
DATABUS MULTILINK 11
DBML11

User's Guide

Version 1

March, 1977

Model Code No. 50265

~TAPOINT ~ION

The leader In dispersed data processing ™

COPYRIGHT- 1171 BV DATAPOINT CORPORATION. PRINTED IN U.S.A.

'! .'"

DATABUS MULTILINK 11
DBl'1L 11

User's Guide

Version 1

March, 1977

Model Code No. 50265

PREFACE

DATArlUS is a high level business language system designed for

use with the Datapoint Disk Operating Systems, (DOS "dot" Series).

DATABUS MULTLINK 11 (DBML11) is a DATABUS language interpreter

which supports data communications statements. This allows the

executing DATABUS program to communicate with a remote (or host)

processor. This Interpreter requires a compatible MULTILINK

communications driver for execution. In addition DBHL11 provides

for executing a "background" utility DATABUS program concurrently

with the primary program.

This manual describes the run-time characteristics of the

DBML11 Interpreter. For a description of the DOS DATABUS language

see the OATABUS compiler manual (DBeMP).

i

TABLE OF CONTENTS

1. INTRODUCTION
page

1-1

2. SYSTEM OPERATIO~ 2-1
2.1 System Loading 2-1

2.1.1 Loading from Diskette 2-1
2.2 System Configuration 2-1

2.2.1 Configuration Execution 2-2
2.3 Program Execution 2-3

3. PHYSICAL SYSTEM CHARACTERISTICS 3-1
3~1 Virtual Memory 3-1
3.2 Scheduling 3-2

4. PROGRAMMING CONSIDERATIONS 4-1
4.1 RELEASE 4-1
4.2 DEBUG 4-1
4.3 WRITE 4-1
4.4 ACALL Facility 4-2

4.4.1 ACSTRT - Starting Location For ACALL Overlay 4-3
4.4.2 GCMOP - Get The Next Operand Location 4-3
4.4.3 Condition Code Routines 4-3

4.5 EXTERNAL COMMUNICATIONS Facility 4-4
4.5.0.1 CRCCF - Change Calling Frequency 4-4
4.5.0.2 CRGUSR - Get port number of current USeR 4-4

4.5.1 CRSSAF - Set the Suspension Acknowledged Flag 4-4
4.5.2 CRRPGO - Request Permission to GO 4-5
4.5.3 CRCS$ - Change State 4-5
4.5.4 CRCPS$ - Change Primary State 4-5
4.5.5 CRSSOK,CRSSCU - Set Status 4-5
4.5.6 CRRSB - Reset to Start of Block 4-6
4.5.7 CRNSB - Note Start of Block 4-6
4.5.8 CRCAF,CRSAF - Clear-Set the Avialability Flag 4-6
4.5.9 CRSUSR - Select USeR 4-7
4.5.10 CRGENP - GENeral Poll 4-7
4.5.11 CRZTIM,CRGTIM - Zero, Get the TIMer 4-7
4.5.12 CRGET - GET a character from the comlst 4-7
4.5.13 CRGDCL,CRGSCL - Get a Destination/Source COMLST 4-8
4.5.14 CRTOGL - TOGgLe to the next variable 4-8
4.5.15 CRPUT - PUT a character into a comlst 4-9
4.5.16 CRGRVA - Get the Route Variable Address 4-9
4.5.17 CRSTRT,CHEND,COMPAG - External Definitions 4-10
4.5. 18 ~vHAT HAPPENS WHEN "THE COMLST GOES AWAY" 4-10
4.5.19 LOGICAL RELATIONSHIPS 4-10

Appendix A. INSTRUCTION SUMMARY A-1

Appendix B-. INPUT/OUTPUT LIST CONTROLS B-1

Appendix C. FREEDOM PRINTER CONSIDERATIONS C-1

Appendix D. ERROR CODES D-1

Appendix E. INTERPRETER I/O TRAP CODES E-1

Appendix F. USE Oft' COM~'10N TO RECOGNIZE ERRORS F-1

Appendix G. PROGRAM EXAMPLES G-1

iii

CHAPTER 1. INTRODUCTION

DATABUS MULTILINK 11 (DBHL11) is similar to the Datapoint
DATASHARE Multiple Terminal computer system. The primary
difference is that DATASHARE supports multiple remote terminals
whereas DATABUS MULTILINK 11 supports only the processor console
as an operator input/output device. DATABUS MULTILINK also
handles a high-speed line printer or servo printer and provides
indexed-sequential as well as random and sequential file
accessing, thus providing a powerful data entry and processing
facility. DATABUS MULTILINK 11 also provides for data
communications with a remote (or host) processor through the use
of data communication statements and a compatible line driver.
Additionally the primary and secondary programs may communicate
with each other.

In addition, Oatapoint DOS with its variety of utility and
higher level language systems may be used in conjunction with
DATABUS MULTILINK 11, enabling processing of tasks not appropriate
to the DATABUS language.

Using virtual memory techniques, DATABUS MULTILINK 11 allows
programs with a 32K byte area for executable statements. This, in
combination with the ability of the compiler to accommodate over
3400 labels, enables the user to create and use large high level
language programs. To provide rapid program execution, the data
area of the executing program is manintained in main memory and
not swapped.

DATABUS MULTILINK 11 provides for the simultaneous execution
of two DATABUS programs. The primary program has access to the
system keyboard and display, while the secondary program does not.
The secondary program can be very useful for "background" tasks
arld as print spooling as well as communications.

Any of the Datapoint system printers may be connected to the
DATABUS MULTILINK 11 configuration.

All program execution in DATABUS MULTILINK 11 occurs in the
DATABUS language. Console command interpretation may be handled
in a special DATABUS program, the MASTER program which enables the
user to completely define his own console command and security
system.

Program generation is performed under the Datapoint Disk

CHAPTER 1. INTRODUCTION 1-1

Operating System, using the general purpose DOS editor and VOS
DATABUS Compiler, DBCMP.

1-2 DATABUS MULTILINK 11

CHAPTER 2. SYSTEM OPERATION

This chapter discusses loadiing the DATABUS MULTI-LINK 11
System on Diskete under DOS.C or on Cassette under D08.C, .D, or
.E and the use of the DATABUS MULTILINK 11 Interpreter. The use
of the DOS DATABUS Compiler as discussed in the DBCMP Program
0ser's Guide. DBML11 requires a Datapoint Diskette 1150 ora 5500
DOS for execution.

2.1 System Loading

The DATABUS MULTILINK 11 System is available on Diskette
media. The DOS files furnished with DATABUS 11 are the
Interpreter: DBML11/CMD, ML11CON/CMD, ROLLML11/SYS, and
DBBACK/CMD. The first is the .interpreter proper. The second and
third are the Configurator ·and Rollout processors. The last is
the rollout return processor.

2.1.1 Loading from Diskette

If the DATABUS MULTILINK 11 System is obtained on Diskette
media, additional copies of the system should be generated for
backup purposes using the DOS commands; DOSGEN, COPY, and/or
BACKUP.

The DBML11 Interpreter system file (DBML11/CMD) may be
renamed to any name desired. The ROLLOUT system file ROLLML11/SYS
may not be renamed.

2.2 System Configuration

Before execution the DAtABUS MULTILINK 11 Interpreter can be
configured for use of external communications, rollout and the
secondary program option and to allocate data area between the
primary and secondary programs.

CHAPTER 2. SYSTEM OPERATION 2-1

2.2.1 Configuration Execution

The DB MULTILINK 11 system may be confiigured to run with or
without a utility program. The system is configured by typing:

ML11CON <file spec>

If the name of the configuration file <file spec> is omitted,
DSML11/CFG will be assumed. If the configuration file already
exists, the current configuration will be displayed followed by
the message:

CHANGE OPTIONS?

Reply "Y" to change the configuration or "N" to exit from the
configuration program.

Tne ML11CON program will ask the following sequence of
questions:

SERVO PRINTER?

Reply try" if yo,u want a servo printer configured for printing
at the central system. Reply "N" if a local printer is to be
used.

INHIBIT PRINT EJECT ON RELEASE?

Reply "Y" if you want to inhibit page ejects upon execution
of a RELEASE instruction. Reply "N" if page ejects are' desired.

EXTERNAL COMMUNICATIONS?

Reply "Y" if you wish the system to be configured with
HULTILINK. Reply "N" if HULTILINK is not desired. Selection of
EXTERNAL COMMUNICATIONS limits the baud rate available for port
allocation to a maximum of 9600 baud.

ENABLE ACALL?

Reply "Y" if the file DBML11/ASH should be loaded and ACALL
processing allowed. Reply "N" if this is not desired.

ENABL£ ROLLOUT?

If a "Y" (YES) answer is given at this point the configurator
\'1ill ask:

2-2 DATABUS MULTILINK 11

ENABLE ROLLBACK?

A "Y" (YES) entry here will cause the creation of ROLLFILE/SYS to
be used for storage of the DBML11 variables during rollout. This
will allow a rollback via the execution of DBBACK. ROLLFILE/SYS
requires 114 disk sectors.

If a "N" (NO) entry was given for ROLLBACK the ROLLFILE/SYS
will not be created and will be deleted if it exists. Tnis will
allow a rollout directly to DOS without saving the DBML11
variables.

DISABLE UTILITY PROGRAM?

Reply "Y" (YES) if no utility program will be used. Reply "N"
(NO) if you wish to use a utility program.

If a secondary program was configured, the following message
is displayed:

EQUAL DATA AREAS FOR BOTH PROGRAMS?

A "Y" response divides the available user data area into equal
parts between the two programs. If equal division is not desired
then a "N" should be entered and the following message will be
displayed:

XXXX BYTES LEFT, PORT n DATA AREA SIZE:

where n=1 (for primary port) or 2 (for utility port)

The operator should enter the data area size for the appropriate
port. Any size quantity may be assigned between 256 bytes and
4096 bytes, not exceeding the amount of space remaining (XXXX).

2.3 Program Execution

If the DATABUS MULTILINK 11 Interpreter is named DBML11/CMD
then a DATABUS program (eg. "PROGA") can be executed as the
Primary Program by entering:

DBHL11 PROGA

In addition, the DATABUS Program."PROGB" can be executed as the
Secondary Program by entering:

DBML11 PROGA,PROGB

CHAPTER 2. SYSTEM OPERATION 2-3

It is not valid to execute a secondary program when the primary
program is not executing. The DATABUS program compiled and filed
under the name PROGA/DBC will begin execution. This program will
contfnue executing until an irrecoverable or untrapped error is
detected or until a STOP instruction is executed. At this time
system control will return to the DOS. If no primary program is
specified on the command line the program MASTER/DBC will be
loaded and execution will begin. If a secondary program is
configured but not specified on the command line, then the program
UTILITY/DBC wil~,be searched for and loaded and execution will
begin.

The general form for the DATABUS MULTILINK 11 Interpreter
command is:

DBHL11 [<object>J,[<object>][;<parameter)]

If DATABUS program is not specified, i.e., entering only:

DBML11

will cause the interpreter to assume a default program name of
"NASTER", search for a program cataloged as MASTER/DBC and begin
executing this progran as the primary program. The very first
program to begin execution under DBML11 is considered to be the
"r.laster" program, regardless of what name it has. This program
will continue execution until a STOP is executed, at which time
control will return to the DOS.

The "master" program can cause another DATABUS program to
begin execution through the use of the CHAIN instruction. In this
case, when this new program executes a STOP instruction or has an
irrecoverable or untrapped error, control is transferred to the
start of the master program instead of to DOS.

Two parameters are available for setting the Databus internal
clock. These parameters are separated by commas and are entered
on the command line; These are the clock set parameter and the
date set parameter. The clock set parameter has the form:

Chhmm

where hhmm is the time used on a 24 hour clock. Hence, in order
to set the time to 19:25, the parameter would be C1925. The date
set parameter has the form:

Dddd/yy

2-4 DATABUS MULTIL'INK 11

where yy is the last two digits of the year and ddd is the Julian
date. For example, March 3, 1911 would be specified as:

D062/71

If the Time or Date is entered incorrectly DBML11 will
request that one or the other or both be re-entered. Parameters
not specified in the command line will be assumed O. The DATABUS
MULTI-LINK 11 Interpreter will search for an overlay named
"DBML11/COM" (where DBML11 is the name of the interpreter system
files) if external communications has been configured. If the
overlay exists and is loadable, then the external communications
facility is enabled. If not, the following error message will be
displayed before returning to DOS:

DBML11/COM DOES ~OT EXIST OR IS NOT LOADABLE

The hACALL" facility (See Section 4.4) is also enabled if an
overlay named "DBML11/ASM" exists and is loadable. If an "ACALL"
DATABUS instruction is encountered and the 'A CALL facili ty is not
available then the DATABUS instruction is ignored.

CHAPTER 2. SYSTEfvl OPERATION 2-5

CHAPTER 3. PHYSICAL SYSTEM CHARACTERISTICS

3.1 Virtual Memory

To achieve a reasonable amount of program space for many
simultaneous programs, DATABUS employs a virtual memory technique.
DATABUS code is very compact, with very few bytes of instructions
being capable of invoking a large amount of processor activity.
Therefore, the rate at which DATABUS program bytes are fetched is
very low. Because of this low rate, the actual program code bytes
can be kept in the randomly accessible disk or memory buffers with
very little effect on program execution speed. Another
characteristic of DATABUS code is that it is never modified.
Because of this, program code need only be read in and never
written back out to the disk.

A different story exists in the case of the program data,
however. This data is accessed at a very high rate and must be in
main memory to be effectively accessible by the DATABUS
interpreter. For this reason the program data for all programs is
kept resident in main memory. This fact will be shown later to
have further advantages in the case of port 1/0.

To implement an effective virtual memory accessing algorithm,
the program code is kept on the disk as 250 byte pages. Because
the code is paged in blocks, the DATABUS programmer can make his
program run much more effeciently, in many cases, by forcing his
code to cross as few page boundaries as possible. Each time a
page boundary is crossed, a new page must be read in if it is not
already in the buffer. The paging scheme used is purely demand
with the least recently used page being destroyed to make space
for the new page. Actually, in a lightly loaded system, a single
program could get a number of pages all resident in disk or memory
buffers at once and crossing a given page boundary would not cause
a disk read, but any significant loading will cause this condition
to cease. Therefore, the DATABUS programmer can assume that each
time he crosses a page boundary, a new read will occur. This read
will cause delay in the execution of the program. This time is
time that cannot be used by any other program since the disk is
busy. By causing an excessive number of page boundary crossings,
the programmer can easily cause his program to execute very
slowly.

CHAPTER 3. PHYSICAL SYSTEM CHARACTERISTICS 3-1

However, an instruction called TABPAGE exists in DATASHARE to
aid the programmer in making his execution speed as high as
possible. This instruction causes the location counter in the
compiler to be incremented until it is at the start of the next
page (nothing will be generated if the location counter is already
at the start of a page). When this instruction is executed, it
causes a GOTO' to the start of the next page. By using this
instruction, the programmer can cause logical parts of his program
to contain as few page boundaries as possible. Another way to
increase execution speed is to use in-line coding as much as
possible, especially for short operations, instead of the
subroutine calling feature if the subroutine is located in a page
different from the callirig location. This is economically
feasible because of the large space available for each program
(32K bytes).

3.2 Scheduling

To provide optimum response time, DATABUS MULTILINK 11
handles all port 1/0 using interrupt driven foreground routines,
which means that data transfer between the terminal and the system
can occur regardless of the computational task being handled by
the background program at any given time. The foreground routines
actually interpret the KEYIN and DISPLAY instructions, with the
background interpretive code merely passing these instructions to
the foreground through a circular buffer allocated for each port.
Conventional systems use such a buffer to hold the actual
characters transferred between the system and the terminal.
However, DATASHARE uses this buffer to hold the interpretive code
bytes, thus enabling many more bytes to be transferred than can
actually be held in the buffer. For example, a DISPLAY statement
may contain some quoted information and then a variable name. The
variable name is represented by two bytes but the contents of the
variable could be fifty bytes long, enabling two bytes of buffer
space to invoke the transfer of fifty bytes to the terminal. This
is made possible by the fact that all program data is resident in
main memory which enables the foreground routine to be executing
an liD stat~ment for a given port even though the background
program for that port may not be swapped in at the time.

The foreground and background p~ogram for a given port always
execute exclusively of each other to prevent conflicts over data
values. When the background program executes a DISPLAY statement,
the statement is stored in the buffer for the given port and then
the background program is deactivated and the foreground program
activated. When the foreground program has compl~tely executed
the liD statement, it causes a high priority interrupt to the

3-2 DATABUS MULTILINK 11

background, which deactivates the current program and activates
the one which was executing the DISPLAY statement which caused the
interrupt. One important consideration which must be taken into
account by the DATABUS programmer concerning port I/O is the fact
that every time an I/O instruction is completed in the foreground,
the background program is swapped in. If the programmer is not
careful, he can cause the system to, thrash (spend most of its time
swapping background programs instead of doing useful work) by
causing a high rate of I/O completion interrupts. An example
would be using many separate DISPLAY statements instead of one
long continued statement.

The above discussion concerns only port I/O. All disk I/O is
performed under the DOS which is a background-only operation.
This means that all DOS functions are non-inte~ruptable and long
directory searches (which can take up to several seconds with a
multiple drive system) will cause the response to I/O completion
interrupts to be delayed. Long DOS functions, however, occur
infrequently and therefore can be ignored from an average response
time calculation standpoint.

Printing under DATABUS MULTILINK II is performed in
background and foreground. The background execution sets up a
line image in a 132 position buffer and when vertical paper motion
is necessary, this buffer is transferred to a 512 character
circular buffer which is emptied by a simple foreground process.
The background execution is suspended only if the 512 character
buffer becomes full. Therefore, one can complete a number of
print statements without being swapped out.

When the background program resumes execution due to the
completion of a foreground I/O task, it is guaranteed a minimum
amount of execution time. This prevents the system from spending
all of its time swapping background tasks when the foreground I/O
completion rate is high.

CHAPTER 3. PHYSICAL SYSTEM CHARACTERISTICS 3-3

CHAPTER 4. PROGRAMMING CONSIDERATIONS

4.1 RELEASE

Execution of tne RELEASE instruction will set the OVER
condition flag if the printer is unavailable for use by the port
executing the RELEASE.

4.2 DEBUG

The DEBUG instruction is treated as a N0P. That is,
execution is continued with no "DEBUG" activity taken.

4.3 WRITE

When using the WRITE statement on sequential file, if the
second parament,<nvar>, is equal -2 the sector will not be written
but is merely flagged as pending a write to disk. The actual
write to disk occurs under one of the following conditions:

a) The user program performs a "CHAII~", "ROLLOUT", "STOP",
or otherwise terminates (eg. dueto error).

b) Immediately prior to a "PREPARE", "OPE1~n, or "CLOSE"
instruction.

c) Immediately prior to any "TRAP", or "TRAPCLR" instruction
referencing either an "10" or "PARITY" trap.

d) The disk controller buffer containing the write pending
sector becomes the least recently used buffer and becomes
required for some other purpose.

The consequences of this are as follows:

a) The DATABUS interpreter may not discover that the disk
has gone off-line until one of the above four conditions
occurs.

b) The DATABUS interpreter may not discover that the disk
secotr destined to receive the buffer has irrecoverable

CHAPTER 4. PROGRAMMING CONSIDERATIONS 4-1

bad parity until one of the above four conditions occurs.

c) Any data contained in writing-pending buffers will be
lost if the processor is re-booted before the write is
performed.

Thus a trap set for a parity or disk off-line condition
during for example, a "WRITE" instruction may not actually get
entered until many instructions later. Similarly, if the above
conditions were not originally trapped, the error message
generated may not have a program counter address pointing to the
"WRITE" instruction responsible, but to an unrelated instruction
much further along in the program. In general, unless an "10" or
"PARITY" trap is set before a given I/O instruction and one of
the above four conditions occurs before the next I/O instruction
involving a write to disk, the I/O instruction causing a disk
off-line or parity trap may be indeterminate.

If it is necessary to re-boot and also critical that
write-pending buffers be written, the DOS should be re-booted by
executing the ROLLOUT instruction. For example: ROLLOUT "FREE".

4.4 ACALL Facility

DATABUS MuLTILINK 11 supports the ACALL (Assembler Language
CALL) facility. This facility allows an Assembler Language program
to be invoked from a DATABUS program. The implementation consists
of a user-written overlay which is loaded at the DATABUS MULTILINK
11 interpreter initialization time if the ACALL facility is
enabled. This overlay must have the name DBML11/ASM where DBML11
is the name of the interpreter overlay. This user-written overlay
processes the ACALL DATABUS instruction. If the ACALL facility is
not enabled all ACALL instructions will simply be ignored. The
ACALL processor should follow the guidelines below:

a) The ACALL processor must not modify the processor base
register.

b) The ACALL processor should restrict the amount of time
spent with interrupts disabled to the absolute minimum
practical. Disabling interrupts for longer than 200
microseconds at a time may produce indeterminate results.

c) The ACALL processor when exiting should leave the
processor stack as it was on entry.

4-2 DATABUS MULTILINK 11

The following sections describe the interface characteristics
between the ACALL processor and the DATABUS MULTILINK 11
interpreter.

4.4.1 ACSTRT - Starting Location For ACALL Overlay

The address ACSTRT represents the first location of 255 bytes
reserved for the overlay which processes the ACALL instruction.

4.4.2 GCMOP - Get The Next Operand Location

This routine is called to fetch the next operand from the
list of operands specified in an ACALL DATABUS instruction. The
routine is entered via a Assembler "CALL" instruction and returns
FALSE CARRY if the end of the operand list has been encountered.
If an operand is found, the routine returns TRUE CARRY with the
address of the first byte of the operand in the HL register pair.
The ACALL instruction interpreter overlay should call this routine
until it returns FALSE CARRY before executing a RETURN instruction
itself.

4.4.3 Condition Code Routines

The following routines exist in the DATABUS MULTILINK 11
interpreter tb"manipulate the DATABUS condition flags. They are
used to return condition information to the DATABUS program. They
are invoked by using the 'Assembler "CALL" instruction.

SETiQL - The routine sets the DATABUS EQUAL flag. May be called
with any A-register value.

SETLSS - This routine sets the DATABUS LESS flag. May be called
with any A-register value.

SETOVR - This routine sets the DATABUS OVER flag. May be called
with any A-register value.

CLREQL - This routine clears'the DATABUS EQUAL flag. Must be
balled with A-register = O.

CLRLSS - This routine clears the DATABUS LESS flag. Must be
called with A-register = O.

CLROVR - This routine clears the DATABUS OVER flag. Must be
called with A-register = O.

CHAPTER 4. PROGRAMMING CONSIDERATIONS 4-3

4.5 EXTERNAL COMMUNICATIONS Facility

For users desiring to develop their own compatible
communications line handler, the following sections describe the
interface characteristics between the DATABUS MULTILINK 11 with
MULTILINK facility and the compatible communication line handler.

All the interface routines are invoked by using the Assembler
"CALL" instruction.

4.5.0.1 CRCCF - Change Calling Frequency

This routine is called with a value in the C-register
specifying the number of milliseconds between calls to the
external communications process. This number will be saved and
used as the initial value of a down-counter used by the scheduler.
The counter is decremented each millisecond. When the count
reaches zero, it is reset to the initial value and the external
communications process is called. The default value is 1, causing
the process to be called each millisecond.

4.5.0.2 CRGUSR - Get port number of current USeR

. When this routine returns, the C-register will contain the
port number for the user "owning" the current comlst. If no
comlst is currently active, then the port number for the last-used
comlst is returned. The port number is given with a base of zero,
that is, the value range from 0 to 1, corresponding to DATABUS
"master" and "utility" ports respectively. This routine is nost
commonly used after a general poll to determine the owner of the
comlst that was found.

4.5.1 CRSSAF - Set the Suspension Acknowledged Flag

This routine is called to set the suspension acknowledged
flag in response to a denial of permiSSion to enter a new control
sequence. This routine should not be called until all "wrap-up"
operations have been performed (which may take several interrupts
to accomplish). The DATABUS system will normally do a rollout
shortly aft€r this routine is called.

4-4 DATABUS· MULTILINK 11

4.5.2 CRRPGO - Request Permission to GO

This routine is called at a logical stopping point in the
main communications loop. It returns TRUE ZERO if pe~mission to
continue is granted, or FALSE ZERO if permission is denied.
Denial of permission indicates that the DATASHARE background is
waiting to do a rollout (or some other operation which will make
foreground activity impossible). If permission to go is denied,
the external communications process need not terminate
immediately, but it must eventually acknowledge that a suspension
was requested. If it never acknowledges the suspension, the
DATASHARE system will be hung in a background loop.

4.5.3 CRCS$ - Change State

Calling this routine effects a return to the scheduler and
sets the entry point to the communications process code to the
instruction following the call. The concept is identical to that
used by the interrupt handler in the DOS. The entry point set by
this routine is called the "state entry point".

4.5.4 CRCPS$ - Change Primary State

This routine works in the same manner as CRCS$. However, it
sets a different entry point called the "primary entry pOint".
The primary entry point is called by the scheduler when the
process available flag is clear; the state entry point is called
when the process available flag is set.

4.5.5 CRSSOK,CRSSCU - Set Status

CRSSOK - Set Status to OK
CRSSCU - Set Status Channel Unavailable

These routines are called to set a final status into the comlst,
the list dequeues and release it from use by the communications
process. There is no harm in calling these routines even when a
comlst is not active.

CHAPTER 4. PROGRAMMING CONSIDERATIONS 4-5

4.5.6 CRRSB - Reset to Start of Block

This routine is called to reset various pointers to the
values captured by the last call to CRNSB. It is used in a
blocked message discipline when it is necessary to repeat the last
message block. It is important to recognize that calling this
routine does not result in a resetting of the formpointers or
lenghtpointers of ttle variables which may have been affected by
the message block in error. Hence, a repeated message block which
is, for some strange reason, significantly shorter than the
original block may cause some extraneous characters to remain in
some of the variables.

4.5.1 CRNSB - Note Start of Block

This routine is called to capture the critical comlst
pointers at their current values. These values can be restored by
the CRRSB routine.

4.5.8 CRCAF,CRSAF - Clear-Set the Avialability Flag

CRCAF - Clear the Availability Flag
CRSAF - Set the Availability Flag

The availability flag is used to differentiate between
"handshaking mode" and "active communica tion mode". VJhen the
availability flag is clear, the scheduler will enter the
communication process at its primary entry point, and will also
presume to dequeue all posted comlst with a status of channel
unavailable. Application programs are thus notified when they
attenpt to post comlst when a condition of active communication is
still problematical (i.e., handshaking may fail). Similarly, as
long as the availability flag is clear, the communication process
is free to do any required setup, waiting for ringing, handshake
sequencing, etc., without the burden of disposing of comlst which
it is presently unable to handle. When the active processing of
message is possible, the process should set the availability flag
and be prepared to enter itself at the state entry point on the
next interrupt.

4-6 DATABUS MULTILINK 11

4.5.9 CRSUSR - Select USeR

This routine is called with a DATABUS port number in the
C-register. The port number should be based at 0 (i.e., it should
have a range of 0 to 1). The routine will return TRUE CARRY if
such a port has not been configured into the DATABUS system.
Otherwise, it will return FALSE CARRY with the hardware base
register set to select the data area for the specified port. This
routine may be used as a quick way to determine whether a
"selectively addressed device" actually exists.

4.5.10 CRGENP - GENeral Poll

This routine performs the operation of "general poll" on all
ports configured into the system. It scans each port in sequence
for a posted sending comlst. It returns TRUE ZERO if no sending
comlst exists anywhere. If a sending comlst is found, it returns
FALSE ZERO after internally calling CRGSCL (i.e., the
communications process need not perform any additional setup on
the comlst; it is ready to deliver characters). This routine must
be called at the "zero-th" level (i.e., the same stack level at
which the process was entered by the scheduler) because it makes
an intenalcall CRCS$. By testing only one port on each
interrupt, the consumption of excessive foreground time is
minimized.

4.5.11 CRZTIM,CRGTIM - Zero, Get the TIMer

CRZTIM - Zero the TIMer
CRGTIM - Get the TIMe

These routines are used for timing intervals used for
turn-around delays, time-out tests, etc. The time is counted in
1/4ths of a second, thu~ allowing a one byte counter to represent
250 milliseconds through 60 seconds. CRZTIM has no arguments or

"results; CRGTIM returns the time in the C-register.

4.5.12 CRGET - GET a character from the coml$t

This is the basic routine used to get characters from a
sending comlst. If a character is returned, it is delivered in
the B-register. There are four possible return conditions for
this routine, as follows:

FZ FS FC - Character in B-reg (=0203 if past length pointer).

CHAPTER 4. PROGRAMMING CONSIDERATIONS 4-7

Fl FS TC - end of physical variable encountered;
comlst toggled to next variable;
no character returned.

TZ FS TC - end of physical variable and end of comlst;
no character returned.

F'Z TS TC ... abnormal end of comlst (i.e., comlst is gon,e);
no character returned.

Characters are retrieved from a variable beginning with the first
physical character and ending with the last physical character.
For string variables, all characters past the lengthpointer are
returned in the B-register as the character 0203. At the option
of the communication process, this character may be ignored,
converted to a blank, or used to trigger the generation of an end
of field mark.

4.5.13 CRGDCL,CRGSCL - Get a Destination/Source COMLST

CRGDCL - Get a Destination Comlst
CRGSCL - Get a Source Comlst

These routines are called with the desired port number [0-1J
in the C-register. If no comlst is found, ,the routines return
TRUE ZERO. If the desired type of comlst is found for the
specified port, the routines return FALSE ZERO with the comlst's
status set to "in process" and the comlst still on the queue. If
a comlst is found and it has a 'gone away' status, the routines
return TRUE CARRY. All poi~ters are set up for the first get/put,
and the start of the block is noted. Since comlsts are not
automatically dequeued when exhausted or 'gone away', CRSSOK or
CRSSCU must be called to dequeue one comlst before quequeing
another.

4.5.14 CRTOGL - TOGgLe to the next variable

This routine may be called by the communication process to
force a source comlstto move directly to the next variable for
the next call to CRGET. It is appropiate to use this routine only
when handling record formats that permit variable length fields.
Three return conditions are possible, as follows:

FZ FS TC - comlst successfully toggled to next variable.
TZ FS TC - normal end of comlst encountered.
FZ TS TC - abnormal end of comlst encountered.

4-8 DATABUS MULTILINK 11

4.5.15 CRPUT - PUT a character into a comlst

This routine is called with a character given in the
B-register. If the character is not an 0203, an attempt is made
to place the character into the current variable in the comlst.
If the character is an 0203, the lengthpointer for the current
variable will be set and the comlst will be toggled to the next
variable. There are four possible return conditions, as follows:

FZ FS FC - character was successfully put.
FZ FS TC - character not put; end of variable encountered;

comlst toggled to next variable.
TZ FS Te - character not put; end of variable encountered;

end of comlst encountered.
FZ TS Te - character not put; abnormal end of comlst.

The communication process should always put'an 0203 following the
last message character (unless the end of the comlst was already
encountered) so that the lenghtpointer for the last variable will
be properly set. It should be noted that all variables in a
receiving comlst are cleared when the RECV verb is processed. In
addition, each variable is cleared when it is initially toggled
to. Thus, if a message block is received in error, some variables
maybe left with non-zero lengthpointers which will not be reset
properly unless the correct message block has a text length no
less than the error block minus one.

4.5.16 CRGRVA - Get the Route Variable Address

This routine is provided to allow the communication process
to access the route variable, for such applications as might
require additional input parameters, resulting status indicators,
etc. It is vitally important that once the route variable address
is retrieved, all interaction with the actual data in the variable
should take place during the same interrupt so that the route
variable does not have opportunity to disappear (e.g. as a
consequence of a chain operation by the background). The routine
returns TRUE SIGN if the comlst has "gone away", or FALSE SIGN
with the route variable address in the BC-register pair, the
formpointer in the D-register, and the lengthpointer in the
E-register.

CHAPTER, 4. PROGRAMMING CONSIDERATIONS 4-9

4.5.17 CRSTRT,CREND,COMPAG - External Definitions

These external definitions define addresses used by the
communication process. CRSTRT should be used as the starting
address of the code (e.g. ORIGIN CRSTRT). The highest address
reached by the code should not reach or exceed CREND. COMPAG is
used by 5500-only processes and must always be the value in the
X-register when any interface routine is called. The X-register
is initialized with the value of COMPAG by the scheduler before
any call is made to the external communication process.

4.5.18 WHAT HAPPENS WHEN "THE COMLST GOES AWAY"

The expressions "abnormal end of comlst" and "the comlst went
away" refer to a condition where the data area (hence the
variables, hence the comlst) for a given port is no longer valid.
This condition arises as a result of 'a chain operatiort, whether
planned (as with the CHAIN and STOP verbs) or unplanned (as with a
disconnecting port or the unintentional use of the INT key). When
this happens' to the port that "owns" the current comlst in use by
the communica tions process, it becomes· necessary to "make the
comlst go away" with respect to the logical operations of the
MULTILINK interface routines. Each comlst has its own status byte
that contains a 'gone away' indicator. All interface routines
that interact with a comlst or its related variables check the
"comlst gone away flag" before proceeding, and, if the test is
positive, produce harmless results. The communications process
thus does not need to worry about performing an operation
upon-existent data. However, it should not ignore the "abnormal
end of comlst" return conditions unless infinite loops are
desired. Once a 'comlst gone away' condition has been discovered,
a call should be made to CRSSCU in order to dequeue the comlst.

4.5.19 LOGICAL RELATIONSHIPS

The logical flow relationship among several of the MULTILINK
interface routines may be clarified by the following skeleton
communications process:

START
SET
CALL
LC
CALL
shake

CRSTRT
CRCPS$
3
CRCCF

hands, etc.

4-10 DATABUS MULTILTNK 11'~

CALL CRSAF
GO CALL CRCS$

CALL CRRPGO
JTZ OK
CALL CRSSAF
JMP GO

OK CALL CRGSCL
LOOP CALL CRCS$

CALL CRGET
JTS DONE
JTZ DONE
JTC LOOP
CALL SENDIT
JMP LOOP

DONE CALL CRSSOK
JHP GO

SEND!T

POP
JIvlP NOSEND

RET
NOSEND CALL CRCAF

JMP START
IFGE $,CREND
ERR COr-1M PROCESS TOu LONG
XIF
END START

CHAPTER 4. PROGRAMMING CONSIDERATIONS 4-11

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFI~ITIONS

<label>

<string>

<svar>

<nvar>

<ssvar>

<dsvar>

<snvar>

<dnvar>

<slit>

<nlit>

is a letter, followed by any combination
of up to seven (1) letters and digits.

is any sequence of characters with the
exception of the forcing character (#)
which itself will not become part of the
character sequence. The character
following the # will become part of the
character sequence (eg. another # or It).

A name assigned to a statement defining a
character string variable.

A name assigned to a statment defining a
numeric string variable.

A name assigned to a statment defining a
source character string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
destination character string variable.
This variable is generally changed as a
result of the instruction.

A name assigned to a statement defining a
source numeric string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
destination numeric string variable.
This variable is generally changed as a
result of the instruction.

is a literal of the form "<string>".

is a literal of the form "<string>" where
<string> is a valid numeric string.

APPENDIX A.INSTRUCTION SUMMARY A-1

<char> is any single character of the form
"<string>" where string is of length one
(1) •

<occ> is an octal control character (001 to 037
incl usi ve) .

<list> Any combination of <slit>, <occ>, <list
controls> <nvar> and <svar>, separated by
commas. The list may be continued on
more then one line by placing a colon (:)
after the last ~tatement on the line to
be continued.

<cmlist> A name assigned to a COMLST data
declaration.

<nlist> A list of numeric variables each pair of
which is separated by a comma (,). The
list may be continued on more than one
line by placing a colon (:) after the
last variable on the line to be
continued.

<slist> A·list of character string variables each
pair of which is separated by a comma
(,). The list may be continued on more
than one line by placing a colon (:)
after the last variable on the line to be
continued.

<nslist> Any combination of numeric and string
variables separated by commas. The list
may be continued on more than one line by
placing a colon (:) after the last
variable on the line to be continued.

<blist> The name assigned to the first of a set
of physically contiguous numeric string
or character string variables.

<index> A numeric variable used in connection
with list accessing.

<dnum> A decimal number between -128 and 127.

<dnum1> A decimal number indicating the number of
digits that should precede the decimal

A-2 DATABUSMULTILIHK 11

<dnum2>

<dnum3>

<ctnum4>

<flag>

<event>

<skey>

<DOS file spec>

<file>

<ifile>

<rn>

<seq>

<key>

<null>

<route>

point.

A decimal number indicating the number of
digits that should follow the decimal
point.

A decimal number between
inclusive.

A decimal number between
inclusive.

and 20

and 64

One~of the following flags: OVER, LESS,
ZERO, or EOS (EQUAL and ZERO are two
names for the same flag) that are used to
indicate the result of some DATABUS
operation.

The occurance of a program trap: PARITY,
RANGE, FORMAT, CFAIL, or 10.

A numeric or character string variable
used with SEARCH.

A DOS compatible file specification (see
DOS user's guide).

A name assigne~ to a FILE declaration.

A name assigned to a IFILE declaration.

A numeric variable which contains a
positive record number (>=0) used to
randomly READ or WRITE a file.

A numeric variable which contains a
negative number (<0) used to READ or
WRITE a file sequentially.

A non-null string variable used as a key
to indexed I/O accesses.

A null string variable used as a key to
an indexed read.

a string variable used for routing
purposes. See DATABUS COMPILER User's
Guide for more complete description.

APPENDIX A. INSTRUCTION SUMMARY A-3

FOR THE FOLLOWING SUMMARY:

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive (one
or the other but not both must be used).

COMPILER DIRECTIVES

<label> EQD <dnum>
<label> EQUATE <dnum>

Il~C <DOS file spec>
INCLUDE <DOS file spec>

FILE DECLARATIONS

<label> FILE
<label> IFILE

DATA DEFINITIONS

<label> FORM <dnum1>.<dnum2>
<label> FORM <dnum1>.
<label> FORM <dnum1>
<label> FORM <nlit>
<label> DIM <dnum>
<label> INIT <slit>
<label> FORM *<dnum1>.<dnum2>
<label> FORIvl *<dnum1>.
<label> FORM *<dnum1>
<label> FORM *<nlit>
<label> DIM *<dnum>
<label> INIT *<slit>
<label> COMLST <dnum4>

A-4 DATABUS MULTILINK 11

CONTROL

GOTO
GOTO
GOTO
BRANCH
CALL
CALL
CALL
ACALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT
PI
TABPAGE

<label>
<label> IF <flag>
<label> IF NOT <flag>
<index><prep><list>
<label>
<label> IF <flag>
<label> IF NOT <flag>
<nslist>

IF <flag>
IF NOT .<flag>

IF <flag>
IF NOT <flag>
<svar>
<slit>
<label> IF <event>
<event>
<svar>
<slit>
<dnum3>

APPENDIX A. INSTRU~TION SUMMARY A-5

CHARACTER STRING HANDLING

MATCH
MATCH
HOVE
HOVE
MOVE
I"l0VE
MOVE
MOVE
APPEND
APPEND
APPEND
CMOVE
CMOVE
CMOVE
CMATCH
CMATCH
CMATCH
CMATCH
CMATCH
BUMP
BUMP
RESET
RESET
RESET
RESET
ENDSET
LENSET
CLEAR
EXTEND
LOAD
STORE
STORE
CLOCK
CLOCK
CLOCK
TYPE
SEARCH
REPLACE
REP
REPLACE
REP

<svar><prep><svar>
<slit><prep><svar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<ssvar><prep><dnvar>
<sslit><prep><dnvar>
<snvar><prep><dsvar>
<snlit><prep><dsvar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<snvar><prep><dsvar>
<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>
<svar><prep><dvar>
<char><prep><dvar>
<svar><prep><char>
<svar><prep><occ>
<occ><prep><dvar>
<dsvar>
<dsvar><prep><dnum>
<dsvar><prep><dnum>
<dsvar><prep><ssvar>
<dsvar><prep><snvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar><prep><index><prep><slist>
<ssvar><prep><index><prep><slist>
<sslit><prep><index><prep><slist>
TIME<prep><dsvar>
DAY<prep><dsvar>
YEAR<prep><dsvar>
<svar>
<skey><prep><blist><prep><nvar><prep><dsvar>
<ssvar><prep><dsvar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<sslit><prep><dsvar>

A-6 DATABUS MULTILINK 11

ARITHHETIC

ADD
ADD
SUB
SUB
SUBTRACT
SUBTRACT
i~ULT
MULT
MULTIPLY
MULTIPLY
DIV
DIV
DIVIDE
DIVIDE
HOVE
MOVE
COMPARE
CO~1PARE
LOAD
STORE
STORE
CHECK 11
CK 11
CHECK10
CK10

INPUT/OUTPUT

KEYIN
DISPLAY
BEEP
PRINT
RELEASE
PREPARE
PREP
OPEN
CLOSE
WRITE
WRITE
WRITAB
WEOF .
UPDATE
READ
READ
READKS
DELETE

<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nvar><prep><nvar>
<nlit><prep><nvar>
<dnvar><prep><index><prep><nlist>
<snvar><prep><index><prep><nlist>
<nlit><prep><index><prep><nlist>
<svar><prep><svar>
<svar><prep><slit>
<svar><prep><svar>
<svar><prep><slit>

<list>[;]
<list>[;J

<list>[;]

<file>,<svar!slit>
<file>,<svarlslit>
<file!ifile>,<svarlslit>
<file!ifile>
<file>,<rnlseq>;<;!<list>[;J>
<ifile>,<rnlseqlkey>;<;I<list>[;J>
<file>,<rnlseq>;<;I<list>[;J
<file!ifile>,<rn!seq>
<ifile>;<;l<list>[;]
<file>,<rnlseq>;<;I<list>[;J>
<ifile>,<rn!seqlkeylnull>;<;!<list>[;J>
<ifile>;<;I<list>[;J>
<ifile>,<key>

APPE1~DIX A. INS,IltUCTf'ON SU~MJ.\RY A-1

INSERT
COMCLR
COMTST
COMWAIT
SEND
RECV
DEBUG

<ifile),<key>
<cmlist>
<cmlist>

<cmlist>,<route>;<nslist>
<cmlist>,<route>~<slist>

A-8 DAT A13US MOL TILINK .. 11

APPENDIX B. INPUT/OUTPUT LIST CONTROLS

CONTROL USED IN FUNCTION

*P<m>:<n> KD Causes the cursor to be positioned
horizontally and vertically to the column
and line indicated by the numbers <m>
(horizontal 1-80) and <n> (vertical 1-24).
These numbers may either be literals or
numeric variables.

*N KDP Causes the cursor or printer to be
positioned in Column 1 of the next line.

*EL KD Causes the line to be erased from the
current cursor position.

*EF KD Causes the screen to be erased from the
current cursor position to the bottom of
the display.

*ES KD Causes the cursor to be positioned at
horizontal position 1 of the top row of
the display and the entire display to be
erased.

*EOFF K Prevents character echo to the display
during Keyboard input operations.

*EON K Causes character echo to the display
during Keyboard input operations.

*+ KDP Turn on Keyin Continuous for KEYIN or
suppression of spaces after the logical
length for DISPLAY and PRINT.

*+ W Turn on space compression during WRITE.

*- KDP Turn off Keyin Continuous (turned off at
the end of the statement) or the
suppression of spaces after the logical
length.

*- W Turn off space compression during WRITE.

APPENDIX B. INPUT/OUTPUT LIST CONTROLS B-1

*<n> P

*<n> RW

*<nvar>

KDP

*F P

*L KDP

*e KDP

*T K

*W KD

*JL K

*JR K

*ZF KDPW

*DE K

*IT K

*11'1 K

Causes, a horizontal tab on the printer to
the column indicated by the number <n>.

Tab specification for READ or WRITAB
operations.

The logical file pointe~s are moved to
that character position relative to the
current physical record.

Suppress a new line function when
occurring at the end of a list.

Causes the printer to be positioned to the
top of form.

Causes a linefeed to be displayed or
printed.

Causes a carriage return to be displayed
or printed.

Time out after 2 seconds have elapsed
between successively entered characters
for KEYIN statement.

Pause for one second.

Left-justify numeric variable and
zero-fill at right if there is no decimal
point. Left justify string variable and
blank fill to ETX (zero fill if *ZF option
is given).

Right-justify string variable and
blank-fill at left (zero fill if *ZF
option is given).

zero-fill string or numeric variable.

Restrict string input to digits (0-9)
only.

Turn-on Text Mode (invert alphabetic
input) •

Turn-off Text Mode.

B~2 DATABUS MULTIL,INK 11

*MP w Convert numeric variable to
"Minus-overpunch" format.

APPENDIX B.INPUT/OUTPUT LIST CONTROLS B-3

APPENDIX C. FREEDOM PRINTER CONSIDERATIONS

Secondary tractor on the Datapoint 9232 FREEDOM printer may
be selected by the following method:

1. Initialize a string variable to an octal five followed by
two ASCII characters representing the left margin location in
hexidecimal.

2. Use the initialized string variable as the 1st variable in
each print statement.

For example:

P2 INIT 05, If 3F"

PRINT P2,*F,DATA1,*20,DATA2

selects the secondary tractor and sets the left margin at print
position 63 (hexidecimal 3F) before performing top of form and
printing. Tabbing (*20) will be relative to the left margin.

APPENDIX' C. FREEDOM PRINTER CO~SIDERATIONS C-1

APPENDIX D. ERROR CODES

If an event occurs and the trap corresponding to that event
has not been set, the message:

* ERROR * LLLLL X * or
* ERROR * LLLLL X * Q

appears on the console display. The first form appears for all
traps except I/O traps. In the event of an I/O trap, a
qualification letter is given where a "Q" is shown in the example
(explained below under the "I/O" trap). The LLLLL is the current
value of the program counter and the X is an error letter. In
most cases, LLLLL pOints to the instruction following the one that
caused the problem. However, in certain I/O errors, LLLLL will
point after the list item where the problem occurred. The
following error letters can appear:

A - interruptions already prevented
B - illegal operation code
C - chain failure
F - record format error
I - I/O error
L - invalid command from slave station
o - object code read failure
P - parity failure
R - record number out of range
U - call stack underflow or overflow

Note that A, B, L, 0, and U errors cannot be trapped. The B error
will only snow up if somehow an invalid object file is executed or
if the system is failing. The U error will happen if the
programmer forgets to perform a call or in some other fashion
manages to execute a RETURN instruction without a corresponding
CALL having been previously executed, or calls are nested more
than eight levels deep. The A error will happen if a PI
instruction is executed while interrupts are currently prevented.
The 0 error will happen if the object file is positioned out of
range, has a parity fault, or if its drive goes off line. The L
error will generally indicate that the telephone circuit is bad.

APPENDIX D. ERROR CODES D-1

The events that may be trapped are shown below. The
capitalized name is the one used in the TRAP statement.

PARITY

RANGE

FORMAT

CFAIL

10

- disk eRe error during READ or disk CRC error
during write verification (the DOS retries an
operation up to 5 times to get a good CRC
before giving up and causing this event).
- record'number out of range (an access was
made that was off the physical end of the file,
a record was read which was never written, or a
WRITAB was used on a record which was never
written)
- data being read into a numeric variable was
not all digits and decimal point and minus
sign, or decimal point in input does not agree
with the decimal point in FORM, or data from
disk has a negative multi-punch but no room for
a minus sign in FORM, or write specified
multi-punch and the last item of the field is a
decimal point. The operation stops with the
item in error and the statement is aborted.
- the specified program was not in the DOS
directory or a ROLLOUT was attempted with one
of the necessary system files missing, or a '
program containing compile-time errors was
loaded.
- Error during 1/0 statement. Either a
programming error or disk failure can cause
this TRAP.

D-2 ~ DATABUS MULTILINK 11

APPENDIX E. INTERPRETER I/O TRAP CODES

A - an access sequentially by key, with a null key or an UPDATE
was attempted before any indexed sequential access was made
using the logical file.

B - the READ mechanism ran off the end of a sector without
encountering a physical end of record character (003).

C - an operation on a closed logical file was attempted.
D - a non-READ non-DELETE indexed sequential operation was

attempted where the specified key already exists in the index.
E - an EOF mark without at least four zero's was encountered.
F - disk file space full.
I - the index file specified in an OPEN state~ent does not exist

on the specified drive(s).
J - the index file found by the OPEN statement does not reside in

the correct physical location on the disk (index files may
never be moved, they must always be re-created).

K - a null key was supplied in an operation where the key may not
be nUll.

M - the data file specified does not exist on the specified
drives(s) or the specified drive is off-line.

N - the data file name specified in the OPEN or PREPARE statement
was null.

a - the index file name specified in the OPEN statement was null.
P - the file specified in the PREPARE statement had some type of

DOS protection (either write, delete, or both).
T - the tab value in the READ or WRITAB statement was off the end

of the sector.
U - an EOF mark was encountered while a record was being deleted

in the indexed sequential file.
W - an index file pointer sector could not be read.
X - an index file header sector could not be read.
Y - the R.I.B. of the data file pOinted to by the index file could

not be read. (VWXY errors can be caused by parity errors, the
drive being switched off line, or the disk cartridge being
swapped with another while an operation is taking place.)

APPENDIX E. INTERPRETER I/O TRAP CODES E-1

APPENDIX F. USE OF COMMON TO RECOGNIZE ERRORS

Un trapped DATABUS errors may be recognized by the MASTER
program through the use of Common Data Area. (The method for
trapping DATABUS errors is described in the DBeMP manual.)

When an untrapped DATABUS error occurs the interpreter moves
the following string into the first 14 bytes of the user's data
area:

oct oct asc asc asc asc asc asc asc asc asc asc asc oct
013 001 n n n n n t * q 203

where: nnnnn - is the location in the DATABUS program where the
error occured.

t - is a letter representing the type of error.
q - is a letter used to qualify the type of error.

The string described above is moved into the user's data area
after the error occured, but before the MASTER program is
executed. This allows one of the following actions to occur:

a)

b)

If the first 14 bytes of the MASTER program's data area is
not declared to be common, the string described above is
overwritten when the MASTER program is loaded.

If the first 14 bytes of the MASTER program's data area is
declared to be com~on, the string described above may be
accessed by the MASTER program just like any other
information passed through common.

Sa~ple MASTER program:

ERROR DIM ... t* 11 LEAVE 1ST 14 BYTES COMMON
MORE DATA AREA GOES HERE

* BEGINNlclG OF EXECUTABLE CODE

OKAY

RESET
CMATCH
GOTO

APPENDIX F.

ERROR TO 9
"*,, TO ERROR
OKAY IF NOT EQUAL

POINT AT THE "*n
IF NOT n*n, THEN NO ERROR

ERROR PROCESSING GOES HERE
NORMAL PROCESSING HERE

USE OF COMMON TO RECOGNIZE ERRORS F-l

APPENDIX G. PROGRAM EXAMPLES

The MASTER program merely requests the name of a program to
be executed. A CHAIN is executed to the name given and'if a chain
failure occurs an indication is given that the name does not exist
in the vOS directory and and another request for a program name is
made. Note that the MASTER program is written without the use of
cursor positioning in the KEYIN and DISPLAY statements to aid in a
Teletype terminal compatibility. The entry of a "*" for the
program name causes the system to hang up the phone which provi~~s
a normal termination using the DATABUS DSCNCT instruction.

Simple MASTER Program

. SIMPLE MASTER PROGRAM

PORTN FORlvi
FILNAM DIM

RELEASE
LOOP KEYIN

CMATCH
GO TO
TRAP
CHAIN

NONAME DISPLAY
GOTO

DISCON DSCNCT

" 4"
8

*N,*EL,"PROGRAM NAME: ",FILNAM
"*" TO FILNAM

DISCON IF EQUAL
NONAi'-1E IF CFAIL
FILNAM
"*** NO SUCH PROGRAM ***"
LOOP

For a more complex example of ANSWER and MASTER programs see
the DATABUS COMPILER User's Guide.

APPENDIX G. PROGRAM EXAMPLES G-1

Manual Name ______________________________________ __

Manual Number ____________________________________ __

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name _______________________________________ Date ______________________________ __

Organization __ _

Street __ _

City _____________________ State _________ Zip Code _____________________ _

All comments and suggestions become the property of Datapoint.

Fold Here

----------------~---

Fold Here and Staple

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
Product Marketing
8400 Datapoint Drive
San Antonio, Texas 78284

First Class
Permit
5774

San Antonio
Texas

