
DATABUS 2
DB2PG S/DB2SYS

User's Guide

Version 5

July, 1975

Model Code No. 50169

DATAPOINT a JION

The Leader in
Dispersed Data Processing

COPYRIGHT© 1975 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

DATABUS 2
DB2PGS/DB2SYS

User's Guide

Version 5

July, 1975

Model Code No- 50169

TABLE OF CONTENTS

1. INTRODUCTION

2. STATEMENTS

3. DATA TYPES
3.1 Variable Definition
3.2 Numeric String Variables
3.3 Character String Variables

4. INSTRUCTIONS
4.1 Directive Instructions

4.1.1 FORM
4.1.2 DIM
4.1.3 INIT
4.1.4 Common Data Areas
4.1.5 Line Continuation

4.2 Control Instructions
4.2.1 GOTO
4.2.2 CALL
4.2.3 RETURN
4.2.4 STOP
4.2.5 CHAIN
4.2.6 TRAP
4.2.7 TRAPCLR
4.2.8 BRANCH
4.2.9 ACALL

4.3 Character String Handling Instructions
4.3.1 CMATCH
4.3.2 CMOVE
4.3.3 MATCH
4.3.4 MOVE
4.3.5 APPEND
4.3.6 RESET
4.3.7 BUMP
4.3.8 ENDSET
4.3.9 LENSET
4.3.10 TYPE
4.3.11 EXTEND
4.3.12 CLEAR
4.3.13 LOAD
4.3.14 STORE

4.4 NUmeric Strin~ Variable Arithmetic Instructions
4.4.1 ADD

page
1-1

2-1

3-1
3-2
3-2
3-3

4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-8
4-9
4-9

4-12
4-12
4-12
4-13
4-14
4-15
4-15
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-18
4-20
4-21

4.4.2 SUB
4.4.3 MULT
4.4.4 DIV
4.4.5 MOVE
4.4.6 COMPARE
4.4.7 LOAD
4.4.8 STORE

4.5 Keyboard, C.R.T., Printer I/O Instructions
4.5.1 KEYIN
4.5.2 DISPLAY
4.5.3 PRINT
4.5.4 BEEP
4.5.5 CLICK
4.5.6 DSENSE
4.5.7 KSENSE

4.6 cassette Tape Input/Output Instructions
4.6.1 Cassette Data File Structure
4.6.2 Cassette I/O Buffers
4.6.3 READ
4.6.4 WRITE
4.6.5 REWIND
4.6.6 BKSP
4.6.7 PREPARE
4.6.8 WEOF

5. DATABUS PROGRAM AND INTERPRETER SYSTEM GENERATION
5.1 Cassette Program Generation
5.2 Disk Program Generation
5.3 Interpretive System Tape Generation
5.4 Databus Check List

6. DATABUS COMPILER OPERATION

7. RUNTIME OPERATION
7.1 Interpreter Configuration
7.2 MASTER Program Operation
7.3 Program Termination

8. CHAINING TO NON-DATABUS PROGRAMS

9. INTERPRETER INTERNAL OPERATION

10. DATABUS 2 SUMMARY
10.1 Databus Definitions
10.2 Databus Input/Output Controls
10.3 Program Length
10.4 Language Summary

10.4.1 Instructions

4-21
4-21
4-22
4-22
4-23
4-23
4-24
4-25
4-25
4 27
4-28
4-28
4-29
4-29
4-29
4-30
4-30
4 32
4-33
4-36
4-37
4 38
4-39
4-39

5 1
5-1
5 1
5-2
5-3

6-1

7-1
7-1
7-2
7-4

8 1

9-1

10-1
10-1
10-4
10-6
10-7
10 7

10.4.2 Conditions
10.4.3 Events

10.5 User Area
10.6 Dictionaries
10.7 Interpreter Internal Structure
10.8 Compiler Internal Structure
10.9 Sample Programs

10-9
10-9
10-9
10-9

10-10
10-11
10-12

CHAPTER 1. INTRODUCTION

DATABUS, the Datapoint Business Lanugage, is a family of
high-level programming languages designed especially for the
Datapoint 2200, Datapoint 1100, and their peripherals.

Unlike conventional small computers, which are built and
shipped with little knowledge aforehand of what data processing
devices will be attached to them, each Datapoint 2200/1100
computer leaves the factory with at least video display, keyboard,
dual cassette tape drives and a variable quantity of solid-state
memory. This concept allowed the Datapoint systems programmers to
construct a high-level language that could take full advantage of
the bUilt-in peripherals that are part of every Datapoint
2200/1100. The language is especially useful in commercial
environments where jobs must be written quickly.

Source code for the DATABUS language is created using the
general purpose cassette editor. The source code is then
converted into object code by the DATABUS compiler. The resulting
object code can then be loaded by the standard cassette loader and
interpreted by the DATABUS interpreter.

This manual describes an upgraded version of DATABUS 2
designed especially to run in the 8K Datapoint 1100 with dual
cassette decks and a local or Servo printer. It will also run in
the Version II Datapoint 2200 with 8K or more of memory. The
compiler and interpreter may be configured to the machine memory
size and printer type being used. The particular configuration
will determine the available memory left for user programs.
Except for the control instructions CHAIN, ACALL, and TRAP, the
I/O instructions KSENSE and DSENSE, and the~sette input/output
instuctions, all DATABUS 2 statements in this version are upward
compatible with DATASHARE 3 statements.

Version 5 of DATABUS 2 contains the following new features
and revisions to Version 4. Note that some of the changes are not
upward compatible with Version 4.

1. The interpreter is now a self contained program. The use of
the CTOS symbolic loader has been eliminate i therefore, reference
to 1 es by symbolic name 1~ not al on the CHAIN 1nstruction.
JnBtea~, the octa~ cas 11e number must be supplied. e

II(

file can then be loaded by the cassette loader. If the file
number specified is not on the interpreter system tape or a loader

CHAPTER 1. INTRODUCTION 1-1

failure occured, the program will abort and a return to the MASTER
program is performed. The interpreter will be released as a eTaS
multi-file tape with the interpreter as file 2 and a MASTER
program as file 3. Databus object programs may be added to this
eTaS tape and the interpreter run from eTOS. The user may also
create a load-and-go interpreter tape with the eTOS command
handler. The tape would consist of the interpreter and MASTER
program followed by other object file programs. (Note Section 7).

2. The interpreter configurator is no longer a seperate program.
It is included in the interpreter itself and works in a similar
manner as UNITERM. When the interpreter is loaded, the
configuration questions (printer to be used, write verify, etc)
will be asked. If requested, the responses will be recorded on
the interpreter tape so that the options do not have to be
re-entered next time the interpreter is loaded. (Note Section 7).

3. The function of the released Databus MASTER program has been
greatly extended. Besides allowing the user to choose what)
program on the Inter reter s stem ta e he wishes to run under the

a abus interprete , the MASTER program also allows the user to
rewind and re are both the front and rear deck, list the front
deck text file on the screen or er, backspace a recor on t
~rQD£ deck, ~rite an end-of-tl1e mark on the tront deck, read a
record from the front deck d dis la it on the screen, wr'te-an

-c arac er variable to the front deck, enter an ct
ng rom the ke board, co y the front deck file to the rear

deck 1 e, and co d 'Ie to the front deck. Note
Sectlon for detailed instructions of the released
MASTER program.

4. The compiler will be released as a LGO tape and, as in the
interpreter, will no longer have an accompanying configuration
program. The configuration procedures will be included in the
compiler itself and work in a similar manner as in the
interpreter. (Note Section 6).

5. All input/output routines (cassette, keyboard, display, and
printer) of the interpreter have been made interruptable with
hardware tape I/O foreground driven. The exceptions are PREPARE
and REWIND on the rear deck. These routines use the cassette
loader to search for the scratch file (file 040) on the rear deck
so could not be foreground driven- Only one tape operation may be
active at once causing following tape operations to wait until the
current one is complete before continuing. For example, when a
WRITE statement is encountered, the write foreground is initiated
and the program proceeds to the next statement. If the next

1-2 DATABUS 2

statement was a READ, the program would wait until the previous
WRITE was completed before continuing. If trap and error
conditions, such as end-of-file, end-of-tape, parity error, occur
in the foreground process, the trap or abort will not be executed
until the next I/O statement, CHAIN, KEYIN time out list control
encountered (*T), STOP, or other abort condition. The READ and
BKSP statements use the foreground hardware read routine when a
new physical record is required to complete the execution of the
statement. Both types of statements wait until the foreground
read is finishe~ before continuing its execution. (Note Section
4.6) •

6. The old numeric operations package (STATH) has been replaced by
the new short STATH package with the numeric KEYIN and DISPLAY
routines re-written. This new STATH package has changed the way
the multiply and divide instructions work. (Note Sections 4.4.3
and 4. 4. 4) •

7. The BRANCH, STORE, and LOAD instructions have been modified to
be compatible with DATASHARE 3. In the previous versions of
DATABUS 2, the index of the instruction was rounded to no decimal
places before execution (e.g. 1.7=2). This version truncates to
no decimal places before execution (e.g. 1.7=1). (Note Sections
4.2.7, 4.3.13, 4.3.14, 4.4.7, and 4.4.8).

8. Keyin continuous and keyin time out have been added to the
KEYIN routine as list controls. See Section 4.5.1 for definitions
of those features.

9. In addition to the individual horizontal and vertical
positioning KEYIN and DISPLAY list controls (*H and *V
respectively), the list control, *Px:y, has been added which
allows the setting of the horizontal and vertical positions with
one list control. The x in the list control specifies the desired
horizontal position and the y specifies the desired vertical
position. This list control is compatible with DATASHARE which
does not allow the *H or *V list controls. (Note Sectlon 4.5.1) •
10. The READ instruction will now read record compressed and space
compressed data files. In addition, a continued READ is possible
in which part of a logical record may be read in one READ
statement and the rest of the record read in the next READ
statement. T.he BKSP instr~tion.Jdil..l. now b~ckSPT(L~~ qn~. l?~i,~,,~.l
.!e9~QLct_~.1l,at.aaq __ 9.t~~ .. Q.1l~.....p.h¥si.c"~)~,,",c,,Q;;:.q. The new READ fea t ure
requires a 256-byte internal buffer and a one byte buffer pointer
for each of the cassette tape decks. (Note Section 4.6).

CHAPTER 1. INTRODUCTION 1-3

11. The gDd-gf fil~ trap has been eliminated. Instead of
trapping the occurence of a ~le mar~ dUring the execution of a
READ or BKSP statement, a tes£ of the OVER flag should be made
rmmedia~after either type of statement. (Note Sections 4.6.3
and 4.6.6).

12. The ~RITErinstruction does not write compressed records. It
still writes blocked records - one logical record per physical
record with no space compression. However, a write-verity optlon
has been added. If this option is set during interpreter -

configuration" each record written will be re-read to check for
errors.

13. The RFAlI. trap now indicates a bad read on the selected deck
~ch-as parity errors}. The FORMAT trap has been added to trap
~rmat errors when reading str~ta into numeric variab~/

14. Local and Servo printer drivers are available in both the
DATABUS 2 compiler and interpreter. The short Servo driver
routine (version I) which prints one character at a time was used
to obtain additional memory space. Backwards tabbing is no longer
possible. The Servo driver routine is not interrupt driven in the
compiler but is interruptable in the interpreter.

TRAPCLR to this
er to clear a

specl led event (read fail at
e e er the trap location has 0

been cleared, the program aborts with an appropriate message and T
returns to the MASTER program (see Section 4.2.7).

1-4 DATABUS 2

CHAPTER 2. STATEMENTS

There are three basic types of statements in DATABUS:
comment, data definition, and program execution. Comment lines
begin with a period and may occur anywhere in'the program.
Comments are most useful in explaining program logic and
subroutine function and parameterization to enable someone reading
through the program to understand it more easily. Data definition
statements must occur before any program execution statements and
are used for setting up all the variables in the program. All
data definition statements must have unique labels. Program
execution statements must appear after any data definition
statements and mayor may not have labels. The labels on program
execution statements may be the same as labels on the data
definition statements although it is not recommended for reasons
of clarity. Program execution always begins with the first
executable statement. The following are examples of DATABUS
sta temen t s •

!
I: lo.~

NAME
TITLE

" HOURS
J TOTAL

l RATE

(:*~IS
tSTART

l' CALCR

(/J"~ .I'

V ,r{ouTPuT
1r"

(Fl.

DIM 35
INIT IITIME REPORT"
FORM 5.2
FORM 10.2
FORM "2.50"
FORM "10.00"

IS A COMMENT
DISPLAY *H1,*V1,*EF,TITLE
PREPARE 2
KEYIN *H1, *V3, "NAME: " , NAME
KEYIN *H1,*V4,"HOURS:",HOURS
MULT RATE BY HOURS
ADD HOURS TO TOTAL
SUB TAX FROM TOTAL
PRINT IINAME:",NAME,*30,"RATE: II ,RATE;
PRINT *40,"HOURS:",HOURSi
PRINT *50,"TOTAL:",TOTAL
WRITE 2,NAME,RATE,HOURS,TOTAL
GOTO START

Labels for variables and executable statements may consist of
any combination of up to six letters and numbers, but it must
begin with a letter. The following are examples' of valid symbols:

CHAPTER 2. STATEMENTS 2-1

A
ABC
A1BC
B1234
ABCDEF

The following are examples of invalid symbols:

ABCDEFG
HI,JK
3DAS

(too long)
(contains an invalid character)
(begins with a number)

Statem other than comments consist of a label field an
operation field, and a comment f el~. e abe field is
considered empty if a space appears in the first column. The
operation field denotes the operation to be performed on the
following operands. In many operations, two operands may be
connected either by an appropriate preposition (BY, TO, OF, FROM,
or INTO) or a comma. One or more spaces should follow each
element in a statement, except where a comma is used,' in which
case it must be the terminating character of the previous element
and may be followed by any number (including zero) of spaces. The
following are all examples of valid statements:

LABELl
LABEL2
LABEL3
LABEL4

SUB TWO FROM DIFF
SUB TWO OF DIFF
SUB TWO, DIFF
SUB TWO,DIFF

THIS IS A COMMENT

Note that any prepositions may be used, even if it does not
make sense in English. The following are examples of invalid
sta temen t s :

LABELl
LABEL2

SUB TWO DIFF
SUB TWO ,DIFF

(missing connective)
(space before comma)

Certain DATABUS statements allow a list of items to follow
the operation field. In many cases, this list can be longer than
a Single line, in which case the line must be continued. This is
accomplished by replacing the comma that would normally appear in
the list with a colon and continuing the list on the following
line. For example, the two statements:

PRINT A,B,C,D:
E,F,G

PRINT A,B,C,D,E,F,G

2-2 DATABUS 2

will perform the same function. Note that the first entry of the
continued line should not begin in the first column, the opcode
field is the recommended place to begin the continued line.

CHAPTER 2. STATEMENTS 2-3

CHAPTER 3. DATA TYPES

There are two types of datq used within the Databus language.
They are numeric strings and character strin~s. The numeric
variable arithmetic instructions are performed on numeric strings
and the string instructions are performed on character strings.
There are also instructions available to allow movement of numeric
strings into character strings and character strings into numeric
strings.

Numeric strings have the following memory format:

0200 1 2 3 0203

The lea~ing character (0200) is used as an indicator that the
6.tring is numeric. The trailing character (0203) is used to
indicate the h slcal location of the end t estrin. Note
that the format of a n s r1ng is set at definition time and
does not change throughout the execution of the program. When a
move into a number occurs from a string or differently formatted
number, reformatting will occur to cause the information to assume
the format of the destination number (decimal point position and
the number of digits before and after the decimal point) with
~runcation occurring to the left of the decimal point and rounding

~
Character strings have the following memory format:

9 5 THE QUICK BROWN
P. ~

0203

.J.he.-f.tt" ... §L ... character .. q."i.,s. ~..£1led the logical length and points to the
last character position current y e1 g use a he end of the
stri he above example) • The second chClra.£!-_~.r.i$_ .. S:.9J,±~St
.SJ1~ o!j]pai.nte'''".~~ ... P'9JD..ts ,to a character, 'p:g:~-ftfon' cur.!-"_~n~t+..Y-P~ D<;J
access . e string (Q in the above example). oWThe formpointer
-.--.,' ' ... ~-" •• -, ... -" ,- .'H' ... ~~··4, , ',," ""<I .• -Al-.... -..,.r!.."'-~, ...•c_, . , , ---.-!.-.~,... ~

may point to any character in·the·-~s·tring from position one through
the logical length. The 0203 byte indicates the physical end of
the string. The use of the logical length and formpointer in
character strings will be explained in more detail in the
discussions of each character string handling instruction.

CHAPTER 3. DATA TYPES 3-1

Basically however, these pOinters are the mechanism via which the
programmer deals with individual characters within the string.

3.1 Variable Definition

Whenever a numeric or character string variable is used in a
program, it must be "defined" at the beginning of the program
using either the FORM, DIM, or INIT instructions. These
instructions reserve the memory space described above for the data
variable whose name is given in the label field. Note that all
variables must be defined before the first executable statement is
given in the program and that once an executable statement is
given no more variables may be defined. Nu~eric strings are
created with the FORM instruction while character strings are
created with the INIT or DIM instruction.

3.2 Numeric String Variables

Numeric string variables are defined with the FORM
instruction as shown in the following illustration:

EMRATE
XAMT

FORM 4.2
FORM" 382.4 II

In this example EMRATE has been defined as a string of
decimal digits which can cover the range from 9999.99 to -999.99.
The FORM instruction illustrated reserves space in memory for a
number with four places to the left of a decimal pOint and two
places to the right of a decimal point and initializes the value
to zero. When the number is negative, one of the places to the
left of the decimal point is used by the minus sign. XAMT, in the
example, is defined with four places to the left of the decimal
point and three to the right but with an initial decimal value of
382.400.

Care should always be taken when defining variables not to
make them larger than will be needed for the values they will hold
in the program. Making them larger than needed will set aside
memory space that cannot otherwise be used and will reduce the
overall space available to the program.

3-2 DATABUS 2

3.3 Character String Variables

Character strings are defined with either the dimension
instruction, DIM, or the initialization instruction, INIT. The U~M
reserves a memory space for the given number of characters, sets
the length and formpointer to zero, and initializes all the
characters to spaces. For example:

ANAME DIM 24

A character string can also be defined with some initial value by
using the IN IT instruction. For example:

TITLE INIT -'JPAYROLL PROGRAM"

initializes the string TITLE to the characters shown and gives it
a logical and physical length of 15 and a formpointer of 1. Note
that in the case of strings, the actual amount of physical space
reserved is three bytes greater than the number specified in the
DIM or quoted in the INIT instruction (TITLE occupies 18 bytes in
memory, 15 of which hold characters).

CHAPTER 3. DATA TYPES 3-3

CHAPTER 4. INSTRUCTIONS

Every statement other than a comment must contain an
instruction. There are six classes of instructions to provide the
basic types of operations the Datapoint 2200/1100 must perform.
They are:

DIRECTIVES - These instructions are basically instructions to
the compiler. Directives define variables and establish
their initial values and sizes. They may also establish the
size of the user program, or tell the compiler to continue an
instruction from one line to the next.

CONTROL - These instructions control the order in which a
program is executed. They permit transfer of control from
one part of the program to another depending on the results
of other operations, stopping the program, or loading and
running another program stored on the system tape.

STRING - These instructions perfor~ the various string
handling operations on character strings. The operations
include strin~ move, append, match, character match and move,
and manipulation of the formpointer.

NUMERIC VAIABLE ARITHMETIC - These instructions perform the
basic arithmetic operations on numeric variables, transfer of
a value from one variable to another, and comparison of one
variable to another.

KEYBOARD, C.R.T., PRINTER INPUT/OUTPUT - These instructions
perform the basic I/O functions to the mentioned devices.

CASSETTE TAPE INPUT/OUTPUT - These instructions perform the
basic cassette tape handling functions for reading and
writing tapes.

CHAPTER 4. INSTRUCTIONS 4-1

4.1 Directive Instructions

4.1.1 FORM

The FORM instruction defines the length and initial value of
a numeric string variable. The FORM instruction must be used with
a label which is used as the variable name throughout the program.
The maximum length of a numeric string variable may be 22
including the decimal point and minus sign.

Examples:

RATE
AMT
ZERO
PI

FORM "6.5"
FORM 6.2
FORM 1
FORM 113.14159 11

If the numeric variable is defined with a quoted item, the
same number of character positions are reserved in memory as are
in the number between the quotation marks and the variable is
initlalized to the value given. In the above example RATE is
dimensioned to a number with one place to the left and one place
to the right of the decimal pOint, and initialized to a value of
6.5.

If the numeric variable is defined without quotes then the
numbers that appear to the right and left of the decimal point
specify how many positions to the right and left of the decimal
point are reserved in memory. In the above example AMT reserves
space in memory for a number with six places to the left of the
decimal point and two places to the right of the decimal point and
initializes the number to zero.

4.1.2 DIM

DIM defines a character string variable, d~termines its
physical length in memory, and initializes its logical length and
formpointer to zero. The DIM instruction must be used with a
label which is used as the variable name throughout the program.
The ma::,~~~,J,,~!2~,,!~c,><~~!_~~ .. charact,~r st~ing variable is 127.
-'~

4-2 DATABUS 2

Examples:

4.1.3 INIT

REFLBL
XCODE
MAXLEN

DIM 60
DIM 6
DIM 127

The INIT instruction is the same as the DIM instruction
except that the initial value of the character string is
estatlished~ This value may be initialized only by a quoted
string. The INIT instruction establishes physical and logical
lengths that are equal, and initializes the formpointer to one.

Examples:

HDING INIT IIREORDER FORM II

4.1.4 Common Data Areas

Since DATABUS has the prov~s~on to chain programs so that one
program can cause another to be loaded and run, it is desirable to
be able to carry common data variables from one program to the
next. The procedure for doing this is as follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly the
same order and size and at beginning of each program.
This is to cause each common variable to occupy the same
locations in each program.

b. For the first program to use the variables, define them
in the normal way.

c· For all succeeding programs place an asterisk in each
FORM, DIM, or INIT statement as illustrated below to
prevent those variables from being initialized when the
program is loaded into memory.

Great care must be used when incorporating the feature into a
program. An error in programming can produce strange results if a
common variable is misaligned with respect to the variable in a
previous program.

CHAPTER 4. INSTRUCTIONS 4-3

Example:

MIKE FORM *4.2
JOE DIM *20
BOB INIT *"THIS STRING WON'T BE LOADED"

4.1.5 Line Continuation

The KEYIN, DISPLAY, PRINT, READ, WRITE, LOAD, STORE, and
BRANCH instructions allow statements to be continued from one line
to the next.

These instruction statements may be continued to the next
line if a colon (:) is the terminating character of the
instruction. The colon replaces the comma separating the last
entry of the first line from the first entry on the second line.
The first entry of the second line should begin in the instruction
field. Examples of each are given in the instruction section.

4-4 DATABUS 2

4.2 Control Instructions

4.2 . .1 GOTO

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to the instruction labeled CALC.

The GOTO instruction may be conditional, however, and the
transfer of control occurs only if a specified condition is met.
Six ossible conditions can be s ecified and are OVER, LESS,
~EQUAL, ZERO, and EOS. T e conditions result from previous y
executed instructions and reference should be made to the
discussion on the various operations for their meaning (EQUAL and
ZERO are two different names for the same flag).

In the example:

GOTO CALC IF OVER

control is transferred to the instruction labeled CALC if an
overflow occurred with the last arithmetic operation, otherwise,
the n~xt instruction following the GOTO is executed.

The sense of the condition can be reversed as follows:

GOTO CALC IF NOT OVER

meaning control is transferred only if overflow did not occur.

4.2.2 CALL

Ttl? c~LL jnstruction ia VQry sjmilar to the GOTO
t that when a RETURN instruction is encountered er

~--~-lS restored to the next instruction followin
be nested up to eight
may Be exE§cuted
more than eight CALL

CHAPTER 4. INSTRUCTIONS 4-5

instructions are executed before a RETURN, the stack will
end-around. Being able to call subroutines eliminates the need to
repeat frequently used groups of statements, and may be made
conditional as discussed in the GOTO instruction.

Examples:

CALL FORMAT
CALL XCOMP IF LESS

4.2.3 RETURN

~.~~I!lB.l:L . .i.n.S.tJ;.Y~,U.on.- is used to. tran s f !=:r;,~.QDJ:J.:Ql.,,~.!2~...!,D~
.loca tion i_z:!21£2:.~~9"'j~tll~t,.~'t91t_.~9J;}gres,s,,<on ,tlle··_,&Ub.t:.QlJ.!Jne ~A1.l
sEacE.· Thi s instruction ha s no operand field but may be
Co'il'dltional.

Examples:

RETURN
RETURN IF EQUAL

4.2.4 STOP

The STOP instruction causes the program to terminate and
return to the MASTER Program.

The STOP instruction may be conditional as discussed under
the GOTO instruction.

Examples:

STOP
STOP IF OVER

4.2.5 CHAIN

The CHAIN instruction enables the DATABUS 2 user to fetch and
run another program on the interpreter system tape. Since the
interpreter may be a LGO system without the eTOS catalog, program
chaining must be done by program file number. The character

4-6 DATABUS 2

string in the referenced variable provides the octal file number
of the desired program. The number will begin at the formpointed
character of the string and continue through the logical length or
the first three characters if the logical length is longer than
three. Leading zeros are allowed but leading blanks are not. The
numb~r must be octal and be between 1 and 040 inclusive if the
interpreter system is LGO, or between 3 and 040 inclusive if the
system is on a CTOS tape. File 040 is normally used as the
scratch file on the rear deck but it may be referenced through
CHAIN.

Example:

, NXTPGM INIT "020" ..
II

CHAIN NXTPGM

causes file 020 (file 16 decimal) on the interpretive tape to be
loaded into memory and run.

All foreground tape operations must be completed without trap
or error conditions before the CHAIN is executed.

If the specified file number is not valid, a chain failure
trap, CFAIL, will QCcu~. If the specified program is not on tfie
interpretive system tape or if the program did not load
successfully, the current program will abort and a return to the
MASTER program is made.

4.2.6 TRAP

TRAP is a unique instruction because it does not take action
at the time it is executed in the program but specifies that a
transfer of control should occur later if a specified event
occurs· For example:

TRAP EMSG IF EOT2

specifies that control should be transferred to EMSG if the
end-of-tape is encountered on cassette deck two (front deck). The
transfer that occurs is like the GOTO instruction. Once the trap
location is set, transfer will continue to occur to that location
until the trap is reset with another TRAP statement or cleared
with theTRAPCLR instruction-

CHAPTER 4. INSTRUCTIONS 4-7

The events that may be specified are:

End-of-tape mark on indicated device EOT(n)
RFAIL(n) - Read failure on indicated device (Parity error,

bad file mark)
FORM(n) -------. String data read into numeric field from

indicated device

n = 1 or 2
1 = cassette deck 1
2 = cassette deck 2

CFAIL Specified file number of CHAIN instruction not
~

valid

The program will abort if one of the above conditions occurs and
the corresponding trap has not been set (see Section 7). The
cassette I/O events which occur in foreground are not trapped
until the next tape I/O instruction, CHAIN instrucion, KEYIN
instruction with a keyin time out control (*T), STOP instruction,
or some other abort condition.

Note that end-of-file may not be
flag should be t ted afte R or

~~~~~_t_h~e OVER 
Refer to 

the 1 ns 4.6.3 and 4.6.6 for furt 

4.2.7 TRAPCLR 

The TRAPCLR instruction clears the current trap location for 
the specified event. For example: 

TRAPCLR RFAILl 

clears the trap location set for the read failure on deck one 
event. If the event is not re-trapped with a TRAP instruction, 
the program will abort upon the next occurrence of the event. 

4-8 DATABUS 2 



4.2.8 BRANCH 

The BRANCH instruction transfers control to a statement 
specified by an index. 

For example: 

BRANCH N OF START,CALC,POINT 

causes control to be transferred to the label in the label list 
pointed to by the numeric variable index N. (i.e. START if N=l, 
CALC if N=2, and POINT if N=3). 

If the index is negative, zero, or larger than the number of 
variables in the list, control continues with the following 
statement. Note that the index is truncated to the no decimal 
places before it is used (e.g. 1.7=1). 

The BRANCH instruction statement may be continued to the next 
line if a colon (:) is the terminating character of the 
instruction. The colon replaces the comma separating the last 
entry of the first line from the first entry on the second line. 
The first entry of the second line should begin in the instruction 
field. 

Example: 

LABEL BRANCH N OF LOOP,START,READ,WRITE: 
PRNT,END 

4.2.9 ACALL 

The Assembly Language Call Instruction allows the user to 
call assembly language subprograms to be executed outside of the 
interpreter. The assembly language programs should not overlay 
any of the interpreter or the Databus user area which calls it, 
unless the program reloads the interpreter or user program before 
returning, in which case the user program should be restarted. 

Example: 

ACALL 020000 

CHAPTER 4. INSTRUCTIONS 4-9 



calls a subprogram starting at location 20000 octal. The location 
to be called may be decimal or octal, but must be a numeric 
literal. The last statement in the subprogram executed should be 
a RET to return to the interpreter to resume execution of the 
Databus program. Only one entry in the stack must be preserved by 
the assembly subprogram, and this should be at the top of the 
stack upon return, i.e. no calls should be made within the 
subprogram without corresponding returns. If the stack is 
destroyed, however, the user may resume by jumping to the Databus 
Entry Point for the interpreter (02076). 

There are three ways to load these subprograms into memory. 
One is to have all the subprograms on one or more LOAD & GO tapes 
and lead them into memory before loading the LOAD & GO Databus 
Interpretive Tape. 

The second method is to use the Databus CHAIN instruction. 
With this method, the first instruction of every program chained 
to must be a jump to the assembly subprogram entry point of the 
Interpreter (i.e. JMP 02076). Jumping back to the Interpreter 
will cause execution of the next instruction after the chain. 
Using this method, all subprograms are filed on the Interpretive 
System tape and may be loaded in by the Databus user program. For 
example, 

4-10 DATABUS 2 



ASSEMBLY PROGRAM FOR DATABUS CALL 

SUBR 
ENTRY 

DSP$ 
MESG 

020000 
02076 
BEEP 
MESG 
40 
11 
DSP$ 

07363 

RETURN TO DATABUS INTERPRETER 
ASSEMBLY SUBPROGRAM 

SET 
JMP 
EX 
HL 
LD 
LE 
CALL 
RET 
EQU 
DC 'ACALL TEST MESSAGE' ,0203 
END SUBR 

The above subprogram ENTRY would be called by ACALL 020003. 

The third method is to append the Databus Interpreter to the 
subprogram. This subprogram will always be resident when the 
interpreter is loaded- The CTOS command handler file routines 
will accomplish this. 

Caution: Since this version of DATABUS 2 uses the interrupt 
feature of the DATAPOINT 1100 and the Version II 2200, all 
programs called with the ACALL instruction must be interruptable. 
For example, 

SET 020000 
SUBR JMP 02076 
ENTRY LA 0341 BEEP IF KEYBOARD & DISPLAY DEPRESSED 

01 
EX ADR 
EI 
IN 
ND 014 
XR 014 
RFZ 
EX BEEP 
RET 

CHAPTER 4. INSTRUCTIONS 4-11 



4.3 Character String Handling Instructions 

Each string instruction, except LOAD and STORE, requires 
either one or two character string variable names following the 
instruction. (Note that the MOVE instruction is capable of moving 
strings to numbers, numbers to strings, numbers to numbers and 
strings to strings. See Sections 4.3.4 and 4.4.5 for all 
descriptions of the MOVE instruction. In the following sections, 
the first variable will be referred to as the source string and 
the second variable will be referred to as the destination string. 

4.3.1 CMATCH 

CMATCH compares two characters, one taken from each of the 
source and destination operands. The characters to be compared 
may be from under the formpointer of a string variable, a quoted 
alphanumeric character, or a number. This number may oe octal or 
decimal but it must have a value between 0 and 127 decimal. 

condition occurs if the character is ta a 
as a formpo~ , an no other conditions 

are set. Otherwise, the conditions are set 
appropriately- The LESS condition is set if the second string 
character is less than the first string character. -

Example s: 

CMATCH XDATA TO YDATA 
CMATCH Y,X 
CMATCH "A", DOG 
CMATCH DOG TO liB" 
CMATCH CAT,0101 

4.3.2 CMOVE 

~.:.V.;::E~m~o~v!..:e~s~a~c;.!h~a;:!.:r~a.wc ...... t ..... e ..... ..r:-f .... r!::..o~m~t:.!.h.!.::;e=-:::so~u~r~c:.!:e~Q~p~e~r.:=a~n~d~t=.:o~~u:!..!n~d:.:::e~r=--t.!::.!..!h.:::e-.... 
~f~our~m~p~o~i~n~t~e~r~~'~~~~e~s~t~i~n~a~t~~~'o~n~~s~t~r~i~n~g~- The character from the -

source operand may be a quoted alp anumeric, a number, or the 
character from under the formpointer of a string variable. If 
either operand has a formpointer of zero, a EOS condition and no 

4-12 DATABUS 2 



transferral occurs-

Examples: 

CMOVE XDATA,YDATA 
CMOVE IIAII TO CAT 
CMOVE X,Y 
CMOVE 0101 TO STRING 

4.3.3 MATCH 

MATCH compares two character strings starting at the 
formpointer of each and stopping when the end of either string is 
reached. If er formpointer is zero ,the MATGH operati0I1-will 
result in only clearing t ALflags and settin ithe 
~~~~a_g __ • Other' eaCL string is calculated to 
be LENGTH-FORMPOINTER+1 the LESS flag is set if thg
desti tion strin len ss than that of th
The two strings are then compared on a c aracter-for-character
basis for the number of characters equal to the lesser of the two
lengths. If all the characters match., the EQUAL flag is set. If
they do not match, the LESS flag's meaning is changed to indicate
whether the numeric value of the destination character (in the
character pair) is less than the numeric value of the source
character (LESS flag set) or vice versa (LESS flag reset). Some
examples and their results follow:

Source Destination

ABCD
Z

Result

EQUAL, LESS
NOT EQUAL,NOT LESS
LESS,NOT EQUAL
EQUAL,NOT LESS

ABCDE
ABC
ZZZ
ABC
ABCD

Examples:

AAA
ABC
ABCDE ~L'N~

MATCH A TO B
MATCH STR1, STR2

CHAPTER 4. INSTRUCTIONS 4-13

4.3.4 MOVE

MOVE transfers the contents of the source ~tring, starting
from under the formpointer, into the destination string. Transfer
into the destination string starts at the first physical character
and when transfer is complete, the formpointer is set to one and
the logical length points to the last character moved. The EOS
flag is set if the ETX in the destination string would have been
overstored and transfer stops with the character that would have
overstored the ETX.

The MOVE instruction can also move character strings to
numeric strings and vice versa. (The movement of numeric strings
to numeric strings is discussed in Section 4.4.5.) A character
string will be moved to a numeric string only if the character
string is of valid numeric format (only digits, spaces, a leading
minus sign, and one decimal point allowed). Otherwise, the
numeric string is set to zero. Note that only the part of the
character string starting with the formpointer is considered in
the validity check and transferred if the string is of valid
numeric format. The number in the character string will be
reformatted to conform to the format of the numeric string. The
TYPE instruction (see Section 4.3.10) is available to allow
checking the character string for valid numeric format before
using the MOVE instruction. When a numeric string is moved to a
character string, all characters of the numeric item (unless the
ETX would be overstored) are transferred starting with the first
physical character in the destination string. The formpointer of
the dpstination string is set to one and the logical length is set
to point to the last character transferred.

4-14

Examples:

MOVE STRING TO STRING
MOVE A,B
MOVE STRING TO NUMBER
MOVE NUMBER,STRING

DATABUS 2

4.3.5 APPEND

APPEND appends the source string to the destination string.
The characters appended are those from under the formpointer
through under the logical length pointer of the source string.
The characters are appended to the destination string starting
after the formpointed character in the destination string. The
source string pointers remain unchanged, but the destination
string pointers both point to the last character transferred. The
EOS condition will be set if the new string will not fit
physically into the destination string, but all characters that
will fit will be transferred.

Examples:

APPEND SOURCE TO DEST
APPEND NAME, BUFF

4.3.6 RESET

RESET changes the value of the formpointer of the source
string to the value indicated by the second operand. If no second
operand is given, the formpointer will be reset to one. The
second operand may be a quoted character, in which case the ASCII
val ue minus 32 (space gi ves zero, ! one, II two, etc.) will be used
for the value of the formpointer of the source string. The second
operand may also be a character string, in which case the ASCII
value minus 32 of the character under the formpointer of that
string will be used for the value of the formpointer of the source
string. The second operand may also be a numeric string or a
number, in which case the value of the number will be used for the
formpointer of the source string.

RESET also has the capability of extending the logical length
of the first operand. If the formpointer value specified is past
the logical length of the first operand, the logical length will
be extended until it will accommodate the formpointer value. If
this would cause the logical length to be past the physical end of
the string, the logical length and formpointer will both be left
pointing to the last physical character in the string. This
feature is useful in extracting and inserting information within a
large string. The' EOS condition will be set if a change in the
logical length of the first operand occurs.

CHAPTER 4. INSTRUCTIONS 4-15

Examples:

RESET XDATA TO 5
RESET Y
RESET Z TO NUMBER
RESET Z TO STRING

Note that the RESET instruction is very useful in code
conversions and hashing of character string values as well as
large string manipulation.

4.3.7 BUMP

BUMP increments or decrements the formpointer if the result
will be within the string (between 1 and the logical length). If
no parameter is supplied, BUMP increments the formpointer by one.
However, a positive or negative literal value may be supplied to
cause the formpointer to be moved in either direction by any
amount. An EOS condition will be set and no change in the
formpointer occurs if it would be less than one or greater than
the logical length after the movement had occurred.

EXamples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,-l

4.3.8 ENDSET

ENDSET causes the operand's formpointer to point where its
logical length points.

Example:

ENDSET PNAME

4-16 DATABUS 2

4.3.9 LENSET

The LENSET command is implemented in Version 4 Interpreters
only. LENSET causes the operand's logical length to point where
its formpointer points.

Example:

LENSET QNAME

4.3.10 TYPE

TYPE sets the EQUAL and ZERO condition if the string is of
valid numeric format (only leading minus, one decimal point, and
digits or spaces).

E",~ample :

TYPE ALPHA

4.3.11 EXTEND

EXTEND increments the formpointer, stores a space in the
position under the new formpointer, and sets the logical length to
pOint where the new formpointer points if the new logical length
would not point to the ETX at the end of the character string
Otherwise, the EOS flag is set and no other action is taken.

Example:

EXTEND BUFF

4.3.12 CLEAR

CLEAR causes the operand's logical length and formpointer to
be zero.

CHAPTER 4. INSTRUCTIONS 4-17

Example:

CLEAR NBUFF

4.3.13 LOAD

LOAD performs a MOVE from the character string pointed to by
the index numeric operand, the second operand, to the first
character string specified. The index must be a numeric string
variable. The instruction has no effect if the index is negative,
zero, or greater than the number of items in the list. Note, that
the index is truncated to no decimal places before it is used
(e.g. 1.7=1).

For example:

LOAD AVAR FROM N OF NAME,TITLE,HEDING

causes the contents of one of the variables in the list, based on
the value of the numeric variable N, to be moved into the first
operand AVAR.

4.3.14 STORE

STORE performs a MOVE from the first character string
specified to a character string in a list specified by an index
numeric operand given as the second operand. The index must be a
numeric variable. The instruction has no effect if the index is
negative, zero, or greater than the number of items in the list.
Note that the index is truncated to no decimal places before it is
used (e.g. 1.7=1).

For example:

STORE Y INTO NUM OF ITEM,ENTRY,ALINK,LIST

causes the contents of the first operand Y to be moved into one of
the variables in the list, based on the value of the numeric
variable NUM.

4-18 DATABUS 2

The LOAD and STORE instruction statements may be continued to
the next line if a colon (:) is the terminating character of the
instruction. The colon replaces the comma separating the last
entry of the first line from the first entry of the second line.
The first entry of the second line should begin in the instruction
field.

Examples":

"LABEL LOAD SYMBOL FROM N OF VAR,CONST,DEC:
CNT,FLAG,LIST

STORE NAME INTO N OF A,B,C,D,E,F,G:
H,I,J,K,L,M

CHAPTER 4. INSTRUCTIONS 4-19

4.4 Numeric String Variable Arithmetic Instructions

All of the numeric variable arithmetic instructions have
certain characteristics in common. Except for LOAD and STORE,
each numeric variable arithmetic instruction is always followed by
two numeric string variable names. The contents of the first
variable is never modified and, except in the COMPARE instruction,
the contents of the second variable always contains the result of
the operation.

For example in:

ADD XAMT TO YAMT

the content of XAMT is not changed, but YAMT contains the sum of
XAMT and YAMT after the instruction is executed.

Following each numeric string variable arithmetic
instruction, the condition flags, OVER, LESS, and ZERO (EQUAL) are
set to indicate the results of the operation. OVER indicates that
the result of an operation is too large to fit in the space
allocated for the variable (a result is still given with
truncation to the left and rounding to the right, however). LESS
indicates that the content of the second variable is negative
following the execution of the instruction (or would have been in
the case of COMPARE). ZERO (EQUAL) indicates that the value of the
second variable is zero following the execution of the
instruction.

Whenever overflow occurs, the higher valued digits that do
not fit the variable are lost. For example, a variable is
defined:

NBR42 FORM 2.2

and a result of 4234.67 is generated for that variable, NBR42 will
contain only 34.67.

Whenever an operation produces lower order digits than a
variable was defined for, the result is rounded up. A variable
with the FORM 3.1 would contain:

4-20 DATABUS 2

46.2 for 46.213
812.5 for 812.483
3.7 for 3.666
3.9 for 3.850

Note that if an OVER occurs during an ADD, SUB, or COMPARE of two
strings of different physical lengths, the result and the LESS
condition flag may not be correct.

4.4.1 ADD

ADD causes the content of variable one to be added to the
content of variable two.

Examples:

4.4.2 SUB

ADD X TO Y
ADD DOG, CAT

SUB causes the content of variable one to be subtracted from
the content of variable two.

Example s:

SUB RX350 FROM TOTAL
SUB Z,TOTAL

4.4.3 MULT

MULT causes the content of variable two to be multiplied by
the content of variable one. The restrictions on length with the
new arithmetic package incorporated in this DATABUS 2 version
requires that the sum of the number of characters in the two
operands must be less than 32.

CHAPTER 4. INSTRUCTIONS 4-21

Examples:

MULT DICK BY HARRY
MULT W,Z

4.4.4 DIV

DIV causes the content of variable two to be divided by the
content of variable one. The restrictions upon division operands
is that the number of characters in the dividend plus the number
of characters in the divisor plus two times the number of
characters after the decimal point in the divisor must be less
than 32. Division by zero results in the OVER condition begin set
and the destination variable not being changed.

If the quotient cannot be represented fully in the
destination variable format, the quotient will be rounded to the
number of places in the destination variable if the divisor has at
least one digit place after the decimal point. If there are no
digit places after the decimal point in the divisor, the quotient
will be truncated (rounded down) to the number of places in the
destination variable.

Examples:

DIV SFACT INTO XRSLT
DIV X3,HOURS

4.4.5 MOVE

MOVE causes the content of variable one to replace the
content of variable two.

Examples:

MOVE FIRST TO SECOND
MOVE A,B

4-22 DATABUS 2

4.4.6 COMPARE

COMPARE does not change the content of either variable but
sets the condition flags exactly as if a SUB instruction had
occurred.

Examples:

COMPARE XFRM TO YFRM
COMPARE RING, DING

Care should be used in defining variables to be compared.
Comparison of variables in which the length of the first variable
is longer than the length of the second variable results in an
overflow condition. The OVER flag is set, and the EQUAL or ZERO
flag is set to show the result of the comparison. However, the
LESS flag is not set in this case.

4.4.7 LOAD

The LOAD instruction for numeric string variables selects an
operand out of the list based on the index operand. It then
performs a MOVE operation from the contents of the selected
variable into the first operand. The index must be a numeric
variable. If the index is negative, zero, or greater than the
number of items in the list, then the instruction has no effect.
Note that the index is truncated to no decimal places before it is
used (e.g. 1.7=1).

For example:

LOAD CAT FROM N OF FACT,MULT,SPACE

causes the contents of one of the variables in the list, based on
the value of the numeric variable N to be moved into the first
operand CAT.

CHAPTER 4. INSTRUCTIONS 4-23

4.4.8 STORE

The STORE instruction for numeric variables selects an
operand out of the list based on the index operand. It then
performs a MOVE operation from the contents of the first operand
into the selected variable. The index must be a numeric variable.
If the index is negative, zero, or greater than the number of
items in the list, the instruction has no effect. Note that the
index is truncated to no decimal places before it is used (e.g.
1.7 =1).

For example:

STORE X INTO NUM OF VAL, SUB, TOT

causes the contents of the first operand X to be moved into one of
the variables in the list, based on the value of the nUmeric
variable NUM.

The LOAD and STORE instruction statements may be continued to
the next line if a colon (:) is the terminating character of the
instruction. The colon replaces the comma separating the last
entry of the first line from the first entry on the second line.
The first entry of the second line should begin in the instruction
field.

Examples:

LABEL LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6,N7,N8,N9

STORE COUNT INTO N OF TIME,RATE,DIST,SPG:
COST,TOT,SUM

4-24 DATABUS 2

4.5 Keyboard, C.R.T., Printer Input/Output Instructions

The se sta tements move da ta between the program variables and
the keyboard, screen, or printer. They each allow a list of
variables to follow the operation mnemonic. This list may be
continued on more than one line with the use of colon. The I/O
list may contain some special control information besides the
names of the variables to be dealt with. DATABUS has no
formatting information other than the list controls and that which
is implied by the format of the variables. The number of
characters transferred is always equal to the number of characters
physically allocated for the string, therefore, allowing the
programmer to set up his formatting the way he dimensions his data
variables.

Note, that all input/output instructions have been made
interruptable.

4.5.1 KEYIN

KEYIN causes data to be entered into either character or
numeric strings from the keyboard. A single KEYIN instruction may
contain many variable names and list control items. When
characters are being accepted from the keyboard, the flashing
cursor is on. At all other times, the cursor is off.

When a numeric variable is encountered in a KEYIN statement,
only an item of a format acceptable to the variable (not too many
digits to the left or right of the decimal point and no more than
one sign or decimal point) is accepted. If a character is struck
that is not acceptable to the format of the numeric variable, the
character is ignored and the Datapoint 2200/1100 signals a "beep".
Note that if fewer than the allowable number of digits to the left
or right of the decimal point are entered, the number entered will
be reformatted to match the format of the variable being stored
into. When the ENTER key is struck, the next item in the
instruction list is processed.

When a character string variable is encountered, the system
accepts any set of ASCII characters up to the limit of the
physical length of the string. The formpointer of the string
v~riable is set to one, and characters are stored consecutively
starting at the physical beginning of the string. When the ENTER

CHAPTER 4. INSTRUCTIONS 4-25

key is struck, the logical length is set to the last character
entered, and the next item in the keyin list is processed.

Other than variable names, the KEYIN instruction may contain
quoted items and list controls. Quoted items are simply displayed
as they are shown in the statement." The list controls begin with
an asterisk and allow such functions as cursor positioning and
screen erasure. The *H<n> control causes the cursor to be
positioned horizontally to the position specified by n. The *V<n>
control causes the cursor to be positioned vertically to the
position specified by n. The cursor may also be positioned to a
specified horizontal and vertical position with the single list
control, *Px:y, where 'x' gives the horizontal position and 'y'
the vertical position (Note that the *Px:y list control is
compatible with DATASHARE and should be used if the program is to
be run under the DATASHARE Interpreter also). Position
specifications in any of the cursor pOSitioning list controls may
be literals or numeric variables. The horizontal position is
restricted by the interpreter to be from 1 to 80 and the vertical
position is restricted to be from 1 to 12. Numbers outside of the
horizontal or vertical pOSition ranges have the effective value of
1. The *EF control erases the screen from the current cursor
position, the *EL control erases the rest of the line from the
current cursor position, and the *R control causes the screen to
be rolled up one line. The *C control causes the cursor to be set
to the beginning of the current line, and the *L control causes
the cursor to be set to the following line in the current
horizontal position.

Normally, the cursor is positioned to the start of the next
line at the termination of a KEYIN statement. If the current line
is at the bottom of the screen (line 12), the entire screen will
roll-up one line. However, placement of a semicolon after the
last item in the list will cause this pOSitioning to be
suppressed, allowing the line to be continued with the KEYIN or
DISPLAY statement. This feature is also true of the PRINT command.

Examples:

KEYIN * P 1 : 1 , * EF , .. NAM E : n, NAM E, * H 3 5 , .. AC NT NR: ":
ACTNR, II ADDRESS: ",STREET,*P10:Y,CITY:
*HX,*V4,"ZIP: ",ZIP;

While keying in a given variable, the operator may strike the
BACKSPACE key and cause the last character entered to be deleted.
He may also st~ike the CANCEL key and cause all of the characters
entered for that variable to be deleted. Whenever an input from

4-26 DATABUS 2

the keyboard is expected, the cursor flashes on and off. It
remains off at all other times.

Two additional KEYIN list controls are provided with this
version of DATABUS 2. A mode called keyin continuous is available
(turned on with list control *+ and off with list control *- or
the end of the statement) which causes the system to react as if
an ENTER key had been struck when the operator enters the last
character that will fit into a variable. This mode allows the
system to react in much the same way as a keypunch machine with a
control card.

The list control, *T, may also be included in the KEYIN
statement causing a time out if more than two seconds elapse
between the entry of two characters. The current variable is
terminated as if the ENTER key was struck. Any other list
controls or quoted items will be processed as usual, but all
subsequent variables in the statement will be set to zero or their
formpointers and logical lengths set to zero depending on whether
they are numeric or string variables. Control will fall through
to the next DATABUS statement. The timing routine for KEYIN time
out is foreground driven and cannot be initiated until the current
tape operation is complete. Therefore, a pause in execution of
the KEYIN statement may occur if KEYIN time out is requested when
some tape operation is still in process. When the tape I/O
finishes, the keyin continuous foreground routine will be
initiated and the rest of the statement executed.

4.5~2 DISPLAY

DISPLAY follows the same rules as the KEYIN except that when
a variable name is encountered in the list following the
instruction, the variable's contents are displayed instead of
keyed in.

Character strings are displayed starting with the first
physical character and continuing through the logical length.
Spaces will be displayed for any character positions that exist
between the logical length and physical end of the string. Numeric
strings are always displayed in their entirety in both
interpreters.

CHAPTER 4. INSTRUCTIONS 4-27

Examples:

DISPLAY *P5:1,"RATE: ",RATE:
*H5, *V2, If AMOUNT: ", AMNT

4.5.3 PRINT

The PRINT instruction causes the contents of variables in the
list to be printed in a fashion similar to the way DISPLAY causes
the contents of variables to be displayed. The list controls are
much the same as DISPLAY except that cursor positioning cannot be
used, column tabulation is provided: *<n> causes tabulation to
column <n> unless that column has been passed, *F causes an
advance to the top of the next form, *L causes a line feed to be
printed, and *C causes a carriage return to be printed. The PRINT
statement may be continued on more than one line by use of the
colon.

PRINT begins printing at the first character of the string
and continues through the physical end of the string. Blanks are
printed for all characters after the logical end of the string.
Numeric variables are printed in their entirety in both
in ter l)reter s.

Examples:

PRINT *20, "TRANSACTION SUMMARY",*C,*L:
PNAME,*C,*L,*10,RATE,*20,HOURS,*30:
AMNT, *L

Note, with moving head matrix printers, the continuous nature
of the line printing activity precludes vertical format commands
within a printed line. With these printers, all vertical format
information between end-of-line commands (carriage returns) will
be acted upon before the first character.

4.5.4 BEEP

The BEEP instruction causes the machine to produce an audible
tone.

4-28 DATABUS 2

Example:

BEEP

4.5.5 CLICK

The CLICK instruction causes the machine to produce an
audible click.

Example:

CLICK

4.5.6 DSENSE

The DSENSE instruction tests the DISPLAY key sense switch.
If the DISPLAY key has been depressed, then the EQUAL condition
flag is set. If the DISPLAY key is not depressed then the EQUAL
condition flag is reset.

Example:

DSENSE

4.5.7 KSENSE

The KSENSE instruction acts like DSENSE except that it tests
the KEYBOARD key sense switch.

Example:

KSENSE

CHAPTER 4. INSTRUCTIONS 4-29

4.6 Cassette Tape Input/Output Instructions

4.6.1 Cassette Data File Structure

The Databus cassette data file follows the standard CTOS
record format (referred to as GEDIT format by the cassette
editor). The most basic structure within a data file is a
physical record. A physical record can contain at most 250
characters (with 6 additional bytes reserved for eTaS system
usage). The next level of structuring is a logical record.
Depending upon the way the user creates his cassette data file,
there mayor may not be an integral number of logical records
within a physical record. A logical record consists of a string
of data characters terminated by a 015 character after which
another logical record may begin. Note that logical records can
extend across physical record boundaries (record compressed
format). A physical record is terminated by a 003 character and
an inter-record gap (IRG). For example, a file with logical
records may appear in the first two physical records as follows
(the items in parentheses are the logical and physical record
termination characters):

01128558382 AASDFQWERKFKDSKA (015) 1234848 (003) (IRG)
8483 LAKSJDFLKASDFKKJ (015) 48828388483 KI (003) (IRG)

Note that the first logical record extends about two thirds of the
way through the first physical record and is then terminated by
the 015 character. The first seven characters of the second
logical record are also contained in the first physical record at
which point the first physical record is terminated. The rest of
the second logical record extends about half way through the
second physical record and is then terminated by the 015
character. At this point the third logical record starts and so
on·

A logical record is restricted to less than 250 characters
inferring that a single logical record may not extend across more
than one physical record. If one had wanted to keep only one
logical record per physical record (refered to as blocked record
or write-edit format), he wOllld have made the file appear as
follows:

4-30 DATABUS 2

01128558382 AASDFQWERKFKDSKA (015) (003) (IRG)
12348488483 LAKSJDFLKASDFKKJ (015) (003) (IRG)
48828388483 KILKJLKJLKSJDFKD (DIS) (003) (IRG)

Note that it took more tape space to store the same amount of
information in this case than in the previous case.

In some data files large numbers of contiguous spaces appear.
These files can be compressed even further than simple use of
record compression by the use of space compression (the general
purpose CASSETTE editor, the DOS SORT program, a number of the
terminal emulator programs, and other Datapoint software can
generate space compressed records). A spaced compressed structure
appears much like a record compressed structure except for the
addition of the 011 control character. This control indicates
that the next byte is a positive 8-bit binary word which tells how
many spaces were replaced by the Compression code character pair.
This number will never be less than 2 (since it is wasteful to
expand one or zero spaces into two characters) and may be as
large as 255. In addition, the 011 will never appear as the last
character in a physical record since the character indicating the
number of spaces will always appear after the 011 (otherwise the
003 indicating the end of the physical record and three spaces
compressed could not be differentiated). In the following
example, a logical record is shown first without space compression
and then with space compression:

NOW IS THE TIME FOR (015)
NOW IS THE(Oll) (002)TIME(011) (007)FOR (015)

The second record is physically shorter than the first by six
characters. It may seem silly to compress two spaces into a two
character compression code but most programs do this because it is
logically simpler to program. If more than 255 contiguous spaces
appear in the data record, multiple space compression codes will
appear. Space compressed records are most useful where large
numbers of spaces appear in the file and where the records are not
to be modified in place. If the record is to be modified in
place, record compression and space compression will be distroyed
by the DATABUS 2 write instruction since the WRITE instruction
maintains blocked records (one logical record per physical record
and no space compression). In most cases, DATABUS 2 will be used
to process blocked data files. However, this version also allows
reading and processing of GEDIT files. If the user wanted to
update a GEDIT file also, he could READ the file onto the scratch
area on the back deck and re-write it in blocked format on the
front deck. It would then be in proper format for updating.

CHAPTER 4. INSTRUCTIONS 4-31

Note, that it would be possible to overrun the tape output space
if the GEDIT file was of considerable length.

DATABUS records written by DATABUS 2 do not contain anything
but data characters (no 0200, ETX, or logical length and
formpointer characters). Therefore, there is no indication where
a variable begins or ends or of what type it was when it was
written. When the records are read, the variable list of the READ
statement will determine the format of the data in the record.

Reading and writing may be executed on both decks. All I/O
on the rear deck (deck 1) is done to the scratch file of that tape
(file 040). I/O on the front deck (deck 2) is executed on file a
of that tape.

4.6.2 Cassette I/O Buffers

Two 256-byte internal buffers are kept by the interpreter to
transfer physical records to and from each tape deck. A character
pointer is kept for each buffer for scanning purposes. The buffer
character pointer can have a value from 1 to 251.· When a physical
record is read from the indicated deck, the corresponding
character pointer is set to one. The pointer is incremented as
the variables in the READ statement list are filled. If the end
of the buffer is reached during a READ (003 byte encountered), a
new physical record will be read, and the character pointer reset
to one. All cassette I/O instructions have specific effects on
the character pointer which are described in the following
sectl.ons.

All hardware tape operations, except for PREPARE and REWIND
on deck 1, are interrupt driven. Therefore, they occur along with
the background (all other processing). Programs, after issuing a
tape command, proceed immediately to the next instruction until it
encounters another tape command, in which case it will wait for
the prior command to complete. Exceptions: 1) The actual reading
of a physical record from a specified deck occurs in foreground.
However, since READ fills variables which may appear in following
instructions, control does not proceed to the next instruction
until the READ statement is completed. 2) The BKSP instruction is
also executed in the background. The backspace routine uses the
foreground driven hardware read routine when it is necessary to
read the previous physical tape record in order to complete the
backspace. The BKSP routine waits until the hardware read is
finished before execution of the backspace is continued. 3)

4-32 DATABUS 2

REWIND and PREPARE on deck 1 use the cassette loader to search for
the scratch file (040) on that deck so could not be done in the
foreground.

The WRITE operation will be write-verify (read after write)
if the user has configured the interpreter to do so. Refer to
Section 7 for an explanation of interpreter configuration.

4.6.3 READ

The READ command causes the next logical record to be read
from the data file on the indicated tape deck (file 040 on rear
deck, file 0 on the front deck). The data is entered into the
variables appearing in the list following the READ instruction. A
new physical record is read from the tape deck only when the end
of the current buffer is reached (003 encountered). If a logical
record crosses a physical record boundary, part of the variables
will be filled from the current buffer and the rest from the new
record read in. At the end of the READ (unless a continued READ),
the character pointer will be left pointing after the logical
record read (the first character following the 015). If this
happens to be at the end of a physical record, the pointer will be
pointing at the 003 byte; otherwise, it will be pointing at the
first character of the next logical record.

A continued READ is possible in which part of a logical
record may be read with one READ statement and the rest read with
the next READ statement. This type of READ is indicated by a
semi-colon terminating the variable list of the READ statement.
After a continued READ, the character pointer will be left
pointing at the character after the last one transferred.

Since there are no delimiters in a data file to distinguish
the beginning and ending of a variable, the entire physical length
of strings starting at the first character is written to tape.
Blanks are written for all characters after the logical end of the
string. When the record is read, the data is entered into the
variables starting at the first position in the string and
continuing to the physical end. Space compression codes are
expanded. The formpointer is set to one and the logical length is
set to the length of the string at the last non-blank character.
If the record contains more items or characters than were in the
record, the extra strings are blank filled, and the numbers are
zeroed. If the variables in the READ instruction are not the same
size as the variables in the WRITE instruction for that record,

CHAPTER 4. INSTRUCTIONS 4-33

some of the characters may be stored into the wrong variables.
However, this may be used intentionally, for example, to reformat
variables when they are read.

An RFAIL trap condition will occur if there is a read failure
(parity error, bad file mark, etc). The bad record is read 4
times before the condition is set. A FORMAT condition will occur
if non-numeric data is read into a numeric variable.

If an end-of-file mark is read, the OVER flag is set and the
tape is left positioned before the EOF mark. The remaining
variables in the READ statement will be set to zero or blanks
depending on whether they are numerics or strings. Note that
end-of-file may not be trapped. The user must test the OVER flag
after each READ statement in order to catch an end of file.

The number 1 or 2 must appear as the first item in the READ
instruction list to indicate which deck is to be read (rear or
front respectively).

Examples:

READ 1,A,8,TOTAL
GOTO EOF IF OVER

READ 2,A,B,Ci
READ 2,D,E,F

NOTE: It is not necessary to always read every variable from
a record. For example, records of six variables each were written
to tape using the following write instruction.

WRITE 1,CODE,NAME,COMPANY,ADDRESS,SSN,POSITION

Another program might use the same tape, but only need the
company name from each record. So this program could use the
following instruction.

READ 1,CODE,NAME,COMPANY

The program may also want to read part of the record (e.g.
code, name and company), do some test and either by pass the
record or read the rest of that same record. In this case he
would use the continued read. For example,

4-34 DATABUS 2

RDLP

CODEI

READ 2,CODE,NAME,COMPANY~

CMATCH "l",CODE
GOTO CODEI IF EQUAL
READ 2
GOTO RDLP
READ 2,ADDRESS,SSN,POSITION

The above example would use only those records whose code equaled
one. Note, how the record was by passed if CODE did not equal
one·

Every variable up to and including the variables desired must
be in the read statement in the order the variables appear in the
records on tape. To advance the tape past a logical record, only
the instruction

READ 1
or

READ 2

is needed. This is particularly useful for positioning a tape to
the end of file.

CHAPTER 4. INSTRUCTIONS 4-35

4.6.4 WRITE

The WRITE instruction causes a physical record to be written
to the indicated deck. The record will contain the variables
indicated in the list following the WRITE instruction. WRITE
always writes a new physical record on the indicated deck. No
record compression or space compression is used. The buffer for
the indicated deck will be filled with the variables in the list
beginning with buffer position one. When the WRITE is completed,
the buffer pointer will be left pointing at the 003 byte of the
record so that if a READ is executed next, the next physical
record from the indicated tape deck will be read. If the
write-verify option was chosen during interpreter configuration,
the record written will be re-read to check for parity errors.
Records in error will be re-read 4 times before setting the RFAIL
trap condition. An EOT trap condition may also occur during
execution of a WRITE statement.

If an error condition occurs which is not trapped, the
program will abort (see Section 7). Aborts do not write
end-of-file markers automatically on decks written to. Thus, if
the user has issued WRITE's to a deck without an WEOF and the
program aborts for some reason, the tape file structure for that
deck may be destroyed. It is up to the user to TRAP these events
so that condition does not occur.

The record may be any length up to 249 data characters.
Since only the actual data characters are written to tape, each
numeric and character string variable will have a length equal to
its defined physical length. WRITE begins writing at the first
character of string variables and continues to the physical end of
the string. Blanks are written for all characters after the
logical end of the string. Using this technique, a WRITE
statement will always write the same number of characters for a
variaDle, no matter what the logical length of the string
variable.

The number 1 or 2 must appear as the first item in the WRITE
instruction list to indicate which deck is to be written to (1
indicates the rear deck, 2 the front deck).

4-36 DATABUS 2

Examples:

WRITE 2,TIME,TOTAL,NAME
WRITE l,FORM1,FORM2,FORM3

When using the WRITE instruction to update records of an
exisiting data file, the user should be sure to rewrite records of
the same length to avoid destroying the record structure of the
data file.

The READ and WRITE instruction statements may be continued to
the next line if a colon (:) is the terminating character of the
instruction. The colon replaces the comma separating the last
entry of the first line from the first entry on the second line.
The first entry of the second line should begin in the instruction
field.

Examples:

START READ 1,NAME,POSN,ADDR,SSN,INS:
CODE, ITEM, QUANT

WR WRITE 2,NAME,POSN,ADDR,SSN,INS:
CODE, ITEM, QUANT

Caution: The space inefficiencies of more frequent
inter-record gaps on the output write-edit format tapes which
DATABUS 2 produces (when compared with blocked-compressed, GEDIT
format) means a relatively full GEDIT tape may not be copied
without the risk of overrunning the output tape space. That is, a
file of 80 character strings typically requires only half the
space in GEDIT format.

4.6.5 REWIND

The REWIND instruction list contains only a 1 or 2 to
indicate the rear or front deck respectively. If the rear deck is
indicated, the tape will slew to the beginning of the file area
following the program library on the rear cassette. If the front
deck is indicated, the cassette will be high-speed rewound to the
beginning of the tape and the head positioned to the beginning of
the first data record. The buffer of the indicated tape deck will
be cleared (003 placed in buffer pOSition one) with the character
pOinter reset to one. Thus, a new physical record from the tape
deck will be read on the next READ for that deck.

CHAPTER 4. INSTRUCTIONS 4-37

NOTE

A PREPARE or REWIND instruction must be issued to deck 1
before any other tape instruction can be issued to that deck.
A MODE abort will occur if another tape operation is issued
first. A REWIND instruction is not necessary for deck 2, but
is usually desirable. However, if two or more programs are
being chained, the user may wish to have each new program
continue writing to deck 2 where the previous program left
off. In this case a REWIND instruction would not be desired
for deck 2.

Example:

REWIND 1

4.6.6 BKSP

The BKSP instruction causes the data file on the indicated
tape deck to be backspaced one logical record. The buffer
character pointer is scanned backwards in the tape buffer until
the end of the previous logical record is found (015 encountered).
The backwards movement is continued until the beginning of that
logical record is found (another 015 or file marker encountered).
The buffer character pointer will be left pointing at the first
character of that record. If the beginning of the physical buffer
is reached during the backwards movement of the character pointer,
the cassette tape deck will be backspaced and the previous
physical record will be read in and the scanning continued. If
the tape is at the beginning of file, the OVER flag is set and the
tape is left positioned before the first data record on file. If
end-of-tape is encountered during a BKSP, a TAPE error will occur
and the program aborted.

A 1 or 2 must follow the BKSP instruction to indicate the
rear or front deck respectively.

Example:

BKSP 2
GOTO BOT IF OVER

4-38 DATABUS 2

4.6.7 PREPARE

The PREPARE instruction list contains only a 1 or 2 to
indicate the rear or front deck respectively. If the rear deck is
indicated, the instruction performs the same function as REWIND.
If the front deck is indicated, the cassette is rewound and a new
beginning-of-file marker is written. If the interpreter was
configured for write verify, the file marker will be re-read to
check for errors. The tape is left positioned after the
beginning-of-file marker. The buffer for the indicated tape deck
is cleared (003 placed in the first buffer position) and the
character pointer set to one. This ensures that a new physical
record will be read if a READ instruction is the next cassette
operation performed on that deck.

Example:

PREPARE 2

4.6.8 WEOF

The WEOF instruction causes an end-of-file mark to be written
on the indicated deck. If the write verify option was set during
interpreter configuration, the file marker will be re-read to
check for errors. The tape is left positioned before the file
marker. The buffer for the indicated tape deck will be cleared
(003 placed in the first buffer location) and the character
pointer set to one. If the next cassette operation performed on
that tape deck is a READ, a new physical record will be read from
the deck.

Note: End-of-file marks are not written automatically after
a STOP instruction or some other abort of the program. The user
is responsible for writing his own end-of-file marks with this
statement. If he wri tes to a file and terminates the program
without writing an end-of-file mark, the tape file structure may
be destroyed.

CHAPTER 4. INSTRUCTIONS 4-39

A 1 or 2 must follow the WEOF instruction to indicate the
rear or front deck respectively-

Example:

WEOF 1

4 40 DATABUS 2

CHAPTER 5. DATABUS PROGRAM AND INTERPRETER SYSTEM GENERATION

Databus source code may be generated and edited with one of
the released general purpose text editors (cassette GEDIT or
DOSGEDIT) using the Databus mode. In addition, text mode of the
cassette editor contains an option which allows the user to
generate Databus Write-Edit records which can be read by the
Databus Interpreter. The source code can then be compiled into
object code and executed by the interpreter from one of the system
tapes.

Databus program generation and interpretive system generation
may be accomplished in a variety of ways which are described
below. A working knowledge of CTOS file structure and its command
handler, the DOS command handler and the MINMOUT utility is
required for complete understanding of the discussions following.

5.1 Cassette Program Generation

A cassette tape with the source code on it should be
generated with the cassette editor, GEDIT. This tape should then
be placed in the front deck and the Databus Compiler LGO tape
loaded in the rear deck. When the compiler is run, the source
code on the front deck will be converted into object code which is
placed in file·l after the source file on the tape in the front
deck (refer to Section 6 on compiler operation).

5.2 Disk Program Generation

Databus source programs may also be created on disk with the
DOS editor, DOSGEDIT. Once the file is created, it should be
placed on a cassette tape. The MINMOUT disk utility will
accomplish this. For example, the following would place the
Databus source program named DB2TEST/TXT on the cassette in the
front deck as file 0 followed by a null file 1, null file 040, and
an end of file mark:

MOUT DB2TEST/TXT $;

The program may now be compiled as described in Section 5.1; or

CHAPTER 5. DATABUS PROGRAM AND INTERPRETER SYSTEM GENERATION 5-1

since a disk is available, the compiler can be placed on disk and
run directly from there. Note that interrupts must be disabled
when the compiler is run from disk. Pressing the RESTART key and
reloading DOS will accomplish this. When the compiler is run from
disk, it places the object code generated in file 040 after the
disk boot block on the tape in the rear deck; that code is then
copied to the front deck after the program source file (refer to
Section 6 for compiler operating instructions).

5.3 Interpretive System Tape Generation

The Databus object code may now be placed on an interpretive
system tape. This tape may be in one of two formats: eTOS
multiple file format or load-and-go format.

The interpreter is released in eTOS multi-file format which
cons1sts of the following:

1. cassette loader block
2. file 0: eTOS
3. file 1: eTOS catalog
4. file 2: Databus 2 Interpreter (cataloged as DB2INT)
5. file 3: Databus 2 Master Program (cataloged as DB2MAS)

The user may add his object code program to this tape with the
eTOS command handler. When the eTOS interpretive system is
loaded, eTOS will come up running. The source/object tape of the
Databus program should be placed in the front deck and the
following command issued:

IN <name> or IN <file number>

The interpreter may then be run with the following command:

RUN DB2INT

and the program executed (refer to Section 7 for further details
on interpreter operation).

A LGO interpreter system would consist of the following:

1. cassette loader block
2. file 0: Databus 2 interpreter
3. file 1: Databus Master Program
4. file 2 thru 037: object programs

5-2 DATABUS 2

A LGO interpreter system may be created from the CTOS system which
has the desired program object codes cataloged on it. With CTOS
running and a blank tape in the front deck, the user should issue
the following command:

OUT *

A copy of the CTOS system will be placed on the tape in the front
deck leaving off files 0 and 1 (CTOS and catalog), decrementing
the file numbers by two of all following named files and
preserving the file numbers of files 020 through 037. This tape
may then be loaded in the rear deck with the Databus 2 interpreter
comming Up running.

A LGO interpreter system may also be created from disk. With
the MINMOUT utility, the interpreter and MASTER program may be
placed on disk from an existing interpretive system tape. In
addition, all desired object file programs should exist on disk.
The MINMOUT utility will also accomplish this. For example, after
a Databus program has been compiled, the object file can be placed
on disk from the source/object tape with MIN:

MIN DB2TEST/ABS

Then with a blank tape in the front deck, the following should be
executed from disk to create the LGO interpretive system:

MOUT DB2INT/ABS DB2MAS/ABS DB2TEST/ABSiL

Of course, more than one object program could be MOUTed at once.
The interpreter is now ready to be run.

5.4 Databus Check List

The following check list may be used before compiling a
program to prevent compile time errors.

Make sure:

1. Labels and variables have only six characters or less and
are valid symbols.

2. There are not too many labels or variables in the
program.

3. All labels and variables are defined, but not doubly
defined. (Two labels or two variables must not have the

CHAPTER 5. DATABUS PROGRAM AND INTERPRETER SYSTEM GENERATION 5-3

same name).
4. All common variables are defined in exactly the same

order and length as the variables in the other programs.
5. All instructions are spelled correctly.
6. There are no unmatched quote signs and no cursor

positions off the screen.
7. The program does not exceed the allotted user space.

5-4 DATABUS 2

CHAPTER 6. DATABUS COMPILER OPERATION

The Databus Compiler generates Databus object code from
Databus source programs which can then be executed by the Databus
Interpreter. Each object program should be filed on the
interpreter system tape so it can be run any number of times
without being recompiled. See Section 7 for instructions on
creating interpreter system tapes (LGO or CTOS).

The compiler makes one pass over the symbolic source code.
All statements are checked for syntax and form. If any errors are
found, flags are given. As the ·program is compiled, a program
listing and an object program on tape are generated. If any
errors occur, a flag will be set in the resulting object code so
that the interpreter will not attempt to run the program.

The compiler assigns numeric values to the various
instructions and operands. Each instruction mnemonic has an octal
value assigned to it as do the various conditions, events, units,
variables and labels.

Two symbol tables are generated by the compiler, one for
variables and one for labels. An 8 bit object code value is
assigned to each variable and label encountered. The high order
bit determines in which table the entry can be found - 1
indicating the variable table and 0 the label table. The low
order seven bits determine the position of the symbol in the
table. Each table entry consists of 8 bytes, 6 for the symbol and
2 for the address. The last two bytes of each entry are output by
the compiler as part of the object code, forming lookup tables
used by the interpreter to locate the labels and variables
mentioned above. Each table is limited to 112 entries each.

All variables are defined by directives, that is they must
appear in the label field of directive instructions. Any symbols
which appear in the label field of executable instructions are
placed in the label table. All directives must appear before the
first executable instruction in the program. Any directives which
appear after the first executable instruction are given I-flags
and their labels are placed in the label table instead of the
variable table. Therefore, any references to these symbols will
be flagged undefined.

CHAPTER 6. DATABUS COMPILER OPERATION 6-1

In short, variables cannot be forward referenced, but labels
can· Since the compiler makes only one pass over the source code,
all labels are entered into the label table when found in the
label or operand field of an instruction. No U-flags are given
for undefined labels until the end of compilation when the symbol
tables are output as part of the object code.

All undefined variables are entered into the variable table
and flagged at the end so that the symbol tables output at the end
of the listing will show all undefined symbols.

The following errors can occur during compilation:

1. D The D flag means DOUBLE DEFINITION. It is flagged if a
label or variable has been defined to more than one
value during compilation. In that case, it has the
first value.

2. I The I flag means INSTRUCTION MNEMONIC UNKNOWN. The
instruction was not an acceptable instruction code. In
this case a 345 is inserted for the instruction.

3. E The E flag means that an error has occurred in the
operand field of a statement or some unrecognizable
character appeared in the wrong place. In this case a
zero is substituted for the operand or whatever was
unrecognizable.

4. U The U flag means UNDEFINED SYMBOL. It is used whenever
a symbol is referenced and is not defined.

OVERFLOW - This message is given if the user program
exceeds its allotted space-

DICTIONARY FULL - This message is given if the user
program has too many labels or variables.

Operating the Compiler:

The compiler may be run from a cassette LGO tape or directly
from disk. Interrupts must oe disabled before the program will
run from disk; if they are not, it will hang or halt. The
compiler determines whether it is being run from cassette or disk.
If it is being run from cassette, it uses the cassette loader in
low memory to position to file 040 on the rear deck (this is where
the object code is placed as it is generated). If it is being run

6-2 DATABUS 2

from disk, it assumes the tape in the rear deck is a DOS boot tape
and is positioned after the boot block. The compiler merely
writes a file 040 and begins compilation. Note, of course, if run
from disk, the user is not allowed to configure the program tape,
see question 1) below.

Place a DATABUS symbolic source tape generated by the Editor
in the front deck.

Run the Compiler. When it is loaded, the Compiler version
will be displayed and the following configuration options will be
requested:

1) CONFIGURE PROGRAM TAPE?

This option is given only if the compiler is run from a LGO
cassette tape. Answer 'y' if the responses to the remaining
questions (except HEADING) are to be recorded on the compiler
tape. The last block of code of the compiler is used to record
those responses. If the tape is configured, the compiler will USE

those answers for configuration instead of asking the questions
again when the compiler is reloaded. Any option may be left open
so that it will always be requested during compiler
initialization; this is accomplished by answering '#' when that
option is given. The '#' reply is only acceptable when
configuration of the program tape has been requested. The
recorded configuration may be overridden if the KEYBOARD key is
depressed when the compiler is loaded. In that case, all
configuration questions will be asked. If 'N' is answered to 1)
above, the configuration responses will not be recorded on the
compiler tape.

2) OBJECT MACHINE SIZE (8,12,16)?

Type in the size of the machine in which the interpreter and user
program will be run. This will define the user area.

3) PRINT?

Answer Y if a hard copy listing is desired; otherwise, type N.

4) LOCAL OR SERVO PRINTER?

Answer L for Local Printer or S for Servo Printer. Answer either
if no printer is available. This option is only given if YES is
answered after 3) or the tape is to be configured and '#' was
replied after 3).

CHAPTER 6. DATABUS COMPILER OPERATION 6-3

5) DISPLAY?

Answer Y if a CRT display of the compilation results is desired;
otherwise answer N.

6) CODE?

Answer Y if the object code is desired in the listing or display;
otherwise answer N. This option is asked only if YES was replied
after 3) or 5) or the tape is to be configured and '#' was
answered after 3) or 5). Code adds 18 columns to the listing.

7) HEADING:

Type in the heading. This option is given only when a listing is
desired (answer to 3) was YES). The heading is not configurable.

When all questions have been asked, those which were answered
with a '#' will be re-asked and the configuration block written on
the program tape if requested- The interpreter object machine
size chosen will then be displayed and the source tape in the
front deck will be rewound and compiled. At the end of
compilation the object code generated on the rear tape is copied
to the front deck after the source code (file 1). DONE will
appear when all copying is complete and the tape in the rear deck
will be rewound and loaded. Therefore, if the compiler was run
from a LGO cassette, it will be re-Ioaded. If it was run from
disk, the user will be returned to the Disk Operating System.

6-4 DATABUS 2

CHAPTER 7. RUNTIME OPERATION

The Databus 2 Interpreter may be run from a LGO system tape
or a CTOS system tape. If the program tape is LGO, the first
block on tape should be the cassette loader. The Interpreter
should be file 0 and the MASTER Databus program code file 1
followed by any other program object files (DATABUS or other) to
be executed by the interpreter (files 2 through 037). When the
LGO tape is loaded, the interpreter will come up running. If the
program tape is CTOS, the cassette loader should be followed by
CTOS as file 0, the CTOS catalog as file 1, the Databus
interpreter as file 2, the MASTER Databus object file as file 3,
and any other program object files (through file 037). CTOS will
come up running when the sytem tape is loaded; the interpreter may
then be run with the following command:

RUN DB2INT

Note that the interpreter must know what type of system tape
it is being run from in order to know what file number the MASTER
program is (file 1 or file 3). This information is given to the
interpreter during configuration.

7.1 Interpreter Configuration

When the interpreter is run, the following configuration
questions will be asked:

1) CONFIGURE PROGRAM TAPE?

Answer 'y' if the responses to the remaining questions are to be
recorded on the interpreter tape. The last block of code of the
interpreter is used to record those responses. If the tape is
configured, the interpreter will use those answers for
configuration instead of asking the questions again when the
interpreter is reloaded. Any option may be left open so that it
will always be requested during interpreter initialization; this
is accomplished by answering '#' when that option is given. The
'#' reply is only acceptable when configuration of the program
tape has been requested. The recorded configuration may be
overridden if the KEYBOARD key is depressed when the interpreter
is loaded. In that case, all configuration questions will be
asked. If 'N' is answered to 1) above, the configuration
responses will not be recorded on the interpreter tape.

CHAPTER 7. RUNTIME OPERATION 7-1

2) INTERPRETER TAPE LGO OR CTOS?

Answer L if system tape is LGO or C if it is CTOS. This tells the
interpreter what file to run as the MASTER program (file 1 or 3
respectively).

3) LOCAL OR SERVO PRINTER?

Answer L for local printer or S for Servo printer. Answer either
if no printer is available.

4) WRITE VERIFY?

Answer 'Y' if read after write is desired on all WRITE operations;
otherwise, answer 'N'.

When all questions have been answered, those answered with
'#' will be re-asked and the configuration block on the program
tape will be written if requested.

7.2 MASTER Program Operation

After initialization, the interpreter will run the MASTER
program. The MASTER program is file 1 on LGO interpretive system
tapes and file 3 on CTOS sytem tapes. This may be the released
MASTER program or any other Databus program the user wishes to put
in its place. The MASTER program released with this version of
DATABUS allows the user to specify a program on the system tape to
be run or execute a variety of tape handling functions. When
MASTER is run, the message,

UTILITY MASTER - DATABUS 2 RELEASE 5.1
READY

will appear with the cursor flashing under the READY message. The
program expects either the file number of a program to be run or a
special instruction character. If the input is not a valid entry,

WHAT?

will be displayed and a beep sounded to indicate the error. New
input may then be entered.

The user may chain to program file numbers 1 (or 3 if CTOS
system) through 040. The file number entered must be octal.
Typing a file number not on the system tape will cause the CFAIL
abort message to be displayed and the MASTER program will be

7-2 DATABUS 2

reloaded. Typing the file number of a non-Databus program will
cause it to be loaded and executed if it does not overlay the
first 82 bytes of the main execution loop of the interpreter
(located at label START in the interpreter code). Overlay of
these locations will usually cause complete confusion. Typing the
file number of a Databus program will cause it to be loaded and
executed unless the compiler generated some error messages, in
which case an error abort will be made.

The tape handling functions may be requested with the
following special characters. All codes operate on the front deck
unless otherwise indicated. An 80-character variable is
maintained by the program to allow the user to keyin a line and
write it to the front deck. This same variable is used to read
records from the front deck. Records greater than 80 characters
are truncated; records less than 80 are blank filled to the right.
When an end-of-file mark is encountered during some tape
operation, that operation will be stopped and the message,

* EOF *

followed by the READY message will be displayed. If the beginning
of file marker is encountered duri~ a backspace,

* BOF *

will be displayed followed by the READY message.

> Rewind the front tape.

< Prepare the front tape.

L List the file on the front deck to the screen. The tape
is not rewound before the read, making it possible to
begin listing anywhere on the tape. If an end of file is
encountered, the list stops and the message READY
appears. The KEYBOARD key may be depressed to stop the
listing before the end of file is reached; the DISPLAY
key may be depressed to cause a pause in the listing
until the key is released.

P List the file on the printer. Listing begins from the
current position of the tape in the front deck. Lines
are numbered beginning at 1. Fifty lines are printed per
page. The listing will terminate if the end of file is
encountered or the KEYBOARD key is depressed. The
DISPLAY key may be depressed to cause a pause in the

CHAPTER 7. RUNTIME OPERATION 7-3

listing until the key is released.

B Backspace one record on the front deck.

E Write an end-of-file mark on the front deck.

R Read a record from the front deck and display it on the
screen.

W Write the current 80 character record to the front deck.

K Keyin an 80 character record. When 'K' is entered the
screen will roll up and await input of the 80 character
record.

I Copy the file from the front deck to the back deck. Both
files are rewound and the rear deck is prepared. Copying
takes place until an end-of-file mark is reached on the
front deck. An end-of~file mark is written to the rear
deck and both decks are left positioned before their
respective end-of-file marks. The message READY will
appear when copying is completed.

\ Copy the file from the rear deck to the front deck. Both
files are rewound and the front deck is prepared. This
copy works similarly to the' I' copy command with the
decks reversed.

M Enter and write multiple records. Records are entered
and written to the front deck. No rewind takes place
before the entering, permitting additions to be made at
the end of the tape, or group modifications to be made in
the middle of the file. To return to READY, press the
KEYBOARD key along with the ENTER key after typing the
record. No end-of-file mark is written on termination,
and no rewind takes place.

7.3 Program Termination

Once a program is running, execution may be terminated for a
number of reasons. Execution of a STOP statement is equivalent to
a CHAIN to the MASTER program. Pressing of the KEYBOARD & DISPLAY
keys simultaneously will also cause the program to abort and chain
to MASTER after completion of the current statement. All other
terminations will first print an error message of the format:

(error message) AT nnnnn

7-4 DATABUS 2

nnnnn will be the statement number (number that appears to the
left of the statement on the compiler listing) on the statement
after the one which is at fault. After this message is displayed,
a CHAIN to the MASTER program will be performed. Aborts from tape
I/O trap conditions may not occur until the next tape I/O
operation, CHAIN statement, KEYIN statement with the *T list
control, or STOP instruction. In those cases, the nnnnn statement
number will indicate the following instruction which caught the
error instead of the one that caused the error.

A list of the error messages and their meanings follows.
Those which are followed by an asterisk can be trapped by the
Databus program (refer to Section 4.2.6).

CODE

ABORT

BOP

MODE

TAPE

BUFUL

EOT*

An attempt was made to run an object file which was
generated from a source file that the compiler found
at fault.

Both the KEYBOARD and DISPLAY keys were depressed.
The statement before nnnnn was the last one
executed.

An undefined operation code was found at location
nnnnn. This can happen only if there is a software
error in the DATABUS compiler or interpreter system,
if there is a hardware error, or if the interpreter
has been destroyed by a non-DATABUS program.

A tape I/O operation other than REWIND or PREPARE
before statement nnnn was issued to deck 1 before an
initial REWIND or PREPARE.

A PREPARE or REWIND on deck 1 failed, or EOT
occurred during a BKSP command. The I/O statement
was before statment nnnnn.

DUring the tape write I/O operation before statement
nnnnn, more than 249 bytes were written to cassette
tape. The tape write will not occur.

An end-of-tape condition arose during the tape I/O
operation before statement nnnnn and the trap was
not set.

CHAPTER 7. RUNTIME OPERATION 7-5

FORMAT * DUring the tape read before statement nnnnn, an item
of string type was read into a numeric variable.

RFAIL* During a tape read or write-verify before statement,
nnnnn, a read failure occurred (parity error, file
marker error, etc). Note that if the RFAIL is not
trapped and WRITE's have been issued without a WEOF,
tape file structure may be destroyed.

CFAIL* An invalid file number was requested in the CHAIN
instruction before statement nnnn (this condition is
the only one that can be trapped): or execution of
the CHAIN statement failed to find the requested
file number on the interpreter tape: or a loader
failure occurred.

7 -6 DATABUS 2

CHAPTER 8. CHAINING TO NON-DATABUS PROGRAMS

DATABUS 2 uses the cassette loader to perform the actual
. loading function. After loading, Databus checks the user program
starting location in RUNS of the Loader. The compiler always
generates an object file with the same starting location. The
Interpreter then assumes that if the object file just loaded has
this starting location, then the object file must be Databus
object code. If the starting location was something different,
Databus simply jumps to RUNS. Therefore, to CHAIN to a
non-Databus program, make a CHAIN to that program, providing that
its starting location is not the Databus user program starting
location, and that it does not overlay the routine residing in the
first 82 bytes (START thru START+82) of the Interpreter. This is
the section which checks the user program starting location.

Example:

NONDAT INIT "NONDAT"
CHAIN NONDAT

If the non-Databus program resides .within the Databus user
area without overlaying any part of the interpreter, then it can
chain back to a Databus program by supplying the file number to
the interpreter so the program will be loaded. This may be
accomplished by loading the B-register with the program file
number and jumping to CHAINX (02131).

Example:

SET 017000
CHAINX EQU 02131

. program follows

END LB 3
JMP CHAINX

If the non-Databus program does not reside in the Databus
user area but has overlayed part of the interpreter, then it must
reload the Databus Interpreter and jump to START (which will cause
the MASTER program to be executed).

CHAPTER 8. CHAINING TO NON-DATABUS PROGRAMS 8-1

If the non-Databus program is outside of the interpreter and
user area, the program may merely return to START or supply a new
program file number to be loaded.

The DATABUS 2 user program starting location is 017000. The
START label in the interpreter code is located at 02101 and the
CHAINX label is located at 02131.

Caution: Since this version of DATABUS 2 uses the interrupt
feature of the DATAPOINT 1100 and the Version II 2200, any
non-Databus programs chained to must be interruptable.

8-2 DATABUS 2

CHAPTER 9. INTERPRETER INTERNAL OPERATION

The interpreter fetches and executes instructions
(statements) much like a computer. It contains within its workin~
storage area the equivalent of the program counter, condition
register, instruction register, and other miscellaneous items.
The basic instruction format is one byte broken into two fields:

N N o o o o o o

The NN bits indicate the number of bytes in the instruction.
For I/O operations, this number is either one or two and the rest
of the instruction is read by scanning for the list terminator.
This number is never zero.

The 000000 bits indicate which operation is to be performed.
This number provides an index into an address table which causes
the interpreter to execute the proper sUbroutine to perform that
instruction.

Operands and labels are addressed by single bytes. Labels
have their sign bit clear and operands have them set. The
remainlng seven bit numbers index into address tables (one for
labels and a different one for operands) which are generated by
the compiler at the end of compilation. Because of this, the
compiler only needs to be a one pass process. Since these tables
are placed after the user's code, they may be located anywhere, Sl

the compiler cranks out two other addresses in the interpreter
working storage area which point to the beginning of each table.
Thus, a typical instruction execution sequence would be as
follows:

a) Get the byte pointed to by the PC and increment the PC.

b) Get the operand pointed to by the PC and increment the
pc.

c) Branch to the correct routine based on the value of the
right six bits of the opcode. The correct address is
obtained by multiplying the right six bits by two and
adding the result to the execution routine address table
Load the address of the routine from the table and jump
to it.

CHAPTER 9. INTERPRETER INTERNAL OPERATION 9-1

d) The instruction would take the operand number, isolate
the right seven bits, multiply it by 2, add it to the
base adddress of the operand table, load the address of
the variable or label from the table and perform some
operation upon the variable or label pointed to.

In DISPLAY, KEYIN, and PRINT, immediate characters (quoted
items) are denoted by not having their sign bit set. These
characters are simply printed unless they have a special control
function for the instruction in which they appear. The controls
fall in the group between a and 37 octal.

9-2 DATABUS 2

CHAPTER 10. DATABUS 2 SUMMARY

10.1 Databus Definitions

address

blocked
record

buffer
character
pointer

compressed
record

character
string

condition

Refers to the location in memory of assembly
language subprogram to be called. May be octal or
decimal.

A type of record format on cassette tape. One
logical record is placed per physical record and no
space compression is usedo Also refered to as
write-edit format.

The pointer maintained for each buffer used to
transfer data to and from the two cassette
decks. The pointer indicates the current character
position of the physical record read from the
indicated deck.

A type of record format on cassette tape. Logical
records are compressed so that each physical record
is completely filled (all 249 data characters used).
This results in logical records crossing physical
record boundaries. Space compression may also
appear in record compressed files.

Any string of alphanumeric characters.

The result of operations used in conditional
transfer of control operations.

LESS,EQUAL,ZERO,OVER: arithmetic operation result
LESS,EQUAL,ZERO,EOS: string operation result
OVER: READ or BKSP operation result

CHAPTER 10. DATABUS 2 SUMMARY 10-1

event

label

list

The occurrence of end of tape, tape read error, data
type error, or program chain failure.

EOT(unit)
RFAIL(unit)
FORM(unit)
CFAIL

A name assigned to a statement.

A list of variables, quoted character strings, or
controls appearing in an input/output type of
instruction.

literal A quoted alphanumeric character or a number. The
number may be octal or decimal as long as it is
between 0 and 127 decimal.

n Refers to an integer between 0 and 127 decimal.

n.m Refers to any number octal or decimal. Octal if it
is preceded by a zero, up to 22 total digits
including the decimal point.

nvar A label assigned to a directive defining a numeric
string variable.

size A number defining the memory size of the Datapoint
2200 in which the user program and interpreter will
be run. It may be 8, 12, or 16.

space A compression technique used to make cassette
compression records shorter. Two or more contiguous spaces are

reduced to two bytes. The first byte is always a
011 to indicate a space compression byte follows.
The second byte is a positive 8-bit number
indicating the number of spaces compressed; this
byte may be from 1 to 255.

sval A label assigned to a directive defining a character
string variable, or a quoted alphanumeric character,
or a number. This number may be octal or decimal as
long as it is between 0 and 127 decimal.

svar A label assigned to a directive defining a character
string variable.

10 -2 DATABUS 2

unit

456.23

A number defining a tape deck.

1 = Deck 1 (rear)
2 = Deck 2 (front)

Refers to any octal or decimal number, up to 22
total digits.

CHAPTER 10. DATABUS 2 SUMMARY 10-3

10.2 Databus Input/Output Controls

CONTROL

*Hn

*Vn

*Px:y

*EL

*EF

*R

*+

*-

*T

*n

APPLICABLE
INSTRUCTION

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN

KEYIN

KEYIN

PRINT

10-4 DATABUS 2

FUNCTION

Causes cursor to be positioned horizontally
to the column indicated by the literal or
numeric variable n, 1<n<80.

Causes the cursor to be positioned
vertically to the row indicated by the
literal or numeric variable n, 1<n<12.

Causes the cursor to be positioned to the
horizontal and vertical position indicated by
, x' and ' y' respectively. Both' x' and ' y'
may be either a literal or numeric variable
with 1<x <80 and 1<y <12.

Causes the c.r.t. screen to be erased from
the current cursor position to the end of the
line.

Causes the c.r.t. screen to be erased from
the cursor position to the end of the screen·

Causes the c.r.t. screen to roll up one
line, losing the top line and setting the
bottom line to blanks. (The cursor position
does not move.)

Initiates keyin continuous mode.

Turns off keyin continuous mode.

Time out after 2 seconds for KEYIN statement.

Causes horizontal tab to the column indicated
by the number n. (No action occurs on the
local printer if the carriage is past the
column indicated by n.)

..

*F

*L

*C

KEYIN
DISPLAY
PRINT
READ

KEYIN
DISPLAY
PRINT

PRINT

KEYIN
DISPLAY
PRINT

KEYIN
DISPLAY
PRINT

In KEYIN, DISPLAY, and PRINT, suppresses a
a new line function when occuring at the end
of a list, i.e., the cursor or print
carrriage remains in the position indicated
by the completion of the last list element.
In READ, causes the buffer character pointer
to remain pOinting at the character in the
buffer after the last transfered during the
READ •

Any characters appearing between quotes
are displayed or printed when encountered.

Causes the printer to be positioned to the
top of form.

Causes a linefeed to be printed.

Causes a carriage return to be printed.

CHAPTER 10. DATABUS 2 SUMMARY 10-5

10.3 Program Length

10-6

a) Numeric String Variables use two words plus one word for
each string character (including decimal point and sign
if negative).

b) Character String Variables use three words plus one word
for each string character.

c) String Instructions except LOAD and STORE use two or
three words depending on whether one or two variable
names are required for the instruction.

d) Arithmetic Instructions except LOAD and STORE use three
words. LOAD and STORE fall into the Control category for
space allocation.

e) Control and Input/Output Instructions require one word
for the command plus one word for each label, condition,
event, variable, or unit used. Strings found in I/O
instructions add one word per character. I/O controls
which begin with an asterisk add one, two, or four words
for each occurrence (*C, *L, *F, *EL, *EF, *R, *+, *-, *T
use one word, *Px:y uses four words, and all others use
two). Every instruction which contains a list uses one
additional word for the list terminator.

f) Two additional words are used for each label or variable.

DATABUS 2

10.4 Language Summary

10.4.1 Instructions

Directives
FORM n.m
FORM "456.23"
DIM n
INIT "character string"
FORM *n.m
FORM "456.23"
DIM *n
INIT *" c haracter string"

Control
TRAP (label) IF (event)
TRAPCLR (even t)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)
BRANCH (nvar) OF (label list)

String
CMATCH (sval) TO (sval)
CMOVE (sval) TO (svar)
MATCH (svar) TO (svar)
MOVE (svar) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
RESET (svar) TO (sval)
RESET (svar) to (nvar)
RESET (svar)
BUMP (svar) by (literal)

CHAPTER 10. DATABUS 2 SUMMARY 10-7

BUMP (svar)
ENDSET (svar)
LENSET (svar)
TYPE (svar)
EXTEND (svar)
CLEAR (svar)
LOAD (svar) FROM (nvar) OF (svar list)
STORE (svar) INTO (nvar) OF (svar list)

Numeric Variable Arithmetic
ADD (nvar) TO (nvar)
SUB (nvar) FROM (nvar)
MULT (nvar) BY (nvar)
DIV (nvar) INTO (nvar)
MOVE (nvar) TO (nvar)
COMPARE (nvar) TO (nvar)
LOAD (nvar) FROM (nvar) OF (nvar list)
STORE (nvar) INTO (nvar) OF (nvar list)

Keyboard, C.R.T., Printer I/O
KEYIN (list)
KE YIN (1 i s t) :
DISPLAY (list)
DISPLAY (list):
PRINT (list)
PR I NT (1 i s t) :
BEEP
CLICK
DSENSE
KSENSE

Cassette Tape I/O
READ (unit) ,(list)
READ (unit) ,(list):
READ (unit)
WRITE (unit) ,(list)
REWIND (unit)
BKSP (unit)
PREPARE (unit)
WEOF (uni t)

10-8 DATABUS 2

lO.4a2 Conditions

OVER
LESS
EQUAL
ZERO
EOS

10.4.3 Events

EOT1
EOT2
RFAIL1
RFAIL2
FORM1
FORM2
CFAIL

10.5 User Area

Interpreter Machine
8K - 01000 bytes (017000 - 017777)

12K - 011000 bytes (017000 - 027777)
16K ~ 021000 bytes (017000 - 037777)

10.6 Dictionaries

Compiler Machine
112 labels
112 variables

CHAPTER 10. DATABUS 2 SUMMARY 10-9

10.7 Interpreter Internal Structure

~he Databus 2 Interpreter is layed out in memory as follows.
Note, that at load time, the local printer driver is located in
the cassette buffer for deck two. If the interpreter is
configured to use the local printer, this code will be moved into
the actual printer driver area. The configuration routine is
located part in the user program area, part in I/O buffer 1 and 2
and part in the working storage page since it is only needed
during interpreter initialization.

.0-10

USER AREA
16K

USER AREA
12K & 16K

USER AREA
8K

WORKING STORAGE

NUMERIC OPERATIONS

PRINTER DRIVER

MAIN INTERPRETER BLOCK

CASSETTE I/O BUFFER
DECK TWO

CASSETTE I/O BUFFER
DECK ONE

LOADER

DATABUS 2

37777

27777

17777

17000

16400

13557

13027

2000

1400

1000

o

10.8 Compiler Internal Structure

The Databus 2 Compiler is layed out in memory as follows.
The compiler configuration routine is located part in the operand
dictionary and part in the I/O buffers since it is only needed
during initialization. The routines to process PSEDUO op codes
(DIM, INIT, and FORM) is located in the label dictionary since it
is not needed after the first executable statement is reached-

17777
LABEL DICTIONARY

16160
OPERAND DICTIONARY

14350
MAIN COMPILER

2000
OUTPUT BUFFER

1400
INPUT BUFFER

1000
CASSETTE LOADER

0

CHAPTER 10. DATABUS 2 SUMMARY 10-11

10.9 Sample Programs

The sample Databus 2 programs included make up a simple file
handling system. It is by no means complete, but serves to give
an i~ea of what can be done with Databus 2. Note that a general
beginning address was given for the examples (01000). For this
version of Databus 2, the user program area begins at 017000.

A brief summary of each program will be given to aid in
tracing through the programs. These programs include an update
file entry program, a two tape merge of the update file into the
master file, as well as programs to display and copy the two
files.

UPDATE PROGRAM

1. Positions rear deck to Update File.
2. Allows user to type in the 5 fields of information for

the update records.
3. As each field is input, it is appended to a buffer.

Slashes are used as field· delimiters.
4. Writes out the packed record to the update file.
5. If more update files need to be input goes to 2.
6. Otherwise writes a dummy record to indicate the end of

the update file, and a physical end of file.
7. Chains back to the MASTER program.

UPDATE FILE DISPLAY PROGRAM

1. Reads update file records from the rear deck.
2. Displays each record exactly as it was written to tape,

rolling up the screen as each entry is displayed.
3. When all records have been displayed, execution returns

to the MASTER program.

TWO TAPE MERGE PROGRAM

10-12

1. Asks if front tape is a new master tape.
2. If the master is new, the front deck is prepped. The rest

of the program treats the front deck the same whether it
is an old or new master.

3. The rear deck is positioned to the update file.
4. Five records are read from the update file. The records

were written with the name field first, and the merge is
done in alphabetical name order.

DATABUS 2

5. The rear deck is then positioned to the end of the update
file.

6e The smallest of the five update records is found.
7. The smallest record is then merged into the master tape.

This is done in the following manner:

a. The master tape records are read in one at a
time.

b. The master record is compared to the update
record. If the master record is smaller it is
written to the update tape (now positioned after
the end of the update file), and a new master
record is read in and compared.

c. If the update record is smaller, it is written to
the update tape.

d. Execution then returns to 6 where the next
smallest update record is found until all 5
update records have been merged.

8. Once aIlS are merged, the rest of the master tape is
copied to the rear deck.

9. The rear new master is copied back to the front tape.
10. The update file is then positioned after the last five

update records are read in, and ~hen five more records
are read (or as many as are left).

11. Execution "then returns to 5.
12. Once all update records are merged and the final master

copied back to the front tape, the tapes are rewound, and
execution returns to the MASTER program.

MASTER FILE DISPLAY PROGRAM

1. Rewinds the front master tape.
2. Reads in a record.
3. Unpacks the record into five fields. The unpacking is

done by a character match, searching for a slash, the
field delimiter.

4. When all fields are unpacked, the information is
displayed on the screen·

5. Execution then returns to 2 until all records have been
read and displayed.

6. Execution returns to the MASTER program.

CHAPTER 10. DATABUS 2 SUMMARY 10-13

COPY PROGRAM

10-14

1. Copies records (maximum of 127 chars) from front deck to
rear, and rear deck to front. The records are written to
file 32 on the rear deck, and file 0 on the front deck.

2. When all records have been copied, execution returns to
the MASTER program.

DATABUS 2

MASTER FILE DISPLAY PROGRAM

01000
01027
01070
01106
01135
01145
01150
01304
01345
01351
01354
01357
01370
01424
01454
01457
01461
01465
01470
01473
01475
01500
01503
01505
01510
01513
01515
01520
01522
01525
01533
01536
01541
01544
01547
01551
01553

01556

• PROGRAM LIST

• DISPLAYS MASTER FILE
• READS IN RECORD FROM TAPE, UNPACKS THE
• DATA INTO FIVE FIELDS, AND DISPLAYS THE
• FIELDS ON THE SCREEN.
NAME DIM 20
ADDR DIM 30
SSN DIM 11
BUSNES DIM 20
CCODE DIM 4
SLASH INIT "/"
BUFF DIM 89
TEMP FORM 30
COUNT FORM "01"
ONE FORM "1"
SIX FORM "6"
EXIT INIT "001 "
START DISPLAY *P1:1,*EF,*H15,"MASTER FILE DISPLAY"

DISPLAY *P1:2,"FRONT TAPE MASTER?"~
KEYIN TEMP
REWIND 2

RD READ 2,BUFF
GOTO END IF OVER
MOVE ONE, COUNT
CLEAR TEMP

LOOP CMATCH BUFF, SLASH
GOTO NEXT IF EQUAL
EXTEND TEMP
GOTO NEXT IF EOS
CMOVE BUFF,TEMP
BUMP BUFF
GOTO NEXT IF EOS
GOTO LOOP

NEXT RESET TEMP
STORE TEMP INTO COUNT OF NAME,ADDR,SSN:
BUSNES,CODE
ADD ONE, COUNT
COMPARE COUNT, SIX
GOTO DISPLY IF EQUAL
CLEAR TEMP
BUMP BUFF
GOTO LOOP IF NOT EOS

• DISPLAY ALL FIVE FIELDS ON SCREEN

DISPLY DISPLAY *H1, *V5, *EF, "NAME: " , NAME

CHAPTER 10. DATABUS 2 SUMMARY 10-15

1ASTER FILE DISPLAY PROGRAM

01574
01614
01646
01666
01714
01 716
01 720
01722
01724
01 726
01730
01 732

01 733
01735
01737
01741
01743
01745

01 74 7
01751
01753
01755
01757
01761
01763
01765
01 767
01771
01773
01775

10-16

END

START
END
RD
LOOP
NEXT
DISPLY

NAME
ADDR
SSN
BUSNES
CCODE
SLASH
BUFF
TEMP
COUNT
ONE
SIX
EXIT

DATABUS 2

DISPLAY *H1,*V6,IIADDRESS:",ADDR
DISPLAY *H1, *V7, "SOCIAL SECURITY #:", SSN
DISPLAY *H1,*VS,"COMPANy:",BUSNES
DISPLAY *H1,*V9,"CUSTOMER CODE:",CCODE
CLEAR NAME
CLEAR ADDR
CLEAR SSN
CLEAR BlJSNES
CLEAR CCODE
GOTO RD
CHAIN EXIT
STOP

DATABUS TWO TAPE MERGE PROGRAM

01000
01134
01270
01424
01560
01714
02050
02204
02240
02367
02402
02413
02416
02422
02425
02431
02434
02437
02444
02452
02456
02461

02465
02524
02557
02617
02646
02670
02673
02675
02700
02703
02705
02707

02711
02714

• PROGRAM DATABUS SORT PROGRAM

• MERGE PROGRAM

• READS IN UPDATE TAPE ON REAR DECK 5 RECORDS AT
• A TIME AND MERGES THEM INTO MASTER ON FRONT DECK.
• IF THE MASTER TAPE IS NEW, THE UPDATE TAPE IS
• SORTED AND WRITTEN TO THE MASTER.

N1
N2
N3
N4
N5
N6
MASTER
TST
NL
DUMMY
EXIT
FLAG
COUNT
SMALL
CNTSV
ONE
ZERO
TEMP
RECORD
CNT
SIX
TEN

START

ASK

REWD

RD

DIM 89
DIM 89
DIM 89
DIM 89
DIM 89
DIM 89
DIM 89
DIM 89
INIT " ... 11

INIT "**WEOF**"
INIT "001 "
FORM "0"
FORM "01"
FORM "0"
FORM "00"
FORM 1I1 n

FORM "0 11

DIM 2
FORM "0000"
FORM "00 11

FORM "6"
FORM "10"

DISPLAY *P1:1,*EF,*H15,IITWO TAPE MERGE PROGRAM II

DISPLAY *H1, *V3, "READS IN UPDATE TAPE ";
DISPLAY "AND MERGES IT INTO MASTER TAPE II;
DISPLAY IIIN ALPHABETICAL ORDER"
DISPLAY *H1, *V4, *EL, "NEW MASTER?";
KEYIN TEMP
REWIND 1
CMATCH TEMP,ly"
GOTO REWD IF NOT EQUAL
PREPARE 2
WEOF 2
REWIND 2

SORT MOVE NL,N5
READ 1, TST

CHAPTER 10. DATABUS 2 SUMMARY 10-17

IATABUS TWO TAPE MERGE PROGRAM

02720 MATCH DUMMY,TST
02723 GOTO SETFLG IF EQUAL
02726 STORE TST INTO COUNT OF Nl,N2,N3,N4,N5
02737 ADD ONE, COUNT
02742 COMPARE SIX, COUNT
02745 GO TO RD IF LESS

02750 CNT COMPARE COUNT, ONE
02753 GOTO END IF EQUAL
02756 MOVE COUNT,CNTSV
02761 SUB ONE,CNTSV

02764 FEOF READ I,MASTER
02770 MATCH MASTER, DUMMY
02773 GOTO FEOF IF NOT EQUAL
02770 CLEAR MASTER

03000 M1 MOVE ONE, COUNT
03003 FIND LOAD TST FROM COUNT OF Nl,N2,N3,N4,N5
03014 MATCH N5,TST
03017 CALL MOVE
03021 ADD ONE, COUNT
03024 COMPARE CNTSV,COUNT
03027 GOTO FIND IF LESS
03032 GOTO FIND IF EQUAL

03035 RESET MASTER
03040 GOTO MRG IF NOT EOS
03043 MERGE READ 2, MASTER
03047 GOTO MOVSTR IF OVER
03052 MRG MATCH N5,MASTER
03055 GOTO MOVSTR IF NOT LESS
03060 WRITE 1,MASTER
03064 GOTO MERGE

03066 MOVSTR WRITE I,N5
03072 MOVE NL,N5
03075 STORE NL INTO SMALL
03106 ADD ONE,CNT
03111 COMPARE CNTSV,CNT
03117 MOVE ZERO,CNT
03122 RESET MASTER
0312:) GOTO TRNSFR IF EOS
03130 WRITE I,MASTER
03134 TRNSFR READ 2, [~ASTER
03140 GOTO COpy IF OVER
03143 WRITE 1,MASTER

10 18 DATABUS 2

DATABUS TWO TAPE MERGE PROGRAM

03147

03151 COpy
0315..)
03155

03157 SRCH
03163
03166

03171 RDWR
03175
03200
03204

03206 SETUP
03201
03212
03214
03217
03222
03225
03230 RECRD
03234
03237
03242
03245
03250
03252

0325":t END

03256 MOVE
03260
03262
03273
03276

03277 SETFLG
03302
03304
03306

03307
03311
03313
03315

START
ASK
REWD
SORT

GOTO TRNSFR

WEOF 1
REWIND 1
PREPARE 2

READ 1, MASTER
MATCH MASTER, DUMMY
GOTO SRCH IF NOT EQUAL

READ 1,MASTER
GO TO SETUP IF OVER
WRITE 2,MASTER
GOTO RDWR

\"lEOF 2
REWIND 2
REWIND 1
COMPARE FLAG,ONE
GOTO END IF EQUAL
ADD CNTSV,RECORD
MOVE ZERO, COUNT
READ 1, MASTER
ADD ONE, COUNT
COMPARE COUNT,RECORD
GOTO RECRD IF NOT EQUAL
MOVE ONE, COUNT
CLEAR MASTER
GOTO SORT

CHAIN EXIT

RETURN IF NOT LESS
RETURN IF EQUAL
LOAD N5 FROM COUNT OF N1,N2,N3,N4,N5
MOVE COUNT TO SMALL
RETURN

MOVE ONE, FLAG
BKSP 1
GOTO CNT
STOP

CHAPTER 10. DATABUS 2 SUMMARY 10-19

DATABUS TWO TAPE MERGE PROGRAM

0331 7 RD
03321 SETFLG
03323 CNT
03325 END
03327 FEOF
03331 M1
03333 FIND
03335 MOVE
03337 MOVSTR
03341 MRG
03343 MERGE
03345 COpy
03347 TRNSFR
03351 SRCH
03353 SETUP
03355 RDWR
03357 RECRD

033 Gl N1
03363 N2
03365 N3
03367 N4
03371 N5
03373 N6
03375 MASTER
03377 TST
03401 NL
03403 DUMMY
03405 EXIT
03407 FLAG
03411 COUNT
03413 SMALL
03415 CNTSV
03417 ONE
03421 ZERO
03423 TEMP
03425 RECORD
03427 CNT
03431 SIX
03433 TEN

10-20 DATABUS 2

UPDATE FILE DISPLAY PROGRAM

0100~

0113~

01145
01147
01153
01156
01166

01170
01172

01173
01175
01177

01201
01203

• PROGRAM LIST

• LIST UPDATE FILE
• READS IN RECORDS FROM SCRATCH FILE ON REAR DECK
• AND DISPLAYS THEM ON THE SCREEN

BUFF
EXIT

START
RD

END

START
END
RD

BUFF
EXIT

DIM 89
INIT "001

REWIND 1
READ 1, BUFF

..

GOTO END IF OVER
DISPLAY *P1:12,*EL,BUFF
GOTO RD

CHAIN EXIT
STOP

CHAPTER 10. DATABUS 2 SUMMARY 10-21

DATABUS UPDATE PROGRAM

01000
01027
01070
01106
01135
01144
01161
01172
01200
01211
01215
01351
01364
01413
01464

01466
01521
01524
01527
01547
01552
01555
01614
0161 7
01622
01642
01645
01650
01676
01701

• UPDATE PROGRAM

• ALLOWS USER TO TYPE IN DESIRED INFORMATION.
• THE DATA IS THEN PACKED AND WRITTEN OUT TO TAPE.
• THE SCRATCH FILE ON THE REAR DECK IS USED FOR
• THE UPDATE FILE.

NAME DIM 20
ADDR DIM 30
SSN DIM 11
BUSNES DIM 20
CCODE DIM 4
TEMP DIM 10
UPDTE INIT IIUPDATE"
END INIT IIENDII
EXIT INIT "001 "
SLASH INIT "/"
BUFF DIM 89
DUMMY INIT II**WEOF**"
START DISPLAY *H1, *V1, *EF, *H15, "UPDATE PROGRAM"

DISPLAY *H1, *V2, "TYPE IN THE REQUESTED INFO.
PREPARE 1

• KEYIN INFORMATION FOR UPDATE RECORDS

UPDAT KEYIN *P1:5,*EF,IINAME (LAST,FIRST):",NAME
APPEND NAME, BUFF
APPEND SLASH, BUFF
KEYIN *H 1, *V6, II ADDRESS: II , ADDR
APPEND ADDR,BUFF
APPEND SLASH,BUFF
KEYIN *H1,*V7,"SOCIAL SECURITY NUMBER:II,SSN
APPEND SSN,BUFF
APPEND SLASH, BUFF
KEYIN *H1,*V8,"COMPANy:",BUSNES
APPEND BUSNES,BUFF
APPEND SLASH,BUFF
KEYIN *H1,*V9,"CUSTOMER CODE: ",CCODE
APPEND CCODE,BUFF
RESET BUFF

• WRITE BUFFER TO UPDATE FILE

01704 WRITE l,BUFF
01710 CLEAR BUFF

10-22 DATABUS 2

"

DATABUS UPDATE PROGRAM

01712
01 740
01743
01 746
01751

017,)4
01760
01762
01764

01765
01767
01771

01773
01775
01777
02001
02003
02005
02007
02011
02013
02015
02017
02021

• SEE IF END OF UPDATE OR MORE INFO

ASK KEYIN *H1; *V11; "UPDATE OR END?" ,TEMP
MATCH TEMP, UPDATE
GOTO UPDAT IF EQUAL
MATCH TEMP, END
GOTO ASK IF NOT EQUAL

• IF END THEN WRITE DUMMY END OF FILE AND EOF
• TO UPDATE FILE

START
UPDAT
ASK

NAME
ADDR
SSN
BUSNES
CCODE
TEMP
UPDDTE
END
EXIT
SLASH
BUFF
DUMMY

WRITE 1,DUMMY
WEOF 1
CHAIN EXIT
STOP

CHAPTER 10. DATABUS 2 SUMMARY 10-23

)ATABUS COpy PROGRAM

01000
01011
01213
01230
01240

01247
01307
01312
01315
01320
01323

01326
01330
01332
01336
01341
0134:'
01347
01351

01353
01355
01357
01363
01366
01372
01374
01376
01400

01401
01403
01405
01407
01411
01413

10-24

• PROGRAM COPY

• COpy FILE FROM FRONT DECK TO REAR OR REAR
• DECK TO FRONT

EXIT
BUFF
TEMP
FRONT
BACK

START

INIT "001
DIM 127
DIM 10
INIT "FRONT"
IN IT "BACK"

II

DISPLAY *P1:1,*EF,"COPY FRONT OR BACK TAPE?":
KEYIN TEMP
MATCH TEMP, FRONT
GOTO COPYF IF EQUAL
MATCH TEMP, BACK
GOTO START IF NOT EQUAL

• COpy BACK DECK TO FRONT DECK

COPYB

LOOPB

ENDB

REWIND 1
PREPARE 2
READ 1,BUFF
GOTO ENDB IF OVER
WRITE 2,BUFF
GOTO LOOPB
WEOF 2
CHAIN EXIT

• COpy FRONT DECK TO BACK DECK

COPYF

LOOPF

ENDF

START
COPYF
COPYB
EN DB
LOOPB
ENDF

DATABUS 2

REWIND 2
PREPARE 1
READ 2, BUFF
GOTO ENDF IF OVER
WRITE 1,BUFF
GOTO LOOPF
WEOF 1
CHAIN EXIT
STOP

DATABUS COpy PROGRAM

01415 LOOPF

01417 EXIT
01421 BUFF
01423 TEMP
01425 FRONT
01427 BACK

CHAPTER 10. DATABUS 2 SUMMARY 10-25

)ATABUS COPY PROGRAM

10-26 DATABUS 2

