VS-Virtual Storage. 
VSE-Virtual Storage Extended. 

Reactions to Events: This context has to do with message 
suppression and other tasks related to management of op
erator activities, regardless of whether the console in
volved is a Net View console or the system console. This is 
the "first generation" of automation and in fact has been 
widely developed already. 

Work Management: This context deals with scheduling, 
distribution, printing, performance monitoring, and stor
age management. 

System Management: This context refers to data capture, 
prediction of problems, capacity planning, and reporting. 

In September 1990, IBM incorporated its network man
agement strategy, its system and network automation 
strategies, and the related SAA programs into a larger inte
grated framework called SystemView. SystemView pro
vides a framework for integrated solutions by adhering to 
yet another patterning, in terms of three management di
mensions, as follows. 

• The end use dimension: SAA CUA graphics 

• The data dimension: SAA file, database, and network 
data definition standards 

• The application dimension: the distinctive System View 
formulation is further divided up into six disciplines, as 
follows. 

-Business Management 

-Change Management 

-Configuration Management 

-Operations Management 

-Performance Management 

-Problem Management 

An important element of the System View goal is to open 
the door for automation. The environment that will be en
abled by System View is one that allows automated prob
lem determination, automatic responses to problems with 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAAJ 

the capability to select alternatives, automatic notification 
of problems, and automatic restart of the original system 
when repairs have been effected. Future automation would 
detect failed devices and automatically route users to alter
natives. In the typical manual response of today to break 
down a component (e.g., a networked printer), multiple 
users individually discover the problem, call a help desk, 
and locate an alternative resource until the one normally 
used is again available. 

The intention to integrate system and network manage
ment into a compatible, integrated whole that is capable of 
handling distributed systems underlies IBM's urging its us
ers to automate their system consoles through NetView, 
not just the network consoles. There are a number of other 
choices that can be engineered from modules available 
from IBM, third-party vendors, and the user's own soft
ware engineering efforts. 

OfficeVision, lmagePlus, and Other SAA 
Common Applications 
In addition to the CUA user interface, the CPI languages 
and services, and the CCS communications underpin
nings, certain SAA Common Applications are supplied by 
IBM and in some cases will run on all six SAA platforms. 
These applications, in some instances-like OfficeVision 
and ImagePlus-are broadly applicable across many types 
of businesses and industries. Others are more focused on a 
particular industry, for example, like the SAA applications 
replacing COPICS, which implement part of IBM's Com
puter Integrated Manufacturing (CIM) architecture. 

The following briefly outlines some important charac
teristics of OfficeVision and ImagePlus applications. 
Those SAA Common Applications that are more applica
ble to particular industries are not included in this report. 

Office Vision 
The OfficeVision product family, introduced simulta
neously in May 1989 in all SAA environments, was imme
diately received as the first "major" SAA application. Pre
viously, users were faced with a variety of office systems, 
including OS/400 Office and its S/3X forebears, PROFS 
under VM and Personal Services/370 and DISOSS under 
MYS. The new set of four products-OfficeVision/2 LAN, 
Officevision/MVS, Officevision/VM, and OfficeVision/ 
400-allowed migration of previously incompatible office 
systems into a generalized, compatible office system archi
tecture. It also added mouse-oriented pictorial icons to the 
repertoire of CUA interfaces and provided an example of 
true cooperative processing using the SAA architecture. 

Office Vision achieves its comprehensive compatibility 
by exploiting the key SAA architectural attribute: a coher
ent interlocking code layer is interpolated between the user 
and the basic individualistic processing. This shell of code 
turns an identical face to the user, but an adaptive face to 
the system and the process, adjusting to each specific sys
tem's peculiarities, interpreting the icons or other instruc
tions, and routing the processing within itself and/or out
ward to the local or remote engines which are going to do 
the actual work. In other words, there is a protocol bound
ary where a translation occurs between the universal, stan
dardized user interface and the vagaries of individualized 
processing styles and the location of the actual task execu
tion. 

Office Vision connects programmable workstations 
(PWSs) and, where possible, nonprogrammable terminals, 
to local or remote hosts as well as to LAN s in order to 

© 1992 McGraw-Hill. Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-127 
Technology Reports 

accomplish local or remote tasks in dedicated or coopera
tive processing modes. When an NPT interfaces to a 
midrange or mainframe host, it is clear where all the appli
cations work is going to be done on the host. With a three
tiered system that involves PWSs and a LAN, however, 
there are an infinite number of ways that a group of tasks 
can be divided up in order to split the work load between a 
local programmable workstation, its local LAN server, and 
a local or remote mainframe or midrange host. 

OfficeVision is a modular product, with key modules 
that are meant to be implemented the same way on each 
type of system. This allows for a potential "mix and 
match" approach that can handle a variety of cooperative 
processing configurations. All four Office Vision programs, 
for instance, provide comparable office, word processing, 
electronic mail, address book, calendar management, li
brary services, and decision support facilities. 

IBM anticipates that C language application programs 
using the Office Vision application platform will be devel
oped by programmers for a variety of behind-the-scenes 
functions, such as data conversion between LAN and host, 
management of variable pools, arrangement of items as el
ements of a binary tree, and row and column manipulation 
in tables of variables. There are API "hooks" that pro
grammers need to adapt the system to different languages 
and environments, which, for instance, might expect se
quences, sorts, searches, and insert text procedures to op
erate in different ways or might require that date and time 
values be managed differently. 

Capabilities specific to Office Vision as an office system 
will continue to be added in all environments in an 
upward-compatible manner; there is no need to elaborate 
further on more of them. 

However, there is another aspect of Office Vision that is 
of interest to all current and future SAA applications; that 
is, its capability to act as a model and a vehicle for other 
distributed solutions. As a model, it shows certain relation
ships between terminal and hosts, and certain topogra
phies involving LAN-based workstations and several other 
hosts. 

OfficeVision provides services to a directly attached 
nonprogrammable terminal, a directly attached OS/2 or 
DOS-based programmable workstation, or a local or re
mote OS/2 Extended Edition LAN server. From the point 
of view of the terminal user, there are three types of con
nectivity orientation governed by these terminal types. 

PWS Requestors: OS/2 EE or DOS workstations can oper
ate as requestors when attached by means of a LAN to 
OS/2 EE servers or when directly connected to MYS, VM, 
or AS/400 hosts. 

NPT Requestors: Nonprogrammable terminals (NPTs) 
can directly connect as requesters to host systems, but not 
to LAN servers. 

All-Purpose PWSs: OS/2 EE workstations can do every
thing, depending on whether they are defined as request
ors, servers, or nonprogrammable terminals. Host connec
tivity is more complex. At its current level of development, 
OfficeVision software components gravitate toward four 
different types of topographies, based on communications 
usage. Three out of four depend on how the OfficeVision/2 
LAN host (requester/server) relates to other hosts. Large 
networks can mix these types of connections, of course. 

JANUARY 1992 



723-128 
Technology Reports 

IBM 
Systems Application 
Architecture (SAAJ 

Datapro Reports on 
PC & LAN Communications 

Table 8. Basic SAA and AD/Cycle Components Compared 

SAA Categories and Components 

Common User Access (CUA) Models 
• Programmable (PWS) entry 
• Nonprogrammable (NPT) 

• Graphical PWS CUA 
•Workplace 

SAA CPI Services 
• Repository Interface 

• SQL DRDA, Query DB Interfaces 
• Dialog, Presentation Interfaces 
• CPl-C Communications Interface 

CPI Languages and Generators 
• C, Cobol, Fortran, PL/1, RPG 
• REXX Procedures 

• CSP/AE Runtime only 

Standalone: OS/2 EE-based Office Vision LAN Servers 
can be standalone units which may or may not attach local 
OS/2 EE and DOS workstations on a LAN. Neither the 
standalone nor the LAN configuration has to involve out
side communications. 

LAN to Host: This refers to OS/2 EE-based Office Vision 
LAN Servers talking to MVS/XA, MVS/ESA, VM/SP, 
VM/XA, and/or OS/400 hosts which are running either Of
fice Vision or the precursor appropriate to that system. 
Here the LAN server can be a standalone system rather 
than a server, or it can sit between the host and other work
stations on a LAN, occupying the middle tier of a three
tiered structure. Since the mainframes can support them, 
any and every type of communications topography is to be 
expected. 

LAN to LAN: These OS/2 EE-based OfficeVision LAN 
Servers talk to remote OS/2 EE-based Office Vision Servers 
as well as to their own LAN-attached terminals, if any. 
Since Office Vision is to be the same on every system, the 
remote LAN server is functionally indistinguishable from 

JANUARY 1992 

AD/Cycle Categories and Components 

Application Development Platform 
• Graphical PWS CUA 
• PWS: PDG/WSP 
• Tool Services: PDF-SCLM 
• AD Information Model 

• Repository Services: 
-Repository Manager 
-Dictionary Model Transformer 

CPI Languages and Generators 
• C, Cobol, Fortran, PL/1, RPG 

• Inspect (for C370 and PL/1) 
• CSP/AD Development, Runtime, PWS 
• CSP/AD External Source Format (ESF) 
• CSP/370 Runtime Services (RS) 

Knowledge-Based Systems 
• Knowledge Tool 
• Expert System Environment (ESE) 
• Knowledge Engineering Environment (KEE) 

Test/Maintain Tools 
• IBM Workstation Interactive Test Tool 
• IBM Software Analysis Test Tool (SATT) 
• Cobol/SF and CCCA 

Enterprise Modeling Tools 
• IBM DevelopMate 
• KnowledgeWare Information Engineering Workbench/Plan-

ning (IEW/PWS) 
• Index Technology Corp. PC PRISM 

Analysis/Design Tools 
• Index Technology Corp. Excelerator 
• Bachmann Information Systems Re-Engineering Product Set 
• KnowledgeWare IEW/Design (IEW/DWS) 
• KnowledgeWare IEW/Analysis (IEW/AWS) 

a mainframe host. However, this communicating structure 
invites distributed processing and LU6.2 APPC inter
changes because the limitations on the power and com
plexity of the OS/2 systems invite them to spread the work 
around. 

Direct Connect: Direct Connect refers to OS/2 EE, DOS, 
or nonprogrammable terminals directly connected to Of
fice Vision running on a MYS, VM, or OS/400 host, with
out the real or implied existence of a LAN. The link be
tween terminal and host can be either a local attachment or 
a remote communications link. All OfficeVision process
ing is done on the host, by definition, and the terminal is 
treated as an NPT regardless of what it really is. If a locally 
attached OS/2 EE does some of its own processing, it 
ceases to be a direct connection and becomes the first con
figuration described above. 

The optional character of OfficeVision cooperative 
processing, combined with the mirrored capabilities en
sured by SAA, opens some interesting doors. IBM talks 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

about the host doing processing for the workstation or for 
the LANs, but not much about the possibilities in the op
posite direction. 

The increase in database capacity, Token-Ring perfor
mance, and PS/2 power, coupled with the mix and match 
potentials of the Office Vision design, mean significant ex
pansion in LAN power and flexibility. It should be possible 
to off-load the Office Vision mainframe onto the LAN as 
well as vice versa. The Office Vision LAN is not unlike a 
timesharing multiprocessing mainframe. Although a 
standalone LAN system is really a networked group of 
PCs, it is treated as a single system, since other computers 
see only the key server address. 

Will such LANs prove to be alternatives for midrange 
systems? Will the LAN work well as a server for the main
frame? Instead of expanding mainframe capacity, how 
about expanding LAN capacity? Many PC users are con
vinced that ultimately this will be the case. Certainly, the 
addition of full-scale APPN networking and improved net
work management make it more and more possible to treat 
a LAN as if it were a type of networked multiprocessor, a 
single entity on a peer with midrange and mainframe 
hosts. 

Image Plus 
Next to OfficeVision, the hottest-architected SAA end
user application products are probably the ImagePlus set 
of programs, designed to support not only the processing of 
images but also the combination of those images with data 
and graphics. 

Unlike office automation, image processing is a leading 
edge technology, closely related to other leading edge tech
nologies such as optical scanning and optical storage, 
which are only beginning to find their place. The increased 
power and memory capacity of workstations with front
end capabilities, like the PS/2 and RISC/6000; industry 
interest in desktop publishing; and the development of the 
cooperative processing modification of the client/server 
program model are indications of how ripe the times are 
for image processing. However, prices must drop to make 
the technology more affordable and widespread, particu
larly with regard to laser printers, optical scanners, and 
optical storage. 

ImagePlus handles documents not only as individual 
documents but also as part of "folders" and "cases." Pro
cessing of documents and folders can involve capture us
ing scanners, indexing, storage, and retrieval, but folders 
involve larger groups of documents. Case processing in
volves a more automated approach, with groups of docu
ments managed in queues that allow time-managed or 
stage-managed workflow. 

Like Office Vision, ImagePlus applications are coopera
tive, using an SAA/CUA programmable workstation for 
much of the front-end image processing and an SAA host 
for a back-end server and processor. At present, hosts can 
be MYS CICS/ESA, MYS IMS/ESA TM, OS/400, or PS/2 
(LAN) systems; workstations can be DOS based as well as 
OS/2 EE based. There are no VM/CMS or MYS/TSO im
plementations. 

In September 1990, the introduction of the second 
wave of ImagePlus resulted in the following product sets. 

• SAA ImagePlus Folder Application Facility: MVS/ESA 
Version 2 

• SAA ImagePlus Object Distribution Manager: MYS/ 
ESA Version 2 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

723-129 
Technology Reports 

• SAA ImagePlus Object Distribution Manager/400: OS/ 
400 Version 2; includes folder handling 

• ImagePlus Workstation Program/2: Version 1.1.0 (OS/ 
2EE 1.2.0) 

• ImagePlus Workstation Program/DOS: Version 1.2.1 or 
1.2.2 (with DOS 1.4.0) 

At the mainframe level, MYS Version 1 ImagePlus re
quired an IMS database, but in Version 2 images are stored 
in DB2 local or distributed databases. The user is expected 
to choose between a CICS or an IMS TM transaction man
ager (TM no longer requires IMS itself). There has not 
been an ImagePlus implementation for either VM/CMS or 
MVS/TSO/E yet. 

When OS/ 400 systems are used as servers, the Image
Plus Workfolder Application Facility/400 Version 2 re
quires the PC Support program. Version 1 supports only 
DOS-based workstations, while Version 2 supports both 
DOS- and OS/2 EE-based workstations. 

lmagePlus systems can also be wholly LAN based, using 
a PS/2 server, but the large amounts of storage needed to 
support image handling and the large documents, folders, 
and even "books" that are likely to be involved with Imag
ePlus capability suggest that OS/400s or mainframes are 
the more likely servers. Formal "Statements of Direction" 
(SODs), released in September 1990, emphasized IBM's 
commitment to making APis on all SAA systems consis
tent with one another and to supply a variety of optical 
storage products. 

SAA, OSI, and AIX 
For the most part, this report has focused on SAA as it is 
implemented within IBM's own SNA mainframe environ
ments and APPN midrange peer-to-peer extensions. SAA, 
in the interests ofmultivendor networking and interopera
bility with other architectures, has been endorsing other 
networks and bridges as well. The most important of these 
is the OSI communications code stack, which will provide 
SAA CCS alternatives to SNA and APPN. 

Initially, the OSI/CS subsystems are just as monolithic 
as SNA. Although IBM wants to create points of exchange 
between SNA and OSI code stacks in the future, at present, 
when a program is slated to use OSI, it can use only OSI 
services and transport. Furthermore, the transport level is 
very undeveloped, since it consists of the X.25 NCP 
Packet Switching Interface (NPSI), which basically does 
nothing more than hitch an IBM system to a non-IBM 
X.25 network. Although there is a new store-and-forward 
program quite like SNADS, IBM at present does not pro
vide software that creates a genuine OSI networking back
bone, although some programs (like XI) look that way at 
first. 

As a point of clarification, AIX is not at all architectur
ally comparable to OSI. OSI is a networking architecture, 
like SNA, APPN, and TCP/IP. AIX is a UNIX-type oper
ating environment, comparable to MYS, VM, OS/400, or 
OS/2. What IBM clearly intends for AIX is not full SAA 
compatibility, but a distributed processing role that will 
make use of SNA, APPN, OSI, or TCP/IP communica
tions as user needs dictate. IBM has asserted in its position 
papers for the RISC System/6000 that ifthere is a conflict 
between SAA compatibility and AIX compatibility, the 
decision will be for smooth upward AIX growth through 
AIX UNIX compatibility. Nevertheless, there have been 
several SAA compilers and supporting system software 

JANUARY 1992 



723-130 
Technology Reports 

and compatible communications links supplied for AIX. 
Since the AIX environments must retain compatibility 
with UNIX standards to remain compatible in their mar
ket niche, SAA compatibility will rely more on bridges and 
converters than VSE systems will. "Viaducts" have al
ready been released for AS/400 and MYS systems. 

Compatibility 
SAA allows users to consider some new scenarios. Previ
ously, and even now, the relatively low-cost 9370 and low
end ES/9000 systems invited users to unburden main
frames of visible backlogs and to computerize the hidden 
ones, because they are completely compatible systems with 
a lower cost per MIPS. The real savings are in the incom
patible architectures-the PS/2s and AS/400s. The invita
tion to download is made especially tempting by the in
creasing availability of third-party application enablers 
that help the user alter or trap host code intended for non
programmable terminals and send it to PS/2 cooperative 
workstations that can do much of the work previously 
done on the host. These application enablers have been in 
existence for several years, so it is now quite clear that add
ing cooperative processing by front ending an existing 
mainframe program can indeed be done with little or no 
changes to the existing host program and yet be very cost 
effective. 

Some organizations try to prevent compatibility and 
data integrity problems by authorizing acquisitions of only 
certain hardware and/or software products, but this con
trols only some problems. Even rudimentary distributed 
processing, hardly worthy of the name in many cases, can 
create some knotty data integrity problems that must be 
controlled if distributed processing is going to work effi
ciently. Data centers cannot really prevent the acquisition 
of inexpensive PCs and thus must find ways to deal with 
many small but growing pools of data over which they 
have had little or no control. 

Many distributed processing applications are described 
in a top-down fashion: such and such an application is split 
into two, with the implication that all of it need not run on 
the larger system. Gaining control of these databases and 
processing pools is like implementing distributed process
ing from the bottom up, where the mainframe starts to par
ticipate in and control an activity that previously was 
solely the domain of the workstation. The proliferation of 
PCs in business, and the resulting uncontrolled data pro
cessing/ data storage pools, is the primary situation driving 
not only the move toward control of distributed databases 
but also the move toward control of distributed processing. 

Compatibility Problems with Individual 
Programming Standards 
Because the Common Communications standards ele
ments involve either the lower levels of SNA, the ISO OSI 
communications architecture, or application-independent 
logical entities, all of which are usually characterized by 
distinct protocol boundaries, maintaining agreed-upon 
compatibility standards is less of an issue than it is for the 
Common Programming Interfaces. Although many users 
have non-SNA applications that they must maintain for 
various practical/historical reasons, and despite IBM's 
somewhat different implementation of SNA on different 
systems, the basic concept of the logical separation ofSNA 
software as a different sphere (with its own set of separate 
experts and managers) is a concept which supports the ac
ceptance of Common Communications as a workable and 

JANUARY 1992 

IBM 
Systems Application 
Architecture (SAA) 

Datapro Reports on 
PC & LAN Communications 

separable standard. When the large network routing prob
lems for mainframe SNA, APPN, and OSI are resolved, 
they will be incorporated in the system code, and most us
ers will find all application code will be unaffected. 

The Common Programming Interface is different. As 
we described earlier at greater length, so-called standard, 
high-level language compilers differ from system to system 
as to instructions available and results produced. User pro
grams may necessarily involve system-dependent charac
teristics (as in the case with the approximations involved 
in many floating-point operations), or low-level code can 
be deliberately included to improve performance. Even 
the system code of the PC product lines, ASCII, differs 
from the EBCDIC code of the IBM mainframes and 
midrange systems. If portability is to be workable, it is ob
viously important that a programmer/analyst isolate those 
operations that are "basic" to all SAA levels and those that 
are "extensions" for use only in some of the environments. 

The SAA standard calls for openness. The practical re
sult is that IBM publishes a special set of SAA manuals 
partictilarly oriented toward compatibility. An Overview 
manual, first released in May 1987 and updated once or 
twice yearly, provides comparison tables for every lan
guage that are helpful in making general distinctions for 
the basic Common Programming Interfaces. However, it is 
the individual manuals on each standard that spell out the 
details needed by programmers. These SAA-oriented man
uals complement rather than replace the basic manuals. 
They contain detailed descriptions of specific operations, 
data organizations, etc., particularly in regard to their 
portability and their relation to ANSI and other standards. 
An easily distinguishable green print highlights informa
tion on instructions that are implemented in one environ
ment and not another, that have a different syntax (code 
format) in different environments, or that involve differ
ent semantics (behavior at run-time). The manual also sets 
apart information on each of IBM's own extensions to 
ANSI standards by boxing it in a second section immedi
ately following the explanation for the related standard op
eration. Programmers used to the basic function can easily 
see how and when to use the extended facilities. 

Levels of Compliance 
What does SAA mean for operating environments that al
ready include some, but not all, of the existing programs 
that make up SAA-for example, VSE/ESA, MVS/370, 
and PC-DOS-and yet are not designated as full voting 
members of SAA? All of these environments, and more 
than a few others, are full participants in SNNSAA Com
mon Communications and include many Common Pro
gramming Interface elements. 

IBM explains that designating an SAA system as fully 
compliant implies a commitment on the company's part to 
deliver a full set of SAA elements to each SAA environ
ment, but this does not mean that an undesignated system 
cannot participate. Of course, a backdoor SAA user would 
have to do a bit of sleuthing in order to gather the informa
tion that is currently compiled in manuals for designated 
SAA systems, isolating differences in software functioning 
in different systems. The easy-to-compare documentation 
would not be available for the non-SAA system. 

On the other hand, no user operating in an environment 
designated as a full voting member of SAA has to imple
ment every element of the standard in order to create an 
SAA program. Most applications need only a small part of 
the SAA product suite. They must use an SAA compiler 
and adhere to the Common User Access guidelines. If the 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 



Datapro Reports on 
PC & LAN Communications 

IBM 
Systems Application 
Architecture (SAA) 

program is to communicate, only SAA elements are to be 
used. Whether it is practical for the user to code in missing 
elements depends on the program type and the communi
cations or database access involved. Since ANSI standard 
compilers like those used in SAA are plentiful, the really 
distinguishing core of minimal SAA is not a program at all, 
but the handbook that describes the required end-user in
terface. 

It seems clear that the nature of the SAA architecture 
and its detailed documentation is such that outside ven
dors could be partial participants in much the same way as 
IBM's own non-SAA product lines are. In time, as applica
tions software becomes more widespread and the stan
dards are better known, a competing vendor might even 
comply fully with SAA. After all, this is an architecture 
designed for portability across incompatible systems, and 
IBM is saying it is committed to an Open Architecture. 

IBM versus Digital 
Some observers say that SAA is an attempt to match the 
easy portability of Digital's VAX software, but that analy
sis overlooks the individualistic nature of IBM product 
lines. It is more realistic to compare Digital's VAX envi
ronment exclusively with IBM's VM environment and 
think of the rest of IBM products as if they come from 
different vendors that happen to share the same communi
cations architecture and marketing and support facilities. 
(Of course, IBM does not look at it that way, although 
sometimes it hints at the idea.) In the VM environment, 
IBM software products, just like Digital programs, are now 
easily portable upward with little or no recompiling or 
converting, although some benefits are lost at the XNESA 
levels without a recompilation. 

© 1992 McGraw-Hill, Incorporated. Reproduction Prohibited. 
Datapro Information Services Group. Delran NJ 08075 USA 

Pandora's Box 

723-131 
Technology Reports 

Day-to-day data and hour-to-hour conversions, interac
tions, and interfacing integrity are not the only compatibil
ity issues for SAA. Let us suppose a distributed processing 
system operating over a peer-to-peer network consisting of 
a few (three) 3090 mainframe complexes, ten 9370s, thirty 
AS/400s, and one thousand PS/2 systems. Will all 1,043 
systems have to be updated at once, every time a signifi
cant change occurs to the mainframe SAA capabilities? 
Otherwise, will the system/network management facilities 
keep track of each system configuration, the implementa
tion levels on each system, and which application pro
grams expect what level of implementation, in case a pro
gram is ported elsewhere? What about the impact of all this 
management traffic on overall network performance? 

IBM acknowledges that ideally, as SAA develops, alter
ations and upgrades to SAA elements are made in all envi
ronments concurrently, and new developments in the area 
of change management are definitely needed. As much as 
IBM would like to institute change, the development back
log means that global, concurrent changes remain impossi
ble for some time to come. Complex issues like these make 
users more willing to abandon a feisty, do-it-yourself atti
tude in the hope that Big Blue will come up with another 
grand plan that provides an organizational backbone. 

Clearly, SAA itself involves product development cy
cles which could benefit from AD/Cycle control and Sys
tem View management. II 

JANUARY 1992 




