
In this report:

Problems with

Protocols -102

Common Elements of All
Protocols -104

Eight-Bit Protocols:
Xmodem and Its

Descendants -109

Seven-Bit PC Protocols:

The More Conventional
Way -113

c1a1apro· Datapro Reports on
PC Communications

705-101
Technology Reports

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Synopsis

Editor's Note
This report provides an overview of
most of the PC file transfer protocols
in use. It focuses on the two most
commonly found in PC networks
today-xmodem and Kermit. Each
has an application environment,
which this report will help identify.
The report also examines newer and
more efficient PC protocols that will
be available in the future.

This report was prepared exclusively for
Datapro by Donald E. Kimberlin, principal
consultant of Telecommunications Network
Architects, Safety Harbor, FL. Mr. Kimberlin
has more than 30 years' experience in plan­
ning, designing, and implementing communi­
cations networks on five continents. He is a
consultant member of STC and BICSI, a Cer­
tified Broadcast Technologist of SBE, and a
member of the Advisory Board for Datapro's
Management of Data Communications.

Report Highlights
The demand for the exchange of in­
formation among personal comput­
ers and between PC and minis or
mainframes continues to increase.
Unlike the minicomputer or main­
frame environment, PCs have
evolved to enjoy considerable free­
dom of transmission and file ex­
change between machines from
different vendors. Today, taking ad­
vantage of this freedom presents a
problem for established data centers,
which must adapt and manage the
information flow to and from PCs. A
major problem is the informality
with which most PC file transfer pro­
tocols have developed and continue
to evolve. To date, no standards
body has initiated a "standard
protocol" for PC file transfers. No
regard has been given, in what has
been done, to integrating PCs into
the OSI architectural model. What
integration can be found has oc­
curred by chance.

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

MARCH 1990

705-102
Technology Reports

Problems with Protocols
The term "protocol" causes considerable misun­
derstanding among data communications users. All
too often, a narrow meaning is applied to a broad
term. A dictionary definition calls a protocol a set
of negotiated agreements and arrangements that
allow parties to accomplish a function. The mean­
ing is so broad that the term has been used to de­
scribe diplomatic relations for centuries.

Computers and data processing are relative
newcomers to the concept of a protocol. A stan­
dard may apply to a device operating in isolation;
however, a protocol always intimates the exchange
of signals or messages. Obviously, a protocol does
not become a standard unless a range of unrelated
parties agrees on its use or accepts it as a given.

For example, the widely used IB¥ Binary
Synchronous Communications (BSC or Bisync)
protocol is often misclassified as a standard. Many
vendors claim adherence to the Bisync standard,
but users have found hundreds of detail variations
of the use of Bisync in IBM networks. Most of
them can cause a communications failure when
messages are exchanged between two IBM comput­
ers using different versions of Bisync. In addition,
non-IBM suppliers have their own variations in the
operating rules their version of Bisync uses-the
details of these variations are not public informa­
tion. Their descriptions only exist in the propri­
etary documents of the respective vendors.

Protocols reside at many layers of a commu­
nications network and must function correctly at
each layer for the network to operate. A good ex­
ample lies in the tendency of engineers to speak of
the RS-232 protocol. In fact, beyond the definition
of interface hardware names and functions, there is
a sequence of steps required to start a data trans­
mission link between two terminal devices. These
steps represent a set of rules that must be followed.
(Surprisingly, however, neither EIA RS-232 nor its
international equal, CCITT V.24 combined with
V.28 and ISO 2110, state those sequenced steps.
The steps are merely implicit in achieving the end
goal.)

As ISDN evolves, CCITT Signaling System
Number 7 (SS7) is bandied about, often with an air
of considerable simplicity. In fact, SS7 fills a whole
volume of the CCITT Recommendations describ­
ing a packet network much like X.25 for use be­
tween automated switching machines. The

MARCH1990

Xmodem, Kermit, and
Slmllar Protocols
for Personal Computers

Datapro Reports on
PC Communications

standards for SS7 describe not only that informa­
tion transfer protocol but also the function and
responsibility of supporting processors such as the
Signaling Transfer Point (STP). The entire volume
could be called the "protocol" of SS7.

This report focuses on message transfer pro­
tocols for personal computers. These protocols are
needed in higher layers of networks to manage the
flow of information after a data link has been es"'
tablished. Message transfer protocols provide func­
tions such as character error checking and
recovery, traffic flow control when buffers become
overfilled, and similar functions more complex
than those that can be done by lower level hard­
ware operations.

For example, the core function of a modem is
to encode and decode transmission channel signals
into digital pulses on an interface wire to a termi­
nal. While a modem may declare an error if it loses
the carrier signal from the far end, a noise pulse on
the line may destroy a few bits and send erroneous
data to the terminal. The modem itself does not
read the terminal traffic, so a higher level protocol
is needed to check for corrupted bits or characters
that may have been transmitted without a modem
alarm. In terms of the modem layer of a network,
the modem will output whatever is input {within
limits). Passage along the link, however, can also
corrupt even a properly structured data message.
Message and file transfer protocols with some pro­
cessing capability are needed to detect and, in most
cases, correct these errors.

In this sense, protocol operations are properly
a function of communications processing as op­
posed to data processing. In the early era of DP
machinery, a system had only one processor, so it
had to provide the processing of communications
protocols as well as its main data processing func­
tion. Today, microprocessors have moved that
function into a front-end processor and unbur­
dened the DP machine from such interrupts.

IBM's Basic Telecommunications Access
Method (BT AM) was replaced early with better
methods. Today's personal computers, however,
still generally have only one processor and must
function primarily as the early BT AM did. This is
not typically a problem, since the personal com­
puter is still used by one individual performing one
task at a time. The processing power of PCs is in­
creasing so rapidly that even 386-based machines
can be shared by groups of a dozen or more users

© 1990 McGraw-Hill, lnccrporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

on dumb terminals, leading to another round of
the operational and architectural evolution we
have seen in mainframes.

Keyboard Communications
Requirements for error checking and correction in
keyboard transmission systems are often suffi­
ciently simple that there is no need for a protocol
that processes message blocks. Here, a large re­
sponsibility is typically placed on the terminal op­
erator because errors in text transmission are easily
spotted and readily corrected in the input step. Just
as a word processing computer echoes the charac­
ters typed into it back to its screen, distant com­
puters echoplex back the characters they receive
from the data link.

The error-checking and -correcting protocol
then falls to the keyboard operators themselves. Of
course, every error to be corrected becomes a stop­
ping point, with a return to the errored data for
reentry. This method is simply automated by many
mechanized applications ... the machines detect
what seems to be an error and they back up to the
declared error, retransmitting and rechecking that
portion until it seems correct.

Bulk Transmissions
Even ifthe transmitted data is keyboard informa­
tion, using batch transmission methods of saving
the data and sending it in bulk brings forth the
need for error-checking and -correcting protocols.
In this situation, the operator (or more likely, mul­
tiple operators) is no longer in a loop that can cor­
rect errors as they enter the transmission. In fact,
in many of today's dial-up data collection applica­
tions, the operators are not even present. Trying to
hold individual transactions and correct them the
following day is inefficient. The need to add mes­
sage protocols to bulk or batch transmission is ob­
vious.

Machine-Languace File Transfers
Similarly, it is obvious that file transfers between
machines are so difficult and expensive to repair
by human action that protocols to catch and cor­
rect errors become essential. Personal computers
have progressed very rapidly to techniques of com­
pressing even text files to shorten transmission
time by half or more. This is a sound move to
avoid transmission errors. Data errors occur in
random bursts on physical channels; minimizing

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-103
Technology Reports

Where to Get More
Information and Copies of
Protocols

Xmodem, ymodem,
andzmodem
Omen Technologies
17505-V Sauvie Island
Road
Portland, OR 97231
(503) 621-3406
Modem (503) 621-3746
CompuServe: 70715, 131

CBBS Computer Bulletin
Board
Chicago, IL
(312) 849-6279
Modem (312) 545-8086

Many and varied PC bul­
letin boards around the
nation and the world.

Several Special Interest
Groups (SIGS) on Com­
puServe, BIX, GEnie and
similar commercial ser­
vices. These are particu­
larly useful places for
information on other than
the most common proto­
cols.

Kermit
Kermit Distribution
Columbia University Cen­
ter for Computing Activi­
ties
7th Floor, Watson Labora­
tory, 612 W. 115th Street
New York, NY 10025

the time to transmit a file reduces the need for sig­
nificant repairs.

The process of compressing data, however,
involves removing spaces and replacing repeated
characters or phrases with short code symbols.
Even a text file, when compressed, becomes hu­
manly unreadable. Providing a mechanized way to
trap and rectify errors in transport is far preferable.

The transmission of data such as the numeri­
cal entries parsed out of a spreadsheet program is
very common with personal computers. Entire exe­
cutable programs are sometimes transmitted be­
tween PCs. Large machines' data storage may be
used to simply hold entire executable programs for
the organization's PCs. The machine may not be
capable of reading the stored programs; it just
stores and ships them as binary files. A related ap­
plication uses electronic communications to dis­
tribute revised and updated PC programs from a
main center's storage.

Regardless, as soon as the human keyboard
operator is removed from the immediate loop at

MARCH 1990

705-104
Technology Reports

the instant of input, some form of automated error
checking and correction is needed.

Proliferation of PC Protocols

Lacking the support of even one dominant vendor,
PC protocols have evolved through several stages.
Considering that the first PC-automated protocol
is just more than a decade old, the evolution has
been very rapid. Considering further that some PC
protocols perform very advanced functions (even
to the extent of recovering interrupted transmis­
sions at the point of failure and resuming from that
point), PC protocols may be more advanced than
many operational large machine protocols.

This innovation and evolution of PC proto­
cols also brings with it the problem of limited back­
ward compatibility. Establishing a link between
two PCs in which the generation of a broadly
named protocol is dissimilar typically results in a
nonfunctional link. This case is not uncommon
when using the prototypical PC protocol called
xmodem. Our report will detail the evolutionary
variants ofxmodem later.

Common Elements of All Protocols
There is considerable commonality in the elements
needed by any protocol. Telegraphers and postal
clerks found that these same elements were needed
in handling messages for the public more than 150
years ago. (See Figure 1.) First, there is need for a
header that gives the message's destination, how to
route it ifthere is a choice, and what priority or
"class of service" the message is to get. Second, the
message itself follows. Third, a "trailer" is sent,
containing a form of error checking, so the receiv­
ing operator can confirm that the message was cor­
rectly received. Just as in telegraphy, the error

Figure 1.
Common Elements

zczc

TO: JULIS CAESAR
APPIAN WAY CONDOS
ROME, ITALY

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Datapro Reports on
PC Communications

correction method orders a retransmission in case
of a questioned message. As seen in Figure 1, every
protocol must contain three major parts: the
header, the message, and the trailer.

Header: The header identifies how the following
parts are to be handled and routed. In the case of a
paper message, the actual message form itself con­
veys some of this information. For example, even
those of us who have never personally received a
telegram expect it to be on canary paper, with the
name of the telegraph company highlighted in
bold. Information that gives the source of the mes­
sage (in case it must be returned or replied to), its
age (which may be important to using the message
or sequencing it among others), and the intended
delivery point is included in the header.

Not all communications systems require all
the subelements in a header. An example found in
computer communications is protocol blocks for
point-to-point (including dial-up) lines between a
single transmitter and receiver. Here, the source
and destination have been clearly identified before
the protocol layer is started. In such a situation, it
is clearly wasted time to send the address and
source in every block, so they are often eliminated.
If a point-to-pdint link is only part of a networking
system, however, blocks may be coming from
sources beyond the sender and traveling to points
beyond the receiver. Here, the address (as well as
source information) must be sent, so a return is
possible if needed.

This structure is found in packet networks.
Packets must add even more elements to provide
for control functions such as sequencing the pack­
ets at the receiver, identifying where a packet has
been so it is not sent repeatedly around a loop, and
similar management functions.

ROMAN UNION
Messenger Company

OFFICE OF ORIGIN: ROME MAIN
DATE: March XIV, XLIV

Even a messenger-borne
telegram must have the
three major elements of a
computer message protocol.
First, the header shows the
source of the message and
where it is to be delivered.
The second major element is
the message body itself. The
last element is a trailer, here
including the classic telegra­
pher's error check.

SUGGEST YOU DRESS WELL IF GOING OUTSIDE THE SENATE TOMORROW X IT'S STILL
ONLY MARCH XV X ARMOR MAY PRESERVE YOUR HEALTH X SINCERELY X CICERO

MARCH1990

COL XIV XLIV XV
NNNN

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Generally, header items are most useful to
have at the receiving end before the message ar­
rives. Processes to get the message where it belongs
can be started immediately. The logic can be
shown easily using the postal letter as an example.
How would the Postal Service function if the sort­
ing clerks had to read every letter to determine
where it should be forwarded?

Message: The second segment of a message block
is the message itself. The message is where a proto­
col is determined to be character or bit oriented. If
the protocol is character oriented, only whole char­
acters containing the number of bits used in the
code of that network are transmitted. In telegraph
networks using the Baudot teleprinter (CCITT # 2)
code, a character slot could have 7.5 bit times, the
length of one teleprinter character. The protocol
would get maximum throughput when using this
code. To send 10- or 11-bit asynchronous com­
puter code characters (CCITT # 5), some manipu­
lation would be necessary and would likely waste
line time. Unless considerable buffering and pro­
cessing were available at each end, it would be best
to use two 7.5-bit character slots for each single,
longer character to make it fit.

Thus 15-bit times would be used for each 10-
or 11-bit character, sending meaningless bits for 4
or 5 bit periods of each 15-bit "super character."
The cost in throughput is obvious, either 10/ 15 or
11/ 15, about 67 or 73 percent as efficient as han­
dling the code for which the protocol was intended.
Conversely, a character protocol intended for 10-
bit characters, if handling 7.5-bit characters, would
have 2.5 bit times wasted in each character slot.
The result would be 7.5/10 or only about 75 per­
cent of its peak efficiency.

The second protocol is a bit-oriented proto­
col. Here, the message portion of the block carries
a bit string of packed data so no space is wasted.
The connected terminals must now have an even
higher layer of operation, however, capable of
identifying each character's beginning and end. If
different codes are to be handled, each end's higher
layers must recognize and adapt to the code
changes. Such variability might be reflected in the
protocol's header section, where a control bit or
character identifies the contents of the message
block.

For a human example, listeners to the Voice
of America shortwave radio broadcasts hear a

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-105
Technology Reports

Figure 2.
Examples of CCITT Character Control
Strings*

Bau dot
String Meaning

Start of Message zczc
NNNN
DFDF

End of Message

Connect this message
through (to ...)

FFFF Connect Auxiliary Device
(tape punch)

DODD Disconnect Auxiliary Device

*From CC/TT "F" Series Recommendations for Public Tele­
graph Networks.

The CC ITT-agreed strings of characters above
can be seen in international telegrams today.
They are strings of four characters, selected to
have no meaning in any human language
known. In earlier times trapped and acted on
by relay logic, they have for years been used by
computerized telegraph networks. Even today,
vestiges of them can be found as protocol eie­
ments in computer networks.

"protocol" announcement preceding each pro­
gram. In one short sentence, the announcer says,
"This is the Voice of America transmitting from
Washington, DC, United States of America. The
following program is broadcast in Spanish" (or
Mandarin, or Cantonese, to give examples of the
dialect variations in the code language we call Chi­
nese).

It becomes obvious, then, how header infor­
mation most sensibly belongs before the message in
the transmission block. We can also see another
example of why certain items should be transmit­
ted before the message. Many protocols have now
advanced to the point of transmitting a first packet
(often numbered 0) to accomplish this. Such ad­
vance packets are generically called herald packets.

Many protocols have an agreed number of
characters or bits contained in the message portion
of the blocks. Telegrams, in fact, are set by interna­
tional standard (CCITT Recommendation F.30) to
be 50 words maximum. If a telegram exceeds 50
words, it will be broken into 50-word segments and
sent as a series of separate messages. A 51-word
telegram places the fifty-first word sent on a second
sheet, which is a complete telegram with its own
address, routing, and error-checking information.

MARCH 1990

705-106
Technology Reports

Figure 3.
Examples of CC/TT Character Control Strings
and TWX/ASCII Character Equivalents

Baudot
String

zczc
NNNN

Meaning

Start of Message

End of Message

TWX/ASCII
Character

SOM

EQT

DFDF Connect this message through (to ...) OLE

FFFF Connect Auxiliary Device (tape punch) DC1

DODD Disconnect Auxiliary Device DC4

Here we see the TWX/ASCII Codes imple­
mented, typically nonprinting control charac­
ters in place of the strings of four characters
the Baudot code had to use for controls.

In fact, the format of an international tele­
gram is specified in the F Series of the CCITT Rec­
ommendations. The 50-word limit is also related to
the counting of characters for messages. In the X
Series, there has been recurrent talk about a type of
service called a Datagram, which, by definition,
would be one packet long-the packet network
equivalent of an international telegram. While
packet networks could handle such traffic, most
objections come from the threatened operators of
international telegram services, who could see
packet networks replacing them.

The close relationship between telegraphy of
an earlier era and computer networks of today is
obvious.

Megalithic Protocols
Protocols for message control came early to electri­
cal communications. From the outset, telegraphers
found they needed the means to correct errors. Ini­
tially, it was a manual operation; error checking
amounted to the receiving telegrapher judging the
reasonableness of what was copied to paper. When
it seemed unreasonable, the receiver merely inter­
rupted the transmitter by opening the line, which
silenced all transmissions, just as though the line
had failed. This function is now called a reverse
interrupt; in fact, several communications codes
have a character named RVI for just that purpose.
Saying in one character notifies the sender that the
receiver seems to have detected an error. In PC

MARCH 1990

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Datapro Reports on
PC Communications

protocols, the RVI function is typically performed
by the control character NAK, for Negative Ac­
knowledge.

Following the RVI, a short message tells the
sender to back up and retransmit the intervening
material again. In telegraphy, where line time was
very precious, the signal consisted of the letters AA
followed by the last word(s) received correctly. In
modern computer systems, the receiver typically
tells the sender to back up so many entire transmis­
sion blocks, giving rise to the name, "Go Back n,"
where n equals the number of blocks to back up
and retransmit.

Between the time of the manual telegraph and
today's computer networks, however, there were
decades in which teleprinters were used. In tele­
printer networks of the Baudot era, the code set
was so severely limited that there was no room for
single-character control signals. The telegraphers
had to therefore agree on character strings for such ·
error control. What resulted and can be found in
the CCITT Recommendations for telegram net­
works are standardized sets of four-character
strings that have agreed-upon meanings.The next
logical step in evolving networks was to replace the
character strings with single control characters if
the code used had sufficient combinations avail­
able. This development occurred in the 1930s
when Bell Laboratories was working on its system
called Teletypewriter Exchange Service (TWX).
Developed in the U.S. in parallel with telex, which
was under development in Germany, the TWX
developers chose a new code, while the Telex de­
velopers used the existing Baudot code and its con­
trol string functions.

Using Baudot and its limited code set would
have required TWX users to become familiar with
telegraphy. The TWX developers instead wanted
a system and network that came as close to typing
a letter on a typewriter as possible. (In fact, TWX
could be considered the first electronic mail oper­
ation.) To emulate the typewriter, it was necessary
to expand the number of information bits from
the five bits per character of Baudot to seven bits
per character. Doing so provided for 27 combina­
tions-128 characters-in the TWX code. Of
these, only 62 were needed for text characters and
numerals in English. Even with a fair quantity of
text punctuation marks added, there were still

·combinations available for control characters. The
TWX developers added single characters that

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

could perform the functions of the former Baudot
control strings.All the preceding message control
work had been done in the era of relay logic and
digital transmission. When computers were applied
to such work, it was only sensible that they would
function in the same way. (There were, in fact, and
still are places in the world where computerized
terminals operate with relay logic at the far end.) It
made sense to have equivalents in computer codes
for the controls in telegraph codes. As a result, di­
rect equivalents to the controls of both Baudot and
ASCII can be found reaching back to IBM's seven­
unit BCDIC and continued in its eight-unit
EBCDIC codes.

Recognition Conflicts
Although recent advances have made processing
messages far more flexible, earlier workers in the
development of message transmission had limited
message capabilities. The limitations of their
hardware-based logic made it impractical to have a
character or string bear more than one meaning. If
a particular control character had some meaning to
the transport link, that character could not be used
in higher layers of the network. ,

In the early days of TWX, the processes were
so simple that an adequate number of characters
were available. The characters assigned for a higher
level function such as "horizontal tab stop" on the
printed message, Control I has the same meaning
now as it did 50 years ago. A character that once
meant "Stop sending, I have run out of tape," Con­
trol Y is widely used in W ordstar and other word
processing programs to mean "delete a line."

What happens if we send a Control-Y down a
communications line to signal stop sending, and
the receiving end thinks it is a word processing
command? Or, what ifthe word processing pro­
gram should send it through some line equipment
that understands it as a command to shut down?
(The command to shut down is the standardized
meaning of the character in both ANSI and CCITT
documents.)

That scenario is one example of the many
conflicts that occur and cause problems with the
design and operation of comniunications networks.
If anything, Control-Y should have been used for
the more modern purpose of flow control when
receiving buffers are filled, but by the time the
technology that needed buffer flow control was

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-107
Technology Reports

Figure4.
Examples of CC/TT Character Control Strings
and TWX/ASCII Character Equivalents Plus
BCDIC/EBCDIC Character Equivalents

Bau dot TWX/ASCII BCDIC/EBCDIC
String Character Character
zczc SOM PREFIX
NNNN EOT EOT
DFDF OLE BYPASS
FFFF DC1 PN
DODD DC4 RESTORE

Here we can see that the IBM computer codes
of BCD IC and EBCDIC have direct equiva­
lents equating to telegraphy.

available, that character had been usurped for
word processing. The result was that makers of stat
muxes selected the ASCII characters "DCl" as a
substitute, only then to find that yet another ven­
dor's word processing system did use DC 1 for tab­
ulation control. Muxes now need options to select
which control characters they can insert into the
link traffic depending on what sort of terminals
and software the customer is using. Setting these
options incorrectly causes either link shutdowns or
strange reactions on terminals. Explaining to users
what has to be done goes beyond what most users
want to know; it is usually just fixed and never ex­
plained.

The "trickle-down problems" that can occur
in communications links, however, now show
clearly. Misuse of one character in the code set
causes problems later on. Character recognition,
therefore, becomes increasingly important in alle­
viating such problems.

Assuming error-free transmission, we could
set up some simple rules we might call a "transmis­
sion block protocol," understanding that if
Control-Y appears in certain positions within a
block it is a line control character; in other posi­
tions it is a word processing control character.
Such rules are the essence of message block proto­
cols. From them, vendors make equipment that
can use or ignore the characters as appropriate;
however, the possibility of conflicts in use of con­
trol characters always looms over network design­
ers.

MARCH 1990

705-108
Technology Reports

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Datapro Reports on
PC Communications

Table 1. Modem (Checksum) Operation Sequence

SENDER RECEIVER

(Following an exchange in which sender and receiver agree on the file to be transferred)

[SOH][001][254][.. 128 bytes][chksum]

[SOH][002][253][.. 128 bytes][chksum]

(... the third block of data is errored and the receiver rejects it ..)

[SOH][003][252][.. 128 bytes][chksum]
incorrect)

[NAK]

[ACK]

[ACK]

(chksum

[NAK]

(... the sender again sends the third block and it does check correctly ...)

[SOH][003][252][.. 128 bytes][chksum]

[ACK]

[SOH][004][251][.. 128 bytes][chksum] - [ACK]

(... this time, the ACK from receiver to sender is errored, so the sender times out and resends ...)

(unexpected response from receiver)

[SOH][004][251][.. 128 bytes][chksum]
(... the receiver again ACKs, and is received ok ...)

[ACK]

[SOH][005][250][.. 128 bytes][chksum] - [ACK]

(... the file has been completed, so the sender notifies the receiver with a single character ...)

[EQT]

(... the receiver ACKs now to tell the sender to return to normal operation ...)

(... and the XMODEM session is completed.)

Mainframe and Minicomputer Protocols
So far, our discussion has been about message pro­
tocols in general. At the outset it was far easier to
recognize, trap, and handle characters than to re­
construct the meaning of bit patterns for line con­
trols. As a result, even computer lines used
protocols planned around handling characters. In a
character-oriented protocol, the number of infor­
mation bits in a character must be known and
agreed to by both sender and receiver. The seven
ASCII information bits provide 127 usable charac­
ter combinations. ASCII code, as properly used,
contains two characters (Shift Out [SO] and Shift
In [SI]) for users to switch to an extended set of
character meanings. The U.S. military, for exam­
ple, uses SO and SI properly to switch to weather
symbols in its weather networks.

MARCH 1990

[ACK]

Makers of mainframes and minicomputers
similarly interpreted ASCII and used SO and SI for
extended characters. Thus, mainframes and minis
use seven-bit ASCII in its standard sense. In this
case, the eighth bit of each character is used for a
per-character Vertical Redundancy Check (VRC)
called parity for error checking. Large machine
protocols are therefore based on seven information
bits in async transmission.

The personal computer had different needs.
Its early computing power was so small that shift­
ing to a different character set was quite burden­
some. The early PC also had no communications
capability. Its designers disregarded each eighth bit
for error checking and instead used all eight bits of
each character for information bits, permitting 256
combinations of characters called extended charac­
ters or extended alphabet. Obviously, they could

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

not be transmitted meaningfully (or even success­
fully) down mainframe links that permitted only
seven information bits per ASCII character.

This leads to a schism in personal computer
networks and a main division in this report­
eight-bit versus seven-bit protocols. It also justifies
the two major PC communications protocol types:
xmodem and its descendants (eight bits) and Ker­
mit (designed specifically to connect PCs into the
seven-bit environment).

Eight-Bit Protocols: Xmodem and its
Descendants
There are at least six identifiable forms of xmo­
dem, the first PC message protocol. Considering
the origin ofxmodem and its development, today's
widespread use of xmodem is nothing short of as­
tounding. Also noteworthy is the fact that xmodem
is not documented by any standards body. Users
must know with which variant they are working.

The history of xmodem is very short and
quite well documented. Until February 12, 1978, it
can be said that microcomputers were not used for
communications in any more than the most rudi­
mentary sense of keyboard text transmission. Es­
sentially, a microcomputer was only a substitute
teleprinter terminal. Microcomputers themselves
were extremely limited; 4K bytes of RAM was a
typical maximum. For the most part, they were the
toys of computing hobbyists. Even matters such as
the much-maligned eight-character filenames of
today's IBM PC-DOS hark back to those severe
limitations.

Xmodem-Checksum: The First Widespread PC
Protocol
In 1978, a Chicago programmer named Ward
Christensen set up a communications program for
his bulletin board so programmers could transmit
binary files with some degree of error control. Call­
ing his communications program "Modem," the
file transfer rules it used became known as xmo­
dem. The Modem program still lives in the public
domain, with purists of PC programming augment­
ing and improving it. Even some early commercial
PC communications programs such as the smodem
used with Hayes products can be recognized as
variants of Christensen's Modem.

The file transfer protocol of Modem, how­
ever, has spread, spawning a number of variants of

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-109
Technology Reports

its own. Choosing which, if any, of the variants of
xmodem to use for PC file transfer is one of the
critical questions newcomers to PC communica­
tions must answer.

Christensen openly called his new protocol "a
quick hack" and really did not maintain interest in
it. Subsequent changes to xmodem have been
made by others, who did not always identify them­
selves; however, the first xmodem is still used for
PC file transfers. The original xmodem is a simple
protocol-it merely sends a block with an error
check appended and waits for the receiver to ac­
knowledge or reject the block. If acknowledged, the
sender proceeds to the next block. If rejected, the
sender repeats the current block and waits again
for an acceptance.

The block length of original xmodem is a
fixed 128 bytes (or characters) and sends a check­
sum for its error checking. While ASCII parity
checking is about 95 percent effective in identify­
ing errors, the checksum form of xmodem is about
99.5 percent effective. While this is still less than
common carriers demand, it works more often and
better than many would expect.

When offered on communications lines or in
PC communications packages, it is usually called
xmodem-Checksum to differentiate it from the
several other forms of xmodem.

The factors that caused Christensen to make
his xmodem so simple still have value today. First,
it is a very basic and compact program, easily real­
izable in high-level languages. Its short blocks re­
quire only a 256-byte communications buffer and
run in a very small environment, making it quite
useful in small, economical laptops.

Xmodem-Checksum has some very simple
rules. The transfer always begins when the receiv­
ing station is ready to receive. There is usually a
PC user at an outlying end waiting to receive a
data file, so the automated main library waits to
meet the user's convenience. This receiver-driven
operational mode pervades most PC transfer pro­
tocols.

When an xmodem receiving station is ready,
it sends one character, the ASCII NAK (Control
U). Receiving that one character signals the sender
to ship its first 128-byte block of information. That
outbound information is packetized with a single
"Start of Header" (Control A). Next, two charac­
ters follow for progress checking. The first is the

MARCH 1990

705-110
Technology Reports

Tabla 2. Xmodem (CRCJ Operations

SENDER RECEIVER

(•• first character sent ...)

+- [C]

(.. first file block sent ...)

[SOH][001][254][.. 128 bytes[crc-hi][crc-lo]-+

(.. normal response from file receiver ..)

+- [ACK]

(.. error detection response from receiver ..)

+- [NAK]

All other operations identical to XMODEM-Checksum

sequential number of the current block. The sec­
ond is the "ones complement" of the next block to
follow. The ones complement is the remainder af­
ter subtracting the succeeding block number from
255. The 128 bytes of data follow, with the check­
sum, which is the result of summing the ASCII val­
ues of the 128 bytes being sent, dividing them by
255, and sending the arithmetic remainder.

Buffering 128 bytes, recomputing a local
checksum, and comparing it against the received
checksum is a relatively simple and rapid process­
ing task, for which the receiving computer sends an
ACK (Control F) to tell the sender to proceed to
the next block in sequence. Where the checksum
does not match, the receiver sends a NAK, which
tells the sender not to send the next block but to
resend the block it is still holding. The transfer pro­
ceeds with either ACKs or NAKs from the receiver
pacing and prompting the sender until the file is
completed, at which point the sender responds to
an ACK with an EOT (Control D), which signals
the receiver to revert to normal keyboard­
controlled operation.

The system's simplicity, of course, limits
helpful amenities. Xmodem has no means within
itself to transmit the filename, for example, so the
recipient must direct the incoming file to its desti­
nation; or the receiver's communications software
must parse the filename from the keyboard setup
transactions.

The inability to send filenames down the link
also means that ·xmodem does not automatically
cover file management. In complex organizations
where multiple versions of the same file might be
made and changed within minutes of each other at
distances a continent apart, users cannot look to

MARCH1990

Xmodem, Kermit, and
Slmllar Protocols
for Personal Computers

Datapro Reports on
PC Communications

xmodem as a complete answer. This is an area
where PC communications gives mainframe net­
work people fits. While trends in the large machine
and network world are toward segmenting layers of
network operations into tidy, discrete functional­
ities, PC development and its protocols tend to
combine all functions in one complex. Therefore,
information such as the filename and date stamp
transfer are added later in PC protocols, while
mainframe networks are trying to place them in
discrete layers.

Of itself, xmodem may be more OSI compli­
ant than the later PC protocols that include added
functionality. In fact, handling filename transfer
and multiple-file transfers at a session are done in
OSI style by the seventh major revision of Chris­
tensen's original program. In Modem?, filenames
to be transferred are actually sent down the link as
separate messages preceding the transfer. As a re­
sult, the operators enjoy an automated session (ac­
tually an automated series ofxmodem sessions),
albeit in a mode some programmers call "brain
damaged." In Modem? multifile sessions, the file­
names are transmitted one character at a time and
wait for a confirmation before sending the next
character. This does not help the throughput or
on-line holding time and should be repairable by
making the filename shipment a separate message.·

Experienced users of mainframe protocols
will find many serious flaws in xmodem-Checksum;
however, they are not all as valid in the PC
environment as in the mainframe world. First,
the process of sending a raw checksum down a
transmission channel is not recommended by com­
munications people. It is only about 99.5 percent
successful at trapping errors, which is not desirable
for commercial communications. Further, a check­
sum is particularly prone to being fooled by two
successive incorrect bits. We should also consider
that in PC communications, the data rates are fre­
quently low and lines are commonly short. The
majority of PC modems used now run at 1200 bps.

Adding Better Error Checking: Xmodem (CRC)
In a relatively short time, users of Christensen's
original work began to add functions to xmodem to
make it more broadly useful for longer distance,
more demanding work. Among the first of these
was to increase the error-checking capability. John
Bryns added the commonly accepted Cyclic Re­
dundancy Check (CRC) error-checking scheme to

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

xmodem, resulting in the variant called xmodem
(CRC). Using 16 bits spread across two character
times, Bryns added CRC-16 to xmodem with the
addition of only one character time per block. At
the block size of 128 message characters, CRC-16
effectively traps 100 percent of errors of less than
16 bits, 99.997 percent of 17-bit error strings, and
99.998 percent of all errors of 18 bits or more.
CRC-16 is so robust that it is the standardized
error-checking method of CCITT Recommenda­
tion V.41 and has been adopted for years by many
mainframe computer suppliers.

Further, Bryns made a rather clever change to
the xmodem operation that permits automatic rec­
ognition of the use of CRC or Checksum opera­
tion. Bryns changed the receiving end's first action
from a NAK character to the letter "C." Many au­
tomated file transfer sources (such as computer
bulletin boards) can now automatically prepare
their outgoing file blocks with either a Checksum
or a CRC-16, depending on whether the controlling
file receiver primed them with a NAK or a C. Vir­
tually all PC communications software containing
internal file transfer protocols now has both forms
of xmodem operation available.

Detail of the CRC characters of xmodem
(CRC) is as simple as the rest of xmodem. The first
8 bits following the 128 data bytes are the "high"
digits of CRC, while the second 8 bits are the
"low" digits. Except for the use of C as the first
priming character by the file receiver, and the
change and addition of a byte for CRC, xmodem
(CRC) uses all the simple operations we explained
earlier.

CRC-16 for transmission of message blocks
has been in use for more than 40 years, dating to
the era of relay logic, when its computation was an
arcane art. Today, microprocessors make short,
simple work of the computation.

To compute a CCITT V.41 CRC-16, the
number of ones bits in the block to be protected is
manipulated in the polynomial x16 = +x12 +x5 + l.
After a division process to reduce the number, a
remainder results. This is a number in the order of
x1023, which requires 16 binary places to describe.
That number is sent down the link, where the file
receiver recomputes it and compares it to the for­
warded CRC. A match indicates no errors, for
which xmodem will return an ACK character to
the sender, and the sender will advance to trans­
mitting the next block. A mismatch indicates an

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-111
Technology Reports

error, and xmodem returns a NAK, which will
cause the sender to retransmit the same block. The
computation process sounds daunting; however, in
the C programming language of PCs, it comprises
16 lines of code and is performed in less than an
eye blink.

Increasing Throughput: Xmodem (1K)
In similarly short order, the improved effectiveness
of CRC-16 error checking was found to be so good
that xmodem's block length could be increased. In
fact, the overhead of 6 added characters to the 128
traffic characters of an xmodem block should allow
for about 95.5 percent throughput, but the delays
ofline response time and wait for ACKs reduce
this percent considerably.

A typical trial of sending moderate-length PC
files across the country showed that xmodem with
128-byte blocks offers throughput efficiencies in
the range of 55 to 65 percent at modem speeds of
1200 and 2400 bps, respectively, on dial-up lines
with no errors. On a packet net, 128-byte xmodem
suffered even worse, running only 35 to 45 percent
at 1200 bps, and even slightly less at 2400 bps. The
added delay of repacketizing data into the frame
blocks of a packet network debilitate a 128-byte
protocol. Using a protocol with 1,024-byte blocks
in the same trials showed an improvement of _84 to
91 percent on regular DOD, and 79 to 84 percent,
on packet nets.

Increasing block length provides for a major
improvement in throughput. Increasing xmodem's
block length to 1,024 bytes helps considerably. It
essentially reduces the number of stop-and-wait
times by a factor of eight.

By the time of the increase to 1 K packets, a
number of varying camps were already using xmo­
dem. Fortunately the various camps settled on a
single way of identifying a 1,024-byte block. Also,
it is another simple change. Instead of starting the
message block from the sender with a SOH charac­
ter, the 1 K versions of xmodem use the STX char­
acter. Simple variations such as these make it easy
for the writers of communications packages to pro­
vide many automatic functions in their programs.
Conversely, many communications packages do
not take advantage of these simple tricks because
their writers do not understand the simple logic
behind the variations in the protocols.

MARCH1990

705-112
Technology Reports

Overcoming Line Turnaround Delays:
Windowed Xmodem

One interesting point about the development of PC
communications is that its lack of standards simul­
taneously permits rapid moves to operation-with
both good and bad ideas. One good idea for xmo­
dem has been the addition of sliding windows. In
the windowed implementation, xmodem's rigid
stop-and-wait-for-an-ACK link is broken. Here,
once started, the file sender runs ahead and sends
several blocks without waiting for an ACK. If a
NAK does come back, Windowed xmodem backs
up that many blocks and retransmits them. Adding
windowing to the 128-byte blocks of xmodem ·
helps throughput considerably, placing it close to
that of xmodem (1 K).

For whatever the reason, there seems not to
have been any merger of Windowed xmodem with
xmodem (1 K). This should have resulted in a very
efficient protocol. Rather, it seems the prolifera­
tion of PC protocols that broke the OSI rules by
packing the filenames and date stamps into the
protocol block has overtaken such a development.
Several proprietary variations of Windowed xmo­
dem may be doing so, such as CompuServe's CIS-B
and Quick CIS-B protocols, both variations of
Windowed xmodem.

Cousins of Xmodem, Not Descendants

The main thread of xmodem-like protocols shifted
to the Pacific Coast when Chuck Forsberg pro­
duced ymodem. Forsberg was an early worker in
the UNIX domain and produced a protocol he
called "Yet Another Modem," or YAM for the
UNIX environment. Recompiled for CP/M and
PC-DOS, he named it ymodem. More recently,
Forsberg was commissioned by Telenet to produce
what should be the best protocol for use on packet
networks, so he christened that improvement zmo­
dem.

Ymodem
At its outset, ymodem used 1,024-byte blocks and
CRC-16 error checking, making it as efficient and
effective as the best xmodem. Also, in the best
OSI-shattering tradition of PC work, Forsberg in­
cluded filename and date-stamping into ymodem.
For xmodem, Christensen had started counting file
blocks with 1, not 0. Forsberg added a block O to
ymodem's rules. In ymodem, block 0 is the bearer
of the filename information for a batch transfer.

MARCH1990

Xmodem, Kermit, and
Slmllar Protocols
for Personal Computers

Datapro Reports on
PC Communications

Table 3. Structure of a "Generic"
Kermit Frame

"Length byte"
"Type byte"

[SOH][x] [y]

"Sequence # byte"
"Data field"

"Error Check byte(s)

[z] [1 to 857,374 bytes) [1 to 3 bytes] .

Since ymodem was, by original definition, a
1,024-byte protocol, Forsberg had his first revi­
sions use the SOH character to lead blocks. This
utterly confused xmodem (lK) receivers that ex­
pected SOH to indicate a 128-byte block following.
Later revisions corrected the problem, and prop­
erly compatible ymodem operations can even
switch between long and short blocks when error
conditions require. Many erroneous implementa­
tions exist on bulletin boards around the country,
however, no small number of which are actually
xmodems (lK) that get knocked down by receiving
a packet 0.

Another variant ofymodem, called ymodem­
g, is meant for exclusive use with error-correcting
modems of the MNP or X.PC variety, or on packet
channels that are intrinsically error correcting.
When such channels are used, the Physical Layer
checks errors and corrects them; doing so in the file
transfer layers of a system would be redundant.
Ymodem-g sends no error checks until the end of
the file. This makes throughput on unprotected
modems seem blisteringly fast. If one error gets
into a file, however, the whole transfer session is
wasted. Ymodem-g should be used only with error­
protected channels or on very local hard-wire links
totally free of errors.

Zmodem: The Ultimate Xmodem?
The packet net problem for PC protocols has had
several solutions. As previously mentioned, Com­
puServe addresses it with windowed proprietary
protocols derived from xmodem. GEnie uses ordi­
nary xmodem but does so with interfaces physi­
cally located at its local dial-in ports, where its
packets can be stuffed optimally to overcome prob­
lems. Telenet, attempting to avoid the need for
hardware around the nation, commissioned Chuck
Forsberg to develop a suitable protocol in 1986.
The result was zmodem, a public domain protocol.

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Forsberg simultaneously produced a shareware­
distributed program called DSZ.COM for DOS
PCs, however, and commercial programs for the
UNIX and VMS environments. Thus, considerable
availability of this very advanced protocol for PC­
to-mainframe or PC-to-mini links is provided.

Zmodem combines all the technological ad­
vances previously mentioned and adds a few of its
own. Perhaps most significant is zmodem's stream­
ing operation. Datastreaming permits nonstop data
transmission in the absence of errors. With stream­
ing, there is no stop-and-wait until the file receiver
detects an error. It answers quite well the limits of
throughput on satellite or packet links. When the
transmission is in error, a recovery means is
needed, and zmodem's is as advanced as any. If the
zmodem file receiver detects an error, it initiates a
reverse message telling the sender how many
blocks to back up and resend. Zmodem also can
recover from a failed transfer, with the file receiver
telling the sender the block number to restart.

Zmodem provides full directory listings for
transmitted files along with time/date identity for
those files. The time/date system of zmodem sur­
passes that of the DOS provided for IBM PCs and
compatibles. The zmodem time/date system is set
in global Universal Time Coordinated (UTC, for
practical purposes the same as GMT) and relates
back to January 1, 1970.

Other Eight-Bit Protocols and the Future

Less widespread use is made of numerous other
variants of xmodem. Each has its own salient fea­
tures and, in some cases, very vocal adherents.
Having names such as Sealink, jmodem, and bimo­
dem, each has its combination of error-checking
schemes, full-duplex operation, or windowed oper­
ation, to advance beyond those first steps of xmo­
dem a little more than a decade ago.

As to future developments, the problem eight­
bit PC protocols seem to have is a rather flagrant
ignorance of the OSI system layers and interfaces.
Rather than conform with OSI, they seem to ignore
it. Users may have to deliberately depart from OSI
planning in order to service PCs. Some users are
following that path. Not the least of these is AT&T
with its Electronic Mail service, A TT-Mail, using
its own proprietary ymodem251 protocol to batch
upload and download E-Mail messages to IBM,
Apple, and UNIX PCs on that network. Some

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

705-113
Technology Reports

Table 4. "Generic" UUCP-g Frame
Using Control Byte

"data length bytes"
CRC-16

"control byte"
"x-or byte"

data field

[OLE] [L 1] [L2] [lo] [hi] [ttxxxyy] [x-or] [- . 0 to 4096]

seven-bit protocols fit OSI more closely, but at
considerable throughput expense.

Seven-Bit PC Protocols: The More
Conventional Way
In 1981, some establishments began to realize the
need to establish file transfers for microcomputers
in the office. Protocol work in the establishment
area has paid more attention to the Open Systems
Interconnection model of the ISO; however, it has
also been largely optimized for the standard seven­
bit characters of ASCII (International Telegraph
Alphabet # 5). This presents some real throughput
problems for the simplified "PC way" of using the
eighth bit for extending the code to 256 characters.
The largest proportion of PC files are in those
eight-bit characters. Integrators of PCs into large
systems networks, therefore, must make some hard
choices, at least in the PC-DOS environment­
compliance with OSI or reduced throughput. The
following examines some establishment answers.

Kermit: The Seven-Bit Standard

While working on a solution to connect student
and departmental PCs to minicomputers at Co­
lumbia University, Frank da Cruz and William
Catchings formulated an evolving standard. Its
name typifies the whimsy of computer educators,
coming directly from the redoubtable frog of televi­
sion fame, Kermit. Its character evokes that of its
namesake, constantly trying to do all things that
everyone wants, succeeding at some, suffering false
starts and retries at others, until it finds the best
way. The result has been many revisions and itera­
tions of Kermit, with many implementers of the
protocol running generations behind.

For instance, Kermit originally was intended
for file sharing with minicomputers and was struc­
tured around seven-bit information character slots.

JUNE 1990

705-114
Technology Reports

It had only one way to handle eight-bit characters:
divide them and ship seven bits of a character in
one slot and the eighth bit in the next slot. The ef­
fect on throughput of PC binary files is obvious. It
was (and is) a penalty users of earlier versions of
Kermit had to pay.

Many users of earlier versions maintain nega­
tive opinions about Kermit. More recent versions
use some method to signal that a following se­
quence is in the extended part of the character set
of PCs. Used in various ways at various revision
levels of Kermit, a "quote byte" contains a charac­
ter (most typically the ASCII # for control charac­
ters and the & for high-order bit set "true") to
identify nontext characters requiring retranslation
for the receiver. So many revisions of Kermit exist
that not everyone knows there are variations on
"quoting" and that even the most capable versions
automatically set up and agree on what the
"quote" character will be.

Many of the earlier versions of Kermit are a
result of its wide use in many environments. Im­
plementations of Kermit exist for the widest vari­
ety of computers imaginable in languages as
diverse as APL for Unisys machines and PL/I for
Prime minicomputers. Some of the better main­
frame implementations provide a server mode that
allows all commands to be given from the remote
end. The server mode is similar to what many PC
users find on their PC bulletin boards.

The earliest Kermit versions were built to run
in what was then the very small memory environ­
ment of a PC. As a result, those early versions ran a
block size of only 91 bytes, even smaller than the
original xmodem and less transfer efficient. Since
1986, longer blocks have been used in newer Ker­
mit versions that permit options of long packets of
9,024 bytes, extra-long packets of 857,374 bytes,
sliding window techniques, detailed file informa­
tion, encrypting of data on the link, and other func­
tions. Each of these is complicated by variable
error-checking methods. These newer improve­
ments, particularly the sliding window technique,
have increased Kermit's complexity. As a result,
many of the mainframe implementations have yet
to include it.

Kermit is, however, well kept by its custodi­
ans at Columbia University, who distribute revi­
sions in both disk and source code form for

JUNE 1990

Xmodem, Kermit, and
Slmllar Protocols
for Personal Computers

Datapro Reports on
PC Communications

nominal fees. Those of a dial-up mind can down­
load recent revisions from BITNET or ARPANET.

Perhaps the greatest problem in using Kermit ,
is the tremendous variety of implementations, par­
ticularly those provided in various PC communica­
tions programs. They can often be some different
vintage (usually earlier) than a particular host ma­
chine. A later vintage in both ends of the link
should result in a version of Kermit as capable as
any PC protocol.

The UNIX Answer: UUCP Packet
Protocol-g
The UNIX protocol, UUCP, dates back as far as
xmodem (1978). It has also been revised and up­
dated, but one version in particular seems to be
fairly widespread, called UUCP-g, or sometimes
"PK" for Packet Driver. UUCP-g operates much
like IBM's SDLC in that it has in its envelope an
eight-bit control byte that carries information
about the transfer (instead of the several bytes in
fixed positions other protocols use).

For UUCP, Bell Labs developed a unique
means of telling the receiver what the data field
length is, and an unusual element called the
"exclusive-or byte" that functions as a special error
check on the header itself.

The length byte code represents the field
length as the variable quantity "k," where the field
length is expressed as 2k"4 bytes, up to a maximum
of 4,096 bytes. This makes the range of numbers in
the two data length bytes from 04 for a data field
length of 0 (if ever sent) to 16 if signifying a field
length of 4,096, in increments of the powers of 2.
Observers state the most common value of "k"
seen is 10, for 64-byte frames in UUCP.

UUCP-g's control byte, however, is rather
clever and may or may not be why IBM decided to
use a similar code. The control byte ofUUCP-g
has fixed bit positions, called "t", "x", and "y" bits
as follows:

Position in control byte 8 7 6 5 4 3 2

Bit Name t x x x y y y

Meanings: tt

00 This is a control packet

01 Alternate channel (obsolete)

1 O This is a data packet

11 This is a short data packet

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

Datapro Reports on
PC Communications

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

xxx (sending signal) yyy (received result)

001 CLOSE 001 no message

010 RJ (reject)

011 SRJ (selective
RJ)

100 RR (receiver
ready)

101 INITC

110 INITB

111 INITA

010 last correctly re­
ceived packet

011 packet # to send

100 last correctly re­
ceived packet

101 window size to
set

110 data segment size
(=32 X 2YYY)

111 window size to
set

To further mystify the control byte, when in
data packet operation, the xxx and yyy change to
the current outbound packet number and last re­
ceived valid packet number expressed "modulo 8."
Some observers have noticed that older implemen­
tations of UUCP-g set the window size at three,
which is too small for current higher speed mo­
dems and longer channels. If not identified and
corrected, this small oversight can result in poor
throughput. Obviously, it could be easily fixed, as
could an earlier typical packet length of only 64
bytes.

705-115
Technology Reports

Finally, UUCP-g frames contain another un­
usual element, the "exclusive-or" byte. It functions
as an error check on the preceding header bytes, a
rather nice precursor of OSI, dating from times
long before OSI. With this, UUCP-g provides a
means to strip off the message data for processing
at higher layers, with assurance that its handling at
lower layers was correct.

Error-Correcting Modems: More
Confusion or Less?
Modems are now available that provide error de­
tection and recovery buried within the Physical
Layer of data lines, where the OSI Model never
intended it to be. That is a very attractive location
for error control, as it stays in that hardware layer
most avoided by data processing people. If, in fact,
it permits the purchase of lines and modems with a
vendor guarantee of error-free operation, it is at­
tractive. It removes a degree of network control
from the user, however. Now, if operation stops, it
requires first a call to the modem supplier. If the
modem supplier places the blame on the phone
line, another delay ensues while the arguments be­
gin.

Table s. A Sampling of PC Communications Software Programs

NAME SOURCE

Procomm Shareware

Procomm Plus Commercial

Sitcom Commercial

Smartcom Commercial

Telix Shareware

QModem Shareware

Boyan Shareware

Telemate Shareware

PC-Talk Freeware

{COM MO} Shareware

Red Ryder Commercial

© 1990 McGraw-Hill. Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

COMMENTS

v.2.4 is last and final shareware version, has numerous internal
protocols, including earlier versions of KERMIT and SEALINK.
Can accept external protocols.

v.2.4.2 sold widely by software and PC dealers. Features as
above.

Supplied with many "traveling" and "pocket-sized" modems.
Contains only XMODEM public-domain protocols; needs exter­
nal to get better function.

Supplied with Hayes-made modems. Many versions in field;
most have only XModem internal.

v.3 and later have many internal protocols including ZMODEM.

v.4 is a programmer's dream, but might be too complex for us­
ers to handle.

v.4.01 has several PD internal protocols; needs DSZ.COM in or­
der to run ZMODEM.

v.2.0 beta-testing at this writing; has several internal protocols
including ZMODEM, plus somewhat clever multitasking for the
PC-DOS environment.

Given out freely by its author to all who send in a blank dis­
kette. Current status unknown.

v.3.30 works quite smartly in even the smallest laptops. No in­
ternal protocols, but macros for DSZ.COM built-in.

For the Macintosh environment; well-developed, supports many
protocols.

JUNE 1990

705-116
Technology Reports

Further, error-correcting modems implement
their own protocol on data down at that layer. If
the user is blocking up data and error checking it in
higher layers by using a protocol similar to the
types we have described here, it can cause the same
sort of throughput delays that would occur if used
on a packet network. The error correction of these
modems is generally much like X.25 as used in a
packet network. In particular, MNP Class 2 is vir­
tually X.25 run between a pair of modems. In the
worst possible scenario, there could be two layers
of error correction in the software and modems
when a user dials up on a packet network to send a
file.

Of cqurse, the user can overbuy and then shut
off some of the error-correcting horsepower by us­
ing ymodem-g or zmodem with error-correcting
modems. But even in this case it is wise to shut off
the error correction in the modems when using
packet lines.

How to Use Protocols in PCs
The key to sorting out this confusion lies in Exter­
nal Protocols. Rather than selecting a package for
its built-in line protocols that may or may not be
current with implementations already in place else­
where, PC software is available that permits re­
cording a track of the necessary protocol in the
same directory of the PC as its communications
program. Many PC communications programs pro­
vide for external protocols. Many of them already
have macros built in for the more common exter­
nal protocol packages, most notably the DOS pro­
gram DSZ.COM from Forsberg's Omen
Technology. With DSZ.COM added to any pro­
gram, all the variants of xmodem, ymodem, and
zmodem are ready in the PC. Omen also has
UNIX versions.

Many PC communications software programs
come with a variety of communications protocols
and capabilities for external protocols. Another
problem often encountered when dealing with the
proliferation of PCs is the demand for communica­
tions with a PC that already has communications
software. If there is some knowledge of what the
PC needs to be compatible, there is at least a possi-

JUNE 1990

Xmodem, Kermit, and
Similar Protocols
for Personal Computers

Datapro Reports on
PC Communications

ble answer. (Perhaps a good answer is a diskette of
Kermit or the address of Columbia University,
providing the user with the name of the requisite
external protocol software!)

Table 5 lists a sampling of available PC com­
munications software programs.As a general rule,
the more "commercial" a PC communications pro­
gram, the less its range of protocol choices. The
shareware authors must make their products at­
tractive by being easier and more flexible than
"store-bought" programs. Some contain such a
range of internal protocols, however, that their ex­
ternal selections are limited to one or two.

Bibliography
Our research in presenting this report yielded
many nontraditional sources of information. In
keeping with the informality of the development of
PC communications protocols, much of the infor­
mation is in magazine articles as opposed to hard­
bound books. Here is a selection of what seemed to
us to be the better material.

"Picking the Proper Protocol," PC Magazine, June 11, 1985, p.
355 ff. "Modem7 and Downloading," ONLINE magazine, No­
vember, 1985, p. 57 ff. "Choosing and Using Modems," PC
Magazine, April 29, 1986, p. 233 ff. "Public Domain Protocols
Fill Void for Async File-Transfer Standard," PC Week, Septem­
ber 8, 1987, p. C3. "The Downloading Zone," Personal Com­
puting, March, 1988, p. 89 ff. "The ABCs of X-, Y-, and
Zmodem," BYTE Magazine, February, 1989, p. 163 ff. "The
Protocol Pack," BYTE Magazine, March, 1989, p. 155 ff. "PC
Communications and Protocols," Programmer's Journal, July/
August, 1989, p. 44 ff.
The Complete Handbook of Personal Computer Communica­
tions, Glossbrenner, Alfred, New York, St. Martin's Press, 1983,
ISBN 0-312-15717-7.
Communications and Networking for the IBM PC, Jordan, Larry
E. and Churchill, Bruce, Bowie, MD, Robert J. Brady Company
div. of Prentice-Hall, 1983, ISBN 0-89303-385-5.
Computer text file: "Xmodem/Ymodem Protocol Reference ...
A Compendium of documents describing the Xmodem and
Ymodem file transfer protocols," edited by Chuck Forsberg,
originated from Forsberg's Telegodzilla electronic bulletin
board, undated, appearing on many bbs systems as
"YMODEM.DOC." Reprints are available from Mordon Ser­
vices, Box 1776, Safety Harbor, FL for $10 cash for postage and
handling. (A selection of the base documents for XMODEM
and YMODEM.) •

© 1990 McGraw-Hill, Incorporated. Reproduction Prohibited. Datapro Research.
Delran NJ 08075 USA

