
DISK OPERATING SYSTEM
~OS.

User's Guide

Version 2 (Upgraded to 2.5)

May, 1979

Document No. 50432

DATAPOINT ~ION

. The leader in dispersed data processing ™

COPYAIGHT@ 1979 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (Upgraded to 2.5)

May, 1919

Document No. 50432

PREFACE

The purpose of this User's Guide is to provide the user of a

Datapoint DOS that information required to generate a system, make

effective use of the available commands, and to make user-written

programs compatible with the DOS.

This manual applies to all Version 2.5 and above "dot-series"

Disk Operating Systems, such as DOS.A, DOS.B, and so on. This

manual replaces the previous Version 2 User's Guide and Systems

Guide and the previous Version 2.3 DOS User's Guide.

i

TABLE OF CONTENTS

1. CHANGES FROM PRIOR VERSIONS
1.1 Utility Programs

1 • 1 . 1 AUTOKEY
1.1.2 BACKUP
1 • 1 • 3 BOOT
1 • 1 .4 CHAIN
1 • 1 • 5 COpy
1.1.6 COPYFILE/OVX and COPYFILE/OVY
1 • 1 .7 DSKCHECK
1 • 1 .8 DU MP
1 • 1 .9 ED IT
1.1.10 ENCODE/DECODE
1 .1 • 11 FIXAPPLY
1 • 1 • 12 IN DE X
1 .1. 13 INITDISK
1 • 1 • 1 4 KI LL
1.1.15 LIST
1.1.16 MIN
1 • 1 • 17 NAME
1 . 1 • 1 8 PU TIP L
1 • 1 • 19 PUTVOL ID
1.1.20 REFORMAT
1 . 1 .21 SO RT
1 • 1 .22 SU R

1.2 System Routines
1.2.1 GETCH
1.2.2 Bootstrap, IPL, and Loader

1.3 Relocatable Peripheral Drivers
1.3.1 SERVO, LOCAL and SCREEN
1.3.2 FILE

2. INTRODU CTION
2.1 Hardware Support Required
2~2 Software Configurations Available
2.3 Program Compatibility

3. OPERATOR COMMANDS
3.1 General Information
3.2 Command Line Syntax
3.3 Command Interpretation
3.4 Documentation Conventions
3.5 Program Signon Messages

ii

page

1-1
1-1
1-1
1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-8

2-1
2-1
2-2
2-2

3-1
3-1
3-1
3-2
3-3
3-3

4. EQUIPMENT CARE
4.1 Environment
4.2 Processor
4.3 Disks ~nd Disk Drives
4.4 Other Peripherals

5. DISK FILES·
5.1 File Names
5.2 File Creation
5.3 File Deletion
5.4 File Protection

6. SYSTEM GENERATION
6.1 Initial Generation

6.1.1 Formatting
6.1.2 Cassette System Generation

6.2 Partial Generation
6.3 UPGRADE/X
6.4 Scratch Disk Generation
6.5 Generation Cassettes and Emergencies

7. ABTONOFF COMMAND
7. 1 Purpose
7.2 Use

8. APP COMMAND
8.1 Purpose
8.2 Us e

9. AUTO COMMAND
9.1 Purpose
9.2 Use
9.3 Operation of AUTOed Program

10. AUTOKEY COMMAND
10.1 Purpose
10.2 Use
10.3 The Hardware· Auto-Restart Facility

10.3.1 Processors with tape decks
10.3.2 Processors without tape decks

10.4 Automatic Program Execution Using AUTO
10.5 Auto-Restart Facilities Using AUTOKEY
10.6 A Simple Example
10.7 A More Complicated Example
10.8 Special Considerations
10.9 AUTOKEY and DATASHARE

11. BACKUP COMMAND

iii

4-1
4-1
4-2
4-2
4-2

5-1
5-1
5-2
5-3
5-3

6-1
6-1
6-1
6-2
6-4
6-5
6-6
6-6

7-1
7-1
7-1

8-1
8-1
8-1

9-1
9-1
9-1
9-2

1 0-1
10-1
1 0-1
10-2
10-2
10-2
10-3
10-3
10-3
10-4
10-8
10-8

11-1

11.1 Purpose
11 . 2 Use

11 .2 . 1 Options
11.3 Mirror Image Copy
11.4 Reorganizing Files

11.4.1 Copying DOS to Output Disk
11.4.2 Deleting Named Files
11.4.3 Copying Named Files

11.5 Use of KEYBOARD and DISPLAY Keys
11.6 Error Messages
11.1 Reorganizing Files for Faster Processing
11.8 BACKUP with CHAIN
11~9 Clicks during Copying
11.10 Special Considerations for BACKUP

12. BLOKEDIT COMMAND
12 . 1 Pu r po s e
12.2 Use
12.3 File Descriptions

12.3.1 Command Statement Lines
12.3.2 Source File
12 . 3 .3 New File

12.4 Messages "
12.4.1 Informative Messages
12.4.2 Fatal Errors
12.4.3 Selectively Fatal Errors

13. BOOT
13.1 Purpose
13.2 Us e
1 3 . 3 M e s sag es

14. BUILD COMMAND
14.1 Purpose
14.2 Us e
14.3 A Simple Example
14.4 KEYBOARD and DISPLAY Keys

15. CAT COMMAND
15 . 1 Purpose
15 .2 Use

16. CHAIN COMMAND
16.1 Purpose
16.2 Use

16.2.1 CHAIN Compilation
16.2.2 CHAIN Execution

16.3 Tag Definition

iv

11-1
11-1
11-2
11-3
11- 3
11-4
11-4
11-4
11-5
11-5
11-6
11-7
11-7
11-7

12-1
12-1
12-1
12-2
12-2
12-4
12-4
12-4
12-6
12-6
12-7

13-1
13-1
13-1
13-2

14-1
1 4-1
14-1
14-2
14-2

15-1
15-1
15-1

16-1
16-1
16-1
16-2
16-2
16-3

16.4 CHAIN Directives
16.4.1 IF Directive
16.4.2 ELSE/XIF Directives

16.5 Tag Value Substitution
16.6 BEGIN/END Directives
16.7 ABORT Directives
16.8 Comments
16.9 Complex CHAIN Examples
16.10 Resuming An Aborted CHAIN
16.11 CHAIN Programming Considerations

17. CHANGE COMMAND
17 . 1 Purpose
17.2 Use

18. COpy COMMAND
18 . 1 Purpose
18 .2 Us e

19. DOSGEN COMMAND
19. 1 Purpose
19.2 Use
19.3 Special Considerations

20. DSKCHECK
20. 1 Purpose
20.2 Use
20.3 Options
20.4 System Tables and Data
20.5 Execution Phases

20 . 5 . 1 I nit i a liz a t i on
20.5.2 HDI Checking
20.5.3 CAT Checking
20.5.4 Directory Checking
20.5.5 RIB Checking
20.5.6 Cluster Allocation Phase 1
20.5.7 Cluster Allocation Phase 2
20.5.8 Lock-out CAT Checking

20.6 Operational messages
20.7 Error Message Definitions

20.7.1 Operational error messages.
20.7.2 Initialization Error Messages
20.7.3 HDI ERRO RS
20.7.4 CAT Errors
20.7.5 Directory Errors
20.7.6 RIB Errors
20.7.7 Lockout CAT Errors

v

16-4
16-4
16-6
16-6
16-7
16-8
16-9

16-11
16-14
16-15

17-1
17 -1
17-1

18 -1
18-1
18 -1

19-1
19 -1
19-1
19-2

20-1
20-1
20-1
20-1
20-2
20-2
20-2
20-3
20-3
20-3
20-4
20-5
20-5
20-5
20-5
20-7
20-7
20-8

20-10
20-11 .
20-12
20-15
20-18

21. DUMP COMMAND
21 . 1 Purpose
21.2 Use
21.3 Informational Messages Provided
21.4 Level One Commands To DUMP
21.5 Level Two Commands To DUMP
21.6 Level Three Commands To DUMP
21.7 Level Four Commands To DUMP
21.8 Level Five Commands to DUMP
21.9 Error Messages

22. THE DUMP93XO COMMAND
22.1 Purpose
22.2 Use
22.3 The primary command handler
22.4 U si ng
22.5 Screen Display format
22.6 The Screen Dump Command Handler
22.7 Cassette Operations
22.8 Drive Numbers
22.9 Error Messages

23. EDIT
23. 1 Purpose
23.2 Use
23.3 Parameter List

23.3.1 Margin Bell
23.3.2 Tab Key Character
23.3.3 Mo de
23.3.4 Update
23.3.5 Key-click
23.3.6 Space Compression
23.3.7 Non-verification

23.4 Examples
23.5 Data Entry and Retrieval

23.5.1 Data Entry
23.5.2 Multi-line Record Entry

23.6 Data Retrieval
23.7 EDIT Command Format
23.8 Basic EDIT Commands

23.8.1 Setting Tabs
23.8.2 Setting TEXT Mode
23.8.3 INSERTing a Line
23 . 8 . 4 DE LET E in gaL in e
23 . 8 . 5 COP Y ing aLi ne
23.8.6 MODIFYing a Line
23.8.7 LOCATEing a Line
23.8.8 ENDing EDIT

vi

21-1
21-1
21-1
21-2
21-4
21-4
21-5
21-5
21-6
21-7

22-1
22-1
22-1
22-3
22-3
22-5
22-6
22-8

22-10
22-10

23-1
2'3-1
23-1
23-2
23-2
23-3
23-3
23-3
23-4
23-4
23-4
23-4
23-6
23-6
23-7
23-8
23-8
23-9
23-9
23-9

23-10
23-11
23-11
23-12
23-13
23-13

23.9 Intermediate Commands
23.9.1 Changing Special Characters
23.9.2 Changing Tabs
23.9.3 Changing Modes and Options
23.9.4 Deleting Lines
23.9.5 MODIFY Command

23.9.5.1 Line Modification
23.9.5.2 Field Modification

23.9.6 Line Splitting
23.9.7 Line Concatenation
23.9.8 File Search Commands
23.9.9 BYPASS End of File
23.9.10 Terminating EDIT

23.10 Advanced Commands
23.11 Recovery Procedures
23.12 Glossary
23.13 Command List
23.14 EDIT ERROR MESSAGES
23.15 Configuration Sector
23.16 Example of a Definition File

24. ENCODE/DECODE COMMANDS
24.1 Purpose
24.2 Use

25. FILES COMMAND
25.1 Purpose
25 .2 Us e
25.3 Default Messages
25.4 File Descriptions
25.5 Error Messages

26. FIX COMMAND
26.1 Purpose
26 .2 Us e
26.3 Commands
26.4 Error Messages

27. FIXAPPLY
27 . 1 Purpose
27,.2 Use

27.2.1 FIXAPPLY Phase One
27.2.2 FIXAPPLY Phase Two
27.2.3 Fatal Phase One Error Messages

28. FREE COMMAND
28 . 1 Pu r po s e
28.2 Use

vii

23-14
23-14
23-15
23-16
23-17
23-18
23-18
23-20
23-21
23-21
23-21
23-24
23-24
23-26
23-30
23-30
23-34
23-41
23-42
23-44

24-1
24-1
24-1

25-1
25-1
25-1
25-2
25-3
25-4

26-1
26-1
26-1
26-1
26-3

27-1
27 -1
27-1
27-1
27-2
27-3

28-1
28-1
28-1

29. INDEX COMMAND
29. 1 Purpose
29.2 Use

29.2.1 Parameters
29.2.2 System Requirements

29.3 Choosing A Record Key
29.4 Preprocessing the. File

29.4. 1 Invoking Reformat
29.4.2 Considerations for Unattended Indexing

29~5 INDEX Messages
29.6 lSI File Formats
29.1 Index File Size
29.8 Examples of the Use of INDEX

30. THE INITDISK COMMAND
30.1 Purpose
30.2 Use
30.3 Error messages

31. KILL COMMAND
31 . 1 Purpose
31.2 Use

32. LIST COMMAND
32.1 Purpose
32.2 Use
32.3 Input File Specification
32.4 Starting Point
32.5 Output File Specification
32.6 Output Device
32.1 Output Format
32.8 Format Control
32.9 Operator Controls
32.10 Error Conditions

33. MANUAL COMMAND
33.1 Purpose
33,.2 Use

34. MIN COMMAND
34. 1 Purpose
34.2 Use

34.2.1 Command Line
34 . 2 .2 0 p t ions
34.2.3 Multi-File Named Tapes

34.2.3.1 MOUT With Directory Tapes
34.2.3.2 CTOS Tapes

viii

29-1 .
29-1
29-1
29-2
29-3
29-3
29-4
29-4
29-5
29-5
29-1

29-10
29-11

30-1
30-1
30-1
30-1

31-1
31-1
31-1

32-1
32-1
32-1
32-2
32-2
32-3
32-3
32-4
32-4
32-5
32:-5

33-1
33-1
33-1

34-1
34-1
34-1
34-1
34-1
34-3
34-3
34-5

34.2.4 Multiple Numbered-File Tapes
34.2.5 Double File Tapes
34.2.6 Single File Tapes

34.3 Tape Formats
34.3.1 Single File Tapes
34.3.2 Double File Tapes
34.3.3 Multiple Numbered-File Tapes
34.3.4 Multiple Named-File Tapes

34.4 Errors

35. MOUT COMMAND
35.1 Purpose
35.2 Use
35 . 3 F i leN am es
35.4 Writing
35 .5 V e r i fy i ng

36. NAME COMMAND
36.1 Purpose
36.2 Us e

37 . PUT IPL COMMAND
37 . 1 Purpose
37.2 Use

38. PUTVOLID COMMAND
38.1 Purpose
38.2 Use

39. REFORMAT COMMAND
39.1 Purpose
39.2 Use
39.3 Output File Formats
39.4 Reasons for Reformatting
39.5 Reformat Messages
39.6 Text File Formats

40. REWIND COMMAND
40.1 Purpose
40.2 Use

41 . SAPP COMMAND
41.1 Purpose
41 .2 Use

42. SORT COMMAND
42.1 Purpose
42.2 Use

ix

34-6
34-6
34-7
34-7
34-7
34-8
34-8
34-8
34-9

35-1
35-1
35-1
35-5
35-7
35-8

36-1
36-1
36-1

37-1
37 -1
37-1

38-1
38-1
38-1

39-1
39-1
39-1
39-3
39-3
39-4 .
39-7

40-1
40-1
40-1

41-1
41-1
41-1

42-1
42-1
42-1

42.3 Fundamental SORT Concepts
42.3.1 File Formats
42.3.2 The Key Options
42.3.3 How to Sort a File

42.4 SORT Command Line and Options
42.4.1 Generalized Command Statement Format
42.4.2 Keys: Overlapping and in Backwards Order
42.4.3 Collating Sequence File
42.4.4 Ascending and Descending sequences
42.4.5 Input/output File Format Options
42.4.6 Limited Output Format Option
42.4.1 TAG File Output Format Option
42.4.8 Key tag File Output Format Option
42.4.9 HARDCOPY Output Option
42.4.10 Primary/Secondary Sorting Considerations
42.4.11 SORT Work Files

42.5 Di sk spa ce requ iremen ts
42.6 LINK into SORT from programs
42.1 The Use of CHAIN with SORT

42.1.1 Defining a Chain File for SORT
42.1.2 Naming a repetitive SORT procedure
42.1.3 Using CHAIN to cause a merge

42.8 SORT Execution-Time Messages

43. SUR COMMAND
43.1 Purpose
43.2 Use

43.2.1 Establishing a "Current Subdirectory"
43.2.2 Creating a Subdirectory
43.2.3 Deleting a Subdirectory
43.2.4 Renaming a Subdirectory
43.2.5 Displaying Subdirectories

43.3 About Subdirectories
43.3.1 Creation of Subdirectories
43.3.2 Deletion of Subdirectories
43.3.3 Being "in a Subdirectory"
43.3.4 Scope of a File Name
43.3.5 About Subdirectory SYSTEM
4 3 . 3 . 6 F i 1 e s v s. th e Use r Be in g " ina Sub d ire c tor y"
43.3.1 Getting a File into a Subdirectory

44. UBOOT COMMAND
44.1 Purpose
44.2 Use
44.3 UBOOT System Load Operation

45. UTILITY/OVL

x

42-2
42-2
42-3
42-4
42-4
42-4
42-9

42-10
42-11
42-11
42-12
42-16
42-18
42-19
42-20
42-20
42-21
42-21
42-26
42-26
42-21
42-28
42-28

43-1
43-1
43-1
43-2
43-2
43-2
43-2
43-3
43-3
43-4
43-4
43-4
43-5
43-5
43-6
43-6

44-1
44-1
44-1
44-2

45-1

46. UTILITY /R EL
46.1 Printer Drivers

46.1.1 Print Driver Routines
46.1.2 ASA Control Characters

46.2 SECINOUT Drivers
46.2.1 SECINOUT Driver Routines

47. UTILITY/SYS

48. SYSTEM DESCRIPTION
48.1 System Philosophy
48.2 System Structure

49. SYSTEM STRUCTURE
49.1 Disk Structure

49.1.1 Introduction

46-1
46-1
46-2
46-3
46-3
46-4

47-1

48-1
48-1
48-1

49-1
. 49-1

49.1.2 Disk Space Management: CAT and Lockout CAT
49.1.3 Files: HDI, Directory Mapping Bytes, Directory,
49.1.4 Sector Identification

49-1
49-2

R49-3
49-4
49-5
49-5
49-5

49.1.5 Addressing Byte Structures
49.1.5.1 PDA - Physical Disk Address
49.1.5.2 RIB Address/Protection
49.1.5.3 Segment Descriptor - used in RIB to define a

segment.
49.1.5.4 Physical File Number - used to access

and HDI
49.2 Disk Data Formats
49.3 Memory Mapping
49.4 Memory Tables

49.4.1 Entry Point Tables
49.4.2 Logical File Table

49.5 Disk Overlays
49.6 The Command Interpreter

50. INTERRUPT HANDLI NG
50.1 Interrupt Mechanism
50.2 Interrupt Scheduler
50.3 Active Processes
50.4 Timing Considerations
50.5 DOS Interrupt Routines

50.5.1 SETI$
50.5.2 CLRI$
50.5.3 CS$
50.5.4 TP$

50.6 Programming Considerations
50.6.1 Background Code
50.6.2 Foreground Code

xi

49-6
directory

49-6
49-7
49-8
49-9
49-9
49-9

49-11
49-12

50-1
50-1
50-1
50-3
50-4
50-5
50-5
50-5
50-6
50-6
50-6
50-6
50-7

51 . SYSTEM ROUTI N ES
51 . 1 Par ameter i za ti on
5 1 . 2 E x it Con d i t ions
51.3 Error Handling
51.4 Foreground Routines

51.4.1 CS$ - Change Process State
51.4.2 TP$ - Terminate Process
51.4.3 SETI$ - Initiate Foreground Process
51.4.4 CLRI$ - Terminate Foreground Process

51.5 Loader Routines
5 1 . 5 . 1 BOO T$ - R e load the 0 per at in g S y stem
5 1 . 5 . 2 RUN X $ - Loa d an d Run a F i 1 e by N u m be r
51.5.3 LOADX$ - Load a File by Number
51.5.4 INCHL - Increment the Hand L Registers
51.5.5 DECHL - Decrement the Hand L Registers
51.5.6 GETNCH - Get the Next Disk Buffer Byte
5 1 . 5 . 7 D R$ - Read a Sect or into th e Disk Buff er
5 1 . 5 • 8 DW $ - W r i tea Sec tor fr 0 m th e Dis k Bu f fer
5 1 . 5 . 9 D SK WA T - Wa it for Disk Rea d y

51.6 File Handling Routines
51.6.1 PREP$ - Open or Create a File
5 1 • 6 . 2 OP EN $ - 0 pen an E xis tin g F i 1 e
51.6.3 LOAD$ - Load a File
5 1 . 6 . 4 RUN $ - Loa d an d Run a F i 1 e
51.6.5 CLOSE$ - Close a File
51.6.6 CHOP$ - Delete Space in a File
51.6.7 PROTE$ - Change the Protection on a File
51.6.8 POSIT$ - Position to a Record within a File
51.6.9 READ$ - Read a Record into the Buffer
51.6.10 WRITE$ - Write a Record from the Buffer
51.6.11 GET$ - Get the Next Buffer Character
51.6.12 GETR$ - Get an Indexed Buffer Character
5 1 . 6 .1 3 P U T$ - S tore into the N ext B u f fer Po sit i on
51.6.14 PUTR$ - Store into an Indexed Buffer Position
51.6.15 BSP$ - Backspace One Physical Sector
51.6.16 BLKTFR - Transfer a Block of Memory
51.6.17 TRAP$ - Set an Error Condition Trap
51.6.18 EXIT$ - Reload the Operating System
51.6.19 ERROR$ -- Reload the Operating System
51.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine

51.7 Keyboard and Display Routines
51.7.1 DEBUG$ - Enter the Debugging Tool
51.7.2 KEYIN$ - Obtain a Line from the Keyboard
5 1 . 7 . 3 DS PLY $ - Dis P 1 a y aLi neon th eSc r e en

52. DOS FUNCTION FACILITY (DOSFNC)
52.1 FUNC1 - Retrieve Directory and C.A.T. Addresses
52.2 FUNC2 - Retrieve Directory Sector or Filename

xii

51-1
51-1
51-2
51-2
51-2
51-3
51-3
51-3
51-4
51-4
51-4
51-5
51-5
51-5
51-6
51-6
51-7
51-8
51-8
51-9

51-10
51-10
51-11
51-11
51-12
51-13
51-14
51-15
51-15
51-16
51-16
51-17
51-18
51-18
51-19
51-19
51-20
51-22
51-23
51-23
51-24
51-24
51-27
51-28

52-1
52-2
52-5

52.3 FUNC3 - Retrieve RIB Information
52.4 FUNC4 - Retrieve DOS Configuration Information
52.5 FUNC5 - Request Access to System Tables
52.6 FUNC6 - Keyboard I Display Interface Routines
52. 7 FUNC7 - Test the Di sk Buffer Memory
52.8 FUNC8 - Timed Pause
52.9 FUNC9 - Non-Sharable Resource Status Request
52.10 FUNC10 - Partition Information Function
52.11 FUNC11 RAM Screen Loader
52.12 FUNC12 - Enable Memory Resident Overlays
52.13 Overlay Loader (FUNC-13,14,15)
52.14 FUNC-13 Overlay Lookup By Name
52.15 FUNC-14 Load Absolute Library Member
52.16 FUNC-15 Relocatable Loader
52.17 FUNC-16 Disable Memory Resident Overlays

53. CASSETTE HANDLING ROUTINES
53.1 TPBOF$ - Position t~ the Beginning of a File
53.2 TPEOF$ - Position to the End of a File
53.3 TRW$ - Physically Rewind a Cassette
53.4 TBSP$ - Physically Backspace One
53.5 TWBLK$ - Write an Unformatted Block
53.6 TR$ - Read a Numeric CTOS Record
53.7 TREAD$ - TR$ and Wait for the Last Character
53.8 TW$ - Write a Numeric CTOS Record
53.9 TWRIT$ - TW$ and Wait for the Last Character
53.10 TFMR$ - Read the Next File Marker
53. 11 TFMW$ - Wri te a Fi Ie Marker Record
53.12 TTRAP$ - Set an Error Condition Trap
53. 13 TWAIT$ - Wait for 1/0 Completion
53.14 TCHK$ - Get 1/0 Status

52-7
52-9

52-10
Function52-11

52-14
52-15
52-16
52-18
52-19
52-21
52-22
52-24
52-25
52-26
52-28

53-1
53-2
53-2
53-3
53-3
53-3
53;..4
53-4
53-5
53-5
53-6
53-6
53-7
53-8
53-8

54. COMMAND INTERPRETER ROUTINES 54-1
54.1 CMDINT - Return & Scan MCR$ line 54-1
54.2 DOS$ - Return & Display Sign On 54-2
54.3 NXTCMD - Return and Dislay "READY" 54-2
54.4 CMDAGN - Return & Give Message 54-2
54.5 GETSYM - Get Next Symbol 54-3
54.6 GETCH - Get the Next Character 54-3
54.7 GETAEN - Get Auto-Execute Physical File Number 54-4
54.8 PUTAEN - Set or Clear a File to be Auto-Executed 54-4
54.9 GETLFB - Open the User-Specified Data File 54-4
54.10 PUTCHX - Store the Character in "A" 54-5
54.11 PUTCH - Alternate Version of PUTCHX 54-6
54.12 PUTNAM - Format a Filename from Directory 54-6
54.13 MOVSYM - Obtain the Symbol Scanned by GETSYM 54-7
54.14 GETDBA - Obtain Disk Controller Buffer Address 54-7
54.15 SCANFS - Scan Off File Specification 54-7

xiii

54.16 TCWAIT - Test controller memory & wait

55. USER SUPPORTED INPUT/OUTPUT

56. ERROR MESSAGES
56.1 System Error Messages
56.2 Utility Program Error Messages

51. ROUTINE ENTRY POINTS

58. PROCESSOR DEBUG
58.1 Introduction
58.2 Startup Procedure
58.3 Saving the Machine State
58.4 Display Format
58.5 The Command Interpreter
58.6 Command Syntax
58.1 Input Command List
58.8 DEBUG Command Summary
58.9 Extensions to Standard DEBUG

Appendix A. DOS.A AND DOS.E
A.l Planning for DOS.A/DOS.E

A.1.1 DOS.A Physical Configuration
A.l.2 DOS.E Physical Configuration

A .2 Disk Dr i v es
A.3 Di sk Med i a
A.4 Loading and unloading Disk Cartridges
A.5 Switches and Indicators
A.6 Care and Handling of Disk Cartridges
A.1 Care and Maintenance of the 9350 Drives
A.8 Head Crashes

A.8.1 Prevention of Head Crashes
A.8.2 Recognition of a Head Crash
A.8.3 What to Do if You Have a Head Crash

A.9 Preparing Disk Packs for Use
A.l0 Disk Organization under DOS.A/DOS.E

A.10.1 Logical Drive Mapping
A.l0.2 Size of a Logical Drive
A.10.3 Cluster Mapping
A.l0.4 Segments under DOS.A
A.l0.5 Maximum File Size
A.l0.6 Cluster Allocation Table and Directory

A.ll Internal DOS Parameterization
A.ll.l Physical Disk Address Format
A.ll.2 Hardware Address Structure

Appendix B. DOS.B

xiv

54-8

55-1

56-1
56-1
56-3

51-1

58-1
58-1
58-1
58-2
58-2
58-3
58-3
58-4
58-8
58-9

A-l
A-l
A-l
A-2
A-2
A-2
A-2
A-3
A-4
A-5
A-5
A-6
A-6
A-1
A-1
A-8
A-8
A-8
A-8
A-9
A-9

A-l0
A-l1
A-11
A-11

B-1

B.1 Planning for DOS.B
B.2 File Storage Capacity under DOS.B
B .3 Dis k Dr i v es
B . 4 Di sk Med i a
B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373-
B.5.2 Model 9374/9375

B.6 Switches and indicators
B.6.1 Models 9370-9373

B.6.1.1 Memorex Drives
B.6.1.2 "Telex" Drives
B.6.1.3 Common Features

B.6.2 Model 9374/9375
B.7 Care and Handling of Disk Packs
B.8 Care and Maintenance of the 9370 Drives
B.9 Head Crashes
B.10 Preparing Disk Packs for Use
B.11 Disk Organization under DOS.B

B.11.1 Logical Drive Mapping
B.11.2 Size of a Logical Drive
B.11.3 Cluster Mapping
B.11.4 Segments under DOS.B
B.11.5 Maximum File Size
B.11.6 Cluster Allocation Table and Directory

B.12 Internal DOS Parameterization
B.12.1 Physical Disk Address Format
B.12.2 Hardware Address Structure

Appendix C. INTRODUCTION TO DOS.C
C.1 Planning for DOS.C
C.2 Performance of DOS.C
C .3 Disk Dr i v es
C.4 Disk Media
C.5 Loading and Unloading Diskettes
C.6 Drive Numbering and Switches
C.7 Care and Handling of Diskettes
C.8 Preparing Diskettes for Use
C.9 Suggested Disk Organization Techniques
C.10 Disk Organization under DOS.C

C.10.1 Radius Spiraling and Sector Skewing
C.10.2 Size of a Diskette
C.10.3 Cluster Mapping
C.10.4 Segments under DOS.C
C.10.5 Maximum File Size
C.10.6 Cluster Allocation Table and Directory

C.11 Internal DOS Parameterization
C.11.1 Physical Disk Address Format

xv

B-1
B-1
B-2
B-2
B-2
B-2
B-3
8-4
8-4
8-4
8-5
8-5
8-6
8-7
8-7
8-9
B-9

8-10
8-10
B-11
B-11
8-12
8-12
8-13
B-14
B-14
8-14

C-1
C-1
C-2
C-3
C-3
C-3
C-5
C-5
C-6
C-7
C-8
C-8

C-10
C-10
C-11
C-11
C-12
C-13
C-13

Appendix D. DOS.D
D.1 Planning for DOS.D
D.2 File Storage Capacity under DOS.D
0.3 Disk Drives
D.4 Disk Media
D.5 Loading and Unloading Disk Packs
D.6 Switches and Indicators
D.7 Disk Organization under DOS.D

0.7.1 Logical Drive Mapping
D.7.2 Size of a Logical Drive

0.7.2.1 Models 9370-9373 and 9390-9393
0.7.2.2 Models 9374/9375

0.7.3 Cluster Mapping
0.7.4 Segments under DOS.D
0.7.5 Maximum File Size
0.7.6 Cluster Allocation Table and Directory

0.8 Internal DOS Parameterization
0.8.1 Physical Disk Address Format

Appendix E. OOS.G - 1800 OPERATING SYSTEM
E.1 CRT 1 Keyboard Interface Under DOS.G

E.1.1 Screen Line Numbering
E.1.2 Displaying on the Screen
E.1.3 Inputting Oata From the Keyboard
E.1.4 Special CRT 1 Keyboard Features

E.2 Diskette Organization Under OOS.G
E.2.1 Loading and Unloading Diskettes
E.2.2 Drive Numbering
E.2.3 Care and Handling of Diskettes
E.2.4 Preparing Diskettes for Use
E.2.5 Sector Skewing
E.2.6 Size of a Diskette
E.2.7 Cluster Mapping
E.2.8 Segments Under DOS.G
E.2.9 Cluster Allocation Table and Directory

E.3 Internal DOS Parameterization
E.3.1 Physical Disk Address Format

xvi

D-1
0-1
0-1
D-2
0-2
D-2
0-4
D-5
0-5
D-6
0-6
D-7
0-7
0-7
0-8
0-8
0-9
0-9

E-1
E-1
E-2
E-3
E-3
E-3
E-5
E-5
E-6
E-6
E-6
E-6
E-7
E-7
E-7
E-8
E-9
E-9

CHAPTER 1. CHANGES FROM PRIOR VERSIONS

The following changes have been implemented in DOS since
version 2.4 and its maintenance releases. All features and
corrections from the version 2.4 DOS releases are included in the
2.5 releases unless otherwise noted below.

1.1 Utility Programs

1.1.1 AUTOKEY

Changed to work correctly when run from a drive other than
the booted dri ve.

1.1.2 BACKUP

Changed to provide fast copy capability for the 9390 disk
drives.

1.1.3 BOOT

New utility program, intended to allow any drive to be easily
s e Ie c t ed as the " boo ted d r i v e " •

1.1.4 CHAIN

Corrected error that could cause spurious "CHAIN/OV1 MISSING"
message.

1.1.5 COpy

Changed to provide fast copy capability for the 9390 disk
dri v es.

CHAPTER 1 . CHANGES FROM PRIOR VERSIONS 1-1

1.1.6 COPYFILE/OVX and COPYFILE/OVY

Special COPYFILE overlays for DOS.D. COPYFILE/OVX copies
from a 9370/9374 controller at address 0115. COPYFILE/OVY copies
from a 9390 controller at its normal address. The standard
COPYFILE/OVD overlay still copies only from a 9370/9374 controller
at address 0113.

1.1.7 DSKCHECK

Did not exist in prior DOS. DSKCHECK is the new replacement
for REPAIR.

1.1.8 DUMP

DUMP can now print sector images to a local or servo printer.

1.1.9 EDIT

All available memory is used as a ci rcular buffer which
allows rolling backwards through a file. Some files may fit
completely in memory so there is no time-consuming copying back
and forth to a SCRATCH file. This also speeds up FINDs and
LOCATEs and reduces disk "thrashing".

The new DOS Editor offers additional file security since the
origin al so urce file is not mo di f ied unt i I the : E command is
entered. The use of two scratch files protects the input file
from modification until the EDIT is completed. It also allows
multiple passes on a file using the 'ONE-PASS' option. This does,
however, slow the end of EDIT since text in memory must be written
out to the scratch file (if in use) and then the scratch fi Ie must
be completely copied to the original file. Waiting time may be
reduced by taking adv an tage of the new

:EX <DOS command>

for ex ample, to as semble or DSCRIBE the text wh en the ed i ting is
completed.

Text files now carry their individual configuration (tabs,
etc.) in their first sector.

Many command enhancements and additions have been made for
consistency and usability. Some of the features of the new DOS

1-2 DISK OPERATING SYSTEM

EDIT include:
Rolling backward on the screen.
The new DOS Editor does not open a new fi le until it checks

wi th the user that a new file is to be created.
Null lines (that is, lines that have been deleted or

scratched) do not appear on the screen.
Default configuration information such as tabs, special

characters and modes is preserved with each file.
The new DOS Editor may be used to input and edit multi-line

records (records longer than 79 characters that must be continued
to the next line when displayed on the screen).

Space-compression is now an option.
The modify operators, n>n, "<n, and "\" may now be changed

during execution.
Tabs may be set by integer column number as well as by

spa c i ng a c ross the tab r u 1 e r .
Commonly used tab settings such as assembler (:TA), DATASHARE

(:TD) and SNAP (:TS) may be set by a command.
Fie 1 d de s i g nat ion ha s be e n ad de d to th e : D, : F, an d : L

commands.
Keyclicking may be turned on and off during execution (:K,

: KI) .
The get command (:G) can be used to roll the screen forward

or backward a specified number of lines, or to roll the screen to
a specified line number in the file.

:E\ can be used to truncate the beginning of the file.
:E- rolls backwards to the beginning of the text contained in

memor y.
The scratch and definition file names are stored in the

configuration sector.
The modify commands may all be used with the verification

option.

CHAPTER 1 • CHANGES FROM PRIOR VERSIONS 1-3

Other commands are:
:A* Append without moving the pointer.
:D* Display the last DELETE string.
:1 [string] Insert the specified string.
:0 Abort; go back to DOS without modifying the

file.
:OX [DOS command] Abort to DOS, then execute

the specified command.
:V Split the pointed line into two lines.
:W Concatenate the pointed line wi th the one

below it.

The new DOS Edi tor commands may be combined to form
'user-defined' command strings (:0 through :9). Additional
commands allow conditional or unconditional skips along the
command string. These command strings may be pre-defined in an
EDIT compatible file (default EDIT/DEF) which is automatically
loaded when EDIT is executed.

EDIT will recognize configuration sectors of most other
Datapoint Editors which are similar to EOIT in operation and
appearance.

1.1.10 ENCODE/DECODE

ENCODE/DECODE now have the ability to encrypt/decrypt files
with a given key.

1.1.11 FIXAPPLY

New product added to DOS.

1.1.12 INDEX

Criteria for execution of FASTSORT changed. INDEX now runs
FASTSORT if the processor has a 5500 instruction set and at least
24K of available memory. If either of these conditions is not met
INDEX invokes SORT. If FASTSORT is not present, SORT is always
used.

If a "Mnnn" option for FASTSORT is placed in the option field
of the INDEX command 1 ine, it wi 11 be ignored if INDEX determines
to invoke SORT instead of FASTSORT.

An error condition that could result in program failure on

1-4 DISK OPERATING SYSTEM

very short I SAM files has been corrected.

When indexing a file for which the lSI file already exists,
the lSI file header record is destroyed prior to invoking SORT or
REFORMAT. This action is performed so that if a fatal error
occurs during the index procedure the old lSI file cannot be used
later, when it may no longer correctly reference the text fi le.

1.1.13INITDISK

The INIT9310 program has been renamed INITDISK and has been
modified to support 9390 disks.

1.1.14 KILL

KILL by PFN will only work on files in the current
su bdi re ct or y, in su bd i rect ory SYS TE M, or in a su bd irect ory wi th no
name.

1.1.15 LIST

Gives correct error message for missing input file when using
I option.

LIST no longer considers it an error for the text file
associated wi th a specified /ISI fi le to have been moved.

Corrected file handling error when listing a null input file
to disk (P or Q option).

Keyboard/Display keys are now tested while displaying error
messages.

1.1.16 MIN

Parity errors in object files will now cause the offending
file to be deleted, but other files beyond that one will load.

CHAPTER 1 • CHANGES FROM PRIOR VERSIONS 1-5

1.1.17 NAME

When moving a file into a different sUbdirectory on a remote
ARC volume NAME now checks to see if a file with that name already
exists in that, subdirectory.

1 • 1 • 1 8 PU TIP L

Now gives the proper error message when ARC is present.

1.1.19 PUTVOLID

Now gives the proper error message when ARC is present.

1.1.20 REFORMAT

REFORMATing in-place with truncation on a file with a record
too long now works.

Command line scanning of conflicting options has been
corrected.

The error message "LOGICAL RECORD LENGTH, IF SPECIFIED MUST
BE <= 250 BYTES" has been changed to ,,< 250" which is actually the
case.

1.1.21 SORT

Format errors in the input file are now recognized and will
cause a descriptive error message and program abort. Errors
recognized are missing end-of-sector, invalid text character, and
invalid end-of-file. These errors previously caused program
failures wi th no error message.

SORT no longer uses memory from 07400 to 07777 (the DOS
Function loader), so it is fully PS and ARC compatible.

The :<volid> form of drive specification may now be used in
any field of the SORT command line.

The relational test between the H (hardcopy) and L (limited
output) optiollS has been corrected. A new option "X" has been
added to specify hardcopy output to a servo printer and the local
printer has been made the preferred hardcopy output device.

1-6 DISK OPERATING SYSTEM

The "/P" directive of the limited output option has been
fixed. Also, it is now possible to specify logical AND conditions
for conditional output in the limited output specification. The
"/nnntc" conditional specification can be extended by using
multiple nnntc fields ~eparated by ampersands:

"/nnntc&nnntc&nnntc •.. "

Previously, limited output selection of records requlrlng a
logical AND condition required multiple SORT runs.

A few existing error tests and error messages were themselves
in error and have been corrected.

1.1.22 SUR

SUR checks to see if the volume being operated on is a remote
ARC volume. If so SUR will only dis-play the subdirectories on that
volume. Any attempt to do anything else will result in an error
message.

1.2 System Routines

1.2.1 GETCH

The GETCH routine has been modified to accept the HL register
pair as the pointer for its input string. Due to this change, the
B register no longer contains the value of INPTR on exit.

1.2.2 Bootstrap, IPL, and Loader

The boot tape prepared by UBOOT now looks for 9390·disks.
The IPL and loader were modified to support the 9390 drives.
Also, the error detection in the loader was improved, so there is
less chance of attempting to execute bad object code files.

CHAPTER 1 . CHANGES FROM PRIOR VERSIONS 1-7

1.3 Relocatable Peripheral Drivers

1.3.1 SERVO, LOCAL and SCREEN

The printer and CRT drivers were all modified to output full
width lines to their appropriate output devices. Previously,
these routines wrote one less than the maximum line width.

1.3.2 FILE

The file output driver no longer truncates trailing blanks.
Truncation of trailing blanks caused all blank lines to become
null lines, which caused errors in LIST. Retaining trailing
blanks also allows the file output driver to be used for
fixed-length records.

1-8 DISK OPERATING SYSTEM

CHAPTER 2. INTRODUCTION

Datapoint Corporation's Disk Operating System (DOS) is a
comprehensive system of facilities for sophisticated data
management.

DOS provides the operator with a powerful set of system
commands by which the operator can control data movement and
processing from the system console. These commands allow the
system operator to accomplish things which could be substantially
more difficult on other computing systems. Sorting a large file,
for instance, can generally be accomplished in a single command
line. Despite the simplicity of operation, a wide range of
features is provided.

To the programmer, DOS offers a set of facilities to simplify
and generalize his task and file management problems. Concepts
like dynamic disk space allocation allow programs to efficiently
operate without regard to the amount of space required for the
data files they are using. In addition, the disk file structure
used by DOS allows for direct random access to data files. DOS
also makes use of fully space-compressed text files.

These features, combined with the ability to support up to
200 million bytes of high-speed random access disk storage,
provide a full range of data processing capabilities.

2.1 Hardware Support Required

The minimal configuration required to run DOS is a Datapoint
processor (1100, 1800, 2200, 5500, or 6600 family), with a minimum
16K of memory, and one disk storage unit (9350, 9310, 9380, 9390,
or 1840 series). For backup and support purposes, users with the
Diskette 1100 series computer are required to have at least one
system with more than one diskette drive. 1800 systems always use
a minimum of 2 diskette drives. Configurations based on the other
processors can operate with only a single disk drive unit in
conjunction with the integral tape cassettes in most processors,
but for backup and system support purposes a two-drive system is a
recommended minimum.

CHAPTER 2. INTRODUCTION 2-1

2.2 Software Configurations Available

DOS is provided in several different models. Different
models are used depending upon the type of processor and disk in
use at an installation. Specific models are indicated by a letter
after a period in the name of DOS. The following models of DOS
are currently defined:

DOS.A -- Supports 9350 series disk drives on Datapoint 2200
and 5500/6600 family computers.

DOS.B -- Supports 9370 series disk drives on Datapoint 2200
and 5500/6600 family computers.

DOS.C -- Supports 9380 series disk drives on Datapoint 1100,
2200 and 5500/6600 family computers.

DOS.D -- Supports 9370 series and 9390 series disk drives on
Datapoint 5500/6600 family computers. DOS.D is the host DOS for
the Datapoint ARC system, and is one of the operating systems
supporting the Datapoint Partition Supervisor systems.

DOS.E -- Supports 9350 series disk drives (with 16 buffer
disk controller) on Datapoint 5500/6600 family computers. DOS.E
also supports the Datapoint Partition Supervisor systems.

DOS.G -- Supports 1840 series disk drives on Datapoint 1800
family computers.

DOS.H -- Supports 1540 series disk drives on Datapoint 1500
family computers. (DOS.H is not described in this manual. See
instead the DOS.H User's Guide, model code 50308.)

2.3 Program Compatibility

This manual describes the compatible set of facilities
available to the DOS user within the Disk Operating System.
Programs written in any of the supported higher level languages
(DATASHARE, COBOL, BASIC, RPG II and others) will generally run
unmodified on any of the DOS. Most programs written in assembler
language will also run under any of the dot-series DOS, without
reassembly.

Basically, in only a few cases will a program need to be
changed when it is transferred from one DOS to anot~er. The need
for program modification will usually stem from one or more of the
following types of situations, which should be avoided whenever

2-2 DISK OPERATING SYSTEM

possible:

1) Programs which make assumptions regarding the size of
files. For example, programs originally written for the 9350
series disks might assume that the size of the biggest possible
file co u I d be ex pre s sed as f 0 u r AS C I I dig its. Un de r DOS. D , t his
assumption is invalid since files under DOS.D may be over 38,000
data sectors long.

2) Programs which make assumptions regarding the physical
structuring of the data on the disks. For example, each DOS
allocates space on the disk in segments of different sizes, and
places its system tables in different locations on the disk.

3) Programs which generate or modify physical disk addresses
themselves. Since the disks are each organized somewhat
differently to take advantage of the particular characteristics of
the specific type of drives involved, the physical disk addresses
naturally vary among different DOS.

4) Programs which rely upon other characteristics of a DOS
which are not documented in this manual. A possible situation
would be where a programmer might look at the values in the
registers following the return from a system routine and
determine, for instance, that some routine always seemed to return
with the value "1" in one of the registers. If he then constructs
his program in such a manner that it will not function correctly
if the "1" is not present upon return from the routine, then he is
likely to find that his program will not work properly on a
different DOS.

Only the first of the above situations will occur when using
a high-level language. The others only occur in assembler
language programs operating at the most detailed level of access
to operating system routines. Programmers who require this level
of detailed knowledge about the DOS will find the information
specific to each DOS in the Appendix for the DOS they are using.

CHAPTER 2. INTRODUCTION 2-3

CHAPTER 3. OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an
integral CRT display through which·the internal computer
communicates with the operator. The system console also includes
a typewriter-style keyboard which the operator uses to communicate
with the computer. The DOS is normally controlled by commands
entered at this system console.

3.1 General Information

When DOS first becomes ready for commands, it displays a
signon message on the CRT and says "READY". Upon completion of
any job the DOS generally again displays "READY". Whenever the
ready message is shown, the aperator may key in a command, which
will be displayed on the bottom line of the CRT as it is keyed in.
While typing a command, the BACKSPACE key will erase one character
for correction, and the CANCEL key will erase the entire line.

A command line specifies first what job is to be performed,
then any disk files or special system directives, then options, for
the job. The command programs provided with DOS are described in
this manual; the information that must be entered for each command
is specified in the chapter about that command. A command line is
always terminated with the ENTER key.

3.2 Command Line Syntax

In general, a command line is entered as:

<field>,<tield>,<field>,<field>;[options]

Each (field> indicates a DOS file name specification (see the Disk
Files chapter) or possibly a special field such as a subdirectory
name. The first <field> on the line always specifies th~ program
that will be run. Special attention must be given to the
separators between fields on the command line. The most common
separators are space and comma. For legibility. the first two
fields are usually separated by a space and subsequent fields are
separated by a comma. A command then usually looks like:

SORT ACCTFILE,SRTFILE,:DR3;2-11

CHAPTER 3. OPERATOR COMMANDS 3-1

In this example the first field, the program to be executed, is
"SORT". The second field is "ACCTFILE", the third is "SRTFILE",
and the fourth is ": DR3". All of these fields provide information
to the SORT program. A semi-colon (;) is a special separator
which always separates <field) entries from [options]. In the
above ex ample the options field is "2 - 1 1 " . Slash (/) and colon
(:) are special separators used within a fIle name.

Aside from the separators noted above, most special
characters ($, ?, II, =, and so on) act as separators just like
space or comma. In general, any character that is not a
syntactically valid part of a file name will be interpreted as a
field separator. The command example above could have been
entered as:

SORT@ACCTFILE=SRTFILE$:DR3;2-11

Even / and : may be interpreted as field separators if not used as
valid portions of a file name. Thus the command

COpy NAME/TXT/TEMP

has three fields: COpy, NAME/TXT, and TEMP. The use of special
characters is not recommended since the resulting command line is
very confusing for human interpretation.

3.3 Command Interpretation

As already noted, the first field on the command line
specifies the program to be executed. For any command this first
field must be gi ven, any other fields mayor may not be needed for
a particular command. The cbmmand program must be a loadable
object file or the program load will fail and the DOS will simply
return to "READY" condition. If the program specified to be run
cannot be found, the DOS displays the message "WHAT?" and waits
for another command. If desired, the program name specification
can be pr eceeded by an as ter i sk (*) or a colon (:), in di ca ting the
command is to be located in UTILITY/SYS in preference to a
separate command file (See Command Interpreter section).

Fields on the command line are often order dependent. If a
command is being used which accepts several fields, one of which
is not wanted, skip that field by entering two separators with
nothing between them.

SORT ACCTFILE,,:DR3;2-11

3-2 DISK OPERATING SYSTEM

By using two commas, ": DR3" is recognized as the fourth field on
the line, with the third field being null.

3.4 Documentation Conventions

When the command line is discussed in this manual, the first
field is called the "command"; subsequent fields before the
semi-colon are called "<filespec>" or some similiar term;
chara c te rs followi ng the semi-colon are ca lIed "opti 0 ns" or
"parameters".

Prototype command lines will be shown in the form:

command [<filespec1>J[,<filespec2>J[,<spec3> ... J[;<options>J

Items enclosed in angle brackets ("<filespec>") represent a
specification that will be entered on the actual command line.
The angle brackets are not punctuation actually used on the
command line. Square brackets also appear on the prototype lines
but are not actually used as punctuation on the command line.
Items enclosed in square brackets ("[;<options>J") represent
optional fields that may be omitted or included as desired by the
operator. Items on a prototype line that appeQr as capital
letters represent the actual characters that must be entered.
Items appearing as small letters represent the location for some
different actual entry.

3~5 Program Signon Messages

When a command prog,ram begins execution it first displays a
message identifying itself. If the command is specific to one
single DOS, the signon message will also identify which DOS the
command is designed to execute under. The main purpose of the
signon message is to allow the operator to determine, in the event
of some difficulty, whether a superseded version of the command
program is in use.

CHAPTER 3. OPERATOR COMMANDS 3-3

CHAPTER 4. EQUIPMENT CARE

Computers, disk drives, printers, and other data processing
equipment are delicate devices'. They must be operated correctly
and given a degree of care to continue to perform correctly.
Datapoint prints "A Guide for Operating Datapoint Equipment",
model code #60252, which gives detailed instructions on the

.operation of Datapoint equipment. It is recommended that any
installation without trained computer operators obtain this
manual.

4.1 Environment

Datapoint systems must be installed in an area with adequate
air conditioning. DatapDint processors can stand a fairly wide
range of temperatures, but disk drives should have a temperature
range of 60 to 80 degrees F. (15.5 to 26.7 degrees C.). The
temperature tolerance varies with the type of drive in use
(diskette drives can stand a much wider temperature range) but the
60-80 degree range is safest. Humidi~y must be kept low enough to
avoid condensation (below 80%) but high enough to avoid excessive·
static electricity problems.

The machine area must be reasonably clean and dust-free.
Fanatic cleanliness is not necessary, but dust, cigarette ashes,
spilled liquids, and so forth can seriously affect machine
operation.

Processors and peripherals require fairly "clean" power to
avoid erratic operation. Machine room power should be supplied
from a completely separate transformer if possible. Be sure
devices such as adding machines and power tools are not connected
to the same power leads as computer equipment. The electric'
motors in these devices cause severe power line noise and will
seriously affect machine operation. If necessary, isolation
transformers are available to supply clean power for Datapoint
equipment.

CHAPTER 4. EQUIPMENT CARE 4-1

-4.2 Processor

The only user maintenance on the processor is- to dust and
clean the cabinet, CRT screen, and keyboard occassionally and to
clean the cassette decks. The cassette decks are especially
sensitive to grime: dirty decks can cause read/write errors and
can even destroy tapes. The decks are cleaned in the same way
audio cassette decks are cleaned. Use tape head cleaner and a
cotton swab to clean the tape heads and capstans; use a dry,
lint-free cloth or swab to clean the pinch rollers. The cassette
decks should be cleaned as necessary depending on use; normally
every few months, as often as weekly if the decks get very heavy
use.

Be sure the ventilation slots on the top and rear of the
processor are never blocked, as impeded air flow will cause
overheating.

-4.3 Disks and Disk Drives

Be sure all operators know how to insert and remove disks in
the di sk drives. Di sks must be stored properly in an environment
similar to that for the equipment. Consult the appendices of this
manual, or the Guide for Operating Datapoint Equipment, or the
Datapoint Product apecifications (green sheets) for details on
disk han d 1 in g .

The disk drives must not be subjected to bumps or jolts or
head misalignment can occur. Physical location of the drives must
allow adequate ai.r circulation for cooling purposes.

-4.-4 Other Peripherals

All peripherals should be dusted occasionally in keeping with
the necessary environment cleanliness. Aside from printers, most
Datapoint peripherals require practically no user maintenance.
For any necessary care, consult the Guide for Operat~ng Datapoint
Equipment, the green sheets, or your Datapoint service
representative.

Printer ribbons must be changed periodically to maintain
print quality. Cloth ribbons left in use for too long can
disintegrate, requiring a very messy clean-up of inky lint when
the ribbon is finally changed, so check the ribbon occasionally.
To avoid paper jams on printers, be sure the paper is aligned
correctly when loaded, and be sure the paper has a free path into

4-2 DISK OPERATING SYSTEM

the printer and as it emerges to the paper tray.

CHAPTER 4. .EQUIPMENT CARE 4-3

CHAPTER 5. DISK FILES

On all DOS-supported disks, information is stored in sectors,
each of which contains 256 bytes of information. Sectors
containing related information are organized in a single
structured group called a file. All information on a disk will
generally be organized in files, except for certain system tables.

5.1 File Names

From the console, files are identified by a NAME, EXTENSION,
and LOGICAL DRIVE NUMBER. The NAME consists Of up to eight ,
alphanumeric characters (no special characters). Typical file
names would include:

EDIT
EMPLOYEE
23NOV76

PAYROLL
JUL1075
X1

The EXTENSION must start with a letter and may be followed by
up to two alphanumeric characters. If an extension is used in a
file name, it is separated from the NAME by a slash (I). The
extension further identifies the file and usually indicates the
type of information contained in the file. A "TXT" extension
means text and usually implies data or program source code. "ABS"
implies program object code (absolute code) loadable by the ~ystem
loader. "CMD" implies an object code file to be used as a command
program from the system console. Other common extensions are:
REL, lSI, DBC, OVn, SYS, PRT, BAS, and LEX.

The LOGICAL DRIVE NUMBER specifies on which logical drive the
file is (or will be) located. The drive specification is
identified by a leading colon (:) and has the form n:DRn" or ":Dn"
or ":<volid>". When the ":DRn" or ":Dn" forms are used, the "n"
is a number indicating the logical drive number as assigned at
system inst,allation. The": <volid>" form allows Jogical volume
identification, regardless of the physical drive on which the disk(
is located. "<volid>" is an eight character· identifier placed on
a disk by the PUTVOLID program.

The complete form of a file name is thus

NAME/EXTENSION:DRIVE

CHAPTER 5. DISK FILES 5-1

When a file name is entered as part of a command, all three part~
of the name are not usually needed, though they can be specified.
The presence or absence of a part of the file name is determined
by the special separators "I" and ":". Syntactically correct file
name entries are:

NAME/ABS:DRO
NAME/REL
NAME:DO
NAME

IABS:DR1
ITXT
:D2
NAME:DOSD1

If a portion of the file name is not used, DOS applies default
values; the default value used depends on the location of the name
on the command line, and on the command in use.

The first field on any command line is the command program to
be run. For this field, a NAME must be given, the default
extension is CMD, and the default drive is any drive. (An "any
drive" default usually means a search of all drives, starting with
drive 0). If the command name is preceeded by an asterisk(*) or
a colon (:), the default extension and all-drive search do not
apply, as the leading character indicates the given name is to be
loca ted as a member of UTIL I TY I SYS (an "absol u te Ii brar y"), rather
than searched for as a f.ile.

The default values for file names given as parameters to a
command are described separately for each command.

5.2 File Creation

Files are always created implicitly. That is, the operator
never specifically instructs the system to create a given file.
Any command that writes to an output file will write into an
existing file or will automatically create a new file if
necessary.

A file to be created will be created on the drive specified
in its file name field or specified in default values applied to
its name. When a file is being created on a specific drive, files
with the same name and extension on other drives are unaffected.
If no drive is specified in the name or by default, the file is
created on any drive which has free space, the search for
ayailable space starting on drive O. "Available space" means one
free space in the drive's directory, in which to place the name of
the new file,and at least one cluster of free space on the disk,
in which to place the data the file will contain. (A "cluster" is
the smallest unit of disk space that can be assigned to a file;

5-2 DISK OPERATING SYSTEM

clusters are defined in the chapter on System Structure.)

5.3 File Deletion

Deletion of a file is performed explicitly by operator
command, using the KILL command described later. No other
programs delete an existing file, although procedures such as
system generation and backup naturally destroy all files on the
output disk.

5.4 File Protection

DOS files can be given three types of protection: write
protection, delete protection, and no protection. If a file is
write protected, it can be neither written upon nor deleted. If a
file is delete protected it cannot be deleted, although it can be
written over, effectively destroying any data previously in it.
If a file has no protection it can of course be modified in any
manner. The CHANGE command is used to set the protection of a
file.

CHAPTER 5. DISK FILES 5-3

CHAPTER 6. SYSTEM GENERATION

Be for e a disk c an be used wit h DOS it m u s t fir s t be pre par ed
by writing onto it basic system tables. Also, a surface
verification must be performed so any bad areas of the disk
surface will not be used. On a new installation, the system
utili ty programs must be placed onto the di sk for use. All these
operations constitute system generation.

6.1 Initial Generation

Datapoint distributes DOS in two forms: as a set of cassette
tapes or as a completely generated disk. Users who receive the
complete disks need not perform the cassette generation described
below, as it has already been performed on their disk. Anyone
requiring additional working disks should generate them as
outlined in "Scratch Disk Preparation".

6.1.1 Formatting

Before a disk can be written or read on any drive, it must be
appropriately formatted. Cartridge disks for use on Datapoint
drives (9350 series) require no formatting because they use
hardware formatting -- the sector formatting is inherent to the
disk·. Datapoint diskettes (9380 series) are formatted when
received and do not require a special formatting process before
they can be used.

Diskettes for use on the dual-density drives (1840 series)
must be formatted when first used. The DOSGEN and BACKUP programs
of DOS.G are able to format the diskettes in the necessary manner •.

. The mass storage disks (9310 or 9390 series) also require a
special formatting process before they can be used. The first
tape of the DOS generation cassettes for mass storage operating

. systems (DOS.B and DOS.D) is a formatting program. Simply insert
the cassette in the rear cassette deck and depress RESTART/RUN (on ~
the 2200 processors only RESTART need be depressed). The tape
will rewind and then load the formatting program INITDISK. This
program will ask for a specific physical (not logical) drive
number containing the disk to be formatted. After receiving a
reply, the program will ask if the operator is certain the drive
number is correct and the di sk in i.t is scratch, since formatting

CHAPTER 6. SYSTEM GENERATION 6-1

destroys any information previously on the disk. Formatting will
then proceed. When finished, the program-will display a message
indicating the pack is completely formatted.

For additional information on the formatting program, see the
chapter on INITDISK.

6.1.2 Cassette System Generation

The first tape of the DOS generation cassettes (second tape,
for DOS.B and DOS.D) is the actual generation cassette. To use
this cassette load it into the rear cassette deck and depress
RESTART/RUN (on 2200 processors only RESTART needs be depressed).
The tape will rewind and then load the DOS generation program.
Loading takes about a minute. When the program has loaded it will
display a sign-on message and ask what logical drive is to be
generated. The drive specified .must be on-line with a ready disk
in it.

Following drive selection the program will ask if a full
generation is desired. To get a full DOS generation, answer Y;
for a partial gen (useful only for upgrades from an older version
DOS) answer N. Partial generation is described below. Following
selection of full generation, the program will ask to be sure the
disk in the selected drive is scratch, containing no valuable
files that would be destroyed by generation.

After the verification question, the program performs a
surface test on the cylinders used by DOS for its system tables
and operating files. If this test fails, the disk is considered
unusable and error messages will so indicate. After a short pause
for the above test, the program will ask if any cylinders are to
be locked out. The normal answer to this question is N, since
locked-out cylinders cannot be used by DOS. If it is desired to
lock out any cylinders for special use, consult the DOSGEN chapter
for a description of cylinder lockout.

The next step in system generation is a quick surface
verification of the entire disk surface. If an error is
encountered, the program displays the cylinder number in which the
error occurred, beeps, and flags the cylinder in the Lockout CAT
so the DOS will not use it.

Following surface verification the basic system tables are
built on disk and the system programs are loaded from the tape.
Programs loaded are SYSTEMO/SYS - SYSTEM7/SYS, CAT/CMD, MIN/CMD,
and UBOOT/CMD.

6-2 DISK OPERATING SYSTEM

For initial generation of mass storage disks, be sure to
repeat the above procedure the proper number of times to assure
the entire physical volume is generated with all logical volumes.
To save time, the first logical volume of a physical pack can be
fully generated (finish loading utilities as described below),
then the remaining logical volume(s) on the pack can be generated
using the disk DOSGEN command described later.

After loading the system programs, system generation is
complete except for loading utilites, and the new DOS is brought
up ready for commands.

For 2200 and 5500 systems which need to be booted from a
cassette boot loader, as soon as the system is ready (easy to tell
since the message on the CRT is "READY") enter the command UBOOT
to produce a boot tape for the DOS. UBOOT will ask for a blank
tape in the front cassette deck and will then write and verify a
boot block on that tape. It is wise to make at least two boot
tapes at this t1me, since the boot tape is the only way to start
up DOS. Any time it is necessary to start DOS (after the
processor has been turned off, after loading a different set of
di sks, etc.) simply place the boot tape in the rear deck and
depress RESTART/RUN (RESTART only on 2200) to boot the operating
system.

To completely finish system generation, the system programs
and utilities must be loaded. These files are contained on the
second and third tapes of the system generation cassettes (third
and fourth tapes for DOS.B and DOS.D). To load the commands
simply place each cassette in turn into the front cassette deck
and enter the command

.MIN;AO:Dn

where n is the drive number being generated. When the files on
these two tapes have been copied to disk, geneiation is finished.

The generation cassettes for DOS.C include a fourth tape of
system commands, containing all the programs in UTILITY/SYS (see
the appropriate chapter in this manual) as separate files. These
files are provided as a convenience so that only desired programs
can be placed on a system diskette, leaving free space on the
di sket te for other use. .

CHAPTER 6. SYSTEM GENERATION 6-3

6.2 Partial Generation

The DOS generation tape program has an option to perform a
pa~tial g~neration for purposes of upgrading an older version of
DOS to the present version. To use partial generation load the
gen tape and specify the drive to be generated. When the program
asks if a full generation is desired answer N. The program will
a sk a co u pIe of v e r i f i cat i on que s t ion s to be sur e its h 0 u Id jus t
replace the system and command files, and will then do so.

During partial generation the eight system files SYSTEMO/SYS
through SYSTEM7/SYS are r~placed by new files from the tape. The
old utility programs must be deleted and new programs loaded from
tape before partial generation is complete. If the disk being
upgraded includes an existing UTILITY/SYS file, it may be
necessary to use LIBSYS to upgrade the absolute library, rather
than simply overstoring the old library with the new one. For
more information, see the chapter on UTILITY/SYS.

When performing a partial generation on a DOS. 1.1, 2.1, or
2.2 disk, it will be necessary to replace the old MIN/CMD with the
new command from the generation tape before the utilities tapes
can be loaded. (The old MIN cannot recognize the file format of
UTILITY/SYS.) The replacement operation must be performed before
the partial generation from the DOSGEN tape is performed.

To replace MIN, load the generation cassette in the front
deck and run MIN (the old command already on di sk) . MIN will
identify the tape as "CTOS SYSTEM TAPE FORMAT" and will scan the
tape to find the CTOS catalog. When the catalog is located, the
fi les on the tape wi 11 be di splayed and MIN wi 11 ask

LOAD B?

Skip the file named B by answering "N", skip CAT in the same
manner, then answer "Y" to load MIN. The pro gram wi 11 a sk for a
DOS file name; the name gi ven should be "MIN/CMD". MIN will ask
to be sure the existing command should be overwritten, answer "Y"
to the OVERWRITE? question. Once MIN/CMD has been loaded, enter
an asteri sk to end the program when it asks if UBOOT should be
loaded.

After MIN/CMD has been replaced, use the new MIN to load the
utility tapes in the normal manner.

Following a partial genera~ion, it is a good idea to BACKPP
the upgraded disk with reorganization. The reorganization removes
any fragmentation in system files and allows an operator to easily

6-4 DISK OPERATING SYSTEM

delete undesired old files. Until the old command files have been
deleted, be sure to enter a leading * on each command so as to use
the new utilities from UTILITY/SYS.

Partial generation is not valid between some versions of DOS
(notably Version 1 DOS.S and any newer version). Check with your
Datapoint System Engineer before attempting an upgrade by partial
generation.

6.3 UPGRADE/X

A disk-based upgrade facility is available in a file called
UPGRADE/X, X being the letter specification of the DOS in use.
UPGRADE is a standard text file to be used as a chain procedure by
the command

CHAIN UPGRADE/X;OUTPUT=:Dn

where n is the drive number containing the disk to be upgraded.

The UPGRADE procedure copies the eight system files from the
new version disk (which should be in drive zero) to the specified
drive. SYSTEM7/SYS is copied by use of COpy SYSTEM7/SYS;7 to
preserve the subdirectory structure on the old disk. After the
system files are copied, old utilities on the output disk are
deleted and new utilities are copied from the input disk. The
program PUTIPL is then run to place the necessary IPL blocks on
the output disk.

Since UPGRADE is a text file, it can be edited to modify the
chain procedure followed, to adjust to special needs. Any
modifications performed should be very carefully considered to
assure a good upgrade. System conversions are a complex process
and any errors can result in an unusable disk or lost data.

As with partial generation from cassette, use of UPGRADE is
not valid for all possible versions of DOS. Check with your
Datapoint System Engineer before using UPGRADE for a disk
conversion.

CHAPTER 6. SYSTEM GENERATION 6-5

6.4 Scratch Disk Generation

Any disk to be used in a DOS system must be generated to
contain the necessary system tables and basic system files.
Scratch disks or new system disks are best produced by use of th~
DOSGEN program described later in this manual. DOSGEN is a
totally disk based program and performs much more quickly than
cassette generation. If necessary or desired, the DOS generation
cassette can be used to produce a new disk, as described above in
Initial Generation.

6.5 Generation Cassettes and Emergencies

If all boot tapes· at an installation are lost or destroyed,
there is suddenly no way to access perfectly good disks. New boot
tapes can be made by loading the DOS generation cassette in the
rear deck and pressing RESTART/RUN, then holding down the KEYBOARD
key while the tape loads. After about 30 seconds a READY message
will appear on the screen from the CTOS (Cassette Tape Operating
System), which has just been loaded. Enter the command "RUN 8"
and CTOS will load and run the program called "8", which is a
cassette-compatible version of U800T, producing a new boot tape
for the DOS.

The generation tapes also provide an excellent backup copy of
all system utilities and of the system files themselves. The
system files are on the DOS generation tape as files #21 through
#30 (SYSTEMO/SYS through SYSTEM7/SYS respectively). The
availability of such backups can be invaluable in event of massive
data loss on system disks.

6-6 DISK OPERATING SYSTEM

CHAPTER 7. ABTONOFF COMMAND

7.1 Purpose

The ABTONOFF command is used to manually modify the ABTIF bit
in DOSFLAG (see the description of IIABTIF in the chapter on the
CHAIN command.)

7.2 Use

The command line for ABTONOFF is:

ABTONOFF [<condition>]

Where <condition> is one of "ON" or "OFF", specifying the desired
condition of the bit. The command will display the prior
condition of the bit before modifying its status. If it is
desired to just manually inspect the bit without modifying it,
specify no <condition>.

CHAPTER 7. ABTONOFF COMMAND 7-1

CHAPTER 8. APP COMMAND

8.1 Purpose

The APP command appends two object files together creating a
third. Object files are files containing absolute object code in
a format that can be loaded by the DOS lo~der.

8.2 Use

APP <file spec>,[<file spec>J,<file spec>

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
of the input files are disturbed. If extensions are not supplied,
ABS is assumed. The first two files (if a second is specified)
must exist. If the third file does not already exist, it will be
created. The first file's transfer address is discarded and the
new file is terminated by the transfer address of the second flle.
The transfer address of an object file is defined as the entry
point of the program contained in the file.

Omitting the second file specification causes the first file
to be copied into the third file. For example:

APP DOG" CAT

will copy the file DOG/ABS into the file CAT/ABS.

The fir s tan d t h i r d f i Ie s p e c i f i cat ions are r e qui red. I f
either is omitted the message

NAME REQ UI R ED

will be displayed. The second and third file specifications must
n ot be the s a me .

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the example above, is one technique for releasing excessive
unused space at the end of an object file.

CHAPTER 8. APP COMMAND 8-1

Another use of the APP command is to append patches to object
files, since the object files being APPed may load at the same
address as the object code in the original program. However,
since the new code is at the end of the module, it is loaded over
the old code.

8-2 DISK OPERATING SYSTEM

CHAPTER 9. AUTO COMMAND

9.1 Purpose

The AUTO command sets a pr·ogram to be automatically executed
when the DOS is loaded. This auto-execute feature may be used to
facilitate automated procedures for unattended operation (as
described in the chapter on AUTOKEY), or for a variety of other
purposes. AUTO can also simply change the program chosen for
auto-execution. Auto-execution is cleared by use of the MANUAL
command.

AUTO is invoked by the command

AUTO [<filespec>]

<filespec> is the name of the fil~ to be auto-executed and must be
an executable object file on the booted drive of the system. The
default extension for <filespec> is ASS.

Following the program signon message, a line will be
displayed describing the prior status of auto-execution. If no
program was set to auto-execute, no message will be displayed. If
there was a program set for auto-execute, the message

AUTO WAS SET TO filename/ext (pfn).

will appear, where "filename/ext (pfn)" specifies the name and
physical file number of the old auto-execute program. The
optional <filespec> on the command line is required if there was
not a previous program set for auto-execution. If the <filespec>
is omitted when required the message

NAME REQ' 0

will be displayed and the program will terminate.

If a <filespec> is given in the command line the message:

AUTO NOW SET TO filename/ext (pfn)

CHAPTER 9. AUTO COMMAND 9-1

will be displayed (where pfn is the physical file number). When
the named file is set for AUTO execution a check is made to see if
the file is an object file and if the file is on the booted drive.
If the specified file does not exist, the message:

NO SUCH NAME

will be displayed.

9.3 Operation of AUTOed Program

When a program is set to auto-execute, it will execute any
time the DOS is initialized. The automatic execution can be
suppressed by holding down the KEYBOARD key on the processor.
When the KEYBOARD key is depressed, DOS enters the normal command
interpreter ("READY" message) after initialization, regardless of
any program set for auto-execution.

Sometimes when a disk will not boot, the problem is caused by
an error in the auto-execute program. The program to be
auto-executed is identified only by its physical file number, so
if something has written over the program or if the program file
has been deleted, the system will hang up when an attempt is made
to execute the file. To bypass this kind of problem simply boot
the DOS.while holding down the KEYBOARD key (to suppress
auto-execution) then execute the MANUAL command to clear
auto-execution.

The AUTO command specifies only the program to be executed,
providing no additional information. When the specified program
is executed it is not given any command line information, since no
command line is provided. This characteristic of auto-execution
makes it impossible to use AUTO for programs requiring or even
accepting parameters from the command line. Programs using
overlay files with the same name and a different extension will
not work when auto-executed because the name used to load the
overlay is usually obtained from the command line information.
Since almost all programs use command line information, very few
programs can be executed directly from auto-execution.

To overcome the limitations of direct auto-execution, the
command AUTOKEY makes it possible to extend the capabilities of
AUTO to encompass practically all programs. AUTOKEY is described
in a separate chapter later.

Automatic program execution is implemented by storing the
physical file number (PFN) of the file to be automatically

9-2 DISK OPERATING SYSTEM

executed. The PFN stored for this purpose is called the
Auto-Execute physical file number, or AEN. Whenever the operating
system is initialized by execution at the DOS$ entry point, the
file represented by the AEN of the booted drive is executed.
Normally the AEN is zero, representing no auto-execute program.
AUTO may set the AEN to any other value, allowing automatic
execution of any program, subject to the restrictions noted above.

CHAPTER 9. AUTO COMMAND 9-3

CHAPTER 10. AUTOKEY COMMAND

10.1 Purpose

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing tasks, perhaps
running via the DOS 'command chaining facility (see CHAIN), to be
run during the evening hours when no operator is present. (An
example might be the creation of several new index files for one
or more large, ISAM-accessed data bases). However, the momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, uninterruptible
power supplies. When this happens to a computer running in
unattended mode, the office staff will generally return the next
morning to find their computer sitting idle and its work
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their processing tasks following such an
interruption. The purpose of the AUTOKEY (and AUTO) commands is
to provide a software mechanism for users who wish to handle such
unusual circumstances and provide for the restarting of a
processing task.

10.2 Use

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY [<command line string>]

at the system console. If no <command line string> is entered,
AUTOKEY will display the current autokey line if there is one and
then ask if this line is to be changed. If "N" is answered,
AUTOKEY simply returns to the DOS and the DOS "READY" message is
displayed. If "Y" is answered, AUTOKEY requests the new command
line to be configured and then returns to the DOS and "READY".

Alternatively, if the user wishes to simply specify a new
command line to be configured regardless of the current setting of

CHAPTER 10. AUTOKEY COMMAND 1 0-1

the AUTOKEY command line, he can merely place the new command line
string after the "AUTOKEY" that invokes the AUTOKEY command. This
will cause AUTOKEY to simply display the old and new commmand
lines and return to DOS.

10.3 The Hardware Auto-Restart Facility

There are a number of ways Datapoint processors handle
auto-restart.

10.3.1 Processors with tape decks

There are two small tabs on the back edge (directly opposite
from where the tape is visible) of each cassett~ tape. The
leftmost of these (as you look at the top side of the cassette) is
the write protect tab, which .prevents writing on the topmost side
of the tape. The right-hand tab is the auto-restart tab.

Users who frequently use both sides of cassettes will
probably immediately notice that if one turns over the tape, the
assignmen'ts of these two tabs switch around, the tab which had
been write protect now being auto restart and vice versa. This in
fact is precisely what happens.

If the auto-restart tab on the rear cassette is punched out
(or slid to the side), then the computer will automatically
re-boot, just like it does when RESTART/RUN is depressed, whenever
the processor goes to STOP. Assuming that the rear cassette drive
contains a DOS boot tape, this will cause DOS to come up and
execute any program set for auto-execution.

10.3.2 Processors without tape decks

The Datapoiht 1100 family of processors are provided with
switch-selectable auto restart. The computer will either halt or
automatically restart upon being stopped, depending upon the
setting of an internal switch. This switch can be set by a
Datapoint representative upon request~

Datapoint 1800 and 6000 users are provided with a firmware
auto-restart. Thus if the machine ever halts (due to a power
failure for example), on being started again it will attempt to
load the operating system ..

10-2 DISK OPERATING SYSTEM

10.4 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATASHARE
system, for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatically
executed whenever DOS comes up. (Note that any loading and
running the DOS, whether by an auto-restart, executing the RESTART
procedure, or under program control, will activate this facility.)

The AUTO command is used to establish a program to receive
control when DOS comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been provided.

10.5 Auto-Restart Facilities Using AUTOKEY

AUTOKEY is simply a command program which can be AUTOed. The
way in which it works is very simple. If ·it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console.

The command line supplied to AUTOKEY could do anything that
can be specified in one command line to the DOS; DATASHARE could
be brought up, a SORT invoked, a user's own special restart
program started or even a CHAIN begun. AUTOKEY, when used with
AUTO, MANUAL, and CHAIN can therefore provide a very powerful
facility.

10.6 A Simple Example

As a simple example, assume that XYZ Company has several of
their sales offices on-line to their home office DATASHARE system,
which is running completely unattended. Lightning strikes a
powerline outside of XYZ Company's home office, and power is dut
off for 15 seconds. As soon as power is restored, their Datapoint
5500 computer re-boots its DOS (since the right-hand tab on the
boot tape has been punched out) and warmstarts the DATASHARE
system. One command sequence to accomplish this would look like
the following:

CHAPTER 10. AUTOKEY COMMAND 10-3

AUTOKEY
DOS. VER n.n AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y
ENTER NEW AUTOKEY LINE:
DS55500
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An alternate form of the above would be the following:

AUTOKEY DS55500
DOS. VER n.n AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
ENTER NEW AUTOKEY LINE:
DS55500 <--- (this is supplied automatically)
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass it is to hold down the KEYBOARD key while the DOS
is coming up. This action bypasses the auto-executed program and
enters the normal command interpreter. The user then can use the
MANUAL command to clear the auto-execution option.

10.1 A More Complicated Example

The following example uses many of the features of other
facilities in the Datapoint system besides simply AUTOKEY.
Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the
sophistication possible using AUTOKEY in conjunction with the
other facilities within the DOS.

Let's assume that XYZ Company is running an eight-port
Datashare system. Each of the company's seven sales offices
around the country has a Datapoint 1100 computer which is
connected up to the home office Datashare system as a port. (The
eighth port is used by the home office's secretary, Susie.)
During the day, each of the seven sales offices makes inquiries of
the central inventory, price, and model code files through a
system of Datashare programs, and another Datashare program lets

10-4 DISK OPERATING SYSTEM

them key orders into a file called "ORDERSn" where n is their port
number. At the end of each business day, XYZ Company wants to
process these orders. First they put the seven files all into one
large file, sort it, and use a Datashare program to make
corresponding entries into the master order file. The master
order file is then reformatted and the index reconstructed. The
final step is to create a second copy of the master order file
onto magnetic tape, which will then be saved for backup purposes.

Since the operation just described is fairly lengthy, one of
the programmers at XYZ Company decided to allow it to run
unattended after everyone has gone home. They even set up Susie's
MASTER program so that it automatically takes down the Datashare
system and starts up the end-of-day processing one-half hour after
the company's Los Angeles sales office (two time zones behind the
Chicago main office) closes for the afternoon. When the daily
processing is completed, Datashare is brought back up again so
that it will be up by the time the first people start arriving at
the New York sales office the next morning, an hour before the
Chicago main office opens.

In the event of an unanticipated power failure, the system
will recover and bring itself back up, resuming operations at the
last checkpoint established by AUTOKEY. Notice that the system is
also left in a state such that after the chain completes,
Datashare will automatically restart in the event of any possible
system failure. (NOTE: Datapoint 9350 disk systems using Diablo
disk drives will initialize with hardware in "WRITE PROTECT" mode
after power interruption.)

The following chain file ("OVERNITE/TXT") accomplishes the
preceeding, assuming that subdirectory "SYSTEM" is used throughout
the chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost
arbitrarily co~plicated; the point here is simply to show one of
many possible techniques for handling unattended operations which
wish to restart automatically in the case of some failure. Notice
that the chain file might have to be modified depending on the
particular version of DATASHARE an installation is using.

CHAPTER 10. AUTOKEY COMMAND 10-5

I I I FS S 1
II. FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1
AUTO AUTOKEY/CMD
BUILD NULL;!
!
II. NEXT APPEND TOGETHER THE SEVEN FILES.
SAPP ORDERS1,ORDERS2,SCRATCH
SAPP SCRATCH,ORDERS3,SCRATCH
SAPP SCRATCH,ORDERS4,SCRATCH
SAPP SCRATCH,ORDERS5,SCRATCH
SAPP SCRATCH,ORDERS6,SCRATCH
SAPP SCRATCH,ORDERS7,SCRATCH
II. NOW SCRATCH CONTAINS THE DAILY FILES.
II. SET FIRST CHECKPOINT AT END OF PHASE 1
AUTOKEY CHAIN OVERNITE; S2
II XIF
I I IFS S 1 , S2
I I. PHASE TWO SORTS FILE "SCRATCH" INTO "ORDERDAY".
SORT SCRATCH,ORDERDAY;1-5
I I . NEXT CHECKPOINT HAVING BUILT "ORDERDAY".
AUTOKEY CHAIN OVERNITE;S3
II XIF
II IFS S1,S2,S3
II. PHASE THREE PROCESSES THE FILE WITH A DS55500 PROGRAM.
BUILD CONFIG/CHN;!
DS55500;C
Y
Y
Y
N
Y
N
N
Y
N

<----------null line (just hit enter)

CHAIN CONFIG/CHN
DS55500 PROCESS

The program PROCESS/DBC ends wi th ROLLOUT "CHAIN NULL" to end the
program and continue the chain.

10-6 DISK OPERATING SYSTEM

I I. THE MASTER ORDER FILE "ORDERMAS" NOW IS UPDATED.
II." SET NEXT CHECKPOINT
AUT 0 KEY C H A IN 0 V ERN IT E ; S 4
II XIF
II IFS Sl,S2,S3,S4
II. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:WORK2;R
I I. " S C RAT C H" NOW I S ARE FOR MAT TED CO P Y OF" 0 ROE R MAS" .
AUTOKEY CHAIN OVERNITE;S5
II XIF
II IFS Sl,S2,S3,S4,S5
I I. PHASE FIVE COPIES "SCRATCH" BACK TO "ORDERMAS"
COpy SCRATCH:WORK2,ORDERMAS
I I. " 0 ROE R MA S "I S NOW REA 0 Y FO R IN 0 E X I N G •
AUTOKEY CHAIN OVERNITE;S6
II XIF
II IFS S1,S2,S3,S4,S5,S6
I I. PHASE SIX RECREATES THE INDEX FOR "ORDERMAS"
INDEX ORDERMAS;1-16
II. THE INDEX HAS NOW BEEN REBUILT.
AUTOKEY CHAIN OVERNITE; S7
II XIF
II IFS S1,S2,S3,S4,S5,S6,S7
II. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.
TAPE ORDERMAS/TXT,I/E
B
o
200x4
X

*
I I. NOW THE BACKUP COpy OF "ORDERMAS" IS ON TAPE.
AUTOKEY CHAIN OVE RNITE; S8
IIXIF
IIIFS S1,S2,S3,S4,S5,S6,S7,S8
BUILD CONFIG/CHN;!
DS55500;C
Y
N
N
N
N
N
y

N
3600
3600
3600
3600

'CHAPTER 10. AUTOKEY COMMAND 10-7

3600
3600
3600
3600

<------null line (just hit enter)

CHAIN CONFIG/CHN
KILL CONFIG/CHN
Y
KILL NULLITXT
Y
AUTOKEY DS55500
II. AND START UP DATASHARE FOR NEXT DAY.
DS55500
II XIF

10.8 Special Considerations

When building long chain files that allow for automatic
restart, several considerations must be made. Among these are
that a file must not be changed in such a way that the change
cannot be repeated if the previous checkpoint is actually used.
To accomplish this goal, frequently the file being updated must be
copied out to a scratch file, and the scratch file then updated.
Following the completion of the update is when another checkpoint
would be taken; following that the next phase would copy the
updated file back over the original. Note that a checkpoint (that
is, resetting the AUTOKEY command line) would have to be before
the creation of the dummy copy to be updated; putting a
checkpoint between the creation of the copy to update and the
actual updating process could result in the updating of a
partially updated copy. A little thought when choosing places to
update the AUTOKEY command line is called for to ensure that the
chain may be resumed from any of them without incorrect results.

10.9 AUTOKEY and DATASHARE

Some users who make frequent use of the DATASHARE ROLLOUT
feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DS55500;R will mean that whenever any port rolls out
to any program or chain of ptograms, Datashare is automatically
brought back up when that program or chain of programs finishes,
regardless of whether or not DS55500;R was included at the end of
the port's chain file.

1.0-8 DISK OPERATING SYSTEM

CHAPTER 11. BACKUP COMMAND

11.1 Purpose

The BACKUP command provides for making copies of DOS disks.
The user can make either an exact mirror image copy of the input
disk or can select reorganization, which will group files by
extensibn and file name, remove unnecessary segmentation and allow
deletion of unnecessary files. Reorganization also allows copying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. Some special considerations apply for
specific di sk co.nfigurations.

11.2 Use

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>[;options]

Input drive and output drive are specified as :DRn, or :Dn,
or :<volid>. If the drive selected as the input drive is not
protected (in "READ ONLY" mode), a message:

PLEASE PROTECT YOUR INPUT DISK
OR, TAP "DISPLAY" KEY TO CONTINUE

will be displayed. At this point protecting the input drive or
holding down the DISPLAY key will cause the following message:

DRIVE n SCRATCH?

If the disk. on drive n is scratch enter a "Y". Any other
reply will cause the program to return to DOS. If you do reply
"Y", the program will display the message:

ARE YOU SURE?

If you are absolutely sure that you want to write over the
output disk; type "Y" again and press the enter key. Any other
reply will cause the program to return to DOS. If the output disk
has not been DOSGENed or the DOS file structure on it has been

CHAPTER 11. BACKUP COMMAND 11-1 .

damaged, the message:

DOSGEN YOUR DISK FIRST

will appear and control returns to DOS. If the output'disk has
been DOSGENed and seems in reasonable shape, the following message
is displayed:

FILE REORGANIZATION?

If different cylinders are locked out on the input and output
disks (if the disks' lockout CATs do not match), a mirror image
BACKUP is not possible so the "FILE REORGANIZATION?" question is
bypassed. Instead, a message appears specifying that
reorganization is required and BACKUP with reorganization proceeds
as descri bed below.

If you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
question. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire a
mirror image copy of your input disk, enter an "N" in response to
the reorganization question.

11.2.1 Options

DOS.C BACKUP is capable of "eliminating" the SYSTEM files on
the output drive during reorganization. This saves 60 sectors on
a DOS.C diskette system. The SYSTEM files are not really
eliminated, however, they only take the minimum amount of space
possible (3 sectors each on DOS.C). To eliminate the SYSTEM
files, use a ";N" for [;option] on the command line and use BACKUP
with ·reorganization.

The output diskette generated in such manner is not capable
of booting or executing DOS by itself, however, if it becomes
necessary to put the system files and the contents of that
diskette onto a new diskette, use the ";S" option. The SYSTEM
files from the booted drive will be copied onto the output
diskette, along with the files from the input drive. This
operation requires a three drive system.

11-2 DISK OPERATING SYSTEM

11.3 Mirror Image Copy

If you have typed "N" in response to the file reorganization
question, the program will ask the question:

DO YOU WANT THE OUTPUT COpy VERIFIED?

The output copy should always be verified, so answer this
question 'Y'. Answering 'N' will result in a somewhat faster
backup operation, but there will be no testing for parity errors
on the output disk.

The program then asks:

DO YOU WANT TO COpy UNALLOCATED CLUSTERS?

Type "Y" and press the enter key if you want all data on the
disk copied regardless of whether or not it is in an area
allocated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or" the
output disk has never been fully initialized with data. Also use
this mirror image copy if you have the 9374 disk system and one of
the drive's heads gets misaligned. Backup will use the offset
feature to try and retrieve your data. If BACKUP uses the track
offset it will slow the program down but it could save your data.

Type "N" and press the enter key if you wish to copy your
disk as quickly as possible without copying unused areas of the
input disk.' "Y" and "N" are the only replies allowed.

A mirror image backup makes the output disk a complete image
of the input disk. Following mirror image backup the volid of the
output disk is the same as the volid of the input disk, since ever
the volid sector was copied during the backup.

11.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
question, the program will copy the System files, sort the
Directory names, and allow the operator to delete files before
copying the fi les to the di sk copy.

B~ckup with reoganization to the booted drive is not
. possible.

CHAPTER 11. BACKUP COMMAND 11-3

11.4.1 Copying DOS to Output Disk

Various prqgram status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk. The system
tables themselves are not copied from the input disk to the output
disk, as is done in a mirror image backup. Following backup with
reorganization the volid of the output disk is unchanged from what
it was before the backup.

11.4.2 Deleting Named Files

When all di rectory names h.ave been sorted into file extension
followed by file name sequence the following question will be
displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type "N" and press the enter key if all files are to be
copied. Type "Y" and press the enter key if you wish to delete
any files. If you reply "Y" a message asking which files are NOT
to be copied will appear. The lower screen will be filled by a
numbered list of files for you to choose from. Type the number or
range of numbers (nn or nn-nn) found next to names of individual
files you wish deleted. Type "ALL" and press the enter key if you
wish to delete all of the files in the list. The files selected
for deletion will be erased from the list. When all desired
delet~ons have been made from a list, type "." and press the enter
key to ~dvance to the next list of file names.

When all file name lists have been examined, the program will
advance to the copy named files phase.

11.4.3 Copying Named Files

Files with names in the system directory are copied in
alphanumeric file extension, file name sequence. The name of each
file is displayed as it is copied. All files are ~ritten as close
together as possible with a minimum of segmentation.

11-4 DISK OPERATING SYSTEM

11.5 Use of KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. Depressing 'the DISPLAY key will
hold the current display until the key is released. Depressing
the KEYBOARD key will cause the program to terminate and return to
DOS.

11.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

*** PLEASE PROTECT 'YOUR INPUT DISK ***
*** OR, TAP "DISPLAY" KEY TO CONTINUE***

Action: Write-disable the input dri~e.

INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive> and
<output-drive> specification.

ILLEGAL OUTPUT DRIVE!

Action: <input-drive> and <output-drive> have been specified as
the same drive! Retype BACKUP command with correct specification.

BAD CLUSTER ALLOC TABLE!

Action: A bad Cluster Allocation Table has been detected on the
in put dis k . The C 1 us t erA 11 0 cat ion Tab Ie 'm ay be a b Ie to be fix e d
using the DSKCHECK command.

CYLINDER 0 OF BACKUP DISK IS UNUSABLE,!

Action: Your scratch disk cannot be used for a system disk due to
surface defects in cylinder O. Use another output disk and start
over.

SYSTEMn/SYS IS MISSING!

Action: Your DOS disk cannot be reorganized due to a missing
system fi Ie. Catalog the missing syst~m 'fi Ie on your input di sk
and start over.

PARITY ERROR ON DRIVE nn PDA: nnnn, nnnn

CHAPTER 11. BACKUP COMMAND

Action: An irrecoverable parity error has been detected on drive n
during mirror image BACKUP operation. The address is shown for
each error. If drive n is your output disk, DOSGEN must be rerun
to lockout the bad addresses or use a different scratch disk for
mirror image copy. If drive n is your input disk, new pa~ity will
be computed and the record will be copied. Note the error address
and check for-errors when copy is complete.

PARITY ERROR ON READ. LRN: nnnnn

PARITY ERROR ON WRITE. LRN: nnnnn

Action: An irrecoverable parity error has been detected during
BACKUP with reorganization. The LRN shown in the message is the
decimal system LRN at whi ch the error occurred. The read error
occurs only on the input disk; the write error occurs only on the
output disk. Corrective action is the same as described above for
parity errors during mirror image copy.

FORWARD OFFSET TRACK BEING USED

REVERSE OF FSET TRACK BEl NG USED

Action: On a 9374 disk system a parity. error has been detected on
the input drive and offset tracking is being used to try to
recover the data. There will be 10 attempts on both sides of the
track.

11.7 Reorganizing Files for Faster Processing

A fter a DOS di sk has been used for awhi Ie, the fi Ie stru cture
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to increased disk access time. System degradation is especially
noticeable when DATASHARE is being used. File reorganization
using the BACKUP program is one way to clean up DOS disks and
improve their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

File segments are consolidated

• Files are packed more closely together

. Related files are clustered together

11-6 DISK OPERATING SYSTEM

./

• Unused trash files are removed (optionally)

. Files are rewritten reducing marginal parity errors

11.8 BACKUP with CHAIN

Because BACKUP requires that its input drives be write
protected, does not abort -if parity errors occur during the
backup, and may ask different questions depending upon the
condition of the input and output. disks, BACKUP generally should
not be invoked from a CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

11.9 Clicks during Copying

'A click occurs each time an unused sector is copied
(reorganization mode only). A file which, when copied, results'ln
a lot of clicks (more than a dozen, perhaps) can probably be
reduced in size, without any data loss, by 'using APP or SAPP as
appropriate.

11.10 Special Considerations for BACKUP

When using BACKUP on the 11-platter 9370 di sk packs, it is
important to remember that each disk is two logical drives. Since
BACKUP deals with logical drives, BACKUP must be run twice, once
from each logical drive, to backup an entire physical disk. Also,
BACKUP will not allow backing up from one logical drive to the
other one on the same disk.

With the 9374 and 9354 disk drives, it is important to
remember that the drive contains a fixed platter that is a
separate logical drive. BACKUP between the fixed and removable
platters is possible.

The 9390 disk packs each contain 5 logical drives.
BACKUP deals with logical drives, it requires a total of
BACKUPs' to completely copy one physical pack to another.
possible to BACKUP between different logical drives on a
physical drive.

CHAPTER 11. BACKUP COMMAND

Since
five
It is

single

11-7

CHAPTER 12. BLOKEDITCOMMAND

12.1 Purpose

The BLOKEDIT command pr"ovides for DOS text file manipulation.
The command copies lines of text from any DOS text file(s) to
create a new text file.

The BLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files;

Existing program source file re-arranging by
copying the lines of source-code into a new
sequence (into a new source file).

Re-arranging lines or paragraphs of a SCRIBE
fi Ie into a new fi Ie.

In this Chapter, the following terms apply:

Text fi Ie means a DOS text fi Ie as defined in
the REFORMAT ·chapter.

Line means one line of a text file as displayed
by the DOS LIST program.

12.2 Use

The syntax for the BLOKEDIT command line is as follows:

BLOKEDIT [<file spec>J,<file spec>[;optionJ

The first file specification refers to the command file, if not
specified the commands will be entered via the keyboard. The
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are

CHAPTER 12. BLOKEDIT COMMAND 12-1

searched. If no drive is given for the second file, the drive
given or assumed for the first file is used. If no drive was
specified for the first file specification then both files are
opened on the first available drive. The specified output file
must not exist on any drive on line unless the "0" option is used,
in which case the file is overwritten.

12.3 File Descriptions

BLOKEDIT deals only with text files. For any given
application there will .be one text file called the COMMAND FILE
which will hold the controlling commands for BLOKEDIT. Optionally
the controlling commands may be entered directly to BLOKEDIT via
the keyboard by omi tting the command file' parameter. There will
be one or more text files called SOURCE FILES from which lines of
text will be copied. And there will be one text file called the
NEW FILE which will be the desired end result for the application.

12.3.1 Command Statement Lines

The command statements are the controlling factor for a
BLOKEDIT execution. The command statements specify which source
files will be used and which lines of text will be copied from
them. If the command statements are to be read from a command
file it must be generated by the DOS. EDIT command, or DOS. BUILD
command, etc., before BLOKEDIT can be used.

There are three kinds of statement lines that are meaningful
to BLOKEDIT: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
period.

This is an example of COMMENT LINES:

. THESE THREE LINES ARE COMMENT LINES.

As in program source files, a comment line may have
explanatory notes or nothirig at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or
source file LINE NUMBERS, or begins with a double quote symbol
(") .

12-2 DISK OPERATING SYSTEM

The following are some example command lines:

FILENAME/EXT:DRO
1-100
350-377
150/TXT

NAME THE SOU RCE FILE
COPY LINES c 1 THRU 100
COpy LINES 350 THRU 377
NAME THE SOURCE FILE

A command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE FILE is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name. If the source file name begins with a digit the file
extension must be given.

A command line that begins with a digit indicates that the
command line will have one or more numbers, which are the numbers
of the lines to be copied from the source file previously
specified into the new file.

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
(") is the (") itself, therefore the rest of the line can be used
for comments.

A QUOTED LINE is a line between a pair of command .lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

" THIS IS THE
INCMNT HL

LAM
AD
LMA

" THIS IS THE

BEGINNING OF QUOTED LINES COMMAND LINE.
COUNT POINT TO COUNTER

LOAD TO "A" REGISTER
INCREMENT BY 1
RESTORE TO MEMORY

ENDING OF QUOTED LINES COMMAND LINE.

There may be more than one quoted line between the command
lines that begin with (II). A quoted line will be copied directly
from the command file or keyboard to the new file. Quoted lines
enable a BLOKEDIT user to include original lines of text in a new
file along with lines copied from source files.

CHAPTER 12. BLOKEDI T COMMAND 12-3

12.3.2 Source File

The SOURCE FILE is a text file from which lines will be
copied. Source files are named in the command lines for fa
SLOKEDIT application, and the lines to be copied from the sourpe
file will also be specified in the command lines. It will be
use f u 1 . to h a v e ali s tin g 0 f a so u r c e f i lew i t h lin e nu m be r s, as
produced by the LIST command, when creating the command statement
lines for a SLOKEDIT application.

12.3.3 New File

The NEW FILE is a text file produced by the SLOKEDIT command.
The new file is named at SLOKEDIT execution time by the second
file specification entered on the command line.

12.4 Messages

This section describes the operator messages that SLOKEDIT
may display on the CRT screen during execution. Some of the
messages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.
If the keyboard was selected as input to SLOKEDIT, the user will
be prompted by the "P lease en ter SLOKEDI T command Enter * to
exit." message when input is required. The character * will
terminate SLOKEDIT and return to DOS.

The general format of the CRT display screen varies depending
on the source of the SLOKEDIT command statements.

If the command statements are being read from a command file
the format of the display is:

12-4 DISK OPERATING SYSTEM

/ DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXX/XX \
PROCESSING COMMAND LINE nnn CURRENT SOURCE IS XXXXXXX/XXX:DR

Error Message Displayed Here If Necessary

\ / --
If the command statements are being entered via the CRT keyboard,
the format is:

/ DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXXXX/XX \
PROCESSING COMMAND LINE nnn CURRENT SOURCE FILE IS -NONE-/ :DR

PLEASE ENTER A BLOKEDIT COMMAND ENTER * TO EXIT

--
As BLOKEDIT commands are entered on the bottom line,previous
lines are rolled up the screen.

CHAPTER 12. BLOKEDIT COMMAND 12-5

/

12.4.1 Informative Messages

PROCESSING COMMAND LINE .. CURRENT SOURCE FILE IS •. I •• :DR.

This message is the BLOKEDIT monitor message. This message
is displayed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
currently being processed and the name, extension, and drive
number of the last named source file.

SOURCE FILE WENT TO E.O.F.

This message is displayed if the source file from which lines
were being copied ended before the specified lines were finished.

BLOKEDIT TRANSFER COMPLETE
OUTPUT FILE WAS name LINE COUNT WAS nnn

This message is displayed when all of the command file lines have
been executed. The number of lines in the new file is displayed
following the second line.

12.4.2 Fatal Errors

If BLOKEDIT detects a fatal error in the command statement
line the monitor message is rolled up the screen, an ~ppropriate
error message is displayed, and the program aborts.

NEW FILE NAME REQUIRED

This message is displayed if the operator did not name a new
file when the BLOKEDIT command was called.

COMMAND FILE DRIVE INVALID

This message is displayed if the operator specified for the
command file a drive number that is invalid.

NEW FILE DRIVE INVALID

This message is displayed if the operator specified for the
new file a drive number that is invalid.

COMMAND AND NEW FILE NAMES MUST NOT BE IDENTICAL

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives

12-6 DISK OPERATING SYSTEM

for the files were specified or assumed to be the same. Default
values of extensions and drives are described in an earlier
paragraph.

COMMAND FILE NOT FOUND

This message is displayed if the command file name was 'not
found on the drive(s) specified or assumed.

NEW FILE NAME IN USE
USE '0' OPTION ON COMMAND LINE TO OVER-WRITE EXISTING OUTPUT FILE.

This message is displayed if the specified output file was
,·found on the drive(s) specified or assumed. BLOKEDIT will not
write into an existing file if commands are being read from a
command file. If commands are being entered to BLOKEDIT via the
KEYBOARD, ,the operator is given the option to overwrite the
existing file:

***NEW FILE NAME IN USE, OVERWRITE IT? ANSWER WITH A YES OR NO

If the operator answers Yes (Y) the file is overwritten.
If the reply is No (N) BLOKEDIT returns control to DOS.

BAD FILE SPECIFICATION

This message is displayed if the first character of a command
file line, other than a quoted line, is an upper-case alpha
character but the DOS file specification was not recognizeable.

12.4.3 Selectively Fatal Errors

These errors are fatal when BLOKEDIT is reading a command
file, and informative when commands are being entered via the
keyboard.

SOURCE FILE NOT FOUND

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

BAD LINE NUMBER SPECIFICATION

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizable
line number specification.

CHAPTER 12. SLOKEDI T <COMMAND 12-7

Here are some examples of valid line numbers:

4
999999
100-364

A single digit is acceptable.
A line number may have up to six digits.
First and last line to be selected are
separated by a dash.

34,55-78,100-147 Commas separate line specifications.

Here are some examples of invalid line numbers:

1A

1234567
17-34-77

Only "-", ",", or space after a digit,
un less the line is a source fi Ie
name beginning with a digit. If it is,
an ex te nsi on must be gi ven.
Number has more than six digits.
Only two numbe rs sep ar ated by If_ If

LINE NUMBER ZERO IS NOT VALID

This message is displayed if a line number of zero is
specifed in a command line. It is ignored if entered via the·
keyboard.

START LINE NO. > END LINE NO

This message is displayed if the fir~t number of a line
number pair is larger than the second number of the pair, as in:
235-176. It is ignored if entered via the keyboard.

BAD DATA IN SOURCE FILE LINE nnn *

This message is displayed if BLOKEDIT discovers non-ASCII
characters in a source file. The line number will be displayed
following the message. If commands are being entered via the
keyboard the source file is reselected, and next command is
requested.

NO VALID SOURCE FILE FOR TRANSFER,

This message is displayed if BLOKEDIT discovers line numbers
to be transfered from a source file when there is no open source
fi Ie.

12-8 DISK OPERATING SYSTEM

FORMAT OR RANGE ERROR ON SOURCE FILE

This message is displayed if DOS discovers a file which can
not be read. If commands are being entered via the keyboard the
source file will be de-selected, and next command requested.

CHAPTER 12. SLOKEDIT COMMAND 12-9

CHAPTER 13. BOOT

13.1 Purpose

The Alternate Drive Boot program provides a facility allowing
a Datapoint disk user to boot to any drive in his system. This
can be helpful with single drive systems using multiple logical
drives per physical drive when it is necessary to DOSGEN or to
BACKUP a pack with reorganization. If it is desired to DOSGEN
disks on a single physical drive system, there is a peculiar
problem: If DOS is running on drive 0, you cannot remove the disk
in drive 0 and replace it with a scratch disk and continue with
DOSGEN. Thi s program lets you boot from dri ve 1 so tha t the
DOSGEN program can be executed on drive O. It is assumed that
DOSGEN, CHAIN, COpy and PUTIPL are on drive 1.

13.2 Use

To boot DOS from a different drive than the currently
"booted" drive, enter:

BOOT [:<drv>][;<new DOS command line>]

Where the new "boot" drive is specified by <drv> and the new DOS
command line following the semi-colon will be executed when the
boot process completes on the new drive. If you are not sure
where the currently booted drive is, enter:

BOOT

This will display the location of the booted drive on the screen,
and ask for a ne'w boot drive.

CHAPTER 13. BOOT 13-1

13.3 Messages

WRONG DOS!!!
This·program only operates on DOS version 2.5 or higher.

CURRENT "BOOTED" DRIVE IS :DRn.
Thi s is a di splay of the currently "booted" dri ve.

THAT DRIVE IS OFF-LINE.
You requested booting from a drive that is not currently
available.

NOW BOOTING DOS FROM :DRn.
DOS will be booted from the new drive.

ENTER NEW "BOOT" DRIVE NUMBER (O-nn).
If a drive number was not specified on the command line,
you may enter a drive number here.

ENTER A DOS COMMAND LINE, OR TAP "ENTER".
When DOS is booted, it is possible to execute a command
line (like CHAIN, for example) as soon as the booting
process is done. If a DOS command line and a drive
specification were omitted when this program was entered,
you may now enter any valid DOS command line.

13-2 DISK OPERATING SYSTEM

CHAPTER 14. BUILD COMMAND

14.1 Purpose

BUILD provides an alternative means to create a text file
without having to use the standard DOS editor. BUILD is useful
for rapid generation of very short text files, such as two and
three line CHAIN files. Also, BUILD is usable from within a
CHAIN.

14.2 Use

The BUILD command is invoked by entering the command line:

BUILD <file spec>[;<end character>]

The <file spec> defines the output file. This output file
specification is always required. If the named file does not
exist, it is created. The default extension is fTXT.

The <end character> is optional. If no end character is
specified on the command line, BUILD terminates upon receiving a
null -input line (a null input line is a line consisting of only an
ENTER; a blank line is not a null line).

BUILD accepts input lines from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it dis~lays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specifi~d
end character, if any, as the first character entered .. If the end
character is present as the only character of the entered line,
the end line is discarded (it is not written to the output file),
and an end of file mark is written to the output file and the
output file closed by returning to DOS.

Entering an end character followed by a string will pass tbe
string to the output line without the end character and will not
terminate BUILD. This action allows entering CHAIN commands into
a chain file being written by BUILD from within an active CHAIN.

CHAPTER 14. BUILD COMMAND 14-1

14.3 A Simple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
auto-execute request can be accomplished later with a single
command line entered at the keyboard. All that is required is to
enter at the system console:

BUILD <ch~in file spec>;A
. AUTOKEY <program name>

AUTO AUTOKEY/CMD

Upon recelvlng the nAn input line, BUILD closes the output
file and terminates. Note that in the two places where the "An
appears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain files). After the BUILD command is finished,
the output file named on the BUILD command line contains the
following two lines:

AUTOKEY <program name>
AUTO AUTOKEY/CMD

It is also possible, through BUILD nesting, to create chain
files which during execution of the chain construct other chain
files and execute them automatically upon completion of the first
chain (since any statement of a c~ain file is allowed to be a
CHAIN command).

The chapter on the CHAIN command contains further examples of
the use of BUILD from within a CHAIN procedure.

14.4 KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. The keys will be effective just
prior to the display of the prompting' ":". Depressing the DISPLAY
key will hold the current display until the key is released.
Depressing the KEYBOARD ,key will cause the program to terminate
and return to DOS.

14-2 DISK OPERATING SYSTEM

CHAPTER 15. CAT COMMAND

15.1 Purpose

The CAT command selectively displays filenames in the DOS
directory or in a library directory. One may choose to display all
cataloged filenames on all drives online, or specific filenames on
specific drives.

15.2 Use

The CAT command is invoked by enterin~ the command line:

CAT [<name>][/<ext>][:<drv>][*J[,L]

where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <drv> specifies the logical disk drive, an asterisk
indicates the named file is a library, and L specifies list only
tho~e files in the current subdirectory.

The default handling of the various input fields is any file
name, any extension, input not a library, and any subdirectory.
If the asterisk is used to specify a library check, the default
file name and extension becomes UTILITY/SYS.

Directory entries are displayed in the form:

NAME/EXTENSION (PFN) P

where PFN is the physical file number in octal (0-0377) and P is
the protection on the file; D for deletion, W for write,. and blank
for none. If the file displayed is in a subdirectory other than
system, the directory entry is displayed in the form

NAME/EXTENSION-(PFN)P

with the dash indicating a subdirectory entry. All drives are
searched, unless a specific drive is requested, and as each drive
is scanned, the line

---- DRIVE n VOLUME ID (volid) SUBDIRECTORY (subdirectory name):e

CHAPTER 15. CAT COMMAND 15-1

is displayed. This line is not displayed if the drive is not on
line, or if no files from it are to be displayed.

Depressing the DISPLAY key causes the catalog display to
pause as long as the ke.y is held. Depressing the KEYBOARD key
causes the catalog display to terminate.

If the CAT command is parameterized by an extension, only
files of that e~tension will be displayed. If the CAT command is
parameterized by a name, only files of that name will be
displayed. If the CAT command is parameteri zed by a name and an
extension, only files of that root name and extension (all drives)
will be displayed. If the CAT command is parameterized by a drive
number, only files on that drive will be displayed. If only a
portion of the filename is entered, all files beginning with the
letters specified will be displayed. For example, entering:

CAT IT

would caus e the di splay of all files on all on-l i ne ·dr i-ves whos e
ext ens ions s tart with " T " . E n t e r i n g :

CAT MA: WO RK2

would cause the di splay of all files on symbolic dri ve "WORK2"
whose file names start with "MA".

15-2 DISK OPERATING SYSTEM

CHAPTER 16. CHAIN COMMAND

16.1 Purpose

The CHAIN command executes a series of programs as defined by
a procedure file created by the user. The procedure file
contains the commands to invoke all required programs, and all
inputs for those programs. Basically, CHAIN replaces the DOS
keyboard entry routine with a routine that reads lines from a work
file when the keyboard entry routine is called. Each time any
program would normally request a line to be entered from the
keyboard,it will read from the work file instead. When the last
line of the work file has been read, DOS is reloaded and commands
are again accepted from the keyboard.

CHAIN features several directives to control the procedure
executed. Tags defined on the CHAIN command line can be specified
to modify lines of the procedure file. CHAIN provides procedure
restart capabili ties via "CHAIN *" and "CHAIN/OV1". When used
with AUTO and AUTOKEY, CHAIN provides an extensive automatic
procedure facility, as described in the AUTOKEY chapter.

The procedure file" is a normal DOS text format file.
Procedure files are generally created using the DOS editor or the
BUILD command, but may also be created by any means producing a
suitable text file (a DATABUS program, for example).

16.2 Use

The command line to invoke a CHAIN procedure is of the form:

CHAIN <procedure>[;<tag1>[=<va11)][,<tag2)[=<vaI2)] ...][-]]

<procedure> is the user-defined chain procedure file. This file
must already exist and must be specified on the command line. The
default extension is /TXT. The <tag n) and <vaIn> entries in the
option field are chain tags and their substitutlon values,
described fully below. The substitution value for a tag may be
specified in the form <tagn>#<valn ># as well as in the form
<tagn>=<valn>·

The CHAIN command line can be extended to more than one line

CHAPTER 16. CHAIN COMMAND 16-1

by placing a hyphen (-) at the end of the option field. After
scanning the current line of the command, CHAIN will display a
colon as a prompt for the operator and wait for entry of another
line of tags and substitution values. The command can be
continued for several lines by repeated use of the hyphen.

16.2.1 CHAIN Compilation

CHAIN executes two phases, the first of which is compilation.
During compilation the specified procedure file is read and
compiled into a chain work file. Compilation consists of
evaluating and executing CHAIN directives and performing tag
substitution. The output of compilation is placed in a file
called CHAINP/SYS, which directs the operation of the program
chain during execution phase.

The chain work file is always placed on the same logical
drive as CHAIN/CMD and CHAIN/OV1, the CHAIN program files. When
operating under PS (Datapoint Partition Supervisor) the partition
ID is used in the work file name instead of "P" to assure unique
identification of the chain work file for each partition. The
work file is placed in' subdirectory SYSTEM no matter what the
current subdirectory is, so the current subdirectory can be
ohanged during the chain and the work file will still be
accessible. If the work file is created on an ARC (Attached
Resource Computer) remote volume it is placed in the current
subdirectory (rather than SYSTEM) to avoid work file usage
conflicts among different applications processors.

When CHAIN is used recursively (that is, when CHAIN is
invoked from within a chain procedure) the same work file is
re-used, the additional compiled information being added to the
end of the file. The extent of recursive nesting of chain
procedures is limi ted only by the amount of space available for
the work fi Ie. .

16.2.2 CHAIN E~ecution

Execution begins following compilation, when the first line
of the chain work file is read and given to DOS as a command line
input. Execution continues until the work file is exhausted or a
fatal error occurs. During CHAIN execution the DOS keyboard entry
routine is replaced by a disk read routine so that any entry
normally read from the keyboard will be read instead from the
chain work file. For details on this execution interface see the
section on "CHAIN Programming Considerations".

16-2 DISK OPERATING SYSTEM

CHAIN execution is aborted when:

1. A line from the chain work file is longer than allowed. DOS
command lines within the chain procedure can be 80 characters
long. The allowable length of lines for input to different
programs depends on the programs used. For example, when a
program requests a file name it generally allows about 20
characters to be entered. If a chain procedure gave a line of
30 characters in response to such a request the chain would
abort.

2. The end of the work file is reached while a program is
requesting input. The work file must provide all responses
needed for execution of the programs used; it cannot invoke a
program then end without supplying all required inputs.

3. An //ABTIF directive is executed when the ABTIF bit is set.
See the section on "ABORT Directives".

4. A program executing during the chain procedure terminates in a
fatal error. Each program can control whether it aborts or
continues a chain upon termination. For details see the
section on "CHAIN Pro gr amm ing Co nsi der atio ns" .

16.3 Tag Definition

The CHAIN command line can contain both tag names and
substitution values for the tags. The tag names can be from one
to eight characters in length and may have values from one to
seventy characters in length. A tag must contain only letters or
digits. The value of a tag may contain any valid character except
comma (,), equals (=) or pound sign (II). The character
restriction depends on the syntax being used.

A tag is defined by just its presence on the CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOIT;LIST,DATE=30NOV76,TIME=1500hr

CHAIN DOIT;LISJ,DATE#30NOV76#,TIME#1500hr#

(New Syntax)

(Old Syntax)

Both syntax structures are supported and the result of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null value; DATE has the value of 30NOV76 and TIME has
the value of '·500hr.

CHAPTER 16. CHAIN COMMAND 16-3

CHAI N allows two us es to be made of tags:

1. A tag can be tested to determine whether it was defined
on the CHAIN command line.

2. The value of the tag can be substituted on CHAIN input
statements before the line is written to the work file.

16.4 CHAIN Directives

All CHAIN directives are denoted by the characters "II" at
the beginning of a line. Any number of spaces"(including zero)
are scanned until the CHAIN directive is reached. The first thing
aft e r the "I I" m u s t be a val i d C H A I N d ire c t i vee I sean err 0 r
message is issued and CHAIN is aborted. The following is a Ii st
of these statements.

IIIFS
IIIFC
IIXIF '
IIELSE
IIBEGIN
IIEND
II.
11*
IIABORT
IIABTIF

16.4.1 IF Directive

IF SET (TAG DEFINED)
IF CLEAR (TAG NOT DEFINED)
END OF IF
REVERSE EFFE CT OF IF
BRACKETS A GROUP OF

IF/ELSE/XIF STATEMENTS
EXECUTION TIME COMMENT
EXECUTION TIME BREAKPOINT
ABORT CHAIN COMPILATION
CONDITIONALLY ABORT CHAIN EXECUTION
COMPILATION TIME COMMENT. (Note that the II's

are not present)

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted.

For example:

IIIFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist, and

IIIFC LIST

16-4 DISK OPERATING SYSTEM

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

When an IF directive tests negative, it causes the chain
compilation to skip all following lines of the procedure file
until a directive is reached which clears the effect of the IF (an
ELSE or XIF). When an IF directive tests positive it has no
effect on the chain compilation. Normally the chain compilation
iss aid to" inc 1 u de" 1 i n e s fr 0 m the pr 0 c e d u ref i 1 e; inc 1 us ion is
inhibited by a negative evaluatio~ of an IF directive.

Simple logical operations can be performed by IF directives.
The tags to be used are separated by logical operators. The
logical OR is indicated by ,:, (vertical bar) or ',' (comma). The
logical AND is indicated by '&' (ampersand) or '.' (period). For
example the following lines are in the file DOlT:

IIIFS DATE&TII'1E: QUICK
DBCMP TEST;L
SAMPLE COMPILE

or IIIFS DATE.TIME,QUICK
DBCMP TEST;L
SAMPLE COMP IL E

If DATE and TIME or QUICK are defined on the CHAIN command line
th e DBCMP 1 in es wi 11 be i ncl u ded in the work file.

or

or

CHAIN DOIT;DATE=30NOV76,TIME=1500hr

CHAIN DOIT;QUICK

CHAIN DOIT~DATE,TIME

will all result in a true logical condition and the DBCMP lines
will be included.

IF directives are only evaluated if lines are being included.
If one IF directive has proven negative and has inhibited the
inclusion of lines, all following IF directives will be ignored
until either an ELSE or XIF statement is found. For example:

IIIFS DATE
IIIFS TIME
DBCMP TEST;L
SAMPLE COMPILATION
IIXIF

If DATE was not defined, all lines until the IIXIF will be
ignored. In this example, if DATE were not defined the IIIFS TIME
statement would not be evaluated and the DBCMP TEST;L would not be
incl uded even if TI ME was def ined.

CHAPTER 16. CHAIN COMMAND 16- 5

16.4.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
will unconditionally terminate the range of the last IF directive.
The second is the ELSE directive; it will reverse the results of
the last IF directive; that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

For example, the DOlT file contains the ~llowing lines:

IIIFS LIST
DBCMP TEST;L
SAMPLE COMPILATION
IIELSE
DBCMP TEST
/IXIF
I/IFS TAPE
MOUT;D,30NOV76,V
TEST/DBC
* //XIF

If CHAIN is invoked by 'CHAIN DOIT;LIST' the work file will
contain

DBCMP TEST;L
SAMPLE COMPILATION

If invoked by 'CHAIN DOIT;TAPE', the work file will contain

DBCMP TEST
MOUT;D,30NOV76,V
TEST/DBC
*

16.5 Tag Value Substitution

A tag value is substituted whenever a pair of 'U' symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given in the CHAIN command line.

For example, contents of a file called DOlT:

16-6 DISK OPERATING SYSTEM

DBCMP TEST;XL
TEST PROGRAM COMPILED ON #DATE# -- #TIME#
DBCMP #NAME#;XL
#NAME# PROGRAM COMPILED ON #DATE# -- #TIME#

If CHAIN is invoked by

CHAIN DOIT;TIME=2400hr,DATE=29NOV76,NAME=TEST2

the work file will contain

DBCMP TEST;XL
TEST PROGRAM COMPILED ON 29NOV76 -- 2400hr
DBCMP TEST2;XL
TEST2 PROGRAM COMPILED ON 29NOV76 -- 2400hr

If a tag is mentioned in the CHAIN command line but given no
value and if the value is to be used for substitution, a null
value is substituted for the #tag# within the line. The effect is
that the #tag# characters disappear from the line. Continuing the
above example, if CHAIN was invoked by

CHAIN DOIT;DATE=29NOV76,NAME=TEST2

the work file will contain

DBCMP TEST;XL
TEST PROGRAM COMPILED ON 29NOV76 -
DBCMP TEST2;XL
TEST2 PROGRAM COMPILED ON 29NOV76 --

16.6 BEGIN/END Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGIN/END
counter is initialized to zero when compilation of a procedure
beg ins. If the use of proced ur al 1 in es is tu rned 0 ff and a BEG IN
operator is encountered, then the BEGIN/END counter is
incremented. If an END operator is encountered, then the
BEGIN/END counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGIN/END counter is
not equal to zero. For example:

CHAPTER 16. CHAIN COMMAND 16-7

IIIFS FLAG1
DBCMP TEST1;XL
TEST PROGRAM ON E
IIELSE
IIBEGIN
IIIFS FLAG2
DBCMP TEST2;XL
TEST PROGRAM TWO
IIELSE
DBCMP TESTTEST;XL
TEST TESTER
IIXIF
IIEND
IIXIF
IIIFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
IIXIF

The 6th through the 12th lines will not be used if FLAG1
exists, notwithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGIN/END pair prevented
these statements from having any effect.

16.7 ABORT Directives

The IIABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

IIIFC TIMEIDATE
**** TIME AND DATE ARE BOTH REQUIRED

IIABORT
IIXIF

If the procedure file is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would -ABORT.

The IIABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes DOSFLAG to be
,examined and if bit 7 (ABTIF) is on, the chaining will abort. Bit
7 of DOSFLAG is the abnormal program completion bit. If non-fatal
errors have been found during the execution of the last program

16-8 DISK OPERATING SYSTEM

the ABTIF bit should be set. For example, the procedure file
contains:

ABTONOFF OFF
KILL TESTFILE/CMD
Y
IIABTIF
KILL OUTPUT/TXT
Y

If the file TESTFILE/CMD is not found by KILL, it will set the
ABTIF bit. When the IIABTIF statement is processed the abnormal
program completion bit will be checked, and in this case it will
be on, so the CHAIN will be aborted.

The ABTONOFF command should always be used to turn the ABTIF
bit off prior to execution of a program which will be tested using
IIABTIF. Once ABTIF is set on by some error, it is not cleared
except by ABTONOFF or by an abort caused by an IIABTIF directive.

16.8 Comments

CHAIN allows for two types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear unt il just before that command is to be execu ted. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
example, the procedure file containing:

II. COMPILATION OF THE TEST PROGRAM
DBCMP TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed. A variation on the execution time comment is the
operator break point. For example, the procedure file containing:

CHAPTER 16. CHAIN COMMAND 16-9

//* INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
MOUT ;LV
TEST/TXT
DATA/TXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
comment. This line is not included in the work file but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

COMPILATION OF TEST PROGRAM
//IFS LIST

YOU ARE GOING TO GET A LISTING
DBCMP TEST;XL
TEST PROGRAM
//ELSE

YOU AREN'T GOING TO GET A LISTING
DBCMP TEST

and the CHAIN command:

CHAIN MAKETEST;LIST

was given, then only the lines:

. COMPILATION OF TEST PROGRAM

. YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
however, the CHAIN command:

CHAIN MAKETEST

was given, then only the lines:

16-10 DISK OPERATING SYSTEM

· COMPILATION OF TEST PROGRAM
YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

16.9 Complex CHAIN Examples

The chapter on the AUTOKEY command contains an example of the
use of AUTO and AUTOKEY combined with the use of CHAIN directives
using tag existence testing to set checkpoints for automatic
restart of a lengthy automated procedure. The example below uses
BUILD wi thin a chain procedure to create a procedure file for
later execution by another chain. It uses several tags for both
existence testing and value substitution.

The procedure file below, "RUNTEST", is part of a series of
CHAIN procedures for program generation and testing. RUNTEST
builds a procedure file for program compilation; the resulting
procedure file would be run by a later CHAIN.

RUNTEST recognizes several tags:

PLUS

XTR

FLAG

PROG

DATE

mention of this tag indicates the compilation
should use the DBCMPLUS compiler instead of the
older DBCMP compiler.

mention of this tag causes use of the additional
list output commands (C and R) available in
DBCMPLUS.

the substitution value for this tag will be tag
existence tested for list control on the output
procedure file.

the substitution value for this tag will be a tag
to provide program name in the output procedure
file.

the substitution value for this tag will provide
the compilation date in the output proc~dure
file.

CHAPTER 16. CHAIN COMMAND 16-11

RUNTEST contents:

• TEST FOR DBCMPLUS COMPILER FLAG

IIIFC PLUS
IIBEGIN

.' BEGIN PROCEDURE FOR DBCMP COMPILATION

B U I L D CO M PIT; !

• NOTE HOW BEGINNING INPUT LINE TO BUILDICMD WITH THE TERMINATION CHARACTI
• ALLOWS ENTERING CHAIN COMMANDS TO THE OUTPUT FILE. THE LINE IMMEDIATEL~
• BELOW IS WRITTEN OUT AS "I IIFS IIFLAGII"; IF IT HAD NOT BEGUN WITH "!", I'
• WOULD HAVE BEEN INTERPRETED AS A CHAIN DIRECTIVE FOR THE CURRENT CHAIN.

!IIIFS IIFLAGfI
!II* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMP IIflPROGfllI;LX
flfIPROGfIfI COMPILATION flDATEfI
! I I ELSE
DBCMP flfIPROGlI1I
!IIXIF

I lEND

• THIS "IIELSE" INSTRUCTION REVERSES THE EFFECT OF THE "I/IFC PLUS" ABOVE

I/ELSE
/IBEGIN

• BEGIN PROCEDURE FORDBCMPLUS COMPILATION USING OPTIONS OF DBCMPLUS
• BASED ON "X TR" FLAG.
• THE "BEGIN" ABOVE CAUSES THE "XIF"S AND "ELSE"S IN THE FOLLOWING SECTIOr
• TO AFFECT ONLY DIRECTIVES AT THE SAME BEGIN/END LEVEL, AND NOT THE
• "IIELSE" DIRECTIVE ABOVE, WHICH CONTROLS THE ENTIRE "PLUS" CONDITIONAL
• SECTION.

BUILD CMPLIT;!
!IIIFS IIFLAGII
!/I* COMPILATION LISTING BE SURE PRINTER IS READY

• THE FOLLOWING DIRECTIVES ARE RECOGNIZED DURING CHAIN COMPILATION AND
• CONTROL SELECTION OF LINES TO FOLLOW THE BUILD COMMAND ABOVE.

· /IIFS XTR

16-12 DISK OPERATING SYSTEM,

DBCMPLUS ##PROG##;LXCR
IIELSE
DBCMPLUS ##PROG##;LX
IIXIF
##PROG## COMPILATION #DATE#
! I I ELSE
DBCMPLUS ##PROG##
!IIXIF

· PROCEDURE IS EFFECTIVELY FINISHED AT THIS POINT, BUT IT IS ESSENTIAL TO
• PROVIDE AN "END" DIRECTIVE TO MATCH THE UNMATCHED "BEGIN" ABOVE, AND
· AN "XIF" TO TERMINATE THE "ELSE" IMMEDIATELY PRIOR TO THE "BEGIN".

I lEND
IIXIF •• END OF RUNTEST SAMPLE FILE.

Entering the command

CHAIN RUNTEST;PLUS,XTR,FLAG=LIST,PROG=NAME,DATE=210CT78

produces a procedure file CMPLIT/TXT with the following contents:

IIIFS LIST
1/* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMPLUS HNAME#;LXCR
#NAME# COMPILATION 210CT78
I I ELSE
DBCMPLUS HNAME#
IIXIF

Entering the command

CHAIN RUNTEST;FLAG=PRINT,PROG=PROG,DATE

produces a procedure file COMPIT/TXT with the following contents:

CHAPTER 16. CHAIN COMMAND. 16-13

IIIFS PRINT
11* COMPILATION LISTING
DBCMP tlPROGtI;LX
tlPROGtI COMPILATION
I I ELSE
DBCMP tlPROGIl
IIXIF

BE SURE PRINTER IS READY

16.10 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores in the CHAINP/SYS file pointers for the line to be used.
If something goes wrong during the DOS command which follows and
the procedure is aborted, CHAIN still knows where it was in the
CHAINP/SYS file when the problem occurred. Since CHAIN does not
delete the CHAINP/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAINP/SYS
file if the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. This action can generally be applied even if the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN *
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

This simply restarts the chain with the next available line in the
procedure. If the next line had been intended as a keyin line for
the failed program (as opposed to a DOS command line) the chain
will generally immediately abort again. However, by restarting
the chain in this manner, repeatedly if necessary, the invalid
step can usually be bypassed and chaining resumed. Use of
CHAIN/OV1 will not always work, since it depends on information in
processor memory to function. If the area from MCR$+80 to
MCR$+100 is disturbed, CHAIN/OV1 will fail, usually causing a
range error or perhaps a system data failure.

- 16-1 4 DISK OPERATING SYSTEM

16.11 CHAIN Programming Considerations

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the DOS editor, can be invoked from
a chain file but editing must be done manually by the operator.
Sometimes programs will use a different keyin routine based on DOS
Function 6 to request operator action for special circumstances
when it is desired to avoid using lines from the chain procedure.

When a program exits via EXIT$ or NXTCMD the chain continues
normally. If a program exits via ERROR$ or CMDAGN the chain is
aborted. Generally the terminating error message displayed by an
aborting program will remain visible on the screen following the
CHAIN abort.

Some programs can go through a rather complex set of requests
for input, which can make them difficult to use with the CHAIN
program. For this reason, most DOS programs allow almost all
options to be specified on the command line and keep the variation
in the number of keyin requests toa minimum. It is good practice
for all programs to be written with this concern in mind to
facilitate their use with CHAIN.

CHAPTER 16. CHAIN COMMAND- 16-15

CHAPTER 17. CHANGE COMMAND

17.1 Purpose

The CHANGE command enables one to write protect, delete
protect, or clear the prot~ction of a disk file. If a file is
delete or write protected, a KILL command (or program generated
KILL) cannot affect it. If a fi le is wri te prote c ted , it cannot
be written into by the standard system routines.

17.2 Use

CHANGE <file spec>;p

The option parameter "p" is used above to indicate the
protection for the file specified. Protection can be specified
as:

For example:

D - delete protect
W - write protect
X - clear protection.

CHANGE NAME/EXTENSION;D
CHANGE NAME/EXTENSION:DR2;X

will delete protect the file in the first case, and remove all
protection in the second case. If a < fi le spec> is not gi ven,
the message

NAME REQUIRED.

will be displayed. If the file indicated by the first file
specification cannot be found, the message

NO SUCH NAME.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

CHAPTER 17. CHANGE COMMAND 17-1

will be displayed. If no option parameter is specified the
message

PROTECTION UNCHANGED.

will be displayed.

17-2 DISK OPERATING SYSTEM

CHAPTER 18. COPY COMMAND

18.1 Purpose

The COpy command produces a duplicate copy of a disk file.
It may be desired, for example, to make a copy on a separate
volume for backup or distribution purposes.

Another feature of the COPY command will optionally allow a
user to selectively update (replace) an existing file, or create
(add) a new fi Ie to rece i ve the copy. These optio ns us ed in
combination with the CHAIN utility provide an easy method of
updating and maintaining DOS disks.

The COpy command does not make assumptions about the format
of the sectors being copied, but merely copies the file
sector-for-sector. It can copy types of di sk files which are not
possible to copy using the SAPP and APP commands. Some particular
types of files are still immovable, however. The outstanding
example are INDEX files, usually with extension IISI. These files
cannot be moved because index files contain, internal to
themselves, pointers indicating their actual physical location on
the disk volume, which are made invalid when the file is moved to
another place on the disk.

18.2 Use

The COpy command is invoked by entering at the system
console:

COpy <infile)[,<outfile)J[;<option)J

The only portion of the operands that is specifically required is
the name of the input file. The extension of the input file, if
none is specified, is assumed to be ITXT. If a drive
specification is entered for the input file, then only that
specific dri ve is searched for the indi cated fi Ie. If no dri ve
specification for the input file is given, all drives are
searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
file's extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output

CHAPTER 18. COPY COMMAND 18-1

file unless a particular drive is specified.

The options available are:

R - Replace only
This option allows only overwriting an already existing file.
If the specified output file does not already exist no copy
takes place and the message. "<infile> NOT COPIED" is
displayed. .

A - Add only
This option allows only creating a new file. If the
specified output file already exists no copy takes place and
the message "<infile> NOT COPIED" is displayed.

7 - SYSTEM7/SYS to be copied
This option allows overwriting an existing copy of the system
file SYSTEM7/SYS with a different copy, without disturbing
the subdirectory information stored in the old SYSTEM7/SYS.
This option is' very handy for system upgrades. The output
file must be PFN 7.

If no options are specified there are no special conditions on the
copy. The input file will be copied to the output file,
overwriting an existing file if necessary (unless the output file
is write protected). If the specified output file does not exist,
it wi 11 -be created • .

When a file is transferred via COPY, the output file is set
to the same protection that the input file had.

Exampl e, to copy file PAYROLL/TXT from symbol i c dr i ve "WO RK2"
to symbolic drive "WORK1"

COpy PAYROLL:WORK2,:WORK1

Example, to make another copy of PROGRAM/ABS on drive zero,
but to be named MYPROG.

COpy PROGRAM/ABS,MYPROG:DRO

Example, to make another copy of PAYROLL/TXT drive 0, on
drive 1 only if it does not already exist on drive 1.

COPY PAYROLL:DRO,:DR1;A

Example, to update (replace only) TREK/ABS, a file on drive °
from a newer version on drive 1.

18-2 DISK. OPERATING SYSTEM

COpy TREK/ABS:DR1,:DRO;R

People who experience parity errors in one of their data
files can frequently recover their data using COPY. Since the
COPY program merely comments about parity errors encountered and
does nbt abort when one occurs,the data copied will occasionally
be correct (or almost correct) even if a parity error occurs and
can be used to recover the data in the original file.
Alternatively, using the COpy program to write the file on top of
itself (therefore ~ithout changing the file) by simply specifying
the input file and no ou tpu t file, a user can fr equentl y cle ar
soft (and occasionally what seem to be hard) parity errors
occurring in an important data file. (Of course, no important
file should be updated in place unless a copy of the file exists
somewhere for recovery purposes in the event of a failure.)

The COpy command issues a click each time an unused sector is
copied. If more than a dozen or so clicks occur at the end of
copying a file, it usually indicates that the file is larger than
necessary to contain the data in it. In this case, moving the
file using APP or SAPP can sometimes help to reduce its size.
Clicks ocurring during the copying (before the end of the file)
indicate sectors containing DOS format errors, possibly implying a

-sector accidentally destroyed by some faulty program.

CHAPTER 18. COpy COMMAND 18-3

CHAPTER 19. DOSGEN COMMAND

19.1 Purpose

Before any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, (where the names of the
files contained on the disk are stored), as well as a map showing
whi ch p lac es on the di sk are bad and shou ld not be used.

The purpose of the DOSGEN command is to provide the user with
a simple way of accomplishing this preparation.

19.2 Use

To DOSGEN a disk enter:

DOSGEN <drive spec)

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any cylinders on
the volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to
cause the DOS to lock out one or more cylinders of the disk from
DOS access. This can be useful in some special applications where
it is desired to not allow DOS programs access to a file stored in
unusual format. If the user does wish to lock out any cylinders,
he may do so by specifying one or more cylinder numbers, in the
format:

12,14,16,25-28,40

The above example would cause cylinders 12, 14, 16, 25, 26,
27, 28, and 40 to be locked out. The cylinder numbers to be

CHAPTER 19. DOSGEN COMMAND 19 -1

locked out are entered in decimal.

After the operator has specified that no, or which, cylinders
are to be locked out, the DOSGEN command checks for bad sectors on
the disk and issues a message indicating any cylinders it finds
which contain bad sec-tors. Any cylinders found bad are
automatically locked out and will not be used by DOS. The
remainder of the operation is completely automatic and indicates
its completion with the DOS "READY" message.

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEM7/SYS and UTILITY/SYS, UTILITY/REL and UTILITY/LNK.

19.3 Special Considerations

It is important to remember that on disk packs-for use with
DOS systems recognizing more than one logical drive per physical
disk pack, for example the 9370 and 9390 series disk systems, more
then one DOSGEN must be done before the physical pack is fully
initialized. This allows the user to DOSGEN any logical disk on
the pack without disturbing files he wishes to keep that may be
stored on other logical disks.

Another important thing to remember is that the 9370, 9380
and 9390 series disks must be formatted before DOSGEN can be used
on them. Diskettes (for the 9380 series drives) come
pre-formatted from the manufacturer. A diskette that has been
formatted with tracks locked out (error mapped) cannot be
DOSGENed. Disk packs for the 9370 and 9390 series drives do not
have formatting when purchased. It is therefore necessary to
format all disk packs for the 9370 or 9390 series drives using the
program INITDISK ~efore attempting to use DOSGEN on them.

The booted drive of a system cannot be DOSGENed. The disk
from which DOSGEN is being run (usually the booted drive) should
have COPY, CHAIN, and PUT IP L av ai lab Ie or the DOSGEN wi 11 not be
able to complete correctly. Following surface verification DOSGEN
enters a CHAIN procedure, which requires writing a CHAIN work
file. If the disk on which CHAIN resides is write protected, the
processor will hang beeping until the protection is removed.
Since CHAIN is called during the DOSGEN process, this utility
cannot be run using CHAINPLS.

19-2 DISK OPERATING SYSTEM

CHAPTER 20. DSKCHECK

20.1 Purpose

The purpose of DSKCHECK is to repair a logically damaged DOS
volume. The performance of DOS is directly related to the
correctness of disk-resident sistem tables. DSKCHECK checks all
system tables for format and content and is able to determine in
most cases when an error in the system tables occurs, what the
error is, and if the system tables can be reconstructed from the
other data on the disk.

20.2 Use

DSKCHECK is invoked by entering:

DSKCHECK [<drivespec>][;<options>]

The drive specification may be entered as a standard drive
s p e c i f i cat ion (: DO) or as a VOL I D (: PAY RO LL) . I f no. d r i v e
specification is entered on the command line, the program will ask
for one.

20.3 Options

The following options are available, and to be activated they
must be entered on the command line.

"L" Option - Local Printer On -

When set all messages will be printed on the local printer as
well as displayed to the screen. An option conflict will be given
if selected with "s" option.

"s" Option - Servo Printer On -

When set all messages will be printed on the Servo printer as
well as displayed to the screen. An option conflict will be given
if selected with "L" option.

CHAPTER 20. DSKCHECK 20-1

"F" Option - System Fix Option -

Causes the program to compute the correct data when an error
in System Data is detected, if this computation is possible, and
allows the user to fix the data in error if he so chooses.

If an error in system data is detected, and the correct data
can not be computed from the other pertinent usable data on the
disk, the operator is so informed and may be asked if he wishes
the file or entry deleted. All error correction messages contain
a no changa option which will cause the program to continue to the
next check without changing the data on the disk being checked.
This option is illegal and automatically deactivated if DSKCHECK
is run from CHAIN, under ARC or under PS.

If no options are given the default is logging to the screen
only and the fix option turned off.

20.4 System Tables and Data

Descriptions of the DOS tables, system data and their uses
may be found in the chapter on System Structure.

All of the descriptions below are wri tten as if the "F" (fix)
option were set. If this option is not active the operation is
the same except that no request for corrective action is made if
applicable.

20.5 Execution Phases

There are many execution phases in DSKCHECK, some of which
are dependent on DOS type or previous condi tions and mayor may
not be executed.

-20.5.1 Initialization

During initialization the program displays a signon message,
and the option parameters are scanned. If the "F" (fix) option
was selected the correction features are enabled. If the
(drivespec) is not specified on the command line it is asked for
during this phase.

20-2 DISK OPERATING SYSTEM

20.5.2 HOI Checking

This phase of checking is dependent on the DOS on the disk
being checked. It is not executed on DOS. C because thi s DOS does
not use this technique of directory indexing. It uses Directory
Mapping, which is verified during a later phase.

This phase reads the HDI (HASHED DIRECTORY INDEX) on the disk
being checked, and compares the master to the backup. If an error
occurs in reading either copy, or in comparing the copies, an
error message will be displayed, but no corrective action is
allowed at this time. If no errors are detected an appropriate
message is displayed.

20.5.3 CAT Checking

This phase of checking reads the CAT on the disk being
checked and performs the same checks as described for HDI.

20.5.4 Directory Checking

During this phase each directory page is read and checked.
The master is compared to the backup copy, and if the pages do ·not
match the entry affected is displayed. The program then asks
which entry should be retained, or if both entries should be
deleted.

When an unsuccessful read occurs in either the master or
backup, an error message is displayed and the comparison is not
done. The good page is used to continue the checks. If both
pages fail to read successfully an appropriate message is
displayed and the next page is checked.

If. either or both pages read successfully, and when all
compare errors are resolved, each entry is checked for valid
format. If a de leted entry is encoun ter ed it is checked to see
that the delete is complete. If it is not, an error message is
displayed and the program asks if the error is to be corrected.

The RIB PDA is checked to see that it points to a valid
10 ca tion on the disk. If an err or is de te cted, an appro pr i ate
message is displayed, and the program asks if the entry should be
del e ted. If t his en try is del e te d , no spa ce for it will be
allocated in the computed CAT.

The program then proceeds by checking the filename/ext for

CHAPTER 20. DSKCHECK 20-3

valid characters. Each character should fall into the range of
A-Z or 0-9. If the program finds an invalid character, a warning
message is displayed and the program continues.

Under DOS.C the program generates a mapping byte for each
page as the page is checked. If the computed mapping byte does
not match the mapping byte on the disk, a message is displayed and
the computed mapping byte is entered into the computed CAT sector
being generated.

20.5.5 RIB Checking

After all directory pages have been checked, the RIB for each
entry in the directory is checked for format and space allocation
validity. The RIB master and backup are first read and compared.
If either copy is not read successfully, the program asks if the
good copy is to be written to the copy with the read failure. If
a read failure occurs on both c6pies an error message will inform
the user and the program will ask if the file is to be deleted.
No space will be allocated for that file in the computed CAT.

If a compare error is detected, the filename and the first 16
bytes of both copies are displayed and the program will ask which
copy is to be retained on the disk.

After the RIB master and backup have been read and compared,
and all errors resolved, the RIB format is checked for the correct
PFN, LRN, and an 0377 in the 4th byte. Any format error detected
will be displayed, and the corrective action requested.

Each segment descriptor is then checked" to see that it points
to a valid location on the disk, and that the first sector of the
segment has the proper PFN. The space allocation is computed and
checked against the CAT and Lockout CAT for conflicts. If a
conflict occurs with the Lockout CAT the program will ask if the
Lockout CAT is to be rewritten to free this space. "If a conflict
is detected with another file, the conflicting area is analyzed in
the next two phases-and displayed with a request for action. If
no conflicting areas are found the next two phases are skipped and
the program continues with the Lockout CAT check.

20-4 DISK OPERATING SYSTEM

20.5.6 Cluster Allocation Phase 1

If a conflict was detected while checking the RIBs this phase
is activated to reread all the good RIBs and find all other
conflicts.

20.5.7 Cluster Allocation Phase 2

Upon the determination of all conflicting clusters they are
scanned to see which RIBs conflict and an opportunity to delete
one or another or both conflicting files is given. If no change
is requested the CAT is updated with the conflicting clusters so
there is protection from another file writing into this area.

20.5.8 Lock-out CAT Checking

If no change in the Lockout CAT has been made previously, it
is now read and compared to its backup and checked against the CAT
to see that all locked out space is also allocated in the CAT. If
changes were made in previous phases of the program the generated
Lockout CAT is checked against the CAT and if no errors are
detected it is written to the disk.

Any errors detected in this phase cause a descriptive message
to be displayed and the program asks if a new Lockout CAT should
be written. This new Lockout CAT, if written, will only have the
space for the system tables locked out.

20.6 Operational messages

The messages listed in this section are informational. They
are displayed to indicate where the program is in the execution
cycle.

CHECKING HOI

The program is checking the HOI master and backup for
read errors 'in either, and for a match between the two.

CHAPTER 20. OSKCHECK 20-5

CHECKI NG CAT FOR FORMAT

The program is reading the CAT master and backup and
checking for read errors in either, and for a match
between the two.

CAT MASTER AND BACKUP LOOK O.K.

The CAT master and backup were read without error, and
the master compared correctly wi th the backup.

CHECKING DIRECTORY PAGE nnn

The directory page nnn master and backup have been read
without error, and the directory entries on this page are
being checked for format. During this check a directory
mapping image is also being constructed and checked
against the one on the disk if necessary.

CHECKI NG RI BS

The directory checking is complete, and the RIB's are now
being checked.

CHE CKING RI B FO R PFN n nn

The RIB for PFN nnn is now being read and checked for
format errors and allocation conflicts.

CLUSTER ALLOCATION PHASE 1

If cluster conflicts occur while checking RIBs and the
'F' option is set, this phase is executed to find and
verify all conflicts.

20-6 DISK OPERATING SYSTEM

CLUSTER ALLOCATION PHASE 2

This phase follows the phase 1 above to resolve any or
all conflicts.

CHECKING LOCK-OUT CAT

The LOCK-OUT CAT master and backup are being read and
compared, and checked to be sure that the locked-out
space is allocated in the CAT.

ALL LOCKED-OUT CYLINDERS ARE ALLOCATED IN THE CAT

Indicates that no Lockout-CAT errors exist and that all
cylinders locked-out are allocated in the CAT

MATCHING COMPUTED CAT TO DISK

The CAT computed from the RIBs and the computed directory
mapping bytes is being compared against that read from
the disk.

COMPUTED HDI MATCHES DISK

The HDI read from the drive is complete and control is
being returned to the DOS.

20.7 Error Message Definitions

Error messages for DSKCHECK follow.

20.7.1 Operational error messages.

CHAPTER 20. DSKCHECK 20-7

OPERATOR INTERVENTION - JOB TERMINATED

If the keyboard key is depressed at any time during the
operation of the program this message is displayed and
DSKCHECK is terminated.

****WARNING**** WRITE FAILURE

If at any time a write to disk is attempted and does not
complete successfully a warning is given. This is a
SERIOUS error because the error found by DSKCHECK was not
corrected. However, the program will allow one to see if
any other errors are on the disk and then it is the
operator's responsibility to recover as much of the data
a s po s sib 1 e •

nnn WRITE FAILURES HAVE OCCURRED!!! PLEASE NOTE

If a write failure did occur this message is displayed at
the termination of /the program so ~s to re-alert' the
operator to the. fact so something can be done about it.

20.7.2 Initialization Error Messages

DRIVE OFF LINE

When accessed, the dri ve being checked was found to be
off line

INVALID DRIVE

The drive selected was not a valid number or format.

INVALID OPTION PARAMETER
VALID OPTIONS ARE L=LOCAL S=SERVO F=FIX

An option other than those listed was detected

20-8 DISK OPERATING SYSTEM

MULTIPLE PRINTERS SELECTED

Both servo and local printer were selected.

PROGRAM NOT LOADABLE

One or more of the library members of DSKCHECK are
missing. The members in DSKCHECK are:

DSKCHECK
DSKCVER1
DSKCVER2
DSKCVER3
DSKCVR3B
DSKCVR3C
DSKCVER4

R I:LOCAT ABLE MEMBER tv1I SSI NG OR UNLOADABLE

UTILITY/REL FILE MISSING

SECTOR IN/OUT MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION x

PRINT DRIVER MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION x

PRINT MODULE MISSING OR NOT LOADABLE. NO PRINT WILL OCCUR.

All the above check different ways UTILITY/REL members
are missing or unloadable.

YOUR DOS FUNCTION 15 IS OBSOLETE

Running on an obsolete DOS.

WRONG DOS

Running on an obsolete DOS.

THIS PROGRAM IS RUNNING IN A CHAIN - THE "F" OPTION HAS BEEN
DEACTIVATED.

Fix option not allowed during CHAINing.

CHAPTER 20. DSKCHECK 20-9

THIS PROGRAM IS RUNNING UNDER ARC - THE "F" OPTION HAS BEEN
DEACTIVATED.

Fix option not allowed while on ARC.

THIS PROGRAM IS RUNNING UNDER PS - THE "F" OPTION HAS BEEN
DEACTIVATED.

Fix option not allowed while under PS.

E NT ER DR I V E (L IKE : DO, : D 1, 0 R ": VOL I D)

An invalid drive specification or no drive specification
was detected from the command line.

20.7.3 UD! ERRORS

HDI MASTER AND BACKUP DO NOT MATCH
HDI WILL BE RECONS TRU CTED FROM DI RE CTORY •

The Hash Directory Index Master and Backup did not match
"and wi 11 be recrea ted d ur i ng the fin al phase.

ERRO R ON READ OF HDI MASTER

Pari ty err"or found while reading the HDI master.

ERROR ON READ OF HDI BACKUP

Parity error found while reading the HDI backup.

WRITE NEW HDI TO DISK?

20-10

With the FIX option set the operator will be able to try
to write a new HDI.

DISK OPERATING SYSTEM

20.1.4 CAT Errors

ERROR ON READ OF CAT MASTER

An un-recoverable read error occurred during the read of
the master CAT sector. No action is taken at this time.

ERROR ON READ OF CAT BACKUP

An un-recoverable read error occurred during the read of
the backup CAT sector. No action is taken at this time.

CAT MASTER AND BACKUP DO NOT MATCH
CAT WILL BE RECONSTRUCTED FROM THE RIBS

The CAT master and backup buffers in memory do not match.
No action is taken at this time. When a computed CAT has
been constructed, it will be compared to the master and
backup CAT, and at that time correcti ve action may be
taken.

Before the computed CAT is compared to the disk, the program
checks internal error flags, and if any of the errors above are
found to have occurred, one or more of the following messages may
be displayed. Usually it is best to answer "Y" so the CAT on di sk
will be corrected.

ERROR ON READ OF CAT MASTER
WRITE BACKUP TO MASTER ?

An error was detected on the initial read of the CAT
master, but the backup copy was read successfully.
Answering "Y" causes the backup to be wri tten to the
master. The "N" answer causes no change.

ERRO R ON READ OF CAT BACKUP
WRITE MASTER TO BACKUP ?

An error was detected on the initial read of the CAT
backup, but the master copy was read successfully.
Answering "Y" causes the master to be written to the
backup. The "N" answer causes no change.

CHAPTER 20. DSKCHE CK 20-11

-BOTH CAT COPI ES BAD
WRITE COMPUTED CAT TO BOTH ?

Neither copy of the CAT could be read successfully.
Answering "Y" causes the computed CAT to be written to
the CAT master and backup sectors on the di sk. The "N"
answer resul ts in no change.

CAT MASTER AND BACKUP DID NOT MATCH
WRITE COMPUTED CAT TO DISK ?

After the ini tial read the CAT master and backup did not
match. Answering "Y" causes the computed CAT to be
wri tten to the CAT master and backup sectors on the di sk.
The "N" answer resul ts in no change.

COMPUTED CAT DOES NOT MATCH DISK
WRITE COMPUTED CAT TO DISK ?

The computed CAT constructed from the RIBs does not match
the CAT on the disk. Answering "Y" causes the computed
CAT to be written to the CAT master and backup sectors on
the disk. The "N" answer results in no change.

NOTE: Say yes to get a good disk.

20.1.5 Directory Errors

The following error messages may appear when the program is
checking the directory. Some error conditions refer to the HDI,
and will not appear when checking a disk without an HDI. Likewise
those messages that refer to directory mapping bytes will not
appear on disks that do not use directory mapping.

ERROR ON READ OF DIRECTORY MASTER

20-12

The current directory master page could not be read
successfully. If the "F" option is active the request
"WRITE BACKUP TO MASTER ?" will also appear. If this
request is answered "Y" the current backup page will be
written to the correct directory master sector on the

DISK OPERATING SYSTEM

disk.

ERROR ON READ OF DIRECTORY BACKUP

The current directory backup page could not be read
successfully. If the "F" option is active the request
"WRITE MASTER TO BACKUP ?" will also appear. ,If this
req ue st is answer ed "Y" the cu rre nt mast er page wi 11 be
written to the correct directory backup sector on the
disk.

BOTH PAGES READ BAD
NO SPACE WILL BE ALLOCATED FOR THE FILES ON THIS PAGE

Neither the master nor backup pages could be read
successfully. The page can not be fixed and no space
will be allocated in the computed CAT for the files on
thi s page, nor wi 11 the HDI e nt ri es for the fi les on thi s
page appear in the computed HDI.

DIRECTORY ENTRIES DO NOT MATCH - PFN nnn

The current master and backup page do not match. The
master and backup copies of the entry that do not match
will be displayed in the format below;

DIRECTORY ENTRIES DO NOT MATCH - PFN 000
MASTER -

001 303 000 000 123 131 123 124 105 115 062 040 123 131 123 377
S Y S T E M 2 S· Y S

BACKUP -
001 003 000 000 123 131 123 124 105 115 060 040 123 131 123 377

S Y S T E MaS Y S
ACTION: 1=MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE?

CHAPTER 20. DSKCHECK 20-13

One of the following 1 in es wi 11 al so be di sp layed,
indicating the relationship between the filenames in the·
directory entries and the value in the HDI:

NEI THER MASTER NOR BACKUP MATCH HDI RIB WILL NOT BE CHECKED.
or

MASTER ENTRY MATCHES HDI
or

BACKUP ENTRY MATCHES HDI

DELETE INCOMPLETE PFN nnn
WRITE DELETE TO DIRECTORY ?

The entry for PFN nnn was found to have one or more bytes
other than 0377. The "Y" answer causes a deleted entry
to be written to the directory for this entry. The "N"
answer caus es no change.

INVALID PDA IN PFN - nnn
DELETE THE ENTRY ?

The ent ry fo r PFN nnn point s to a physi cal di sk addr ess
that is not valid for a RIB location. The "Y" answer
causes the entry to be deleted from the directory master
and backup. The "N" answer causes no change.

COMPUTED HASH BYTE DOES NOT MATCH HDI FOR 'PFN nnn

The computed hash character for PFN nnn does .not match
the hash character on the disk. No corrective action is
taken, but the computed hash character is entered into
the compu ted HDI, an d will cause an error when the
computed HDI is compared to the disk.

WARNING FILENAME/EXT FOR PFN nnn CONTAINS INVALID CHARACTERS

The filename/ext for PFN nnn contains characters that are
not in the range of A-Z or 0-9. This is a warning only,
and does not allow any corrective action.

20-14 DISK OPERATING SYSTEM

DIRECTORY MAPPING BYTE DOES NOT MATCH GENERATED BYTE FOR PAGE nnn

The directory mapping byte generated for the current page
(nnn) does not match the mapping byte on the di sk. The
generated byte is e-ntered into the directory mapping area
in the computed CAT and will cause a match error when the
computed CAT is compared to the CAT on the disk.

20.1.6 RIB Errors

The error message and di splay formats that follow may all be
displayed in the RIB checking phase of program execution.

ERROR ON READ OF RIB, MASTER
ACTION: 1=BACKUP>MASTER 4=NO CHANGE? .

The RIB master could not be read successfully, but
reading the backup was successful. The "1" answer causes
the backup RIB to be copied to the master wi th the
correct LRN. The "4" answer caus es no change on the
disk, and the backup RIB is used for further checks.

ERROR ON READ OF RIB B~CKUP
ACTION: 2=MASTER>BACKUP 4=NO CHANGE?

The RIB backup could not be read successfully, but
reading the master was successful. The "2" answer causes
the master RIB to be copied to the backup wi th the
correct LRN. The "4" answer causes no change on the
di sk.

MASTER AN D BACKUP READ ERRO RS
DELETE THE FILE ?

Neither copy could be read successfully. No recovery of
data is possible, and the fi Ie may be deleted from the
disk, or no change may be made. Either action results in
no space for this file being allocated in the computed
CAT.

CHAPTER 20. DSKCHECK 20-15

RIB MASTER AND BACKUP DO NOT MATCH *** FILE - filename/ext
RIB MASTER -

000 000 000 377 00 1 004 377 377 377 377 377 377 377 377 377 377
RIB BACKUP -

000 00 1 000 377 00 1 104 377 377 377 377 377 377 377 377 377 377
ACTION: 1=MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE?

The RIB master and backup copies did not compare
correctly. Only the area of the RIB used by the system
is compared. The responses are self explanatory. For
any actIon except "3" the resulting master is used for
checking allocation. If the file is deleted, no further
checks are made, and no space is allocated in the
constructed CAT.

RIB FORMAT E"RROR

One or more of the first four bytes of the RIB was
incorrect. The total message will display in the format
below. Only the error explanations and pointers for
which errors were detected will be displayed.

RIB FORMAT ERROR *** FILE - filename/ext
000 123 125 105 000 377 377 377377 377 377 377 377 377 377 377

A A " "

1 2 3 4

1 - PFN INCORRECT
2 - LRN LSB NOT 000
3 - LRN MSB NOT 000
4 - 4 TH BYTE NOT 0377

ACTION: 1=DELETE THE FILE 2=CORRECT ERROR(S) 3=NO CHANGE?

RIB BACKUP LRN ERROR
CORRECT THE ERROR ?

20-16

The RIB backup LRN was not 001, but the rest of the
backup matched the RIB master. The "Y" answer causes the
correct LRN to be written to the RIB backup sector.

DISK OPERATING SYSTEM

INVALID SEGMENT DESCRIPTOR # nnn - RIB WILL NOT BE CHECKED

The segment descriptor for segment nnn pointed to a
location that can not physically exist on the disk being
checked. "No further checking of the RIB will occur.

SPACE ALLOCATION CONFLICTS WITH PREVIOUS ALLOCATION

The space allocated for the current segment of this file
is in confl i ct wi th space alloca ted to a pr ev i ous I y
checked file. Additional information is displayed in the
format below.

FILENAME/EXT
PFN 014

CONFLICTING CLUSTERS" 007
CLUSTERS IN FILE 005

* FILENAME/EXT
* PFN 143"
* 007
* 002

ACTION: 1=DELETE PFN 014 2=DELETE PFN 143 3=NO CHANGE?

This indicates that PFN 014 and PFN 143 have 7 clusters
in conflict, and that 5 of them have records from PFN-014
and 2 have records from PFN-143. In this example PFN-143
shou ld pro ba bly be de Ie ted.

CURRENT FILE OVERLAYS LOCKED OUT SPACE
FREE THIS SPACE IN LOCKOUT CAT?

Some of the space allocated to the file being checked
occupies space that "is locked-out. Answering "Y" causes
the cylinders in the LOCKOUT CAT which the file overlays
to be removed from the LOCKOUT CAT. The "N" answer
causes no change in the LOCKOUT CAT.

INVALID PFN IN FIRST SECTOR OF SEGMENT nnn *** FILE - filename/ext

The PFN in the first sector of segment nnn does not match
the PFN of the fi Ie being checked. This message is
informational, as this may be a normal condition in some
files. The program will take no corrective action.

CHAPTER 20. DSKCHECK 20-17

20.1.1 Lockout CAT Errors

LOCKOUT MASTER AND BACKUP' DON'T MATCH
WRITE NEW LOCKOUT CAT TO DISK ?

The Lockout CAT master and backup do not match.
Answering "Y" caus es a Lockout CAT wi th only the space
for the System Tables locked-out to be written to the
disk. The "N" answer causes no change.

LOCKED OUT CYLINDER nnn NOT ALLOCATED IN CAT
WRITE NEW LOCKOUT CAT TO DISK ?

The locked out cylinder nnn is not allocated in the CAT.
Answering "Y" causes a Lockout CAT wi th only the space
for the System Tables locked-out to be written to the
disk. The "N" answer causes no change.

ERROR ON READ OF LOCKOUT CAT
WRITE NEW LOCKOUT CAT TO DISK ?

20-18

The Lockout CAT read was bad, possibly a parity error.
The user now has the opportuni ty to try to wri te the
Lockout"CAT calculated back to disk.

DISK OPERATI NG SYSTEM

CHAPTER 21. DUMP COMMAND

21.1 Purpose

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on the disk.
The display includes both the octal and ASCII contents of every
byte in the sector. No examination for control bytes of any kind
is made, allowing the user to see the precise contents of every
ph Y sic al lo cat ion in the disk sec tor.

21.2 Use

The DUMP command is invoked by entering:

DUMP [<filespec>J[;<options>J

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level
LEVEL TWO- Fi Ie level
LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directory level

The entry file and/or drive specifications on the command
line allow the first one or two input levels in DUMP to be
automatically bypassed.

The <option> is the type of printer the operator wishes to
have his printing done on. The type printers supported are either
local or servo. The option letter 'L' is used for local and'S'
for s e r vo . The de fa u 1 tis no p r in t e r .

When the DUMP command is used, the top line on the display is
the primary control line. Input is accepted on this line. This
line is broken into four basic areas, one corresponding with each
of the first four control levels. The primary control level at
any given time during the operation of the DUMP command can be
determined by the position of the flashing cursor on the control
line.

CHAPTER 21. DUMP COMMAND 21-1

For example, if the flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUMP command is operating
at level one. If the cursor is positioned after the "FILE:"
legend on the control line, the DUMP command is operating at level
two, etc.

21.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector just read and to descri be any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates
-that the sector being displayed is the primary RIB for the
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indicates that the sector being displayed is the secondcry
RIB for the currently opened file.

CLUSTER ALLOCATION TABLE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that
the sector being displayed is the secondary, backup CAT for the
current logical drive. The CAT is also m~intained in duplicate
just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each
logical drive is a sector that indicates whicn areas have been
locked out, prohibiting their use by DOS. This message indicates
that the sector being displayed is the Lockout CAT for the current
logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sect,or being displayed is the secondary, backup
'copy of the Lockout CAT.

SYSTEM DIRECTORY SECTOR. This message indicates that the
sector being displayed is one of the DOS directory sectors. The

21-2 DISK OPERATING SYSTEM

directory sector number (in decimal and in octal) immediately
follows the message.

USER DATA SECTOR. This message indicates that the sector is
not recognized as one of the above special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the
sector requested for display either was not found on the di sk or
that a CRCC error repeatedly occurred during the read operation.
The sector displayed is the data as it was read from the disk,
unless the sector was not found.

DISK OFFLINE. This message indicates that the currently
specified logical drive is not on line.

DISK SECTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its phy si cal fi Ie number, and the two follow i ng b yt es are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a file and older
version DATASHARE object code files normally will fall into this
rilass. It merely means that if the sector were read with the DOS
READ$ routinei a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector
requested (by logical record number) is not within the range of
the currently opened file.

FILE NOT FOUND. This message indicates that the file
requested could not be found. This does not necessarily mean that
the file does not ex ist. For example, the file could be in a
non-current subdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive

INVALID PHYSICAL ADDRESS. This message indicates that the
physical disk address specified is invalid.

The remainder of the display contains the contents of the
current half of the sector most recently read. The display is
arranged as eight groups of sixteen bytes each. Each of these
groups is preceded by the three octal digit offset of that group
within the sector. Each sixteen byte group consists of the octal
and ASCII contents of each of the sixteen bytes in that group.
Each byte's contents form a column one character wide and four
lines high, where the first three lines are the value of the byte,

CHAPTER 21. DUMP COMMAND 21-3

in octal, and the fourth line is the ASCII value of that
character. Notice that the character is not examined for special
significance before it is displayed, so that computers having the
high speed RAM display option (which is strongly recommended for
all,DOS systems) may display characters other than the normal
ASCII set.

21.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred' to level two. Non-specific drive mode is disabled.

* - DUMP command returns control to the DOS.
> - The second half of the current sector is displayed.
< - The first half of the current sector is displayed.

21.5 Level Two Commands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to level
four.

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the
file is displayed and control transfers to level three.

I - The curre nt phy si cal fi Ie number is incremented and the
new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN is
incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control is
transferred to level three.

'D - D works just like the I command above except that instead

21-4 DISK OPERATING SYSTEM

of incrementing the PFN, it is decremented.
#pfn - The directory sector containing the entry

corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred to level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
~hese directory sector numbers are always specified in octal.

* - Return control to level one.
> - Show the second half of the current sector.
< - Show the first half of the current sector.

21.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted.

<enter> - The current sector is shown and control is
tr ansferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it is assumed
to be octal; otherwise it is assumed to be decimal. The number
specified is the user (as opposed to system) LRN. The system LRN,
the value in bytes otie and two in the sector, is always two
greater than the user LRN. The two numbers displayed at level
three in the control line are the user LRN in decimal (the one
with leading zeros suppressed) and octal (the one in parentheses,
with leading zeros).

Pnnnnn - Print the next 'nnnnn' sectors to the printer
selected on the command line.

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access it
and display the sector.

* -Return to the File level of control (level two).
> - Show the second half of the current sector.
< - Show the first half of the current sector.

21.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical di sk a,ddresses, and as such is not
usually as useful as the LRN level. However, when access to a
s p e c i f i c sec tor on the disk is des ire d , it c an be a chi e v ed ' us i n g
DUMP level fouT. It is important to realize that the physical
disk addresses specified are logical physical di sk addresses, that
is, the same format as is given to the DR$ and DW$ routines in the

CHAPTER 21. bUMP COMMAND 21-5

DOS. They are not necessarily the same as actual physical
locations on the disk. For example, with DOS.C for the 9380
series diskettes, the logical disk 'addresses are remapped onto the
diskette into different hard physical sector numbers than those
indicated by the logical physical disk address. The important
thing to understand here is that the disk addr'esses used in the
level four control of DUMP are those that would be used to
parameterize DR$and DW$.

The commands accepted at level four of DUMP are as follows.

msb, Isb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (lea~t
s i g n i f i can t by t e) is a 1 way s con sid e r ed to be in 0 c tal, reg a r dIe s s
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format, undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

Pnnnnn - Print the next 'nnnnn' sectors to the printer
selected on the command line.

I - Increment the current physical disk address, 3ccess it
and display the sector.

D - Decrement the current physical disk address, access it
and display the sector.

* - Return control to level two if no file ii opened, or
level thr ee otherwi se.

> - Show th~ second half of the current sector.
< - Show the first half of the current sector.

21.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command is
operating at co~trol level five (system di~ectory sector level},
the following commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low order four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leading zero indicates the number is in
octal, otherwise decimal is assumed.

Pnnnnn - Print the next 'nnnnn' ~ectors to the printer
seclected on the command line.

21-6 DISK OPERATING SYSTEM

the

the

I - The current directory sector
corresponding directory sector is

D - The current directory sector
corresponding directory sector is * - Return control to level two.

number is incremented and
displayed.
number is decremented and
displayed.

> - Show the second half of the current directory sector.
< - Show the first half of the c~rrent directory sector.

21.9 Error Messages

Only one error message is issued by the DUMP command. It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in the booted drive has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 21. DUMP COMMAND 21-7

CHAPTER 22. THE DUMP93XO COMMAND

22.1 Purpose

DUMP93XO represents one of three programs: DUMP9350,
DUMP9370, DUMP9380. Each program functions on only one of the
Datapoint type disks, 9350 series, 9370 series, or 9380 series
respectively. In the following chapter, characteristics of a
particular program or disk will be indicated by the specific drive
type. Features common to all programs will be indicated by
reference to "DUMP93XO", so the "X" can be at any time read as
"5", "7", or "8". The examples that follow are primarily -set for
DUMP9370 use, since the 9370 disk uses the most complex address
format. In general, the examples apply equally well to 9350 or
9380 disks, ignoring the head address used in the 9370 command.
The DUMP93XO command enables the programmer to inspect, record, or
load physical disk sectors. DUMP93XO is intended to be used only
for extremely low-level disk examination by trained systems
personnel. Most users will find the facilities provided by tt·
DUMP command to be more useful for general di sk examination
purposes.

22.2 Use

DUMP93XO can be invoked from an active DOS by keying in at
the system console:

'-f)UMP93XO

Since DUMP93XO is a completely self-contained program, it can
be run from an LGO cassette tape (unlike most DOS commands which
rely. on one or more of th-e DOS routines for their execution). In
this mode, DUMP93XO can occasionally be useful in helping to
determine the problem when the DOS will not boot up from some
disk. If a user intends to use DUMP93XO in this way, he should
take care to make an LGO tape and store it safely away somewhere,
before he' needs it.

DUMP93XO can output physical disk records (sectors) to a
local printer, the cassette deck, or to the screen, and can load
sectors to disk from the cassette deck.

CHAPTER 22. THE DUMP93XO COMMAND 22-1

There are two command handlers in DUMP93XO. The primary
command handler controls all DUMP93XO functions except the screen
dump. The screen dump requires its own syntax because it is an
interacti ve, and more flex i ble, faci I i ty.

All commands to DUMP93XO employ the same conceptual
structure, though elements of commands may be implicit as well as
explicit. The full explicit format for commands is:

DUMP9370:
DUMP9350:
DUMP9380:

Z AAA,BBB,CCC DDD,EEE,FFF
Z AAA,CCC DDD,FFF
Z AAA,CCC DDD,FFF

where Z is the comman d
AAA is the starting cylinder number
BBB is the starting head on cylinder AAA(DUMP9370 only)
CCC is the starting sector on that track
DDD is the ending cylinder number
EEE is the ending head on cylinder DDD(DUMP9370 only)
FFF is the ending sector on that track

Notice that all disk addresses are "hard" physical disk
addresses, as opposed to DOS standard-format (or "logical")
physical disk addresses. All numbers input to DUMP93XO are octal.
Consult the appropriate appendix for a description of the physical
addressing of the type of disk in use.

P
S
CD
CL
II

*
A
E
o
@

*
/I
I
D
C
H

The command codes of the primary command handler are:

Print on the local printer
Screen dump
Cassette dump
Cassette load
Jump to DOS DEBUG
Return to DOS command interpreter
ASCII mode (for printer or screen dump)
EBCDIC mode (for printer or screen dump) (DUMP9380 only)
Octal mode (for printer or screen dump)
Physical drive number

The command codes of the screen dump command handler are:

Return to the primary command handler
Jump to DOS DEBUG
Increment the (cylinder,head,sector) address
Decrement the (cylinder,head,sector) address
Cylinder address mode
Head, address mode (9370 only)

22-2 DISK OPERATING SYSTEM

S Sector address mode
A ASCII display mode
E EBCDIC display mode (9380 only)
o Octal display mode

The following operating instructions discuss the commands and
their applications, with some examples, in more detail.

22.3 The primary command handler

As soon as DUMP93XO has fully loaded, it displays its signon
message on the screen. When the cu rsor appears at the lower left
corner of the screen the primary command handler is ready to
accept commands.

22.4 llDsing

DUMP93XO with a Local Printer P - Print on the local printer

DUMP93XO will print only to a 132 column local printer,
address 0303. The 25~ byte disk records (sectors) are listed 32
bytes per line, 8 lines per sector. Preceding each 8 line block
of print is a short line giving the physical disk address of the
printed sector. One sector or the en'tire disk may be dumped to
the printer by a P command. After the last sector is printed the
page is ejected to top of the next page.

~Unless otherwise specified, the bytes are printed in octal,
with a space separating each byte, except every eighth byte is
delimited by a period. If the DUMP93XO command is in the ASCII
mode (set with the A command) characters that are valid.,ASCII
characters will be printed in ASCII. Lower-case ASCII alphabetic
characters are indic_ated by a preceding underscore (). If the
DUMP9380 command is 'in the EBCDIC mode, bytes that are valid
EBCDIC characters will be printed in EBCDIC, lower case characters
preceded by an underscore.

COMMAND EXAMPLES:

P 000,000,000 000,000,000

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 000, sector 000. In
other words, print only the one sector with the disk address
000,000,000.

CHAPTER 22. THE DUMP93XO COMMAND 22-3,

Note from the following examples that the parameter fetching
subroutine will make certain assumptions about information not
explicitly given.

P 0,0,0 0,23,27

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 023, sector 027. In
other words, dump to the printer all of the sectors on cylinder
zero. Note that it is not necessary to supply leading zeros in an
address.

For 9350 series disks, the equivalent command, dump all of
cylinder 0, is

P 0,0 0,67

For 9380 series disks, the equivalent command is

P 0,0 0,14

P a a

would do exactly the same thing as the previous example. When
only the first number is given between spaces, it is taken to be a
cylinder address, wi th a sector and head address of 000 assumed
for the beginning cylinder. For 9370 disks, a head address of 023
and a sector address of 027 are assumed for the ending cylinder
address. For 9350 disks, a sector address of 067 is assumed for
the ending address. For 9380 disks, a sector address of 014 is
assumed for the end ing addr ess.

P 4

would dump to the printer the di sk records from cylinder· 004, head
000, sector 000, thru cylinder 004, head 023, "sector 027 •. In
other words, all of the sectors on cylinder 4. When only one
cylinder address is given, it is taken to be both the beginning
and endin~ cylinder address. For 9350 series, the command would
dump from cylinder 004, sector 000, through 004, sector 067. For
9380 series, the command would dump from cylinder 004, sector 000,
through cylinder 004, sector 014.

P 67 70;7

would be assumed to mean: P 067,000,000 070,007,027 ,

or for 9 350 ' s P 067,000 070,007

22-4 DISK OPERATING SYSTEM

or for 9380 's P 067,000 070,007

22.5 Screen Display format

S - Screen dump

DUMP93XO can display on the CRT one disk physical record
(sector) at a time, in octal or ASCII (or EBCDIC for 9380). The
address of the sector displayed is controlled in a manner
analogous to the display of bytes in memory by the DOS debugging
facility.

A special display format is utilized to enable all 256 bytes
of a sector to be displayed on the screen at one time. Below is a
diagram of what a sc reen dump of a sector would look Ii ke; gi ven
the CYL,HED,SEC address = 44,0,6 and each byte in the example
sector is its location within the sector; (i.e., starting at the
beginning of the sector, the bytes are in octal) 000, 001, 002,
003, ... ,0377:

o 4/~,_ C ::: c. 0 0 ~ (j C 2') C) J 0 a H Q 0 5 0 0 6 0 (: 7 :.1 1 ('0 1 ~ ,:.1 1 :'\ C 1 ,:;:) , !! C! SOl ,~O' 7 02002 1 0 :2 :-_' n; 302402:) Q 2 602 '7
000 03C031C3203303~o35a36037 04G0410~20~~O~4C4004~04? 050051052~S3054055056057
o i) 6 06 J 06 , C 6206 3 C f. :~ 0 6 50660 (.7 0'" r c 7 j () '7 ~: C ',7 ? O'{ 4 G? :: C ';r 6 () '; 7

_'001011J21031041C5106107 l1C1111121 ;311411511S117 12Q121122~~3124125126~27
i 3 (~ t 3 1 1 :; ~ ; :: ~ 1 3]1 t Yj j :: FJ 1 ::·t 1 1 ,~: 1 ill 1 '" ' 1 !; _, i :1 q 1]1 I', 1 :i r; 111'1 'I 'j 0 1 ~) " '! ':) 2 1 Co' ,l " 5 11 1 55 -; 56 15 '7
16;') 1 6 1 ~ b 2 1 C 3 1tJ 4 1 C::> 1 66 1 6'1 1"(I) 1 7 1 ~ '! 2 17 3 'I'i' 4 17 ~3\ 17 r) 171

_ 2 G G 20 1 ;: :) 220 3 2 C l; 2 0 ~ 2 C 6 2 C 7 2 1 Ci 2 1 1 :.:' 1 2 :2 ~ ~~;:. 1 4 2 'I ~) ? 1 ,) ? '; 7 ;2202 :2 1 :22 2 ~~ 2 322 4225;;: 2 6 227
230231232233234235236237 24024~2~2243244245246247 250251252253254255256257
26025126226326~265266267 270271272213274215276~77

_300301302303304305306301 31031131231331431531631? 320321322323324325326327
330331332333334335336337 3403413423~33~4345345347 35035135235335 b 355356357
360361362363364365366367 370371372373374375316377

Note from the diagram that:

The displayed sector address is in the upper left-hand corner
of the screen. For 9350 disks, the cylinder and sector address is
shown. For 9370 disks, the cylinder, head, and sector address is
shown. ~or 9380 disks, the cylinder, physical sector, and logical
sector address is shown. Each portion of the address is on ohe
line; stat,ed sequence above is top to bottom.

Each ~roup of 10(octal) bytes ,is displayed in a contiguous
block of d i'~ its.

Each blQck of 100(octal) bytes begins at the left side of the
screen, prece~ed by an underscore ().

Each bloc'{(of 100(octal) bytes consists of 10(octal) groups
of 10(octal) contiguous bytes; 3, 3, and 2 groups to a screen
line, for the three l:lnes requi red to di splay 100 (octal) bytes.

The screen d~splays 400(octal) bytes, which is one disk

CHAPTER 22. THE DUMP93XO COMMAND 22-5

sector, 256(decimal) bytes.

To further break down the screen and enable quick location
and reading of individual bytes, the first digit of every ~econd
byte is flashed on and off. Thus, each group of eight bytes is
di v ided into four uni ts of two bytes.

COMMAND EXAMPLES:

S 044,014,006

would mean: display cylinder 44, head 014, sector 6 on the
screen. This commaryd can only be gi ven to the primary
command handler, and after it is executed DUMP93XO will be
under the control of the screen dump command handler.

22.6 The Screen Dump Command Handler

Note that as in the DOS debugging facility, the command codes
entered are not displayed, the command is merely immediately
executed.

* Return to the primary command handler. The screen will be
rolled up, the cursor turned on, and keyed commands will be
displayed as they are entered at the lower left corner of the
screen.
NOTE that the SHIFT key must be depressed at the same time as
the asterisk (*) key.

Jump to the DOS debugging facility. # will not work if
DUMP93XO was loaded from an LGO tape.
NOTE that the SHIFT key must be depressed at the same time as
the po u n d sign (II) key.

I Increment the cylinder, head, or sector address and di-splay
the sector at the new address. The new di sk address wi 11 be'
displayed at the top left corner of the screen.

If the C (Cylinder address mode) command is in force when an I
command is given, the cylinder address will be incremented by
one, the head and sector addresses will not change. Cylinder
address wrap-around occurs at 0312->000 (0114->00D for
DUMP9380). Incrementing by cylinder address is useful for
scanning quickly through a large file by steps of 4 (9380) or
8 (9350,9370) clusters per increment.

If the H (Head address mode) command is in force when an I

22-6 DISK OPERATING SYSTEM

command is given, the head number will be. incremented by one.
If the head address was 023, it will wr ap around to head zero
and the cylinder address will be incremented by one. Note that
the head address will increment across both the two logical
packs on the physical drive. H is operative only under
DUMP9370.

If the S (Sector address mode) command is in force when an I
command is given, the sector address will be incremented by
one. If the sector was the last on ·the track (014 for 9380,
067 for 9350, 027 for 9370), then the head or cylinder
address, or both, are incremented by one and the sector
address is set to zero. If the cylinder address was the last
on the disk, it will be set to zero. Incrementing by sector
enables scanning sector by sector through a file and
inspection of the exact data on each disk record. Files which
span logical cylinders or are non-contiguous on the disk
(which includes most large files) will require more detailed
understanding by the user of the DOS file structure (in order
to avoid incrementing out of the file's allocated space) and
are usually better examined using the DUMP command.

D Decrement the cylinder, head, or sector address and display
the sector at the new address. Except for the direction of
address change, the D command is functionally like the I
command.

C Cylinder address mode. This command causes subsequent I or D
commands to alter the cylinder address. Optionally, a
cylinder address may be keyed in before striking the C key;
the current cylinder address will be replaced by the entered
value before the disk record is read and displayed. The
en tered digi ts wi 11 be di splayed at the lower left corn er of
the screen ... Note that the address must be an octal address.
If more than three digits are entered DUMP93XO will BEEP and
the procedure must be restarted. If the address entered is
not a valid cylinder address (for example, greater than 0312)
the C command will be in force but the cylinder address will
not be changed. Al so note that only the eight least
significant bits of the value entered will be taken for the
address (an entered value of 444 would be interpreted as 044).

H Head address mode. This command causes subsequent I or D
commands to alter the head number.· Except for the fact that
the H command modifies head addresses and sets head mode,' it
is similar to the C command. (DUMP9370 only.)

S Sector address mode. This command causes subsequent I or D

CHAPTER 22. THE DUMP93XO COMMAND 22-7

commands to alter the sector address. Optionally, a sector.
address may be keyed in before striking the S key. The
address option is functionally similar to the C command.
Sector address mode is the assumed mode of operation when the
program is started.

A ASCII display mode. This command causes the bytes to be
displayed in ASCII instead of OCTAL on the screen, for all
bytes that have valid ASCII bit configurations. This is
useful for examining text files on disk. Note that the ASCII
mode will carryover to the P (print) command of the primary
command handler unless changed by a subsequent a command.

E EBCDIC display mode (9380 only). This command causes the
bytes to be displayed in EBCDIC instead of OCTAL on the
screen, for all bytes that have valid EBCDIC bit
configurations. This is useful for examining the index track
(track zero) on a diskette, and for text files on IBM
formatted diskettes. While DUMP9380 is in EBCDIC mode, sector
addresses used are taken as physical sector numers. During
ASCII or Octal modes the addresses are taken as logical sector
numbers and are re-mapped to take sector skewing and radius
spiraling into account (see Appendix C).

a OCTAL display mode. This command causes the bytes to be
displayed in OCTAL instead of ASCII. OCTAL mode is the
assumed mode of operation when the program is started.

22.7 Cassette Operations

CD - Cassette Dump
CL - Cassette Load

DUMP93XO can write to the front cassette deck the contents of
specified disk sectors, and can read DUMP93XO tapes from the front
deck to load specified sectors.

COMMAND EXAMPLES:

CD 000,000,000 000,002,027

would mean: dump the sectors from cylinder 000, head 000, sector
000, thru cylinder OOOr head 2, sector 027 to the cassette in the
front deck. In other words, dump the first three tracks of the
disk to cassette. The CD command will dump from one sector to 500
sectors (all that will fit on a cassette), in contiguous sectors.
The disk addresses given (explicitly or implicitly) must be from

22-8 DISK OPERATING SYSTEM

lesser to greater (e.g. CD 40,0,0 36,0,27 would be invalid because
the sec 0 nd add r e ss is less than the fir st add res s) . I fan y f au I t
is found in the addresses given, the message:

PARAMETER ERROR

will be displayed and the machine will BEEP. Refer to the
discussion of the P (print) command for examples of explicit and
implicit addresses in commands. If the command is correct, the
message:

FRONT DECK SCRATCH ?

will be displayed. A reply of "Y" will cause the cassette dump to
proceed, while a reply of "X" will cause an exit to the primary
command handler. Any other reply will cause the question to be
repeated. When the front deck is' ready, the cassette dump will
rewind the tape and begin dumping the specified sectors to tape as
individual 256-byte records. When all of the sectors have been
written, the tape is rewound and checked sector by sector against
the sectors on disk. If the tape data does not match the disk
data exactly, the cassette dump will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If the tape is correct,
it is rewound and control is returned to the primary command
handler.

CL ° ,2

means: load the disk sectors addressed 000,000,000 thru 000,02,027
from the front cassette. Not more than 500 sectors may be
specified to be loaded from a cassette. The cassette load read
routines expect to find records of exactly 256 bytes on the tape
for at least as many records as there are sectors to be loaded.
If a record that does not meet the specifications is encountered
before the last sector has been loaded, the cassette load will
abort wi th the message

BAD DUMP TAPE

and return control to the primary command handler. It is not
necessary that the records on the tape be written to the same disk
addresses as from which they were read. Therefore, the CD and CL
commands provide a means of moving sectors from place to place on
one disk, or from one disk to another.

CHAPTER 22. THE DUMP93XO COMMAND 22-9

WARNING: Loading these sectors does not affect the C.A. T.
Directory, or RIBs on a disk. Therefore, if the sectors are not
loaded carefully into a matching fi Ie, they wi 11 be unallocated,
unreferenced and probably cause FORMAT errors if read.

It is not necessary that a CL read all of the records that
may be on a cassette, only that there are at least as many records
on the cassette as there are sectors to be loaded. When the
specified sectors have been loaded, the tape is rewound and the
tape records are re-read and matched against the loaded sectors on
the disk. If the data on the tape does not match the data on the
disk, the cassette load routine will abort wi th the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If everything is
correct, the cassette load routine rewinds the front tape and
returns control to the primary command handler.

22.8 Drive Numbers

When DUMP93XO begins execution it assumes that it is to deal
with the disk in drive zero. The @ command instructs DUMP93XO to
deal with the disk in the specified physical drive.

COMMAND EXAMPL E:

@ 1

would mean: succeeding commands will refer to the disk in physical
drive 1. The @ 1 command will remain in force until another @
command addresses a different physical drive. Note that the
address parameter for the @ command consists of one and only one
digit.

22.9 .Error Messages

Some of the error messages produced by DUMP93XO and their
meanings are explained below.

PARAMETER ERROR

Occurs if an invalid command or disk address is given to the
primary command hand ler. Note that all di sk addr ess es mu st be
expressed in octal.

22-10 DISK OPERATING SYSTEM

SO MUCH ?

Occurs if a command is given to dump more than 10 cylinders
to the printer. Note that one cylinder will fill 32 printer pages
(8 p age s fo r 9 350, 2 p age s fo r 9 38 0), an d te n c y 1 i n d e r s wo u 1 d
represent a very large file. Respond "N" if you really don't want
the printer to print out that many pages of paper. Otherwise, "Y"
will cause the printing to proceed.

CASSETTE TOO SMALL

Occurs if a command is given to dump too many cylinders to
cassette.

TAPE/DISK VERIFY FAILURE

Occurs during the tape-against-disk check phase of a cassette
dump or cassette load if the data on the tape does not match
exactly the data on disk. The tape is rewound and the dump or
10 ad shou Id be ret r ied.

BAD DUMP TAPE

Occurs if a tape record is read that does not conform to the
DUMP93XO tape record format. If it occurs during a cassette load,
no data from the bad tape record is written to disk.

DISK NOT ON LINE

This message is self-explanatory.

DISK PROTECTED

Occurs if the disk is protected and a cassette load command
is given. Nothing will be written to the di sk as long as the READ
ONLY indicator is on.

C. R .C. ERROR

Occurs if a hardware read or write error persists after three
attempts to accompli sh the read/wri te un less the read error occurs
during a printer dump command (so that data on bad sectors can be
hard-copy recorded and examined). If a C.R.C. error occurs during
a printer dump, the machine will beep.

BEEP (Audio signal)

The machine will BEEP if an invalid command is entered from

CHAPTER· 22. THE DUMP93XO COMMAND 22-11

the keyboard. Also see C.R.C. ERROR.

SEEK INCOMPLETE

(9370 only)

This occurs if the disk controller SEEK INCOMPLETE status bit
is set. This bit is set if a cylinder seek operation does not
finish within 100 milliseconds. When this occurs, it generally
indicates a hardware malfunction.

COMMAND ERROR

(9350 only)

This occurs if the disk controller COMMAND ERROR status bit
is set. The DUMP9350 program should be reloaded if this happens.
If it happens again, something is wrong with the processor, the
1/0 bus, the disk controller, or the disk drive.

SECTOR NOT FOUND

(9370 only)

This occurs if the disk controller SECTOR NOT FOUND status
bit is set. This usually occurs as a result of the formatting
information on a disk (as written by INIT9370) being incomplete or
incorrect, but could also indicate a software or hardware
malfunction.

(9350 only)

Same as COMMAND ERROR.

(9380 only)

Occurs if the disk controller SECTOR NOT FOUND status bit is
set. This usually occurs as a result of the formatting
information on a disk being incomplete or incorrect, but could
also indicate a software or hardware malfunction.

22-12 DISK OPERATING SYSTEM

CHAPTER 23. EDIT

23.1 Purpose

EDIT is used to create and update source files on the disk.
The editor enables the creation of files in a variety of data
formats: text files, assembler code files, DATABUS source code
files, or many user-designed data files.

This chapter describes the general operation of the editor.
Basic commands to find, add and modi fy text lines are descri bed.
Intermediate commands permit short-cuts for experienced users and
the advanced commands allow the user to create complex commands
for repetitive editing tasks. .

23.2 Use

The EDIT program is parameterized as follows (where items in
square brackets are optional):

EDIT <f1>[,<f2>][,<f3>][;parameter list]

<f1> is the source file, <f2> is the scratch file and <f3> is
the definition file. The source file <f1> is assumed to have an
extension of 'TXT' if none is provided. If there is no file of
the specified name, a new file is created after checking with the
operator. If no scratch file <f2> is specified, a primary scratch
file 'SCRATCH/TXT' and a secondary scratch file 'SCRATCH/XTX' are
used. Since the second scratch file will be named <scratch file
name> /XTX, the extension '/XTX' for <f2> is NOT allowed. The
definition file <f3> is assumed to be. EDIT/DEF unless otherwise
specified. Both the scratch file name and the definition file
name are stored in the configuration sector. These names ,will be
used unless they are otherwise specified on the command line.
Both the scratch and definition file names are displayed in the
signon message.

CHAPTER 23. EDIT 23-1

23.3 Parameter List

A parameter list, indicated by the SEMI-COLON C;) following
the file specifications, may be included. That list may include
nine parameters which are order independent. The possible
parameters are:

[;[margin][tab key][mode][shift][line][update]
[keyclick][space-compression][non-verification]]

At the start of an EDIT, the values for these nine parameters are
taken from the command line. Values for [margins], [tab key],
[mode], [shift], [l'ine], [key click] and [space-compression] not
given on the command line are taken from the source file
configur~tion sector, if there is one. The source file is updated
unless otherwise specified on the command line and verification
mode is assumed. Care should be exercised to be sure that not
more than one mode, margin, and so .. on are specified on the command.
line or the desired value may not be selected.

When a file has been edited with EDIT, a special sector
called the "configuration sector" is wri tten at the beginning of
the file. The sector contains ·the tabs, modes and special
characters in effect when the EDIT was completed. These default
values are used in place of any· such parameters not specified on
the command line.

If no command line parameter list is provided and the source
file has no configuration sector, or an unrecognizable one then
"Assembler" mode wi th space-compression ,a margin ·at 75, no
keycl ick and the spa ce bar for ta b bing is assumed.

23.3.1 Margin Bell

A number in the parameter list is taken to be the margin
designator; this causes the margin 'bell' to ring at the
designated margin. The default margin is 75.

For example ";30" causes the bell to ring in column 30.

23-2~ DISK OPERATING SYSTEM

23.3.2 Tab Key Character

A tab
non-alpha,
character.
SEMI-COLON
any of the

key ch a r act e r en c 0 un t ere din the pa ram e t e r lis t, i . e • ,
non-numeric, non-colon, replaces the assumed tab key

(SPACE in Assembler, OAT ABUS and Comment mode,
in Text mode.) The tab character cannot be the same as
modify command separators or the continue character.

For example, ";"" causes the caret key (") to replace the
assumed character as the tab key.

23.3.3 Mode

A different set of assumptions is used if one of the 'mode'
par am e t e r sis set. I f no mo de is lis ted 0 r 'A' is t y p ed,
Assembler mode is used. DATABUS or DATAFORM (D) mode simply
changes the tab stops.

Comment mode 'C' enables the same set of assumptions that 'A'
does. This option is different from the 'C' mode available in the
previous DOS General EDIT.

Text mode (T) sets no tabstops, does no shift inversion and
enables the word wrap-around feature (see the glossary). The
[shift] option'S' and the [line] option 'L' are recognized only
if the text mode 'T' is set (either on the command line or in the
configuration file). To activate line truncation instead of word
wrap-around in Text mode, enter 'L' in the parameter list. To
enable shift key inversion (see glossary) in Text mode, enter the
parameter'S' in the list. Text mode is especially useful for
generating SCRIBE input files.

Seethe glossary for complete definitions of the various
modes.

23.3.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. A second scratch file may be
also used as the edit proceeds. When the edit is terminated, the
physical source file is normally updated.

The 'ONE-PASS' parameter '0' may be set in the parameter
list. Then, at the completion of the edit, the scratch file
contains the updated information and the source file is unchanged.

CHAPTER 23. EDIT 23-3

23.3.5 Key-click

If the 'K' parameter is set, a 'click' sounds each time a key
is struck.

23.3.6 Space Compression

EDIT normally space-compresses (see Text File Format, in
Appendix G.) If an 'E' appears as a parameter on the command
line, spaces are "expanded", that is, NOT space-compressed. In
expanded mode, EDIT reads in either space-compressed or
non-space-compressed data but puts out only non-space-compressed
records. To clear expanded mode, enter a 'G' for GEDIT format as

·a parameter on the command line. The space compression option
(ei ther 'E' or 'G') is stored wi th the fi le in the configuration
sector, but may be changed by putting the desired option on the
command 1 i ne.

23.3.7 Non-verification

Four EDIT commands, :B, :E/, :E\ and :0, question the user:

SURE?

before executing. In certain special cases, for instance, ·when
running under CHAIN, it is inconvenient to provide the 'Y'. The
non-verification parameter on the command line allows the user to
answer 'YES' in advance by placing a 'Y' 'on the command line.
When 'Y' has been placed on the command line and the commands :B,
:E/, :E\ or :0 are entered, no verification is requested from the
user.

23.4 Examples

To perform standard Assembler code editing, enter the
command:

EDIT <source>

To edi t a file for input to the text processor, SCRIBE, enter the
command:

EDIT <source>;T

·To also change the margin bell to ring at column 35 (e.g. for

23-4 DISK OPERATING SYSTEM

labels) enter the command:

EDIT <source>;35T

These parameters set the bell at 35 and select the Text mode. Note
that the parameters are not order dependent; therefore, the
command:

EDIT <source>;T35

achieves the same results.

EDIT <source>;E

produces a file in which all spaces are written out (or
non-space-compressed).

To write the edited text into a second file, without updating
the original file, enter the command:

EDIT <source>,<new file>;OT

If the file is Assembler code instead of text, simply omit the
'T'; if DATABUS, replace 'T' by 'D'.

A second file, with the same name as <f1> but with a
different extension, may be used as the scratch fi Ie by entering:

EDIT <f1>,I<extension>

Note that the extension IXTX is not allowed for the scratch
file specification.

\
Once the initial command (and parameter list) has been

entered, the DOS Editor sign-on message will appear on the screen
followed with the file's configuration information (e.g. tabs,
special characters, margin, keyclick, word wrap-around, shift
inversion and space-compression) with the cursor left on the
'command line'. From this position data may be entered, lines may
be fetched from the source file, or EDIT commands may be entered.

CHAPTER 23. EDIT 23-5

.'"

23.5 Data Entry and Retrieval

23.5.1 Data Entry

To enter text, simply type on the bott'om ·or "command" line.
When the ENTER key is pressed the screen rolls up one line. The
command line is once again blank and the cursor is at the
beginning of the command line, ready to accept more input.

When a SPACE is typed to the right of the margin bell. column
(except in column 79) and word wrap-around is enabled, the editor
will automatically roll up the screen and begin a new line. If a
non-spa ce chara cter is typed in to the la st col umn of the screen
and word wrap-around is enabled, the last word on the line is
removed and, after the screen is rolled up, that word is placed on
the command line, where data entry may proceed.

The lines that have been rolled above the command lines are
referred to as "screen lines".

When typing on a "screen line" ·(as the result of a command),
the ENTER key causes the cursor to return to the command line. To
continue data entry at the same screen area, the Pseudo-ENTER key
may be used. This key (DEL) causes (in all but command mode), a
new blank line to be inserted at that point on the screen so that
data entry may proceed.

The BACKSPACE key erases the last character and moves the
cursor back one position. The CANCEL key erases' the line back to
the previous tabstop, or back to the beginning of the line if no
tabs are set.

Typing the tab key character cayses the cursor to move to the
next tab stop to the right. If there are no tab stops to the
right of the cursor, the tab key character is accepted as a normal
data character.

23-6 DISK OPERATING SYSTEM

23.5.2 Multi-line Record Entry

A record in a di sk file is a string of characters, perhaps
including space compression characters, that is terminated with an
octal 015. Normally the length of a record is no greater than 80
characters, including the octal 015, and corresponds to a screen
line.

Multi-line records are records in a disk file that are
greater than 79 characters long and must be continued to the next
line when displayed on the screen.

To enter multi-line records, use the continue character. The
assumed continue character is '&'. When this character is keyed
in the first column, the continue indicator (a "greater than" (»
on a slow screen or a solid triangle on a high speed screen) is
displayed. If the continue character is keyed in any other
column, it is accepted as a normal data character.
NOTE: This character cannot be modified into, or taken out of a
lin e ... it m u s t be keyed in.

Note that although multi-line records are indicated on the
screen, the editor treats them as if they were separate lines.
The copy command, for instanoe, copies only the pointed line and
NOT all of the lines in the mulit-line record. The only time EDIT
recognizes lines as part of a multi-line record is during output.

Any line beginning wi th a continue indicator is joined to the
pre v i 0 us lin eon ou t put, fo r min g r e cor d s . gr eat e r th a n 79
characters, if required. .

When creating or modifying multi-line records, trailing
spaces on a line oft-en need to appear to force the line to be
greater than 79 characters. In EDIT, trailing spaces are NOT
deleted when they have been entered or read in from a file.
However, when EDIT modifies, appends or copies a line, trailing
spaces are deleted from that line as in the previous DOS Editor.
Note that to update a multi-line record with trailing spaces the
line m u s t be r e - e n t ere d •

CHAPTER 23. EDIT 23-7

23.6 Data Retrieval

To fetch da ta from the source file, hold down the DISPLAY key
and press the KEYBOARD key. As long as the two keys are
depressed, data is fetched, displayed on the command line and
rolled up the ~creen. If the end of file is reached, no more data
is fetched and the machine beeps.

To fetch data backwards, hold down the KEYBOARD key and press
the DISPLAY key. As long as the two keys are depressed, the
screen rolls down and prior lines inserted on the top line. If
the beginning of the file contained in memory is reached, the
machine beeps, and no more data is fetched.

To fetch a single line, the shifted DEL key may be pressed.
Using this key insures that only one input line is fetched. If
keying on the command line, and a colon is not in the first
column, a pseudo-enter anywhere on the command line will fetch
another line.

All of available memory is used as a circular buffer. As the
operator proceeds through the file, EDIT writes lines from the end
of the buffer out to disk, maintaining a post-screen buffer so the
user can roll backwards. Rolling backwards is restricted by the
size of the post-screen buffer~ Of course, if the file is small
enough to fit completely in memory, there is no restriction.
Sometimes the processor appears to hang while it is doing buffer
management.

23.1 EDIT Command Format

The text appearing on the screen lines (that is, the lines
above the command line) may be edited using a set of 'commands'.
A 'pointer' (» in the left hand column of the sc reen indicates
the line which the command affects.

To move the pointer up, press the KEYBOARD key. To move the
pointer down, press the DISPLAY key. The pointer wraps around
from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:0) or part
of the screen (:SC and:SB), insert (:1) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also av~ilable
to search the file for specific text (:F and :L), for the end of
the file (:EO or :E*), or for a particular line by number (:G).

23-8 DISK OPERATING SYSTEM

An editor command is always preceeded by a COLON (:). To
enter a command, type. a colon in the first column of the command
line with the appropriate command character(s) and any necessary
parameters. The command characters may be upper or lower ca·se. To
force a line to be entered with a colon in the first column, start
the line with two colons (the first one is discarded and the line
shi fted left).

23.8 Basic EDIT Commands

The following commands are a few basic editor commands. The
user can get started without worrying about complex command forms.
Remember that the 'pointer' on the screen indicates the line
affected by the command.

23.8.1 Setting Tabs

:T - TAB set - this command enables the user to reset the tab
stops during execution. The command causes a line of numbers to
be displayed across the bottom of the screen.

The operator should space over to each position where a
tabstop is de·sired and type any non-blank character. These tab
stops are meaningful during data entry. A maximum of 20 tab stops
may be set.

See the section on 'Changing Tabs' for more information on
setting -tabs.

23.8.2 Setting TEXT Mode

:X - TEXT - this command enables word wrap-around and
disables shift key inversion and space insertion after leading
periods, pluses, and asterisks. It automatically enters the tab
set command (:T), so that tab stops may be cleared by the
operator. The tab key character is not changed; therefore, the
":[tab key]" command must be used to set a new tab key character
if one is desired.

See the section on 'Changing Modes and Options' for more
information.

CHAPTER 23. EDIT 23-9

23.8.3 INSERTing a Line

:1 - INSERT - Perform a line insert at the pointed line.

This command causes the lines from the bottom of the oscreen
to th e' po i n ted 1 i n e (b u t NOT inc 1 u din g the po i n ted 1 i n e) to ro 11
down one line on the screen. A blank line is inserted below the
pointed line, the pointer moves down to point to the blank line
and the cursor is left at the beginning of. the new blank line
where data entry may proceed.

If word wrap-around is enabled and the end of the new line is
reached during text entry, the new line (and all lines above it on'
the screen) roll up leaving a blank line containing the overflow
from the previously INSERTed line. The cursor is left following
the overflow awaiting continued data enty. When the ENTER key is
pressed, the cursor returns to the command line and the new text,
if any, remains on the sc~een in its new position.

If the ENT ER key is h it in the fi rst col umn of the bl ank
INSERTed line, the screen rolls up to fill the null line, leaving
the screen in its original form.

If the Pseudo-ENTER key is used instead of the ENTER key to
terminate an INSERTed line, another INSERTion is performed and the
cursor remains on the newly INSERTed blank line awaiting data
entry of another line.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line with the changes. The original line may then be
DELETEd.

The INSERT command may also be used in the form

:1 <string>

This form will perform a new line insert as described above, place
the specified <string> on the new line, and return to the command
line immediately.

23-10 DISK OPERATING SYSTEM

23.8.q DELETEing a Line

:D - DELETE - delete the entire pointed line.

Blanks are written over the entire pointed line and the
cursor is left on the now null line where new text may be entered.
When the new line has been entered, it may be terminated with the
ENTER key. This leaves the new line in the place'of the DELETEd
1 in e , the poi n t er at the new 1 i ne and the cur s or ret urn ed to the
command line.

If no replacement text is needed, pressing the ENTER key in
the first column of the pointed line causes the screen to roll up
one line from the bottom to fill the pointed vertical position
with the line that was originally below it, leaves the pointer in
the same vertical position and returns the cursor to the command
line. At the end of the file (last screen of data), this action
leaves a blank bottom screen line. This line is a "phantom" line
with no real existence in the text file. It will not be written
to the di sk.

If a new line is written in the place of the DELETEd line and
word wrap-around is enabled, the new line plus the screen lines
abo vet hen e w 1 i nero 11 up, as de s c rib e d in the "I N S E R Tin gaL in e "
section. .

If the new line is terminated with a Pseudo-ENTER key, the
cursor does not return to the command line. Instead, an INSERTion
is made at the pOinted line.

For other approaches to deleting lines, see the "Deleting
Lines" section in the "Intermediate Commands" chapter.

23.8.5 COPYing a Line

:A - APPEND - copies the pointed line to the bottom of the
screen, and rolls the screen up one line. The cursor returns to
the command line and the pointer stays with the original pointed
line by moving up one position when the screen rolls up. (Use :A*
to keep the pointer in the same vertical position on an APPEND).

: C - COpy - deletes the pointed line, rolls up the screen and
copies the pointed line to the bottom of the screen.

When the COpy command is entered, the pointed line is DELETEd
and text may be entered in the now blank pointed line. As wi th
the DELETE and INSERT commands~, multiple lines may be inserted in

CHAPTER 23. EDIT 23-11

the screen lines when word-wrap is enabled or by terminating lines
with the Pseudo-ENTER key.

When the new text entry is t~rminated with the ENTER key, the
cursor returns to the command line. The original pointed line has
been wri tten following the line that was on the bottom of the
screen when the COPY command was initiated. If one or more new
line has been inserted during the COpy, the user must roll up the
screen to view the moved line.

If no new text was entered, i. e., the ENTER key was entered
as the first character on the new line, the screen rolls up to
fill the null line and the pointer remains in the same vertical
position. Since the screen has rolled up, the pointer is now
pointing to the line following the first copied line so that a
group of lines may be easily copied to another part of the screen.

23.8.6 MODIFYing a Line

:M [old text][command separator][new text] - MODIFY - a
modify command allows the operator to:

1) replace [old text] by [new text],
2) insert [new text] after [old text]
3) or append (i.e., truncate and add) [new text] after

[old text].

For instance:

:M [old text]<[new text]

replaces [old text] on the pointed line with [new text]. The
command:

:M [old text]>[new text]

inserts [new text] immediately following [old text] on the pointed
line. The command:

:M [old text]\[new text]

truncates the pointed line immediately following [old text] and
then append s [new text].

If [old text] is not found in the pointed line, the machine
beeps and returns to the command line without making any
modification to the pointed line.

23-12 DISK OPERATING SYSTEM

Modifications at the end of the file (on the last screen of
data) can create "phantom" lines as described under "DELETEing a
Line". For the many various forms of this command see the 'MODIFY
Command' section.

23.8.7 LOCATEing a Line

:L - LOCATE next - typed exactly :L[ENTER], finds the next
line of text. If positioned at the end of the file, the 'next'
line is the first line of the file.

:L [old text] - LOCATE match - searches for a line containing
embedded text matching [old text]. Leading spaces should be
supplied if meaningful.

For additional approaches to locating a line, see the 'File
Search Commands' ~ection.

23.8.8 ENDing EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text.

:E - END - causes the remainder of the logical source file to
be copied to the logical scratch file and then, if the logical
scratch is not the physical input file, the scratch file is copied
back to the source file.

The command line is left on the screen as long as the copy
from source to scratch is in progress. It is erased during the
final copy from scratch back to source.

Note: If EDIT is exited by any other means than one of the : E
commands the format of the scratch files is not guaranteed. Also,
·if a system ERROR such as "File Space Full" is encountered while a
:E is in progress, tne format of the files is not guaranteed.

CHAPTER 23. EDIT 23-13

23.9 Intermediate Commands

Most of the following commands are expansions of the ones in
the previous section. One additional concept introduced in this
chapter is that of "fields". A field is a portion of the line
between two consecutive tabs. Field one is between the left
margin and the first tab, field two is between the first and
second tab, and so on. Even though up to twenty tabs may be set,
only the first nine fields may be referenced.

23.9.1 Changing Special Characters

:[tab key] - change the tab key character to any non-alpha,
non-numeric, non-COLON, non-ENTER character typed after a leading
colon on the command line.

: [old mo d i f Y op era tor] [new mod i f Y op e r at 0 r] ~ c han g e th e old
modi fy operator to the new one specified.

: [old continue character] [new continue character] - change
the old continue character to be new one specified.

:CH - display the current special characters.

For instance, If a user wants to use "]" for the tab key, "="
for the modify replace operator, "-" for the modify insert
operator, and ":,, for the modi fy append operator, the following
commands are typed:

:]
:< =
:> -
: \

Then to check that they were proper ly changed, the user
types:

:CH

which displays:

:CH TAB KEY:] CONTINUE: & MODIFY REPLACE: = INSERT: - APPEND:

23-14 DISK OPERATING SYSTEM

None of the modify operators nor the continue character nor
the tab key character may be the same character, and the special
characters must all be non-alpha, non-numeric, non-colon,
non-ENTER. A beep sounds if a character change command is
invalid.

At the end of EDIT, the special characters and tabs are
stored in the updated file. The next time that EDIT is used with
the file, the same characters are used if not changed by the
command line parameters. The tabs and special characters are
displayed below the sign-on message.

23.9.2 Changing Tabs

:T - TAB set - enables the user to reset the tab stops during
execution. The command causes a line of numbers to be displayed
across the bottom of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meani~gful during data entry and for referencing fields
(the portion of the line be ,Jeen consecutive tab stops). A
maximum of 20 tab stops may be set. If the cancel key is
depressed during selection it will cause the numbers on the screen
to no longer be displayed, but the tab set command remains in
operation until the enter key is depressed.

:T [nn][,nn] ..• - TAB set by column number - enables the user
to reset the tab stops by column number. For instance, entering
":T 9,15,30" sets the tabs to columns 9, 15, and 30. A maximum of
20 tab stops may be set. Tab numbers must be· in ascending order.

At the end of EDIT, the tab positions and special characters
are stored in the updated file. The next time that the fi Ie is
edited, the same tabs and special characters are used. They are
displayed immediately below the sign-on message.

Below are commands for setting tabs to pre-determined default
values.

: T A -Set Assembler tabs at columns 9, 1 5 , and 30.

: TD - Set Datashare/Databus tabs at columns 10 and 20.

:TS - Set SNAP tabs at columns 11, 21 and 38.

CHAPTER 23. EDIT 23-15

: RH - R PG Header - se ts tab sto ps for RPG header
specification at columns 6 and 15.

:RF - RPG File - sets tab stops for RPG file description
specification at columns 6, 15, 24, 33, 40, 54, 66 and 70.

:RE - RPG Extension - sets tab stops for RPG extension
specification at columns 6,11,19,27,33,36,40,46,52 and 58.

:RL - RPG Line - sets tab stops for RPG line counter
specification at columns 6, 15 and 20.

:RI - RPG Input - sets tab stops for RPG input specification
at columns 6, 15,21,44,53,59 and 65.

:RC - RPG Calculation - sets tab stops for RPG calculation
specification at columns 6, 18, 28, 33, 43, 49, 54 and 60.

:RO - RPG Output - sets tab stops for RPG .output
specification at columns 6, 15, 23, 32, 38, 40 and 45.

:RS - RPG Summary - sets tab stops for RPG summary
s p e c i f i cat i on a.t col u m ns 6, 14 and 23.

23.9.3 Changing Modes and Options

:X - TEXT - enables word wrap-around. and disables shift key
inversion and space insertion after leading periods, pluses, and
asterisks. It automatically enters the TAB set command (:T), so
that tab stops may be cleared by the operator. The tab key
character is not changed; therefore, the n: [tab key]" command must
be used to set a new tab key character if one is desired.

:XI - Invert TEXT - enables shift key inversion and disables
word wrap-around and enables space insertion after leading
periods, pluses, and asterisks. It automatically enters the TAB
set command so that tab sto ps may be res et by the oper ator.

:K - Keyclick - causes the machine to 'click' every time a
key is struck.

:KI - Invert Keyclick - turns off the 'click' set above.

23-16 DISK OPERATING SYSTEM

23.9.4 Deleting Lines

The user may delete the leading part of a line, the whole
line, or multiple lines.

:D - DELETE - deletes the entire pointed line (See 'DELETEing
Lines' section in the 'BASIC EDIT COMMANDS' section.

:D [old text] ~ DELETE through - deletes all characters from
the left edge of the pointed line through (and including) the
specified [old text]. The remaining characters are left justified
and re-displayed.

The cursor returns automatically to the command line.

:D[II] [old text] - DELETE through field - deletes all
character s from the left edge of the poi nted Ii ne through (and
including) the specified [old text] in the specified field. The
remaining characters in that field only are left justified and
re-displayed. All characters following the specified field are
al so de leted.

The cursor returns automatically to the command line.

:D[#][SPACE][ENTER] - DELETE through previous text - uses the
previously defined [old text] to perform a DELETE through
o per a ti on. A fie ld number may be s peci fi ed if d esi red, in which
case a DELETE through field operation is performed using the
previously defined [old text].

:D* - DELETE display - display the [old text] currently in
use for DELETE. After the saved string is displayed, the cursor
remains at the end of the display and the operator must press
ENTER to proceed. No DELETE is actually performed. DELETE uses
the same save area as LOCATE, FIND, and QUERY.

:SC - SCRATCH above - this command erases the lines from the
top of the screen down to the pointed line, inclusive. The cursor
and pointer are moved to the top line where data entry may
proceed.

:SB - SCRATCH below - this command erases the lines from the
pointed line to the bottom of the screen, inclusive. The cursor
is left on the pointed line, where data entry may proceed.

As with the DELETE command, additional lines of text may be
inserted with word wrap-around, if enabled, or by terminating each

CHAPTER 23. EDIT 23-17

line with Pseudo-ENTER instead of ENTER.

23.9.5 MODIFY Command

The general form of the MODIFY command is:

:M[VJ[IIJ [old textJ[modify operatorJ[new textJ

where [VJ is the VERIFY option, [IIJ is the optional field number,
and [modify operatorJ is the command separator which defines the
action of the command. Both [old textJ and [new textJ fields are
optional. If [old textJ is omitted, the command takes effect at
the left-most edge of the pointed line (or at the left edge of the
specified field). If the [new textJ field is omitted, a null, or
zero-length field is used to execute the modification. Note that
the [old textJ cannot include any of the modify operator
characters; [new textJ may contain one of those characters. If
n e c e s s a r y, the mo d i fy 0 per a tor scan be c han g ed as des c rib ed abo v e
in 'Changing Special Characters' to avoid bad interpretations of
modi fy commands.

The VERIFY option causes the cursor to blink at the first
character to be modified. The user then has three responses. If
he presses 'Y' for 'YES', the modification takes place. If he
presses the 'ENTER' key, control returns to the command line. If
he presses any other key, the modify command continues to search
the line for another occurrence of [old textJ to modify.

23.9.5.1 Line Modification

The following descriptions are of the line modification
version of the MODIFY command.

:M[VJ [old textJ [replace operatorJ [new textJ - MODIFY
(replace) - replace the specified [old textJ by the specified [new
textJ. The "less than" character «) is the default command
separator which indicates replacement. If [new textJ field is
omitted, the [old text] is simply deleted and the line compressed
to the left.

For example to modify the text line:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: ":M BROWN<RED" causes the line to be

23-18 DISK OPERATING SYSTEM

redisplayed like this:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: ":M.< 1234 TIMES." to t he abo vel i n e
generates a line like:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK 1234 TIMES.

If the replacement causes the line to become longer than 79
characters and word wrap-around is enabled, the trailing word is
wrapped around and a new line is inserted containing the entire
last word. If the [new text] is shorter than the [old text] it
replaces, the line is shortened.

After the pointed line is redisplayed, the cursor is returned
to the command line.

:M[V] [old text] [insert operator] [new text] - MODIFY (insert)
- the command separator "greater than" (» is the default
character causing the [new text] to be inserted in the pointed
line immediately after the [old text].

If the line becomes longer than 79 characters, and word
wrap-around is not in effect, the trailing characters are
trunca te d. If, however, wor d wrap- around is on, the las t wor d (s)
are inserted on a new line.

:M[V] [old text][append operator][new text] - MODIFY (append)
- the "backslash" (\) is the default command separator causing
everything in the pointed line past the [old text] to be replaced
by the [new text].

As in all MODIFY commands, if the pointed line becomes longer
than 79 characters, truncation occurs if word wrap-around is not
enabled.

:M or :M[U] - MODIFY repeat - typed exactly :M[ENTER] or
:M[fJ][ENTER], uses the [old text][sep][new text] from the last
MODIFY command. This is useful when making the same change
repeatedly. Note that the field number is not saved, and must
therefore be supplied if necessary.

:MV or :MV[fJ] - MODIFY VERIFY repeat - typed exactly
,:MV[ENTER] or :MV[fJ][ENTER] is the same as the above command
except that it invokes verification.

:M* - MODIFY display - display the expression entered for the

CHAPTER 23. EDIT 23-19

last MODIFY. After the saved command is displayed, the cursor is
left at the end of the display and the operator must press ENTER
to proceed. No MODIFY is actually performed.

Trailing spaces on the modified line are always deleted.
This action may cause a multi-line record to be shortened.

23.9.5.2 Field Modification

In field modification mode, the MODIFY command acts only on a
specific field and does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

:M[VJ [IIJ [old textJ [modify operatorJ [new textJ - MODIFY field
- where the pound sign [IIJ is a number from 1 to 9 designating the
TAB field to be modified (or the starting point to search for
matching [old text J). This command may be executed in any of the
previous Modify forms.

Modification is performed within the specified field only.
Thus, a replacement or append shorter than the original field is
blank filled and subsequent fields will maintain their position
and content. An insertion longer than the specified field is
truncated (with the exception of the last field whenever word
wrap-around is in effect).

For example, in assembler mode, field 1 is the label, field 2
is the op code, field 3 is the expression' and field 4 is the
comment.

LABEL OP EXP COMMENT

the la bel may be de Ie ted by the command:

: M 1 \

and the resulting line becomes:

OP EXP COMMENT

Or, the expression field (EXP) could be changed to EXP+1 without
disturbing the comment field position by the command:

:M3 EXP>+1

whi ch ge nera tes:

23-20 DISK OPERATING SYSTEM"

LABEL OP EXP+1 COMMENT

To add a comment to a line previously containing none or to
~eplace an existing comment field, enter:

:M4 \[new comment]

Remember when using the repeat form of the MODIFY command
that the modification applies to the entire line if the field
number is omitted.

23.9.6 Line Splitting

:V [old text] - SPLIT - split the pointed line after the text
matching [old text] and insert the remainder of the line past the
matching text below the pointed line. The pointer remains in its
original position. This is useful for INSERTing sentences in the
midst of text without doing a group of cumbersome MODIFYs.

23.9.7 Line Concatenation

:W - CONCATENATE - append the line below the pointed line to
the pointed line. The pointed line is assumed to have a trailing
space if word wrap-around is in effect. This is useful in text
mode where a MODIFY has caused words to wrap-around to the next
line and the operator wishes to include them with the following
line.

23.9.8 File Search Commands

Manual, operator controlled, searches may be performed by
depressing the KEYBOARD and DISPLAY kejs simultaneously to cause
data to be fetched from the file (forward or backward depending
which key is pressed first) and displayed on the screen. This
continues until either key is released. The :EO command performs
the same function automatically, i.e., it causes lines to be
fetched and displayed until the end of the file i~ reached.
Pressing the DISPLAY key stops the :EO command until it is
released. To terminate an :EO command, press the KEYBOARD key.
To fetch a single line use the Pseudo-ENTER key (DEL).

The :E- command works the same way as the :EO except that it
fetches lines backwards through the file in memory rolling the
screen down.

CHAPTER 23. EDIT 23-21

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E* command. This
searches for the end of file and displays the last screen of data.
For more information the :E command, see the section on
'Terminating EDIT'.

FINDs and LOCATEs search the file for a line containing
specific text. When a line has been found, it is aligned with the
pointer on the screen so that it may be operated on. Lines above
and below the line are also displayed. FINDs and LOCATEs allow
field specification, that is, if a field is specified, only lines
with the specific text in that field are found.

A FIND or LOCATE wraps entirely around the file. If the
requested text is not found, the last screen image when the FIND
or LOCATE was executed is displayed and the machine beeps. A FIND
or LOCATE may be aborted by pressing the KEYBOARD key.

The [old text] specified for a FIND command is saved. The
saved [old text] maybe redisplayed or used again. FIND, LOCATE,
DELETE, and QUERY store the [old text] in the same save area.

:F [old text] - FIND match - the input file is searched for a
line starting with the specified [old text]. Leading spaces in
the file's lines will be ignored and need not be entered as part
of [old text] unless meaningful. Note that this command should be
typed exactly :F[SPACE][old text].

:F[SPACE] - FIND same match - if the FIND command is followed
by exactly one space and the ENTER key, the previous FIND (DELETE,
QUERY, or LOCATE) [old text] is used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F[D] - FIND in field [D] - search for a field starting with
the desired text. Field FINDs may be used in either of the
command formats: :F[D] [old text] or :F[D][space].

:F* - FIND display - the asterisk (*) after the FIND command
causes the [old text] of the previous FIND, DELETE, QUERY, or
LOCATE command to be displayed. The cursor is left at the end of
the display and the operator must press ENTER to proceed. No FIND
is performed.

:L - LOCATE next - typed exactly :L[ENTER], finds the next
line of text. If positioned at the end of the file, the screen is
cleared and the 'next' line is the first line of the file.

:L [old text] - LOCATE match - similar to FIND match except

23-22 DISK OPERATING SYSTEM

that the locate command searches for a line containing imbedded
text matching [old text]. Leading spaces should be supplied if
meaningful.

:L[space] - LOCATE same match - typed exactly
:L[SPACE][ENTER], uses the [old text] specified by the previous
LOCATE, DELETE, QUERY or FIND command to perform a search.

:L[O]"- LOCATE in field [0] - locate desired string in
specified field. Field LOCATES may be used in either of the above
com man d for mat s : : L [II] [0 I d t ext] 0 r : L [0] [spa c e] .

:L* - LOCATE display - display the [old text] entered for the
previous LOCATE, DELETE, QUERY, or FIND command. As in the FIND
display, the cursor is left at the end of the display and the
operator must press ENTER to continue. No LOCATE is actually
performed.

Ther~ are several variations on the GET commartd that allow
the user to quickly jump forward or backward through a file or to
a specific line by number.

:G - GET next screen - clears the screen and refills it with
.the next screen image.

:G- - GET prior screen - clears the screen and refills it
with the prior screen image.

:Gnnnnn - GET nnnnn lines - fetches nnnnn (from l to 65,535)
lines from the file or until the end of file. For example, n:G1"
rolls the screen up one line.

CHAPTER 23. EDIT 23-23

:G-nnnnn - GET nnnnn lines backward - same as the above
command except that it fetches backwards through the file in
memory.

:GAnnnnn - GET Absolute [nnnnnJth line - position the file so
that the [nnnnnJth line of the file (counting from the beginning
of the file) is displayed on the bottom line of the screen.

23.9.9 BYPASS End of File

:B - BYPASS - fetch a line from the file, bypassing the end
of file. This may be a true end of file or one caused by RECORD
FORMAT errors, PARITY errors, or a RANGE TRAP (see the section on
Recovery Procedures). Subsequent lines may then be fetched by the
normal mechanisms. This command is 'intended as a recovery tool
for use only if the file has been accidentally shortened or
contains badly formatted records.

Before executing the BYPASS command EDIT asks the operator
"SURE?", requiring a "Y" response for execution of the command.

No te : Ther e ar e certa in file cond i ti ons whi ch : B cannot
handle and/or correct.

23.9.10 Terminating EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text.

:EO - EOF with display - causes the data to be fetched and
displayed on the screen continuously until end of file is reached.
The operator may make the search pause by pressing the DISPLAY
key.

:E- - Display to the beginning of file - works exactly as the
:EO command above except that it fetches backward through the file
in memory, rolling the screen down.

:E - END - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then the scratch file is copied back to the source file.

The command line is left on the screen as long as the copy
from source to scratch is in progress; it is erased during the

23-24 DISK OPERATING SYSTEM

final copy from scratch back to source. When the final copy is
completed, control is returned to DOS.

:E/ - END/DEL - same as the END command, except the edited
file is truncated below the last line on the screen.

More specifically, this command causes the remainder of the
source file to be deleted (the lines currently on the screen are
written out), and the scratch file is copied back to the source
file. When the file is completely. updated, the system is
reloaded.

Before executing the END/DEL command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute the
command.

:E\ - END/DEL - same as the END command, except the edited
file is truncated above the first line on the screen.

More specifically, this command causes the prior portion of
th~ source file to be deleted (the lines currently on the screen
are written out), and the remainder of the file ,to be written out
to the scratch file. The scratch file is then copied back to the
source file. When the file is completely updated, the system is
reloaded.

Before executing the END/DEL command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute the
command.

:EX [DOS command string] - END and Execute - this command
does an END (":E" above) and then executes the DOS command string.

:0 - this command causes the EDIT to return to DOS without
updating the source file.

Before execu.ting END and Execute command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute
the command.

:OX [DOS command string] - this command causes the EDIT to
return to DOS without updating the source file and then execute
the DOS command string.

If EDIT is exited using either :0 or' :OX the format of
neither SCRATCH/TXT or SCRATCH/XIX is guaranteed correct. Also,
if a file is created and EDIT is exited using :0 or :OX rather
than :E, then the format of the newly created file is not

CHAPTER 23. EDI T 23-25

gu ar an teed.

23.10 Advanced Commands

:0 [user-defined command string] - Define the user-defined
command string zero.

:0 - Execute user-defined command string zero.

The user may define and execute up to ten EDIT command
strings. These strings may use themselves, do conditional skips
of commands, and request operator response. This gives the EDIT
the capabil i ty of doing sophi st i ca ted file modi fica ti on in a
semi-automatic manner (the user always has complete control).

The user may define commands ":0" through ":9" as one or more
EDIT commands. The defined command may be a single command (for
example, a complicated MODIFY oommand) that is used quite often,
but one the user does not want to type in every time he needs it.
Or it may be a string of commands separated with Pseudo ENTER
(DEL) characters. The Pseudo ENTER character appears as a solid
triangle ona High-Speed or "RAM" screen and as a carat (") on a
slow screen. The command string should be terminated with a
Pseudo ENTER if trailing spaces are significant. A carat is used
to represent the pseudo ENTER in the examples below. For
instance, if the user types:

:2 :M abcdefghijklmnop<ponmlkjihgfedcba

he has defined command 2. Every time that he types in:

:2

the pointed line is modified in the specified manner. If the user
types:

:5 :M abcde<edcba":M fghij<jihgf

he has defined command 5 as a pair of modi fy commands. Every time
that he types in:

: 5

the pointed line has both modifications done in sequence just as
if the user had typed them in separately. When a command in a
user-defined string fails, the string terminates, so if the first
modifications fails the second one will not be performed.

23-26 DISK OPERATING SYSTEM

If the user needs to replace every occurrence of the string
" LAB E L" in his f i 1 e with " LAB E L 1 ", hem a y de fin e a com man d as:

:2 :L LABEL ~M LABEL <LABEL1~2

Note: a new definition discards the old definition. Also, the
colon following the Pseudo ENTER character is optional. The user
may then type:

: 2

which loops changing "LABEL" to "LABEL1" everywhere it is found
in the file. The command string terminates when the LOCATE fails.
Of course the user can always terminate the command with the
KEYBOARD key.

For a more complicated example, the user may be edi ting the
disk file which may be created by the DOS FILES Command, and
define two commands as:

:8 :M2 \:DRO,:DR1~:M <COpy ~:9~
:9 :Z~:M /</~:9~·:G1~:Z~:Q /~:8~:Z*

Then he may set a tab at column 13 (immediately after the file
extension in the FILES-created file). By typing:

: 8

the user creates a CHAIN file for copying all the files from drive
zero to drive one.

Modify commands used on the last screen of lines from the
file generate a "phantom" line below the present screen lines.
Creation of this line means that a :G1 command will always be
successful following a modify. For this reason, repetitive
commands should be constructed to use a locate or query command
that will fail when the instruction should terminate. The
examples above illustrate use of this type of test to terminate a
repetitive command. The phantom lines that can appear at the end
of a file during EDIT are null lines and will not appear in the
updated disk file.

The execution of any command string may be temporarily
stopped by holding down the DISPLAY key or terminated by pressing
the KEYBOARD key.

:0* - Display the user-defined command string zero.

CHAPTER 23. EDIT 23-27

:00 - Display the user-defined command strings zero through
nine.

The above commands allow the user to examine command strings
individually in relation to the text on the screen or to examine
them all at once in relation to each other.

:0< - Insert user-defined command string zero into the file
text immediately below the ,pointed line.

:0) - Define user-defined command string zero as the pointed
line on the screen.

The above commands allow the user to save the command strings
in the text of his file. It also simplifies the modification of
command strings as the user can use MODIFY on the string rather
than keying in the entire string again. It also assists in
defining several similar command strings.

A definition file with a default name of EDIT/DEF may be
created by the user to contain a set of user pre-defined command
strings. These are loaded automatically every time that EDIT is
executed. This is an editable file. Remember, the user can force
a colon as the first character on a line by starting the line with
a double colon. The definition file may contain comment lines
(lines starting with "+n, ,,*n, or n.,,) or null lines. The sequence
of the defined command strings has no effect. Command strings may
be multiply defined; the last definition will be the one in
effect.

:99 [user-defined command string] - Define an initialization
command string in the definition file.

If an initialization command is defined in the definition
file, it is executed automatically when EDIT is executed. It may
be defined to do things such as change the tab key, turn on key
click, change the modify operators, set tab stops, or even do file
modification without operater intervention. The automatic
execution of the initialization command may be overridden by
pressing the KEYBOARD key when executing EDIT.

:Z* - Terminate execution of the user-defined command string
and return control to the bottom keyin line.

:Z - Skip over one command after the following command in the
user-defined command string if the following command fails.

:Z[n] - Skip over [n] commands (0 to 9) after the following

23-28 DISK OPERATING SYSTEM

command in the user-defined command string if the following
command fails.

Almost every EDIT command either "succeeds" or "fails". For
instance, LOCATE succeeds if it finds a line containing the
specified text and fails if it doesn't. The MODIFY command fails
if the string to be modified is not found or if, using the VERIFY
option, the user has pressed the ENTER key. The GET fails if the
end of file is reached. The use of the above commands allows
conditionally skipping over commands in the user-defined command
depending on the success of a command.

:U[n] - Unconditionally skip over en] commands (1 to 9) in
the user-defined command string.

This allows skipping over commands that might be jumped to by
a conditional skip.

:Q [string] - QUERY, setting a succeed or fail condition,
depending on the specified string being contained in the pointed
line.

This command works similar to the FIND or LOCATE command in
that it uses the line save area and allows field specification.
It does not affect the pointed line at all but sets up a
conditional skip. For instance, if command 3 were defined:

then its execution would GET lines until the pointer pointed to a
line containing the string "ABC" in field 2. While the QUERY
fails, the first conditional skip command (":Z") causes execution
of the command string to skip over the ":Z*", GET a line, and then
start over. When the QUERY succeeds, the ":Z*" is executed which
terminates the command string. This example effectively does a
LOCAT E wh i Ie di s pI aying all the Ii nes ex ami ned.

See the section 'Example of an EDIT/DEF File' for more
user-defined commands.

CHAPTER 23. EDIT 23-29

23.11 Recovery Procedures

A 'FORMAT TRAP' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some other program.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

A 'PARITY TRAP' occurs when a record is misread from the
disk. This may be caused by physical misalignment of the disk
read head or a bad surface on the disk.

These three errors cause EDIT to believe that it has reached
the end of file. To read past an end of file, use the BYPASS
command, ": B", repeatedly if necessary.

Use of the B command may ,allow recovery of most of a damaged
file, but at least some data will probably be irretrievable.

If the source file is lost (for example, erroneously KILLed),
one of the scratch files may contain a useful copy. Sinc~ the
scratch files (SCRATCH/TXT or SCRATCH/XTX) usually contain a copy
of the last file edited, they may be used to recover only that
file. If the file fits completely within the memory buffer,
scratch files are never used.

23.12 Glossary

Assembler mode - assumed mode of execution. Tab stops at 9, 15
and 30. The space bar is assumed as the tab key
character (this may be changed in parameter list or
during execution). Shift key inversion and no word
wrap-around are assumed. Leading periods (.), pluses
(+), and asterisks (*) generate a following space (.) or
(+) or (*) for comment lines.

Command - characters typed at the left edge of the command line
following a COLON (:) which have special meaning to the
editor.

Command line - the bottom line of the screen where most data is
entered, lines are fetched and commands are typed.

23-30 DISK OPERATING SYSTEM

Comment field - in assembler code the fourth field which is
generally used for programmer comments.

Comment mode - assumed if 'C' in parameter list. Tab stops at 9,
15 and 30. The space bar is assumed to be the tab key
chara c ter (this may be c hanged in par ame ter list or
during execution). Shift key inversion and no word
wrap-around are assumed. Leading periods (.), pluses
(+), and asterisks (*) generate a following space (.) or
(+) or (*) for comment lines.

Configuration sector - the first sector at a file which has been
written by EDIT. It is invisible to most programs and
therefore may be lost if the file is MOUTed, for example.
When the configuration sector exists, it contains the
tabs, bell margin, special characters, click option, mode
and s~ace-compression information and is used for the
editor defaults .

. Continue Character - a character which when entered in the first
column causes a continue indicator to appear (see below).
The default continue character is the ampersand (&) which
may be changed during execution.

Continue Indicator - A solid triangle (or a "greater than" symbol
(» on a slow screen) appearing in the first column of a
line, which means that the previous record exceeds '79
characters. When the continue character has been entered
in the first column, the continue indicator appears and
its presence means the line containing the indicator is
joined on output to the previous line, possibly creating
records greater than 79 characters.

DATABUS mode - assumed if 'D' in parameter list. Tab stops at 10
and 20 (may be changed during execution). The space bar
is assumed to be the tab key character (this may be
changed in the parameter list or during execution).
Shift key inversion and no word wrap-aro~nd are assumed.
Leading periods (.), pluses (+), and asterisks (*)
generate a following space (.) or (+) or (*) for
comment lines.

Definition file - this is an EDITable file containing pre-defined
user command strings which is automatically loaded when
the Editor is executed. The definition file may also
contain an initialization command (":99") which is
automatically executed unless the "KEYBOARD" key is
pressed. The default name for the file is EDIT/DEF.

CHAPTER 23. EDIT 23-31

Field number - a digit used in commands to designate the portion
of the pointed line between two consecutive tab stops.
Field '1' is always from column 1 to the first tabstop;
thus, in Assembler mode, '1' designates the label field,
'2' the opcode field, '3' the expression field and '4'
the comment field. During field modification, leading
and trailing fields are preserved.

Line insert - results from an INSERT command, data entry or
modification when word wrap-around is in effect, or use
of the Pseudo-ENTER key. The lines below the pointed
line are rolled down and a new, bl~nk line is generated
at the pointed line.

Logical scratch file - current output file.

Logical source file - current input file.

Modify operator - the character in a MODIFY command which
indicates what is to be done. The default replace
operator is the "less than" symbol «), the default
ins e r top era tor is the "g rea t e r th an" s y m b 0 I (>), an d th e
default append operator is the "backslash" (\).

Multi-line Record - a line on disk that is greater than 79
characters, displaying as more than one line on the
screen with each continued line marked with a continue
indicator.

New text - a group of characters, typed immediately after a modify
operator in a modify command, which will become part of
the line being modified.

Old text - a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND or LOCATE
commands).

One-pass option - assumed if '0' in parameter list. The one-pass
option does not update the physical source file.

Parameter list - initialization information provided when the
editor is first executed. Following file specifications,
a SEMI-COLON (;) indicates the presence of a parameter
list. The mode (A, C, D, or T), one-pass option (0), tab
character, margin bell column, key-click (K),
space-compression (E or G), non-verification (Y) and, in
t ext mo de 0 n 1 y , 's hi f tin v e r s ion' (S), an d ' no wo r d

23-32 DISK OPERATING SYSTEM

wrap-around' (L) may be set.

Pointed line - a pointer (» in the left hand margin is used to
reference lines for modification by command. The line to
the right of the pointer is the pointed line.

Physical scratch file - specified (or implied SCRATCH/TXT) output
file.

Physical source file - specified input file.

Pseudo-ENTER - the key marked DEL (always shifted) is referred to
as the Pseudo-ENTER key. If pressed in the first column
of the command line, one line of text is fetched from the
source file.

If pressed while entering a command, a user-defined
command string separator is entered.

In all other modes, the Pseudo-ENTER key causes a new
line to be inserted so that data entry may proceed in the
same area of the screen. If pressed on the last screen
line, causes the processor to beep.

Scratch file - at any point in time, the logical scratch file is
the output file.

Screen line - any of the lines on the screen which may be
referenced by the command pointer. The command line
(bottom line) is not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that unshifted alpha characters
appear upper case.

Source file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or the scratch files.

Space-compression - an "abbreviation" written to disk file when
two or more blank spaces are consecutive in a string.
For example, "HI THERE" is converted to
"HI(011)(005)THERE" where (011) is the space compression
indicator, (005) is the number of spaces compressed and

. integers in parenthesis are octal codes. The default
mode is 'G' for GEDIT or space-compressed mode. The 'E'

CHAPTER 23. EDIT 23-33

option on the command line causes spaces to be expanded,
that is, written out with no space-compression.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list with an'S'). Word
wrap-around is performed (this feature may be turned off'
by an 'L' in the parameter list).

Word - a word is defined as any group of less than 70 characters
preceeded by a space.

Word wrap-around - a feature of text mode. During data entry a
space to the right of the margin bell column ca~ses an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 79 characters, the
trailing characters, including the last word on the line,
are moved to a new line which is inserted below the
original line. Control then returns to the command line.

23.13 Command List

The full set of EDIT commands are listed below. All legal
combinations of options are included. [SP] represents a space.
[ENT] represents the "ENTER" key. [II] represents the field
number, a number in the range 1-9. Commands may be either upper
or lower case.

:[NEW TAB KEY][ENT] - Replace the old tab key character with the
new one. The default for the tab key character is the
space bar.

:[OLD CONTINUE CHARACTER][SP][NEW CONTINUE CHARACTER][ENT] -
Replace the old continue character (for input of long
records) with the new one. The default for the continue
character is the ampersand (&).

23-34 DISK OPERATING SYSTEM

:[OLD REPLACE OPERATOR][SP][NEW REPLACE OPERATOR][ENT] - Replace
the old modify-replace character with the new one. The
default for the modify-replace character is the "less
than" «) symbol.

:[OLD INSERT OPERATOR][SP][NEW INSERT OPERATOR][ENT] - Replace
the old modify-insert character with the new one. The
def aul t fo r the mo di fy - ins ert chara cter is the "g rea ter
than" (» symbol.

:[OLD APPEND OPERATOR][SP][NEW APPEND OPERATOR][ENT] - Replace
the old modify-append character with the new one. The
default for the,modify-append character is the
"backslash" (\).

::[string][ENT] - Force a line beginning with a colon to be
entered into the text of the file.

:A[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line and move the pointer up one
line.

:A*[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line without moving the pointer.
This allows defining a command that does multiple ":A*"s
to copy multiple lines.

:B[ENTER] - BYPASS the end of file which may be caused by RECORD
FORMAT, PARITY, or RANGE errors.

:C[ENT] - Copy the pointed line to the bottom of the screen,
delete the pointed line, and key in a new line.

:CH[ENT] - Display the current tab key character and MODIFY
operators~

:D*[ENT] - Display the previously defined string used by DELETE,
FIND, LOCATE, or QUERY.

:D[ENT] - Delete the pOinted line and key in a new line.

:D[SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the pOinted line.

:D[SP][string][ENT] - Delete up through the specified string in
the pointed line.

CHAPTER 23. EDIT 23-35

:D[#][SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the specified field of the pointed line.

:D[#][SP][string][ENT] - Delete up through the specified string
in the specified field in the pointed line.

:E[ENT] - END the EDIT by copying the modified file back to the
original source file.

: E/[ENT] - END the EDIT by copying the modified file back to the
original source file up to the bottom line displayed on
the screen. This deletes the remainder of the file.

:E\[ENT] - END the EDIT by copying the modified file back to the
original source file starting with the top line of the
screen up to the end of the file. This deletes the
preceding portion of the file.

:EO[ENT] - Display the file forwards (rolling the screen up) to
the end of file. The "DISPLAY"· key stops the di splay
until it is released.

:E-[ENT] - Display the file backwards (rolling the screen down)
to the beginning of the file contained in memory. The
"DISPLAY" key stops the display until it is released.

:E*[ENTJ - Display the last screen of th~ file immediately above
the COMMAND LINE.

:EX[SP][DOS command string][ENT] - END the EDIT by copying the
modified file back to the original source file, then
execute the DOS command string.

:F*[ENT] - Display the previously defined string used by FIND,
DELETE, LOCATE, or QUERY.

:F[SP][ENT] - Find a line starting with the previously defined
string.

:F[SP][string][ENT] - Find a line starting with the defined
string.

:F[#][SP][ENT] - Find a line starting in the specified field with
the previously defined string.

:F[U][SP][string][ENT] - Find a line starting in the specified
field with the defined string.

23-36 DISK OPERATING SYSTEM

:G[ENT] - Display the next screen-full of lines.

:G-[ENT] - Display the prior screen-full of lines.

:G[nnnnn][ENT] - Roll up the screen [nnnnn] lines where the
number may range from 1 to 65,535 lines. This stops at
the end of file.

:G-[nnnnn][ENT] - Roll down the screen [nnnnn] lines. This stops
if the beginning of the memory buffer is reached.

:GA[nnnnn] - Display the [nnnnn]th line of the file. This rolls
forward or backward through the file depending on the
current location in the file.

:I[ENT] - Insert by keying in a new line immediately below ~he
pointed line.

:I[SP][string][ENT] - Insert the specified string immediately
below the pointed line.

:K[ENT] - Turn on the key click.

:KI[ENT] - Turn off the key click (Key click Invert).

:L*[ENT] - Display the previously defined string used by LOCATE,
DELETE, FIND, or QUERY.

:L[ENT] - Roll up the screen one line. At the end of the file,
this causes the file to wrap-around to the beginning.

:L[SP][ENT] - LOCATE a line containing the previously defined
string.

:L[SP][string][ENT] - LOCATE a line containing the defined
string.

:L[#][SP][ENT] - LOCATE a line containing the previously defined
string in the specified field.

:M*[ENT] - Display the previous MODIFY command line.

:M[ENT] - Modify the pointed line using the previous MODIFY
command line.

:MV[ENT] - MODIFY with VERIFY the pointed line using the previous
MODIFY command line.

CHAPTER 23. EDIT 23-37

:MV[#][ENT] - Repeat the previous MODIFY command line with VERIFY
applied to the specified field.

:M[SP][modify string][ENT] - MODIFY the pointed line as specified
by the modify string.

:MV[SP][modify string][ENT] - MODIFY with VERIFY the pointed line
as specifie& by the modify string.

:M[#][SP][modify string][ENT] - MODIFY the specified field in the
pointed line as specified by the modify string.

:MV[#][SP][modify string][ENT] - MODIFY with VERIFY the specified
. field in the pointed line as specified by the modify

string.

Modify strings are of the following formats. The
default replace operator is the "less than" symbol «).
The default insert operator is the "greater than" symbol
(». The default append operator is the "backslash"
symbol (\). [string1] and [string2] are optional.

[string1][replace operator][string2] - Replace string1
with string2.

[string1][insert operator][string2] - Insert string2
immediately.following string1.

[string1][a~pend operator][string2] - Truncate the line
immediately following string1 and app~nd string2.

:O[ENT] - Return to the Operating System without updating the
original source file.

:OX[SP][DOS command s~ring] - ,Return to the Operating System
without updating the original source file and execute
the given DOS command string.

:Q*[ENT] - Display the previously defined string used by QUERY,
DELETE, FIND, or LOCATE.

:Q[SP][ENT] - QUERY (setting a succeed or fail condition) if the
previously defined string is contained within the
pointed line.

:Q[SP][string][ENT] - QUERY if the given string is contained
within the pointed line.

23-38 DISK OPERATING SYSTEM

:Q[U][SP][ENT] - QUERY if the previously defined string is
contained within the specified field of the pointed
line.

:Q[U][SP][string][ENT] - QUERY if the given string is contained
within the specified field of the pointed line.

:RC[ENT] - Set RPG Calculations tab stops (columns 6, 18, 28, 33,
43, 49, 54, and 60).

:RE[ENT] - Set RPG Extension tab stops (columns 6, 11, 19, 27,
33, 36, 40, 46, 52,~ and 58).

:RF[ENT] - Set RPG File tab stops (columns 6, 15, 24, 33, 40, 54,
66, and 70).

:RH[ENT] - Set RPG Header tab stops (columns 6 and 15).

: R I [EN T] - Set R PG I n put tab s top s (c 0 1 u m n s 6, 15, 2 1, 44, 53,
59, and 65).

:RL[ENT] - Set RPG Line tab stops (columns 6,15, and 20).

:RO[ENT] - Set RPG Output tab stops (columns 6, 15, 23, 32, 38,
40, an d 45).

:RS[ENT] - Set RPG Summary tab stops (columns 6,14, and 23).

:SB[ENT] - SCRATCH BELOW deletes all the lines on the screen from
the pointed line down through the bottom line and then
allows keying in a new line at pointed line.

:SC[ENT] - SCRATCH deletes all the lines on the screen from the
top line down through the pointed line and then allows
keying in a new line at the top screen line.

:T[ENT] - Set TAB stops by displaying a line of column numbers
and allowing the user to space across setting tabs by
typing non-blanks. Up to 20 tabs may be set.

:T[SP][nn][,nn] ... [ENT] - Set tab stops to the columns specified
by [nn][,nn] ... where [nn] ranges from 2 to 79. Up to
20 tabs may be set.

:TA[ENT] - Set TAB stops for Assembler (columns 9, 15, and 30).

:TD[ENT] - Set TAB stops for Databus or Datashare (columns 10 and
20) •

CHAPTER 23. EDIT 23-39

:TS[ENT] - Set TAB stops for SNAP (columns 11, 21, and 38).

:U[ENT] - UNCONDITIONAL skip over the following command in the
user-defined command string.

:U[n][ENT] - UNCONDITIONAL skip over [n] (1 to 9) following
commands in the user-defined command string.

:V[SP][string][ENT] - Split the pointed line after the text in
the line matching [string] and insert the remaind~r o~

,.the line immediately below the pointed line.

:W[ENT] - Concatenate the line below the pointed line to the
pqJnted line. If word wrap-around is in effect, the
pointed line is assumed to have a trailing space.

:X[ENT] - Change to TEXT mode with word wrap-around and no shift
inversion and then set tab stops (as in :T above).

:XI[ENT] - Change to Assembler mode with shift inversion and no
word wrap-around and then set tab stops (as in :T
above).

:Z[ENT] - Skip over 1 command after the following command in the
user-defined command string if the following command
fails.

:Z[n][ENT] - Skip over en] (0 to 9) commands after the following
command in the user defined command string if the
following command fails.

:Z*[ENT] - Terminate execution of the user-defined command string
and return control to the bottom key in line.

The following commands, though refering to 0,
actually refer to all the user-definable commands 0
through 9.

:O[ENT] - Execute user-defined command zero. Any value 0 through
9 may be used in place of zero.

:O*[ENT] - Display user-defined command zero. Any value 0
through 9 may be used in place of zero.

:O[SP][user-definedcommand string][ENT] - Define user-defined
command zero. Any value 0 through 9 may be used in
place of zero. The command string consists of one or
more EDIT commands separated with a Pseudo ENTER (DEL)

23-40 DISK OPERATING SYSTEM

character. The colon immediately following the Pseudo
ENTER character is optional.

:O<[ENT] - Insert user-defined command zero into the file text
immediately below the pointed line. Any value 0 through
9 may be used in place of zero.

:O>[ENT] - Define.user-defined command zero as the pointed line
on the screen. The combination of this and the above
command allow user-defined commands to be saved in the
text of the file and to be edited. Any value 0 through
9 may be used in place of zero.

The above two commands, ":n<" and ":n>", cannot be used
effectively from within a user-defined command string.
Both commands function by moving the specified command
string through the command string work area, so after
they are executed, the ~ommand referenced in the
instruction is present in the work area. If used within
another user-defined command, the. effect wi 11 be to
terminate execution of the original string and begin
execution of the string named in the :n< or :n> command.

:OO[ENT] - Display the user-defined commands zero thro~~9 nine.

:99[SP][user-defined command string][ENT] - This is the
initialization command which appears in the definition
file and is executed when the EDIT is started. It may
be overridden by pressing the KEYBOARD key while
bringing up EDIT. This command may only be used in the
definition file (/DEF) and not during the actual EDIT.

23.14 EDIT ERROR MESSAGES

The following is a list of error messages that may occur
during EDIT:

NAME REQUIRED - supply either the name of a new file or the name
of the file that is to be edited.

BAD DEVICE - the drive specification on one of the three file
specifications is either invalid or refers to a drive not on-line.

BOTH SOURCE AND SCRATCH FILES CANNOT BE SAME - either the same
file specification has been entered in the first and second
position~ on the command line or the first file specification is
"SCRATCH"· and no scratch file specification is given (hence using

CHAPTER 23. EDIT 23-41

the default name of SCRATCH).

BAD EXTENSION (/XTX) FOR SCRATCH - since EDIT uses two scratch
files where the second scratch file has the name of the first
scratch file and the extension XTX, the extension XTX is not
allowed in the scratch file specification.

BAD OPTION PARAMETER - an invalid character appears on the command
line.

INPUT FILE MUST EXIST IN "ONE-PASS" - the "0" option may not be
used during creation of a new file

FAULTY DEFINITION FILE - either the file in the third file
specification is not a valid definition file, or EDIT/DEF (the
default definition file) does not contain' the user-defined
commands in the proper form.

TRAPS - FORMAT, RANGE and PARITY traps may occur when there is
some problem with the head alignment of the disk drive or when
there is something wrong with the file (see the chapter "Recovery
Procedures")

Processor "beeps" - the usual indication of an error in the
command just keyed in: rolling off the beginning of the text in
memory, rolling off the end of the file, locating text not in the
file, or keying in an unrecognizable command (see the "failure"
conditions in the chapter "Advanced Commands").

23.15 Configuration Sector

A file that has been written with EDIT contains configuration
information in the first sector. This sector begins with an octal
003 so that it is invisible to most programs. As a convenience,
the tab settings, special characters and modes are contained in,
the sector so that these defaults are used the next time the file
is edited. If the file has been MOUTed and MINed, for example,
the configuration sector is not preserved~

The following describes the contents of the configuration
sector. A three-digit integer in parentheses represents an octal
byte.

(003) * 0 0 0 0 0 0 0 0 (015) E D I T <version> (015)

<tab numbers> (015) <bell position> (015)

23-42 DISK OPERATING SYSTEM

<tab key> <continue character> <modify replace operator>

<modify insert operator> <modify ~ppend operator>

<key click switch> <shift inversion switch> <word wrap-around
switch>

<text mode switch> <expand mode switch)

<scratch file name> <definition file name> (015) (003)

where:

<tab numbers>

are decimal integers separated by spaces representing the tab
positions and the field lengths. For example, assembler tabs
(9,15,30) are represented by "1 896 15 15 30 49 79".

<bell position>

is a decimal number of at most two digi ts.

<tab key>
<continue character>
<modify replace operator>
<modify insert operator>
<modify append operator>

are the actual ASCII characters.

<key click switch>

is "N" if off and "K" if the click option is on.

CHAPTER 23. EDIT 23-43

<shift inversion switch>

is "N" if no shift inversion and " " if shift inversion is on.

<word wrap-around switch>

is "w" for word-wrap and "N" for word-wrap off.

<text mode switch>

is "T" if text mode (spaces not automatically generated
following a plus, asterisk or period in the first column) or
"N" if not.

<expand mode switch>

is "E" when space compression is inhibited and "N" if space
compression is desired.

<scratch file name>

is the eleven (11) character name and' extension of the scratch
file.

<definiton file name>

is the eleven (11) chara~ter name and extension of the
definiton file.

23.16 Example of a Definition File

This is an example of a definition file for EDIT. Note that comments
may appear. Although this contains some useful general-purpose
user-defined commands, the mos~ common use of command strings is for a
special editing job. Care should be used in defining user command str
to make sure they perform as intended!

For example, a file needs "?" following every line beginning wi th a ,,*

23-44 DISK OPERATING SYSTEM

Many times user-defined commands are required for a one-time application.

Here are some more general examples:

Global search and replace with verification:

This function assumes that the modification and the locate have been
done previously so the repeated form of the command is used. This
string can be modified to add field parameters for the locate and
modify commands or the verfication option removed from the modify
command.

Delete until:

By using the :Q function, "query" a particular string for the line the
cursor is pointing to. This sets up a string for the repeated form of
the :Q command. This function deletes all lines beginning with the
pointed line up until it finds the particular string entered at first.

Insert line of asterisks:

Use this function to insert a line of asterisk (or modify the string
to insert lines of periods or underbars).

Draw a box of asterisks:

Use the line function (:3) to draw the top of the box. Do a :xi to insure
that "format" (no word wr ap) mode is in effect. Now go down to where the
bottom of the box is to be drawn and key in :4. This draws a box of
asterisks.

CHAPTER 23. EDIT 23-45

Marking updated lines with SNAP tabs in asse~bler mode:

: 7 : t 70"': m2 \ 1. 1 • D'" : t s'"

This is an easy way to mark modified lines.

• Leave :8 empty for "local" user-defined commands.

• End the file with a DOS command usually called after edit completion:

· :9 :ex CHAIN ASSEMBLE/CHN;DATE~310CT78,OPT=FIGLXMP,POPT,LINK=L'"

• When the same chain file is usually called after the edit is finished,
user-defined command may be used rather than typing in complicated param~
each time.

23-46 DISK OPERATING SYSTEM

Note: nested commands will not work. If the command is:

:1 :4 :6 :7

when the user types in ':1', EDIT will perform Function 4, but
will not return to perform Function 6 or Function 7.

Also if command :2 is defined as

:M *<: :8> :M :<* :8

and the pointer is positioned to the line

"*EX SNAP3 PROG;LXIFG"

As soon as the first :8 is encountered

:EX SNAP3 PROG;LXIFG

will be placed in "tiser defined position number 8, and user defined
command :8 will be immediately executed. Execution control will
not return to command :2.

Also, if command :3 is defined as

:8>

and the pointer is positioned to the line

:EX EDIT PROG/TXT

EDIT will place in position :8

:EX EDIT PROG/TXT

and execute :8 immeditately

IF :3 is defined as

:8>

:3 will only place

:EX EDIT PROG/TXT

in position :8 and not execute it.

CHAPTER 23. EDIT 23-47

CHAPTER 24. ENCODE/DECODE COMMANDS

24.1 Purpose

The ENCODE command is used to convert/encrypt disk files
containing data in any format into 79 character records containing
only ASCII characters. Data in encoded format can be copied or
transmitted by all Datapoint programs.

The DECODE command is used to translate encoded data files
back into exact duplicates of the original disk files or decrypts
encrypted files.

24.2 Use

ENCODE <file spec>,[<file speo>][;<key word>]

The ENCODE command converts the first file into encoded
format and writes the data into the second file. If extensions
are not supplied, ABS is assumed for the first file and ENC is
assumed for the second file. If the second file is not specified,
the name of the first file with an extension of ENC is assumed.
The second file will be created if it does not already exist.
Encoded data creates a file 50 percent larger than the original.

If the key word is given the file is encrypted using the key
word as a basis. It is very important to retain the key word for
the file cannot be retrived without it.

DECODE <file spec>,[<file spec>][;<key word>]

The DECODE command converts the first file from encoded
format back into binary and writes the data into the second file.
If extensions are not supplied, ENC is assumed for the first file
an dABS is assumed for the second fi Ie. If the second fi Ie is not
specified, the name of the first file with an extension of ABS is
assumed. The second file will be created if it does not already
exist.

If the file has been encrypted the key word must be given and
the same as was used for ENCODE.

CHAPTER 24. ENCODE/DECODE COMMANDS 24-1

INPUT FILE MUST BE SPECIFIED!

will be displayed if the first file specif~cation is omitted.

INPUT FILE DOES NOT EXIST!

will be displayed if the first file specified cannot be found in
the DOS directory.

OUTPUT WOULD DESTROY INPUT FILE!

will be displayed if the first and second file specifications are
identical.

INPUT FILE CONTAINS BAD DATA!

will be displayed if an encoded data file cannot be decoded into
its original binary form.

This message also occurs when a file which has been e~crypted
is being decrypted with an incorrect key.

ENCODE reads and converts binary data until either a valid
text end-of-file is read or allocated file space is exhausted.
Data in encoded form is always terminated with a valid text
end-of-file.

24-2 DISK OPERATING SYSTEM

CHAPTER 25. FILES COMMAND

25.1 Purpose

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertaining to all DOS files or to
only those files with names and/or extensions beginning with the
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described in the chapter on System Structure) is also extracted
for each directory entry. Extracted data is interpreted and
displayed on the screen, listed on a Local or Servo printer, or
written to a disk file.

25.2 Use

To execute the FILES program, type in the name FILES followed
by selection criteria and display options (if option codes are to
be used):

FILES [<filename>J[/<ext>J[:<drv>J[,<subdir>J[,<output-file>J[;optionsJ

<filename> Select entries for files with names beginning
with the 1-8 characters specified.

<ext> Select entries for files with name extensions
starting with the 1-3 characters specified.

<drv> Specifies the disk drive to be selected.
If this field is omitted, drive 0 will be
selected.

<subdir> Specifies the named subdirectory from which
to select entries.

<output-file> Specifies the disk file to which the
selected entries will be written, if disk
file output is specified.

CHAPTER 25. FILES COMMAND 25-1

options: The following option codes are available, and
may be entered in any order:

N - Suppress file allocation map.
D - Display on CRT.
L - List on local printer.
S - List on servo printer.
F - Write output to disk as DOS text-type

file.

If options are keyed and D, L, Sand F are omitted, then D is
assumed. D, L, S, and F options are mutually exclusive; output
can be sent to only one device. If F is keyed and the (output
file spec) is not present in the command line, one is requested
by the message:

DOS OUTPUT FILE SPEC:

25.3 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is
entered, file allocation information will be displayed for each
selected file.

After the user has replied to the map selection message, the
program will test to see if the there is a servo printer connected
to the processor. If a servo printer is attached and ready, the
following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a "Y" or "YES" in response to this
message, the servo printer will be selected to display output. If
any other response is entered or the program cannot find an
available servo printer, the program will test to see if a local
printer is connected and ready for printing. If the program finds
that a local printer is available, the following message will be
displayed:

LIST ON LOCAL PRINTER?

25-2 DISK OPERATING SYSTEM

If the user enters "Y" or "YES" in response to this message,
the local printer will be selected for output. If a printer has
been selected for output, the following message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered, which will be displayed
at the top of each page of printed output.

If no printer is available, or if the operator has rejected
printer output, the program will ask for disk output:

WRITE OUTPUT ON DISK?

If the user enters "Y" or "YES", output will be wri tten to a
disk file, otherwise output will be displayed on the CRT. If disk
output is selected, an output file name will be requested unless
one was provided on the command line.

25.4 File Descriptions

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

DW flags following the Physical File Number (PFN) indicate if
the file is delete protected (D), or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.
When allocation map information is printed or displayed, the
program displays totals lines specifying the total number of files
listed and the total number of sectors in those files. Disk
output never has totals lines.

Depressing the DISPLAY key during display or printing of file
descriptions will cause the prdgram to pause until the key is
released. Depressing the KEYBOARD key will cause the program to
terminate and return control to the operating system.

Allocation map information describes each segment in the file
by giving the cylinder and cluster starting address of the segment
and its length in sectors. One line is displayed for each
segment. See the chapter on System Structure and the Appendix for
the ,appropriate DOS for a description of disk' space allocation.

CHAPTER 25. F IL ES COMMAND 25-3

25.5 Error Messages

* PARITY ERROR *
FILES can not continue due to an irrecoverable parity error

encountered while" trying to read data from the disk.

* DRIVE OFFLINE *
FILES is unable to connect to the disk drive selected by the

operator (drive 0 if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries h~ve been found that meet the user's
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.

UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.

PRINTER NOT AVAILABLE

An option code specifies a printer that does not respond when
tested for status.

25-4 DISK OPERATING SYSTEM

CHAPTER 26. FIX COMMAND

26.1 Purpose

The FIX program can be used to modify bytes of DOS-Ioadable
object code in an absolute code file. This program can be very
dangerous and should be used only by qualified assembler language
programmers or by someone following specific directions provided
by Datapoint.

26.2 Use

To invoke FIX, enter the command:

FIX <file spec)

The program will display a sign-on message and will then
display an initial line of six zeros, two spaces, and three more
zeros on the bottom CRT line. (The zeros represent the current
address and its contents.)

000000 000

The screen is then rolled up. The program then waits for a
command from the operator. The <file spec) must specify a
DOS-Ioadable object file. If no extension is provided, lABS is
assumed.

Commands are 'in the form [number] [character] where the number
is assumed to be octal. If the number is omitted, a value of zero
is used. Commands are terminated by the enter key. Following a
command, the current address and its contents are re-displayed.

26.3 Commands

The following is a list of command characters with their
effect:

ENTER - Set current address.

- If no block of object code is currently in

CHAPTER 26. FIX COMMAND 26-1

memory {as at the beginning of execution or after a block
has been rewritten), search the object file forward until"
a block containing the given location is found, then
display the contents of that location. If the address
does not exist in the object file, the current address is
I eft at zero.

- If a block of code is in memory and the location given is
within the limits of the block, the contents of the
location will be displayed.

If a block is in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound. To
access the desired address the current block must first
be aborted (A) or transferred (T).

M - Change the contents of the current address to the number
given.

I - Increment the current address (up to the maximum address
in the current block).

- Change contents of current address to number given and
automatically increment the current address and display
the contents of the resulting location.

D Decrement the current address (down to the minimum
address in the current block).

T - Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start" from the beginning of the file. No modification is
made to the stored file until a T command is executed.

A - Abort processing the current block, set the current
address back to zero.

o or * - Return to the operating system - if there is a block of
object code in memory, it is not written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER KEY had been pressed.

26-2 DISK OPERATING SYSTEM

26.4 Error Messages

If the <filespec) is not an absolute object code file, the
message

RECORD FO RMAT ERRO R

is displayed.

If the file specified on the command line is not found, the
message

NO SUCH NAME

is displayed.

CHAPTER 26. FIX COMMAND 26-3

CHAPTER 27. FIXAPPLY

27.1 Purpose

FIXAPPLY is a program which accepts as input patch files
distributed by Datapoint Corporation for software maintenance
purposes. Each encoded patch file contains the file names and
member names of the modules to be patched, the patch addresses,
patch data, and generated self-checking bytes to guarantee file
integrity.

27.2 Use

FIXAPPLY is invoked using a command line of the form:

FIXAPPLY <patchfile)

where <patch file) specifies the name of the patch file containing
the modifications to be performed. All information needed for the
modifications to be perftirmed is included in the patch file,
including the names of the files and library members involved.

FIXAPPLY execution consists of two phases: a verification
phase and an execution phase. The verification phase reads the
input patch file, locates all modules to be patched, verifies the
prior data to be overstored, and guarantees the self-check fields
to be correct. The execution phase reads a binary work file
generated in the first phase and directly updates the object
modules.

27.2.1 FIXAPPLY Phase One

The first phase of FIXAPPLY reads the patch file provided,
converts the data into binary, validates it, and builds a wo~k
file on disk (FIXAPPLY/WRK) containing the random positions in the
programs to be patched.

If any errors are found in the first phase, execution is
_ terminated (with one exception, as described below). Note that
the original value of the object byte to be patched is contained
as part of the data in the patch file. This data must match,

CHAPTER 27. FIXAPPLY 27-1

preventing re-patching the same object module. It also allows
version and revisi9n levels to be checked.

Most errors occuring in phase one allow phase one to run to
completion but will not allow phase two to run.

There is one phase one error which can be overridden by
operator intervention at the s~stem console. If FIXAPPLY fails to
find a particular file, the message:

CAN'T FIND FILE <file name>

will be displayed. The operator will then be asked for the
correct name of this file. This action allows users who have
renamed Datapoint software prod~cts to specify their own in-house
names. Member names within absolute libraries, however, cannot be
overridden.

If fatal phase one errors are found, the message:

PHASE 1 ERRORS; ABORTED

will appear and the program will terminate, returning to DOS. If
no fatal phase one error occurred, the message:

PHASE 1 ~OMPLETED OK

will appear and the program will proceed to'its second phase.

27.2.2 FIXAPPLY Phase Two

There are no active displays during FIXAPPLY phase two, nor
is there any .means of operator intervention during this phase. It
is important that the program not be interrupted (such as by
rebooting the system) during this phase, as a partial upgrade of a
target file could occur. At the end of phase two the message:

SUCCESSFUL COMPLETION

will appear and the program will return to DOS.

If some error does occur during phase 2 the message:

PHASE 2 INTERNAL ERROR; ABORTED

will appe~r and the program will immediately terminate and return
to DOS. In the event of such a failure, th~ target file will be

27-2 DISK OPERATING SYSTEM

partially updated and unusable and must be reloaded prior to again
attempting to apply the patch. An internal error abort is
probably caused by hardware failure, or modification of the target
or work file by another user on a multi-user system.

21.2.3 Fatal Phase One Error Messages

INPUT FILE MISSING OR NOT SPECIFIED!
The patch file name was not specified or the specified

file could not be found. The program terminates immediately
without completing phase one.

OLD/NEW BYTE MISMATCH!
The object file is probably not the proper

version/revision.

RECORD COUNT ERROR!
A record has been lost within the modifications for the

current program name displayed on the screen.

ILLEGAL EOF ON INPUT!
The input file is not properly formatted.

INVALID OBJECT FORMAT!
The current object file is not in a recognizable format.

FILE INTEGRITY ERROR ON INPUT!
The internal LRC check has failed.

It is important to remember that the internal pseudo-LRC on
the patch file prevents the file from being tampered with. Any
alteration to the file will almost always cause pass one to fail.
Also, due to the old/new byte checking, a patch file may not be
"applied' twice to the same software.

CHAPTER 27. FIXAPPLY 27-3

CHAPTER 28. FREE COMMAND

28.1 Purpose

As a disk becomes full, it is useful to know how many
256-byte sectors remain available for allocation. Another useful
bit of knowledge on the larger disks is how many empty slots in
the directory remain for the allocation of file names. The FREE
command displays these two values.

28.2 Use

The FREE command is invoked by a command line of the form:

FREE [:<drv>J

The drive to be examined may be specified by the <drv> field. If
no drive is specified, all drives will be examined.

The command scans all drives that it finds on-line and
·displays (1) the number of available file names (representing
possible files to be created) and (2) the number of available
sectors that it finds on each.

Holding down the DISPLAY key will cause FREE to pause.
Pressing the KEYBOARD key will cause FREE to terminate and return
to the operating system.

CHAPTER 28. FREE COMMAND 28-1

CHAPTER 29. INDEX COMMAND

29.1 Purpose

The INDEX command creates or reorganizes the tree structure
required by programs using the indexed sequential access method
(ISAM). Indices may be created from any DOS text file. The
indexed access method can then rapidly access records in this file
in either sequential or random order. Records in files to be
indexed must contain a record key up to 118 characters long
contained in the first 249 characters of each record.

It is possible to build many independent indices to permit
access to records of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

INDEX can create the tree structure (using the DOS SORT
command), reorganize the tree structure, create a Key tag file from
the index file, or create an index from a Key tag file. The format
of a Key tag file is described in the chapter on the SORT command.

29.2 Use

When the Index command is to be executed, the operator must
enter:

INDEX <textfile>[,<indxfile>J[,<tagfile>J[,<drive>J;<parameters>

where only the first file specification and key field parameter
are mandatory, and specify th~ text file to be indexed. Default
extension is ITXT. The second file specification is the name of
the INDEX file to be created. If no file is specified, the name
of the first file is used with default extension of IISI. If no
drive is specified, the INDEX file will be placed on the same
drive as the file to be indexed. INDEX files may have any names
at all and may be located on physically different drives from the
file being indexed. However, high-level languages using ISAM
files (DATABUS, for example) assume the INDEX file will have the
normal IISI extension, and if the file open instruction is drive

CHAPTER 29. INDEX COMMAND 29-1

directed the IISI and ITXT files must be on the same drive.

The third file specification is for the
file. The third file name will also default
first file with a default extension of ITAG.
specification, which may only specify drive,
put its intermediate work files. Otherwise,
optimize drive selection.

29.2.1 Parameters

intermediate tag
to the name of the

The fourth file
tells SORT where to
SO RT wi 11 attempt to

In addition to the parameters that INDEX itself recognizes,
the user may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done), or a primary record
specification to be passed to SORT, or Mnnn or Q options to
FASTSORT. Parameters recognized by INDEX are as follows:

K
I
X

F
E

mmm-nnn

Create a Key tag file from the IISI file.
Create an IISI file from the Key tag file.
Recreate the IISI file, handling insertions and
deletions.
Preprocess the input file with REFORMAT.
Index in EBCDIC collating sequence.
Key specification

The Key tag file is a standard text file containing the
pointer and key of e~ch record to be indexed. The format is
explained in the SORT chapter. The file may be LISTed, EDITed or
transmitted. This last feature allows the IISI file to be created
at a remote site without invoking SORT.

The format of the key is mmm-nnn [,mmm-nnn] [,mmm-nnn] •.•
where mmm is the beginning character position of the key field in
eich logical record and nnn is the ending position of the key
field. Note that each record must have a unique key. Refer to
the SORT chapter for a more complete description of key
specifications.

The primary record specification is an option that allows the
user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is "Pnnntc". The
"P" must always appear. The field following "P", denoted by
"nnn", represents the column in each logical record where a one
position field exists that differentiates records in the file.
The location of this one character field must be less than or
equal to 249. The "t" can have one of two values: either an

29-2 DISK OPERATING SYSTEM

equal sign (=) or a pound sign (II). If the former, it means
create the ISAM index file from all records that contain the ASCII
character "c" in position nnn. If it is a pound sign, it means
that the ISAM file will be created from all records that do not
contain the value of "c" in position nnn. The "c" may be any
ASCII character except 015 (ENTER value).

In general the parameters for INDEX can be specified in any
order and may optionally be separated from each other by a blank
or a comma. The only exception to this rule is when a primary
record specification exists, it must precede the key field
specification and be separated from the key by a blank or a comma.

29.2.2 System Requirements

If INDEX is creating the index file from the text file (no K,
I, or X option specified) the SORT or FASTSORT command must be
available. If INDEX is being executed on a processor capable of
executing FASTSORT, it will attempt to execute FASTSORT before
defaulting to the SORT command. INDEX can locate FASTSORT in
UTILITY/SYS or as a separate command file. FASTSORT is a separate
program not released as part of DOS.

If pre-processing of the text file is specified on the INDEX
command line, the REFORMAT command must be available to perform
the pre-processing. INDEX can locate REFORMAT in UTILITY/SYS or
as a separate command file.

If the X option of INDEX is used to recreate the tree
structure file, the NAME command must be available. INDEX can
locate NAME in UTILITY/SYS or as a separate command file.

If the E option of INDEX is used to specify EBCDIC collating
sequence, the EBCDIC/SEQ file must be available to define that
sequence.

29.3 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. 'Of course, you must choose a
key.which will uniquely determine the record you wish-to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be

CHAPTER 29. INDEX COMMAND 29-3

keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

29.4 Preprocessing the File

In file structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become
non-optimum for searching. In addition, due to the method with
which the indexed access method inserts records, each inserted
record exists in a separate disk sector. This means that for
records that are 80 characters long, two-thirds of the disk space
for each additional record is wasted. This results in a reduction
of the performance of the indexed access method.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

29.4.1 lrivoking Reformat

The INDEX utility will automatically invoke REFORMAT if the
"F" option is present when INDEX is invoked. You must have
specified the options that REFORMAT will need to process the file.

Note that if multiple indices are to be created, reformatting
need only be specified for the first INDEX step, and MUST not be
specified later if it was ,not specified in the first step.
Although REFORMAT will not destroy the file, specifying
reformatting may invalidate any previously built indices.

Basically, you must tell REFORMAT what format the records of
the file are to have after preprocessing. You may select record
compression, space and record compression, or blocking. Since the
reformatting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For additional details on the
REFORMAT utility, see the REFORMAT section of this guide.

29-4 DISK OPERATING SYSTEM

29.4.2 Considerations for Unattended Indexing

Those who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and use AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly from INDEX. The reason why is that
REFORMAT as invoked by INDEX uses the REFORMAT-in-place mo~e of
the REFORMAT command. (The reason for this is that it is faster
to do so, and also allows the indexing with reformatting of a file
which is too big to REFORMAT in the available scratch space on a
single-drive, almost full disk). Although REFORMAT is very
careful not to damage the file being processed, if the file is
actually in the process of being reformatted when a power failure
occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting -a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
file, setting another checkpoint, reformatting the scratch file
back into the original (using the COpy mode of REFORMAT), setting
a further checkpoint, and finally INDEXing the file using INDEX.
In this way there is always an undamaged file with which execution
can resume if necessary.

29.5 INDEX Messages

The Index command displays several messages on the operator's
console. They are listed below with explanations, in the sequence
in which they may appear.

DOS. VER n.n INDEX COMMAND - date
Signon message that gives the user the version of DOS
required and the date of the INDEX command.

WRONG DOS!!
Indicates that the version of DOS in use is too old to
support the version of the INDEX command being used.

INFILE NAME MISSING.
Indicates that the user has omitted the first, and
required, file specification.

NO SUCH NAME.
The input file specified for the INDEX does not exist.

INVALID DEVICE.

CHAPTER 29. INDEX COMMAND 29-5

29-6

A drive specification entered as part of one of the
file specifications was invalid.

SYSTEM7/SYS MISSING!
Indicates the SYSTEM7/SYS file is missing on the drive
on which the IISI file resides. This message only
appears if the X option is used.

KEYTAG FILE BEl NG BUILT.
Indicates that INDEX is now creating the ASCII KEYTAG
file requested with the "K" option.

- FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND.
This indicates that the user has requested
preprocessing of his file by the REFORMAT command (R
option specified).

INDEX WILL USE EBCDIC SORT.
The user has requested an index using the EBCDIC
collating sequence (E option specified).

REFORMAT <filename>; <parameters>
Display of the command line used to invoke REFORMAT
for preprocesslng the input file.

REFORMAT UNLOADABLE!
Indicates that the REFORMAT command could not be found
as a member of UTILITY/SYS or as REFORMAT/CMD, or that
if found the command was not executable. The REFORMAT
command should be loaded or reloaded onto disk.

SORT <filename>, .••
Display of the command line used to invoke SORT to
produce the Key tag file from which the index will be
constructed.

SORT UNLOADABLE!
Indicates that the SORT/CMD file cound not be found,
or that if found it was not executable. The SORT
command should be-loaded or reloaded onto disk.

BUILDING LOWEST LEVEL INDEX.
This indicates that INDEX is now creating the lowest
level of the index file.

NULL INDEX FILE CREATED.
This indicates that an empty tag file was created by
SORT. The index file created is usable by programs

DISK OPERATING SYSTEM

using ISAM for adding records. After creating a null
index file INDEX will exit normally (CHAIN will not be
aborted) but will have set the ABTIF bit in DOSFLAG.

LONG KEY ENCOUNTERED AND TRUNCATED.
This indicates that the tag file contained a key that
was longer than 118 characters. It was truncated to
118 characters.

DUPLICATE KEY: (key>
Two keys in the tag file were found to be identical
and the first 60 characters of the key are displayed.
INDEX will continue so as to display any other
dupli cate keys that may be found.

INDEX TERMINATED WITH DUPLICATE KEYS.
Duplicate keys have been found and a null index will
be created, as described above under NULL INDEX FILE
CREATED. The tag file is not deleted and since it is
in standard text format, it may be EDITed to remove or
modify the duplicate key and tag. Or a program (e.g.
in DATABUS) may be written to display the records
containing the duplicate key~ so the user may resolve
the ambiguity. INDEX may then be reinvoked using the
"I" option.

BUILDING -NEXT- LEVEL INDEX.
This indicates that the lower level of the index file
has been completed and the next level is now being
created.

DONE.
The c-r·eation of the index file is now completed.

Other messages may be generated by REFORMAT or SORT. See the
appropriate chapter for an explanation.

29.6 lSI File Formats

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys,and contains
pointers to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the lSI file
cannot be moved wi thout re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the lSI file
will destroy it.

CHAPTER 29. INDEX COMMAND 29-7

The different levels of indices all have the same content,
except for" the lowest level index. Index levels are built up
until an intermediate level of index will fit in a single disk
secto:r. This becomes the highest level of index. " This
requtrement is the reason for the 118 character limitation on key
length.

The lSI files have the following format:

Offset Leng th

o 3

3 nn

nn+4 nn

Description

PFN and LRN bytes as per DOS convention -
see the chapter on SYSTEM STRUCTURE.

This is a KEY entry where nn is key length+7
for a lowest level index, and key length+3
for a higher level index. The first sector
of an lSI file after the RIBs is a special
header record.

This "is the second KEY entry in the sector.
There must be at least two KEY entries per
sector.

Note that as many key entries are put in a
sector as will fit without splitting across
a sector boundary.

Each KEY entry for an intermediate level index has the
following format:

Offset Length

o KL

KL

KL+1 2

Desc ri p ti on

The highest key in the next lower level
index sector. (KL is the keylength.)

Octal 012 - This indicates the end ot the
key and that this is a higher level index
entry.

PDA(MSB, LSB) of the entry in the next
lower level of index.

29-8 DISK OPERATING SYSTEM

KL+3 1 Octal 0377 - This indicates that this is the
last entry in this sector.

\

Each KEY entry for a lowest level index entry has the
following format:

Offset Length

o KL

KL

KL+1 3

KL+4 3

KL+7

Description

The key for this particular record. (KL is
the keylength.)

Octal 015 - This indicates that this is a
lowest level index entry and delimits the
end of the key.

Buffer Offset, and the physical disk address
for the logically next lowest level index
entry.

Buffer Offset, and logi~alrecord number of
the text file record having this key.

Octal 0377 - Indicates that this is the end
·of the lowest level index.

The first data sector in an lSI file is a header record used
to locate the file from which the index was built. In this' way,
it is only necessary to specify the name of the index to
DAT ASHAR E.

Offset Length

o

3

14

17

23

3

1 1

3

3

3

Description

PFN and LRN indicators as per DOS
convention. See the System Structure
Chapter.

Name of the data file that goes with this
index file.

PFN, and RIB PDA of this file. This field
is used to check that the index file has not
been moved.

PFN, and RIB PDA of the file indexed.

Buffer address and LRN of the last record

CHAPTER 29. INDEX COMMAND 29-9

26 3

used in the data file.

Buffer address and LRN of the first free
index entry.

29.1 Index File Size

The size of the index file for a particular text file may be
calculated by the formula below. Applying this formula yields a
figure showing the largest size the file might have. The
resulting file will generally be smaller than calculated because
trailing blanks on keys are discarded, so storage space for the
keys is less than expected based on key length.

Calculating the space used by an index- file requi res
calculating the space used for each level of index and adding
them. In the fo llowi ng eq ua ti ons :

R = number of logical records to be indexed
L = key length (number of characters per key)
SCi) = number of disk sectors for the ith level

of the index tree
K = number of keys per disk sector

For the lowest level index (i = 1),

K = 2501 (L+7) (discard any remainder)

and

S(1) = R/K (round up result)

When S(i) =
calculation
in only one
index. For
calculation

the highest level of index has been reached and the
is complete. If S(1) = 1 the calculation is finished
step, but only very short files produce a one-sector
each successive level of index the following
must be performed:

K = 2501 (L+3) (discard any remainder)

and

SCi) = S(i-1)/K (round up result)

If S(i)1, then i=i+1 and perform the calculation again until
reachin the highest level of index. Once S(i)=1 has been reached

29-10 DISK OPERATING SYSTEM

simply add the space calculated as needed for each level of index:

Total size = S(1) + S(2) + ••• + SCi)

Remember that the total space used for the index file will
probably be less than calculated here since trailing blanks are
not stored.

29.8 Examples of the Use of INDEX

First, a simple example in which only a single lSI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATASHARE terminal
to inquire on the current status of each deadbeat. Thus, while
the file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is keyed
by bank number (8 digits) and account number (7 digits)
concatenated and in positions 1 to 15 of each record.

In order to create the index file, the operator must type:

INDEX DEADBEAT; 1-15

The INDEX program will then create a file DEADBEAT/lSI which
DATASHARE can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each bad check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
n u m b e r in po sit ion s 1 6 to 1 8, an dad ate fie 1 din po sit ion s 1 9 to
24. As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

In order to create the indices required for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STOREj16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/lSI,
DATE/lSI, STORE/lSI, and NAME/lSI. Each file is logically
separate, yet all are on the same volume as DEADBEAT/TXT.

CHAPTER 29. INDEX COMMAND 29-11

Now the store owners have uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
disk for all the index files and the text file. Inaddi tion,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called Datapoint to
complain, and their local systems engineer has told them they need
to reformat the files when they re-index, and has sold them
another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;FR1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. If reformatting had not been done when the first index
was built, it could not be correctly done later without
invalidating the previously built indices.

Now, several years later, the grocery chain has expanded and
has a large disk system at their main store. The owners are doing
so much processing that there is not the time to run the above
INDEX programs as each one invokes SORT~ However, they wish to
keep access time to the minimum. Also, the DEADBEAT file is so
large that numerous additions and deletions hardly affect the
size.

Every night the operator now types:

INDEX BANK;X
INDEX DATE;X
INDEX STORE;X
INDEX NAME; X

which recreates the index files. Then during weekly processing,
the operator does the processing above which invokes REFORMAT.

The store owners have wisely dispersed some of their data
processing to their branch stores. So each night the operator
also types:

29-12

INDEX BANK;K
INDEX DATE;K
INDEX STORE;K
INDEX NAME; K

DISK OPERATING SYSTEM

which creates tag files of the four indices. The operator then
transmits DEADBEAT/TXT, BANK/TAG, DATA/TAG, STORE/TAG, and
NAME/TAG to each of the branch stores. The operator at the branch
store, after receiving these files, types:

INDEX DEADBEAT,BANK,BANK;I
INDEX DEADBEAT,DATE,DATE;I
INDEX DEADBEAT,STORE,STORE;I
INDEX DEADBEAT,NAME,NAME;I

which creates a local set of indices without invoking SORT.

Note: In the above example that created a BANK tag file, the
command line with default fields is:

INDEX BANK/TXT,BANK/ISI,BANK/TAG;K

As only the IISI and /TAG files are needed for creation of the tag
file, the same results could have been achieved by typing:

. INDEX ,BANK,BANK;K

CHAPTER 29." INDEX COMMAND 29-13

CHAPTER 30. THE INITDISK COMMAND

30.1 Purpose

When a new disk pack is received, it is not immediately
usable in the 9310 'or 9390 series drives until it has been
formatted. The formatting process which causes track and sector
identifying information to be written over the entire disk
surface, is performed by the INITDISK command. This command is
useful only on 9310 or 9390 series disks!

30.2 Use

The INITDISK program is distributed as both a cassette
load-and-go (LGO) version and as -a disk command program. To
invoke INITDISK from a working DOS (normally useful only with
two-drive systems), the operator enters at the system console:

INITDISK

With an LGO cassette, the operator places the cassette in the
rear cassette deck and presses the RESTART and RUN keys
simultaneously (only the RUN key on a 2200 processor). Once the
program has initially loaded, it functions the same regardless of
whether ii has been loaded from cassette or disk.

After being loaded, INITDISK asks which physical (not
logical) drive contains the disk to be formatted and asks the user
for confirmation that it is all right to destroy the previous
contents of the disk, if any. After the command is satisfied that
the user knows what is about to happen, it proceeds to format the
disk. The process takes a few minutes.

30.3 Error messages

If the INITbISK command encounters any sort of error
indication before or during the formatting process, it will wait
for a while to see if the problem will go away on its own. (A
typical example would be if the disk to be formatted has not yet
come on line when the INITDISK command begins execution). If the
problem persists, the program will display a comment on the CRT

CHAPTER 30. THE INITDISK COMMAND 30-1

display indicating that it is waiting on the disk, describe the
status of the disk as indicated by the controller, attempt some
corrective actions that may help to clear the situation, and
inform the operator of what corrective action has been taken.
This is repeated until the problem is successfully cleared up.

30-2 DISK OPERATING SYSTEM

CHAPTER 31. KILL COMMAND

31.1 Purpose

The KILL command deletes a file from a logical volume .. The
file's directory entry is removed and its disk space is
deallocated.

31.2 Use

The KILL command is initiated by the operator entering the
command line

KILL [<file spec>]

If this file is protected in any way, the message

NO!

will be displayed. If the file specification is not given on the
command line (file names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE? EXAMPLE:
:DR

SCRATCH ITXT:DR1 11143 :DR1

will appear. The user must keyin an eight character filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "D" and the dri ve
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NO SUCH NAME.

will appear. A file can be specified by physical file number by
entering "/I", followed by the octal PFN, followed by 8 spaces and
the drive specification. If the specified file cannot be found
(both a name and an extension must always be supplied unless using
PFN), the message:

NO SUCH NAME.

CHAPTER 31. KILL COMMAND 31-1

will be displayed. If the file exists but it is in a valid
subdirectory other than the current subdirectory (except SYSTEM),
the message:

THAT FILE IS NOT IN YOUR SUBDIRECTORY

will appear. If the file is found and is not protected, the
message:

THAT FILE IS <filename> ON DRIVE n SUBDIRECTORY NAME (xxxxxxxx)

will appear. Then the operator must additionally answer the message:

ARE YOU SURE?

with a 'Y' before the actual deletion of the file is achieved.
After the deletion has occurred the following message is
displayed:

* FILE DELETED *

31-2 DISK OPERATING SYSTEM

CHAPTER 32. LIST COMMAND

32.1 Purpose

The LIST command will list any DOS standard format text file
to the screen, a local or servo printer, or a disk file. The
command can be used for:

A quick scan of a file by displaying it on the screen
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT command
file.

In this chapter, the following terms apply:

Text file means a file with records containing only ASCII
characters, except for space-compression bytes and the
End-Of-Record and End-Of-File marks. Files created by EDIT
and those produced by DATASHARE are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 characters of a record will be
displayed; when listed on a local or servo printer only the
first 124 characters will be printed. (The remaining eight
characters contain a line number.)

Record means the user logical record number (LRN). 'The first
LRN of a file is zero.

32.2 Use

When the LIST program is to be executed, the operator must
type:

LIST <filespec>[,<spec2>][,<filespec2>][;options]

CHAPTER 32. LIST COMMAND 32-1

Available options are:

L list on Local printer
S list on Servo printer
D Display on CRT
X suppress line numbers
F list Formatted print file
P output formatted Print file
Q Queue formatted print file, appending to an existing file
Nn set Number of lines per page to n
I list in Indexed sequence

Options may be entered in any sequence and should be
separated by commas.

32.3 Input File Specification

The file specificatiori «filespec» must refer to a DOS text
file. If no extension is supplied with the file name, an
extension is assumed depending on the options given. A default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) causes a default
ex tensi on of I SI and the option "F" (Ii st a fi Ie wi th format
control bytes) causes a default extension of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec> is omitted, the message

NAME REQUIRED.

is displayed. If the file indicated by <filespec> is not found on
an online volume, the message

NO SUCH NAME.

is displayed.

32.4 Starting Point

The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter <spec2>. For example:

LIST <filespec>,L400

would list the specified file beginning with line 400 of the file.

32-2 DISK OPERATING SYSTEM

If the line number specification exceeds the number of lines in
the file, LIST returns to DOS after displaying the message:

FILE EXHAUSTED BEFORE LINE FOUND.

LIST <filespec>,R18

would directly access logical record 18 of the specified file and
list, starting at line number 1. If range or format errors occur,
the -error type is indicated and another record number is
requested.

For instance, if the record number specification exceeds the
number of records, the message

RANGE - NEXT RECORD NUMBER:

is displayed.

The default value for the second parameter is line 1 and
record O.

32.5 Output File Specification

If the options "P" (write to a print file on disk) or "Q"
('QUEUED' write to 'a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec2) may be' used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

Out put fr 0 m e i the r the "P " 0 r "Q " 0 p t ion i sat ext f i 1 e wit h
print control characters as described in the Format Control
section. The file will be paged with headings; line numbers will
be i ncl uded un less suppr essed by the "X" option.

32.6 Output Device

The operator may specify an output device other' than the CRT
display by including an optional parameter of "S" (servo printer),
"L" (local printer), "P", or "Q". For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer
starting at line 400 or

CHAPTER 32. LIST COMMAND 32-3

LIST <filespec>;L

would list the ·specified file on a Datapoint local printer
beginning at line number one.

For either print or disk output LIST will request a heading,
which will be placed at the top of every page of output.

The default output device is the CRT display which may be
specified by entering a "D".

32.7 Output Format

A parameter is available to suppress line numbers. If the
'X' is entered, lines of up to 132 characters will be printed.
For example:

LIST <filespec>;SX

would put the output on the servo printer without line numbers,

LIST <filespec>;X

would display the listing, showing 80 characters per line on the
CRT.

Any paged output (from the "L","S","P", or "Q" options) is
normally listed at 54 lines per page. The "Nn" option can be used
to change the number of lines per page, n being the desired
lines/page count.

32.8 Format Control

The parameter "F" is available to allow the handling of print
files (those with a format character in the first column of each
line). If "F" is entered, the file will be listed without line
numbers, page numbers, or headings, since all these items should
already be in the print file. The following format characters
cause the indicated action to be taken before the line is printed.

- Skip to top of form

+ - Suppress line feed

(space) - Single line feed

32-4 DISK OPERATING SYSTEM

o - Double line feed

- - Triple line feed

Any other character in the first column will be handled as a space
(single line feed) and discarded.

32.9 Operator Controls

The listing consists of a continuous stream of the listed
file's text. To cause the listing to pause, the operator may hold
down the DISPLAY key. To abort the listing, the operator may
depress the KEYBOARD key.

32.10 Error Conditions

If printer output was specified and the requested printer is
not available, LIST beeps and displays the message:

PRINTER NOT READY

If the printer is made ready, listing will proceed. The KEYBOARD
key may be depressed to abort the LIST at this point if necessary.

LIST checks to be sure the text end-of-file is exactly six
zeroes and a three (see Text File Formats in the REFORMAT
chapter).

If the EOF is not exactly correct, LIST displays the message:

INVALID END OF FILE.

LIST can be used to test for a bad EOF since most text-handling
programs are not so particular about EOF format.

When (spec2> has been entered to start LIST at a particular
record number, LIST traps FORMAT or RANGE errors and allows a new
starting location to be entered. In any other usage, LIST does
not trap FORMAT or RANG~ errors and any such errors are fatal.

CHAPTER 32. LIST COMMAND 32-5

CHAPTER 33. MANUAL COMMAND

33.1 Purpose

The MANUAL command clears the automatic execution established
by the AUTO command.

33.2 Use

The command is invoked simply by entering:

MANUAL

If the auto-execution name has not been set the message

AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed.

CHAPTER 33. MANU AL COMMAND 33-1

CHAPTER 34. MIN COMMAND

34.1 Purpose

The Multiple In (MIN) command is useful for reading multiple
files (source, object, Databus object, and relocatable code) from
the front cassette drive to disk. It will handle all standard
single file (OUT and SOUT), double file (SOBO), and multiple file
(LGO, CTOS, an~ MOUT with or without a directory) tape formats.

34.2 Use

34.2.1 Command Line

The prototype command line for MIN is

MIN [<file1>[,<file2> •..]][;<options>]

File specifications are of the form <filename> I<ext>:<drv>. If
the drive is not given, all drives online will be searched
starting at drive zero. The default extension will be 'TXT' for
source, 'ABS' for object, 'DBC' for Databus object files, and
'REL' for Relocatable Code files depending on the tape file
format.

34.2.2 Options

Tape file modifications may prevent MIN from automatically
determining the tape format. In this event, the options 'L' (for
LGO), 'C' (for CTOS), or 'D' (for Directory) are available. Also,
option 'N' (for No directory) will tell the system that it is
handling a MOUT tape without a directory, which allows entering
the file names manually if the directory entry names are not
desired. This option also allows entering the directory to disk.

These options are merely test overrides. If, for instance, a
tape starts with a recognizable file mark, a loader won't even be
tested for and therefore entering the 'L' option is meaningless.

CHAPTER 34. MIN COMMAND 34-1

Unfortunately, MIN cannot differentiate an OUT, SOUT, or SaBa
tape from a MOUT without directory tape. To speed the processing,
the options'S' (for SOUT) and 'B' (for SaBa) are available. Once
again, if the tape doesn't resemble a SOUT tape, for instance,
entering an'S' is meaningless.

MIN accepts a drive specification option u:DRn", ":Dn" or
u:<volid>" to force the disk files to a specific drive. Note that
this drive specification is an option appearing in the option list
following the semicolon,· not part of any file specification.
Drive specification may be necessary to avoid overwriting existing
files on other drives or to force MIN to place the files on a
drive other than drive O.

If the tape is a MOUT tape with a directory, the options 'A'
(for All), '0' (for Overwrite), 'Q' (for modifying the extension
with Q's) are available. Using the option 'A' will load all files
on the tape overriding the normal operator message for each file.
However, if the ~ile already exists, the operator will be asked if
overwriting is desired and if not, for a new file name. Entering
the '0' option in conjunction with the 'A' will force overwriting
of existing files (unless write protected). If while processing
in the 'All Overwrite' mode a write protected file is encountered,
the message:

WRITE PROTECTED

will appear and processing will continue with the next file.
Entering the 'Q' option in conjunction with the 'A' will put as
many Q's into the directory extension as necessary to create a new
filename/ext if the original one already exists. If the original.
filename/ext exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension
is performed. If the filename/QQQ already exists, the message:

Q OPTION EXHAUSTED

will appear to the right and the file will be skipped.

The option 'N' followed by an octal number allows that
specific file to be loaded. For example, entering:

MIN FILE/TXT;N12

will load the tape file following file mark 12 (octal) to disk as

34-2 DISK OPERATING SYSTEM

'FILE/TXT'. If a non-oct~l number is entered (e.g. NS) the
message:

NUMBER NOT OCTAL

will appear and MIN will be terminated.· MIN bypasses the loader
on a LGO tape before searching for files. If the file specified
is not found, the message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and
the file name was not entered on the command line, the file name
will be requested as described below.

The options 'L', 'C', 'N', 'S', and 'B' are mutually
exclusive. Only one may be entered. The 'A' may be entered with
or wi thout the 'D' and wi th none of the other above options. '0'
and 'Q' are mutually exclusive and may only be entered in
conjunction with the 'A'. If any of these restrictions is
violated or a character other than those above entered, the
message:

BAD OPTION PARAMETER

will appear and the program will be aborted.

34.2.3 Multi-File Named Tapes

34.2.3.1 MOUT With Directory T~pes

Unless overridden with options, these tapes are processed in
the follwing manner. The tape is first identified as:

MOUT TAPE FORMAT

Next the date of creation will be displayed:

DATE: DD MMM YY

Then the directory will be displayed:

DIRECTORY: <file1/ext> <file2/ext> <file3/ext> ..

Then the operator will be asked:

CHAPTER 34. MIN COMMAND 34-3

LOAD <f11e1/ext> ?

If the file is to be loaded the response Y (yes) will cause the
file to be loaded. If the response is N (no), the tape will
advance to the next file (if any) and repeat the question. If the
response is *, control is returned to DOS. If the filename
specified already exists, the message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will cause the message

DOS FILE NAME:

to be displayed on the same line. The operator must then enter a
valid DOS file specification of the form, <name> I<ext>. If the
new name already exists the program will loop back to the 'NAME IN
USE' message again. When there is no conflict the file will be
loaded to disk. The answer > will cause the file to be skipped.
The answer Y (yes) will cause the disk resident file to be
overwritten. If the file to be overwrittten is write protected,
the message:

WRITE PROTECTED OVERWRITE?

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from write protect to delete protect and the disk resident
file is overwritten. When a file has been loaded from the
cassette the message:

LOADED

wi 11 appear to 'the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the program.

For information on the creation of MOUT with directory tapes,
consult the chapter on MOUT.

34-4 DISK OPERATING SYSTEM

34.2.3.2 eTOS Tapes

A CTOS tape will be identified as:

CTOS SYSTEM TAPE FORMAT

The system then searches for the catalog (tape file #1). The
CTOS file is fairly long so it takes a while. If the catalog file
is not an object file or is an object file that loads into memory
somewhere other than 017406 or 017410, the message:

BAD CATALOG

will appear and the remainder of the tape will be processed as a
multiple numbered-file tape starting at tape file #2. If a good
catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <file 3> <file 4>.

Then the operator will be asked:

DO YOU WANT TO LOAD <file 1> ?

If the file is to be loaded, the response Y (yes) will cause the
message:

DOS FILE NAME:

to be displayed on the same line. If the response is N (no), the
operator will be asked for the next file (if any). If the
response is *, control is returned to DOS. If no name is entered,
the message:

NAME REQUIRED
~

will appear. If the filename specified already exists, the
message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will cause the filename request to
be displayed again. The answer > will cause the file to be
skipped. The answer Y (yes) will cause the disk resident file to
be overwritten. If th~ file to be overwrittten is write
protected, the message:

WRITE PROTECTED OVERWRITE?

CHAPTER 34. MIN COMMAND 34-5

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from wri te protect to delete protect and the di sk resIdent
file is overwritten. When a file has been loaded from the
cassette the message:

LOADED

will appear to the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the program.

34.2.4 Multiple Numbered-File Tapes

LGO tapes and MOUT tapes without a directory are both handled
in the same manner. MIN is first executed as:

MIN

An LGO tape will then be identified as:

LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same
manner as described in the section on CTOS tapes above for loading
a file without entering the name on the command line. The files,
however, will be referenced by number instead of by name. The
questions described will be asked for each file on the tape until
end of file has been encountered on the tape or an * is entered in
response to the "load" question. MIN bypasses the loader on a LGO
tape before searching for files.

34.2.5 Double File Tapes

The file specifications for a SOBO tape may be entered on the
command line in the following manner:

MIN [<file spec>J[,<file spec>J;B

File specifications are of the form discussed above. If the
second file name is not giv~n, the first name with the assumed
extension of ABS will be used. If the extension is not given with
the first name, TXT will be assumed. If the filename has not been
entered on the command line, MIN will operate in the same manner

34-6 DISK OPERATING SYSTEM

as described in the section on multiple numbered-file tapes above.
for each file on the cassette, displaying the messages in the same
order for both files.

34.2.6 Single File Tapes

For OUT, and SOUT tape formats, the file specifications may
be included on the command line in the following manner:

MIN [<file spec>J;<option>

where <option> is an'S' for SOUT tape formats.

If the file name has not been entered on the command line,
the program will ask for the file name in the manner described in
the section on multiple numbered-file tapes.

34.3 Tape Formats

MIN will automatically process the tape format by the
following conventions if an option is given.

34.3.1 Single File Tapes

An OUT (object out) tape format has a file mark zero, a file
mark one, an object fi le wi tho entry point, and a fi le mark 0177.
An object file has an address with the MSB and LSB in the fourth
and fifth bytes of each record. Their complements are in the
sixth and seventh bytes. The remainder of each record is filled
with octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a
source file, a file mark one, and a file mark 0177. A source file
consists of records containing only ASCII characters, except for
space compression bytes, physical end-of-record bytes, and logical
end-of-record bytes.

CHAPTER 34. MIN COMMAND 34-7

34.3.2 Double File Tapes

A SaBa (source and object out) tape is the combination of a
SOUT and OUT tape. It has a file mark zero, a source file, a file
mark one, an object file with entry point, and a file mark 0177.

34.3.3 Multiple Numbered-File Tapes

A LGO (load and go) tape has a loader, a file mark zero, a
string of files (the first being an object file and the rest may
be source, object, Databus object, and relocatable code
intermixed) separated by sequential file marks, and a file mark
040.

A MOUT (multiple out) tape without directory has a file mark
zero, a string of files (may be source, object, Databus object and
relocatable code intermixed) separated by sequential file marks,
and file marks 040 and 0177. Single and double file tapes are
included in this category if options are not used.

34.3.4 Multiple Named-File Tapes

A eTaS (cassette tape operating system) tape has a loader, a
file mark zero, a eTaS object file with entry point, a file mark
one" a catalog object file, a string of files separated by
sequential (though not necessarily contiguous) fi Ie marks, and a
file mark 040.

A MOUT (multiple out) tape with directory has a file mark
zero, a tape directory, a string of files separated by sequential
file marks, and file marks 040 and 0177. The di rectory is a
source format file containing a date entry seven bytes long
(tiDMMMYY) and 31 file name entries each eleven bytes long (eight
bytes for the name and three bytes for the extension). The
entries are separated by end-of-string bytes (octal 015). This
makes it convenient for display under eTaS LIST or to load to disk
and 'list.

34-8 DISK OPERATING SYSTEM

34.4 Errors

If the tape format is not one of the eight standard formats
outlined above in the Tape Formats section (e.g. it starts with a
file mark two) the message:

INVALID TAPE FORMAT

will appear and the processing will be aborted.

If the end of tape is detected while processing, the message:

END OF TAPE

will appear and the processing will be aborted.

If a parity error is encountered in an object or Datashare
file on tape, the message:

PARITY ERROR-FILE WILL BE DELETED

will appear, the file name will be removed from the disk
directory, and processing will skip to the next file. If a parity
error is encountered in a source file on tape, the message:

PARITY ERROR-RECORD MODIFIED

will appear, a 253 byte disk record will be written with percent
signs in the first five positions of the record data, and
processing will be continued with the next record.

If an unrecognizable record format is encountered, the
message:

UNRECOGNIZABLE TAPE RECORD FORMAT

~ill appear and MIN will be terminated.

CHAPTER 34. MIN COMMAND 34-9

CHAPTER 35. MOUT COMMAND

35.1 Purpose

The Multiple Out (MOUT) command is useful for writing
multiple (up to 32, or 31 if a directory is used) disk files
(source, object, and Datashate) out to the front cassette drive.

An additional feature is the ablity to create a tape file
directory as file #0 on the tape. The directory is a source
format file, that is, it consists entirely of ASCII characters
except for'space compression bytes, physical end-of-record marks,
and logical end-of-record marks. The directory contains a date
entry seven bytes long (DDMMMYY) and 31 file name entries each
eleven bytes long (eight bytes for the name and three bytes for
the extension). The entries are separated by end-of-string bytes
(octal 015). This makes it convenient to list under CTOS LIST or
to load to disk and list. The directory is also used by the MIN
program to enter files to disk. MOUT creates the directory in
memory before the tape writing starts even if it is not to be
written to tape. The writing of a full tape (over 500 records)
takes about 10 minutes, which shows the advantage of entering all
the names before writing begins.

Another feature is the option to automatically verify a tape
following its creation. Ora previously written directory tape
may be verified in an 'only verify' mode. If this mode is
requested, the system will read the directory on the cassette tape
in the front drive (if a valid directory is not found, the system
will request file names from the operator) and verification will
be performed against the indicated files.

35.2 Use

File specifications and/or options may be entered on the
command line in the fo~lowin~ manner:

MOUT [(file spec>,(file spec>, ...][;options]

File specifications are of the form FILENAME/EXT:DR#. If the
drive is not given, all online drives will be searched starting at
drive zero. If the extension is not given, ABS is assumed. File

CHAPTER 35. MOUT COMMAND 35-1

specs are separated by anything (including multiple spaces) except
letters, numbers, slash (I), or colon (:).

Options (which follow a semi-colon and may be spaced or
separated by commas) are 'L' for a .loader format tape, '0' for a
directory format tape, 'V' for verification of the created tape,
, X' for ve r i f i cat i on 0 n 1 y , an d 'r' (lower - cas e 1 e t t era c t u all y
entered) for output to rear cassette.

If a loader is to be \..Jri tten, the first file (file 110) must
be an object file. There are no restrictions on files other than
110.

The directory option ('D') will write a tape directory as
file 110. The first item within the directory is the date entered
DDMMMYY. The month is entered as three alpha characters. The
date may be entered following the option letter (for example,
D12JAN74). If the date is not entered, it will be requested.

The verify option ('V') will verify all the files on the
created tape. Verification consists of making a byte for byte
comparison between the data on the disk and the data on the tape.
If verification fails, the tape will be rewritten and verification
tried one more time.

The verify only option ('X') will cause the first tape file
to be read from the front deck. If file 110 is a directory (fi rst
seven characters of DDMMMYY format), the remaining files will be
automatically verified using the directory ent~ies. If the tape
begins with a loader, it will be verified and file names requested
for the remaining files as they are verified. An 'N' may be
entered immediately preceding the 'X' to force the system not to
recognize the directory. This would be done if manually entering
file names is desired (for instance, the directory names don't
match the disk file names). If there is neither a directory or
loader, file names are requested as the files are verified.

If" the semi-colon is entered with no entry following, it will
be interpreted that the tape will not have a ~oader, a directory,
or any verification.

Entering '0' and 'L' together or entering anything with 'X'
other than 'N', or entering some letter other than '0', 'L', 'V',
'X', or 'N' will result in the message:

BAD OPTION PARAMETER. MOUT DISCONTINUED.

and the Multiple Out will be aborted.

35-2 DISK OPERATING SYSTEM

If file names and/or options are not entered on the command
line, MOUT will ask for them as required. If options were not
entered, the first question will be:

DO YOU WANT A LOADER?

Replies other than 'Y' or 'N' will be answered by:

WHAT?

and a repeat of the question. If the reply is 'N', the next
question is:

DO YOU WANT A DIRECTORY?

Again, if the reply is other than 'Y' or 'N', it will be answered
by:

WHAT?

and a repeat of the question. If the reply is 'Y', the next
request is:

ENTER THE DATE (DDMMMYY):

where the month is entered as three alpha characters. If the day
is not in the range of 00 to 39, the month not alpha, or the year
not in the range of 70 to 99, the response:

BAD DATE

will appear and again the request for the date. The next question
is:

DO YOU WANT TO VERIFY THE TAPE?

If the reply is not 'Y' or 'N', the response:

WHAT?

will appear ,followed by a repeat of the question. If the reply is
'Y' and the replies to the loader and directory questions were
'N', the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?

will then be asked. If the reply is other than 'Y' or 'N', the
response

CHAPTER 35. MOUT COMMAND 35-3

WHAT?

will appear followed by a repeat of the question. If only
verification is requested, the first tape record on the front tape
deck is read in. If it is a directory (the first seven characters
of DDMMMYY format), the remaining tape files will be automatically
verified using the directory entries .. If it is a loader, the
message:

LGO TAPE FORMAT

will appear. The message:

LOADER IS BEING VERIFIED

will then appear as the loader is being verified. If the loader
verifies correctly, the message:

LOADER OK

will appear to the right. Otherwise, the message:

BAD LOADER

will appear. After checking the loader, or if the tape has
neither a loader or directory, the message:

CASSETTE FILE UXX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE),
(OBJECT), (DATABUS CODE), or (RELOCATABLE CODE) depending on the
file format. If nothing is entered, the message:

NAME REQUIRED

will appear and the request will be repeated. If an asterisk (*)
is entered, MOUT will terminate and return to DOS. If a
greater-than sign (» is entered, the program will skip to the
next file. If a less-than sign «) is entered, the program will
backspace to the prior file (bypassing null files). If the
program finds the beginning of the tape, it will beep and then
move forward to the first file. If a name is entered, the default
extension is 'TXT' for source, 'ABS' for object, and 'DBC' for
Datashare object depending on the file format. If the drive
number is not entered, all online drives will be searched starting
at drive zero. If a drive number greater than DOS allows is
given, the message:

35-4 DISK OPERATING SYSTEM

BAD DRIVE

will appear and the request repeated. If the file is not found,
the message:

FILE NOT FOUND

will appear and the request repeated. If the disk file is found,
it will be matched byte by byte against the di sk fi Ie. If the
files completely match, the message:

FILE OK

will appear to the right and processing continues with the next
file. If an error is detected, the appropriate message will
appear and processing continues with the next file. Null files
are bypassed. Processing continues until an end-of-tape mark
(file mark 040 or 0177) is read at which time the message:

VERIFICATION PHASE COMPLETED

will appear and MOUT will be terminated.

Use of the 'r' option does not change the program operation
described above, it simply causes the rear cassette deck to be
used rather than the front deck.

35.3 File Names

If the file names are not given in the command line, the
operator will be asked for the file names one at a time. The
request is of the form:

CASSETTE FILE XX DOS NAME:

where XX is the file number. Possible replies to the file name
query include:

a) the file specifications as discussed above,
b) a pound sign (D) which will bump the file number to 20

octal if not already there (only allowed on loader tapes to
initiate numbered files on a CTOS tape),

c) a dollar sign ($) which will cause a null file (tape file
mark only) to be written to tape and the file spec of
NULL/NUL to be entered in the directory,

d) an asterisk (*) which will indicate no more files are to be

CHAPTER 35. MOUT COMMAND 35-5

entered and the tape writing started (writing is postponed
until the directory is complete), and

e) OS which will abort the program. The message:
MULTIPLE OUT DISCONTINUED will appear and control is
returned to DOS. (To dump OS/ABS, enter 'OS/ABS').

If the operator fails to enter a name, the message:

NAME REQUIRED

will appear and the name request will be repeated. If the drive
is given and is not in the range valid for DOS, the message:

BAD DRIVE

will appear followed by a re-request of the name. If the file is
not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is
found, the format (object, source, or Datashare) will be
determined by the system. If the tape is a loader tape and. file
#0 is not an object file, the message:

FILE FOLLOWING LOADER NOT OBJECT

will appear along with a re-request of the file name. This
message may also be displayed if the reply to the file name query
for file #0 is a pound sign. Otherwise the messages:

OBJECT FILE

or:

SOURCE FILE

or:

DATABUS CODE FILE

or:

RELOCATABLE CODE FILE

or:

NULL FILE

35-6 DISK OPERATING SYSTEM

will appear to the right of the file name. If the pound sign is
entered for a tape that does not have a loader, the message:

NOT LGO TAPE

will appear with a re-request of the file name. If 32 files (or
31 on a directory tape) are entered, the message:

THAT'S THE END OF THE LINE

will appear and the tape writing is started automatically.

35.4 Writing

Once the tape writing has started, the system will keep the
operator informed of its progress. As a loader is being written,
the message:

LOADER IS BEING WRITTEN

will appear. As a directory is being written, the message:

DIRECTORY IS BEING WRITTEN

will appear. While files (including null files) are being
written, the message:

FILE <filename/ext> IS BEING WRITTEN

will appear. When the writing is completed, the message:

WRITING PHASE COMPLETED

will appear.

If a non-object record is sensed in an object file while
writing to.tape, the message:

FILE CONTAINS NON-OBJECT RECORD

will appear and the next file is written over the bad tape file
including the file mark. This will leave a directory entry
without a file. If this should happen, it will cause verification
to display the message:

NON-SEQUENTIAL FILE MARK

CHAPTER 35. MOUT COMMAND 35-7

and the tape rewritten.

If a non-source record is sensed in a source file while
writing to tape, the message:

INCORRECTLY FORMATTED SOURCE RECORD

will appear. The file is ended at this point without writing the
bad record and the next tape file will start immediately
following. If this should happen, it will cause verification to
display the message:

INCORRECTLY FORMATTED DISK RECORD

or:

TAPE EOF BEFORE DISK EOF

and the tape rewritten.

If MOUT runs out of tape, the message:

END OF TAPE ENCOUNTERED WHILE WRITING filename/ext

will appear, an end of tape marker written at the end of the
previous tape file, and the unwritten files will be removed from
the directory (if there is one). Processing then will be continued
with verification.

35.5 Verifying

If verification is requested, the system will keep the
operator informed of its progress. As a loader is being verified,
the message:

LOADER IS BEING VERIFIED

will appear. As a directory is being verified, the message:

DIRECTORY IS BEING VERIFIED

will appear. While files (including null files) are being
verified, the message:

FILE filename/ext IS BEING VERIFIED

35-8 DISK OPERATING SYSTEM

will appear. When the verification is completed, the message:

VERIFICATION PHASE COMPLETED

will appear. If verification is requested for a tape having no
directory, the message:

NOT DIRECTORY TAPE

is displayed. Then the message:

CASSETTE FILE nXX(format) DOS FILE NAME:

will appear. The filename should be entered. Responses are
discussed in the section under OPTIONS.

A variety of error messages may be displayed during the
verification phase. Most of them are self-explanatory. They
include:

BAD LOADER

BAD DIRECTORY

TAPE FILE DOES NOT MATCH DISK FILE

INCORRECTLY FORMATTED DISK RECORD

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT RECORD.

NON-SEQUENTIAL FILE MARK.

TAPE FILE MARK RtAD BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOT FOLLOWED BY TAPE FILE MARK.

DISK EOF BEFORE TAPE EOF

TAPE EOF BEFORE DISK EOF

If an error is detected, the program will then either rewrite
the tape (if it has just been created) or skip to the next file
(if in the 'verify only' mode). If it rewrites the tape, the
message:

I'M NOW REWRITING THE TAPE

CHAPTER 35. MOUT COMMAND 35-9

will appear. The system will rewrite once before quitting
completely at which point the message:

VERIFICATION UNSUCCESSFUL

will appear and the processing terminated.

If a problem arises that causes an abnormal end (e.g. end of
tape), the message:

MULTIPLE OUT DISCONTINUED

will appear, otherwise the message:

MULTIPLE OUT COMPLETED

will signal the successful end of the program.

ERROR D ON DECK 2

will signal parity errors on the cassette and control is returned
to DOS.

35-10 DISK OPERATING SYSTEM

CHAPTER 36. lAME COMMAND

36.1 Purpose

The NAME command allows the user to change the name of a
file, the extension of a file, or the subdirectory in which a file
resides. However, the contents of the file and the volume on
which it resides are not affected in any way.

36.2 Use

The NAME command is invoked by the operator entering a
command line of the form

NAME <file ~pecl>[,<file spec2>][,<subdirectory name>]

The first file specification refers to the current file name
and the second file specification is the new name and/or extension
to be assigned. If no extension is supplied in the first file
specification, ASS is assumed. If no extension is supplied in the
second file specification, the extension of the first file is
assumed. If no filename is given in the second file
specification, the name of the first file is assumed. The drive
number should only be specified in the first file specification.

If the NAME command is used to move a file from one
subdirectory to another the second file specification may be
omitted (unless the filename and/or extension are to be changed)
and the subdirectory name denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file specl>,,<subdirectory name>

If no subdirectory name is entered, the file 1s placed in the
current subdirectory.

If the first file specification is not given, the message

NAME REQUIRED.

will be displayed. If the second name is already defined on the
drive that contains the first file, the message

CHAPTER 36. NAME COMMAND 36-1

NAME IN USE.

will be displayed. Note that the drive specification on the
second name is ignored. If the first name is not found on an
online disk, the message

NO SU CH NAME.

will be displayed. If the subdirectory name keyed is not found
on the disk containing the file to be renamed, the message

NO SUCH SUBDIRECTORY.

will be displayed.

36-2 DISK OPERATING SYSTEM

CHAPTER 37. PUTIPL COMMAND

37.1 Purpose

The PUTIPL command writes an IPL (Initial Program Loader)
block and DOS boot blocks to the disk.

37.2 Use

PUTIPL (:DRIVE)

If the drive number is not specified in the command line,
PUTIPL will display the following:

LOGICAL DRIVE TO BE WRITTEN (O-max OR "*" TO EXIT TO DOS):

Respond with the drive number that you want to write to.

CHAPTER 37. PUTIPL COMMAND 37 -1

CHAPTER 38. PUTVOLID COMMAND

38.1 Purpose

The PUTVOLID command writes a symbolic volume identification
(VOLID) onto a disk.

38.2 Use

PUTVOLID <volid> <:drive>[;<owner id>]

Where <volid> is 1 to 8 characters in length, <drive> is the
logical drive to be written to, and <owner id> is any information
the user wants.

If only a drive number is entered, the existing <volid> for
that drive will be displayed.

If the information on the command line is incorrect in any
way, an error message will be displayed with the proper format to
enter.

CHAPTER 38. PUTVOLID COMMAND 38-1

CHAPTER 39. REFORMAT COMMAND

39.1 Purpose

The DOS REFORMAT command is used to change the internal disk
format of text-type (non-object) files. Additionally, it can
recover di sk space left unused when files are updated by the
DATASHARE indexed sequential access method. REFORMAT can compress
a file in place on disk provided that such compression does not
en tail the wri ting of a phy si cal di sk sect or pri or to the time
that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked
to be sure it can complete its job successfully.

39.2 Use

When the REFORMAT program is to be executed, the operator
must type:

REFORMAT <file-spec)[,<file-spec)J[;<parameters)J

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification. '

The parameter list describes the format the output file is to
take, and whether REFORMAT is to free any di sk space that might be
vacated by the reformatting process. In addition, the user can
speci fy that REFORMAT is to pad short records, and ei ther truncate
or segment long records. REFORMAT will produce three different
kinds of output files: record compressed, space and record
compressed, or blocked records (see the section on TEXT FILE
FORMATS) . Note that REFORMAT wi 11 not prod u ce blocked space
compressed records or space compressed non-record compressed files
al though such files can be used as input to the REFORMAT program.
If no parameters are given, the output file is blocked one record
per sector.

CHAPTER 39. REFORMAT COMMAND 39-1

Parameters passed to REFORMAT may be separated by spaces or
commas. The valid parameters are as follows:

Parameter Description

8<n> The output file will be blocked. This implies no space
or record compression, with <n> logical records per
physical sector.

C The output file will be space and record compressed.
The number of logical records per physical sector will
be indeterminate.

R The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
indeterminate.

L<n> The length of each logical record will be adjusted to
<n> characters. ' Note that if the logi cal records are
space compressed, this will not make the physical length
of the records <n> characters. If the logical record is
shorter than <n> characters, it will be padded with
blanks to the proper length. If the logical record is
longer than (n> characters, the action taken depends on
the T and S parameter.

T (Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

S (Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

If neither S or T is specified, and an input record of
length greater than <n> is found, a message is issued
and REFORMAT gives up.

D If reformatting is done in place and this parameter is
specified, any disk space vacated by the reformatting
process will be returned to the operating system for
re-use.

39-2 DISK OPERATING SYSTEM

39.3 Output File Formats

The REFORMAT utility permits you to select essentially three
different output file formats. It will produce blocked files that
are not space compressed, record compressed files that are not
space compressed, and files that are both record and space
compressed. In addition, it has a subcommand to permit you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has1exactly the same
logical length. Note that if the output format does not specify
space compressi"on, the physical length of each record will be
identical. This is especially useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two subcommands available to tell REFORMAT what to do
with records ~hose logical length exceeds ~he specified output
length. You may select either truncation of the input record, or
you may segment it into two (or more) output records, each of the
logical length specified.

39.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - which
record and space compresses its output. REFORMAT can then
reprocess the file into the correct format for DATASHARE or
DATABUS random access.

Secondly, when a file is accessed with DATASHARE indexed
sequential access method, any additions or deletions result in an
increase in the physical size of the file. The reason for this is
that any inserted records are placed at the physical end of the
file, and each one consumes at least one entire physical sector,
regardless of its logical length. Similarly, deleted records are
simply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

CHAPTER 39. REFORMAT COMMAND 39-3

39.5 Reformat Messages

The REFORMAT utility program produces several messages on the
operator's console. The contents and where necessary, meaning of
those messages follow: ~

DOS. VER 2 REFORMAT COMMAND - date
Self-explanatory sign on message.

COMMAND LINE ERROR: 015 missing
This is an internal error and should be r'eported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED
TO PREVENT POSSIBLE LOSS OF DATA

REFORMAT has detected an invalid end of file mark. In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS
DELETE PROTECTED.

Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE
WRITTEN INTO OR SHORTENED.

You have requested REFORMAT to output td a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter list.
This message is followed by the valid options you may
specify.

I~LEGAL, CONFLICTING OR DUPLICATE OPTIONS
You have specified two mutually exclusive options~

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION.
YOU CANNOT HAVE BOTH

Self-explanatory.

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS
Self-explanatory.

BLOCKING. FACTOR REQUIRED BUT MISSING OR ZERO FOUND
You specified blocking but omitted the blocking
factor.

39-4 DISK OPERATING SYSTEM

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND
You must speci fy the logical record leng th of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two·file specifications.

HOW DO YOU EXPE CT TO FIT TH AT MANY RECORDS IN A
256 BYTE SECTOR? .

Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED, MUST
BE < 250 BYTES.

Self-explanatory.

YOU R BLOCKING FACTOR IS TOO LA RGE FO R THE SI ZE
OF THE RECORDS YOU HAVE.

Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE
SIZE OF THE RECORDS YOU HAVE

While process~ng the input file, REFORMAT came across
a record that was larger than the specified logical
record length. Since you specified neither
segmentation nor truncation, this is recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. FILES CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self-explanatory.

YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE
DO NOT SPECIFY ANY OUTPUT FILE.

Self-explanatory.

CHAPTER 39. REFORMAT COMMAND 39-5

OUTPUT FILE NOT FOUND ON DRIVE X.
OUTPUT FILE FOU ND ON DR IVE Y.
OUTPUT FILE WILL BE CREATED ON DRIVE Z.

These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either the second or third.
REFORMAT could not find the output· file on the same
dr i ve as the input file. It ei ther found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same dri ve as the one the input fi Ie is
on.

REFORMAT IN-PLACE REQUESTED.
PRESCAN IN PROGRESS.

REFORMAT is checking to make sure it can properly
process the file inplace.

FILE ALREADY WAS IN THE· SPECIFIED FORMAT
Self-explanatory.

COPYING WITH REFORMATTING IN PROGRESS
Self-explanatory.

REFORMAT-IN-PLACE IS IN PROGRESS.
DO NOT DISTURB!!!

Self-explanatory.

NA ME REQUI R ED
Either you gave only an extension or drive for the
input file, or you specified the output file first,
followed by the input file.

INVALID DEVI CE
An invalid drive was specified for the input file.

NO SUCH NAME
The input file specified cannot be found.

INVALID DRIVE SPECIFICATION
The drive specification entered for one of the file
specifications was not in a valid format.

39-6 DISK OPERATING SYSTEM

39.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various control characters with special meanings. It
is illegal to have the control characters in the text portion of
the file. According to DOS convention, any character between 000
and 037 is considered a control character.

Each physical record of a text file is a logical disk sector,
and contains 256 characters. Th.e first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
format of a logical sector is as follows:

Offset Length
(octal) (octal)

000 001

001 002

003 373

376 002

Description

Physical file numb~r of this file. For a
detailed descriptio'. of physical file
organization, see the chapter on System
Structure.

Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

Text. 251 bytes of text and control characters,
depending upon the format of the file.

Two characters reserved.

The text part of each file is considered a logical stream,
crossing sector boundaries without being logically discontinuous.
Demarcations of logical record boundaries are made solely by
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 used to
denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
<ENT) used to denote the end of a logical record, and 032 <DEL)
used to denote de leted data.

CHAPTER 39. REFORMAT COMMAND 39-7

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the da ta contain ed in them. In this wa y, a
proliferation of different file structures and the special
routines needed to treat such special cases have been avoided.
This does not mean that there cannot be a relation between
physical and logical structure, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as a special case. For example, random access to a data
file is defined in the DATABUS ·language. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is
not inherent in the makeup of a random file, in fact, such files
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is, of no pre-determined length.
Instead, the record is terminated with a single ENT character. In
this way, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. The character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP
can never occur as the next-to-last text character in a physi'cal
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for-a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records whi Ie for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, 'a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000 000 000 000 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

39-8 DISK OPERATING SYSTEM

CHAPTER 40. REWIND COMMAND

40.1 Purpose

The REWIND command causes the front or rear cassette deck to
rewind the cassette in place.

40.2 Use

The REWIND command is entered as:

REWIND [<deck>]

If the <deck> entry is not made, the cassette in the front deck
will be rewound. I f <deck> is specified the cassette in the rear
deck will be rewound. The actual: values entered for <deck> are
"REAR" or "DECK1". If some unrecognizable entry is made for <deck>
the entry will be ignored and the front deck will be rewound.

REWIND returns to the operating system as soon as the
cassette rewind operation has been started. If no cassette is in
place in the specified deck the error message:

NO CASSETTE IN SELECTED DECK.

·The cassette can be fully wound onto the clear leader at the
reverse end of the tape, since the rewind command starts by
slewing the tape backwards for a few seconds first. This action
takes up any slack that may be present in the cassette before the
high-speed rewind starts, and also ensures that the tape is not on
the clear leader when the actual rewind begins.

CHAPTER 40. REWIND COMMAND 40-1

CHAPTER 41. SAPP COMMAND

41.1 Purpose

The SAPP command allows appending two text files to create a
single larger file, or copying one text file to another,
recognizing the end of file and not copying unused file space.

41.2 Use

SAPP <file spec>,[<file spec>J,<file spec>

The SAPP command appends -the second sour ce fi Ie after the
first and puts the result into the third file. If extensions are
not supplied, TXT is assumed. The first two files must exist. If
the third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. Note that neither the first or
second file is changed.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed.

The second and third file specifications must not be the
same.

CHAPTER 41. SAPP COMMAND 41-1

CHAPTER 42. SORT COMMAND

42.1 Purpose

The Disk Operating System SORT provides a facility allowing
any Datapoint disk user to initiate file sorts directly from the
keyboard. The SORT can resequence the records of a file in
ascending or descending order based on a key defined by a set of
character column positions. SORT provides considerable control of
the output record format, and can even output directly to a local
or servo printer.

For more sophisticated uses, SORT may be called from other
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name which may then be
invoked either from the keyboard or another program. CHAIN also
extends the SORT package to operate as a merge.

42.2 Use'

SORT is invoked using a command line of the format:

SORT <in>,<out>[,<drv>][,<seq>][;<options>]

<in> is the input file
<out> is the output file
<drv> is the SORT work file drive specification
<seq> is the collating sequence file
<options> include specifications for the following:

output file format (I, C or N)
special output record format, (L, T, ,or K)
h a r d co py 0 u t pu t (H or X)
collating sequence order (A or D)
primary/secohdary record specification (gnnntc)
sort key specifications (sss-eee)

All the fields of the command line are explained .. in detail
later in this chapter.

CHAPTER 42. SO RT COMMAND 42-1

~2.3 Fundamental SORT Concepts

~2.3.1 File Formats

All Datapoint systems use a universal text file structure
recognized by Databus, COBOL, RPG, Basic, Scribe, Editor,
Assembler, terminal emulators, and so on. Therefore, any text file
generated by or for any of the above may be sorted. The file to be
sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Blocked
or Sequential. Blocked files are requir~d to have a single
'string' or 'record' of data per physical disk record. The
maximum record size for blocked records is 249 bytes (plus
end-of-record and end-of-sector control bytes for a total of 251
bytes). Sequential records have no,fixed relationship to physical
disk records and are written as densely as possible in the given
file space. Nonetheless, blocked files can be read sequentially
in the identical way that sequential files are read. In fact,
both types of files, when read sequentially, are
indistinguishable. Blocked files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

Space compression implies that the logical position and the
physical position of a character in a record may differ. SORT
will always expand the spaces to determine the logical position of
a character.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a new file which is a
restructured copy of the original file. The original file is
never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with some restrictions; see the section on
Input/Output File Format Options).

42-2 DISK OPERATING SYSTEM

42.3.2 The Key Options

The KEY of a sort is the field or that part of the record
which is to order the sequence of records. For instance, it can
be a person's name, state, employee number, amount in debt or any
aspect of the data base identifiable by a fixed position in the
record, based upon the column count from the beginning of the
record.

Consider the following record (column count scale below for
ref ere n ce 0 n 1 y) :

Mule, Francis A. 242219 123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee number
spans columns 24-29. The street address is 31-42. The city is
43-58. The State is 59-60

If each person had a record in the file exactly in the above
format, SORT could order the sequence of records in the file by
any of the above fields. For instance, to get an alphabetical
list of the records by name, the key would be 1 to 22 (hereafter
referred to as 1-22). The key for sequencing the file in order of
employee number would be 24-29. The key for ordering the records
by state then ci ty and then employee number would be
59-60,43-58,24-29.

Any portion of the record can be used as a key. Care must ,be
taken when selecting a key to include no more characters than
necessary, since each character added to the key slows down the
sort.

The key specified for SORT is concatenated to a single
string, then sorted character-by-character, with the left-most
character being of most significance. It is very important to
realize the effects of a right-to-left character sort. To appear
in the correct sequence, numeric fields must be right-justifi~d,
character fields must be left-justified. If signed numeric fields
are sorted, the sign should be moved to the left-most posi tion and
the magnitude right-justified; otherwise the resulting sorted

,sequence will contain positive and negative values in no
di scerni b le or der, since the "-" and "+" si g ns are just another
character to SORT. A full explanation of character sort concepts
is beyond the scope of this manual. Interested users should
consult an appropriate information science textbook.

CHAPTER 42. SORT COMMAND 42-3

42.3.3 How to Sort a File

File sort operations are initiated by a single command line.
All the operator must. know is the name of the fi Ie to be sorted,
the name desired for the sorted output file, and the :columns
containing the key.

For instance, the keyboard issued command for the above
example to sort on the name field (1-22), would' be:

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFILE. It
is also the operator's decision as to what the resultant sorted
file is called, as the command could have easily been:

SORT EMPLFILE,EMPSORT;1-22

as well. The second file named is where the resultant sorted
output will be placed.

More complicated keys may be stated as well and the command
to sort by state and then name would be:

SORT EMPLFILE,SORTFILE;59-60,1-22

That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a
source code file for a Databus or Assembly language program on the
disk. Such programs can be sorted by op-code and provide an
interesting analysis of the usage of each instruction type:

SORT INFILE,OUTFILE;9-12

42.4 SORT Command Line and Options

42.4.1 Generalized Command Statement Format

The following i,s the generalized statement format for the
Datapoint DOS SORT:

SORT <in>,<out>[,<drv>][,<seq>][;[f][o][r][h][gnnntc][k 1] ... [,onJ[,knJ]

In the options field commas may be used to separate

42-4 DISK OPERATING SYSTEM

parameters; commas must be used to separate sort key groups (k n)
and order specifications (on) when more than one of either is
used. The fields and option parameters definable on the SORT
command line are:

<in>. . Input file specification. This file must exist on
disk. The default extension for the input file is
'TXT' •

<out> •.••• Output file specification. If the specified
output file already exists, it will be
overwritten. The default name of the output file
is the same as that entered for the input fi le.
The default extension of the output file is the
same as that entered or assumed for the input
file. The output file cannot be the same as the
input file.

<drv> ...•. SORT work file drive specification. Only a drive
specification of the form :Dn or :<volid> is legal.
in this field; entering a name or extension will .
cause SORT to abort. SORT attempts to optimize.
its speed by placing its work files on a drive
separate from the input or output files. Unless
otherwise directed by this field, SORT creates its
work files on the first available disk, starting
with the highest-numbered drive online and
checki ng in descend i ng or der for a di sk wi th any
roo m fo r wo r k f i 1 e s . I f SO RT s e 1 e c t s a dr i ve wi t h
insufficient space, it will abort later.
Specifying a work drive wi th plenty of free space
can avoid this occurrence.

<seq> ••••. Non-ASCII collating sequence file. Specifies a
file containing the character collating sequence
to be use d for the so r t • I f no t use d, AS C I I
sequence will be assumed.

SORT option parameters:

f . • • Format of output file.
and N.

Codes recogn i zed ar e I, C,

The I option specifies a blocked output file and
may be used only if the input fi le is also
blocked. If the input file is blocked one record
per, sector and the I op~ion is specified, then the
output file will also be' 'blocked one record per

CHAPTER 42. SO RT COMMAND 42-5

sector. Refer to the previous section of this
ch~pter for a discussion of text fi Ie formats,.

The C option specifies a record compressed output
file and may be used regardless of the input file
format. The default output file format is record
compressed, so the C option is never required.

The C and I options are mutually exclusive.

The N option specifies no space compression of the
output file. By default, SORT writes the output
fi Ie wi th the same compression format as the input
file. That is, if the input file is space
compressed, the output file will be also; if the
inp~t file has no space compression,the output
file will not be space compressed. If the N
option is used the output file will have no space
compression even if the input file is space
compressed.

The N and I options are mutually exclusive. If
the input fi Ie is blocked then eaqh record of the
output file is simply an exact copy of the input
file record. Normally, blocked files will not be
space compressed.

o Collating sequence order. The options entered may
be A (ascending) or D (descending). The default
sequence is ascending. If some keys are to be
sorted in ascending order and other keys in
descending order, the "on" specification
described below should preceed each key whose
order differs from the order of the key preceeding
it. However, if all keys are to be ordered in the
same sequence, this option need only be specified
once.

r .•.•••. Record format. This parameter specifies a special
output record format: L for Limited output file
format, T for Tag file output, or K for Key tag
file output. The default value is no special
output record format, so that the records in the
output fi Ie wi 11 be exact copies (full image
records) of the records in the input file.

Normally the sort transfers all of the records of
the input file to the output file. It is

42-6 DISK OPERATING SYSTEM

possible, not only to transfer part of each
record, but to select only certain records or to
include constant literals in each record as well.
Including the 'L' parameter in the li st of
parameters will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited Output
Format Option.

By entering the 'T' character, an output file is
generated which consists only of binary record
number and buffer byte poi nter s to the inpu t fi le
records. See the section on Tag File Output
Format Option.

By entering the 'K' character, a standard text
format output file is generated which consists of
records containing a 5 byte user logical record
number, a 3 byte buffer address, and the key.
These records are space-compressed and have
trailing spaces truncated. See the section on
Key tag File Output Format Option.

h •.•.... Hardcopy output. Entering options H or X causes
the output of SORT to be listed on a printer. H
specifies a local printer for output; X specifies
a servo printer.

gnnntc. .

When hardcopy output is used, the output file
spepification becomes optional. If an output file
was specified, SORT will wri te an output di sk file
as well as printing its output. If no output file
was specified, SORT will produce only printed
out put. Except when per formi ng hard co py output
the output file specification must be entered on
the command line.

If hardcopy output is specified, limited output (L
option under "Record format" above) must also be
specified. For more information see the section
on Hardcopy Output Option.

Primary/Secondary SORT specification. These
parameters are all a single option and must be
entered completely and in the order indicated.
The separate parameters of the option are listed
below.

CHAPTER 42. SO RT COMMAND 42-7

g •...... Group indicator. Specifies that the input file
consists of primary and secondary records and
specifies which group is to be sorted. The
character specified may be P for primary or S for
sec 0 n dar y • The re is no d e f a u ltv a I u e •

In a file with primary and secondary records, a
string of records with a primary record as the
first record and secondary records following it is
considered one block, or group, of records.

When the file is sorted on primary records the
output file has the blocks of records re-ordered
so that the primary records are in the sorted
sequence; no change is made in the sequence of
the secondary records following each primary
record.

When the file is sorted on secondary records and
the first key specified is in ascending sequence,
the output file has the blocks of record$ in the
same order as in the input fi Ie, and the secondary
records within each block in the sorted sequences.

When the fi Ie is sorted on secondary records and
the first key specified is in descending sequence,
the output file has the blocks of records in
reversed order as the input file, and the
secondary records within each block in the sorted
sequence.

SORT has no provIsIon for the sorting of primary
and secondary records in the same SORT run.

nnn •....• Numeric position of primary/secondary flag. This
parameter specifies the character position for the
character (the 'c' parameter) indicating whether
the record is a primary or secondary record. The
number must be within the range 1 to 249. It is
not necessary to enter lead ing zero es to pad the
number out to three digits, but do not use any
leading blanks or an error will result.

t .•..•.. Type of evaluation. This parameter specifies
equivalence or inequivalence of the group
indicator character; that is, whether the
character in the record should be equ al to or not
equal to the character specified. The actual

42-8 DISK OPERATING SYSTEM

c • • • • • • •

k 1. • • • • • •

On · · · · · · ·

k n • • • • • • •

character entered is ':' for equal or 'H' for not
equal. There is no default value, either ,-, or
'H' must be entered.

If ':' is given then if the character in the nnnth
position of an input file record is equal to the
group indicator character (indicated by 'c' below)
then the record is a member of the specified sort
group (ind i ca ted by 'g' above). Otherwi se, it is
not a member of the specified group.

Character, group indicator. This parameter
specifies the actual test character for
determination of a record's membership in the sort
group. The actual character entered may be any
8-bit value except 015 (ENTER value). There is no
default character: the character immediately
following the 't' parameter is taken to be the 'c'
parameter (except 015, which would be an error).

Sort Key specification, sss-eee. If no key is
s p e c i fie d , the SO RT will ass u me 1 - 1 0; that is, t h ~
first ten characters of the record.
sss is the starting key position.
eee is the ending key position.
The key is limited to 118 characters and must be
contained within the first 249 characters of the
record.

Order for the nth sort key. May be A (ascending)
or D (descending) as described for the "0"
parameter above. If omitted the order used on the
previous key is assumed.

The nth sort key specification (sss-eee). The
maximum number of keys is simply the number that
can be typed on the command line without exceeding
the line length.

42.4.2 Keys: Overlapping and in Backwards Order

The key specification need not be only forward. A
specification of 17-12 will cause the 6 delimited characters to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or
character last.

CHAPTER 42. SO RT COMMAND 42-9

Key s pe c i f i cat ions may a I so be 0 v e r I a p pin g : 1 - 2 0 , 3 0 - 1 5
overlaps 15 to 20. When this occurs, the system will optimize the
sort and save time over re-sorting on those columns again.

42.4.3 Collating Sequence File

By specify ing a sequence file, the us er may substi tu te an y
collating sequence for the standard ASCII character set. The
sequence file may have any name, but the extension must be "/SEQ"
(SEQ is the default extension). If the di sk drive number on which
the file resides is omitted, SORT defaults to the same drive from
which the SORT itself was loaded. This table may be supplied by
the user but must meet certain requirements to be loaded:

1. It must be an absolu te object fi Ie.
2. It must begin loading at location 027400.
3. The first eleven bytes must contain the file name and the

extension must be SEQ. (Full 8 - character f~le name with
trailing blanks, then extension.)

4. The table itself must begin loading at location 027400 and
occupy 256 bytes (overstoring the file name described in
3). For ins tan c e, th e so u r c e fo r th e E BCD I C seq u e n c e f i I e
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400.
DC 0,1,2,3,4,5,6,7,

5. If the file is not found on the specified disk drive the
following message is displayed:

SEQUENCE FILE NOT FOUND

6. If the file is found but is not an absolute object file
the following message is displayed:

SEQUENCE FILE FORMAT ERROR A

7. If the file format appears valid, the file will be loaded
using DOS routine LOADX$. LOADX$ will return an error
code if the load is unsuccessful. The following display
will noti fy the user of the error:

42-10 DISK OPERATING SYSTEM

SEQUENCE FILE FORMAT ERROR n

where n=O if file does not exist
1 if disk drive is off-line
2 if directory parity fault
3 if RIB parity fault
4 if file parity fault
5 if 0 ff end of phy si cal fi Ie
6 if record of illegal format

42.4.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Ms. Aardvark would be
last. The order of collation, when alphabetic, numeric, and
punctuation characters all can occur in a column together, follows
the character set order. The sequence may be specified for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of the key in ascending order and portions in descending
order.

42.4.5 Input/output File Format Options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will provide SORT with all of the records in the
file whether the file was originally blocked or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If the input file is blocked, that is one logical record or
string per physical disk record, then you have a choice of output
formats (f option). If 'I' is chosen, that is blocked, then each
output di sk record wi 11 contain an exact copy of the appropriate
input file record. If' I' is not specified, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in record-compressed sequential
format.

If the input file is sequential in its original format, then
there is only one choi ce for the ou tput format; the ou tput fi Ie
format for a sort on an input file which is sequential must be

CHAPTER 42. SORT COMMAND 42-11

sequential.

42.4.6 Limited Output Format Option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an inte~nal company telephone directory.
However, it is obvious that a Ii that is needed is the name and
telephone number, not all the other payroll information.
Therefore, SORT permits transferring only that part of the data
base desired.

If the 'L' option is entered in the SORT command line, the
operator will be prompted for a second input line when the program
displays a message:

LIMITED OUTPUT FILE FORMAT:

The cursor will be left flashing on the bottom line of the CRT and
the program will wait while the operator enters the limited output
specification line. This line may contain any number of
specifiers, as defined below, so long as it fi ts on a sing Ie screen
entry line. The limited output specificatin must consist of at
least one valid character output specification.

The following is the generalized statement format for the
limited output specification:

{ (s ss [- eee] 1 * I 'q q q ,) [I (P I nn n t c [&nnn t c [.•.]])] } [, { < 1 i ms pe c> } •..]

Different items within parentheses are separated by a
vertical bar (I); only one item within parentheses may be
specified in a limitation specification item. The
collection of items within the braces ({}) constitute a
limitation specification item. As many limitation
specification items may be entered as will fit on a single
entry line. The upper-case letter P and the special
characters hyphen (-), asterisk (*), single quote ('), slash
(/), and ampersand (&) represent actual literal characters
entered in the limitation specification line. The
lower - case 1 e t t e rs rep res e n t d iff ere nt val u es w h i ch will be
entered on the limited output specification line.

The following list defines the parameters which can be

42-12 DISK OPERATING SYSTEM

specified:

Parameters to specify characters output:

sss[-eee].

*.

'qqq' •....

(~

Delimited ,character output from input record.
Causes the characters from the specified
columns of the input record to be copied to
the output record.
sss is the starting column position.
eee is the ending column position.
The eee specification is optional; if not
specified only the single character at column
sss wi 11 be copied.
The column numbers specified must be in the
range of 1 to 249.

ASCII TAG output. This parameter specifies
that an ASCII pointer to the input record
will appear in the output record. The ASCII
pointer is a text numeric field with a
5-digit logical record number followed by a
3-digit byte pointer. The logical record
number references the user LRN in which the
text record begins; this number can be used
for DATASHARE random access or other similar
applications. The byte pointer points to the
first byte of the text record within the
spe ci fied L RN ; this number c an be us ed to
tab within DATASHARE random access or other
similar applications. The maximum value for
the logical record number is 65,535; the
maximum value for the byte pointer is 250.
If the 'I' format option was specified in the
command line option field, no byte pointer
will be written. When the input file is in
'I' format the logical record number alone is
sufficient to identify the text records,
since each logical record always then begins
in byte one.

Quoted character string. This parameter
s p e c if i es an a c tu al s t ring of quo te d
characters that is to be copied into the
output record. The quoting symbol is the
single quote mark, or apostrophe ('). The
string may include any characters except an
apostrophe or an 015, and must be less than
90 characters long.

CHAPTER 42. SO RT COMMAND 42-13

Parameters specifying special conditions for output. If
used, these parameters must immediately follow one of the
character output parameters. A slash (/) separates the
conditional parameter from the character output parameter to
which it applies.

P. • • •

nnntc.

Primary record to be source. This parameter
specifies that the information specified by
the preceeding character output parameter is
to be extracted from the primary record for
the current record block, rather than the
present (secondary) record. This parameter
has no effect when an output record is being
generated from a primary record.

Conditional output dependent on character
evaluation. The nnntc parameters constitute
a single item and must all be specified in
the correct sequence if the option is used.
As indicated in the prototype specification
line, multiple character evaluation
specifications may be entered following a
single character output parameter, separated
from each other by ampersands (&). If such
multiple parameters are used the specified
characters will be output if all the
evaluation conditions are satisfied.

nnn. Numeric posi tion of evaluation character.
This parameter specifies the character
position for the character (the 'c' parameter
below) indicating whether the information
specified by the prior set of character
output positions is to be copied from the
input record to the output record. The
number must fall in the range 1 to 249.

t. . ••... Type of evaluation. This parameter specifies
the equivalence or inequivalence of the
evaluation character; that is, whether the
character in the input record should be equal
to or not equal to the evaluation charater.
The actual character entered is ':' for equal
or '/I' for not equal. If the evaluation is
satisfied, then the information specified by
the prior set of character output positions
will be copied to the output record.

42-14 DISK OPERATING SYSTEM

c •.••..• Evaluation character. This parameter
specif ies the actual test character for
record evaluation. The actual character
entered may be any character except 015.

The limited output specification can specify that only
a portion of each input record is to be transfered to the
output file. Should the response "1-10" be given to the
limited output format request, only the first ten characters
of each record will be transferred to the output file. A
specification of "1-10,50-10" would transfer thirty-one
characters from each record of the input file to the output
file. The eleventh character in the output record would be
the fiftieth character of the input record, and so on.

To permi t even mo re uti 1 i ty in report ge ner a ti on, SO RT
allows inclusion of constants in the output record that did
not occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employee's name appears in columns
80 to 110 and his telephone number was in columns 111 to
180. To make a telephone directory in alphabetical order,
one could answer the following to the limi ted output fi le
format request:

8 0- 1 1 0 " - ',111 - 1 8 0

This specification would put out the name followed by
one space, a hyphen, one more space and the number. Any
number of input file fields and constants can be placed in
the output file up to the limit of the line on which the
specification is typed.

Often not every record of the input file is needed in
the output file. Limited output allows selection of parts
of records from the input file, based on character
evaluation on character position. For example, if a
primary/secondary file is being sorted and only the primary
records are desired in the output fi le, the command could
appear as:

SORT INFILE,OUTFILE;LP1=*,2-10
LIMITED OUTPUT FILE FORMAT: <--(program displays)
1-85/1=*

Columns 1-85 of the input record will be written to the
output file if column 1 is an *

CHAPTER 42. SORT COMMAND 42-15

Limited output can be used to make more complex
selections. If it is desired to output records containing a
o in column 5 OR a 1 in column 6, the command would be:

SORT INFILE, OUTFILE; L5-8 , 12-15
LIMITED OUTPUT FILE FORMAT: <--(program displays)
1-85/5=0,1-85/6=1

Since the limited output specification is based on columns
of the input record, if a record had both a 0 in col umn 5
and a 1 in column 6, its columns 1-85 would appear twice (a
170 character record) in the output file.

To output only records containing a 0 in column 5 AND a
in col umn, 6 the command wou ld be:

SORT INFILE,OUTFILE;L5-8,12-15
LIMITED OUTPUT FILE FORMAT: <--(program displays)
1-85/5=0&6=1

There is no relationship between the primary/secondary
specification on the command line and the conditional output
specification on the limited output format line.

Al so note that the output fi Ie may require
proportionally less room than the input file when limited.
Often this fact can be put to use when the di sk fi Ie space
i s n ear lye x h a u s ted an d a so r tis r e qui red .

42.4.7 TAG File Output Format Option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk merely to have it in different sequences
consumes a lot of di sk space, and indeed if the fi Ie is a very
large file many copies of it may not fit onto one or even four
di sk packs.

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long:
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer POinter, a pointer to the beginning of the actual
desired record within the disk physical buffer).

SORT provides for the generation of such an indexing file, a

42-16 DISK OPERATING SYSTEM

TAG file, by the 'T' variation of the 'r' option. A TAG file may
be generated for either a sequential or blocked file, and will
have the same format for either fi Ie. The format of a TAG fi Ie is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The fo r mat 0 f the po in t e r is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
di sk record.

4. The Physical-End-Of-Recordmark is an 003 and the rest ODD's.

5. The End-Of-File mark is: beginning at the first byte in the
physical record, six ODD's, one 003, and the rest ODD's.

TAG files may be used by assembly language programs or by RPG
II (as Record Address files).

For users writing their own Assembly language code to use a
TAG file, it is important to know that the MSPLRN and LSPLRN are
together a 16-bit binary pOinter to the DOS LRN of the input file,
as opposed to the User LRN. The difference is this: The DOS LRN
of a file pOints to the actual Nth record (starting with zero, the
primary RIB) in the file, whereas the User LRN of a file points to
the Nth data record (starting with the zeroth data record) in the
file. Thus a DOS LRN of zero points to the very first record of
the file, which is the master copy of the RIB; a DOS LRN of one
points to the second record of the file, which is the RIB copy; a
DOS LRN of two points to the third record of the file, which is
the first data record of the file and User LRN zero. The LRN
given in the TAG file can NOT be used with the POSIT$ routine
unless it is biased by -2. It is much easier to simply place the
LRN from the TAG file directly into the LFT entry for the file
that is indexed.

The case with the buffer pointer byte is similar to the LRN
pointer bytes. The buffer pointer byte from the tag fi Ie is the
DOS buffer pointer as opposed to the User buffer pointer. The
difference is that the DOS buffer pointer points to the actual Nth
by teo fad i sk bu f fer (s tar tin g wit 11 ze r 0), wh er e a s the Use r
buffer point.er points to the Nth data byte in the di sk buffer.
The beginning (zeroth) data byte in the buffer is the fourth byte

CHAPTER 42. SORT COMMAND 42-17

in the buffer; the first three bytes are reserved for the DOS.
Thus, a DOS BUFPTR of zero points to the very first byte in the
buffer, which is the PFN (Physical File Number) of the file; a DOS
BUFPTR of one points to the second byte in the buffer, which is
the DOS LSPLRN; a DOS BUFPTR of two points to the third byte in
the buffer, which is the DOS MSPLRN; a DOS BUFPTR of three points
to the fourth byte of the buffer, which if the first data byte and
User BUFPTR zero. The BUFPTR given in the TAG file can NOT be
used with the GETR$ or PUTR$ routines unless it is biased by -3.
It is much easier to simply place the BUFPTR from the TAG file
directly into the LFT entry for the file that is indexed.

If a TAG file is generated when the 'P' option is specified
then TAG file pointers will be generated only to the Primary
records in the input fi Ie.

If a TAG file is generated when the'S' option is specified
then TAG file pointers will be generated that point to each
Primary record of the input file (in their original sequence) each
primary tag being followed by pointers to the Secondary records in
the record block in their sorted sequence.

When a TAG file is generated for 'P' or'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the indexed file to
determine when a record block begins or ends.

42.4.8][eytag File Output Format Option

Requesti ng a Key tag fi Ie ou tput wi 11 cause a fi Ie (def au 1 t
extension "TXT") to be created. This EDIT-compatible text file
contains the record pointers and the key. The record pointers
(first 8 bytes of the record) consist of a 5 byte logical record
number (range a to 65,535) and a 3 byte buffer address. The
record number is the user logical record number, that is, zero
points to the first data sector. Therefore, the user logical
record number, converted to binary, may be used with the POSIT$
routine. The ·buffer address is the buffer pointer, that is, one
points to the first data byte in a sector. It may be biased by 2
and placed directly into the Logical File Table, or if biased by
-1, used by the GETR$ routine. This Key tag file output is the
Key tag file used by INDEX.

If a sequence file (for example, EBCDIC/SEQ) is used, the key
produced by this option will be translated to that sequence. If
the un-translated key is desired, a Key tag file may be created

42-18 DISK OPERATING SYSTEM

(slower) by requesting ASCII TAG output from the Limited Output
Format Option.

42.4.9 HARDCOPY Output Option

Many times it is desired to have a hardcopy (printed) output
from a SORT instead of or in addition to the creation of a disk
output file. This can be easily accomplished with SORT by
speci fying the 'H' or' X' option along wi th the 'L' (Limi ted
Ou tpu t) opti on. The hardcopy op ti on is essent ially an expans i on
of the 'L' option because di sk data files are almost never
suitable for full image output to a printer; decimal points need
to be inserted into dollar and cents amounts, dashes need to be
ins erted into part number s, and spaces need to be placed between
dollar amounts and part numbers to columnate the data, and so on.
If it is desired to list output records in full image format, it
is only neccessary to give:

1-n

(where n is the maximum printable character on printer) as the
limited output string specification.

Sort will not send a line of over 132 characters to a
printer. If the limited output specification designates a longer
output record, then the full specified formatting will be applied
to the di sk output file (if any), but only the first 132
characters of the record will be printed.

If the following special characters are imbedded in the
out put r e cor d, th e y wi 11 be in t e r pre ted as in d i cat e d :

015 = End-Of-Record and Carriage-Return/Line Feed.
012 = Line Feed.
014 = Form Feed.

The 'H' option specifies output to a local printer. The 'X'
option specifies output to a servo printer. If the selected
printer is not on-line then SORT will pause during final merge and
display the message PRINTER OFF-LINE. While this message is
displayed the program may be terminated by pressing the KEYBOARD
key. Printing will commence and program operation will continue
when the correct printer is brought on-line and ready.

CHAPTER 42. SORT COMMAND 42-19

42.4.10 Primary/Secondary Sorting Considerations

If the 'P' (Primary) or'S' (Secondary) SORT option is used
then the input file must have a PSPSPS format in order for
SORT to work as expected, where P is one 0 pr imary record and S is
one or more secondary records. The first record in the file
should always be a primary record, and the last record should be a
secondary record. There should always be at least one secondary
record following each primary record. Tertiary and further level
records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file
using the 'P' or'S' options even if the file does not faithfully
follow the above rules, but problems will likely show up if such a
sort is attempted. For ex ample, if a file has the format
PPPPSPSPS •.. , and a sort is done using the'S' option, the output
file will not contain the first three primary records at all.
This case occurs because when sorting using the'S' option,
pointers are generated for only the secondary records, prefixed by
a pointer to the record preceeding the first secondary record of a
record block. Since no secondary pointers were ever generated for
the first three primary records, they are simply lost.

42.4.11 SORT Work Files

SORT uses two scratch files during its operation:
*SORTKEY/SYS and *SORTMRG/SYS. The first character of these file
names will change when SORT is run under Datapoint'$ Partition
Supervisor (PS). When PS is active the partition identifier (a
one-digit number unique to each partition) is placed in the file
name in place of the asterisk, so there is no danger of
simultaneous SORTs trying to use the same scratch files. SORT
always uses the same names for these files, only the drive on
which they are placed can be affected by the operator (by means of
the <drv> field on the command line).

SORT will always build the *SORTKEY/SYS file, since it holds
the sort key trains generated as the first step of sorting. If
more than one sort key train is built, SORT will also create the
*SORTMRG/SYS file to merge the trains. Normally the work files
will be deleted when SORT terminates, but if the SORT aborts or is
interrupted for some reason the work files will be left on disk.
If this happens they should be deleted using KILL by PFN, since
the asteri sk is not a normal part of a file name and cannot be
scanned as such by the command interpreter.

42-20 DISK OPERATING SYSTEM

42.5 Disk space requirements

A formula for determining the room in physical disk records
that wi 11 be requ ired for the SO RT work fi 1 es is:

where: R

N

L
P

T

2N(L+P+3)
R = ---------- + 4T S

= Room in physical
disk.

= Number of logical

disk records

records in
will be generated:

(sectors) required

input file for which

= number of records in file if not sort ing on ' P ,
, S ' .
= number of primary records in file if sort ing on
= number of secondary records in file if sorting
, S ' .

= Length of the sort key in bytes.
= 3 if sorting on second ary records,

0 if not sorting on secondary recor ds.
= number of sort key trains.

on

keys

or

' P , .
on

S = bytes per block of physical space available to the user
(nominally 253 bytes)

The value of T can be computed approximately, as:

Where M is the available processor memory size expressed in
decimal.

42.6 LIWK into SORT from programs

There are three ways in which a SORT can be initiated:

1. From the keyboard via the DOS COMMAND HANDLER;
2. By using the DOS CHAIN command;
3. By loading and 1 inking to SORT /CMD from an assembly

language program.

Datashare users can invoke SORT by using the rollout
facility to start or continue a chain (see CHAIN and the DATASHARE
User's Guide for more details).

CHAPTER 42. SO RT COMMAND 42-21

The following detailed information is provided for users
writing system-level programs in assembler language, since
Datapoint does not release a source listing of the SORT program.
Normal usage of SORT requires no knowledge of the following
information.

Sort reserves for the user a nominal amount of storage normally
occupied by the DOS DEBUG$ routine. The specific memory locations
saved are 06144 through 06377. This permits the user to partially
overlay his program with the SORT utility and regain control at
the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image
output records are to be generated. The DOS interrupt handler is
disabled during the sort but is re-enabled upon completion of the
sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from
within the memory not used by SORT, or when foreground is
re-enabled it will vector to whatever SORT left in memory.

NOTE: New information for DOS 2.5. SORT now uses DOS
Functions. The DOS Function loader must be intact when SORT is
invoked. SORT itself no longer overstores the loader so DOS
Functions may be used immediately following return from SORT. If
the hardcopy output option of SORT is used, user forground
processes cannot be left active during the SORT. The local
printer driver may use interrupt slot 3 if it needs to wait for
the printer to become ready. The servo printer driver always uses
interrupt slot 3. If hardcopy output is used from SORT, the
normal DOS interrupt scheduler must be available and there must be
no active interrupt vectors.

The steps to call SORT from an assembler program are as
follows:

1. Close files 1, 2, and 3 "if open.
2. Set MCR$ (01400-01543) with the command string terminated

by a 015.
3. Load the SORT utility.
4. PUSH the stack.
5. Point HL to a parameter table with the format:

PTABLE DA LIMSTG
DA HEDING
DA EXITAD

6. RETURN

Where:

42-22 DISK OPERATING SYSTEM

LIMSTG = the limited output specification string, terminated by a
015. If there is to be no limitation output specification,
put· O. If there isa LIMSTG, it must exist entirely within
the range 06144-06311. The LIMSTG must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

HEDING = the hardcopy heading string, terminated by a 015. If
there is to be no hardcopy output, put o. If there is a
hardcopy heading string, it must exist entirely within the
range 06144-06311. The HEDING must be exactly the
characters as they would be entered from the keyboard.
E xamp 1 es follo w.

EXITAD = the first memory location to be executed upon successful
completion of the sort. If the sort is to return to the
DOS upon completion, put O. If there is a specific exit
address, it must exist within the range 06144-06311.
Normally, the instructions at the exit address will load
and run the program to be run after the' sort, or will
re-load a control program of the user's own control system.

A simple example of loading and running sort from an
assembler program would be:

CHAPTER 42. SO RT COMMAND 42-23

1 • SRTGMD
2.SRTNAM
3.PTABLE
4.
5.

6.RUNSRT
7.
8.
9.

10 •
11 .
12.
13.

14.
15 .

DC
DC
DA
DA
DA

LC
DE
HL
CALL
LC
DE
CALL
PUSH

HL
RET

'SORT
, SORT
o
o
o

INFILE,OUTFILE',015 SORT CMD STRING
CMD' NAME OF SORT UTILIty ON DISK

NO LIMITATION STRING
NO HARDCOPY HEADI NG
NO SPECIAL EXIT ADDRESS

SRTNAM-SRTCMD MOVE THE SORT COMMAND STRING
MCR$ TO MCR$
SRTCMD
BLKTFR
-1 LOAD THE SORT UTI LI TY
SRTNAM
LOAD$

PUSH THE SORT STARTING
ADDRESS

PTABLE POI NT TO THE PARAMETER TABLE
RUN. SORT

The above sequence of ins t ruc ti ons could be loca ted anywhere in
memory, except lines 13 thru 15 must obviously reside in a portion
of memory from 06144 thru 06377 to avoid being overlayed when the
SORT utility is loaded from disk. The above instructions
exemplify the simplest possible case of linking to SORT, in that
only the SORT command and an input fi Ie and an ou tput fi Ie are
specified, all other options are defaulted. The above
instructions have the same effect as calling SORT by entering the
line:

SORT INFILE,OUTFILE

to the DOS COMMAND HANDLER.

Here is a line-by-line explanation of the instructions:

Line 1 defines the SORT command string. This is accomplished
by a simple DC statement of a quoted ASCII string followed by a
015. The quoted ASCII characters are exactly the same that would
be keyed in to the DOS Command Handler if the sort were being
initiated from the keyboard. The 015 is the string delimiter and
is the same character that is placed after a string by the KEYIN$
routine when the "ENTER" key is depressed. The SORT command
string can be up to 100 characters long including the 015 because

42-24 DISK OPERATING SYSTEM

the MCR$ area is 100 bytes long. Note that this is nineteen
characters more than can be specified from the keyboard.

Line 2 defines the name of the SORT utility main overlay.
Notice that the complete name of the SORT given here must be
exactly the name as listed in the DOS directory of files. The
eleven ASCII characters in a file name specification include an
eight character filename and a three character extension. Since
the. filename of SORT is only four characters, it must be followed
by four spaces before the extension of "CMD" can be given.

Line 3 defines the beginning of the six-byte parameter table.
The first two bytes of the parameter table specify the address of
the beginning of the Limited, Output Specification string. In this
example there is to be no limited output specification string, so
an address of a is gi ven.

Line 4 defines the address of the beginning of the HARDCOPY
HEADING string. In this example there is to be no hardcopy
output, so an address of a is given.

\

Line 5 defines the address of the ExitlAddress, or the
address to 'which the SORT is'to exit when it is successfully
completed. (If something goes wrong during the sort, exit is to
the DOS.) In this example there is to be no special exit address,
so an addess of a is gi ven.

Line 6 begins the actual process of calling SORT from the
program. Lines 6 thru 9 move the SRTCMD string from wherever it
is in memory to the MCR$ area.

Line 10 specifies that SORT is to be loaded from wherever it
is found in the disk drives that are on-line to the system. Refer
to the chapter on System Routines if you are not familiar with the
DOS LOAD$ routine.

Line 11 pOints to the name of the SORT utility main overlay
in memory, ~iven in SRTNAM, line 2.

Line 12 calls the DOS LOAD$ routine which finds the SORT main
overlay progr~m on disk and loads it into memory, leaving the
starting address in HL.

Line 13 puts the starting address of SORT on the P-counter
Stack.

Line 14 pOints to the Parameter Table, lines 3, 4, and 5.
The way that SORT knows that it is being run by the DOS Command

CHAPTER 42. SO RT COMMAND 42-25

,Handler or by a user program is by comparing the values of the HL
contents with the entry point of SORT. If the values are equal,
as they are immediately following a LOAD$, then SORT asks for a
Limited Output Specification string and a Hardcopy Heading string
if they are specified in the SORT COMMAND string. If the values
are not equal, then SORT checks the memory pointed by HL for the
location of the Limited Output Specification string, the Hardcopy
Heading string, and an Exit Address.

Line 15 effects the actual transfer of execution to the SORT
utility. Since the starting address of the SORT was PUSHed onto
the P-counter stack, a RETurn instruction JuMPs to the SORT
starting address.

42.7 The Use of CHAIN with SORT

The reader should first familiarize himself with CHAIN by
thoroughly reading the CHAIN Section.

CHAIN is a system whereby the operator of a Datapoint DOS may
pre-define a procedure sequence of his own programs, system
commands' and utilities (including keyboard answers to questions
requested by these programs) and have them called and sequentially
executed by a single name. This feature is especially powerful
when using SORT since there may be a repeti ti ve sequence of
routines with complex parameterizations which could make good use
of simplification.

A Datashare program can link to SORT by executing a ROLLOUT
instruction to a user-built CHAIN file which includes the SORT
command line and, if specified, the Limited Output specification
line and a Hardcopy Heading line, followed by the DSBACK program
to re-Ioad the Datashare.

42.7.1 Defining a Chain File Cor SORT

The au thor of a cha in fi Ie only needs to remember that all
questions that the system requests including those initiated by
the executing programs must be answered from the chain fi Ie just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort

"SORT INFILE,OUTFILE;I3-42"

42-26 DISK OPERATING SYSTEM

could be done through chain. To do this, use EDIT or BUILD to
type in that exact sequence of characters into a file. Note that
the file will, in this case, consist of a single line as typed
above. The file can be any name, but for purposes of simplifying
the explanation, it shall be referred to as "CHAINFIL". If
"CHAINFIL" consists of that single line, and if the operator types
the command "CHAIN CHAINFIL" to the DOS, the SORT specified above
wo u Id be in i t i a te d . 1ft he' L' s p e c i f i cat ion were inc 1 u d ed in the
statement above, then SORT would ask for another line of
informati on. In th is case, the fi Ie "CHAINF IL" wou Id ha ve to have
two lines in it with the first being the SORT command and the
second being the limi ted output fi Ie format specifi cation.

42.7.2 gaming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together and for which a name invoking the procedure
would be a great simplification.

For instance, in the telephone directory example above, the
process of sorting the fi Ie into a limi ted output fi Ie and then
listing it on a local printer could be procedurized as follows:

SORT EMPFILE,TELFILE;L80-110
8 0- 1 1 0 " -' , 1 7 1 - 1 8 0
LIST TELFILE;XL
TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the answer to the limited format initiated
by the 'L' in the SORT command. The third is the DOS LIST command
with the specifiers of 'X' which says 'without line numbers] and
the 'L' whi-ch means local printer. Then there is a fourth line
which the LIST command requests - the heading. This question must
also be answered in the chain file. If the above four statements
were placed in a file by the Editor (or by any other means) and
then CHAIN were invoked with that file specified, the result would
be a printed telephone di rectory from the· personnel files.

CHAPTER 42. SORT COMMAND 42-27

42.7.3 Using CHAIN to cause a ~erge

Consider a si tuation where in a system has a master fi Ie
called 'MASTER' and a file of records to be added, . in sequence, to
the master file called 'ADDFILE'. To merge these two files in
sorted sequence at the end of each day would nor~ally require a
sequence of keyed in operations whi ch are somewhat compli cated and
error prone. ,CHAIN can cause an effecti ve MERGE and assign it a
single name as follows:

SAPP MASTER,ADDFILE,MAST£R
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT
Y
NAME SCRATCH/TXT,MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3-5) Renames the SCRATCH file as the new MASTER file. Thus, it is
appare nt that a mer ge can be effecti vely achieved using SORT and
by uSing chain to pre-define the procedure.

42.8 SORT Execution-Time Messages

This section describes the operator messages that SORT may
display on- the CRT screen during execution. Some of the messages
are monitor messages to keep the operator informed of the progress
of the program, whi Ie other messages are error messages.

DOS. VER. n.n SORT COMMAND - date

This message is the SORT sign-on~

SORT OVERLAY MISSING.

This message is displayed if the SORT/OV1 file is not on the
same drive as the SORT/CMD file.

INPUT FILE REQUIRED.

This message is displayed if no filename was specified for -the
first file specification. This would happen if a command line
such as:

SORT ,OUTFILE or SORT /TXT,OUTFILE

42-28 DISK OPERATING SYSTEM

were entered.

BAD DE V I CE S P E C I F I CAT ION. .

This message is displayed if a drive specification in a file
specification was not entered in a valid format.

OUTPUT FILE SAME AS INPUT.

This message is displayed if the filename and extension of the
input fi Ie and the output fi Ie are the same, and the dri ve for
each file is the same or not specified for both files.

INPUT FILE NOT FOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
extension is supplied in the file specification an extension of
TXT will be assumed.

KEY FILE SPECIFICATION ERROR.

This message is displayed if a FILENAME or EXTENSION is given
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file is not a valid drive spec.

SORT KEY FILE PLACED ON DRIVE II

This mess'age is displayed if the KEY DRIVE was not specified on
a multi-drive system. The message is to notify the operator of
the location of the KEY file. The # stands for a valid drive
number.

OPTION FI ELD ERRO R.

This message is displayed if a semicolon'(;) is entered at the
end of the SORT command' line but is not followed by any option
specifications.

CHAPTER 42. SORT COMMAND 42-29

OPTION SPECIFICATION DUPLICATION.

This message is displayed if a command line such as:

SORT INFILE,OUTFILE;DLA

were entered. The 'D' and 'A' options are both variations of
the ORDER option, and obviously both cannot occur
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This message is displayed if the 'H' or 'X' option is specified
but the 'L' option was not specified.

ILLEGAL HEADER SPECIFICATION.

This message is displayed if the 'PI or'S' option is given but
is immediately followed by the 015 byte -- the "ENTER" key.

ILLEGAL HEADER KEY EVALUATION.

This message is displayed if the character immediately
following the 'PNNN' or 'SNNN' option is not '_I or 'U'.

ILLEGAL SORT KEY SPECIFICATION.

This message is displayed if a key position of 0 or greater
than 249 was specified, or if a key position was not terminated
by","" or "-" or 015, or if a two-position key was not
t e r min a t ed by", II . 0 r 0 1 5 . .

SO RT KEY TOO LONG. '

This message is displayed if the total sort key is longer than
118 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed if the same record positions were
specified for more than one ~ort key group. SORT doe~ not

42-30 DISK OPERATING SYSTEM

repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key position and a header indication
position. The position is removed as a sort key position and
the key is thus shortened. The effect is as for the previous
message.

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command
line including all option specifications and if the 'L' option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is display~d if the 'L' option was given but the
limitation specification was only 015 -- the "ENTER" key. If
the 'L' option is given then a non-empty limited output
s p e c i f i cat ion s t ring m u s tal so be g i v en .

INVALID·LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in the section on -Limited Output
Format Option. Usually the fault is that a comma was not
placed between option specification groups, or double quotes
(") were used instead of single quotes (') •

ENTER THE HARDCOPY HEADING:

This message is displayed when the limited output, specification
has been accepted and if the 'H' or 'X' option was given. The
operator must enter from 0 to 79 characters of information
which will be printed at the top of each page printed during
SORT output generation.

CHAPTER 42. SO RT COMMAND 42-31

SEQUEN CE FILE NAME REQUIR ED

This message is displayed when the sequence file field is blank
and the file specification fields have not been terminated with
a semi-colon or an end of line designator.

SE QUE N CE FILE N OT F OU ND

This message is displayed when SORT requests the sequence file
be OP EN ed and DOS cann ot 10 ca te the fi Ie on the di sk dri v e
indicated. Note that if the drive is not specified, the drive
on which the SORT/CMD resides is implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed ~hen SORT determines that the
sequence file specified is not an absolute object file.

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SORT receives an error return
from LOADX$ when an attempt is made to load the s~quence file.
The value of n _ may be 0-6 and is defined as follows:

0 If fi Ie does not exist
1 If disk drive is off-line
2 If directory pari ty error
3 If RIB pari ty fault
4 If file pari ty fault
5 If off end of physi cal file
6 If record of illegal format

LI~ITATION SPECIFICATION OVERFLOW

This message indicates that limited output parameters entered
require more memory (256 bytes) than allocated- by SORT.

INTERNAL ERROR -- GET SYSTEM HELP I!!

This message' indi cates -a probab Ie hardware error occurred
during a limited output string sort. SORT cannot continue
executing.

42-32 DISK OPERATING SYSTEM

The following messages may be displayed during sort
initialization if SORT were linked to by an assembly language
program:

INVALID LIMITATION STRING ADDRESS.

INVALID HARDCOPY HEADI NG STRI NG ADDRESS.

INVALID USER EXIT ADDRESS.

One of these messages is displayed if the corresponding entry
in the parameter table linkige data was n~t either 0 or in the
range 06144-06377 inclusive.

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.

This message is displayed if the user left one of the logical
files 1, 2, or 3 open upon linking to the SORT utility.

LIMITATION STRING MISSING.

This message is displayed if the 'L' option was given in the
SORT command string but the pointer to the limited output
format string in the parameter table linkage data was 0,
indicating no limited output format string specified. .

HARDCOPY HEADING .STRING MISSING.

This message is displayed if the 'H' or 'X' option was given in
the SORT command string but. the pointer to the hardcopy heading
string 'in the parameter table linkage data was 0, indicating no
hardcopy heading string specified.

The following messages may be displayed after the SORT
initialization is completed:

BUILDING SORT KEY TRAIN n.

This· message is displayed when all parameter specifications
have been accepted and SORT has started the extraction of the
sort keys from records of the input file and is writing them to

CHAPTER 42. SO HI COMMAND 42-33

the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed if tnere was not adequate room on the
selected drive to hold the *SORTKEY/SYS file. If *SORTKEY/SYS
file overflow occurs the file is deleted from the disk before
the message is displayed.

NON-TEXT CHARACTER IN INPUT FILE. LRN nnnnn

MISSING EOS IN INPUT FILE. LRN nnnnn

INVALID EOF IN INPUT FILE. LRN nnnnn

One of the above messages is displayed if the corresponding
error condition is found in the input file while building the
sort key trains. A non-text character is an octal zero (eof
character) found in. the text string. The message "MISSING EOS
••. " indi cates that a sector has no 003 marking the logical end
of sector. The message "INVALID EOF .• ~" indicates that a 000
was found in the first data byte of a sector, but the sector
did not contain a complete text end of file mark. The LRN
displayed is the User LRN containing the invalid text data, in
octal. The·error condition in the input file must be corrected
before the fi Ie c an be sorted.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. A null output file (first record EOF) is prepared
before SORT ends.

INTERMEDIATE SORT PASS n.

This message is generated during sorting of the sort key trains
in the *SORTKEY/SYS file. The only actual sorting done during
a sort is that which can be done on the initial sort key
trains, which are made short enough that they will fit in
memory. After the sorting of the keys within each initial
train, the trains are merged sixteen abreast into larg·er
trains, repeatedly until only one train rem~ins.

42-34 DISK OPERATING SYSTEM

INTERMEDIATE MERGE PASS n, TRAIN n.

This message is displayed if more than sixteen sort key trains
ex i s t d uri n g a me r g e pa s s . Th e in t e r me d i ate . me r g e pa s s nu m b e r
is the Nth iteration of the merge process. The train number is
the number of the train be ing output by the merge pass. If
mo ret han 0 ne t r a in is 0 u t put by an in t e r m e d i a te mer ge pas s
then at least one more intermediate merge pass will .be
required. If more than sixteen trains are output by an
intermediate merge pass then at least two more intermediate
merge passes will be required, and so on.

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file from the data in the now fully sorted and merged sort key
file and from the records in the INPUT file. The sort train
number corresponds to the current state of progress as measured
against the number of trains generated by the next to the last
intermediate merge pass.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the mer ge fi Ie.

OUTPUT FILE OVERFLOW

This message indicates not enough disk space is available for
the ou t put file.

CHAPTER 42. SO RT COMMAND 42-35

CHAPTER 43. SUR COMMAND

43.1 Purpose

The use of the SUR (Subdirectory Utility Routine) command
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. Each such subdirectory
can then contain zero or more files, uP. to the combined maximum of
256 files per logical dri ve. The reasons for such a capability
are readily apparent. When a specific disk is used for more than
one purpose, some inconveniences turn up. Assume for a moment
that a user has a disk which he is using for program generation on
each of two more or less unrelated projects. When he uses the CAT
command, for instance, he will ,normally see a whole range of
files, some of which ar~ not related to the project he may be
currently interested in. Or, he may begin editing a new file on
the disk, only to find that another user of the same disk may have
already had a file of that name. Without the DOS subdirectory
facility, it is not permitted to have two files on a given logical
drive with the same name.

43.2 Use

The SUR command is parameterized as follows:

SUR [<name> [/<function>]][:DR<n>][,<new name>]

The function performed by SUR is determined by the absence or
val ue of the <function> fie Id and the name field, as descri bed
below. If a specific drive is mentioned then that function is
performed on only that drive, otherwise, it is performed on all
drives. The only exception to this is remote ARC volumes. The
only function permi tted on a volume located at an ARC file
processor is the display funotion. An attempt to perform any
other function on one of these volumes will result in the message

DRIVE nn IS A REMOTE ARC VOLUME

being displayed and the function will not be performed on that
volume.

CHAPTER 43. SUR COMMAND 43-1

~3.2.1 Establishing a ·Current Subdirectory"

If the function field is not given, SUR establishes the named
sUbdirectory as the current sUbdirectory on all drives on which
the named subdirectory exists. If the named subdirectory does
not exist on one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,
then only the current subdirectory on the specified drive is
subject to change.

43.2.2 Creating a Subdirectory

If the function field is INEW, SUR creates the named
subdirectory on all drives on which the named subdirectory does
not exist. The current subdirectory is not affected by the
operation. If a specific drive is mentioned, then the named
subdirectory is only created on the specified drive.

43.2.3 Deleting a Subdirectory

If the function field is IDEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory exists.
If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. If
the subdirectory being deleted is the current subdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYSTEM and MAIN cannot be deleted. If a specific
drive is mentioned, then the named subdirectory is only deleted
from the specified drive.

43.2.4 Renaming a Subdirectory

If the function field is IREN, SUR renames the named
subdirectory on any drives on which the named subdirectory exists,
to the name specified in the new sUbdirectory name field. If any
files are in the named subdirectory, they will be in the
subdirectory specified by the new sUbdirectory name field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

43-2 DISK OPERATING SYSTEM

43.2.5 Displaying Subdirectories

If the subdirectory name field is not given, SUR displays the
names of all ~ubdirectories on all on-line drives. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
subdirectory name is the subdirectory number associated with that
name (in octal); an as ter i sk indi ca t es the cu r re nt su bd i rect or y
on each dri ve. If a specific dri ve is mentioned, then only the
subdirectories present on the specified drive are displayed.

43.3 About Subdirectories

Each sUbdirectory on a disk has a unique name. Two
subdirectories always exist on all drives; these are called
SYSTEM and MAIN. A maximum of 31 subdirectories can exist on any
volume. Since two are already used (SYSTEM and MAIN), there are
29 subdirectories available for user specification. The names for
these subdirectories are assigned by the user as he establishes
them, and follow the same rules as for any standard DOS file name.
As a subdirectory is created, the name specified by the user is
related to a unique number which is referred to as the
subdirectory number. The relationship between subdirectory names
and subdirectory numbers is similar to the relationship between
DOS file names and physical file numbers. A given subdirectory
may have different numbers on different drives, even though the
subdirectory name is the same.

It is important to realize that subdirectories are not a way
of getting more than 256 files on a drive. This they cannot do.
The thing that subdirectories are good for is partitioning the
directory and restricting the scope of a file name. This allows
several files of the same name to exist on one disk at the same
time, wi thout causing the DOS to become confused as to whi ch is
the one to be referenced at any time. The way the DOS achieves
this is that each of the files is in a "different subdirectory",
and hence is uniquely identified even though the name and
extension may be identical.

CHAPTER 43. SUR COMMAND 43-3

'3.3.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to speci fy a name for the proposed subdirectory and
request its creation. Creation of a subdirectory does not
actually result in any real change to the directory on disk; all
it does is cause the specified name to be entered into a table in
SYSTEM7/SYS which relates each subdirectory name with its
subdirectory number. The user is allowed to specify which drive
he wishes to create the subdirectory on; if he does not indicate
a specific drive, the named subdirectory is placed onto all
on-line drives if possible.

43.3.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of a subdirectory does not result
in KILLin~ the files within the range of that subdirectory. If a
subdirectory to be deleted contains one or more files, the files
are first moved from that subd.irectory to the one called MAIN
before the named sUbdirectory is deleted. It is important to note
that it is possible to get more than one file with the same name
and extension in subdirectory MAIN because no check for a matching
file is made. The user is allowed to specify from which drives
the subdirectory is to be deleted; if he does not indicate a
specific drive, ~he named subdirectory is deleted from all on-line
drives on which it appears. Subdirectories may not be deleted
while PS is running.

43.3;3 Being win a Subdirectory"

The user can define at any time which of the subdirectories
on each of his disks contain the current files he is interested
in. This is done with the SUR command by specifying the name of
the subdirectory containing the files of current interest. This
action- causes him to be placed "into" the named subdirectory on
the drive specified. (If no specific drive is mentioned, he will
be placed "into" the subdirectory specified on all on-line drives
containing a subdirectory wi th the given name). It is
appropriate to point out that the current subdirectory on each
dri ve need not have the same name; for examp Ie, the us er cou ld
easily be in subdirectory PROGRAMS on drive zero and in
subdirectory DATABASE on drive one at the same time. This
becomes even more complex when running under ARC. It is perfectly
legal for a user to MOUNT the same physical volume as several

43-4 DISK OPERATING SYSTEM

logical volumes, each in a different subdirectory. Thus drive
zero could be volume ABC in subdirectory A and drive one could be
volume ABC in subdirectory B.

Once in a specific sUbdirectory on a drive, that state does
not normally change until the user requests being placed into a
different subdirectory (again via the SUR command) or re-boots the
DOS. Booting the DOS causes the user to be placed into the
subdirectory named SYSTEM on all drives.

43.3.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is looking for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In
order for the DOS to "find" the given file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If the current sUbdirectory (for that
dri ve) is not SYSTEM, then the fi Ie must be in the current
subdirectory or in SYSTEM to be found. If no such file can be
found, the DOS returns indicating that the specified file cannot
be found and therefore probably does not exist.

Therefore the scope of a file name can be more or less
defined via the following: when a user is in subdirectory X on
d r i v e Y, f i I es c an be " see n " by his pro gram 0 n I y if they are in
either subdirectory X or subdirectory SYSTEM. Files in any other
subdirectory will not appear to exist.

The enti re above procedure does not apply when OPEN ing a file
by PFN since subdirectories are not checked in this case.

43.3.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
subdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
subdirectory named SYSTEM. When the sUbdirectory nam~d SYSTEM is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which subdirectory they themselves
are actually in.

A little caution must be used when a user is in subdirectory
SYSTEM on a disk with multiple files of the same name and

CHAPTER 43. SUR COMMAND 43-5

extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available whEm the user is "in" the SYSTEM
subdirectory. The result is that in this situation, one of the
files of the desired name and extension will be referenced; which
one is referenced is, however, undefined. Therefore, good
practi ce dictates that if a user has more than one fi Ie wi th the
same name and extension on some drive, that he make a point of
always knowing whi ch subdirectory he is in (and that it is not
SYSTEM) if it matters to him which of his files he references.

43.3.6 Files ys. the User Being win a Subdirectory"

It is important not to confuse the two distinct concepts of a
file being in a subdirectory as opposed to that of [a user] "being
in a s u bd ire c tor y" •

A file being in a specific subdirectory is a way of saying
that the file can be accessed only when the current subdirectory
is either that specific subdirectory or SYSTEM. This
relationship, that of a fi Ie being in a specific subdirector y, is
retained more or less permanently; if a file is placed in
subdirectory SUBDIR 1 today on a disk, the· di sk can be removed and
stored on a shelf; if tomorrow the di sk is taken down from the
shelf and re-mounted, thcitfile will still be in subdirectory
SUBDIR1.

A user being in a specific subdirectory is a way of saying
that the subdirectory in question is "the current subdirect.ory" on
one or more logical dr1:Nes. The' "current subdirectory" on a drive
is less permanent and reflects the use of the SU R command since
the previous time the DOS was bootstrapped.

·43.3.7 Getting a File into a Subdirectory

In general, there are two ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenevet a file is created, it is always placed into
"the current subdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved bet.ween
subdirectories with the NAME command. The NAME command can take a
fil~ within the scope of the current su5directory and put it into
the current subdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can

43-6 DISK OPERATING SYSTEM
\

place it into any other subdirectory the user might wish to put it
into.

CHAPTER 43. SUR COMMAND 43-7

CHAPTER 44. UBOOT COMMAND

44.1 Purpose

The UBOOT command writes a DOS bootblock onto the cassette
tape in the front tape deck. The resulting "boot" tape is used to
initiate system loading when the processor is restarted.

44.2 Use

UBOOT is invoked by entering the command

UBOOT

The program verifies that there is a tape in the front cassette
deck and asks the operator for permission to wri te on the tape.
When the operator instructs the program to proceed it writes a DOS
bootblock onto the cassette in the front deck. The UBOOT command
then rereads the bootblock to insure that the cassette is good.
In addition, the bootblock checks its own parity immediately upon
loading and halts if it finds it has not been loaded properly.

After the boot tape has been wri tten the program asks the
operator whether to write another tape or to return to the
operating system. The operator may insert another cassette and
ask the program to wri te another boot tape as often as desi red.
The program terminates when the operator instructs it to do so.

If the machine halts upon booting repeatedly and other boot
tapes work on the same machine, then the boot tape which causes
the boot operation to halt is not a good tape and should be
replaced.

44.3 UBOOT System Load Operation

The boot tape created by UBOOT reads an IPL (Initial Program
Loader) block from disk. The IPL block then reads and executes
the DOS bootblack (from disk). The IPL and bootblack are put on
disk by DOSGEN and PUTIPL.

The UBOOT tape is capable of loading any version 2.3 or later

CHAPTER 44. UBOOT COMMAND 44-1

DOS from any type of disk. If there are multiple types of disks
on your system, they will be scanned in the following order:

1: Mass storage disks (9390 first, then 9370/937"4)
2. Cart rid ge disk s
3. Floppy di sk s

Logical drive zero will be tested on each of the disks. If drive
zero is off-line, depressing the "DISPLAY" key will cause a scan
of ALL on-line dri ves. This means that if dri ve zero is "down",
you can generally continue running. When a disk is found that
contains a good IPL, it wi 11 be selected as the "BOOT DRIVE-";
henceforth overlays will be loaded off it. Commands will also be
loaded from the booted drive first (default).

44-2 DISK OPERATING SYSTEM

CHAPTER 45. UTILITY/OVL

The DOS for processors using the 5500 instruction set (DOS.D,
DOS.E, and DOS.G) include a file "UTILITY/OVL". This file
contains memory resident copies of the DOS overlays and DOS
Functions. These copies of the overlays reside in system RAM
between 0160000 and 0167377. While the memory resident overlays
are pr'esent, calls to DOS overlays (OPEN$, PREP$, and so on) or to
DOS Functions will not require accessing the disks to load the
routines. The result is improved system performance. The
operating system automatically loads and initiates use of
UTILITY/OVL whenever possible; programs needing system RAM for
their own purposes disable use of the memory resident overlays.

Use of UTILITY/OVL is initiated by DOS Function 12. Usage is
terminated by DOS Function 16.

CHAPTER 45. UTILITY/OVL 45-1

CHAPTER 46. UTILITY/REL

The UTILITY/REL file contains a number of system utility
routines in relocatable code format. The purpose of these
routines is to simpli fy and standardize the use of common
peripheral devices. The routines may be used by any user-written
assembler language programs; most Datapoint products now use these
routines whenever possible.

The utility routines are linked into a program at execution
time, using DOS Functions 13 and 15. Since DOS Function 15 uses
the UTILITY/LNK file, UTILITY/LNK must be available in order to
use UTILITY/REL. Member sizes listed below are approximate; use
the LIBSYS program or DOS Function 15, subfunction 0 to determine
the exa9t size of a member. For definitions of relocatable code
terms such as "PAB", "external definition", and so on', consult the
SNAP/3 User's Guide.

46.1 Printer Drivers

The members LOCAL, SERVO, SCREEN and "FILE output print lines
to the selected device. All of the print drivers have a PAB flag
of 'T', meaning that they can be loaded starting at any 2~6-byte
page boundary. If the member is loaded starting at some location
other than a page boundary, the load wilt succeed but the driver
will not work. On ex it all registers should be considered
indeterminate unless their contents are specified below.

LOCAL - Print a line to a local (address 0303) printer.
Approximate size 0461 bytes .

•
SERVO - Print a line to a servo (address 0132) printer.

Approximate siie 02432 bytes.

SCREEN - Display a line on the console CRT. Approximate size 0352
bytes.

FILE - Print a line to a disk file. Approximate size 02341
bytes 01

CHAPTER 46. UTILITY/REL 46-1

46.1.1 Print Driver Routines

The print drivers all use the same set of entry points:
POPEN$, PRINT$, PCLOSE$", PSUSP$ and PRESTRT$. Each entry point is
a "JMP" vector to the appropriate routine within the dri ver, and
the five entry points are the first 15 bytes of each library
member. Each of these labels is also an external definition of
the library member. All five of the routines simply perform their
specified function and return. There are no error conditions on
re turn.

POPEN$ - Open the selected output device. If a printer (LOCAL
or SERVO) is the output device, this routine checks for
printer ready and for printer allocation (via DOS Function 9).
If the printer is already allocated as a resource for the
other partition, or if the printer is not ready, a message
specifying "PRINTER OFF-LINE" flashes on the screen.
Depressing the KEYBOARD key causes the routine to abort via
ERROR$. When the printer is available, it is allocated as a
resource to the present parti tion and the routine returns.

If the ou tput devi ce is a di sk fi Ie, HL mu st poi nt to an
opened LFT entry, and the A register should contain the
queueing option byte. The queueing option is either zero for
no queueing or non-zero for queueing. If queueing is selected
output will be queued to the end of an existing file; with no
queueing the output will start at the beginning of the
specified file. A disk file created using this routine will
have a special user LRN zero written to the disk. This record
is a configuration sector similar to that used by EDIT, but
storing different information. The information stored allows
quickly posi tioning "to the end of the di sk fi Ie to queue
additional output to it.

If the output device is the screen, device open is not
necessary.

PRINT$ - Output a line to the selected device. On entry, HL
points to a line of characters starting with an ASA control
character and terminated by an 015 (EOL). The print line may
not contain any control characters or space compression. The
routine returns after the line has been output.

PCLOSE$ - Close the output"device. If the output device is a
printer (LOCAL or SERVO), the routine will form feed if
necessary to maintain page parity and will deallocate the
printer. If the output device is a disk file, the file will
be clos ed (excess spa ce wi 11 be deallocated). If the output
device IS the console CRT, device close is not necessary.

46-2 DISK OPERATING SYSTEM

PSUSP$ - Suspend printing. Call this routine to suspend
printing while loading an overlay of. your program. Enter with
HL pointing to a place to save an LFT entry (16 bytes). The
routine will exit with the current output page count in DE.

PRESTRT$ - Restart printing. Call this routine to restart a print
file after suspension. Enter with DE containing the page
count (saved from PSUSP$), and HL pointing to t~e saved LFT
en try (a I so from P SUS P $) •

46.1.2 ASA Control Characters

The following print control characters are recognized by the
p r i nt d r i v e r s :

space - single space before printing
+ - suppress line feeds
o -double space before printing

- trip Ie s'pa ce before pr int ing
1 - skip to top of form
any other character - treated as space

Whenever a line is sent to the PRINT$ routine, the first character
of the line is assumed to be a print control character as defined
above and the appropriate action is taken. The print control
character is not sent to the output devi ce as an output character.

46.2 SECINOUT Drivers

The drivers SEC5500, SEC2200, SECPS and SECABP are
collectively called the SECINOUT drivers because they move
256-byte blocks between processor memory and the disk controller
buffer. All the sector in/out drivers are non-page sensitive and
may be loaded anywhere in the user's program area.

SEC5500 - Moves 256 bytes to or from the di sk buffer on a 1800,
5500, 6000 or 6600 processor, when neither PS nor ARC is
act i ve • Appro x i mate s i z e 02 11 by t e s .

SEC2200 - Moves 256 bytes to or from the di sk buffer on a 1100 or
2200 processor. Approximate size 0124 bytes.

SECPS - S arne as SEC5500 except that it runs wh en PS is aci·ti ve.
Approximate size 072 bytes.

SECABP - Same as SEC5500' except that it runs when ARC is active.
Approximate size 0100 bytes.

CHAPTER 46. UTILITY/REL 46-3

46.2.1 SECINOUT Driver Routines

The SECINOUT drivers have only two routine entry points,
which have no external definitions. The transfer address of the
driver is the sector in routine; the transfer address plus three
is the sector out routine. 80th routines require the same entry
conditions:

8 = DOS LFN (extended LFNs may be used)
H = MSB of 256-byte input or output memory buffer

(must start on page boundary)
On exit all conditions are inaeterminate.

46~4 DISK OPERATING SYSTEM

CHAPTER 47. UTILITY/SYS

Most of the DOS commands have been put in an absolute library
named "UTILI TY /SYS" • Thi s has the fo llowi ng ad vantages:

1. Free up some directory and data space.
2. Makes most of the utility programs available on any disk,

si nce UTILITY /SY Scan be on any dri ve on-l i ne.
3. Assures the user that the most current DOS commands will

be used.

Using the librarian utility program (LIBSYS), many user
pro grams c an a 1 so be add ed to UTI L I TY / S Y S • A few g u ide 1 in es for
programs that can be members of "UTILITY/SYS":

1 • Programs should start at 0 17000 or higher.
2. Programs that use overlays should use DOS function 13 and

14 to access the library.

If you have placed your own programs into UTILITY/SYS, do not
overwrite UTILITY/SYS on a partial gen. Instead, MIN the new
UTILITY/SYS using a different file name, then use LIBSYS as
follows:

MIN
(filename UTILITY/NEW)
LIBSYS UTILITY/SYS
REPLACE UTILITY/NEW
END

·KILL UTILITY/NEW
YES

To display the members in UTILITY/SYS, enter:

CAT *

When keyboard commands are entered, the specified command
will automatically be located as ei ther a separate di sk fi le or a
member of UTILITY/SYS. Normally a separate file name is first
checked, then the library member. To reverse the normal
precedence put a leading * or : in front of the command name. For
example:

*CHANGE SCRATCH/TXT;X
or

CHAPTER 47. UTILITY/SYS 47 -1

:CHANGE SCRATCH/TXT;X

See the chapter on the Command Interpreter for details on
selection of a command from the disk directory or from
UTILITY/SYS.

47-2 DISK OPERATING SYSTEM

CHAPTER 48. SYSTEM DESCRIPTION

48.1 System Philosophy

The objective of DOS is to allow maximum use of the
capabilities of a Datapoint disk system with a minimum of effort.
The DOS disk structure provides dynamic space allocation and fully
random fi Ie access capa bi 1 i ty on all suppo rted , di sk types. Al so
provided are an extensive set of utility programs to perform many
basic data processing functions. In all system utilities the
operator commands are as si~ple as possible while provi~ing a
versati Ie program capa bil i ty. Err or codes and program messages
are mostly presented in English, avoiding complex,
incomprehensible messages.

Datapoint DOS is a facilities oriented system. It provides
utility programs for general use, and extensive system routines
for use in assembler coding. DOS is not a supervisory system; it
imposes practically no overhead. The DOS facilities provide a base
for Datashare, BASIC, and most other Datapoint languages and
systems.

48.2 System Structure

DOS occupies only the lower 8K of memory in the processor.
Of this 8K, only the lower 2.8K is necessary for the support of
the disks. The first 768 bytes of memory (0 - 01377) contain the
object code loader, entry point table, and interrupt handler.
Object code may be loaded from 01400 upwards, overlaying much of
DOS. If. object code is loaded below 01400, the code overstores
the loader or entry points and results are unpredictable.

The operating system debug facility and the'keyboard and
display routines reside between 2.8K and 4K, the cassette driver
routines from 4K to 5.4K, and the command interpreter from 5.4K to
8K. It is recommended that user programs start at 017000 (octal).

To achieve its small size in memory, DOS uses disk-resident
over lays for the di sk file opening, closing, and allocati on
rou tines. Mo st of the sys tem err or messag es al so resi de in an
overlay, allowing fully descriptive messages without using a
prohibitive amount of memory. A set of short utility routines

CHAPTER 48. SYSTEM DESCRIPTION 48-1

(DOS Functions) uses a separate overlay area.

The operating system uses a single disk controller with at
lea st 0 ne phy si cal di sk dr i ve at tached. Ea ch "on-l ine" dri ve -- a
dri ve containing a disk ready to read -- is assumed to contain a
valid DOS disk, which will have all necessary system tables and
files present and in correct format. This assumption on the part
of the system requires caution on the pa.rt of the operator if a
disk not fitting this description is mounted. If, for instance, a
disk has been mounted to be DOSGENed, the operator must not run
any programs that will attempt- to use the disk before it has been
DOSGENed, or an abort will occur indicating system data failure.

DOS is designed to be run interactively by an operator at the
processor console. The operator generally enters commands from
the keyboard, which the operating system interprets and executes.
During execution, status information needed by the executing
program is requested from the operator via CRT messages expecting
a keyed response.

A DOS utility program (CHAIN) allows execution of predefined
processes automatically in a non-interactive fashion, so no
operator attention is required. Other utility programs extend
this automatic capability such that the system can be made almost
completely operator independent if desired.

48-2 DISK OPERATING SYSTEM

CHAPTER 49. SYSTEM STRUCTURE

49.1 Disk Structure

49.1.1 Introduction

Any disk used with DOS is a self-contained information
structure. A disk contains up to 256 files, each of which is
described in system tables on the disk and which resides
completely on the one disk. No system information on a disk
references any other disk.

The basic structure of disk storage is the file. Files on
Datapoin t DOS consi st of up to 38,400 sectors, or as many sectors
as fit on a logical disk, whichever is smaller. The space
occupied by a file is mapped in its Retrieval Information Block'
(RIB), which is the first sector of the file. The Directory
stores the name of each file and provides a pointer to locate the
RIB, thus completely defining a file.

Space for files is allocated in clusters, a cluster being the
smalles t alloca ta ble un it of di sk space. In gener aI, each
c y lin d er of a disk is d i v i d ed . in t 0 8 e qual c Ius t e r s . 0 n DOS. C
systems a cylinder has only 4 clusters. Thus a cluster consists
of 3, 6, or 24 sectors on diskette, cartridge, and mass storage
systems respectively. The sectors constituting a cluster are
always contiguous and never cross the boundary of a cylinder or
head. The Cluster Allocation Table (CAT) and the Lockout CAT
maintain a record of clusters in use or unavailable for use and
c Ius t e r s fr e e fo r use.

The RIB maps the file space in segments; a segment is a set
of contiguous clusters. A file then consists of a set of segments
located randomly on the disk, each segment being a small block of
clusters. Within this space, the file is logically continuous,
there being no logical discontinuity at the boundary of a segment.

Each sector within a file carries its own identification.
The fir~t byte"of a sector contains the Physical File Number (PFN)
of the file to which it belongs. The PFN uniquely identifies a
file. The second and third bytes contain the Logical Record

CHAPTER 49. SYSTEM STRU CTURE 49-1

Number (LRN) of the sector. The LRN is a count of sectors in the
file, starting with 0 at the first sector, and incrementing by one
for each successive sector.

All major tables discussed in this section -- the CAT,
Lockout CAT, HDI, Directory, and RIB -- are kept in duplicate.
The backup copy of each of the tables helps prevent data loss in
event of a read/write error to a system sector.

49.1.2 Disk Space Management: CAT and Lockout CAT

The Lockout CAT indicates locked out cylinders -- cylinders
which will not be used by the DOS. Cylinders are automatically
locked out at DOS generation if they are found bad by the surface
verification. Cylinders may be manually specified for lockout
during system generation. Cylinder~O is always locked out for
system us e. Each byte~of the Lockou t CAT r epres ents a cyli nder:
byte O=cyl 0, byte 1=cyl 1, byte 2=cyl 2, etc. The byte value is
0377 (017 on diskettes) if the cylinder is locked out, and is 000,
otherwise. '

The CAT indicates available space for the DOS; CAT updates
are performed automatically as space allocation or deallocation is
performed. As in the Lockout CAT, each byte of the CAT represents
a cylinder. Each bit of a byte represents a cluster of the
cylinder: bit 7=cluster 0, bit 6=cluster 1, etc. (For diskettes,
bits 7-4 are zero, bit 3=cluster 0, bit 2=cluster 1, bit 1=cluster
2, and bit O=cluster 3). If a bit is set (1), the cluster it
represents is either in use by a file or locked out; if a bit is
clear (0), the 'cluster is free.

The CAT and Lockout CAT observe some fixed format rules:

49-2

Byte 0 is always 0377
Byte 1 through n may be any value as described above

(n is the number of cylinders on the disk)
Bytes n+1 through 0376 are 0377 (except for directory

mapp i ng bytes, if used.)
Byte 0377 is any value. This is the auto-execute PFN and

is normally zero.

DISK OPERATING SYSTEM

49.1.3 Files: HOI, Directory Mapping Bytes, Directory, RIB

The Hashed Directory Index (HOI) provides access to, and
controls allocation of, the Directory. Each byte of the HDI
represents a directory entry, offset from the beginning of the
in d e x by P F N • T h us, by teO = P F NO, by t e 1 = P F N 1, by t e 2 = P F N 2, an d
so on. If the value of the byte is 0311 the directory entry it
represents is not in use. When a PFN is in use, a hash code
(val ue 0-0316) generated from the fi Ie name is placed in the byte.
This value indicates the PFN is in use, and is used to speed
directory searching when a file is being loacated by name.

Directory Mapping Bytes are a less sophisticated means of
Directory access and control, used in DOS. B version 1 and in
diskette operating systems. The mapping bytes are bytes 0351-0316
of the CAT. Each byte represents a directory sector (0-15) and
the value in the byte represents the number of entries (0-16) in
use in that sector.

"The Directory is 16 sectors (logically referenced as 0-15)
contain ing 256 directory ent r i es, 16 ent ri es per sector. A
directory entry contains the name, protection, and subdirectory of
a file; it also points to the file's RIB. An empty directory
entry is set to all 0311s. Directory entry format:

Bytes 0-1 are the RIB address/protection. (See
"Addressing Byte Structures".)

Bytes 2-3 are unused (normally zero)
Bytes 4-11 are the file name. A file name is usually

ASCII characters as described in the DISK FILES
chapter under File Names, padded with blanks to
be eight characters long, but may be any values.

CHAPTER 49. SYSTEM STRUCTURE 49-3

Bytes 12-14 are the file extension. Same format rules
as fi Ie name.

Byte 15 is the subdirectory number, usually 0377,
indicating subdirectory SYSTEM.

A Retrieval Information Block (RIB) maps a file's domain on
disk. A file is composed of segments, each segment being composed
of contiguous clusters. The RIB contains up to 126 segment·
descriptors which completely describe the clusters allocated to a
file.

~l LSB LRNMS_B __ ~ ____ ~ __ ~ ____ ~~ ______ ~ ____ ~

Each segment descriptor (SD) is two bytes long (see "Addressing
Byte Structures"). A segment descriptor of 0377,0377 indicates
the end of the RIB. The fourth byte of a RIB is always 0377. The
RIB is always the first sector of the file; the RIB copy is the
second se~tor and is identical to the RIB except that its LRN is
1 ~

49.1.4 Sector Identification

Every sector of a file contains in its first byte the PFN of
the file. The next two bytes are the Logical Record Number (LRN),
stored least significant byte first. The PFN and LRN are
primarily intended as validation fields when a fi Ie record is
read. When a file record is written, the PFN and LRN are set
correctly; reading a record with a PFN that does not match or an
out-of-sequence LRN constitutes a Record Format Error.

Not every sector in the space allocated to a file has this
PFN and LRN data. Only sectors that have been used for the file
have this information set. Unused sectors may have anything in
the first three bytes.

49-4 DISK OPERATING SYSTEM

49.1.5 Addressing Byte Structures

49.1.5.1 PDA - Physical Disk Address

MSB

I 7161s1413/2111o I
I cylinder

address

LSB

I 71L61S_1/4131EI :e1ctor

number
cluster
number

The cluster number references a cluster within a cylinder;
values are 0-7 except for diskette systems which use values
0,2,4,6 for clusters 0,1,2,3 respectively. The sector number
references a sector within a cluster.

Note: This is the DOS "PDA" and must not be confused with
the hardware disk addressing of any particular controller.

49.J.5.2 RIB Address/Protection

Used in a di rectory entry to point to begi'nning of file.
MSB LSB

1716/S/4/3121110 I

I cylinder
--address

LU~J~lL!J11 211 1 II 0 I

l~ write protection
(l=protected)
delete protection
(l=protected)
unassigned
cluster number

The cylinder address and cluster number, wi th an assumed
sector number of zero, is the PDA of the first sector of the file.

CHAPTER 49. SYSTEM STRUCTURE 49-5

49.1.5.3 Segmen~ Descriptor - used in RIB to define a segment.

MSB

016 1S 14 JL ·
cylinder
address

LSB

number of
clusters minus 1
cluster number

The cylinder address and cluster number, wi th an assumed
sector number of zero, is the PDA of the first sector of the
segment. The length of the segment in clusters is given by the
low-order five bits of the Isb; length can be 1-32 clusters
(except DOS. B, 1-10).

49.1.5.4 Physical File Number - used to access directory and HDI

17161S14113121ITOl

I

L __ d~rectory sector number
. dlrectory entry number

The directory sector number specifies a sector of the
directory (0-15). The directory entry number (0-15) specifies an
entry within a sector.

Note: Since di rectory entri es are 020 bytes long, if the
low-order four bits of the PFN are set to 0, the resulting value
is the byte location of the beginning of the specified directory
entry. For example, PFN 0304 references the directory entry
beginning at byte 0300 (entry number 014) of sector 4 of the
directory.

49-6 DISK OPERATING SYSTEM

49.2 Disk Data Formats

The DOS itself does not deal wi th the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he ~leases.
The user is presented wi th records that are 253 bytes long, the
first three bytes of each sector being reserved for system sector
identification as described above. The DOS and its utility
programs do make a number of assumptions concerning file structure
however, and system operation is much simpler if all files are
structured to match these assumptions.

DOS makes assumptions about the structure of text files and
about absolute object code files. The structure expected for text
fi les un der DOS is descri bed in the chapter on REFORMAT. Any fi le
to be processed by the standard text-handling facilities of DOS
must have the standard text format described.

If a file is to be loaded by the'system loader,
object code file in the following format:

oad load N bytes of

it must be an

\ o~o l ad~ ress address N object code data block 0377
lsb msb complement

G HL [HL
. L logical EOR

~_____________________ _----------------------J

~ one data block

Note that this is the format of output files from Datapoint
assemblers. Any number of data blocks may appear in a record.
The leading byte of a data block will always be either 0,
indicating a block follows, or 0377, indicating end of record.
The special case of N being zero is used to indicate end of file,
in which case the HL given is taken to be the starting address of
the program loaded.

CHAPTER 49. SYSTEM STRUCTURE 49-7

49.3 Memory Mapping

The DOS occupies memory as shown by the following map: -,

COMMAND
OVERLAYS

01 7000

COMMAND
INTERPRETER

01

CASSETTE
DRIVERS

01 0000 (4K)

DOS FUNCTIONS
-- 07 400

DEBUG

f----
~ 06000

KEYIN &. DISPLAY
05 400

FILE HANDLING
OVERLAYS

04 000 (2K)

DISK FILE
HANDLING ROUTINES

0;> 000

DATA AREA
01 400

ENTRY POINTS &.
INTERRUPT HANDLER 010 00

SYSTEM LOADER
__ 0

49-8 DISK OPERATING SYSTEM

49.4 Memory Tables

49.4.1 Entry Point Tables

Three entry point tables exist within the DOS. These tables
consist of a group of jumps to the various routines made available
to the user. These jumps allow the system to be changed without
requiring the user to modify his programs. To assure
compatability between operating systems and for future versions of
DOS, any calls to system routines should use the documented entry
points only.

The" first entry point table is located between 01000 and
01377. It contains entry points to the routines in the loader
(the loader itself, the basic disk read and write drivers, and the
interrupt handler) and to the DOS file handling routines. It also
contains in-line routines to increment and decretaent the HL
registers.

The second entry point table is located between 010000 and
010066 and contains entry points to the cassette handling
routines.

The third entry point table is located between 013400 and
013452 and contains entry points to routines within the command
interpreter. The availability of the command interpreter routines
makes small command tasks easy to implement.

See the chapters on System R6utines and Routine Entry Points
for details on the routine functions and entry point locations.

49.4.2 Logical File Table

The major working table in the system is called the Logical
File Table (LFT) and is located from 01544 through 01643. It
contains all of the information required by the file handling
routines for every file which is currently open (a maximum of
three files may be open at anyone time - logical fil~s one, two,
and three). Once the user has opened a fi Ie by its symbolic name,
he deals with it by the logical file number under which it was
opened. The Logical File Number (LFN) specifies which LFT and
which di sk buffer memory page are to be used for a file.

CHAPTER 49. SYSTE~1 STRUCTURE 49-9

The LFT contains for each entry the following information in
the order shown (the number in parentheses is the number of bytes
used for the item):

PFN

PDN

LRN

BLRN

·CSD

RIBCYL
RIBSEC

MAXLRN

LRNLIM

BUFADR

XXXXXX

(1) - Physical File Number, PFN of the file
referenced by this LFT

(1) - Logical Drive Number (bits 3 - 0)
Protection (bit 7 set indicates delete
protection, bit 6 set indicates write
protection) New Space Allocated flag (bit 5)
set if new space has been allocated to this
file.

(2) - Next Logical Record Number, system LRN of next
sequential sector

(2) - Base LRN, first LRN in current segment (system
LRN)

(2) - Current Segment Descriptor
The CSD and BLRN describe the current file
segment and allow quick calculation of the PDA
to be read/written by treating the LRN as an
offset from BLRN. If the desired LRN is not in
the current segment, the RIB is re-read and a
new current segment established.

(1) - Physical Disk Address of RIB, MSB
(1) - Physical Disk Address of RIB, LSB

Storing the RIB PDA allows quickly locating the
RIB when it must be accessed for getting a new
segment descriptor, for allocation updates, or
for file closing.

(2) - Largest system LRN referenced (read, written,
or positioned to) since the file was opened.
Used for space deallocation at close if new
space allocated flag is set.

(2) - Largest LRN allowed~ Obsolete field, now
unused.

(1) - Current controller buffer byte address, used
for byte transfers to or from the di sk
controller buffer.

(1) - Unused

1bbytes total

There are actually four LFT entries (01544-01563,
01564-01603, 0160~-01623, 01624-01643) to correspond to LFNs zero
through three. The LFN us ed fo r a file speci f ies whi ch buffer
page to use for the disk transfer operation. LFN 0 uses buffer
page zero (or 4,8, or 12), LFN 1 uses buffer page one (or 5,9,
or 13), and so on. The larger buffer page numbers are available

49-10 DISK OPERATING SYSTEM

on 4K disk controllers and are specified by the high-order bits of
the LFN given to the system routine used. Not all routines
recognize the page-select feature of LFN, check the description of
each routine in System Routines.

Buffer page zero is a special case and is reserved for system
use because the DOS needs a buffer into which it can read the RIB
if it is necessary to determine a new current segment when a given
access is made. This need is only critical on writes, when the
buffer contains the information to be written to the disk. On
reads, the user's data will always be the last item to be read and
and page zero may be used. Always be careful in use of buffer
page zero, however, since an access involving a different logical
file may cause logical file zero's di sk buffer to be loaded wi th a
RIB. Also, the zeroth disk controller buffer is always used by
the system loader in transferring data to memory. Page zero is
used so that an overlay may be loaded or another program can be
chained to without disturbing any of the standard (one through
three) logical files. LFN zero has one final peculiarity, CLOSEs
have no effect when issued on LFN zero. Neither space
deallocation nor updating of the protection field occur when
logical file zero is closed.

The DOS loader uses a set of locations in memory between 4
and 022 to perform the functions of an LFT entry during the
loading process. It knows, however, that an object file is always
sequential and does not have to have the accessing generalization
of tile rna in fi Ie han d 1 i ng routi nes . Th e file hand 1 i ng ro u ti'nes
also use these low memory locations for temporary storage of a
specified LFT entry to eliminate having to continually index into
the LFT. Also, since the basic di sk read and wri te routines use
location 5 to indicate which drive is to be used, having the LFT
temporarily stored in the low memory locations automatically
selects the correct drive for use.

49.5 Disk Overlays

DOS uses disk overlays to reduce its main memory
r e qui rem en t s . The 0 v e rIa y s are in. disk f i 1 e s S Y S T E M 1 IS Y S t h r 0 ugh
SYSTEM7/SYS. The memory-resident DOS is stored in the disk file
SYSTEMO/SYS. These eight files must reside in PFNs 0 through 7,
the PFN corresponding to the number in the file name.

CHAPTER 49. SYSTEM STRUCTURE 49-11

The system overlay files load into memory between 04000 and
05400 and are loaded by the system as needed. The functions of
the overlays are:

SYSTEM1/SYS - PREP - create a new file
SYSTEM2/SYS - CLOSE - close a file
SYSTEM3/SYS - OPEN - open an existing file
SYSTEM4/SYS - ALLOC - allocate more space for a file
SYSTEM5/SYS - ABORT - display an error message
SYSTEM6/SYS - SCREEN - i~itialize a RAM display screen

SYSTEM7/SYS is the DOS Fuction overlay and is described in
the DOS Function section of the chapter on System Routines. The
DOS Functions are short overlay routines and load into a separate
area of memory. Also, the first sector of SYSTEM7/SYS is used to
store subdirectory names (see the SUR command).

When DOS needs an overlay file, it searches for the file on
the booted drive.

49.6 The Command Interpreter

The command interpreter resides in locations 013400 through
016777. The command interpreter receives command lines from the
keyboard, as described in the chapter on Operator Commands,
storing the command line in memory in the Monitor Communication
Region (MCR$, location 01400 through 01543). When the line is
terminated (ENTER key, 015), the stored command line is scanned
and the indicated command program is loaded and executed.

/

While the command interpreter is waiting for character entry
from the keyboard, it runs a test on the disk buffer memory. As
soon as a character is ready from the keyboard, the disk buffer
memory test is terminated and the normal keyin routine is entered.
Even just sriking the CANCEL key will terminate the d.isk buffer
memory test. If an error is detected by the disk buffer memory
test, the message "DISK BUFFER FAULT" is displayed and the screen
is rolled up one line.

When the command interpreter is initially entered via the
entry point DOS$ it will execute the program set for
auto-execution if there is one. If the KEYBOARD key is depressed,
auto-execution is not performed. The AUTOed program will also be
run any time the system returns to DOS$; exit routines EXIT$ and
ERROR$ return via this entry point.

When a command line has been entered, the command interpreter

49-12 DISK OPERATING SYSTEM

must attempt to locate and load the specified command program. If
the command is obviously bad (a null entry line) the interpreter
immediately displays "WHAT?" and waits for a new line. A pound
sign (D) for invoking DEBUG is also treated as a special case,
causing the interpreter to immediately go to D~BUG. Normally the
first field on the command line will be normalized to the form
shown be low and the file thus spe ci f ied wi 11 be searched fo r. The
sequence of searching for a requested program depends on the
format of the command line.

If the operator entered a leading "*,, or ":" as part of the
command name, a flag called UTILSW (UTILity SWitch) is set,
indicating that the specified command is to be located as a member
o f UTI LIT Y / S Y S • I fad r i ve s p e c i f i cat ion w as en t e r ed as part 0 f
the command name, the search goes only to the specified drive, as
indi cated in the sequence shown below. .

The first test the interpreter performs is to check the drive
specification entered, if any. If the drive specification is
invalid, an error message is displayed and a new command line
requested. If the drive specified is valid, or if no drive was
specified, the interpreter searches for the command as outlined
be low.

1. If a drive was specified:
a. If UTILSW is set:

(1) Open UTILITY/SYS on the specified drive. If the
file is missing or if the specified command is
not a me m be r, say " W HAT?", e 1 s e ru nth e pr 0 g ram.

b. If UTILSW is not set:
(1) Attempt to open the command file on the specified

drive. If successful, run the program. Else:
(2) If no extension was specified in the command

name, open UTILITY/SYS on the specified drive an'd
search for the command as a member of the
li br ary.· Else:

(3) "WHAT?" and get another command.
2 • I f no d r i ve w as s p e c i fie d :

a. If UTILSW is set:"
(1) Open UTILITY/SYS on the booted drive and search

for the command as a memb er of the 1 i br ar y •.
Else:

(2) Try to open command as a file on booted drive.
Else:

(3) Check for command in UTILITY/SYS on any drive.
Else:

(4)' 'Try to open command as a file on any drive. Else:
(5) "WHAT?" and get another command.

CHAPTER 49. SYSTEM STRUCTURE 49-13

b • I f UTI L SW is n ot set:
(1) Try to open command as a file on booted drive.

Else:
(2) If no extension was specified in the command

name, open UTILITY/SYS on the booted drive and
check for the command as a member of the Ii brary.
Else:

(3) Try to open command as a file on any drive. Else:
(4) If no extension was specified in the command

name, open UTILITY/SYS on any drive and check for
the command as a member of the library. Else:

(5) "WHAT?" and get another command.

The command interpreter uses lexical scanning routines to
interpret the entered command line. These routines are available
for user programs and are described in the chapter on System
Routines. The command interpreter scans up to four file
specifications from the command line. The file name scan is
t e r min ate d by a s e m i co Ion (;) or en d - 0 f - s t r i n g (0 15) . The f i Ie
specifications are entered in a normalized symbolic form into the
corresponding logical file table entries (0 through 3). The
normalized form is not the same as normal LFT information, the LFT
area simply provides convenient storage for the file
specifications. If desired (and it usually is), the open routine
can open a file using the LFT in which the file name used for the
open is stored. The format of the normalized form is shown here:

DRCODE (1) - Drive select code: logical drive number ~n
binary, no drive spec (0377), invalid drive
spec (03'16)

0377 (1) - PDN location of normal LFT, set to 0377 to
indicate the LFT is closed.

FILENAME (8) - File name specified, padded with trailing
spaces to 8 ,characters. Eight spaces if no
name given.

FILEEXT (3) - File extension specified. Three spaces if no
extension entered.

DRSPEC (3) - Logical drive specification (spaces if no
spec). .

When a program receives control from the command interpreter,
LFTs one through three (zero was used to load the program itself)
contain normalized entries as indicated above, and MCR$ still
contains the command as entered, so the program can retrieve
information from its command line. If a program is auto-executed,
none of this command line information is available, so any program
which tests for information as provided above can not be
auto-executed. Conversely, any program intended for

·49-14 DISK OPERATING SYSTEM

auto-execution must not look for command information. The command
AUTOKEY is provided to allow automatic execution of programs
requiring command line information.

CHAPTER 49. SYSTEM STRUCTURE 49-15

CHAPTER 50. INTERRUPT HANDLING

50.1 Interrupt Mechanism

Datapoint 1100, 1800, 2200, 5500 and 6600 processors feature
a one-millisecond timed interrupt. Every millisecond, a flip-flop
indicating "interrupt pending" is set; the setting of this
flip-flop occurs independently of processor instruction cycling.
At the beginning of an instruction fetch cycle the status of the
interrupt pending flip-flop is checked. If the flip-flop is set,
and interrupts are enabled, a CALL to the interrupt vector
location occurs and the flip-flop is cleared. On 1100 and 2200
processors, the interrupt vector location is address O. On 1800,
5500 and 6600 processors the interrupt vector location is address
0167444, which normally performs a jump to location O. While
interrupts are active, location zero is a jump to the interrupt
scheduler.

The execution of the CALL ends hardware control of the
in terrupt. Any in terrupt s ervi ce per formed, ta sk sched u ling, or
prioritizing is under software control.

The machine instruction DI (Disable Interrupts) prohibits
recognition of the interrupt pending flip-flop, thereby preventing
any interrupt calls until recognition of the flip-flop is
reactivated by an EI (Enable Interrupts) instruction.

Datapoint processors do not have a structured multi-level
hardware interrupt vector mechanism available to the system
programmer. Any 1/0 performed by the system must be moni tored by
the processor through the use of status flags. Such monitoring is
usually performed by a foreground process, typically one process
per 1/0 device.

50.2 Interrupt Scheduler

DOS provides an interrupt scheduler loaded as part of the
system boot operation. The scheduler resides between 01201 and
01376 and remains memory-resident. Normal system operation never
overstores this scheduler. The basic coding of the scheduler is
shown below. The code shown is intended as an example of the
structure of the scheduler and is not the exact code used within

CHAPTER 50. INTERRUPT HANDLING 50-1

INTRPT

INTO
INT1
INT2
INT3

RETURN

INTSCN

INT4

INT5

INT6

INT7

INTRET

DI
BETA
CALL
CALL
CALL
CALL
MLA
AD
LMA
AD
LLA
PUSH
RET

DC

CALL
JMP
CALL
JMP
CALL
JMP
CALL
XRA
MSA
ALPHA
EI
RET

RETURN
RETU RN
RETURN
RETU RN
*INTSCN
6

INT4-6

o

RETURN
INTRET
RETURN
INTRET
RETURN
INTRET
RETURN

*INTSCN

Disable interrupts
Use BETA mode
Perform each of processes 0

through
three

Rotate to the next
one of processes
4 through 7

HL ~> CALL address
Jump to the

next CALL

Rotatlo" counter storage

CA~L.~ for the rotating
prQQess slots

Res et the sc an poi n ter
after calling process 7

back to ALPHA mode .
Enable interrupts
Back to the background

All processing performed on an interrupt call is called
"foreground", the processing interrupted is referred to as
"backgro und". For e ground proces si ng beg ins wi th the DI
instruction labeled INTRPT above and ends with the RET instruction
terminating the scheduler. The above scheduler illustrates the
fundamental rules of foreground code on a Datapoint processor:

1. Interrupts must be disabled during foreground processing.
The scheduler disables interrupts initially and does not
enable interrupts until immediately before terminating.
Foreground processes must not enable interrupts or invoke
any DOS routines which internally enable interrupts.

2. Foreground processing is performed in BETA mode,
background processing in ALPHA mode. The scheduler sets
the machine modes; foreground processes should not change
the mode.

50-2 DISK OPERATING SYSTEM

3. Foreground processes are CALLed routines and must return
with the stack in the same condition as on entry. Each
CALL instruction INTO through INT7 can be used to call a
foreground routine. The scheduler itself uses a simple
RET to return to background processing; if any foreground
routine modifies the stack, the scheduler could exit to
the wrong location. Even if the scheduler manages to
return properly, the background process uses the same
stack (there is only one stack) and any modification
performed by foreground routines could be fatal to the
background processing.

4. Register contents on entry to foreground processing may be
undefined. Normally the BETA mode registers and condition
flags will be the same on entry to foreground as they were
at the conclusion of foreground processing on the previous
i n t err u p t , so con ten t son en try ca n be co n sid ere d as
known. Under PS, however, the BETA mode registers and
condition flags are not preserved, since they are used by
PS and by the other parti tion. Even when PS is not in
use, register contents cannot be predicted if there is a
possibility of multiple foreground routines being active.
If a single routine is active, registers may be preserved;
if another routine or two is made active, they may modify
the registers used by the first routine, effectively
destroying any expected contents.

50.3 Actiye Processes

Each of the la be led CALLs in the sc hed u ler, INTO - INT7, is
call ed a for e g r 0 un d "p roc e s s " 0 r, so met i m e s , an i n t err u p t "s 1 0 t" ,
and is referenced by number 0 through 7.

Normally each foreground process is inactive, since each CALL
invokes only a RETURN to the scheduler. A process is made active
by overstoring the address RETURN following the process CALL wlth
the entry address of a desired foreground routine. The address so
stored is called the "state" of the foreground process. (Two DOS
r 0 uti n e s, SET I $ and C S $, set th est ate 0 f a pr 0 c e s s •) T h u s if the
address PRINT is stored LSB, MSB in INT1+1 and INT1+2 (the address
area following the CALL at INT1) the state of foreground process 1
would be PRINT. Once a process has been made active -- given a
state -- it can again be made inactive by storing the adress
RETURN back into the two bytes following the CALL. (Two DOS
routines, CLRI$ and TP$, terminate processes in this manner.)
While a process is active, the routine it calls will be performed
once every interrupt cycle, or every fourth cycle depending on the

CHAPTER 50. 'INTERRUPT HANDLING 50-3

slot number used.

The scheduler is structured to provide four "one-millisecond"
processes and four "four-millisecond" processes. The
"one-millisecond" and "four-millisecond" designations refer to the
length of time between sequential executions of the process.
Interrupt slots 0-3 are one-millisecond processes; each process is
executed every time an interrupt occurs. Interrupt slots 4-7 are
four-millisecond processes; one of the four is executed every time
an interrupt occurs, so anyone process is executed only every
fourth millisecond.

50.4 Timing Considerations

The most severe constraint on foreground routines is timing,
mainly the total length of time required to execute. Since an
interrupt occurs every millisecond, the total amount of time spent
in foreground must be less than 1000 microseconds. Thus the
amount of time spent executing each active foreground routine and
the interrupt scheduler itself (130 microseconds on a 2200) must
total less than a millisecond. If the time spent in foreground is
more than a millisecond, the interrupt pending flag will already
be set when the interrupt scheduler executes its final RET, so an
interrupt call will immediately occur and no background processing
will be performed.

Also, if more than one millisecond is spent in foreground,
interrupts c an be dro pped. The in terru pt pend i ng fl ag h as on 1 y
"off" and "on" values. If an interrupt signal occurs while the
flag is already on, it simply stays on and the occurrence of the
interrupt pulse has no effect -- the interrupt is lost. If, for
example, 1200 microseconds is being spent in foreground on each
interrupt, only 5 interrupt calls will occur in a 6 millisecond
time interval. One interrupt will be lost because the flag was
already set when its signal occurred. In a similar fashion,
interrupts can be lost if interrupts are disabled for too long in
background.

Another timing concern is "jitter". Jitter describes the
variation in interrupt timing: it is not exactly one millisecond
between interrupt calls. The timing variation occurs mainly
because of time spent in background with interrupts disabled. If
background processing disables interrupts for 200 microseconds
(200 microseconds of jitter) it could be 1200 microseconds between
interrupt calls if the interrupt pending flag were set immediately
after interrupts became disabled. An additional source of jitter
is time spent in foreground processes. Any variation in the

50-4 DISK OPERATING SYSTEM

execution time of process 0 appears as jitter to process 1.

Jitter must be taken into account when designing any program
structure. If an external device is being serviced by interrupts
and the device presents a character for input every 1.4
milliseconds, jitter must not exceed 400 microseconds. If the
jitter were over 400 microseconds, a character could appear ready
and then be overstored by the next character before an interrupt
occurred to service the device. A good guideline is 200
microseconds maximum for any foreground process.

50.5 DOS Interrupt Routines

DOS provides four utility routines for interrupt processing.
Use of these routines simplifies interrupt process coding and
helps assure DOS compatibility. For full descriptions of
parameterization of these routines, see the chapter on System
Routines.

50.5.1 SETI$

SETI$ changes the state of a foreground process. SETI$ is
usable only from background and is generally used to initiate a
previously inactive process. The routine accepts a specified
address and stores the address following the CALL instruction of a
specified interrupt slot. Even if the process was previously
active, the new state is stored over the old state.

50.5.2 CLRI$

CLRI$ terminates a foreground process. The address of RETURN
(see sample scheduler above) is stored following the CALL of the
s p e c i fie d pro c e s s n u m be r . Any ro uti n e act i ve fr 0 m t hat in t err up t
slot is then inactive. CLRI$ is used from background.

50.5.3 CS$

CS$, like SETI$, changes the state of a foreground process,
but is used from foreground. A call to CS$ affects only the
process performing the call. CS$ changes the state of the process
to the address of the instruction following the "CALL CS$" and
returns -- not to the invoking routine -- but to the interrupt
scheduler. Due to the stack manipulations performed by CS$ it
must be called only from the outermost stack level of a foreground

CHAPTER 50. INTERRUPT HANDLING 50-5

routine; it must not be called from a routine called by the main
routine. CS$ does not enable interrupts.

50.5.4 TP$

TP$, like CLRI$, terminates a foreground process and is
itself called from foreground. TP$ affects only the foreground
process from which it is called, setting the state of that process
to RETURN to deactiv·ate the process, and returning to the
scheduler. Like CS$, TP$ must be called only from the outermost
stack level of a foreground routine. TP$ does not enable
interrupts.

50.6 Programming Considerations

50.6.1 Background Code

If interrupt processing is to be used, the mainline program
code must be written "interruptable" with the realization it may
be interrupted anytime interrupts are not disabled. For most
processing, no particular concern is necessary, since if the
interrupt processes are coded correctly the stack, registers, and
condition flags are unchanged after the interrupt process; the
background code will never notice the interruption. Coding for
1/0 device handling is the most critical part of interruptable
code, since during interrupt processing the selected 1/0 device
can change.

Interrupts must be disabled any time the currently selected
1/0 device status is critical: between addressing the device and
testing status, between addressing the device and issuing a
command, and so on. At the same time, interrupts must not be
disabled for too long a time, due to introducing excessive jitter
or even dropping interrupts. It is especially important to be
certain interrupts are enabled for at least one instruction cycle
in any wait loop lest interrupts be delayed for the duration of
the loop.

If the background code uses BETA mode, interrupts must be
disabled all the time BET A mode is in use. If an interrupt occurs
while in BETA mode, the registers and condition codes will be
modified by the scheduler and foreground routines and results to
the background program could be disastrous. Background code
should not generally use BETA mode.

50-6 DISK OPERATING SYSTEM

All DOS utility routines are completely interruptable and
disable interrupts for a maximum of 200 microseconds. DOS
routines generally return with interrupts enabled.

50.6.2 Foreground Code

Duration of foreground routines is of primary concern. If a
routine is too long to execute in a single interrupt cycle, its

·operation must be split using CS$ or successive four-millisecond
pro c e sse s . For e g r 0 u n d r 0 uti n es s h 0 u I d n ever use a wa it I 00 p ; the y
should instead ~eturn, using the delay of background processing to
wait for the next interrupt.

Addi tionally, foreground routines:

1. Must not enable interrupts.
2. fvlust exit with the stack in the same condition as on

entry.
3 . tv1u s t no t use rno de ins t r u c t ion s .
4. Should not assume register conditions have been preserved.

Be su r e to term i n.a te fo r egroun d pr oce s s es wh en they are no
Ion g er nee de d . Apr 0 cess left act i ve uses up mac h i ne t i In e • W hen
a pr 0 g ram fin ish e s, an y act i ve fo reg r 0 un d pro c e sse s rem a ina c t i ve
upon return to DOS. These foreground processes at best slow down
the system, and may cause CALLs to locations that have been
overstored by later programs, causing unpredictable results.

DOS itself uses foreground processing in only a few
instances: the -cassette driver routines, the DEBUG P-counter
display, the delay function (DOSFUNC 8), and the relocatable servo
printer dri ver.

CHAPTER 50. INTERRUPT HANDLING 50-7

CHAPTER 51. SYSTEM ROUTINES

51.1 Parameterization

Parameters are passed to the subroutines through the
registers. In the discussion of these parameters, the following
abbreviations will be used:

LFN - Logical File Number times 16
LRN - Logical Record Number (the user's LRN)
PFN - Physical File Number
LFT - Logical File Table

The following definitions apply to the descriptions of the
s y stem r 0 uti n e s .

drive number - indicates a logical drive number (0 through N,
where N is the maximum number of logical drives .
sup p 0 r ted by the DOS in use). I n so me ro uti n e s, 0 37 7
is used to indi cate that all dri v es are to be checked.

name - the address of a field containing exactly eleven
bytes. The first eight bytes are the file name and the
last three bytes are the file extension by command
in terpreter conventi on. The name chara cters may be any
eight bit combinations except the first character must
not be a 0377. The command interpreter requires that
all characters be letters or digits.

=> - indicates an address pointer. This symbol will be used
when describing routine entry or exit conditions to
indi ca te that a specific regi ster pair contai ns an
address which is the memory location containing the
s p e c i f i ed i n for mat ion. Thus" H L = > s t r in g" mea ns the
HL register pair contains the memory' address of the
first character of a string.

extended LFN - LFN referencing a physical disk buffer. The
normal DOS LFN values are 0, 16, 32, and 48 (0<4, 1<4,
2 < 4, an d 3 < 4), an d s p e c i f y usa g e 0 f a par tic u 1 a r L F T
and of a particular page of disk buffer memory (pages 0
through 3). Some of the system routines for DOS.D,
DOS.E, and DOS.G allow specification of larger LFN

CHAPTER 51. SYS TEM ROU TI N ES 51-1

values, allowing use of buffer pages 4 through 15. The
extended LFN is specified as buffer page number times
1 6 • The L FT used by asp e c i fie d L F N is de t e r min ed by
the low-order two bits of the buffer page number.
Thus, pages 0,4,8, and 12 use LFT 0, pages 1, 5, 9,
and 1 3 use L F T 1, an d so 0 n .

51.2 Exit Conditions

If a routine fails to perform as expected, some indication
must be made that the expected action did not occur. This
indication is given by the condition flags in the processor being
set ina special manner or by control being transferred to a trap
location instead of returned via the subroutine mechanism. The
'Exit conditions' section of each subroutine description shows the
register contents and condition flags of interest when the routine
returns.

51.3 Error Handling

Minor errors are indicated by the Exit Condition of the
r 0 uti n e call e d . M a j or err 0 r s c au sea t rap - - an au t om a tic s e i z u r e
of program control by the operating system. The trap for each
type of error transfers control to a specified location, which
will display an appropriate error message.

Minor errors are always non-fatal; the program can test the
Exit Conditions and determine what action to take. Major errors
can be fatal or non-fatal. When a system trap occurs, the system
will simply display a message and restore itself, causing a fatal
program error. Many major error traps can be intercepted by the
progr am an d gi ven spe ci al trea tment, as desc ri bed in the sect i on
on TRAP$ below.

51.4 Foreground Routines

The chapter on Interrupt Handling contains a complete
discussion on the functioning and use of the foreground handling
and should be consulted for an understanding of the following
routines.

51-2 DISK OPERATING SYSTEM

51.4.1 CS$ - Change Process State

CS$ changes a foreground routine's state. It is called by
the executing foreground routine and causes its execution address
to be changed to the address following the CALL CS$. Execution
will not continue at the new address until the next interrupt
occurs. CS$ is normally called from the outermost stack level
(level 0) of an active foreground process. Calls to CS$ from
deeper stack levels of the routine must be very carefully planned
and are not recommended.

Entry point:

Parameters:

01033

on subroutine stack - see the chapter on Interupt
Handling

Exit conditions: return is made to the scheduler

51.4.2 TP$ - Terminate Process

TP$ deactivates the process called by storing the address of
a return instruction in the process call. T~$ is entered by a
jump instruction, not a call. TP$ is invoked from the outermost
stack level (level 0) of an active foreground process.

Entry point:

Parameters:

01036

on the stack - see the chapter on Interrupt
Handling

Exit conditions: no exit, returns to Interrupt Scheduler

51.4.3 SETI$ - Initiate Foreground Process

SETI$ activates the interrupt process specified by the
parameter in the C register (0-7) by storing the address given in
the D and E registers into the call instruction for that process
and enables the interrupt handler. Interrupt processes zero
through three are executed every millisecond while four through
seven are executed every fourth millisecond.

Entry point: 01041

Parameters: C = process number (0-7)
DE = address of foreground process

CHAPTER 51. SYSTEM ROUTINES 51-3

Exit conditions: B,D,E unchanged
H,L = a

51.4.4 CLRI$ - Terminate Foreground Process

CLRI$ deactivates a foreground process by storing the address
of a return instruction into the process call specified by the
parameter in the C register (0-7) and enables the interrupt
handler.

Entry point: 01044

Parameters: C = process number (0-7)

Exit conditions: B unchanged
H,L = a

51.5 Loader Routines

There are two levels of disk handling routines. This section
describes the lower level routines which reside in the loader and
require numbers physically describing the drive, cylinder, sector,
buffer, and file. The section on File Handling Routines describes
the upper level routines.

INCHL and DECHL are described in this section only because
they are used by the DOS at all levels and because these two
routines are loaded as part of the bootblock. In general, the
other routines described in this section are not used by typical
user programs; most user programs will be better served by the
higher level routines described in the section on File Handling
Routines.

51.5.1 BOOT$ - Reload the Operating System

BOOT$ loads and executes the operating system (PFN a on the
booted drive). This action does not affect the interrupt handling
facility between 01000 and 01377. Since BOOT$ requires that the
operating system always be loaded specifically from the booted
drive, BOOT$ should normally only be used in cases where EXIT$ is
unusable, such as when the disk handling routines have been
overstored. BOOT$ does not close any files before reloading the
DOS.

Entry point: 01000

51-4 DISK OPERATING SYSTEM

Parameters: none

Exit conditions: does not return

51.5.2 RUNX$ - Load and Run a File by Number

RU NX$ loads the phy sical fi Ie speci fi ed and begi ns its
execution. If the file cannot be loaded, a jump to 800T$ occurs.

Entry point: 01003

Parameters: A = PFN
C = drive number

Ex i t con d i t ion s: does not ret u rn

51.5.3 LOADX$ - Load a File by Number

LOADX$ loads the physical fi Ie specified and returns wi th the
starting address in HL if the load was successful.

Entry point: 01006

Parameters: A = PFN
C = Drive Number

Exit conditions: Carry false: HL = Starting address of file
Carry true: A=O if file does not exist

1 if drive off-line
2 if directory parity fault
3 if RIB pari ty fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

51.5.4 INCHL - Increment the Hand L Registers

INCHL increments the sixteen bit value in the HL registers by
one. If the routine is entered at INCHL+2, the sixteen bit value
in the HL registers will be incremented by the number in the A
register.

Entry point: 01011 (01013 for increment by A)

Parameters: HL = number to be incremented

CHAPTER 51. S Y S T E M RO UTI N E S 51-5

A = increment value if INCHL+2 used

Exit conditions: HL incremented
A equal to the H-register
B,C,D,E unchanged
all condition flags undefined

51.5.5 DECHL - Decrement the Hand L Registers

DECHL decrements the sixteen bit value in the HL registers by
one. If the routine is entered at DECHL+2, the sixteen bit value
in the HL registers will be decremented by negative the number in
the A register (e.g., for decrement by 2, A is set to -2).

Entry pOint: 01022 (01024 for decrement by -A)

Parameters: HL = number to be decremented
A = decrement value if DECHL+2 used

Exit conditions: HL decremented
A equal to the H-register
B,C,D,E unchanged
all condition flags undefined

51.5.6 GETNCH - Get the Next Disk Buffer Byte

'GETNCH gets the character from the physical disk buffer
location pointed to by memory location DOSPTR (location 026) from
the disk buffer currently selected, and then increments the
contents of location DOSPTR. /

Entry point: 01047

Parameters: DOSPTR = disk buffer address (0-255)

Exit conditions: A = character from disk buffer
(DOSPTR) = (DOSPTR)+1
B,C,D,E,H~L all unchanged

51-6 DISK OPERATING SYSTEM

51.5.1 DR$ - Read a Sector into the Disk Buffer

DH$ caus es a sector to be transferred from the di sk to one of
the disk controller buffers. The drive number is given in the
least significant bits (the others are ignored) of location
TFT+PDN (loca tion 5). (The number of bi ts ignored depends upon
the particular DOS in use). The physical di sk address LSB is
given in the E register and the physical disk address MSB is given
in th e D reg i s t e r . The disk con t roll er b u f f er n u m b er tim e s
sixteen is given in the B register. Interrupts are disabled by
this routine for a maximum of 100 microseconds.

Compatibility note! The physical disk address format will
vary among different DOS; the user's program should not make
assumptions regarding this format if the program is to be
transportable between different DOS. The most significant byte
(MSB) is generally a cylinder number, and the least significant
byte (LSB) is a sector address within a cylinder. The least
significant byte especially will vary among DOS. In general, the
only safe way to insure a valid, proper physical disk address
(PDA) is to get it as a returned item from a system routine
(POSIT$ or one of the DOS FUNCTIONs described later). User
program generation or manipulation of physical disk addresses is
strongly discouraged.

If parity faults are detected, DR$ retries the read operation
four to ten times (depending on the type of disk drive in use)
before returning with an abnormal exit status. This routine is
used by all higher-level DOS disk routines, so the same retry
count applies to all DOS disk operations.

Entry point:

Parameter:

01052

B = extended LFN
D = physical disk address MSB
E = physical disk address LSB
TFT+PDN (at loc 5) = logical drive number

Exit conditions: B,D,E,TFT & PDN all unchanged
Carry false if read successful
Carry true and Zero false if drive off-line
Carry true and Zero true if parity fault

CHAPTER 51. SYSTEM ROUTINES 51-1

51.5.8 DW$ - Write a Sector Crom the Disk Buffer

DW$ causes the contents of one of the disk controller buffers
to be transferred to a sector on the disk. If the physical write
protection on the specified drive is enabled, DW$ will beep
continuously until the protection is disabled.

There are two types of write protection in the disk operating
system. The first type is a physical protection th~t is part of
the disk drive hardware, which will cause DW$ to beep if set. The
second type of write protection is a logical protection that is
connected ,with each file on a disk. A bit exists in the directory
entry for each file which, if set, will prevent the higher-level
routines (for example, WRITE$) from calling the DW$ routine. It
is important not to confuse these two types of write protection.
All references to wri te protection that follow refer to the
logical protection on each file and not to the physical protection
of the drive itself.

In DOS, DW$ uses the write/verify mode of the disk
controller. Thus all writes performed by the DOS use this mode of
writing. As in the DR$ routine, several retries will be made if
parity faults are detected before abnormal exit will occur. In
all other respects, DW$ is similar to DR$.

Entry point:

Parameters:

01055

B = extended LFN
D = physical di sk address MSB
E = physical disk address LSB
TFT+PDN (at -loc 5) = logical dri ve number

Exit conditions: B,D,E,TFT & PDN unchanged
Carry false if write successful
Carry true and Zero false if drive off-line
Carry true and Zero true if parity fault

51.5.9 DSKWAT - Wait Cor Disk Ready

DSKWAT waits for disk ready, controller ready, no disk I/O
transfer in progress, and drive online to all be true. If the
dri ve is not online, return is made wi th the carry flag true, the
zero flag false, and interrupts enabled. Otherwise, exit is made
with interrupts disabled. This routine is obsolete and is not
a v a i I a b Ie un d er so m e s y s t ems (P S , for e x amp Ie) . It is r e co mm end e d
that this routine not be used.

51-8 DISK OPERATING SYSTEM

Entry point: 01060

Parameters: none (drive checked is the selected drive)

Exit conditions: explained above
B,C,D,E,H,L unchanged

51.6 File Handling Routines

A file is dealt with as a logically contiguous and randomly
accessible space. A file is specified by its symbolic name or by
its PFN. A LRN within a file is specified by a two-byte number
kept within the system (LRN in the LFT). When a file is opened,
the LRN is set to two.

There is a distinction between system LRN and user LRN. A
LRN in the LFT is a system LRN. System LRN zero is the primary
RIB for a file and system LRN one is the RIB backup. System LRN
two is use r L RN zero (u s er data sec tor 0). Log i cal r e cor d n u m b e r s
supplied to system routines are usually user LRNs. These numbers
are converted to system LRNs before being used by the DOS or
placed into the LFT. In the routine descriptions below, "LRN"
refers to a user LRN unless otherwise specified.

Aft ere a c h r e cor d a c c e s s (R E AD $ 0 r WR IT E $), th e L R N i nth e
LFT is incremented. Thus, for sequential accesses, the user need
not actually specify which record he is dealing with. However, a
r 0 uti n e n a rn ed PO SIT $ a 110 ws the L R N to be c han g ed to any val u e
between zero and the upper limit of the file, providing a random
access facility. (This upper limit depends upon the DOS in use).

All of theJlogical file handling routines automatically
create or verify the PFN and LRN of the file sector being handled
(see Disk Structure).

It must be noted that READ$ and WRITE$ provide sequential
processing of file sectors, but do not automatically handle the
Datapoint sequential text file format. All necessary
end-of-record (015) and end-of-sector (003) bytes must be placed
in the disk buffer under program control; the system routines do
not provide these control bytes. Likewise, the CLOSE$ routine
does not provide any end-of-file mark. To provide a valid text
EOF, the user program must write an EOF byte by byte. For
Datapoint file formats, see the appendix on Disk Data Formats.

CHAPTER 51. SYSTEM ROUTINES 51-9

51.6.1 PREP$ - Open or Create a File

PREP$ searches the directory or directories specified for the
given name. If the name is found, the file is simply opened for
use as the specified logical file number. Otherwise, a new file
having the name specified will be created. If a new file is
crea ted, an end-of- file by G EDI T c on vent i on (s i x zeros fo 11 owed by
an 003) is written in LRN zero. Whether the file is simply opened
or is created, the information describing it is stored in the LFT
entry specified so that all subsequent references to that file by
its LFN will be able to deal with the correct locations on the
disk. If the LFT entry specified is already in use when PREP$ is
called, the file that the entry specifies will be closed (see the
section on CLOSE$) and the new fi Ie opened in its place.

DE is the address of an 11-byte string which is the name of
the file being specified (as explained before under the section on
Parameterization).

Entry point:

Parameters:

01063

B = LFN
C = drive number or 0377
DE=> file name string

Exit conditions: 8 = LFN; other registers indeterminate

Traps: SPACE A new fi Ie must be created and
no space is left or no more directory
en t r i es a re a v a i I a b Ie.

OFF-LINE The drive specified is off-line.

51.6.2 OPEN$ - Open an Existing File

OPEN$ is similar to PREP$ except for the action taken if the
file specified does not exist'! In this· case, return is made with
the Carry condition true (return is made with Carry false if the
file exists). In addition, a file may be opened by PFN by setting
the D register to zero and setting the E register with the PFN.
Action taken to open by PFN is the same as that taken if a name is
specified.

Entry point:

Parameters:

51-10

01066

B = LFN
C = drive number or 0377
DE => file name string or

DISK OPERATING SYSTEM

D = 0, E = PFN

Exit conditions: B = LFN; other registers indeterminate
Carry true if the file is non-existent

Tr aps: none

51.6.3 LOAD$ - Load a File

LOAD$ opens the specified file as logical file zero and then
calls the system loader to load it i'nto memory. Exit is made with
the Carry condition set if the file is non-existent, or if the
drive specified (if any) is off line. If the load is successful,
return is made with the starting address in the Hand L registers.

Entry point: 01071

Parameters: same as for OPEN$ (except B not required)

Exit conditions: B = LFN (always zero)

Traps:

HL = starting address if good load
Carry true if file non-existent or drive off-line

OFFLIN

RPARIT
RANGE
FORMAT

Drive went off-line after loading
began.
File contains parity fault.
Loader ran off end of file.
Record of bad loader format found.

51.6.4 RUN$ - Load and Run a File

RUN$ opens the specified file as logical file zero and then
calls the system loader to load it into memory. Return is made to
the instruction following the call if the name specified cannot be
found in the directory or directories 'specified. If any loading
errors occur, the operating system is reloaded. Otherwise,
control is transferred to the starting address given by the
loader.

Entry point: 01074

, Parameters: same as for OPEN$
(except that B is not required)

Exit conditions: If successful, routine does not return;
program from specified file is executed.

CHAPTER 51. SYSTEM ROUTINES 51- 11

Heturns if name not found.
DOS reloaded if bad object program load.

Tr aps: none

51.6.5 CLOSE$ - Close a File

When new space is allocated for a file, a large contiguous
piece (up to one full segmentJ is taken in an effort to keep the
file as physically contiguous as possible. When this allocation
takes place, a flag in the LFT, called the new space allocated
flag, is set. The LFT also contains a number which is the largest
LRN referenced while the file was open. When CLOSE$ is called,
the file is physically truncated after the largest LRN referenced,
if the new spa ce allocated flag is set. Thus, if only a few
records of the new space allocated have been used, the rest of the
space is freed for use in other files. However, if all of the
space is used, the file wi 11 consi st of a large amount of
physically contiguous space. If CHOP$ was called with the D
register set to -1 (0377), and the LRN in the LFT has not been
changed, a call to CLOSE$ will delete the entire file and remove
its en try fr 0 m the d ire c tor y .

A fter the file has been trunca ted, if neces s ar y, CLOSE$ then
writes the copies of the protection bits and old file length limit
field that are in LFT entry back into the directory. Therefore,
one only needs to change these entries in the LFT and then close
the file to have them changed in the di rectory. This action is
the basis for the functioning of the CHOP$ and PROTE$ routines.
Since the protection bi ts and old file length limit field are not
changed on the disk until the CLOSE$ routine is called, if one
changes these numbers and then, for some reason, reloads the
system without calling the CLOSE$ routine (by rebooting the system
before the file is closed, for example) the disk will retain the
old values.

If deallocation of file space (CHOP$) is to be used following
a protection change (PROTE$), the file must be CLOSEd and
re-OPENed.

51-12

DE
LC
CALL
LC
CALL

NAME
-1
OPEN$
1
PROTE$

DISK OPERATING SYSTEM

FILE NAME
DRIVE
OPEN THE FILE
CHANGE PROTECTION
CHANGE PROTECTION

NAME

CALL
DE
LC
CALL
DE
CALL
CALL

DC

CLOSE$
NAME
-1
OPEN$
-1
CHOP$
CLOSE$

'SCRATCH TXT'

NOW, SET THE PROTECTION
RE-OP EN THE F IL E

CHOP THE FI LE

AN D DEL ET E IT.

FILE NAME TO BE DELETED

After the protection and file length limit have been stored
in the directory, CLOSE$ then vacates the LFT entry specified by
storing an 0377 in the second byte of the entry (this is the drive
number and 0377 denotes that the LFT entry is not in use). CLOSE$
simply returns if the LFT entry is not in use.

Entry point: 01077

Parameters: B = LFN (16,32,48; 0 => NOP)

Exit conditions: B = LFN; other registers indeterminate

Traps: none

51.6.6 CHOP$ - Delete Space in a File

CHOP$ sets the LFT entry to deallocate file space following
the given LRN. If the CLOSE$ routine is called after the call to
CHOP$ without the LRN being changed, the space after the specified
LRN will be physically deleted from the file, making it free again
f or all 0 cat i on by the s y s t em. Note t hat if the D reg i s t er iss e t
to -1 (0377) upon entry to CHOP$, calling the CLOSE$ routine will
completely delete the file from the system (removing its entry
from the directory as well as freeing all of its space). When an
entry is deleted from the directory, all sixteen bytes of the
directory for that entry are set to 037'7 (value set by the system
generation program, for unused directory entries).

Remember that calling CHOP$ only affects the LFT entry and
that no physical change on the file is effected until CLOSE$ is
called.

CHAPTER 51. SYSTEM ROUTI NES 51-13

Entry point: 011 02

Parameters: B = LFN
DE = LRN if D not 0377
D = - 1 (0 377) to del e te en t ire f i Ie

Exit conditions: B = LFN; other registers indeterminate

Tr aps: RANGE
DVIOLA
WVIOLA

DE was not less than MAXLRN.
Delete protection is set.
Write protection is set.

51.6.7 PROTE$ - Change the Protection on a File

PROTE$ changes the file protection bit and/or upper file
length limit copies that are kept in the LFT. The protection
bits, given in the C register, are changed only if the least
significant bit of the C register is a one. The old upper file
length limit "field is changed only if the sign bit of Dis one on
entry. Therefore, setting the number to zero prevents the limit
field from being changed. The file length field is obsolete and
is no longer used by the DOS; it is maintained for future use.

Remember that calling PROTE$ only affects the LFT entry and
'that no physical change on the file is effected until CLOSE$ is
called.

Entry point:

Parameters:

01105

B = LFN
C = new protection:

CO = 1 for protection change
C6 = 1 for wri te protection
C 7 = 1 for del e t e pr 0 t e c t ion

DE = new LRN limit field; 0 for no change

Exit conditions: B = LFN; other registers indeterminat~

Tr aps: none

51-14 DISK OPERATIN'G SYSTEM

51.6.8 POSIT$·- Position to a Record within a File

POSIT$ positions the file logically to the user LRN given.
If the LRN given is -1, the current value in the LFT is used for
positioning and the LFT entry is not changed. Positioning to LRN
z e rope r for m sal 0 g i cal "r e win d" 0 f seq u e n t i a 1 f i 1 e s .

Entry point: 0111 0

Parameters: B = LFN
DE = LRN (use LRN from LFT if DE = -1)

Exit conditions: B _. LFN
D = Physical Disk Address MSB
E = Physical Disk Address LSB
ZERO FALSE: DE are valid, posi tion was valid
ZERO TRUE: DE are invalid, specified sector not

in allocated space
other registers indeterminate

Tr aps: none

51.6.9 READ$ - Read a Reco~d into the Buffer

READ$ causes the record pointed to by the LRN in the LFT
entry specified by the LFN given, to be transferred from the disk
to the disk con t roll er b u f f er t h at cor res po n d s to t h Ei L F N g i v en.
The LRN is incremented by one after the read if it was successful.
If a parity fault is detected READ$ performs four to ten retries
before giving a parity trap. Attempting to read a record that is
not physically allocated will cause a RANGE trap.

Entry point: o 111 3

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
LRN = LRN + 1 if successful

Traps: RANGE
RPARIT
FORMAT
OFFLIN

LRN specified was out of range.
Record was unreadable.
PFN or LRN-in record is incorrect.
Drive is off-line.

CHAPTER 51. SYS TEM ROU TI N ES 5'1-15

51.6.10 WRITE$ - Write a Record from the Buffer

WRITE$ first takes the PFN and LRN values from the
appropriate LFT and stores them into the first three bytes of the
disk controller buffer that corresponds to the LFN given. It then
transfers that buffer to the disk sector specified by the LRN.
The LRN is incremented after the write if it is successful. If a
parity fault is detected, WRITE$ tries up to ten times to obtain a
good write before giving an error indication.

If WRITE$ tries to write a record beyond the space already
allocated to the file, it will automatically attempt to allocate
more space. If the space is available, it is allocated and the
write occurs. If there is no more physical space on the disk or
if there are no more entries in the RIB available for the new
segment descriptor, a SPACE trap occurs.

Entry point: 01116

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
LRN = LRN + 1 if successful

Traps: WVIOLA
WPARIT
OFFLIN
RANGE
SPACE

File is write protected.
Write/verify failure occurred.
Drive is off-line.
LRN specified was less than zero.
Explained above.

51.6.11 GET$ - Get the Next Buffer Character

The LFT contains an entry called BUFADR (not to be confused
with location 026 u~ed by GETNCH) which points to a character in
the disk controller buffer that corresponds to the given LFN.
Each buffer contains 256 characters, but since the system uses the
first three bytes in each sector to store the PFN and the LRN of
each record, the user has only 253 bytes available.

Whenever READ$, WRITE$, or POSIT$ are executed, they set
BUFADR to point to the third byte in the disk controller buffer
(by setting the BUFADR field of the LFT entry to a three).
Whenever GET$ is called, the byte pointed to by this pointer is
fetched from the disk controller buffer and the pointer is
incremented. If the byte being returned is not a valid user data
byte (that is, BUFADR was 0, 1, or 2 on entry) then Carry is true
on return, and register A contains the specified byte of the

51-16 DISK OPERATING SYSTEM

buffer (which will be the PFN or one of the LRN "bytes). The next
buffer is not read automatically from the disk; the pointer simply
ends-around. Upon the first call of GET$ which returns Carry
true, the PFN wi 11 be obtained since it is contained in buffer
location zero. A byte may also be accessed by simply setting
BUFADR to the desired location.

Entry point: 01121

Parameters: B = LFN

Exit conditions: A = the byte obtained from the buffer
a 11 0 t h er reg i s t e r s pre s e r v ed
Carry true if location 0, 1, or 2 accessed

Tr aps: none

-51.6.12 GETR$ - Get an Indexed Buffer Character

GETR$ is similar to GET$ except that it uses the logical
buffer address supplied in the C register instead of the physical
buffer address in the LFT for the address of the disk buffer byte
to return. Calling GETR$ has no effect on the buffer pointer kept
in the LFT. The physical buffer location is obtained by adding
three to the value given in the C register to skip past the system
data in the fir s t t h r ee b y t es in the disk b u f fer. Thus the use r
is presented with a logical space within a record that is
addressed from 0 through 252. Normally, GETR$ exits with the
value in the C register incremented by one and the carry condition
false. However, if the C regi ster is between 253 and 255
(inclusive) upon entry, it will not be incremented and exit will
be made with the Carry condition true. In either case, the buffer
byte located by the C register value plus three is returned in the
A register. Therefore, the user may obtain any buffer byte with
GETR$ but must remember to supply an address which is the physical
buffer address minus three and remember not to assume that the C
register will be incremented if he plans to access one of the
first three physical bytes.

Entry point: 01124

Parameters: B = extended LFN
C = buffer location

Exit conditions: A = byte obt.ained
C = C + 1 if carry false
Carry true if 252 < C < 256

CHAPTER 51. SYS TEM ROU TI N ES 51-17

all other registers preserved

Tr aps: none

51.6.13 PUT$ - Store into the Next Buffer Position

PUT$ is simi lar to GET$ except that the byte presented in the
A register on entry is stored into the buffer. Also, on return
register A contains the physical address of the next byte to be
accessed in the disk buffer. Carry is true if the byte stored was
placed into the last physical location in the buffer. In
standard, EDIT-format records, the last two bytes ,(at least) of
the buffer are not used, and an 03 occurring earlier in the sector
must indicate logical end-of-sector. (A complete description of
the format for DOS text files can be found in the appendix
describing Disk Data Formats.)

Entry point:

Parameters:

01127

A = the byte to be stored in the buffer
B = LFN

Exit conditions: A as described above (physical address of next
byte)

Tr aps:

all other registers preserved
Carry true if location 255 was the destination

byte.

none

51.6.14 PUTR$ - Store into an Indexed Buffer Position

PUTR$ is identical to GETR$ except that the byte presented in
the A register is stored into the buffer.

Entry pOint:

Parameters:

01132

A = byte to be written
B = extended'LFN
C = logical buffer location

Exit conditions: C = C + 1 if carry false
Carry true if 252 < C < 256
all other registers preserved

Tr aps: none

51-18 DISK OPERATING SYSTEM

51.6.15 BSP$ - Backspace One Physical Sector

BSP$ decrements the LRN in the LFT entry specified by the LFN
given and then executes POSIT$. No check is made to prevent BSP$
from backing into a RI B. However, if one calls BSP$ and attempts
to b a c k spa ce b a c k be yon d s y s t e m L R N 0 (u s e r L R N - 2, wh i chi s the
master RIB) ZERO TRUE will be returned (as for POSIT$).

Entry point: 01135

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
ZERO F A L S E : val id b a c k spa c e
ZERO TRUE: invalid backspace (attempt to

backspa ce pa st mas ter RI B)

Traps: none

51.6.16 BLKTFR - Transfer a Block of Memory

BLKTFR moves the number of bytes specified in the C register
(0 causes transfer of 256 bytes) from the memory locations
starting from the address in HL to the memory locations starting
at the address in DE. Since exit is made with HL and DE pointing
after the last byte moved and C equal to zero, transfers of more
than 256 bytes may easily be made. Set C to the residual number
of bytes to be moved (number of bytes modulo 256), call BLKTFR to
move the residual number of bytes, then call BLKTFR again enough
times to move the necessary number of 256-byte blocks. For
example:

HL
DE
LC
CALL
CALL
CALL

SOU RCE
DEST
25

. BLKTFR
BLKTFR
BLKTFR

Poi n t to so u r c est r i n g
Point to destination string
Set residual number
Move 25 bytes
Move 256 bytes
Move 256 bytes

will cause 537 bytes to be transferred from SOURCE to DEST.

Entry point:

Parameters:

01143

C = number of bytes to be moved
(0 moves 256 bytes)

HL = source address
DE = destination address

CHAPTER 51. SYS TEM ROU TI N ES 51-19

Exit conditions: HL = HL + C (HL + 256 if C = 0)
DE = DE + C (DE + 25 6 if C = 0)
B = unchanged
C = zero

Tr aps: none

51.6.17 TRAP$ - Set an Error Condition Trap

There are eight non-fatal error conditions, concerning the
disk operating system file handling facili ties, that may be
trapped by the user. If the trap corresponding to a certain error
is not set by TRAP$, the system di splays a pertinent message and
reloads the system if the trap occurs. If the trap is set,
control is transferred to the address specified when the trap was
set, with the subroutine return address stack in the state it had
before the calling of the file handling routine that caused the
error condition~

The only disk errors that cannot be trapped are those
associated with the system tables on the disk. The occurrence of
these errors causes the message

FAILURE IN SYSTEM DATA

to be displayed. Other errors that cannot be trapped have to do
with the LFT entry not being open when a routine which tried to
use data from tne entry was called, invalid logical file numbers,
invalid drive numbers, invalid trap numbers, and invalid physical
file numbers.

If . a trap occurs during a call to READ$ or WRITE$, the LRN in
the LFT is not incremented; if the user wishes to continue
processing records past the one which caused the trap, he must
increment the LRN in the LFT himself.

TRAP$ sets the trap whose number is gi ven in the C register
to the address supplied in the D register (MSB) and E register
(LSB). The trap is cleared by calling TRAP$ with D and E equal to
zero. The trap is also cleared when the error condition occurs,
at which time the B register will be loaded with the Logical File
Number involved and control transferred to the indicated address.

In the following table, the mnemonic gi ven after the trap
number is the one used in the previous routine explanations. The
capitalized lines are the messages displayed if the trap is not
set.

51-20 DISK OPERATING SYSTEM

o - RPARIT - PARITY FAILURE DURING READ
A parity fault while reading a data record causes this
trap.

1 - WPARIT - PARITY FAILURE DURING WRITE
A parity fault while writing a data record causes this
trap.

2 - FORMA T - R E CO RD FO RMA T ER RO R
The physical file number or logical record number in the
record read not matching the ones contained in the logical
file table entry causes this trap. The physical position
of a record is obtained from information in the Retrieval
Information Block (RIB) and the PFN and LRN in the record
are only checked to ensure that the drive is functioning
correctly and that the user is not trying to read a record
he has not written. This trap ha~ nothing to do v.Jith the
format of the 253 data bytes provided to the user.

3 - RANGE - RECO RD NUMBER OUT OF RANGE
During a read, an access below system LRN zero or to a
record above the currently allocated space causes this
t rap. D uri n g a wr i t e, an a c c e s s be low s Y s t e m L R N z e r 0

causes this trap.

4 - WVIOLA - WRITE PROTECT VIOLATION
An attempt to write on, delete, or shorten a file with the
write protection bit set causes this trap.

5 - DVIOLA - DELETE PROTECT VIOLATION
An attempt to delete or shorten a file with the delete
protection bit set causes this trap.

6 -- SPACE - FILE SPACE FULL
An attempt to allocate more space when either the disk is
full or no more segment descriptor slots in the RIB are
available causes this trap.

7 - OFFLIN - DRIVE OFF LINE
An attempt to use a drive that is either physically absent
or not online causes this trap.

The causes given for the various traps are the causes for DOS
to issue the appropriate messages. Some of the DOS Command
programs also cause the issuance of some of these messages for
related reasons. For example, several DOS Utilities indicate a
RECORD FORMAT ERROR if the sector formatting of a file being
pro c e s s ed does n ot f 0 11 0 w G ED IT (0 r DOS ED IT) s tan dar d s . Ins u c h

CHAPTER 51. SYS TEM ROU TI N ES 51-21

cases the above details are sometimes not valid descriptions of
the problem; in this example the 253 data bytes encountered may be
the cause of the record format error.

In addition, FORMAT and RANGE traps are frequently the result
of sequentially reading or otherwise processing a file which has
no valid EOF, resulting in the program reading past the logical
end of the fi Ie.

Entry point:

Parameters:

01146

DE = trap address
C = trap number

Exit conditions: register contents indeterminate

Traps: none

51.6.18 EXIT$ - Reload the Operating System

EXIT$ closes any logical files (one through three) that are
open and then reloads the operating system. EXIT$ is the normal
exit for all DOS programs.

If t-1CR$ (01400) contains exactly two forward arrows n»n
followed by a command line, followed by an 015, the command
interpreter will be reloaded, and the command line in MCR$ will be
s canned and exec u ted.

Consider a program that is to terminate and begin a
predefined procedure. If the procedure is a chain procedure file
PROC1/TXT, the program can simply place the following string in
memory starting at MCR$:

»CHAIN PROC1(015)

then, JMP EXIT$. This method is easier to work with than a series
of programs linked by LOAD$ or RUN$, and has the advantage of
reloading DOS, so its routines are available for later programs.
If a program is set for automatic execution (via the AUTO command)
the auto-execute will be performed before the command line left in
MCR$ will be acted upon.

Entry point: 01151

Parameters: none

51-22 DISK OPERATING SYSTEM

Exit conditions: no exit

Traps: none

51.6.19 ERROR$ -- Reload the Operating System

ERROR$ is identical to EXIT$ in all respects except that
jumping to ERROR$ will abort an active CHAIN (refer to the CHAIN
command in this manual for more details). A user program would
exit through ERROR$ if an error of severity suggesting aborting a
CHAIN occurred.

Ent ry point: 01140

Parameters: none

Exit conditions: no exit

Tr aps: none

51.6.20 WAIT$ -- DOS Wait-a-While -NOP" Routine

This routine, after being called, returns with all registers,
con d i t ion cod e s, an d the s t a c k pr e s e r v e d; i n e f f e c t a "N 0 P" .
Normally, the return is immediate. This routine should be used in
loops which wait for conditions that are not time-critical to
occur (for example, waiting for the keyboard operator to release
the DISPLAY key). I/O status, including in particular the device
addressed, is subject to change on return.

Entry point: 01170

Parameters: none

Exit Conditions: registers and condition codes unchanged

Tr aps: None

CHAPTER 51. SYS TEM ROU TI N ES 51-23

51.7 Keyboard and Display Routines

51.7.1 DEBUG$ - Enter the Debugging Tool

The debugging tool enables the programmer to load files by
number, examine and modify memory locations, set breakpoints, and
execute sections of his program. "This facility greatly simplifies
the task of debugging machine language programs.

The debugging tool can be entered from the command
interpreter by entering a single pound sign (#) on the command
line or from the user's program by jumping to the entry point.
When debug is executing, two numbers are displayed vertically in
the last column of-the screen. The five-digit top number is an
address and the three-digit bottom number is the contents of that
address. After these numbers are displayed, input is requested
from the keyboard as indicated by a flashing cursor. Commands to
the debugger are given- in the form <n>X where <n> is any number of
octal digits and X·is a command character. The command is
executed immediately upon depression of the command character key
without waiting for the ENTER key (the ENTER character is a
command in itself).

All keys that are not recognized are ignored, with a beep
signaling the rejection. The BACKSPACE key is ignored, but since
commands use only the lower eight or sixteen bits of <n>, errors
in the entry of numbers can be corrected by striking several zeros
and then entering the correct digits. Alternatively, the CANCEL
key causes the current input line to be erased without changing
the current address. Although display stops if the cursor runs
off the screen during input, cha~acters are still accepted.

The debugger mai~tains a current .address that is usually
displayed as the five digit number at the right of the screen.
There are 'times, however, \,..,hen the five digits a~ the right of the
screen do not reflect the.current address and caution must be
exercised to avoid confusion as to the value of the current
address. The ENTER key is normally used to change the current
address, but depressing it without preceding it with any digits
will cause the current address to be displayed. .Therefore, if
there is any doubt about the number being displayed on the screen,
simply depressing the ENTER key will ensure that the current
address is being displayed.

Whenever the debugger is entered either from a jump to the
entry point or from a return from a breakpoint or call command, a

51-24 DISK OPERATING SYSTEM

beep is given and the state of all of the alpha mode registers and
condition flags is saved. The value initially displayed is the
top of the stack at entry, unless DEBUG was entered from a DOS
DEBUG breakpoint; in this case the address displayed is the
address where the breakpoint was set. In all cases, the stack is
preserved as at entry and the current address is set to the
address displayed at entry. This display enables the user to
observe the state of his program when the debugger was entered.
Whenever a memory location is called or jumped to, the state of
all of the alpha mode registers and condition flags is restored
from the values saved at entry. Since these values are saved in
memory, the programmer can simply modify these locations to change
the values used to initialize the state of the alpha machine
before control is transferred.

A major debugging technique is to set breakpoints at critical
places in the program and execute portions of the program while
checking the values of the registers and critical memory locations
at each break. The debugger sets a breakpoint by storing a jump
instruction to a special entry point within itself in the current
address and the following two locations. (Notice that setting
breakpoints less than three bytes apart is therefore not a good
idea.) Befor~ the jump is stored, the contents of the memory
locations to be used are saved in a table in the debugger. When
the breakpoint is reached, the memory locations are restored with
their original contents. A maximum of four breakpoints may be
acti've at anyone time. A command is provided to insure that all
breakpoints have been restored. When a breakpoirit is executed,
the current address is set to the first byte of the breakpoint
jump instruction. Since the J command causes a jump to the
current address if no digits precede it, one can continue
execution of the routine that was broken by simply depressing the
J key. Execu ti on wi 11 cont in ue wi th the fi r st by te that was
overstored by the breakpoint jump with the state of the alpha
machine exactly like it was before the break occurred. Thus, the
programmer can set a breakpoint, start execution, examine the
registers when the break occurs (since register viewing does not
change the current address) and then depresi the J key to continue
execution. This technique allows him to practically single step
his program.

ENT RY PO INT : 01154

COMMANDS:

B - Set a breakpoint at the location given or, if no number is
given, at the current address. Caution should be exercised to
insure that the current address is pointing to the desired

CHAPTER 51. SYSTEM ROUTINES 51-25

location if it is used.

C - Execute a call to the number given or, if no number is given,
to the current address. The alpha machine state is loaded
from the values saved in the debugger before the call is
executed. A return to the call causes the debugger to be
re-entered and the alpha machine state to be saved.

D Decrement the current address (any digits given are ignored).

G - Get the physical file specified from the disk. Care must be
exercised that a file is not loaded that will overlay the
debugger (locations 0-01377 and 06000-07377). If the file
does not exist or contains a record of illegal loader format,
a beep will be given. The first digi t of the last four
entered is the logical drive number from which the file is to
be loaded. The following three digi ts are the physical file
number. For example, 02003G will load SYSTEM3/SYS from drive
two. To load PFN 0115 from drive 0, simply enter 115G.

I Increment the current address (any digits given are ignored).

J Execute a jump to the number given or, if no number is given,
to the current address. The alpha machine state is loaded
from the values saved in the debugger before the jump is
executed.

M - Modify the contents of the current address. The least
significant eight bits of the octal number given before the
command character are used for the new memory value. If no
digits are given, a zero is assumed.

P - Turn on the P-counter display (to the left of the current
address). This display is a foreground driven routine which
takes the value of the P-counter when the interrupt occurred
and displays it vertically. This implies that the value shown
is the background P-counter at 32 millisecond sample points.
When the display is active, simultaneous depression of the
KEYBOARD and DISPLAY keys will cause the debugger to be
entered regardless of what is currently being executed in the
background. When such entry occurs, the current address points
to the location where the background program was interrupted
so that execution can be resumed with the J command.

R - Display the saved alpha mode register value. The registers
are referenced by number (O-A, 1-8, 2-C, 3-D, 4-E, 5-H, 6-L,
and 7-Conditions). The condition code is stored with bits
7=Carry, 6=Sign, bits 5 through 2 always zero, 1=(-Zero and

51-26 DISK OPERATING SYSTEM

-Sign), and O=(-Zero and -Parity). (The easiest way to
understand this is to realize that the condition code as
dis p lay ed, ad d e d to its elf, res u 1 t sin res tor i n gall fo u r
conditions to their entry values.) When a register is
displayed, the address shown is the memory location used to
store the value of that register. This does not, however,
affect the current address. The registers may be initialized
for a C or J command by simply storing into the memory
locations displayed when the registers are displayed.

x - Turn off the P-counter display.

- Clear all breakpoints. The current address will reflect the
location of the last point cleared.

- Perform the M command followed by the I command.

CANCEL - Erase the entered number without changing the current
address .

. ENTER - Change the current address to the digits entered. If no
digits are entered, the current address in effect will be
displayed.

51.1.2 KEYIN$ - Obtain a Line from the Keyboard

KEYIN$ obtains a string of characters from the keyboard,
displaying them on the screen and storing them in memory as they
are entered. 'when KEYIN$ is called, the cursor is turned on and
characters requested. Backspacing off the beginning of the line,
entering more than the specified maximum number of characters, or
running off the screen is prevented. The routine turns off the
cursor and returns when the ENTER key is depressed.

CHAPTER 51. SYS TEM ROU TI N ES 51-27

Entry point:

Parameters:

01157

C = maximum number of characters accepted
(including ENTER)
D = initial horizontal cursor position
E = vertical cursor position
HL=> input buffer

Exit conditions: String terminated by 015
HL=> 015 in input buffer
D = horizontal position of ENTER
E = unchanged
C = 0
B = undefined

51.7.3 DSPLY$ - Display a Line on the Screen

DSPLY$ displays a string of characters stored in memory onto
the screen. Certain characters denote control functions according
to the following table:

003 - end of string
o 11 - new ho r i z 0 n t a I po sit ion fo 11 0 w s
013 - new vertical position follows
015 - end of string with CR/LF
021 - erase to end of frame
022 - erase to end of line
023 - roll up one line

If the string to be displayed starts with either or both
horizontal or vertical cursor controls, then either or both of the
corresponding values need not be in D or E at entry. If the
cursor is not positioned on the screen with DE or 011 and 013 the
results of 021,022, or 023 are undefined.

Entry ·point:

Parameters:

01162

D = initial horizontal cursor position
E = initial vertical cursor position
HL => string in memory

Exit conditions: DE = cursor position after the last
character displayed

51-28

HL => byte after the string terminator
A , 8 ,C un de fin e d

DISK OPERATING SYSTEM

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC)

The page of memory located between 07400 and 07777 contains a
special loader and overlay area. This "loader" can load anyone
of up to 255 DOS overlays, each up to 124 bytes long. The loader
resides in the first half of the page and the overlays all load
into the second half of the same page. The overlays reside on
disk in physical file 7, called SYSTEM7/SYS. The design of the
DOS FUNCTION loader is such that overlays are loaded only if
necessary; that is, if the same overlay is called several times in
sequence, it is not reloaded each time. The overlays provide the
DOS assembly language programmer with many useful utility
functions. Parameterization of DOS FUNCTIONs varies with the
individual functions, the only basic requirement being that upon
entry to the DOS FUNCTION loader, the A register contains the
function number (1-255). Use of functions not yet installed will
produce indeterminate results, such as format traps, range traps,
processor halts, and the like. DOS FUNCTIONs are normally loaded
from the SYSTEM7/SYS on the booted drive, or may come from the
memory resident overlays if available (see UTILITY/OVL).

Upon the first call to DOSFNC (the DOS FUNCTION loader),
SYSTEM7/SYS is opened as LFO and the LFT entry saved within the
DOS FUNCTION loader. Upon subsequent calls to DOSFNC, the entry
is simply moved back into the LFT, eliminating the need to re-open
SYSTEM7/SYS each time a function is loaded. The file is only
closed by reloading DOS, either by depressing RESTART or by a
program passing control to BOOT$, EXIT$, or ERROR$.

Since new DOS functions will be added as necessary the
following descriptions should not be considered exhaustive.

Entry point: 07400

Parameters: . A = Function number (1-0377)
Others required by individual functions

Exit conditions: Defined separately for each function.

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-1

52.1 FUNC1 - Retrieve Directory and C.A.T. Addresses

Uniform attributes for all subfunctions

On entry, A = function number (1)
C = subfunction number (0,1,2,·3,4,5,6,7)

On exit, B,C,H,L all unchanged
CARRY FALSE: successful completion
CARRY TRUE: invalid subfunction number

All other entry/exit parameters and conditions are
described seperately for each individual subfunction.

DOS FUNCTION: SUBFUNCTION: o

Return the address of a specified directory sector in DE.

On entry, B = directory sector number (0-15) OR
PFN of entry in the directory sector

On exit, A indeterminate
DE = PDA of specified directory sector.

DOS FUNCTION: SUBFUNCTION:

Return the two-byte physical disk address for each of the 16
master directory sectors, into a 32-byte work area provided by the
user.

On entry,
On ex it,

52-2

HL => 32-byte work area to receive the PDA's
all registers preserved
User-provided work area contains 16 PDA's,
one corresponding to each prime directory
sector, in ascending order (LSB,MSB).

DISK OPERATING SYSTEM

DOS FUNCTION: 1 SUBFUNCTION: 2

Return the two-byte physical disk address of each of the 16
di rectory sector backups, in ascending order, into a 32-byte
user-provided work area.

On entry,
On ex it,

DOS FUNCTION:

HL => 32-byte work area to receive the PDA's
all registers preserved
User-provided work area contains 16 PDA's,
one corresponding to each backup directory
sector, in ascending order (LSB ,MSB).

SUBFUNCTION: 3

Return the physical disk address of the Cluster Allocation
Table (CAT) in the DE register pair.

On entry,
On ex it,

DOS FUN CT ION:

no further condi tions
A indeterminate
DE = PDAof prime CAT

SUBFUNCTION: 4

Return the physical disk address of the backup Cluster
Allocation Table (CAT) in the DE register pair.

On entry,
On ex it,

no further conditions
A indeterminate
DE = PDA of backup CAT

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-3

DOS FUNCTION: S U BF U N CT ION: 5

Return the physical disk address of the lockout CAT.

On entry,
On ex it,

DOS FUNCTION:

no further conditions
A indeterminate
DE = PDA of lockout CAT

SUBFUNCTION: 6

Return the physical disk address of the lockout CAT backup.

On entry,
On ex it,

DOS FUNCTION:

no further conditions
A indeterminate
DE = PDA of lockout CAT backup

SUBFUNCTION: 7

Return the address of a backup directory sector (in DE).

On ent ry,

On ex it,

52-4

B = backup directory sector number (0-15)
or P F N 0 f a file en try con t a in ed the rei n
A indeterminate
DE = PDA of backup directory sector

DISK OPERATING SYSTEM

52.2 FUNC2 - Retrieve Directory Sector or Filename

Uniform attributes for all subfunctions

On ent ry,

On ex it,

A = function number (2)
C = subfunction number (0,1,2)
all regi ster s pr es er ved
CARRY TRUE: error or invalid subfunction number

All other entry/exit parameters and conditions are
described separately for each individual subfunction.

DOS FU NCT ION: 2 SUBFUNCTION: o

Read in the directory sector containing the 16-byte directory
entry corresponding to the PFN given, on a specified logical
drive.

On entry,

On ex it,

DOS FUNCTION:

B = L F N a s pe r DOS s tan dar d ; (0, 1 6, 3 2, 4 8)
D = PDN (logical drive number of file)
E = PFN
CARRY FALSE: Selected di rectory sector is in

buffer specified, which is the
selected buffer upon exit.

CARRY TRUE: I/O error, further defined
as follows:

ZERO FALSE: Specified drive is off-line
ZERO TRUE: Unable to read sector due to CRCC

error during read, or unrecoverable
failure to find sector.

2 SUBFUNCTION:

Get the 16-byte directory entry corresponding to a specified
PFN on a given logical drive.

On entry, B = L F N as pe r DOS s tan dar d; .. (0, 1 6, 32, 48)
D = PDN (logical drive number of file)
E = PFN
HL => 16-byte area to receive the entry

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-5

On ex it,

DOS FUNCTION:

CARRY FALSE:
CARRY TRUE:

ZERO FALSE:
ZERO TRUE:

Entry is in user's area.
I/O error, further defined·
as follows:
Specified drive is off-line.
Unable to read sector due to CRCC
error during read, or unrecoverable
failure to find sector.

2 SUBFUNCTION: 2

Get name/ext (pfn) for a specified numbered file on a
specified logical drive. (Same basic format as used by DOS CAT
command).

One n try , B = L F N a s pe rOO Sst and a r d; (0, 1 6, 3 2, 4 8)
D = PDN (logical drive number of file)
E = PFN
HL = > 20 byte area to rece i ve the ent ry

On exit, CARRY FALSE: User's 20-byte area contains
the name, extension and PFN of the
specified file, for example:
EDI T /CMD (037)
where the right parenthesis is followed
by an 003.
UNLESS ZERO TRUE:

Implies that the file number
specified do es not exi st.

CARRY TRUE: I/O error, furth er def ined
as follows:

ZERO FALSE: Specified drive is off-line.
ZERO T RUE: Una b Ie to read sec tor due to C R C C

error during read, or unrecoverable
failure to find sector.

NOTICE: The use of this subfunction only (of those in DOS
FUNCTION 2) requires that the DOS command interpreter
be present (the command interpreter resides from
01 3400- 0 17000) .

52-6 DISK OPERATING SYSTEM

52.3 FUNC3 - Retrieve RIB Information

Uniform attributes for all subfunctions:

On entry, A = function number (3)
C = subfunction number (0,1,2,3)

All other entry and exit parameters and conditions are
described separately for each individual subfunction.

DOS FUNCTION: 3 SUBFUNCTION: o

Return the number of sectors allocated to a file on disk.

On ent ry,

On ex it,

DOS FUNCTION:

B = drive number (same as C as provided for OPEN$)
DE = proper OPEN$ parameters defining the file

to be accessed.
CARRY FALSE: successful completion

HL = length of file (MS3,LSB) in sectors
RIB for fi Ie specified is in LFO
disk buffer ...

CARRY TRUE: Error occurred, anyone of:

3

OPEN failed on file specified;
unable to read RIB;
parity or drive off-line.

SUBFUNCTION: 1

Get the RIB for a specified file into the LFO disk buffer.

On entr y,

On ex it,

B = drive number (same as C as provided for OPEN$)
DE = proper OPEN$ parameters defining the file

to be accessed.
all registers preserved
CARRY FALSE: successful completion

RIB for file specified is in
LFO di sk buffer.

CARRY TRUE: Error occurred, anyone of:
OPEN failed on file specified;
unable to read RIB;
pari ty or dri ve off-line.

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-7

DOS FUNCTION: 3 SUBFUNCTION: 2

Read a RIB for a file, given the first two bytes of the
directory entry.

On ent ry, B = drive number (same as C as prov ided for OPEN$)
D = RIB pointer, (MSB) from director y, or LFT
E: = RIB pointer, (LSB) from di rectory, or LFT

On exit, all registers preserved
CARRY FALSE: successful completion

RIB- for file specified is in
LFO disk buffer

CARRY TRUE, ZERO F ALS E: Speci fied drive is off-line.
CARRY TRUE, ZERO TRUE: Parity error occurred during

DOS FUNCTION: 3 SUBFUNCTION: 3

Return segment descriptor information from a RIB.

On entr y,

On ex it,

52-8

RIB is in LFO disk buffer.
BUFADR field in LFO LFT entry points to
segment descriptor
LFO buffer unchanged.
CARRY TRUE: successful completion

A = starting cyl. number for segment
B = starting cluster number for segment
DE = number of sectors in the segment
BUFADR points to next segment

descriptor.
RIB undisturbed

CARRY FALSE: BUFADR pointed after logical
end 'of RI B;
BUFADR contents undefined.

'DISK OPERATI NG SYSTEM

read.

52.4 FUNC4 - Retrieve DOS Configuration Information

Uniform attributes for all subfunctions:

On entry,

On ex it,

A = function number (4)
C = subfunction number (O,n)
A = DOS configuration value
CARRY FALSE: successful completion
CAR R Y T RUE: po s sib I yin val ids u b fun c t ion nu m be r

Different subfunction numbers return different DOS
configuration bytes. These values, returned in A, are numeric
items which change in value depending upon which DOS is running.
The subfunction numbers, along with the significance of the
returned value, are:

o - Letter of this DOS (A,B,C,D,etc.)
1 - DOS Version ('2' typ.)
2 - DOS Revision ('5' typ.)
3 - Total number cylinders on disk (203 typ.)
4 - Maximum Logical Drive (3,15 typ)
5 - Year of Compilation (79 typ)
6 Day of Compilation (130 typ)
7 - Cluster Mask (0340 typ)
8 - Increment Cluster number (040 typ)
9 - Sector Mask (037 typ)
10 - Maximum Sector Number in PDA (23 typ)
11 - Number of Sectors/Cluster (3,6,24 typ)
12 - Number of Clusters/Cylinder (4,8 typ)
13 Number of Clusters/Track (1,4 typ)
14 - Number of Functions in SYSTEM7 (24 typ)
15-17 (Unused)
18 - DOS Pre-release (040 if released)
19 - DOS Maintenance Release (040 if none)
20-24 (Unused)
25 - Get VOLID address into (DE)
26 - no 10 n g er val i d

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-9

52.5 FUNe5 - Request Access to System Tables

This function is used when running under the Partition
Supervisor (PS). This function must be called before and after
any changes are made to the system tables on any drive.

Uniform attributes for all subfunctions:

On entr y, A = function number (5)
C = subfunction number (0,1)

All other entry and exit parameters and conditions are described
seperately for each individual subfunction.

DOS FUNCTION: 5 SUBFUNCTION: o

Request exclusive update permission to system table sectors
on disk.

On entry,
On ex it,

DOS FUNCTION:

D = physical drive (PDN) of drive
CARRY FALSE: successful completion

Exclusive use of specified drive
guaranteed.

CARRY TRUE: Error occurred.

5 SUBFUNCTION:

Release exclusive update authority for system table sectors
on disk.

On entry,
On ex it,

52-10

D = physical drive (PDN) of drive
CARRY FALSE: successful completion

Exclusive use of specified drive
released.

CARRY TRUE: Error occurred.

DISK OPERATING SYSTEM

52.6 FUNC6 - Keyboard I Display Interface Routines Function

Uniform attributes for all subfunctions:

On ent ry,

On ex it,

A = function number (6)
C = subfunction number (0-11)
CARRY TRUE: '~llegal subfunction

All other entry and exit parameters and conditions are described
s epata te I y fo reach ind i v id ual su brunc ti on.

DOS FUNCTION: 6 SUBFUNCTION: o

Check the status of the KEYBOARD and DISPLAY keys.

On entry,
On ex it,

DOS FU N C T ION:

no furt her cond i ti ons
SIGN TRUE: KEYBOAR~ey pressed
PARITY TRUE: DISPLAY key pressed
all regist:e'rs preserved

6 SUBFUNCTION:

C he c k fo r ch a r act err e a d y .

On entry,
On ex it,

no further conditions
ZE RO TRU E: No chara cter pr es ent
ZERO FALSE: Ready to get character
all registers preserved

DOS FUNCTION:. 6 SUBFUNCTION: 2

Get a character from the Keyboar~.

On entry,
On ex it,

DE = horizontal, vertical screen coordinates
ZERO T RUE: no c h a r act er pre sen t
all registers preserved.
ZERO FALSE: character in the A register
all other registers preserved

DOS FU NCTION: 6 SUBFUNCTION: 3

Write the character in the B register to the screen.

On ent ry, DE ; horizontal, vertical screen coordinates

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-11

On ex it,

DOS FUNCTION:

B = character to be written to screen
CARRY TRUE: D or E out of range
all registers preserved
CARRY FALSE: character written
all registers preserved

6 SUBFUNCTION: 4

Return the HOME-UP position in DE.

On entry,
On ex it,

DOS FUNCTION:

no further conditions
DE = address of top line / Ie ft column of CRT
all other registers preserved

6 SUBFUNCTION: 5

Return the HOME-DOWN position in DE.

On entry,
On ex it,

DOS FUNCTION:

no further conditions
DE = address of bottom line / left column of CRT
all other registers preserved

6 SUBFUNCTION: 6

Turn on the Cursor.

On entry,
On ex it,

DOS FUNCTION:

DE = horizontal, vertical screen coordinates
all registers preserved

6 SUBFUNCTION: 7

Rollup the screen 1 line.

On entry,
On ex it,

DOS FUNCTION:

DE = horizontal, vertical screen coordinates
all registers preserved

6 SUBFUNCTION: 8

Erase from cursor posi tion to end of frame.

On entry,
On ex it,

52-12

DE = horizontal, vertical screen coordinates
all registers preserved

DISK OPERATING SYSTEM

DOS FUNCTION: 6 SUBFUNCTION: 9

Erase from cursor position to end of line.

On entry,
On ex it,

DOS FU NCTION:

DE = horizontal, vertical screen coordinates
all registers preserved

6 SUBFUNCTION: 10

Rolldown the screen 1 line.

On entry,
On ex it,

DOS FUNCTION:

DE = horizontal, vertical screen coordinates
CARRY TRUE: illegal operation for this device
all registers preserved
CARRY FALSE: screen rolled down 1 line
all registers preserved

6 SUBFUNCTION: 11

Turn off the Cursor.

On entry,
On ex it,

DE = horizontal, vertical screen coordinates
all registers preserved

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-13

52.7 FUNC7 - Test the Disk Buffer Memory

Disk buffer memory test function.

This DOS FUNCTION performs a rotating, cycling test of the
disk controller buffer memories. It returns upon the keyboard
becoming READ READY, or upon encountering a buffer failure,
whichever occurs first.

On entry,
On ex it,

52-14

no special conditions
all registers preserved
ZERO TRUE: buffer memory test normal
ZERO FALSE: failure in buffer memories

DISK OPERATING SYSTEM

52.B FUNCB - Timed Pause

Pause function.

This DOS FUNCTION provides the user program with a timed
pause. The requested pause may be up to approximately four hours
long.

On entry,

On ex it,

B = foreground process number to use (0-7)
CDE = number of milliseconds to pause

(C = most signifigant, E = least signifigant)
all registers preserved

Note that if foreground process numbers 4-7 are used, the
wait time is effectively multiplied by four, allowing a maximum
wait time in excess of eighteen hours. Also note that the time
required to start up the DOS FUNCTION is not considered part of
the time paused. Since the DOS FUNCTION mayor may not be
resident when called, this function may wait longer than the
quantity in CDE and therefore must not be used for timing
extremely critical, short term intervals.

CHAPTER 52. DOS FUNCTION fACILITY (DOSFNC) 52-15

52.9 FUNC9 - Non~Sharable Resource Status Request

This DOS FUNCTION is used to allocate and de-allocate a
system resource. Typically, this function is used when a program
is going to run under the Partition Supervisor (PS). The use of
this function will prevent conflicting use of 1/0 devices by the
programs running in the two partitions. For example, the DOS
utilities that use the printer (LIST, FILES, etc.) all call this
function before they use the pr-inter.' Then, if a DATASHARE print
statement is executed in the other partition, the listings will
not be intermi xed.

Uniform attributes for all subfunctions:

On entr y, A = function number (9)
C = subfunction number (OJ1)

All other entry an~ exit parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 9 SUBFUNCTION: o

Request use of a non-shareable system resource (printer, tape
d r i ve , and so 0 n) .

On entry,

On Exit,

52-16

B = R~source Number
o - Local Line Printer
1 - Servo Printer
2' - (Un-defined)
3 - (Un-defined)
4 - Cassette Tape Decks
5 - 7 or 9 Track Tape
6 - Multiport Comm Box 1 (all ports)
7 - Multiport Comm Box 2 (all ports)

CARRY TRUE, ZERO TRUE: Permission to use granted.
CARRY TRUE, ZERO FALSE: Error occurred.
CAR RY F A L S E , ZERO T RUE: AIr e ad y all 0 cat ed to sam e

par tit ion. In t his cas e, th e de vic e
may be used, but must not be deallocated
when finished.

CARRY FALSE, ZERO FALSE: Already allocated to other
partition.

DISK OPERATING SYSTEM

DOS FUNCTION: 9 SUBFUNCTION:

Release non-sharable resource for use by next party.. This
subfunction should be called after a process receiving access to a
resource using subfunction zero has received CARRY TRUE, ZERO TRUE
return, and finishes using the resource it wanted to use.

The only status returned by subfunction one that is likely to
change upon waiting is CARRY FALSE, ZERO FALSE. In this case, the
program wishing to release the resource should wait, perhaps five
seconds (use function 8), and then retry the request. Any other
status is not subject to change.

This subfunction cannot be used to test for printer busy,
since if an invoking program in the same partition had allocated
the device, the test would release it, possibly resulting in
losing the device to a competing partition.

Indefinite postponement can be prevented by always allocating
non-sharable resources in descending numerical sequence (when more
than one non-sharable resource is needed at the same time).

On entr y,
On ex it,

all parameters identical to those for subfunction 0
CARRY TRUE: error
CARRY FALSE, ZERO TRUE: released
CARRY FALSE, ZERO FALSE: Resource was in use by different

part i ti on, ther efore not re Ie ased .

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-17

52.10 FUNC10 - Partition Information Function

This function is used to quali fy a program to run in a
"fixed" partition under the Partition Supervisor (PS), and to
provide DOS/PS partition configuration information.

Uniform attributes for all subfunctions:

On entry, A = function number (10)
C = subfunction number (0,1)

All other entry and exit ·parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 10 SUBFUNCTION: 0

Authorize invoking program to execute in a fixed type
partition.

On entry,
On ex it,

DOS FUNCTION:

C = subfunction number (0)
no significant conditions

10 SUBFUNCTION:

Provide DOS/PS configuration information.

On entry,
On ex it,

52-18

C = subfunction number (1)
HL => configuration list

The Ii st may not be mo di f ied an d is
guaranteed only until the next call to any
system routine. List format described below.

BYTE 0: partition ID

BYTE 1:
BYTE 2:
BYTE 3:
BYTE 4:

Space if not running under PS, otherwise,
a unique identifier.
region size - in number of K (16, 48, etc)
number of disk buffers (4, 16, etc)
•• .. . •• 1 implies fixed parti tion
multiport I/O bus address for console on port
(0 implies console on port not active)

BYTE 5: multiport port select code of console port
(only if byte 4 is non-zero)

DISK OPERATI NG SYSTEM

52.11 FUNC11 RAM Screen Loader

Uniform attributes for all subfunctions:

On entry, A = function number (11)
C = subfunction number (0,1,2)

All other entry and exit parameters and conditions are described
separately for each individual subfunction.

I

DOS FUI~CTION: 11 SUBFUNCTION: 0

Load one or more character combinations into the RAM display
character generator.

On entry, B = default first character to be loaded
HL = starting address of character set definition

list

The list consists of consecutive entries of either five or six
bytes each. The first byte, if present, indicates the 7-bit
character combination whose bit pattern definition follows. The
presence of the first byte is indicated by its sign bit being set.
If the first byte of the first entry is not present, the 7-bit
c h a r act er val ue in the B reg i s t er i s us ed ins tea d . The de fin i t ion
list. may contain any mixture of six-byte and five-byte entries.
The end of the list is indicated by an 0200. This implies that
the bit combination displayed for a binary zero cannot be imbedded
in a list, but can only appear at its beginning; null lists are
not allowed. The five data bytes following represent the five
columns of bits for each displayed character and can each have
values of 0 (a blank column) to 0177 (a vertical line). The 0100
bit is at the top of the character displayed; the 1 bit is on the
bottom row of the displayed character.

On ex it, CARRY FALSE, ZERO FALSE: RAH display not
pres ent

CARRY FALSE, ZERO TRUE: normal completion
CARRY TRUE: error (should not occur)

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-19

DOS FUNCTION: 11 SUBFUNCTION:

Load a single character combination to RAM display.

On entr y,

On ex it,

B = default character to be loaded
HL = address of five-byte or six-byte bit pattern
definition

The first byte, if present, takes precedence
over the -character indicated by the B
register. Presence of the first byte is
indicated by the sign bit being set.

CARRY FALSE, ZERO FALSE: RAM display not
present
CARRY FALSE, ZERO TRUE: normal completion

DOS FU N CT ION: 11 SU BFU N CT ION: 2

Subfunction two requests reloading of the standard character
set on program termination. Calling this subfunction will result
in the standard DOS character set being reloaded upon the next
entry to DOS$. Entry to the DOS at DOS$ is the result of transfer
of control to EXIT$, 800T$, ERROR$ as well as DOS$. Return to the
DOS via NXTCMD, CMDAGN, and CMDINT do not result in the display
being immediately reloaded, (but it eventually will be reloaded
upon subsequent entry at DOS$ as described).

52-20 DISK OPERATING SYSTEM

52.12 FUNC12 - Enable Memory Resident Overlays

This function enables memory resident overlays and DOS
Functions if running on DOS.D, DOS.E, or DOS.G. The UTILITY/OVL
file will be loaded and 'use of its memory resident overlay code
will begin. If the memory resident overlays cannot currently be
loaded (PSACT or NETACT bits of DOSFLAG set, or UTILITY/OVL not
present) then this function performs no action.

On entry, A = function number (12)
C = subfunction number (0)

On exit, all registers indeterminate
$MEMU bit of DOSFL2 on if successful

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-21

52.13 Overlay Loader (FUNC-13,14,15)

DOS functions 13, 14 and 15 are used to load "overlay
libraries". Using these functions,' one need only have a single
directory entry for a program and its associated overlays (called
"members"). The overlay library format is described in detail in
the library utility program User's Guide (LIBSYS), since that
program is responsible for creating and maintaining libraries.
Program libraries can be either absolute or relocatable code.

Function 13 performs a library lookup by name.

Function 14 actually performs the library load from an
absolute library.

Function 15 performs the library load from a
relocatab Ie Ii br ary.

Below is an example of the use of these DOS functions in
loading an absolute program overlay. In the example, the "root'"
program has several overlays; the root program was invoked from
the keyboard by -en tering "FLX/ ABS" .

52-22 DISK OPERATING SYSTEM

HL
DE
LC
CALL

LFT+LFO
SAVELFT
16
BLKTFR

Save opened LFT entry
(FLX/ ABS)
16 bytes

. To looku p the mem ber named "FLXOA'w":

NAMLOD LA
DE
HL
CALL
JTC
JUMP

1 3
OVLNAM
SAVELFT
DOSFNC
ABORT
LOAD

Prepare to lookup by name

Lookup by name
True Carry is error.
(DE contains LRN if Carry False)

. To actually load the absolute file (and execute it):

LOAD

SAVELFT
OVLNA~1

LA
HL
CALL
JTC

PUSH
RET

SK
DC

14
SAVELFT
DOSFNC
ABORT

16
'FLXOAW

Prepare to load the file

Load starting at LRN (DE)
True Carry is error.
(HL is transfer address if Carry False
Push en try poi nt 0 n to s t a c k
and transfer control there

LFT s ave area
8-byte name-

Note: All lookups (FUNC 13) should be done fir~t, and then all
loads (FUNC14 or FUNC15) so functions will not be reloaded
~as often.

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-23

52.14 FUNC-13 Overlay Lookup By Name

Return the LRN of library member <name>, pointed to by DE
into DE.

On entry,

On ex it,

52-24

A = function nu~ber (13)
DE => address of 8-byte file name
HL => 16-byte save area of user opened LFT

(not LFO)
CARRY TRUE: name not found
CARRY FALSE:

A = library type (see LIBSYS User's Guide)
BC = undefined
DE = LRN (LSB,MSB) of library member
H L = en try val ue 0 f D E + 8

DISK OPERATING SYSTEM

52.15 FUNC-14 Load Absolute Library Member

Load the absolute member beginning aOt LRN given in DE.

On entry,

On ex it,

A·= function number (14)
DE = LRN (LSB,MSB) of member to be loaded.
HL => 16-byte save area of user opened LFT

(not LFO)
CARRY TRUE: un loadable file
CARRY FALSE:

A,B,C,D,E undefined
HL = transfer address of member

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-25

52.16 FUNC-15 Relocatable Loader

DOS Function 15 uses the file UTILITY/LNK to perform the
actual loading procedure. This function uses memory from 06000
through 0737'7 in addition to the DOS Function loader area from
07400 through 07777. Uniform attributes for all subfunctions:

On entry A = function number (15)
B = LFN of opened relocatable library
C = subfunction number (0 or 1)

All other entry and exit parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 15 SU BFUN CTION: o

Return the size of relocatable member into DE.

On ent ry
On ex it

DOS FU NCTION:

DE => LRN 0 of library member (from DOSFNC 13 typically)
CARRY TRUE: invalid library format
CARRY FALSE:

C,H,L undefined
A = revision level of member

(for UTILITY/REL members only)
B = entry value
DE = program length (LSB,MSB)

15 SUBFUNCTION: 1

Load a relocatable library member.

On entry

On ex it

52-26

HL => address of parameter list (defined below)
DE => LRN 0 of library member (from DOSFNC 13 typically)
CARRY TRUE: link error
CARRY FALSE:

A,C = undefined
B = unchanged
DE = n ext ava i 1 a b I e ad d res s
HL = transfer address

DISK OPERATING SYSTEM

Parameter table for DOS FUNCTION 15 SUBFUNCTION 1:

0-1 orlgln address (LSB,MSB)
2-3 address of external reference work area terminated by 000

0377 ,0377 impl i es no work ar ea, that is no ex tern al r eferenc es
Example: RPT 20

DC 'bbbbbbbb' ,*-1
DC 0

4-5 address of external definition work area terminated by 000
0377,0377 implies no work area, that is no external definition
Example: RPT 20

DC 'bbbbbbbb' ,*-1
DC a

6-7 LRN (LSB,MSB) of relocatable module

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-27

52.17 FUNC-16 Disable Memory Resident Overlays

This function disables usage of memory resident overlays
(UTILITY/OVL) enabled by DOS Function 12. Uniform attributes for
all subfunctions:

On ent.ry, A = function number (16)
C = subfunction number (0 or 1)

All other entry and exit parameters and conditions are described
separately for each individual subfu·nction.

DOS FUNCTION: 16 SUBFUNCTION: o

Stop using overlays.

On entry,
On ex it,

DOS FUNCTION:

no special conditions
all registers and conditions indeterminate
$MEMU bit of DOSFL2 cleared

16 SUBFUNCTION:

Memory resident overlays overstored; stop using overlays.
Caution: do not overstore system RAM (0160000 to 0167377) until
after calling this function.

On entr y,
On ex it,

52-28

no special conditions
all registers and conditions indeterminate
$MEMU bit of DOSFL2 cleared
$MEMD bit of DOSFL2 set

all registers and conditions indeterminate

DISK OPERATING SYSTEM

CHAPTER 53. CASSETTE H~NDLING ROUTINES

Standard record formats, identifiers, and file marker record
conventions on cassettes are established by the Cassette Tape
Operating System (CTOS). Routines capable of dealing with
cassettes in a manner compatible with eTOS are provided as part of
the Disk Operating System to enhance its overall capability. For
detailed information on cassette format and organization, see the
Cassette Tape Operating System Manual.

All of the DOS cassette routines are foreground driven and
are among the few routines wi thin the DOS which make use of the
foreground handling facility. Being foreground driven, however,
does not alter the manner in which the routines are handled since
all interfacing between the background and foreground is handled
by the system. It does allow increased speed of operation wi th
the cassettes since the user may be processing one record while
another is being read from or wri tten to the tape. This is
evident in the way the DOS slews the tape when transferring
information between it and the di sk.

Some of the cassette handlilng routines initiate foreground
action and then return immediately to the user while others wait

"for I/O completion. All of the routines wait for any uncompleted
I/O to finish before starting something new. In the cases of
reading or writing on the same deck, requesting the next operation
before the comp"letion of the fi r st wi 11 cause' the tape to
automatically slew instead of stopping between records. Slewing
occurs only in the case of a read followed by another read or a
write followed by another write on the same deck. The only cases
where caution must be exercised are in the read and wri te routines
which return immediately after starting the I/O operation. If the
user does not wait for transfer to complete, he might accidentally
attempt to use the data before it is completely read or change the
data before it is completely written. In the second case, records
with incorrect parity will usually be generated. Routines are
provided, however, which automatically wait for transfer to
complete, relieving the user of concern for-the fact that the
routines are foreground driven if he has no need for the
advantages.

The various error conditions associated with cassette
handling can be trapped by the user. If a trap is not set and an
error occurs, an error message similar to messages generated by
CTOS will be displayed and the DOS reloaded. If the trap has been

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-1

set, ex e cut ion will j urn p to t he add r e ss s p e c i f i ed and the t rap
will be cleared. The traps are identified in the error message by
a letter similar to the CTOS identification. In the relevant
cases, the same letter is used in the DOS as is used in the CTOS.
In the following routine descriptions the relevant letter will be
given in the 'Traps' section.

Most of the cassette routines are parameterized by a deck
number given in the B register. This number is a zero for the
rea r de c k an d a on e fo r th e fr 0 n t dec k . Th e cas set t e ha n dIe r
routines use interrupt slot 1 for their foreground process.

53.1 TPBOF$ - Position to the Beginning of a File

TPBOF$ positions the cassette in the specified deck to the
specified file. The search for the file marker of the desired
file is started with backward motion of the tape. If a marker of
lower val u e t han th e f i 1 e nu m b err e que s ted 0 r the be gin n in g of the
tape is en co u n t ere d , the sea r ch will be rever s ed to for war d mot ion
of the tape. If then a marker of larger value than the file
number requested, the end of the tape, or a record of
unrecognizable format is encountered, an error G will be given.
Otherwise, the file is left positioned before the first data
record.

Entry point: 010000

Parameters: B = deck number
C = physical file number (0-0177)

Exit conditions: none

Traps: D
G

Unrecognizable record found.
File could not be found.

53.2 TPEOF$ - Position to the End of a File

TPEOF$ moves the tape forward until the next file mark is
found. It then backspaces the tape one record to leave it'at the
end of the curre nt fi Ie.

Entry point: 010005

Parameters: B = deck number

53-2 DISK OPERATING SYSTEM

Exit conditions: none

Traps: D
E

Unrecognizable record found.
End of , tape encountered.

53.3 TRW$ - Physically Rewind a Cassette

TRW$ rewinds the cassette on the selected deck by first
slewing backwards to ensure that the tape is not on the trailer
and then performing a hardware rewind.

Entry point: 010012

Parameters: B = deck number

Exit conditions: none

Traps: none

53.4 TBSP$ - Physically Backspace One

TBSP$ simply executes a hardware backspace function. No
checking is performed on the data passed over. However,
backspacing onto clear leader causes an end of tape trap.

Entry point: 010017

Parameters: B = deck number

Exit conditions: none

Traps: E Beginning of tape encountered.

53.5 TWBLK$ - Write an Unformatted Block

TWBLK$ writes the specified number of bytes (0 causes 256 to
be written) from the memory buffer specified onto the cassette in
the deck specified. Only the bytes specified will be ~ritten on
the tape.

Entry point: 010024

Parameters: B = deck number
C = number of bytes to write (0 for 256)

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-3

/'

HL => start of buffer

Exit conditions: none

Traps: E
Z

End of tape encountered.
Premature deck ready status ocqurred.

53.6 TR$ - Read a Numeric CTOS Record

TR$ reads a record of eTOS numeric format into the memory
locations specified. The length of the record is stored in the
specified memory location and the data bytes are stored in the
locations that follow. Return is made from TR$ as soon as the
read operation is started but the user cannot use the data until
the operation has been completed (see TCHK$). One way to check
for operation completio~is to call TR$ again with a different
buffer as its parameter. Return from the second call will be made
as soon as the first operation is completed. This is the
me6hanism via which multiple buffering is normally achieved. Note
that tape motion will not cease if TR$ is called within five
milliseconds of the end of the previous record.

If parity problems arise, TR$ tries up to 5 times to read the
tape before giving a parity failure trap. Other traps given are
end of tape and end of fi Ie. If an end of fi Ie tr ap is gi ven, the
tape is positioned before the file marker.

Entry point: 010031'

Parameters: B = deck number
HL => data storage location

Exit conditions: none

Traps: D
E
F

Parity failure occurred.
End of tape encountered.
End of file encountered.

53.7 TREAD$ - TR$ and Wait for the Last Character

TREAD$ performs the TR$ function and then wai ts for the last
character to be- read from the tape. This routine should be used
when multiple buffering is ,not being performed since it relieves
the user from having to explicitly wait for the last character to
be read.

53-4 DISK OPERATING SYSTEM

Entry point: 010034

Parameters: same as for TR$

Exit conditions: none

Tr aps : same as for TR$

53.8 TW$ - Write a Numeric eTOS Record

TW$ writes the specified memory locations in a record of
s tan dar d C T 0 S n u mer i c fo r mat. I t us es (for pa r i t Y g en era t ion) the
three locations preceeding the memory location specified which
contains the number of bytes to be written and is followed by that
number of data bytes.

TW$ returns as soon as the write operation is started. The
user must be careful not to change any of the memory locations
given as parameters before the last byte has been transferred.
This can be achieved by either calling TCHK$ and waiting for
completion status or calling TW$ with the next buffer if multiple
buffering is being used. Note that tape motion will not cease if'
TW$ is called before the middle of the IRG is reached from the
previous write (140 milliseconds after the last character is
wri tten when using a 7.5 ips deck).

Entry point: 010037

Parameters: same as for TR$

Exit conditions: none

Traps: E
Z

End of tape encountered.
Premature deck ready status occurred.

53.9 TWRIT$ - TW$ and Wait for the Last Character

TWRIT$ executes the TW$ routine and then waits for the last
byte to be written on the tape. This routine should be used when
multiple buffering is not being performed since it relieves the
user from having to explici tly wait for the last byte to be
written.

Entry point: 010042

Parameters: same as for TR$

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-5

Exit conditions: none

Traps: same as for TW$

53.10 TFMR$ - Read the Next File Marker

TFMR$ reads the tape until a file marker record is found. A
trap occurs if a record is encountered that is neither a file
marker nor a eTOS numeric data record.

Entry point: 010045

Parameters: B = deck number

Exit conditions: e = PFN of file marker

Traps:

Tape positioned after marker record.

D
E

Unrecognizable record found.
End of tape encountered.

53.11 TFMW$ - Write a File Marker Record

TFMW$ writes a file marker record that contains the number
specified.

Entry point: 010050

Parameters: B = deck number
e = PFN to be written

Exit conditions: none

53-6 DISK OPERATING SYSTEM

Tr aps: E
Z

End of tape encountered.
Premature deck ready status occurred.

53.12 TTRAP$ - Set an Error Condition Trap

TTRAP$ allows the user to trap the various errors associated
with cassette 1/0. If the trap is not set and an error occurs, an
error message of the form

*** ERROR X ON DECK Y ***

will be displayed, where X is one of the letters shown below and Y
is a 1 for the rear deck and a 2 for the fr.ont deck. The trap is
specified by a number according to the following table:

3 - D - Parity failure occurred.
4 - E - End of tape encountered.
5 - F - End of file encountered.
6 - G - File could not be found.

In addition, error Z (which cannot be trapped) indicates that the
deck ready status bit came true while a record was being written.
This status implies that the write routine fell behind in writing
characters and most probably indicates that the foreground
interrupt haridling was disrupted in some fashion (interrupts were
disabled too long or an interrupt driven routine was running which
imposed too much overhead). It may also be caused by the tape
being write protected (left rear tab punched out).

Traps are cleared by setting their addresses to zero. When
the event which causes a trap occurs, that trap is cleared and
control passed to the address indicated with the deck number in
the B reg i s t e r (0 for rea r an d 1 for fr 0 n t deck).

Entry point: 010053

Parameters: C = trap number (above)
DE= trap address (0 clears trap)

Exit conditions: none

Traps: none

CHAPTER 53. CASSETTE HANDLING ROUTINES

53.13 TWAIT$ - Wait Cor I/O Completion

TWAIT$ waits for any tape operation active to complete. This
does not mean that physical motion has stopped since TR$ and TW$
indicate liD completion when the last character has been
transferred. It does mean that all data is free to be processed
by the user. TWAIT$ also executes any traps pending upon the
completion status being set.

Entry point: 010056

Parameters: none

Exit conditions: B, C, D, and E registers preserved

Tr aps: Any tr ap pend ing wi 11 be execu ted.

53.14 TCHK$ - Get I/O Status

TCHK$ sets the tape demand flag in the Carry condition flag
and loads the tape handling status in the A register. The
handling status codes are as follows:

000 PBOF in progress
002 PEOF in progres s
004 - Rewind in progress
006 - Record read in progress
010 - Backspace in progress
012 - File mark read in progress
014 - Record wri te in progress

377 - Normal completion
206 - Pari ty error
210 - End of tape
212 - End of file
21 Ji - File not found
262 - Premature deck ready status

53-8 DISK OPERATING SYSTEM

Normal use of the cassette routines will not require the user to
deal with these status codes or even use the TCHK$ routine. They
are provided here to facilitate understanding the listing of the
routines.

Entry point: 010061

Parameters: none

Exit conditions: Carry condition = demand flag
A = status code (above)

Tr aps: none

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-9

CHAPTER 54. COMMAND INTERPRETER ROUTINES

This section deals with a series of routines within the
command interpreter. Note that these routines are only available
for use if the user program does not overlay the command
interpreter, which resides in locations 013400-016777.

The first four of these entry points are more like "exit
points", since they are places in the DOS to which users may
return instead of EXIT$. The primary advantage to using them
instead of EXIT$ is that none of these four entry points results
in the DOS being reloaded, a process which takes significant time.
Since these entry points do not reload the DOS, programs which
exit through CMDINT, DOS$, CMDAGN, or NXTCMD must not have
overstored any part of the DOS; that is they should reside only in
locations 017000 upwards. Also, these "exit points" do not clear
any traps that the user may have set; therefore the user should
clear any traps he has set before exiting in this manner. If this
is not done, the system will most likely go astray upon the first
subsequent occurrence of a trapped situation.

Most of the other routines documented in this section are
routines which are used by one or more of the DOS command programs
supplied either on the DOS Generation or DOS Utilities tapes.
Since these routines are in the command interpreter's entry point
table and are used by some of the DOS commands, they are
documented here primarily for the sake of completeness.

54.1 CMDINT - Return & Scan MCR$ line

CMDINT closes files 1~3 if necessary.~nd processes MCR$ just
as it would a command line entered by an- ... operator at the keyboard.
(This results in executing the program .tridicated by the command
line.)

Entry point: 01165

Parameters: MCR$ (an 80 byte area of memory starting at 01400)
should contain a string resembling a command line
terminated with a 015.

Exit conditions: Does not return

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-1

54.2 DOS$ - Return & Display Sign On

DOS$ fi r st loads the RAM screen, if av ai la b Ie, with the
character set contained in SYSTEM6/SYS (or CHARSET/SYS if it
exists). Once the RAM display has been loaded, it is not reloaded
until either another bootstrap from cassette, or the appropriate
DOS function is invoked by a DOS program. DOS$ then causes any
program which has been AUTOed to be executed. If no programs are
set for auto-execution, the DOS sign-on is displayed, files 1-3
are closed if necessary, and the familiar "READY" message is
displayed. Any traps set by the user program (via TRAP$) are not
cleared unless the DOS is reloaded. This implies that if a user
program sets any of the traps and wishes to return via DOS$,
NXTCMD, or CMDAGN, it must first clear any traps it has set to
prevent the DOS from going astray. DOS$ is the normal starting
point of the DOS when a bootstrap operation or a jump to 800T$,
EXIl$, or ERROR$ occurs.

Entry point: 013400

Parameters: none

Exit conditions: Does not return

54.3 NXTCMD - Return and Dislay "READY"

NXTCMD causes files 1-3 to be closed and displays the
familiar DOS "READY" message.

Entry point: 013403

Parameters: none

Exit condftions: Does not return

54.4 CMDAGN - Return & Give Message

CMDAGN causes files 1-3 to be closed and displays a
user-supplied message before returning to the command interpreter.
CMDAGN causes termination of an active chain and is intended as an
error exit.

Entry point: 0134,06

Parameters: HL => DSPLY$-format string
DE unused; string should position cursor

54-2 DISK OPERATING SYSTEM

Exit conditions: Does not return.
DOS CHAIN facility aborts if active.

54.5 GETSYM - Get Next Symbol

GETSYM causes the symbol pointed to by HL to be scanned off
and stored in an 8-byte field called SYMBOL located at 013472.
The symbol (leading spaces are ignored) must contain only upper
case alphabetic or numeric characte~s. The first illegal
character encountered terminates the scan; the illegal,
terminating character is stored for the user's inspection (at
SYMBOL+8) and SYMBOL is padded on the right with spaces if
necessary. If the symbol is longer than eight characters, the
first eight only are used; remaining characters, through the
terminator, are scanned but not stored. (The terminator is stored
at SYMBOL+8 in any case.) On exit, HL points to the byte
following the terminator, unless the terminator was an 015 or a
semicolon, in which case HL points to the terminator.

Entry point: 013411

Parameters: HL => beginning of symbol

Exit conditions: SYMBOL = 8-byte symbol as described above
A, SYMBOL+8 = terminator character
HL => byte after symbol terminator

(except as noted above)
all other registers indeterminate

54.6 GETCH - Get the Next Character

GETCH 0 btains the nex t character poi nted to by HL and returns
it in A. On exit, if zero is true, A = 015 or a semicolon, and HL
is not incremented (HL is. never bumped past an 015 or a
semicolon); if zero is false, A is not an 015 or a semicolon and
HL is incremented.

Entry point: 013414

Parameters: HL = address of byte (see above)

Exit conditions: A = character
ZERO TRUE/FALSE as described above
HL = HL+1 if zero false or

HL if zero true
C,D,E unchanged

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-3

B indetermina te

54.1 GETAEN - Get Auto-Execute Physical File Number

, GETAEN returns the physical file number of the file (on the
logical drive specified in C) which is set to be auto-executed by
the DOS.

Entry pOint: 013411

Parameters: C = Logical Drive

Exit conditions: Carry true if 1/0 error reading the CAT
Carry false: A = auto-execute PFN (O=none)

. Zero true if a-e PFN not set
Zero false if A is valid a-e PFN

all other registers indeterminate

54.8 PUTAEN - Set or Clear a File to be Auto-Executed

PUTAEN either sets or clears the auto-execute PFN stored in
the CAT on the disk in the logical drive specified in C. The
change becomes effective upon the next time DOS is entered at
DOS$, either by depressing the RESTART key, the auto-restart tab
being punched out of the rear cassette and the processor halted,
or jumping to EXIT$, ERROR$, BOOT$, or DOS$.

Entry p6int:

Parameters:

013422

A = PFN to be auto-executed (0 to clear)
C = Logical Drive

Exit conditions: all registers indeterminate
Carry true if 1/0 error updating CAT

54.9 GETLFB - Open the User-Specified Data File

GETLFB opens logical file spe6ified in S using the file name,
extension, and drive select code stored in the indicated LFT
entry, in the normalized form described in the section on the
Command Interpreter. The extension, if blank, is assumed to be
"ASS" . The logi cal dr i ve s pe ci fi cati on fie ld is ignored, since
the drive select code field is used instead. If an error occurs,
Carry is true on return and HL points to a DSPLY$-format string
complete with cursor positioning bytes and one of the following

54-4 DISK OPERATING SYSTEM

messages:

NAME REQUIRED.
INVALID DEVICE.

NO SU CH NAME.

First byte of name field is blank.
Drive specification invalid; select

code = 0316.
File not found; the file must exist.

Each of the above messages is preceeded by control bytes:
011,0,013,11,023 and followed by an 015. If carry is false upon
return, the file named has been successfully opened as the
requested logical file number.

Entry point:

Parameters:

013425

B = LFN
Other parameters in LFT specified by LFN; see

above.

Exi t condi tions: Carry false: file successfully opened
all registers indeterminate
Carry true: OPEN failed

HL => message

54.10 PUTCHX - Store the Character in WA"

PUTCHX stores the A register at the memory location pOinted
to by HL, increments HL, and decrements a byte counter maintained
in E.

Entry point:

Parameters:

013433

HL ~ address where A is to be stored
A = byte to be stored at HL
E = count to be decremented

Exit conditions: B.C,D unchanged
E = entry value - 1
HL = entry value + 1

eHAPTER 54. COMMAND INTERPRETER ROUTINES 54-5

54.11 PUTCH - Alternate Version of PurCHX

PUTCH is like PUTCHX except it starts by setting the most
significant bit of A to zero. If A then contains a space (040),
PUTCH immediately returns wi th zero true, in which case A is not
stored, HL is not incremented, and E is not

l
decremented.

Entry point: 013430

Parameters: " s arne as PUTCHX

Exit conditions: same as PUTCHX except as described above

54.12 PUTNAM - Format a Filename from Directory

PUTNAM is a routine which extracts a name, extension and
physical file number for a directory entrY'and puts them into a

'place in the command interpreter called "NAME" (located at 013513;
the field is 19 bytes long and followed by an 03.) Since this
routine is used by the CAT command, the format of the names
produced by PUTNAM should be famfliar to all DOS users.

Note that on entry, only the most significant 4 bits of Care
used, and that CURLOC (location 013463) is to contain the two-byte
PDA of the directory sector (LSB, MSB).

Entry point: 013436

Parameters: directory sector in the disk buffer
B = LFN indicating which buffer
C = PFN of entry being extracted
CURLOC = PDA of directory sector

Ex i t cond i ti ons: CURLOC. un changed

54-6

di sk bu ff er u nc hang ed
B unchanged
all other registers indeterminate
ZERO TRUE: file does not exist

DISK OPERATING SYSTEM

54.13 MOVSYM - Obtain the Symbol Scanned by GETSYM

MOVSYM moves the eight-byte SYMBOL described in the section
on GETSYM into the eight-byte area pointed to by DE.

Entry point: 013441

Parameters: DE = address of user's eight-byte area

Exit conditions: B unchanged.
all other registers indeterminate

54.14 GETDBA - Obtain Disk Controller Buffer Address

GETDBA extracts the current di sk buffer address, in a format
acceptabl~ to GETR$, from one of the four LFT entries. It does
this by getting the BUFADR from the specified LFT entry and
subtracting three from it. On return, H is the address MSB
pointing into the command interpreter data area.

Entry point: 013444

Parameters: B = LFN (0,16,32,48)

Exit conditions: A = BUFADR as described above
H as described above
B,C,D,E unchanged

54.15 SCANFS - Scan Off File Specification

SCANFS scans a file specification of the form
<filename>l<ext>:<drv> pointed to by HL into a 16 byte area
pointed to by DE. The area pointed to by DE is treated as an LFT
entry, that is, the first byte is a drive select code (0376
meaning invalid drive spec, 0377 meaning unspecified drive spec,
or the binary drive number), the second byte is 0377 indicating
the file is closed, bytes 3 thru 10 are the file name (blank if
not given), bytes 11 thru 13 are the extension (blank if not
given), and bytes ·14 thru 16 are the normalized drive spec (blank
if not given). The scanned drive spec may be 1 to 8 characters
long and must be in volid (:<volid» or drive number (:Dn or :DRn)
form. For a drive number the drive entry must be 2-7 characters
long, the first character must be "D", the second may be "R", and
the remaining must be digits. Therefore ":DO" and ":DR00014" are
both legal representations. The normalized represention consists
of a "D" followed by "R" and the single digi t gi ven or "D"

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-7

followed by the two digits given; for instance, the above examples
in normalized form would be "DRO" and "D14" respectively.
Scanning a volid results in the correct drive number being stored
in the normalized drive spec field. The scan is terminated by any
non-alphanumeric character other than ":" or "I". i

Entry Point: 013447

Parameters: DE = > "LFT TABLE" entry
HL => string to be scanned

~

Exit Conditions: DE => byte following "LFT TABLE" entry
HL => byte after terminator (unless 015 or
in which case it points to terminator)

54.16 reWAIT - Test controller memory & wait

n." ,

TCWAIT is the point in the COMMAND INTERPRETER where it loops
testing the disk controller buffer memory while waiting for a
command to be keyed in. It is only to be used by the CHAIN
command to trap programs returning to DOS.

Entry Point: 013452

Parameters: none

Exit Condition: Does not return.

54-8 DISK OPERATING SYSTEM

CHAPTER 55. USER SUPPORTED INPUT/OUTPUT

When the user desires to use I/O devices other than the
keyboard, display, disk, or cassettes, he will use a routine that
is not part of the operating system. Many of these devices (for
instance, the communications channel) will be serviced by
foreground processes which run with interrupts disabled. However,
if the user does access an I/O device from a background process,
he must realize that as long as interrupts are enabled, some other
device can be addressed by a foreground routine. For this reason
the user must disable interrupts between the time he addresses his
device and the time he uses it. To reduce the amount of
foreground processing real time jitter (discussed earlier) as much
as possible, the aim in writing background I/O routines should be
to minimize the amount of time that interrupts are disabled. This
implies that devices accessed from background programs must be
~ddressed every time they are used. For example:

GETBYT EI Enable interrupts in case
LA DEVADR looping
DI Disable interrupts
EX ADR Address the device
IN Get the device status
ND 2 Check for required bits
JTZ GETBYT Wait if not set
EX DATA Else get the byte
EI En able interrupts after
IN the data input
RET

Note that a little cheating on time was done in the interest of
program length. Since the INPUT in DATA mode was done without
enabling interrupts, re-disabling them and re-addressing the
device was not necessary. One should be judicious in the trade
off employed in exercising this freedom.

The us er must not do I/O to the di sk cont roller from
foreground-driven routines or results can be unpredictable. The
DOS disk drivers allow user foreground routines to receive control
in the midst of a disk I/O operation, under the assumption that
the foreground routine will not do anything to the disk controller
which would confuse it.

CHAPTER 55. USER SUPPORTED INPUT/OUTPUT 55-1

CHAPTER 56. ERROR MESSAGES

56.1 System Error Messages

The following error messages are produced by the DOS system
routines and may appear during the execution of almost any
program.

PARITY FAILURE DURING READ
A parity fault occurred while a disk data record was
being read.

PARITY FAILURE DURING WRITE
A parity fault occurred while a disk data record was
being written.

R ECO RD FO RMAT ERRO R
The physical file number or logical record number in thi
record read did not match the values contained in the
logical file table.

RECORD NUMBER OUT OF RANGE
The record accessed had a logical record number less than
zero or, du"ring reads, was outside the physical space
allocated to the file.

WRITE PROTECT VIOLATION
An attempt was.made to write on a file that had its write
protection bit set.

DELETE PROTECT VIOLATION
An attempt was made to delete a file that had either its
write or delete protection bit set.

FILE SPA CE FULL
An attempt was made to allocate space when either the
disk was physically full or no more. segment descriptor
slots were available in the RIB for the given file.

CHAPTER 56. ERROR MESSAGES 56-1

DRIVE OFF LINE
The drive went off-line after a file on it was opened.

LOGICAL FILE NOT OPEN
An attempt was made to use an entry in the logical file
table that was not opened for use with some file.

INVALID LOGICAL FILE NUMBER
A routine was called with the logical file number
parameter not 0, 16, 32 or 48.

INVALID DRIVE NUMBER
A routine was called with the drive number not zero
through the defined drive number limit (or 0377, if
allowed).

INVALID TRAP NUMBER
The TRAP$ routine was called with a trap number not
between zero and seven.

FAILURE IN SYSTEM DATA
An unrecoverable parity error occurred while the system
was dealing with one of the disk tables or a retrieval
information block, 'or a RIB with incorrect format was
accessed.

INVALID PHYSICAL FILE NUMBER
A physical file number reserved for t~e system was
illegally referenced.

INTERNAL SYSTEM ERROR
The error message routine was parameterized with an
invalid error message number.

ERROR X ON DECK Y
A cassette routine error has occurred. The X indicates
the type of error according to the following table:

D - parity error
E - end of tape
F - end of file
G - unfindable file
Z - write failure

56-2 DISK OPERATING SYSTEM

56.2 Utility Program Error Messages

The following messages (listed in alphabetic order) are
produced by the indicated DOS utility. For a description of the
error condition and possible corrective action see the individual
chapter for the utility in use.
'7' OPTION IS ONLY VALID WHEN COPYING SYSTEM7/SYS

COpy
* DRIVE OFF LIN E

SUR
* DRIVE OFF LINE OR FULL *

SUR
* DRIVE OFF-LINE *

AUTO
* DRIVE OFFLINE *

FILES
* INVALID EXTENSION *

SUR
* MAY NOT BE DELETED *

SUR
* MAY NOT BE RENAMED *

SUR
* PARITY ERROR *

FILES
* SYSTEM DATA FAILURE *

AUTO,CAT,MANUAL,NAME
* SYSTEM DATA FAILURE ON DRIVE x *

SUR
* SYSTEM DRIVE OFF LINE *

MANUAL
** BAD DATA IN THE SOURCE FILE LINE DIGITS **

BLOKEDIT .
** BAD FILE SPECIFICATION **

BLOKEDIT
** BAD LINE NUMBER SPECIFICATION **

BLOKEDIT
** FORMAT OR RANGt ERROR ON SOURCE FILE **

BLOKEDIT
** LINE NUMBER ZERO IS NOT VALID **

BLOKEDIT
** NO VALID SOURCE FILE FOR TRANSFER **

BLOKEDIT
** SOURCE FILE NOT FOUND **

BLOKEDIT
** SOURCE FILE WENT TO EOF **

BLOKEDIT
** START LINE NO. > END LINE NO. **

BLOKEDIT

CHAPTER 56. ER RO R MESSAGES 56-3

*** BAD OPTION FOLLOwl NG ; ON COMMAND LINE - IGNORED ***
BLOKEDIT

*** COMMAND AND NEW FILE NAMES CAN NOT BE IDENTICAL ***
BLOKEDIT

*** COMMAND FILE DRIVE IS INVALID ***
BLOKEDIT

*** COMMAND FILE NOT FOUND ***
BLOKEDIT

*** DUPLICATE NAME. NOT COPIED. ***
BACKUP

*** INCORRECTLY FORMATTED DISK RECORD ***
MOUT ~

*** NEW FILE AND SOURCE FILES CAN NOT BE IDENTICAL ***
BLOKEDIT

*** NEW FILE DRIVE IS INVALID ***
BLOKEDIT

*** NEW FILE NAME IN USE ***
BLOKEDIT

*** NEW FILE NAME IN USE, OVERWRITE IT? ANSWER WITH YES OR NO
BLOKEDIT

*** NEW FILE NAME IS REQUIRED ***
BLOKEDIT

*** NOT ALL FILES WOULD FIT ON THE CASSETTE ***
MOUT

*** THE FILE IS TOO LARGE TO FIT ON THE CASSETTE ***
MOUT

*** UNABLE TO OPEN INPUT FILE! ***
BACKUP

END OF TAPE
MIN

*** MISMAT CH***
MOUT

PARITY ERROR - FILE WILL BE DELETED
MIN

PARITY ERROR - RECORD MODIFIED
MIN

WRITE PROTECTED
MIN

END OF TAPE WHILE WRITING DIRECTORY
MOUT

FILE CONTAINS NON-OBJECT RECORD
MOUT

FILE FORMAT ERROR
REFORMAT

*FILE NOT OPEN *
REFORMAT

I,NCORRECTLY FORMkTTED SOURCE RECORD
MOUT

56-4 DISK OPERATING SYSTEM

- ALREADY IN DRIVE XIX SUBDIRECTORY.
SUR

- DRIVE x HAS NO SUBDIRECTORY.
SUR

- DRIVE x IS A REMOTE ARC VOLUME.
SUR

- DRIVE XIS SUBDIRECTORY IS FULL.
SUR

- NOT IN DRIVE XIS SUBDIREECTORY.
SUR

BAD CLUSTER ALLOCATION TABLE! USE DSKCHECK TO FIX IT.
BACKUP

BAD DATE
MOUT

BAD DEVICE SPECIFICATION.
CHAIN

BAD DEVICE.
EDIT

BAD DOS FUNCTION
FREE

BAD DRIVE
MOUT

BAD DRIVE SPECIFICATION
FREE

. BAD EXTENSION C/XTX) FOR SCRATCH.
EDIT

BAD FI LE FO RMAT !
EDIT

BAD LOADER
MOUT

BAD OPTION PARAMETER
DUMP,EDIT,MIN

BAD OPTION PARAMETER. MOUT DISCONTINUED.
MOUT

BAD SECOND FILE SPEC! SHOULD BE "Lnn OR "Rn"!
LIST

BAD TAPE DIRECTORY
MOUT

BLOCK TOO SHORT ON VERIFY
UBOOT

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS.
REFORMAT

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND ..
REFORMAT

BOOT GENERATION ABORTED - TRY AGAIN?
UBOOT

BOOTED DRIVE IS ILLEGAL OUTPUT DURING REORG.
, BACKUP

CHAPTER· 56. ERRO R MESSAGES 56-5

BOTH SOURCE AND SCRATCH FILES CANNOT BE SAME.
EDIT

CAN'T FIND FILE xxxxxxxx/xxx MEMBER xxxxxxxx
FIXAPPLY

CASSETTE NO LONGER IN PLACE
UBOOT

CASSETTE WRITE PROTECTED
UBOOT

CHAIN OVERLAY MISSING.
CHAIN

CHAINING ABORTED - ABTIF - ERROR BIT ON.
CHAIN

CHAINING ALREADY ACTIVE.
CHAIN

COMMAND LINE ERROR: 015 MISSING
REFORMAT

CONDITION SPECIFICATION ERROR.
CHAIN

CONFLICTING OPTIONS SPECIFIED.
FILES

CORRECT FORMAT IS: PUTVOLID <VOL-ID><:DRIVE>;<OWNER-ID>
PUTVOLID

CRC ERROR ON DRn
PUTVOLID

CYLINDER ZERO OF BACKUP DISK IS UNUSABLE!
BACKUP

DECK ERROR (DECK READY DURING WRITE)
UBOOT

DIRECTORY FULL
MOUT

DISK EOF BEFORE TAPE EOF.
MOUT

DISK FILE CONTAINS NON-OBJECT RECORD.
MOUT

DISK FILE CONTAINS NON-TEXT RECORD.
MOUT

DISK OFFLINE
DUMP

DISK SECTOR CRCC ERROR
DUMP

DISK SECTOR FORMAT ERROR
DUMP

DOS FUNCTION 15 ERROR
FILES

DRIVE OFF LINE
DSKCHECK,KILL

DRIVE xx OFFLINE!
BACKUP

56-6 DISK OPERATING SYSTEM

DRn OFF-LINE
PUTVOLID

DUPLICATE KEY:
INDEX

ERROR IN DOS FUNCTION. DUMP ABORTED.
DUMP

ERROR IS DOS FUNCTION
FILES

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT F~LE IS DELETE PROTECTED
REFORMAT

FAULTY DEFINITION FILE.
EDIT

FILE ALREADY WAS IN SPECIFIED FORMAT.
REFORMAT

FILE EXHAUSTED BEFORE LINE FOUND. FILE IS nnnn LINES LONG.
LIST

FILE FOLLOWING LOADER NOT OBJECT
MOUT

FILE INTEGRITY ERROR ON INPUT!
FIXAPPLY

FILE IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE
LIST

FILE NAME MISSING
CHANGE

FILE NOT FOUND
DUMP"EDIT,MIN,MOUT

FILE NOT FOUND. CREATE IT?
EDIT

FILE TWO AND THREE MUST BE DIFFERENT.
APP,SAPP

FILE x CONTAINS A NON-OBJECT RECORD.
APP

FILE(S) NOT FOUND
FILES

FORMAT - NEXT RECORD NUMBER:
LIST

FORMAT ERROR IN INPUT FILE!
LIST

HADCOPY ONLY IF LIMITED OUTPUT
SORT

HARDCOPY HEADING STRING MISSING
SORT

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A 256-BYTE SECTOR?
REFORMAT

I CAN'T RUN IN THE REMOTE PARTITION
EDIT

I CAN'T WRITE A NULL TAPE!
MOUT

CHAPTER 56. ERRO R MESSAGES 56-7

ILL EGAL EOF ON INPUT!
FIXAPPLY

ILLEGAL HEADER KEY EVALUATION
SORT

ILLEGAL HEADER SPECIFICATION
SORT

ILLEGAL SORT KEY SPECIFICATION
SORT

ILLEGAL, CONFLICTING OR DUPLICATE OPTION.
REFORMAT

INDEX FILE DOESN'T POINT TO ITSELF!
LIST

INDEX TERMINATED WITH DUPLICATE KEYS
INDEX

INFILE NAME MISSING
INDEX

INPUT AND OUTPUT DRIVES MUST BE DIFFERENT
BACKUP

INPUT AND OUTPUT FILES CANNOT BE THE SAME!
LIST

INPUT DISK LOCKOUT CAT UNREADABLE. REORGANIZATION REQUIRED.
BACKUP

INPUT FILE CONTAINS BAD DATA!
DECODE

INPUT FILE DOES NOT EXIST!
DECODE,ENCODE

INPUT FILE IS EMPTY!
REFORMAT

INPUT FILE MISSING OR NOT SPECIFIED!
FIXAPPLY

INPUT FILE MUST BE SPECIFIED
DECODE,ENCODE

INPUT FILE MUST EXIST IN "ONE-PASS".
EDIT

INPUT FILE NOT FOUND
LIST,SORT

INPUT FILE REQUIRED
SORT

INTERNAL ERROR
EDIT

INTERNAL ERROR -- GET SYSTEMS HELP I!!
SORT

INVALID DEVICE
CAT,INDEX,SAPP

INVALID DEVICE SPECIFICATION
LIST

INVALID DRIVE
APP,BACKUP,DSKCHECK,FILES,KILL,MIN,PUTIPL,SORT

56-8 DISK OPERATING SYSTEM

INVALID DRIVE SPECIFICATION
BUILD

INVALID END-OF-FILE AT LRN nnnnn.
LIST

INVALID END-OF-FILE MARK AT LRN nnn
SORT

INVALID FILE SPECIFICATION
BUILD

INVALID FORMAT FOR PFN REPLY.
KILL

INVALID HADCOPY HEADING ADDRESS
SORT

INVALID LIMITATION SPECIFICATION
SORT

lNVALID LIMITATION STRING ADDRESS
SORT

INVALID OBJECT FORMAT!
FIXAPPLY

INVALID OPTION PARAMETER
DSKCHECK

INVALID OPTIONS SPECIFIED. VALID ONES ARE:
REFORMAT

INVALID PHYSICAL ADDRESS
DUMP

INVALID PROTECTION SPECIFICATION.
CHANGE

INVALID TAPE FORMAT
MIN,MOUT

INVALID TEXT CHARACTER AT LRN nnn
SORT

INVALID USER EXIT ADDRESS
SORT

ISAM AND LINE/RECORD COUNT INCOMPATIBLE
LIST

KEY FILE SPECIFICATION ERROR
SORT

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED
SORT

LIMITATION STRING MISSING
SORT

LINE OVERFLOW DURING VALUE SUBSTITUTION.
CHAIN

LIST TERMINATED.
LIST

LOCAL IS MISSING FROM UTILITY/REL OR UNLOADABLE
FILES

LOCAL IS MISSING FROM UTILITY/REL, OR ISUNLOADABLE
,LIST

CHAPTER 56. ERRO R MESSAGES 56-9

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND.
REFORMAT

LOGICAL RECORD LENGTH, IF SPECIFIED MUST BE < 250 BYTES.
REFORMAT

LONG KEY ENCOUNTERED AND TRUNCATED
INDEX

MISSING END-OF-PHYSICAL RECORD AT LRN nnnn.
LIST

MISSING EOS AT LRN nnn
SORT

MISSING OWNER-ID.
PUTVOLID

MULTIPLE PRINTERS SELECTORS
DSKCHECK

NAME IN USE.
NAME

NAME NOT FOU ND •
APP,SAPP

NAME REQUIRED
APP,CHAIN,EDIT,MOUT,NAME,SAPP

NO AUTOKEY LINE CONFIGURED ..
AUTOKEY

NO CASSETTE IN SELECTED DECK.
REWIND

NO SUCH NAME
CHAIN,INDEX,KILL

NO SUCH OVERLAY LIBRARY.
CAT

NO SUCH SUBDIRECTORY
NAME

NO!
KILL

NO! YOU CAN ONLY "AUTO" FILES THAT ARE ON BOOTED DRIVE.
AUTO

NO! YOU CANNOT "AUTO" SYSTEM FILES.
AUTO

NO! THAT FILE IS PROTECTED.
NAME

NON-SEQUENTIAL FILE MARK
MOUT

NOT DIRECTORY TAPE
MOUT

NOT LGO TAPE
MOUT

NOT WHILE ARC IS RUNNING
BACKUP,PUTIPL,PUTVOLID,UBOOT

NOT WHILE PS IS RU NNING
BACKUP,PUTIPL,PUTVOLID,UBOOT

56-10 DISK OPERATING SYSTEM

NULL FILE
MOUT

NULL INDEX FILE CREATED
INDEX

NULL LIMITATION STRING
SORT

NU MBER NOT OCT AL
MIN

NUMBER OF LINES PER PAGE MUST BE 1-255!
LIST

OLD/NEW BYTE MISMATCH!
FIXAPPLY

OPTION FI ELD ERRO R
SORT

OPTION SPECIFICATION DUPLICATION
SORT

OPTION SPECIFICATION ERROR.
CHAIN

OUTPUT DISK LOCKOUT CAT UNREADABLE. REORGANIZATION REQUIRED
BACKUP

OUTPUT DRIVE NUMBER REQUIRED.
PUTVOLID

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE WRITTEN INTO OR
SHORTENED.

REFORtvlAT
OUTPUT FILE NOT FOUND ON DRIVE x.

REFORMAT
OUTPUT FILE OVERFLOW

SORT
OUTPUT FILE SAME AS INPUT

SORT
OUTPUT FILE WOULD DESTROY INPUT FILE!

DECODE,ENCODE
OUTPUT FILE WRITE PROTECTED.

EDIT
PARAMETER ERROR MULTIPLE PRINT DEVICES REQUESTED.

LIST
PARA ME T ERE R R 0 R, AL LO WE D PAR AM E T E R S ARE D, L , S , P , Q , X , N n ,F AN D I

LIST
PARITY ERROR ON DRIVE n. PDA: nnnn,nnnn

BACKUP
PARITY ERROR ON READ. LRN: nnnnn

BACKUP,COPY
PARITY ERROR ON WRITE. LRN: nnnnn

BACKUP,COPY
PHASE 1 ERRORS; ABORTED

FIXAPPLY
PHASE 2 INTERNAL ERROR; ABORTED

CHAPTER 56. ERRO R 'MESSAGES 56-11

FIXAPPLY
PHASE 3 INTERNAL ERROR; ABORTED

FIXAPPLY
PLEASE DOSGEN YOU OUTPUT DISK FIRST

BACKUP
PRINT DRIVER MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION A

DSKCHECK
PRINT MODULE MISSING OR NOT LOADABLE NO PRINT WILL OCCUR

DSKCHECK
PRINTER MODULE MISSING FROM UTILITY/REL.

DUMP
PROGRAM ERROR; EXCESS FILE SPACE NOT DEALLOCATED TO PREVENT
POSSIBLE LOSS OF
DATA.

REFORMAT
PROGRAM NOT LOADABLE

DSKCHECK
PROTECTION UNCHANGED.

CHANGE
RANGE - NEXT RECORED NUMBER:

LIST
RANGE ERROR IN INPUT FILE!

LIST
RECORD COU NT ERRO R!

FIXAPPLY
RECORD FO RMAT ERRO R

FIX
REFORMAT UNLOADABLE!

INDEX
RELOCATABLE MEMBER MISSING OR UNLOADABLE

DSKCHECK,FIXAPPLY
SCREEN IS MISSING FROM UTILITY/REL OR UNLOADABLE

FILES
SCREEN IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE

LIST
SEC2200 IS MISSING FROM UTILITY/REL OR UNLOADABLE

FILES
SEC5500 IS MISSING FROM UTILITY/REL OR UNLOADABLE

FILES
SECPS IS MISSING FROM UTILITY/REL OR UNLOADABLE

FILES
SECTOR IN/OUT MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION A

DSKCHECK
SECTOR OUT OF RANGE

DUMP
SEQUENCE FILE FORMAT ERROR n

56-12 DISK OPERATING SYSTEM

SORT
SEQUENCE FILE NAME REQUIRED

SORT
SEQUENCE FILE NOT FOUND

SORT,
SERVO IS MISSING FROM UTILITY/REL OR UNLOADABLE

FILES
SERVO IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE

LIST
SORT KEY TOO LONG

SORT
SORT OVERLAY MISSING

SORT
SORT UNLOADABLE!

INDEX
SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT INPUT FILE. F

REFORMAT
SUBDIRECTORY NOT FOUND.

FILES
SYMBOL TABLE OVERFLOW

CHAIN
SYSTEM7/SYS MISSING!

INDEX,KILL
SYSTEMx/SYS IS MISSING

BACKUP
TAG DEFINED MORE THAN ONCE_

CHAIN
TAG VALUE NOT TERMINATED.

CHAIN
TAPE EOF BEFORE DISK EOF.

MOUT
TAPE FILE MARK READ BEFORE TAPE OBJECT EOF.

MOUT
TAPE OBJE~TEOF NOT FOLLOWED BY TAPE FILE MARK

MOUT
THAT DRIVE HAS NO SUBDIRECTORY

NAME
THAT FILE IS NOT IN YOUR SUBDIRECTORY.

KILL
THAT ISN'T THE RIGHT FORMAT FOR YOUR REPLY.

-KILL __
THE CHAINP/SYS FILE HAS BEEN DELETED.

CHAIN
THE DISKS' LOCKOUT-OUT CYLINDERS DO NOT MATCH. REORGANIZATION
REQUIRED.

BACKUP
THE KEYBOARD KEY WAS HIT MIN ABORTED

MIN

CHAPTER 56. ERRO R MESSAGES 56-13

THIS PROGRAM IS RUNNING FROM IN A CHAIN - THE "F" OPTION HAS BEEN
DEACTIVATED

DSCHECK
THIS PROGRAM IS RUNNING FROM UNDER ARC - THE "F"OPTION HAS BEEN
DEACTIVATED

DSKCHE CK
THIS PROGRAM IS RUNNING FROM UNDER PS - "F" OPTION HAS BEEN
DEACTIVATED

DSKCHECK
UNABLE TO LOAD PRINTER MODULE FROM UTILITY/SYS.

DUMP
UNDEFINED CHAIN OPERATOR.

CHAIN
UNRECOGNIZABLE TAPE RECORD FORMAT

MIN
UNRECOGNIZEABLE OPTION CODE.

FILES
USE '0' OPTION ON COMMAND LINE TO OVER-WRITE EXISTING OUTPUT FILE

BLOKEDIT
UTILITY/REL MISSING FROM BOOTED DRIVE!

FIXAPPLY
UTILITY/REL FILE MISSING

DSKCHECK
UTILITY/REL IS MISSING FROM BOOT DRIVE

FILES
UTILITY/REL IS MISSING ON BOOTED DRIVE

LIST
UTILITY/REL MISSING FROM BOOTED DRIVE.

DUMP
VALID PARAMTERS ARE 'ON' AND 'OFF'

ABTONOFF
VERIFICATION UNSUCCESSFUL

MOUT
VOLUME NAME MISSING.

PUTVOLID
WRONG DOS!!

ABTONOFF,APP,AUTO,AUTOKEY,BACKUP,BLOKEDIT,BUILD,CAT,CHAIN,CHA
NGE,

COPY,DECODE,DSKCHECK,EDIT,ENCODE,FIX,FIXAPPLY,FREE,INDEX,INIT
DISK,

KILL,MANUAL,MIN',MOUT,NAME,PUTIPL,PUTVOLID,REFORMAT,REWIND,SAP
P,

, .

SORT,SUR,UBOOT
WRONG PROCESSOR!

EDIT
YOU CAN'T .AUTO THAT FILE

AUTO
YOU CAN'T FIX AN OVERLAY LIBRARY!

56-14 DISK OPERATING SYSTEM

FIX
YOU CANNOT APPEND OVERLAY LIBRARIES.

APP
YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR A THIRD FILE

REFORMAT
YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP BEING YOUR INPUT FILE.
TO REFORMAT-IN-PLACE DO NOT SPECIFY ANY OUTPUT FILE.

REFORMAT
YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION. YOU CAN NOT HAVE
BOTH.

REFO RMAT
YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE OF RECORDS YOU
HAVE.

REFORMAT
YOUR DOS FUNCTION 15 IS OBSOLETE

DSKCHECK
YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE SIZE OF RECORDS
YOU HAVE.

REFORMAT

CHAPTER 56. ERRO R MESSAGES 56-15

CHAPTER 57. ROUTINE ENTRY POINTS

These entry point~ are contained in a file called DOS/EPT.

Loader Routines

01000
01003
01006
a 1047
01052
01055
01060
01173

BOOT$
RUNX$
LOADX$
GETNCH
DR$
DW$
DSKWAT
DWNV$

reload the operating system'
load and r~n a file by number
load a file by number
get the next di sk buffer byte
read a sector into the disk buffer
wri te a sector from the di sk buffer
wait for disk ready
DW$ without write verify 2.3 only

Time-critical Scheduling Routines

01033
01036
a 1041
01044

CS$
TP$
SETI$
CLRI$

change process state
terminate process
initiate foreground process
terminate foreground process

Symbolic File Handling Routines

01063
01066
01071
01074

PREP$
OPEN$
LOAD$
RUN$

open or create a file
ope n an ex i s tin g file
load a file by name
load and run a fi Ie by name

Logical File Handling Routines

01077
01102
01105
a 1110
01113
01116
01121
01124
01127
01132
01135

CLOSE$
CHOP$
P ROTE$
POSI T$
READ$
WRITE$
GET$
GETR$
PUT$
PUTR$
BSP$

close a file
delete space in a file
change the protection on a file
position to a record within a file
read a record into the buffer
write a record from the buffer
get the next buffer character
get an indexed buffer character
store into the next buffer position
store into an indexed buffer position
backspace one record

CHAPTER 57. ROUTINE ENTRY POINTS 57-1

Generalized Processing Routines

o 10 11
01022
01140
01143
01146
01151
01170
07400

INCHL
DECHL
ERROR$
BLKTFR
TRAP$
EXIT$
WAIT$
DOSFNC

increment HL
decrement HL
close all files, exit chain, and reload DOS
transfer a block of memory
set a disk error condition trap
reload the operating system
DOS wait-a-while "NOP" routine
DOS function loader

Keyboard and Display Routines

01154
01157
01162

DEBUG$
KEYIN$
DSPLY$

enter the debugging tool
obtain a line from the keyboard
display a line on the screen

Cassette Handling Routines

010000
010005
010012
010017
010024
010031
010034
010037
010042
010045
010050
01-0053
010056
010061

TPBOF$
TPEOF$
TRW$
TBSP$
TWBLK$
TR$
TREAD$
TW$
TWRIT$
TFIvlR$
TFMW$
TTRAP.$
TWAI T$
TCHK$

position to the beginning of a file
position to the end of a file
physically rewind a cassette
physically backspace one record
write an unformatted block
read a numeric CTOS record
TR$ and wait for last character
write a numeric CTOS record
TW$ and wait for last character
read the next fi Ie mark er record
write a file marker record
s et a cas set te err 0 r trap
wait for 1/0 completion
get 1/0 status

Command Interpreter Utility Routines

01165 CMDINT return to command in terpreter & scan MCR$ line
013400 DOS$ return to command interpreter & di splay sign on
013403 NXTCMD return to command in terpreter & say "READY"
013406 CMDAGN return to command interpreter & give message
013411 GETSYM get the next symbol from MCR$
013414 GETCH get the next character from MCR$
013417 GETAEN get the auto execute PFN
013422 PUTAEN set the auto execute DFN
013425 GETLFB open the user-specified file (LFN in B)
013430 PUTCH store the nonblank character in the A register
013433 PUTCHX store the chara cter in the A regi ster
013436 PUTNAM format a filename from a di rector y block

57-2 DISK OPERATING SYSTEM

013441
013444
013447
013452
013455

MOVSYM
GETDBA
SCANFS
TCWAIT
INPTR

obtain the symbol scanned off by GETSYM
obta in the di sk controller buff er addr ess
scan off a file specification
test controller memory and wait for command
internal byte pointer for GETCH and GETSYM

Internal DOS Equivalences

00004
00005
00026
00027
00030
00053
01375
01376
01377
01200
01400
01544
4
0<4
1<4
2<4
3<4

DOSPFN
DOSPDN
DOSPTR
SDFLAG
SDNR
BOOTDRIV
DISKTYPE
DISKADR
DOSFLAG
DOSFL2
MCR$
LFT
TFT
LFO
LF1
LF2
LF3

PFN for use by DR$ and DW$
PDN for use by DR$ and DW$
BUFPTR used by GETNCH
SUb-directory existence flag
Subdirectory number table (one per drive)
Drive from which DOS was booted
Type of disk from which DOS was booted
1/0 bus address of booted disk controller
DOS Fl ag byte 111
DOS Flag. byte 112
Monitor Communication Region
Logical File Table
temporary file table
logical file 110
logical file 111
logical fi le 112
logical file 113

Logical File Table Description

0 PFN (1) PHYSICAL FILE NUMBER
1 PDN (1) PI1YSICAL DRIVE NUMBER AND PROTECTION
2 LRN (2) NEXT LRN TO BE DEALT WITH
4 BLRN (2) FIRST LRN WITHIN CURRENT SEGMENT
6 CSD (2) CURRENT SEGMENT DESCRIPTOR
8 RIBCYL (1) PDA (MSB) OF RIB
9 RIBSEC (1) PDA (LSB) OF RIB
10 MAXLRN (2) LARGEST LRN REFERENCED
12 LRNLIM (2) RESERVED FIELD (INITIALLY ZERO)
14 BUFADR (1) CU RRENT CONTROLL ER BU FFER ADDRESS
15 XXXXXX (1) NOT USED

CHAPTER 57. ROUTINE ENTRY POINTS 57-3

DOS Memory Mapping

000000
001000
004000
005400
005572
006000
07400
0'10000
013400
017000

LDRAD$
DOSAD$
OVLAD$
DSPAD$
KEYAD$
DEBAD$
FLDAD$
CASAD$
CMDAD$
COVAD$

System Loader
Resident DOS
DOS Overlays
CRT Write Routine
Keyboard Read Routine
DOS Debug Routine
DOS Function Loader
Cassette Tape Drivers
Command Interpreter

.Command Interpreter Overlays

DOS Keyboard/Display Routine Control Byte Equates

3
011
013
015
021
022
023
1 1
o

79
o

EOS
H
V
EOL
ECF
ECL
R
BL
TL

RC
LC

end of string, no CR/LF
horizontal position follows
vertical position follows
end of line, CR/LF
erase cursor to end of frame
erase cursor to end of line
roll screen' up one line
number of bottom line on screen
number of top line on screen
(not valid on all processors)
number of rightmost column on screen
number of leftmost column on screen

DOS FLAG byte 111 (location 01377)

1<7
1<6
1<5
1<4
1<3
1<2
1 < 1
1<0

ABTIF
NETACT
UBOOT
CHACT
IS55AVL
PSACT
RAMAVL
ROMBOOT

1... abnormal program completion
.1.. ARC active
•. 1 . DOS was booted from di sk
•.. 1 chaining active

1 ... 5500 instructions available
. 1 .. PS active
.. 1. RAM display available
•.. 1 BOOTSTRAP loaded from ROM

DOS FLAG byte #2 (location 1200)

1<7
1<6
1<5
1<4
1<3
1<2

57-4

$FL2B7
$REMARC
$1800CPU
$UPSACT
$MEMD
$MEMU

1... reserved
.1.. Remote console facility active
.. 1. Running on an 1800 processor
•.. 1 UPS active

1 ... memory resident overlays destroyed
.1 .. memory resident overlays present

DISK OPERATING SYSTEM

1 < 1 $FL2B1 . •.. .• 1. reserved

1<0 $ONESHOT •.•.... 1 One-shot bit for startup procedures
DISKTYPE (location 01375)

o
1
2
3
4
5
6
7
8+

$ARC
$9370
$9374
$9390
$9350
$RESVAL
$9380
$1840

ARC remote volume
9370 25MB mass storage disk
9 374 20M B disk
9390 storage module system
9350 2. 5MB di sk
reserved
9380 single-density diskettes
1842 dual-density diskettes
reserved

CHAPTER 57. ROUTINE ENTRY POINTS 57-5

CHAPTER 58. PROCESSOR DEBUG

58.1 Introduction

The Datapoint 5500, 6000, 6600, 1800, and 3800 family
processors include a DEBUG program implemented in ROM, whose
immediate accessibility creates a flexible interface between user'
and machine. This guide is intended to provide the user of these
systems with that information essential to the use of the
ROM-DEBUG. With this powerful hardware feature the user should
quickly develop an aggressive debugging tool.

58.2 Startup Procedure

There are five methods of entry to DEBUG:

(1) Forcing entry through manual intervention.
(2) Entry through a BREAKPOINT set by DEBUG.
(3) Entry through a BREAKPOINT imbedded in the user

Program.
(4) Entry as the consequence of a RETURN from a DEBUG Call

Command.
(5) Entry through a hardware vector such as

"El MEMORY PARITY ERROR".

To force entry to DEBUG, depress in sequence the DISPLAY,
RUN, and RESTART keys (DSP, INT, and RESTART on an 1800/3800),
keeping each key depressed until all three are down. Then release
RUN (INT on an 1800/3800). This will bring up the DEBUG display
and commands may be entered.

Note that depression of the DISPLAY key during the transition
from Boot Block read-in to execution during REBOOT will also cause
entry into DEBUG.

CHAPTER 58. PROCESSO R DEBUG 58-1

58.3 Saving the Machine State

When DEBUG is entered through console intervention, most of
the user's program state is undisturbed. Information not saved is
the state of the interrupt enable flip-flop (interrupts are
disabled), the state of the base register or sector table (these
two are not changed upon entry to DEBUG), the state of the
ALPHA/BETA Mode flip-flop (all registers are saved), the state of
the I/O system (what device is addr~ssed and the state of its
status/data select flip-flop), and the bottom two stack locations.

Information saved is the ALPHA/BETA Mode registers and
condition code flip-flops, the Program Counter (PC) and 016 Stack
locations. -

for:
Note that there exist default values upon exit from DEBUG

(1) ALPHA/BETA Mode flip-flop
(2) Currently addressed device and its Status/Data Mode

flip-flop
(3) Interrupt enable flip-flop (always disabled)

The first two of these can be set using DEBUG commands ('A', 'G'
an d 'R').

58.4 Display Format

The ROM-DEBUG display consists of four lines and occupies the
bottom-right corner of the screen.

AAAAAA
* NNN
MMMMMM

nnnnnnn*

CURADR
ASCII,8 BIT OCTAL C[CURADR]
LSB, MSB ADDRESS FORMED AT CU RADR.
COMMAND INTERPRETER

The first (top) line shows the current sixteen bit address.

The second line contains both an ASCII (One character shown as *)
and an 8-bit octal (Three characters shown as NNN) representation
of the contents of the current address byte.

The third line contains an octal representation of the 16-bit
value whose LSB is at CURADR and whose MSB is at CURADR+1. (This
is the address format used by JMP, CALL and DA mnemonics).

58-2 DISK OPERATING SYSTEM

58.5 The Command Interpreter

The bottom line of the display is an interpreter used to edit
and input commands to DEBUG. The blinking cursor signifies that
the Command Interpreter is awaiting user input.

Data is entered serially into the input display buffer. The
cursor is displaced to the right successively as this occurs. The
Backspace key erases the character most recently entered, shifting
the entry cursor to the left one space. The cancel key deletes
the entire entry.

All commands are single characters. Commands which accept
input arguments are preceded QY the argument, which is entered in
octal. Not all commands require an input argument. The last
character input to the interpreter must be a legal command.
Illegal input is ignored, evoking a BEEP from the processor.
Commands are executed upon their entry into the interpreter (no
ENTER key is required), with the current contents of the entry
line being cleared. Upon command completion the cursor reappears,
awaiting further input.

58.6 Command Syntax

This explanation of the command syntax uses the following
notation:

nnnn ••• Indicates an optional sequence of octal digits not to
exceed the number of n's given. I

12345

If input argument contains more than eight bits of
significance, special results will occur. In general
what will happen is that two bytes of memory will be
affected by the command, either a register pair or a
memory address in LSB, MSB format.

There exists a set of special commands whose accidental
execution is inhibited by the requirement that they
contain this unique argument.

CHAPTER 58. PROCESSOR DEBUG

58.7 Input Command List
-\

nnn A Address the given or current 1/0 device. No check is
made on address format. STATUS is displayed as
C[CURADRJ. NOTE that the CURRENT Device is readdressed
and put into the mo del a s t a c c e s s ed (Data mo de if' F '
or 'G"have been executed subsequent to last 'A'
command) prior to resumption of execution through Call,
Exit, Jump or User Exit Commands if the last 1/0 DEBUG
command executed is A.

nnnnnn B Set a BREAKPOINT at the given or current address. Upon
BP execution the state of the machine is saved, the
memory location at which the BP waS set is restored to
its original val~e and the corresponding BP table entry
is cleared.

The following notes reference the use of the 'B'
command.

Overlay BREAKPOINT will not loop. That is: It is not
possible to successively set a BREAKPOINT in the same
memory location in order to iterate the execution of a
program loop. To iterate BREAKPOINT through looping
sequence requires 'double Breakpoint'. Twenty
BREAKPOINTs can be active at anyone time. Note that
BP's DISABLE INTERRUPTS and leave them disabled prior
to resumption of execution through Call, Exit, Jump or
User Exit -commands. This is done to enable testing of
Foreground routines with DEBUG. If it becomes necessary
to use DEBUG with Interrupts Enabled, the user should
place an EI instruction in a main loop of his program.
It is impossible for the machine to determine its
current register (ALPHA/BETA) mode. Therefore the 'R'
command mode flip-flop is set to ALPHA when a BP is
encountered. If the user wishes to test code written
in BETA Mode it is necessary that he manually put the
Machine in BETA Mode (With 'R' Command) prior to
resumption of execution through Call, Exit, Jump or
User Exit commands. Similarly, he may have to address
the proper 1/0 device (with A) and perhaps put it into
DATA Mode (with G) before continuing execution from a
breakpoint. Note that DEBUG will not set a BREAKPOINT
over another BREAKPOINT.

nnnnnn C Call the given or current address. The Machine State
is restored before execution control is passed to the

58-4 DISK OPERATING SYSTEM

Subroutine. A RETURN from the Called Subroutine causes
re-entry into DEBUG and hence, causes the Machine State
to again be saved.

D Decrement the current address value. Any Input
Argument will be ignored.

E Continue execution from a forced or BREAKPOINT entry
into DEBUG. Machine State is restored prior to
resumption of execution. The interrupts are left
disabled. The register mode is set to the last R value
(initialized to ALPHA Mode uponBP or on forced entry),
the base register and sector table are not changed, and
the 1/0 device is addressed and optionally set to DATA
mode. Note that this command does not depend on any
Display Parameters. Prior DATAPOINT Debug software
used CURADR as an exit address pointer.

nnn F Fetch next data byte from current or given 1/0 device.
Command will automatically put device in DATA Mode and
the device will subsequently be put in data mode when
the E command is given.

nnn G Go to data mode in the current or given 1/0 device when
the E command is given.

H * Not Used. *
I Increment the current address value. Any Input

Argument will be ignored.

nnnnnn J Jump to the given or current address. Machine State is
restored prior to resumption of execution.

12345K Set ASCII keyin mode. Will allow ASCII data to be
entered into CURADR in auto-increment mode (i.e. will
update CURADR). BACKSPACE moves CURADR back and
displays its contents. DELete moves CURADR forward and
displays its contents. CANCEL causes a return to
normal mode.

L Link to the address pointed to by the Current Address.
CURADR is replaced by line 3 (the 16-bit LSB, MSB
address formed at CURADR,CURADR+1). The remaining
display parameters are updated appropriately. Note
that initial display state upon entry into DEBUG can be
regen~rated by performing the'S' command, followed
immediately by the 'L' command.

CHAPTER 58. PROCESSOR DEBUG 58-5

(nnn)nnn M Modify the contents of the current address location.
If the value of the Input Argument exceeds eight bits
of significance, two memory locations will be modified,
treating the input argument as an address in LSB, MSB
Format for JMP and DA. (A CLICK is sounded to noti fy
the operator of this action.)

N * Not Used. *
a * Not Used. *

nnnnnn P Load the Base Register with the 8-bit value (nnnnnn -
0100000)

12345Q Load the Sector Table. CURADR => Table whose first
byte equals the number of ent ri es to be loaded. The
following bytes contain arguments to be loaded into the
Sector Table.

R Switch Alpha/Beta Mode register display. The ASCII
character displayed after command execution tells the
current display mode: A=ALPHA, B=BETA.

nn S Display the specified stack item (up to 015 Octal).

12345T

nnn
nnn
nnn
nnn
nnn

Note: P, 0 => 014 Octal after RESTART. (Since RESTART
PUSHes P onto the top of the STACK.)

Start memory test. Displays Memory Size and Pass
Counter in right-bottom corner of screen. Maintains
running display of Test Failures.

U User mode execute. Command sets USER Flag then
executes 'E' Command.

V
W
X
Y
Z

EX COM4 The various EX commands affect the
EX WRITE devi ce speci fied by the last A command.
EX COM1 The nnn entry specifies the output byte
EX COM2 value issued wi th the command. Following
EX COM3 the command, the DEBUG display shows the

devi ce s ta tus

Set Current Address to nnnnnn. Command has no efect
unless it is preceeded by an Input Argument.

<Cancel> Cancel entry line.

<BSP> Backspace on entry line.

58-6 DISK OPERATING SYSTEM

(nnn)nnn . Modify the contents and then increment the current
address. If input argument has more than eight bits of
significance, two memory locations are modified,
treating the argument as an address in LSB, MSB Format.
(a CLICK is sounded).

(nnn)nnn A Modify the contents and then increment the current
address. If input argument is null, the last non-null
value given is used. If 'last value' exceeded eight
bits bf significance, two memory locations will be
modified. (a CLICK is sounded).

Clear all active (DEBUG set) breakpoints, restoring
values.

(nnn)nnn a Display or modify register or
nnn b register pair. If no input argument

(nnn)nnn c is provided, the register contents are
nnn d displayed (center line of display).

(nnn)nnn e Specify LSB register of a register
nnn h pair (L for HL pair) to display pair

(nnn)nnn 1 contents on bottom line.
nnn x If an input argument is provided

the register contents are modified
and then displayed. If input argument
exceeds one byte, a register pair is
modified.

f Display the condition flags. The byte
displayed is structured:
7=>C, 6=>S, 1=>-Z&-S, O=>-Z&-P
This value added to itself will generate
the flag values it represents.

CHAPTER 58. PROCESSOR DEBUG 58-7

58.8 DEBUG Command Summary

nnn A - Address the given or last I/O device
nnnnnn B - Set a break point at the given or current address
nnnnnn C - Call the given or current address

D - Decrement the current address
E - Continue execution

nnn F - Fetch the next data byte from current I/O device
nnn G - Go to data mode in the current I/O device

I - Increment the current address
nnnnnn J - Jump to the given or current address

K - Set ASCII keyin mode (12345K)
L - Link to the address pointed to by the current address

(nnn)nnn M - Modify the contents of the location ponted to by the
current address

nnnnnn P - Load the page basing register
Q - Load the sector table
R - Switch from alpha to beta mode or vice versa

nn S - Display the specified stack item
T - Start memory test ('12345T')
U - User mode execute

nnn V - EX COM4 to last I/O device
nnn W - EX WRITE to last I/O device
nnn X - EX COM1 to last I/O device
nnn Y - EX COM2 to last I/O device
nnn Z - EX COM3 to last I/O device

(nnn)nnn a - Display or update the contents of the A-register
nnn b - Display or update the contents of the B-register

(nnn)nnn c - Display or update the contents of the C-register
nnn d - Display or update the contents of the D-register

(nnn)nnn e - Display or update the contents of the E-register
f - Display the flags (adding the number to itself will

restore the flags)
nnn h - Display or update the contents of the H-register

(nnn)nnn I - Display or update the contents of the L-register
nnn x - Display or update the contents of the X-register

(nnn)nnn . - The equivalent of an M followed by an I
nnnnnn <enter> - Change the current address

- Clear breakpoints
(nnn)nnn A - Modify and Increment using last value

58-8 DISK OPERATING SYSTEM

ROM DEBUG DISPLAY
AAAAAA - The current address (in

octal)

x - The contents of location
AAAAAA (in ASCII)

AAAAAAA
X NNN
MMMMMM

- or the contents of the specified register (in ASCII)

NNN The contents of location AAAAAA (in octal)
- or the contents of the specified register (in octal)

MMMMMM - The contents of locations AAAAAA+1 and AAAAAA
respectively, concatenated into one octal number

- or the contents of a register pair concatenated into one
octal number (XA, BC, DE, HL)

58.9 Extensions to Standard DEBUG

The DEBUG described above is specifically that implemented on
the 5500 processor. The other processors using ROM-DEBUG have
implemented a superset of the 5500 DEBUG and recognize an expanded
list of commands. For descriptions of the commands unique to each
processor family, consult the Datapoint product specification ~r
the processor in use.

CHAPTER 58. PROCESSOR DEBUG 58-9

APPENDIX A. DOS.A AND DOS.E

DOS.A and DOS.E are two Disk Operating Systems supporting
Datapoint computers operating in conjunction with up to four 9350
series cartridge disk drives.

A.1 Planning for DOS.A/DOS.E

DOS.A and DOS.E are both alike in many respects. Both use
the 9350-series disk cartridge drives, and they are each almost
identical to the other operationally. The primary operational
difference between DOS.A and DOS.E is that DOS.E will support the
Datapoint Partition Supervisor~ PS, released separately.
Operating under PS, DOS.E permits the concurrent execution of more
than one partition.

A.1.1 DOS.A Physical Configuration

DOS.A operates in either Datapoint 2200, 5500 or 6600 family
processors with at least 16K of memory and one or more 9350-series
dis k d r i ve s . Use 0 f a sin g I e 9 350 - s e r i e s dr i ve is po s sib Ie, but, a
multi-drive system should be available for backup and support
purposes. Some consideration must be given to the question of
copying files from one disk to another, and most systems
incorporating the 9350-series disks will have files large enough
to make it impractical to transfer them from one disk cartridge to
another one cassette at a time.

An option which should be considered during the systems
p I ann i ng phase is the High Speed, or so- ca lIed "RAM" Di sp lay
Option for 2200 processors. This option is strongly recommended,
as it can substantially increase total system throughput
(especially on batch-processing oriented systems) at a very small
additional cost. This option is field-installable, and is
standard equipment on Datapoint 5500 and 6600 family computers.

APPENDIX A. DOS.A AND DOS.E A-1

A.1.2 DOS.E Physical Configuration

DOS.E differs from DOS.A in that DOS.E requires a minimum 48K
Datapoint 5500 processor and two, three, or four 9350-series disk
drives attached to a 9357 disk control unit. This enhanced
cartridge disk controller contains four times the amount of high
speed cache memory contained in the older 9350-series controller,
as well as additional hardware features to facilitate the
multiprogrammed environment available under PS/DOS.E. (Older
9 35 0- s e r i es disk con t roll e r scan be e a s i 1 Y fie 1 d - u p g r ad ed t 0 9 357
levels.)

A.2 Disk Drives

DOS.A and DOS.E support a maximum of four 9350-series
cartridge disk drive units.

A.3 Disk Media

The Datapoint 9350-series disk drives use a single platter
disk cartridge, media-compatible with the IBM 2315 disk cartridge.
Data is recorded in 203 concentric circles on each of the two
recording surfaces. Each such circle is referred to as a track.

The disk itself is enclosed within a plastic cartridge which
helps to protect it from bumps, jolts, and contaminants while it
is not in place in the disk drive. This cartridge and the care
taken in its handling and storage are of prime importance in
helping to eliminate disk errors and parity failures that
contamination can cause.

A.4 Loading and unloading Disk Cartridges

Loading and unloading cartridges from the 9350-series drives
is simplicity itself. At the top of the front side of the drive
is the cartridge access door. Pulling out and down on the handle
opens this door. The cartridge is inserted into the cavity with
the "tongue" of the cartridge on top and entering first. When the
cartridge is fully inserted, the cartridge access door is closed
and the rocker switch marked "LOAD/RUN" is switched to the "RUN"
position. When the switch is moved to "RUN", the following things
occur:

1) The cartridge access door is locked closed.

A-2 DISK OPERATING SYSTEM

2) The in d i cat 0 r I amp mar ked " LOA D " 0 nth e fr 0 n t pan e I 0 f the
drive is extinguished;

3) The disk pack accelerates to its rated speed of 1500 rpm,
at whi ch time the ind i cat or lamp mark ed "READY" Ii gh ts up.
vvhen this lamp lights up, it indicates that the disk has
come on-line for the Datapoint processor.

Removing a cartridge which is no longer needed from a drive
is a simple reversal of the above steps. First, the "LOAD/RUN"
switch is moved to the "LOAD" position. The drive immediately
goes off-line to the processor and is swiftly braked to a smooth
stop. When the di sk comes to a full and complete stop, the door
is unlocked and the "LOAD" indicator lamp comes on. At this time,
the cart ridge access door can be opened wi th a ge·nt Ie tug, after
which the cartridge simply slips right out. The cartridge should
be stored in a suitable storage rack; it should never be left in a
place where it might slip and fall onto a hard surface, such as a
floor.

A.5 Switches and Indicators

The current cartridge disk drive, manufactured by Wangco,
uses a small cluster of controls in the lower right-hand corner of
thedi sk drive front panel. There is a thumbwhee I switch for
physical drive number selection, which is set at installation and
should not be moved thereafter. The rocker swi tch marked "RUN"
and "LOAD" controls disk loading as described above; the "READY",
"LOAD" indicator lamp is immediately below this switch. The
leftmost controls are a pair of rocker switches marked "PROT CART"
and "PROT FIXED". These swi tches control the wri te protection
status of the cartridge disk and the fixed disk inside the drive.
When the indicator lamp behind one of these switches is lit, the
corresponding disk is write-protected. The protection can be
changed at any time by changing the switch position.

The older cartridge drive, manufactured by Diablo, has only
one single rocker switch, (the LOAD/RUN switch which has been
previously described) and four color-coded indicator lamps. The
first of these, a white lamp marked "LOAD" comes on to indicate
that the drive is ready to have a disk cartridge inserted or
removed. The second lamp, a yellow one marked "READY" indicates
that the cartridge in place has come up to speed and is on-line.
The third lamp, an orange one marked "CHECK", is an error
indication. This lamp is rarely seen illuminated. If it does
light up, taking the drive offline and back online may help
(switching the LOAD/RUN switch to LOAD and back). If that does

APPENDIX A. DOS~A AND DOS.E A-3

not work, try powering down the entire system and then turning it
back on again, using the main power switches. If the CHECK
condition still is not cleared, call the Datapoint Customer
Support Center for technical assistance. The fourth red lamp is
marked "P ROTE CT", and when it is ilIum inated the proc ess or cannot
write on the disk in that drive. The disk is protected each time
it is brought to RUN status. Depressing the PROTECT button
extinguishes the indicator lamp and write-enables the disk. The
disk can be re-protected only by switching the LOAD/RUN switch to
LOAD and back to RUN.

A.6 Care and Handling of Disk Cartridges

Disk cartridges for the 9350-series disk drives are precision
assemblies and must be treated with some care. It is highly
important that they not be dropped, mishandled, or contaminated
with dust or other pollutants. The cartridges ~hould be stored in
an appropriate storage rack, in an area free from dust and in an
environment similar to that where the drives are installed
(preferably in the same room with the computer). Users should be
very careful to never allow anything to contact the oxide surface
of the disk itself.

If the cartridges are shipped by common carrier, they should
be repackaged in their original, protective shipping carton and
marked "FRAGILE". Disk cartridges should never be mailed by
Parcel Post. Upon receipt of a disk cartridge, if there is any
evidence of damage the cartridge should not be used until it has
been inspected and approved for use by a Datapoint service
representative.

In addition, any cartridge which has been in a non-computer
room environment should be allowed to equalize temperatures in the
room with the computer for 24 hours before use if at all possible
before attempting to read or write data on the cartridge. In an
emergency, placing the cartridge onto a drive and letting it spin
up and run for about an hour will usually be adequate, but this
procedure should be considered an emergency measure only.

A little care in handling disk cartridges will repay itself
several times over in reliable and trouble free service with long
life from your di sk cartridges.

A-4 DISK OPERATING SYSTEM

A.1 Care and Maintenance of the 9350 Drives

As with the disk cartridges themselves, cleanliness of the
9350 disk drives is of great importance. All efforts should be
made to keep the room as dust-free as possible. Since the
read/write heads fly very close to the disk surface (about 100
millionths of an inch away from the oxide surface) even such small
particles in the air as those present in cigarette smoke are apt
to cause troubles sooner or later. Any dust that may collect
around the disk drives should be regularly cleaned away.

In addition to this user maintenance, the user should also
ensure that his local Datapoint service representative performs
the preventive maintenance procedures outlined in the 9350 series
disk drive maintenance manual. These preventive maintenance
procedures can be compared to changing the oil and oil filter in
the family automobile. An automobile will perform all right for a
while without regular oil and filter changes, but sooner or later
it will extract a heavy penalty for not having better care. The
same characteristic holds true for disk drives as well.

A.8 Head Crashes

Each of the two heads in the 9350-series disk drive is held
near the disk oxide surface by a spring which pushes the head
toward the surface with a ~rce of approximately 350 grams. The
disk, on the other hand, is spinning at approximately 50 miles per
hour relative to the head. The head and disk are kept apart by a
micro-cushion of air only about 100 millionths of an inch thick.
A head crash occurs when this lubricating air film fails. The
main causes of head crashes are foreign particles in the
lubricating film, contamination buildup on the surfaces of the
disk or read/write heads, or a defective disk surface.

When a head crash occurs, the head rubs directly against the
oxide surface of the disk, which frequently loosens more oxide,
resulting in further and more severe crashes, and things go
progressively downhill from there. Due to the severity of a head
crash, not just because of the loss of data on a disk but also due
to the degree of damage to the heads on the drive, it is important
to recognize the symptoms of a head crash. In this manner a disk
experiencing a head crash can usually be discovered and stopped
before the crash reaches catastrophic proportions.

APPENDIX A. DOS.A AND DOS.E A-5

A.B.l Prevention of Head Crashes

There are three main things that a user can do to help
minimize the likelihood of a head crash. These include:

1) Preventive maintenance. Establish a preventive
maintenance schedule with your Datapoint customer engineer
and stick to it. Make sure that this preventive
maintenance gets done. Particularly important is
attention to the head/arm assemblies, air filtration
system and moving parts.

2) Proper handling and storage of disk cartridges. Disks
should be carefully stored in an area free from dust,
smoke, and other contamination. Any disks whose
cartridges are cracked or broken should be replaced
immediately. Disk cartridges should be handled carefully
to avoid bumping or dropping. Never insert a dropped
cartridge into a drive! Give it to a Datapoint service
representative for inspection.

3) Keep the cartridge access door closed. Never leave it
open. The longer it is open, the greater the
susceptibility to contamination.

A.B.2 Recognition of a Head Crash

In spite of all precautions, chances are that most users will
experience a head crash sooner or later. Being able to identify
it quickly when it happens can help to minimize the damage. A
head crash may be indicated by one or more of the following
symptoms:

1) Repetitive hard read or write parity errors. Because of
the propagation effect of a head crash, do not move any
di sk wi th massi ve hard pari ty errors to another dri ve. If
errors persist, then the possibility of a head crash
exists and must be investigated.

2) Audible-tinkling sound. An audible tinkling sound from
the disk, which may progress to a scre.ech, probably
indicates a head crash.

3) Visible damage to the disk surface. Any scratch on ,the
recording portion of the disk surface where the aluminum
substrate is exposed. Conce~tric adjacent scratches of
any length. A single scratch of over approximately three

A-6 DISK OPERATING SYSTEM

inches in length. Imbedded particles or ari accumulation
of loose oxide on the surface. Any of these can indicate
that a head crash has occurred.

A.8.3 What to Do if You Have a Head Crash

If you suspect that you have had a head crash, call the
Datapoint customer support center at once. In the meantime,
observe the following precautions:

1) The disk which was mounted on the drive when the crash
occurred should be considered suspect and should not be
mounted on any other drive until it has been inspected by
the Customer Engineer and approved for use.

2) The drive which experienced the crash should not be used
until it has been thoroughly checked by the Customer
Engineer. Other disks which are probably intact can be
damaged by a drive which has had a crash, since the same
drive is apt to crash again with any subsequent disk
placed in it until it has been properly serviced.

3) Head crashes should be considered to be contagious. A
disk which has crashed may have loose oxide or other
irregularities on its surface. If the disk is placed into
a different drive, these contaminants are apt to very
quickly result in a crash occurring on the new drive as
well. Since the loose oxide or whatever can build up on
the heads of the drive as well as the disk itself, the
drive can carry the contaminants of a bad disk over to any
number of good disks subsequently used on it, and these
can in turn contaminate other drives.

A.9 Preparing Disk Packs for Use

When a disk cartridge is first received from the
manufacturer, it is completely demagnetized. However, unlike the
other Datapoint Corporation disk drives, on the 9350 series drives
the positi~n of the sectors on the disk surface are determined by
the sector timing slots around the edge of the disk's hUb.
Therefore, no special preparation of the disk (other than the
DOSGEN process itself which is always required) is necessary
before a new cartridge can be used by the DOS.

APPENDIX A. DOS.A AND DOS.E A-7

A.10 Disk Organization under DOS.A/DOS.E

This section describes the logical organization of the data
on the disk when operating under DOS.A/DOS.E and how it relates to
the general DOS file concepts as described in the chapter on
System Structure. In this chapter it is assumed that the user is
familiar wi th these concepts and has read and is familiar wi th the
basic DOS file structuring.

A.10.1 Logical Drive Mapping-

Under DOS.A, each physical disk cartridge corresponds with
precisely one logical drive. Since the 9350-series disk
controller is only capable of attaching four 9350-series disk
drives, that means that only four logical drives (numbered 0, 1,
2, and 3) are legal under DOS.A.

A.10.2 Size of a Logical Drive

Each logical drive is two tracks on each of 203 cylinders of
the physical disk cartridge. This results in 406 tracks of 24
sectors each, or a total of 9,744 total sectors on a disk
cartridge. Since cylinder zero is reserved for system tables,
only 9,696 sectors fall into allocatable file space and therefore
only 9,696 sectors are available for storage under the DOS.A file
management scheme. Of these, almost 100 sectors are required for
the minimum DOS.A system, the eight DOS.A system files
(SYSTEMO/SYS through SYSTEM7/SYS). This leaves on the order of
9500 sectors for user data once the DOS.A proper and a few of the
basic commands have been loaded.

A.10.3 Cluster Mapping

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each cylinder on a logical drive (containing 48
sectors, total) is broken into eight groups, each one containing
six physically contiguous sectors. Each such group is called a
cluster. The first four clusters per cylinder are recorded on
track zero of the cylinder, and the second four clusters of that
cylinder are recorded on the other side of the disk, which is
track one, of the same cylinder.

Due to the fact that space is always allocated in terms of an

A-8 DISK OPERATING SYSTEM

integral number of clusters, this implies that the mInImum file
size under DOS.A is six sectors and that file size will always be
a multiple of this number.

A.10.4 Segments under DOS.A

Disk space under Datapoint Corporation's DOS is always
allocated in contiguous chunks of clusters called segments. When
space is allocated, the largest segment on the disk (up to the
maximum possible sized segment) is allocated, to keep the file as
free of fragmentation as possible. By limiting the allocation
size to the size of a full segment, the problem of allocating "all
available space on a disk to a first scratch file before a second
one is subsequently opened is minimized. If several scratch files
are opened and space in them is allocated at regular intervals,
the resultant segments will be interleaved, resulting in minimized
access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the disk) and
yet large (to maximize processing speed, maximize file size and
minimize the number of RIB accesses) resulted in a segment size of
thirty-two clusters. This compromise results in a 192-sector
segment (thirty-two clusters of six contiguous sectors each)
allowing easy addressability of a maximum size file while still
allowing the segment size information to be kept within five uits
as required for RIB compatibility with the other versions of DOS.

A.10.5 Maximum File Size

Under DOS.A, the maximum file size available is about 9,600
sectors. This is because there are 9,696 allocatable sectors of
which almost 100 are used for the DOS.A system files. In
practice, the user should not ever construct a system which pushes
against the limits of available file size on a disk, since this
fails to allow for future growth and expansion of his system.
Another consideration is that if any tracks need to be locked out
on the disk cartridge due to surface defects, then there may not
be enough space left on the disk for his file.

Files bigger than about 9,000 sectors should be kept on
larger disk systems, such as 9370 series disks under DOS.B or
other appropriate DOS. If files larger than that size must be
kept under DOS.A, then the files should be segmented into two or
more distinct files and logically concatenated at the user program
level, the same as would be necessary for files larger than about
800 sectors on the 9380 series diskettes.

APPENDIX A. DOS.A AND DOS.E A-9

A.10.6 Cluster Allocation Table and Directory

Each disk cartridge used under DOS.A has its own, completely
self-contained directory and file structure, just as for all
Datapoint Corporation DOS. There are sixteen directory sectors on
each disk cartridge, located in consecutive sectors starting at
sector six on track zero of cylinder zero. Therefore, the sectors
go from sector six to sector 025 (octal). The cluster allocation
table is at sector zero of track zero, cylinder zero. The lockout
cluster allocation table is at sector one of track zero, cylinder
zero. The hashed directory index is at sector two of track zero,
cylinder zero. The backup copies of each of these are in the
corresponding locations of track one of cylinder zero.

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster than was possible
under DOS 1.2. The teohnique works as follows:

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is
essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct
eight-bit hash codes possible, while there are literally billions
of legal file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentally, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk, the technique to repair the disk is the
REPAIR command. When the REPAIR command is almost finished,
specify that the Hashed Directory Index is to be rewritten to the
disk. This causes the HDI to be regenerated from the actual disk
directory and rewritten. In general, the Hashed Directory Index
is rarely if ever destroyed in actual disk usage, and contributes
greatly to overall system performance if many directory lookups
are being done.

A-10 DISK OPERATING SYSTEM

A.ll Internal DOS Parameterization

This section describes the DOS.A-dependent details of the
parameterization of DOS.A system routines.

A.ll.l Physical Disk Address Format

Under DOS.A, physical disk addresses are presented (for
example, as input to the DR$ and DW$ routines) in a two-byte
format quite similar to that used under the other DOS. The most
significant byte (which is traditionally placed in the D register)
is the cylinder number, just like for DOS.B and DOS.C. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (any combination of these three bits is valid) and the
least significant five bits representing a relative sector number
within the specified cluster. Only the values zero through five
are valid for the least significant five bits, since there are
only six sectors per cluster.

A.ll.2 Hardware Address Structure

The hardware disk address for 9350 disks also requires two
bytes. One byte specifies cylinder number. The other byte
specifies a sector number, 0 - 027 on the bottom surface, 040-067
on the top surface. This hardware address is used only for the
DUMP9350 program and internally to the DOS routines DR$ and DW$.

APPENDIX A. DOS.A AND DOS.E A-l1

APPENDIX B. DOS.B

DOS.S is Datapoint Corporation's Disk Operating System
supporting Datapoint 2200, 5500 and 6600 family computers
operating in conjunction with up to two 9370 series disk drives.

B.1 Planning for DOS.B

The recommended configuration for a DOS.S system includes 16K
or more of memory in the 2200 or 5500 series computers. Use of a
single 9370-series drive is possible, but the user should at least
have access to a double-drive system for backup purposes. Some
consideration must be given to the question of copying files from
one disk pack to another, and users of the 9370-series "Mass
Storage" disk systems will typically have files far too big to
consider transferring from one disk to another one cassetteful at
a time.

Another option which should be strongly considered is the
High Speed, or so-called "RAM" Display Option for 2200 processors.
This option can substantially increase total system throughput
(especially on batch-processing oriented systems) at a very small
additional cost. The RAM Display option is field-installable, and
is standard equipment on Datapoint 5500 and 6600 family computers.

B.2 File Storage Capacity under DOS.B

Under DOS.S, each 9370-series disk unit is dealt with as two
logical drives. Each of these two logical drives contains 38,976
sectors of 256 bytes each and can store up to 256 files. Of
these, about 250 sectors and about ten files are used by the
operating system and a few basic commands, leaving about 10
million bytes of usable space per logical drive, or up to roughly
20 million bytes of storage total for each disk storage unit in
the configuration.

Other features of DOS.S include a large maximum file size:
up to 30,237 data sectors in a single DOS.S file (not including
the end-of-file mark and two RISs).

APPENDIX S. DOS.B B-1

B.3 Disk Drives

Datapoint DOS.B supports one or two 9370-series disk drives
attached to one 9370-series disk controller.

8.4 Disk Media

The Datapoint 9370 series comprises two different types of
drive~. Models 9370-9373 use an 11-platter disk pack,
media-compatible with the IBM 2316 disk storage module. On these
packs data is recorded in 203 concentric circles on each of the 20
recording surfaces. Each such circle is referred to as a track.
Models 9374 and 9375 use a single-platter disk which records data
on 408 tracks <DOS uses only 406 of these).

The disk pack is enclosed within a plastic enclosure when it
is not in place in the drive. This cover is intended to help keep
the disk free from dust, pollen, smoke and other contaminants and
is of prime importance in helping to eliminate disk errors and
parity failures that contamination can cause.

B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373

. On the right side of the top of the 9370-series disk drives
is the disk access cover. While holding the disk pack by the top
center handle, remove the bottom portion of the disk pack
enclosure by turning the bottom knob with the other hand. Then
raise the disk access cover and carefully lower the disk pack into
the cavity, still holding the disk pack by the top handle. When
the pack has fully seated onto the spindle, turn the disk pack top
center handle fully clockwise, until firm resistance is met. It
is important that the pack be solidly in place before removing the
top cover. After the pack has been properly mounted, the top
cover should be slowly and carefully removed by lifting it
straight upwards. Avoid letting the cover tilt and wedge against
the edges of the disk platters as it is being drawn upwards as
this can affect the precision alignment of the disk pack. The
access cover should be closed as soon as the disk pack cover has
been fully removed, and the top and bottom halves of the disk pack
protective cover should be immediately put back together to keep
out dust and other contaminants.

B-2 DISK OPERATING SYSTEM

To remove a di sk pack, first place the "START ISTOP" swi tch on
the operator control panel of the drive to the STOP position.
This immediately takes the drive off line and activates dynamic
braking circuits in the drive which will brake the pack to a
smooth but rapid stop in about twelve seconds. The disk access
cover on top of the drive must not be opened before the pack has
come to a full and complete stop. When thi s has occurred, rai se
the disk access cover and carefully lower the top portion of the
disk pack cover down onto the pack. Be certain not to get it
skewed since if the cover wedges against the edges of the platters
it is possible to affect the critical surface-to-surface alignment
of the pack, which will damage it. When the cover is fully
lowered onto the pack, turn the handle in the center of the top of
the cover counterclockwise until a distinct click is heard. This
click indicates that the pack has been released from the drive
s pin dIe and may now be rem 0 v e d . Lift the disk pac k and top co v e r
together carefully out of the drive and immediately reattatch the
bottom cover to the base of the pack, locking it firmly in place
by a twist of the knob in the center of the bottom portion of the
canister. The pack should be stored horizontally on a shelf
(never on edge!) and in a position where it is not apt to be
dropped or pushed ac ci den ta lly over an edge. If anoth er di sk is
not to be mounted immediately into the drive the pack was just
removed from, the disk access cover should be closed right away to
help prevent the entrance of dust, smoke or other contaminants
into the drive mechanism and access arm assembly.

B.5.2 Model 9374/9375

At the top of the front panel of the drive is a handle for
access. Pull forward and down on this handle to release the
drive, then slide the entire drive forward to expose the cavity in
which the disk fits. The disk pack itself has a handle on the top
of the case. To open the disk pack, place the handle folded flat
against the case and slide the lock button to the left, then -
holding the lock button on - lift the handle to its full vertical
position. This action releases magnetic clamps and allows the
bottom of the disk cover to falloff. Lower the disk into the
cavity in the drive, being sure it is fully seated. Now lower the
handle on the top of the disk container. Invert the bottom of the
disk pack cover and place it on top of the disk, inside the drive.
It is essential the disk pack bottom cover be placed in the drive,
sin ce the disk will n ot r un if the co v er is not pre sen t . Fin a 11 y ,
slide the drive back into its cabinet, closing the access door.

Removing a disk is the exact reverse of inserting it. To
remove the disk from the cavity in the drive, the lock button on
the handle must be held to the left, just as for opening the disk

APPENDIX B. DOS.S B-3

cover.

B.6 Switches and indicators

B.6.1 Models 9370-9373

Two types of drives are repesented in these model codes; both
use the same controller and the same di sk packs. Some are "Telex"
drives, manufactured by TSS; others are Memorex drives. The
Memorex drives have no latch on the disk access cover, while the
Telex drives use a spring-loaded cover held down by a latch. Both
types of drive units use the same 9370 controller and provide
identical performance.

B.6.1.1 Memorex Drives

The large physical drive number (just to the right of the
READ-WRITE/READ ONLY switch) lights up when the heads are loaded
onto the disk surface and typically at this time the drive will be
on 1 ine.

The smaller numbers to the right serve as an indication of
the position of the heads as they perform cylinder seeks to
positions nearer or farther from the center of the disk pack. The
exact physical cylinder number to which the heads are positioned
at any given time can be determined by adding together the numbers
which are illuminated, giving a cylinder number in decimal; the
cylinder number in octal can be determined by noting which of the
eight number positions are illuminated and considering those
illuminated to be "1" bits and those not illuminated to be "0"
bits. The bits then can be converted easily to a three-digit octal
number by grouping them in groups of 2,3,3: a technique familiar
to users conversant with octal.

The words "READ ONLY" illumin ate to indi ca te tha t the dr i ve
is in the so-called "Write Protected" mode. In this mode, the
computer cannot write anything onto the disk in that drive, but
can only read the information already on the pack. This light is
the indication of whether a dri ve is wri te-protected or not, and
does not always immediately reflect the position of the read-only
switc~ See "Common Features" below-.- - -- --- ---

The words "FILE UNSAFE" light up when the safety circuits in
the drive detect one or more of about a dozen different conditions

8-4 DISK OPERATING SYSTEM

that they consider would endanger the data on the disk pack if
continued disk operation were attempted. The FILE UNSAFE
condition can be caused by (among other things) unusually severe
power surges, and infrequently by a program going completely
haywire and giving flagraAtly illegal commands to the disk drives.
If this light comes on during use of the system, the first remedy
to try is to push the switch marked "START/STOP" to the "STOP"
posi tion. After the di sk has come to a complete, braked stop
(which should take about twelve seconds), push the switch back to
the "ST ART" po s i ti on. If the prob lem whi ch caus ed the FILE UN SAFE
condition to occur was spurious, the drive will power back up
normally and come on-line again in about sixty seconds. If the
FILE UNSAFE condition occurs again (usually immediately upon
completion of the sixty-second power-up delay) and repeatedly, it
probably indicates a hardware malfunction and time to call the
Datapoint Customer Support Center.

B.6.1.2 "Telex" Drives

The controls and indicators on Telex drives are essentially
identical to those on the Memorex drives. When the drive is
on-line, a green indicator light comes on indicating "FILE READY".
There are no indicator lights for head position; cylinder position
of the heads can be read on a vernier scale mounted on the top of
the access arm assembly and visible through the top of the loading
co v e r . A wh i t e in d i cat 0 r I amp in d i cat e s " REA DON L Y" w hen the
drive is protected, and, as on the Memorex drives, the read/write
status of the drive does not immediately reflect the setting of
the READ/WRITE - READ ONLY switch (see "Common Features" below). A
red indicator lamp indicating "SELECT LOCK" is equivalent to the
"FILE UNSAFE" indicator on the older drives.

B.6.1.3 Common Features

Changing the setting of the READ WRITE/READ ONLY switch only
affects the drive if the drive is deselected. Therefore, this
switch should be normally kept in the READ-WRITE position except
for special purposes, and should usually be returned to the
READ-WRITE position as soon as possible after the special purpose
is completed. If the DOS command interpreter is active (as
indicated by the familiar DOS "READY" message) and the READ ONLY
lamp and the READ-WRITE/READ ONLY switch do not concur (indicating
that that drive is selected), simply entering a blank from the
system console is a simple technique to ensure that the drive
becomes deselected so that the revised setting of the READ ONLY
switch will take effect.

APPENDIX B. DOS.B B-5

The other switch on the operator control panel on the
9370-series drive (marked ENABLE/DISABLE) is for use only by the
customer engineer and should always be left in the position marked
ENABLE. This switch, when set to DISABLE, takes the drive off
line (although the drive ready indicator stays illuminated). The
switch is only active when the drive is de-selected, and this is
the reason why the switch should not be used casually. If drive
zero, for example, is DISABLEd and then the computer is
bootstrapped, drive zero will not be de-selected at least until
the DOS has completely booted itself up. And until the. drive is
de-selected, turning the switch to the ENABLE position has no
effect. The only solution for this problem if it occurs is to
completely power down the entire system and bring it back up again
with the switch in the ENABLE position. So in general, it is a
good idea to keep this switch set to ENABLE and let it go at that.

8.6.2 Model 9374/9375

The 9374 disk drives are controlled by a small cluster of
switches in the lower right-hand corner of the front panel of each
drive. A thumbwheel switch sets the physical device number; this
switch is set at installation and should not be reset thereafter.

A LOAD/RUN rocker switch controls loading the disk. An
indicator light below the rocker switch indicates if the drive is
in LOAD, ready for a disk to be removed or inserted, or in RUN,
on-line to the processor.

A pair of rocker switches labeled PROT CART and PROT FIXED
control write protection of the removable disk pack and the fixed
platter within the drive. When one of these switches is
illuminated the corresponding disk is write protected. The
protection setting of either disk can be changed at any time by
using the PROT switch. When a disk is first spun up (first
brought to READY status) both disks will be write protected for at
least three minutes to ensure thermal stabilization. If the drive
is cold, the write-protect delay could be longer. The delay for
thermal stabilization is necessary because the 9374 disk is a very
high-density storage medium.

B-6 DISK OPERATING SYSTEM

B.1 Care and Handling of Disk Packs

Disk pac k s for the 9 310 s e r i e s disk d r i v es are pre CIS lon,
high-technology assemblies and must be treated as such. It is of
extreme importance that they not be mishandled, dropped, or
contaminated with dust or other pollutants. The packs should be
stored strictly horizontally (not on edge) on a shelf clean from
dust and in an environment similar to that where the drives are
installed (preferably in the same room with the computer).

On the bottom of each 11-platter disk pack is a fine nylon
filter, normally whi tee This filter should be replaced at least
once per year, or more often if indicated by discloration or
airborne debris.

If the packs are shipped by common carrier, they should be
repackaged in their original shipping carton and marked "FRAGILE".
Disk packs should never by mailed by Parcel Post.

In addition, any pack which has been in a non-computer room
environment should be allowed to equalize temperatures in the room
with the computer for 24 hours before use if at all possible
before attempting to read or write data on the pack. In an
emergency, placing the pack onto a drive and letting it spin up
and ru n. fo r abo u t an ho u r will us u a 11 y be ad e qua t e, but t his
procedure should be considered an emergency measure only.

A little care in handling disk packs will repay itself
several times over in reliable and trouble free service with long
life from your disk packs.

B.8 Care and Maintenance of the 9370 Drives

The 9310 series disk drives are full scale mainframe computer
peripherals and deserve to be taken care of. As with the disk'
packs, cleanliness is of paramount importance. All efforts should
be made to keep the room as dust-free as possible. Since the
read/write heads fly very close to the disk surface (about 80
millionths of an inch away from the oxide on the 11-platter packs)
even such small particles in the air as those present in cigarette
smoke may cause troubles eventually. The drawing in this section,
reproduced here courtesy of Memorex Corporation, graphically
depicts the relative proportions of disk head flying height and
common office pollutants, and should help to explain why the need
for cleanliness and good housekeeping practices is so important.

APPENDIX B. DOS.B B-7

3:!30 HE AD
F L YIr.;G

23U Hf AD
FLYING
HEIGHT

SMC;I([PARTICLE
2!,O MICRO IN.

000150""

Disc
Cross. Section

Users of the system should be careful to close the disk access
cover (or slide the drive back in the cabinet) as soon as the pack
loading or unloading is complete and keep disk packs in their
protective covers at all times to prevent contamination. If disk
pack can i s t e r s be come so i 1 ed, the y s h 0 u 1 d be c 1 e an ed car e full Y
with a mild detergent solution and carefully wiped dry. Users
should be very careful to never allow anything to contact the
oxide surface of the disk pack itself.

In addition to this user maintenance, the user should also
ensure that the preventive maintenance procedures outlined in the

8-8 DISK OPERATING SYSTEM

9370 series disk drive maintenance manual are performed.

B.9 Head Crashes

Each of the heads in the 9370-series drive is held near the
disk surface by a spring which pushes the head toward the surface
with a force of about 350 grams. The disk on the other hand is
spinning at about 80 miles per hour relative to the heads. The
head and disk are kept apart by a micro-cushion of air only eighty
millionths of an inch thick. A head crash occurs when this
lubricating air film fails. The main causes of head crashes are
foreign particles in the lubricating film, contamination buildup
on the surfaces of the disk or read/write heads, or a defective
disk sur fa c e .

When a head crash occurs, the head rubs against the oxide
surface of the disk, which frequently loosens more oxide,
resulting in further and more severe crashes, and things go
progressively downhill from there. Due to the severity of a head
crash, not just because of the loss of da ta on a di sk but also due
to the degree of damage to the heads on the drive, it is important
to recognize the symptoms of a head crash. In this manner a disk
experiencing a head crash can usually be discovered and stopped
before the crash reaches catastrophic proportions.

For a description of symptoms of a head crash and appropriate
prventive and restorative action, see Appendix A under "Head
Crashes".

8.10 Preparing Disk Packs for Use

When a disk pack is first received from the manufacturer, it
is completely demagnetized and is not usable until it has been
formatted. The formatting process writes the entire surface of
the disk pack with track and sector addresses which later allow
the controller to identify where a given sector is on the surface
of the disk.

When thi s informa ti on isla ter read by the DOS, an y error s
discovered in the formatting information are treated in the same
way as a parity error in the written sector information itself,
thus resulting in up to nine or ten re-tries before returning with
a par i t Y err 0 r in d i cat ion. So met i me s, if the par i t Y err 0 r
indicated by the DOS is due to an error developing in the
formatting information on the disk, the parity error on the disk
can be completely eliminated by using the BACKUP command to save

APPENDIX B. DOS.S 8-9

as much of the information on the pack as possible and then
reformatting the pack. (After reformatting the pack, any data
that had been on the pack is destroyed and it must be DOSGENed
like a new one). Even what at first appear to be "hard" pari ty
err 0 r scan 0 c cas ion a 11 y be c 1 ear ed t his way.

Formatting information is written onto the disk using the
INITDISK command, either from a working DOS or from a LOAD & GO
cassette. (NOTE: al though in general the commands from the DOS
cannot be run without the DOS being active, INITDISK is one of the
few exceptions). Following successful completion of the INITDISK
command program, the disk pack it was used on can be DOSGENed
(twice, once for each of the two logical drives) and will normally
not need to be re-formatted again for the duration of its
lifetime.

B.11 Disk Organization under DOS.S

This chapter describes the logical organization of the data
on the disk when operating under DOS.B and how it relates to the
general DOS file concepts as described in the chapter on System
Struc ture. In th is secti on it is ass umed that the us er is
familiar with these concepts and has read and is familiar with the
basic DOS file structuring.

B.11.1 Logical Drive Mapping

Under DOS.B each physical volume is broken into two logical
drives. This is done for reasons of addressing. It is simply not
possible to address all of the sectors on an entire 9370 disk
volume using only two bytes of physical disk address, and the two
byte physical disk address is central to all of Datapoint
Corporation DOS's operations. It is not practical to change this
characteristic without making changes which would result in
invalidating many user-written programs and many large systems
which run under the DOS. Therefore the disk was broken into two
halves, and one bit of the effective physical disk address is
taken from the logical drive number.

For the 9374 drives the removable disk is one logical drive,
and the fixed disk is a second logical drive.

The first eight recording surfaces on the 11-platter disk
(heads are numbered from zero to nineteen starting at the top of
the disk drive) correspond to logical heads zero to seven on the
even logical drive, and the next eight recording surfaces on the

8-10 DISK OPERATING SYSTEM

disk correspond to logical heads zero to seven on the odd logical
drive (physical heads eight through fifteen). Physical heads
sixteen through nineteen (and the corresponding recording surfaces
on the disk pack) are not used by OOS.B.

B.11.2 Size of a Logical Drive

Each logical drive is eight tracks on each of 203 cylinders
of the physical drive. This results in 1624 tracks of 24 sectors
each, or a total of 38,976 total sectors on a logical drive. Of
these, about 38,400 remain when the DOS has been generated, the
system tables constructed on the disk, and a few basic commands
loaded. The 9374 disks are addressed using the same structure of
203 cylinders, 24 sectors per track. Physically the 9374 disks
have 406 cylinders with 48 sectors per track, .but the disk
controller itself provides an interface between the physical and
logical structure, so the processor "sees" a drive structured just
like a 9370 drive.

B.11.3 Cluster Mapping

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each track on a logical drive represents one DOS
cluster, and is represented in the CAT by exactly one bi t. Since
the DOS uses eight tracks per logical cylinder, this results in
exactly eight clusters per cylinder of twenty four'sectors each.

Due to the fact that space is always allocated in terms of an
integral number of clusters, this implies that the minimum file
size under OOS.B is twenty-four sectors and that file size will
always be a multiple of this number. It turns out that choo~ing a
full track as the smallest allocatable unit of space has other
advantages as well from a system standpoint, since it allows some
programs (like DOS.B COpy) to make several simplifying assumptions
about the data in a file which enables them to copy data and
reference information in a file substantially more easily and
efficiently than would be otherwise possible.

APPENDIX B. DOS. B B-11

B.11.4 Segments under DOS.B

Space under Datapoint Corporation's DOS is always allocated
in contiguous chunks of clusters called segments. When space is
allocated, the largest segment on a drive up to the maximum
possible sized segment is allocated, to keep the file as free of
fragmentation as possible. By limiting the allocation size to the
size of a full segment, the problem of allocating all available
space on a disk to a first scratch file before a second one is
subsequently opened is minimized. If several scratch files are
opened and space in them is aIlocated at regular intervals, the
resultant segments will be interleaved, resulting in minimized
access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the drive)
and yet large (to maximize processing speed, maximize file size
and minimize the number of RIB accesses) resulted in a segment
size of ten clusters. This compromise results in a 240-sector
segment (ten clusters or tracks of 24 sectors each) allowing a
maximum file size of over 30,000 sectors while still allowing
internal disk address and segment size calculations to be done
using faster single precision arithmetic techniques.

B.11.5 Maximum File Size

Under DOS.S, the maximum size file available is 30,238 data
sectors. This number is the result of 126 segment descriptors in
the RIB, each of which points at one segment of 10 tracks of 24
sectors each:

24 sectors x 10 tracks x 126 segments = 30,240 total sectors

Since the first two sectors of each file under the DOS are
used for the RIB and its copy, that leaves 30,238 sectors
available to the user for the storage of his data. Files longer
than this number will have to be segmented or logically
concatenated at the user program level, the same as would be
necessary for files larger than about 9600 sectors on the 9350
series disks.

B-12 DISK OPERATING SYSTEM

B.11.6 Cluster Allocation Table and Directory

Each logical drive under DOS.B contains its own directory and
cluster allocation table, just as for all Datapoint Corporation
DOS. There are sixteen directory sectors on each logical drive,
located in consecutive sectors starting at sector five on logical
track zero of cylinder zero. Therefore, the sectors go from
sector five to sector 024 (octal). The cluster allocation table
is at sector zero of logical track zero, cylinder zero. The
lockout cluster allocation table is at sector one of logical track
zero, cylinder zero. The backup sectors for all of these are in
the corresponding locations on logical track one of the same
cylinder.

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster (on full disk
directories) than was possible under DOS.B Version 1. The
technique works as follows:

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is
essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct eight-bit
hash codes possible, while there are literally billions of legal
file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentially, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk the technique to repair the disk is the
REPAIR command. When the REPAIR command is almost finished,
simply specify that the Hashed Directory Index is to be rewritten
to the disk. This causes the HDI to be regenerated from the
actual disk directory and rewritten. In general, the Hashed
Directory Index is rarely if ever destroyed in actual disk usage,
and contributes greatly to overall system performance if many
directory lookups are being done.

APPENDIX B. DOS.S 3-13

8.12 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.B system routines.

8.12.1 Physical Disk Address Format

Under DOS.B, physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the D register) is the cylinder number. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (or logical track number in the specific case of DOS.B)
and the least significant five bits representing the sector number
within the specified cluster. Since there are 24 sectors in a·
cluster, the five bit sector number has a valid range of 0-027.

8.12.2 Hardware Address Structure

The 9370 series drives use three bytes for hardware
addressing. The cylinder number is one byte (range 0-0312), the
head number is a second byte (range 0-023), and the sector number
a third byte (range 0-027).

B-14 DISK OPERATING SYSTEM

APPENDIX C. INTRODUCTION TO DOS.C

DOS~C is Datapoint Corporation's Disk Operating System
supporting Datapoint 1100, 2200, 5500 and 6600 series processors
operating in conjunction with up to four 9380 series diskette
drives.

C.1 Planning for-DOS.C

The minimum configuration for a DOS.C system includes 16K of
memory in the 1100 or 2200 series computers and 16K or more in
5500 or 6600 series computers. Use of a single 9380-series drive
is possible, but the user should at least have access to a
double-drive system for backup purposes. Some consideration must
be given to the question of copying files from one diskette to
another. Users with 2200, 5500 or 6600 series computers (having
cassette tape drives) can use cassettes if necessary as a standard
exchange medium for file transfers (except for files bigger than
about 450 sectors, too large to fit on a single side of a
cassette). Those with Diskette 1100 series computers do not have
cassette tape drives -and hence must use diskettes as their file
transfer medium. Since DOS.C software is distributed on diskettes
by Datapoint Corporation, the user will need to have at least a
two drive system to copy the software from the diskette received
from Datapoint to his working diskette(s). Single drive systems
should be considered only by those intending to use them as
satellite systems (example: data entry stations) and planning on
having at least one other system with two or more drives (for
program development and file processing applications).

Another option which should be strongly considered is the
High Speed, or so-called "RAM" Display option for 2200 processors.
This option can substantially increase total system throughput and
responsiveness (especiaily in applications displaying a lot of
text on the screen, such as data entry) at a very small additional
cost. The RAM Display is field-installable (although less
expensive when factory-installed), and is standard equipment on
Datapoint 5500 and 6600 and Diskette 1100 series computers.

APPEN DI X 'C. INT RODU CTION TO DOS. C C-1

C.2 Performance of DOS.C

Users who are currently using Datapoint computers in
cassette-based systems will find substantial improvements in
performance when they upgrade to DOS.C. The 9380 series diskette
drives are several times faster than cassettes for ordinary
sequential data transfers; random-access type operations (such as
sorting and ISAM file access) can easily be two orders of
magnitude faster than is attained using tape cassettes.

Users who are currently using competitive diskette-based
equipment will generally find that total system performance of
Datapoint systems will exceed that which they are accustomed to.
This improvement is due to the generally superior data handling
techniques and file structuring as used in Datapoint' s DOS. These
characteristics stem from the fact that instead of employing a
lower-performance cassette-style file structure as a base for the
operating system, Datapoint chose instead to adapt the same
advanced and dynamic disk file access techniques as used in its
other DOS to the new diskette media.

The obvious side benefit of this DOS compatibility is that
not only is virtually all of the Datapoint DOS software library
available to diskette users but that most user programs which were
written originally for other Datapoint DOS systems will run
unmodified (except for possible file size limitations and timing
differences due to the slower access times of the 9380 series disk
drives) under DOS.C.

In addition to the increased speed of access of the 9380
series drives as compared to cassettes, another big advantage is
that the total ~mount of storage available on a diskette-based
system is about four times the amount usable on cassette systems,
even when both cassette drives are in use.

It should be recognized that DOS.C is not expected to
eliminate the usefulness of larger capacity, higher performance
disk s . tv1 any use r s will h a ve a p pI i cat ions w h i ch are t 00 in vol v e d
or too large for the 9380 series diskette drives. Users who need
large data files or high speed random access to disk storage will
find the performance they are looking for in the dther versions of
D a t a po i n t DOS.

C-2 DISK OPERATING SYSTEM

C.3 Disk Drives

Datapoint DOS.C supports up to four 9380-series flexible
diskette drives through their integral disk controller unit. The
disk controller contains 1024 bytes of high speed, random access
memory which buffers four sectors between the diskette drives and
the Datapoint processor, enabling greater 1/0 device autonomy and
improved overall system performance.

C.4 Disk Media

The Datapoint 9380-series flexible diskette drives use a
flexible diskette for data storage. This diskette is media and
format-compatible with the IBM 3741-style flexible diskette.

Data is recorded in 77 concentric circles on only one side of
the diskette (as per the IBM standards for diskette data
interchange). Each such circle is referred to as a track.
Although each such track on the diskette actually contains 26
physical records of 128 bytes each, these are paired up by the
Datapoint 9380 series diskette" controller (an integral part of the
diskette system) so that to the Datapoint computer each track
appears to consist of 13 records (called sectors) of 256 bytes
each. In Datapoint DOS documentation, unless explicitly indicated
to the contrary, the term sector always refers to a 256-byte
logical sector, and it is strictly incidental that this sector is
broken into two physical 128 byte records for transfer to and from
the diskette media.

The diskette is permanently enclosed within a durable plastic
cover. This cover provides for easy insertion of the diskette
into the diskette drives and provides structural rigidity for the
media when it is not in use. In addition, the plastic cover
provides a degree of environmental protection for the diskette and
its oxide surface from damage caused by careless handling.

C.5 Loading and Unloading Diskettes

Upon observation of a diskette, three holes through the
plastic diskette cover will be noted. Each of these holes allows
one to see a portion of the oxide-coated surface of the diskette
itself.

The large, round hole in the center of the cover is used by
the diskette drive for the hub which clamps to the diskette and
turns the diskette within the cover.

APPENDIX C. INTRODUCTION TO DOS.C C-3

The longer, narrower radial slot towards one edge of the
enclosure ~s the slot through which the read/wri te head in the
diskette drive contacts the diskette's oxide coating for data
transfer operations.

The smaller round hole present on the diskette is the hole
through which the index hole, a hole in the diskette proper about
the diameter of a pencil lead, is sensed by the controller' and
used for timing and control purposes.

The reason for the description of these holes is that they
provide the definitive reference for indicating the proper
direction of insertion of the diskette media into the 9380 series
drives. When the diskette is properly inserted, the edge of the
diskette with the long slot is inserted first. The smaller hole
(the one through which the index hole is sensed) will be the last
of the three holes in the cover to enter the drive, and it will be
positioned toward the tabletop rather than downwards toward the
floor.

The diskette loading slot is covered by a long, narrow
handle. A rectangular pushbutton to the side of the handle is
pushed to open the handle for diskette insertion and removal.
vJhen inserting the diskette, it will meet with a spring resistance
after being inserted about 3/4 into the drive. Press the diskette
gently into place until the spring catches and the diskette stays
in place without being held in with the finger. Be careful not to
push the diskette too far into the drive, as this can cause the
innermost edge of the diskette's plastic cover to be wedged
between some metal projections on the diskette drive which could
possibly result in damage to the diskette. After the diskette is
in place, pull the door/handle to the left until it latches
closed. As the door is pulled closed, the hub engages the
diskette, bringing it to its rated rotational speed of 360 rpm

-(and then online) almost immediately. ,-

To remove a diskette, first ensure that all input/output
activity on the diskette has completed. (This is necessary since
it is possible to open the drive door, which takes the diskette
offline, in the middle of a write operation; this can result in
improper data being written onto the diskette.) Then press the
button to the left of the door/handle. The door will open and the
diskette will emerge in much the same way toast pops out of a
toaster. Upon removing the diskette from the drive, it should be
immediately placed in its protective paper envelope to help
protect the surface from abrasive contaminants and other elements
which could damage it.

C-4 DISK OPERATING SYSTEM

C.6 Drive Numbering and Switches

Diskette drives are normally installed in the cabinet
starting from the left. These drives are numbered 0, 1, 2, and 3
respectively from left to right. These numbers constitute the
physical drive number. In the case of DOS.C, the same number is
also sometimes referred to as the DOS logical drive number, or
frequently just drive number.

The main power switch for the diskette unit is located on the
underside of the tabletop and to the left side of the diskette
drives, positioned toward the front of the cabinet. Sliding this
switch towards the rear of the diskette drive cabinet turns the
dis k e t t e un ito n, an d s). i din g the sw i t c h to war d s the us e r t urn s
the diskette unit off. This switch should normally always be left
in the ON position.

There are no other controls or switches intended for use by
the user on the 9380-series diskette drives.

C.7 Care and Handling of Diskettes

Diskettes are sturdy media which will give long and
trouble-free service if they are handled with reasonable care.

1) Diskettes should alwayS be stored in their protective
paper en ve 10 pes wh en not ins ert ed in a dr i ve . Thes e
envelopes should then be stored in the protective boxes in
which the diskettes are received from the manufacturer.

2) Do not force too many diskettes into one box. They should
not be pIa c e dun de r he a v y pr e s sur e, as t his can war p the
diskette media, possibly causing read/write errors.

3) Diskettes should not be rolled, folded or otherwise
subjected to strains which could crease the media.

4) Never touch the oxide coating of the diskette through the
holes in the plastic cover. Human skin has oils on it
which will attract and retain dust and other abrasive
contaminants if these oils get onto the diskette's
surface. In addition, contact between hard surfaces and
the diskette oxide can scrape away the
information-carrying oxide from the diskette surface; this
will usually result in unrecoverable errors on the
diskette.

APPENDIX C. INTRODUCTION TO DOS.C C-5

5) Diskettes should not be subjected to strong magnetic
fields.

6) When mailing diskettes, they should either be placed
between two sheets of corrugated cardboard (for rigidity
and protection while going through the mails) or placed in
some suitable protective carrier. Many diskette media
manufacturers sell mailers specifically designed for use
in sending diskettes, either singly or in multiples,
through the mail.

7) Diskettes can generally be taken through airport security
x-r ay and met al de te ct i ng equ ipme nt without dang er of
damage to the information recorded on the diskette.

C.8 Preparing Diskettes for Use

When a diskette is first received from the media
manufacturer, it contains formatting information recorded across
the entire usable surface of the diskette. This information is
pro v ide d to allow the co n t roll e r to i d en t i f y wh ere. a g i v ens e c tor
is on the surface of the disk, and also allows the controller to
verify proper head positioning in the drive mechanism. Normal
reading and writing on the diskette does not destroy the
formatting information contained thereon.

Only diskettes in 3740 format (128 byte sectors) are usable
by DOS.C. Diskettes that have been reformatted with bad tracks
flagged and alternate tracks substituted cannot be used. Also,
diskettes in System 32 format (256 ~yte sectors) or IBM 3600
format (512 byte sectors) cannot be used.

Diskettes cannot be used by DOS.C until they have been
generated with the DOSGEN program described earlier. Datapoint
DOS uses its own unique file structure which is capable of more
sophisticated data and file manipulation ~han the standard IBM
file structure which is intended for data entry and not for actual
computer data processing. This more sophisticat€d file structure
is what results in the need for DOSGEN before a diskette ca9 be
used by DOS.C. .

Asp e cia 1 no t ere gar din g dis k s wh i c h are to be use din the
booted drive is appropriate. All of the newer releases of DOS
commands use DOS FUNCTIONs (as described in the DOS USER'S GUIDE).
These functions are resident on the diskette in the file
SYSTEM7/SYS. When updated versions of DOS.C and associated
utilities are received from Datapoint Corporation, the file

C-6 DISK OPERATING SYSTEM

SYSTEM7/SYS may also have one or more new DOS FUNCTIONs resident.
Therefore, wholesale copying of DOS commands from newly received
diskettes to older diskettes with older versions of SYSTEM7/SYS
will frequently result in commands which either work or do not
work depending on whether the older or newer version of
SYSTEM7/SYS is present on the booted .dri ve. Therefore the user
should generally keep his DOS commands disk more or less intact
and not use a newly released diskette to supply commands to
previously DOSGENed diskettes; instead, he should freshly generate
as many system diskettes (including whichever DOS commands he
intends to use) as he needs.

C.g Suggested Disk Organization Techniques

Due to the relatively small capacity of the flexible
diskette, careful consideration should be given to which files
should be put on which diskettes. Users with single drives for
data entry and related applications will have little choice in
such matters. However, for users with multi-drive systems being
used for program development, the following convention is
suggested:

1) DOS system diskettes. Th,ese diskettes contain the system
files (as do all diskettes for use with DOS.C) and
whichever DOS commands the user intends to use. Usually
this diskette will be used in drive zero during program
generation, debugging and other DOS system-type functions
and because of this will contain all of the DOS itself,
DOS commands and latest set of DOS FUNCTIONs as released
by Datapoint. This diskette will also frequently contain
the editor scratch file, SCRATCH/TXT.

2) Source program diskettes. These diskettes can be
considered as library file diskettes. These diskettes may
contain programs, Dataform forms, and other user text
f i I e sus ed, fo rex amp Ie, d uri n g pro g ram ge n era t ion. On c e
these programs are finalized, they can be copied to DOS
System diskettes or User System diskettes as appropriate.

3) User system diskettes. These diskettes are similar in
intent to DOS System diskettes but differ in that they are
intended more for specific application use rather than for
general program development and debugging. These
diskettes will usually be used with DB11, SCRIBE,
DOSBASIC, or DATAFORM or will have large numbers of
user-written application programs on them. These disks
will usually not contain the more specialized DOS commands

APPENDIX C. INTRODUCTION TO DOS.C C-7

(and other files) such as DUMP9380, DSKCHECK, DOS/EPT,
APP, CHANGE, DUMP and the like.

4) Data file diskettes. These diskettes contain primarily
user data files. Typical characteristics of files on this
type of diskette: non-executable, user information;
SCRIBE text; other things which are user-entered (or
generated) but not programs as such.

-5) Scratch diskettes. These diskettes are diskettes
containing no important files. These di skettes are
suggested for use in transferring files from one di skette
to another, and to provide diskettes containing large
unallocated areas for use as scratch files by programs
using scratch files (for example, SORT and EDIT commands).

As support for the above five basic types of diskettes, the
following color-coding convention is suggested for diskette
labels:

red - DOS System diskettes
green - User System diskettes
blue - ,1ext files (source programs and SCRIBE text)
yellow - Data files
grey - Scratch diskettes

For best results, users should use only diskette media
provided by those manufacturers recommended by Datapoint
Corporation.

C.10 Disk Organization under DOS.C

This chapter describes the logical organization of the data
on the disk when operating under DOS.C and how it relates to the
general DOS file concepts as described in the chapter on System
Structure. In this chapter it is assumed that the user is
famil iar wi th the basic DOS 'file structuring.

C.10.1 Radius Spiraling and Sector Skewing

Under DOS.C, the sectors on the diskette are logically
renumbered to allow substantially increased performance over what
would be possible otherwise. Program loading, in particular, goes
about three times faster than would be possible if this were not
done. This renumbering of the sectors on the track is referred to
as sector skewing. This sector skewing takes the form of placing

C-8 DISK OPERATING SYSTEM

logically sequential sectors about four sectors apart on a track
of the diskette. Thus logical sector zero on track zero would
appear in physical sector zero; logical sector one would appear in
physical sector five; logical sector two would appear in physical
sector ten; and so forth.

In addition to rearranging the order of the sectors on a
track of the diskette, ,the starting points (logical sectors zero
on each track) do not line up along a straight-line radius as do
the" physical sectors zero. Instead, the starting point for
numbering sectors on a track spirals inwards. Therefore, the
logical radius line (sectors zero, for example) forms a spiral on
the diskette surface, and hence the term radius spiraling. The
intention behind radius spiraling is twofold: one, it allows for
head seek time between adjacent tracks while rapidly scanning
through a data file (in addition to the processing time lag
provided by the normal sector .skewing); two, it allows searching
the di rector y (whi ch is along a logi cal radi us of the d i sket te, as
will be described later) about three times faster than would
otherwise occur. Together with sector skewing, radius spiraling
a ids in achiev i ng much hi gh er over all system'l per formance than is
obtainable on most competitive diskette; based systems.

Use the chart below to convert from the logical to physical
sector. First divide the decimal track number by 4. The
remainder gives the appropriate column. Run down the ieft side to
the logical sector and across to the apprtipriate ·column to get the
physical sector number.

LOGICAL REMAINDER OF TRACK/4
SECTOR 0 1 2 3

0 (0) 0 05 012 02
1 (01) 05 012 02 07
2 (02) 012 02 07 014
3 (03) 02 07 014. 04
4 (04) 07 014 04 011
5 (05) 014 04 011 01
6 (06) 04 011 01 06
7 (07) 011 01 06 013
8 (010) 01 06 013 03
9 (011) 06 013 03 010
10 (012) 013 03 010 0
1 1 (013) 03 010 0 05.
12 (014) 010 0 05 012

Note that physical sector addresses are never used by DOS.
Even in DUMP9380 the sector address entered is taken as a logical

APPENDIX C. INTRODUCTION TO DOS.C C-9

sector address except when in EBCDIC mode, when it is considered a
physical sector address.

C.10.2 Size of a Diskette

There are 77 tracks on a diskette, each of which contains
logically thirteen 256-byte sectors (physically twenty-six
128-byte sectors). This yields a total of 1001 sectors, or a
grand total of 256,256 bytes of storage capacity. The first track
on the diskette (the one nearest the edge of the diskette) is not
used by DOS.C, in order to help provide compatibility with IBM
equipment. Addi tionally, the logical last sector on each track
(sector 12 if one counts starting at 0) is not used by DOS.C for
data, for reasons which will be described in subsequent sections.
Subtracting these two unallocatable areas results in a total
allocatable file space of 912 sectors. About ninety sectors of
these are used by the DOS for its system files, leaving about 825
sectors for user files, a user file capaci ty of over 200, 000
bytes. This constitutes about twice the capacity of a tape
cassette on each diskette. Due to the higher data storage
efficiency attained by Datapolnt software, most users will find
that the total number of records stored on a Datapoint format
diskette will be as large as, and in most cases substantially
larger than, the number achieved on competitive systems.

C.10.3 Cluster Mapping

Under DOS.C, each track of the diskette consists of 4
clusters of three sectors each. This implies that one cluster or
three sectors is the smallest allocatable unit of space on a
diskette, and that all files are multiples of three sectors in
length.

In the cluster allocation table, the four clusters on each
track are represented by the low-order four bits of each byte. As
in other Datapoint DOS, a one bit represents that the
corresponding cluster is allocated and a zero bit indicates that
the corresponding cluster is available for allocation. The
high-order four bits of each byte in the CATs are reserved for
future use in DOS.C, and are currently always set to zero.

C-l0 DISK OPERATING SYSTEM

C.10.4 Segments under DOS.C

The use of a three sector cluster has numerous advantages on
the diskette. One which should be immediately apparent is that
the amount of space wasted due to always allocating an integral
number of clusters is reduced to only an average of one and a half
sectors per file. Perhaps a less obvious advantage results from
the manner in which the Datapoint DOS allocates disk space to
files. During space allocation, the DOS will allocate the first
contiguous, maximum-size segment it can find as an initial (or
secondary) allocation. Since a segment consists of up to 32
clusters (there are five bits of cluster number information in
each segment descriptor), this results in files being initially
allocated 96 sectors, assuming that the space on the diskette is
sufficiently unfragmented to allow such an allocation. Making
this initial allocation smaller than the 192 and 240 sectors as
used in some of the other Datapoint DOS allows for several scratch
files to be opened on a diskette which already has a few files on
it, as each newly opened file will take a smaller bite out of that
portion of space remaining unallocated. Making the full segment
size much smaller than 96 sectors quickly increases the amount of
overhead required to index through the file (since the number of
RIB accesses required increases) and decreases performance.

C.10.5 Maximum File Size

Under DOS.C, the maximum file size attainable depends upon
the amount of space used on the diskette for system files, but
using the current size of DOS.C as an example indicates that at
least 800 sectors should be available for user file allocation on
a normal data file diskette. Users having only a single diskette
drive and therefore having sever~l programs on the diskette in
addition to the DOS will have a corresponding reduction in the
maximum size of data files they may have. Users .whose files
exceed the capacity of one diskette will need to segment their
files at the user program level much as they would do on a
cassette system when a file exceeded the capacity of a single
cassette.

APPENDIX C. INTRODUCTION TO DOS.C C-11

C.10.6 Cluster Allocation Table and Directory

Under DOS.C, the use of four three-sector clusters per track
results in one unused sector per track. This restriction arises
from the facts that (1) all clusters under Datapoint DOS must
contain the same number of sectors and no cluster may span a track
boundary; and (2) a 13-sector cluster is not practical be,cause it
results in excessive amounts of wasted space at 'the end of each
file on the diskette. Since these 76 sectors on the diskette
(remember that track zero is not used) are not available for
allocation as file space, they are partially put to use for
storage of DOS system tables: four cluster allocation table
sectors and thirty-two directory sectors. These system tables are
positioned in the following manner:

Track
Tracks
Tracks
Track
Track
Track
Track
Tracks

o - Unused; for IBM compatibility
1-16 - Directory copy, for backup purposes

17-32 - Primary DOS directory
33 - Working Cluster Allocation Table
34 - Working Cluster Allocation Table backup
35 - Lockout Cluster Allocation Table
36 - Lockout Cluster Allocation Table backup

37 -7 6 - Res e r v e d for fu t u reD 0 Sus e

Again recall that each of the above sectors is in logical
sector 12 of the track indicated.'

In the Cluster Allocation Tables, bytes 239-254 are used for
the Directory Mapping bytes. These sixteen bytes each contain
either an 0377 or the number of files currently allocated in the
corresponding one of the sixteen directory sectors. These bytes
are updated automatically by the DOS whenever a file is created or
deleted, and are updated by the DOS occasionally if they are found
to 'be inaccurate. The purpose of these di~ectory mapping bytes is
to provide .improved speed of directory lookups and to allow faster
creation of files. They are of the greatest benefi t to users who
have several drives in their system where relatively few files
exist on~ach drive. The intention is to eliminate the need to
read in directory sectors while looking for a file if those
sectors are known to not contain any active directory entries, and
likewise when looking for an empty slot for use by a new file to
eliminate having to read sectors knQwn to have all sixteen
directory entries in use.

C-12 DISK OPERATING SYSTEM

C.11 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.C system routines.

C.11.1 Physical Disk Address Format

Under DOS.C, physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the D register) is the cylinder number. The less -
significant byte (usually placed in theoE register) has its most
significant two bits representing a cluster number within the
track (all combinations of these two bits are valid since there
are four clusters per track) and the least significant two bits
representing the sector number within the specified cluster.
Because there are only three sectors per cluster, only binary
values 00, 01 and 10 are valid for these low-order bits. (The
only exception to this rule is that a least significant PDA byte
of 0303 permits access to the unallocatable sector on each track,
that sector used for system table sectors). (For compatibility
reasons, the most significant three bits can be considered the
cluster number, yielding clusters numbered 0, 2, 4, and 6).

The unused bits of the least significant physical disk
address byte (that is, the center four bits) should always be set
to zero.

APPENDIX C. INTRODUCTION TO DOS.C C-13

APPENDIX D. DOS.D

DOS.D is Datapoint Corporation's Disk Operating System
supporting 48K or larger Datapoint 5500 or 6600 family computers
operating in conjunction with from two to eight 9370 series disk
drives, or with from two to three 9390 series disk drives. In
addition to the interactive/batch operation as provided in all
standard Datapoint Corporation DOS, DOS.D additionally supports
Datapoint's Partition Supervisor (called PS, PS66, or UPS,
released separately) which provides for the simultaneous execution
of multiple DOS programs. DOS.D is also the operating system used
in the Datapoint Attached Resource Computer (ARC) system.

D.1 Planning for DOS.D

The minimum configuration for a DOS.D system requires a 48K
Datapoint 5500 family computer. The minimum disk requirements are
a 9370 controller and drive and at least one 9371 disk extension
unit, or a 9374 controller and drive, or a 9390 controller and
dual drive. If more storage is desired, additional disk extension
units may be attached to the disk controller, up to a total
capacity of 16 logical disk drives.

D.2 File Storage Capacity under DOS.D

Under DOS.D, each 9370-9373 model disk unit is dealt with as
two logical drives. Each of these two logical drives contains
48,576 sectors of 256 bytes each and can store up to 256 files.
Of these, about 250 sectors and about ten files are used by the
operating system and a few basic commands, leaving about 12.4
million bytes of usable space per logical drive, or up to roughly
25 million bytes of storage total for each disk storage unit in
the configuration.

Using the 9374/9375 disk ·drives, file storage is somewhat
less due to the capacity of the disks used. For these drives,
each logical drive contains 38,976 sectors and provides about 10
million bytes of usable space per logical drive, or roughly 20
million bytes of storage per disk unit.

Using the 9390 series disk drives, each physical disk pack is
handled as 5 logical drives, each logical drive being identical to
a logical drive on a 9370 disk pack. Thus each logical drive has

APPENDIX D. DOS.D D-1

48,576 sectors, providing about 1~.4 million bytes of usable
space. Each physical disk unit provides about 62 million bytes of
storage.

Other features of DOS.D include a large maximum file size:
up to 38,397 data sectors in a single DOS.D file (not including
the end-of-file mark and two RIBs).

D.3 Disk Drives

Datapoint DOS.D supports from two to eight 9370-series disk
drives attached to one 9370-series disk controller, or one 9390
controller and dual disk drive unit and optional extension drive.
These drives are high-performance, random access disk units. They
are the equal in every way to drives in constant daily use on the
largest mainframe computer systems.

D.4 Disk Media

See Appendix B for information on the 9370-series disk drives
and disk pac k s •

The Datapoint 9390 series disk drives use a 5-platter disk
pack with si~ recording surfaces, one of which is used only for
timing marks. These packs are equivalent to CDC Model 877 packs.
The disk pack is enclosed within a plastic enclosure when it is
not in place in the drive. This cover is intended to help keep
the disk free from dust, pollen, smoke, and other contaminants and
is of prime importance in helping to eliminate disk errors and
parity failures that contamination can cause. Keep the disk in
its cover at all times wh en not in use.

D.5 Loading and Unloading Disk Packs

See Appendix B.5 fdr information on the 9370 series disk
drives and disk packs.

The model 9j90 drives are top-loading units. To open a
drive, release the lid by lifting up on the latch at the center of
the front of the drive, just under the lip of the lid. The lid
will 1 i ft' 0 pen, ex po sing the d r i ve c a v i t y . The hi n g es 0 f the 1 i d
are damped so it will remain open when released. The lower drive
of the pa~r in a cabinet must be slid forward out of the cabinet
before it$ lid can be opened. To slide the lower drive forward,
use the ddpressions in the lower front of the drive. Push up

D-2 DISK OPERATING SYSTEM

against the latch at the top of either of the depressions until
the drive is released, then pull gently forward until the drive is
clear of the cabinet.

To insert a disk pack, hold the pack by the top center
handle. Release the bottom cover of the pack by squeezing the two
halves of the small handle in the center of the bottom cover
toward each other. Remove the bottom cover. Still holding the
pack by the top center handle, lower the pack and top cover .
together into the drive cavity. When the pack is seated on the
drive spindle, turn the top center handle fully clockwise until
firm resistance is met. It is important that the pack be firmly
in place before removing the top cover. When the pack is properly
mounted, carefully remove the top cover by lifting it straight up.

Whenever moving the top cover in or out of the drive cavity,
be sure to move the cover carefully straight up.or down. If the
cover becomes skewed in the cavity, damage to the disk pack or to
the drive could result.

Once the pack is in place, close the drive access lid, which
will latch into place. The lower drive should be immediately
pushed gently back into the cabinet until it latches into
position. The top and bottom halves of the disk pack cover should
be immediately put back together to keep out dust and other
contaminants.

To remove a disk pack, first stop the drive (see Switches and
Indicators below) and be sure the drive is in load condition.
Open the drive access lid. Carefully lower the top cover straight
down onto' the disk pack. When the cover is fully lowered, turn
the top center handle counterclockwise until a distinct click is
heard. This click indicates that the pack has been released from
the drive spindle and may now be removed. Lift the disk pack and
top cover together straight out of the drive and immediately
reattach the bottom pack cover by putting it in place and pressing
its latches into position. The pack should be stored horizontally
on a shelf (never on edge!) and in a position where it is not apt
to be dropped or pushed accidentally over an edge. If another
disk is not to be mounted immediately into the drive the pack was
just removed from,---the disk access lid should be closed and the
drive pushed back into the cabinet right away to avoid possible
physical damage or contamination.

\

APPENDIX D. DOS.D D-3

D.6 Switches and Indicators

See Appendix B.6 for information describing the 9370 serie~
disk d r i v e s .

The controls of the 9390 disk drive are in a small recessed
panel in the upper left hand corner of the front of the drive
unit. The physical drive number indicator is located below the
READY light on the panel. This indicator is the front of a
removable plastic plug that is keyed to select the physical drive
number of the unit. DOS can ~use physical drive 0, 1, and 2 only.

When the drive is in load condition, both the START and READY
lights will be off. To start the drive, push the button below the
START light. The START light will immediately come on; the READY
light will blink while the disk pack is spun up to speed. When
the drive is ready for operation, the READY light will stop
blinking and stay lit. During operation, 'both the START and READY.
lights will stay lit. To stop the drive, again push the button
below the START light. The START light will immediately go off;
the READY light will blink while the disk pack is braked to a
stop. When the drive is again in load condition, both the START
and READY lights will be off. .

The READY light is the main indicator of drive status. When
the READY light is off, the drive is in load condition and disk
packs may be loaded or unloaded. When the READY light is
blinking, the drive is starting or stopping and no operations are
possible. The 9390 takes less than 30 seconds to become ready for
operation or to stop following operation. When the READY light is
lit, the drive is ready for IIO operations.

The PROTECT light indicates the write-protect condition of
the driv~. When the PROTECT light is lit, the disk pack in the
drive is physically protected and cannot be written upon. When
the PROTECT light is off it is possible to write on the disk.
Write protection is controlled by the pushbutton beneath the
PROTECT light. If protection is off, pushing the button turns
protection on; if protection if on, pushing the button turns
protection off. The button extends farther from the cabinet while
protection is off, but the difference in position between the two
conditions is difficult to see.

The FAULT light comes on when the safety circuits in the
drive detect one or more of a number of conditions that they
consider would endanger the data on the disk pack if continued
disk operation were attempted. The FAULT condition can be caused
by (among other things) power surges or power supply problems in

D-4 DISK OPERATING SYSTEM

the drive, or by illegal commands from the controller. The FAULT
light can be cleared by pressing the button below it. If the
light stays off, the error condition causing the fault has been
corrected and operation can continue. If the light comes back on
immediately, the condition still exists and further work must be
done to clear it. The drive should be stopped, then brought ready
again, and the DOS should be restarted. If the fault condition
still persists, or if a transient fault keeps recurring, a
hardware malfunction is indicated and the problem should be
reported to the Datapoint Customer Support Center.

D.1 Disk Organization under DOS.D

This section describes the logical organization of the data
on the disk when operating under DOS.D and how it relates to the
general DOS file concepts as described in the chapter on System
Structure. In this section it is assumed that the user is
familiar with these concepts and has read and is familiar with the
basic DOS file structuring.

D.1.1 Logical Drive Mapping

Under DOS.D each physical drive is broken into multiple
logical volumes. This is done for reasons of addressing. It is
simply not possible to address all of the sectors on an entire
mass storage disk drive' using only two bytes of physical disk
address, and the two byte physical disk address is central to all
of Datapoint Corporation,DOS's operations. It is not practical to
change this characteristic without making changes which would
result in invalidating many user-written programs and many large
systems which run under the DOS. Therefore the disk was broken
into logical volumes, arid part of the effective physical disk
address is taken from the logical drive number.

For the 9374 drives the removable disk is one logical drive,
and the fixed disk is a second logical drive.

For the 9370 drives, each disk pack is two logical drives.
Each logical drive appears to be 253 cylinders (numbered 0-252
decimal) of eight 24-sector tracks each. The first eight
recording surfaces on the disk pack (heads on the 9370 drive are
numbered from zero to nineteen starting at the top of the disk
drive) correspond to the first 203 cylinders on the first logical
drive (the even-numbered one). The next eight recording surfaces
on the disk pack correspond to the first 203 cylinders on the
second logical drive (the odd-numbered one). The first 203

APPENDIX D. DOS.D D-5

cylinders on each logical drive is referred to as primary
addressing space. Mapping of disk space within primary addressing
space is done in an algorithm identical to that used under DOS.B.

Physical heads sixteen and seventeen (and the corresponding
recording surfaces on the disk pack) correspond to logical
cylinders 203-252 on the even logical drive; heads eighteen and
nineteen correspond to logical cylinders 203-252 on the odd
logical drive. These cylinders of each logical drive are referred
to as the extended addressing space. Since DOS.D assumes that
each cylinder consists of eight tracks, each of logical cylinders
203 through 252 are mapped across four physical cylinders of two
tracks each from the center of the pack outward. In this way,
disk space within primary and extended addressing space can be
dealt with by DOS.D in a uniform way at all but the very lowest
levels of the disk read/write driver.

Using the 9374/9375 disk drive, there is no extended
addressing space, only 203 cylinders of 8 24-sector tracks each.
The disk platter itself has 406 cylinders of 2 48-sector tracks
each, but the disk controller provides address conversion so the
physical structure is transparent to the processor.

For the 9390 drive, each disk pack is addressed as five
logical drives. Each logical drive is addressed in the same
manner as a logical drive on the 9370 disk. The mapping of the
physical disk structure to a logical structure of 253 cylinders of
8 tracks each with 24 sectors per track is handled by the 9390
controller. The actual physical structure of the disk cannot be
addressed by DOS, so only the logical structure presented by the
controller is considered in this manual.

D.7.2 Size of a Logical Drive

D.7.2.1 Models 9370-9373 and 9390-9393

Each logical drive is eight tracks on each of 253 cylinders.
This results in 2024 tracks of 24 sectors each, or a total of
48,576 total sectors on a logical drive. Of these, about 48,000
remain when the DOS has been generated, the system tables
constructed on the disk, and a few basic commands loaded.

0-6 DISK OPERATING SYSTEM

0.1.2.2 Models 9314/9315

Each logical drive is eight tracks on each of 203 ~ylinders,
yielding 1624 tracks of 24 sectors each, or 38,976 sectors on a
drive. Of these total sectors, about 38,400 remain when the DOS
has been generated, the system tables constructed, and a few basic
commands loaded. There is one unused cylinder on each platter -
logical cylinder 203, physically cylinders 406 and 407. These
innermost cylinders are not normally addressable and are not even
formatted by INITDISK. A test program for long-term reliability
testing is planned which will require exclusive use of these
cylinders.

0.7.3 Cluster Mappin~

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each track on a logical drive represents one DOS
cluster, and is represented in the CAT by exactly one bit. Since
the DOS uses eight tracks per logical cylinder, this results in
exactly eight clusters per cylinder of twenty four sectors each.

Due to the fact that space is always allocated in terms of an
integral number of clusters, this implies that the minimum file
size under DOS.D is twenty-four sectors and that file size will
always be a multiple of this number. It turns out that choosing a
full track as the smallest allocatable unit of space has other
advantages as well from a system standpoint, since it allows some
programs (like COPY) to make several simplifying assumptions about
the data in a file which enables them to copy data and reference
information in a file substantially more readily and efficiently
than would be otherwise possible.

0.7.4 Segments under Dos.b
Space under Datapoint Corporation's DOS is always allocated

in contiguous chunks of clusters called segments. When space is
allocated, the largest segment on a drive up to the maximum
possible sized segment is allocated, to keep the file as free of
fragmentation as possible. By limiting the allocation size to the
size of a full segment,. the problem of allocating all available
space on a disk to a first scratch file before a second one is
subsequently opened is minimized. If several scratch files are
opened and space in them is allocated at regular interval~, the
resultant segments will be interleaved, resulting in minimized

APPENDIX D. DOS.D D-7

access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the drive)
and yet large (to maximize processing speed, maximize file size
and minimize the number of RIB accesses) resulted in a segment
size of thirty-two clusters. This compromise results in a
768-sector segment (32 clusters of eight tracks of 24 sectors
each) allowing a maximum file size of over 38,000 sectors.

D.1.5 Maximum File Size

Under DOS.D, the maximum file size available is 38,400
sectors. This value represents the largest file that can fit on a
10MB volume. Since the first two sectors of each file under the
DOS are used for the RIB and its copy, and the last sector of most
files for an end-of-file mark, that leaves 38,397 sectors
available to the user for the storage of his data. Files longer
than this number will have to be segmented or logically
concatenated at the user program level, the same as would be
necessary for files larger than about 9600 sectors on the 9350
s e r i es disk s .

D.1.6 Cluster Allocation Table and Directory

Each logical drive under DOS.D contains its own directory and
cluster allocation table, just as for all Datapoint Corporation
DOS. There are sixteen directory sectors on each logical drive,
located in consecutive sectors starting at sector seven on logical
track zero of cylinder zero. Therefore, the sectors go from
sector seven to sector 026 (octal). The cluster allocation table
is at sector zero of logical track zero, cylinder zero. The
lockout cluster allocation table is at sector one of logical track
zero, cylinder zero. The hashed directory index is at sector two
of track zero, cylinder zero. The backup copies of each of these
are in the corresponding locations of logical track one of the
s am e c y lin d e r •

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster (on full disk
directories) than waS possible under DOS.B Version 1. The
technique works as follows:

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is

D-8 DISK OPERATING SYSTEM

essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct
eight-bit hash codes possible, while there are literally billions
of legal file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentally, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk the technique to repair the disk is the
DSKCHECK command. When the DSKCHECK command is almost finished,
simply specify that the Hashed Directory Index is to be rewritten
to the disk. This causes the HDI to be regenerated from the
actu al di sk di re ctory and rewr i t ten. In gener al, the Hash ed
Directory Index is rarely if ever destroyed in actual disk usage,
and contributes greatly to overall system performance if many
directory lookups are being done.

D.8 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.D system routines.

0.8.1 Physical Disk Address Format

Under DOS.D physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the D register) is the cylinder- number. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (or logical track number in the specific case of DOS.D)
and the least significant five bits representing the sector number
within the specified cluster.

APPENDIX D. DOS.D D-9

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM

DOS.G is the Datapoint 1800 Disk Operating System supporting
the 1800 processor with integral double-density diskette drives.

The 1800 processor's instruction set is the same as that of a
5500, as is its I/O structure. The most salient architectural
differences are the direct coupling' of the 1800 console screen to
memory, and the 24x80 display.

The standard DOS commands are available, with the exceptions
of these dependent on peripherals not supported by the processor
(no cassette drives are included with the 1800 proces~or).

. The following commands are not supported becauce they are
associated with peripheral devices not available with an 1800
processor:

DUMP93XO
INITDISK
MIN
MOUT
REWIND
UBOOT

This Appendix describes the relationship of DOS.G to the
other DOSs. DOS.G is designed to execute on a .Datapoint 1800
processor connected to at least one dual-drive, double-density
diskette. DOS.G supports a maximum of eight (8) logical diskette
drives (4 physical drives) for a total of about 4 megabytes of
on-line data. Each physical diskette drive can contain two (2)
logical driv~s. Diskette organization and CRT/keyboard
differences should have minimal impact on the user.

E.l CRT / Keyboard Interface Under DOS.G

The CRT (scr€en) / Keyboard on the 1800 processor have
several major differences from the 2200/5500 type processors:

1. 24 lines (vertical) instead of 12 lines.
2. Characters on the CRT are displayed from RAM memory.
3. Keyed-in characters and function keys are stored in RAM memory.
4. Addi tional "Function" keys have been added.

APPENDIX E. DOS.G - 1800' OPERATING SYSTEM E-1

E.1.1 Screen Line Numbering

The 1800 CRT has 24 lines of 80 characters each. The lines
are actually numbered starting at the bottom of the screen (for
com pat i b iIi t y re as 0 n s) . Th e bo t tom lin e nu m b e r is e I eve n (1 1), as
on the 2200/5500 CRT. Each higher line is numerically one less.
This means that the top line number is minus twelve (-12).

ILLUSTRATION 1. CRT LINE NUMBERING

LINE -12 (Top of Screen)
LINE -11
LINE -10
LINE -9
LINE -8
LINE -7
LINE -6
LINE - 5
LINE -4
LINE -3
LINE -2
LINE -1
LINE 0 This line corresponds to the top of a 2200/5500 CRT
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8
LINE 9
LINE 10
LINE 11 This line corresponds to the bottom of a 2200/5500 CRT

The correct technique for determining the top and bottom line
for any program that runs under DOS.G version 2.3 (or upward) is
to call DOS Function 6, subfunction 4 (homeup position) and
subfunction 5 (homedown position).

E-2 DISK OPERATING SYSTEM

E.1.2 Displaying on the Screen

Displaying data on the screen can be accomplished in several
ways:
1. DSPLY$ - This standard DOS routine is totally compatible with

the pre-existing DSPLY$ routine.

2. DOS Function 6, subfunction 3 - write a byte to screen. This
routine will write the byte in the (8) register to the
s c r e en, at the po sit ion de fin e d by the (0 E) reg i s t e r
pair; 0 contains the horizontal screen coordinates, and E
the vertical.

3. Writing a byte into the RAM memory that is the screen buffer.
This technique is not recommended.

4. 1800 ROM display routine as documented in the 1800 Product
Specification. This technique is not recommended.

E.1.3 Inputting Data From the Keyboard

Entering data from the keyboard can be accomplished several
ways:

1. KEYIN$ - This standard DOS routine is totally compatible with
the pre-existing KEYIN$ routine.

2. DOS Function 6, subfunction 2 - input a character. Register
pair (DE) must contain the horizont~l and vertical screen
coordinates for the flashing cursor.

3. Reading the RAM byte in memory that is the keyed in character.
This technique is not recommended.

4. 1800 ROM keyin routine as documented in the 1800 Product
Specification. This technique is not recommended.

E.1.4 Special CRT / Keyboard Features

The 1800 CRT / Keyboard contains several useful features:
1. Inverted video capability. Each character position on the

screen is defined as a 7x9 dot matrix. Normally, the
inner 5x7 dots are used to display a lighted character.
Howe v e r, by dis P lay i ng a c h a r act e r who s e "s i g n" bit i s
set, the character will be displayed as a "hole"
surrounded by "light". For example, writing an octal

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-3

"0101" to the screen will display the familiar character
"A", however, displaying an octal "0301" will display a
lit 7x9 rectangle containing a dark 5X7 outline of the
character "A".

2. Addi tional "Function" keys. There are ten keys on the
right-hahd side of the 1800 processor. These are
"function" keys. When they are depressed, the status
bits change to reflect the fact that a key has b~en
pressed. Each key s~ts a unique bit, therefore, any
arbitrary meaning can be attached to any key (or
combination of keys). The only word of caution necessary
is that pressing the RESTART and INT keys simultaneously
will cause the 1800 to perform a RESTART. Additionally,
the KBD'and DSP keys are treated like the 2200/5500
"KEYBOARD" and "DISPLAY" keys by DOS function 6.

ILLUSTRATION 2. FUNCTION KEYS

F5

F4

F3

F2

Fl

E-4 DISK OPERATING SYSTEM

Re- -
Start

'ATT

INT

KBD

DSP

3. Roll-Down capability. The 1800 screen can "roll down", just
like the 5500 screen (and 2200's equipped with RAM screen
option). To roll the screen down, use DOS function 6,
subfunction 10.

4. Character Font loading capability. Any combination of bits
that can be represented in a 5x7 pattern can be displayed
as a character. See the 1800 hardware reference manual
for a description of character font loading. For simple
non-standard characters, a "CHARSET /SYS" file may be
used, as described in the manual for CHARIN18 (DOS.G
International Character Set Loader).

E.2 Diskette Organization Under DOS.G

This section describes the logical organization of the data
on the diskette when operating under DOS.G and how it relates to
the general DOS file concepts as described in the chapter on
System Structure. In this chapter it is assumed that the user is
familiar with the basic DOS file structuring.

E.2.1 Loading and Unloading Diskettes

The 1800 diskette drives are aligned in a horizontal plane,
rather than in a vertical plane (9380-diskette controller-). This
makes loading and unloading the diskettes much easier. Each
di ske t te dri ve has two long hand les (hori zonta I), and two smaller
rectangular "unload" buttons. The unload button should be firmly
pressed and released to open the diskette loading slot. The
diskette should be carefully inserted into the 1800 diskette
drive, "label side up", wi th the edge of the diskette that has the
long, narrow slot being inserted first. When inserting the
diskette, it will meet with a spring resistance after being
inserted about 3/4 into the drive. Press the diskette gently into
place until the spring catches, and the diskette stays in place
without being held in with the fingers. Be careful not to push
the diskette too far into the drive, as this could cause damage to
the diskette media. After the diskette is in place, pull the
door/handle straight down until it latches closed. As the door is
pulled closed, the hub engages the diskette, bringing it to its
rated rotational speed of 360 rpm, and then online, almost
immediately.

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-5

To remove a diskette, first ensure that all input/output
activity on the diskette has completed. Generally, the red
inqicator lights on the unload buttons will be a good indication
of activity. Now, press the unload button firmly. The door will
open and the diskette will emerge. Upon removing the diskette
from the drive, it should be immediately placed in its protective
paper envelope to help protect the surface from abrasive
contaminants and other elements which could damage it. Also, the
spinning hub of the drive itself could abrade the recording
surface of a diskette left in a half-in, half-out position.

E.2.2 Drive Numbering

Each 1800 diskette drive contains two diskettes. The
diskette on the right is the even numbered drive, and the one on
the left is the odd numbered drive.

E.2.3 Care and Handling of Diskettes

Please read Appendix C, section 7 for the proper care and
handling of diskettes.

E.2.4 Preparing Diskettes for Use

DOS.G supports double-density diskettes. This means that each
diskette can contain about a half-megabyte of data. Before a
diskette can be used, it must be "formatted" for double densi ty
mode. Executing the DOS. BACKUP command, or the DOS. DOSGEN
command will allow the user to quickly convert a diskette to
double density mode. A diskette that has been converted to double
density mode is readable only on' an 1800-type diskette drive.

E-.2.5 Sector Skewing

Under DOS.G the sectors on the diskette are logically
renumbered to allow substantially increased performance over what
would be possible otherwise. This renumbering of sectors on the
physical track, to build a logical track, is referred to as Sector
Skewing. This sector skewing takes the form of placing logically
sequential sectors three sectors apart" on a track of the diskette.
Thus, logical sector zero on track zero would appear in physical
sector zero; logical sector one on track zero would appear in
physical sector three; and so forth.

E-6 DISK OPERATING SYSTEM

Since a logical track occupies the same space as the
corresponding physical track , the difference being in the
numbering of the included sectors, the terms may be used with some
interchangeability.

E.2.6 Size of a Diskette

There are 77 tracks on a diskette, each of which contains 26
sectors of 256 bytes. This yields a total of 2002 sectors, or a
grand total of 512,512 bytes of storage capacity. The first track
(track 0) is used by the DOS for the IPL and BOOT blocks.
Additionally, logical sector 24 (starting at 0) of each track is
not used by DOS.G for data, for reasons which will be described in
the Cluster Mapping paragraph. Subtracting these two
unallocatable areas results in a total allocatable file space of
1900 sectors. About 90 of these sectors are used by the DOS for
its system files, leaving about 1800 sectors for user files, a
user file capacity of over 460,000 bytes.

E.2.7 Cluster Mapping

Under DOS.G, each track of the diskette consists of 8
clusters of three sectors each. This implies that one cluster or
three sectors is the smallest allocatable unit of space on a
diskette, and that all files are multiples of three sectors in
length. Each byte in the cluster allocation table (CAT)
represents a track, and each bit of a CAT byte represents a
cluste~ (three sectors). Sector 24 of each track is used by the
DOS. Sector 25 is unused by the DOS.

E.2.8 Segments Under DOS.G

The use of a three sector cluster has numerous advantages on
the diskette. One which should be immediately apparent is that
the amount of space wasted due to always allocating an integral
number of clusters is reduced to only an average of one and a half
sectors per file. During space allocation, the DOS will allocate
the first contiguous, maximum-size segment it can fi~d as an
initial or secondary .allocation. Since a segment consists of up
to 32 clusters (there are 5 bits of cluster number information in
each segment descriptor), this results in files being initially
allocated 96 sectors, assuming that the space on the diskette is
sufficiently unfragmented to allow such an allocation. Making
this initial allocation smaller than the 192 or 240 sectors as
used in some of the other Datapoint DOS's allows for several

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-7

scratch files to be opened on a diskette which already has a few
files on it, as each newly opened file will take a smaller bite
out of that portion of space remaining unallocated. Making the
full segment size much smaller than 96 sectors quickly increases
the amount of overhead required to index through the file (since
the number of RIB accesses required increases) and decreases
performance.

E.2.9 Cluster Allocation Table and Directory

Under DOS.G, the use of eight three-sector clusters per track
results in two unused sectors per track. This restriction arrises
from the facts that (1) all clusters must contain the same number
of sectors and no 'cluster may span a track boundary; and (2) a 26
sector cluster is not practical because it results in excessive
amounts of wasted space at the end of each file on the diskette.

Half of the 76 unused sectors, one per track, are put to use
for storage of DOS system tables (four cluster allocation table
sectors and thirty-two directory sectors). These system tables
are positioned in the following manner:

ILLUSTRATION 3 - SYSTEM TABLE POSITIONS

Track 0 - Unused
Tracks 1-16 - Directory Copy
Tracks 17-32 - Primary DOS Directory
Track 33 - Working C.A.T.
Track 34 - Working C.A.T. Backup
Track 35 - Lockout C.A.T.
Track 36 - Lockout C.A.T. Backup
Tracks 37-76 - Reserved for future DOS use

Each of the above sectors is in logical sector 24 of the track
indicated.

In the Cluster Allocation Tables, bytes 239-254 are used for
the Directory Mapping Bytes. These sixteen bytes each contain the
number of files currently allocated in the corresponding one of
the sixteen directory sectors. These bytes are updated
automatically by the DOS whenever a file is created or deleted,
and are updated by DOS occasionally if they are found to be
inaccurate. The purpose of these directory mapping bytes is to
provide improved speed of directory lookups and to allow faster
creation of files. They are of the greatest benefit to users who
have several drives in their' system, where relatively few files
exist on each drive. The intention is ~ ,eliminate the need to

~. : .. ~; : ..

E-8 DISK OPERATING SYSTEM

read in directory sectors while looking for a file, if those
sectors are known not to contain any active directory entries; and
likewise, when looking for an empty slot for use by a new file, to
eliminate having to read sectors known to have all sixteen
directory entries in use.

E.3 ·Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.G system routines.

E.3.1 Physical Disk Address Format

Under DOS.G, physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte is the track number. The
least sigfrificant byte has its most significant three bits
representing a cluster number within the track and the least
significant two bits representing the sector number within the
specified cluster. Because there are only three sectors per
cluster, only binary values 00, 01, and 10 are valid for these
low-order bits. The unused bits of the least significant physical
disk ~ddress byte should always be set to zero. .
ILLUSTRATION 4 - ,P.D.A. FORMAT

MSB BYTE

7 6 5 4 3 2 1 o
A A '" '" '" '" '" '"

---------------------------------- Track number (0-76) 000-0114 Octal

7 6

LSB BYTE

5 4 3 2 1 o

Sector number 0,1,2 (Binary 00,01,1
Unused (should be set to 000)
Cluster number 0-7

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-9

,-
APPENDIX F. COMPARSION CHART FOR DOS'S

·The tables below list basic logical and physical
configuration information for the various Datapoint DOS. When
values refer to "drive" a logical drive is indicated, unless the
value is ~pecifically identified as referring to a physical drive.
The information. shown for DOS.B and DOS.D uses the following
convention to distinguish among the various drive types supported
by those systems: values for 9310 drives have no special
punctuation, values for 9374 drives are enclosed in parentheses,
values for 9390 drives are enclosed in square· brackets. When only
a sing Ie value is given for DOS. B or DOS. 0, the information
applies to all drive types.

APPENDIX F. COMPARSION CHART FOR DOS'S . F-1

min processor req.

disk controller/drive
type used

DOS.A

16K 2200

9350
9354

phys. drives on sys"tem 1-4

logical dr i ves per'
physical drive

type of di sk

cylinders used/drive

tracks used/drive

sectors/track

sectors/drive

bytes/drive

user sectors/drive

user bytes/drive

sectors/cl\lster

clusters/track

clusters/cylinder

max.clusters/seg.

max.sectors/seg.

max.sectors/file
(including RIB's)

directory search"

Scotch 92-204
or equivalent

203

406

24

9,744

2 , 494 ,464

9,600

2,457,600

6

4

8

32

192

9600

HDI

F-2 DISK OPERATING SYSTEM

DOS.B

16K 2200

9370
(9374)

1-2

2

Scotch 911-0
or equivalent
(Datapoint
model 80428)

203

1 ,624

24

38,976

9,977,856

38,400

9,830,400

24

8

10

240

30,240

HDI

DOS.C

16K 1100

9380

1-4

1

IBM 128-byte"
so ft-sectored
diskette, or
~quivalent

76

76

13

988

252,928

800

204,800

3

4

4

32

96

800

DMB

DOS.D

min.processor req. 48K 5500

DOS.E

48K 5500

9350
9354

disk controller/drive 9370, (9374)
type used [9390]

phys. drives on system 2-8 (2-8) [2-3] 2-4

type of di sk

logical drives per
physical drive

cylinders used/drive

tracks used/drive

sectors/track

sectors/drive

bytes/drive

user sectors/drive

user bytes

sectors/cluster

clusters/track

clusters/cylinder

max.clusters/seg.

max.sectors/seg.

max.sectors/file
(including RIB's)

Scotch 911-0
or eq u i val en t
(Datapoint
model 80428)
[Scotch 949/80
or equivalent]
2 (2) [5]

Scotch 92-204
or eq u i val en t

1 .

253 (203) [253] 203

2,024 (1624) 406
[2024]

24 24

48,576 (38976) 9,744
[48,576]

12,435,456 2,494,464
(9,977,856)·
[12,435,456]
48,000 (38,400) 9,600
[48,000]

12,288,000 2,457,600
(9,830,400)
[12,288,000]
24 6 .

1 4

8 8

32 32

768 ,192

38,400 9600

. DOS. G

60K 1800

1840

2-4

Maxell FD-3200S
. floppy di sk
or equivalent

76

76

26

·1 , 976

505,856

1600

405,600

3

8

8

32

96

1600

APPENDIX F. COMPARSION CHART FOR DOS'S F-3

directory search HDI HDI DHB

In the table below "cylinder" refers to the PDA HSB and "sector"
refers to the PDA LSB.

PDA of CAT

PDA of CAT
Backup

PDA of Lockout
CAT

PDA of Lockout
CAT Backup

PDA of HDI

PDA of HOI
Backup

Directory
Location

Directory
Backup
Location

DOS.A/DOS.E

0,0

0,0200

o , 1

0,0201

0,2

0,0202

cylinder 0
sectors 6
to 025'

cylinder 0
sectors
046 to 065

DOS.B

0,0

0,040 .

0, 1

0,041

0,2

0,042

cylinder 0
sectors 5
to 024

cylinder 0
sectors
045 to 064

F-4 DISK OPERATING SYSTEM

DOS.C

041,0303

042,0303

043,0303

044,0303

NA

NA

sector 303
cylinders
021 to 040

sector 303
cylinders
01 to 020

DOS.D

0,0

0,040

0, 1

0,041

0,2

0,042

cylinder 0
sectors 7
to 026

cylinder 0
sectors
047 to 066

DOS.G

041,0343

.042,0343

043,0343

044,0343

NA

NA

sector 34~
cylinders
021 to 04(

sector . 34~
cylinders
01 to 020

APPENDIX G. DISK DATA FORMATS

G.l Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long. The
system keeps the physical file number in the first physical
location of each sector and the system logical record number of
the given record in the second (LSB) and third (MSB) physical
locations of each sector. This is done to insure that the record
obtained is the record desired. The last 253 bytes may contain
anything the use~ chooses. There are, however, some assumptions
made by the DOS and the programs supplied_with it that deal with
disk data. These assumptions fall into several classes described
below. The two types normally of greatest interest are object
records and symbolic data records. Object records include all
records that are to be loaded into memory by the DOS loader.
Symbolic data records include all records that are to be handled
by the standard data handling programs. These programs include
the general purpose editor, the assembler, DATASHARE, RPG II,
DOSBASIC, and the DATABUS programs (both source lines for the
various compilers and data records handled by the resulting
programs).

G.2 OBJECT File Format for Disk

Object files contain binary data which can be load~d using
the system loader and then executed. Multiple logical records can
be grouped into one physical block.

BYTE
-1--

2
3
4
5
6

CONTENTS
o => object record, or 0377 => end of block
H - load address for record
L
-H - ones complement of load address
-L
count of data bytes following

End-of-file is indicated when the count byte has a value of
zero. For the end-of-file record, the value of HL is the entry

APPENDIX G. DISK DATA FORMATS G-1

point address of the object code. The object file created by the
ASSEMBLER has a system loader object format.

Logical Record Number Byte # Description

L RN 0 (RIB)

L RN (RIB COpy)

LRN 2

o
1
2
3
4
5
5

Physical File Number,
Logical Record Number (LS8)
Logical Record Number (MSB)
0377
Segment Descriptor

Segment Descriptor 2

2N+2 Segment Descriptor N
2N+3
2N+4 0377
2N+5 0377

o
1
2
3
4
5
6

7

8
9

n+9
n+10
n+ 11
n+12

n+13

n+14
n+15

Physical File Number
Logical Record Number' (LSB)
Logical Record Number (MSB)
o ,- indicating 'data block
Starting address of block (LSB)
Starting address of block (MSB)
One's complement of LSB of starting
address
One's complement of MSB of starting
address
Block length (n)
Beginning of data

0 - Next data block
Starting address of
Starting add'ress of
One's complement of
address
One's complement of
address
Block length (m)
Beginning of block

block (LSB)
block (MSB)
LSB of starting

MSB of starting

data

G-2 DISK OPERATING SYSTEM

LRN 3

LRN N

n+m+15- Next data block

o
1
2
3

o

0377 - End of Record

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
o - Next data block

o ~ Last data block
Transfer address (LSB)
Transfer address (MSB)
One's complement of the LSB of the
transfer address
One's complement of the MSB of the
transfer address
o - block length equal to zero signifies
end-of-fi le

G.3 Relocatable Code Formats

Relocatable object code is initially assumed to be starting
at location 010000 until a "select new PAB" or "select new
location" code is encountered. .

Each sector containing relocatable code starts with a one
byte header containing sector contents code." The relocat~ble code
in each sector is followed by a byte containing binary zero.

Sector contents codes are:

0200
0201
0202
0203
0204

Directory
Program Identification
Object Text
External Definitions
External References

APPENDIX G. DISK DATA FORMATS G-3

0205 Transfer Address

Relocatable code files are in library form as follows:

-------------------------------~-----Directory
1

-~---~------------------------------- I
P Program Identification :<--
o -------------------------------------
i
n Object Text
t

e: -------------------------------------r -->: External Definitions

1
I.

External References

Transfer Address
·1
1
1
1
1

------------------------------------- 1 ---I Program Identification :<------
1
1

G.3.1 Directory

etc ...•....

p
o
.i
n
t
e
r

<-------Directory Entry------>
------------------------------------~------------------
I Next Directory LRN : Program Name :
: LSB I MSB: :

Program LRN
LSB MSB

<--------2---------> <-----8------> <------2------>
bytes bytes bytes

1
1

: etc ..

A directory entry is required for each object program in a
library. The first sector of the object code library is reserved
as a directory for the first twenty-four programs in the library.
If the library contains more than twenty-four programs, a pointer
is generated that points to the LRN of the next directory sector
(the sector following the twenty-fourth object program). The last
directory sector used has a pointer set to 0377, 0377.

G-4 DISK OPERATING SYSTEM

G.3.2 Program Identification

<----------PAB Entries--------->

I LRN I Program-name I PAB I PAB-name IAddresslLength I
ILSBIMSBI lflagsl ILSBIMSBILSBIMSBletc

<--2--> <------8-----> <-1-> <----8---> <--2--> <--2-->
bytes bytes byte bytes bytes bytes

LRN is a pOinter to the first sector following object text
(the first external definition sector, or the first external
reference sector, or the transfer address if there are no
definitions or references).

The program name is an eight character name of the program,
as reflected in the program id record.

Each PAB (program address block) defines a separ'ate address
counter used to assign memory locations. Up to fifteen PAB's can
be defined for each program (PAB numbers 1-15). Flag bits are used
to indicate relocatability and page sensitivity.

PAB flags:

I 765 432 101

\ \ \ \ \ \
\\\\\--

\ \ \ \
\\\----

\ \
\ -----

G.3.3 Object Text

bits 0-2 are unassigned
GOMMON PAB
PAB must not cross page boundry
PAB must start on page boundry
PAB is relocatable
PAB assigned

Relocatable object text is interspersed with control bytes
used by the linkage ,editor in creating absolute code.

APPENDIX G. DISK DATA FORMATS G-5

G.3.3.1 Memory Location

Codes 0160 and 0161 are used to define starting memory
locations.

Select New PAB

0160 PAB

PAB defines the number of the Program Address Block to be
used for the object code that follows. If the PAB is not in use,
the new location will be zero.

Select New Location
----------------------~----~------

0161 LSB MSB

LSB and MSB define the new location in the current PAB of the
next byte of object code.

G.3.3.2 Absolute Text

Codes 0001-0077 precede code and data that does not require
relocation.

Absolute Text

1-0077 1-63 absolute text bytes

The code is a count of the number of absolute text bytes that
follow.

G-6 DISK OPERATING SYSTEM

G.3.3.3 Complex Relocatable References

Codes 0100-0157 are used to define operators and operands of
complex expressions that are evaluated by the linkage editor
during relocation. Complex expressions are in encoded Polish
Postfix notation.

Push Relocatable Location on Stack

: 0100+PAB : LSB MSB

PAB, LSB and MSB define the assembled memory location.

Push External Reference on Stack

: 0120+MSB: LSB

MSB and LSB are an index to an external reference entry.

Push Binary Value on Stack

0140 LSB MSB

LSB and MSB are a 16 bit binary integer.

APPENDIX G. DISK DATA FORMATS G-7

Operators:

<

0141

.AND.

0145

/

015 1. I
I

>

0142

+

0146

Negate

0152

• 0 R. .XOR .

0143 0144

*
: _ 0147 0150

• MOD.

0153

Codes 0141-0153·are expression operators.

Pop Result of Evaluation from Stack:

Pop LSB Pop MSB Pop LSB-MSB Pop MSB-LSB
...... _- _--- --~---- .. -.,.. ---------- --------~-0154 0155 0156 0157 I . I

---------- ---------- ---------- ----------
Codes 0154-0157 terminate evaluation of complex expressions

and indicate the form of the absolute code to be generated.

G.3.3.4 Simple Relocatable References

Codes 0200-0377 are used for simple relocatable references
consisting of a single relocatable symbol or relocatable symbol
plus a non-relocatable displacement. Codes for simple relocation
can be decoded as follows:

G-8 DISK OPERATING SYSTEM

I 765 4 3 2 101

\ \ \ \ \
\ \ \ \ -

\ \ \
\ \

\ ---

LSB Reference

bits 0-3 are part of relocation definition
external reference
inverted address (MSB-LSB)
16 bit address
simple relocatable memory reference

: 0200+PAB: LSB

LSB defines the relocatablememory location.

MSB Reference

I 0240+PAB : LSB MSB

PAB, LSB and MSB define the relocatable memory location. A
full sixteen bit address must be given in case a carry occurs
between LSB and MSB during relocation.

LSB-MSB Reference

: 0300+PAB : LSB MSB

PAB, LSB and MSB define the relocatable memory location~

MSB-LSB Reference

I 0340+PAB : LSB MSB

PAS, MSB and LSB define the relocatable memory location.

APPENDIX G. DISK DATA FORMATS G-9

LSB External Refere~ce

: 0220+MSB: LSB

MSB and LSB are an index to an external/forward reference
entry table.

MSB External Reference

: 0260+MSB: LSB

MSB and LSB are an index to an external/forward reference
entry table.

LSB-MSB External Reference

: 0320+MSB: LSB

MSB and LSB are an index to an external/forward reference
entry table.

MSB-LSB External Reference

: 0360+MSB: LSB

MSB and LSB are an index to an external/forward reference
entry table.

G.3.4 External Definitions

External name : PAB or 0200 : LSB l MSB :

<----------8---------> <-----1-----> <-1-> <-1->
bytes byte byte byte

External definitions are external symbols made available to
other relocatable modules. External references made by other
relocatable modules are linked to external definitions as

G-10 DISK OPERATING SYSTEM

discussed in Chapter 1. The location of each relocatable external
definition is defined by PAB, LSB and MSB. A flag (0200), LSB and
MSB define non-relocatable external definition values. Up to
twenty-two external definitions can be defined in each external
definition sector. All external definition sectors for a given
program must be contiguous, and not intermixed with external
reference sectors.

G.3.5 External and Forward References (4096 maximum)

External Reference

ASCII Symbol

<-------------------8--------------------->
bytes

Forward reference

0200 PAS LSB MSB Unused

<--1--> <--1--> <--1--> <--1--> <---4---->
byte byte byte byte bytes

A forward reference is defined as a reference whose value is
unknown at some given time in the relocatable module's creation,
but whose value is known later, and then is plugged into the
forward reference table.

All external reference/forward definition sectors must be
contiguovs.

G.3.6 Transfer Address

PAS LSB MSB

<----1----> <----1----> <----1---->
byte byte byte

APPENDIX G. DISK DATA FORMATS G-11

PAB, LSB and MS~ define the starting location in the program.
If PAB=0377, a starting location was not specified.

G.4 Format of Library Files

The Library is constructed from two types of entries,
Directory Entries and members.

G.4.1 Directory

The first entry of the library file must be the first
Directory Entry. Additional directory entries are formatted as
required and linked into the directory chain. Each directory has
two major parts:

1) The di rectory header which is 7 bytes. The format is as
follows:

l 0377 l

0200

0100

LSB

T MSB
LSB

T MSB

Directory Unique Code
2 Bytes long

Type of libra~y (see 11brary type chart)

'Pointer to next directory entry LRN
0377,0377 if last one.

Pointer to end of file sector, (LRN)
(only valid in first directory).

2) Member name entries, each one is 10 bytes long.

T [SB T
T MSB T

G-12

Member name 8 bytes long
in ASCII code

Starting LRN
of this member

DISK 'OPERATING SYSTEM

One directory entry can contain a maximum of 24 member names. All
unused member name entries will be set to 0377's. A deleted
member will be set to 0377's.

An entire directory entry:

IDirectory Header Member
Name 1

LRN I Member I LRN I I Member I LRN 1 03771
• I

G.4.2 Members

: Name 2: I Name n I

The members are the second type entry of the library. Each
member is pointed to by the member name pointer in one of the
directory entries. Each member is terminated by an end of member
(EOM) code. The EOM is indicated by a sector 'which contains six
bytes of 000 followed by 010.
NOTE: EOM indicates only the end of this member not the end of
the Ii br ary.

A simple library file format

IABCDI lfv1ember Al -r-T IMember cl ,-,- IMember ITT ,-,- IMember I I I I I I

Directory EOM EOM EOM

• EF • IMember El -.-. IMember Fl -.-. -.-.
I I I I I I I I

Directory EOM EOM EOM

APPENDIX G. DISK DATA FORMATS G-13

Bl TT
I I

EOM

G.4.3 ~tbrary Type Chart

If the library contained more than 24 members another
dir@gtory entry would be placed into the chain of directories.

Th~ fgllQwing i~ the. bit chart for library types

1 . . , . , , . R~$.e.rved . 1 . . . " , , Absolute . . 1 . ~ . ~ , R,~~gQg tal b Ie
., 1 1 1, 1 1 Ung~fil1ed

DATABUS fil~s con~@~n code produced by the DATABUS compiler
for use by i~~ ~Rtefpreter. All blocks ire 251 bytes long.

BYTE CONTENTS

1 040 - DATABUS code file indioator
2 H - load address
3 L
4 -H - complement of load address
5 -L

End of file is indicated by bytes 1 through 6 being binary
zeros, followed by a binary three.

G.6 DATAFORM Data File Format

Every record created by a DAT AFORM form is stored
consecutively on the disk terminated with a 015 designated as the
end of logical record character. Disk sector boundaries are
transversed by placing a 003 to represent the end of physical
record. An end of file mark is six zeros followed by a 003
beginning at the start of the next unused sector. This complies
with Datapoint's DOS text file structure. However, other
characters immediately following the 003 are necessary record
descriptors to allow record form linkages and the record backspace
feature to be implemented in DATAFORM. The first character
following the end of physical record character, 003, represents
the form number that created the first logical record starting in
that sector, biased by 4. The character immediately following is
the absolute address in the sector of the first character of the

G-14 DISK OPERATING SYSTEM

logical record. (Note that the first data character of every
sector starts at address 003.) There must be a similar pair of
characters describing every logical record that starts in that
sector. These character pairs must be in that sector and in
consecutive order. (i.e. The first pair relates to the first
record, the second pair to the second record, etc.) The remainder
of the sector, if unused, is filled with zeros. DATAFORM 1100
Version 1 may use the entire 253 bytes available in the sector.
However, DATAFORM Version 2 does not use the last two bytes of
every sector, only 251 bytes are used.

G.1 MULTIFORM File Format

The first sector of a Multiform file contains information
concerning the file name, form library relating to the data, and
end of file position. The format of this he~der sector is
described below. The first byte of a sector has a sector address
of zero.

SECTOR ADDRESS

0- 2
3

4- 11
12- 14
15- 16

17- 24
25- 27
28-251

252
253

254-255

DESCRIPTION

Reserved for DOS
Contains a byte value of 003
First 8 characters of the data file name
Three characters of the data file extension
LRN of the last sector which has d~ta written to
it. Mu s t be in L S B , M S B fo rm a t
First 8 characters of the form file name
Three characters of the form file extension
Not care conditions
Contains a byte value of 000
Contains a byte value of 003
Reserved for DOS

All records are now written consecutively in a non-space
compressed 'format. Each record is terminated by an 015. The end
of the physical record is indicated by an 003. Bytes after the
003 contain special information that Multiform uses. This
information is right justified in 'the sector, which will be
described from right to left.

APPENDIX G. DISK DATA FORMATS G-15

SECTOR ADDRESS

253

252

251

DESCRIPTION

Contains a byte value equal to the number of
records that start in that sector plus the value
3.

Each record that starts in the sector has two
bytes that gescribe its position and the form
that created it.

Contains a byte value equal to the· form number
of the form that relates to the last record that
starts in the sector.

The true sector position of the last record that
starts in this sector.

The next preceeding byte pair describes the next to the last
record that starts in that sector in the same format as described
above. These byte pairs are repeated for every record that starts
in that sector. The end of physical record preceeds these record
description byte pairs by no more than one character. The
exception to this is the last sector in the file which contains
data. In this case, immediately preceeding the record description
byte pairs will be a byte/whose value is the true sector address
of the end of physical record character. Note, if no record
begins in this sector, sector byte address 253 will contain an 003
and the preceeding byte will have the sector address of the end of
physical record character. The next sector in the tile will
contain the standard DOS end-of-file mark.

G.B TEXT File Format

TEXT files typically contain data, source statements, or
whateve~ is meaningful to the user. The requirement is that the
data contained in the text file must be equal to or greater than·
040(sp~ce). 'The only bytes less than 040 which are allowed are
the following:

CONTROL BYTE SYMBOL MEANING

000 . NULL. The NULL control byte is used in the
indication of the end of the file. .

003 END-Of-MEDIUM. No more meaningful data is contained

G-16 DISK DPERATING SYSTEM

011<cnt>

015

032

in this block. The EM is NOT a data byte but must
be within the block.

SPACE COMPRESSION. The byte following the 011 is a
binary count of spaces which have been compressed.
<cnt> can be between 2 and 255, inclusive. The
011<cnt> sequence must not be split across block
(sector) boundarie-s-.--

END-Of-RECORD. The EOR, also the Enter [ENT] or
Carriage Return character, indicates the end of the
logi cal record. It is NOT a da ta byte.

DELETE. The DEL byte indicates the data byte is
deleted. The DEL is NOT a data byte. Entire
records (including the EOR indicator) can be deleted
by over-writing them with DEL bytes.

There is no explicit maximum size for a logical record. A
logical record can span as many blocks (sectors) as necessary,
within the capacity of the device. A physical block must be less
than or equal to 251 bytes, including any necessary EOR bytes and·
the trailing EM byte. Text files can be either space or record
compressed, or both, or may be blocked. Space compressed files
use the CMP control bytes to represent strings of blanks within
logical records. A space compressed file has no particular
relationship between the physical and logical records. A record
compressed file does not use space compression, but uses EOR
control bytes to identify logical records within physical records.
A record compressed file has no particular relationship between
the physical and logical records. A blocked file has some fixed

. rel~tionship between logical arid physical records, normally
containing one logical record per physical sector. Datapoint text
files are generally both space and record compressed, record
compressed only, or blocked. Blocked files with space compression
are possible but are not generally used.

End of file is indicated by bytes 1 through 6 beirtg binary
zeros <NUL>, followed by a binary three .

APPENDIX G. DI SK OAT A FO RMATS G-17

G.9 lSI File Format

The indexed file is a normal GEDIT-compatible text file.
The ISAM file is of the following format: ' .

First record - header record

0-10 - indexed file name of form filenameext
11 - PFN of the ISAM file
12 - the sector" of the ISAM file RIB
13 - the cylinder of the ISAM file RIB
14 - PFN of the indexed file
15 - the sector of the indexed file RIB
16 - the cylinder of the indexed file RIB
17-18 - OBSOLETE
19 - OBSOLETE
20-22 - last record used in data file (BUFADR, LRN LSB, LRN MSB)
23-25 - next free entry in ISAM file (BUFADR, LRN LSB, LRN MSB)

Second sector - highest l~vel

The highest level index is a single sector using the same format
as the intermediate level sectors described below.

Third+ sectors - lowest level

KEY/015/NEXBUF/NEXSEC/NEXCYL/RECBUF/RECLSB/RECMSBIIKEY
Since key cannot be split over sector boundary,
sector is padded with 0377's.

KEY - uncompressed ASCII key with trailing spaces truncated
o -> first record
0377 -> last record

NEXBUF - buffer address of the next key, 0 implies next sequential
NEXSEC - sector address of the next key
NEXCYL - cylinder address of the next key
RECBUF - buffer address of the indexed record
RECLSB - logical record number LSB of the indexed record
RECMSB - logical record number MSB of the indexed record

N+ sectors - intermediate levels

KEY/012/NEXSEC/NEXCYLIIKEY .••
Since key cannot be split over sector boundary, sector is filled
0377's.

KEY- uncompressed ASCII key with trailing spaces truncated
o -> first record

G-18 DISK OPERATING SYSTEM

0377 -> last record
NEXSEC - sector address of the next-Iower-Ievel key
NEXCYL - cylinder address of the next-Iower-Ievel key

The ASCI I key tag file produced by SO RT 0 r INDEX u til it ies an d us ed as a:
intermediate step in the creation or re-creation of an lSI file has the
following format.

RECLRN/RECBUF/KEYI0151IKEY ...

RECLRN - 5 byte ASCII decimal logical record number of the indexed
key

RECBUF - 3 byte ASCII decimal buffer address of the key,
the ASCII decimal numbers have leading blanks

KEY - compressed ASCII key with trailing spaces truncated

G.10 SORT TAG File Format

The format 'of a SORT TAG file is as follows.

1. For each record in the corresponding input data file, the TAG
file will have a three byte binary pointer to the first byte
of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most significant portion of LRN),
Byte 2: LSPLRN (Least significant portion of LRN),
Byte 3: BUFTPTR (Di sk buffer pointer).

3. The three-byte binary pointers are blocked 83 to a physical
di sk record.

4. The physical-end-of-record is indicated by an, .

5. The end-of-file is indicated bj bytes 1 through 6 being
<NUL>s followed by one .

APPENDIX G. DISK DATA FORMATS G-19

INDEX

AEN 9-3
auto-restart 10-2, 10-3, 53-4
available space 5-2, 48-2
background 49-2, 49-3, 49-4, 49-5, 49~6, 49-7, 50-26, 52-1,

54-1
BEGIN/END 16-7, 16-8, 16-12
bits 21-5, 21-6, 22-7, -48-2, 48-6, 48-11, 50-2, 50-7, 50-12,

50-14,50-24,50-26,50-27,51-19,51-21, -53-6,54-1,57-3,
57-6, 57-7 '

boot 1-7, 6-3, 6-6, 9-2, 10-2, 10-3, 13-1, 22-1, 36-1, 43-1,
43-2, 49-1, 55-5, 55-14, 57-1

bytes 1-6, 2-1, 5-1, 20-4, 20-7, 20-12,20-14,20-16, 21-1,
2 1 - 3, 2 1 - 5, 22- 3, 22-5, 22 - 6, 22 - 8, 22-9, 2 5 - 1, 26- 1, 28- 4 ,
28-8, 31-1, 31-2, 33-7, 33-8, 34-1, 38-5, 38-7, 41-2, 41-10,
41-16, 41-17, 41-18, 41-21, 41-25, 41-32, 45-1, 45-2, 45-3,
47-1, 48-1, 48-2,48-3, 48-4, 48-6, 48-7, 48-10, 49-3, 50-1,
50-9,50-13,50-16,50-17,50-18,50-19,50-21,50-22,50-25,
51-1, 51-8, 51-9, 51-19, 52-3, 52-4, 52-5, 53-4, 53-5, 53-6,
53-7, 55-10, 57-3, 57-6

cat 6-4, 15-1, 15-2, 20-3, 20-4, 20-5, 20-6, 20-7, 20-11,
20-12,20-13,20-15,20-16,20-18,21-2,21-4,42-1,42-3,
46-1, 48-2, 48-3, 51-6, 53-4, 53-6i 55-8, 55-10

CLUSTER ALLOCATION 11-5,20-6,20-7,21-2, 48-1,51-3,55-5
command lin e' 1 - 4, 1 - 6, 2- 1, 3 - 1, 3 - 2, 3 - 3, 5 - 2, 7 - 1, 9 - 1, 9 - 2 ,

10-1, 10-2, 10-3, 10-8, 11-2, 12-1, 12-2, 12-3, 12-4, 12-6,
1 2 -7, 12 -.8, 1 3 - 1, 1 3 -2, 1 4 - 1, 1 4 - 2, 1 5 - 1, 1 6 - 1, 1 6 - 2, 1 6 - 3 ,
16-4,16-5,16-6,16-7,16-14,16-15,20-1,20-2,20-10,21-1,
21-5, 21-6, 23-1, 23-2, 23-3, 23-4, 23-6, 23-8, 23-9, 23-10,
23- 1 1, 23- 12, 23- 1 3, 23- 1 4, 2 3 - 1 5, 23- 17, 23- 1 8 , ,2 3 - 19, 2 3 - 2 4 ,
23-30, 23-33, 23-34, 23-36, 23-37, 23-38, 23-41,~23-42, 24-2,
24-3, 25-3, 26-1, 27-1,28-3, 28-6, 28-13, 30-1,' 33-1, 33-3,
33 - 6, 3 3 -7, 34 - 1, 3 4 - 3, 3 4 - 5, 3 5- 1, 3 6 - 1, 37 - 1, 3 8 - 4 , 4 1 - 1 ,
41-4, 41-5, 41-12, 41-13, 41-16, 41-20, 41-26, 41-28, 41~29,
4 1 - 3 0, 4 8 - 1 2, 4 8 - 1 3, 48 - 1 4, 4 8 - 1 5, 5 0 - 2 2, 5 0 - 2 3, 5 0 - 2 4., 5 3 - 1 ,
55-4, 55-6, 55-14

commands 1-3, 1-4, 2-1, 3-1, 6-3, 10-1, 10-3, 12-1, 12-2, 12-5,
12-7, 1-2-8, 12-9, 14-1, 16-1, 16-11, 16-12, 18-1, 21-4, 21-5, -
21-6,22-1, 22-2, 22-3, 22-6, 22-7, 22-8, 22-9, 22-10, 23-1j
23-4,23-5,23-8,23-9,23-11,23-13,23-14,23-15,23-17,
23-18, 23-19, 23-26, 23-27, 23-28, 23-29, 23-30, 23-32, 23-34,
2 3 - 40, 23 - 4 1, 23- 42, 2 3 - 47, 2 5 - 1, 4 1 - 26, 4 3 -2, 4 6 - 1, 47 - 1 ;
47-2, 48-12, 50-24, 50-25, 53-1, 57-1, 57-2, 57-3, 57-4, 57-6,
57-9

comment 12-2, 16-4, 16-8, 16-9, 16-10,23-3,23-20,23-21,
23-28, 23~30, 23-31, 23-32, 29-1

CRCC 21-3, 55-6
CRT 1-8,3-1,4-2,6-3,12-4,12-5,22-5,24-2,24-3,25-1,

29-1,31-2,31-3,31-4,41-12, 41-28,45-1,45-2, 47-2, 56-4
CTOS 6-4, 6-6, 33-1, 33-5, 33-6, 33-8, 34-1, 34-5, 52-1, 52-2,

52-4, 52-5, 52-6, 56-2
data files 2-1, 18-3, 23-1; 41-19
debug 22-2,47-1, 48-13, 49-7,50-24,50-25,56-4,57-1,57-2,

57-3, 57-4, 57-5, 57-6, 57-9
directive 1-7,16-3,16-4,16-5,16-6,16-9,16-12,16-13
directory 5-2, 11-3, 11-4, 15-1, 19-1, 20-3, 20-4, 20-6, 20-7,

20-10, 20- 12, 20-13, 20-14, 20- 15, 21-1, 21 -2, 21-3, 21- 5 ,
21-6, 21-7, 22-10, 24-1, 24-4, 27-1, 30-1, 33-1, 33-2, 33-3,
33-4, 33-6, 33-8, 33-9, 34-1, 34-2, 34-3, 34-4, 34-5, 34-6,
34-7, 34-8, 34-9,41-11,41-12,41-15, 41-25, 41-27, 41-32,
42-1, 42-3, 42-4,46-1, 46-2, 48-1, 48-2, 48-3, 48-5, 48-6,
50-5, 50-8, 50-10, 50-11, 50-12, 50-13, 51-2, 51-3, 51-4,
51-5, 51-8, 51-22, 53-6, 55-5, 55-6, 55-10, 56-2

disk files 3-1, 18-1,33-2,34-1,48-3,48-11
diskette 2-1,6-3,11-2,19-2,21-6,22-8,48-1,,48-3,48-5
DOS 1-1, 1-2, 1-3, 1-4, 1-6, 2-1, 2-2, 2-3, 3-1, 3-2, 3-3, 5-2,

5-3,6-1,6-2,6-3,6-4, 6-5, 6-6, 8-1, 9-1, 9-2, 10-1, 10-2,
10-3, 10-4, 11-1, 11-2, 11-3, 11-4, 11-5, 11-6, 12-1, 12-2,
12-4,12-7,12-9,13-1,13-2,14-1,14-2,15-1,16-1,16-2,
16-3, 16-8, '16-9, 16-14, 16-15, 18-1, 18-3, 19-1, 19-2, 20-1,
20-2, 20-3, 20-4, 20-7, 20-9, 21-2, 21-3, 21-4, 21-5, 21-6,
21-7, 22-1, 22-2, 22-5, 22-6, 22-7, 23-3, 23-5, 23-7, 23-25,
23-27, 23-36, 23-38, 24-1, 24-2, 24-3, 26-2, 28-1, 28-3, 28-5,
28-7, 28-8, 28-9, 29-1, 31-1, 31-2, 31-3, 33-4, 33-5, 34-4,
3 4 - 5, 3 4 - 6, 3 4 - 9, 3 4 - 1 0, 3 6 - 1, 38- 1, 38- 4, 38 -7 ,'I 38 - 8, 4 1 ~ 4 ,
41-10, 41-17, 41-18, 41-21, 41-22, 41-23, 41-24, 41-25, 41-26,
41-27,41-28,41-32,42-1,42-3,42-5,42-6,43-1,43-2,44-1,
45-1,45-2,45-4,46-1,47-1,47-2,48-1,48-2,48-3,48-5,
48-6,48-7,48-8,48-9,48-11,48-12,49-1,49-2,49-3,49-5,
49-7, 50-1, 50-4, 50-7, 50-8, 50-9, 50-12, 50-14, 50-18,
50-21,50-22,50-25,51-1,51-6,51-9,51-14,51-15,51-16,
51-18, 51-19, 51-20, 51-21, 51-22, 51-26~ 51-28, 52-1, 52-2,
53-1, 53-2, 53-3, 53-4, 53-6, 53-8, 54-1, 55-1, 55-3, 55-5,
55- 6, 55-7, 55- 14, 55- 15, 56- 2, 56- 3, 56- 4

DOSFLAG 7-1, 16-8, 28-7, 51-21, 56-3
drive spec 19-1,41-29, 48-14, 53-7,53-8
EBCDIC 22-2, 22-3, 22-5, 22-8, 28-2, 28-3, 28-6, 41-10
entry point tables 48-9
error 1-1, 1-4, 1-5, 1-6, 1-7, 6-2, 9-2, 11-5, 11-6, 12-4,

12-6, 12-9, 16-2, 16-3, 16-4, 16-8, 16-9, 16-15, 18-3,20-1,
2D-2, 20~3, 20-4, 20-6, 20-7, 20-8,20-10, 20-11, 20-12,
20-13, 20-14, 20-15, 20-,16, 20-18, 21-3, 21-6, 21-7, 22-9,

/

22-10, 22-11, 22-12, 23-13, 23-41,. 23-42, 24-4, 25-3, 26-2,
26-3,29-1,31-3,33-9,34-5,34-9,37-1,38-4,38-5,39-1,
41-8, 41-9, 41-10, 41-11, 41-28, 41-29, 41-32, 41-34, 45-2,
47-1,48-2,48-4,48-12,48-13,50-2,50-16,50-20,50-21,
50-22,50-23,51-19,52-1,52-2,52-7,52-8,53-2,53-4,55-1,
55-2,55-3,55-4,55-6,55-7,55-8, 55-9, 55~11, 55-12, 56-2,
57-1

e x amp 1 e 1 - 2, 2 - 3, 3-2, 8- 1, 1 0 - 1, 1 0 - 2, 1 0 - 3, 1 0 - 4, 1 2 - 2, 1 2 - 3 ,
13-2, 15-2, 16-1, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8, 16-9,
16-10, 16-11, 17-1, 18-1, 18-2, 19-1, 19-2,20-17,21-2, 21-3,
21-6, 22-4, 22-5, 22-7, 22-10, 23-2, 23-3, 23-18, 23-20,
23-23, 23-26, 23-27, 23-29, 23-30, 23-31, 23-33, 23-42, 23-43,
28-1, 28-3, 28-11, 28-13, 29-1, 30-1, 31-2, 31-3, 31-4, 33-2,
34-2, 38-8, 41-4, 41-15, 41-18, 41-20, 41-23, 41-25, 41-27,
42-4,46-1,48-6,49-1,49-4,50-8,50-12,50-19,50-22,
50-23, 50-26, 51-16, 51-22, 54-1

ext e n si 0 n 5 - 1, 5 - 2, 9 - 1, 9 - 2, 1 1 - 1, 1 1 - 4, 1 2 - 1, 1 2 - 3, 1 2 - 6 ,
12-8, 14-1, 15-1, 15-2, 16-1, 18-1, 23-1, 23-5, 23-16, 23-27,
23-39,23-42,23-44,25-1.,28-1,28-2,30-1,31-2, 31-3, 33-1,
33-2, 33-6, 33-8, 34-1, 34-4, 35-1,38-6, 41-5, 41-10, 41-18,
41-25, 41-29, 42-3, 42-4, 42-5, 42-6, 48-4, 48-13, 48-14,
50-1, 53-4, 53-6, 53-7, 55-3, 55-5

FASTSORT 1-4; 28-2, 28~3
filename 15-1,15-2,20-4,30-1,31-3,33-4,33-5,33-6,34-9,

35-1, 41-25, 41-28, 41-29, 56-2
foreground 41-22, 49-1, 49-2, 49~3, 49-4, 49-5, 49-6, 49-7,

50-2,50-3,50-4,50-26,51-15,52-1,52-2,52-7,54-1,56-1,
57-4

format errors 1-6, 18-3, 20-6, 22-10, 23-24, 31-3
formatting 6-1,6-2, 19-2,22-12,29-1,41-19,50-22
HDI 20-3, 20-5, 20-7, 20-10, 20-12, 20-13, 20-14, 48-2, 48-3
high-level language 2-3
IF/ELSE/XIF 16-4, 16-7
in a sub d ire c tor y 1 - 5, 1 5 - 1, 4 2 - 6
input/output 41-2
ISAM 1-5,28-1,28-2,28-3,28-7,38-3,55-9
lSI 1-5,5-1,28-7,28-8,28-9,28-11,31-2
jitter 49-4, 49-5, 49-6, 54-1
key tag 28-1,28-2,28-6, 41-6, 41-7,41-18
LFT 41-17, 41-18, 41-33, 45-2, 45-3, 48-9, 48-10, 48-11, 48-14,

50-1,50-2,50-9,50-10,50-12,50-13,50-14,50-15,50-16,
50-17, 50-19, 50-20, 51-1, 53-4, 53-5, 53-7, 55-9, 56-3

LOCKOUT CAT 6-2,20-4,20-5, 20-17,20-18, 21-2, 48-1, 48-2,
5 1- 4, 55- 8, 55- 1 1

LOCKOUT CLUSTER ALLOCATION TABLE 21-2
logical drive 5-1,6-2,11-7,16-2,19-2,21-1,21-2,21-3,

2 1 - 6, 3 6 - 1, 37 - 1, 42--1, 4 3 - 2, 48 - 1 0, 48 - 1 4, 5 0 - 1, 5 0 -7, 5 0 - 8 ,
50-26, 51-5, 51-6, 53-4

logical fil~ table 41-18,48-9,48-14,50-1,55-1,56-3
LRN 11-6, 20-4,20-15,20-16,21-5, 28-8, 28-9, 28-10, 31-1,

41-13, 41-16, 41-17, 41-34, 45-2, 48-2, 48-4, 48-10, 50-1,
50-9, 50- 10, 50-12, 50-1 3, 50-1 4, 50- 15, 50- 16 1 50- 17, 50- 19 ,
50-20,50-21,51-24,51-25,55-9,55-10,55-11,56-3

LSB 20-16, 21-6, 28-8, 33-7, 48-6, 48-10; 49-3, 50-7, 50-8,
50-15, 57-2, 57-3, 57-5, 57-6, 57-7

marker 34-8, 52-1, 52-2, 52-4, 52-6, 56-2
MCR$ 16-14, 41-22,41-24, 41-25, 48-14, 50-22, 50-23, 53-1,

56-2, 56-3 ~
messages 1-5,1-7,6-2,11-4,11-5,12-4,14-2,20-1,20-2,

20-5, 20-7, 20-11, 20-12, 21-2, 22-10, 23-41, 24-2, 24-3,
28-5,28-7, 33-7,34-6, 34-9, 38-4, 38-6, 41-28, 41-33, 41-34,
47-1, 47-2, 50-21, 50-22, 52-1, 53-5, 55-1, 55-3

MSB 20-16, 21-6, 33-7, 45-4, 48-10, 49-3, 50-7, 50-8, 50-15,
53-6,53-7,57-2,57-3,57-5,57-6,57-7

name 1-5, 1-6, 2-2, 3-1, 3-2, 5-1, 5-2, 6-4, 8-1, 9-1, 9-2,
11-1, 11-4, 12-2, 12-3, 12-6, 12-7, 12-8, 14-2, 15-1, 15-2,
16-2,16-3,16-6,16-11,17-1,18-1,23-1,23-5,23-28,23-31,
23-41, 23-42, 23-43, 23-44, 24-1, 24-3, 25-3, 26-1, 26-2,
26-3, 28-1, 28~2, 28-3, 28-5, 28-9,28-11, 28-12, 30-1, 30-2,
31-2, 31-3, 32-1, 33-2, 33-3, 33-4, 33-5, 33-6, 33-7, 33-8,
33-9, 34-1, 34-4,34-5, 34-6, 34-7, 34-9, 35-1, 35-2, 38-6,
40-1,41-1,41-3,41-4,41-5, 41-10,41-11,41-12, 41-15,
41-20, 41-25, 41-26, 41-27, 41-28, 41-32, 42-1, 42-2, 42-3,
42-4,42-5,42-6,46-1,48-1,48-3,48-4,48-9,48-11,48-13,
48-14,50-1,50-9,50-10,50-11,50-12,51-22,53- 4 ,53-5,
53-6, 53-7, 55-4,55-7,55-8, 55-10, 55-13, 55-14, 56-1

nesting 14-2, 16-2
opti~n 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 6-4, 10-4 t 11-2, 11-3,

12-2, 12-7, 16-1, 16-2, 17-1, 17-2,18-2,20-1,20-2,20-6,
20-8,20-9,20-10,20-12,20-13,21-1,21-4,22-8,23-3,23-4,
23-18, 23-29, 23-31, 23-32, 23-34, 23-42, 23-43, 24-1, 24-2,
24-4, 28-2, 28-3,28-4, 28-6, 28-7, 31-2, 31-3, 31-4", 33-1,
33-2, 33-3,33-7,34-1, 34-2, 34-5, 41-5, 41-6, 41-7, 41-11,
41-12, 41-13, 41-14, 41-17, 41-18, 41-19, 41-20, 41-22, 41-29,
41-30, 41-31, 41-33, 45-2, 55-3, 55-4, 55-5, 55-8, 55-9,
55-11,55-14

parameters 5-2, 9-2, 10-3, 20-2, 23-2, 23-3, 23-5, 23-9, 23-15,
28-2, 28-3, 38-1, 38-2, 41-5, 41-7, 41-12, 41-13, 41-14,
41-32, 50-1, 50-3, 50-4, 50-5, 50-6,50-8,50-9, 50-lO t 50-11,
50-13, 50-14,50-15, 50-16, 50-17, 50-18,50-19, 50-22, 50-23,
50 - 2 8, 5 1- 1, 5 1- 1 0, 5 1- 1 1, 5 1- 1 6, 5 1- 1 8, 5 1.- 1 9, 5 1-2 6, 5 1-28 ,
52-2, 52-3, 52-4, 52-5, 52-6, 52-7, 52-8, 52-9, 53-1, 53-2,
53 3, 5 3 - 4, 5 3 - 5, 5 3 - 6 ,. 5 3 -7, 5 3 - 8, 55- 11, 5 7 - 5

PDA 11-5, 20-14, 28-8, 28-9, 48-5, 48~6, 48-10, 53-6, 55-11,
56-3

peripherals 4-1, 4-2
pfn 1-5, 9-2, 9-3, 15-1, 18-2, 20-4, 20-6, 20-13, 20-14, 20-16,

20~17, 21-4, 21-5, 28-8, 28-9, 30-1, 41-18, 41-20, 42-5, 48-1,
48-2, 48-3, 48-4, 48-6, 48-10, 48-11, 50-1, 50-5, 50-9, 50-10,'
50-11, 50-15, 50-16, 50-17, 50-21, 50-26,51-5, 52-6, 53-4,
53-6, 55-9, 56-2, 56-3

printer 1-2, 1-6, 1-8,4-2,4-3,16-12, 16-13, 16-14,20-1,
20-9,21-1,21-5,21-6,22-1,22-2,22-3,22-4,22-11,24-1,
24-2, 24-3,24-4, 31-1, 31-2, 31-3, 31-4,31-5,41-1, 41-7,
41-19, 41-22, 41-27, 45-1, 45-2, 49-7, 51-16, 51-17, 55-12,
55-14

processors 2-1,4-1,6-1,6-2,10-2,16-2,44-1,49-1,56-4,
57-1, 57-9

protection 5-3, 11-7, 15-1, 17-1, 17-2, 18-2, 19-2, 20-5, 33-4,
33-6,48-3,48-10,48-11,50-8,50-12,50-13,50-14,50-21,
55- 1, 55- 9, 55- 12, 56- 1, 56- 3

prototype 3-3, 33-1, 41-14
PS 1-6, 16-2, 20-2, 20-10, 41-20, 42-4, 45-3, 49-3, 55-10,

55-14, 56-4
recovery 18-3, 20-15, 21-2, 23-24, 23-30
RETRIEVAL INFORMATION BLOCK 21-2, 48-1, 48-4
RIB PDA 20-3, 28-9, 48-10
SEGMENT DESCRIPTOR 20-4, 20-17, 48-4, 48-10, 50-16, 50-21,

51-8, 55-1, 56-3
SOURCE FILE 1-2,12-1,12-2,12-3,12-4,12-6,12-7,12-8,

12-9, 23-1, 23-2, 23-3, 23-5, 23-8, 23-13, 23-24, 23-25,
23-30, 23-32, 23-33, 23-36, 23-38, 33-7, 33-8, 33-9, 34-6,
34-8, 40-1, 55-3

space-compression 1-3, 23-2, 23-5, 23-31, 23-32, 23-33, 23-34,
31-1

subdirectory 1-5, 1-6, 3-1, 6-5, 10-5, 12-7, 15-1, 16-2, 18-2,.
21-3,24-1,30-2,35-1,35-2,42-1,42-2; 42-3, 42-4, 42-5,
42-6, 42-7, 48-3, 48-4, 48-12, 55-5, 55-10, 55~13, 56-3

syntax 12-1, 16-3, 17-1, 22-2, 41-31, 57-3
system data 16-14, 20-2, 47-2, 50-17, 50-20, 55-2, 55-3
SYSTEM DIRECTORY SECTOR 21-2
system tables 2-3,5-1,6-1,6-2,6-6,11-4,20-1,20-5,20-18,

47-2,48-1,50-20,51-10
tag 16-1,16-2,16-3,16-4,16-6,16-7,16-11,28-2,28-6,

28-7, 28-13, 41-6, 41-7, 41-13, 41-17, 41-18~ 41-19, 55-13
UPGRADE 6-4,6-5, 26-2
user 1-3,2-2,4-2,10-1,10-3,10-4,11-1,12-3,12-4,13-1,

16-1,18-1,18-3,19-1,19-2,20-2,20-4,20-18,21-1,21-3,
21-5~ 21-6,22-1,22-7, 23-1, 23-4, 23-8,23-9,23-12,23-14,
23-15, 23-17, 23-18, 23-23, 23-26,23-27, 23-28, 23-29, 23-31,
23-39, 23-40, 23-47, 24-2, 24-3, 24-4, 26-3, 28-2, 28-5, 28-6,
28 - 7, 2 9 ':'" 1, 3 0 -1, 3 1 - 1, 3 5 - 1 ,. 37 - 1, 38 - 1, 4 1 -.1, 4 1 - 2, 4 1 - 7 ,
41-10, 41-13, 41-17, 41-18, 41-21, 41-22, 41-23, 41-26, 41-33,

41-34, 42-1, 42-3, 42-4, 42-5, 42-6, 42-7, 45-1, 45-2, 45-3,
46-1, 47-1, 48-7, 48-9, 48-11, 48-14, 50-1, 50-4, 50-7, 50-9,
5 0 - 1 5, 5 0"- 1 6, 5 0 - 1 7, 5 0 - 2 0, 5 0 - 2 1, 5 0 - 23, 5 0 - 2 4, 5 0 - 25, 5 1 - 2 ,
51-15, 5 1-22, 52-1, 52- 4, 52- 5, 52-7, 52-8, 52- 9, 53-1, 53-2,
53-3, 53-7, 54-1, 55-9, 57-1, 57-2, 57-3, 57-4, 57-6, 57-8

valid 11-3,11-4,20-1,53-7,53-8

Fold Here

Fold Here and Staple ---

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
DJRECTOR OF SOFTWARE SUPPORT
MS N60
8550 DATAPOINT DRIVE
SAN ANTONIO, TEXAS 78284

First CLass
Permit
5774

San Antonio
Texas

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I , , , , , , , , , , , , , ,

Manual Name __ __

Manual N umber ___ _

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

i Did you find this manual understandable, usable, and well-organized?
I improvement.

Please make suggestions for

~,

::i' cl I,
IIq
~,

III' Z,
::i,
", ~,
~,
.. ,
;),
U,

I
I
I , , , ,
I , ,
I
I
I ,
I
I
t
I ,
I
I ,
I ,
t
I ,
I
I ,
I ,
I
I , ,
I
I ,
I ,
I
I
I ,
I
I ,
I

Name __ Date __ _

Organization ___ ___

Street __ __

City· ______________ State, _______ Zip Code ______________ _

All comments and suggestions become the property of Datapoint.

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	08-01
	08-02
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-01
	13-02
	14-01
	14-02
	15-01
	15-02
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	17-01
	17-02
	18-01
	18-02
	18-03
	19-01
	19-02
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	23-43
	23-44
	23-45
	23-46
	23-47
	24-01
	24-02
	25-01
	25-02
	25-03
	25-04
	26-01
	26-02
	26-03
	27-01
	27-02
	27-03
	28-01
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	30-01
	30-02
	31-01
	31-02
	32-01
	32-02
	32-03
	32-04
	32-05
	33-01
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	35-08
	35-09
	35-10
	36-01
	36-02
	37-01
	38-01
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	40-01
	41-01
	42-01
	42-02
	42-03
	42-04
	42-05
	42-06
	42-07
	42-08
	42-09
	42-10
	42-11
	42-12
	42-13
	42-14
	42-15
	42-16
	42-17
	42-18
	42-19
	42-20
	42-21
	42-22
	42-23
	42-24
	42-25
	42-26
	42-27
	42-28
	42-29
	42-30
	42-31
	42-32
	42-33
	42-34
	42-35
	43-01
	43-02
	43-03
	43-04
	43-05
	43-06
	43-07
	44-01
	44-02
	45-01
	46-01
	46-02
	46-03
	46-04
	47-01
	47-02
	48-01
	48-02
	49-01
	49-02
	49-03
	49-04
	49-05
	49-06
	49-07
	49-08
	49-09
	49-10
	49-11
	49-12
	49-13
	49-14
	49-15
	50-01
	50-02
	50-03
	50-04
	50-05
	50-06
	50-07
	51-01
	51-02
	51-03
	51-04
	51-05
	51-06
	51-07
	51-08
	51-09
	51-10
	51-11
	51-12
	51-13
	51-14
	51-15
	51-16
	51-17
	51-18
	51-19
	51-20
	51-21
	51-22
	51-23
	51-24
	51-25
	51-26
	51-27
	51-28
	52-01
	52-02
	52-03
	52-04
	52-05
	52-06
	52-07
	52-08
	52-09
	52-10
	52-11
	52-12
	52-13
	52-14
	52-15
	52-16
	52-17
	52-18
	52-19
	52-20
	52-21
	52-22
	52-23
	52-24
	52-25
	52-26
	52-27
	52-28
	53-01
	53-02
	53-03
	53-04
	53-05
	53-06
	53-07
	53-08
	53-09
	54-01
	54-02
	54-03
	54-04
	54-05
	54-06
	54-07
	54-08
	55-01
	56-01
	56-02
	56-03
	56-04
	56-05
	56-06
	56-07
	56-08
	56-09
	56-10
	56-11
	56-12
	56-13
	56-14
	56-15
	57-01
	57-02
	57-03
	57-04
	57-05
	58-01
	58-02
	58-03
	58-04
	58-05
	58-06
	58-07
	58-08
	58-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	replyA
	replyB

