DOS DATABUS
COMPILER
DBCMP

User’'s Guide

Version 2
February, ,1977

Model Code No. 50182

DATAPOINT CORPORATION

L

The leader indispersed data processing ™

COPYRIGHT® 1976 BY DATAPOINT CORPORATION. PRINTED IN US.A.

DOS. DATABUS COMPILER
DBCMP

User's Guide

Version 2

February, 1977

Model Code No. 50182

DATAPOINT CORPORATION I)

April 1, 1977

Addendum to: DBCMP User's Guide
Version 2
February, 1977
50182

Reference: Chapter 8, after the second paragraph.

Add:...
"When the result causes the OVER flag to be set the LESS,ZERO
flags are indeterminate."

Reference: Chapter 8, section 8.1, at the bottom of page 8-2.

Delete:...
i , ZEROM

Add:
"The LESS,ZERO flags are indeterminate."”

9725 DATAPOINT DRIVE ~ SAN ANTONIO, TEXAS 78284 (512) 699-7000

Reference: Chapter 8, section 8.2, in

Change:

"The following flag will be set: OVER,

To:

"The following flags will be set: OVER"

Add:
"The LESS,ZERO flags are indeterminate.

Reference: Chapter 8, section 8.3, at

Delete:..
n’ LESS™"

Add:...
"The LESS,ZERO flags are indeterminate.

keference: Chapter 8, section 8.4, in

Delete:...
n’ ZEROM

Add:...
"The LESS,ZERO flags are indeterminate.

the middle of page 8-4.

LESS"

the bottom of page 8-5.

the middle of page 8-8.

Delete: ...
" , ZERO"

Add:...
"The LESS,ZERO flags are indeterminate."

Reference: Chapter 8, section 8.5, in the middle of page 8-9.

Add:...
"The LESS,ZERO flags are indeterminate."

Reference: Chapter 8, section 8.6, on page 8-10.

Change:...
"The LESS and ZERO...."

To:...
"The LESS, OVER and ZERO..."

Delete:...

"—-- Since the result is not moved to the destination variable,
the format of the result is not taken inot consideration when
setting the condition flags. This means that the OVER
condition flag can never be set by the COMPARE instruction.™

Reference: Chapter 15, section 15.7, at the bottom
of page 15-11.

Replace:

"e- c¢) Since UPDATE modifies logical records instead of
physical records, it is possible to tab across pyhsical record
boundaries."

With:
"ee ¢) It is an illegal operation to follow an UPDATE with a
DELETE. This operation can destroy your file."

Reference: Chapter 15, section 15.9, at the top
of page 15-14,

Add: ...
"-- It is an illegal operation to follow an UPDATE with a
DELETE. This operation can destroy your file."

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> 1is the DATABUS arithmetic operation.
<soper> 1s the source operand.
<prep> 1is a valid preposition.
<doper> is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified. When the result causes the OVER flag
to be set the LESS,ZERO flags are indeterminate.

8.1 ADD

The ADD instruction causes the content of source operand to
be added to the content of destination operand. The result (sum)
is placed in the destination operand. This instruction has the
following formats:

1) <label> ADD <{snvar><prep><dnvar>
2) <label> ADD <nlit><prep><dnvar>

Where: <label)> is an execution label (see section 2.).
<snvar> is the source numeric variable.
{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.

Programming Considerations:

-- <label> is optional.

-- <nlit> must be a valid numeric literal.

-- The source numeric operand is never modified.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

-- <dnvar> contains the result (sum) of the ADD.
-- The flags OVER, LESS, ZERO (or EQUAL), are set appropriately.

-- The rounding and truncation rules are applicable (see section

2.7).
Examples:
X FORM "123.45"
Y FORM "267.22"
ADD X TO Y
Y will contain 390.67
The following flag(s) will be set: None
Example:
CAT FORM "100.50"
ADD ", 005" TO CAT
CAT will contain 100.51
The following flag(s) will be set: None
Example:
NUM FORM ".245,0000"
NUM2 FORM "800.0"
ADD NUM TO NUM2
NUM2 will contain 555.0
The following flag(s) will be set: None
Example:
N FORM "oo.0"

ADD "100.00" TO N
N will contain 00.0

The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

8-2 DOS. DATABUS COMPILER

C1 FORM "5.60"
c2 FORM "1.665"

SUB C2 FROM C1

C2 will contain 3.9%4
The following flags will be set: None

Example:
NUMBR FORM "_345n
SUB "700.5" FROM NUMBR
NUMBR will contain 1045
The following flags will be set: OVER
The LESS,ZERO flags are indeterminate.
Example:
Y1 FORM " 10.00"
Y2 FORM " 20.005"
SUB Y2 FROM Y1

Y2 will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of the source numeric
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. The instruction has the
following formats:

1) <label> MULT <snvar><prep><dnvar>
2) <label> MULTIPLY <snvar><prep><dnvar>
3) <label> MULT <nlit><prep><dnvar>
4) <label> MULTIPLY <nlit><prep><dnvar>

Where: <label> is an execution label. ‘
{snvar> is the source numeric variable.
{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric 1literal.

8-4 DOS. DATABUS COMPILER

Programming Considerations:

-- The execution label <label> is optional.

-- <nlit> must be a valid numeric literal.

-- The flags OVER, LESS, ZERO (or EQUAL) are applicable.
-~ The source numeric operand is not modified.

-- The destination numeric operand contains the result (product).
-- The sum of the number of characters in the source operand and
the destination operand must not exceed 31. (The compiler

does not check this limit. If it is exceeded the interpreter

will produce erroneous results.)

-- The truncation and rounding rules are applicable.

Example:
M1 FORM "g1o"
M2 FORM "to12"
MULT M1 BY M2
M2 will contain 120
The following flag(s) will be set: None
Example:
X123 FORM "12000.00"
MULT "1.1" BY X123
X123 will contain 13200.00
The following flag(s) will be set: None
Example:
NEG FORM "-10.5"

MULT "10" BY NEG
NEG will contain 105.0

The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

Example:

ZERO

Example:

ZERO

Example:

N1

8.5 MOVE

The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.

The instruction

FORM "ooo"
FORM "155.00"
DIV ZERO INTO N

N will contain 999.99
The following flag(s) will be set: OVER

FORM "00.00"
FORM "155.00"
DIV ZERO INTO N
N will contain __.00

The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.
FORM "100"

DIV "Oo.1" INTO N1

N1 will contain __ 0

The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

has the following formats:

1) <label> MOVE <snvar><prep><dnvar>
2) <label> MOVE <nlit><prep><dnvar>

Where: <label>

N
{snvar>

<{prep>
{dnvar>
<nlit>

is an execution label.

is the source numeric variable.

is a preposition.

is the destination numeric variable.
is a numeric literal.

Programming Considerations:

8-8 DOS. DATABUS COMPILER

-- <label> is optional.
-- <nlit> must be a valid numeric literal.
~- The contents of the source numeric operand is never modified.

~-- The destination numeric variable contains the result of the
MOVE operation.

-- The OVER, LESS, ZERO (or EQUAL) flags are applicable.

~-- The truncation and rounding rules are applicable.

Example:
SOURCE FORM "i12345"
DESTIN FORM 6.2
MOVE SOURCE TO DESTIN
DESTIN will contain _12345.00
The following flag(s) will be set: None
Example:
D1 FORM 4,2
MOVE "12345" TO D1
D1 will contain 2345.00
The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.
Example:
S FORM "12345.51"
D FORM "99999"
MOVE S TO D
D will contain 12346
The following flag(s) will be set: None
Example:
N FORM "999.99"
MOVE "0.0" TO N

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

N will contain .00
The following flag(s) will be set: ZERO

8.6 COMPARE

The COMPARE instruction is used to compare two numeric
quantities. The instruction has the following formats:

1) <label> COMPARE <{snvar><prep><dnvar>
2) <label> COMPARE <nlit><prep><dnvar>

Where: <label)> is an execution label.
<snvar> is the source numeric variable.
<prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.

Programming Considerations:

-- <label> is optional.

-- <nlit> is a valid numeric literal.

-- The contents of the source numeric operand are never modified.

-- The contents of the destination numeric variable are never
modified.

-- The LESS, OVER and ZERO (or EQUAL) condition flags are set
exactly as if a SUBTRACT instruction had been executed instead
of a COMPARE.

-- Rounding takes place when the COMPARE instruction is executed.

Example:
ONEH FORM "100.00"
COMPARE "100" TO ONEH

The following flag(s) will be set: ZERO (EQUAL)

8-10 DOS. DATABUS COMPILER

15.7 UPDATE

The UPDATE instruction allows tabbing while modifying an

indexed record. UPDATE allows characters to be written into any
character position of an indexed record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1) <label> UPDATE <ifile>;<list>
2) <label> UPDATE <rifile>;<list>

where: <label> is an execution label (see section 2.).

<ifile> is a file defined using the IFILE declaration (see
section 5.2).

<rifile> is a file defined using the RIFILE .declaration
(see section 5.4).

<list> is a list of items describing the information to be
written to the disk.

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last indexed record accessed by
any indexed record instruction (typically a READ or READKS).

With the following exceptions UPDATE functions the same as
WRITAB.

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record.

b) The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

It is an illegal operation to follow an UPDATE with a DELETE.
This operation can destroy your file.

Attempting an UPDATE when no other index operation has been
performed prior to the execution of the UPDATE, will cause and
I1/0 error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. 1If extreme care is not exercised, this can result in
more than one record being turned into a single very large

CHAPTER 15. INDEXED RECORD ACCESSING 15-11

It is illegal operation to follow an UPDATE with a DELETE.
This operation can destroy your file,

<label> is optional.
The logical string of <svar> specifies the key to be deleted.

One DELETE must be executed for each index file which will
need the key deleted.

If the key is null, an I/0 error will result.

If the key cannot be found in the index, the OVER condition
flag is set.

The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

Both the DOS REFORMAT utility and the Databus interpreters
ignore all 032 characters while reading. Therefore, while
reading these characters do not appear to exist.

The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

If the indexed record to be deleted has already been deleted,

then the only action taken is to delete the key from the index
file.

15-14 DOS. DATABUS COMPILER

PREFACE

The DOS DATABUS Compiler (DBCMP) is the compiler to be used
to compile DATABUS programs for the DATASHARE 3, DATASHARE 4, and
DATABUS 11 interpreters. This compiler is compatible with all
current Datapoint DOS releases. This manual provides the
reference material required by users of the DATABUS language. It

is designed to be used as reference only, and not as a tutorial.

N -
L .

w,
.

(@)

(SRR RN}

ASEACEACRICE \O N\ NV
~NOoOUTHEWN —

EEEEEEE
.
OV EFEWN —

SO OYOYOYOY
. L] . . L] L .
~N OVl EFWN —

TABLE OF CONTENTS

INTRODUCTION

STATEMENT STRUCTURES
Comments

Compiler Directives
Data Area Definition
Program Execution
Literals

The Forcing Character
Numeric Definitions
2.7.1 Integer/Fraction
2.7.2 Rounding/Trucation
2.7.3 Rounding Rules

.8 Character String Definitions
.9 A Sample Progranm

COMPILER DIRECTIVES

.1 EQUATE (EQU)
.2 INCLUDE (INC)

DATA DEFINITION

Numeric String Variables
Character String Variables
Common Data Areas

FORM

DIM

INIT

COMLST

FILE DECLARATION

.1 FILE
.2 IFILE
.3 RFILE
.4 RIFILE

PROGRAM CONTROL INSTRUCTIONS
Condition Flags

GOTO

BRANCH

CALL

RETURN

ACALL

STOP

ii

kel
-
1 0g
— O

|
VWO NINIOFFEFFTWW =

N
| LI | [I | P L L |
~NNOUVTFWN = — N — =

| [T |
WWN = =

OO ONOYOYOYOYOY U'\U'lU'lU'\\lﬂ ErErEEEEEEEE www
]
N OUVTWN = =

8 CHAIN

.9 TRAP

.10 TRAPCLR
.11 ROLLOUT
6.12 PI

6.13 TABPAGE
6.14 DSCNCT

7. CHARACTER STRING HANDLING INSTRUCTIONS
7.1 MOVE
7.1.1 MOVE (character string to character string)
7.1.2 MOVE (character string to numeric string)
7.1.3 MOVE (numeric string to character string)
APPEND
MATCH
CMOVE
CMATCH
BUMP
RESET
ENDSET
LENSET
CLEAR
EXTEND
LOAD
STORE
CLOCK
TYPE
SEARCH
REPLACE

. e e e e o e e e

ST U P | SN Ve e e LN e)N © 2 BN —J U I \V)

NN NN NN NN N =
. ° .
~NoOUVTEWN — O

8. ARITHMETIC INSTRUCTIONS
.1 ADD

.2 SUBTRACT (SUB)
.3 MULTIPLY (MULT)
.4 DIVIDE (DIV)

.5 MOVE

.6 COMPARE

.7 LOAD

.8 STORE

.9 CHECK11 (CK11)
.10 CHECK10 (CK10)

GDOOWOLOOOOG)OOODOC

9. INTERACTIVE INPUT/OUTPUT
9.1 KEYIN ,
9.1.1 Character String Variables (KEYIN)
9.1.2 Numeric String Variables (KEYIN)
9.1.3 List Controls
9.1.3.1 ¥P<h>:<v> (Cursor Positioning)

iii

LI T B N B o))
[NS T) O JE GO Sy |

OO OYOYOYOY
—_ O &= =00

N~
R R R D D P A i g
[N I I |
O~ FWNOOOO]UT I s

Co Co OO Co Co

1 I 1 1 1 OoOoo 0o oo oo
] TS D I R D I |

~N WO W — —

1
OO EWN —

O OO OO0
1

. .
— = O OU =W N

[
OO0V EWN - O

. e o o . o o o o e o o v @ .

USRI N QPUSIE (UV U\ (UL IS QPR WU S U (UL G G U G

Ul =
e e e e e e e o e o o N e o o ¢ o o o o o o o o o o o o o o o
WWWLA)UJLA)WLA)WWWLA)WHCD""<:U1U'IU'I'UHWWWU)WWWWWWWWWWWWWU)W
e s e e s+ e s e o o e o o o e« o e s e e ¢ o o

.20

e LVWOWOWWOWOWWOWOWOWWOWOWOWWOWOWOWWOVOWOWOWO
. . . .

9.1 iter
9.1. eci
9.1.5.1
9.1.5.2
9.1.5.3
9.2 DISPLA
9.2.1 Chara
9.2.2 Numer
9.2.3 List
9.2.3.1
9.2 2
9.2 3
9.2 y
9.2 5
9.2 6
9.2 7
9.2 8
9.2 9
9.2
9.2.3.11
9.2.3.12
9.2.3.13
9.2.4 ther
9.3 CONSOLE
9.4 BEEP
9.5 DEBUG

10. PRINTER OUT
10.1 PRINT

¥EL (Erase to the End-of-Line)
*EF (Erase from Cursor Position)
*ES (Erase the Screen)

¥C (Carriage Return)

*¥L (Line Feed)

¥N (Next Line)

¥R (Roll the Screen)
¥+ (KEYIN Continuous On)
¥. (KEYIN Continuous Off)
¥T (KEYIN Timeout)

¥W (Wait)

¥EOFF (Echo Off)

¥EON (Echo On)

¥IT (Invert Text)

¥IN (Invert to Normal)
¥JL (Justify Left)

¥JR (Justify Right)

*¥7ZF (Zero Fill)

¥DE (Digit Entry)
als (KEYIN)

al Considerations
BACKSPACE and CANCEL

NEW LINE

INTerrupt

cter String Variables (DISPLAY)
ic String Variables (DISPLAY)
Controls

¥P<h>:<v> (Cursor Positioning)
*EL (Erase to End-of-Line)

¥EF (Erase to End-of-Frame)

¥*ES (Erase the Screen)

*¥C (Carriage Return)

¥, (Line Feed)

¥N (Next Line)

¥R (Roll the Screen)

¥4 (DISPLAY Blank Suppression 0On)

.10 ¥~ (DISPLAY Blank Suppression Off)

*W (Wait)

¥IT (Invert Text)

¥IN (Invert to Normal)
als (DISPLAY)

PUT

iv

WOWoOoOO~JOOOUIVTI FWe—ms 00 W0wWO0VOOWo000oo0mo

I OVOVOVOVOOWOOOOWO
[}

L S o W U R U (Y Qs QR G |

OO OVWOOOVOVOOWOVOVOOWOOVOOWO

I
n NN
ool

10
10

11.

12.

12‘

12.

12.

10.1.1 Character String Variables
10.1.2 Numeric String Variables
10.1.3 List Controls
10.1.3.1 *¥F (Form Feed)
10. ¥C (Carriage Return)
10. ¥, (Line Feed)
10. ¥N (Next Line)
10. ¥<{n> (Tab To Column <n>)
10. ; (Supress new line function)
10. ¥7F (Zero Fill)
10. ¥4+ (Blank Supression On)
10. ¥~ (Blank Suppression Off)
10.1.4 therals

ST U G N U
e o e e s e
wwwwwwww
e o o o o o
\O.m‘\'lc"\U'l-tUJN-—\

.2 RPRINT
10.

3 RELEASE

.4 Printer Considerations

COMMUNICATIONS INPUT/OUTPUT

.1 SEND
.2 RECV
.3 COMCLR
.4 COMTST
.5 COMWAIT

DISK INPUT/OUTPUT

1 File Structure

12.1.1 Record Structures
12.1.1.1 Physical Records
12.1.1.2 Logical Records
12.1.1.3 Indexed Records

12.1.2 Space Compression

12.1.3 End of File Mark

2 Accessing Methods

12.2.1 Physical Record Accessing

12.2.2 Logical Record Accessing

12.2.3 Indexed Record Accessing

3 General Instructions (Disk I/0)

12.3.1 OPEN (General)

12.3.2 CLOSE (General)

12. 3 3 READ (General)

12.3.4 WRITE (General)

i
3
1
1
1

2.3.
2.3.
2.3.4.3 List Controls (WRITE)
12
12

12.3.3.1 Character String Variables (READ)
2.3.3.2 Numeric String Variables (READ)

3.

R

4.1 Character String Variables (WRITE)
4,2 Numeric String Variables (WRITE)
y,

.3.4.3.1 ¥4 (Space Compression On)
.3.4.3.2 ¥~ (Space Compression Off)

12.3.4.3.3 ¥ZF (Zero Fill) 12-25

12.3.4.3.4 ¥MP (Minus Overpunch) 12-26

12.3.4.4 Octal Control Characters 12-26
12.3.4.5 Literals 12=-27

13. PHYSICAL RECORD ACCESSING 13-1
13.1 OPEN (Physical) 13-1
13.2 PREPARE (PREP) (Physical) 13=2
13.3 CLOSE (Physical) 13-5
13.4 READ (Physical) 13-5
13.4.1 Tab Control 13-7

13.5 WRITE (Physical) 13-9
13.6 WRITAB 13-10
13.6.1 Tab Control 13-11

13.7 WEOF 13=-12
14, LOGICAL RECORD ACCESSING 14-1
14.1 OPEN (Logical) 14-1
14.2 PREPARE (Logical) 14-1
14.3 CLOSE (Logical) 14-1
14.4 READ (Logical) 14-1
14.5 WRITE (Logical) 14-3
14.6 WRITAB (Logical) 14-Y
14.7 WEOF (Logical) 14-4
15. INDEXED RECORD ACCESSING 15-1
15.1 OPEN (Indexed) 15-1
15.2 CLOSE (Indexed) 15-3
15.3 READ (Indexed) 15-4
15.4 WRITE (Indexed) 15-6
15.5 WEOF (Indexed) 15-9
15.6 READKS 15-9
15.7 UPDATE 15-11
15.8 INSERT 15-12
15.9 DELETE 15-13
16. PROGRAM GENERATION 16-1
16.1 Preparing Source Files 16-1
16.2 Compiling Source Files 16-1
16.2.1 File Specifications 16-2
16.2.2 Output Parameters 16-3

16.3 Compilation Diagnostics 16-6
16.4 Disk Space Requirements 16-7
Appendix A. INSTRUCTION SUMMARY A-1
Appendix B. INPUT/OUTPUT LIST CONTROLS B-1

vi

Appendix C. SAMPLE DATASHARE SYSTEM
C.1 SYSTEM PROGRAMS
C.1.1 Sample ANSWER Program
C.1.2 Sample MASTER Program
C.1.3 Sample DATASHARE MASter MENU
C.1.4 Sample Program Selection MENU
C.1.5 Chain Files for System Generation
C.1.5.1 Compile the System Programs
C.1.5.2 Re-organize System Log File
C.2 SYSTEM INCLUSION FILES
C.2.1 COMMON User's Data Area
C.2.2 Log File Data Area Definition
C.2.3 Log File Input/Output Routines
C.3 SUPLEMENTAL SYSTEM PROGRAMS
C.3.1 Re-organize the List of Authorized Users
C.3.2 Program to Generate New Menus

Appendix D. COMMON FILE ACCESS CONSIDERATIONS

Appendix E. COMPILER ERROR CODES

Appendix F. INDEX FILE SIZE COMPUTATION

Appendix G. SERIAL BELT PRINTER CONSIDERATIONS
H

Appendix H. GLOSSARY

vii

IIOC‘DO

| I S R B | | I B |
~NOoOVUTW —00WJWONOOUVIU &= —

OOOOOOC.')OOOOOO
UEEEEEFEWWNDMNODND = =

CHAPTER 1. INTRODUCTION

The DATABUS language is an interpretive, high level language
designed for business applications. It has been designed to run
under the Datapoint Disk Operating System and takes advantage of
all of its file handling capabilities (dynamic file allocation,
random or sequential files, and the powerful Indexed Sequential
Access Method).

Verbs are provided to permit simple yet flexible operator
interaction with the program, thus enabling levels of data entry
and checking ranging from simple keypunch to extremely
sophisticated intelligent data entry. A complete set of string
manipulation verbs are available, along with a flexible arithmetic
package. An extensive set of file manipulation verbs complete a
powerful business-oriented language.

The complete DATABUS language may not be compatible with all
DATASHARE 3, DATASHARE 4, and DATABUS 11 Interpreters. The
following is a brief description of the current DATASHARE 3,
DATASHARE 4, and DATABUS 11 interpreters. Refer to the
appropriate user's guide for more detailed information about the
interpreters.

DS343360 DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.A system.

DS3A3600 DATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.A system.

DS3B3360 DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

DS3B3600 DATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

PSDS3 DATASHARE 3 Interpreter supporting up to sixteen
3360 or 3600 terminals on a 5500 DOS.D or DOS.E
system. (This interpreter will execute in either
partition of the Partition Supervisor.)

CHAPTER 1. INTRODUCTION 1-1

DS42200 DATASHARE 4 Interpreter supporting up to four 3360
terminals on a 2200 DOS.A or DOS.B system.

DS42200X DATASHARE 4 Interpreter supporting up to four 3600
terminals on a 2200 DOS.A or DOS.B system.

DS45500 DATASHARE 4 Interpreter supporting up to 16 3360 or
3600 terminals on a 5500 DOS.D or DOS.E system. In
addition this interpreter can be configured to
support remote diskette stations via dial-up
telephone lines in a networking configuration
(replacing DS3NET). It may also be configured for
external communications through a MULTILINK
configuration.

DB11 DATABUS 11 Interpreter executing DATABUS code
programs from the processor console on a 2200,
Diskette 1100, or 5500, DOS.A, DOS.B, DOS.C, DOS.D,
or DOS.E systems.

DBML11 DATABUS MULTILINK 11 interpreter executing two
DATABUS code programs. The primary program was the
processor console and the secondary (or utility)
program may be used for utility functions.

Internal (between primary and secondary program)
and external (with a remote or host processor)
communications are support. The interpreter
executes on a Datapoint 1150 DOS.C system.

1-2 DOS. DATABUS COMPILER

CHAPTER 2. STATEMENT STRUCTURES

There are four basic types of statements in the DATABUS
language: comment, compiler directive, data area definition and
program execution. All of the statements (except comments) use the
following basic format:

<label> <operation> <operands> <comment>

where: each of the fields above is separated from the others by

at least one space,

<label> is a letter, followed by any combination of up to
seven letters and digits, (this does not include
special characters),

<operation> denotes the operation to be performed on the
following operands,

{operands> are any operands required by the <operation>,
and

{comment> is any comment the user wants to make about the
instruction or about program execution.

The label field is considered empty if a space appears in the
first column of the line. The following are examples of valid
labels:

A

ABC

A1BC
B1234
ABCDEF
BIGLABEL

The following are examples of invalid labels:

HI,JK (contains an invalid character)
4D0OGS (does not begin with a letter)

. The compiler keeps track of two distinct sets of labels; data
labels and execution labels. Data labels are those present on
data area definition statements. Execution labels are those
labels used by the program control instructions (see chapter 6.)
to alter the normal flow of program execution.

Data labels must be unique among themselves; that is, no data
label can be the same as any other data label. Execution labels

CHAPTER 2. STATEMENT STRUCTURES 2-1

must also be unique among themselves. However, a label may be
used both as a data label and also as an execution label.

Although there are exceptions (for more details see the
sections that describe the instructions individually), the operand
field for most of the instructions has the following general
format:

<{source operand><separator><destination operand>

where: <source operand> is the first operand required by the
operation,
<destination operand> is the second operand required by
the operation, and
{separator> must be a comma or a valid preposition.

If a comma is used as the separator it cannot be preceded by
any spaces, but may be followed by any number of spaces (including
none). The prepositions that may be used as separators are BY,
TO, OF, FROM, USING, WITH, or INTO. If one of these prepositions
is used as the separator, it must be preceded and followed by at
least one blank. Note that any of these preposition may be used
even if it does not make sense in English.

The following are all examples of valid statements:

LABEL1 ADD PCS TO TOTAL

LABELZ2 ADD PCS OF TOTAL THIS IS A COMMENT
LABEL3 ADD PCS, TOTAL

LABEL4 ADD PCS,TOTAL

LABELS ADD PCS TO TOTAL

The following are examples of invalid statements:

LABEL1 ADD PCS TOTAL (missing separator)
LABEL?2 ADD PCS ,TOTAL (space before comma)

Some of the operations require a list of items in the operand
field. Such a 1list is typically made up of variable names,
literals, and list controls separated by commas. This list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that would
normally appear in the list with a colon and continuing the list
on the following line. Comments may be included after the colon
used for continuation.

2=2 DOS. DATABUS COMPILER

For example, the two statements:

DISPLAY A,B,C,D:
E,F,G
A,B,C,D

DISPLAY ,E,F,G

will perform the same function.

2.1 Comments

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program. Comments
are useful in making it easier for someone reading through the
program to understand program logic, subroutine function,
subroutine parameterization, etc.

Comments that begin with a period are simply copied from the
source program to any listing requested by the user.

Comments that begin with an asterisk are treated like
comments that begin with a period, unless there are fewer than 12
lines at the bottom of the current page. If there are fewer than
12 lines, comments that begin with an asterisk will be printed at
the top of the next page. This allows comments to appear on the
same page as the program instructions that are being described by
the comments. Use of the asterisk at the beginning of each
section or subroutine description is encouraged since this greatly
enhances program readability.

Comments that begin with a plus sign will always be printed
at the top of the next page. This allows major sections of the
program to be started at the top of a page. The plus sign should
be used cautiously, since it can easily waste great quantities of
paper.

2.2 Compiler Directives

Compiler directives are provided to make the compilation
process easier and more flexible.

There is a compilation directive which allows a programmer to
include other files in the current compilation. This directive
allows large programs to be broken into several smaller,
easier-to-edit files. It also allows a single file to be used for
a set of subroutines or data definition blocks which are common to
more than one program.

CHAPTER 2. STATEMENT STRUCTURES 2-3

There is also a compilation directive which allows the
absolute value of a symbolic name to be defined. A name defined
in this manner may then be used for tab positioning in disk I/0
Statements or cursor positioning in KEYIN, DISPLAY and CONSOLE
statements.

2.3 Data Area Definition

The user's data area must be defined by using file
declaration or data definition statements. File declaration
statements are used to reserve space for the system information
needed for all disk accessing, while data definition statements
are used to describe the format of any variables used in a ‘
program. For information about the size of the user's data area,
see the user's guide of the appropriate interpreter. All of these
statements must have labels which are used to reference the
variable or logical file defined. All labels used with data
definition and file declaration statements are data labels (see
section 2.).

2.4 Program Execution

The program execution statements are those that actually do
the data manipulation and must conform to the following rules:

-- They must appear after any data area definition statements.
-- They may or may not have labels.

-- Any label used on one of these statements is an execution
label (see section 2.).

-- Program execution always begins with the first executable
statement.

2.5 Literals

Literals are useful when a constant value is needed as one of
the operands of an instruction. Using literals will save user's
data area.

2-4 DOS. DATABUS COMPILER

A literal has one of the following formats:

"<string>"
<dnum>
"<char>"
<ocec>

where: <string> is any sequence of characters with the exceptions

described below in the section on the forcing
character (#). This string may be either a
numeric string (see section 4.1) or a character
string (see section 4.2).

<dnum> is a decimal number between -128 and 127.

<char> is any single character. (The forcing character
rules do not apply.)

<ocec> 1s an octal control character.

See the sections describing the individual instructions for the
format that may be used with those instructions allowing literals.

The following criteria apply to literals with the "<string>"

format:

The string may be from 1 through 40 characters in length
(excluding the quotes).

The string must be enclosed in double quotes.

When the literal is used as a character string the formpointer
is always equal to 1.

When the literal is used as a character string the logical
length pointer always points to the last character of the
literal.

Most instructions that make use of these literals require that
the literal be the first operand of the instruction (for more
details see the sections that describe the instructions
individually).

Some examples of instructions that may use literals of the
"<{string>" format follow:

STORE "APPLES"™ INTO X OF S1,S2,33
ROLLOUT "CHAIN FIX22"

CHAIN "NEXTPROG"

OPEN FILE1,"DATAFILE"

CHAPTER 2. STATEMENT STRUCTURES 2=5

PREPARE FILE1,"USERDATA"

MOVE "MESSAGE" TO M3442
MOVE "100.55" TO VALUE
APPEND ", TO STR1

MATCH "YES" TO ANSWER
ADD "23.46" TO TOTAL

SUBTRACT "1" FROM COUNT
MULTIPLY ".1"™ BY TAX

DIVIDE. "33.3333" INTO FACTOR
COMPARE "10" TO LINENUMB

The following criteria apply to octal control characters:

-~ The octal control character must be between 000 and 037,
inclusive.

-- The first character of an octal control character must be a
ZEero.

-- Note that some of these octal control characters are used for
control purposes in disk files (000, 003, 011, 015) and others
are used as control characters in DISPLAY, KEYIN and CONSOLE
statements. Improper use of these control characters can
result in invalid program execution.

2.6 The Forcing Character

Since the second double quote is used to indicate the end of
the string, any literal of the form "<string>" needs a special
technique to include a double quote as a character within the
<{string>. The technique used by the Databus language is to define
the pound sign (#) to be a forcing character.

Putting the pound sign within a string tells the compiler
that the next character in the string should be included within
the string. The character following the pound sign is not checked
for any special significance, it is simply picked up and put into
the string. The pound sign used as a forcing character is not put
into the string. This means that to put the pound sign itself
into a string you must do so by using a previous pound sign as a
forcing character.

2-6 DOS. DATABUS COMPILER

For example,
DISPLAY "CUSTOMER## SHOULD BE #"2222#""
would display exactly:
CUSTOMER# SHOULD BE "2222"
on the screen.

Note that the forcing character convention does not apply to
literals of the "<char>" format. <char> may be any character,
including the double quote character and the pound sign character.
For example,

CMOVE mun TO STRING

would be used to move a double quote sign into the variable
STRING. However, the use of a literal in a MOVE instruction would
require the use of the forcing character (even in a single
character move) since the quoted item can be a mutiple character
quote. For example:

MOVE wEun TO STRING
would be used to move a double quote sign into the variable
STRING.
2.7 Numeric Definitions

The following definitions will be established so that the
ensuing discussion in subsequent chapters will be more meaningful.

2.7.1 Integer/Fraction

Numeric String Variables (or literals) are composed of two
parts.

a) Integer - The integer portion of a numeric variable is
the portion of the numeric string that exists to the left
of the decimal point. If the decimal point does not
exist explicitly, the decimal point is implied to be to
the right of the rightmost digit of the numeric string.

b) Fractional - The fractional portion of a numeric variable

CHAPTER 2. STATEMENT STRUCTURES 2=17

is the portion of the numeric string that exists to the
right of the decimal point.

For example consider the following:

A FORM "123.45"
B FORM "e78."
C FORM "go"

A has a value of 123 for the integer portion and 45 for the
fractional portion. B has a value of 678 for the integer portion.
C has a value of 90 for the integer portion (the decimal point is
implied to the right of the zero).

2.7.2 Rounding/Trucation

When the result of an arithmetic operation consists of more
characters than can be contained in the destination variable, the
result is truncated, rounded or both truncated and rounded so that
it will "fit" in the destination variable.

Truncation is the process of eliminating those characters
that will not fit in the destination variable. Truncation may
occur either on the right or on the left. Right truncation means
some of the least significant digits of the result are lost, while
left truncation means that some of the most significant characters
are lost. Usually, the arithmetic instruction that causes left
truncation of the result will set the OVER condition flag to
indicate arithmetic overflow.

Rounding is a modified form of right truncation. For details
on rounding, see section 2.7.3. Unless specificly mentioned
otherwise, rounding will be used instead of right truncation.

The following rules are used to determine which characters
will be lost if truncation or rounding is necessary:

a) If the destination variable is defined to contain a decimal
point, the result (of the arithmetic operation) is aligned so
that its decimal point will overstore the destination
variable's decimal point. Any characters that will not fit
after this alignment are lost.

b) If the destination variable is defined without a decimal

point, alignment occurs as 1f there were a decimal point just
after the least significant digit of the destination variable.

2-8 DOS. DATABUS COMPTIFR

2.7.3 Rounding Rules

To determine when rounding is necessary, see section 2.7.2.
The following rules should be used to distinguish between right
truncation and rounding. To understand the following rules the
distinction between the rounding digit and the rounded digit must
be clear. The rounding digit is the most significant of the
digits lost when rounding a number, while the rounded digit is the
least significant of the digits that are not lost.

a) If the rounding digit is a digit from O to 4, then the rounded
digit remains unchanged.

b) If the rounding digit is the digit 5:
1) If the rest of the digits that will be lost are zero (0):
a. If the result (of the arithmetic operation) is a
negative number, then the rounded digit remains
unchanged.
b. If the result (of the arithmetic operation) is a
positive number, then the rounded digit is incremented
by one (1).
2) If any of the rest of the digits that will be lost are
non-zero, then the rounded digit is incremented by one

(1)0
c. If the rounding digit is a digit from 6 to 9, then the rounded
digit is incremented by one (1).
2.8 Character String Definitions

The following terms will be used in the description of
character string variables.

character string variable -- made up of four parts; the logical
length pointer, the formpointer, the physical string and
the ETX.

i 1lp { fp | physical string | ETX |

physical string -- made up of three parts; the prefix, the
(logical) string and the suffix.

CHAPTER 2. STATEMENT STRUCTURES 2-9

i prefix | (logical) string | suffix |

logical string -- the string usually modified by the instructions.
It is defined by the formpointer and the logical length
pointer. The first character in the logical string is the
head (the character pointed to by the formpointer). The
last character in the logical string is the tail (the
character pointed to by the logical length pointer).

null string -- a string with the formpointer and the logical
length pointer both set to zero.
2.9 A Sample Program

-+
PROGRAM TO DISPLAY A MULTIPLICATION TABLE

COUNT1 FORM mon
COUNT2 FORM "on
PROD FORM 2

*

HERE IS THE START OF THE EXECUTABLE CODE

START DISPLAY *ES,"MULTIPLICATION TABLE:",*N

LOOP MOVE COUNT1 TO PROD
MULT COUNT2 BY PROD
DISPLAY COUNT?1,"X",COUNT2,"=",PROD," ";
ADD "i" TO COUNTZ2
GOTO LOOP IF NOT OVER
DISPLAY *N
ADD "im TO COUNTH1
GOTO LOOP IF NOT OVER
STOP

2-10 DOS. DATABUS COMPILER

CHAPTER 3. COMPILER DIRECTIVES

Two directives are available to give the user more control
over the compilation process. One is the EQU statement and the
other is the INCLUDE statement.

3.1 EQUATE (EQU)

The EQU statement allows a label to be assigned a decimal
numeric value from 1 through 249,

This is particularly useful when one defines the format of
disk records to be used in a data base. If all item positions
within the record are defined using the EQU directive, then
changes in item positions can be achieved by simply changing the
one directive value. If the EQU were not used, changing the
record format would mean changing all disk I/0 statements that
depend on this format. The user would have to hunt through all
programs using this format to change all disk I/0 statements to
conform to the new record format.

The general format of the EQU statement is as follows:
<label> EQU <dnum>
where: <label> is a data label (see section 2.)
<dnum> is the decimal number to be substituted for any
occurance of the label within the program being
compiled.
For example:
LM EQU 5
A label which is defined in this manner may be used as tab values

in disk I/0 statements and as cursor positions in KEYIN, DISPLAY,
and CONSOLE statements.

CHAPTER 3. COMPILER DIRECTIVES 3-1

3.2 INCLUDE (INC)

This statement allows another text file to be included, at
the point where the INCLUDE statement appears, as if the lines
actually existed in the main file being compiled. Note that the
INCLUDE directive can be used to include a file containing any EQU
directives and data variable definitions which are needed to
define the record format of a data base. This allows the
programmer to enter the information about the data base into only
one file instead of entering it into every program that needs to
know about the data base. Modification of the format also becomes
easier, since the programmer need modify only one file before
compiling all of the programs again.

The INCLUDE statement can have one of the following formats:

<label> INCLUDE <D0OS file specification>
<label> INC <DOS file specification>

where: <label> is a data label (see section 2.).
<DOS file specification> is a DOS compatible specification
of the file to be included in the program.
Programming Considerations:

== Including a file will cause all of the lines in that file to
be scanned as if they existed in place of the INCLUDE line.

~~ The assumed extension on included files is TXT but may be
specified to be any extension.

-- If no drive is specified, all drives starting with drive zero
will be scanned for the file.

-- Inclusions may be nested up to four deep, with a maximum of 16
included files.

For example:

INC RECDEFS

WOou
S

1d cause all of the lines from file RECDEFS/TXT to be scanned
if they existed instead of the INC statement.

3=2 DOS. DATABUS COMPILER

CHAPTER 4. DATA DEFINITION

There are two types of data used within the DATABUS language.
They are numeric strings and character strings. The arithmetic
operations are performed on numeric strings and string operations
are performed on character strings. There are also operations
allowing movement of numeric strings into character strings and
vice versa.

Whenever a data variable is to be used in a program, it must
be defined at the beginning by using one of the data definition
statements. The data definition statements reserve space in the
user's data area for the data variable whose name is given in the
label field. (This space is always reserved using one of the
formats described below.) Note that all variables must be defined
before the first executable statement in the program and that once
an executable statement is given, no more variables may be
defined.

4.1 Numeric String Variables

Numeric strings have the following memory format:

octal ascii ascii asecii ascii octal
0200 1 2 . 3 0203

The leading character (0200) is used as an indicator that the
string is numeric. The trailing character (0203) is used to
indicate the location of the end of the string (ETX).

Programming Considerations:

-~ The format of a numeric string is set at definition time and
does not change throughout the execution of the program.

-~ Negative numbers are represented by using one of the
characters before the decimal point for a minus sign.

-~ The physical length of a numeric string is limited to 21
characters (including the decimal point and minus sign, but
excluding the 0200 and 0203 characters).

-~ Numeric items always keep their proper format internally.

CHAPTER 4. DATA DEFINITION 41

-- To be a valid numeric string, the following must be true.
a. Spaces are acceptable only when they are leading spaces.
b. Only one minus sign is allowed. |

c. The minus sign must be next to the most significant
character.

d. Only one decimal point is allowed.

e. Except for the cases mentioned above, only digits are
allowed.

f. A string made up of any combination of spaces, decimal
points and minus signs without at least one digit is not
allowed.

-- Whenever a new value is assigned to a numeric variable, it
is reformatted to have the format of that variable.

4,2 Character String Variables
Character strings have the following memory format:

oct oct asc asc asc asc asc asc asc asc asc asc asc asc asc oct
011 005 T H E B R 0 W N F 0 X 0203

The first byte is called the logical length pointer and points to
the last character currently being used in the string (N in the
above example). The second byte is called the formpointer and
points to the first character currently being used in the string
(B in the above example). The use of the logical length pointer
and the formpointer in character strings will be explained in more
detail in the explanations of each character string handling
instruction. Basically, however, these pointers are the mechanism
through which the programmer deals with individual characters
within the string.

Programming Considerations:

-- The term physical length will be used to mean the number of
possible data characters in a string (13 in the above
example).

-- The physical length of string variables is limited to 127.

h-2 DOS. DATABUS COMPILER

-- The logical length pointer will never be greater than the
physical length of the string.

-- The formpointer will always be between zero and the logical
length pointer.

-- A zero formpointer indicates a null string.

-- In the case of character string variables, the actual amount
of user's data area reserved is three bytes greater than the
physical length of the variable.

4.3 Common Data Areas

Since the interpreter has the provision to chain programs so

that one

program can cause another to be loaded and run, it is

desirable to be able to carry common data variables from one
program to the next. The procedure for doing this is as follows:

a.

Examples:

Identify those variables to be used in successive
programs and in each program define them in exactly the
same order and way, (preferably at the beginning of each
program). The point in this is to cause each common
variable to occupy the same locations in each program.
Strange results in program execution usually occur if a
common variable is misaligned with respect to the
variable in the previous program.

For the first program to use the variables, define them
in the normal way. Then, for each succeeding program,
place an asterisk in each FORM, DIM, or INIT statement,
as illustrated below, to prevent those variables from
being initialized when the program is loaded into memory.

MIKE FORM *¥4,2
JOE DIM ¥20
BOB INIT ¥"THIS STRING WON'T BE LOADED"

File declarations may not be made common between programs.
Mis-alignment in file declarations could easily cause catastrophic
destruction of the file structure under D0OS. Therefore, whenever
a program is loaded, all logical files are initialized to being
closed and must be opened before any file I/0 can occur. When

chaining

between programs, one should always close all files in

CHAPTER 4. DATA DEFINITION 4-3

which new space could have been allocated and then re-open the
files in the next program.

4.4 FORM

This instruction is used to define numeric string variables.
They may be defined using one of the formats shown below:

1) <label> FORM <dnum1>.<dnum2>
2) <label> FORM <dnum1>.

3) <label> FORM .<dnum?2>

4) <label> FORM <dnum1>

5) <label> FORM <nlit>

where: <label> is a data label.
<dnum1> is a decimal number indicating the number of
digits that should precede the decimal point.
<dnum2> is a decimal number indicating the number of
digits that should follow the decimal point.
<nlit> is a literal of the form "<string>" (see section
2.5).

Programming Considerations:
-- <nlit> must be a valid numeric string (see section 4.1).

-- The initial value of variables defined using formats (1), (2),
(3) and (4) above will be zero.

-~ A decimal point will be included as part of any value assigned
to variables defined using formats (1), (2) and (3) above.

-- The initial value of a variable defined using format (4) above
will be the value of the numeric string between the quotes.
(A decimal point found between the quotes will be included as
part of the initial value.)

-- The number of digits preceding the decimal point of a variable
defined using format (5) above, will be the same as the number
of digits preceding the decimal point in <nlit>.

== The number of digits following the decimal point of a variable
defined using format (5) above, will be the same as the number
of digits following the decimal point in <nlit>.

Examples:

-y DOS. DATABUS COMPILER

FRACPART FORM 0.1
RATE FORM 4.3
AMOUNT FORM " 382.40 "

In these examples, the FORM instruction used to define RATE
Will reserve space for four places before the decimal point, the
decimal point itself, and three places after the decimal point.
RATE can have as its value a numeric string which can cover the
range from 9999.999 to -999.999. The value of RATE will be
initialized to zero.

The FORM instruction used to define AMOUNT will reserve space
for four places before the decimal point, the decimal point
itself, and three places after the decimal point. AMOUNT can have
as its value a numeric string which can cover the range from
9299.999 to -999.999. The value of AMOUNT will be initialized to
382.400.

4.5 DIM

This instruction is used to define character string
variables. They may be defined using the format shown below:

<label> DIM <dnum>
where: <label)> is a data label (see section 2.).
<{dnum> is a decimal number indicating the number of
characters to be reserved for the variable.

Programming Considerations:

-- All of the characters of a variable defined with a DIM
statement will be initialized to spaces (octal 040).

-- The formpointer and logical length pointer will be initialized
to zero to indicate a null string.

Example:
STRING DIM 25

STRING will be defined to have a physical length of 25 and will
consume 28 bytes of the user's data area.

CHAPTER 4. DATA DEFINITION 4-5

4,6 INIT

This instruction is used to define character string variables
with an initial value. They may be defined using one of the
formats shown below:

1) <label> INIT <slit>
2) <label> INIT <list>

where: <label> is a data label (see section 2.).
<slit> is a literal of the form "<string>" (see section
2.5)0
<list> is any combination of <slit> and <occ> (see section
2.5) elements separated by commas.

Programming Considerations:
-- <slit> must be a valid character string (see section 4.2).

-- The characters in the variable will be initialized to the
string appearing between the quotes.

-- The formpointer will point to the first character of the
string.

-- The logical length pointer will point to the last character of
the string.

-- Use of a colon for continuation of the statement on the next
line is not allowed.

Examples:

TITLE INIT "PAYROLL PROGRAM"
TITLE will be defined to have a physical length of 15 bytes and
will consume 18 bytes of user's data area. The formpointer will
be set to 1 (pointing to the P) and the logical length pointer
will be set to 15 (pointing to the M).

TITLE INIT "PAYROLL PROGRAM",015,"A,B,C"
would initialize a string with a logical and physical length of 21
characters. The octal control character, 015, would appear after
the M in PROGRAM and before the characters A, comma, B, comma, C.

The octal control character feature is included mainly for
message switching applications and for allowing control of ASR

4-6 DOS. DATABUS COMPILER

Teletype compatible terminals. It is the responsibility of the
programmer to remember that some of these characters (000, 003,
011, and 015) are used for control purposes in disk files. More
importantly, these characters are used as control characters in
DISPLAY, KEYIN, and CONSOLE statements; and improper use of these
characters in such statements can result in invalid program
execution.

4.7 COMLST

This instruction is used to reserve space in the user's data
area to contain information for a RECV or SEND DATABUS
instruction. The general format of the statement is:

<label> COMLST <dnum>

where: <label> is a data label.
<dnum> is a decimal number between 1 and 64. This number
specifies the maximum number of variables that may
appear in a SEND or RECV instruction referencing
this COMLST variable.

Programming Considerations:

-- <dnum> must be a decimal number between 1 and 64 inclusive. A
{dnum> of 5 specifies that space is reserved in the user data
area variable to contain information for 5 variables.

-- The space allocated is 8+2%¥(dnum) bytes. The eight bytes are
used to contain status and control information and the
2*¥(dnum) bytes are used to contain the addresses of the

variables (2 bytes each) that may appear in SEND or RECV
statement referencing this COMLST.

Example:

A COMLST 5 (reserves 8+2%5= bytes of user data area.)

CHAPTER 4. DATA DEFINITION b7

CHAPTER 5. FILE DECLARATION

A file declaration statement defines a logical file by
reserving space in the user's data area for the DOS system
information about the disk file being used. Note that since
logical file information is stored in the user's data area, the
user may have any number of logical files active at any one time
providing his data area will contain all of the necessary
information.

5.1 FILE
This is the instruction which is used to reserve space in the
user's data area for files that will be used for physically or
randomly sequential accessing. The general format of the
statement is as follows:
<label> FILE
where: <label> is a data label (see section 2.).

Programming Considerations:

~- The <label> must be used in all disk I/0 statements that will
reference this particular logical file.

-~ Each use of this statement causes 17 bytes of data area to be
consumed. This area is used to store:

a) the 15 bytes used in the DOS logical file table,
b) a space compression counter, and

c) a flag indicating that these are physically-random or
sequential-access-only files.

Example:
INFILE FILE

The label INFILE will be used in all disk I/0 statements that are
to use this particular logical file.

CHAPTER 5. FILE DECLARATION 5-1

5.2 IFILE
This is the instruction which is used to reserve space in the
user's data area for files that will be used for
indexed-sequential file accessing. The general format of the
statement is as follows:
<label> IFILE
where: <label> is a data label (see section 2.).

Programming Considerations:

-- The <label> must be used in all disk I/O statements that will
reference this particular logical file.

-- Each use of this statement causes 26 bytes of data area to be
consumed. This area is used to store:

a) the information that the FILE declaration stores,

b) three 3-byte pointers for use by the indexed-sequential
access method. These pointers point to:

1. the beginning of the last record accessed (for
updating operations),

2. the next sequential key (for sequential by key
accessing), and

3. information in the DOS R.I.B. of the index file (used
in all accessing operations).

Example:
ISAMFILE IFILE

The label ISAMFILE will be used in all disk I/0O statements which
are to use this particular logical file.

5-2 DOS. DATABUS COMPILER

5.3 RFILE

This instruction is identical to the FILE declaration except
that the RFILE instruction defines a logical file that will
reference a file at a remote station instead of at the central
station.

5.4 RIFILE

This instruction is identical to the IFILE declaration except
that the RIFILE instruction defines a logical file that will
reference a disk file at a remote station instead of at the
central station.

CHAPTER 5. FILE DECLARATION 5-3

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS

The interpreter normally executes statements starting with
the first executable statement and sequentially from there. The
program control instructions allow this flow of control to be
altered. Some of these instructions may be executed conditionally
depending on whether a condition flag is set to true or false (see
section 6.1).

6.1 Condition Flags

There are four condition flags set by the interpreter: OVER,
LESS, ZERO (the mnemonic EQUAL is also accepted), and EO0S. These
flags are set to true or false, depending on the results of some
of the instructions. For more details on which flags are set and
when they are set, see the sections that describe the instructions
individually.

6.2 GOTO
The GOTO statement causes the flow of program control to jump

to the place in the program indicated in the GOTO statement. The
format of the statement may be one of the following:

1) <label1> GOTO <label2>
2) <labell1> GOTO <label2> IF <flag>
3) <labell1> GOTO <label2> IF NOT <flag>

where: <labell1> is an execution label (see section 2.).
<label?2> is an execution label.
<flag> is one of the condition flags (see section 6.1).
Programming Considerations:

-~ <labell1> is optional.

-- <label2> must be a label on the executable statement where
program control is to be transfered.

-- The condition flags are unchanged by the execution of this
statement.

-- A GOTO statement with format (2) will transfer control (to the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-1

statement with <label2>) only if the specified condition flag
is set to true; otherwise, program control continues in a
sequential fashion.

-- A GOTO statement with format (3) will transfer control only if
the specified condition flag is set to false.

Example:
GOTO CALC
causes control to be transferred to the instruction labeled CALC.
Example:
GOTO CALC IF OVER
will transfer control to the instructionilabeled CALC if the OVER
flag is set to true. Otherwise, the instruction following the
GOTO is executed.
Example:
GOTO CALC IF NOT OVER
meaning control is transferred only if the OVER flag is set to
false.
6.3 BRANCH
The BRANCH instruction transfers control to a statement
specified by an index. The general form of the statement is as
follows:
<label> BRANCH <{index><prep><list>
where: <label)> is an execution label (see section 2.).
<index> must be a numeric variable.
<prep> may be any valid preposition (see section 2.).
<list> is a list of execution labels separated by commas.
Programming Considerations:

-~ The label is optional.

-~ The condition flags are unchanged by the execution of this
instruction. ‘

6-2 DOS. DATABUS COMPILER

-~ The value of the index is unchanged by the execution of this
instruction.

-- The index points to the label in the list where control is to
be transfered.

-- If the index is n, then control is transfered to the nth label
in the list. For example: if the index is 1, control is
transfered to the first label in the list; if the index is 2,
control is transfered to the second label in the list; and so
on.

-~ If the index is negative, zero, or larger than the number of
labels in the list; then control continues in a sequential
fashion.

-~ If the index is a non-integer number, then only the digits
preceding the decimal point are used while indexing into the
list. For example: 1.50 is treated as if it were a 1, 1.99
is treated as if it were a 1, 2.00 is treated as if it were a
2, and 2.49 is treated as if it were a 2.

-~ The 1list may be continued on the next line by using a colon in
place of one of the commas.

Example:
BRANCH N OF START,CALC,POINT

If N =1, then this BRANCH would be equivalent to a GOTO START. N
= 2 would mean GOTO CALC while N = 3 would mean GOTO POINT.

6.4 CALL

The CALL instruction causes a subroutine to be executed after
saving a pointer to the instruction immediately following the CALL
instruction. When the subroutine is finished executing, it may
then use the pointer that was saved to continue execution where it
left off (see section 6.5). Using subroutines allows the same
group of statements to be executed at many places in the user's
program, simply by CALLing the subroutine. The format of the
statement may be one of the following:

1) <labell1> CALL <label2>
2) <labell> CALL <label2> IF <flag>
3) <labell> CALL <label2> IF NOT <flag>

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-3

where: <labell> is an execution label (see section 2.).

<label2> is an execution label.
<flag> is one of the condition flags (see section 6.1).

Programming Considerations:

<labell1> is optional.

<label?2> must be a label on the first instruction of the
subroutine to be executed.

The condition flags are unchanged by the execution of this
statement.

The return address (the pointer to the instruction immediately
following the CALL statement) is saved by pushing it onto the
subroutine call stack.

The subroutine call stack is eight levels deep. This means
that, unless an entry is cleared from the stack (typically by
a RETURN instruction), a stack overflow error will occur when
the ninth CALL instruction is executed.

Note that if a page swap is invoked by the subroutine CALL,
then CALLing the subroutine is considerably more time
consuming than executing the code in line. The space used for
Databus programs is virtual in nature to allow very large
programs. This means that pages of the user's program must be
swapped in and out of memory. If a subroutine happens to be
on a different page than a CALL to that subroutine, then a
page swap may become necessary. Therefore, in many cases it
can be better to put code in line instead of making it a
subroutine, especially if the amount of code is quite small
(say, less than a dozen lines). This is a trade-off which
should be considered when one is dealing with code that w1ll
be executed very often.

Execution of a CHAIN statement will clear the subroutine call
stack.

A CALL statement with format (2) will call the subroutine only
if the specified condition flag is set to true; otherwise,
program control continues in a sequential fashion.

A CALL statement with format (3) will call the subroutine only
if the specified condition flag is set to false.

o-4 DOS. DATABUS COMPILER

Example:

CALL FORMAT
will execute the subroutine FORMAT.
Example:

CALL XCOMP IF LESS

will execute the subroutine XCOMP if the LESS flag is set to true.

6.5 RETURN

The RETURN instruction is used to return from a subroutine
when execution of that subroutine is completed. This statement
may have one of the following formats:

1) <{label> RETURN

2) <label> RETURN IF <flag>

3) <{label> RETURN IF NOT <flag>

where: <label> is an execution label (see section 2.).
{flag> is a condition flag (see section 6.1).

Programming Considerations:
-= <label> is optional.

-- Control is returned to the instruction pointed to by the top
element on the subroutine call stack.

-- The condition flags are unchanged by the execution of this
statement.

-- A RETURN with format (2) will return control only if the
specified condition flag is set to true; otherwise, program
control continues in a sequential fashion.

-— A RETURN with format (3) will return control only if the
specified condition flag is set to false.

Example:

RETURN

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-5

will transfer control to the instruction pointed to by the top
element of the subroutine call stack.

Example:
RETURN IF ZERO

will transfer control to the instruction pointed to by the top
element of the subroutine call stack only if the ZERO flag is set
to true.

6.6 ACALL

The ACALL instruction is used to invoke an Assembler language
routine. The individual interpreter manual should be consulted
for the particular implementation. The format of the instruction
is:

<label> ACALL <{svar><prep><nslist>

where: <label> is an execution label.

<{svar> 1is a string variable.

<prep> 1is a preposition.

<nslist>is a 1list of numeric or character string variables
separated by a comma (,). The list may be
continued on another line by placing a colon (:)
after the last variable on the line to be
continued. These variables are available to the
Assembler routine.

Programming Considerations:

-- <label> is optional.

-- <svar> may be any string variable defined in the user's
program. This variable 1s used by the interpreter before
execution of the user's Assembler routine takes place.

- <nslist> is optional.

-- <nslist> must consist of character string or numeric variables.

Example:

A DIM 10

6-6 DOS. DATABUS COMPILER

B INIT n12345m
C FORM "e, 725"
ACALL A,B,C

6.7 STOP

The STOP instruction is the normal manner of terminating the
execution of a Databus program. See the manual on the interpreter
that you are using for more details on the action taken when a
STOP is executed. Typically, executing a STOP instruction is
equivalent to executing a CHAIN to the MASTER program for the port
executing the STOP. This statement may have one of the following
formats:

1) <label> STOP
2) <label> STOP IF <flag>
3) <label> STOP IF NOT <flag>

where: <label)> is an execution label (see section 2.).
<flag> is a condition flag (see section 6.1).

Programming Considerations:
-- (<label> is optional.

~- Typically executing a STOP is equivalent to executing a CHAIN
to the MASTER program for the port executing the STOP.

-- See the manual on the interpreter executing the STOP
instruction for the details on the action taken when the STOP
is executed.

-- A STOP with format (2) will terminate only if the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

-- A STOP with format (3) will terminate only if the specified
condition flag is set to false.

Example:

STOP

will cause program execution to terminate normally.

Example:

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-7

STOP IF NOT EQUAL
Wwill cause program execution to terminate normally only if the

ZERO flag is set to false. Note that EQUAL is just another name
for the ZERO flag.

6.8 CHAIN
This instruction is used to cause a Databus program (other
than the one currently being executed) to be loaded and executed.

One of the following general formats may be used:

1) <label> CHAIN <slit>
2) <{label> CHAIN {svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section
<{svar> ii‘g)étring variable (see section 4.2).
Programming Considerations:
-- <label> is optional.

-- <slit> must be a valid character string (see section 4.2).

-~ The value of <svar> is unchanged by the execution of this
instruction.

-~ Only those DOS files that have an extension of /DBC can be
loaded and executed.

-~ Control is passed to the first executable statement of the
program that is to be loaded and executed.

-- The string literal, when using format (1), specifies the DOS
name of the Databus program to be executed.

-- The string variable, when using format (2), specifies the DOS
name of the Databus program to'be executed.

nsion is not furnished by the string literal or string

-~ The exten
variable. (/DBC is assumed as the extension.)

-~ One of the following rules is used to build the DOS name from
the string in the string variable or string literal:

6-8 DOS. DATABUS COMPILER

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) if the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, then the
character after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, then the
character following the one pointed to by the logical
length pointer is used as the drive specification, or

c¢) If the last character obtained from the string is
physically the last character in the string, then the
drive number is unspecified.

If the character used as the drive specification is not an
ASCII digit (0 through 9), then all drives will be searched
for the file (starting with drive 0 and ending with the
highest numbered drive that is on-line).

If the drive number is unspecified, all drives will be
searched for the file (starting with drive 0 and ending with
the highest numbered drive that is on-line).

If the character used as the drive specification is an ASCII
digit, then only the drive with that number will be searched
to find the file.

Shift key inversion is enabled when a CHAIN instruction is
executed (see section 9.1.3.15).

The trap locations are cleared after a CHAIN instruction is
executed (see section 6.9).

The condition flags are all set to false by the execution of
this statement.

A1l logical files that are open when a CHAIN instruction is

executed, are closed without space deallocation (see section
12.3.2). Closing the files does not automatically write an

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-9

end-of-file mark.

-- The subroutine call stack is cleared by the execution of this

statement (see section 6.4).

Assume that the following statement is used to define NXTPRGM

for all of the following examples:

NXTPRGM INIT
Example: .

RESET NXTPRGM TO 9

RESET NXTPRGM TO 4

CHAIN NXTPRGM

"PAYROLL 11"

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO

this CHAIN instruction will try to load and execute a program
named ROLL11/DBC from any drive on which it can be found.

Example:
RESET NXTPRGM TO 8
LENSET NXTPRGM
RESET NXTPRGM TO 4
CHAIN NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO

this CHAIN instruction will try to load and execute a program

named ROLL1/DBC from drive 1.

Example:
RESET NXTPRGM TO 8
LENSET NXTPRGM
RESET NXTPRGM TO 1
CHAIN NXTPRGM

this CHAIN instruction will try to
named PAYRCOLL1/DBC from drive 1.

6-10 DOS. DATABUS COMPILER

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO

load and execute a program

Example:

RESET NXTPRGM TO 9
RESET NXTPRGM TO 1
CHAIN NXTPRGM

this CHAIN instruction will try to
named PAYROLL1/DBC from drive 1.

Example:
RESET NXTPRGM TO 7
LENSET NXTPRGM
RESET NXTPRGM TO 1
CHAIN NXTPRGM

this CHAIN instruction will try to
named PAYROLL/DBC from drive 1.

Example:
RESET NXTPRGM TO 3
LENSET NXTPRGM
RESET NXTPRGM TO 1
CHAIN NXTPRGM

this CHAIN instruction will try to

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO

load and execute a program

SET THE LOGICAL

LENGTH POINTER TO 7

SET THE FORMPOINTER TO

load and execute a program

SET THE LOGICAL

LENGTH POINTER TO 3

SET THE FORMPOINTER TO

load and execute a program

named PAY/DBC from any drive on which it can be found.

6.9 TRAP

TRAP is a unique instruction;
action at the time it 1is executed,
location for an event which may or
execution. This statement has the

<labell> TRAP

because rather than taking
it specifies a transfer
may not occur during later
following general format:

<label2> IF <event>

<labell1> is an execution label (see section 2.).

<label?2> is an execution label.

<event> is one of the following:
CFAIL or IO.

where:

PARITY, RANGE, FORMAT,

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-11

Programming Considerations:

-- <labell> is optional.

-- <label2> must be the label on the statement where control will
be transfered if the specified event occurs.

-~ The condition flags are unchanged by the execution of this
instruction.

-- The following trapable events may occur:

a)

b)

c)

d)

e)

6-12

PARITY - this event is caused by a disk CRC error during a
READ (see section 12.3.3) or the verification phase of a
WRITE (see section 12.3.4). DOS retries several times to
get a good CRC before causing this event.

RANGE - this event occurs when a record number is out of

range. Typically this occurs when an attempt is made to

read a record that has never been written. The DOS RANGE
and FORMAT traps will cause a Databus RANGE trap.

FORMAT - this event occurs when an attempt is made to read
non-numeric data into a numeric variable. The read stops
at the list item in error so that the rest of the list
items will not be changed. Note that this FORMAT trap is
not the same as the DOS FORMAT trap.

CFAIL - this event occurs when an attempt to CHAIN to
another program cannot be completed or when an attempnt to
execute a ROLLOUT cannot be completed. Typically this
occurs when attempting to CHAIN to a program that does not
exist.

I0 - this event occurs when a disk I/0 error occurs (for
more details about these I/0 errors, see the user's guide
of the appropriate interpreter). Typically this trap is
used only for detecting whether a file exists or not. It
is a good idea to keep this trap clear whenever it 1is not
being used specifically to detect the presence of a file.
This will prevent confusion if one of the other conditions
oceurs.

Example:

TRAP PREP IF IO
OPEN FILE,"DATA"

DOS. DATABUS COMPILER

GOTO NSI

PREP PREPARE FILE,"DATA"
RETURN
NSI TRAPCLR I0

-- The only action taken at the time that the TRAP instruction is
executed is to save a pointer to the statement with <label2>.
<event> specifies which trap.

-~ Any traps that have been set, remain set until they are
cleared.

-- If an event occurs and the trap is not set, the action taken
depends upon the interpreter (see the user's guide for the
interpreter you are using). Typically an error message 1is
displayed and a CHAIN to that port's MASTER program occurs.

-- If an event occurs and the trap is set, then the action taken
is as follows:

a) The control transfer is equivalent to executing a
: CALL <{label2>
instruction.

b) This pseudo-CALL statement is executed as if it had been
inserted immediately after the statement which caused the
event to occur.

-~ Whenever a certain event is trapped, the trap for that event
is cleared. This. means that, if the event is to be trapped
again, another TRAP instruction will have to be executed to
reset the trap.

-- Note that all of the traps are cleared whenever a CHAIN
occurs, Therefore, each program must initialize all of the
traps it wishes to use.

Example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-13

6.10 TRAPCLR

This instruction will clear the specified trap. This
statement has the following general format:

<label> TRAPCLR <event>

where: <label> is an execution label (see section 2.).
<event> is one of the following: PARITY, RANGE, FORMAT,
CFAIL or I0O. (For an explanation of each of the
events, see section 6.9.)

Programming Considerations:
-- <label> is optional.

-- The condition flags are unchanged by the execution of this
instruction.

Example:
TRAPCLR PARITY

will clear the parity trap previously set.

6.11 ROLLOUT

The ROLLOUT feature allows the execution of all programs to
be temporarily suspended while a DOS command line is executed.
This instruction is particularly useful when 1) a file needs to
be sorted using the DOS SORT utility, 2) an index file needs to
be created using the DOS INDEX utility, or 3) a file needs to be
re-indexed using the DOS INDEX utility. This statement may have
one of the following formats:

1) <label> ROLLOUT {svar>
2) <{label> ROLLOUT <slit>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<slit> is a literal of the form "<string>" (see section
2.5).
Programming Considerations:

-- <label> is optional.

6-14 DOS. DATABUS COMPILER

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string variable, when using format (1), specifies the DOS
command line to be executed.

The string literal, when using format (2), specifies the DOS
command line to be executed.

Since there are some minor differences in the way the ROLLOUT
instruction is executed, the user should consult the user's
guide of the interpreter he is using.

The characters used to build the DOS command line are taken
one at a time from the string; from the first character to the
last character, as defined below.

a) The first character of the DOS command line is the
formpointed character.

b) The last character of the DOS command line precedes the
first occurance of one of the following characters:

1. a character with a value less than 040 (octal), or
2. the vertical bar character (0174 octal), or
3. a character with its sign bit set. The physical
end-of-string character, 0203 (octal), fits into this
category.
In the normal case, this means the string used will be that
from under the formpointer up through the physical end of the
string. To use a string that is shorter than the physical
length of the variable, a vertical bar should be stored in the
appropriate position.
A CFAIL trap will occur if the string variable is null.

See the user's guide of the appropriate interpreter for other
causes of CFAIL traps when attempting a ROLLOUT.

When the ROLLOUT instruction is executed the following actions
are taken:

a) Everything necessary to restore the interpreter to its

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-15

previous state is saved on disk.
b) DOS is then brought up at the console.

c) The operator at the console loses the information that was
on the screen at the time of the ROLLOUT.

d) The DOS command line (obtained from the string variable or
literal) is then supplied to the DOS command interpreter
exactly as if it had been keyed in from the console.

To return the interpreter to the state it was in previous to
the ROLLOUT, the interpreter's rollout return program should
be executed. (For more details about the rollout return
program, see the user's guide of the appropriate interpreter.)
In the remainder of this manual the rollout return program
will be refered to as DSBACK/CMD, or more simply DSBACK.

To execute the rollout return program, the name of the DSBACK
command should be entered as a DOS command line. Generally
this will cause the following actions:

a) DSBACK re-initializes the console screen. This does not

return the screen to the display condition it was in
before the ROLLOUT. That screen image is lost.

b) The information that was saved on disk by the ROLLOUT is
then used to restore the interpreter to its previous
state.

c) All ports are returned to their previous point of
execution when the ROLLOUT occurred.

d) Execution of the program that caused the ROLLOUT is
continued with the instruction following the ROLLOUT
instruction.

The condition flags are restored by DSBACK.

The execution of a ROLLOUT may be very inconvenient to the
users at other ports since execution of their programs will be
suspended for an indefinite pericd of time. Unless told that
a ROLLOUT has occured, users at the other ports will not know
what is happening. Since their terminals appear inactive,
they may think the system has gone down for some other reason.
Thus, consideration of other system users should be kept in
mind when a ROLLOUT is used.

6-16 DOS. DATABUS COMPILER

The system clock is restored to the value it had before the
ROLLOUT occured. This means that every time a ROLLOUT occurs
the clock will lose time. 1In those environments where it is
necessary for the system clock to be accurate, the rollout
return program which includes time and date initialization
should be used instead of DSBACK. 1In the remainder of this
manual the rollout return program which includes time and date
initialization will be refered to as DSBACKTD/CMD or more
simply DSBACKTD (for more details see the user's guide of the
appropriate interpreter). Note that, DSBACKTD functions the
same as DSBACK with the exception that the new time and date
are requested before restoring the interpreter. This rollout
return program requires the operator to be at the console to
enter the time and date.

¥% WARNING ¥*¥* The operations that were taking place under the
interpreter must not be modified in any way. One of the items
saved on disk when a ROLLOUT occurs is an image of the DOS
file structure as it was under the interpreter. If the DOS
file structure is changed by a program executing under DOS,
then the image saved on disk may not be accurate any longer.
If this image is no longer accurate when the interpreter is
restored, terrible things may happen to the DOS file structure
as well as the interpreter system. Some precautions that
should be considered while executing under DOS are listed
below.

a) The MASTER and ANSWER programs must not be re-compiled.

b) Any file that is open at the time when a ROLLOUT occured
must not be modified or deleted.

c) The object code of any program that was executing when the
ROLLOUT occured must not be changed.

d) The disks that contain any files in use by the interpreter
must not be moved to another disk drive.

e) The disks that contain any files in use by the interpreter
must not be removed from the disk drive.

Other operators using a Datashare system should be notified
when a ROLLOUT is about to occur. This courtesy will prevent
frustration when the other operators begin getting no
response.

Rolling out to the configuration program (for details see the
appropriate interpreter manual) has no effect on the system

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-17

configuration when DSBACK is used to restart the interpreter.
Example:

Assume that a Databus program has built two files, AFILE/TXT and
CFILE/TXT. Also, assume that these files need to be sorted.

This can be accomplished by building the following file named
ROLCHAIN/TXT.

SORT AFILE,BFILE
SORT CFILE,DFILE
DSBACK

then executing the following instruction.
ROLLOUT "CHAIN ROLCHAIN"

This would cause execution of the interpreter to be suspended, and
the following DOS command to be executed (for more details on the
DOS CHAIN command, see the DOS user's guide).

CHAIN ROLCHAIN

Executing this command would then cause the commands in the file
ROLCHAIN/TXT to be executed one after another. First, the file
AFILE/TXT would be sorted and and then written into file
BFILE/TXT. Second, the file CFILE/TXT would be sorted and then
written into file DFILE/TXT. And last, the DSBACK command would
be executed to cause execution of the interpreter to be continued.

Note that if DSBACK had not been included in the chain file
the operator would have had to restore the system. Also note that
if, for any reason, the chain file did not go to completion; then
the operator would have had to execute the DSBACK command from the
console.

6.12 PI

This instruction (Prevent Interruptions) enables the
programmer to prevent his background program from being
interrupted for up to 20 Databus instruction executions. It is
particularly useful in preventing any other port from modifying a
disk record while that record is in the process of being updated
(see appendix D). This instruction has the following general
format:

6-18 DOS. DATABUS COMPILER

<{label> PI <dnum>

where: <label> is an execution label (see section 2.).

<dnum> is a decimal number.

Programming Considerations:

<label> is optional.
<dnum> must be between 1 and 20, inclusive.

<dnum> specifies the number of Databus instructions to be
executed before allowing an interuption. The PI instruction
is not included as one of these instructions.

The PI instruction may be used to postpone any of the
following background interuptions:

a) the keyboard interruption procedure (see section 9.1.5.3),

b) by a higher priority execution being requested on another
port (caused by the termination of a foreground process),
or

¢) by the port using up its share of the background time.

This instruction has no effect upon the hardware one
millisecond interrupt used to perform all port and printer
I/0.

The number of instructions specified in the PI instruction is
always a fixed decimal number (it may not be a numeric
variable).

If interrupts are prevented; the execution of any instruction
that causes background to wait for I/0 to finish will cancel
the effect of the PI instruction. DISPLAY, KEYIN, CONSOLE and
PRINT are examples of instructions that cause background to
wait for I/0 to finish.

If a PI instruction is executed while interruptions are
already prevented, execution of that program is aborted. This
prevents a program from being able to prevent interruptions
for more than 20 instruction executions.

Note that the PI instruction can only prevent those interrupts

that are under control of the interpreter. The PI instruction
cannot be used to prevent interruptions such as power failures

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-19

or the system operator restarting the processor. This means
-that when designing complex data file structures, the
programmer should take care that any interruptions will do as
little harm as possible. The PI instruction is primarily
useful in preventing interruptions (such as the typist bumping
the interupt key or a different port modifying the critical
record) while modifying records that are critical to
maintaining the file structure.

Example:
PI y
READ F,KEY;PN,QTYONH,LOD
SUB QTY FROM GTYONH
GOTO NOTNUFF IF LESS

UPDATE F;PN,QTYONH,LOD

Interruptions will be prevented from the PI instruction through
the UPDATE instruction. Note that no other Datashare port can
modify the record being updated until this port has completed its
modification of the record. Using this technique, more than one
port can reference the "QuanTitY ON Hand" and receive an
up-to-date answer.

6.13 TABPAGE
This instruction is used to force sections of a program to
begin at the first of an object code page. Execution speed can be
enhanced in this way by reducing object code page accesses. This
instruction has the following general format:
<label> TABPAGE
where: <label> is an execution label (see section 2.).
Programming Considerations:
-- <label> is optional.
-~ A page of object code is 250 bytes long. Page boundaries can
be detected in the listing of a program by locking at the
three least significant digits of the location counter and

noting one of the following:

a) a location counter change from 772 (octal) to 001 (octal),
or

6-20 DOS. DATABUS COMPILER

b) a location counter change from 372 (octal) to 401 (octal).

Compilation of a TABPAGE instruction forces the instruction

following the TABPAGE to be put at the first of the next page
of object code.

Execution of a TABPAGE instruction causes control to be
transferred to the first byte of the next page.

Note that liberally scattering TABPAGE instructions throughout
a user program will in general not result in an increase in
execution speed. Instead, the usual effect is to increase the
rate of thrashing of the program.

TABPAGE is best used to force tight loops to reside entirely
within one or two pages.

6.14 DSCNCT

The DSCNCT instruction is the normal method for a program to

terminate when executing as a remote slave port. This instruction
has the following general format:

<label> DSCNCT

where: <label)> is an execution label (see section 2.).

Programming Considerations:

<label> is optional.

The DSCNCT instruction causes the following actions:

a) All telephone communication activities are terminated.
b) The telephone is hung up.

¢) The remote station is returned to DOS.

d) The equivalent of a CHAIN to the ANSWER program 1is
executed.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-21

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

The character string handling instructions are used to change
the contents of character strings, or the string attributes
(Logical Length, Formpointer). Generally all string handling
instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> 1is the string operation.
<{soper> is the source operand.
{prep> 1is a preposition.
<doper> is the destination operand. .

The reader should be familiar with the various DATABUS data
types. This information is contained in chapter 4. and should be
read before continuing.

7.1 MOVE

The MOVE instruction transfers the contents of the source
string into the destination string. Four (4) different types of
move operations are defined:

1) MOVE character string to character string.
2) MOVE character string to numeric string.
3) MOVE numeric string to character string.
4) MOVE numeric string to numeric string.

The first three (3) MOVE operations will be discussed in this

chapter, the fourth type will be discussed in Chapter 8 on
Arithmetic Instructions.

7T.1.1 MOVE (character string to character string)
This MOVE instruction transfers the contents of the source
operand into the destination operand. - This instruction has the

following formats:

1) <label> MOVE {ssvar><prep><dsvar>
2) <label> MOVE <{slit><prep><dsvar>

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-1

where: <label> is an execution label.

<{ssvar> is the source string variable.
{prep> 1is a preposition.

{dsvar> is the destination string variable.
<slit> 1is the source string literal.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character
under the formpointer and continues through the logical length
of the source string.

Transfer into the destination string starts at the first
physical character. When transfer is complete, the
formpointer of the destination string is set to one and the
logical length points to the last character moved.

The EOS flag is set if the ETX in the destination string would
have been overstored. Transfer stops with the character that
would have overstored the ETX.

A null source string (formpointer=0) will cause:

a. the destination variable formpointer to be set to zero.

b. no characters are moved.

c. the length pointer of the destination variable is not

Example:

changed.
VAR LL FP Contents
STRING1 6 1 ABCDEF ETX
STRING2 6 1 DOGCAT ETX

MOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 6 1 ABCDEF ETX
The following flag(s) will be set: None

Example:

7-2 DOS. DATABUS COMPILER

STRING1 4 2 ABCDXLM ETX
STRING2 6 3 DOGCAT ETX

MOVE STRING1 TO STRINGZ2
The following variable(s) will be changed:

STRING2 3 1 BCDCAT ETX
The following flag(s) will be set: None

Example:
STRING1 y 2 ABCDXLM ETX
STRING2 6 3 DOGCAT ETX

MOVE "HELLO"™ TO STRING2

The following variable(s) will be changed:
STRING2 5 1 HELLOT ETX
The following flag(s) will be set: None

Example:
STRING1 T 2 ABCDEFG ETX
STRING2 y 3 HIJKL ETX

MOVE STRING1 TO STRINGZ2

The following variable(s) will be changed:
STRING2 5 1 BCDEF ETX
The following flag(s) will be set: EOS

Example:
STRING1 7 0 ABCDEFG ETX
STRING2 4y 3 HIJKL ETX

MOVE STRING1 TO STRING2
The following variable(s) will be changed:

STRING2 4y 0 HIJKL ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

7-3

T.1.2 MOVE (character string to numeric string)

This MOVE transfers the contents of the source character
string to the destination numeric string. The instruction has the
following formats:

1) <label> MOVE <{ssvar><{prep><{dnvar>
2) <label> MOVE <sslit><prep><dnvar>

where: <label> is an execution label.
<{ssvar> is the source string variable.
{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<sslit> is the source string literal.

Programming Considerations:
-- <label> is optional.

-~ A character string will be moved to a numeric string only if
-the portion of the character string from the formpointer
through the logical length is of valid numeric format (at most
one decimal point, sign, and digits only).

~- The transfer from the source string starts at the formpointer
and proceeds through the logical length of the source string.

-~ The source character string will be reformatted and rounded to
fit the destination numeric string.

-- If any of the most significant digits or sign is lost in the
process of truncation, then the OVER flag is set and the
destination numeric variable is not changed.

-- A null source string (formpointer=0) will result in the
destination variable not being changed.

Example:
VAR LL FP Contents
STRING 9 3 AB100.327 ETX
NUMBER 0200 _39.00 ETX

MOVE STRING TO NUMBER

The following variable(s) will be changed:
NUMBER 0200 100.33 ETX

T-U4 DOS. DATABUS COMPILER

The following flag(s) will be set: None

Example:
STRING1 9 3 AB10X.327 ETX
NUMBER 0200 _39.00 ETX

MOVE STRING1 TO NUMBER

The following variable(s) will be changed: None
The following flags will be set: None

Example:
NUMBER 0200 12345.3 ETX
MOVE "935" INTO NUMBER
The following variable(s) will be changed:

NUMBER 0200 __935.0 ETX
The following flag(s) will be set: None

Example:
STRING 5 0 ABCDE ETX
NUMBER 0200 __935.0 ETX

MOVE STRING TO NUMBER

The following variables will be changed* None
The following flag(s) will be set: None

7.1.3 MOVE (numeric string to character string)

This instruction transfers the contents of the source numeric
string to the destination character string. The instruction has
the following formats:

1) <label> MOVE <snvar><{prep><dsvar>
2) <label> MOVE <nlit><prep><dsvar>

where: <snvar> is the source numeric variable
<prep> 1is a preposition.
<dsvar> is the destination character string variable.
<nlit> is a numeric literal.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-5

Programming Considerations:

<label> is optional.

Transfer from the source numeric string starts with the first
character of the string and continues until the .source numeric
ETX is reached or until the ETX of the destination string is
about to be overstored.

Transfer into the destination character string begins with the
first physical character and continues until either the source
string ETX is encountered or the destination character string
ETX is about to be overstored.

The formpointer is set to one (1) and the logical length is
set to point to the last character transferred into the
destination string.

The EOS flag is set if the ETX would have been overstored in
the destination character string. The transfer stops with the
character before the one that would have overstored the ETX.

Example:
VAR LL FP Contents
NUMBER 0200 100.33 ETX
STRING2 9 3 AB100.327 ETX

MOVE NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 6 1 100.33327 ETX
The following flag(s) will be set: None

Example:
NUMBER 0200 10.35789 ETX
STRING2 5 3 ABCDE ETX

MOVE NUMBER TO STRING2
The following variable(s) will be changed:

STRING2 5 1 10.35 ETX
The following flag(s) will be set: EOS

7-6 DOS. DATABUS COMPILER

7.2 APPEND

APPEND appends the source string (character or numeric) to
the destination string. The instruction has the following
formats:

1) <label> APPEND <{ssvar><prep><dsvar>
2) <label> APPEND <{snvar><prep><dsvar>
3) <label> APPEND <slit><prep><dsvar>

where: <label> is an execution label.
<{ssvar> is the source string variable.
<{prep> 1is a preposition.
<dsvar> is the destination string variable.
<{snvar> is the source numeric variable.
<slit> 1is the source string literal.

Programming Considerations:
-- <label> is optional.
-- The portion of the source defined by one of the following:
1) For source character strings, the formpointed
character through the logical length of the source

character string.

2) For numeric strings, the first character through the
physical end of string (ETX)

is appended to the destination character string.

-- The source string is appended starting after the formpointed
character in the destination string.

-- The source string pointers are not changed.

~- The destination string formpointer and logical length point to
the last character transferred.

-- The EOS flag is set if the portion of the source string that
is to be moved cannot be contained in the destination string.
All of the characters that will fit, will be appended.

Example:

VAR LL FP Contents

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS =7

STRING1 8 6 JOHN_DOE ETX
STRING2 11 11 MARY_JONES ETX

APPEND STRING1 TO STRING2
The following variable(s) will be changed:
STRING2 14 14 MARY_JONES_DOE ETX
The following flag(s) will be set: None
Example:

STRING2 08 09 MARY_JONES ETX

APPEND ".XX.YY." TO STRING2

The following variable(s) will be changed:
STRING2 15 15 MARY_JONE.XX.YY. ETX
The following flag(s) will be set: None

Example:
NUMBER 0200 100.33 ETX
STRING2 g 2 ABCDEFGHI ETX

APPEND NUMBER TO STRINGZ2
The following variable(s) will be changed:

STRING2 8 8 AB100.331I ETX
The following flag(s) will be set: None

7.3 MATCH

MATCH compares two character strings. The instruction has
the following formats:

1) <label> MATCH <svar><prep><svar>
2) <label> MATCH <slit><prep><svar>

where: <label> is an execution label.
{svar> 1is a string variable.
{prep> 1is a preposition.
<slit> 1is a string 1literal.

Programming Considerations:

-- <label> is optional.

7-8 DOS. DATABUS COMPILER

MATCH compares two character strings starting at the
formpointer of each string and stopping when the end of either
operand's string 1s reached.

The formpointers and length pointers of both strings are
unchanged.

The length of each string is defined to be:
length = logical length - formpointer + 1

If all of the characters that are compared match, then the
EQUAL flag is set and the following computation is made:

L = (length of destination string) -
(length of source string)

The LESS flag is set to indicate that L is negative.

If all of the characters that are compared do not match, then
the following computation is made:

D = (octal value of first non matching destination
character) -
(octal value of first non matching source character)

The LESS flag is set if D is less than zero.
If either the source or destination string formpointer is zero

before the operation, then the LESS and EQUAL flags are
cleared and the EOS flag is set.

Example:
VAR LL FP Contents
STRING1 5 1 ABCDE ETX
STRING?2 4 1 ABCD ETX

MATCH STRING1 TO STRING2

The following flag(s) will'be set: EQUAL, LESS

Example:
STRING1 3 1 ABC ETX
STRING2 1 1 Z ETX

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-9

MATCH STRING1 TO STRING2

The following flag(s) will be set: None

Example:
STRING1 3 1 ZZZ ETX
STRING2 3 1 AAA ETX

MATCH STRING1!1 TO STRINGZ2

The following flag(s) will be set: LESS

Example:
STRING1 6 U4 XXXABC ETX
STRING2 5 3 YYABC ETX

MATCH STRING?! TO STRING2
The following flag(s) will be set: EQUAL
Example:
STRING2 5 1 ABCDE ETX
MATCH "ABCD" TO STRING2
The following flag(s) will be set: EQUAL
Example:
STRING2 5 0 ABCDE ETX
MATCH "ABCDE" TO STRING2

The following flag(s) will be set: EOS

7.4 CMOVE

2 xm~w

operand into the destination character string. The instruction has
the following formats:

1) <label> CMOVE <{ssvar><prep><dsvar>
2) <label> CMOVE <char><prep><dsvar>

7-10 DOS. DATABUS COMPILER

where: <label> is an execution label.

<{ssvar> is the source string variable.
{prep> 1is a preposition.
{dsvar> is the destination string variable.

<char> 1is the one character source literal string.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character

under the formpointer.

Transfer into the destination string starts with the character

under the formpointer.

Only one character is moved.

The source string logical length and formpointer are not

modified.

If either variable has a formpointer of zero (0),
flag is set and no transfer occurs.

Example:
VAR LL FP Contents
STRING1 5 3 ABCDE ETX
STRING2 3 2 XXX ETX

CMOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 3 2 XCX ETX
The following flag(s) will be set: None

Example:

STRING2 3 2 1234 ETX
CMOVE "X" TO STRING2
The following variable(s) will be changed:

STRING2 3 2 1X34 ETX
The following flag(s) are set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

then the EOS

7.5 CMATCH

CMATCH compares a single character from the source string to
a character in the destination string. The instruction has the

following formats:

1) <label>
2) <label>
3) <label>
L) <label>
5) <label>

where: <label)> is
{ssvar> 1is
{prep> 1is
<dsvar> is
<char> is
<oce> is

Programming Considerations:

CMATCH
CMATCH
CMATCH
CMATCH
CMATCH

<ssvar><prep><dsvar>
<char><prep><dsvar>
<ssvar><prep><char>
<oce><prep><dsvar>
<ssvar><prep><ocec>

an execution label.

the source string variable.
preposition.

the destination string variable.
a one character string literal.
an octal control character.

-- <label> is optional.

-~ The character compared from the source string is the character
from under the formpointer.

-- The character compared from the destination string is the
character from under the formpointer.

-~ If the two characters match, then the EQUAL flag is set.

-- If the two characters do not match then the LESS flag is set
if the following difference (D) is negative:

D = (octal value of destination character) - (octal
value of source character).

-~ If a literal or octal control character is used in the source
string then that character is the one used for the CMATCH

operation.

-~ If either operand has a formpointer of zero (0), then the EOS

flag is set.

Example:

T-12 DOS. DATABUS COMPILER

VAR LL FP Contents

STRING1 5 3 ABCDE ETX
STRING2 3 1 CX ETX

CMATCH STRING1 TO STRING2
The following flag(s) are set: EQUAL
Example:
STRINGZ2 y 2 XACD ETX
CMATCH "B"™ TO STRING2
The following flag(s) are set: LESS
Example:
ST 8 0 ABCDEFGH ETX
CMATCH "Y" TO ST

The following flag(s) are set: EOS

7.6 BUMP

The BUMP instruction increments or decrements the formpointer
of a variable. The instruction has the following formats:

1) <label> BUMP <{svar>
2) <label> BUMP <{svar><prep><dcon>

where: <label> is an execution label.
{svar> 1is a string variable.
{prep> 1is a preposition.
<dcon> 1is a signed decimal constant.

Programming Considerations:

~-- <label> is optional.

-- <dcon> is added to the formpointer and the result becomes the
new string variable formpointer if the new formpointer is

valid. Note that a valid formpointer must be in the range (1
to n) where n is the logical length for the string.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-13

-~ If <dcon> is not specified, then the string variable's
formpointer is incremented by one (1).

-- The EOS flag is set if the BUMP instruction would have caused-
an invalid formpointer. The formpointer is not changed in
this case.

Example:
VAR LL FP Contents
CAT 5 2 ABCDE ETX

BUMP CAT
The following variable(s) will be changed:
CAT 5 3 ABCDE ETX
The following flag(s) will be set: None
Example:
CAT 5 4 ABCDE ETX
BUMP CAT BY -2
The following variable(s) will be changed:
CAT 5 2 ABCDE ETX
The following flag(s) will be set: None
Example:
CAT 5 3 ABCDE ETX
BUMP CAT BY 3
The following variable(s) will be changed:

CAT 5 3 ABCDE ETX
The following flag(s) will be set: EOS

T-14 DOS. DATABUS COMPILER

T.7 RESET

RESET changes the value of the formpointer of the destination

string to the value indicated by the second operand. The
instruction has the following formats:

1) <label> RESET <dsvar><prep><dcon>
2) <label> RESET <dsvar>

3) <label> RESET <dsvar><prep><ssvar>
4) <label> RESET {dsvar><prep><snvar>

where: <label> is an instruction label.

<dsvar> is the destination string variable.
{prep> 1is a preposition.

<dcon> 1is a decimal constant.

<{ssvar> is the source string variable.
<snvar> is the source numeric variable.

Programming Considerations:

<label> is optional.

RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. If the
second operand is not specified the formpointer will be reset
to one (1).

If the second operand is a quoted character the formpointer of
the destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a character string the character
under the formpointer is accessed. The formpointer of the
destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a numeric string the number is used
as the value for the new formpointer.

If the new formpointer is past the logical length of the first
operand, the logical length will be set to the value of the
new formpointer. Note that under no circumstances will the
logical length or formpointer be set outside the physical
structure of the string.

The EOS flag will be set when any change in the logical length

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-15

of the destination string occurs.

-- The RESET instruction is very useful in code conversions and
hashing of character string values as well as large string
manipulation.

Example:
VAR LL FP Contents
XDATA 5 3 ABCDEFGHIJ ETX

RESET XDATA
The following variable(s) will be changed:
XDATA 5 1 ABCDEFGHIJ ETX
The following flag(s) will be set: None
Example:
XDATA 5 2 ABCDEFGHIJ ETX
RESET XDATA TO 4
The following variable(s) will be changed:

XDATA 5 4 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:
XDATA 10 2 ABCDEFGHIJ ETX
NUMBER 0200 8 ETX

RESET XDATA TO NUMBER
The following variable(s) will be changed:
XDATA 10 8 ABCDEFGHIJ ETX
The following flag(s) will be set: None
Example:

XDATA 6 2 ABCDEFGHIJ
NUMBER 0200 8

[eales)
3 3
Lo lke

RESET XDATA TO NUMBER

The following variable(s) will be changed:
XDATA 8 8 ABCDEFGHIJ ETX

7-16 DOS. DATABUS COMPILER

The following flag(s) will be set: EOS

Example:
XDATA 10 8 1234567890 ETX
STRING 5 4 ABCI!E ETX

RESET XDATA TO STRING
The following variable(s) will be changed:
XDATA 10 2 1234567890 ETX

Note: The ASCII value of a ! is a octal 041.
The following flag(s) are set: None

7.8 ENDSET
ENDSET causes the operand's formpointer to be changed to the
value of the logical length. This instruction has the following
format:
<label> ENDSET {dsvar>

where: <label> is an execution label.
{dsvar> 1s the destination string variable.

Programming Considerations:
-~ <label> is optional.

-~ <dsvar> must be a string variable.

Example:
VAR LL FP Contents
CAT 10 4 1234567890 ETX

ENDSET CAT
The following variable(s) will be changed:
CAT 10 10 1234567890 ETX
The following flag(s) will be set: None

Example:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS T-17

DOG 6 4 1234567890 ETX
ENDSET DOG
The following variable(s) will be changed:

DOG 6 6 1234567890 ETX
The following flag(s) will be set: None

7.9 LENSET

LENSET changes the operand's logical length to the value of
the formpointer. The instruction has the following format:

<label> LENSET <dsvar>

where: <label> is an execution label.
<{dsvar> is the destination string variable.

Programming Considerations:
-- <label> is optional.
-- <dsvar> must be a string variable.
Example:
VAR LL FP Contents
STRING 8 4 1234567890 ETX
LENSET STRING
The following variable(s) will be changed:
STRING 4 oy 1234567890 ETX
The following flag(s) will be set: None
Example:
XDATA 6 2 1234567890 ETX
LENSET XDATA
The following variable(s) will be changed:

XDATA 2 2 1234567890 ETX
The following flag(s) will be set: None

7-18 DOS. DATABUS COMPILER

7.10 CLEAR

CLEAR sets the logical length and formpointer of the operand
to zero. This instruction has the following format:

<label> CLEAR <dsvar>

where: <label> is an execution label.
{dsvar> is the destination string variable.

Programming Considerations:
-~ <label> 1is optional.

~~ <dsvar> must be a string variable.

Example:
VAR LL FP Contents
STRING 8 3 ABCDEFGHIJ ETX
CLEAR STRING
The following variable(s) will be changed:

STRING 0 0 ABCDEFGHIJ ETX
The following flag(s) will be set: None

7.11 EXTEND
EXTEND increments the string variable's formpointer by one
and stores a space into the new formpointed character. The
logical length is set to the value of the new formpointer. This
instruction has the following format:
<{label> EXTEND {dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-19

<label> is optional.
<{dsvar> must be a string variable.

The formpointer of the string variable is incremented by one.
The logical length is set to the value of the new formpointer.

If the new formpointed character is the ETX, then the EOS flag
is set and the formpointer and logical length are left as they
were before the EXTEND instruction was executed.

Example:

VAR LL FP Contents
STRING 10 3 ABCDEFGHIJ ETX
EXTEND STRING
The following variable(s) will be changed:

STRING y oy ABC_EFGHIJ ETX
The following flag(s) will be set: None

Example:

STRING 10 10 ABCDEFGHIJ ETX
EXTEND STRING
The following variable(s) will be changed:

STRING 10 10 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

T.12 LOAD

LOAD performs a MOVE from the selected character string

(using an index for selection) to the destination character
string. The instruction has the following formats:

<label> LOAD <dsvar><prep><index><prepr<iist>

where: <label> is an execution label.

<dsvar> is the destination string variable.

<prep> 1is a preposition.

<index> is a numeric string used for selecting a string
variable from the <list>.

7-20 DOS. DATABUS COMPILER

<list> 1is a list of string variables.

The LOAD instruction to use when <list> is a set of numeric

variables is covered in Chapter 8 on Arithmetic Instructions.
This discussion deals only with the case when <1list> is a set of
string variables.

Programming Considerations:

<label> is optional.
<dsvar> must be a string variable.

<index> is a numeric variable. If this variable is not an
integer, then the quantity is truncated and the integer
portion used as the index for 1list selection.

If the <index> does not correspond to a variable in the
<list>, then the LOAD instruction is simply ignored.

<list> must contain string variables only. The <list> may be
continued if necessary by using the colon (:) instead of the
comma (,) after the last variable used on the line to be
continued.

This instruction works exactly like the MOVE instruction
(character string to character string) after the variable has
been selected from the list.

An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

Example:
VAR LL FP Contents
DESTIN 10 5 ABCDEFGHIJ ETX
INDEX 0200 2.9 ETX
S1 , 5 1 11111 ETX
S2 5 2 22222 ETX
S3 5 3 33333 ETX
LOAD DESTIN FROM INDEX OF 3S1,S2:
S3

The following variable(s) will be changed:
DESTIN y 1 2222EFGHIJ AETX

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-21

The following flag(s) will be set: None

Example:

DEST
INDE
S1
S2
S3
S4

IN 5 1
X 0200

6 1
7T 1
8 1
9 1

ABCDE
—3.7
"M
2222222

33333333
BLLL LGNy

ETX
ETX
ETX
ETX
ETX
ETX

LOAD DESTIN FROM INDEX OF S1,S52,S3,S4

The following variable(s) will be changed:

DEST

The following flag(s) will be set: EOS

IN 5 1

7.13 STORE

33333

ETX

STORE selects a variable from a list (using an index for
selection) and performs a MOVE operation from the source string
operand to the selected destination string variable. The
instruction has the following formats:

1)
2)

where:

<label>
<label>

<label> is
<{ssvar> is
{prep> 1is
<{index> is

STORE <ssvar><prep><index><prep><list>
STORE <slit><prep><index><prep><list>

an execution label.
the source string variable.

a preposition.

the numeric variable which specifies which
variable from <1list> is to be selected as the
destination variable for the MOVE operation.

<list> is a list of string variables.

<slit> is a string literal.

Programming Considerations:

<label> is optional.

<list> is a list of string variables,

separated by commas (,).

The list may be continued on the following line by using a
colon (:) instead of a comma (,) after the last variable on
the line to be continued.

7=22

DOS. DATABUS COMPILER

-- <index> must be a numeric variable. If the <index> is not an
integer, it is truncated and the integer portion is used as
the index for list selection.

-- If the <index> does not correspond to a variable in the
<list>, then the STORE instruction is simply ignored.

-- An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

-- All of the rules of the MOVE instruction apply after the list
selection has been performed.

Example:
VAR LL FP Contents
SOURCE 8 5 12345678 ETX
I 0200 _ 2.3 ETX
D1 5 2 11111 ETX
D2 6 3 222222 ETX
D3 7 4 3333333 ETX
STORE SOURCE INTO I OF D1,D2:
D3

The following variable(s) will be changed:
D2 4y 1 567822 ETX
The following flag(s) will be set: None

Example:
IND 0200 3 ETX
D1 5 1 12345 ETX
D2 y 2 ABCD ETX

STORE "890" INTO IND OF D1,D2

The instruction would not be executed because the index is out
of range.

CHAPTER T. CHARACTER STRING HANDLING INSTRUCTIONS 7-23

T.14 CLOCK

CLOCK allows a DATABUS program access to the interpreter's
time clock, day, and year. The instruction has the following

formats:
<label>

where: <label)> is

CLOCK Kitem><prep><svar>

an execution label.

<item> may be one of the following:

1)
2)
3)

{prep> 1is
<{svar> 1is

TIME to access the time of day clock.
DAY to access the day of the year.
YEAR to access the year.

one of the prepositions <,> or <TO>.
a string variable that is to receive the

requested information.

Programming Considerations:

-~ (<label> is optional.

-- Only the prepositions <,> and <TO> are valid.

-=- <svar> must be

-- The time clock
hh:mm:ss
where:

hh

mm =

SS =

-- The day of the

ddd

a string variable.

(TIME) has the following format:

hours tens and units digits with range (00 to
23).

minutes tens and units digits with range (00
59)

seconds tens and units digits with range (00
59)0

year (DAY) has the following format:

representing the hundreds, tens, and units
digits of the day of year with range (001 to
366). The day expressed in this form is
commonly termed the "Julian" day.

-- The year (YEAR) has the following format:

T-24 DOS. DATABUS COMPILER

to

to

vy representing the tens and units of the year
with range (00 to 99).

-- The CLOCK instruction simply performs a MOVE operation on
information requested into the destination string variable.

-~ The DATABUS programmer must be careful when using the CLOCK
instruction to avoid getting erroneous results. When
obtaining both the TIME and DAY, the program should first
access the DAY and then the TIME. The program should then
access the DAY again and insure that the DAY has not changed.
If the DAY has changed, then the process should be repeated.
When this procedure is followed, then the TIME and DAY
correspond to each other.

-- The TIME, DAY, and YEAR are placed into the interpreter when
the system is brought up. The CLOCK items are kept updated
while the interpreter is running and are available to DATABUS
programs.

-- The TIME is accurate to approximately 0.005 percent or five
(5) seconds per day.

VAR LL FP Contents

TIME 8 2 XXXXXXXX ETX
DAY 3 3 YYY ETX
TEMP 3 2 Z1Z ETX
YEAR 2 2 YA ETX

CLOCK DAY TO DAY
CLOCK TIME TO TIME
CLOCK YEAR TO YEAR
CLOCK DAY TO TEMP
MATCH DAY TO TEMP
GOTO TIMEOK IF EQUAL
CLOCK DAY TO DAY
CLOCK TIME TO TIME

TIMEOK Ceessvnse

The following variable(s) will be changed:
TIME 8 1 13:10:52 ETX

DAY 3 1 134 ETX

YEAR 2 1 76 - ETX

TEMP 3 1 134 ETX

The above would be correct if the time was 13 hours, 10
minutes, 15 seconds, the day of the year was the 134th, and the

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-25

year number was T76.

T.15 TYPE

This instruction checks the format of a character string
variable for valid numeric string format. This instruction has
the following format:

<label> TYPE <dsvar>

where: <label> is an execution label.
{dsvar> is the destination string variable.

Programming Considerations:
-- <label> is optional.
-- <<dsvar> must be a string variable.

-- Only the logical string of <dsvar> is checked for valid
numeric format (see section 4.1).

-~ The EQUAL flag is set to true only when the logical string is
a valid numeric string.

== A null logical string is not a valid numeric string.

T.16 SEARCH

SEARCH compares a variable <key> to a list of variables
<list> and yields an index <index> which indicates which variable
in the <1list> matched. The instruction has the following format:

<{label> SEARCH <key><prep><blist><prep><nlist><prep><index>

where: <label> is an execution label.

<key> is the key variable.

<prep> 1is a preposition.

<blist> is the first variable in a list of contiguous
variables.

<nlist> is a numeric variable which specifies the number
of variables in the list to be searched.

<index> is a numeric variable produced by the interpreter
which specifies which variable in the 1list (the

7-26 DOS. DATABUS COMPILER

first of which was <blist>) matched the <key>.

Programming Considerations:

<label> is optional.

<key> and the variables in the list (the first of which is
<blist>) should be of the same data type, either both string
variables or both numeric variables.

<blist> is the name of the first variable in the list of
contiguous variables to be used.

<{nlist> is a numeric variable which specifies the number of
variables in the list (the first of which is <blist>).

The logical string of <key> is compared to the logical string
of a variable from the list (of which <blist> is the first).
If the logical string length of <key> is less than the logical
string length of the variable being compared (from the list),
the match stops when the <key> logical string is exhausted.
Therefore, it is not possible to get a match on a <key>
variable whose logical string is longer than the logical
string of the list variable.

The logical string lengths of the variables in the list may be
different.

If the variable <nlist> 1is larger than the number of variables
in the list, the search proceeds until the count <nlist> is
exhausted.

<index> contains a one (1) if the first variable in the list
matched <key>. A value of n for <index> indicates the nth
variable in the list matched <key>. The EQUAL flag is also
set if a match is found.

If none of the list variables matched <key> then a value of
zero (0) is returned for <index> and the OVER flag is set.

Example:
VAR .LL FP Contents
KEY 5 3 ABCDE ETX
VAR1 8 1 12345678 ETX
VAR2 6 2 XCDE12 ETX

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS T=217

VAR3 4y 3 FGHI ETX
NVAR 0200 03 ETX
INDEX 0200 00 ETX

SEARCH KEY IN VAR1 TO NVAR WITH INDEX
The following variable(s) will be changed:

INDEX 0200 _2 ETX
The following flag(s) will be set: EQUAL

Example:
KEY 5 3 ABCDE ETX
V1 5 1 XXXXX ETX
V2 3 1 YYY ETX
V3 4 1 YANNA ETX
N 0200 _3 ETX
I 0200 99 ETX

SEARCH KEY IN V1 TO N USING I

The following variables will be changed:
I 0200 _0 ETX
The following flag(s) will be set: OVER

T.17 REPLACE

REPLACE (the compiler will also accept a mnemonic of REP)
allows replacement of an ASCII character in a string variable by
another ASCII character. The instruction has the following
formats:

1) <label> REPLACE <ssvar><prep><dsvar>
2) <label> REP <{ssvar><prep><dsvar>
3) <label> REPLACE <slit><prep><dsvar>
k) <label> REP <slit><prep><dsvar>

where: <label> is an execution label.
{ssvar> is the source string variable.
{prep> 1is a preposition.
<dsvar> is the destination string variable.
<slit> 1is a source string literal.

Programming Considerations:

7-28 DOS. DATABUS COMPILER

-- <label> is optional.

-~ The logical string of the source variable <ssvar> or literal
<sslit> must contain pairs of characters defined as follows:

1) The first character of the pair is the character

to be replaced in the destination string.

2) The second character of the pair is the character
that 1is to replace the first of the pair wherever

it appears in the destination string.

-~ The source string is not modified.

-~ The destination variable logical string is modified.

-- The EOS flag is set if the logical string length of the source

operand is not even.

Example:
VAR LL FP Contents
DVAR 10 1 ABCDABCDAB ETX
ABVAR 4 1 AXDY ETX

REPLACE ABVAR IN DVAR

The following variable(s) will be changed:
DVAR 10 1 XBCYXBCYXB ETX
The following flag(s) will be set: None

Example:
DVAR 10 5 ABCDABCDAB ETX
ABVAR hy 3 AXDY ETX

REPLACE ABVAR IN DVAR
The following variable(s) will be changed:
DVAR 10 5 ABCDABCYAB ETX
The following flag(s) will be set: None
Example:

DESTIN 6 1 A1B2C3 ETX
REPLACE "A1B2C3" IN DESTIN

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

7-29

The following variable(s) will be changed:

DESTIN 6 1 112233 ETX

The following flag(s) will be set: None
Example:

DESTIN 7 1 AEAFZAZ ETX

REPLACE "AZZA"™ IN DESTIN

The following variable(s) will be changed:

DESTIN 7 1 ZEZFAZA ETX

The following flag(s) will be set: None
Example:

DESTIN 6 1 123456 ETX

REPVAL y 2 ABCD ETX

REPLACE REPVAL IN DESTIN

The following variable(s) will be changed:

The following flag(s) will be set: EOS

7-30 DOS. DATABUS COMPILER

None

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

<label> <oper> <{soper><prep><doper>

where: <label> is an execution label.
<oper> 1is the DATABUS arithmetic operation.
<soper> is the source operand.
{prep> 1is a valid preposition.
{doper> is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified.

8.1 ADD

The ADD instruction causes the content of source operand to
be added to the content of destination operand. The result (sum)
is placed in the destination operand. This instruction has the
following formats:

1) <label> ADD <{snvar><prep><dnvar>
2) <label> ADD <nlit><prep><dnvar>

Where: <label> is an execution label (see section 2.).
<{snvar> is the source numeric variable.
<prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

-- <label> is optional.

-- <nlit> must be a valid numeric literal.

-- The source numeric operand is never modified.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

-- <dnvar> contains the result (sum) of the ADD.
-- The flags OVER, LESS, ZERO (or EQUAL), are set appropriately.

-- The rounding and truncation rules are applicable (see section
2.7).

Examples:

X FORM "123.45"
Y FORM "267.22"
ADD X TO Y

Y will contain 390.67
The following flag(s) will be set: None

Example:
CAT FORM "100.50"
ADD ".005" TO CAT
CAT will contain 100.51
The following flag(s) will be set: None
Example:
NUM FORM "_245,0000"
NUM2 FORM "800.0"
ADD NUM TO NUM2
NUM2 will contain 555.0
The following flag(s) will be set: None
Example:
N FORM "00.0"

ADD "100.00" TO N

N will contain 00.0
The following flag(s) will be set: OVER, ZERO

8-2 DOS. DATABUS COMPILER

8.2 SUBTRACT (SUB)

The SUB instruction (The compiler will also accept a mnemonic
of SUBTRACT) is used to perform a subtract operation. The
contents of the source numeric operand (minuend) is subtracted
from the destination numeric operand (subtrahend) and result
(difference) is placed in the destination numeric operand.

The instruction has the following formats:

1) <label> SUB <snvar><prep><dnvar>
2) <{label> SUBTRACT <snvar><prep><dnvar>
3) <label> SUB <nlit><prep><dnvar>
4) <label> SUBTRACT <nlit><prep><dnvar>

Where: <label> is an execution label.
<{snvar> is the source numeric variable.
<{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.
Programming Considerations:
-- <label> is optional.
-- <nlit> must be a valid numeric literal.
-- The flags OVER, LESS, ZERO (or EQUAL) are applicable.
-- The contents of the source operand is never modified.

-- The destination operand contains the result (difference).

-- The truncation and rounding rules apply.

Example:
A FORM "123.45"
B FORM ".20.45"
SUB B FROM A
A will contain 143.90
The following flags will be set: None
Example:

CHAPTER 3. ARITHMETIC INSTRUCTIONS 8-3

C1 FORM "5.60"
c2 FORM "1.665"

SUB C2 FROM Ct1

C2 will contain 3.94
The following flags will be set: None

Example:
NUMBR FORM n_345n
SUB "700.5" FROM NUMBR
NUMBR will contain 1045
The following flags will be set: OVER, LESS
Example:
Y1 FORM " 10.00"
Y2 FORM " 20.005"

SUB Y2 FROM Y1

Y2 will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of the source numeric
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. The instruction has the
following formats:

1) <label> MULT <{snvar><prep><dnvar>
2) <label> MULTIPLY <snvar><prep><dnvar>
3) <label> MULT <nlit><prep><dnvar>
4) <label> MULTIPLY <nlit><prep><dnvar>

Where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 4is a numeric literal.

8- DOS. DATABUS COMPILER

Programming Considerations:

~- The execution label <label> is optional.

-=- <nlit> must be a valid numeric literal.

-- The flags OVER, LESS, ZERO (or EQUAL) are applicable.
~- The source numeric operand is not modified.

-- The destination numeric operand contains the result (product).
-- The sum of the number of characters in the source operand and
the destination operand must not exceed 31. (The compiler

does not check this limit. If it is exceeded the interpreter

will produce erroneous results.)

~- The truncation and rounding rules are applicable.

Example:
M1 FORM "o1o"
M2 FORM "oia"
MULT M1 BY M2
M2 will contain 120
The following flag(s) will be set: None
Example:
X123 FORM "12000.00"
MULT "1 BY X123
X123 will contain 13200.00
The following flag(s) will be set: None
Example:
NEG FORM "-10.5"
MULT "10" BY NEG

NEG will contain 105.0

The following flag(s) will be set: OVER, LESS

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

8.4 DIVIDE (DIV)

The DIV instruction (the compiler will also accept a mnemonic
of DIVIDE) causes the content of the source operand (divisor) to
be divided by the content of the destination operand (dividend).
The result (quotient) is placed in the destination variable.

1) <label> DIV <{snvar><{prep><dnvar>
2) <{label> DIVIDE <{snvar><prep><dnvar>
3) <label> DIV <nlit><prep><dnvar>
4) <label> DIVIDE <nlit><prep><dnvar>

Where: <label> is an execution label.
<{snvar> is the source numeric variable.
{prep> 1is a preposition.
<dnvar> ‘< the destination numeric variable.
<nlit> i, a numeric literal.

Programming Considerations:
-~ <Klabel> is optional.
~= <nlit> must be a valid numeric literal.

-~ The contents of the source numeric operand (divisor) is not
changed.

~- The contents of the destination numeric variable <dnvar>
contains the result (quotient).

-- If the content of the source numeric operand is zero, then the
OVER flag is set and the content of the destination numeric
variable is determined by one of the following:

1) If the source numeric operand (divisor) is an integer
zero (contains no digits to the right of the decimal
point) then the destination numeric variable
(quotient) is set to the largest possible number that
can be represented in the destination numeric
variable.

2) If the source numeric operand (divisor) is non-integer
zero, then the destination numeric variable (quotient)
is set to zero.

-- If the destination numeric variable (quotient) is not large

8-6 DOS. DATABUS COMPILER

enough to contain the quotient,

actions is taken:

then one of the following

1) If the source numeric operand (divisor) is integer (no
digits after the decimal point) the quotient will be
truncated to the number of places in the destination
numeric variable.

2) If the divisor is not integer (at least one decimal
place after the decimal point) the quotient will be
rounded to the number of places in the destination.
numeric variable.

-- There is a restriction on the length of division operands.
The following formula is used to determine acceptable lengths
(Decimal points are not counted as characters when using the
following formula).

N=2%¥NR+NU+NL

Where:

NR is the number of digits after the decimal point

in the divisor.
NU is the number of characters in the
NL is the number of characters in the

"¥" prepresents multiplication.

dividend.

divisor.

N computed by the above formula must be less than 32. The

-- The flags OVER, LESS,

compiler does not check this limit.
exceeded the interpreter will produce
results.

-- The truncation and rounding rules apply.

Example:

ONEH
TEN

FORM "100.00"
FORM "io"
DIV TEN INTO ONEH

ONEH contains 10.00
The following flag(s) are set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS

If it is
erroneous

ZERO (or EQUAL) are applicable.

8-7

Example:

ZERO

Example:

ZERO

Example:

N1

8.5 MOVE

FORM "ooo"
FORM "155.00"
DIV ZERO INTO N

N will contain 999.99
The following flag(s) will be set: OVER

FORM "00.00"
FORM "155.00"
DIV ZERO INTO N

N will contain __ .00
The following flag(s) will be set: OVER,

FORM t1oo"
DIV "O0.1" INTO N1

N1 will contain __0
The following flag(s) will be set: OVER,

ZERO

ZERO

The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.

The instruction

has the following formats:

1) <label> MOVE <{snvar><prep><dnvar>
2) <label> MOVE <nlit><prep><dnvar>

Where: <label>
{snvar>
{prep>
<dnvar>
<nlit>

is an execution 1label.

is the source numeric variable.

is a preposition.

is the destination numeric variable.
is a numeric literal.

Programming Considerations:

8-8 DOS. DATABUS COMPILER

-- <label> is optional.

-- <nlit> must be a valid numeric literal.

-- The contents of the source numeric operand is never modified.

-- The destination numeric variable contains the result of the
MOVE operation.

-- The OVER, LESS,

ZERO (or EQUAL) flags are applicable.

-- The truncation and rounding rules are applicable.

Example:

SOURCE
DESTIN

Example:

D1

Example:

Example:

N

FORM "12345"
FORM 6.2

MOVE SOURCE TO DESTIN

DESTIN will contain _12345.00
The following flag(s) will be

FORM 4,2
MOVE "12345" TO D1

D1 will contain 2345.00
The following flag(s) will be

FORM "12345.51"
FORM "99999"

MOVE S TO D

D will contain 12346
The following flag(s) will be

FORM "999.99"
MOVE "0.0" TO N

set:

set:

set:

None

OVER

None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

N will contain .00
The following flag(s) will be set: ZERO

8.6 COMPARE

The COMPARE instruction is used to compare two numeric
quantities. The instruction has the following formats:

1) <label> COMPARE <{snvar><prep><dnvar>
2) <label> COMPARE <nlit><prep><dnvar>

Where: <label> is an execution 1label.
<snvar> is the source numeric variable.
<{prep> 1is a preposition.
<dnvar> is the destination numeric wvariable.
<nlit> 1is a numeric literal.

Programming Considerations:

-~ <label> is optional.

-- <nlit> is a valid numeric literal.

-- The contents of the source numeric operand are never modified.

-- The contents of the destination numeric variable are never
modified.

-- The LESS and ZERO (or EQUAL) condition flags are set exactly
as if a SUBTRACT instruction had been executed instead of a
COMPARE.

-- Rounding takes place when the COMPARE instruction is executed.
-- Since the result is not moved to the destination variable, the
format of the result is not taken into consideration when

setting the condition flags. This means that the OVER
condition flag can never be set by the COMPARE instruction.

Example:

ONEH FORM "100.00"
COMPARE "100" TO ONEH

The following flag(s) will be set: ZERO (EQUAL)

8-10 DOS. DATABUS COMPILER

Example:

OP1 FORM "0100.0"
OP2 FORM "ogo"

COMPARE OP1 TO OPZ2

The following flag(s) will be set: LESS

Example:
CAT FORM "gggn
COMPARE "-1" TO CAT
The following flag(s) will be set: none
Example:
F FORM n-ggn
COMPARE "1" TO F
The following flag(s) will be set: LESS
8.7 LOAD

The LOAD instruction selects (using an index for selection) a
numeric variable from a list using an index and performs a MOVE
operation on the selected numeric variable to the destination
numeric variable. The instruction has the following formats:

<label> LOAD <dnvar><prep><index><prep><list>
Where: <label)> is execution label.
<dnvar> is the destination numeric variable.
<prep> 1is a preposition.
<index> is a numeric variable which specifies which item
of the available list is to be selected.

<list> is a list of numeric variables.

Programming Considerations:

-- <label> is opticnal.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-11

<dnvar> contains the result of the LOAD instruction after
execution.

<index> is a numeric variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the LOAD instruction is ignored
and execution continues with the next DATABUS instruction.

<list> may be continued on the following line by use of the
colon (:).

The <index> is not modified.
None of the <list> items are modified.
The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are used.

Example:
DESTIN FORM "9ggqgn
INDEX FORM nan
X1 FORM "P11e
X2 FORM naz22"
X3 FORM "3333"
LOAD DESTIN FROM INDEX OF X1,X2,X3
DESTIN will contain 2222
The following flag(s) will be set: None
Example:
Y FORM 3.1
I FORM "1.6"
S1 FORM "-11.36"
S2 FORM naa2"
S3 FORM n333n

LOAD Y FROM I OF S1,82:

8-12 DOS. DATABUS COMPILER

S3

Y will contain -11.4
The following flag(s) will be set: LESS

8.8 STORE

The STORE instruction selects (using an index for selection)

a numeric variable from a list and performs a MOVE operation from
the source numeric operand to the selected destination numeric
variable. The instruction has the following formats:

1) <label> STORE <{snvar><prep><index><prep><list>
2) <label> STORE <nlit><prep><index><prep><list>

Where: <label> is an execution 1label.

<{snvar> is the source numeric variable.

<index> is the index numeric variable which specifies
which item from the available list is to be
selected.

{prep> 1is a preposition.

<list> 1is a list of numeric variables.

<nlit> is numeric literal.

Programming Considerations:

<label> is optional.
<nlit> must be a valid numeric literal.
<dnvar> contains the result of the STORE operation.

<index> is a numertic variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the STORE instruction is ignored
and execution continues with the next DATABUS instruction.

The variables contained in <list> are separated by a comma

(’)o

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-13

~=- <1list> may be continued on the following line by use of the
colon (:) in place of the comma after the last variable on the
line to be continued.

~~ The <index> is never modified.

-- Only the selected numeric variable from the <list> is
modified.

-- The OVER, LESS, ZERO (or EQUAL) flags are applicable.

-- The truncation and rounding rules apply.

Example:
SOURCE FORM "gggn
INDEX FORM m.on
D1 FORM mn
b2 FORM naz2"
D3 FORM n333n
STORE SOURCE INTO INDEX OF D1,D2:
D3
D1 will contain 999. The other variables D2 and
D3 will be unchanged.
The following flag(s) will be set: None
Example:
SOURCE FORM "1234n
I FORM myn
D1 FORM y
D2 FORM y

STORE SOURCE INTO I OF D1,D2
The contents of neither D1 or D2 is changed

because the index was out of range.
The following flag(s) are set: None

8-14 DOS. DATABUS COMPILER

8.9 CHECK11 (CK11)

The CHECK11 (the compiler will also accept a mnemonic of
CK11) instruction performs a modulo 11 check digit calculation on
two string variables. The instruction has the following formats:

FLWN —
— e

Where:

<{label> CHECK11 <{svarl1><prep><svar2>

<label> CK11 <svar1><prep><svarz2>
<label> CHECK11 {svar1><prep><slit>
<label> CK11 {svar1><prep><slit>

<{label> is an execution label.

<svarl1> is a string variable called the base string which
contains the base number and the check digit.

{prep> 1is a preposition.

<svar2> is a string variable which contains the weighting
factor.

<slit> 1is a string literal.

The following algorithm is used to perform the CHECK11
instruction.

Let the length n of the base string be defined as n=LL-FP
where:

LL=logical length of base string.
FP=formpointer of base string.
The base string is composed of two parts:

1) The base number which is the first n digits of the
base string.

2) The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(1),
b(2),...,b(n) where b(1) is the formpointed left most
digit, and b(n) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(1),
w(2)...,w(n) with w(1) the formpointed left most digit and
Ww(n) is the right most digit of the weighting factor.

The following sum S is formed.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-15

S=b(1)¥w(1)+b(2)*w(2)+...+b(n)*w(n)
Then the computed check digit C is:

C=11-R(S/1T) where R(S/11) is the remainder from the
division S/11.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag cleared.

Programming Considerations:

<label> is optional.
Neither of the variables <svari1> or <svar2> is modified.

{svarl1>, <svarz2>, and <slit> when used must contain digits
only.

If the length (LL-FP) of the weighting factor is less than the
length n of the base number, then the OVER flag is set and the
DATABUS instruction is not finished.

A computed check digit with a value of 10 or greater cannot be
used and causes the OVER flag to be set.

Example:
BASSTR INIT "12343"
WEIGHT INIT nsy32n
CHECK11 BASSTR BY WEIGHT
The following flag(s) are set: ZERO (EQUAL)
Example:
BASSTR INIT ni12342n
WEIGHT INIT ne54n

RESET BASSTR TO 3
RESET WEIGHT TO 2
CHECK11 BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

8-16 DOS. DATABUS COMPILER

Example:

Example:

INIT "141599"
INIT myqn
RESET B TO 4
LENSET B

RESET B TO 2

CHECK11 B BY W

The following flag(s) are set: ZERO (EQUAL)

INIT "141699"
INIT mhyqn

RESET B TO 4
LENSET B

RESET B TO 2
CHECK11 B BY W

The following flag(s) are set: OVER

8.10 CHECK10 (CK10)

The CHECK10 (the compiler will also accept a mnemonic of
CK10) instruction performs a modulo 10 check digit calculation on
two string variables. The instruction has the following formats:

W -
~— —

Where: <label>
<{svari1>

<{prep>
<{svarez>

<slit>

<label> CHECK10 <{svar1><prep><svar2>
<label> CK10 <svar1><prep><svar2>
<label> CHECK10 {svar1><prep><slit>
<label> CK10 {svar1><prep><slit>

is an execution label.

is a string variable called the base string which
contains the base number and the check digit.

is a preposition.

is a string variable which contains the weighting
factor.

is a string literal which contains the weighting
factor.

The following algorithm is used to perform the CHECK10

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-17

instruction.

8-18

Let the length of the base string be defined as n=LL-FP
where:

LL=Logical length of base string.
FP=formpointer of base string.
The base string is composed of two parts:

1) The base number which is the first n digits of the
base string.

2) The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(1),
b(2),...b(n) where b(1) is the formpointed left most
digit, and b(n) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(1),
w(2)...,w(n) with w(1) the formpointed left most digit and
w(n) is the right most digit of the weighting factor.

Let the following products be formed:

P(1) = b(1)%w(1)
P(2) = b(2)*w(2)
: etc.

P(n) = b(n)*w(n)

Take each P(i) and perform a "lateral" addition on the

individual digits (i.e. P(3)=32 would yield a "lateral

addition" of 5). Let the "lateral" addition of the digits

of each P(i) be S(i). Then form the following sum:
SD=S(1)+3(2)+...+3(1i)

Then the computed check digit C is:

C=10-R(SD/10) Where R(SD/10) is the remainder from
the division SD/10.

The computed check digit C is compared to the check digit

DOS. DATABUS COMPILER

supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag is cleared.

Programming Considerations:

<label> is optional.

Neither of the variables <svar1> or <svar2> is modified.
{svarl>, <svar2>, and <slit> when used must contain digits.

If the length (LL-FP) of the weighting factor is less than the
length n of the base number, then the OVER flag is set and the
DATABUS instruction is not finished.

If a computed check digit of 10 is used, it is treated modulo
10.

Example:
X INIT m12340"
Y INIT n5h32m
CHECK10 X BY Y
The following flag(s) are set: EQUAL
Example:
BASE INIT "1515999"
RESET BASE TO 4
LENSET BASE
RESET BASE
CHECK10 BASE BY "515"
The following flag(s) are set: EQUAL
Example:
BASE INIT "9653"
WEIGHT INIT "52qn

CHECK10 BASE BY WEIGHT

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-19

The following flag(s) are set:

Example:

BASE INIT "1650"
WEIGHT INIT mi2in

CHECK10 BASE BY WEIGHT

The following flag(s) are set: OVER

8-20 DOS. DATABUS COMPILER

EQUAL

CHAPTER 9. INTERACTIVE INPUT/OUTPUT

These instructions are used to input from a keyboard and

output to a CRT screen (or output to any device used in place of
the CRT screen).

General Programming Considerations:

Typically, formatting is handled in one of the following ways.

a) By the way a variable is defined. It should be defined
with the format which is to be used for input/output.

b) Using 1list controls.

Normally, when execution of one of these 1I/0 statements
terminates, the cursor position is reset to the beginning of
the next 1line.

If a semicolon is used after the last item in the list, the
cursor position remains where it was on statement termination.
This feature allows a second I1/0 statement to continue where
the first statement left off.

Example:

DISPLAY "FLAGS: ";
CALL NOTFLG IF NOT ZERO

DISPLAY "ZERO, ";
CALL NOTFLG IF NOT LESS

DISPLAY "LESS"
NOTFLG DISPLAY "NOT ";
RETURN

would display one of the following lines, depending on the
condition flags.

FLAGS: ZERO, LESS

FLAGS: ZERO, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT LESS

Those instructions that use a list should make use of
continuation when it is possible to do so. (For details about

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-1

using continuation, see section 2.) This not only increases
the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurance of two consecutive I/0 instructions that are the
same, These two instructions can be replaced with a single
instruction by using continuation.

Example:

DISPLAY "LINE ONE"
DISPLAY "LINE TwO"

should be combined to form the statement below.

DISPLAY "LINE ONE":
*N,"LINE TWO"

-- The condition flags are unchanged by the execution of these
statements.
9.1 KEYIN
KEYIN is used primarily to input from the keyboard, though in
some cases it can be used to output to the screen. This statement
has the following general format:
<label> KEYIN <list>
where: <label> is an execution label (see section 2.).
<list> is a 1list of items describing the input from the
keyboard.
Programming Considerations:
-- <Klabel> is optional.

~- The items in the list must be separated by commas.

-- <list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 4.2).
b) <nvar>, a numeric string variable (see section 4.1).

c¢) <oce>, an octal control character (see section 2.5).

9-2 DOS. DATABUS COMPILER

d) <list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit>, a literal of the form "<string>" (see section

2.5). <string> must be a valid numeric string (see
section 4.1).

9.1.1 Character String Variables (KEYIN)

When a character string variable (<svar>) appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.
Programming Considerations:

-~ When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.
(The ¥*EOFF 1list control, see section 9.1.3.13, will cancel
this.)

-~ Only ASCII characters are accepted.

-~ Each character, as it is accepted, is displayed on the screen.

-~ The horizontal cursor position is bumped by 1 for each
character accepted.

-~ Characters are stored consecutively starting at the physical
beginning of the string.

-- Characters are accepted up to the physical length of the
character string variable.

-- A beep is sounded at the terminal for each character that will
not fit within the variable.

-- If a null string is entered (if the ENTER key is struck
without any other characters having been entered),

a) the formpointer of the variable is set to zero.

b) the logical length pointer of the variable is set to zero.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-3

c) the value of the variable will be indeterminate.

To check for a null string entry; the program can first
execute a RESET or CMATCH using the variable in question, then
check the EOS condition flag.

If the string entered is not null,

a) the formpointer of the variable is set to one.

b) the logical length pointer of the variable is set to the
last character entered.

c) the suffix of the string variable is unchanged.
Processing is continued with the next item in the list when

the ENTER key is struck. (See section 9.1.5.2 on the NEWLINE
key.)

9.1.2 Numeric String Variables (KEYIN)

When a numeric string variable (<nvar>) appears in the list

of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bumped by 1 for each
character accepted.

The following depend on the format of the numeric variable:

a) A minus sign is accepted only if it is the first character
entered.

b) A minus sign is accepted only if there is room for at
least one character to the left of the decimal point.

c) A period is accepted only if the format calls for a
decimal point.

9-4 DOS. DATABUS COMPILER

d) Only one period will be accepted.

e) The number of characters that will be accepted before a
period is required,
preceding the decimal point in the format of the variable.

is equal to the number of places

f) The number of characters that will be accepted after the
period is equal to the number of places following the
decimal point in the format of the variable.

g) If the ENTER key is the first key struck, a value of zero

is entered.

-- If a character is entered that is not acceptable to the format
of the numeric variable, a beep is sounded at the terminal.

-- The number entered will be reformatted to match the format of
the variable when the ENTER key is struck (see section 4.1).

-- Processing is continued with the next item in the 1list when
the ENTER key is struck.

Example: If the following statement is used to define NVAR;

NVAR FORM

then when NVAR is used
characters will result

ascii ascii ascii

ENTER

. ENTER

. 2 ENTER

- . ENTER

- . 2

- 2 ENTER

- 2 .

- 2 .

2 ENTER

2 . ENTER

2 . 3

2 3 ENTER

2 3 .

2 3 .
CHAPTER

2.1

in a KEYIN statement, the following
in NVAR having the values shown.

ascii

ENTER

ENTER

ENTER

ENTER

ascii value of NVAR
.0
.0
.2

ENTER -2.3

ENTER

INTERACTIVE INPUT/OUTPUT 9-5

9.1.3 List Controls

The list controls are provided to allow more flexibility for
data entry. They may be used to control the manner in which data
is requested and input into variables. All list controls begin

with an asterisk followed by the specification of the control
function.

9.1.3.1 ¥P<h>:<v> (Cursor Positioning)

This list control is used to position the cursor on the
screen. The following is the general format of this control.

¥P<hd> :<v>

where: <h> is the horizontal cursor position.
<v> 1s the vertical cursor position.

Programming Considerations:
-=- <h> and <v> may be any combination of the following:
a. <dnum>, where <dnum> is a decimal number.

b. <nvar>, where <nvar> is a numeric variable (see section
bh,1).

¢c. <evar>, where <evar> is a data label defined using an
EQUATE (see section 3.1).

-- Both <h> and <v> must be specified.

-- The value of <h> should be between 1 and 80. (See the user's
guide of the appropriate interpreter for any exceptions or
differences.) Positions outside this range are reset to the
largest value of the range.

-- The value of <v> should be between 1 and 24. (See the user's
guide of the appropriate interpreter for any exceptions or
differences.) Positions outside this range are reset to the
largest value of the range.

9-6 DOS. DATABUS COMPILER

9.1.3.2 *EL (Erase to the End-of-Line)

The ¥*EL control causes the line to be erased starting with
the current cursor position and continuing to the right. The
cursor position is unchanged by the execution of this control.
Example:

KEYIN ¥P50:10,*%EL,"0K? (Y/N) ",REPLY

This statement would erase line 10, starting with column 50.

9.1.3.3 ¥EF (Erase from Cursor Position)

The ¥EF control performs the function of ¥EL and additionally
erases all screen lines below the current cursor position. The
cursor position is unchanged by the execution of this control.

Example:
KEYIN ¥pP50:20, ¥EF

This statement would produce the same results as the following
statement.

KEYIN ¥P50:20,*EL:
¥pP1:21,%¥EL:
¥P1:22,%EL:
¥P1:23,%EL:
¥P1:24,*EL:
¥P50:20

9.1.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1:1 and erases the
entire screen. The cursor is left positioned to 1:1.

Example:
KEYIN ¥ES

Executing the above statement is equivalent to executing the
following statement.

KEYIN ¥p1:1,%¥EF

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-7

9.1.3.5 ¥C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor was positioned
to 40:5, executing the ¥C control would change the cursor position
to 1:5.

9.1.3.6 ¥L (Line Feed)

The *L control causes the cursor to be set to the following
line in the current horizontal position. For example: 1if the
cursor was positioned to 20:5, executing the *L control would
change the cursor position to 20:6.

9.1.3.7 *¥N (Next Line)

The *N control causes the cursor to be set to the first
column of the next line. Executing the *¥N control is equivalent
to executing a ¥C control followed by a ¥L control.
9.1.3.8 *R (Roll the Screen)

The ¥R control causes the screen to roll up by one line.
(This control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console.) The
cursor position is unchanged by the execution of this control.
9.1.3.9 ¥4+ (KEYIN Continuous On)

This control is used to turn on a mode of entry called keyin
continuous. This mode allows the system to react in much the same
way as a keypunch machine that is using a control card.

Programming Considerations:

-- This control affects data entry of all variables which follow
the *+ control in the KEYIN 1list.

-- If keyin continuous is turned on; entering the last character
acceptable to the format of a variable will cause the system
to react as if the ENTER key had been struck.

-- Keyin continuous may be turned off by the use of the ¥- list
control (see section 9.1.3.10).

9-8 DOS. DATABUS COMPILER

-- Keyin continuous is automatically turned off when the end of
the KEYIN list is reached.

9.1.3.10 ¥~ (KEYIN Continuous Off)

This control turns the keyin continuous mode off. For more
details about the keyin continuous mode, see section 9.1.3.9.
9.1.3.11 *T (KEYIN Timeout)

This control causes a time out if the time between entering
two characters is too long.

Programming Considerations:

-- This control causes a time out if more than two seconds elapse
between entering any two characters.

-- If a time out occurs, the remainder of the KEYIN list is
treated as though the NEW LINE key had been struck. (For more
details about NEW LINE, see section 9.1.5.2.)

9.1.3.12 *W (Wait)

This control is an effective way of allowing a program to
pause without imposing significant overhead on the system.

Programming Considerations:

-- Each occurance of a *¥W in the KEYIN list causes a pause of one
second before continuing to the next item in the list.

-- Any number of seconds of pause may be achieved by simply
putting in the required number of ¥W controls in the 1list.
9.1.3.13 *EQFF (Echo Off)
This control is used to suppress the character display (echo)
of all characters accepted from the keyboard. This is useful in
message switching applications or for entry of passwords or other

security information.

Programming Considerations:

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-9

-- This control causes echo suppression for all variables which
follow the ¥*EOFF in the KEYIN 1list.

-- The beep returned when an invalid character is entered is also
suppressed by this control.

-- The echo may be re-enabled by using the ¥EON list control (see
section 9.1.3.14).

-- The echo is re-enabled when the end of the KEYIN list is
reached.

Example: The following KEYIN statement could be used to enter a
password.

KEYIN ¥pP1:10,*¥EQOFF,"ENTER PASSWORD: ":
PASSWORD

9.1.3.14 *EON (Echo On)

This control is used to re-enable the echoing of characters
to the screen while entering data. For more details on echo
suppression see section 9.1.3.13.

9.1.3.15 *IT (Invert Text)

This control is used to disable shift key inversion. The
normal state of the keyboard is with shift key inversion enabled.
This means that all lower case alphabetic characters are entered
and displayed as upper case characters and vice versa. Shift key
inversion disabled is the normal state of a typewriter; that is,
the shift key must be used to get upper case alphabetic
characters.

Programming Considerations:

-- Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key

inversion while the Datapcint 3600 can.

-- Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

-~ The *IT control causes any letter entered with the SHIFT key
depressed to be entered and displayed as an upper case letter.

9-10 DOS. DATABUS COMPILER

-~ Shift key inversion will remain disabled until a ¥IN control
is used (see section 9.1.3.16).

-~ Shift key inversion will be enabled when a CHAIN instruction
is executed (see section 6.8).
9.1.3.16 ¥IN (Invert to Normal)

This control is used to enable shift key inversion. For more
details on shift key inversion, see section 9.1.3.15.

Programming Considerations:

-=- Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

-~ Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

-- The ¥IN control causes any letter entered with the SHIFT key
depressed to be entered and displayed as a lower case letter.

-- Shift key inversion will remain enabled until a ¥IT control is
used (see section 9.1.3.15).

-~ Shift key inversion will be enabled when a CHAIN instruction
is executed (see section 6.8).
9.1.3.17 ¥JL (Justify Left)

This control is used to cause the characters entered into a
variable to be left justified within that variable.

Programming Considerations:

-- This control affects only the first variable following the ¥JL
in the KEYIN list.

-- When the variable affected by the ¥*JL is a numeric string
variable, the following are true.

a) If a decimal point is not entered,

1) all digits entered are put into the leftmost positions

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-11

of the numeric variable.

2) all remaining character positions of the variable are
filled with zeros.

b) If a dec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>