
I
'1-

DISK OPERATING SYSTEM
DOS.

User's Guide
Version 2

January, 1976

Model Code No. 50216

~TAPOINT ~

The Leader in
Dispersed Data Processing

COPYRIGHT- .. " 8'1 04TAPOINT CORPORATION PAINTED IN USA

PREFACE

The purpose of this User's Guide is to provide the user of a

Datapoint DOS that information nequired to generate a system, ma~e

effective use of the available commands, and to make user-written

programs compatible with the DOS.

This manu~l applies to all Version 2 "dot-series" Disk

Operating Systems, such as DOS.A, DOS.B, etc. Additional

information concerning unique characteristics of a particular DOS
>

is provided in the appropriate Version 2 DOS System Guide.

i

TABLE OF CONTENTS

1.INTRODUCTION
1.1 Hardware Support Required
1.2 Software Configurations Available
1.3 Program Compatibility

2.0PERATOR COMMANDS

3.ABOUT DISK FILES
3.1 File Names
3.2 File Creation
3.3 File Deletion
3.4 Program Execution and File Specifications

4.SYSTEM GENERATION
4.1 DOSGEN from cassette

5.GENERAL COMMAND CHARACTERISTICS
5.1 General Command Format
5.2 Signon Messages
5.3 Common Error Messages

6.APP COMMAND
6.1 Purpose
6.2 Use

7.AUTO COMMAND

e.AUTOKEY.COMMAND
8.1 Introduction to AUTOKEY
B.2 The Hardware Auto-Restart Facility
8.3 Automatic Program Execution Using AUTO
8.4 Auto-Restart Facilities Using AUTOKEY
8.5 A Simple Exampie
8.6 A More Complicated Example
8.7 Special Considerations
8.8 AUTOKEY and DATASHARE

9.BACKUP COMMAND
9.1 Purpose
9.2 Use
9.3 Mirror Image Copy
9.4 Reorganizing Files

9.4.1 Copying DOS to Output Disk

ii

page
1-1
1-2
1-2
1-3

2-1

3-1
3-1
3-2
3-2
3-2

4-1
4-1

5-1
5-1
5 ... 1
5-~

6-1
6-1
6-1

7-1

8-1
8-1
8-1
8-2
8-2
8-3
8-4
8-7
8-7

9-1
9-1
9-1
9-2
9-2
9-3

9.4.2 Deleting Named Files
9.4.3 Copying Named Files

9.5 Use of KEYBOARD and DISPLAY Keys
9.6 Error Messages
9.7 Reorganizing Files for Faster Processing
9.8 BACKUP with CHAIN
9.9 Clicks during Copying

10.BLOKEDIT COMMAND
10. 1 Purpose
10.2 File Descriptions

10.2.1 Command File
10.2.2 Source File
10.2.3 New File

10.3 Using BLOKEDIT
10.3.1 Messages

11.BOJTMAKE COMMAND

12.BU.i.LD COMMAND
12.1 Purpose
12.,? Use
12.3 A Simple Example
12.4 A More Sophisticated Example

13.CA.T COMMAND
13.1 Purpose
1 "{. 2 Use

14.CifAIN COMMAND
14.1 Introduction

1,

'4.2 3imple Use of CHAIN
14 j More Advanced Use of CHAIN

14.3.1 Tag definition
14.3.2 Phases of execution
14.3.3 Tag existence testing
14.3.4 Comment lines
14.j.5 Tag value substitution
14.3.6 Additional CHAIN operators
14.3.7 Resuming an aborted CHAIN

) t' I ;Mi'1AND
i I ~)urpose

1 !,) • Use

17.DOSGLN COMMAND

iii

9-3
9-3
9-3
9-4
9-5
9-5
9-5

10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-4

1 1 - 1

12-1
12-1
12-1
12-2
12-2

13-1
13-1
13-1

14-1
14-1
14-2
14-4
14-4
14-4
14-5
14-7
14-9

14-10
14-11

15-1

16-1
16-1
16-l

17 -1

17.1 Purpose
17.2 Use
17.3 Special Considerations

18.DUMP COMMAND
18.1 Purpose
18.2 Use
18.3 Informational Messages Provided
18.4 Level One Commands To DUMP
18.5 Level Two Commands To DUMP
18.6 Level Three Commands To DUMP
18.7 Level Four Commands To DUMP
18.8 Level Five Commands to DUMP
18.9 Error Messages

19.EDIT COMMAND
19.1 Introduction

,19.2 Operation
19.2.1 DOS Initialization
19.2.2 Files
19.2.3 Parameter List

19.2.3.1 Margin Bell
19.2.3.2 Tab Key Character
19.2.3.3 Mode
19.2.3.4 Update
19.2.3.5 Key-click

19.2.4 Examples
19.2.5 Data Entry
19.2.6 Data Retrieval
19.2.7 EDITOR Command Format

19.3 Basic EDITOR Commands
19.4 Modification Commands

19.4.1 DELETE Command
19.4.2 MODIFY Command

19.4.2.1 Line Modification
19.4.2.2 Field Modification

19.5 File Search Commands
19.6 Miscella,neous Commands
19.7 ~ecovery Procedures

19.7.1 Bypassing Errors or End of File
19.7.2 File Recovery

19.8 Glossary
19.9 Command List

20. FIJ..ES' COMMAND
20.1 Command Description
20.2 Default Messages
20.3 Fil~ Descriptions

iv

17-1
17-1
17-2

18-1
18-1
18-1
18~2
18-4
18-4
18-5
18-6
18-6
18-7

19-1
19-1
19-1
19-1
19-1
19-2
19,..2
19-2
19-3
19-3
19-3
19-3
19-4
19-5
19-5
19-6
19-9
19-9
19-9
19-9

19 -1 :,
19-1,2
19-13
19-15
19-15
"9-15
19-1'5
19-19

20-1
20-1
20 ... 2
20-3

20.4 Error Messages

21.FIX COMMAND

22.FREE COMMAND
22.1 Purpose
22.2 Use

23.INDEX COMMAND
23.1 Introductionn
23.2 System Requirements
23.3 Operation

23.3.1 Parameters
23.4 Choosing A Record Key
23.5 Preprocessing the File

23.5.1 Invoking Reformat
23.5.2 Considerations for Unattended Indexing

23.6 INDEX Messages
23.7 lSI File Formats
23.8 Examples of the use of INDEX

24.KILL COMMAND

25.LIST CUMMAND
25.1 Purpose
25.2 Parameters
25.3 INPUT File Specification
25.4 Starting Point
25.5 OUTPUT File Specification
25.6 Output Device
25.7 Output Format
25.8 Format Control
25.9 Operator Controls

26.MANUAL COMMAND

27.MASSACRE COMMAND
27.1 Purpose
27.2 Use

28.MIN COMMAND
28.1 Purpose
28.2 Tape Formats

20.2.1 Single File Tapes
)b.2.2 Double File Tapes
2b 2.3 Multip!e Numbered-File Tapes
2d.2.4 Multipl~ Named-File Tapes

28.3 Parameters

v

20-3

21-1

22-1
22-1
22-1

23-1
23-1
23-1
23-1
23-2
23-3
23-3
23-3
23-4
23-4
23-6
23-8

2'4-1

25-1
25-1
25-1
25-2
25 ... 2
25-3
25-3
25-3
25-4
25-4

26-1

27-1
27-1
27-1

28-1
28-1
28-1
28-1
28-1
28-2
28-2
28-2

28.3.1 Single File Tapes
28.3.2 Double File Tapes
28.3.3 Multiple Numbered-File Tapes
28.3.4 CTOS Tapes
28.3.5 MOUT With Directory Tapes
28.3.6 Options

28.4 Errors

29.MOUT COMMAND
29.1 Purpose
29.2 Parameters
29.3 Options
29.4 File Names
29.5 Writing
29.6 Verifying

30.NAME COMMAND

31.REFORMAT COMMAND
31.1 Introduction
31.2, Operation
31.3 Output File Formats
31.4 Reasons for Reformatting
31.5 Reformat Messages
31.6 Text File Formats

32.REWIND COMMAND

33.SAPP COMMAND

31~. SORT COMMAND
34.1 Introduction
34.2 General Information
34.3 Fundamental SORT Concepts

34.3.1 File formats
34.3.2 The key options
34.3.3 How to sort a file

34.4 The Other Options
34.4.1 Generalized Command Statement Format
34.4.2 Keys-overlapping and in backwards order
34.4.3 Collating Sequence File '
34.4.4 Ascending and Descending sequences
34.4.5 Input/output file format options
34.4.6 Limited output format option
34.4.7 TAG file output format option
34.4.8 HA~DCOPY output option
34.4.9 Primary/Secondary sorting considerations
34.4.10 Key file drive number

vi

28-2
28-4
28-4
28-5
28-5
28-6
28-8

29-1
29-1
29-1
29-2
29-5
29-7
29-8

30-1

31-1
31-1
31-1
31-3
31-3
31-4
31-6

32-1

33-1

34-1
34-1
34-1
34 .. 1
34-1
34-2
34100'3
34 ... 4
34-4
34-9
34-9

34-11
34-11
34-11
34-15
34-17
34-18
34-18

34.4.11 Disk space requirements
34.4.12 LINK into SORT from programs

34.5 The use of CHAIN with SORT
34.5.1 How to set up a chain file for SORT
34.5.2 Naming a repetitive SORT procedure
34.5.3 Initiating a SORT from another program
34.5.4 Using CHAIN to cause a merge

34.6 SORT Execution-Time Messages

35.SUR COMMAND
35.1 Purpose
35.2 About Subdirectories

35.2.1 Creation of Subdirectories
35.2.2 Deletion of Subdirectories
35.2.3 Being "in a Subdirectory"
35.2.4 Scope of a File Name
35.2.5 About Subdirectory SYSTEM
35.2.6 Files vs. the User Being "in a Subdirectory"
35.2.7 Getting a File into a Subdirectory

35.3 Usage
35.3.1 Establishing a "Current Subdirectory"
3~.3.2 Cr~ating a Subdirectory
]1).3.3 Deleting a Subdirectory
:')1,>.3.4 Renaming a Subdirectory
~5.3.5 Displaying Subdirectories

3o.ADVANCED PROGRAMMER'S GUIDE
36.1 General Background Information
36.2 Operator 80mmands
36.3 System Structure
36.4 Interrupt Handling
36.5 System Routines
36.6 Physical Configuration Requirements
36.7 Program Compatibility with Different DOS

37.0PERATOR COMMANDS

3d.SYSTEM STRUCTURE
38.1 Disk Structure
38.2 Disk Data Formats
38.3 Memory MappLng
38.4 Memory Tables
30.5 The Command Interpreter

~1 . .l.1'4TERRU PT HAN flLING
39. 1 Scheduling
39.2 Process Initialization
39.3 Process State Changing

34-19
34-19
34-23
34-24
34-24
34-25
34-25
34-25

35-1
35-1
35-1
35-2
35-2
35-3
35-3
35-4
35.;..4
35-5
35-5
35-5
35-5
35-6
35-6
35-6

36-1
36-1
36-1
36-1
36-2
36-2
36-3
36-3

37-1

38-1
38-1
38-5
38-6
38-7
38-9

39-1
39-1
39-2
39-3

39.4 Timing Considerations
39.5 DOS Usage

40.SYBTEM ROUTINES
40.1 Parameterization
40.2 Exit Conditions
40.3 Error Handling
40.4 Foreground Routines

40.4.1 CS$ - Change Process State
40.4.2 TP$ - Terminate Process
40.4.3 SETI$ - Initiate Foreground Process
40.4.4 CLRI$ - Terminate Foreground Process

40.5 Loader Routines
40.5.1 BOOT$ - Reload the Operating System
40.5.2 RUNX$... Load and Run a File by Number
40.5.3 LOADX$ - Load a File by Number
40.5.4 INCHL - Increment the Hand L Registers
40.5.5 DECHL - Decrement the Hand L Registers
40.5.6 GETNCH - Get the Next Disk Buffer Byte
40.5.7 DR$ - Read a Sector into the Disk Buffer
40.5.8 DW$... Write a Sector from the Disk Buffer
40.5.9 DSKWAT ... Wait for Disk Ready

40.6 File Handling Routines
40.6.1 PREP$... Open or Create a File
40.6.2 OPEN$ - Open an Existing File
40.6.3 LOAD$... Load a File
40.6.4 RUN$ - Load and Run a File
40.6.5 CLOSE$ - Close a File
40.6.6 CHOP$ - Delete Space in a File
40.6.7 PROTE$... C~ange the Protection on a File
40.6.8 POSIT$ -Position to a Record within a File
40.6.9 READ$ - Read a Record into the Buffer .
40.6.10 WRITE$ - Wri te a Record from the Buffer
40.6.11 GET$ - Get the Next Buffer
40.6.12 GETR$ - Get an Indexed Buffer Character
40.6.13 PUT$ - Store into the Next Buffer Position
40.6.14 PUTR$ - Store into an Indexed Buffer Position
40.6.15 SSP$ - Backspace One Physical Sector
40.6.16 BLKTFR- Transfer a Block of Memory
40.6.17 TRAP$ - Set an Error Condition Trap
40.6.18 EXIT$.,; ~el9ad the Operating System
40.6.19 ERROR$ -~ R~load the Operating System
40.6.20 WAIT$ __ I DOS Wait-a-While'''NOP'' Rolttine

40.7 Keyboard and Display Routines
40.7.1 DEBUG$... ~nter the Debugging Tool
40.7.2 KEYIN$ - Ob~ain a L~ne from the Keyboard
40.7.3 DSPLY$ - Display a Line on the Screen

40.6 DOS FUNCTION Facility (DOSFNC)

viii

39-5
39-7

40-1
40-1
40 .. '
140-2
40-2
40-2
40-3
40-3
40-3
40-4
40~4
40-4:
40 ... 5
40.$'
40-5
40 ... 6
40-6
40 .. 7
40 .. 6
40~$
40;-9

40-10
40 ... 11
40-11
40-12
40-13
1l0:-13
40-,Q
40-14
40-15
40-15
40-16
40-17
40"".1,·
40 ... 18
40-H~
40-19
40-21
40-22
40-22
40-22
40-23
40-26
40-27
40-27

40.8.1 FUNC-1 Retrieve Directory and C.A.T. Addresses 40-29
40.8.2 FUNC-2 Retrieve Directory Sector or Filename 40-31
40.8.3 FUNC-3 Retrieve R.I.B. Information 40-32
40.8.4 FUNC-4 Retrieve DOS Configuration Information 40-34
40.8.5 FUNC-5 Request Access to System Tables 40-35
40.8.6 FUNC-6 Test KEYBOARD and DISPLAY Key Status 40-36
40.8.7 FUNC-7 Test the Disk Buffer Memory 40-36
40.8.8 FUNC-8 Timed Pause 40-36
40.8.9 FUNC-11 RAM Screen Loader 40-37

40.9 Cassette Handling Routines 40-38
40.9.1 TPBOF$ - Position to the Beginning of a File 40-39
40.9.2 TPEOF$ - Position to the End of a File 40-40
40.9.3 TRW$ - Physically Rewind a Cassette 40-40
40.9.4 TBSP$ - Physically Backspace One 40-41
40.9.5 TWBLK$ - Write an Unformatted Block 40-41
40.9.6 TR$ - Read a Numeric CTOS Record 40-41
40.9.7 TREAD$ - TR$ and Wait for the Last Character 40-42
40.9.8 TW$ - Write a Numeric CTOS Record 40-42
40.9.9 TWRIT$ - TW$ and Wait for the Last Character 40-43
40.9.10 TFMR$ - Read the Next File Marker 40-43
40.9.11 TFMW$ - Write a File Marker Record 40-44
40.9.12 TTRAP$ - Set an Error Condition Trap 40-44
40.9.13 TWAIT$ - Wait for I/O Completion 40-45
40.9.14 TCHK$ - Get I/O Status· 40-45

40.10 Command Interpreter Routines 40-46
40.10.1 CMDINT - Return & Scan MCR$ line 40-47
40.10.2 OOS$ - Return & Display Sign On 40-47
40.10.3 NXTCMD - Return & Say "READY" 40-47
40.10.4 CMDAGN - Return & Give Message 40-48
40.10.5 GETSYM - Get Next Symbol from MCR$ 40-48
40.10.6 GETCH - Get the Next Character from MCR$ 40-49
40.10.7 GETAEN - Get Auto-Execute Physical File Number 40-49
40.10.8 PUTAEN - Set or Clear a File to be Auto-Execute40-49
40.10.9 GETLFB - Open the User-Specified Data File 40-50
40.10.10 PUTCHX - Store the Character in "A" 40-50
40.10.11 PUTCH - Alternate Version of PUTCHX 40-51
40.10.12 PUTNAM - Format a Filename from Directory 40-51
40.10.13 MOVSYM - Obtain the Symbol Scanned by GETSYM 40-52
40.10.14 GETDBA - Obtain Disk Controller Buffer Address40-52
40.10.15 SCANFS - Scan Off File Specification 40-52
40.10.16 TCWAIT - Test controller memory & wait 40-53

40.11 User Supported Input/Output 40-53

41-1

)~(}. H0U'11Nt; b;I\ITHY POINTS 42-1

43.D08 ~ut.;.:)rIONS A.ND Ad.:)wE:RS 43-1

ix

----~ ----_._-_ ..

CHAPTER 1. INTRODUCTION

Datapoint Corporation's Disk Operating System (usually
abbrevia ted DOS') is a comprehensive system of facili ties for
sophisticated data management.

DOS provides the operator with a powerful set of system
commands by which the operator can control data movement and'
processing from the system console. These commands allow the
system operator to accomplish in a very short time things Which
would be substantially more difficult on much larger comput~ng
systems. Sorting a large file, for instance, can generally be
accomplished in one single command line: compare this with the
bewildering pile of system commands required to perform a similar
function on other computers! In spite of the simplicity of
operation, even the most sophisticated personnel will be su.rprise4
at the wide range and versatility of features provided. . .

To the programmer, DOS offers a large set of facilities to'.
simplify and generalize his task and file managern,nt problems,,, .. ,
Such advanced concepts as completely dynamic dlslt space alloo,.ticr(
allow programs to efficiently operate wi thout res~U"d to the atlo:ililnt"
of space required for the data files they are using. In addition,
the very efficient disk file structure used by DOS allows for '
direct random access to data files at speeds comparing very
favorably with even the largest mainframes. The standard use of
fully space-compressed text files allows source programs andltany
data files to fit in half or less of the disk space that would
normally be required on larger systems.

For the systems analyst and systems designer, DOS provides
the solid foundation for powerful and sophisticated package's ~"'~h
as Datapoint Corporation's highly successful DATASHARE and ..
DATACCOUNTANT systems.

Programmers and operators alike will appreci~te the autom,tiC.
program chaining facility provided by the CHAIN o OlQla rred., of ,the '
DOS. Programmers will enjoy using CHAIN because it ena'bles the
creation of complete, sophisticated job files whioh allow t~e
automatic execution of an almost unlimited number of job steps,
all without operator intervention at the keyboard. Ease of
assembling or compiling a large system of programs is just one of
the many benefits achieved by use of th~ CpAIN facility.
Operators will appreciate CHAIN because entire data processing
tasks can be queued for execution and invoked wi th only a sin.le

CHAPTER 1. INTRODUCTION 1-1

command line to the system.

These features, combined with the ability to support up to
200 million bytes of high-speed random access disk storage,
provide a full range of data processing capabilities unmatched by
any comparable business-oriented system.

1.1 Hardware Support Required

The minimal configuration required to run DOS is a Datapoint
1100, 2200, 5500 computer, with a minimum 16K of memory, and one
(9350, 9370, or 9380 series) disk storage unit. For backup and
support purposes, users with the Diskette 1100 computer are
required to have at least one system with more than one diskette
drive. Configurations based on the other processors can operate
with only a single disk drive unit in conjunction with the
integra] tape cassettes, but for backup and system support
purposes a two-drive system is a strongly recommended minimum.

The two 5500- only DOS, DOS.D and DOS.E, support a minimum of
two physical disk drives.

Users running single physical drive 9350, 9370, and 9380
configurations are supported under DOS.A, DOS.S, and DOS.C
respectively.

1.2 Software Configurations Available

00S is provided in several different versions. Different
versions are Jsed depending upon the type of disk in use at an
installation. Specific versions are indicated by a letter after a
period in the name of DOS. As an example, the following versions
of DOS are currently defined:

uUS.A -- Supports 9350 series disk drives on Datapoint 2200
and 5500 series computers.

QOS.B -- Supports 9370 series disk drives on Datapoint 2200
and 5500 series computers.

DOS.C -- Supports 9380 series disk drives on Datapoint 1100;
2200 and 5500 series computers.

00S.D -- Supports two or more 9370 series disk drives (with
16 b~ffer dis~ ~ontroller) on 48K DatapoiGt 5500 series computers.

DJ~.E -- Supports two or more 9350 series disk drives (with
16 buffer disk controller) on 48K Datapoint 5500 series computers.

1 --) d S K 0 P E H A r:.. l~ G S Y S T t: M

',""

1.3 Program Compatibility

This manual describes the compatible set of: facili tie,s
available to the DOS user within the Disk Operating System.
Programs written in any of the supported higher level languages
(Datashare, RPG II, BASIC, etc.) will generally run unmodified on
any of the DOS. Most programs written in assembler language will
also run under any of the dot-series DOS, without reassembly.

Basically, in only a few isolated cases will a program need
to be changed when it is transferred from one DOS to another. The
need for program modification will usually stem from one or more
of the following types of situations, which should obviously be
avoided whenever possible:

1) Programs which make assumptions regarding the size of
files. For example, programs originally written for the 9350
series disks might assume that the size of the biggest possible
file could be expressed as four ASCII digits. Und'er DOS.B, this
assumption is invalid since files under DOS.B may be over 30,000
data sectors long.

2) Programs which make assumptions regarding the physical
structuring of the data on the disks. For example, eaoh DOS
allocates space on the disk in segments of different sizes, and
places its system tables in different locations on the disk.

3) Programs which generate or modify physical disk addresse,$
themselves. Since the disks are each organized somewhat .
differently to take advantage of the particular characteristics ot
the specific type of drives involved, the physical disk address
formats naturally vary among different DOS.

4) Programs which rely upon other characteristics of a DOS
which are not documented in this manual. A possible situation
would be where a programmer might look at the values in the
registers following the return from a syst~m routine and
deyermine, for instance, that some routine always seemed to return
with the value "1" in one of the registers. If he then constructs
his program in such a manner that it will not function correctly
if the "1" is not present upon return from the routine, then he is
obviously likely to find that his program will not work properly
on a different DOS.

All of the above situations, except for the firs~, ~ill
usually only occur in assembler language programs operating at the

CHAPTER 1. INTRODUCTION 1-3

very lowest levels. Programmers who for their application require
this level of detailed knowledge about the DOS will find the
information specific to each DOS in the DOS System Guide
corresponding to the DOS they are using.

The DOS System Guide for a specific DOS is also the place
where one will normally turn for operational detail~ and
information about the hardware and software specific to his
particular configuration. For example, the commmand INIT9370 (to
format a disk volume for use in the 9370 series disk drives) is
described in the DOS.B and DOS.D System Guides, since it is
clearly not applicable to users of the 9380 series flexible
diskette drives.

1-4 D1SK OPERATING SYSTEM

CHAPTER 2. OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an
integral CRT display unit through which the internal computer
communicates with the operator. The system console also includes
a typewriter-style keyboard which the operator employs to
communicate with the computer. The DOS is normally controlled by
commands entered at this system console.

When DOS first "comes up", (computer jargon for "become ready
for commands",) it displays a signon message on the CRT and says
"READY". At this point DOS is ready to accept a command line.
This command line, typed by the operator, tells DOS which program
one ,wants to run and may name one or more files on disk which the
program is to use. These files could be program files (files
containing programs in one form or another) or data files (files
containing data to be used by executing programs). If, as an
example, the user wished to edit a program file on his disk, he
would simply type:

EDIT PROGNAME

where "PROGNAME" is the name of his program. EDIT is a DOS
command which allows the user to edit files stored on the disk.

A large assortment of useful commands is provided with pOS.
These include the DOS editor and many useful disk file handling
commands. A complete set of CTOS compatible cassette handling
commands are also provided, allowing the transfer of files between
the disk and cassettes.

Since the commands are actually programs which the system
loads and executes to perform the task required, the command
language is naturally extensible to include any program desired,
thus leading to a powerful keyboard facility.

CHAPTER 2. OPERATOR COMMANDS 2-1

CHAPTER 3. ABOUT DISK FILES

Each of the DOS-supported disks stores information in the
form of sectors, each of which contains 256 bytes of information.
Each byte is capable of storing one ASCII (o~ EBCDIC) coded
character. Information stored in these sectors is usually grouped
with a number of other sectors containing related information, and
together this group is referred to as a file.

3.1 File Names

Files are identified from the console by a NAME, EXTENSION 1

and LOGICAL DRIVE NUMBER. The NAME must start with a letter and
may be followed by up to seven alphanumeric characters. Examples
of typical file names are:

EDIT
PAYROLL
EMPLOYEE
JUL1075
MONDAY
LEDGER
etc.

The EXTENSION must start with a letter and may be followed by
up to two alphanumeric characters. It further defines the file,
usually indicating the type of information contained therein. For
example, TXT usually implies data or source files (e.g. DATASHARE,
ASM or SCRIBE source lines), ABS usually implies program object
code records that can be loaded by the system loader, and CND
usually implies programs that implement commands given to DOS from
the keyboard. Most commands have default assumptions concerning
the extensions of the file names supplied to them as parameters.
However, extensions may otherwise be considered as an additional
part of the name.

The LOGICAL DRIVE NUMBER specifies which logical drive is to
be used. It 'is given in the form :DR(n) or :D(n), where (n) is
zero through the maxim~m number of drives supported by the
specific DOS in use. If the drive is not specified, DOS generally
searohes all drives starting with zero. Note that each logical
drive contains its own directory structure. Specifying the drive
number enables one to keep programs of the same NAME and EXTENSION
on more than one drive. In addition, specifying a logical drive

CHAPTER 3. ABOUT DISK FILES 3~1

allows creating files on any logical drive desired.

3.2 File Creation

Files are always created implicitly. That is, the operator
never specifically instructs the system to crea te a given file.
Some commands create files from the names given as their
parameters. Since space allocation is dynamic, the operator never
specifies how many records a file will contain, or where on a disk
the file is to be located.

3.3 File Deletion

Deleting files is made somewhat more difficult to prevent the
accidental destruction of valuable data. Files can be protected
against deletion or both deletion and modification. In addition to
this, the operator must always explicitly name the file he is
dele~ing and even then must answer a verification check stop
before the actual deletion occurs.

For example, if an operator wished to delete a file called
OLDPROG/ABS, he would enter the following dialogue (where
operator commands and replies are indicated in lower case,
although they would be entered in upper case):

kill oldproglabs
THAT FILE IS OLDPROG/ABS (103) ON DRIVE 2
ARE YOU SURE? yes
* FILE DELETED *
READY

3.4 Program Execution and File Specifications

DOS has no explicit RUN command. To execute a program, its
name is entered as the first file specification on the command
line. This is the mechanism by which system commands and other
programs alike are executed. The first file specification may be
followed by several more, depending upon the requirements for
parameterization of the program being run. A file specification
1S of the form:

NAME/EXTENSION:DRIVE

where any of the tnree items may be null (except that the NAME
must be given in the first specification, which denotes the
program to be run). Note that the "I" indicates that an extension
follows and the ":" indicates that a drive specification follows.
If either of these items is not given, the corresponding

3-2 DISK OPERATING SYSTEM

delimiting character is not used. For example:

NAME/ABS:DRO
NAME/ABS
NAME:DRO
NAME

are all syntactically correct. File specifications may be
delimited by any non-alphanumeric that would not be confused with
the extension and device indicators ("I" or ":") or the option
delimiter (";"). For example:

COPY NAME/TXT,NAME/ABS
COpy NAME/TXT NAME/ABS
COPY NAME/TXT/NAME/ABS

will all perform the same function. If an extension is not
supplied in the first file specification, it is assumed to be CMD.
In the above examples, COPY/CMD is used for the complete file name
sought in the directory for the command program. If one wanted to
run a file he had created with extension ABS, he would simply
enter:

NAME/ASS

and his program would be loaded and executed. If the name given
cannot be found in the directory or directories specified, the
message:

WHAT?

will be displayed. DOS can load any object code at or above
location 01400 (octal).

CHAPTER 3. ABOUT DISK FILES 3-3

CHAPTER 4. SYSTEM GENERATION

Upon initial installation ofa new Datapoint system, the user
will generally start off with several brand new disks. Before a
disk can be used by the DOS, however, the disks must be prepared;
this process is known as DOS generation or DOSGEN.

Some types of disks require special treatment even before a
DOSGEN can be properly done on them. One example is disks that
are used with the Datapoint 9370-series disk drives. On these
disks, formatting information must first be written onto the disk.
Such special treatment, to be done before the DOSGEN process, is
described in the DOS System Manual for the specific DOS in use;
only the g~neral-case DOSGEN process will be described here.

There are two methods for doing a DOSGEN on a disk. They
differ primar,ily by whether the DOS is generated from the very
beginning '(e. g. from a casset te tape) or from an up and running
DOS system. People doing their very first DOSGEN or having only
one physical di~k drive will have to DOSGEN using the cassette
DOSGEN approach; otherwise they will be able to use the generally
faster disk DOSGEN command supplied with the DOS and described
later.

4.1 DOSGEN from cassette

Cassette DOSGEN requires a DOS generation cassette package,
which contairis the DOS to be generated, and a disk onto which to
genera te the DOS. ,

Each physical disk drive has a numb~rassociated with it,
which is called the ohysical drive numb@r. At the time the drive
is installed, the Datapoint Customer Service engineer will
·demonstrate the proper technique for inserting and removing disks
from the disk drives and will indicate which numbers are
associated with which drives.

The two cassette tape decks on top of Datapoint computers
(that are so equipped) are usually referred to as the frQnt deck
and the rear deck. The rear deck is the gne physically closer to
the row of cooling slots on the top of the computer and toward the
back. In disk oriented systems, this rear deck is almost
invariably used to hold a tape known as the DOS ~~. The
front deck is the deck physically oloser to the keyboard. In disk
oriented sy~tems, this front deck is almost invari~bly used to

CQAPTER 4. SYSTEM GE~~RATION 4-1

hold cassettes which either contain data to be processed with one
or more of the available system commands, or blank cassettes to
which data can be written via appropriate system commands.

Another important hardware feature is the read-only switch
present on the 9350 and 9370 series disk drives. (There is such a
switch on the 9380 series drives also, but on these the switch is
internal to the controller and for maintenance use only). This
switch is usually labelled with something descriptive such as
"Read-write/Read only" or "Protect". These switches physically
prevent the disk controller from writing on the disk. Since the
DOSGEN process obviously needs to write on the disk (as do most
DOS operations) it is important that these switches be set to
allow writing. See the appropriate DOS Systems Guide for a
discussion of the use of the Write-Protect switch.

After a disk is in place and spinning and the DOSGEN cassette
is in place in the rear deck, load the DOSGEN program from the
rear deck by pressing the key on the computer keyboard marked
RESTART. (Datapoint 5500 users must also press RUN at the same
time for the RESTART key to have effect). If the tape stops
moving and the STOP key light comes on then the tape probably did
not load correctly. Usually this will occur within about 5-10
seconds after the tape is rewound and starts moving forward. If
this halt occurs, the procedure should be repeated as necessary.
If after several tries the DOSGEN program still does not load, the
tape may be bad and should be replaced.

When the program has loaded, it will display a signon
message. It will then try to make sure a disk containing valuable
information will not be accidentally overwritten. The program then
asks if the user wishes a full generation or just the replacement
of the system and utility files. The full generation does a quick
check of the entire disk by writing to and/or reading from it. As
each question is asked, the operator is required to key in his
answer (usually "Y" or "N" is sufficient) and to terminate his
response with the ENTER key (by DOS convention almost all entries
to questions posed by programs are terminated by ENTER).

After the cylinders·used by the system files have been'
checked the program will ask if the user wants to lock out any
cylinders. If the user wants to set aside an area of the disk for
abnormal use, (or wishes to prevent the use of a portion of the
disk WhH~h may be bad) then he should reply "Y" to this message.
In this case the operator is asked which ~ylinders he wishes to
lock out; the reply should be of the format:

12,14,2>-2-3

4-2 DISK JP£~ATING SYSTEM
}

i

The above example would cause cylinders 12; 14, 25, 26, 27,
and 28 to be locked out. Note that the cylinder numbers to be
locked out are given in decimal as opposed to octal. However,the
normal answer to this question will be "N". .

Following this, the disk is checked for obvious bad spots and
these places are then automatically locked out. When the surface
checking has finished, the DOS and a few commands are copied t~
the disk. When enough of the DOS has been copied to the disk to
bring the system up, the DOS is brought up and the standard DOS
signon message and "READY" are displayed.

Important: The DOSGEN procedure is not completed until the
commands have been loaded onto the disk.

Before loading the commands, first place a blank cassette in
the front deck and type "BOOTMAKE" at the console. Follow the
instructions that are subsequently displayed and a DOS "Boot
block" will be written onto the front tape. It is probably a good
idea to repeat this process several times to ensure getting a good
boot tape before proceeding. These boot tapes are the mechanism
by which the DDs is "brought up".

The next step is to load the commands. Place the first of
the commands tapes into the front deck. The message "READY"
should at this point appear on the display. If it does not, take

. one of the boot tapes generated in the previous step, place it
into the rear deck and load 'it just like the DOSGEN tape. After
several seconds the DOS signon and "READY" should appear. If they
do not and the "Stop" light comes on, try another of the boot
tapes you have just made until the "READY" message is displayed.
Then, with the commands tape in the front deck, enter:

MIN j AO: DRn

at the console where n is the drive number being "genned". The
MIN program will be loaded from the disk into memory and will
prpceed to load the commands into the system and store them onto
the disk. Wpen the tape has been fully loaded and the messages
"MULTIPLE IN COMPLETED" and "READY" are displayed,remove the
fr.ont tape and proceed to load the second tape of commands. When
all the commands have been loaded (usually three cassettes) the
DOS generation procedure on the specified IQgica~ drive is
complete. . .

\ .
Note that on some types of drive, notably the 9370-ser~es

("Mas~ Storage") disk drives, each of the two logi9~~ disks on
each disk pack must ~e DOSGENed individually (i.e. the DOSGEN

CHAPTER 4. SYSTEM GENERATION 4-3

procedure must be done twice before the physical disk is
completely DOSGENed). The second DOSGEN for such drives should be
done after generating the boot tapes and before using MIN to load
the commands.

After a disk has been fully DOSGENed in this manner, and if
more than one disk drive is available, the faster DOSGEN command
can be used to generate more disks. The use of the DOSGEN command
is described later in this manual.

The Cassette DOS generation program can DOSGEN drives other
than drive zero. In spite of this, it is important to recognize
that the DOS must be resident on logical drive zero at an
intermediate point in this DOSGEN procedure; therefore, the first
DOSGEN done must be onto drive zero in order that a DOS be there
when required. Subsequent DOSGENs can be onto any other drive, as
'ong as drive zero then contains a fully DOSGENed disk.

4-4 DISK OPERATING SYSTEM

CHAPTER 5. GENERAL COMMAND CHARACTERISTICS

Some features of the commands supplied with the DOS apply to
most DOS commands. These characteristics and messages are
discussed briefly in this chapter.

5.1 General Command Format

As mentioned in a previous chapter, DOS commands are entered
as a command line. The general format of the command line is:

command [file spec][,file spec][,file spec] ... [;options]

The item referred to as "command" is always required on a
command line. This defines the command being issued to the
system.

The items referred to as "file spec" represent one or more
specifications for files. These files generally are input,
output, scratch, or other files to be used by the command program.
Usually the first such specifications represent input file(s), and
the following specific.ations represent output or scratch file(s). . .

A square bracket convention is used here, as well as
elsewhere throughout most Datapoint documentation, to indicate
fields whose presence is optional. The corner bracket convention
(as in <file spec», represents replacement fields where the
replacement field name is contained within the corner brackets.
After the replacement is made, the corner brackets themselves do
not appear in the resulting line.

The field indicated by "options", separated from the file
specificatiotl fields by a semicolon, generally contains one or
more option letters, which are defined for each specific command.

5.2 Signon Messages

Upon entering a system command, the command program bein.g
invoked will generally display a message identifying the command
program. If the command is specific to one single DOS, the signon
message will also identify which DOS the command is designed to
execute unQer. The main purpose of the signon message is to allow
the operator to determine, in the event of some difficulty,
whether a superceded version of the command ~s ~n use.

CHAPTER 5. GENERAL COMMAND CHARACTERISTICS 5~1

5.3 Common Error Messages

Several error messages are common to many of the DOS
commands. These error messages, and their meanings, include the
following.

WRONG DOS. This message indicates that the version of the
command program being run was intended to run on a specific
version of the DOS, and that version is not the same as the DOS
that is running. This message generally occurs either as a result
of accidentally copying a command from one DOS to a different one,
or attempting to use an obsolete version of a command under a
newer DOS.

INVALID DRIVE. This message appears when one of the drive
specifications given by the operator is invalid. Either the drive
specification was not of the correct format, or the drive number
specified exceeds the range available under the resident DOS.

~ l!~. This message occurs when the command's
continued execution would necessarily result in a conflict of file
name with an already existing file.

NAME REQUIRED. This message generally occurs when one of the
file names required on the command line was not specified by the
operator.

NO SUCH~. This message indicates that a file specified
on the command line"could not be found. Generally the name as
specified is simply misspelled or otherwise incorrectly entered.
However, sometimes this message will occur because the file
desired is not in the current §ubdirectory (described later).

NO! THAT ~ ~ PROTECTED. This message indicates that a
request was made to modify a file that was write or delete
protected.

WHAT? This message means that the command name (the first
item on the command line being processed) is illegal. This
usually indicates that either it is not a valid command, or that
the command specified is not in the current subdirectory.

5-2 DISK OPERATING SYSTEM

CHAPTER 6. APP COMMAND

6.1 Purpose

The APP command appends two object files together creating.
third. Object files are files containing absolute object code in a
format that can be loaded by the DOS loader. The transfer addrlss
of an object file is defined as the entry point of the program
contained in the file.

6.2 Use

APP <file spec>,[<file spec>],<file spec)

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
if the input files are disturbed. If extensions are not supplied,
ABS is assumed. The first two files (if a second is speoified)
must exist. If the third file does not already exist, it will be
created. The first file's transfer address is discarded and the
new file is terminated by the transfer address of the second file.

~ Omitting the second file specification· causes the first file
to be copied into the third file~ For example:

APP DOG" CAT

will copy the file DOG/ABS into the file CAT/ABS.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed. The second and third file specifiQations must
not be the same.

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the e~ample above, is one technique for releasing excessive
unused space at the end of an object file.

CHAPTER 6. APP COMMAND 6-1

CHAPTER 7. AUTO COMMAND

AUTO - Set Auto Execution

AUTO <file spec>

The AUTO command establishes the indicated program to be
automatically executed upon the loading of DOS. If no extension is
supplied, ABS is assumed. If there is already a file set for auto
execution, the message

AUTO WAS SET TO NAME/EXTENSION (PFN).

will be displayed (where PFN is the physical file number).
Regardless, the name specified will be recorded in the DOS table
location reserved for the auto-execution information. A check is
made to see if the file is an object file and if the file is on
drive zero. If the specified file does not exist, the message

NO SUCH NAME

will be displayed. Note that if a program has been set to
auto-execute, its execution can be inhibited by depression of the
KEYBOARD key when DOS is loaded.

If no file spec is given in the commmand line, then the
setting of the file to be auto-executed is not changed. However,
if a file spec was present, then the message:

AUTO NOW SET TO NAME/EXTENSION (PFN).

will be disp~ayed after the new auto-execution setting has been
made.

If no <file spec> is entered and AUTO is ~ot set, the message

NAME REQUIRED

will be ~isplay~d.

Note that the AUTO command does not make prov~s~onfor file
specifications to be given 'to the program which is to be
automatLcally executed. This makes it impossible to us~ AUTO fqr
programs requiring or accepting such parameters. AUTO also does
not place anything in MCR$ (defined later). Therefore, programs

CHAPTER 7. AUTO COMMAND 1-1

which use overlays with the same name (but different extension) as
the program will not run. For more information, refer to the
chapter describing the AUTOKEY command.

Auto-execution mode is cleared with the MANUAL command,
described in a later chapter.

7-2 DISK OPEhATING SYSTEM

CHAPTER 8. AUTOKEY COMMAND

8.1 Introduction to AUTOKEY

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing ta.sks ,perhap!iJ:
running via the DOS command chaining facility (see CHAIN), to be
run during the evening hours when no operator is pres.mt. (A~
example might be the creation of several new index fil~s for one
or more large, ISAM-accessed data bases). However, th~ momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, uninterruptible
power supplies. When this happens to a ~omputer running in
unattended mode, the office staff will generally return the next
morning to find their computer sitting idle and its work
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their rrocessing tasks following such an'
interruption. The purpose of the AUTOKEY(and AUTO) command~is
to provide,s softl'Jare mechanism for use by programmers who wi,s'R to
handle such unusual circumstances and provide for the restard:.Jl:g
of a processing task.

8.2 The Hardware Auto-Restart Facility

There are two little tabs on the back edge (the edge dlred~lt
opposi te from the edge where the tape is visible) of each cass,:tte
tape. The leftmost of these (as you look at the top side of the
cassette) is the write protect tab, which prevents writing on the
topmost side of the tape. The right-hand tab is the auto-restart
tab.

Users who frequently use both sides of cassettes will
probably immediately notice that if one turns over the tape, the
assignments of these two taps switch aroupd, the tab which had
been write protect no~ bein~ auto restart and vice versa. This in
fact is precisely what happens.

If the auto-restart tab on the rear cassette is punched out
(or slid ,to the side on the newer cassettes), then the computer

CHAPTER 8. AUTOKEY COMMAND 8-1

will automatically re-boot, just like it does when RESTART is
depressed, whenever a HALT instruction is executed. Assuming that
the rear cassette drive contains a DOS boot tape, this will cause
DOS to come up and give its familiar message, "READY".

Diskette 1100 users are provided with switch-selectable auto
restart. The computer will either halt or automatically restart
upon being stopped, depending upon the setting of an internal
switch. This switch can be set by a Datapoint representative (SE
or CE) upon request.

8.3 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATASHARE
system, for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatically
t~l{ecuted whenever DOS comes up. (Note that any loading and
running the DOS, whether by an auto-restart, pressing the RESTART
key, or under program control, will activate this facility).

Tne AUTO command is used to establish a program to receive
control when DOS comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been entered.

8.4 Auto-Restart Facilities Using AUTOKEY

AUTUKEY is simply a command program which can be AUTO'd. The
way in which it works is very simple. If it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console. If AUTOKEY
is run from the system console (or likewise from an active CHAIN),
it simply displays the command line it is currently configured to
supply and offers the user the option of changing that stored
command line.

The command line supplied to AUTOKEr cou~o 00 anything
specifiable in one command line to the DOS; DATASHARE could be
brought up, a SORT invoked, a user's own special restart program
started or even a CHAIN begun. AUTOKEY, when used with AUTO,
MANUAL, and CHAIN can therefore provide a very powerful f~cility.

0-2 DISK OPERATING SYSTEM

8.5 A Simple Example

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY

at the . system console. AUTOKEY will display a.signon mefisage ·and
display the current autokey line if there is one. It then a.sks if
this line is to be changed. If "N" is answered, AUTOKEY simply
returns to the DOS and the familiar DOS "READY" message is
displayed. If "Y" is answered, AUTOKEY requests the new com~~nd
line to be configured and then returns to the DOS and "READY~.

Alternatively, if the user wishes to simply specify a n~w
command line to be configured regardless of the current setting of
the AUTOKEY command line, he can merely place the new command line
after the "AUTOKEY" that invokes the AUTOKEY command.

An example or two are in order. First, a simple one. Assume
that XYZ Company has several of their sales offioes on-li.~ to
their home office DATASHARE system, whioh is running oomplEi:tely
unattended. Lightning strikes a powerline outside of XYZ
Company's home office, and power is cuto.ff for 15 seoonds.; As
soon as power is restored, their Datapoint 5500 computer re-boots
its DOS (since the right-hand tab on the boot tape has been
punched out) and warmstarts the DATASHARE system. One command
sequence to accomplish this would look like the following:

AUTOKEY
DOS.nn AUTOKEY COMMAND
NO AVTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y
ENTER NEW AUTOKEY LINE:
DS3
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An al ternate form of the above would be the following:

AUTOKEY DS3
DOS.nn AUTOKEY COMMAND
NO AUTOKEY LINE CONFIGURED.
ENTER NEW AUTOKEY LINE:
QS3 <--- (this is supplied automatically)

CHAPTER 8. AUTOKEY COMMAND 8-3

READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass this ls to hold down the KEYBOARD key while the DOS
is coming up. This bypasses the auto-executed program and enters
the normal command interpreter. The user then can use the MANUAL
command to clear the auto-execution option.

8.6 A More Complicated Example

The following example uses many of the features of other
facilities in the Datapoint system besides simply AUTOKEY.
Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the
sophisti~ation possible using AUTOKEY in conjunction with the
Jther facilities within the DOS.

I.e t I:, assume tha t XI Z Company is running an eigh t- port
iJ:,l".ashar'c :~ystem. Each of the company's seven sales offices
around tne country has a Datapotnt 1100 computer which is
connected up to the home office Datashare system as a port. (The
eighth port is used by the home office's secretary, Susie, to
maintain scoring for her bridge club.) During the day, each of
the seven sales offices makes inquiries of the central inventory,
price, and model code files through a system of Datashare
programs, and another Datashare program lets them key orders into
a file called "ORDERSn" where n is their port number. At the end
of each business day, XYZ Company wants to process these orders.
First they put the seven files all into one large file, sort it,
and use a Datashare program to make corresponding entries into the
master order file. The master order file is then reformatted and
the indpx reconstructed. The final step is to create a second
copy of the master order file onto magnetic tape, which will then
be saved for backup purposes.

>;1 nc(; the operation just described is fairly lengthy, one of
UIP (fJ, n~ C L ever progr;qmmers at XYZ (;ompany decid ed to allow it to
run Ill! '1 t tend cd ;"' ft.cr ev eryo nc 01 se h~s gona home. They even set
up Susie's MASIER program so that it automatically takes down the
Datashare system and starts up the e~d-of-day processing one-half
hour after the company's Los Angeles sales office (two time zones
behi'1d thE Chioago main office) closes fOt, the afternoon. When
the d;qily processing is completed, Datashare is brought back up
again so that it will be up by the time the first people start
arrivjn~ ~t the Ne~ York sales office the next morning, an hour

J-4 D13K OPERATING SYSTEM

before t~e Chicago main office opens.

In the event of an unanticipated power failure, the system
will recover and bring itself back up, resuming operations at the
last checkpoint established by AUTOKEY. Notice that the system is
also left in a state such that after the chain completes,
Datashare will automatically restart in the event of any possible
system failure.

The following chain file ("OVERNITE/TXT") accomplishes the
preceding, assuming that sUbdirectory "SYSTEM" is used throughout
the ,chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost
arbitrarily complicated; the point here is simply to show one of
many possible techniques for handling unattended operations which
wish to restart automatically in the case of some failure. Notice
that the cha~n file might have to be modified depending on the
particular version of DSCON an installation is using.

II IFS S1
II. FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1
AUTO AUTOKEY/CMD
II. NEXT APPEND TOGETHER THE SEVEN FILES.
SAPP ORDERS1,ORDERS2,SCRATCH
SAPP SCRATCH,ORDERS3,SCRATCH
SAPP SCRATCH,ORDERS4,SCRATCH
SAPP SCRATCH,ORDERS5,SCRATCH
SAPP SCRATCH,ORDERS6,SCRATCH
SAPP SCRATCH,ORDERS7,SCRATCH
II. NOW SCRATCH CONTAINS THE DAILY FILES.
AUTOKEY CHAIN OVERNITE;S2
II XIF
/ / IF S S1, S2
II. PHASE TWO SORTS FILE "SCRATCH" INTO "ORDERDAY".
SORT SCRATCH,ORDERDAYj1-5
II. NEXT CHECKPOINT HAVING BUILT "ORDERDAY".
AUTOKEY CHAIN OVERNITE;S3
II XIF
I I IF S S 1 , S 2 , S 3
II. PHASE THREE PROCESSES THE FILE WITH A DS3 PROGRAM.
DSCON
y
N
Y
Y
1
DS3 PROCESS

CHAPTER 8. AUTOKEYCOMMAND 8-5

II. THE MASTER ORDER FILE "ORDERMAS" NOW IS UPDATED.
AUTOKEY CHAIN OVERNITE;S4
II XIF
II IFS Sl,S2,S3,S4
II. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:DR2;R
II. "SCRATCH" NOW IS A REFORMATTED COPY OF "ORDERMAS".
AUTOKEY CHAIN OVERNITE;S5
II XIF
II IF3 31,S2,S3,S4,S5
II. PHASE FIVE COPIES "SCRATCH" BACK TO "ORDERMAS"
COpy SCRATCH:DR2,ORDERMAS
II. "ORDERMAS" IS NOW READY FOR INDEXING.
AUTOKEY CHAIN OVERNITE;S6
II XIF
II IFS Sl,S2,S3,S4,S5,S6
II. PHASE SIX RECREATES THE INDEX FOR "ORDERMAS"
INDEX ORDERMAS;1-16
II. THE INDEX HAS NOW BEEN REBUILT.
AUTOKEY CHAIN OVERNITE;S7
II XIF
/1 IFS Sl,S2,S3,S4,S5,S6,S7
II. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.
TAPE OfiDERMAS/TXT;I/E
B
o
200X4
X
it

II. Nu~ THE BACKJP COPY OF "ORDERMAS" IS ON TAPE.
AUTOKEY CHAIN OVERNITE;S7
flXIF
f/IFS Sl,S2,83,S4,S5,S6,S7
DSCON
Y
N
N
8

AUTOKEY DS3
II. AND START UP DATASHARE FOR NEXT DAY.
DS 3
// XIF

3-6 DISK OPERATING SYSTgM

8.7 Special Considerations

When building long chain files that allow for automatic
restart, several perhaps obvious considerations must be maHe.
Among these are that a file must not be changed in such a way that
the change cannot be repeated if the previous checkpoint is
actually used. To accomplish this, frequently the file being
updated must be copied out to a scratch file, and the scratch file
then updated. Following the completion of the update is when
another checkpoint would be taken: following that the next pbase
would copy the updated file back over the original. Note that a
checkpoint (i.e. resetting the AUTOKEY command line) would have to
be before the creation of the dummy copy to be updated; putting a
checkpoint between the creation of the copy to update and the
actual updating process could result in the updating of a
partially updated copy. A little thought when choosing places to
update the AUTOKEY command line is called for to ensure that the
chain may be resumed from any of them without incorrect results.

8.8 AUTOKEY and DATASHARE

Some users who make frequent use of the Datashare ROLLOUT
feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DSBACK will mean that whenever any port rolls out to
any program or chain of programs, Datashare is automatically
brought back up when that program or chain of programs finishes,
regardless of whether or not DSBACK was included at the end of the
port's chain file.

CHAPTER 8. AUTOKEY COMMAND 8-7

CHAPTER 9. BACKUP COMMAND

9.1 Purpose

The BACKUP command provides for making copies of entire DO:$
disks. The user can make either an exact mirror image copy oftbe
input disk or can select reorganization, which will group filas'by
extension and file name, remove unnecessary segmentation ,anq. alilow
deletion of unnecessary files. Reorganization alsd allo~s Qopying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. Some special considerations apply for
specific disk configurations;these'consider~tions, if any, are
discussed in the System Guide for the specific DOS being used.

9.2 Use·

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>

Inp~t drive and output drive are specified as :DRn or :Dn.
The drive selected as the INPUT DRIVE MUST BE WRITE PROTECTED;
that is, it must be in "read only" mode or have its "protect"
light on. for 9370 and 9350 series drives respectively. The
requirement for the input drive to be write protected is absent on
the 9380 series flexible diskettes. The program will respond by
displaying the message:

DRIVE n SCRATCH?

If the disk on drive n is scratch (note that BACKUP deals
with logical drives), enter a "Y". Any other reply will cause
the program to return to DOS. If you do reply "Y", the program
will display the message: .

ARE YOU SURE?

If you are absolutely sure that you want to write over the
output disk, type "Y" again and press the enter key. Any other
reply will cause the program to return to DOS. If the output
(logical) disk has not been DOSGENed or the DOS file structure on
it has been damaged, the message:

CHAPTER 9. BACKUP COMMAND 9-1

DOSGEN YOUR DISK FIRST

will appear and control returns to DOS. If the output (logical)
disk has been DOSGENed and seems in reasonable shape, the
following message is displayed:

FILE REORGANIZATION?

Note that the option to reorganize during the copy is
mandatory if the output disk has any bad cylinders on it locked
out. If this is the case, the "FILE REORGANIZATION?" question is
bypassed completely and reorganization is assumed.

if you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
1uestion. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire a
illirror image copy of your input disk, enter an "N" in response to
the reorganization question.

9. ~ M_rror Image Copy

If you have typed "N" in response to the file reorganization
~uestion, the program will ask the question:

JU tOU WANT TO COPY UNALLOCATED CLUSTERS?

iype "Y" and press the enter key if you want all data on the
disk copied regardless of whether or not it is in an area
allocated by DOS. This option is preferred in cases where you
~uspect that your DOS files may be partially destroyed or the
utput disk has never been fully initialized with data.

:ype "N" and press the enter key if you wish to copy your
ilSk qS quickly as possible without copying unused areas of the
l~PJt 1isk. "Y" and "N" are the only replies allowed!

j.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
~'l~-=stion, the program will copy the System files, sort the

rectory names, and allow the operator to delete files before
,()pyi~H~ the files to the disk copy.

J-2 DISK OPERATiNG S~STEM

9.4.1 Copying DOS to Output Disk

Various program status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk.

9.4.2 Deleting Named Files

When all directory names have been sorted into file extension
followed by file name sequence and all unnamed files have been
copied, the following question will be displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type "N" and press the enter key if all files are to be
copied. Type "Y" and press the enter key if ybu wish to delete
any files. If you reply "Y" a message asking which .files are !iQ1
to be copied will appear. The lower soreen will be filled by a
numbered list of files for you to chooae from. Type the number or
range of numbers (nnor nn-nn) found next to names of individual
files you wish deleted. Type "ALL" and press the enter key if wish
to delete all of the files in the list. The files selected for
deletion will be erased from the list. When all destred deletions
have been made from a list, type "." and press the enter key to
advance to the next list of file names.

When all file name lists have been examined, the program will
advance to the oopy named files phase.

9.4.3 Copying Named Files

Files with names in the .system directory are oopied in
alphameric file extension, file name sequence. The rtame of e.ch
file is displayed as it is copied. All files are written as Glo~e
together as possible with an absolute minimum of segme~~~tiop.

9.5 Use of KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may b.e pressed any _ time
messages are being displayed. Depressing the DISPLAY key will
hold the current display until the key is released. Depressing
the KEYBOARD key will cause th~ program t~ terminate and. return to
DOS.

CHAPTER 9. BACKUP COMMAND 9-3

9.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

fff PLEASE PROTECT YOUR INPUT DISK fff

Action: Write-disable the input drive.

INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive> and
<output-drive> specification.

ILLEGAL OUTPUT DRIVE!

Action: <input-drive> and <output-drive> have been specified as
the same drive! Retype BACKUP command with correct specification.

8A0 CLUSTER ALLOC TABLE!

Action: A bad Cluster Allocation Table has been detected on the
input disk. The Cluster Allocation Table may be able to be fixed
using thp REPAIR command.

CYLI~DER 0 OF BACKUP DISK IS UNUSABLE!

Action: Your scratch disk cannot be used for a system disk due to
surface defects in cylinder O. Use another output disk and start
over.

SYSTBMn /SYS IS MISSING!

~ction: Your DOS disk cannot be reorganized due to a missing
system file. Catalog the missing system file on your input disk
and start over.

PARITY- :DRn address

~~tion: An irrecoverable parity error has been detected on drive n
dULi..ng the BACKUP operation. The address is shown for each error.
,f' drive n is your output disk, DOSGEN must be rerun to lockout
tne bad addresses or use a different scratch disk for mirror image
~opy. If drive n is your input disk, new parity will be computed
~r1 the record will be copied. Note the error address and check
t·) r ,'-'rro es when copy is complete.

9-4 DISK OPERATING SYSTEM

9.7 Reorganizing Files for Faster Processing

After a DOS disk has been used for awhile, the file structure
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to ihcreased disk access time. System degradation is especially
noticeable when DATASHARE is being used. File reorganization
using the BACKUP program is one way to clean up DOS disks and
improve their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

File segments are consolidated

· Files are packed more closely together

· Related files are clustered together

· Unused trash files are removed (optionally)

· Files are rewritten reducing marginal parity errors

Care should be exercised in naming files so that related
files have the same file extensions and similar file names that
will allow them to be grouped when the system directory is sorted.

9.8 BACKUP with CHAIN

Because BACKUP requires that its input drives be write
protected, does not abort if parity errors occur during the
backup, and may ask different questions depending upon"the
condition of the input and output disks, BACKUP generally should
not be invoked from a CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

9.9 Clicks during Copying

On some versions of BACKUP, generally those intended to run
on smaller disks, a click occurs earih time an unwritten sector is
copied (reorganization mode only). A file which when copied
results in a lot of clicks (more than a dozen, perhaps) can
probably be reduced in size, without any data loss, by using APP
or SAPP as 'appropriate. Clicks normally occur on~y at the end of
a file." Only in physically random accessed files should cliOks

CHAPTER 9. BACKUP COMMAND 9-5

occur lD the middle.

CHAPTER 10. BLOKEDIT COMMAND

10. 1 Purpose

The BLOKEDIT command provides for DOS text file manipulation.
The command copies lines of· text from any DOS text file(s) to
create a new text file.

The BLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files;

Existing program source file re-arranging by
copying the lines of source-code into a new
sequence (into a new source file);

Re-arranging lines or paragraphs of a SCRIBE
file into a new file.

In this Chapter, the following applies:

Text file means a DOS EDIT-compatible file.

Line means one line of a text file as displayed
by the DOS LIST program.

10.2 File Descriptions

BLOKEDIT deals only with text files. For any given
application there will be one text file called the COMMAND ~
which will hold the controlling commands for BLOKEDIT, there will
be one or more text files called §QURQE F1LES from which lines of
text will be copied, and there will be one text file called the
NEW FILE which will be the desired end result for the application.

CHAPTER 10. BLOKEDIT COMMAND 10-1

10.2.1 Command File

The command file is the cO'ltrolling factor in BLOKEDIT
execution. The command file specifies which source files will be
used and which lines of text will be copied from them. A command
file must be created by the DOS EDIT program before BLOKEDIT can
be used.

There are three kinds of lines that are meaningful in a
command file: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
pertod.

This is an example of COMMENT LINES:

THESE THREE LINES ARE COMMENT LINES.

As Ln program source files, a comment line'may have
explanatory notes or nothing at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or
source n.le ~ NUMBERS, or begins with a double quote symbol
(") .

The following are some example command lines:

FILENAME/EXT:DRO
1-100
350-377

NAME THE SOURCE FILE
COpy LINES 1 THRU 100
COPY LINES 350 THRU 377

A command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE El1li is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the. command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name.

A command line that begins with a digit indic~tes that the
commar~ line will have one or more numbers, which are the numbers
of the lines to 0e copied from the source file previously
specified in the command file into the new file.

10-2 DISK OPERATING SYSTEM

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
(") is the (II) itself, therefore the rest of the line cari be used
for comments.

A QUOTED LINE is a line between a pair of command lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

" THIS
INCMNT

" THIS

IS THE
HL
LAM
AD
LMA

IS THE

BEGINNING OF QUOTED LINES COMMAND LINE.
COUNT POINT TO COUNTER

LOAD TO "A" REGISTER
INCREMENT BY 1
RESTORE TO MEMORY

ENDING OF QUOTED LINES COMMAND LINE.

There may be more than one quoted line between the command
lines that begin wi th ("). A quoted line will be copied directly
from the command file to the new file. Quoted lines enable a
person BLOKEDIT user to'include briginal'lines of text in a new
file along with lines copied from source files.

10.2.2 Source File

The SQURCE FILE is a pas EDIT-compa tibl e text fil e from which
lines will be copied. source files are named in the command file
for a' BLOKEDIT application,and the lines to be copied fro. the
source file will. also be specified in the command file. It will
be useful to have a listing of a source file with line numbers, as
produced by the LIST command, when creating the command file for a
BLOKEDIT application.

1 0 . 2 . 3 New F i 1 e

The NEW FILE is a DOS EDIT-c9mpatible text file produced by
the BLOKEDIT command. The new file is named at SLOKEDIT execution
time by the second file specification entered on the command line
(see below).

10.3 Using BLOKEDIT

Before the BLOKED!T command can be used one must create a
command file as described above. When the SLOKED!T command is to
be executed, the operator must enter the following command line:

SLOKEDIT <file spec>,<file spec>

CHAPTER 10. BLOKEDIT COMMAND 10-3

Tne first file specification refers to the command file and the
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are
searched. If no drive is given for the second file, the drive
given or assumed for the first file is used. The specified output
file must not exist on any drive on line.

10.3.1 Messages

This section describes the operator messages that BLOKEDIT
may display on the CRT screen during execution. Some of the
nessages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.

PROCESSING COMMAND LINE .. CURRENT SOURCE ~ IS .. I .. :DR.

Thi~ message is the BLOKEDIT monitor message. This message
is di3p13yed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
~urrentiy being processed and the name, extension, and drive
'lumbt'r t)1 the last named source file.

'f dLdKEDIT detects an error in the command file the monitor
message 1S rolled up the screen one line, an appropriate error
message is rlisplayed, and the monitor message is re-displayed. In
this way a screen-log of where errors in the command file occur is
maintained.

COMMANv AND NEW FILE NAMES REQUIRED.

fhis message is displayed if the operator did not name both a
and a !'lew file when the BLOKEDIT command was called.

:OMMAND FILE DRIVE INVALID.

This message is displayed if the operator specified for the
(;omm"nd file a drive number that is invalid.

NEW FILE DRIVE INVALID.

Th~s message is displayed if the operator specified for the
new f1 ,.e':i drive number that is ~nvalid.

10-4 OISK OPERATING 3iSTEM

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives
for the files were specified or assumed to be the same.
Defaulting of extensions and drives is described in an earlier
paragraph.

COMMAND FILE NOT FOUND.

This message is displayed if the command file name was not
found on the drive(s) specified or assumed.

This message is displayed if the specified output file liU
found on the drive(s) specified or assumed. BLOKEDIT will not
write into an existing file.

BAD FILE SPECIFICATIQN.

This message is displayed if the first character of a command
file line other than a quoted line is an upper-case alpha
character but the DOS file specification was not recognizeable.

SOURCE FILE NQI FOUND.

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

BAD ~ NUMBER SPECIFICATIQN.

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizeable
line number specification.

Here are some examples of valid line numbers:

4 A single digit is acceptable.
999999
100-364
34,55-78,100-147

A line number may have up to six digits.
Two numbers may be separated by a "_H.
Commas may separate nu_bers.

Here are some examples of invalid line numbers:

1A
1234567
"7-34-7'7

Only "-", ",", or space after a digit.
Number has more than six digits.
Only two numbers separated by "_H.

CHAPTER 10. BLOKEDIT COMMAND 10-5

LINE NUMBER ZERO IGNORED.

This message is displayed if a line number of zero is
specifed in a command file line.

START LINE NO. > END LINE NO., IGNORED.

This message is displayed if the first number of a line
number pair is larger than the second number of the pair, as in:
235-176.

BAD DATA IN SOURCE FILE LINE

This message is displayed if BLOKEDIT discovers non-ASCII
characters in a source file. The line number will be displayed
following the message.

SOURCE FILE WENT IQ E.Q.[..

This message is displayed if the source file from which lines
were being copied ended before the specified lines were finished.

TEXT TRANSFER DONE.
NEW FILE'~ LINE COUNT l§.

ThlS ~essage is displayed when all of the command file lines
have been executed. The number of lines in the new file is
displayed fol~owing the second line.

10-G DISK OPERATING SYSTEM

CHAPTER 11. BOOTMAKE COMMAND

BOOTMAKE - Generate a DOS bootstrap cassette

The BOOTMAKE command writes a DOS bootblock onto the cassette
tape in the front tape deck. BOOTMAKE accepts no operands. To
use it, simply enter:

BOOTMAKE

at the system console. The command asks if the cassette in the
front deck is scratch. If it is, the tape is rewound and a DOS
bootblock written onto it.

The BOOTMAKE command then rereads the bootblock to insure
that the cassette is good. In addition, the bootblock checks its
own parity immediately upon loading and halts if it finds it has
not been loaded properly.

If the machine halts upon booting repeatedly and other boot
tapes work on the same machine, then the boot tape whi~h causes
the boot operation to halt is not a good tape and should not be
used.

CHAPTER 11. BOOTMAKE COMMAND 11-1

CHAPTER 12. BUILD COMMAND

12.1 Purpose

It is occasionally desirable to be able to 6reate a text file
without having to use the standard DOS editor. It is partioularly
useful to be able to generate a text file comprised of lines
contained within a CHAIN file (to be described in a later
chapter), possibly selected by options on the CHAIN command line.
BUILD offers precisely this facility.

BUILD is al so useful fo r rapid generation of very short text
files, such as two and three line CHAIN files or BLOKEDIT command
files.

12.2 Use

The BUILD command is invoked by entering the command line:

BUILD <file spec>[;<end character>]

The file specification defines the output file. This output
file specification is always required. If the named file does not
exist, it is created.

The end character is optional. If no end character is
specified on the command line,BUILD terminates upon receiviq a
null input line (a null input line is a line consisting of only an
ENTER. A blank line is not a null line). Note that neither the
EDIT command nor the BLOKEDIT command normally ever write a null
line, to a disk file, nor does the CHAIN command, (described in a
later chapt~r), normally respond to a KEIIN request with a null
input line .. Specifying an end character, therefore, allows an
end-of-input character to be defined to BUILD so that it can be
invoked' from wi thin a CHAIN file. .

BUILD accepts input lin~s from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it displays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specified
end character, if any, as the first character entered. If the end
character is present as the first character ,of the entered line,
the end line is d1scard~d (it is not written to the output file),

CHAPTER 12. BUILD COMMAND 12.;,1

and an end of file mark is written to the output file and the
output file closed by returning to DOS.

12.3 A ,)lmple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
aut0-execute request can be accomplished later with a single
command line entered at the keyboard. All that is required is to
enter at the system console:

BUILD <chain file spec>;*
AOTOKEY <program name>
AUTO AUTOKEY/CMD
*
Jpon rece1v1ng the "*" input line, BUILD closes the output

file and terminates. Note that in the two places where the "I"
ippears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain filesi. After the BUILD command is finished, the
output file named on the BUILD command line contains the following
two lloes:

AJTJKEY <program name>
4JTO AUTOKEY/CMiJ

12.4 A Aore Sophisticated Example

Many Datashare users have a need for a MASTER program for
~ach separate port they have on line. Generally, these eight or
sixteen MASTER programs are identical except for a port number or
other (relatively short) port-specific information.

One way of maintaining these multiple MASTER programs is to
create many copies of the same program and then use the EDIT
~o~mand (described later) to modify each of the many source files
~s necessary. However, this makes subsequent changes to the
~A~T~~ program tedious since many different copies have to be
~pdated in parallel, and the possibilities for errors should be
nbvi.O~J.' .

~ much easier solution for the problem is to make the port
number definiti~n an inclusion, and to BUILD this inclusion file
:1 the chain file used to compile the multiple programs. A
[)rtj.F of the resul ting chain file might look as follows:

BUILD PORTNlJM;*

'_-2 DISK JPERATING SYST~M

PORTN FORM "01"
* DBCMP MASTER,MASTER1
BUILD PORTNUM;$
PORTN FORM "02"
$
DBCMP MASTER,MASTER2
BUILD PORTNUM;&
PORTN FORM "03"
&
DBCMP MAStER,MASTER3
etc.

By then simply ~pecifying an INCLUDE statement in the,1t~lrER
program, it can easily be arranged to have each differentMAS''tSR
object progr'am 'have a d~fferen t po'rt number. Noticetha t in the
example above, the file PORTNUM built by BUILD could b~ of any
length; in this example it is only one line long sl~ce that 1$
all that is required tor this example. In the case' used' above ~
building the inclusion' fil e wi th BUILD resul t s in only requiriilg
two source files (instead of maybe sixteen) to support many ports,
and one of those source ~iles is transient (PORTNUM/TXT) and can
be deleted at the end of the chain. Changes to the MASTER pxt'til"ram
can be accomplished by simply modifying one version of the prp,ram
and then running the chain file to create all the required obj.~t
programs.

It is also possible, through BUILD nesting, to crea techa.:ta
files which during execution of the chain construct other oha.it'n
'files and execute them automatically upon completion of tha first
chain (since the last statement of a chain fil e .ll allowed to be a
CHAIN command).

The references to CHAIN made here may be premature, sinC~
CHAIN is di scussed in a later chapter, but are included because
BUILD and CHAIN can be of great usefulness 'when used together 1n
this manner. With a little imagination it is genuinely surpri.lng
to discover the level of sophisticated job and p~ogram control
that the combination of these two very useful programs can
provide.

CHAPTER 12. BUILD COMMAND 12-3

CHAPTER 13. CAT COMMAND

13.1 Purpose

The CAT command selectively displays DOS filenames from the
directory. One may choose to display all catalogued filenames on
all drives online or specific filenames on specific drives.

13,,2 Use

The CAT command is invoked by entering the command line:

CAT [<name>J[</ext>][:DR<n>][,L]

where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <n> specifies the logical disk drive number,and L
specifies list only those files in the current subdirectory.

Directory entries are displayed in the form:

NAME/EXTENSION CPFN)P

where PFN is the physical file number in octal (0-0377) and P is
the protection on the file CD for deletion, W for write, and blank
for none). If. the file displayed is in a subdirectory other than
system, th(~ directory entry is displayed in the form

NAME/EXTENSION-(PFN)P

with the dash indicating a subdirectbry entry. All drives are
searched, unless a specific drive is requested, and as each drive
is scanned, the line

--~- DRIVE n (subdirectory name):

is displayed. (This line is not displayed if the drive is not on
ltne, or if no files from it are to be displayed).

Depressing ·the DISPLAY key causes the catalog display to
pause as long a$ the ~ey is held. Depressing the KEYBOARD key
causes the catalog qisplay to : termina te. If the CAT command is
parameterized by only an extension, only files of that extension

CHAPTER 13. CAT COMMAND 13-1

will be displayed. If the CAT command is parameterized by only a
name, only files of that name (all extensions) will be displayed.
If the CAT command is parameterized by a name and an extension,
only files of that root name and extension (all drives) will be
displayed. If the CAT command is parameterized by only the drive
number, only files on that drive will be displayed. If only a
portion of tne filename is entered, all files beginning with the
letters specified will be displayed. For example, entering:

CAT IT

would cause the display of all files on all on-line drives whose
extensions start with "IT". Entering:

CAT MA:DR2

would ~avse the display of all files on drive two whose file names
start wttn "MA".

13-2)lSK OPERATING SiSTEM

CHAPTER 14. CHAIN COMMAND

14.1 Introduction

The CHAIN command enables an operator to employ a disk file
in defining job procedures in terms of any sequence of other DOS
programs. This file can also supply parameters to the DOS
programs invoked, allowing automatic control of execution options.
For example, CHAIN could be used to run the SORT utility on
several files and then to print listings of these files. The
headings on the listings could contain a date which was entered as
a parameter to the CHAIN command. Another common use of CHAIN
includes program generation of large systems where one must often
execute a number of assemblies, create a complex of files by
appending together combinations of the object files created by the
assemblies, and then make an LGOtape containing the combined
files. In this application, one usually wants to be able to enter
the date to be printed in each assembly listing heading, or to
restrict assembly to only a subset of the entire system of
programs. This can all be performed. by the CHAIN program.

Basically, CHAIN replaces the DOS keyboard entry routine with
a routine which reads a line from a fi.le each time the keybo~rd
entry routine is called. Therefore, each time any program would
normally request a line to be entered from the keyboard it will
get the line from the file. The DOS program has no idea that the
line is coming from the file instead of from the keyboard.

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the Editor, can be invoked from a
chain file but editing must be done manually by the operator. The
CHAIN prQgram itself cannot be called from within a CHAIN file
unless the CHAIN command is the last command in that chain. If
CHAINing with a CHAIN file (recursion) is attempted, an etror
message is gi v'en 'and the chain is aborted. The chain is al so
aborted when a'CHAIN-invoked program makes an 'exit to DOS that
implies that an error of some kind has been made. The error
message given by the program will generally remain on· the sQreen
after the chain is aborted.

In' a s~nse, CHAIN is a I\1acio facili'ty. It allows the

CHAPTER 14. CHAIN COMMAND 14-1

operator to define a macro procedure under a name (the CHAIN file
name) in terms of other smaller operations (other DOS programs).
This procedure can then be invoked by simply giving the name of
the procedure file to the CHAIN program. The additional
facilities of decision making within the procedure'through
conditional statements (including logical operations and micro
substitution of strings from the CHAIN command line) allow an
almost unlimited extension of this concept.

14.2 Simple Use of CHAIN

As mentioned in the introduction, CHAIN really does nothing
more than simulate the operator when the standard DOS keyboard
entry routine is called. The data to be entered is obtained from
a file whose name is given on the same line as the CHAIN command.
For example, one could edit a file called APPFILES using the
standard DOS Editor. It could contain the following lines:

APP DWS,DSTATH,DS/OVl
APP DS/OV1,DSKED,DS/OVl
APr DS/OV1,DINT,DS/OVl
APr US/OV1,DINIT,DS/UVl

~hen one then entered the DOS command:

CHAIN APPFILES

the above lines would be entered in the sequence shown whenever
the DOS requested another command line. The conceptual
simplification and reduction in probability of operator error is
obvio~s. Instead of having to remember the names of all the files
each time the file DS/OV1 is to be created, the operator need only
reme~her the file name APPFILES.

When the last line of the CHAIN file has been exhausted, and
a new DOS command is desired by the system, the DOS is reloaded
and c0~mands are again accepted from the operator at the keyboard.
nowever, if the file is exhausted while a program is requesting
jata, the CHAIN ABORTED! message is given and the program
~urrently being executed is abandoned.

4.though the above example showed only DOS commands being
~lven by the CHAIN program, it should be remembered that all
~eyb0&rd entries requesteJ through the standard DOS keyboard entry
f'outine will obtain their data from the CHAIN file. For example,
.l f in the above example the files not needed after the appe"jing
had taken place were to be killed, the file would have contained
the fJllowlng additional lines:

14-2 DISK OPERATING SYSTEM

KILL DWS/ABS
Y
KILL DSTATH/ABS
Y
KILL DSKED/ABS
Y
KILL DINT/ABS
Y
KILL DINIT/ABS
Y

Note that the 'Y' given after each KILL command is not another DOS
command but is the response to the message 'ARE YOU SURE?' that
the KILL command displays. Another example would be one of an
assembly. When obtaining listings, the assembler requests the
entry of a heading. Thus, the CHAIN file would need to contain
the heading as well as the assembly command:

ASM TSDWSjXL
DATASHARE 2.1 WORKING STORAGE

Some DOS programs can go through a rather complex set of
requests for input which can make them hard to use with the CHAIN
program without making a mistake. For example, the old DOSASM4
used to ask for program options one at a time wi th a message for
each. This is a nice feature if one is entering the data from the
keyboard but, on the other hand, makes it almost impossible to use
the program with CHAIN without making an error in the procedure
file. The problem is aggravated by the fact that the number of
options requested varies depending upon the response to certain
options. For this reason, most DOS programs allow almost all
options to be specified on the command line and keep the variation
in the number of keyin requests to a mlnlmum. It is good practice
for all DOS programs to be written with this in mind to facilitate
their use with CHAIN.

An additional item to keep in mind is the fact that some DOS
programs use their own keyboard entry routine as well as the one
provided by the DOS. This enables the program to avoid the use of
the CHAIN procedural lines when special operator intervention is
required. An ex~mple is the TAPE program (industry compatible
9-track tape handler) which requests operator intervention if the
end of the reel of tape is reached while a file is being written.
In this case, the program asks if the wri ting .is to be con tinued
on another reel of tape and if so wai ts for the operator t.o change
ree1s. 'After the opera tor indicates to the program that the reel
has been changed, the program can continue writing files, getting
the names from the CHAIN proce~ural file. If the TAPE program had

CHAPTER 14. CHAIN COMMAND 14-3

used the standard DOS keyboard entry routine, the file names would
have been given for reel change responses and, needless to say,
the order of program execution would have been incorrect.

14.3 More Advanced Use of CHAIN

14.3.1 Tag definition

The CHAIN command line can be parameterized by tags given
~fter the procedural file specification, if the file specification
is followed by a semicolon. Tags may be from one to eight
characters in length and have values from zero to eight characters
in length. A tag must start with a letter and contain only
letters or digits. A tag's value can contain any character except
the <#> symbol. A tag is given a non-null (non zero length) value
by enclosing the value to be assigned between <#> symbols. For
exam pI e, in

GHAIN MAKETEST;LIST,DAY#17#,TIME#02:30#

the tag LIST has a null value, the tag DAY has the value 17, and
the tag TIME has the value 02:30. CHAIN allows two uses to be
made of tags. Tests can be made to determine whether a tag of a
given name has been enLered on the CHAIN command line and the
value of a tag can be substituted for part of a line within the
procedural file.

14.3.2 Phases of execution

CHAIN executes a compilation phase and an execution phase.
In the compilation phase (CHAIN/CMD), the specified procedural
file is read and a new file is created (always named CHAIN/SYS)
and deleted at the successful completion of the procedure. This
new file consists of only the lines to be used in the particular
procedure to be executed. All compilation comment lines and
condlti~nal items not to be used are eliminated, all substitutions
Jf tag values are made where indicated, and the space compression
in the file is eliminated to make it easier on the routine that
ove~! iva the DOS KEYIN$.

Ine execution phase lCHAIN/OV1) overlays the DOS KEYIN$ with
~ '·()ut 1 'Ie which fi ts in ., he same space and appears the same upon
~Xlt ;the HL and DE registers are the same as if data had been
er,+ eced from the keyboard and the display and cursor posi tL ing
)0 the ~creen is the same) except the input line is obtained from
" he :P 1 ~V SYS file instead of from the keyboard. If the line read

14-4 DISK OPERATING SYSTEM

is longer than the maximum specified by the calling program, the
chain is aborted.

After the KEYIN$ routine is overlayed, the execution phase
reads in one line and supplies it to the DOS as if the line had
been entered as a DOS command. If this produces an execution time
comment line, the line is $imply displayed and another line is
read (which may also be an execution comment). Execution time
comm~nts begin with "//." as the first three charact~rs in the
line. There is a variation on the execution time comment line,
which is called an operator break point. Operator break point
lines begin with "//*" as the first three characters in the line.
This line is displayed as in an execution time comment except
afterward the chain waits for an operator to depress the KEYBOARD
or DISPLAY key. After one qr the other of these keys is
depressed, the chain continues to the next line as in an execution
time comment.

If the end of the CHAIN/SYS file is reached while a DOS
command is being sought, the chain is determined to be finished.
At this point the CHAIN/SYS file is deleted and DOS is reloaded
(restoring the KEYIN$ routine to its normal state).

When a program terminates by jumping to the DOS EXIT$entry
point or to the label NXTCMD in the command interpreter, the
routine overlaying KEYIN$ loads and executes the CHAIN/OV1file
which reloads DOS, restores the CHAIN KEYIN$ routine, and then
reads the CHAIN/SYS file for the next command.

14.3.3 Tag existence testing

Thoughout this subsection, the term "operator" refers to an
operator in the expression evaluation sense~ like a "+". It
should not be confused with the human operator at the system
console.

CHAIN contains an IF operator which allows a test to be made
for the existence of one or more tags in the CHAIN command line.
If the test proves positive, then the lines following the IF

.operator will be included in the CHAIN/SYS file. If the test
proves negative, then the lines will not be included in the
CHAIN/SYS file. This will hold true until either the ELSE or XIF
operators discussed below are reached. All CHAIN operators are
denoted by a 1/ as the first two c~aracters in the line. If the
third character is additionally a period, then an execution time
comment is indicated. Otherwise, any number of intervening spaces
(including zero) are scanned until an operator is reached. If the
operator scanned 1s not one of the defined operators, an error

CHAPTER 14. CHAIN COMMAND 14-5

message will be given and the procedure aborted. The examples all
show one space between the two slashes and the operator in order
to make them more readable.

The IF operator has two variations, IFS and IFC, which stand
for if-set and if-clear. The IFS operator proves positive if any
of the tags listed exist. For example:

II IFS FLAG1

will prove positive if FLAG1 was mentioned in the CHAIN command
line. The IFC operator proves positive if any of the tags listed
were not mentioned. For example:

II IFC FLAG2

will prove positive if FLAG2 was not mentioned in the CHAIN
command line. One can test to see if all of a group of tags exist
by having multiple IF statements in sequence. For example:

II IFS FLAG1
II IFS FLAG2
II IFS FLAG7

will allow the following lines to be used in the procedure if
FLAG 1 is set AND if FLAG2 is also set AND if FLAG7 is also set. A
comma between tag names on an IF line actually performs the
logical OR function. A logical AND function may be performed by
putting a period between tag names. For example:

II IFS FLAG1.FLAG2.FLAG7

is equivalent to the above example.

II IFS FLAG1.FLAG2,FLAG3,FLAG4.FLAG5.FLAG6

will allow the following lines to be used in the procedure if
FLAG1 and FLAG2 exists ~ if FLAG3 exists ~ if FLAG4 and FLAG5
and FLAG6 exists. Note that the IF operators are scanned only if
procedure lines are being used. Thus, if one of the IF operators
ha~ proven negative and has inhibited the use of procedure lines,
all fa:lowing IF operators will be ignored until either an ELSE or
X1F operator is reached.

As mentioned in the first paragraph of this section, the two
~t-JI.\Ii~ operators that can cause procedure lines to be put bac. into
,.se are ELSE, wrich reverses whether or not the procedure licll;s
~re bejn~ used, and XIF, which unconditionally turns on the usage

1q-6 DISK OPERATING SYSTEM

\

of procedure lines. For example, if the CHAIN file MAKETEST
contained the following:

I I IFS LIST
ASM TESTjXL
TEST PROGRAM
II ELSE
ASM TEST
II XIF
APP DATA,TEST,TEST/CMD

and the CHAIN command was given as follows:

CHAIN MAKETESTjLIST

then the procedure followed would be:

ASM TESTjXL
TEST PROGRAM
APP DATA,TEST,TEST/CMD

However, if the chain command was given as follows:

CHAIN MAKETEST

then the procedure followed would be:

ASM TEST
APP DATA,TEST,TEST/CMD

ELSE and XIF can only be inhibited by the use of the BEGIN and END
operators discussed in the Section on Additional CHAIN Operators.

14.3.4 Comment lines

CHAIN allows fo~ two types of comment lines within the
procedural file. One type already mentioned is the execution time
comment. This type may appear only before a DOS command entry and
will not appear until just before that command is to be executed.
For example, the procedure file containing:

II. ASSEMBLY OF THE: TEST PROGRAM
ASM TBSTjXL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed .A variation on the execution time comment is the
operator break point. For,~xample, the procedure file containing:

CHAPTER 14. CHAIN COMMAND 14-7

11* INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
MOuT ;LV
TEST
DATAITXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
comment. This line is not included in the procedure but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

· ASSEMBLY OF TEST PROGRA~
II IFS LIST
· YOU ARE GOING TO GET A LISTING
ASM TEST;XL
TEST PROGRAM
II ELSE
· YOU AREN'T GOING TO GET A LISTING
ASH TEST

and the CHAIN command:

CHAIN MAKELIST;LIST

was given, then only the lines:

· ASSEMBLY OF TEST PROGRAM
· YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
nowever, the CHAIN command:

CHAIN MAKETEST

was given, then only the lines:

14-0 DISK OP~RA:~NG SYSTEM

ASSEMBLY OF TEST PROGRAM
. YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

14.3.5 Tag value substitution

So far in the discussion the value of a tag has not been
used. Note that the existence of a tag can be tested regardless
of its value. Thus the procedure file can test to see if any tags
with values have been forgotten by the operator. A tag value is
simply substi tuted wherever a pair of "tl" symbols are found with a
syntactically valid tag name between them. An example will
eliminate a large number of words. Assume that the procedural
file MAKETEST is as follows:

ASM TEST;XL
TEST PROGRAM ASSEMBLED ON #DATE#
ASM ASDF;L
THE ##FLAG1## PROGRAM #FLAG2#
I I . #IFF LAG 1 fltlFLAG 3t/FLAG2tl

A CHAIN command of:

CHAIN MAKETEST

would produce a CHAIN/SYS file that looked exactly the same since
~f the tag between "II" symbols does not exist, then no
substitution at all is performed. However, a CHAIN command of:

CHAIN MAKETEST;DATE#17JAN7411,FLAG1#FLAG4#,FLAG2#ZXCV#

would produce a CHAIN/SYS file as follows:

ASM TEST; XL
TEST PROGRAM ASSEMBLED ON 17JAN74
ASM ASDF;L
THE IIFLAG4IF PROGRAM ZXCV
II. IFFLAG4#FLAG3#FLAG2#

Observe, for a moment, how the "II" symbols were handled in the
next to the last line. The first two "#" symbols did not enclose
a syntactically valid tag nam~. Therefore, the first "II" was
simply passed through and a pairing "II" for the second "#" was
sought .. This was found and asyntatically valid name (FLAG1) was
found to be between. So the value of FLAGl Mas substituted for
the characters #FLAG111 in the line and then the scan continued.

CHAPTER 14. CHAIN COMMAND 14-9

The following pair of "I" enclosing the word PROGRAM was not used
as a tag name because the word PROGRAM was terminated by a space.
To be used for a tag name, the sUbstitution specification must be
terminated by the "I" symbol.

Now observe the last line in the example above. The first
three "I" symbols were handled in the same way as for the next to
the last line. However, #FLAG31 did make up a syntatically valid
substitution specification so it was used. FLAG3 did not exist so
IFLAG31 was simply passed through. At this point however, the
only characters remaining to be scanned were FLAG21 which did not
make a matching set of "I" symbols so FLAG21 was simply passed
through also.

All of the above may seem
explained are very useful when
from within a CHAIN procedure.
date from one procedure to the

ASM TEST;XL

a bit far fetched but the features
one wants to use the CHAIN command

For example, one could pass the
next by having the procedure file:

TEST PROGRAM ASSEMBLED ON IDATEI
CHAIN CHAINF2;DATEIIDATE##

Note that if a tag is mentioned in the CHAIN command line but
given no value and if the value is called for substitution, a null
value will be substituted for the #<tag># within the line. The
effect is that the I<tag># characters simply disappear from the
line. For example, a CHAIN command:

CHAIN MAKETEST;DATE

made for the procedural file shown above (assume it was called
MAKETEST) W0J~j result in a CHAIN/SYS file containing:

ASM TEST;XL
TEST PROGRAM ASSEMBLED ON
CHAIN CHAINF2;DATEII

14.3.6 AddItional CHAIN operators

In addition to the operators mentioned in previous sections,
CHAIN contains ABORT, BEGIN, and END operators. The ABORT
operator simply causes CHAIN to return instantly to DOS without
any further a~tion. If any messages are to be given to the
operator, it is the respunsibility of the procedural file to
contain tne appropriate compile time comments before the ABORT
operator. fhis operator makes it easy to terminate the procedure
if a critical tag is missing or some other problem with the

14-10 DISK OPERATING SYSTEM

procedural file or. its parameterization is detected.

The BEGIN and END operators allow groups of IF/ELSE/XIF
operators to be parenthesized. A counter called the BEGINIEND
counter is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGINIEND counter is
incremented. If an END operator is encountered, then the
BEGINIEND counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGINIEND counter is
not equal to zero. For example:

II IFS FLAG1
ASM TEST 1; XL
TEST PROGRAM ONE
II ELSE
II BEGIN
II IFS FLAG2
ASM TEST2;XL
TEST PROGRAM TWO
II ELSE
ASM TESTTEST;XL
TEST TESTER
II XIF
II END
II XIF
II IFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
II XIF

The 6th through the 12th lines will not be used if FLAG1
exists, not~ithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGINIEND pair prevented
these operators from having any effect.

14.3.7 Resuming an aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores the CHAIN/SYS file pointers for the line to be· used. If
something goes wrong during the DOS command which follows and the
procedure is aborted, CHAIN still knows where it was in the
CHAIN/SYS file when the problem occurred. Since CHAIN does not
delete the CHAIN/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAIN/SYS
file if· the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for th~
~bort is something correctable like the disk running out of file~

CHAPTER 14. CHAIN COMMAND 14-11

or an attempt to delete a non-existent file. In this case, the
operator need only correct the condition and then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. This action can generally be applied even if the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN *
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

This simpJy restarts the chain with the next available line
in the procedure. If the next line had been intended as a keyin
line for the failed program (as opposed to a DOS command line) the
chain will generally immediately abort again. However, by
restarti~g the chain in this manner, repeatedly if necessary, the
invalid step can usually be bypassed and chaining resumed.

14-12 DISK OPERATING SYSTEM

CHAPTER 15. CHANGE COMMAND

CHA,GE' - Change a file's protection

CHANGE <file spec>;p

The CHANGE command enables one to write protect, delete
protect, or clear the protection of a disk file. If a file is
delete or write protected, a KILL command (or program generated
kill) cannot affect it. If a file is write protected, it cannot be
written into by the standard system routines.

The option parameter "pH is used above to indicate th~
protection for the file specified. Protection can be specified
as:

For example:

D - delete protect
W - write protect
X - clear protection.

CHANGE NAME/EXTENSIONjD
CHANGE NAME/EXTENSION:DR2;X

will delete ,protect the file in the first case, and remove all
protection in the second case. If a first specification is not
given, the message

NAME REQUIRED.

will be displayed. If the file indicated by the first file
specificati6ri cannot be found, the message

NO SUCH NAME.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

will be displayed.

CHAPTER 15. CHANGE COMMAND 15-1

CHAPTER 16. COpy COMMAND

16.1 Purpose

It is frequently useful to make a copy of a disk file. It
may be desired, for example, to make a copy on a separate volume
for backup or distribution purposes.

It is possible to copy a disk.file using more specialized
commands ~uch as SAPP and APP. However, since thes~ commands make
assumptions regarding the internal details of the contents of the
file they are copying, they require one to distinguish between
standard DOS TEXT-type files and OBJECT files (files whose
contents are in the standard format acceptable to the DOS loader).
Additionally, SAPP and APP cannot correctly copy certain unusual
types of file~, for example those with imbedded end-of-file
records, physical random data files, and the like.

Because the COPY command does not make. assumptions about the
format of the sectors being copied, but merely copies the file
sector-for-sector, it can copy most types of disk files which
previously were not possible to copy using the SAPP and APP
commands. Some particular types of file are still unmovabl e,
however. The outstanding example are INDEX files, usually with
extension IISI. (These cannot be moved because index files
contain, internal to themselves, pointers indicating their actual
physical location on the disk volume, which are made invalid when
the file is moved to another place on the disk).

Another advantage of the COPY command is that since sectors
are not examined for content, some versions of the command can
copy files much faster than is possibl~ using APP or SAPP.

16.2 Use

The COPY command is invoked by ~ntering at the system
console:

COpy <input file spec>,<output file spec>

The COpy command. causes the first specified file to be copied
into the second one. Attributes of the first file, sU9h as its
protection, are copied to the second file as well.

CHAPTER 16. COPY COMMAND 16-1

The only portion of the operands that is specifically
required is the name of the input file. The extension of the
input file, if none is specified, is assumed to be ITXT. If a
drive specification is entered for the input file, then only that
specific drive is searched for the indicated file. If no drive
specification for the input file is given, all drives are
searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
file's extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output
file before creating it unless a particular drive is specified.

For example, to copy file PAYROLLITXT from drive two to drive
one, it is only necessary to enter:

COpy PAYROLL:DR2,:DR1

As another example, to make another copy of PROGRAMIASS on
drive zero, but to be named MYPROG, all that is required is:

CuPt PROGRAM/ABS,MYPROG:DRO

Peop~e who exp~rience parity errors in one of their data
files can frequently re0 0ver their data using COpy. Since the
COPY program merely comments about parity errors encountered and
does not abort when one occurs, the data copied will occasionally
be correct (or almost correct) even if a parity error occurs and
can be used to recover the data in the original file.
Alternatively, using the COpy program to write the file on top of
Itself (therefore without changing the file) by simply specifying
the input file and no output file, a user can frequently clear
soft (and occasionally what seem to be hard) parity errors
occurllng in an important data file. (Of course, no important
file should be updated in place unless a copy of the file exists
somewhere for recovery purposes in the event of a failure). .

Some versions of the COpy command issue a click each time an
unwritten sector is copied. If more than a dozen or so clicks
occur at the end jf copying a file, it usually indicates that the
file is larger than necessary to contain the data in it. In this
case, moving t11€ file using APP or SAPP can sometimes help to
relt<..lC, its si ze . Cl ie ks occ urring dur ing the copyi'1g (before the
~nd)1 the file) indicate sectors containing LOS format errors,
possihly implying a sector accidentally destroyed by some faulty
'.rog "a,TI.

1)-2 DISK OPERATING SYSTEM

CHAPTER 17. DOSGEN COMMAND

17.1 Purpose

Before 'any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, where the names of the
files contained on the disk are stored, as well as a map showing
which places on the disk are bad and should not be used.

The purpose of the DOSGEN command is to provide the user with
a simple and efficient way of accomplishing this.

17 . 2 Use

To DOSGEN a disk, simply enters:

DOSGEN <drive spec)

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any cylinders on
the volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to
cause the DOS to lock out one or more cylinders of the disk from
DOS access. This can be useful in some special applications where
it is desired to not allow DOS programs access to a file stored in
un~sual format, fbI' example. In gener~l, locking out cylinders
from DOS access is to be discouraged since it makes it more
di fficul t to make use of tl)e useful features of the .DOS. If the
user does wish to lock out any cylinders, he may do so by
specifying one or more cylinder numbers, in the fo~mat:

12,14,16,25-28,40

The above example would cause cylinders 12, 14, 16, 25, 26,

CHAPTER 17. DOSGEN COMMAND 17-1

27, 28, and 40 to be locked out. Note that the cylinder numbers
to be locked out are given in decimal as opposed to octal.

After the operator has specified that no, or which, cylinders
are to be locked out, the DOSGEN command checks for bad sectors on
the disk and issues a message indicating any cylinders it finds
which contain bad sectors. The remainder of the operation is
completely automatic and indicates its completion with the
famillar DOS message, "READY".

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEM7/SYS and the CAT command.

17.3 Special Considerations

It is important to remember that on disk packs for use with
DOS systems recognizing more than one logical drive per physical
oisk pack, for example the 9370 series disk system, two DOSGENs
must be done before the physical pack is fully initialized. This
~llows the user to DOSGEN either logical disk on the pack without
oisturbing files he wishes to keep that may be stored on the other
logical disk.

Another important thing to remember is that both the 9370 and
9380 series disks must be formatted before DOSGEN can be used on
them. Diskettes (for the 9380 series drives) come pre-formatted
from the manufacturer; disk packs for the 9370 series drives do
not. It is therefore necessary to format all disk packs for the
9370-series drives using the program INIT9370 before attempting to
use DOSGEN on them. A diskette that has been formatted with
tracks locked out (error mapped) cannot be DOSGENed.

17-2 DISK OPERATING SYSTEM

CHAPTER 18. DUMP COMMAND

18.1 Purpose

Occasionally while writing into files on disk (in particular,
during the program debugging stage) it is useful to be able to.
verify that the formatting of the information into the standard
text format is being done correctly. Or, perhaps an assembler
language program (lABS file) that previously loaded correctly no
longer will, as indicated by DOS just coming back up when the
program is 'run.

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on the disk.
The display includes both the octal and ASCII contents of every
byte on the sector. No examination for control bytes of any kind
is made, allowing the user to see the precise contents of every
physical location in the disk sector.

Another good use for the DUMP command is to clarify any
questions regarding the standard DOS file formats. Using DUMP it
is possible to examine a file and see just how it is formatted on
the disk. DUMP is frequently useful for DATASHARE programmers who
are using tabbed reads and writes and encounter problems with
their programs, since these problems are usually caused by a lack
of complete understanding of the format of DOS standard text files
and how this interacts with tabbed disk operations in DATASHARE.

18.2 Use

The DUMP command is invoked by entering:

Dl1MP

or

DUMP <file spec>

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level
LEVEL TWO - File level

CHAPTER 18. DUMP COMMAND 18-1

LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directing level

The (optional) entry file and/or drive specifications on the
command line allow the first one or two input levels in DUMP to be
automatically bypassed.

When the DUMP command is used, the top line on the display is
the primary control line. Input typically is accepted on this
line. This line is .broken into four basic areas, one
corresponding with each of the first four control levels. The
primary control level at any given time during the operation of
th= DUMP command can be determined by the position of the flashing
cursor on the control line.

For example, if th~ flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUMP command is operating
ctt level one. If the cursor is positioned after the "FILE:"
legend on the control line, the DUMP command is operating at level
two, etc.

18.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector just read and to describe any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATl0N BLO~ (RIB). This message indicates
that the sector being displayed is the primary RIB for the
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indic8tes that the sector being dis;.>layed is the secondary
RIB fo r the cur en tl y opened rile. Note that thi s does not mean
that the primary RIB has necessarily been damaged; it simply
means that the S2ctor requested happens to be the secondary,
b~ckup copy of the RIB.

CLUSTER ALLOCATION TA~LE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

1B-2 DI3K 0 P ERATING SYSTEM

CLUSTER ALLOCATIQN TABLE BACKUP. This message indicates' that
the sector being displayed is the secondary, backup CAT for the
current logical drive. This implies that the CAT is also
maintained in duplicate just as is the RIB.

LQCKOUT CLUSTER A~LOCATION TABLE. Associated with each
logical drive is a sector that indicates which areas have been
locked out, prohibiting their use by DOS. This message indicates
that the sector being displayed is the Lockout CAT for the current
logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sector being displayed is the secqndarYi b.ckup
copy of the sector just described above.

SYSTEM DIRECTORI SECTOR. This message indicates that the
sector being displayed is one of the DOS direct6ry sectors. The
directory sector number (in decimal and in octal) immediately
follows the message.

USER DATA SJ;tCTQR. This message indicates that the sector, is
not recognized as one of the above special system sectors.

DISK SECTOR ~ ~RRQB. This message indicates that the
sector requested for display either was not found on the disk or
that a CRCC error repeatedly occurred during the read operation.
The sector displayed is the da ta as it was read from the disk,
unless the sector was not found.

DISK' OFFLINE. This message indicates that the currently
specified log~cal drive is not on line.

DISK SE'CTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its physical file number, and the two following byt~s are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a f~le and older
version DATASHARE object code files normally will fall into this
class. It merely means that if the sector were read with the DOS
READ$ routine, a format trap would occur.

SECTOR OUT .Q£. BANGE. This message is displayed if the sector
requested (by logical record number) is not within the range of
the currently opened file.

FIL~ HQ1 FOUND. This message indicates that the file

CHAPTER 18. DUMP COMMAND 18-3

requested could not be found. This does not necessarily mean that
the file does not exist. For example, the file could be in a
non-current subdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive.

INVALID PHYSICAL ADDRESS. This message indicates that the
physical disk address specified is invalid.

The remainder of the display contains the contents of the
current half of the sector most recently read. The display is
arranged as eight groups of sixteen bytes each. Each of these
groups is preceded by the three octal digit offset of that group
within the sector. Each sixteen byte group consists of the octal
and ASCII contents of each of the sixteen bytes in that group.
Each byte's contents form a column one byte wide and four lines
high, where the first three lines are the value of the byte, in
octal, and the fourth line is the ASCII value of that character.
Notice that the character is not examined for special significance
before it is displayed, so that computers having the high speed
RAM display option (which is strongly recommended for all DOS
8ystems) may display characters other than the normal ASCII set.

18.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred to level two. Non-specific drive mode is disabled.

* - DUMP command returns control to the DOS.
> - The second half of the current sector is displayed.
< - The first half of the current sector is displayed.

18.5 Level Two ~ommands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to leve;
four.

18-4 DISK OPERATING SYSTEM

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the
file is displayed and control transfers to level three.

I - The current physical fil~ number is incremented and the
new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN is
incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control is
transferred to level three.

D - D works just like the I command above except that instead
of incrementing the PFN, it is decremented.

#pfn - The directory sector containing the entry
corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred to level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
These directory sector numbers are always specified in octal.

* - Return control to level on~.
> - Show the second half of the current sector.
< - Show the first half of the current sector.

18.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted.

<enter> - The current sector is shown and control is
transferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it is assumed
to be octal; otherwise it is assumed to be decimal. The number
speci fied is the ~ (as opposed to system) LRN. The system LRN,
the one in bytes one and two in the sector, is always two less
than the user LRN. The two numbers displayed at level three in
the control line are the LRN 1n decimal (the one with leading
zeros suppressed) and octal (the one in parentheses, with leading
zeros).

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access it
and display the sector.

* - Return to the File level of control (level two).
> - Show the second half of the current sector.
< - Show the first half of the current sector.

CHAPTER 18. DUMP COMMAND 18-5

18.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical disk addresses, and as such is not
usually as useful as the LRN level. However, when access to a
specific sector on the disk is desired, it can be achieved using
DUMP level four. It is important to realize that the physical
disk addresses specified are logical physical disk addresses, i.e.
the same format as is given to the DR$ and DW$ routines in the
DOS. They are not necessarily the same as actual physical
locations on the disk. For example, with DOS.C for the 9380
series diskettes, the logical disk addresses are remapped onto the
diskette into different hard physical sector numbers than those
indicated by the logical physical disk address. The important
thing to understand here is that the disk addresses used in the
level four control of DUMP are those that would be used to
parameterize DR$ and DW$.

The commands accepted at level four of DUMP are as follows.

msb,lsb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (least
significant byte) is always considered to be in octal, regardless
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format. undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

* - Return control to level two if no file is opened, or
level three otherwise.

> - Show the second half of the current sector.
< - Show the first half of the current sector.

10.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command is
vperating at control level five (system directory sector level),
the followi~g commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low ~rder four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leading zero indicates the number is in

18-6 DISK OPERATING SYSTEM

octal, otherwise decimal is assumed.

I - The current directory sector riumber is incremented and
the corresponding directory sector is displayed.

D - The current directory sector number is decremented and
the corresponding directory sector is displayed.

* - Return cohtrol to level two.

> - Show the second half of the current directory sector.

< - Show the first half of the current directory sector.

18.9 Error Messages

Only one genuine error message is issued by the DUMP command.
It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in drive zero has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 18. DUMP COMMAND 18-7

CHAPTER 19. EDIT COMMAND

19.1 Introduction

The DOS Editor is used to create and to update source data
files on the disk. The editor, through the use of initialization
parameters, will enable the creation of files in a variety of
formats: text files, assembler code files, DATABUS source code
files, or many user designed data files.

A GLOSSARY of the many terms and phrases used throughout this
chapter is provided in the Glossary at the end of the chapter. A
list of commands and brief definitions is provided in the COMMAND
List Section. Caution: Although virtually any Datapoint format
file may be "edited", files structured with respect to physical
records or those containing strings longer than 79 characters may
have this organization collapsed as the editor compresses the file
into sequential format. In such cases the editor should not be
used.

The editor does ~ trancate trailing blanks at the end of
lines unless it is in "COMMENT" mode.

19.2 Operation

19.2.1 DOS Initialization

The EDIT program, is parameterized as follows:

EDIT <f1>[,<f2>][,<f3>][;parameter list)

19.2.2 Files

(f1) is the source file, [<f2>J is the scratch fi~e and
[<f3>J is the configuration overlay file. The source file <f1) is
assumed to have an extension of 'TXT' -if none is provided. If
there is no file of the specified name, one will be opened. If no
scratch file [<f2>] is ~pecified, a file 'SCRATCH/TXT' will be
used. The configuration fil~ [<f3>J is assumed to be EDIT/OVl
unless otherwise specified. WARNING: The default extension for
the confi~uration file is 'OV1'.

CHAPTER 19. EDIT COMMAND 19~1

If parameters are indicated by the presence of the
semi-colon, the question:

RECORD PARAMETERS?

will be displayed. If 'N' is entered, the editor will begin
execution with the indicated parameters and the configuration file
will not be changed. If 'Y' is entered, the question:

NEW TABS?

will be asked. If '1' is entered, the standard tab initialization
line of numbers will be displayed (see :T command description).
After the new tabs are entered, the parameter information and
tabstops are recorded in [<f3>].

If no parameter list is provided, [<f3>], if present, is
automatically loaded, causing the recorded parameters to be used.

19.2.3 Parameter List

A parameter list, indicated by the SEMI-COLON (;) following
the file specifications may be included. That list may include up
to seven parameters which are order independent. The possible
parameters are:

[;[margin][tab keY]Lmode][shift][line][update]

If no parameter list is provided, Assembler mode with a margin at
75 and SPACE bar for tabbing is assumed.

19.2.3.1 Margin Bell

A number in the parameter list will be taken to be the margin
designator; this causes the margin 'bell' to ring at the
designated margin. (Text may always be input up to column 79
regardless of the margin setting.)

For Example ;30 will cause the bell to ring in column 30.

19.2.3.2 Tab Key Character

A tab key character encountered in the parameter list, i.e.,
a non-alpha, non-numeric, non-colon, will replace the assumed tab
key character. (SPACE in Assembler, DATABUS and Comment mode,
SEMI-COLON in ~ext mode.)

For Example, A will cause the caret key (~) to replace the

19-2 DISK OPERATING SYSTEM

assumed character as the tab key.

19.2.3.3 Mode

A new set of assumptions will be used if one of the 'mode'
parameters is set. If no mode isli st ed or 'A' is typed,
Assembler mode will be used. DATABUS or DATAFORM (D) mode simply
changes the tab stops. Comment mode (C) changes the nature of the
DELETE and SCRATCH commands to facilitate adding or changing
comments on assembly code files and also truncates trailing
spaces.

Text mode (T) sets no tabstops, does no shift inversion and
enables the word wrap around feature (see the glossary). To
activate line truncation instead of word wrap around in Text mode,
enter 'L' in the parameter list. To enable shift key inversion
(see glossary) in Text mode, enter the parameter'S' in the list.
Text mode is especially useful for generating SCRIBE input files.

See the glossary for complete definitions of the various
modes.

19.2.3.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. The physical source file may
be used as the scratch file as the edit proceeds. When the edit
is terminated, the physical source file is updated.

To inhibit source file update, the 'ONE-PASS' parameter '0'
may be set in the parameter list. A flag is set which prevents
writing on the physical source file. Then, at the completion of
the edit, the scratch file will contain the updated information
and the source file will be unchanged.

19.2.3.5 Key-click

If the 'K' parameter is set, a click will· sound each time a
key is struck.

19.2.4 Examples

To perform standard Assembler code editing, enter the
command:

EDIT <source>

To edit,a file for input to the text processor, SCRIBE, enter the

CHAPTER 19. EDIT COMMAND 19-3

command:

EDIT <source>jT

To change the margin bell to ring at column 35 (e.g. for labels)
enter the command:

EDIT <source>j35T

The parameters would set the bell and use the Text mode
assumptions. Note that the parameters are order independent;
therefore, the command:

EDIT <source>jT35

would achieve the same results.

To generate a second, slightly different, file (without
updating the original file), enter the command:

EDIT <source>,<new flle>;OT

If the file is Assembler code instead of text, simply omit the
'T'; if DATABUS, replace 'T' by 'D'.

A second file, with the same name as <f1> but with a
different extension, may be used as the scratch file by entering:

EDIT (f1>,I<extension>

Once the initial command (and parameter list) has been
entered, the DOS Editor signon message will appear on the screen.
This message will be rolled up and the screen cleared with the
cursor left on the 'command line'. From this position data may be
entered, lines may be fetched from the source file, or editor
commands may be entered.

19.2.5 Data Entry

To enter text, simply type on the bottom line; when the ENTER
key is pressed the screen rolls up one line. The command line is
once again bl~nk and the cursor is at the beginning of the command
line, ready to accept more input.

If word wrap around is enabled, when a SPACE is typed within
the last 10 columns of the line or typing proceeds past the 8nd of
the line, the editor automically will roll up the screen and begJn
a new line. If a non-space character is typed into the last

19-4 DISK OPERATING SYSTEM

column, the last word on the line is removed and, after the sof~,en
is rolled up, that word is place on the command line, where dafa·
entry may proceed.

When typing on a 'screen line' (as the result of a OOllmaQd.),
the ENTER key causes the cursor to return to the command line. To
continue data entry at the same screen area, the Pseudo-EN:rER key
may be used. This key (DEL shifted) causes (in' all but command
mode), a new blank line to be inserted at that point on the. screen
so that data entry may proceed.

If word wrap around is enabl ed, and data is being en t~e.red ~m
a screen line, a new line will automatically be :lnsertedat that:
point when, as on the bottom line, a space is entered with\ll th.
last 10 columns or a character is typed past column 79.

The BACKSPACE key erases the last character and movesi,the·
cursor back one posi tion. The CANCEL key erases the line b.ck;i~,O
the previous tabs top (in text mode this would erase the en~lre.:!':C·,
line if no tabs are set).

Typing the tab key character causes the cursor to
next tab stop to the right. If there are no tab stopa
right of the cursor, the tab key character is accepted
data character.

19.2.6 Data Retrieval

mo ~er': ,t.he .
to the.,'
as a nQrmal

•

To fetch data from the source file ,01"';$5 llij.liQARD ".'
DISPLAY keys Simultaneously. As long as the two keys are .
depressed, data will be fetched, displayed on the command line snd
rolled up the screen. If end of file is r~ached, no more data is
fetched and the machine beeps.

To fetch a single line, the shifted DEL key may be pressed~. .
(in the first column of the command line). Using this key insur~s
that only one input line will be fetQhe~.

19.2.7 EDItOR Command Format

The text appearing on the el even §9reen J.tD!tI (i.e. the lines
above the command line) may be edited using a set of 'commands'. ,
A 'pointer' (» in the left hand column of the screen indicates
the line which the command will affect.

To move the pointer up, press the KEYBOARD key. To move the
pointer down, press the QISPLAY key. The pointer wraps around
from the top to the bottom and'vice versa.

CHAPTER 19. EDIT COMMAND 19-5

Commands allow the user to delete a single line (:D) or part
of the screen (:SC and :S8), insert (:1) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also available
to search the file for specific text (:F and :L) or for the end of
the file (:EO or :E*).

An editor command is always preceedeg ~ S COLON (:). To
enter a command, type, in the first column of the command line, a
colon and the appropriate command character and any necessary
parameters. The command is always typed with the machine in lower
case; thus, with shift inversion on (as in Assembler, Databus and
Comment modes), the command character will appear upper case;
while with shift inversion off (as in Text mode), it will appear
lower case.

19.3 Basic EDITOR Commands

The following commands are a few basic editor commands. The
user can get started without worrying about complex command forms.
Remember that the 'pointer' on the screen indicates the line
affected by the command.

:D - DELETE - in all but Comment mode this command deletes
the entire pointed line. (In Comment mode, only the comment field
is deleted. The CANCEL key may however be used to delete the
preceeding fields in the line.)

The cursor is left on the now null line where new text may be
entered. If no replacement text is needed, pressing the ENTER key
in the first column of the pointed line returns the cursor to the
command line. Trailing blanks will not generally be truncated.

Pseudo-ENTER may be used to generate additional lines at this
area of the screen. Word wrap around, if enabled, will apply to
text e~tercd on a deleted line. Pressing the ENTER key will
return tre cursor to the command line.

See the section on modification for more information about
the pseudo-ENTER key.

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last eleven lines of text.
The search may be aborted by pressing the KEYBOARD and DISPLAY
keys simultaneously.

:EO - EOF with display - causes the data to be displayed on
the screen continuously until end of file is reached. The search

19-6 DISK OPERATIHG SYSTEM

may be aborted at any time by pressing the KEYBOARD and DISPLAY
keys simultaneously.

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with the specified <old
text>. Leading spaces in the file's lines will be ignored and
should not be entered as part of <old text> (note that this
command should be typed exactly :F<SPACE><old text».

A FIND will wrap entirely around the file (or up to the en4
of file if the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was execut$d
will be displayed. A FIND may be aborted by pressing the KEYBOARD
and DISPLAY keys simultaneously.

:1 - INSERT - Perform a line insert at the pointed line.
This command causes the lines from the top of the screen to the
pointed line, inolusive, to be rolled up and a blank line to be
inserted! The cursor is left at the beginning of the new blank
line where data entry may proceed.

If the' pointed line or the line immediately below it is empty
no insert will occur, and the null line will be used as the
inserted line where data entry may proceed.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line - with changes. The original line may then be
DELETED.

The pseudo-ENTER key may be used to generate additional lines
at the same point on the screen.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen
and finds the next line of text. If positioned at the end of the
file, the 'next' line will be the first line of the file.

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Leading spaces should be supplied if meaningful.

For additional forms of the FIND and LOCATE commands see the
'FILE SEARCH' section.

:M <old text><command separator><new text) - MODIFY - a
modify command ~ll~ws the operator to replace <old text> by <new
text>, insert <hew te~t> after <old text> or append (i.e.,
truncate and add) <new text> after <old text>. Fdr ,the various

CHAPTER 19. EDIT COMMAND 19-7

forms of this command see the 'MODIFICATION' section.

:3C - SCRATCH above - in all but Comment mode this command
erases the lines from the top of the screen down to the pointed
line, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pointed line where data entry may
proceed.

:SB - SCRATCH below - in all but Comment mode this command
erases the lines from the pointed line to the bottom of the
screen, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pointed line, where data entry may
proceed.

:E - ~ND - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then, if the logical scratch is not the physical input file, the
scratch file is copied back to the source file.

The command line will be left on the screen as long as the copy
from source to scratch is in progress; it is erased during the
final copy from scratch back to source.

The end may be aborted as long as the command line is still
displayed, by pressing the KEYBOARD and DISPLAY keys
simultaneously. When the final copy is completed, control is
returned to DOS.

Note that if the one-pass option was selected in the
parameter list, no copy from scratch back to source will be
performed.

:E/ - END/DEL - this command causes the remainder of the
source file to be deleted (the lines currently on the screen will
be written out), and, if the logical scratch file is not the
physi8al source file, the scratch file is copied back to the
source file. When the file is completely updated, the system is
reloaded.

N0 copy back is done if the one-pass option is set.

19-8 DISK OPERATING SYSTEM

19.4 Modification Commands

19.4.1 DELETE Command

Modification of a line may be achieved in a variety of ways.
The DELETE command enable~ the user to remove leading information
while the MODIFY command may be used to replace imbedded
information, insert text into a line or field, or truncate and add
new text at a specified point or in a specified field.

:D <old text> - DELETE through - this command deletes all
character from the left edge of the pointed line through (and
including) the specified <old text>. The remaining characters
will be left justified and re-displayed. The cursor returns
automatically to the command line.

19.4.2 MODIFY Command

The general form of the MODIFY ~ommand is:

:Ml#J [old text]<sep>[new text]

where [I] fs an optional number which extends the meaning of the
command (see FIELD MODIFICATION below) ahd <sep> is the command
separator which defines the action of the command. Both [old
text] and ['ne~ text] fields are optional. If [old text] is
omitted, the command will take effect at the left most edg·e aftbe
pointed line (or at the left edge of the specified field). If the'
[new text] tiqld is omitted, a null field will be used to execute
the modification.

19.4.2.1 Line Modification

The following d~scriptions are of the line modification
version of the MODIFY command

:M [old text] < [new iext] - MODIFY (replace) - replace the
sPfec1fieq [old te)Ct] by the specified. [new teJ;{t]. The. less than
character «) is a command separator which indicates replacement
and, therefore, the [old text] may not contain this character. If
[new text] ,field is omitted, the old text will simply be deleted
and the ltne will be compressed to the left.

For example to modify the text line:

CHAPTER 19. EDIT COMMAND 19~9

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M BROWN<RED
redisplayed like this:

would cause the line to be

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M.< 1234 TIMES. to the original line would
generate a line like:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK 1234
THtES.

If the replacement causes the line to become longer than 79
characters, the trailing word, in text mode only, will be wrapped
around and a new line will be inserted containing the entire last
word. If the [new text] is shorter than the [old text] it
r'epIa:es, the line will be shortened.

After the pointed line is redisplayed, the cursor is returned
ttl the command line.

:M Lold text] > [new text] - MODIFY (insert) - the command
separator greater than (» causes the [new text] to be inserted
in the pointed line immediately after the [old text].

If the line becomes longer than 79 character, and word wrap
around is not in effect, the trailing characters are truncated.
If, however, word wrap around is on, the trailing character and
last word are inserted on a new line.

:M LaId text] \ [new text] or

:M [old text] [new text] - MODIFY (append) - the vertical
bar (:) or backslash (\) command separators cause everything in
tne poi~ted line, past the [old text], to be r~placed by the [new
Lext I.

A.3 1n all MODIFY commands, if the pointed line becomes longer
than 79 characters, truncation occurs if word wrap around is not
enabled.

:Ml#J - MODIFY repeat - typed exactly :M(ENTER>, uses the
\:).Ld text> (sep> <new text> from the last MODIFY command. This is
useful when making the same change repeatedly. Note that thl.·
field number is not saved, and must, therefore, be supplied if
necessary.

DISK OPERATING SYST~M

:M* - MODIFY display - display the expression entered for the
last MODIFY. 'After the saved command is displayed, the cursor is

.turned off and the operator must pre~s ENTER to proceed. No
MODIFY is actually performed.

19.4.2.2 Field Modification

In field modification mode, the MODIFY command acts only ona
specific field ~nd does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

A field is the area between two consecutive tabs. Field one
is between the left margin and the first tab.

:M<U> [old text]<sep>[new text] - MODIFY field - where the
pound sign <#> is a number from 1 to 10 designating the field to
be modified (or the starting point to search for matching [old
text]). In Assembler mode, field 1 is the label, field 2 is the op
code, field 3 is the expression and field 4 is the comment. This
command may be executed in any of the previous Modify forms.
However, modification ~s performed within the specified field
only. As long as the text being modified is unique, field 1 may
be specified, since the field number indicates only where to start
looking for matching text. (Note that if the field number is
omitted, line modification is assumed.)

Thus, a replacement or append shorter than the original field
will be blank filled and subsequent fields will maintain their
position and content. An insertion longer than the specified field
will be truncated (with the exception of the last field whenever
word wrap around is in effect).

For example, in Assembler mode, the line:

LABEL OP EXP COMMENT

the label may be deleted by the command:

: M 1 \

with the resultant line:

OP EXP COMMENT

Or, the expression field (EXP) could be changed to EXP+1 without
disturbing the comment field position, by the command;

CHAPTER 19. EDIT COMMAND 19-11

:M3 EXP>+1

which generates:

LABEL OP EXP+1 COMMENT

To add a comment to a line previously containing none or to
replace an existing comment field, enter:

:M4 \<new comment>

NOTE: Remember when using the repeat form of the MODIFY
command that the field number may need to be supplied.

19.5 File Search Commands

The FIND and LOCATE commands have several forms and have been
separated from the basic command set to better describe them.

Manual, operator controlled, searches may be performed by
depressirg the KEYBOARD and DISPLAY keys simultaneously to cause
data to De fetched from the file and displayed (as long as the
keys are pressed) on the screen. To fetch a single line use the
Pseudo-ENTER key (DEL shifted). The :EO command performs the same
function automatically, i.e., it causes lines to be fetched and
displayed until the end of file is reached. To abort a :EO
command, press the KEYBOARD and DISPLAY keys simultaneously.

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E* command. This
will search for the end of file and display the last eleven lines
of data.

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with the specified <old
text>. Leading spaces in the file's lines will be ignored and
should not be entered as part of <old text> (note that this
comma~d should be typed exactly :F<SPACE><old text».

A ~IND will wrap entirely around the file (or up to the end
of file i' the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was executed
will bP displayed. A FIND may be aborted by pressing the KEYBOARD
and LI·JfL4{ keys simultaneously.

The <old text> specified for a FIND (or LOCAT~) comm~nd is
saved. The saved match may be redisplayed or used again.

DISK OPERATING SYSTEM

:F<SPACE> - FIND same match - if the FIND command is
followed by exactly one space and the ENTER key, the previous FIND
(or LOCAT~) <old text> will be used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F* - FIND display - the asterisk (*) after the FIND command
causes the <old text> of the previous FIND or LOCATE command to be
displayed. The cursor is turned off and the operator must press
ENTER to proceed. No FIND is performed.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen
and finds the next line of text. If positioned at the end of the

I file, the 'next' line will be the first line of the file.

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Le~ding spaces should be supplied if meaningful.

:L<space> - LOCATE same match - typed exactly
:L<SPACE><ENTER), uses the <old text) specified by either the
previous LOCATE or FIND command to perform a search.

:L* - LOCATE display - display the <old text) entered for the
previous LOCATE or FIND command~ As in the FIND display, the
cursor is turned off and the operator must press ENTER to
con tinue. : No LOCATE is actually performed.

19.6 Miscellaneous Commands

:A - APPEND - copies the pOinted line to the bottom of the
screen ~nd rolls the screen up one line.

:B - BYPASS - fetch a line from the file, bypassing end of
file or record format· error (which would normally be treated as an
end of file). Subsequent lines (if not also record format errors)
may then be fetched by the normal mechanisms. This command is
intended as a recovery tool for use only if the file has been
accidentally shortened or contains badly formatted records.

:C - COP+ - copies the pOinted ~ine to the bottom of the
screen, deietes the pointed line and rolls the screen up one line.
This command eannot be e~ec~ted on the top screen line.

The cursor is left on the now null pointed line. Text may be
entered at this point (the Pseudo-ENTER and word wrap around, if
enabled, will apply). When .the ENTER key is finally pressed, the
pointer is automatically moved to the fpllowing screen line so

CHAPTER 19. EDIT COMMAND 19-13

that a group of lines may be easily copied to another part of the
screen.

:T - TAB set - this command enables the user to reset the tab
stops during execution .. (Not available in Comment mode.) The
command causes a line of numbers to be displayed across the bottom
of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry and field modification
(:M#) since data within a field may be modified without disturbing
the rest of the line. A maximum of 10 tab stops may be set.

:RH - RPG feader - sets tab stops for RPG header
specification at columns 6 and 15.

:RF - RPG File - sets tab stops for RPG file description
specification at columns 6, 15, 24, 33, 40, 54, 66 and 10.

:RE - RPG Extension - sets tab stops for RPG extension
specificatlon at columns 6, 11, 19,27, 33, 36, 40, 46, 52 and 56.

:~L - RPG ~ine - sets tab stops for RPG line counter
specificat~on at columns 6, 15 and 20.

:RI - RPG Input - sets tab stops for RPG input specification
at columns 6, 15, 21, 44, 53, 59 and 65.

:RC - RPG Calculation - sets tab stops for RPG calculation
specification al 001umns 6, 18, 28, 33, 43, 49, 54 and 60.

:RO - RPG Output - sets tab stops for RPG output
specification at columns 6, 15, 23, 32, 38, 40 and 45.

:RS - RPG Summary - sets tab stops for RPG summary
specification at columns 6, 14 and 23.

:X - T~XT - er.S command enables word wrap around and
disables shift ~ev lnversion and snace insertion after leading
periods. It a~to~atically enters the tab set command (:T), so
that tab stops may be cleared by the operator. The tab key
'haracter is not Jhanged; therefore, the :<tab key> command must
be used to set a new tab key character if one is desired.

:<tab key/ - ~nange tab key character to any non-alpha,
non-numeric, non-COLON, non-ENTER character typed after a leading
colon on the comma~J 41ne.

19-14 DISK OPER~~ING SYSTEM

19.7 Recovery Procedures

A 'FORMAT TRAP.' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some othe~ prog~am.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

19.7.1 Bypassing Errors or End of File

When a format or range error occurs, an appropriate message
appears on the command line and the cursor is turned off. In
order to proceed, the operator must first press the DISPLAY key.
The effect of either a format or range trap is the same as an end
of file and no further data will be read from the file.

To read past a format error or past an end of file, use the
BYPASS command, :B, repeatedly if necessary.

lY.7.2 File Recovery

If the source file is lost (e.g., erroneously KILLed), the
scratch file may contain a useful copy. Since the scratch file
(SCRATCH/TXT) usually contains a copy of the last file edited, it
may be used to recover only that file.

19.8 Glossary

Assembler mode - assumed mode of execution. Tab stops at 9, 15
and 30 (may be changed during execution). The space bar
is assumed ·as the tab key character (this may be changed
iri parameter list or during execution). Shift key
inversion and no word wrap around are assumed. Leading
period (.) generates period space C.) for comment lines.
Pseudo-ENTER does line-insert.

Command - characters typed at the left edge of .the command 1io'e
following a COLON (:) which have special meaning to the
editor.

Command line - the twelfth line of the screen where ~ost d~ta is
entered, lines are fetched and commands are 'typed ~

Command separator - the character in a MODIFY command which

CHAPTER 19. EDIT COMMAND 19-15

indicates what is to be done (> means insert, < means
replace and \ or I mean append).

Comment field - in assembler code the area of the screen from
columns 30 to 79 which is generally used for programmer
comments.

Comment mode - assumed if 'C' in parameter list. Facilitates
changing or adding comments to assembler code. Tab stops
at 9, 15 and 30 (may not be changed during execution).
The space bar is assumed to be the tab key character
(this may be changed in parameter list or during
execution). Shift key inversion and no word wrap around
are assumed. Leading period (.) generates period space
(.) for comment lines. Pseudo-ENTER positions to
comment field of following line and deletes the comment.
Delete and Scratch commands affect only the comment
field. Trailing blanks are truncated when data is
(>utput.

CUNF1JUHATION FILE - A file, default name of EDIT/OV1, which
automatically provides default options to EDIT.

,)A fA.dUS mode - assumed if 'D' in parameter list. Tab stops at 9
and 15 (may be changed during execution). The space bar
is assumed to be the tab key character (this may be
changed in the parameter list or during execution).
Shift key inversion and no word wrap around are assumed.
Leading period (.) generates period space (.) for
comment lines. Pseudo-ENTER does line-insert. Input
lines are blank filled and trailing blanks are truncated
on output.

Field number - a digit used in the MODIFY command to designate
characters between two tab stops. Field '1' is always
from column 1 to the first tabstop; thus, in Assembler
mode, '1' designates the label field, '2' the opcode
field, '3' the expression field and '4' the comment
field. During field modification, trailing fields are
preserved,

Format tr-ap - bad record encountered on disk. See' .RECOVERY
PROCEDURES' .

uine Ln3lrt - results from an INSERT command, data entry or
modification when word wrap around is in effect or a
Pseudo-ENT~R key in any mode other than Comment. The
lines above the pointed line are rolled up and a new,

19-16 DISK OPERATING SYSTEM

blank line is generated at the pointed line.

Logical scratch file - current output file.

Logical source file - current input file.

New text - a group of characters, typed immediately after a
command separator in a modify command, which will become
part of the line being modified.

Old text - a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND o~ LOCATE
commands).

One-pass option - assumed if '0' in parameter list. The one-pass
option does not update the physical source file. Th~
FIND, LOCArE and END, END/DEL commands will not write
back into the input file if this option is set.

Parameter list - initialization information provided when the
editor is first executed. Following file specifications,
a SEMI-COLON (;) indicates the presence of a parameter
list. The mode, one-pass option, tab character, margin
bell column and (in text mode) 'no shift inversion' (S)
and 'no word wrap around' (L) may be set.

Pointed line - a pointer (» in the left hand margin is used to
reference lines for modification by command. The line to
the right of the pointer is the pointed line.

Physical scratch file - specified (or implied SCRATCH/TXT) output
file.

Physical source file - specified input file.

Pseudo-ENTER - the key marked DEL
as the PseudO-ENTER key.
of the command line, one
from the source file.

(always shifted) is referred to
If pressed in the first column

line of text will be fetched

In comment mode, if pressed on any but the bottom screen
line or command line, it will cause the cursor to be
positioned to the comment field of the following line and
that field will be erased. .

In all other mQdes, the Pseudo-ENTER key causes a new
line to be inserted so tQat data entry may proceed in the

CHAPTER 19. EDIT COMMAND 19-17

same area of the screen. If pressed on the last screen
line, the Pseudo-ENTER key simply places the cursor on
the command line.

Range trap - attempt to read past the end of allocated space on
the input file - see 'RECOVERY PROCEDURES' in the
previous section.

Scratch file - at any point in time, the logical scratch file is
the output file. It may, however, physically be the
original input or the assigned 'scratch' file.

Screen line - any of the eleven lines on the screen which may be
referenced by the command pointer. The command line is
not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that, in lower case, alpha
characters will appear upper case.

30ur~e file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or the file specified as the scratch file.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list). Word wrap around
is performed (this feature may be turned off by an 'L' in
the parameter list).

~ord - a word is defined as any group of less than 50 characters
preceeded by a space.

Word wrap around - a feature of text mode. During data entry a
space within the last 10 columns of the screen cause an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 79 characters, the

01SK OPERATING SYSTEM

trailing characters, including the last word on the line,
will be moved to a new line which will be inserted below
the original line. Control will then return to the
command line.

19.9 Command List

:A APPEND pointed line to command line and r611 up

:B BYPASS end of file

:C COpy pointed line to command line and roll up

:D DELETE entire line

:D <old text> DELETE from left thru <old text>

:EO

:E/

:E*

END edit - copy remainder of file and update source

EOF display - fetch and di~play data until end of
file

,
END/DELETE update without copying remainder

EOF search - find end of file and display last full
screen

:~ <old text> FIND match - search file for matching leading text

:F<SPACE>

:F*

: I

:L

FIND repeat - use previous find/locate <old text>

FIND display - display previous find/locate <old
text>

INSERT a blank line below pointed line

LOCATE next - clear screen and get next line

:L <old text> LOCATE match - search file for matching imbedded
text

:L<SPACE> LOCATE repeat - user previous find/locate <old text>

:L* LOCATE display - display previous find/locate <old

CHAPTER 19. EDIT COMMAND 19-19

text>

LINE MODIFICATION

:M [old text]<[new text] - MODIFY replace old text by new text,
adjusting the entire line

~M [old text]>[new text] - MODIFY insert new text after old text,
adjusting the entire line

:M [old text]\[new text] or :M [old text]:[new text] - MODI~Y
append new text after old text adjusting the entire
line

FIELD MODIFICATION

:M<#> [old text]<[new text] - field MODIFY replaces old text
within specified field with new text without
disturbing the remainder of the line.

:M<#> [old text]>[new text] - field MODIFY inserts old text after
new text within specified field, without disturbing
the remainder of the line.

:M<#> [old text]\[new text] or :M<#> [old text]:[new text] - field
MODIFY appends the new text after the old text
within the specified field without disturbing the
remainder of the line.

: M* MODIFY displays the previous modify [old]<sep>[new]

:MUI] MODIFY repeats the previous modify [old]<sep>[new]

:RH RPG HEADER - sets tab stops at columns 6 and 15.

:RF RPG FILE - sets the stops at columns 15, 24, 33, 40,
54, hh and 70. vv,

:RE RPG EXTENSION - sets tab stops at columns 6, 1 1 , 19,
27, 33, 36, 40, 46, 52, and 58.

:RL RPG LINE - sets tab stops at columns 6, 15, and 20.

:RI RPG INPUT - sets tab stops at columns 6, 15, 21 , 441
53, 59, and 65.

19-20, DISK OPERATING SYSTEM

:RC

:RO

:RS

:SB

:SC

RPG CALCULATIONS - sets atab stops at columns 6, 18,
28, 33, 43, 49, 54, and 60.

RPG OUTPUT - sets tab stops at columns 6, 15, ~3,
32, 38, 40, and 45.

RPG SUMMARY - sets tab stops at columns 6, 14, and
23.

SCRATCH BELOW deletes the pointed line and all
screen lines below it

SCRATCH ABOVE deletes the pointed line and all
screen lines above it

:T TAB SET permits the user to set up to ten tab stops

:X TEXT mode switches to text mode with word wrap
around and no shift key inversion.

:<character> changes the tab key character to <character>.

CHAPTER 19. EDIT COMMAND, 19-21

CHAPTER 20. FILES COMMAND

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertainirig to all DOS files or
only those files with names and/or extensions beginning with tihe
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described elsewhere in this User's Guide) is also extracted for
each Directory entry. Extracted data is interpreted and displayed
on the screen or listed on a Local or Servo printer. .

20.1 Command Description

Program execution is initiated by the operator typin~·in the
name FILES followed by seleotion criteria and display options (if
option codes are to be used):

FILES [file-name][/file-ext][:DRn],[<subdir-name>]
[,<output-file>][joptions]

file-name:

file-ext:

DRn:

subdir-name:

output-file:

Select entries for files with names beginning
with the 1-8 characters specified.

Select entries for files with name extensions
starting with the 1-3 characters specified.
This criterion must be preceded by a slash.

Specifies the disk drive to be selected.
This criterion must be preceded by a colon.
If this criterion is omitted, drive 0 will be
selected.

Specifies the named, subdirectory from which
to select entries.

Specifies the disk file to which the
selected entries will be written.

CHAPTER 20. FILES COMMAND 20-1

options: The following option codes must be preceded by
a semi-colon. but may be entered in any order:

N - Suppress file allocation map.
D - Display on CRT.
L - List on local printer.
S - List on servo printer.
F - Write output to disk as DOS text-type

file.

If options are keyed and D, L, Sand F are omitted, then D is
assumed. If F is keyed and the (output file spec> is not present
in the command line, one is requested by the message:

DOS OUTPUT FILE SPEC:

20.2 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is entered,
file allocation information will be displayed for each selected
file.

After the user has replied to the map selection message, the
program will test to see if there is a servo printer connected to
the processor that is ready for printing. If a servo printer is
attached and ready, the following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a "Y" or "YES" in response to this
message, the servo printer will be selected to display output. If
any other response is entered or the program cannot find an
available servo printer, the program will test to see if a local
printer is connected and ready for printing. If the program finds
that a local printer is available, the following message will be
displayed:

20-2 DISK OPERATING SYSTEM

\.
LIST ON LOCAL PRINTER?

If the user enters "Y" or "YES" in response to this message,
the local printer will be selected for output. , \

If the program cannot find an available printer, or the
operator fails to select a printer with an option code or in
response to a message, the program will display file descriptions
on the screen.

20.3 File Descriptions

If a printer has been selected for output, the following
message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered that will be displayed at
the top of each page of listed output.

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

DW flags following the Physical File Number (PFN) indicate if
the file is delete protected (D)* or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.

Depressing the DISPLAY key during display or printing of file
descriptions will cause the program to pause until the key is
released. Depressing the KEYBOARD key will cause the program to
terminate and return control to the operating system.

20.4 Error Messages

* PARITY ERROR *
FILES can not continue due to an irrecoverable parity error

encountered while trying to read data from the disk.

* DRIVE OFFLINE *

CHAPTER 20. FILES COMMAND 20-3

FILES is unable to connect to the disk drive selected by
operator (drive 0 if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries have been found that meet the users
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.

UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.

PHINTER NOT AVAILABLE

An option code specifies a printer that does not respond when
tested for status.

20-4 DISK OPERATING SYSTEM

CHAPTER 21. FIX COMMAND

FIX <file spec)

This will cause a set of six zeros, two spaces, and three
more zeros to be displayed on the bottom line. (The zeros
represent the current address and its contents.)

000000 000

The screen is then rolled up. The program is waiting for a
command from the operator.

Commands are in the form [number][character] where the number
is assumed to be octal. If the number is omitted, a value of zero
is used.

The following is a list of command characters with thei~
effect:

ENTER - If no block of object code is currently in
KEY memory (as at the beginning or a~ter a block has been

rewritten), search the object file forward until a block
containing the given location is found, then display the
contents of that location.

If.a block of code is in memory and the Ideation; gj"ven is
within the limits of the block, the contents of the
location will be displayed.

If a b19ck ii in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound.

M - Change the contents of the displayed address to the
number given.

I - Increment the current addres~ (up to the maximum address
in the current block).

- Charige contents of displayed address to number given and
automatically increment the current address and display
the contents of that location.

CHAPTER 21. FIX COMKAND 21-1

D Decrement the current address (down to the minimum
address in the current block).

T - Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start from the beginning of the file.

A - Abort processing the current block, set the current
address back to zero.

o OR * - Return to the operating system - if there is a block of
object code in memory, it is DQi written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER KEY had been pressed.
If thp <filespec) is not an ABS file, the message

R~CORD FORMAT ERROR

is displayed.

If the file specified on the command line is not found, the
message

NO SUCH NAME

is displayed.

21-2 DISK OPERATING SYSTEM

CHAPTER 22. FREE COMMAND

22.1 Purpose

As a disk becomes full, it is frequently useful to know how
many 256-byte sectors remain available for allocation. Another
useful bit of knowledge on the larger disks is how many empty
slots in the directory remain for the allocation of file names.
This is precisely the function of the FREE command. .

22.2 Use

The FREE command accepts a drive specification. It may be
entered simply as:

FREE

which will cause the FREE space and files for all the on-line
drives to be displayed. It may also be entered as:

FREE :DRn

which will display the FREE space and files for only drive n.

The command scanS all drives that it finds on-line and
displays (1) the number of available file names (representing
possible files to be created) arid (2) the number of available
256-byte sectors that it finds on each.

Holding down the "Display" key will caus~ FREE to pause.
Pressing the "Keyboard" key will cause FREE to terminate and
return to th!?'opera ting syst'em.

CHAPTER 22. FREE COMMAND 22-1

CHAPTER 23. INDEX COMMAND

23.1 Introductionn

The DOS INDEX command is used to create the tree structure
required by programs using the indexed sequential access method
(ISAM).

The INDEX dommand has the capability of creating index files
from any DOS text-type files. The indexed access method can then
rapidly access records in this file .either in sequential or random
order. Records in files to be indexed must contain a single
record key up to 100 characters long contained in the first 249
bytes 'of each record.

The format of the key is mmm-nnn where mmm is the beginning
character position of the key field in each logical record and nnn
is the ending position of the key field. It is required that the
second key specification (nnn) be greater than the first
specification (mmm). Note that each record must have a unique
key.

It is possible to build many independent indices to p~rmit
access to redords of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

23.2 System Requirements

INDEX runs under the DOS operating system. Inaddi tion, INDEX
uses the DOS SORT command, which must be resident on an online
disk at the time INDEX is used. If the INDEX command is to
pre-process the text file, the REFORMAT command must be available.
(See the Section' on PREPROCESSING'the file).

23.3 Operation

When the Index command is to be executed, the operator must
enter:

INDEX <file-spec>[,<file-spec>J;<parameters>

CHAFTER 23. INDEX COMMAND .23-1

where only the first file specification and key field description
are mandatory, and specify the file to be index~d. Default
extension is ITXT. The second file specification is the name of
the INDEX file to be created. If no file is specified, the name
of the first file is used with default extension IISI. If no
drive is specified, the INDEX file will be placed on the same
drive as the file to be indexed. Note that INDEX files may have
any names at all - and be located on physically different drives
from the file being indexed.

23.3.1 Parameters·

In addition to the parameters that INDEX itself recognizes,
the user may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done) or a primary record
specification to be passed to SORT. Parameters recognized by
INDEX are as follows:

F Preprocess the input file with REFORMAT
p Display the SORT and REFORMAT parameters

(Note that this is a lower case "pH)
E Index in EBCDIC collating sequence.

rne primary record specification is an option that allows the
user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is PnnnAC. The P
must always appear. The field following P, denoted by nnn,
represents the place in each logical record where a one position
field exists that differentiates records in the file. The
location of this one character field must be less than or equal to
249. The caret (A) can have one of two values. It can be either
an equal sign (=) or a pound sign (H). If the former, it means
create the ISAM index file from all records that contain the ASCII
character C in position nnn. If it is a pound sign, it means
that the ISAM file will be created from all records that do not
contain the value of C in position nnn.

In general the parameters for INDEX can be specified in any
. order and may optionally be separated from each other by one or

;(more blanks. The only exception to this is when a primary record
specification exists, it must precede the key field specification
and be separated from the key by a blank or a comma.

23-2 DISK OPERATING SYSTEM

23.4 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. Of course, you must choose a
key which will uniquely determine the record you wish to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be
keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

23.5 Preprocessing the File

In til~ structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become
non-optimum for searching. In addi tion, due to the method wi th
which the indexed access method inserts records, each inserted
record exists in a separate disk sector. This mean, that for
records that are 80 characters long, two-thirds of the disk space
for each additional record is wasted. This results in a reduction
of the performance of the indexed access method.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

23.5.1 Invoking Reformat

The INDEX utility will automati6ally invoke REFORMAT if the
"F" option is present when INDEX is invoked. You must have
specifIed, the optio'n~ that REFORMAT will need to process the file.

Note that if multiple indices are to be created, reformatting
need only be specified for :che first INDEX step, and MUST not be
specified later if it was not specified in the first, step.
Although REFORMAT will not destroy the file, specifying
reformatting will invalidate any previously built indices.

Basically, you must tell REFORMAT what formaV the records of
the file are to have after repropessing. Yqu may'select r.¢ord
compression, space and record compression, or blocking. Since the
reforma t ting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For additional details on the

CHAPTER 23. INDEX COMMAND 23-3

REFORMAT utility, see the REFORMAT section of this guide.

23.5.2 Considerations for Unattended Indexing

Users who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and used AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly from INDEX. The reason why is that
REFORMAT as invoked by INDEX uses the REFORMAT-in-place mode of
the REFORMAT command. (The reason for this is that it is faster
to do so, and also allows the indexing with reformatting of a file
which is too big to REFORMAT in the available scratch space on a
single-drive, almost full disk). Although REFORMAT is very
careful not to damage the file being processed, if the file is
actually ih the process of being reformatted when a power failure
occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
fUe, ;:;etLing another checkpoint, reformatting the scratch file
back into the original (using the COPY mode of REFORMAT), setting
3 further checkpoint, and finally INDEXing the file using INDEX.
in this way there is always an undamaged file with which execution
can resume if necessary.

23.6 I~DEX Messages

The INDEX command produces several messages on the operator's
console. The content and meaning of these messages follow:

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND
This message indicates that the user has requested
preprocessing of his file by the REFORMAT command.

COMMAND STRING ERROR - TERMINATOR MISSING
This is an internal error - report to DATAPOINT.

REFORMAT/CMD IS MISSING
The user has requested preprocessing, but the REFORMAT
command is not present on disk. You must load it.

INDEX PARM ---->
This is the parameter string that will be passed to
the INDEX overlay and used to build the index file.

REFORMAT PARM ---->

23-4 DISK OPERATING SYSTEM

This is the parameter list passed to the REFORMAT
command.

INFILE NAME MISSING
This indicates that you· have omitted the first, and
mandatory file specification. Put it there.

KEY SPECIFICATION MISSING
You have not given index information on the location
of the key in the record.

TOO MANY DIGITS IN KEY SPECIFICATION
The key field specification must be no more than 6
digits long.

ERROR IN FIRST COLUMN OF KEY
The first key field specification is invalid.

KEY SPECIFICATION NOT TERMINATED BY 015
. The key field specification must be the last field in

the parameter string.

SORT MUST BE PRESENT
INDEX has discovered that the SORT command is not
resident. It must be loaded.

KEY TOO LONG
The key is over lQO characters in length.

INFILE DISAPPEARED AFTER SORT
This is an internal error - notify DATAPOINT.

TAG FILE ·NOT GENERATED BY SORT
This is an internal error - notify DATAPOINT.

ILL~GAL CHARACTER IN KEY: XXX
The character whose octal form is displayed was found
in a record key. Only ASCII text characters are
permitted.

DIGIT.PRECEDING PRIMARY FIELD SPECIFICATION
INDEX has found a digit where; it doesn't belong -
remove it.

PRIMARY SPECIFICATION INVALID
The Primary record specification passed to SORT has
invalid syntax.

CHAPTER 23. INDEX COMMAND 23-5

INVALID TAG RECORD - SOFTWARE OR DISK ERROR
The tag file has an invalid record. Possible hardware
fault, notify DATAPOINT.

MORE THAN ONE RECORD HAS THE KEY: key
Duplicate keys exist in the file to be indexed. The
offending key field is displayed.

INDEX WILL USE EBCDIC SORT
The user has requested an index using the EBCDIC
collating sequence.

LAST COLUMN OF KEY LESS THAN FIRST COLUMN OF KEY
The first key field specification must be less than
the second specification

23.7 lSI File Formats

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys, and contains
pOinters to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the lSI file
cannot be moved without re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the lSI file
will destroy it.

The different levels of indices all have the same content,
except for the lowest level index. Index levels are built up
until the highest level of index will fit in a single disk sector.
This requirement is the reason for the 100 character limitation on
i.ey length.

The lSI files have the following format:

Offset Length

000 003

,II.) 3

Description

PFN and LRN bytes as per DOS convention -
see the chapter on SYSTEM STRUCTURE.
This is a KEY entry where nn is key length+7
for a lowest level index, and key length+3
for a higher level index. The first sector
of an lSI file after the RIBs is a -pecial
header record.
Note that as many key entries are put in a
sector as will fit without splitting across
a sector boundary.

23-6 DISK OPERATING SYSTEM

Each KEY entry for a higher level index has the following
format:

Offset Length Description

000 KEYLEN The highest key in the next lower level
index sector.

KL 001 Octal 012 - This indicates the end of the
key and that this is a higher level index
entry.

KL+1 002 S~ctor and Cylinder of the entry in the next
lower level of index.

KL+3 001 Octal 0377 - This indicates that this is the
last entry in this sector.

Each KEY entry for a lowest level index entry has the
following format:

Offset Length

000 KEYLEN
KL 001

KL+1 003

KL+4 003

KL+7 001

Description

The key for this particular record.
Octal 015 - This indicates that this is a
lowest level index entry and delimi ts the
end of the key.
Buffer Offset, address for the logically
next lowest level index entry.
Buffer Offset, and logical record number of
the text file record having this key.
Octal 0377 - Indicates that this is the end
of the lowest level index.

The first data sector in an lSI file is a header record used
to locate the file from which the inde~ was built. In this way,
it is only necessary to specify the name of the index to
DATASHARE.

Offset Length ,

000 003

003 013

016 003

PFN and LRN
c'onvention.
Guide (Part

. Name of the
index file.

Description

indicators as per DOS
See DOS Advanced Programmer's

IV) •
data file that goes with this

PFN, RIB sector, and RIB cylinder of this
file. This field is used to check that the
index file has not been moved.

CHAPTER 23. INDEX COMMAND 23-7

021 003 PFN, RIB sector, and RIB cylinder of the
file indexed.

027 003 Buffer address and LRN of the last record
used in the data file.

032 003 Buffer address and LRN of the first free
index entry.

23.8 Examples of the use of INDEX

First, a simple example in which only a single lSI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATASHARE terminal
to inquire on the current status of each deadbeat. Thus, while
the file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is keyed
by bank number (8 digits) and account number (7 digits)
~oncatenated and in positions 1 to 15 of each record.

In order to create (or recreate) the index file, the operator
must type:

INDEX DEADBEAT;1-15

The INDEX program will then create a file DEADBEAT/lSI which
DATASHARE can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each NSF check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
~umber in positions 16 to 18, and a date field in positions 19 to
24. As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

In order to create the indices required for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
:NDEX DEADBEAT,STORE; 16-18
IwDEX DEADBEAT,NAME;193-216

rne INDEX program will create four files with names BANK/lSI,
~ATE/ISI, STORE/lSI, and NAME/lSI. Each file is logically
seoarate, vet all are on the same volume as DEADBEAT/TXT.

23-0 DISK OPERATiNG SYSTEM

Now the store owners have Uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
disk for all the index files and the text file. In addition,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called DATAPOINT to
complain, and their local systems engineer has told them they need
to reformat the files when they re-index, and has sold them
another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;Fl-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. While it does no harm to reformat each time, it will
waste m~ch time and accomplish nothing. If reformatting had not
been done when the first index was built, it could not be
correctly done later without invalidating the. previously built
indices.

CHAPTER 23. INDEX COMMAND 23-9

CHAPTER 24. KILL COMMAND

KILL - Delete a file from the directory

KILL [file spec]

The KILL command deletes the specified file from the system
if the file is not protected. If the file is protected in any
way, the message

NO!

will be displayed. If the file specification is not given on the
command line (fi~e names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE? EXAMPLE: SCRATCH ITXT:DRl
I :DR

will appear. The user must keyin an eight character filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "D" and the drive
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NO SUCH NAME.

will appear. If the specified file cannot be found (both a name
and an exte~sidn must always be supplied if specified on the
command line), the message:

NO SUCH NAME.

will be displayed. If the file is found and is not protected, the
message: THAT FILE IS <filename> ON DRIVE n will appear. Then
the operator must additionally answer the message:

ARE YOU SURE?

with a 'Y' befor~ the actual deletion of the file is a6hieved.
After the deletion has occurred the following message is
displayed:

* FILE DELETED *

CHAPTER 24. KILL COMMAND °24-1

CHAPTER 25. LIST COMMAND

25.1 Purpose

The LIST command will list any DOS standard format text file
on the screen, a local or servo printer.

The command can be used for such thing s as:

A quick scan of a file by displaying it on the screen
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT COMMAND
FILE.

In this Section, the following terms apply:

Text file means a file with records containing only ASCII
characters, except for space-compression bytes and the
End-Of-Record and End-Of-File marks. Files created by EDIT
and those produced by DATASHARE are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 char~cters of a record will be
displayed; when listed on a local or servo printer only the
first 124 characters will be printed. (The remaining eight
characters contain a line number.)

Record means the user logical record number (LRN). The first
LRN of a file is zero.

25.2 Parameters

When the LIST program is to be executed, the operator must
type:

LIST <filespec> [,spec2][,filespec2][;[O][,X][,F][,I][,Nn]J

The square brackets ([]) indicate optional fields and the pointed
brackets «» indicate a required field.

CHAPTER 25. LIST COMMAND 25-1

25.3 INPUT File Specification

The file specification «filespec» must refer to a DOS text
file. If no extension is supplied with the file specification, an
extension is assumed depending on the options given. The default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) has a default
extension of lSI and the option "F" (list a file with format
control bytes) has a default extension of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec> is omitted, the message

NAME REQUIRED.

is displayed. If the file indicated by <filespec> is not found on
an online volume, the message

NO SUCH NAME.

is displayed.

25.4 Starting Point

The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter [,spec2] with the file specification.
For example:

LIST <filespec>,L400

would list the specified file beginning with the line 400 of the
file. If the line number specification exceeds the number of
lines in the file, LIST returns to DOS after displaying the
message:

FILE EXHAUSTED BEFORE LINE ~OUND.

LIST <filespec>,RI8

would directly access logical record 18 of the specified file and
list, starting at line number 1. If range or format errors occur,
the error type is indicated and another record number is
requested.

For instance, if the record number specification exceeds the
number of records, the message

25-2 DISK OPERATING SYSTEM

RANGE - NEXT RECORD NUMBER:

is displayed.

The DEFAULT value for the second parameter is line and
record O.

25.5 OUTPUT File Specification

If the options "PH (write to a print file on disk) or "Q"
('QUEUED' write to a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec2) may be used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

25.6 Output Device

The operator may specify an output device [0] other than the
CRT display by including an optional parameter of "S" (servo
printer), "L" (local printer), "PH, or "un. For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer
starting at line 400 or

LIST <filespec>jL

would list the specified file on a Datapoint local printer
beginning at line number one.

The DEFAULT output device is the CRT display which may be
specified by entering a "D".

25.7 Output Format

A parameter [X] is available to suppress line numbers. If
the 'X' is entered, lines of up to 132 characters will be printed.
For example: '

LIST <filespec>jSX

'would put the output on the servo printer without line numbers,
whereas,

LIST <filespec>

CHAPTER 25. LIST COMMAND 25-3

would put the line numbered listing on the screen.

25.8 Format Control

The parameter [F] is available to allow the handling of print
files (those with a format character in the first column of each
line). If 'F' is entered, the file will be listed without line
numbers, page numbers, or headings. The following characters
cause the following action to be taken before the line is printed.

- Skip to top of form

+ - Suppress line feed

(space) - Single line feed

o - Double line feed

- - Triple line feed

Any other character in the first column will be handled as a space
(single line feed) and discarded.

2~.9 uperator Controls

The listing consists of a continuous stream of the listed
file's text, preceded by the line's number in the file. To cause
the listing to pause, the operator may hold down the DISPLAY key.
fo abort the listing, the operator may depress the KEYBOARD key.

lf the output device is the local or servo printer, the
output will be listed at 54 lines per page (unless "Nn" is entered
as an option where n is the number of lines to a page) on
continuous form paper, with each page numbered and titled by the
file sperification and an optional heading. The heading is
entered oy the operator when the LIST program displays the
message:

be 10 r ,)(.Ln ting begins. The number of each line in the fi 1 e will
be c" inted at the left margin of the page.

25~4 DISK OPERATING SYSTEM

CHAPTER 26. MANUAL COMMAND

MANUAL - Clear Auto Execution

MANUAL

If the auto-execution name has not been set the message

AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed.

CHAPTER 26. MANUAL COMMAND 26-1

CHAPTER 27. MASSACRE COMMAND

27.1 Purpose

The MASSACRE command is provided to ease the user's job of
removing all files from a scratch disk.' It deletes all files on
the specified logical drive without regard to whether or not
delete or write protection is set. When MASSACRE completes, the
only files remaining on the MASSACREd drive are the eight system
files, SYSTEMO/SYS through SYSTEM7/SYS, as well as CAT/C~1D and
MIN/CMD.

27.2 Use

MASSACRE <drive spec>

Before the specified disk is MASSACREd, the user is asked
several times to acknowledge his request before actual deletion of
the files begins. A typical consol~ dialog would look something
like the following:

MASSACRE :DR2
KILL ALL NON-SYSTEM FILES ON :DR2? Y
I'M KILLING nnn FILES, nn OF THEM ARE PROTECTED.
ARE YOU SURE? Y
REALLY? Y

After the MASSACRE operation completes, only the ten files
specified above will remain on the MASSACREd drive. Note: Users
should consider regenerating the disk in lieu of using MASSACRE.
MASSACRE maintains' locked out areas of the disk but regeneration
provides a thorough check of the disk during its process .. The
opportunity to recheck the disk should not be overlooked.

CHAPTER 27. MASSACRE COMMAND 27-1

CijAPTER 28. MIN CQMM~ND

28.1 Purpose

The Multiple In (MIN) command is useful for reading multiple
files (source, object, and Datashare object) from the f'rorit '
cassette drive to disk. It will handle all standard single file
(OUT and SOUT), double file (SaBa), and multiple file (LGO, CTOS,
and MOUT with or without a directory) tape formats.

28.2 Tape Formats

Multiple In will automatically process the tape format by the
following conventions if an option is given.

28.2.1 Single File Tapes

An' OUT (object out) tape format has a file mark zero, a file
mark one, an object file with entry point, and a file mark 0177.
An obj ect fil e has an address with the MSB and LSB in the fourth
and fifth bytes of each record. Their complements are in the sixth
and seventh bytes. The remainder of each record is filled with
octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a
source file, a file mark one, and a file mark 0177. A source file
consists of records containing only ASCII characters, except for
space compression bytes, physical end-of-record bytes, and logical
end-of~record bytes.

28.2.2 Double File Tapes

A SaBa (source and object out) tape is the combination of a
SOUT and OUT tape. It has a file ~ar~zero, a source file, a file
mark one, an object file with entry point, and a file mark 0177.

CHAPTER 28. MIN COMMAND 28-1

28.2.3 Multiple Numbered-File Tapes

An LGO (load and go) tape has a loader, a file mark zero, a
string of files (the first being an object file and the rest may
be source, object, Databus Code, and Relocatable Code intermixed)
separated by sequential file marks, and a file mark 040.

A MOUT (multiple out) tape without directory has a file mark
zero, a string of files (may be source, object, and Datashare
object intermixed) separated by sequential file marks, and file
marks 040 and 0177. Single and double file tapes are incl uded in
this category if options are not used.

2d.2.4 Multiple Named-File Tapes

A CTOS (8assette tape operating system) tape has a loader, a
file mark zero, a CTOS object file with entry point, a file mark
one, a catalog object file, a string of files separated by
sequential (though not necessarily contiguous) file marks, and a
file mark 040.

A MOUT (multiple out) tape with directory has a file mark
zero, a tape directory, a string of files separated by sequential
file marks, and file marks 040 and 0177. The directory is a
source format file containing a date entry seven bytes long
(DDMMMYY) and ~1 file name entries each eleven bytes long (eight
bytes for the name and three bytes for the extension). The
entries are separated by end-of-string bytes (octal 015). Thls
makes it convenient for display under CTOS LIST or to load to disk
and list.

28.3 Parameters

28.3.1 Single Rile Tapes

For OUT, and SOuT tape formats, the file specifications may
be included on the command line in the following manner:

MI~ l<rile spec>J;<option)

where <option> is an'S' for SOUT tape formats.

F 1 L t:,;pec i fica tions are of the form FILENAME/ EXT: DRII. If the
drive is not given, all drives online will be searched starting at
drive zero. If the extension is not given, the assumed extension

23-2 DISK OPERATING SYSTEM

(TXT, ABS, DBC, or REL) will depend on the file format. MIN will
identify the tape format. If the file name has not been entered on
the command line, the program will ask:

LOAD FILE #XX (format)?

where, XX indicates the file number on the cassette and format
indicates the type of file (SOURCE OBJECT, DATABUS CODE, or
RELOCATABLE CODE). If the file is to be loaded, the response Y
(yes) will cause the message:

DOS FILE NAME:

to be displayed on the same line. If the response is N (no), the
operator will be asked for the next file (if any). If the
response is *, control is returned to DOS. If no name is entered,
the message:

NAME REQUIRED

will appear. If the filename specified already exists, the
message:

NAMt IN USE. WRITE OVER?

will appear. The answer N (no) will cause the filename request to
be displayed again. The answer Y (yes) will cau~e the disk
resident file to be overwritten. If the file to be overwrittten
is write protected, the message:

WRITE PROTECTED OVERWRITE?

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is .
changed from write protect to delete protect and the disk resident
file is overwritten. When a file has been loaded from the
cassette the message: (

LOADED

will appear to t~e right of the filename. The message:

MULTJPLE IN COMPLETED

indicates the successful comp~etion of the prosram.

CHAPTER 28. MIN COMMAND 28-3

28.3.2 Double File Tapes

The file specifications for a SOBO tape may be entered on the
command line in the following manner:

MIN [<file spec>][,<file spec>];B

File specifications are of the form discussed above. If the
second file name is not given, the first name with the assumed
extension of ABS will be used. If the extension is not given with
the first name, TXT will be assumed. If the filename has not been
entered on the command line, MIN will operate in the same manner

. as described in the section on single file tapes above for each
file on the cassette, displaying the messages in the same order
for both files.

28.3.3 Multiple Numbered-File Tapes

LGO tapes and MOUT tapes without a directory are both handled
in the same manner. MIN is first executed as:

MIN

An LGO tape will then be identified as:

LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same
manner as described in the section on single file tapes above for
loading a file without entering the name on the command line. The
questions described will be asked for each file on the tape until
end of file has been encountered on the tape or an * is entered in
response to the "load" question. MIN bypasses the loader on a LGO
tape before searching for the file. If the file is not found, the
message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and
the file name is not entered on the command line, the file name
will be requested as in single-file tapes.

28-4 DISK OPERATING SYSTEM

28.3.4 CTOS Tapes

A CTOS tape will be identified as:

CTOS SYSTEM TAPE FORMAT

The system then searches for the catalog (tape file #1). The
CTOS file is fairly long so it takes a while. If the catalog file
is not an object file or is an object file that loads into memory
somewhere other than 017406 or 017410, the message:

BAD CATALOG

will appear and the remainder of the tape will be processed as a
multiple numbered-file tape starting at tape file #2. If a good
catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <file 3> <file 4> ...

Then the operator will be asked:

DO YOU WANT TO LOAD <file 1> ?

The entire process is identical to the multiple numbered-file
tapes above except the first fourteen files are referred to by
name. The filename may be expanded by the operator from the six
character name allowed by CTOS to the eight character name allowed
by DOS plus the extension. A filename is requested if the reply
is 'Y'.

28.3.5 MOUT With Directory Tapes

These tapes are processed in a manner very similar to CTOS
tapes. The tape is first identified as:

MOUT TAPE FORMAT

Next ~he date will be displayed:

DATE: DD MMM YY

Then the directory will be displayed:

PIRECTORY: <file l/ext) <file 2/ext> <file 3/ext) •..

Then the operator will be asked:

CHAPTER 28. MIN COMMAND 28-5

LOAD <file 1/ext) ?

All the responses are the same as above except that the file
name will ~ot be requested. A drive response is also available.
Entering "DRn" will imply "YES" and force the file to drive n.
The program will cycle until the end-of-tape file mark (040 or
0177) is read at which point the message:

MULTIPLE IN COMPLETED

will be displayed.

28.3.6 Options

Tape file modifications may prevent MIN from automatically
determining the tape format. In this event, the options 'L' (for
LGG), 'C' (for CTOS), or '0' (for Directory) are available. Also,
option 'N' (for No directory) will tell the system that it is
handling a MOOT tape without a directory which allows entering the
file names manually if the directory entry names are not desired.
This also allows entering the directory to disk. A drive
specification is also available. Entering a "On" or "DRn" will
force drive n to be assumed. Options are entered following a
semi-colon.

These options are merely test overrides. If a tape, for
instance, starts with a recognizable file mark, a loader won't
even be tested for and therefore entering the 'L' option is
meaningless.

Unfortunately, MIN cannot differentiate an OUT, SOUT, or SOBO
tape from a MOUT without directory tape. To speed the processing,
the options'S' (for SOUT) and 'B' (for SOBO) are available. Once
again, if the tape doesn't resemble a SOUT tape, for instance,
entering an'S' is meaningless.

If the tape is a MOOT tape with a directory, the options 'A'
(for All), '0' (for Overwrite), 'Q' (for modifying the extension
with Q's) and :DRn (for loading the files to Drive n) are
available. Using the option 'A' will load all the files.
However, if the file already exists, the operator will be asked if
overwriting is desired and if not, for a new file name. Entering
the '0' option in conjunction with the 'A' will force overwritl.ng
of existing files (unless write protected). If while processing
in the 'All Overwrite' mode a write protected file is encountered,
thelessage:

WRITE PROTECTED

20-6 DISK OPERATING SYSTEM

will appear and processing continues with the next file. Entering
the 'Q' option in conjunction with the 'A' will put as many Q's
into the directory extension as necessary to create a new
filename/ext if the original one already exists. If the original
filename/ext exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension
is performed. If the filename/QQQ already exists, the message:

Q OPTION EXHAUSTED

will appear to the right and the file will be skipped.

The option 'N' followed by an octal number allows that
specific file to be loaded. For example, entering:

MIN FILE/TXT;N12

will load the tape file following file mark 12 (octal) to disk as
'FILE/TXT'. The default extension will be 'TXT' for source, 'ABS'
for object, 'DBC' for Databus Code object files, and 'REL' for
Relocatable Code files depending on the tape file format. If a
non-octal number is entered (e.g. N8) the message:

NUMBER NOT OCTAL

will appear and MIN will be terminated. If an unrecognizable
record format is encountered, the message:

UNRECOGNIZABLE TAPE RECORD FORMAT

will appear and MIN will be terminated. MIN bypasses the loader
on a LGO tape before searching for the file. If the file
specified is not found, the message:

FILE NOT ~'OUND

will app~ar an4 M~N will be terminated. If the fil~ is found and
the file name is not entered on the command line, the file n~me
will be req'uested as iin single-file tapes. I

The options 'L', 'C', 'N', 'S', 'T', and 'B' are mutually
exclusive. Only one may be entered. The 'A' may b~ entered with
or Hi thout the 'D' and wi th none of' the other above options. '0'
and "Q' are mutually exclusive and may only be entered in

CHAPTER 2B. MIN COMMAND 28-7

conjunction with the 'A'. If any of these restrictions is
violated or a character other than those above entered, the
message:

BAD OPTION PARAMETER

will appear and the program will be aborted.

28.4 Errors

If the tape format is not one of the eight standard formats
outlined above in Section 23.1 (e.g. it starts with a file mark
two) the message:

INVALID TAPE FORMAT

will appear and the processing will be aborted. If the end of
tape is detected while processing, the message:

END OF TAPE

will appear and the processing will be aborted. If a parity error
is encountered in an object or Datashare file on tape, the
message:

PARITY ERROR-FILE DELETED

will appear, the file name will be removed from the disk
directory, and processing will skip to the next file. If a parity
error is encountered in a source file on tape, the message:

PARITY ERROR-RECORD MODIFIED

will appear, a 253 byte disk record will be written with percent
signs in the first five positions of the record data, and
processing will be continued with the next record.

20-0 DISK OPERATING SYST~M

CHAPTER 29. MOUT COMMAND

29.1 Purpose

The Multiple Out (MOUT) command is useful for writing·
multiple (up to 32, or 31 if a directory is used) disk files
(source, object, and Datashare) out to the front cassette drive.

An additional feature is the ablity to create a tape file
directory as file #0 on the tape. The directory is a source
format file, that is, it consists entirely of ASCII characters
except for space compression bytes, physical end~of-record marks,
and logical end-of-record marks. The directory contains a date
entry seven bytes long (DDMMMYY) and 31 file name entries each
eleven bytes long (eight bytes for the name and three bytes for
the extension). The entries are separated by end-of-string bytes
(octal 015). This makes it convenient to list under CTOS LIST or
to load to disk and list. The directory is also used by the MIN
program to enter files to disk. MOUT creates the directory in
memory before the tape writing starts even if it is not to be
written to tape. The writing of a full tape (over 500 records)
takes about 10 minutes which shows the advantage of entering all
the names before w~iting begins.

Another feature is the option to automatically verify a tape
following its creation. Or a previously written directory tape
may be verified in an 'only verify' mode. If this is requested,
the system will read the directory on the cassette tape in the
front drive (if a valid directory is not found, the system will
abort with the appropriate message) and verification will be
performed against the indicated files.

29.2 Parameters

File specifications and/or options may be entered on the
command line in the following manner:

MOUT [<file spec>,<file spec>, ...][;options]

File specifications are of the form FILENAME/EXT:DR#. If the
drive is not given, all online drives will be searched starting at

.. drive zero. If the extension is not given, 4BS is assum~d. File
specs are separated by anything (including multiple spaces) except

CHAPTER 29. MOUT COMMAND ~9-~

letters, numbers, slash (I), or colon (:).

29.3 Options

Options (which follow a semi-colon and may be spaced or
separated by commas) are 'L' for a loader format tape, 'D' for a
directory format tape, 'V' for verification of the created tape,
and 'X' for verification only.

If a loader is to be written, the first file (file #0) must
be an object file. There are no restrictions on files other than
#0.

The directory option ('D') will write a tape directory as
file #0. The first item within the directory is the date entered
DDMMMYY. Note: the month is entered as three alpha characters.
The date may be entered following the option letter (e.g. D
12JAN74). If the date is not entered, it will be requested.

The verify option ('V') will verify all the files on the
created tape. Verification consists of making a byte for byte
comparison between the data on the disk and the data on the tape.
If verification fails, the tape will be rewritten and verification
tried one more time.

The verify only option ('X') will cause the first tape file
to be read from the front deck. If it is a directory (first seven
characters of DDMMMYY format), the remaining files will be
automatically verified using the directory entries. If it is a
loader, it will be verified and file names requested for the
remaining files as they are verified. An 'N' may be entered
immediately preceding the 'X' to force the system not to recognize
the directory. This would be done if manually entering file names
is desired (for instance, the directory names don't match the disk
file names). If there is neither a directory or loader, file
names are requested as the files are verified.

If the semi-colon is entered with no entry following, it will
be interpreted that the tape will not have a loader, a directory,
or any verification.

Entering 'D' and 'L' together or entering something with 'X'
or entering some letter other than 'D', 'L', 'V', or 'X' will
result in the message:

BAD OPTION PARAMETER. MOUT DISCONTINUED.

and the Multi~le Out will be aborted.

29-2 DISK UPERATING SYSTEM

If file names and/or options are not entered on the command
line, MOUT will ask for them as required. If options were not
entered, the first question will be:

DO YOU WANT A LOADER?

Replies other than 'Y' or 'N' will be answered by:

WHAT?

and a repeat of the question. If the reply is 'N', the next
question is:

DO YOU WANT A DIRECTORY?

Again, if the reply is other than 'Y' or 'N', it will be answered
by:

WHAT?

and a repeat of the .question. If the reply is 'Y't the next
re;quest is £

ENTER THE DATE (DDMMMYY):

where the month is entered as three alpha characters. If the day
is not in the range of 00 to 39, the month not alpha, or the year
not in the rapge of 7q to 99, the response:

BAD DATE

will appear- and again "the request for the date. The next question
is: r

DO YOO WANT TO VERIFY THE. TAPE?

If the reply is not 'Y' or 'N', the response:

WHAT?

will appear followed by a repeat of the question. If the reply is
'Y' and the replies to the loader and directory questions are'N',
the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?

will then be asked. If the reply is other tnan 'Y' or 'N'~ tae
response

CHAPTER 29. MOOT COMMAND 29-3

WHAT?

will appear followed by a repeat of the question. If only
verification is requested, the first tape record on the front tape
deck is read in. If it is a directory (the first seven characters
of DDMMMYY format), the remaining tape files will be automatically
verified using the directory entries. If it is a loader, the
message:

LGO TAPE FORMAT

will appear. The message:

LOADER IS BEING VERIFIED

will then appear as the loader is being verified. If the loader
verifies correctly, the message:

LOADER OK

will appear to the right. Otherwise, the message:

BAD LOADER

will appear. After checking the loader or if the tape has neither
a loader or directory, the message:

CASSETTE FILE 'XX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE),
(OBJECT), (DATABUS CODE), or (RELOCATABLE CODE) depending on the
file format. If nothing is entered, the message:

NAME REQUIRED

will appear and the request repeated. If an asterisk (*) is
entered, MIN will terminate and return to DOS. If a greater-than
sign (» is entered, the program will skip to the next file. If a
less-than sign «) is entered, the program will backspace to the
prior file (bYrassing null fiies). If the program finds the
beginning of the tape, it will beep and then move forward to the
first file. If a name is entered, the default extension is 'TXT'
for source, 'ABS' for object, and 'DBC' for Datashare object
depending on the file format. If the drive number is not entered,
all onli~e drives will be searched starting at drive zero. If a
drive number greater than DOS allows is given, the message:

2)-4 DISK OPERATING SYSTEM

BAD DRIVE

will appear and the request repeated. If the file is not found,
the message:

FILe NOT FOUND

will appear and the request repeated. If the disk file is found,
it will be matched byte by byte against the disk file. If the
files completely match, the message:

FILE OK

will appear to the right and processing continues with the next
file. If an error is detected, the appropriate message will
appear and processing continues with the next file. Null files
are bypassed. Processing continues until an end-of-tape mark
(file mark 040 or 0177) is read at which time the message:

VERIFICATION PHASE COMPLETED

will appear and MOUT will be terminated.

29.4 File Names

If the file names are not given in the command line, the
oper:a tor will be asked for the file names one at a time. The
request is of the form:

CASSETTE FILE XX DOS NAME:

where XX is the file number. Possible replies to the file name
query include:

a) the file specifications as discussed above,
'b) a pound sign (I) which will bu~p the file number to 20

octal if not already there (only allowed on loader tapes to
initiat~ numbered files on a CTOS tape),

c) a dollar sign ($) which will cause a null fil e (tape fil e
mark only) to be written to tape and the file spec of
NUL~/NUL to be entered in the directory,

d) an asterisk (*) wbich will indicate no more files are to be
ent~red and the tape writing started (writing is postponed
until the directory is complete), and

e) OS which will abort the program. The message:
MULTIPLE OUT DISCONTINUEU will appear and control is
returned to DOS. (To dump OS/ABS, enter 'OS/ABSL).

CHAPTER 29. MOUT COMMAND 29-5

If the operator fails to enter a name, the message:

NAME REQUIRED

will appear and the name request will be repeated. If the drive
is given and is not in the range valid for DOS, the message:

BAD DRIVE

will appear followed by a re-request of the name. If the file is
not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is
found, the format (object, source, or Datashare) will be
determined by the system. If the tape is a loader tape and file
#0 is not an object file, the message:

FILE FOLLOWING LOADER NOT OBJECT

will appear along with a re-request of the file name. This
message may also be displayed if the reply to the file name query
for file #0 is a pound sign. Otherwise the messages:

OBJECT FILE

or:

SOURCE FILE

or:

DATABUS CODE FILE

or:

RELOCATABLE CODE FILE

or:

NULL ~ILE

will appear to the right of the file name. If the pound sign is
entered for a tape that does not have a loader, the message:

NOT LCO TAP£

29-6 DISK OPERATING SYSTEM

will appear with a re-request of the file name. If 32 files (or
31 on a directory tape) are entered, the message:

THAT'S THE END OF THE LINE

will appear and the tape writing is started automatically.

29.5 Writing

Once the tape writing has started, the system will keep the
operator informed of its progress. As a loader is being written,
the message:

LOADER IS BEING WRITTEN

will appear. As a directory is being written, the message:

DIRECTORY IS BEING WRITTEN

will appear. While files (including null files) are being
written, the message:

FILE <filename/ext> IS BEING WRITTEN

will appear. When the writing is completed, the message:

WRITING PHASE COMPLETED

will appear.

If a non-object record is sensed in an object file while
writing to tape, the message:

FILE CONTAINS' NON-OBJECT RECORD
i

" .W,ill· appea-rand the llext
inclhding~he file ma~k.
without a file. ,If this
to display the messa~e:

file is written over the bad tape file
This will leave a directory entry

should happen, it will cause verification

NON-SEQUENTIAL FILE MARK

and the tape rewritten.

If a non-source record is sensed in a source file while
writing to tape, the message:

INCORRECTLY FORMATTED SOURCE RECORD

CHAPTER 29. MOUT COMMAND 29-7

will appear. The file is ended at this point without writing the
bad record and the next tape file will start immediately
following. If this should happen, it will cause verification to
display the message:

INCORRECTLY FORMATTED DISK RECORD

or:

TAPE EOF BEFORE DISK EOF

and the tape rewritten.

If MOUT runs out of tape, the message:
\

END OF TAPE ENCOUNTERED WHILE WRITING filename/ext

will appear, an end of tape marker written at the end of the
previous tape file, and the unwritten files will be removed from
the directory (if there is one). Processing then will be
continued with verification.

29.6 Verifying

If verification is requested, the system will keep the
operator informed of its progress. As a loader is being verified,
the message:

L0ADEfi IS BEING VERIFIED

will appear. As a directory is being verified, the -message:

DIReCTORY IS BEING VERIFIED

will appear. While files (including null files) are being
verified, the message:

FILE filename/ext IS BEING VERIFIED

will appear. When the verification is completed, the message:

VERIPICAfI0N PHA~E COMPLETED

will appear. If verification is requested for a tape having no
directory, the message:

NOT DIRECTORY TAPE

29-0 DISK OPERATING SYSTEM

is displayed. Then the message:

CASSETTE FILE #XX(format) DOS FILE NAME:

will appear. The filename should be entered. Responses are
discussed in the section under OPTIONS.

A variety of erro~ messages may be displayed during the
verification phase. Most of them are self-explanatory. They
incl ude:

BAD LOADER

BAD DIRECTORY

TAPE FILE DOES NOT l'1ATCH DISK FILE

INCORRECTLY FORMATTED DISK RECORD

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT REC'ORD.

NON-SEQUENTIAL FILE MARK.

TAPE FILE MARK READ BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOT FOLLOWED BY TAPE. FILE MARK.

DISK EOF BEFORE TAPE EOF

TAPE EOF BEFORE DISK EOF

If an errQr is detected, the program will then either rewrite
the tape (if it has just been cre~ted) or skip to the ~ext file
(if in the 'verify onlyi mode). J;f it rewrites the tape, the
message:

I'M NOW REWRITING THE TAPE

will appear. The system will rewrite once before quitting
comryletely at which point the me~sage:

VER!iI~AilON UNSUCCESSFUL

'will appear and the processing terminated.

CHAPTER 29. MOUT COMMAND 29-9

If a problem arises that causes an abnormal end (e.g. end of
tape), the message:

MULTIPLE OUT DISCONTINUED

will appear, otherwise the message:

MULTIPLE OUT COMPLETED

will signal the successful end of the program.

ERROR D ON DECK 2

will signal parity errors on the cassette and control is returned
to DOS.

29-10 DISK OPERATING SYSTEM

CHAPTER 30. NAME COMMAND

NAME - Change the name of a file

NAME <file spec1>,[<file spec2>][,<subdirectory name>]

NAME will allow the user to change the name of a file, the
exteQsion of a file, or the subdirectory in which a file resides.
The content of the file is unchanged. The first file
specification refers to the current file name and the second file
specification is the new name and/or extension to be assigned. ~f
no extension is supplied in the first file specification, ABS is .
assumed. If no extension is supplied in the second file
specification, the extension of the first file is assumed. If no
extensions are supplied, both files will be assumed to have
extensions of ABS. The drive number should only be specified in
the first file specification.

If the NAME command is used to move a file from one
subdirectory to another the second file specification may be
omitted (unless the filename ahd/or extension are to be changed)
and the §u~directory n~~e denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file spec1>,,<subdirectory name>

In both uses of the NAME command, two specifications are required.
If either name is not given, the message

NAME REQUIRED.

will be displayed. If the second nam~ is a,lready defined on the
drive that contains the first file, tpe message

NAME IN USE.

will be displayed. Note that the drive specification on the
second name is ignored. If the first name is hot found on an
online disk, the message

NO SUCH NAME.

will be displayed. If th'~ subdirectory name keyed is not found

CHAPTER 30. NAME COMMAND 30-1

on the disk containing the file to be renamed, the message

NO SUCH SUBDIRECTORY.

will be displayed. If the third parameter is not specified, the
file is "brought into" the current subdirectory at the completion
of the renaming process.

-2 DISK OPERATING SYSTEM

CHAPTER 31. REFORMAT COMMAND

31.1 Introduction

The DOS REFORMAT command is used to change the internal disk
format of text-type (non-object) files. Additionally, it can
recover disk space left unused when files are updated by the
DATASHARE indexed sequential access method. REFORMAT can compress
a file in place on disk provided that such compression does not
entail the writing of a physical disk sector prior to the time
that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked
to be sure it can complete its job successfully.

31.2 Operation

When the REFORMAT program is to be executed, the operator
must type:

REFORMAT <file-spec>[,<file-spec>][;<parameters>]

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification.

The parameter list describes the format the output file is to
take, and whether REFORMAT is to free any disk space that might be
vacated by the reformatting process. In addition, the user can
specify that REFORMAT is to pad short records, and either truncate
or segment. long records. Reformat will produce three different
kinds of output files: record compressed, space and record
compressed, and blocked records (See the section on TEXT FILE
FQRM4TS.). Note that REFORMAT will not produce blocked space
compressed records or space compressed non record compressed files
although such files can be used as input to the REFORMAT program.

CHAPTER 31. REFORMAT COMMAND 31-1

The valid parameters that can be passed to REFORMAT are as
follows:

Parameter Description

B<n> The output file will be blocked. This implies no space
or record compression, with <n> logical records per
physical sector.

C The output file will be space and record compressed.
The number of logical records per physical sector will
be indeterminate.

R The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
indeterminate.

L<n> The length of each logical record will be adjusted to
<n> characters. Note that if the logical records are
space compressed, this will not make the physical length
of the records <n> characters. If the logical record is
shorter than <n> characters, it will be padded with
blanks to the proper length. If the logical record is
longer than <n> characters, the action taken depends on
the T and S parameter.

T (Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

S (Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

If neither S or T is specified, and an input record of
length greater than <n> is found, a message is issued
and HEFORMAT gives up.

D If reformatting is done in place and this parameter is
specified, any disk space vacated by the reformatting
process will be returned to the operating system for
re-use.

31-2 Di~K 0PERATING SYSTEM

31.3 Output File Formats

The REFORMAT utility permits you to select essentially three
different output file formats. It will produce blocked files that
are not space compressed, record compressed files that are not
space compressed, and files that are both record and space
compressed. In addition, it has a subcommand to permit you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify
space compression, the physical length of each record will be
identical. This is especially useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two subcommands available to tell REFORMAT what to do
with records whose logical length exceeds the specified output
length. You may select either truncation of the input record, or
you may segment it into two (or more) output records, eaCh of the
logical length specified.

31.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - whioh
record and space compresses its output. REFORMAT can then
reprocess the file into the correct format for DATASHARE or
DATABUS random access.

Secondly, when a file is accessed with DATASHARE indexed
sequential access method, any additions or deletions result/in .all,
increase in the physical size of the file. The reason for this ts
that any inserted reco.rds are placed at the physical end of the
file, and each one consumes at least one entire physioal sector,
regardless of its logical length. Similarly, deleted records are
simply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

CHAPTER 31. REFORMAT COMMAND 31-3

31.5 Reformat Messages

The REFORMAT utility program produces several ~essages on the
operator's console. The contents and where necessary, meaning of
those messages follow:

REFORMAT VERSION 1
Self-explanatory.

COMMAND LINE ERROR
This is an internal error and should be reported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED
TO PREVENT POSSIBLE LOSS OF DATA

REFORMAT has detected an invalid end of file mark. In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but' unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE I:
DELETE PROTECTED.

Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE
WRITTEN INTO OR SHORTENED.

You have requested REFORMAT to output to a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter list.
This message is followed by the valid options you may
specify.

ILLEGAL CONFLICTING OPTIONS
You have specified two mutually exclusive options.

Y00 SPECIFIED BOTH SEGMENTATION AND TRUNCATION,
{UJ CANNOT HAVE BOTH

Self-explanatory.

BLOCKING FACTOR C0NTAINS ILLEGAL NON-NUMERIC DIJ-rS
Self-explanatory.

31-4 DISK OPERATING SYSTEM

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO
You specified blocking but omitted the blocking
factor.

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO
You must specify the logical record length of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two file specifications.

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR?

Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED MUST
BE <= 250 BYTES.

Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF THE RECORDS YOU HAVE.

Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE
SIZE OF THE RECORDS YOU HAVE

While processing the input file, REFORMAT came across
a record that was larger than the specified logi'cal
record length. Since you specified neither
segmentation nor truncation, this is recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. INPUT FILE CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self~explanatory.

YQU SPECIFIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FIL~. TO ~EFORMAT IN-PLACE
DON'T SPECIFY ANY OUTPUT FILE.

Self-explanatory.

INPUT FILE IS EMPTY!
You are attempting to reformat a null file.

CHAPTER 31. REFORMAT COMMAND 31-5

OUTPUT FILE NOT FOUND ON DRIVE X.
OUTPUT FILE FOUND ON DRIVE Y.
OUTPUT FILE WILL BE CREATED ON DRIVE Z.

These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either the second or third.
REFORMAT could not find the output file on the same
drive as the input file. It either found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same drive as the one the input file is
on.

REFORMAT IN-PLACE REQUESTED.
PRESCAN IN PROGRESS.

REFORMAT is checking to make sure it can properly
process the file inplace.

FILE WAS ALREADY IN THE SPECIFIED FORMAT
Self-explanatory.

CUPYING WITH REFORMATTING IN PROGRESS
Self-explanatory.

INPUT FILE NAME REQUIRED
Either you gave only an extension or drive for the

. input file, or you specified the output file first,
followed by the input file.

INVALID DRIVE SPECIFICATION
The drive number was greater than allowed or you did
not specify the drive in the form :DR<n>.

31.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various special control characters with special
meanings. It is illegal to have the control characters in the
Lex L porl-~on or Loe r:l.~e. According to DOS convention, any
character betwuen 000 and 037 is considered a control character.

31-6 DISK OPERATING SYSTEM

Each physical record of a text file is a logical disk sector,
and contains 256 characters. The first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
format of a logical sector is as follows:

Offset Length Description

000 001 Physical file number of' this file. For a
detailed description of physical file
organization, see the DOS Advanced Programmer's
Guide.

001 002 Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

003 373 Text. 251 bytes of text and control characters,
depending upon the format of the file.

376 602' Two characters reserved.

The text part of "each file is considered a logioal stream,
crossing sector boundaries without being logically discontinuous.
Dema~cations of logioal record boundaries are made solely by .
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 <EM) used to
denote the end of 'medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
<ENT> used to denote the end of a logical record, and 032 <DEL)
used to denote deleted data.

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the data contained in them. In this way, a
proli fera tion of different file structures, and the special
routines'needea to treat such special cases has been avoided.
This does. not mean -that there cannot be a relation between
physical ~nd l6gicalst~ucture, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as asp-ecial case. For exampJ.e, random access to a ~ata
file is defineq in the DATABUS langu,:age. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is

CHAPTER 31. REFORMAT COMMAND 31-7

not inherent in the makeup of a random file, in fact, such files
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is of no pre-determined length.
Instead, the record is terminated with a single ENT character. In
this way, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. T~e character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, eMP
can never occur as the next-to-last text character in a physical
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning- an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records while for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000 000 000 000 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

31-d DISK OPERATING S~ST£M

CHAPTER 32.· REWIND COMMAND

REWIND - Rewind the cassette t 0pe.

REWIND [REAR or DECK1]

The cassett'e in the front deck is rewound unless "REAR" or
"DECK1" is specified. If no cassette is in place in the deck, the
rewind will'proceed but bnly after a cassette is put into place.
The cassette· can be fully wound onto the clear leader at the very
end of the tape, since the rewind command starts by slewing the
tape backwards, for a few seconds first. This both takes up any
slack that may be present in the cassette before the high-speed
rewind starts, and also ensures that the tape is not on the clear
leader when the actual rewind begins.

CHAPTER 32. REWIND COMMAND 32-1

CHAPTER 33. SAPP COMMAND

SAPP - Append two source files creating a third

SAPP <file spec>,[<file spec>],<file spec>

The SAPP command appends the second source file after the
first and puts the result into the third file. If extensions are
not supplied, TXT is assumed. The first two files must exist. If
the third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. Note that neither the first or
second file is changed.

The first and third file specificatipns are required. If
either is omitted the message

NAME REQUIRED

will be displayed.

The second and third file specifications must not be the
same.

CHAPTER 33. SAPP COMMAND 33-1

CHAPTER 34. SORT COMMAND

34.1 Introductio'n

The Disk Operating System SORT enables any Datapoint Disk
user to initiate file sorts directly from the keyboard.

Using a multi-train radix sort technique, the Datapoint
processor achieves speeds comparable with much larger systems.
The list of options also compares favorably with much more
extensive systems. Nevertheless, since it uses the full dynamic
nature of the Disk Operating System, it is extremely easy to
operate. (Users who have spent several hours figuring out how to
set ~p the myriad of SORT work datasets required, even for the
simplest sorts, by other sort packages know what we're talking
about.)

For more sophisticated uses, SORT may be called from otner
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name then callable either
from the keyboard or another program. CHAIN also extends the
SORT package to operate as a merge, as w·ell.

34.2 General Information

SORT will optimizie its speed through allocation of its
working files on the available drives. During this process it
attempts'to ascertain the availability of sufficient disk space to
achieve the desired sort. The program will abort at this point·
should the disk space be inadequate.

34.3 Fundamental SORT Concepts

34.3.1 File formats

All Datapoint systems use a universal text file structure
recognized by Databus, Datashare, RPG II, Basic. Scrib~, Editor)
Assembler, Termim,!.1 emulators, etc. Therefore, any text file·
generated by or for any of the above, may be sorted. The file to
be sorted must be on disk, however.

CHAPTER 34. SORT COMMAND 34.1

There are two sub-formats a Datapoint file can have: Indexed
or Sequential. Notice that throughout the SORT section of the
User's Guide, "Indexed" refers to direct random, as opposed to
ISAM, access (see INDEX). Indexed files are required to have a
single 'string' or 'record' of data per physical disk record.
SORT assumes indexed files have space compression. This implies
that the logical position of a character in a record and the
physical position of a character in a record may differ. The SORT
will always expand the spaces to determine the logical position of
a character. The maximum record size for indexed records is 250
bytes. Sequential records have no fixed relationship to physical
disk records and are written as densely as possible in the given
file space. Nonetheless, indexed files can be read sequentially
in the identical way that sequential files are read. In fact,
both types of files, when read sequentially, are
indistinguishable. Indexed files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a NEW file which is a
restructured COPY of the original file. The original file is
never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with one restriction - see the section on
INPUT/OUTPUT FILE FORMAT OPTIONS).

34.3.2 The key options

The KEY of a sort is the FIELD or that part of the record
which is to ORDER the sequence of records. For instance, it can
be a person's name, sta~e, employee number, amount in debt or any
aspect of the data base .identifiable by a fixed posi tion in the
record based upon the column count from the beginning of the
record.

Consider the followlng record (column count scale below for
reference only):

Mule, Francis A. 242219 123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee number
spans columns 24-29. The street address is 31-42. The city is

34-2 DISK OPERATING SYSTEM

43-58. The State is 59-60

If each person had a record in the file exactly in the abl.!>ve
format, SORT could order the sequence of records in the f11eby
any of the above fields. For instance, to get an alphabetical
list of the records by name, the KEY would be 1 ta 22 (herea(ter
referred to as 1-22). The KEY for sequencing the file in orier of
employee number would be 24-29. The key for orderfog the reoords
by state then city and then employee number would be
59-60,43-58,24-29.

It should be obvious that any part of the record can b~ used
as a key. It may not be obvious, however, that the larger the key,
the slower the sort - it is, however, the case and it is just
about proportional.

34.3.3 How to sort a file

Sorting a file is done from the keyboard of the pOS. All the
operator must know is the name of the file to be.-orted, the name
desired for the sorted output file, and the· coluuUUiJ containirig the
KEY·

For instance, the keyboard issued command for the above
example to sort on th~ name field (1-22), would be:

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFII.E. It
is also the operator's decision as to what the resultant sorte4
file is called, as the command could have easily been:

SORT EMPLFILE,EMPSORT;1-22

as well. The second file named is where the re$ultant sorted
output will be placed.

More complicated keys may be stated as well and the command
to sort by st~te and then name would be;

SORT EMPLFILE,SORTFILE;59-60,1-22

That is all there is to simplified sorting.

Testing SORT for yoursel f is simple. Mast systems have ,~
source code file for a Da tabus or Assembly language program on the
disk. Such program.s can be sorted byop-code and provide an
intepesting analysis of the usage of each ~nstruction type:

CHAPTER 34. SORT COMMAND 34-3

SORT INFILE,OUTFILE;9-12

34.4 The Other Options

34.4.1 Generalized Command Statement Format

The following is the generalized statement format for the
Datapoint DOS SORT:

SORT IN,OUT[,:DRk][,SEQ][;[[F][O][R][H][GNNNTC][N]][K1] ... [,On][,Kn]]

Information contained within a pair of square brackets
[J is optional; information within brackets is
order-dependent. Commas may be used to delimit parameters.
(NOTE that commas MUST be used to delimit sort-key groups.)
The first four fields (those ahead of the semi-colon) are
considered to be file specification fields. The fields
following the semicolon are considered to be sort key
parameters. Default conditions are listed below. Typical
statements obeying this format are:

(1) SORT INFILE,OUTFILE
(2) SORT INFILE,OUTFILE;1-3,7-20
(3) SORT INFILE,OUTFILE;ID1-3
(4) SORT INFILE,OUTFILE;IDL7-20
(5) SORT INFILE,OUTFILE;LH11-20
(6) SORT INFILE,OUTFILE"SEQFILE
(7) SORT INFILE,OUTFILE,:DRO,SEQFILE/SEQ:DR1

All the above statements will invoke a sort. Each will
provide different results. However, notice that in (1)
there are no other parameters than the file specifiers.
That is because all the specifiable parameters have a given
value in case there is no specification for it.

The following list defines the parameters which can be
specified:

IN This specifies the input file. This file
must exist on disk.

OUT This specifies the output file. This
specification is optional IF AND ONLY IF the
'L' AND 'H' options are used. If an output
file is specified AND no disk drive is

34-4 DISK OPERATING SYSTEM

specified AND the file exists on a drive
on-line to the systelll then the output file
will over-write the existing file. If an
output file is specified AND no disk drive
is specified AND no file of that name exists
on a drive on-line' to the ~ystem THEN a file
of the given name will be created on the
same drive as the input file.

:DRk• This $pecifies the drive for the sort key
file. This is only a working .sc~atch file
needed during the sort. SORT will usually
pick the optimum drive on which to put the
wqrk file on a multi-drive system. .
Experience or special considerations may
cause the user to want to specify a work
drive.

SEQ ...•......... NON-ASCII COllATING SEQUENCE FILE
This specifies the ·f1le which contains the
collating sequence to be used. If omitt~d,
ASCII will be assumed. .

F FORMAT:.
This parameter specifies the Q!.ltout file
format: indexed or space compressed
(standard editor output format). If the user
specif:ies I (and the input file is also
indexed), then the output file will be left
indexed.

Without typing the 'I', the output file will
be space and record compressed no matter
wha t the input file .IF AND ONLY IF the
input file is an INDEXED file, you may
include the 'I' parameter and cause the
~utput file to be indexed.

Note that Indexed in this content refers to
physically random aocessed(1 logical record
per sector) as opposed to ISAM-acqess files. . .

O••.... ORDER.
This 'Parameter spec;fies the output file
collating sequence:" A$cending or .
Descending. The aotual character entered is
'A' or 'D'. The default value is 'A'.

CHAPTER 34. SORT COMMAND 34-5

Without typing the 'D', the collating
sequence order is considered ASCENDING.
Including the D parameter will cause the
collating sequence to operate in DESCENDING
order. Note that if some keys are to be
sorted in ascending order and other keys in
descending order, the "On" specification
described below should preceed each key
whose order differs from the order of the
key preceeding it. However, if all keys are
to be ordered in the same sequence, this
parameter need only be specified once.

R RECORD FORMAT.
This parameter specifies a special output
record format: Limited output file format
or Tag file output. The actual character
entered is 'L' or 'T'. The default value is
NO SPECIAL OUTPUT RECORD FORMAT; that is,
neither 'L' nor 'T', so that the records in
the output file will be exact copies (FULL
IMAGE RECORDS) of the records in the input
file. .

Normally the sort transfers all of the
records of the input file to the output
file. It is possible, not only to transfer
part of each record, but to include constant
literals in each record as well. Including
the 'L' parameter in the list of parameters
will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited
Output Format Option.

By entering the 'T' character an output file
is generated which consists only of binary
record number and buffer byte pointers to
the input file records. ~ee the section on
Tag File Output Format Option.

H HARDCOPY OUTPUT.
This parameter specifies that the output of
the SORT will be listed on a printer. The
actual character entered is 'H'. The
default value is NO HARDCOPY OUTPUT.

Without typing the 'a' no printing will

34-6 DISK OPERATING SYSTEM

occur and SORT will require that an output
file be named. If the 'H' parameter is
given AND an output file is named then SORT
will list the output to a printer AND will
generate an output file. If the 'H'
parameter is given and NO output file is
named ~hen SORT will list the output to a
printer and no disk file output will be
generated.

IF the 'H' parameter is given THEN the 'L'
par6meter MUST precede the 'H' parameter.

SORT will print to a local printer or a
servo printer. See the section on HARDCOPY
OUTPUT OPTION.

G•.•. GROUP INDICATOR
This parameter specifies that the input file
consists of PRIMARY and SECONDARY reoords
and specifies which GROUP is to be sorted.
The actual character entered is 'P' for
PRIMARY or'S' for SECONDARY. There is no
default value.

IF the 'G' option is entered THEN the NNNTC
options MUST ALSO be entered. .

In a file with PRIMARY and SECONDARY records
a string of records with a PRIMARY record as
the fi~st rebord and SECONDARY records
following it is considered one block, or
group, of records~

When the file is sorted on PRIMARY records
the output file has the blocks of records
re-ordered so that the PRIMARY records are
in the sorted sequence; no change is made
in the sequence of the secondary reQords
following each PRIMARY record. W~en' the file
is sorted on SECONDARY records W thE/l first
key specified is in ascending sequence, the
output f1le has the blocks of records in the
same order as 'in the input file, but the
SECONDARY recor~s ~ithin each block are in
the sorted sequences.

When the file is sorted on SECONDARY records

CHAPTER 34. SORT COMMAND 34-7

~ the firat· key specified is in descending
sequence, the output file has the blocks 'of
records 'in reversed order as the input file,
but the SECONDARY records within each block
are in ,the sorted sequence. .

SORT has no provision for the sorting of
PRIMARY AWl SECONDARY records in the sanle
SORT run,.

NNN NUMERIC position of PRIMARY/SECONDARY flag.
This parameter specifies thec~aracter
position for the character (the 'c'
parameter) indicating whether the record is
a PRIMARY or SECONDARY record. The number
MUST be specified if the option is taken and
must fall in the range 1 to 249.

T TYPE of evaluation.
This parameter specifies equivalence or
inequivalence of the group indicator
character; that is, whether the character in
the record will be EQUAL t:> or NOT EQUAL TO
the character speoified. The actual
character entered is '=' for equal or 'It·
for not equal. There is no default
character, '=' or 'I' must be given if the
option is taken.

If ';' is given then if the character in the
NNNth position of an input file record is
EQUAL to the group indicator character -
indicated by 'c' below -- then the record is
a member of the specified sort group -~
indicated by 'G' above. Otherwise, it is
not a member of the specified group.

C .•............. CHARACTER, group indica tor
This parameter specifies the actual test
character for determination of a record's
membership in the sort group. The actual
character entered is any member of the
available character set -- this means any
combination of eight bits -- except 015.
There is no default character: the character
immediately following the 'T' parameter is
taken to be the 'e' parameter -- except a
015.

34-8 DISK OPERATING SYSTEM

N This parameter specifies no space
compression on output. This applies to FULL
IMAGE and LIMITED OUTPUT files. It does not
apply for INDEXED or TAG files.

K 1 SSS-EEE
This is the first sort key specification. If
no key is specified, the SORT will assume
1-10,i.e. the first ten characters of the
record.
SSS is the starting key position.
EEE is the ending key position. The key is
limited to 100 characters and must be
contained within the first 249 characters of
the record.

On This specifies the order for the nth key
(ascending and descending are indicated by
'A' or '0'). If omitted the order used on
the previous key is assumed.

Kn ~ SSS-EEE
The nth sort key specification. The maximum
numbe~ Of keys is th~t which can be typed
without exceeding the input line.

34.4.2 Keys-overlapping and in backwards order

The key specification need not be only forward. A
specification of 17-12 will cause the 6 delimited characters to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in da ta which has' the most significant digit or
character last.

Key s~eclfications may also ~e overlapping: 1-20,30-15
overlaps 15 to 20. When this occurs, the ~ystem will optimize the
sort an~ s~vetime over re-sorting on tho~e columns again.

34.4~3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character s~t. The file
name contains eleven characters, eight of which are ttie file name
and three of which are the extension (example, EBCDIC/SEQ:DRn).
The last three characters (the extension) must be "SEQ". If the
disk drive number on which the file resides is omitted, SORT
defaults to the same drive from which the SORT itself was loaded.
This table may be supplied QY the us~r put must meet certain

CHAPTER 34. SORT COMMAND 34-9

requirements to be Idaded:

1. lt must be anabsoluteobj~ct file. '
2. It, must begin loading at Ibca.tion 027400.
3. The first eleven bytes must contain the file riame and the

*xtensidn ~ust be,SEQ. . '.,' .
4. The table i~self must begin loading at 10catidrt 027400 and

occupy 256 bytes (overstoring the file name described in
3). For instance t the source for the EBCDIC sequence file
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400
DC 0,1,2,3,4,5,6,7,

5. If the file is not found on the specified disk drive the
following message is displayed:

SEQUENCE FILE NOT FOUND

6. If the file is found but is not an absolute object file
the following message is displayed:

SEQUENCE FILE FORMAT ERROR A

7. If the file format appears valid, the file will be loaded
uSing DO~ routine LOADX$. LOADX$ will return a'n error
code if the load is unsuccessful. The following display
will notify the user of the error:

SEQUENCE FILE FORMAT ERROR n . .
where n=O if file does not exist

34-10 .

1 if disk drive is off-line
2 if directory parity fault
3 if RIB parity fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

DISK OPERATING SYSTEM

34.4.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing 'the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Mr. Aardvark would be
last. The order of collation, . when alphabetic, numeric, and
punctuation ~haracters all can occur in a column together, follows
the char.acter set order. The sequence may be speci fied for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of tte key in ascending order and portions in descending
order.

34.4.5 Input/output file format options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will, provide iSOqT with all of the records in the
file whether the file was originally indexed or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If t~e input file is INDEXEP, that is one logical record or
string per physical disk record, then you have a choice of output
formats. If 'I' is chosen, that is INDEXED, then each output disk
record will contain an exact copy of the appropriate input file
record. If'S' is chosen, that is SEQUENTIAL, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in space-compressed sequential
format.

If the input file is SEQUENTIAL in its original format, then
there is only one choice for the output format; 'the output file
format' for a sort ,on an input file which is sequential MUST be
SEQUENTIAL.

34~4.6 Limited output format option

-In many cases, especially when making reports, directories
etc. from the data base, it isnft necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and
telephone number, NOT all the other payroll information.

CHAPTER 34. SORT COMMAND 34-11

Therefore, SORT permits transferring only that part of the data
base desired.

The following is the generalized statement format for the
limited output specification which is entered as a second line of
parameters:

«SSS[-EEE]A*ft'QQQ')[/(PftNNNTC)]>[,<DUPLICATE OF PRECEEDING>] ...

Where different items ~ithin parentheses are separated
by ft. Only one item within a pair of parentheses may be
specified. Items within square brackets [] are optional and
items within co~ner brackets<> may be repeated and must be
separated by commas.

The following list defines the parameters which can be
specified:

SSS STARTING position within input record.
~EE ENDING position within input record.

These parameters specify the character
positions within the input record to be
copied to the output record. The EEE
specification is optional; if it is not
specified then only one character, the
character at SSS, will be copied from the
input record to the output record. The SSS
and EEE options must fall in the range 1 to
249.

* .. ~ ASCII TAG output.

34-12

This parameter specifies that an ASCII
pointer to the input record appear in the
output record. The ASCII pointer points to
the input file logical record number and the
byte in that physical disk record containing
the first byte of the input file logical
record. If the 'I' parameter was specified
in the SORT options then, since the byte in
the physical disk record containing the first
byte of' the input file logical record will
always be '1', the '1' will not appear. The
ASCII pointer is a DATASHARE compatible,
leading-zero and space-compressed ASCII
number. The number of digits for the logical

·record number pointer is five; the largest
number that can be represented is 65,535.
The number of digits for the byte pointer (if

DISK OPERATING SYSTEM

it is generated; that is, the 'I' parameter
was not specified) is three; the largest
number that can be represented is 250.

QQQ QUOTED character string.
This parameter specifies an actual string of
quoted characters that is to be copied into
the output record. The quoting symbol is the
single quote 'mark. The string may include
any characters except the ' mark itself and
015, and must be less than 90 characters
long.

P PRIMARY record, to be source.
This parameter specifies that the information
specified by the prior set of START/END
positions is to be extracted from the primary
record for the current record block, rather
than the present (secondary) record. This
parameter has no effect when an output record
is being generated from a primary record.

NNN NUMERIC position of evaluation character.
This parameter specifies the charaoter
position for the character (the 'C' parameter
below) indicating whethe~ the information
specified by the prior set of START/END
positions is to be copied from the input
record to the output ,record. The number must
fall in the range 1 to 249.

T TYPE of evaluation.
This parameter specifies the equivalence Or
inequivalence of the evaluation character;
that is, whether the character in the input
record should be EQUAL' to or NOT EQUAL to the
evaluation charate~. 'The actual oharaoter '
entered is '=' for equal or 'I' for not
equal. If the evaluation is satisfied, then
the information specified by the prior set of
START/END positions will be copied to the
output record.

c ~ CHARACTER, record evaluation.
This parameter specifies the actual test
character for record evaluation. The actual
character entered is any character except
015. ' .

CHAPTER 34. SORT COMMAND 34-13

In the same manner that the key of the ~ecords is
specified by fixed column ntimber, i.~~ 1-10 for· the fi~st
ten characters,' the limited output feature specifies that
part ot the records to be tran~ferred. Should the response
1-10 be given to the limited output for*at request, onl~ the
first ten characters of eaoh record will tie t~ansferred to
the output file •. The limited output format specifier
operates in the same manner a~ the speclficiation bf multiple
discontiguous sort key fields. For instance, 1-10,50-70
would transfer thirty-one oharacters from each record bf the
input file to the output tile. The eleventh character· ih the
output record would be the fiftieth character of the input
record, etc.

To invoke the limited output format option, the
operator includes the 'L' parameter in the specifier list.
If and only if the L is specified during the SORT call, will
there be a second question asked of the operatOr on the next
line:

L[MIT~D UUTPUT FILE FORMAT:

This question requires at least one non-trivial field
speciftcation or constant(see next paragraph). The number
of field and constant specifications is only limited by that
which can fit on the keyed in line.

To permit even more utility in report generation, SORT
allows inclusion of constants in the output record that
didn't occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employees name appears in columns 80
to 110 and his telephone number was in columns 171 to 180.
To make a telephone directory in alphabetical order, one
could answer the following to the limited file output format
request:

80-110,' - ',171-180

Note that ttli s would put out the name followed by one
space, a hyphen, one mor'e space an4 t he numb er. Any number
or input file fields and constants can be placed in the
output file up to the limi~ of the line qn which the
specification is typed. .

Also note that the output file requires proportionally
less room th~n the input file when limited. Often this fact

34-14 DISK OPERATING ~YSTEM

can be put to use when the disk fila space is nearly
exhausted and a sort is required.

34.4.7 TAG file output format option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk mere1y to have it in different sequences
consumes a lot of disk space, and indeed if the file is a very
large file many copies of it may not fit onto one or even four
disk packs.

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long -
two bytes for the'LRN (Logical Record Number) and one byte for the
BOFPTR (Buffer Pointer -- a pointer to the beginning of the actual
desired record within the disk physical buffer).

SORT provides for the generation of such an indexing file. a
TAG file, by the 'T' variation of the 'R' option. A TAG file may
be generated for either a Sequential or Index file, and will have
the same format for either file. The format of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Mo~t Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
disk record.

4. The Physical-End-Of-Record mark is an 003 and the rest OOO~~.

5. The Epd-Of-File mark is: beginning at the first byte in the
physical recotd, six OOO's, one 003, and the rest OOO's.

TAG files'may be used by assembly language programs, by BPG
II (as Record Address files), and by ~oms Datapo{nt'utility
programs, s4ch as the INDEX utility. ' , .

, I

For users writing their own Assembly language code to use a
TAG file, it is important to know that the MSPLRN and LSPLRN are

CHAPTER 34. SORT COMMAND 34-15

together a 16-bit binary pointer to the DOS LOGICAL !lECORD NUMBER
of the input file, as opposed to the USER LOGICAL RECORD NuMBER.
The difference is this: The DOS LOGICAL RECORD NUMBER of a file
points to the actual Nth record (starting with zero, the primary
RIB) in the file, whereas the USER LOGICAL RECORD NUMBER of a file
points to the Nth DATA RECORD (starting with the zeroth data
record) in the file. Thus a DOS LRN of zero points to the very
first record of the file, which is the master copy of the RIB, a
DOS LRN of one points to the second record of the file which is
the RIB copy, a DOS LRN of two points to the third record of the
file (which is the FIRST DATA RECORD of the file and the USER
LOGICAL RECORD NtiMBER 'zero), and so on. The LRN given in the TAG
file can NOT be used with the POSIT$ routine unless it is biased
by -2. It is much easier to simply place the LRN from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

The case with the BUFFER POINTER byte is similar to the LRN
pointer bytes. The BUFFER POINTER byte from the tag file is the
DOS BUFFER POINTER as opposed to the USER BUFFER POINTER. The
difference is this: the DOS BUFFER POINTER points to the actual
Nth byte of a disk buffer (starting with zero), whereas the USER
BUFFER POINTER points to the Nth DATA BYTE in the disk buffer; the
beginning (zeroth) DATA BYTE in the buffer is the fourth byte in
the buffer; the first three bytes are reserved for the DOS. Thus,
a DOS BUFPTR of zero points to the very first byte in the buffer,
which is the PFN (Physical File Number) of the file, a DOS BUFPTR
of one paints to the second byte in the buffer, which is the DOS
LSPLRN, a DOS BUFPTR of two poipts to the third byte in the
buffer, which is the DOS MSPLRN, a DOS BUFPTR of three points to
the, fourth byte of the buffer (which i~ the very first DATA BYTE
in the buffer), and so on. The BUFPTR given in the TAG file can
NOT be used with the GETR$ or PUTR$ routines unless it is biased
by -3. It is much easier to simply place the BUFPTR from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

If the TAG file option is specified then the LIMITED OUTPUT
FILE FORMAT or the HARDCOPY OUTPUT can NOT,be specified.

If a TAG file is generated when the 'P' (PRIMARY SORT) option
is specified then TAG file pointers will be generated only to the
PRIMARY records in the input file.

If a TAG file is generated when the'S' (SECONDARY SORT)
option is specified then TAG file pointers will be generated that
point to each PRIMARY record of the input file (in their original
~eq~enpe) each primary tag being followed by pointers to the

34-16 DISK OPERATING SYSTEM

SECONDARY records in the record block 1n their sorted segu~n9~.

When a TAG file is generated ~r 'P' or'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the indexed file to
determine when a record block begins or ends.

34.4.8 HARDCOPY output option

Many times it is desired to have a hardcopy (printed) output
from a SORT instead of or in addition to the creation of a disk
output file. This can be easily accomplished with SORT by
specifying the 'H' (HARDCOPY) option along with the 'L' (LIMITED
OUTPUT STRING) option. The 'H' option is essentially an expansion
of the 'L' option because disk data files are almost never
suitable for full image output to a printer; decimal points need
to be inserted into dollar and cent~ amounts, dashes need to be
inserted into part numbers, and spaces need to be placed between
dollar amounts and pa~t numbers to colunmnate the data, and so on.
If it is desired to list output records in full image format, it
is only neccessary to give:

1- n

(where n is the maximum printable character on printer) as the
limited output string specification~

Sort will not send a line of over" 132 characters to a
printer. If the limited output spebification designates a longer
output record, then the full speCified formatting will be applied
to the disk output file (if any), but only the first 132
characters of the record will be printed.

If the following special characters are imbedded in the
output record, they will be interpreted as indicated:

015 = End-Of-Record and Carriage-Return/Line Feed.
012 = Line Feed.
01~ = Fbrm Feed.

,
SORT will support either a local printer (address 0303) or a

servo printer (address 0132). If a servo printer is on-line at
the beginning of th~ FiNA~ M~RGE then it is used as th~ output
printer device; else al06alprinter will be used. If both
printers are available on a system, selection between one or the

CHAPTER 34. SORT COMMAND 34-17

other cannot be forced by parameterization; if output is desired
to the local printer then the servo printer must be turned ,off.

34.4.9 Primary/Secondary sorting considerations

If the 'P' (PRIMARY) or'S' (SECONDARY) SORT option is used
then the input file must have a PSPSPS .••• format in order for
SORT to work as expected, where P is one primary record and S is
one or more secondary records. The first record in the file
spould always be a primary record, and the last record should be a
secondary record. There should always be at least ope secondary
record following each primary record. Tertiary and further level
records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file
using the' P' or'S' options even if the file does not faithfully
follow the above rules. However, the user must use great caution
if he is to successfully fudge a system as complex as SORT.
Pitfalls will be many. For example, if a file has the format
PPPPSPSPS •.. , and a sort is done using the'S' option, the output
file will probably not contain the first three primary records at
all. This caae ocours because when sorting using the'S' option,
pointers are generated for only the secondary records, prefixed by
a pointer to the record preceeding the first secondary record of a
record block. Since no secondary pointers were ever generated for
the tirst three 'primary records, they are simply lost. It should
be easy for the user to imagine what would happen to a file if a
tertiary sort were attempted.

34.4.10 Key file drive number

There are three file systems associated with a sort. The
first is, of course, the input file. The second is the output
file. The third is the keyfile system. (The user only uses the
output file - the key file system is a scratch file used by the
system during sorting). There are actually two files which get
opened during the sort for the key file system. They are
*SORTKEY/SYS and *SORTMRG/SYS. These two files can grow to
considerable sizes during the sorting procedure since they are
proportional to the number of records and the size of the key
field.

There are two considerations for the location of the keyfile
system. The first is the problem of room. The keyfile must be on
a drive with sufficient room to hold it. The second is speed.
The greatest increase in speed occurs in removing the key file
system from the same drive as the input file. Greater speeds can
occur if it is, as well, not on the same drive as the output file.

34-18 DISK OPERATING SYSTEM

Normally the SORT does a pretty good job of determining the best
location of the two keyfile files and it shouldn't be necessary to
specify anything for this. However, under complex circumstances,
it may be desirable for the operator to specify the drive number
for the keyfile. Should this be the case, the user should type in
the <:DRk) specification as indicated in the general command
format in Section 3.1.

34.4.11 Disk space requirements

A formula for determining the room in physical disk records
that will be required for the SORT work files is:

NT(L+P+3)
R = ----------- + 4T

S

where: R = Room in physical disk records required on disk.
N = Number of logical records in input file for which keys

will be generated:
= number of records in file if not sorting on 'P' or
'S' .
= number of primary records in file if sorting on 'P'.
= number of secondary records in file if sorting on
'S' .

L = Length of the sort key in bytes.
P = 3 if sorting on secondary records,

o if not sorting on 'secondary records.
T = number of $ort key trains.
S = bytes per tilock of physical space available to the user

(nominally 253 bytes)

The val~e of T can be computed exactly, but it is easier to
make the general statement that short files will generate only one
sort key train and longer files will generate more than one sort
key traih. Experienct;l will soon develop empirical and intuitive
knowledge for T evaluation for the user.

34.4. 12 LINK into SORT from programs

There are three ways in which a SORT can be initiated:

1. From the keyboard via the DOS COMMAND HANDLER;
2. By using the DOS CHAIN command;
3. By loading and linking to SORT/CMD from an assembly

language program.

Datashare users can invoke SORT by using the rollout

CHAPTER 34. SORT COMMAND 34-19

facility to start or continue a chain (see CHAIN and the DATASHARE
User's Guide for more details).

Sort reserves for the user a nominal amount of storage normally
occupied by the DOS DEBUG$ routine. The specific memory locations
saved are 06144 through 06377. This permits the user to partially
overlay his program with the SORT utility and regain control at
the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image
output records are to be generated. The DOS interrupt handler is
disabled during the sort but is re-enabled upon completion of the
sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from
within the memory not used by SORT, or when foreground is
re-enabled it will vector to whatever SORT left in memory.

The steps to call SORT from an assembler program are as
follows:

1. Close files 1, 2, and 3 if open.
2. Set MCR$ (01400-01543) with the command string terminated

by a 015.
3. Load the SORT utility.
4. PUSH the stack.
5. Point HL to a parameter table with the format:

PTABL~ DA LIMSTG
DA HEDING
DA EXITAD

6. RETURN

Where:

LIMSTG = the LIMITED OUTPUT SPECIFICATION string, terminated by a
015. If there is to be no limitation output specification,
put o. If there is a LIMSTG, it must exist entirely within
the range 06144-06377. The LIMSTG must be exactly the
characters as they 'would be entered from the keyboard.
Examples follow.

HEDING = the HARDCOPY HEADING string. terminated bv a 015. If
there is to be no hardcopy o~tput, put o. If there is a
hardcopy heading string, it must exist entirely within the
range 06144-06377. The HEDING must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

EXITAD = the first memory location to be executed upon successful
completion of the sort. If the sort is to return to the

34-20 DISK OPERATING SYSTEM

DOS upon completion, put O.If ~here is a specific exit
address, it mU$t exist within the range 06144-06311.
Normally, the instruct10ns at the e~it address will load
and run t.he program to be run after the sort, or will
re-lo~d ~ c6ntrol program of the user's own control system.

A simple example of loading and running sort from an
assembler program would be:

1 . SRTCMD
2.SRTNAl"i
j. FTABLE
4.
') .

b.f{UNSRT
'f .
d.
9.

1 0.
11.
12.
13.
14.
15.

DC
DC
DA
DA
DA

LC
DE
HL
CALL
LC
DE
CALL
PUSH
HL
RET

'SORT
'SORT
o

INFILE,OUTFILE' ,01550RT COMMAND! STRING

o
o

'CMD~ NAME OF SORT UTILITlY ()N DISK
NO LIMITATION STRING
NO HARDCOPY HEADING
NO SPECIAL EXIT ADDRESS

SRTNAM-SRTCMD :MOVE THE SORT COm1AND STRING
MCR$ TO MCR$
SRTCMD
BLKTFR
-1 LOAD THE SORT UTILITY
SORTNAM
LOAD$

PUSH THE SORT ,STARTING ADDRESS
PTABLE C\ POINT TO/THE PARAMETER

J

RUN SORT

The above sequence of instructions could be located anywhere in
memory, excegt lines 13 thru 15 must obviously reside in a portion
of memory from 06144 thru 06311 to avoid being overlayed when the
SORT utility is loaded from disk. The above instructions
exemplify the simplest possible case of linking to SORT, in t~t
only the SORT command and an INPUT FILE and an OUTPUT FILE are
specified, all other options are defaulted. The above
instructiods have the same effect as calling SORT by entering the
line: '

SORT INFILE,OUTFILE

to the DOS COMMAND HANDLER.

Here is a line-by-line explanation of the instructions:

CHAPTER 3 • .' SORT COMMAND 34-21

Line 1 defines the SORT COMMAND STRING. This is accomplished
by a simple DC statement of a quoted ASCII string followed by a
015. The quoted ASCII characters are exactly the same that would
be keyed -in to the DOS COMMAND HANDLER if the sort were being
initiated from the keyboard. The 015 is the string delimiter and
is the same character that is placed after a string by the KEYIN$
routine when the ENTER key is depressed. The SORT command string
can be up to 100 characters long including the 015 because the
MCR$ area is 100 bytes long. Note that this is nineteen
characters more than can be specified from the keyboard.

Line 2 defines the name of the SORT utility main overlay.
Notice that the complete name of the SORT given here must be
exactly the name as listed in the DOS DIRECTORY of files. The
eleven ASCII characters in a file name specification include an
eight character FILENAME and a three character EXTENSION. Since
the FILENAME of SORT is only four characters, it must be followed
by four spaces before the EXTENSION of CMD can be given.

Line 3 defines the beginning of the six-byte PARAMETER TABLE.
The first two bytes of the parameter table specify the address of
the beginning of the LIMITED OUTPUT SPECIFICATION string. In this
example there is to be no limited output specification string
specified, so an address of a is given.

Line 4 defines the address of the beginning of the HARDCOPY
HEADING string. In this example there is to be no hardcopy
output, so an address of a is given.

Line 5 defines the address of the EXIT ADDRESS, or the
address to which the SORT is to exit when it is successfully
completed. (If something goes wrong during the sort, exit is to
the DOS.) In this example there is to be no special exit address,
so an addess of a is given.

Line 6 begins the actual process of calling SORT 'from the
program. Lines 6 thru 9 move the SRTCMD string from wherever it
is in memory to the MCR$ area.

Line 10 specifies that SORT is to be loaded from wherever it
is found in th~ disk drives that are on-line to the system. Refer
to the DOS SYSTEM MANUAL if you are not familiar with the DOS
LOAD$ routine.

Line 11 points to the name of the SORT utility main overlay
in memory, given in SRTNAM, line 2.

Line 12 calls the DOS LOAD$ routine which finds the SORT main

34-22 DISK OPERATING SYSTEM

overlay program on disk and loads it into memory, leaving the
starting address in HL.

Line 13 puts the starting address of SORT on the P-counte~
Stack.

Line 14 points to the PARAMETER TABLE, lines 3, 4, and 5.
The way that SORT knows that it is being run by the DOS COMMAND
HANDLER or by a user program is by comparing the values of the HL
contents and the top entry of the P-counter stack. If the values
are equal, as they are immediately following a LOAD$, then SORT
asks for a LIMITED OUTPUT SPECIFICATION string and a HARDCOPY
HEADING string if they are specified in the SORT COMMAND string.
If the values are not equal, then SORT checks the memory pointed
by HL for the location of the LIMITED OUTPUT SPECIFICATION string,
the HARDCOPY HEADING string, and an EXIT ADDRESS.

Line 15 effects the actual transfer of execution to the SORT
utility. ' Sinc~ the starting address of the SORT was PUSHed onto
the P-counter stack, a RETurn instruction JuMPs to the SORT
starting address.

A DATASHARE program can link to SORT by executing a ROLLOUT
instruction to a user~built CHAIN file which includes the SORT
COMMAND LINE aqd, if specified,the LIMITED OUTPUT specification
line and a HARDCOPY HEADING line, followed by the DSDBACK program
to re-load the DATASHARE.

34.5 The use of CHAI~ with SORT

The reader should first fa~iliarize himself with CHAIN by
thoroughly reading the CHAIN Sebtion.

CHAIN is a system whereby the operator of a Datapoint Disc
Operating System may pre-define a procedure sequence of his own
programs, syste~ comm~nd~ and utilities (including keyboard
answers to questions requested by these programs) and have them
called and sequentially executed by a single name. This is
especially powerful when using SORT since there may be a
repetitive sequence of rbutines with complex parameterizations
which would make good use of a simplification.

CHAPTER 34. SORT COMMAKD 34-23

34.5.1 How to set up a chain file for SORT

The author of a chain file only needs to remember that ALL
questions that the system requests INCLUDING those initiated by
the executing programs MUST BE ANSWERED from the chain file just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort 'SORT
INFILE,OUTFILE;I3-42' could be done through chain. To do this,
use the Editor to type in that exact sequence of characters into a
file. Note that the file will, in this case, consist of a single
line as typed above. The file can be any name, but for purposes of
simplifying the explanation, it shall be referred to as CHAINFIL.
If CHAINFIL consists of that single line, and if the operator
types the command 'CHAIN CHAINFIL' to the DOS, the SORT specified
above would be initiated. If the 'L' specification were included
in the statement above, then SORT would ask for another line of
information. In this case, the file CHAINFIL would have to have
two lines in it with the first being the SORT command and the
second being the limited output file format specification.

34.5.2 Naming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together and for which a name invoking the procedure
would be a-great simplification.

For instance, in the telephone directory example above, the
process of sorting the file into a limited output file and then
listing it on a local printer could be procedurized as follows:

SORT EMPFILE,TELFILE;L80-110
80-110,' - ',171-180
LIST TELFILE;XL
TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the answer to the limited format initiated
by the 'L' in the SORT command. The third is the DO& LIST command
with the specifiers of 'X' which says 'without line numbers' and
the 'L' which, here, means local printer. Then there is a forth
line which the LIST command requests - the heading. This question
must also be answered in the chain file. If the above four
statements were placed in a file by the Editor (or by any other
means, for that matter) and then CHAIN were invoked with that file
specified, the result would be a sorted telephone directory from
the personnel files appearing on the printer.

34-24 DISK OPERATING SYSTEM

34.5.3 Initiating a SORT from another program

The chain file (CHAINFIL above) could have been created ty
any Da tapoint system Which can wri tea file. This makes the
concept even more powerful since programs can create or modify
subsequent procedures of itseif, other programs, system commands
and utilities. RPG II especially can make good use of this.

34.5.4 Using CHAIN to 'cause a merge

Consider a situation wherein a system has a master fil,e
call ed 'MASTER' and a file of records to be added, in sequenoe, to
the master file called 'ADDFILE'. To merge these two files 1ft
sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN q~n cause an effective MERGE and assign it a
single name as fo~lows:

SAPP MASTER,ADDFILE,MASTER
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT
NAME SCRATCH/TXT,MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file."
3&4) Renames the SCRA~CH file as the new MASTER file. Thus, it is
apparent that a merge \can be effectively achieved using SOR~ and
by using chain to pre~define the procedure.

34.6 SORT Execution-Time Messages

This subsection describes the operator messages that ~()R1 JIU::lY
display on the CRT screen during execution. Some of them.'ssag;es
are monitor messages to keep the operator informed of the ,progress
of the program, while other messages are error messages.

DOS.X Ver.n SORT - DATE

rhis message is th~ SORT sign-on.

SORT OVERLAY MISSING.

This message is di&played if the SORT/OV1 file is not on the
same drive as the $ORT/CMD file.

CHAPTER 34. SORT COMMAND 34-25

INPUT FILE REQUIRED~

This message is displayed if no filename was specified for the
first file specification. This would happen if a command lines
such as:

SORT ,OUTFILE or SORT /TXT,OUTFILE

were entered.

OUTPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
second file specification AND if the 'L' and 'H' options were
not specified.

BAD DEVICE SPECIFICATION.

Tl1is message is dis'played if a drive specification in a file
specification was not entered in exactly the format; DRn where
n is a valid drive number.

OUTPUT FILE SAME AS INPUT.

This message is displayed if the FILENAME and EXTENSION. of the
INPUT file and the OUTPUT file are the same, and the DRtVE
NUMBER for each file is the same or not specified for E!CH
file.

INPUT FILE NOT FOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
e~tension is supplied in the file specification an extension of
TXT will be assumed; in this case if a file FILENAME/TXT is not
on-line or on the drive specified then the INPUT file will not
be found.

INPUT FILE RIB ERROR.

This message is displayed if a read parity error occurs when
the INPUT file's RIB is checked to determine the INPUT file's
length.

KEY FILE SPECIFICATION ERROR.

34-26 DISK OPERATING SYSTEM

This message is displayed if a FILENAME or EXTENSION is giver
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file was not exactly in the format: DR# where # is a valid
drive number.

SORT KEY FILE PLACED ON DRIVE #

This message is displayed if the ~EY DRIVE was not specified on
a multi-drive system. The. message· is to notify the operator of
the location of the KEY file. The II stands for a valid dl'ive
number.

OPTION FIELD ERROR.

This message is displayed if a semicolon ; is entered at the
end of the SORT command line but is not· followed by any option
specifications.

OPTION SPECIFICATION DUPLICATION.

This message is displayed if a command line such as:

SORT INFILE,OUTFILE;DLA .

were entered. The 'D' and 'A' options are both variations of
the ORDER option, ~nd obviously both cannot occur .
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This mes,age is displayed if the 'H' option is specified but
the 'L' Qption was not given previously.

ILLEGAL HEADER SPECIFICATION.

This mes~age is displayed if the 'E' or ~S' option is given but
is immediately followed by the 015 byte -- the ENTER key.

"

CHAPTER 34. SORT COMMAND 34-27

ILLEGAL HEADER KEY EVALUATION.

This message is displayed if the character immediately
following the 'P' or'S' option is not '=' or 'U'.

ILLEGAL SORT KEY SPECIFICATION.

This m~ssage is displayed if a key position of 0 or greater
than 249 was specified, or if a key position was not terminated
by , or - or 015, or if a two-position key was not terminated
by , or 015.

SORT KEY TOO LONG.
1

This message is displayed if the total sort key is longer than
100 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORl' OPTIMIZED.

This message is displayed if the same record positions were
specified for more than oo..e sort key group. SORT does not
repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key P08ition and a header indication
posi tion. The posi tion is removed as a sort key posi tion and
the key is thus shortened. The effect is as for the previous
message.

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command
line inoll,!.(jlng all option speoifications and if the 'L' option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is displayed if the 'L' option was given but the
limitation specification was only 015 -- the ENTER key. If the

34-28 DISK OPERATING SYSTEM

'L' option is given then a non-empty limited output
specification string must :also be given.

INVALID LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in subsection 28.3.6 of the SORT
Section. Usually the fault is that a comma was not placed
between option specification groups, or double quotes " were
used instead of single qu~tes '

ENTER THE HARDCOPY HEADING:

This mess~ge is displayed ~hen the limited output specification
has been accepted and if the 'H' option was given. The
operator must enter from 0: to 79 oharacters of information
which will be printed at the top of each page printed durin~
SORT output generation.

SEQUENCE FILE NAME REQUIRED

This message is di$played ;when the sequence file field is blank
and the file specification: fields· have not been terminated with
a semi-colon or an end of line designator.

SEQUENCE FILE NOT FOUND

Thlsmessage is displayed when SORT requests tnes.quence file
be OPENed and DOS cannot locatetlile. file on the disk dt-ive
indicated. Note that if the drive is not specified, th~ drive
on which the SORT/CMD resides is ~mplied.

SEQUENCE FILE FORMAT ~RROR A

Thi,s message is displayed ;when SORT determin,s that the
sequence file specified is' not an absolute objeot file.

SEQUENCE FILE FORMAT ERROR n

This message is di$played ~hen SORT receives an error return
from LOADX$ when an attempt is made to load the sequence fi1&.
The value of n may be 0-6 and is defined as follows:

o If file does not exist
1 If disk drive is off-line
2 If directory parity error

CHAPTER 34. SORT COMMAND

3 If RIB parity fault
~ If file parity fault
5,~f off end of physical file
6 If record of illegal format

, I.' ,\ '

~IMITATION S~ECtFICATIO~ OVERFLO~!

. f~;id me'ssag~' indicates that li~ite:d output parameter~' ent~red
.i'equire more m'emory (256 bytes) thana~located by SORT. ' ..

INTERNAL ERROR -- GET SYSTEM HELP I!!

This message indicates a probable hardware error ocourr.d.
during a limited output string sort. SORT cannot continue·
executing.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the merge file.

FULL IMAGE OUTPUT RECORDS

This is an informative message to the operator that full image
records are being output by SORT.

OUTPU'l' FI,LE OVERfLOW
'- . , ;, .

thfs i.nl~s~age indiqa tes not enough eli Sk space is avaiiabl e foi"
the output file.

i ..

, ;

THE FOLLOWING MESSAGES HAl ~ DISPLAIEP DURING ~
INITIALIZATION 1[SORT ~ LINKED IQ RI AN ASSEMBLY LAHQijAGE
PROGRAM:

INVALID LIMITATION STRING ADDRESS.

INVALI~ HARDCOPY HEADING STRING ADDRESS.

INVALID USER EXIT ADDRESS.

One qf these messages is disblaie~ if the correspdddihg entry
in the parameter table linkage data was no~ eithe~ 0 or in the
range 06144-06377 inclusive;

34-30 DISK OPERATING SYSTEM

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.

This message is displayed if the user left one of the 10g~c~1
files 1, 2, or 3 open upon linking to the SORT utility.

LIMITATION STRING MISSING.

This message is displayed if the ILl option was given in the
SORT command string but the pointer to the limited output
format string in the parameter table linkage data was 0,
indicating no limited output format string specified.

HARDCOPY HEADING STRING MISSING.

This message is displayed if the 'H' option was given in the
SORT command string but the pointer to the hardcopy heading
string in the parameter table linkage data was 0, indicating 'no
hardcopy heading string specified.

THE FOLLOWING MESSAGES AU. DISPLAXED AFTER m ~
INITIALIZATION .u COMPLETED:

BUILDING SORT KEY TRAIN n.

This message is displayed when all parameter specifications
have bean accepted and SORT has started the extraction of the
sort keys from records of-the INPUT file and is writing them to
the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed ~f there waS not adequate room on. the
KEY DRIVE to hold the *SORTKEY/SYS file. If *SORTKEY/SYS file
o~erflow occurs the file is deleted from the disk before the
message is displayed.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. If no so~t key recoras are gen~rated SORT canQot
re-order the INPUT file, thus no output generation wo~ld be
useful.

CHAPTER 34. SORT COMMAND 34-31

INTERMEDIATE SORT PASS n.

This message is generatE;ld during sorting of the sor~ key trC1-ins
on the ·SORTKEY/SYS file. The only aotual sorti~g ~oneduring,
a sort is that which can be dorie on the initial s6rt key. .
traihs~' which are made; short enough that they will fit iri
memory. After the sorting of the keys within each initial
train, the trains are merged sixteen abreast into larger
trains, repeatedly until only one train remains.

INTERMEDIATE MERGE PASS n, TRAIN n.

This message is displayed if more than sixteen sprt key trains
exist 4uring a merge pa.s. The intermediate merge pass number
is the Nth iteration of the merge process. The train number is
the number of the train being output by the merge pass. If
more than one train is output by an intermediate merge pass
then at least one more intermediate me.rie pass will be
required. If more than sixteen trains are output by an
intermediate merge pass then at least two more intermediate
merge passes will be required, and so on. .

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file from the data in the now fully sorted and merged sort key
file and from the records in the INPUT file. The sort train
number corresponds to the current state of progress as measured
against the number of trains generated by the next to the last
intermediate merge pass.

34-32 DISK OPERATING SYSTEM

CHAPTER 35. SUR COMMAND

35.1 Purpose

When a specific disk is used for more than one purpose, some
inconveniences occasionally turn up. Assume for a moment that a
user has a disk which he is using for program generation on each

. of two more or less unrelated projects. When he uses the CAT
command, for instance, he will normally see a whole range of
files, some of which are not related to the project he may be
currently interested in. Orr he may begin editing a new file on
the disk, only to find that another user of the same disk may have
already had a file of that name. At times like this, it would be
convenient to logically partition the directory so that a user
would only have a portion of it, the portion he is currently
interested in, available to him at one time.

A more concrete example is the DOS itself and its various
commands. Obviously Datapoint's DOS.A, DOS.B, and DOS.C bear a
~trong resemblance to each other. The DOS and most of the command
files ~ri configured at assembly time through conditional assembly
and equates to support a given disk controller and specific file
structure. The result is several different object code files, all
with a lABS extension, for each single source file with a ITXT
extension. Yet it is desirable for a number of reasons to keep
all of the object code files for all the DOS and commands on a
single drive.

Without the DOS subdirectory facility, it is not permitted to
have two files on a given logical drive with the same name.

35.2 About Subdirectories

The use of the SUR (Subdirectory Utility Routine) command
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. Each such subdirectory
can then contain zero or more file3, up to the maximum number of
256 files per logical drive. Each'subdirectory on a disk has a
~nique name. ~wo subdirectories always exist on all drives;
these are called SYSTEM and MAIN. The names for the other
subdirectories are assigned ~y the user as he establishes them,
and tollow the same rules as. for any standard DOS file name. As a
subd~rectory is created, the name specified by the user is related

CHAP1E~ 35. SUR COMMAND 35-1

toa unique number which is ~eferred to as the sy~qire~toCI
numb§r.The relationship bet~e~n' ~ubdirectory n_mes and'
Sub~irectory numbers is notj61ike.,the relationshi~ ~et.een DO~
fil€ na~es and physical fili~umbe~s. A given subdi~~6tory ma~
have,di fferent. numbers on dlfferent dri yes, even though t,h'e
$ubdireqtory name is the same ~ " ,:. ,,' ',I
;~ >:\. '~. Y.";~ ",' ,i: :.:," ; :.',::' ': , .. :,' <i' , 1 . ~. ~;;, ,

, ; It' is' import,ant to realize, that, subdirectories ~t:-e,llot away
of getti6g:mo~e t.han 256 fil~i on a drive. This thetb.hnot, ddt
The thing that subdirectories are; good for ispartitiqrl:Lng the', '
dit-ept.ory and restricting the, 'scope of ~ file name. ,This allows
several files of the same name to exist on one disk'at the same
t.llhe, without causing the DOS, to become 'confused as to ~hich is
the one to be referenced at anytinie~ The way the DOS achieves
this' is th~t each of the fil~$ is" in a "different subdirectory"
~rqm each 'other, and hetic~ i, uniquely identified ey~nthough the
name and extension may be identical.

35.2.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to specify a name for the proposed subdirectory and
req~est its creation. Creation of a subdirectory does not
actually result in any real ohange to the directory on disk at
all; all it does is to cause the specified name to be entered
into a table, kept on disk, which relates each subdirectory name
with its subdirectory number. The user is allowed to specify
which drive he wishes to create the SUbdirectory on; if he does
not indicate a specific drive, the named subdirectory is placed
onto all on-line drives if possible.

35.2.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of a subdirectory does not result
in KILLing the files within the range of that subdirectory. If a
subdirectory to be deleted contains one or more files, the files
are first moved from that subdirectory to the one called MAIN
before the named SUbdirectory is deleted. The user is allowed to
specify from ~hich drives the subdirectory is to be deleted; if
he does not indicate a specific drive, the named subdirectory is
deleted from all on-line drives on which it appears.

35-2 DISK OPERATING SYSTEM

35.2.3 Being "in a Subdirectory"

The user can define at any time which of the subdir~ctories
on each of his disks contain the current files he is interested
in. This is done with the SUR command by specifying the name of
the subdirectory containing the files of current interest. This
action causes him to be placed "into" the named subdirectory on
the drive specified. (If no specific drive is mentioned, he will
be placed "into"' the sUbdirectory specified on all on-line drives
containing a subdirectory with the given name). It is appropriate
to point out that the current subdirectory on each drive need not
have the same name; for example, the user could easily be in
subdirectory PROGRAMS on drive zero and in subdirectory DATABASE
on drive one at the same time.

Once .in a specific subdirectory on a drive, that state does
not normally change until the user requests being placed into a
different sUbdirectory (again via the SUR command) or re-boots the
DOS. Rebooting the DOS causes the user to be placed into the
subdirectory named SYSTEM on all drives.

35.2.4 Scope of a File Name

. When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is looking for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on allan-line drives. In
order for the DOS to "find" the giveh file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If no such file can be found, the DOS
returns indicating that the specified file cannot be found and
therefore probably does not exist.

When subdirectories are in use, this matching of name and
extension is expanded so that in addition to a file's name and
extension matching those specified by the requesting program, the
file must also be within either the current subdirectory (for that
dri ve) or the one called SYSTEM in order to be "found".

Therefore the scope of a file name can be more or less
defined via the following: when a user is in subdirectory X on
drive I, files can be "seen" by his program only if they are in
either sUbdirectory X or subdirectory SYSTEM. Files in any other
subdirectory will not appear to exist.

CHAPTER 35. SUR COMMAND 35-3

35.2.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
sUbdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
subdirectory named SYSTEM. When the subdirectory named SYSTEM is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which subdirectory they themselves
are" actually in.

A little caution must be used when a user is in subdirectory
SYSTEM on a disk with multiple files of the same name and
extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available when the user is "in" the SYSTEM
sUbdirectony. The result is that in this situation, orieof the
files of the desired name and extension will be refe~enced;
which one is referenced is, however, undefined. Therefore, good
practice dictates that if a user has more than one file with the
same name and extension on some drive, that he make a point of "
al ways knowing which sUbdirectory he is in (and that it is .!l.Q.1 j

SYSTEM) if it matters to him which of his files he refepences.

35.2.6 Files vs. the User Being "in a Subdirectory"

It is important not to confuse the two distinct concepts of a
file being in a sUbdirectory as opposed to that of [a user] "being
in a subdirectory".

A file being in a specific subdirectory is a way of saying
that the file cannot be accessed when the current subdirectory is
neither that specific subdirectory nor SYSTEM. This relationship,
that of a file being in a specific subdirectory, is retained more
or less permanently; if a file is placed in subdirectory
SUBDIR1 today on a disk, the disk can be removed and stored on a
shelf; if tomorrow the disk is taken down from the shelf and
re-mounted, that file will still be in subdirectory SUBDIR1.

A ~ being in a specific subdirectory is a way of saying
that the subdirectory in question is "the current subdirectory" on
one or more logical drives. The "curr~nt subdirectory" on a drive
is less. permanent and reflects the use of the SUR command since
the previous time the DOS was bootstrapped.

As in most computer-related things, the best understanding of
subdirectories is attained through experimentation.

35-4 DISK OPERATING SYSTEM

35.2.7 Getting a File into a Subdirectory

In general, there are three ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenever a file is created, it is always placed into
the current sUbdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved between
subdirectories with the NAME command. The NAME command can take a
file within the scope of the current subdirectory and put it into
the current sUbdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can
place it into any other subdirectory the user might wish to put it
into.

35.3 Usage

The SUR command is parameterized as follows :

SUR [<name>J[/<function>J[:DR<n>J[,<new name>]

The function performed by SUR is determined by the absence or
value of the <function> field and the name field, as described
below.

35.3.1 Establishing a "Current Subdirectory"

If the function field is not given, SUR establishes the named
sUbdirectory as the current subdirectory on all drives on which
the named subdirectory exists. If the named subdirectory does
not exi~t on one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,
then only the current subdirectory on the specified drive is
subject to change. .

35.3.2 Creating a Subdirectory

If the function field is INEW, SUR c~eates the named
subdirectory ori all drives on which the named subdirectory does
not exist. The current subdirectory is not affected by the
operation. If a specific drive is mentioned, then the named
subdirectory is only created on the specified drive.

CHAPTER 35. SUR COMMAND 35-5

35.3.3 Deleting a Subdirectory

If the function field is IDEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory ~xists.
If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. If
the subdirectory being deleted is the current subdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYSTEM and MAIN cannot be deleted. If a specific
drive is mentioned, then the named subdirectory is only deleted
from the specified drive.

35.3.4 Renaming a Subdirectory

If the function field is iREN, SUR renames the named
subdirectory on any drives on which the named subdirectory exists,
to the name specified in the new subdirectory name field. If any
files are in the named subdirectory, they will be in the
subdirectory specified by the new subdirectory name field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

35.3.5 Displaying Subdirectories

If the subdirectory name field is not given, SUR displays the
names of " all s~bdirectories on all on-line drives. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
subdirectory name is the subdirectory number associated with that
name (in octal); an asterisk indicates the current subdirectory
on each drive. If a specific drive is mentioned, then only the
subdirectories present on the specified drive are displayed.

35-6 DISK OPERATING SYSTEM

CHAPTER 36. ADVANCED PROGRAMMER'S GUIDE

36.1 General Background Information

The object Of an operating system is to allow maximal use of
the capabilities of a computer with minimal effort. A Datapoint
1100, 2200 Version 2, or 5500 computer with a Datapoint disk
memory unit attached is capable of a very sophisticated mass
information storage structure and amultitask environment. The
sophistication of the mass storage structure allows efficient use
of the available space while maintaining operator convenience and
error recovery. The multitask environment allows the execution of
several functions simultaneously. With the preceding in mind, a
complete set of system routines and operator commands are
provided.

36.2 Operator Commands

The operating system contains a routine that interprets qser.
commands given at the keyboard and performs the tasks indicated.
A large set of commands are s\i1ppliedwith the system which provide
the user with facilities for creation, modification, and execution
of files, along with a dynamic debugging facility. These
include a general purpose editor and many useful disk file
handling commands. A complete set of CTOS compatible cassette
handling commands are also provided, allowing the user to tranefer
files between the disk and cassettes.

Since the command's are actually prograJ[ls which the system
loads and executes to perform the task required, the command
language is naturally extensible to'include any program the u~er
may desire, thus leading to a powerful keyboard facility.

36.3 System Structure

The operating system proper resides within the first 8K of
memory. Of this, only the first 2.8K is necessary for the support
of the disk. The debugging tool anq CTOS compatible keyboard and
display routines occupy through 4K, the cassette handler through
5.4K and the command handler through the rest. When the system is
bootstrapped from the rear cassette, the first 768 bytes are
loaded with a loader, entry pOint table, and interrupt handler.
The small size of the disk file handling routines is due tb the

CHAPTER 36. ADVANCED PROGRAMMER'S GUIDE
~ .'

36-1

use of overlays for the file opening and closing functions. An
overlay is also used to contain most of the system error messages,
allowing fully descriptive messages without usihg a prohibitiye
amount of main memory.

The operating system supports one disk controller with one or
more physical disk drives attached. Each physical drive contains
one disk unit which is considered to be one or more logical
drives, each of which consists of a completely self-contained
information structure. Each logical disk can contain up to 256
files, the maximum length of anyone of which being determined by
the particular DOS in use; but in no case may the size of any file
exceed the capacity of the logical drive on which it resides.
File space is allocated dynamically while maintaining as much
physical contiguity as possible, thus enhancing access time and
storage efficiency.

36.4 Interrupt Handling

A set of routines is loaded by the bootstrap that allows the
user to make effective use of the interrupt facility in the
Datapoint computers. These routines schedule the execution of
interrupt driven processes, provide facilities for these processes
to be turned on and off, and provide a mechanism via which these
processes can be made to execute in a convenient manner. Note
that since these routines are loaded only by the bootstrap action,
interrupt driven processes are not stopped by the loading of the
system or other programs. The DOS cassette handling routines make
use of this interrupt facility to allow slewed reads and writes
when moving data between the disk and cassettes, greatly
increasing the rate of transfer.

36.5 System Routines

Routines within the operating system provide the programmer
with facilities for dealing with the disk, cassettes, keyboard,
and display. Each category of routine has an entry point table to
allow system changes without necessitating a change in the user's
code. Since ~ach category has its own table, those routines not
needed may be overlayed by the user. The keyboard and display
routines ~re identical iri parameterization and function to the
eTOS routines. The cassette routines perform the same functions
as the eTOS routines but are parameterized differently. All of
the routines execute with interrupts enabled and have a full set
of error traps, enabling the user to deal with all errors except
those fatal to the system.

36-2 DISK OPERATING SYSTEM

36.6 Phjsical Configuration Requirements

The minimal physical configuration required to support the
disk operating system is a Datapoint 1100, 2200 or 5500 computer
(minimum 16K memory) and a Datapoint Corporation disk memory
peripher~l. (Note that the Version 1 2200 is not capable of
running the DOS). As mentioned e8rlier, users with Datapoint 5500
computers and wishing to use the full 5500 disk operating syste~
will need more than 16K, with the full complement of 48K user
memory recommended.

The choice of computer (1100, 2200, or 5500) and disk drive
type (flexible diskette, cartridge disk, or full eleven-high disk
pack drive) will determine which versions of DOS a user may choose
from.

36.7 Program Compatibility with Different DOS

The various versions of Datapoint DOS vary somewhat in
internal disk structuring and in small related details. (Such
detailed information is provided in the DOS System Manual
corresponding to the user's individual DOS). In general, if a
programmer uses the information contained in this User's Guide in
writing his program, that program should run under any of the
Datapoint Corporation DOS, without modification.

Use of information contained within the DOS System Manual
with regard to internal disk structuring details, absolute
physical locations of aystem tables, assumptions regarding the
format and contents of internal physical disk addresses, and the
like, should be avoided within user programs as it will tend to
impair compatibility with different DOS and obstruct ease of
future upgrading to higher capacity, more cost effective disks and
more powerful processors.

CHAPTER 36. ADVANCED PROGRAMMER'S GUIDE 36-3

CHAPTER 37. OPERATOR COMMANDS

Files are identified from the console by a NAME, EXTENSION,
and LOGICAL DRIVE NUMBER. The NAME must start with a letter and
may be followed by up to seven alphanumeric characters. For many
commands, this is the only information that must be supplied. ,The
EXTENSION must start with a letter and may be followed by up to
two alphanumeric characters. It further 'defines the file, usually
indicating the type of information contained therein. For
example, TXT usually implies user data files or source information
(e.g. DATASHARE, ASM, DOS DATABUS, or SCRIBE source lines), ABS
usually implies program object code records that can be loaded by
the system loader, and CMD usually implies programs that implement
commands given the DOS from the keyboard. Most commands have
defaul t assumptions concerning the extensions of the file nam'es
supplied to them as parameters. However, extensions may otherw·ise
be considered as an additional part of the name. The LOGICAL
DRIVE NUMBER specifies which logical drive is to be used. It i$
given in the form DR(n) or D(n), where (n) is zero through the
maximum number of drives supported within the user's configuration
and the specific DOS he is using. If the drive is not specified~
the system search~s all drives starting with zero. Note that each
logical drive contains its own directory structure. Specifying
the drive number enables one to keep programs of' the same NAME and
EXTENSION on more than one drive.

Files are always created implicitly. That is, the operator
never specifically instructs the system to create a given file.
Certain commands create files from the names given as their
parameters. Since space allocation is dynamic, the operator never
specifies how many records his file contains.

Deleting files is made somewhat more difficult to protect the
user from accidentally destroying valuable data. Files can be
protect~d against deletion or both deletion and writing. In
addition to this, the operator must always explicitly describe the
file he is deleting and even then must answer a verification check
stop before the actual deletion occurs.

The system has no explicit RUN command since, to execute his
program, the user simply mentions its name as the first file
specification on the command line. This is the mechanism via
which both commands and user programs alike are executed. The
first file specification may be followed by up to three more,
depending upon the requirements for parameterization of the

CHAPTER 37. OPERATOR COMMANDS 37-1

program being run. A file specification is of the form:

NAME/EXTENSION: DRIVE

where any of the three items ~ay be null (except the NAME must be
given in the first specification which denotes the program to be
run). Note that the / indicates that an extension follows and the
: indicates that a device speoification follows. If either of
these item~ i~ not given, the corresponding denotation character
is not used. For example:

NAME/ABS:DRO
NAME/ABS
NAME:D0003
NAME

are all syntactioally correct. File specifications may be
delimited by any non-alphanumeric that would not be confused with
the extension and device indicators. For example:

COPY NAME/TXT,NAME/ABS
COpy NAME/TXT NAME/ABS
COPY NAME/TXT/NAME/ABS

will all perform the same function. If an extension is not
supplied in the first file specification, it will be assumed to be
CMD. In the above examples, COPY/CMD will be used for the
complete file name sought in the directory for the command program
name. Note that if one wanted to run a file he had created with
extension ABS, he would simply enter

NAME/ABS

and his program would be loaded and executed. If the name given
cannot be found in the directory or directories specified, the
message

WHAT?

will be displayed. Note that the DOS can load any object code at
or above location 01400 (octal).

37-2 DISK OPERATING SYSTEM

CHAPTER 38. SYSTEM STRUCTURE

38.1 Disk Structure

A disk, whether a flexible diskette, cartridge, or pack, is a
self contained information structure when used with the DOS. A
disk's tables reference only information on the disk itself, and
it is assumed that the structure of the disk will not be changed
without these tables also being changed.

The smallest structural unit of information on the disk is
called a cluster and is composed of some fixed number of 256-byte
sectors. (The number of sectors per cluster varies with different
DOS but in general is between three and thirty-two sectors per
cluster.) Clusters do not span track or cylinder boundaries, and
one track of the disk will generally contain one or more clusters.
Since the cluster is the smallest allocatable unit of storage on
the disk, one cluster represents the minimum possible file size.

A small portion of each logical disk is reserved for several
special tables maintained by the system. These tables include the
Cluster Allocation Table (CAT), Lockout CAT, and the Directory.
These tables are maintained in duplicate for backup purposes.
This helps to insure that a software or disk error will not result

, in possible rna ssi ve loss of data.

The CAT is a bit map of the clusters that are not available
for new space allocation. Each bit represents one cluster, and
generally each byte represents one cylinder. Thus, the location of
the byte in the table is equal to the number of the cylinder it is
representing. Note that ·since not all 256 bytes are needed for
this bit map (no supported disk has 256 cylinders), these excess
entries are marked as not being available. The last byte of the
CAT is the auto-execute PFN, which specifies the physical file
number of the file to be automatically executed when tqe QOS is
loaded. This number being zero implies that no file is to be
automatically executed since physical file zero is the number of
the DOS itself.

The Lockout CAT is similar to the CAT but is written only at
thr~ time of DOS generation of each disk and optionally during the
prbcessing of the REPAIR command (as discussed in the appropriate
sY,ste,m guide). Th i.s sector is a copy of the CAT after the DOS

CHAPTER 38. SYSTEM STRUCTURE 38-1

GENE:RATION program has certified the disk but before any files
have been allocated on it. It therefore provides a sector
indicating which areas of the disk have been flagged as bad during
the DOS GENERATION certification process. This is used in
conjunction with the main CAT to avoid allocating files onto known
bad places on the disk.

The Directory consists of sixteen sectors. Each sector
contains sixteen entries of sixteen bytes each. Each entry is
associated with a number called the physical file number (PFN).
This number is some functionqf the physical location of the entry
in the directory (which function may vary for different DOS).

The DOS loader (resides between 0 and 01000 in memory) is
parameterized by a logical drive number and a physical file
number. It indexes the directory on the given disk by the physical
file number according to the individual DOS's directory mapping
fUnction to obtain the file's physical starting location (part of
the information within the directory). Physical files zero
through seven are reserved for system usage. File zero contains
aJ.l of the code for the DOS (except for the overlays) that resides
above location 01400. Files one through six contain code for
executing the following functions:

1 - PREP
2 - CLOSE
3 - OPEN
4 - ALLOC
5 - ABORT
6 - SCREEN

- create a new file
- close a file and delete if indicated
- open an existing file
- allocate more space for a file
- display an error message
- initialize the RAM display if present

These are overlays that reside in the area between 04000 and
05400. File seven is used for by the DOS subdirectory facility,
described in the SUR command section, and ·for the DOS FUNCTION
overlays.

The physical file number of a file is written in every record
of that file for error control purposes. Otherwise, physical f11.e
numbers are used only to parameterize the system loader. At
higher levels. files are parameterized by a symbolic name which is
also contained within the directory entry. Other information
contained within a directory entry is the physical disk location
of the first cluster of the file, and protection bits to disable
e1 ther deletion of the file or both deletion of and writing into
the file.

Note that the name as stored in the directory consists of
eleven bytes of data. The command interpreter, which handles

38-2 DISK OPERATING SYSTEM

information given at the keyboard by the operator, deals with an
eight byte name and a three byte extension (see the chapter on
Operator Commands). This is, however, purely a convention of the
command interpreter and has no significance in relation to the
internal format of the directory. When system routines which deal
with file names are used, eleven bytes are provided for the
parameter, which is always dealt with as a monolithic item.

A file consists of logically contiguous records (there is a
one to one correspondence between records and physical disk
sectors). These records are allocated in one or more physically
dontiguous groups of clusters where each contiguous group is
called a segment. This segmentation is employed to allow the
dynamic allocation and de-allocation of disk space without having
to move information contained in other files.

Internally, the DOS references records by a number, called
the Logical Record Number (LRN) , that starts at zero. The first
two logical records (zero and one) contain a table, followed by
its copy, that lists the location of each of the segments that
make up the file. Logical records two through the last record in
the file contain the user's data. These records are referenced by
a number specified by the user that starts at zero· Therefore,
system logical record two is user logical record zero.

The table that describes the segments comprising the file is
called the Retrieval Information Block (RIB). The working copy is
kept in system logical record zero and its backup copy in record
one. The backup copy is always written immediately after the
working copy is written. It exists to allow recovery if the
working copy shows a parity failure in later use. Since the 1100
and 2200 DOS always write with the write/verify mode of the d~sk
controller, this situation should only occur if a power failure
occurs while the working copy is actually being written on the
disk' (the actual writing of a sector on the disk surface only
takes a millisecond or two, except for the flexible diskette).
Since RIB updates occur infrequently, the probability of thi$ kind
ot failure is extremely small. The CAT, Lockout CAT and Directory
copies are treated in a manner similar to the treatment Of the RIB
copy for exactly the same reaflons and exhibit the same small
probability of requirement for backup. However, it is important
that these backup facilities exist to prevent possible massive
loss of the uset's data.

The following figure depicts the file structure described
above. Nqte that the logical record numbfrs indioated in the
second fig'ure ate system numbers and that the LRN 2 shown is
actually user LRN O. The upper portion of the sketch shows the

CHAPTER 38. SYSTEM STRUCTURE 38-3

first segment broken down into its individual records. The first
record points to all of the segments in the file (including the
segment that contains the first record itself). The lower portion
of the sketch shows the next segment broken down into its
individual clusters.

38-4

FILE STRUCTURE

USER LRN 2 /I LRN 5 /
USER LRN 1 ~ LRN 4 /

USER LRN £) !/I LRN 3 /
RIB COpy vi LRN 2 /

RIB-..... /I LRN 1 /
~LRN0
L--~S.0.1

S.0.2

REST OF SEGMENT 1
PHYSICALLY CONTIGUOUS
TO THE RIB & COpy

(SYSTEM LRN 2 =
USER LRN 0)

8.0.3 I WI
'--_~_--"v- x RECORDSICLUSTER

SEGMENT 2 l-..:)

1 TO 32 PHYSICALL V
CONTIGUOUS CLUSTERS
PER SEGMENT

f--~X RECORDS/CLUSTER

r--~ X RECORDS/CLUSTER

L.-__ ~~ X RECORDS/CI,.USTER

DISK OPERATING SYSTEM

The RIB contains the physical file number in its first byte,
as in all records within the system, and a logical record number
in the next two bytes, also as in all records within the system
(the LRN of the working copy is zero and of the back-up copy is
one). The fourth byte of the RIB always contains an 0377. The
rest of the 252 bytes within the RIB contains up to 126 segment
pOinters (called descriptors). The first segment descriptor
points to the segment containing the RIB itself and always exists.
If the list is shorter than 126 segments, a terminator consisting
of two 0377's appears to denote that no descriptors follow. When
the file is 126 segments long, the pair of 0377's does not exist.
A single segment may be between 1 and 32 clusters long. This
length is specified by the tigtitmost five bits of the second byte
in the descriptor which is the length minus one. The maximum of 32
clusters per segment is due to the five length bits available in
the R~B's segment descriptors. An additional limitation exists
which further re~uces th~ maxi~um number of clusters per segment
for certain DOS, that restriction being that the total number of
sectors per segment must be less than 256. The left three bits of
the second byte, together with the first byte, specify the cluster
where the segment begins. The following figure shows the format
of the RIB:

PFN

8
LRN

81

fd377

SEGMENT
DESCRIPTOI'I

1

SEGMENT
DESCRIPTOR

2

·
·
·

B377

8377

RIB FORMAT

} RI. copy IS LAN 1

- CAUSES LOADER TO SKIP RIB'S

} CYLINDER

CLUSTER
NUMBER OF---'
FIRST ONE
IN THE
SEGMENT

NUMBER OF
CLUSTERS
MINUS ONE

CHAPTER 38. SYSTEM STRUCTURE 38-5

38.2.Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long. The
system keeps the physical file number in the first physical
location of each sector and the system logical record number of
the given record in the second (LSB) and third (MSB) physical
locations of each sector. This is done to insure that the record
obtained is the record desired. The last 253 bytes may contain
anything the user chooses. There are, however, some assumptions
made by the DOS and the programs supplied with it that deal with
disk data. These assumptions fall into two classes: sy~tem loader
object records and symbolic data records. The first class
contains all reGords that are to be loaded into memory by the DOS
loader. The second class cpntains all records that are to be
handled by the standard data handling programs. These programs
include the general purpose editor, the assembler, DATASHARE, RPG
II, DOS BASIC, and the DATABUS programs (both source lines for the
various compilers and data records handled by the resulting
programs) .

A record that is to be lo~ded by the system loader must have
the following format:

I-I L I HI [I: I N IN BVTES I' I L I HI;: I ~ IN! N BYTES) t~ x x x

Any number of the data block. may appear in a record. The
leading byte being 0 indicates a 4~ta block follows and 0377
indicates end of record. The special case of N being zero is used
to indicate an end-of-file. In this case, the HL given is taken
to be the starting address if one is to be used.

A record that is to be dealt with by one of the standard data
handling programs must have the standard text file format
described earlier in the chapter on REFORMAT.

38-6 DISK OPERATING SYSTEM

38.3 Memory Mapping

The DOS occupies memory as shown by the following map:

COMMAND
OVERLAYS

01 7000

COMMAND
INTERPRETER

01 2400

CASSETTE
DRIVERS

01 0000 (4K)

DOS FUNCTIONS
07 400

DEBUG

06000
KEVIN 8. DISPLAY

05 400

FILE HANDLING
OVERLAYS

04 000 (2K)

DISK FILE
HANDLING ROUTINES

02 000
DATA AREA

01 400
ENTRY POINTS &

INTERRUPT HANDLER 01 000

SYSTEM LOADER

a

CHAPTER 38. SYSTEM STRUCTURE

38.4 Memery Tables

A number of entry peint tables exist within the DOS. These
tables consist of a group ef jumps to' the varieus reutines made
available to' the user. These jumps allew the system to' be changed
witheut requiring the user to' reassemble his pregrams.

The first entry point table is lecated between 01000 and
01377. It contains entry points to' the reutines in the leade'r
(the leader itself. the basic disk read and write driver, and the
interrupt handler) and 'the DOS file handling reutines. It also.
centains in-line routines to' increment and decrement the HL
registers. These reutines are ceded in-line and censtructed in a
fashien to' enable the A-register to' centain the increment cr
decrement value and the entry peint plus two. entered fer
incrementatien or decrementation by a number ether than ene.

The secend entry point table is lecated between 010000 and
010066 and contains entry peints to' the cassette handling
reutines. The third entry point table is lecated between 013400
and 013452 and contains entry peints to' reutines within the
cemmand interpreter. The availability ef the cemmand interpreter
routines makes small cemmand tasks easy to' implement as cart be
seen by inspection of the assembly listings for the cemmands
supplied with the DOS. See the Chapters cn System Reutines and
Reutine Entry Points for more details en the reutine functiens and
entry peint,lecations.

The major working table in the system is called the Legical
File Table (LFT) and is lecated frem 01544 threugh 01643. It
centains all ef the informatien required by the file handling
reutines fer every file which is currently epen (a maximum ef
three files may be epen at any ene time - legical files ene, two.,
and three). Once the user has epened a file by its symbelic name,
he deals with it by the legical file number under which it was
epened. The LFT entry keeps a recerd ef the segment currently
being dealt with. If the recerd being accessed (specified by the
LRN in the table) isi within the current segment (determined from
the BLRN and esc in the table), the physical disk locatien can be
determined frem the infO.rmatien in the LFT (all LRN's in the LFT
are system LRN's). Otherwise, the RIB must be read and a new
current segment established. Note, hewever, that a maximum ef
only two' disk accesses are necessary to' randemly access any piece
ef infermatien within a file and sequential accesses require enly
ene disk access in most cases.

The LFT centains fer each entry the fellewing infermatien in

38-8 DISK OPERATING SYSTEM

the order shown (the number in parenthesis is the number of bytes
used for the item):

PFN (1) - Physical File Number
PDN (1) - Physical Drive Number and Protection
LRN (2) - Next LRN to be dealt with
BLRN (2) - First LRN within the current segment
CSD (2) - Current Segment Descriptor
RIBCYL (1) - Physical Disk Address of RIB (MSB)
RIBSEC (1) - Physical Disk Address of RIB (LSB)
MAXLRN (2) - Largest LRN referenced
LRNLIM (2) - Largest LRN allowed (obsolete)
BUFADR (1) - Current controller buffer address
XXXXXX (1) - Not used

There are actually four LFT entries to correspond to buffers
0-3 in the disk controller. However, the first entry (logical
file zero) is reserved for system usage because the DOS needs a
buffer into which it can read the RIB if it is necessary to
determine a new current segment when a given access is made. This
need is only critical on writes when the buffer contains the
information to be written to the disk and the system must then
read the RIB into a different buffer. On reads, the user's data
will always be the last item to be read ~nd logical file zero can
be used. One must exercise caution in the use of logical file
zero, however, since an access involving a different logical file
may cause logical file zero's disk buffer to be loaded with a RIB.
Also, the zeroth disk controller buffer is always used by the
system loader in transferring data to memory. This last fact
implies that the user may load an overlay or chain to another
program without any of the standard (one through three) logical
files being perturbed in any way. The other thing that is
special about logical file zero is that CLOSEs have no effect when
issued on it. This means that neither space deal location nor
updating of the protection field occur when logical file zero is
closed. This is true whether the close is done by explicitly
calling CLOSES or implicitly by calling other system routines
(e.g. PREPS, LOADS, RUNS, etc.)

The DOS loader uses a set of locations in memory locations 4
through 022 to perform the functions of an LFT entry during the
loading process. It knows, however, that an object file is always
sequential and does not have to hpve the accessing generalization
of the main file ha,ndling routines. This is the main factor in
the small size of the DOS loader. The file handling routines also
use these low memory loc~tions for temporary storage of a
specified LFT entry to eliminate having to continually index into
the LFT. Also, since the basic disk read and write routines use

CHAPTER 38. SYSTEM STRUCTURE 38-9

location 5 to indicate which drive is to be used, having the LFT
temporarily stored in the low memory locations automatically
selects the correct drive for use.

38.5 The Command Interpreter

The Chapter on Operator Commands of this manual describes the
operation of the DOS from the system console. When the command
interpreter is entered, it checks to see if a program has been set
to be automatically executed. If it has, the program is loaded
and executed (unless the KEYBOARD key is depressed). Otherwise,
the command interpreter attempts to obtain a command line from the
keyboard. While it is waiting for this line, the command
interpreter runs a test on the disk controller buffer memory while
checking the keyboard ready status bit. When the keyboard becomes
ready, the test is stopped and the keyin routine entered (which
will get the character that made the keyboard become ready and
then key in the rest of the command line - note that even striking
just the CANCEL key will stop the disk buffer memory test).

The command interpreter resides in locations 012400 through
020000. Actually, the area between 017000 and 020000 is used as
an overlay area by many of the commands supplied with the system,
thus eliminating the need to reload the DOS after the execution of
every command. The interpreter keys a command line into a place
in the data area of the DOS called MCR$ (Monitor Communication
Region, locations 01400 through 01543). It then scans this line
with lexical scanning routines that are made available to the user
through the command interpreter entry point table. The # (which
causes entry into the debugging tool), is handled as a special
case. Otherwise, the first name given is opened as logical file
zero and that program loaded and executed. The program that is
loaded has access to the command line in MCR$ and thus programs
may be parameterized by information given after the program name.

The command interpreter scans up to four file specifications
from the command line. The scan is terminated by a semicolon (i)
or END-OF-STRING (015). The file specifications are entered in a
normalized symbolic form into the corresponding logical file table
entries. Note thdt this is not the normal logical file table
information but that these locations are simply being used as a
temporary storage for the symbolic information that has been
lexically normalized by the command interpreter. The program
loaded may simply check that all the necessary information has
been supplied and/or supply any assumed portions, and then use
this data as a name parameter to the file opening or creating
routine. The opening routine has no difficulty using a name that
is supplied as its parameter in the same locations as the logical

33-10 DISK OPERATING SYSTEM

file table entry it is going to set up.

When a program receives control from the command interpreter
after having been invoked via a command line from the keyboard,
each of the LFT entries one through three (but not zero) contain
the following:

DRCODE
0377
FILENAME
FILEEXT
DRSPEC

(1) - Drive select code (described below)
(1) - Indicates file is closed
(8) - File name specified (or eight spaces)
(3) - File extension specified (or spaces)
(3) - Logical drive specification (or spaces)

The drive select code contains one of the following:

0377 - No drive spec entered (DRSPEC is spaces)
0376 - Nonstandard, probably invalid, drive spec
Otherwise - The given logical drive number, in binary.

Note that most DOS system routines allow 0377 as a drive
number, indicating "scan all drives". (This is the reason why
0377 is the no-drive-specified code; programs need no longer
treat this as a special case). Example program usage: (prepare
file specified in LF2 file spec, defaulting extension to TXT)

LFT
LF2
TXT
NAMREQ
BADDRI
START

EQU
EQU
DC
DC
DC
MLA
CP
LEL
LDH
HL
LC
CTZ
MLA
CP
HL
JTZ
MLA
CP
HL
JTZ
LCA
DE
CALL

01544
32
'TXT' Default extension
011,0,013,11,023,'NAME REQUIRED' ,015
011,0,013,11,023,'BAD DRIVE' ,015
*LFT+LF2+10 Get first byte of ext.
, , Check if it's blank

TXT
3
BLKTFR
*LFT+LF2+2 , ,

NAMREQ
CMDAGN
*LFT+LF2
0376
BADDRI
CMDAGN

Page

If Blank, default to "TXT"
Make sure name was given
And if not, get address
of "NAME REQ" message
And return with it
Check drive select code
for validity and if bad
give "INVALID DRV" message

LFT+LF2+2
PREPS

Get drive # (N,0377) into C
DE => name, extension
And it's done.

CHAPTER 38. SYSTEM STRUCTURE 38-11

Note that programs which receive control upon DOS startup
(programs which have been set for AUTO-execute) do not generally
receive control via the command line mechanism and hence the
contents of both MCR$ and the LFT are initially undefined when
such programs are entered. Any program which is to be set for
automatic executton will therefore have to take this (actor into
consideration, and perhaps make special provisions as it may
require. (A utility program called AUTOKEY exists which remedies
this situation, and is'released with the DOS).

38-12 DISK OPERATING SYSTEM

CHAPTER 39. INTERRUPT HANDLING

39.1 Scheduling

When the system is loaded with the bootstrap function
(RESTART depressed), the following set of CALL instructions (or
their equivalent) are loaded into the area between 01000 and 01377
(just above the main entry point table for the DOS):

INTRPT DI
BETA

INTO CALL
INT1 CALL
INT2 CALL
INT3 CALL

[ViLA
AD
LMA
AD
LLA
PUSH

RETURN RET
.
INT4 CALL

JMP
INT5 CALL

JMP
INT6 CALL

JMP
INT7 CALL

XRA
MSA

INTRET ALPHA
EI
RET

RETURN
RETURN
RETURN
RETURN
*INTSCN
6

INT4-6

Rfj:TURN
INTRET
RETURN
INTRET
RETURN
INTRET
RETURN

*INTSCN

Disable interrupts
Use BETA mode
Do the four

one millisecond
routines

Rotate to the
next one of the
four millisecond
routines

HL = CALL address
Jump to the

next CALL

Four millisecond

Reset the scan
pointer

Back to ALPHA mode.
Enable interrupts
Back to the background

Foreground routines:are executed by being called by one of
the above CALL instructions, and run only in BETA mode with
interrupts disabled. Note that the only way for a foreground
routine to return to the scheduler is via a RETURN instruction.
Therefore, the routine must always leave the subroutine call

CHAPTER 39. INTERRUPT HANDLING 39-1

address stack in the same state it was in when the routine was
entered. This means that a foreground routine can not call a
subroutine that then returns to the interrupt scheduler because
this would leave the stack with an address it did not previously
have. Subroutines that must wait for another interrupt must be
hanoled by storing the return address into a memory location
somewhere (usually most conveniently into the address portion of a
jump instruction, as it turns out).

39.2 Process Initialization

When bootstrap occurs, a return is stored in location zero to
cause interrupts to have no effect. Whenever an interrupt routine
is activated, however, locations 0, 1, and 2 are loaded with a
jump instruction to the label INTRPT in the preceding code. This
activates the interrupt scheduler.

Once the jump instruction has been stored, the interrupt
scheduler is executed every millisecond. Note that initially none
of the CALLs would have any effect, since they all call a RETURN
instruction. When an interrupt driven routine is initiated,
however, its address is stored into the address portion of the
CALL instruction, causing that routine to be executed. Interrupt
driven routines are always initialized from the background program
by the routine SETI$, which stores the address given in the D and
E registers (MSB and LSB respectively) into the CALL instruction
whose number is given in the C register (the number corresponding
to the digit shown in the labels on the CALL instructions in the
preceding code). The first four CALLs are executed every
millisecond and the second four CALLs are rotated in execution
causing any particular one to be executed only once every four
milliseconds. Since the interrupt scheduler is entered every
millisecond, the execution time for the one four millisecond and
four one millisecond routines should not total more than one
millisecond average to prevent an interrupt from being dropped.

The execu.tion of the foreground process can be stopped in two
ways. There is a background routine called CLRI$ which simply
sets the D and E registers to the label RETURN in the preceding
code and executes the SETI$ routine. There is also a foreground
routine called TP$ which will be discussed after the explanation
of process state changing.

39-2 DISK OPERATING SYSTEM

39.3 Process state Changing

Once an address has been stored in a particular CALL
instruction, the same location will be entered upon each execution
of that CALL. This location is called the state of the foreground
process. A. routine exists above the interrupt scheduler (still
below 01400) which allows the state of the process to be changed
to the location following the call of that routine. The routine,
shown below, is called cst for Change State:

cst POP DE = the address
LEL after the CALL
LDH instruction
POP HL = the address
PUSH of the CALL to
CALL DECHL this process
LMD Change the address
CALL DECHL in the CALL to
LME this process
RET Back to the scheduler

This routine obtains the new state address by popping the
stack. It assumes that after doing that, the stack is in the same
state it was when the process call was executed, and thus can
obtain the location of that call by popping the stack again.
(This implies that CS$ should not normally be called from a
subroutine within an interrupt-driven process, but only from
"leve~ zero" of the foreground process). It does this and stores
the new address in the process call. It then executes a RETURN to
give control back to the interrupt scheduler, thereby causing
exec~tion of that specific foreground process to wait until the

, next ,time the process call is executed.

A routine called TP$ exists which simply loads the D and E
registers with the location RETURN in the interrupt scheduler code
shown earlier and jumps to the sedond POP instruction in cst.
This routine is jumped to (not called) and, as mentioned before,
terminates the execution of the foreground process.

At this point an example is appropriate. To simplify the
discussion, it will be assumed that the process CALL has been
initialized to the location LABEL1. The following routine
decrements a memory location called COUNT until it becomes zero

CHAPTER 39. INTERRUPT HANDLING 39-3

and then changes its state to the location LABEl..2., whtch ,wait.$ for.
the keyboard status bit to be set and then obtains the chara¢te.r
entered and continues with processing. Note that this has tbe'
effect of causing a delay of the number of milliseconds equa,!l. to
the number that was initially in COUNT before continuing on to
checking the keyboard and processing the character.

LABEL1 MLA *COUNT Get the count
SU 1 Decrement it
LMA Update memory
RFZ Back to the scheduler
CALL CS$ Change state if zero

LABEL2 LA 0341 Then start checking
EX ADR the keyboard
IN Wait for KBD
ND 2 ready
RTZ Back to the soheduler
EX DATA Unless KBD ready
IN Then get the key

Etc.

The following is a narrative of what takes place. It will be
assumed that interrupt zero (INTO) has been initialized and the
jump instruction to INTRPT stored in locations 0, 1, and 2. Upon
occurrence of the next interrupt a jump to INTRPT occurs,
interrupts are disabled, and the processor switched to BETA'mode.
A CALL to LABEL1 is then executed by the instruction at INTO.
LABEL1 loads the A-register with the contents of COUNT, decre~ents
it, and stores the result back into COUNT. If the result is not
zero, the return is executed and the rest of the CALLs in the
interrupt scheduler are exec~ted, the processor switched back to
ALPHA mode, interrupts enabled, and control passed bac\<to the
program that was interrupted. If the result is zero, CS$ is
called. It gets the location LABEL2 by popping the stack into th~
DE registers. It then gets the location INT1 by popping the stack
into the HL registers but leaves this value on the stack. It then
stores the DE register values (equal to the address LABEL2) into
the CALL at INiO and returns, causing execution to continue at
INT1. When the next interrupt occurs, the CALL at INTO will be to
LABEL2. '

39-4 DISK OPERATING SYSTEM

39.4 Timing Considerations

As mentioned before, the programmer must be careful with the
amount of time he uses when constructing interrupt driven
routines. Since the interrupt scheduler is entered every
millisecond, the total execution time of the four one millisecond
calls and the one four millisecond call must not average over one
millisecond if no interrupts are to be missed. Because of this
time restriction, the calls that are rotated in execution were
constructed to allow processes which do not require the higher
rate to not impose as much overhead on the system. When one is
constructing a foreground process and discovers that its execution
time is becoming excessive, he must break it down into several
states with each state using a more appropriate amount of time.
Note that the interrupt scheduler itself uses 130 microseconds
when there are no processes active.

(Timings given here and elsewhere relate to the Datapoint
1100 and 2200 Version II processors. Users with Datapoint 5500
computers (and not concerned with downward compatibility with
Datapoint 1100 and 2200 processors) will find that its increased
speed allows les~ restriction on the execution time of foreground
driven processes, assuming that the 5500 DOS is running in single
partition mods.) .

The 1100, 2200, and 5500 each contain a crystal controlled
clock Which causes an interrupt signal every millisecond plus or
minus ~O nanoseconds (.005%). When this signal occurs, a flag
within the processor, called Interrupts Pending, is set. Upon the
occurr~nc~ of an instruction fetch cycle when interrupts are
enabled and Interrupts Pending is set, the processor clears
Interrl,lpts Pending' and executes a CALL to location zero instead of
pertor~ing the normal instruction fetch. This implies that the
proces~o~ buffers interrupts one deep since Interrupts Pending
wilt remember the occurrence of an interrupt until tpey are '
enabled. ~ote that there is a delay between the actual time when
the' one millisecond signal occurs and the time when the CALL to
location zero is performed. This delay is equal to the length of
time between the occurrence of the interrupt signal and the
occurrence of a fetch cycle when interrupts are enabled. Since
the iinterrupt signal is asynchronous to when the background
program will have interrupts di~abled and even to when fetc~
cycles occur, jitter in the executio~ of the interr~pt scheduler
with relation to the actual occtirrence of the interrupt signal is
introduced. This jitt~r is of prime concern when dealing with
interrupt processes and its sources and analysis for purposes of
pro~ram construction are treated in the following paragrap~s.

CHAPTER 39. INTERRUPT HANDLING 39-5

There are two major sources of interrupt execution jitter.
The first is interrupts being disabled. The background program
must disable interrupts whenever it has the system in a state that
cannot be restored by the interrupt scheduler. The interrupt
scheduler assumes that the background does not use the BETA mode
of the processor and, therefore, that it can be used without being
restored when contrql is returned. ~ec~use of this, the
background program must have interrupts disabled whenever the BETA
mode of the processor is being used.

The other system state that cannot be saved is that of tbe
1/0 devices. When interrupts are active and the interrUpt dr~ven
routines are performing input or output operations, the background
routines must either not do any 1/0 or must disable interru~t$
when dealing with a device. If a background routine addresse~ a
given device without first disabling interrupts, it could be .
interrupted before getting around to using that device and tb~
interrupt routine could address some other device. When control
is passed back to the background routine, it will proceed with its
1/0 operation thinking that the device it addressed is still
addressed, whereas the device that the interrupt routine aco$ssed
is the one actually addressed and confusion will occur.
Therefore, any 1/0 operations performed by the background program
must have interrupts disabled from before the time the device is
addressed until after it is used.

Care must be exercised when disabling interrupts in the
background program to prevent the loss of an interrupt. Since
Interrupts Pending is only one bit of information, the occurrence
of another interrupt signal before the previous one is processed
will result in the state of Interrupts Pending not chang~ng (since
it will simply be set again and it is already set) and, therefore,
the occurrence of the second interrupt will not be reflected in
the state of the processor. This means that if interrupts are
disabled for more than one millisecond, an interrupt will be
dropped. In practice, interrupts should not be disabled in the
background for more than a few hundred microseconds for the
following reason:

SupposP. an interrupt process is active which is
taking chacac ters from a device at the ra te of 700
per second. This implies that a character must be
taken from this device on the average of one every
1.4 milliseconds (if the device contains a one
character buffer). Suppose further that the
interrupt process polled the device just before
the next character became available. At this
point, the process has about 1.4 milliseconds to

39-6 DISK OPERATING SYSTEM

get the next character before it will be
overstored by the following and cause a loss of
data. Normally, if interrupts were enabled, the
interrupt process would poll the device about 1.0
milliseconds later and get the character with time
to spare. However, if the background routine
disabled interrupts for 500 microseconds just
before the next interrupt occurred, the interrupt
process would not be executed soon enough and a
data character would be lost.

As the above example shows, the actual execution time
of the interrupt processes can be caused to jitter due to
the background routine disabling interrupts. The worst case
jitter is exactly equal to the maximum amount of time the
background routines disable interrupts. The DOS routines
disable interrupts no longer than 200 microseconds. The
maximum time tolerable is equal to the difference between
the time bet~een interrupts (1000 microseconds) and the
minimum time between necessary interrupt process executions
(1400 microseconds in the case above).

Another source of jitter can be in the execution time
of the foreground processes themselves. The jitter time for
interrupt zero is exactly equal to that due to interrupts
being disabled. However, interrupt one is not executed
until after interrupt zero and if interrupi zero consumes a
different ~mount of processor time on each interrupt,
interrupt one's "execution time will vary with respect to
when interrupt zero started execution. This is an
addi tional jitter' factor which must be calculated for
interrupt one. The same is true for the interrupts that
follow, but they vary even more since the start of each
succeeding interrupt process depends upon the total of the
execution times of all of the proceeding interrupt
processes.

39.5 DOS Usage

The DOS itself (i.e. excluding DOS functions and command
programs running under the DOS) uses the interrupt facility in
only two places. One is the debugging tool's dynamic P-counter
display (if it is turned on; uses interrupt zero) and the other is
for the cassette handling routines when used (uses interrupt one).
Both of these routines introduce a maximum of 400 microseconds of
jitter and 60nsume an average of 150 microseconds of processor
time (with peaks of 500 microseconds).

CHAPTr~R 39. INTERRUPT HANDLING 39-7

Users with Datapoint 550b computers and running the full 5500
DOS must consider other details relating to timing of foregrou,nd
routine~, particularly on foreground routines that deal with
non-DOS supported 1/0 devices. These details will be dealt with
more fully in the DOS System Manuals for the appropriate DOS.

39-8 DISK OPERATING SYSTEM

CHAPTER 40. SYSTEM ROUTINES

40.1 Parameterization

Parameters are passed to the subroutines through the
registers. In the discussion of these parameters, the following
abbreviations will be used:

also:

LFN - Logical File Number times 16 (16, 32, or 48)
LRN - Logical Record Number (the user's LRN)
PFN - Physical File Number
LFT - Logical File Table

Drive Number - indicate a logical drive number (0 through N).
(N varies wi th the DOS in use, bu.t in general will be
2**X-1; typically 3, 7, or 15). In some routines, 0377
is used to indicate that all drives are to be checked.

Name- the address of a field containing exactly eleven bytes.
The first eight bytes are the file name and the last
three bytes are the file extension by command
interpreter convention. The name characters may be any
eight bit combinations except the first character must
not be a 0377. The command interpreter requires that
the first and ninth characters be letters and that the
remaining be letters or digits with trailing spaces.

40.2 Exit Conditions

When a routine is used, it can either perform the expected
action or not. In the second case, some indication must be made
that the expected action did not occur. This is achieved by the
condition flags in the processor being set in a special manner or
by control being transferred to a trap location instead of being
returned via the subroutine mechanism. The 'Exit conditions'
section of each subroutine description shows the register contents
and condi tion flags of interest when the routine returns.

CHAPTER 40. SYSTeM ROUTINES 40-1

40.3 Error Handling

There are fatal and non-fatal errors. F'atal errors suggest
that the program is hopelessly confused and the only recourse 1s
to display what the problem appears to be and reload the operating
system. This is usually the result of a call being incorrectly
parameterized or the system tables on the disk being unusable.
The messages displayed are explained in the Chapter on Error
Messages.

Non-fatal errors concern various conditions such as parity
fail ures in the user's data, records of illegal format, violations
of a file's protection, or physical end of cassette. In some
cases these conditions can be detected upon the routine's exit as
explained in the section on Exit Conditions. In the other cases,
control is passed to a specified location (to the error message
routine if no location has been specified by the user) instead of
being returned via the normal subroutine exit mechanism.

There are actually two sets of traps. The first deals with
the disk routines and the second deals with the cassette routines.
The disk routine traps are described under the section on File
Handling Routines and the cassette routine traps are described
under the section on Cassette Handling Routines. The 'Traps'
section of each subroutine description indicates what conditions
will cause the relevant traps. These traps are referenced by
mnemonics which are defined in the section where the trap setting
routines are described (the section on TRAPS and TTRAP$). .

40.4 Foreground Routines

Section 4 contains a complete discussion on the functioning
and use of the foreground handling and should be consul ted for an
understanding of the following routines.

40.4.1 CS$ - Change Process State

CS$ changes a foreground routine's state. It is called by
the executing foreground routine and causes its execution address
to be changed to t~e address following the CALL CS$. Execution
will not continue at the new address until the next interrupt
occurs. CS$ is normally called from the outermost level (level 0)
of an active foreground process.

Entry point: 01033

Parameters: on subroutine stack - see the Chapter on Interupt

40-2 DISK OPERATING SYSTEM

Handling

Exit conditions: return is made to the scheduler

40.4.2 TP$ - Terminate Process

TP$ deactivates the process called by
a return instruction in the process call.
called. TP$ is invoked from the outermost
active foreground process.

Entry point: 01036

storing the address of
TP$ is jumped to, not
level (level 0) of an

Parameters: on the stack - see the Chapter on Interrupt
Handling

Exit conditions: no exit, return to Interrupt Scheduler

40.4.3 SETI$ - Initiate Foreground Process

. SETX$ activates the interrupt process specified by the number
in the C register (0-7) by storing the address given in the D and
E register into the CALL instruction for that process. Interrupt
processes' zero through three are executed every millisecond while
four through seven are eXecuted every fourth millisecond.

Entry poi~t: 01041

Parameters: C = process number (0-7)
DE = address of foreground process

Exit conditions: B,D,E unchanged
H,L = d

40.4.4 CLRI$ - Terminate Foreground Process

C~RI$ deactivates a foreground process by storing the address
of a return instruction into the process' call specified by the
number in the C register (0-7).

Entry point: 01044

Parameters: C = process number (0-7)

Exit co~ditions: B,D,E unchanged
H,L = a

CH~PTER 40. SYSTEM ROUTINES 40-3

40.5 Loader Routines

There are two levels of disk handling routines. This section
describes the lower level routines which reside in the loader and
require numbers physically describing the drive, cylinder, sector,
buffer, and file. The section on File Handling Routines desoribes
the upper level routines. .

INCHL and DECHL are described in this section only because
they are used by the DOS at all levels and because these two
routines are loaded as part of the bootblock. In general, the
other routines described in this section are not used by typical
user programs; most user programs will be better served by the
higher level routines described in the section on File Handling
Routines.

40.5.1 BOOT$ - Reload the Operating System

BOOT$ loads and executes the operating system (PFN a on
logical drive 0). This action does not affect the interrupt
handling facility between 01000 and 01377. Since BOOT$ requires
that the operating system always be loaded from specifically drive
zero, BOOT$ should normally only be used in cases where EXIT$ is
unusable, for example if the disk handling routines have been
overstored. BOOT$ does not close any files before reloading the
DOS.

Entry point: 01000

Parameters: none

Exit conditions: does not return

40.5.2 RUNX$ - Load and Run a File by Number

RUNX$ loads the physical file specified and begins its
execution. If the file cannot be loaded, a jump to BOOT$ occurs.

Entry point: 01003

Parameters: A = PFN
C = Drive Number

Exit (~onditions: does not return

40-4 DISK OPERATING SYSTEM

40.5.3 LOADX$ - Load a File by Number

LOADX$ loads the physical file specified and returns with the
starting address in HL if the load was successful.

Entry point: 01006

Parameters: A = PFN
C = Drive Number

Exit conditions: Carry false: HL = Starting address of file
Carry true: A=O if file does not exist

1 if drive off line
2 if directory parity fault
3 if RIB parity fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

40.5.4 INCHL - Increment the Hand L Registers

INCHL increments the sixteen bit value in the HL registers by
one. ,If the routine is entered at INCHL+2, the sixteen bit value
in the HL registers will be incremented by the number in the A
register.

Entry point:

Parameters:

Exit condition~:

01011 (01013 for increment by A)

HL = number to be incremented
A = increment value if INCHL+2 used

ffL incremented
A ~qual to the H-register
B,C,D,E unchanged
CARRY condition undefined

40.5.5 DECHL - Decrement the Hand L Registers

DECHL decrements the si~te~n bit value in the HL register~ by
one. If the routiqe' is entered at DECHL+2, the sixteen bit value
ih the HL registers will be decremented by negative the number in
the A register (e.g., for decremention of 2, A is set to -2).

Entry point: 01022 (01024 for, decrement by -A)

CHAPTER 40. SYSTEM ROUTINES 40-5

Parameters: HL = number to be decremented
A = decrement value if DECHL+2 used

Exit conditions: HL decremented
A equal to the H-register
B,C,D,E unchanged

40.5.6 GETNCH - Get the Next Disk Buffer Byte

GETNC,H gets the character from the physical disk buffer
location pointed to by low memory location DOSPTR (location 026)
from the disk buffer currently selected and then increments the
contents of the location DOSPTR.

Entry point: 01047

Parameters: DOSPTR = disk buffer address (0-255)

Exit conditions: A = character from disk buffer
(DOSPTR) = (DOSPTR)+1
B,C,D,E,H,L all unchanged

40.5.7 DR$ - Read a Sector into the Disk Buffer

DR$ causes a sector to be transferred from the disk to one of
the disk controller buffers. The drive number is given in the
least significant bits (the others are ignored) of location
TFT+PDN (5). (The number of bits ignored depends upon the
particular DOS in use). The physical disk address (LSB) is given
in the E register and the physical disk address (MSB) is given in
the D register. The disk controller buffer number times sixteen is
given in the B register. Interrupts are disabled by this routine
a maximum of 100 microseconds.

Compatibility note: Here the user should be reminded that
the physical disk address format will vary; the user's program
should not make assumptions regarding this format if the program
is to be transportable between different DOS. The most
~ignificant byte is generally a cylinder number, and the least
significant byte is a sector address within a cylinder. This
least significant byte will generally be the more at variance
among DOS. In general, the only safe way to insure a valid,
proper physical disk address (PDA) is to get it as a returned item
from a system routine (POSIT$ or one of the DOS FUNCTIONs, l~') be
described later). User program generation of or manipulation of
physical disk addresses is strongly discouraged.

40-6 DISK OPERATING SYSTEM

DR$ tries between four and ten times to read a record
(depending upon the disk drive type in use), if parity faults are
detected, before giving an abnormal exit status. Note that since
this routine is used by all of the higher level routines, all disk
reads performed by the disk operating system try to read a record
that shows parity problems that same number of times before giving
up.

Entry point:

Parameter:

01052

B = 16 times buffer number (0,16,32,48)
D = physical disk address (MSB)
E = physical disk address (LSB)
TFT+PDN (at loc 5) = logical drive number

Exit conditions: B,D,E,TFT & PDN all unchanged
Carry false if read successful
Carry true and Zero false if drive off line
Carry true and Zero true if parity fault

40.5.8 DW$ - Write a Sector from the Disk Buffer

DW$ causes the contents of one of the disk controller buffers
to be transferred to a sector on the disk. If the write protection
on the specified drive is enabled, DW$ will beep continuously
until the protection is disabled.

There are two types of write protection in the disk operating
system. The fir~t type is a physical protection that is part of
the disk drive hardware which will cause DW$ to bee'p if set \ The
second type of write protection is a logical proterition that is
connected with each file on a disk. A bit exists in the directory
entry for each file which, if set, will prevent the higher level
routines (for example, WRITE$) from calling the DW$ routine. It
is important not to confuse thase two types of write protection.
All references to write protection that follow refer to the
logical protection on each file and not to the physical protection
on the drive itself.' ,

In DOS, DW$ uses the write/verify mode of the disk
contro~ler. This implies that all writes made by these disk
operating systems use this mode of writing. As in the DR$
routine, several tries will b~ made if parity faults occur before
abnormal exit will occur. In all other respects, DW$ is similar
to DR$. . , .

En t Y' Y po in t : 01055

CHAPTER 40. SYSTEM ROUTINES 40-7

Parameters: B = 16 times buffer number (0,16,32,48)
D = physical disk address (MSa)
E = physical disk address (LSB)
TFT+PDN (at loc 5) = drive number

Exit conditions: B,D,E,TFT & PDN unchanged
Carry false if read suocessful
Carry true and Zero false if drive off line
Carry true and ZQro true if parity fault

40.5.9 DSKWAT - Wait for Disk Ready
I .

DSKWAT waits for di$k ready, controller ready, no diSk I/q
transfer in progress, and drive .on11ne to all be true. If the·
drive is not qnline, return is made wi th the carry flag true ~, ~h~
zero flag false, and interrupts enabled. Otherwise, exit i8~a4e
with interrupts disabled. This routine is obsolete and is not
available under some systems (e.g. PS). Therefore, it should no
longer be used.

Entry point: 01060

Parameters: none (drive checked is the selected drive)

Exit conditions: explained above
B,C,D,E,H,L unchanged

40.6 File Handling Routines

A file is dealt with as a logically contiguous and,~~hd0P11Y
accessible space. The file being used is specified by its symbolic
name . The LRN being deal t with wi thin that file is dete(~mined by
a two-byte number kept wi thin the system (LRN in the LFT.). When
a file is opened, this number is set to two.

A bit of explanation may be call ed f.or here. This two
corresponds to user logical record number zero; the LRNin the LFT
is the system LRN. System LRN zero is the primary RIB for the
file and system LRN one is the RIB backup. System LRN two is the
first user dat& sector. It is important to recognize this
distinction between system and user logical record numbers. All
logical record numbers supplied to system routines (e.g. POSIT$)
are ~ logical record numbers. These are converted to ~x§t~m
logical record numbers before being used by the DOS or placed into
the LFT.

After each record access (READ$ or WRITE$)~ LRN is

40-8 DISK OPERATING SYSTEM

incremented. Thus, for sequential accesses, the user does not
actually specify which record he is dealing with. However, a
routine exists whicto allows the LRN to be changed to any val ue
between zero and the upper limit on the file, POSIT$, providing a
random access facility. (This upper limit depends upon the DOS in
use). Note that, since no end of file mark is intrinsic to the
system, the user must provide his own special data record to
denote an end of file during sequential accesses.

If a user wishes the option of processing his files using the
standard 'DOS utility programs (SAPP, LIST, REFORMAT, etc.) then
his EOFmark sh.ould follow DOS EDITOR conventions:

1) The first six user data bytes in the
EOFmark sector are binary zeros.

2) The seventh user data byte in the EOFmark
sector is a binary three.

For example: Assume the user has moved the last data
record to be written to the appropriate disk buffer. (The
terminating 03 is assumed to be there also). The following
sequence will write the final record and create a valid DOS
EOF'mark:

EOFPUT

LB
CALL
XRA
CALL
CP
JTC
LA
CALL
CALL
CALL

LFn
WRITE$

PUTt
9
EOFPUT
3
PUTt.
WRITE$
CLOSEt

Specify output LFN
Write last data record
Set A to binary zero
Output zero to buffer
6 Bytes written?
Repeat as needed
Set A to binary three

.Last byte of EOFmark
Write the EOFmark
And close the file

40.6.1 PREP$ - Open or Create a File

PREP$ searohes the directory or directories specified for the
gi v en name. If the nalr.e is found, the file is simply open ed for
use as the specified ldgical file number. Otherwise, a new file
having the name specified will be created. If a new file is
created, an end of file by GEDIT convention (six zeros followed by
an 003) is written in logical record zero. Whether the file is
simply opened or is created, the information describing it is
stored in the LFT entry specified so that all subsequent
references to that file by its LFN will be able to deal with the
correct locations on the dis~. If the LFT entry specified is

CHAPTER 40. SYSTEM ROUTINES 40-9

already in use when PREP. is called, the file that the .ntry
specifies will be closed (see the section on CLOSEt) and then the
new file opened in its place.

DE is normally the address of an 11-byte string whl.O:,b is the
name of the file being specif~ed (as explained before uncfer the
section on PARAMETERIZATION. However, if the D register ,. ,ero
then the E register contains the phy~~cal file number. t_,
ability to reference files by number makes it possible to avo~d
the substantial' time required, to search the directory for a name.
If the PFN is already in use, a 'SPACE' trap will occur.
Otherwise, the file of that number will be created. When a file
is created by number, it~ name in the directory consists of all
0377 characters, preventing it from being accessed symbolically or
being listed by the catalog listing command. When a PFN is
supplied, a particular drive must be specified (0377 may not be
specified as a drive number).

Entry point:

Parameters:

01063

B :: LFN
C : Drive Number or 0377
DE: Name or D=O and E::PFN

If PFN given, C must not be 0377.

Exit conditions: B : LFN; other registers indeterminate

Traps: SPACE if a new file must be allocated and
no space is left or no more direc'tory
entries are available

OFF-LINE If the DRIVE specified is off-line.

40.6.2 OPEN$ - Open an Exi,sting File

OPEN$ is similar to PREP:$ except for the action taken if the
file specified does not exist. In this case, return is made with
the Carry condition true (return is made with it false if the file
exists). Action is similar if a PFN is supplied instead of the
name. If the PFN specified exists, the file is opened and return
is made with the Carry condition false. Otherwise, return is made
with the Carry condition true.

Entry point: 01066

Parameters: same as for PREP$

Exit conditions: B :: LFN; other registers indeterminate
Carry true if the file is non-existent

40-10 DISK OPERATING SYSTEM

Traps: none

40.6.3 LOAD$ - Load a File

LOAD$ opens the specified file as logical file zero and then
calls the system loader to load it into memory. Exit is made with
the Carry condition set if the file is non-existent, or if the
drive specified (if any) is off line. If the load is successful,
return is made with the starting address in the Hand L registers.

Entry point: 01071

Parameters: same as for PREP$ (except B not required)

Exit conditions: B = LFN (always zero)
HL = starting address if good load
Carry true if file non-existent or drive off-line

Traps: OFFLIN
RPARI'l'
RANGE
FORMAT

drive went off line after loading began
flle contains parity fault
loader ran orf end of file
record of bad 10ad<.'t' format

40.6.4 RUN$ - Load and Run a File

RUN$ opens the specified file as logical file zero and then
calls the system loader to load it into memory. Return is made 'to
following the call if the name specified cannot be found in the
directory or directories specified. If any loading errors occur,
the operating system is reloaded. Otherwise, control is
transferred to the starting address given by the loader.

Entry point: 01074

Parameters: same as for PREP$
(except that B is not req~ired)

Exit conditions: returns if name not in directory
operating system reloaded if bad load
otherwise, control is passed to the
starting address of the new file.

Traps: none

CHAPTER 40. SYSTEM ROUTINES 40-11

40.6.5 CLOSE$ - Close a File

When new space is allocated for a file, a ;Large contiguous
piece (up to one full segment) is taken in an effort to keep the
file as physically contiguous as possible. When this alloc.ation
takes place, a flag in the LFT, called the new space allooated
flag, is set. The LFT also contains a number which is the largest
LRN referenced while the file was open. When CLOSE$ is called,
the file is physically truncated after the largest LRN referenced,
if the new space allocated flag is set. Thus, if only a few
records of the new space allocated have been used, the rest of the
space is freed for use in other files. However, if all of the
space is used, the file will consist of a large amount of
physically contiguous space. Note that if CHOP$ was called with
the D register set to -1 (0377), and the LRN in the LFT has not
been changed, a call to CLOSE$ will delete the entire file and
remove its entry from the directory.

After the file has been truncated, if necessary, CLOSE$ then
writes the copies of the protection bits and old file length limit
field that are in LFT entry back into the directory. Therefore,
one only needs to change these entries in the LFT and then close
the file to have them changed in the directory. This is the basis
for the functioning of the CHOP$ and PROTE$ routines. Since the
protection bits and old file length limit field are not changed on
the disk until the CLOSE$ routine is called, if one changes these
numbers and then, for some reason, reloads the system without
c~lling the CLOSE$ routine (by depressing RESTART before the file
is closed, for example) the disk will retain the old values.

After the protection and file length limit have been stored
in the directory, CLOSE$ then vacates the LFT entry specified.
This is achieved by storing an 0377 in the second byte of the
entry (this is the drive number and 0377 denotes that the LFT
entry is not in use). CLOSE$ simply returns if the LFT entry is
not in use.

Entry point: 01077

Parameters: B = LFN (16,32,48; 0 => NOP)

Exit conditions: B = LFN; other registers indeterminate

Traps: none

40-12 DISK OPERATING SYSTEM

40.6.6 CHOP$ - Delete Space in a File

CHOP$ sets the maximum LRN value kept in the LFT and s~ts the
new space allocated flag if no protection is set. If the CLOSE$
routine is called after the call to CHOP$ without the LRN being
changed, the space after the specified LRN will be physically
deleted from the file, making it free again for allocation by the
system. Note that if the D register is set to -1 (0377) upon
entry to CHOP$, calling the CLOSE$ routine will completely delete
the file from the system (removing its entry from the directory as
well as freeing all of its space). When an entry is deleted from
the directory, all sixteen bytes of the directory for that entry
are set to 0377. This is the same value for an unused directory
entry that is set by the system generation program.

CHOP$ changes the MAXLRN field in the LFT to the LRN supplied
as the parameter. (Note: CHOP$ makes provision here for the two
RIBs and biases the LRN supplied by the user by two before placing
it into the LFT MAXLRN field). Remember that calling CHOP$ only
affects the LFT entry and that no physical change on the file is
effected until CLOSE$ is called.

Entry point: 01102

Parameters: B = LFN
DE = LRN if D not less than zero
d = -1 (0377) to delete entire file

Exit conditions: B = LFN; other registers indeterminate

Traps: RANGE
DVIOLA
WVIOLA

DE not les~ than MAXLRN referenceq
delete protection is set
write protection is set

40.6.7 PROTE$ - Change the Protection on a File

PROTE$ changes the file protection bit and/or upper file
length limit copies that are kept 1n the LFT. The protection
bits, given in the C register, are changed only if the least
significant bit of the C register is a ooe .. T~e old upper file
length limit field is changed only if the sign .bit of D is one on
entry. Therefore, setting the number to zero prevents the limit
field from being changed. Note that the file length field is
obsolete and is no longer used by the DOS; it is maintained for
future use, probably as a file type designation field.

CHAPTER 40. SYSTEM ROUTINES 40-13

Entry point:

Parameters:

01105

B = LFN
C = new protection:

CO = 1 for protection change
C6 = 1 for write protection
C7 = 1 for delete protection

DE = new LRN limit field; 0 for no change

Exit conditions: B = LFN; other registers indeterminate

Traps: none

40.6.8 POSIT$ - Position to a Record within a File

POSIT$ positions the file logically to the user LRN given. If
the user LRN given is -1, the current value in the LFT is used for
positioning the head and the LFT entry is not changed. Note that
positioning to user LRN zero performs a logical 'rewind' of
sequential files.

Entry point: 01110

Parameters: B = LFN
DE = LRN (use LRN from LFT if DE = -1)

Exit conditions: B = LFN
D = Physical Disk Address (MSB)
E = Physical Disk Address (LSB)
ZERO FALSE:. DE are valid, position was valid
ZERO TRUE: DE are invalid, specified sector not

in allocated space
other registers indeterminate

Traps: none

40.6.9 READ$ - Read a Record into the Buffer

READ$ c~uses the record, pointed to by theLRN in the LFT
entry specified by the LFN given, to be transferred from the disk
to the disk controller buffer that corresponds to the LFN given.
The LHN is incremented by one after the read if it was successful.
READ$ tries four times to read a record, if a parity fault ~s
detected, before giving the trap. Attempting to read a record
that is not physically allocated will cause the 'RANGE' trap.

~ntry point: 01113

Parameters: B = LFN

40-14 DISK OPERATING SYSTEM

Exit conditions: B = LFNj other registers indeterminate

Traps: RANGE
RPARIT
FORMAT
OFFLIN

LRN out of range
record unreadable
PFN or LRN in record incorrect
drive off line

40.6.10 WRITE$ - Write a Record from the Buffer

WRITE$ first takes the PFN and LRN values from the LFT entry
specified by the LFN given and stores. them into the first three
bytes of the disk controller buffer that corresponds to the LFN
given. It then transfers that buffer to the sector on the disk
specified by the LRN in the LFT entry specified by the LFN given.
The LRN is incremented after the write if it is successful. Note
that all system routines use DW$ in writing records and hence try
up to four times to obtain a good write, if a parity fault is
detected, before giving the trap.

If WRITE$ tries to write a record which would not go in a
place that has been physically allocated, it will automatically
try to allocate more space. If the space is available, it is
allocated and the write occurs. If there is no more physical
space on the disk or if there are no more entries in the RIB
available for the new segment descriptor, a 'SPACE' trap is given.

Entry point: 01116

Parameters: B = LFN

Exit conditions: B = LFNj other registers indeterminate
LRN = LRN + 1

Traps: WVIOLA
WPARIT
OFFLIN
RANGE
SPACE

file is write protected
write/verify failure
drive off line
LRN < 0
explained above

40.6.11 GET$ - Get the Next Buffer

The LFT contains an entry called BUFADR (not to be confused
with loco 026 used by GETNCH) which points to a character in the
disk controller buffer that corresponds to the given LFN. Each
buffer contains 256 characters but ~ince the system uses the first
three bytes in each sector to store the PFN and the LRN of each
record, the user has only 253 bytes available.

CHAPTER 40. SYSTEM ROUTINES 40-15

Whenever READ$, WRITE$, or POSIT$ are executed, they set the
buffer pointer mentioned above to point to the third byte in the
disk controller buffer associated with the given LFN (by setting
the ~UFADR field of the LFT entry to a three). Whenever GET$ is
called, the byte pointed to by this pointer is fetched from the
disk controller buffer and the pointer is incremented. If the
byte being returned is not a valid user data byte (i.e. BUFADR was
0,1,or 2 on entry) then carry is true on return, and register A
contains the specified byte of the buffer (which will be PFN or
one of the LRN bytes.) Note that the next buffer is not read
automatically from the disk; the pointer simply ends-around. Upon
the first call of GET$ which returns carry true, the PFN will be
obtained since it is contained in buffer location zero. The first
three bytes may also be accessed by simply setting the buffer
pointer contained in the LFT entry to the desired location.

Entry point: 01121

Parameters: B = LFN

Exit conditions: A = the byte obtained from the buffer
All other registers preserved
Carry true if location 0,1,or 2 accessed

Traps: none

40.6.12 GETR$ - Get an Indexed Buffer Character

. GETR$ is similar to GET$ except that it uses the logical
buffer address supplied in the C register instead of the physical
buffer address in the LFT for the address of the disk buffer byte
to return. Calling GETR$ has no effect on the buffer pointer kept
in the LFT. The physical buffer location is obtained by adding
three to the value given in the C register to skip past the system
data in the first three bytes in the disk buffer. Thus the user
is presented with a logical space within a record that is
addressed from ° through 252. Normally, GETR$ exi ts wi th the
value in the C register incremented by one and the carry condition
false. However, if the C register is between 253 and 255
(inclusive) upon entry, it will not be incremented and exit will
be made with th3 carry condition true. In either case, the buffer
byte located by the C register value plus three is returned in the
A register. Therefore, the user may obtain any buffer byte with
GETR$ but must remember to supply an address which is the physical
buffer address minus three and remember not to assume that the C
register will be incremented if he plans to access one of the
first three physical bytes.

40-16 DISK OPERATING SYSTEM

Entry point: 01124

Parameters: B = LFN
C = buffer location

Exit oonditions: A = byte obtained

Traps:

C = C + 1 if carry false
Carry true if 252 < C < 256
All other registers preserved

none

40.6.13 PUT$ - Store ipto the Next Buffer Position

PUT$ is similar to GET$ except that the byte presented in the
A register on entry is stored into the buffer. Also, on return
register A contains the physical address of the next byte to be
accessed'in the disk buffer. Carry is true if the byte stored was
stored into the last physical location in the buffer. Here a
reminder is appropriate: remember that in standard, EDIT-format
records, the last two pytes (at least) of the buffer are not used,
and an 03 occurring earlier in the sector indicates
logical-end-of-sector. (A complete description of the format for
EDIT-compatible text files can be found in the chapter describing
the REFORMAT command.)

Entry point:

Parameters:

01127

A = the byte to be stored in the buffer
B = LFN

Exit conditions: A as described above (physical a~dress of next
byte)

All other registers preserved
Carry true if location 255 was stored into

Traps: none

40.6.14 PUTR$ - Store into an Indexed Buffer Position

PUTR$ is identical to GETR$ except that the byte presented in
the A register is stored into the buffer.

Entry point:

Parameters:

01132

A = byte to be written
B = LFN
C = logical buffer location

CHAPTER 40. SYSTEM ROUTINES 40-17

Exit conditions: C = C + 1 if carry false
Carry true if 252 < C < 256
All other registers preserved

Traps: none

40.6.15 BSP$ - Backspace One Physical Sector

BSP$ decrements the LRN in the LFT entry specified by the LFN
given and then executes POSIT$. No check is made to prevent
calling BSP$ from backing P into a RIB. However, if one calls BSP$
and attempts to backspace back beyond system LRN 0 (user LRN -2,
which is the master RIB) ZERO TRUE will be returned (as for
POSIT$) .

Entry point: 01135

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate

Traps: none

40.6.16 BLKTFR - Transfer a Block of Memory

BLKTFR moves the number of bytes specified in the C regist~r
(0 causes transfer of 256 bytes) from the memory location starting
where HL points to the memory location starting where DE points.
Note that since exit is made with HL and DE pointing after the
last byte moved and C equal to zero, transfers of more than 256
bytes may be made by first setting C to zero, calling BLKTFR
enough times to make the residual number of bytes to transfer less
than 256, setting C to the residual number of bytes to be
transferred, and then calling BLKTFR one last time. For example:

HL SOURCE
DE DEST
LC 0
CALL BLKTFR
CALL BLKTFR
LC 25
CALL BLKTFR

will cause 537 bytes to be transferred from SOURCE to DEST.

Entry pOint; 01143

Parameters: C = number of bytes to be moved

40-18 DISK OPERATING SYSTEM

(0 moves 256 bytes)
HL = source address
DE = destination address

Exit conditions: HL = HL + C (HL + 256 if C = 0)
DE = DE + C (DE + 256 if C = 0)
B = unchanged
C = zero

Traps: none

40.6.17 TRAP$ - Set an Error Condition Trap

There are eight non-fatal error conditions, concerning the
disk operating system file handling facilities, that may be
trapped by the user. If the trap corresponding to a certain error
is not set by this routine, the system displays a pertinent
message and reloads the system. Otherwise, control is transferred
to the address specified when the trap was set, with the
subroutine return address stack in the state it had before the
calling of the file handling routine that caused the error
condition.

The only disk errors that cannot be trapped are ones
associated with the system tables on the disk. The occurrence of
these errors causes the message

FAILURE IN SYSTEM DATA

to be displayed. The other errors that cannot be trapped have to
do with: the LFT entry not being open when a routine which tried
to use data from the entry was called, invalid logical file
numbers, invalid drive numbers, .invalid trap numbers, and invalid
physical file numbers. '

If a trap occurs during a call to READ$ or WRITE$, the
logical record number (LRN) in the logical file table (LFT) is NOT
incremented; if the user wishes to continue processing records
past the one which caused the trap, he must increment the LRN in
the LFT himself first.

TRAP$ sets the trap whose number is given in the C register
to the address supplied in the D register (MSB) and E register
(LSB). The trap is cleared by callihg TRAP$ with D and E aqual to
z~ro. The trap is alsO cleared when the error condition occurs,
at which time the B register will be loaded with the Logical File
Number involved and control transferred to the indicated addrBss.

CHAPTER 40. SYSTEM ROUTINES 40-19

In the following table, the mnemonic given after the trap
number is the one used in the previous routine explanations. The
capitalized lines are the messages displayed if the trap is not
set.

o - RPARIT - PARITY FAILURE DURING READ
A parity fault while reading a data record causes this
trap.

1 - WPARIT - PARITY FAILURE DURING WRITE
A parity fault while writing a data record causes this
trap.

2 - FORMAT - RECORD FORMAT ERROR
The physical file number or logical record number in the
record read not matching the ones contained in the logical
file table entry causes this trap. The physical position
of a record is obtained from information in the retrieval
information block and the PFN and LRN in the record are
only checked to ensure that the drive is functioning
correctly and that the user is not trying to read a record
he has not written. This trap has nothing to do with the
253 data bytes provided to the user.

3 - RANGE - RECORD NUMBER OUT OF RANGE
During a read, an access below zero or to a record above
the currently allocated space causes this trap. During a
write, an access below zero causes this trap.

4 - WVIOLA - WRITE PROTECT VIOLATION
An attempt to write on, delete, or shorten a file with the
write protection bit set causes this trap.

5 - DVIOLA - DELETE PROTECT VIOLATION
An attempt to delete or shorten a file with the delete
prqtection bit set causes this trap.

6 - SPACE - FILE SPACE FULL
An attempt to allocate more space when either the disk is
full or no more segment descriptor ,slots in the RIB are
available causes this trap.

7 - OF~LIN - DRIVE OFF LINE
An attempt to use a drive that is either physically absent
or not online causes this trap.

Note that the causes given for the various traps are the
causes for DOS to issue the appropriate messages. Some of the DOS

40-20 DISK OPERATING SYSTEM

Command programs also cause the issuance of some of these messages
for related reasons. For example, several DOS Utilities indicate
a RECORD FORMAT ERROR if the sector formatting of a file being
processed does not follow GEDIT (or DOS EDITOR) standards. In
cases such as this the above details are sometimes not valid
descriptions of the problem; here the 253 data bytes encountered
may have everything to do with the cause of the record format
error.

Note also that FORMAT and RANGE traps are frequently the
result of sequentially reading or otherwise processing a file
which has no valid EOFmark, resulting in the program running off
the logical end of the file.

Entry po in t:

Parameters:

01146

DE = trap address
C = trap number

Exit conditions: register contents indeterminate

Traps: none

40.6.18 EXIT$ - Reload the Operating System

EXIT$ oloses any logical files (one through three) that are
open and then reloads the operating system. EXIT$ is the normal·
exit for all DOS programs. If drive zero is off line when EXIT$
is reached (or if the DOS is unloadable from there for any reason)
an automatic drive switch occurs (indicated by a beep) and an
attempt is made to load the DOS.from the next drive in sequence.
The automatic drive switch and beep is repeated until the DOS is
successfully loaded. One jumps to this entry point.

Entry point: 01151

Parameters: none

Exit conditions: no exit

Traps: none

CHAPTER 40. SYSTEM ROUTINES 40-21

40.6.19 ERROR$ -- Reload the Operating System

ERROR$ is identical to EXIT$ in all respects except for the
fact that jumping to ERROR$ will abort an active CHAIN (refer to
the CHAIN command in this manual for more details). A user
program would exit through ERROR$ if an error of severity
suggesting aborting a CHAIN occurred.

Entry point: 01140

Parameters: none

Exit conditions: no exit

Traps: none

40.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine

This routine, after being called, returns with all registers,
condition codes, and the stack preserved; in effect a "NOP".
Normally, the return is immediate. If the Partition Supervisor 1s
active, it time-slices to the other partitions before returning, a
delay of several (maybe 10 or 20) milliseconds. This routine
should be used in loops which wait for time non-critical
conditions to occur (e.g. waiting for the keyboard operator to
release the DISPLAY key), allowing the other partitions more
processing time. I/O status, including in particular the device
addressed, is subject to change on return.

Entry point: 01170

Parameters; none

Exi4 Conditions: ijegisters and condition codes unchanged

Traps: None

40~7 Keyboard and Display Routines

40-22 DISK OPERATING SYST?M

40.7.1 DEBUG$ - Enter the Debugging Tool

The debugging tool enables the programmer to load files by
number, examine and modify memory locations, set break points, and
execute sections of his program. This facility greatly simplifies
the task of debugging machine language programs.

The debugging tool can be entered from the command
interpreter by entering a single pound sign (#) on the command
line or from the user's program by jumping to the entry point.
When it is executing, two numbers are displayed vertically in the
last column of the 'screen. The top number, consisting of five
digit~, is an address and the bottom number, consisting of three
digits, is the content of that address. After these numbers are
displayed, input is requested from the keyboard as indicated by a
flashing cursor. Command,s to the debug'ger are given in the form
<n>X where <n> is any number of octal digits and X is a command
charpcter. The command is executed immediately upon depression of
the command character key without waiting for the ENTER key (the
ENTER character is a command in itself).

All keys that are not recognized are ignored with a beep
signaling the rejection. The BACKSPACE key is ignored but since
commands use only the lower eight or sixteen bits of <n>, errors
in the entry of numbers can be corrected by striking several zeros
and then entering the correct digits. Alternatively, the CANCEL
key causes the current input line to be erased without changing
the current address. Although display stops if the cursor runs
off the screen during input, characters are still accepted,

The debugger maintains a current address that is usually
displayed as the five digit numb~r at the right of the screen.
There are times, however, when the five digits at the right of the
screen do not reflect the current address and caution must be
exercised to avoid confusion as to the value of the current
address. The ENTER key is normally used to change the current
address, but depressing it without preceding it with any digits
will caus~ the current address to be displayed. Therefore, if
there is any'doubt about the number being displayed on the screen,
simply depressing the ENTER key will ensure that the current
address ij being displayed.

Whenever the debugger is entered either from the jump to the
entry poirlt or from a return from a break point or call command, a
beep is given and the state of all of the alpha mode registers an~
condition flags is saved. The value initially displayed is the
top of ' the stack at entry, unless DEBUG was entered from a DOS

CHAPTER 40. SYSTEM ROUTINES 40-23

DEBUG breakpoint; in this case the address displayed is the
address where the breakpoint was set. In all cases, the stack is
preserved as at entry and the current address is set to the
address displayed at entry. This enables the user to tell exactlY
the state of his program when the debugger was entered. Whenev~!"
a memory location is call ed or jumped to, the state of all of the
alpha mode registers and condition flags is restored from the
values saved at entry. Since these values are saved in memory,
the programmer ~an simply modify these locations to change the
values used to initialize the state of the alpha machine before
control is transferred.

The major debugging technique is the setting of break points
at critical places in the program and the execution of portions of
the program while checking the values of the registers and
critical memory locations at each break. The debugger sets a
break point by storing a jump instruction, to a special entry
point in itself, in the current address and the following two
locations. (Notice that setting break points less than three
bytes apart is therefore not a good idea.) Before the jump is
stored, the content of the memory locations to be used is saved in
a table in the debugger. When the break point is reached, the
memory locations are restored with their original contents. A
maximum of four break points may be active at anyone time. A
command is provided for insuring that all break points have been
restored. When a break point is executed, the current address is
set to the first byte of the break point jump instruction. Since
the J command causes a jump to the current address if no digits
precede it, one can continue execution of the routine that was
broken by simply depressing the J key. Execution will continue
with the first byte that was overstored by the break point jump
with the state of the alpha machine exactly like it was before the
break occurred. Thus, the programmer can set a break point, start
execution, examine the registers when the break occurs (since
register viewing does not change the current address) and then
depress the J key to continue execution. This technique allows
him to practically single step his program.

ENTRY POINT: 01154

COMMANDS:

B - Set a break point at the location given or, if no number is
given, at the current address. Caution should be exercised to
insure that the current address is pointing to the desired
location if it is used.

C - Execute a call to the number given or, if no number is given,

DISK OPERATING SYSTEM

to the current address. The alpha machine state is loaded
from the values saved in the debugger before the call is .'
executed. A return to the call causes the debugger to be
re-entered and the alpha machine state to be saved.

D - Decrement the current address (any digits given are ignored).

G - Get the physical file specified from the disk. Care must be
exercised that a file is not loaded that will overlay the
debugger (locations 0-01377 and 06000-07377). If the file
does not exist or contains a record of illegal loader format,
a beep will be given. The first digit of the last four
entered is the logical drive number from which the file is to
be loaded. The following three digits are the physical file
number. For example, 02003G will load SYSTEM3/SYS from drive
two. To load PFN 0115 from drive 0, simply enter 115G.

I - Increment the current address (any digits given are ignored).

J Execute a jump to the number given or, if no number is given,
to the current address. The alpha machine state is loaded
from the values saved in the debugger before the jump is
executed.

M - Modify the contents of the current address. The least
significant eight bits of the octal number given before the
command character are used for the new memory value. If no
digits are given, a zero is assumed.

P ~ Turn on the P-counter display (to the left of the current
address). This display is a foreground driven routine which
takes the value of the P-counter when the interrupt occurred
and displays it vertically. This implies that the value shown
is the background P-counter at 32 millisecond sample points.
When the display is active, simultaneous depression of the
KEYBOARD and DISPLAY keys will cause the debugger to be .
entered regardless of what is currently being executed in the
background. When such entry occurs, the current address
points to the location where the background program was
interrupted so that execution can be resumed with the J
command.

R - Display the saved alpha mode register value. The registers
are referenced by number (O-A, 1-B, 2-C, 3-D, 4-E, 5-H, 6-L,
and 7-Conditions). The condition code is stored with bits
7=Carry, 6=Sign,bits 5 through 2 always zero, 1=(-Zero and
-Sign), and O=(-Zero and -Parity). (The easiest way to
understand this is to realize that the condition code as

CHAPTER 40. SYSTEM ROUTINES 40-25

displayed, added to itself, results in restoring all four
conditions to their entry values.) When a register is
displayed, the address shown is the memory location used to
store the value of that register. This does not, however,
affect the current address. The registers may be initialized
for a C or J command by simply storing into the memory
locations displayed when the registers are displayed.

x - Turn off the P-counter display.

- Clear all break points. The current address will reflect the
location of the last point cleared.

- Perform the M command followed by the I command.

CANCEL - Erase the entered number without changing the durrent
address.

ENTER - Change the current address to the digits entered. If no
digits are entered, the current address in effect will be
displayed.

40.7.2 KEYIN$ - Obtain a Line from the Keyboard

KEYIN$ obtains a string of characters from the keybO$rd,
displaying them on the screen and storing them in memory ,$S 'they
are entered. Its operation is identical to the KEYIN$ rQutine
contained in the Cassette Tape Operating System. When K!YIN$ is
called, the cursor is turned on and characters requested.
Backspacing off the beginning of the line, entering more than the
specified maximum number of characters, or running off the screen
is prevented. The routine turns off the cursor and returns when
the ENTER key is depressed.

Entry point:

Parameters:

01157

C = maximum number of characters accepted
D = initial horizontal cursor position
E = vertical cursor position
HL= starting location of input buffer

Exit conditions: String terminated by 015
HL= pointing to the 015

40-26

D = horizontal position of ENTER
E = unchanged

DISK OPERATING SYSTEM

40.7.3 DSPLY$ - Display a Line on the Screen

DSPLY$ displays a string of characters stored in memory on
the screen. Certain characters denote control functions according
to the following table:

003 - end of string
011 - new horizontal position follows
013 - new vertical position follows
015 - end of string with CR/LF
021 - erase to end of frame
022 - erase to end of line
023 - roll up one line

This routine is identical in function to the DSPLY$ routine in the
Cassette Tape Operating System. If the string to be displayed
starts with either or both horizontal or vertical cursor controls,
then either or both of the corresponding values need not be in D
or E at entry. If the cursor is not positioned on the screen with
1)1': Ull 011 and 013 the result~3 of 021, 022, or 023 are undefined.

Entry point:

Parameters:

01162

D = initial horizontal cursor position
E = initial vertical cursor position
HL points to string in memory

Exit conditions: DE = cursor position after the last
character displayed

HL = byte after the string terminator

40.8 DOS FUNCTION facility (DOSFNC)

The page of memory located between 07400 and D7777 contains a
special loader and overlay area. This riloader" can 'load anyone
of up to 255 DOS overlays, each up to 124 bytes long. The loader
resides in the first half of the page and the overlays all load
into the second half of the same page. The overlays reside on
disk in physical file 7, called SYSTEM7/SYS. The design of the
DOS FUNCTION loader is such that overlays are loaded only if
necessary; i.e. if the same overlay is called several times in
sequence, it is not reloaded each time. The overlays provide the
DOS assembly language programmer with many useful utility
functions. Parameterization of DOS FUNCTIONs varies with the
individual functions, the only basic requirement being that on
entry to the DOS FUNCTION loader, the A register contains the
function number (1-255). Use of functions not yet installed will

CHAPTER 40. SYSTEM ROUTINES 40-27

produce indeterminate results, but may result in formatt,raps,
range traps, processor halts, and the like. DOS FUNCTIONs are
normally loaded from the SYSTEM7/SYS on drive zero.

Upon the first call to DOSFNC (the DOS FUNCTION loader),
SYSTEM7/~YS is opened as LFO an~ the LFT entry saved internally to
the DOS FUNCTION loader. Upon subsequent calls to DOSFNC, the
entry is simply moved back into the LFT, eliminating the need to
re-open SYSTEM7/SYS each time a function is loaded. The file is
only closed by the reloading of the DOS, either by depressing
RESTART or by a program passing control to BOOT$, EXIT$, or
ERROR$.

Since new DOS functions will be added as necessary the
following descriptions should not be considered exhaustive.

Entry point: 07400

Parameters: A = Function number (1-0377)
Others required by individual functions

Exit conditions: Defined separately for each function

40-28 DISK OPERATING SYSTEM

40.8.1 FUNC-1 Retrieve Directory and C.A.T. Addresses

Uniform attributes for all subfunctions:

On entry,

On exit,

A = function number (1)
C = subfunction number (0,1,2,3,4,5,6,7)
B,C,H,L all unchanged
CARRY FALSE: function completed successfully
CARRY TRUE: invalid subfunction number

all other entry/exit parameters and conditions are described
separa tely foI' each' individual subfunc tion .

DOS FUNCTION: 1 SUBFUNCTION: o

return the address of a specified directory
sector in DE

On entry,

On exi t,

DOS FUNCTION: 1

B = directory sector number (0-15) OR
PFN of entry in the directory sector

A indeterminate
DE = PDA of specified directory sector

SUBFUNCTION: 1

return the two byte physical disk address for each of the 16
prime directory sectors, into a 32-byte work area provided by the
user.

On entry,
On exit,

DOS FUNCTION:

HL => 32-byte work area to receive the PDAs
all registers restored
user-provided work area contains 16 PDAs, one
corresponding to each prime directory sector, in
ascending order.

SUBFUNCTION: 2

return the two-byte physical disk address of each of the '16
directory sector backups, in ascending order, into a 32-byte
user-provided work area. '

On entry,
On exit,

HL => 32-byte area to receive the 16 PDAs
all registers restored

CHAPTER 40. SYSTEM ROUTINES 40-29

work area contains 16 PDAs (LSB,MSB)

DOS FUNCTION: 1 SUBFUNCTION: 3

return the physical disk address of the prime cluster
allocation table (CAT) in the DE register pair.

On exit, A indeterminate
DE = PDA of prime CAT

DOS FUNCTION: 1 SUBFUNCTION: 4

return the physical disk address of the backup CAT

On exi t, A indeterminate
DE = PDA of backup CAT

DOS ~'UNCTIUN: SUBFUNCTION: 5

return the physical disk address of the lockout CAT

On exit, A indeterminate
DE = PDA of lockout CAT

DOS FUNCTION: SUBFUNCTION: 6

return the physical disk address of the lockout CAT backup

On exit, A indeterminate
DE = PDA of lockout CAT backup

DOS FUNCTION: SUBFUNCTION: 7
. ' .. ~,

return the address of a backup directory sector (in DE)

On entr'y,

On exi t,

40-30

B = backup directory sector number (0-15)
OR PFN of a file entry contained therein
A indeterminate
DE = PDA of backup directory sector

DISK OPERATING SYSTEM

40.8.2 FUNC-2 Retrieve Directory Sector or Filename

Uniform attributes for all subfunctions:

On entry,

On exit,

A = function number (2)
C = subfuriction number (0,1,2)
ALL REGISTERS RESTORED
CARRY TRUE implies error or invalid subfunction
number

all other entry/exit parameters and conditions are described
separately for each individual subfunction.

DuS FUNCTION: 2 SUBFUNCTION: o

read in the directory sector containing the 16-byte directory
entry corresponding to the PFN given, on a specified logical
drive.

On entry,

On exi t,

DOS FUNCTION: 2

D = PDN (logical drive number of file)
E = PFN
B = LFN as per DOS standard; (0, 16, 32, 48)
CARRY FALSE: selected directory sector is in

buffer specified, which is the selected
buffer upon exit.

CARRY TRUE: indicates I/O error.
Further defined as follows:
ZERO FALSE: specified drive is off-line
ZERO TRUE: unable to read sector due to CRCC

error during read, or unrecoverable
fail ure to find sec tor

SUBFUNCTION:

get the 16-byte directory entry corresponding to a specified
PFN on a given logical qrive.

On entry,

On exi t,

B,D,E set as for subfunction O.
HL => 16 byte area to receive the entry
CARRY FALSE: entry is in user's area.
CARRY TRUE: as for subfunction O.

CHAPTER 40. SYSTEM ROUTINES 40-31

DOS FUNCTION: 2 SUBFUNCTION: 2

get name/~xt (pfn) for a specified numbered file on a
specified logical drive. (Same basic format as used by DOS CAT
command) .

On entry,

On exi t,

B,D,E as for subfunction O.
HL => 20-byte receiving field.
CARRY FALSE: user's 20-byte area contains the

name, extension and PFN of the
specified file, for example:

CARRY TRUE:

EDIT/CMD (037)

where the right paren is followed
by an 03
UNLESS: ZERO TRUE: implies that
the file number specified does not
exist.
as for subfunction O.

NOTICE: the use of THIS SUBFUNCTION ONLY (of those in DOS
FUNCTION 2) requires that the DOS command interpreter
be present (the command interpreter resides from
013400-017000) .

40.8.3 FUNC-3 Retrieve R.I.B. Information

Uniform attributes for all subfunctions:

On entry, A = function number (3)
C = subfunction number (0,1,2,3)

All other entry and exit parameters and conditions are
described separately for each individual subfunction.

DOS FUNCTION: 3 SUBFUNCTION: °
return the number of sectors allocated to a file on disk

On entry,

On exi t,

40-32

DE = proper OPEN$' parameters defining file to be
accessed

B = drive number (like C as provided for OPEN$)
CARRY FALSE: function completed successfully
HL = length of file (MSB,LSB) in sectors

RIB for file specified is in LFO
disk buffer

CARRY TRUE: indicates an error occurred, anyone

DISK OPERATING SYSTEM

of:

OPEN failed on file specified
unable to read RIB;
parity or drive off line.

DOS FUNCTION: 3 SUBFUNCTION:

get the RIB for a specified file into theLFO disk buffer

On entry,

On exit,

all parameters indentical to those for
subfunction o.
all registers restored
CARRY FALSE: function completed successfully

RIB for file specified is
in LFO disk buffer

CARRY TRUE: indicates an error return.
Any of the following:
OPEN on specified file failed
RIB unreadable due to parity or drive
off-line

DOS FUNCTION: 3 SUBFUNCTION: 2

read a RIB for a file, given the first two bytes of the
directory entry

On entry,

On exit,

D = RIB pointer, (msb) from directory or LFT
E = RIB pointer, (lsb) from directory or LFT
B = drive number
all registers restored
CARRY FALSE: sub function completed successfully.

RIB is in the LFO disk buffer
CARRY TRUE: RIB unreadable due to parity or

drive off line
ZERO FALSE: specified drive off line
ZERO TRUE: parity error during read

DOS FUNCTION: 3 SUBFUNCTION: 3

return segment descriptor info~mation from a RIB

On entry, RIB is in LFO disk buffer
CARRY TRUE: RIB unreadable due to parity or

drive off line
ZERO FALSE: specified drive off line
ZERO TRUE: parity error during read

CHAPTER 40. SYSTEM ROUTINES 40-33

DOS FUNCTION: 3 SUBFUNCTION: 3

return segment descriptor information from a RIB

On entry,

On exit,

In addi t ion:

RIB is in LFO disk buffer
BUFADR field in LFO LFT entry points to segment
descriptor
E,H,L, LFO buffer unchanged.

CARRY TRUE: function completed successfu11y
A = starting cylinder number for

segment
B = starting cluster number for segment
C = number of sectors in the segment
BUFADR points to next segment
descriptor; RIB undisturbed

CAhhY E'ALSEt~ implies BUFADR pointed after
logicai end of RIB - . -
BUFADR contents undefined

40.8.4 FUNC-4 Retrieve DOS Configuration Information

Uniform attributes for all subfunctions:

On entry,

On exit,

A = function number (3)
C = subfunction number (O,n)
CARRY FALSE: function completed successfully
CARRY TRUE: possibly invalid subfunction number.

Different subfunction numbers return different DOS configuration
bytes. These values, returned in A, are numeric items which
change in value depending upon which DOS is running. The
subfunction numbers, along with the significance of the returned
value, are:

40-34

00 - LETTER OF THE DOS BEING DEALT WITH
01 - DOS VERSION NUMBER OR LETTER
02 - DOS RELEASE NUMBER OR LETTER
03 - TOTAL NUMBER OF CYLINDERS ON DISK

(E.G. 203)
04 - MAXIMUM SUPPORTED LOGICAL DRIVE

NUMBER (3,7,15)
07 - CLUSTER MASK (E.G. 0340)
010 - CLUSTER NUMBER INCREMENT

DISK OPERATING SYSTEM

(E.G 040)
011 - SECTOR MASK (E.G. 037)
012 - MAXIMUM SECTOR NUMBER IN PDA

(E.G. 23)
013 - NUMBER OF SECTORS/CLUSTER

(E.G. 3,6,24)
014 - NUMBER OF CLUSTERS/CYLINDER

(E.G. 4,8)

40.8.5 FUNC-5 Request Access to System Tables

Uniform attributes for all subfunctions:

On entry, A = function number (3)
C = subfunction number (0,1)

All other entry and exit parameters and
conditions are described separatly
for each individual subfunction.

DOS FUNCTION: 5 SUBFUNCTION: 0

request exclusive update permission to system table sectors
on disk

On entry,
On exit,

DOS FU~CTION:

D = physical drive number (PDN) of drive
CARRY FALSE: function completed successfully
exclusive use of specified drive guaranteed
CARRY TRUE: indicates an error occurred.

5 SUBFUNCTION:

releas$ exclusive update authority for system table sectors on
disk

On ent~y, all parameters indentical to those for
subfunction O.
same as for subfunction O.
CARRY FALSE: function completed successfully
CARRY TRUE: indicates an error return.

CHAPTER 40. SYSTEM ROUTINES 40-35

40.8.6 FUNC-6 Test KEYBOARD and DISPLAY Key Status

Uniform attributes for all subfunctions:
On entry, A = function number (6)

C = subfunction number (0)

DOS FUNCTION: 6 SUBFUNCTION: o
Check the status of the KEYBOARD and DISPLAY keys.
If DISPLAY key is pressed, WAIT$ is called by the function

before returning.

On entry,
On exit,

Doesn't matter
CARRY TRUE if illegal subfunction
SIGN TRUE: KEYBOARD key pressed
PARITY TRUE: DISPLAY key pressed
All registers restored

40.8.7 PUNC-7 Test the Disk Buffer Memory

Disk buffer memory test function

This DOS FUNCTION performs a rotating, cycling test of the
disk controller buffer memories. It returns upon the keyboard
becoming READ READY, or upon encountering a buffer failure,
whichever occurs first.

On entry,
On exit,

Doesn't matter
all registers unchanged
ZERO TRUE = buffer memory test completed normally
ZERO FALSE = failure indicated in buffer memories

40.8.8 FUNC-8 Timed Pause

Pause fUnction

This DOS FUNCTION provides the user program with a timed
pause. The requested pause may be up to over four hours long.

On entry,

On exit,

B = foreground process number to use (0-7)
CDE = number of milliseconds to pause
C = most significant byte
E = least significant byte

All registers unchanged

Note that if foreground process numbers 4-7 are used, the wait

40-36 DISK OPERATING SYSTEM

time is effectively multiplied by four, allowing a maximum wait.
time in excess of eighteen hours. Also note that the time required
to start up the DOS FUNCTION is not considered part of the time
paused. Since the DOS FUNCTION mayor may not be resident when
called, this function may wait longer than the quantity in CDE and
therefore must not be used for timing really critical, short term'
intervals.

40.8.9 FUNC-ll RAM Screen Loader

Uniform attributes for all subfunctions:

On entry, A = function number (11)
C = subfunction number (0,1,2)

All other entry and exit parameters and
conditions are described separately for
each individual subfunction.

DOS FUNCTION: 11 SUBFUNCTION: a

Load one or more character combinations into the RAM display
character generator.

On entry, B = default first character to be loaded
HL = starting address of character set definition

list

The list consists of consecutive entries of either five or six
bytes each. The first byte, if present, indicates the 7-bit
character. combination whose bit pattern definition follows. The
presence of the first byte is indicated by its sign bit being aet.
If the first byte of the first entry is not present, the 7-bit
character combination in the B register is used instead. The
definition list may contain any mixture of six byte and five byte
entries. The end of the list is indicated by an 0200. This
implies that the bit combination displayed for a binary zero
cannot be imbedded in a list, but can only appear at its
beginning; null li~ts are not allowed. The five data bytes
following represent the five columns of bits for each displayed
character and can each have values of 0 (a blahk column) to 0177
(a vertical line). The 0100 bit is at the top of the character
displayed; the.1 bit is on the bottom row of the displayed
character. .

On exit, CARRY FALSE, ZERO FALSE implies RAM display not

CHAPTER 40. SYSTEM ROUTINES 40-37

present
CARRY FALSE, ZERO TRUE indicates normal

completion
CARRY TRUE indicates error (should not occur)

DOS FUNCTION: 11 SUBFUNCTION: 1
Load a single character combination to RAM display

On entry, B = default character to be loaded
HL = address of five or six byte bit pattern
definition

The first byte, if present, takes precedence
over the character indicated by the B
register. Presence of the first byte is
indicated by the sign bit being set.

On exit, CARRY FALSE, ZERO FALSE implies RAM display not
present
CARRY FALSE, ZERO TRUE indicates normal
completion

DOS FUNCTION: 11 SUBFUNCTION: 2

Subfunction two requests reloading of the standard character
set on program termination. Calling this subfunction will result
in the standard DOS character set being reloaded upon the next
entry to DOS$. Entry to the DOS at DOS$ is the result of transfer
of control to EXIT$, BOOT$, ERROR$ as well as DOS$. Return to the
DOS via NXTCMD, CMDAGN, and CMDINT do not result in the display
being immediately reloaded, (but it still will be upon subsequent
entry at DOS$ as described).

40.9 Cassette Handling Routines

Standard record formats, identifiers, and file marker record
conventions on cassettes are established by the Cassette Tape
Operating System. Routines capable of dealing with cassettes in a
manner compatible with CTOS are provided as part of the Disk
Operating System to enhance its overall capability. For detailed
information on cassette format and organization, see the Cassette
Tape Operating System Manual.

All of the DOS cassette routines are foreground driven and,
with the debugging facility, are the only routines within the
system which make use of the foreground handling facility. Being
foreground driven, however, does not alter the way with which the
routines are dealt since all interfacing between the background

40-38 DISK OPERATING SYSTEM

and foreground is handled by the system. It does allow ::;'ncreased
speed of operation with the cassettes since the user may be
processing one record while the next is being read from or written
to the tape. This is evident in the way the DOS slews the tape
when transferring information between it and the disk.

Some of the cassette handling routines initiate foreground
action and then return immediately to the user while others wait
for I/O completion. All of the routines wait for any uncompleted
I/O to finish before starting something new. Note that in the
cases of reading or writing on the same deck, requesting the next
operation before the completion of the first will cause the tape
to automatically slew instead of stopping between records. This
is only in the case of a read followed by another read or a write
followed by another write on the same deck. The only cases where
caution must be exercised is in the read and write routines which
return immediately after starting the I/O operation.. If the user
does not wait for the transfer to complete, he could try to use
the data before it is read or change the data before it is '
written. In the second case, records with incorrect parity will
usually be generated. Routines are provided, however, which
automatically wait for the transfer to complete, relieving the
user of having to concern himself with the fact that the routines
are foreground driven if he has no need for the advantages. '

The various error conditions associated with cassette
handling can be trapped by:the user. If the trap is not set, an
error message similar to the error message generated by CTOS is
displayed and the DOS reloaded. If the trap has been set, the
address specified will be jumped to and the trap cleared. The
traps are identified in the error message by a letter similar to
the CTOS identification. In the relevant cases, the same letter
is used in the DOS as is used in the CTOS. In the following
routine descriptions the relevant letter will be given in the
'Traps' section.

Most of the cassette routines are parameterized by a deck
number given in the B register. This number is a zero for the
rear ,deck and a one for the front deck.

40.9.1 TPBOF$ - Position to the Beginning of a File

TPBOF$ positions the cassette in the specified deck to the
specified file. The search for the file marker of the desired
file is started with backward motion of the tape. If ~ marker of
lower value than the file number requested or the beginning of the
tape is encountered, the search will be reversed to the forward
motion of the tape. If then a marker of larger value than the

CHAPTER 40. SYSTEM ROUTINES 40-39

file number requested, the end of the tape, or a record or
unrecognizable format is encountered, an error G will be given.
Otherwise, the file is left positioned before the first data
record.

Entry point: 010000

Parameters: B -, deck number
C = physical file number (0-0177)

Exit conditions: none

Traps: D
G

unrecognizable record found
file could not be found

40.9.2 TPEOF$ - Position to the End of a File

TPEOF$ moves the tape forward until the next file mark is
found. It then backspaces the tape one record to leave it at the
end of the current file.

Entry point: 010005

Parameters: B = deck number

Exit conditions: none

Traps: D
E

unrecognizable record found
end of tape encountered

40.9.3 TRW$ - Physically Rewind a Cassette

TRW$ rewinds the cassette on the selected deck by first
slewing backwards to ensure that the tape is not on the trailer
and then performing a hardware rewind.

Entry point: 010012

Parameters: B = deck number

Exit conditions: none

Traps: none

40-40 DISK OPERATING SYSTEM

40.9.4 TBSP$ - Physically Backspace One

TBSP$ simply executes a hardware backspace function. No
checking is performed on the data passed over. However,
backspacing onto clear leader causes ~n end of tape trap.

Entry' point: 010017

Parameters: B = deck number

Exit conditions: none

Traps: E beginning of tape encoun tered

40.9.5 TWBLK$ - Write an Unformatted Block

TWBLK$ writes the specified number of bytes (0-255; 0 causes
256 to be written) from the memory buffer specified onto the
cassette in the deck specified. Only the bytes specified will be
written on the tape,

Entry point:

Parameters:

010024

B = deck number
C = number of bytes to write (0 for 256)
HL points to start of buffer

Exit conditions: none

Traps: E
Z

end of tape encountered
premature deck ready status

40.9.6 TR$ - Read a Numeric CTOS Record

TR$ reads a record of CTOS numeric format into the memory
locations specified. The length of the record is stored in the
specified memory location and the data bytes are stored in the
locations that follow. Return is made from TR$ as soon as the
read operation is started but the user cannot use the data until
the operation has been compl eted (see TCHK$). One way to check
for operatio~ completion is to call TR$ again with a different
burfer ai its parameter. Return from the second call will be made
as soon ,as the first operation is completed. This is the
mechanism via which multiple buffering is normally achieved. Note
that tape motion will not cease if TR$ is called within five
milliseconds of the end of the previous record. , ' ,

CHAPTER 40. SYSTEM ROUTINES 40-41

If parity problems arise, TR$ tries up to 5 times to r:~.d, t;b:e
tape before giving a pari ty failure trap. Other traps given are
end of tape and end of file. 'If an end of file trap is given , the
tape is positioned before the file marker.

Entry point: 010031

Parameters: B = deck number
HL points to data storage location

Exit conditions: none

Traps: D
E
F

parity failure
end of tape encountered
end of file encountered

40.9.7 TREAD$ - TR$ and Wait for the Last Character

TREAD$ performs the TR$ function and then waits for the last
character to be read from the tape. This routine should be used
when multiple buffering is not being performed since it relieves
the user from having to explici tly wait for the last character to
be read.

Entry point: 010034

Parameters: same as fo I" TR$

Exit conditions: none

Traps: same as for TR$

40.9.8 TW$ - Write a Numeric CTOS Redord

TW$ wri tes the specified memory locations in a re,cotod of
standard CTOS numeric format. It uses (for parity generation) the
three locations preceeding the memory 10<3ation specif1,ed which
contains the number of bytes to be written and is follo~ed by that
number of data bytes.

TW$ retuI'Hs ~s soon as the write oper.tion is startf;ld. The
user must be careful not to change any of the memory locations
given as parameters before the last byte has been transferred.
This can be achieved by either calling TeHK$ and wai tins for ,
completion status or calling ~W$ with the next buffer ,it multiple
buffering is being used. Note that tape motion will not cease if
TW$ is called before the middle of the IRG is reached from the
previous write (140 milliseconds after the last character is

40-42 DISK OPERATING SYSTEM

written when using a 7.5 ips deck).

Entry point: 010037

Parameters: same as fo r TR$

Exit conditions: none

Traps: E
Z

end of tape encountered
premature deck ready status

40.9.9 TWRIT$ - TW$ and Wait for the Last Character

TWRIT$ executes the TW$ routine and then waits for the last
byte to be written on the tape. This routine should be used when
multiple buffering is not being performed since it relieves the
user from having to explici tly wait for the last byte to be
written.

Entry point: 010041

Parameters:· same as for TR$

Exit conditions: none

Traps: same as for TW$

40.9.10 TFMR$ - Read the Next File Marker

TFMR$ reads the tape until a file marker record is found. A
trap occurs if a record is encountered that is neither a file
marker nor a CTOS numeric data record.

Entry point; 010045

Parameters: B = deck number

Exit conditions: C = PFN of marker found

Traps:

Tape positioned after marker record

D
E

unrecognizable record found
end of tape encountered

CHAPTER 40. SYSTEM ROUTINES 40-43

40.9.11 TFMW$ - Write a File Marker Record

TFMW$ writes a file marker record that contains the number
specified. .

Entry point: 010050

Parameters: B = deck number
C = PFN to be written

Exit conditions: none

Traps: E
Z

end of tape encountered
premature deck ready status.

40.9.12 TTRAP$ - Set an Error Condition Trap

TTRAP$ allows the user to trap the various errors assooi.ted
with cassette 1/0. If the trap is not set, an error message·of '
the fo.rm

*** ERROR X ON DECK Y ***
will be displayed, where X is one of the letters shown below and Y
is a 1 for the rear deck and a 2 for the front deck. The· trap is .
specified by a number according to the following table:

3 - D - parity error
4 - E - end of tape
5 - F - end of file
6 - G - unfindable file

In addition, error Z (cannot ~e trapped) indicates that ~h. dec~.
ready status bit came true wh.ile a record was being wri t t~,n. This
implies that the write routin~ fell behind in writing characte~~
and most probably indicates that the foreground interrupt handlins
was disrupted in some fashion (interrupts wer$ disabled too lont .
or an interrupt driven routine was running which imposed toontuch
overhead). It may also caused by the tape beins write prot~oted
(left rear tab punch out).

Traps can be cleared by setting their addresses to zero.
When the event which causes a trap occurs, that trap is cleared
and control passed to the address indicated with the deck number
in the B register (0 for rear. and 1 for front deck).

Entry point: 010053

40-44 DISK OPERATING SYSTEM

Parameters: C = trap number (above)
DE= trap address (0 clears trap)

Exit conditions: none

Traps: none

40.9.13 TWAIT$ - Wait for 1/0 Completion

TWAIT$ waits for any tape operation active to complete. This
does not mean that physical motion has stopped since TR$ and TW$
indicate 1/0 completion when the last character has been
transferred. It does mean that all data is free to be processed
by the user. TWAIT$ also executes any traps pending upon the
completion status being set.

Entry point: 010056

Parameters: none

Exit conditions: B, C, D, and E registers preserved

Traps: any trap pending will be executed

40.9.14 TCHK$ - Get 1/0 Status

TCHK$ sets the tape demand flag in the carry condition flag
and l~ad~ the tape handling status in the A register. The
handling status codes are as follows:

000 - rBOF in progress
002 - PEOF in progress
004 - Rewind in progress
006 - ~ecord read in progress
010 - Backspace in progress
012 - File mark read in progress
014 - Record write in progress

377 - Normal cqmp~etion
206 - Parity error
210 -End of tape
212 - End of file
214 - File not found
262 - Premature deck ready status

Normal use of the cassette routines will not require the user to
deal with these status 60des or even use the TCHK$ routine. They
are provided here to facilitate understanding the listing of the

CHAPTER 40. SYSTEM ROUTI~ES 40-45

routines.

Entry point: 010061

Parameters: none

Exit conditions: Carry condition = demand flag
A = status code (above)

Traps: none

40.10 Command Interpreter Routines

This section deals with a series of user-available routines
available within the command interpreter. Note that these,
routines are only available for use if the user program does not
overlay the command interpreter, which resides in locations
012400-016777.

The first four of these entry points _rere.11y ~ore like
"exit points", since they are places in the DOS, to w:h~ch uq,rs I\lay
return in place of EXIT$. The pr imary a~vantase to ;luling .e'm ln'
place of EXIT$ is that none of these four entry potd~:a reslll~~ ,1n
the DOS being reloaded, a process which~Jilkes "ignJ;f1:,ct:lnt ,.,,~.
Note that since they do not reload the 1),a5, p~bgram~':wl1ch.l¢it '.
through CMDINT, DOS$, CMDAGN, or NXTCMD must n~t ha'v::e overstored
any part of the DOS; i. e. they should run oomplf:)tely)n location~
017000 upwards. Also, these "exit point's" dQnpt olear an~i.,'trap$
that the user may have set; therefore t.he, user should olear :~ny
traps he has set before exiting in this manner. Ifttlis is not
done, the system will most likely go astray upon the first·
subsequent occurrence of a trapped situation. '

Most of the other routines document~ in this section are
routines which are used by one or more of the DOS cQ.nunand prQgrams
supplied either on the DOS Generation or DOS utilities tapes.
Since these routines are pointed to by the command int.,r~re,t,r' s
entry point table and are used by some of the DOS oom1l1ands, I t.hey,
are documented here primarily for the sake of completeness ;,nbt '
to suggest that every DOS programmer will find them wonderfully'
~seful for his ~art1c~lar application.

40-46 DISK OPERAT1NG SYSTEM

40.10.1 CMDINT - Return & Scan MCR$ line

CMDINT closes files 1-3 if necessary and processes MCR$ just
as it would a command line entered by an operator at the keyboard.
(This results in executing the program indicated by the command
line.)

Entry point: 01165

Parameters: MCR$ (an 80 byte area of memory starting at 01400)
should contain a string resembling a command line
terminated with a 015.

Exit conditions: Does not return

40.10.2 DOS$ - Return & Display Sign On

DOS$ first loads the RAM screen, if there is one, with the
character set contained in SYSTEM6/SYS (or CHARSET/SYS if it
exists). Once the RAM display has been loaded, it is not loaded
until either another bootstrap from cassette, or the appropiate
DOS function is invoked by a DOS program. DOS$ then causes a
program which has been AUTOld to be executed. If no programs are
set for auto-execution, the DOS sign-on is displayed, files 1-3
are closed if necess~ry, and the familiar "READY" mess~ge
displayed. Note again that any traps set by the user program
(e.g. via TRAP$) are not cleared unless the DOS is reloaded. This
implies that if a user program sets any of the traps anc wishes to
return via DOS$, NXTCMD, or CMDAGN, it must first 'clear any traps
it has set to preverit the DOS from going astray. DOS$ is the
normal starting point of the DOS when a bootstrap operation or a
jump to BOOT$, EXIT$, or ERROR$ occurs.

Entry point: 013400

Parameters: none

Exit conditions: Does not return

40.10.3 NXTCMD - Return & Say "READ~"

NXTCMD causes files 1-3 to be closed and displays the
familiar DOS "~EADY" message.

Entry point: 013403

Parameters: none

40-47

Exit conditions: Does not return

40.10.4 CMDAGN - Return & Giv~ Message

CMDAGN causes files 1-3 to be closed and displays a
user-supplied message before returning to the command interpreter.

Entry point: 013406

Parameters: HL = address of DSPLY$-format string
DE unused; string should position cursor

Exit conditions: Does not return
DOS CHAIN facility aborts if active

,

40.10.5 GETSY~ - Get Next Symbol from MtR$

GETSYM c~uses the next sequential symbol in MCR' to be
scanned off aQd stored in an 8~byte field called SYMBOL located at
013472. The starting byte sc~rined in MCR$ is pointed to by INPTR,
a byte at loc'tion 013455. (INPTR is the LSB of the current byte
in MCR$.) Th~ symbol (leading spaoes are ignored) must oontain
only upper ca.e alphabetic orinumeric characters. The first
illegal character encountered terminates the scan; the illegal,
terminating c~aracter is stor~d for the user's inspection (at
SYMBOL+8) and SYMBOL is padde~ on the right with spaces if
necessary. If the symbol is longer than eight charac tars, tt~e
first eight only are used; rejllaining characters, through the
terminator, are scanned bllt not stored. (The terminator· is stored
at SYMBOL+8 if:} any case.) On· axi t, INPTR points after the
terminating character unlesstbe terminator is an 015 or a
semicolon, in which case INPTR points to the terminator.

Entry point: 013411

Parameters: INPTR => current byte in MCR$, LSB

Exit conditions: SYMBOL = 8-byte symbol as described above
A, SYMBOL+8 ,= terminator character

40-48

INPTR => byt~ after symbol terminator in MeR.
(exoept as noted above)

All other registers indeterminate

DISK OPERATT~G SYSTEM

40.10.6 GETCH - Get the Next Charaqter from MCR$

GETCH obtains the next character from the Monitor
Communication Region (MCR$) and returns it in A. The address of
the character to be returned is obtained by using the most
significant byte of the address of MCR$ (which is contained within
one page) and the contents of INPTR (location 013455) as the LSB.
On exit, if z~ro is true, A = 015 or a semicolon, and INPTR is not
incremented (INPTR is never bumped past an 015 or a semicolon); if
zero is false, A is not an 015 or a semicolon and INPTR is
incremented.

Entry point: 013414

Parameters: INPTR = LSB of address of byte (see above)

Exit conditions: A = character from MCR$
ZERO TRUE/FALSE as described above
B = entry value of INPTR
C,D,E unchanged

40.10.7 GETAEN - Get Auto-Execute Physical File Number

GETAEN returns the physical file number of the file (on the
logical drive specified ·in C) which is set to be auto-executed by
the DOS.

Entry point: 013417

Parameters: C = Logical Drive

Exit conditions: Carry true if 1/0 error reading the CAT
otherwise, A = auto-execute PFN (O=none)

Zero true if a-e PFN not set
Zero fal se if A is valid a-e PFN

All other registers indeterminate

40.10.8 PUTAEN - Set or Clear a File to be Auto-Executed

PUTAEN either sets or clears the auto-execute PFN stored in
the CAT on the disk in the logical drive specified in C. The
change becomes effective upon the next time DOS is entered at
DOS$, either by depressing the RESTART key, the auto-restart tab
being punched out of the rear cassette and the processor hal ted,
or jumping to EXIT$, ERROR$, BOOT$, or DOS$.

Entry point: 013422

CHAPTER 40. SYSTEM ROUTINES 40-49

Parameters: A = PFN to be auto-executed (0 to clear)
C = Logical Drive

Exit conditions: All registers indeterminate
Carry true if 1/0 error updating CAT

40.10.9 GETLFB - Open the User-Specified Data File

GETLFB opens logical file specified in B using the rile name,
extension, and drive select code, stored in the indicated L~T
entry, in the normalized form described in the section on the
Command Interpreter. The extension, if blank, is assumed to be
"ABS". Note: The logical drive specification field is ignored,
since the drive select code field is used instead. If an error
occurs, carry is true on return and HL points to a DSPLY$ format
string complete with cursor positioning bytes and one of the
following messages:

NAME REQUIRED. (first byte of name field is blank)
INVALID DEVICE. (select code = 0376; :DRn wrong)
NO SUCH NAME. (file not found; the file must exist)

Each of the
011 ,0, 01 3, 11 , 023
ret urn, the file
file one.

Entry point:

Parameters:

above messages is preceeded by control bytes:
and followed by an 015. If carry is false upon

named has been successfully opened as logical

013425
B = LFN

In LFT specified by LFN; see above

Exit condi tions: Carry false if file successfully opened.
All registers indeterminate
Carry true and HL => message if OPEN failed

40.10.10 PUTCHX - Store the Character in "A"

PUTCHX stores the A register at the memory location pointed
to by HL, increments HL, and decrements a byte counter maintained
in E.

Entry pOint:

Parameters:

40-50

013433
HL = address where A is to be stored

A
E

= byte to be stored at HL
= count to be decremented

DISK OPERATING SYSTEM

Exit conditions: B,C,D unchanged
E = entry value - 1
HL = entry value + 1

40.10.11 PUTCH - Alternate Version of PUTCHX

PUTCH is like PUTCHX except it starts by setting the most
significant bit of A to zero and that if A then contains a space
(040) it immediately returns zero true; in which case A is not
stored, HL not incremented, and E not decremented.

Entry point: 013430

Parameters: same as PUTCHX

Exit conditions: same as PUTCHX except as described above

40.10.12 PUTNAM - Format a Filename from Directory

PUTNAM is a routine which extracts a name, extension and
physical file number for a directory entry and puts them into a
place in the command interpreter called "NAME" (located at 013513;
the field is 19 bytes long and followed by an 03.) Since this
routine is used by the CAT command, the format of the names
produced by PUTNAM should be familiar to all DOS users.

Note that on entry, only the most significant 4 bits of Care
used, and that CURLOC (location 013463) is to contain the two-byte
PDA of the directory sector (LSB,MSB).

Entry point:

Parameters:

013436

the directory sector in the disk buffer
B = LFN indicating which buffer
C = PFN of entry being extracted
CURLOC = PDA of directory sector

Exit conditions: CURLOC unchqnged
disk buffer 'unchanged
B unchanged
all other r~gisters indeterminate
ZERO TRUE: file does not exist '

CHAPTER 40. SYSTEM ROUTINES 40-51

40.10.13 MOVSYM - Obtain the Symbol Scanned by GETSYM

MOVSYM moves the eight-byte SYMBOL described in the section
on GETSYM into the eight-byte area pointed to by DE.

Entry point: 013441

Parameters: D,E = address of user's eight-byte area
,

Exit conditions: B unchanged. All other registers
indeterminate.

40.10.14 GET DBA - Obtain Disk Controller Buffer Address

GETDBA extracts the current disk buffer address in the format
acceptable to GETR$ from one of the four LFT entries. It does
this by getting the BUFADR from the specified LFT entry and
subtracting three from' it. On return, H is the address MSB
pOinting into the command interpreter data area.

Entry point: 013444

Parameters: B = LFN (0,16i32,48)

Exit conditions: A = BUFADR as described above
H as described above
B,C,D,E unchanged

40.10.15 SCANFS - Scan Off File Specification

SCANFS scans a file specification of the form
FILENAME/EXT:Drive (as discussed under FILE names) pOinted to by
HL into a 16 byte area pointed to by DE. THe area pointed to by
DE is treated as an LFT entry, that is, the first byte is a drive
select code (0376 meaning invalid drive spec, 0377 meaning
unspecified drive spec, or the binary drive number), the second
byte is 0377 indicating the file is closed, bytes 3 thru 10 are
the file name (blank if not given), bytes 11 thru 13 are the
extension (blank if not given), and bytes 14 thru 16 are the
normalized dri.e spec (blank if not given). The soanned drive
spec may be 2 to 7 characters long; the first character must be
"D", the second may be "R", and the remalnlng must be digits.
Therefore ":00" and ":DR00014" are both legal representations.
The normalized represention consists of a "D" followed by "fi" and
the single digit given or "D" followed by the two digits given;
for instance, the above examples in normalized form would be "DRO"
and "014" respectively. The scan is terminated by any

40-52 DISK OPERATING SYSTEM

non-alphanumeric character other than " . " . or "/".

Entry Point: 013447

Parameters: DE => "LFT TABLE" entry
HL => string to be scanned

Exit Conditions: DE => byte following "LFT TABLE" entry
HL => byte after terminator (unless 015 or
in which case it points to terminator)

40.10.16 TCWAIT - Test controller memory & wait

n.1f ,

TCWAIT is the point in the COMMAND INTERPRETER where it loops
testing the disk controller buffer memory while waiting for a
command to be keyed in. It is used primarily by the CHAIN command
to trap programs returning to D.O.S.

Entry Point: 013452

Parameters: none

Exit Condition: does not return

40.11 User Supported Input/Output

When the user desires to use I/O devices other than the
keyboard, display, disk, or cassettes, he will use a routine that
is not part of the operating system. Many of these devices (for
instance, the communications channel) ~ill be serviced by
foreground processes Which run wi th interl'upts disabled. However,
if tpe user does access an I/O d~vice from a background process,
he must realize that as long as interrupts are enabled, some other
device can be addressed by a foreground routine. For this reason,
the user must disable interrupts between the time he addresses his
device and the time he uses it. To reduce the amount of
foreground processing real time jitter (discussed earlier) as much
as possible, the aim in writing background I/O routines should be
to minimize the amount of time that interrupts are disabled. Th,is
implies that devices accessed from background programs must be
addressed every time they are used. For example:

GETBYT EI
LA
DI
EX

DEVADR

ADR

Enable interrupts in case
looping

Disable interrupts
Address the device

CHAPTER 40. SYSTEM ROUTINES 40-53

IN
ND
JTZ
EX
EI
IN
RET

2
GETBYT
DATA

Get thec1evice statu,.
Check for required bits
Wait if not set
Else get the byte
Enable interrupts att.r

the data input

Note that a li ttl e cheating on time was done in theint'e,rf,?st of
program length. Since the INPUT in DATA mode was donew1:tijout
enabling interrupts, re-disabling them and ,re-addressing the
device was not necessary. One, should be judicious in the trade off
employed in eXercising this freedom.

Note: The user must not: do 1/0 to ,t:he di~k co'ntt'Ql~et" from
foreground-driven routines or' results cah> be unpred,iet:.ibi1~. 'The
DOS disk drivers allow user foregro'und routines to g4at,:oic>n,tf'Qi in
the midst of a disk 1/0 operation, under the assumption that the
foreground routine will not do anything to the disk oontroller
which would confuse it. ' ,

40-54 DISK OPERATING SYSTEM

CHAPTER 41. ERROR MESSAGES

PARITY FAILURE DURING READ
A parity fault occurred while a disk data record was
being read.

PARITY FAILURE DURING WRITE
A parity fault occurred while a disk data record was
beil'}g written.

RECORD FORMAT ERROR
The physical file number or logical record number in the
record read did not match the values contained in the
logical file table.

RECORD NUMBER OUT OF RANGE
The record accessed had a logical record number less than
zero or, during reads, was outside the physical space
allocated to the file.

WRITE PROTECT VIOLATION
An attempt was made to write on a file that had its write
protection bit set.

DELETE PROTECT VIOLATION
An attempt was made to delete a file that had either its
write or delete protection bit set.

FILE SPACE FULL
An attempt was made to allocate space when either the
disk was physically full or no more segment descriptor
slots were available in the RIB for the given file.

DRIVE OFF LINE
The drive went off line after the file was opened.

LOGICAL FILE NOT OPEN
An attempt was made to use an entry in the logical file
table that was not opened for use with some fi~e.

INVALID LOGICAL FILE NUMBER
A rout"ine was called wi th the logical file number
parameter not zero through three.

CHAPTER 41. ERROR MESSAGES 41-1

INVALID DRIVE NUMBER
A routine was called with the drive number not zero
through the defined drive number limit (or 0377, if
allowed) .

INVALID TRAP NUMBER
The TRAP$ routine was called with a trap number not
between zero and seven.

FAILURE IN SYSTEM DATA
An unrecoverable parity error occurred while the sy~tem
was dealing with one of the disk tables or a retrie'Val
information block, or a RIB with incorrect format was
accessed.

INVALID PHYSICAL FILE NUMBER
A physical file number reserved for the system was,
illegally referenced.

INTERNAL SYSTEM ERROR
The error message routine was parameterized with an
invalid error message numberl

ERROR X ON DECK Y
A cassette routine error has occurred. The X indicates
the type of error according to the following table:

D - parity error
E - end of tape
F .. end of file
G unfindable file
Z - write failure

41-2 DISK OPERATING SYSTEM

CHAPTER 42. ROUTINE ENTRY POINTS

These entry points are contained in a file called DOS/EPT.

Loader Routines

01000
01003
O,)OOp
01047
01052
01055
01060

BOOT$
RUNX$
LOADX$
GETNCH
DR$
DW$
DSKWAT

reload the operating system
load and run a fila by numJer
load a file by number
get the next disk buffer byte
read a sector into the dis~ buffer
write a sector fron the disk buffer
wait for disk ready

Foreground Routines

01033
01036
01041
01044

File

01063
01066
01071
0107"4

01077
01102
01105
01110
01113
01116
01121
01124
01127
01132
01135

CS$
TP$
3E1'I$
CLRI$

change process state
terminate process
initiate foreground" process
terminate foreground process

Handling Routines

Symbolic

PREP$
OPEN$
LOAD$
RUN$

Logical

CLOSE$
CHOP$
PROTE$
POSIT$
READ$
WRITE$
GET$
GETR$
PUT$
PUTR$
BSP$

File Referencing

open or crea te a file
open an existing file
load a file by name
load and run a file by name

File Referencing

close a file
delete space in a file
change the p~otection on a file
posi tion to a record wi thin a file
read a record into the buffer
write a record from the buffer
get the next buffer character
get an indexed buff~r character
store into the next buffer position
store into an indexed buffer position
backspace one record

CHAPTER 42. ROUTINE ENTRY POINTS 42-1

01011
01022
01140
01143
01146
01151
01170
07400

Non-file referencing

INCHL
DECHL
ERROR$
BLKTFR
TRAP$
EXIT$
WAIT$
DOSFNC

increment HL
decrement HL
close all files, exit chain, and reload DOS
transfer a block of memory
set a disk error condition trap
reload the operating system
DOS wait-a-while "NOP~ routine
DOS function loader

Keyboard and Display Routines

01154
01157
01162

DEBUG$
KEYIN$
DSPLY$

enter the debugging tool
obtain a line from the keyboard
display a line on the screen

Cassette Handling Routines

010000
010005
010012
010017
010024
010031
010034
010037
010042
010045
010050
010053
010056
010061

TPBOF$
TPEOF$
TRW$.
TBSP$
TWBLK$
TR$
TREAD$
TW$
TWRIT$
TFMR$
TFMW$
TTRAP$
TWAIT$
TCHK$

position to the beginning of a file
position to the end of a file
physically rewind a cassette
physically backspace one record
write an unformatted block
read a numeric CTOS record
TR$ and wai t for last character'
write a numeric CTOS record
TW$ and wait for last character
read the next file marker record
write a file marker record
set a cassette error trap
wait for 1/0 completion
get 1/0 status

COMMAND INTERPRETER UTILITY ROUTINES

01165
013400
013403
013406
013411
013414
013417
013422
013425
013430
013433
013436

CMDINT
DOS&
NXTCMD
CMDAGN
GETSYh
GETCH
GETAEN
PUTAEN
GETLFB
PUTCH
PUTCHX .
PUTNAM

return to command interpreter
return to command inte~preter
return to command interpreter

t'lc
&
&

scan MCR$ line
d1splaysl,gn on
say "READY"

return to 'command interpreter & give message
get the next symbol from MCR$
get the next character from MCR$
get the auto execute PFN
set the auto execute DFN
open the user-speci fied file (LF j~l in B)
store the nonblank character in the A register
store the character in the A register
format a filename from a directory block

42-2 DISK OPERATING SYSTEM

013441
013444
013447
013452

MOVSYM
GETDBA
SCANFS
TCWAIT

obtain the symbol scanned off by GETSYM
obtain the disk controller buffer address
scan off a file specification
test controller memory and wait for command

CHAPTER 42. ROUTINE ENTRi POINTS 42-3

CHAPTER 43. DOS QUESTIONS AND ANSWERS

Q. When I write my program, where should I place it in memory?
A. The best address to specify in your SET statement in an

assembly language program is 017000. This allo~s your program
full access to the routines in the DOS command interpreter and
allows your program to return to the DOS through the NXTCMD and
CMDAGN entry points. If the 8.5 K remaining above 017000 is
inadequate for your program's needs, you could perhaps start
you'r program at 010000 (assuming your program will not be using
the DOS cassette han~ling routines or command interperter
ROUTINES.)

Q. Where should I put the data ar~as used by my program, at the
beginning or at the end?

A. Experience in programming the Datapoint computers has found
that generally it is best to put program data areas before the
program itself. One advantage of this approach stems from the
fact that programs can often be made shOrter if most or all of
the most commonly used data items are contained within one page
of memory, eliminating the need to reload the H rt;!gister. as
often. Since programs typically start on a page boundary, this
autqmatically means that the first 256 bytes of your data area
will be in one common page. Another advantage of this approac~
is that a person reading a program is frequently aided by
eeeing the program's data area and error messages, etc., before
he plunges into the code itself. This placement also reduOes
the number of forward references the assembler must contend
~ith. But don't forget to specify the entry point on your
nE~D" statement! The default entry point is to the first byt~
of code generated. Yours wouldn't be the first program to
start executing your data area!

Q. When my program gets control from the DOS, do I need to save
the regIsters .so I can restore them before returning to it'l

A. No. Under the DOS the saving and restoring of the system's
registers by user programs is not necessary.

CHAPTER 43. DOS QUESTIONS AND ANSWERS 43-1

Q. Talking about returning to the DOS, how should my progr*m do
that?

A. When a user program finishes, the normal termination is by
jumping to EXIT$~

Q. Does it matter if my program returns to the DOS (to EXIT$,
NXTCMD, CMDAGN, or whereever) with the stack at a different
level than when my program started? In other words, if my
program calls several levels down into subroutines and the
subroutine jumps to EXIT$, will that mess things all up?

A. No. Since the stack wraps around, the level is always relative
and it makes no difference what is in the stack when the user
returns control to the DOS.

Q.What is the best way to pass parameters to my subro 1.Jtines? Is
there any official convention for this?

A. There is no "official convention" for parameter passing.
However, experience with programming under the DOS suggests
that passing parameters in the registers as typified by the DOS
file handling routine parameterization is both effi0ient and
convenient to use. The DOS convention that abnormal returns
from subroutines are indicated by carry being tr~.te on exi t (and
further information indicated by the zero condition being true
or false) also has proven to be a very handy technique, and one
which user programs can probably make profitable example of.

Q. Can I update my data files with EDIT?
A. Most data files cannot be EDITed. EDIT produces a space and

record compressed output, regardless of input file format.
Also, EDIT will segment records longer than 79 bytes into two
or more records. Only if your data file is compre.:lsed and has
79 byte (or smaller) records can EDIT be used on it. In
general, do not EDIT a data file; write an update program.

Q. Wha ts going on when I run a program and nothing happens; the
machine just comes back with READY?

A. This is the system's normal action when it finds an unloadable
program. Sumething - a parity error, a non-object record -
made the program unloadable. Try COPYing the program to clear
any parity errors. APP the program to test for non-object
records. It may be necessary to re-assemble the program or get
a new object file from tape or another disk.

43-2 DISK OPERATING SYSTEM

If you have had q~estions that may be helpful to others,
please forward them to the Software Development Group, Datapoint
Corporation so that they may be considered for use in subsequent
releases of the DOS U~er's Guide.

CHAPTER 43. DOS QUESTIONS AND ANSWERS 43-3

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	02-01
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	06-01
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	12-01
	12-02
	12-03
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	15-01
	16-01
	16-02
	17-01
	17-02
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	20-01
	20-02
	20-03
	20-04
	21-01
	21-02
	22-01
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	24-01
	25-01
	25-02
	25-03
	25-04
	26-01
	27-01
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	30-01
	30-02
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	32-01
	33-01
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	34-10
	34-11
	34-12
	34-13
	34-14
	34-15
	34-16
	34-17
	34-18
	34-19
	34-20
	34-21
	34-22
	34-23
	34-24
	34-25
	34-26
	34-27
	34-28
	34-29
	34-30
	34-31
	34-32
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	36-01
	36-02
	36-03
	37-01
	37-02
	38-01
	38-02
	38-03
	38-04
	38-05
	38-06
	38-07
	38-08
	38-09
	38-10
	38-11
	38-12
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	40-01
	40-02
	40-03
	40-04
	40-05
	40-06
	40-07
	40-08
	40-09
	40-10
	40-11
	40-12
	40-13
	40-14
	40-15
	40-16
	40-17
	40-18
	40-19
	40-20
	40-21
	40-22
	40-23
	40-24
	40-25
	40-26
	40-27
	40-28
	40-29
	40-30
	40-31
	40-32
	40-33
	40-34
	40-35
	40-36
	40-37
	40-38
	40-39
	40-40
	40-41
	40-42
	40-43
	40-44
	40-45
	40-46
	40-47
	40-48
	40-49
	40-50
	40-51
	40-52
	40-53
	40-54
	41-01
	41-02
	42-01
	42-02
	42-03
	43-01
	43-02
	43-03

