
STRING MATH SUBROUTINE PACKAGE
STATH 1.2

APRIL 27, 1973

rOQrom
•

·S0rS UI

COPYRIGHT© 1974 BY DATAPOINT CORP. PRINTED IN U.S.A.

STATH Users Guide

Datapoint Corporation

April 27, 1973

INTRODUCTION

Stath is a subroutine packaqe specifically desiqned to
provide formatted keyboard input, screen display, check sum
and arithmetic operations on numeric strings. Each function
of STATH is obtained by calling the entry pOint associated
with that function. ~

Following is a list of the functions available through
STATH. The labels given to their entry points and the
sections incorporating their usage parameters:

ENTRY POINT

ADDS
COMS
OIV$
OSPS
KEY$

MOD10S

MOD11$

MOV$
MUL$
SUBS

FUNCTION

Addition
Compare Maqnitude
Division
Display on screen
Keyboard formatted
Input
MOD 10 check sum
calcuation
MOD 11 check sum
calcuation
Move string
Multiply
Subtract

1

2.0 INTRODUCTION TO STRINGS - NUMERIC AND OTHERWISE

The purpose of a 'string' is to carry around a 'package' of
text. A string is an individual block of text and just like
a string it has a definite beqinning and end. The
cQJJIPosltion of the string is an uninterrupted sequence of
ASCII characters. That is, between the beginning and end of
the string and only ASCII characters are allowed-

The string is bounded at the beginninq and end in different
ways. The end is determined by the first occurrence of the
ASCII 'ETX' which is equal to (003) in the sequence of
characters called the string. The 003 tells STATH that the
string is ended. The CTOS will also accept a carriage
return character (015) in place of the 003 but STATH only
accepts the 003.

The following are valid strings. The contents of the
parentheses are intended to be the byte value of the ASCII
character for single character values or the octal value of
the octal triple such as 003.

(N) (0) (W) () (I) (8) () (T) (H) (E) () (T) (I) (M) (E)
(003)

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (003)

Which are in octal:

116,117,127,040,111,123,040,124,110,105,040,124,111,115,105,
003

and

060,061,062,063,064,065,066,067,070,071,003

Althouqh a string has an inherent end built into itself, the
003, there is no beqinninq. At least no be91nnlng which
itself is part of the string of characters in memory. The
beginning is combined with the pOinter to the string itself.
That is, a string is referred to by calling out a location
in memory. That location is the first character of the
string. In the above samples, for • now is the time' to be
referred to beginning with the word 'now' the location of
the letter 'N' would be specified. It is clear that
specifying only the 'N' yields a complete description which
1s:

'Begin with the character in the location specified and
continue until a 003 is reached.'

Beginning with 'N' and cont1nu1n~ to the 003 gives l 'Now is

2

the time'. If the location of the letter .,w' in now were
specified, the string resulting would be 'w is the time'.

Therefore, to specify a string to a routine (like STATH)
which is going to use the strinq, the user must only
transfer the address of the first character ot the string or
the character in the string the user wants to begin the
string (it may not be the first) to the routine. Also, if
the user created the string, he must be assured that there
is a terminating 003 byte immediately following the last
character of the string in memory.

STATH differentiates between two categories of strings:

1) Numeric strings

and

2) Non-numeric strings

Where numeric strings are only regular strings wi th the
character set restricted the characters 0123456789 with an
optional single period representing the decimal pOint and/or
a single hyphen leading the string representing a minus
sign.

A non-numeric string 'is any string which is not nUmeric by
the above definition.

A numeric string (ommitting temporarily the 003) can look
1 ike:

00000034567788888777.9999999999991

or

-123.45

or

34.5000000000

There is a si ze limi t as to the number of characters a
string may have in STATH. This is not true of ordinary text
strings in CTOS where a string may, for some stranqe
purpose, have thousands of characters in it. STATH is a
mathematic package and the numeric strings represent
numbers. The largest number of digits, therefore, is
limited in STATH and that limit is 126.

2.1 INTRODUCTION TO THE FUNCTIONS OF STATH

STATH functions fall in the following four categories. The

3

categories are listed With their appropriate functions
below.

ARITHMETIC ANALYSIS

Addition Compare

Subtraction MOD10
Cbeck

Division MOD11

Multiplica
tion

check

MANIPULATIVE

Move

INPUT/OUTPUT

Keyboard format
ted input
Display on screen

The arithmetic functions are the normal functions with which
everyone is familiar.

The analysis functionsperllit decisions to be made on the
content of a number. MODI0 and MODi! verif,y the check sum
Modulo 10 or 11 as is used in many business applications.
Compare will permit comparinq two numbers to determine
equality or relative magnitude.

The move function is necessary as a preparation for using
the mul tiplication and divi sion functions in STATH,
applicable for qeneral use in the user" s program to move
numeric strings from one location to another and to format
and round them in the process.

The input/output functions provide the user with simple
techniques for bringing numbers into memory from the
keyboard and displaYinq string numbers in memory onto the
screen.

4

3.0 STATH FUNCTIONS AND ARGUMENTS

Each routine takes one or two argumentse An argument
consists of a CTOS-compatible string. The argument strings
are bounded at the end by an ASCII ETX (003), and the
beginning boundary is determined by the address contained in
the register-pair associated with that argument. The
maximum size for any STATH string is 126 characters. This
means arguments and results are limited each to 126 digits.

Except for the routine DSP$, all strings must be 'numbers'
which means a sequence only of ASCII nUmeric digits
(0123456789) with an optional decimal point, an optional
leading minus sign and optional leading blanks (an octal
040). The number must be right justified in the argument
string. All strings except for DSP$ set the condition flags
as follows:

Flag

Zero
Sign
Carry
Parity

Indication

The result was zero
The result was negative
An overflow occured
One or both arguments were improperly for
matted

If parity is not set at the end of an operation, HL and DE
contain the addresses of the location in memory pa st their
respective ETX's. In case of KEYS and DSP$, 0 contains the
column and E contains the row of the posi tion immediately
beyond the display area used. HUL$ and OIV$ leave 0 and E
with junk in them. MOD10 and MOO!1 leave Hand L containing
the address of the check digit postion.

3.1 EXAMPLES ON THE USE OF STATH

Following is a 488-byte program which is a useful desk
calculator us1nq STATH. It is included as an example of a
program calling STATH func~ions.

, DCLAC', the desk
provides addition,
of that inputted
always inputs the
labeled ' INPUT" •
, ACCUM'.

calculator, inputs a numeric string and
subtraction, mul tiplication or division

string against 'an accumulator. 'DCALe'
string from the keyboard into a string
The accumulator is in a strinq labeled

The four arithmetic operations performed in the program are
routines labeled as 'ADDOP', 'SUBOP', 'MULOP', and 'DIVOP'.
The routines are very short but demonstrate the use of
STATH.

5

BOOT$
MOVS
ADDS
SUBS
MULS
DIVS
KEYS
DSP$
KEYIN$
DSPLY$
MLOADS
BEEP
HEADING

DECPL
OVFMSG
BLANK
CLEAR
INPUT
ACCUM
OIVIO
NAMEl
OPCOOE
OCALC

DCALCH

SET
EOU
EOU
EOU
EgU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DE
CALL
JFZ
DE
HL
CALL
LO
LE
HL
CALL
LL
CALL
LL
CALL
LL
CALL
LL
LAM
SU
LBA
LC
LA
SUB
LLA
LHC

01000
064
010000
010003
010006
06000
06003
010014
010017
017000
017151
011620
13
021,011,20,'2200'
013,5,011,31,'Total'
013,7,011,28,'Keyboard'
013,2,011,28,'0 to 9'
'Decimal Places?'
• 0' ,3
'Overflow',3
• , ,3
022,3
'0000000000',3
'00000000000',3
'0000000000000000000000',3
'STATH'
, ',015
NAME1
MLOADS
BOOTS
o
HEADING
DSPLY$
51
2
DECPL
KEYS
INPUT
FILLIN
ACCUM
FILLIN
OIVIO
FILLIN
DECPL

110'

, ,
•

INPUT+10

LA ACCUM+10

6

SUB
LLA
LMC
LAB
SLC
LBA
LA DIVID+20
SUB
LLA
LMC
LO 28
LE 2
HL CLEAR
CALL DSPLY$
DE ACCUM
HL ACCUM
CALL ·SUBS

DCALCL LO 38
LE 5
HL ACCUM
CALL DSPS
LO 50
LE 7
HL BLANK+6
CALL OOPS
LE 38
LE 7
HL INPUT
CALL KEYS
LC 1
LE 50
LE 7
HL OPCODE
CALL KEYIN$
HL OPCODE
LAM
CP 015
JTZ ADDOP
CP 'A'
JTZ ADDOP
CP 's'
JTZ SUBOP
CP 'M'
JTZ MULOP
CP '0 '
JTZ OIVOP
CP 'E'
JTZ MOVOP
CP 'R'
JTZ DCALCH
EX BEEP
JMP DCALCL

ADDOP DE INPUT

7

HL
CALL

OVFTST JFC
LO
LE
HL
CALL
EX
JMP

NOOVF LE
LE
HL
CALL
JMP

SUBOP DE
HL
CALL
JMP

MULOP DE
HL
CALL
DE
HL
CALL
JMP

MOVOP DE
HL
CALL
JMP

DIVOP DE
HL
CALL
DE
HL
CALL
JMP

FILLIN LAM
CP
RTZ
LA
LMA
LAL
AD
LLA
JMP
END

AO:UM
ADDS
NOOVF
36
3
OVFMSG
DSP$
BEEP
DCALCL
36
3
BLANK
DSP$
OCALCL
INPUT
ACCUM
SUBS
OVFTST
ACCUM
ACCUt~

MOVS
INPUT
ACCUM
MULS
OVFTST
INPUT
ACCUM
MOVS
OVFTST
ACCUM
DIVID
MOVS
INPUT
ACCUM
DIV$
OVFTST

3

'0'

1

FILLIN
DCALC

Observe the addition, 'ADDOP'. To ad4 together the inputted
strinq , INPUT' to the accumulator ' ACCUM' the user only
writes the following code as found at 'ADDOP'.

ADDOP DE
HL
CALL

INPUT
ACCUM
ADDS

8

Executing this code will cause string 'INPUT' to be added to
the string , ACCUM' wi th the resul t in the string , ACCUM" •
The accumulator, it must be realized, is simply a string
which the wri ter of ' DCALC' is using a s hi s resul t string
and he preferred to call it an accumulator.

Note that after each operation there is a jump to 'OVFTST'
or as in 'ADDOP', the code is immediately after and executed
right after 'ADDOP'. Observe that the first instruction

OVFTST JFC NOOVF

of the overflow test is the actual tests If the carry is
not set then there wa s no overflow resul ting from the
operation.:r If the carry wa s set, in ' DCALC' the message
'overflow' 1s printed on the screen as is seen from the code
following the
, JFC NOOVF'.

Subtraction behaves the same as addition except for the CALL
to SUBS.

Multiplication and division are slightly different. from
addition and subtraction but operate similar to each other.
Observe the following code as taken from 'DCALC'.

MULOP DE
HL
CALL
DE
HL
CALL
JMP

ACCUM
ACCUM
MOV$
INPUT
ACCUM
MUL$
OVFTST

This demonstrates the requirements, as stated in 7.0, that,
in MULS and DIVS, the argument 12 must be the result of the
previous move. The reason for this is that multiplication
and division really require three 'registers' or strings:
The two strings being multiplied and the result. The 'MOVS'
move operation makes a copy of whatever is being moved,
d ur ing the move, in an in terna 1 STATH ' reg i ster' str ing •
Therefore, note that the first three instructions in 'MULOP'
cause the accumulator to be 'MOV$' moved to itself.
Frequently the user can save time by ultilizinq this fact in
making the last move before calling I HULS' a move of a
string involvinq argument '2. (Again, argument 12 is the
argument associated with the Hand L registers).

Also note that 'MULOP' tests overflow using the same routine
that is used for the other three arithmetic routines
'OVFTST' as described above.

9

4.0 LOADING STATH

STATH may be loaded in memory in either of two ways:

11 Incorporating the source code of STATH into the problem
source code.

2) Catalog STATH as an object file and call it in through
the operating system.

The second is preferred and simpler, as is done in 'DCALC'.
Once cataloged, the following calls STATH into memory:

NAME! DC
DE
CALL

'STATU'
NAME1
MLOADS

10

5.0 ADDITION

Entry Point Name
Entry Point Address
Argument #1 Address
Argument 12 Address
Result Location
Arithmetic Function

Action:

ADDS
10003 Octal
D-E Registers
H-L Registers
Argument 12
(Argument 12) • (Argument
'2) + (Argument 'I)

Adds two numeric string numbers, rounds, and installs
leading blanks and trailing zeros when needed in the result.

Typical calling sequence:

ADDS EQU 010003

DE ARG1
HL ARG2
CALL ADDS

Arguments:
Arguments must be· each numeric strings of less than 126

characters in length. Argument 1 is addressed by the 0 and
E Registers. Argument 2 is addressed by the Hand L
Registers and will contain the result.

Result:
The contents of argument 1 (0 and E) will remain

unchanged.
The contents of arqument 2 (H and L) will contain the

sum of arguments 2 and 1 and will have leading blanks and
trailing zeros when needed.

Changes:
The contents of argument 2 are chan~ed to contain the

result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurance (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

11

6.0 SUBTRACTION

Entry POint Name
Entry POint Address
Argument 11 Address
Argument 12 Address
Result Location
Arithmetic Function

Action:

SUBS
10006 Octal
D-E Registers
H-L Registers
Argument 12
(Argument '2) - (Argument
12) - (Argument '1)

Subtracts one nUmeric string number from another,
rounds and installs leading blanks and trailing zeros when
needed in the result.

Typical calling sequence:

SUBS EOU 010006

DE ARG1
HL ARG2
CALL SUBS

Arguments:
Arguments must be each numeric strings of less than 126

characters in length. Argument 1 is addressed by the 0 and
E Registers. Argument 2 is addressed by the Hand L
Registers and will contain the result.

Result:
The contents of argument 1 (0 and E) wi 11 remain

unchanged.
The contents of argument 2 (H and L) will contain the

difference of arquments 2 and 1 and will have leadlnq blanks
and trailing zeros when needed.

Chanqes:
The contents of argument 2 are changed to contain the

result.

Errors Recoqnized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit is set)

Comparison Flags:
Result was zero (zero bit is set)
Result was negative (sign bit is set)

12

7.0 MULTIPLICATION

Entry Point Name
Entry Point Address
Argument .1 Adress
Argument 12 Adress
Result Location
Arithmetic Function

Argument Restrictions

Action:

MUL$
6000 Octal
D-E Reqisters
H-L Reqiaters
Argument 12
(Arqument 12) • (Arqument
'2) X (Argument 11)
Argument 12 must be result of
last MOVS call

Multiplies two numeric string numbers, rounds and
installs leading blanks and trailing zeros when needed in
the result.

Typical calling sequence:

MULS EQU 06000

DE ARG2
HL ARG2
CALL MOV$

DE ARG1
HL ARG2
CALL MUL$

Arqument$:
Arguments must be each nUmeric strings of less than 126

characters in length. Arqument 1 is addressed by the 0 and
E Registers. Argument 2 is addressed by the Hand L
Registers and will contain the result. Argument 2 must have
been involved in the previous move operation.

Result:
The contents of arqument 1 (0 and E) will remain

unchanged.
The contents of argument 2 (H and L) will contain the

product of arguments 2 and 1 and will have leading blanks
and trailing zeros when needed.

Changes:
The contents of argument 2 are changed to contain the

result.

Errors Recoqnized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)

Comparison Flag:
Result was zero (zero bit set)
Result was negative (siqn bit set)

13

8.0 DIVISION

Entry Point Name
Entry Point Add.ress
Argument #1 Address
Argument 12 Address
Result Location
Arithmetic Location

Argument Restrictions

Action:

DIV$
6003 Octal
D-E Registers
H-L Registers
Argument 12
Argument '2) • (Argument
12 / (Argument 11)
Argument 12 must be result of
last MOVS call

Divides one numeric string number into another, rounds
and installs leading blanks and trailing zeros when needed
in the result.

Typical calling sequence:

MOVS EOU 010000

DE ARG2
HL ARG2
CALL MOVS

DrV$ EQU 06003

DE ARGl
HL ARG2
CALL DIVS

Arguments:
Arguments must be each numeric strings of less than 126

characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the Hand L
Registers and will contain the result. Argument 2 must have
been involved in the previous move operation.

Result:
The contents of argument 1 (0 and E) will remain

unchanged.
The contents of argument 2 (H and L) will contain the

resul t of the division of argument 1 into argument 2 and
will have leading blanks and trailing zeros when needed.

The number of decimal places in the result is equal to
the number of decimal places in the dividend less the number
of decimal places in the divisor. This number may not be
negative and if it is, the number of decimal places is
extended to make the difference zero.

The size of the result equals the size of the extended
dividend less the size of the divisor.

Note that the string '10.0' divided by the string '3.0'
is the string 'j'. It is rounded to ZERO decimal places.

14

Changes:
The contents of argument 2 are changed to contain the

result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurence (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was neqative (sign"bit set)

15

9.0 COMPARE

Entry Point Name
Entry Point Address
Argument 11 Address
Argument '2 Address
Result Location

Arithmetic Function

Action:

COM$
10011 Octal
D-E Registers
H-L Registers
Arguments unchanged. Only
sets condition code
(cond-code) • (cond [(Argument
12) - (Argument 11»)

Compares two numeric string numbers as to magnitude. No
change to arguments resul ts. Changes are only made to the
condition flags.

Typical calling sequences:

COM$ EOU 010011

DE ARGl
HL ARG2
CALL COM $

Arguments:
Arguments must be each numeric strings of less than 126

characters in length. Argument 1 is addressed by the 0 and
E registers. Argument 2 is addressed by the Hand L
Registers and will contain the result.

Result:
The contents of both arguments wi 11 remain unchanged.

Only the condition code will change and will obtain the
exact same condition as if a call to SUBS were done.
Therefore, the resultant condition flags will behave as 1f
the result were to be rounded.

Changes:
The contents of both arguments remain unchanged.
Only the condition flags are changed.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

16

10.0 MOVE

Entry Point Name
Entry Point Address
Argument 11 Address
Argument '2 Address
Result Location
Arithmetic Function

Action:

MOV$
10000 Octal
D-E Registers
H-L Registers
Argument 12
(Argument 12) = (Argument .1)

Replaces the numeric string number in argument 2 wi th
that of argument 1, rounds and installs leading blanks and
trailing zeros when needed in the result.

Typical calling sequence:

MOVS EQU

DE
HL
CALL

Arguments:

010000

ARC!
ARG2
MOVS

Arguments must be each nUmeric strings of less than 126
characters in length. Argument 1 is addressed by the 0 and
E Registers. Argument 2 is adressed by ,the Hand L
Registers and will contain the result.

Result:
The contents of argument 1 (0 and E) will remain

unchanged.
The contents of argument 2 (H and L) will contain the

number of argument 1 rounded and reformatted if necessary.

Changes:
The contents of argument 2 are changed to contain the

result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurence (carry bit set)
[Note that overflow can occur in a MOVS if a move from

a larger to smaller field is attempted]

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

17

11.0 MOD10 CHECK SUM CLACULATION

Entry Point Name
Entry Point Address
Argument 11 Address
Result Location

Arithmetic FUnction

Action:

MOD lOS
60,06 Octal
H-L Registers
A-Register (no reformatting
of argument)
(A Reg) - Check-MOD-l0
(Argument 11)

Checks validity of Modulo 10 check sum of a numeric
string number.

Typical calling sequence:

MOD10S EOU 06006

HL ARGl
CALL MOD lOS

Arguments:
The argument must be a numeric string of less than 126

characters in length. Argument 1 is adressed by the Hand L
Registers.

Result:
The contents of the argument remains unchanged.
The carry bit is set if the check digit is 10.
The zero bit is set if the check digit 1s not 10.
The check digit is in the A-Register upon return.

Changes:
The contents of the argument remain unchanged.

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Check digit was 10 (carry bit set)
Check digit was not 10 (zero bit set)

18

12.0 MOD!1 CHECK SUM CALCULATION

Entry Point Name
Entry Point Address
Argument '1 Address
Result Location

Arithmetic Function

Action:

MOD11S
6011 Octal
H-L Registers
A-Register (no reformatting
of argument)
(A-Reg) • Check-MOD-ii
(Argument #1)

Verifies the Modulo 11 check sum of the numeric strinq
number.

Typical calling sequence:

MOD11S EQU 06011

HL ARG1
CALL MOD11S

Arguments:
The argument must be a numeric string of less than 126

characters in length. The argument is addressed by the H
and L Registers.

Result:
The contents of the argument remains unchanged.
The carry bit is set if the check digit is 11.
The zero bit is set if the check digit is not 11.
The A-Register contains the check digit.

Changes:
The contents of the argument remain unchanqed.

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Check digit was 11 (carry bit set)
Check digit was not 11 (zero bit set)

19

13.0 KEYBOARD FORMA~TED INPUT

Entry Point Name
Entry Point Address
Argument '1 Address
Extra Parameters

Input Function

Input Restrictions

Action:

KEY$
10014 Octal
H-L Registers
(0 Reg) • Column. (E Reg) •
Row for cursor
(Argument 11) = (Keyed in
number)
Screen format and, therefore,
keyed in number has same
format as originally in Argu
ment .1

Provides formatted input from the keyboard into a
numeric string. The format is maintained on the screen and
only a number fitting the format can be entered. The input
numeric string is placed in argument 1.

Typical calling sequence:

KEYS EOU

LD
LE
HL
CALL

Arguments:

010014

COLUMN
ROW
ARGl
KEYS

The argument must be a formatted numeric strinq.
The 0 and E Reqisters must contain the column and row

of the cursor posi tion of the first character to be typed
in.

Result:
The contents of argument 1 are replaced by the input

number.
Striking the enter key with no input will cause the

argument to be replaced with a zero.
The Hand L Registers are pointing immediately after

the ETX.

Changes:
The contents of the argument are replaced wi th the

input string.

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was neqative (sign bit set)

20

14.0 DISPLAY STRING

Entry Point Name
Entry Point Address
Argument il Address
Extra Parameters

Input Functions

Input Restrictions

Action:

DSP$
10017 Octal
H-L Registers
(0 Reg) • Column. (E Reg) -
Row for cursor
(Display starting at D,E) =
(Arqument '1)
None. May even be non-numeric
string

Displays a string onto the screen. String may be non
numeric.

Typical calling sequence:

DSP$ EQU

LD
LE
HL
CALL

Arguments:

010017

COLUMN
ROW
ARGl
DSPS

The argument may be a numeric or non-numeric string as
long as it terminates with a ETX. The D and E Registers
contain the column and row of the location of the first
character of the string.

Result:
The string in argument 1 is displayed on the screen

starting at the cursor location beginning with the column
and row specified by the D and E Registers.

The Hand L Registers point the location immediately
after the ETX in argument 1.

Changes:
The contents of the argument remain unchanged.

Errors Recognized:
None

Comparison Flags:
None

21

