
DATAFORM 2
CASSETTE DATAFORM 2

User's Guide

January 22, 1975

Model Code No. 50104

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

COPYRIGHT~ 1975 BY DATAPOINT CORPORATION PRINTED IN U.S A

DATAFORM USER'S GUIDE

SECTION I

OPERATION

INTRODUCTION

DA TAFORM provides a personalized data entry system for
use on a Datapoint 2200. 'Forms', which are kept on tape,
project images on the 2200 screen. The data entry operator
then simply fills in the form, the data will be recorded on
cassette and may at any time be retrieved and revised using
the same form to view and edit the recorded data.

Each 'form' is designed by the user, and editing
criteria are assigned to the data fields on the form at the
time the form is generated. Field programs may also be
assigned at this time. The user's forms, and programs, are
then combined on a single cassette and become a unique
Dataform System configured for the users special purpose.

Foul" stages of development are involved in generating
the system: the Edi tor/Compiler enables the user to create
field programs; the Form Generator enables the user to create
forms; the Configurator combines the forms into a 'system';
and the Data Entry Interpreter uses the form to control data
entry.

Since DATAFORM uses standardized data tape formats,
further processing of the data can proceed under any DATABUS,
BASIC 01" RPG program, or anyone of a number of available
communications programs 01" terminal emulators.

TABLE OF CONTENTS
SECTION I

1.0 System Overview
1.1 What is a FORM? 3
1.2 What is a FIELD PROGRAM? 4
1.3 User space and how it's allocated 5
1.4 Some DATA ENTRY features 6

2.0 Form Generation
2. 1 Data Field 7
2.2 Keyin Field 8
2.3 Data Record 8
2.4 User Space 9
2.5 Form Worksheet 9
2.6 Generating a Form Image 10

2.6. 1 Repeat Key 10
2.6.2 Cursor Movement Keys 10
2.6.3 Character Insert Key 10
2.6.4 Character Remove Key 1 1
2.6.5 Erase Function Keys 11
2.6.6 Line Insert Key 11
2.6.7 Character Duplication Key 1 1
2.6.8 Returning Control to the Monitor 1 1

2.7 Assigning Edit TYPES 12
2.7. 1 Alpha 13
2.7.2 Numeric Digits 13
2.7.3 Numeric Fields 13
2.7.4 Mixed 13
2.7.5 Left Justified and Zero Fill 13
2.7.6 Right Justified and Zero Fill 13
2.7.7 Right Justified and Blank Fill 13

2.8 ASSigning Keyin Restrictions 14
2.8. 1 Required Field 14
2.8.2 Fill Control Field 14
2.8.3 Required and Fill Controlled 14
2.8.4 Program Reserved - no keyin 14
2.8.5 Required and Program Reserved 15

2.9 Constants and Semi-Constants 15
2.10 Field Program Assignment 16
2.11 Form Linking 16

2.11.1 Setting Manual Linkage 16
2.11.2 Clearing Linkage 17
2.11.3 Loading Linked Forms 17
2.11.4 Setting Auto-Linking 17

2. 12 Writing the form to tape 19
2. 13 Changing the screen image 20
2. 14 Modifying an OLD form 20

3.0 Form Library Configuration and Utilities
3. 1 Displaying the Form Catalog 21
3.2 Adding New Forms to the Catalog 21

3.3 Deleting ~o.rm$ fr.om.tbe Catalog 21
3.4 Deleting MUltiPle Eorms trom the Catalog 21
3.5 Replacing Forms already in the Catalog 22
3.6 Running the Interpreter 22
3.7 Tape Utility Features 22

3.7.1 Duplicating DFZSYS': 22
3.7.2 Duplioa,t.ing,·DF2SYS with Forms 22
3.7 • .'3 'Redover'ing a· Cataloged Form", 22
3.7.4 Generating I'a 'Faster L,oading ,.'Interpreter 22
3.7.5 Copying a Data Tape 22

3.8 Printing Forms and Data ;'1' 23
3.9 Replacing Dataform2 Systems Programs 24

4.0 Data Entry Interpreter
4.1 Data Tape Initiation

4.1.1 START new data tape
4.1.2 ADD to·an'.~xlsting data tape'
4.1.3 CONTINUE an existing data tape

4.2 Loading a Form
4.2. 1 Te~ting' NEW, Forms
4.2.2 LO~Dl,ng .. Cataloged forms,

4.3 Entering DATA IEntr.y Mode
4.4 Revising Exisi~ing Data Tape

4.4. l' MODIFY" ' '
4~4.2 Rewriting-Existing Records
4.4.3 FINDing a Specified Record
4.4.4 Aborting Tape Searches

4.5 Positioning the, Data Tape,
4.5.1 BACKUP tape, when entering data
4.5.2 REWINDing during modifioation

4.6 ENDing· th~ Data ,Tape
4.7 Data Entry ,',Action" ,
4.8 Data'Erase"Function Key
4.9 Field Du~iicationFunction Key'
4.10 Operator Errors'During Data Entry
4. 11 Write Func:,tlon' K~y ""
4. ,12 LC')a(1,ing', Linked' Forms
4.13 Returning Control to the Monitor

5.0 Recovery"Procee~ures
5.1 System Tapes ,:
5.2 Data Tapes
5.3 Form Tapes

APPENDIX A "
TYPE and REQ}.U:·Re', codes, J

APPENDIX B ,\ .
Form Generation, Funotion Keys

APPENDIX C
Command Li s.t, . , e,

" ",' ~ ", I ' ;,

APPENDIX D

25
25
27
27
27
27
27
28
28
28
29
29
30
30
30
30
31
31
32
32
32
32
33
33

34
34
35

Data Entry Function Keys

APPENDIX E
Error Messages

APPENDIX F
Examples of Form Generation

DATAFORM 2 SYSTEM OVERVIEW

The DATAFORM 2 System is composed of three separate system
tapes:

1. DF2SYS, Data Entry System tape,
contains the Configura tor , the Form
Catalog and the Data Entry Interpreter.
The Configurator enables the user to add
forms to this system tape for use during
data entry.

2. DF2FGS, Form Generation System tape,
includes the Form Generator, the Field
Program Relocator and 15 versions of the
Extended Interpreter.

3. DF 2PGS, Program Generation System
tape, consists of a source code editor
and the DATAFORM Compiler.

1-01

DF2PGS /
/

I
FIELD
PROGRAM

SYSTEM FLOW

1-02

DATA

DF2SYS

~DF2SYS
WITH
FORM

DATA

1.1 What is a FORM?

A • form' in this document refers to a screen image
designed using the DATAFORM Form Generator. This screen
image contains labelling information, defines the length and
posi tions of ' da ta fields', and reserves space for 'keyin
fields'.

The amount of data, the number of fields and the amount
of constant information in the form image determine exactly
how much memory the form requires.

The Form Generator also enables the user to assign edit
criteria to the data fields. The criteria are applied
field-by-field in separate passes over the form image.

These criteria include the field type:

alpha,
numeric digits,
alpha/numeric,
numeric left justified/blank filled,
numeric left justified/zero filled,
numeric right justified/zero filled,
numeric right justified/blank filled;

entry restrictions:

required,
fill-controlled,
required and fill-controlled,
no keyin,
required and no keyin;

constant data, semi-constant data, and automatic form control
(linking to other forms).

In addi tion, • field programs' may be assigned dur ing
form generation. Up to twenty-six unique field programs may
be referenced in a single form.

If a field program is specified, the user must have
prepared the program previously (edi ted and compiled using
DF2PGS). At form generation time all referenced field
programs are sought and combined with the form into an object
format called the 'form tape'.

The screen image, basic edi t cri teria and field
programs, if· any, comprise the • form' which is subsequently
executed by the DATAFORM Interpreter.

1-03

1.2 What is a FIELD PROGRAM?

If editing 'i s "req(.d.:re1r",Q~,idrid J~~at: a.'v~ilablf{' i'n a,.bas;!"c '
form, the user may wr'1t'e a ,p'rog,ta,m' ~n the DATAFORM l,ang~ag~.,
This language provides, "t:h~:, ~s,!i3r' a,c'ce~s to the e,rit"ire" ,data
record (on a character' or field basis) and the ability, to
define working storage variables, tables, messages, etc. One
hundred bytes of com~on storage, is available, ,~o pass
information hetweenforDts.' "The DA TAFORM , language,' proyides
the user wi th the following' 'edi q.ng ,capabili,ties:, ",", ; , ,,\

" , ,

Arithmetic
Add
Subtract',
·Multiply
·Divide

Data Manipulation
Move
Align
Set
·Lookup
·Con've'rt

Table Checking'
In-table
Not-in-table
In-range
Not-in-range

Check Digits
·Modl0
.Mod 11

Compares
Less than
Greater than
Equal
Not equal
Less-than-or-equal
Greater-than-Qr-equal
Not-equal' '

Branching
Go to
Call
Return
Again
Next
Store
Change
Reset

1-04

1 '

, " -1,.

Input/Output
Write
Close
Message
Show
Beep
End
Load

The subroutines to execute these commands are divided into
two groups: the Interpreter and the Extended Interpreter.
The starred (*) commands in the preceeding list require the
Extended Interpreter. (See the discussion of user space
below.)

Field programs are entered using the Edi tor on DF2PGS.
This creates a 'source' tape. When editing is completed, the
Compiler automatically compiles the DATAFORM statements and
adds a 'relocatable object' file to the end of the source
file.

The field programs will be assigned, in a pass of the
Form Generator, to particular fields. When the form is
written out, the relocatable program will be converted to
'absolute' code and written to the form tape. If, in
addition, an extended interpreter is required by a particular
field program, the required file is copied from the DF2FGS
tape to the form tape.

During data entry (using DF2SYS) the field program is
executed after the operator enters data int~ the field where
the program assignment was made. The program is executed
even if the operator bypasses the field.

1.3 User space and how it's allocated

When a new form is being created, there is 1550 bytes of
memory available to the user. This' space' must eventually
contain:

keyin data buffer
writing data buffer
form image
user programs (if required)
extended interpreter (if required)
common storage

The Form Generator indicates the amount of free space as
soon as the form image has been defined. The user must then
determine if his program and, if necessary, the Extended
Interpreter will fit in the remaining space.

1-05

1.4 Some DATA ENTRY features
/',
'j'

Special keys are available which provid,e the operator
wi th the folloliot ng functions:

field duplication
form data erase
data write
forward field tab
backward' fiel'dtao
field cancel "
form load
record read
record backspace

Semi-constant data- may be defined in the form and simply
accepted by the data entry o~el"~tor.

Forms may be loaded in non-sequential order under either
program or operator control.

Operator correction
accomplished at any
record-by-record, or sri
in-place permitted.

of previously generated data may be
, time by ei thera manual,
automatic search with re-w~itting

Data may be added ,to the ,end of an existing data tape
'1 (posi tioning is automatic). ~

I-06

2. FORM GENERATION

A Dataform 'form' is an image projected on the 2200
screen which contains ~ ~ (explanatory information for
the operator, not to be written to the data tape), field
defini tions (special characters which define an area to be
filled in by the operator and to be written on the data tape)
and kevin spage (special characters which define an area to
be typed into [but not stored in the data record]). The 2200
screen is 80 characters wide and 12 lines high and any of the
960 positions on the screen may be used in the form.

2.1 Data Field

A data field is part of the form image which starts at a
vertical bar (I) and is continued by carets (ft) or
underscores (_). A field stops at the first non-caret,
non-underscore or the right hand edge of the screen.

Each data field causes a corresponding number of
positions to be reserved in the two data areas (one for
keying in and one used for writing) and each field generates
a six byte edit table entry. Each field defined has a 'field
number' corresponding to its relative position in the form
(and pointing to it's entry in the edit table). The
uppermost, leftmost field is number one. Fields are numbered
from left to right, line by line, from the top of the form
down.

This construction, ' I ', defines a four posi tion data
field; '1' defines a single position field and 'II I' defines
three adjacent single posi tion fields. The di fferences
between, one 3-position field and three 1-position fields are:

1) only one edit criteria applies to the
3-position field whereas each 1-position
field may be assigned a di fferent edi t
criteria;

2) since each additional field
takes 6 bytes, the three
fields use more user space
single 3-position field.

definition
1-position
than the

Fields defined by carets will be space compressed' in the
form image. This means that the carets will be replaced by
spaces which will, in turn, be replaced by a space
compression character (011) and a count of the number of
spaces compressed. (The count will include any spaces
trailing the field.) When the form is displayed, space
compressed fields will initially appear blank. As the cursor

1-07

enters the field, the appropriat~ nu~ber of underscores will
be displayed. ',. ".,' "', "

Fields defined by underscores are not compr_es,s~9. The
underscore characters. 'are save'd as' pal"t of 'the" fQrm':i,ma.ge" , "

, ",,' , ,,', ," ", ';' .,," , , , " "J

Constants and semi-consta'ri'ts 'are stored 'in' 'the ,'field
description area of t'heform image and therefore" 'c:::l0 'be'
defined only for fields' in1 tfally defined by unders,cores, .

. " , .-
, .

The maximum number ~f ,characters in a single'data 'field'
is 80 since the right, h.i.!:!.9. ~" of the 'screen always'
terminates the field def1nit'ion. ','"

2.2 Keyin Fields

A keyin field, with the exception ot' the initial
character, is defined exactly as 1s the data field. Keyin
fields begin with a less than character «) and are continued'
by carets or underscores. They may appear anywhere in" the
form. Keyin fields create a six byte entry in the field edit
table and thus have a co'r"responding • field number'. However,
no space is reserved for these,<'fields in the data record~

'. ,~

2.3 Data Record

The length 'of the data"record generated' during data
entry is determined by the combined lengths' of" all da t'a
fields in the form (maximum 245 characters). The data record
will also automatically contain, a form number (1 binary
character) land a rewrite "cou'nter telling the system how many
times it was corrected (1' char'acter). The tormat of 'the
record is: " "

, ';""

data fields (written to their defined
lengths) in the ord'er'they 'appear on the
form (from left to r'lght"'and from top ~to
bottom) , '" '

logical and physical record terminators
(015,003)'

form number (1' binary character) which
corresponds to physical file, number 'of"
the form

rewrite counter (1 ASCII character)

1-08

2.4 User Space

There is a fixed amount of space available in which to
contain the form image, the data input/output areas, the
field edit tables and field programs. This variable area is
called ~ space. There is no limit (other than the size of
the screen) to the amount of text one may include in a form.
There is, however, a limit to the number of field definitions
(126) and to the number of data characters (245) which can be
defined. The total 'user space' available is 1550 bytes.

The number of data characters, defined in the form
image, reserve two areas: the keyin data area and the writing
data area. In addition, each field (whether an actual data
field or a keyin only field) defined in the ,form image
requires a six byte edit table entry. The characters
displayed in the form image, both labelling information and
field defining characters (excluding carets) reserve user
space. Spaces (and carets) in the form image are
'compressed', i.e., they are represented by a space
compression character followed by the number of spaces
compressed at that point. One terminator character is added
to each line of the form image; however, lines which are
completely blank require no space at all.

The amount of user space reserved for the data record,
edit table and form image is subtracted from the total user
space and the amount remaining is indicated at the end of the
form image generation pass.

In addi tion to the data record, edit table and form
image, the user may allocate user space to field programs
(which in turn may require an extended interpreter). The
length of a field program is indicated on the listing and on
the CRT at the end of program compilation. If an extended
interpreter is required, the user should refer to the size
table in Section II, Appendix C.

When the form tape is generated (by the OUT command),
the amount of user space remaining (or the excess allocated,
if any) is indicated.

2.5 Form Worksheet

To aid the user in designing his forms, a • Da taform
Worksheet' is available. This worksheet provides space for
designing the screen image and for recording the various
criteria, constants, etc. which will have to be assigned at
form generation time. The worksheet also serves as a record
of the form and as a quick reference for Generator commands
and function keys.

1-09

A printout of completed forms, similar in format to the
worksheet, may be obtained using the print utility of the
Configurator. (See Appendix F.)

2.6 Generating a Form Image

To generate a new form, load DF 2FGS and type NEW to
clear the screen and switch to the image generation mode.

When the DISPLAY key is pressed, the number pad, to the
right of the keyboard, or the regular number keys become a
set of special function keys enabling the user to move the
cursor up, down, left and right, to insert and delete
characters, to delete words, to insert lines and to erase
lines and portions of the screen.

A ~ b9com~s A function ~ if 11 ~ pressed
s~mul tan§Qusly Jd1.h il'l!t DISPLAY k,u, i. e., first press the
DISPLAY key and, while holding it, press the key required to
achieve the desired function.

2.6.1 Repeat Key

Holding the KEYBOARD key will
many functions) to be repeat§d.
first, then, if a function key is
then the desired character.

2.6.2 Cursor Movement Keys

cause the character (and
Press the KEYBOARD key
needed, the DISPLAY key,

There are five cursor movement keys which are
non-destructive, i.e. they pass over characters on the screen
without erasing them. The number two function key moves the
cursor DOWN, the number eight function key moves the cursor
UP, the number six function key moves tll~ cursor to the HIGHT
and the number four function key moves it to the LEFT.

The BACKSPACE key also moves the cursor to the LEFT in a
non-destructive manner. Backspacing will wrap around from
column 1 of a line to column 80 of the preceeding line.

The SPACE bar is destructive, i.e., it erases the
characters it passes over, and moves the cursor to the RIGHT.

All cursor movement keys may be repeated.

2.6.3 Character Insert Key

The number seven function key, at the upper riRht of the
number pad, causes a space to be inserted in the line on the
screen. This key may be repeated. Characters at the end ot'
the line are truncated, not wrapped around.

1-10

2.6.4 Character Remove Key

The number zero function key, at the lower right of the
number pad, causes the character under the cursor to be
removed and the remaining characters to be concatenated to
the left. Spaces are set in the trailing positions.

2.6.5 Erase Function Keys

There are several keys available to erase all or part of
the screen image. The word remove ~, number one function
key, causes a word, a group of characters edged by spaces, to
be removed and the line to be concatenated.

The period function key, erase ~ 2f ~, causes the
line to be erased from the cursor to the right hand edge of
the screen.

The number nine function key, erase ~ 2f frame, causes
all characters to be erased from the cursor to the end of the
screen, i. e., through line 12 character 80. This key can
easily clear the entire screen.

The CANCEL key causes the entire line that the cursor is
resting on to be erased.

2.6.6 Form Expand Key

The number three function key causes a blank line to be
inserted si the line where the cursor is resting. The line
under the cursor and all subsequent lines are moved ~ the
screen. If there is anything on the twelfth line, it will
disappear.

2.6.7 Character Duplication Key

The number five function key causes the character
immediately above the cursor to be duplicated in the current
cursor position. This function key may be repeated. (It has
no effect on the top line of the screen.)

2.6.8 Return to Monitor

When the screen has the desired appearance, press the
escape function (DISPLAY/CANCEL) to get back to the
Generator's monitor. At this point a message will appear:

nnn DATA

mmm BYTES LEFT

informing the user of the number of characters in the data
record and of the number of bytes remaining in the user

1-11

space. If the number of characters is greater than 245, the
, " ,. , " '~ # : ~, ~ < - ,

message:

MORE THAN 245 DATA

will appear. The form must' immediately be revised to reduc,e
the number of characters. ,'If' more 'than' 1'26' fields are
defined, an error message:

MORE THAN 126 FIELDS

appears. Again, the form should be'immedia tely" revi g'ad to
reduc e the number of fields. '" " 1

If the combined space required by the, for.'rI" imap;e" da ta
areas and edit tables .xce.~sthe avallabl~' use~ space, thc
message:

nnn 13YTES OVER

wi 11 appear. The forIli should be revi sed to l'i t the user
space available. (See Appendix D in' Sec'tion II for
suggestions on saving space.)

The form is still only 'in memory' and no e'di t criteria
have been assigned.

A 'pass' is a gass ~ ~ form to as'sign isiicr'iteria
to it. It is up to the user to request each type, of
edi t-defining 'pass '(TY PE, ,':' 'REQUIRED,' 'PROGRAM, CONSTANT,
SEMI-CONSTANT, LINK) ahd,finallj, to ~e60rd ~he form ~y use
of the OUT 'command. The' edit~defining ~a~ses may be
requested in any order.' Any o'r all edi t'-defininp; passes may
be omitted, and passes may be repeated to review or to'~harige
the criteria.

~" . , I ,~

2.7 Assigning Edit TYPES ," " .

Generally, once the for~imag.has be created;'the use~
will first assign edit types b'y' keying the 'TYPE' command •
This command will initiate the TYPE pass over the form
causing the form to be redisplayed with the curs'or at the
first field definition (i.e., the first vertical bar [I] or
less than sign [<]) ~ " The user hIay, then type" one of 'the legal
edit types (A,D,N,M,L,R,B), or press the ENTER' key to pass'
the field without changing the, criteria, or press the CANCEL
key to clear the previously set criteria (no editing will be
performed on a cleared field; however, other passes may still
be executed to set restrictions such as required or field
program execution). '" "','

If this pass is re-executed,; t,he current edit type's will
, "

1-12

be displayed as each field is reached. If no change is
needed, just press the ENTER key to proceed.

The 'B' function key may be pressed to position back to
the previous field. When the desired edit types have been
assigned, the escape function key (DISPLAY/CANCEL) will
return control to the monitor.

2.1.1 Alpha

The 'A' edit type indicates the characters keyed in must
be uppercase alphabetics (A through Z) or space. The field
will be space filled to the right if not completely keyed in.

2.1.2 Numeric Digit

The "D' edit type indicates the characters keyed in must
be strictly numeric (0-9). The field is left justified with
trailing blank filler.

2.1.3 Nume~ic Field

The 'N' edit type indicates the characters keyed in must
be numeric (0-9), a decimal point or a minus sign (plus signs
are not allowed). Numeric fields are left justified and
blank filled on the right.

When the field is entered, it is checked to contain one
decimal point at most. If a minus sign is present, it must
be the left most character. And, no more than twelve
positions are permitted to the left and four to the right of
the decimal point.

2.1.4 Mixed

The 'M' edit type signifies alphanumeric, i.e.
characters A through Z, space, 0 through 9, decimal and minus
are permitted. The field is space filled to the right if not
completely keyed in.

2.1.5 Left Justify and Zero Fill

The 'L' edit type has the same restrictions as type 'N';
however, the input is left justified and zero filled on the
right.

2.1.6 Right Justified and Zero Fill

The 'R' edit type has the same restrictions as type 'N';
however, upon completion of data entry, the input is riRht
justified in the field and zero filled to the left.

2.1.1 Right Justified and Blank Fill

I-13

The ' B ' edit type has the same restrictions as type
'N'; however, upon completion of data entry, the input is
right justified in the field and blank filled to the left.

2.8 Assigning Keyin Restrictions

To establish that a field may not be bypassed (tabbing
past without entering data) during data entry, or that all
characters must be entered, or that the field is not to be
keyed-in but is reserved for a field program, use the REQUIRE
command.

This command will cause the form to be displayed wi th
the cursor at the first field. The user may then type one of
the options (R,F,B,P,S) to set the appropriate restriction,
or press ENTER to go on to the next field, or press CANCEL to
clear a previously set required condition.

The currently set condi tion will be displayed as the
field is entered. The ENTER key will tab forward and leave
the condition unchanged; the 'B' function key will tab back
to the previous field.

2.8.1 Required Field

An 'R' keyed in during this pass indicates a field is
required, that is, at least one character must be typed.

2.8.2 Fill Control Field

An 'F' means fill-controlled, that is, all characters
must be keyed in. During data entry, fields defined as
fill-controlled wi 11 be automa tically entered when the last
character is keyed in; however, the ENTER key may not be
pressed in such a field. If fill-control is not set, the
ENTER key is required, even if the entire field is keyed in.

Fill-control should not be set in fields with edit types
R, B or L where action is taken when the ENTER key is struck.

Fill-control fields may be bypassed if the ENTER key is
struck in the first column of the field.

2.8.3 Required and Fill Controlled

The 'B' option sets both required (R) and fill-control
(F).

2.8.4 Program Reserved - No Keyin

The 'p' option indicates a field will be filled in by a
field program. No operator keyin is permitted in this field.

I-14

This option may also be set on a 'keyin' field to
reserve it as an alternate message display area.

2.8.5 Required and Program Reserved

The'S •
required (R).
if the program
program.

option sets both program reserved (P) and
This will prevent writing of the data record
reserved field has not been set Qy the field

2.9 CONSTANTS and SEMI-CONSTANTS

The user must consider carefully the implications of
'constant' and 'semi-constant' data. These are characters
set into a data field in the form image and, if not
overridden, they will become part of the data record during
data entry. During actual data entry the operator has the
option to accept ~ ~ ~ ~ ~ ~ ~ SEMI-CONSTANT
command; whereas, data set by the CONSTANT command will
automatically become part of the data record and cannot !2!!
rejected by the operator.

Constants and semi-constants may only be set in fields
initially defined, i.e. at image generation time, by
underscores.

To initiate the constant pass, type 'CON'. To initiate
the semi-constant pass, type ·SEM'. Both commands cause the
form to be displayed wi th the cursor in the first field
capable of accepting constant type information.

In the constant setup mode, the SPACE bar does not set
constant spaces into the field but permits the user to move
to a desired position within the data field. If constant
spaces are required, the caret key (..) must be used. In
addition, neither constant nor semi-constant underscores (_),
veritical bars (:) or carets (-) can be set. The CANCEL key
will clear any constant field erroneously set, the ENTER tabs
forward, and the DISPLAY/B keys tabs backward. The BACKSPACE
key pOSitions back one character and erases the last
character typed.

!!2. editing II performed 2!l constants entered n ill§.
time. Illegal constants will cause the Interpreter to .h!m&
beeping during data entry. Illegal semi-constants, although
rejected, will be displayed. This feature may be useful for
presenting addi tional information to the operator, e. g., a
date field may have the illegal semi-constant 'YYMMDD' set to
guide the operator.

Also, if an entire form of constant data is prepared, at
least one position must be left for the operator - so that

1-15

the form may be viewed and/or written to tape.All-con~tant
forms (or forma wi thno 'fields) ',will: ': oaus'e:,,:th~"'~n~terpr-et'er to
hAn& clicking at data'~nery tbiEf~' -J: ,:;:' ",,:1> i:"" ,J- " ',,< ,'" , '

Partial semi-constantsa't ,the'''begfritring: 'or in"th'e m1d'dle
of a field are meaningless since the operator will haye to
type over them to enter'thEf, rema:Hlde'r"'of t:he 'r:i/eld~"i

.':' "

Once constants' (of ef'ther 'ty~e) 'have' been' set:~" they will
always appear when the form is displayed (e.g., during' the'
TYPE pass). Typing over the constants during subsequent edit
definition passes will not disturb them. :' '

, .: H: \' \,! \ ~. ~ , : 1 j' ; ~:: \ '

Constants should be cleared before executing the REVISE
command since tbeir pres'sUICe" ¥ill,' ch'ange -'~ "~'~~ :~', field
definitions.', ' h:. ''', -'

, :" l ,\

2.10 Field' Program A~signm.nt
. .' t,_,

. , , ,

Field Programs are written 1n the DATAFORM2" Lan~uage '
(See Section II).' Each program 1s 'identlfH~~ by' ill s'inp,l'e"
alphabetic character (A - Z). ' ,;' ,: .' ,t_",

When the form, is being' generat"e-d 'the'use'r must' type
, PRO' to enter the program assignment' }:1ass. ' ,',The f'orm 'wi'llbe
displayed wi th the cursor in the first field. " Type':the
appropriate program letter in any field where special
processing i s re<lu:fred~.'" "" , ; 'i I'

The same field progt'am :'~ay be aSliigned' t'o. s'everal
fields, e.g., a year and 'mont''hrange check' cou'Jd be used' for
any date field. Up to twenty-six unique field programs may
be assigned in one form~ ":, ", ",', ,::,i",

:, ", :. 't .. ·.,,"

,: \ -, " ~ ,
~) <.." . ~

2.11 Form Linking
" '! • J'

, ,
I (>_

Dataform providestha',i"user" with'; the"abiiity ,to, "11nlt":,
forms so that the operator 'need· :never see' 'a, fo,rm ,'rl'umber.
Each form ,on a Dataforllf Sys:temma,y have a,'poHfter'~':.'caJ:led n
'link', to the next form to be,\.ised ~ " This'poirit:er -must be
defined at form generation time. When desigfllng' the' ,rorms
for a _particular application, the user should plan the
numbers that will' be.,; '8.S-;$lgned '"to ::e.ach' rdrm..',l:'clrld :,',plari to
arrange the forms for the' m()st:~conventen,t' accessing~' ' . "

2.11.1 Setting the Manual'l.inkage . , ' ,
\ '.': \ j:" ~." '

When :the LINKcomm'and is- typ~'d-,. :'theim'es'sage:,"

'NEXT FORM nnn:

1-16

~'" ' ,

'.'
f, (" /'f',:

will appear. (where nnn is the number of the current linked
form, initially 000). Type the number of the form to be used
by the data entry operator after the form currently being
generated has been filled in.

2.11.2 Clearing the Linkage

Typing 'LINK', and entering a zero when the 'next-form'
message appears, clears the link so that a form load command
issued by the operator will have no effect.

The current linkage information may be viewed by typing
the LINK command and then simply pressing the ENTER key to
leave the values unchanged.

2.11.3 Loading Linked Forms

During data entry, the linked form (set at form
generation time by the LINK command) is accessed by the
operator, when needed, by a special form-load function key.

2.11.4 Setting Auto Linking

One user form may require several Dataform 'forms', e.g.
forms 1, 2 and 3 make up one payroll transaction. In order
to fill in form 1 once, then form 2 once, then form 3, the
operator would have to use the write function (to write out
the data) and then the form-load function (to load the next
form). (See also Section II - CHAIN and WRITE.)

To facilitate use of mulitiple page forms (i.e. sets of
forms to be completed in sequence and then reused), the next
form links can be set at form generation time to auto-load
new form whenever data is written.

To set the auto-linking feature use the LINK command.
When 'NEXT FORM' is requested, preceed the form number with a
minus sign. Thus, when generating form one in the multi-page
example above, enter ' -2' as the next form; enter • -3' for
form two and '-1' for form three's auto-link.

1-17

FORM
Scratch

USER
Keyin FORM -----

and commands

If Field
Program needed

If Extended
Interpreter needed

(load DF2 Generator)

'OUT' .

DF2 Relocator)

I

, FIELD

~rogram
~

FORM
(no-field program)

FORM
(field program)

FORM
(field program and
Extended Interpret~r)

FORM GENERATION FLOW

I-18

2.12 Writing the Form to Tape

During ~ entire ~ generation ~ ~ fQ£m ~ ~
in memory. To record the form and its associated edit
criteria, place a scratch tape in the front deck and type the
command OUT. If no errors have been detected (e.g. too many
fields, too long a data record), the Field Program Relocator
will be loaded. If no field programs have been specified,
the Relocator will automatically write the ~form tape~ on the
front deck. If programs have been specified, the question:

DO YOU HAVE A PROGRAM TAPE? ,

will appear. If the field program is not yet prepared, type
'NO ~ • This will cause all references to the program to be
ignored during data entry.

If, however, a new program is to be used and the
operator types 'YES', the message:

PLACE TAPE IN REAR DECK AND PRESS ENTER

wi 11 appear. Remove the OF 2FGS tape and place the field
program tape (source/object created by DF2PGS) in the rear
deck and press ENTER. The program tape will be rewound and
searched for the required programs, which will be copied to
the front deck. If there are still unresolved program
references, the program-tape message will be repeated. When
all programs have been supplied or the user has answered 'NO'
to the program-tape message, the form is written on the front
deck. Then the 'extended interpreter flag', set by the
compiler for each of the field programs, is examined to
determine which, if any, of the extended interpreter
functions are required. If no extended interpreter is
needed, the form tape is ended. However, if the field
programs require an extended interpreter, the message:

REPLACE DF2FGS AND PRESS ENTER

will appear. The user should put the Form Generation System
tape back in the rear deck and press ENTER. The appropriate
Extended Interpreter (containing only the commands executed
by the field programs) will then be copied onto the end of
the form tape thus far generated.

At the completion of the form writing process, the
message:

nnn BYTES LEFT

DONE - LOAD NEXT SYSTEM

will be displayed and the machine is stopped. If, instead,

I-19

the message:

nnn BYTES OVER
'1 '. '

appears, the use'r ',must':: ~~vi'~~{,bl$,"fo.rm"or ,\i~'~li,~pr;o8:~.am'~"" to; "
fit within the availabl~'~u.~er,~p:~,ce,.::~',", ',: ' "J :~r: ';: ", ,

, , ' ,: :,' • ~. ,'. ' • ...' 'f :', ;..' , ; ~~~ '::. t !(', , I'

The form recorded Qn' tl'\e front ;"d~ck may' now be" tested,
by loading the Interpriet;e,r 'anc(typ,~,n'g: NEW'"" ~o~ l,t' "lIR'Y 'Qe
cataloged on the Interpret~~,Sy~tem,tap~i~' ":"'~ ;:}\;:,' ,,' ",.;

I' " '. ,

, ,. ,~,.~.''- ,.,' ,:', !:~' ":i ,$f"',, ,!."

If, during one 'of' the p·as .. ~fe~' subs,eque:nt' {t9 : image
generation, an error in the i'mage"of 'the form, ':l,~:~is9,qv"ered~"
the user may type the:

REVISE , ~ 'i ~,' " .' !

command to return to ,tbe image generation, mO,de . ~ith;,the
current form intact. All ~'cr1 teria are' cleared which
means that lil passes, executed lUll.,~.t.Q" ~ done, agaio
after the form has been',r'evi:secJ;~,,:;,'.',' " ';" ': :,::,,' ,',"

" ", .' " • (,', ". I 1 ,

If constants had ~lre~td.Y b~en, sej;, into}:;pe, form, ::i t j.s
best to go into CONSTANT .mod~ apd cl~ar I (u&,ing ~i' CANCEL
knl lil constant f~eJ.ds (~,iri,c~ ,c,'onst,aot's d,e~~r'l ,t,he ,field
defini tion characters). be(ore eXegyting ~, 6~V*:?< ,cQmminc;t.: '

, , ,

2. 14 Recovering an OLD Form ','I' "

, ,'0'

Once a form has ,'beerC re/cordecf it'may ~e ret~l~~·~dand~
modified. Typing the: > ""t" :'\1' ,", ;.", ~'" ",', '. ' ,"" ::,;"', .. ~,', :

OLD

command will bring the form from the rroiit d'eck""{nt6 memor~: '
Any pass of the Generator maY be executed; hO~,eve~",note ,tl1.at
the REVISE command wi'll b11,~r ~,1:1.,· 'edit;~, '})'~tt~\t;''f:~r~',\,,,~t,,',.i:' , "

When the desired' changes'" 'hav'e: , 'been' made";'; .ith~·\ 'f6 ffrft in,
memory is written to 'the' :fr6nt'(~: JuSi~,g ~~e;~,J9~T.·"c~f.t1in~na,>" ..
as if it were a new form, i. e. al'I" 'f1eld"'prograrils will' have
to be re-attached.

',1 I

If the field program associated wi th a form hatr~:'
changed, simply type OLD, to reload the form, ",~,nd OUTr~ ~9,
attach the new version of the program. Any time"a forril 1s
read via the OLD command, all field prog~,m,.requ1re~"must,b~

\' " \,;' ~ ,', I, '",;".. ',~', \. • _" ' j , • reloaded.

". , "'I '.

I-20

, i

3. Form Library Configuration and Utilities

Once the forms have been generated and tested (see
Section I, part 4, Data Entry), the user will wish to catalog
them on a Dataform System tape. The system Qf forms should
be designed carefully to provide both the simplest and
fastest operation for data entry. The Configura tor enables
the user to record and manipulate the forms on a Dataform
System.

To load the Configurator, place the Dataform System tape
in the rear deck and press RESTART. The Configurator is the
first program on the tape. However, the system will go
automatically to the Interpreter. To override automatic
loading of the Interpreter, the operator must press the
DISPLAY key during the entire loading process.

3.1 Displaying the Form Catalog

A 'catalog' is maintained on the system tape which
identifies the forms available on that particular tape. Each
form is identified by a number (1 to 123 are valid form
numbers). To see which form numbers have been assigned, type
'CAT'. This command will display the form numbers in use.

3.2 Adding New Forms to the System Catalog

To input a form created by the form generator and assign
it a form number, type "IN nnn", where nnn 1s the form number
being assigned. The command causes the form 1n the front

(deck to be input, in form number sequence, to the system
tape, and then adds the new form number to the catalog,
rewriting the catalog record also. If errors are encountered
while the form 1s being copied t the catalog wi 11 not bo
rewritten.

3.3 Deleting Forms from the System Catalog

Forms may be removed from the system tape, and from the
catalog, by use of the delete command (DEL nnn). If the form
being deleted is not the last one (i.e., highest number) in
the catalog, a scratch tape will be requested for the front
deck.

3.4 Deleting Multiple Forms from the System Catalog

There 1s also a command whioh allows the removal of
multiple forms. The"gjQf nnn" oommand deletes the specified
form and ill subsequent (higher numbered) forms from the

1-21

system tape and from the -catalog'., ,:' ,

I . ,~. "

3.5 Replacing Form~ o,n the Sys:temCatalog

If changes hav,e' beetl, made, ,~o "a' r";~m ' already ~cat:alo,g'ed ~
it may be replaced (REP nnn). If the form being,r.:e'p1:aped· i's'
not the last one on the system tape" t'he REeLAGE' oommand
copies all subsequent forms onto the end of the form tape in
the front deck, and then copies the front tape back to the
system tape, writing over 1::.he specif-ied form.:: " " c'

.' I •• ," >.

,j '; " :,'

3.6 Running the Interpreter

In order to procee(1, fr,om ' the 'Configur:~,~or to th,e
Interpreter, one may, as mentioned above, simply press
RESTART which will cause automatic loading of the
Interpreter. There is also a command available, (INT) to
cause loading of the Interpreter.

3.7 Tape Ut;ility Features

3.7.1 Duplicating DF2SYS

In addition to building and maintaining the forms
catalog, the Configurator, has,severa'l ,utility·comtneuidis to
assist the user in protecting his system tape. The duplicate
(DUP) command generates a Dataform System on the front deck.
The new system has DQ forms in its catalog.

3.7.2 Duplicating DF2SYS wi th Forms,
,I" '\: '

Another command CDUP-ALL) copies, . .th!t entire system,~
onto the tape in the front deck. f

3.7.3 Recovering a Cataloged Form

A single form may be ,transf,erred from the ~ystem. t.ape ,to
a scratch tape by using the 'OUT nnn' command. The OUT' ed
tape then looks exactly ~ Sl .~ written .Q.:£' ',!t..bJt Form
Generator and may be IN' ed~o . anothet:' Dat.aform System ,or,
changed using the Generator (the. OLD command)"'" - '.'

3.7.4 Generating a Faste~ Loading interpreter

The LGO command will make a faster loading version of
the Interpreter Systell1 and, i ts ,for,~s" by 'Qrni;tti-ng the
Configurator. No form manipulation (IN, OUT~ 'REP, etc.) can
be performed on the LGO ,v~rsiqn ,pi' t;.h~. s,y.stem.

3.7.5 Copying a Data Tape
. ,'~

1-22

Da ta tapes may incur tape parity errors or particul ar
da ta records may reach the rewri te 1 imi t by being modi fied
the maximum number of times. A COpy command in the
Configurator enables the user to ~ 1h§ ~ tape,
resetting the rewrite counter in each record back to zero,
and, if tape errors are encountered, provides the option of
omitting the record, terminating the copy, or attempting to
copy the bad data.

When the COPY command is executed, the message:

PLACE DATA TAPE IN FRONT DECK, BLANK TAPE IN REAR DECK
WHEN TAPE IN PLACE, PRESS ENTER

will appear. Once the ENTER key is pressed, the tape in the
front deck will be copied to the rear deck. If errors are
encountered on the master data tape, the following message
will appear:

PARITY ERROR ON DECK 2
COPY, OMIT OR END?

If '0' is typed, the bad record is bypassed and the copy
proceeds. If 'E' is typed, the copy is terminated with end
of file markers written on the copy tape. If 'c' is typed,
the bad record will be written on the copy tape (the copied
record will have n2 tape error; however, it will probably be
missing data or contain erroneous data) and the copy will
continue.

If end of tape is reached and no end of file detected,
the COpy command will automatically backspace twice and write
end of file markers on the copy tape. The master tape is not
disturbed. Note that if this occurs, the final record count
is unreliable.

When the copy is completed, the following message is
displayed:

nnn RECORDS COPIED - REPLACE SYSTEM TAPE IN REAR DECK
WHEN TAPE IN PLACE, PRESS ENTER

The DF 2SYS tape must then be replaced and the ENTER key
pressed. The forms catalog will be reloaded.

3.8 Printing Forms and Data

Two utility commands are available to print, either data
or forms, on a local or servo printer. To print a data tape,
type 'DPRINT'. This rewinds the data tape in the front deck
and prints each record, 80 characters per line, on whichever
printer is available.

1-23

Forms will be printed twice; once as the total image
would appear to the operator and again, one line at a time,
followed by the size of the field, the edi t TYPE, REQUIRED,
and PROGRAM codes entered.

To print a non-cataloged form, place the tape in the
front deck, type 'FPRINT' and press ENTER.

To print cataloged forms type:

FPRINT nnn

where nnn is the number of the form to be printed. To print
all cataloged forms, type:

FPRINT ALL

This will cause all cataloged forms to be printed in the
order they occur on the system tape. When printing is
completed, the Configurator is reloaded.

3.9 Replacing Dataform2 Systems Programs

One final command is available to replace the entire
catalog and forms of one Dataform System with the catalog and
forms of another Dataform System. The RIN command is
intended mainly for use in upgrading the users system as new
versions of Dataform are released.

Place the ~ QF,:H~ in w. .tUJ: ~ and the system
tape containing forms in the front deck.

1-24

4. DATA ENTRY

Data entry involves loading the Interpreter, then
loading a form, and finally filling in the data fields
defined by the form. When the data has been entered on the
screen to the operator~s satisfaction, the data record is
wr it ten to tape (by an operator function key or a field
program instruction) then the same form is cleared and
redisplayed with only ~constant~ type data appearing.

To start data entry, place the DF2SYS tape in the rear
deck and press RESTART. The Interpreter is loaded
automatically.

The Interpreter will respond to the commands discussed
below. The form number is optional in most of these
commands; if it is omitted, the current form will be used.
An err-or may occur if no form is specified and none is
currently in use.

Only the first letter of .t.bJt command ~ is needed,
thus, 'START 2~ may also be entered as'S 2'.

4.1 Data Tape Initiation

4.1.1 START New Data Tape

If the operator is preparing a ~ ~~, the:

START [n]

command must be excuted to initialize the tape. If a form is
already loaded or is specified in the command, the form will
be entered (i. e., the form is displayed wi th the cursor at
the first non-constant data entry position available).
Otherwise, control is returned to the monitor.

4.1.2 ADD to an Existing Data Tape

Similarly, data may be added 1Q ~ ~ of an old data
tape by entering the:

ADD [n]

command rewinds the data tape and. This command positions to
the end of any data already on the tape. The form will be
entered (if one is loaded or specified in the command) at the
same time the data tape is being positioned. If there is no
form present, control is returned to the monitor.

I-25

FORM --_....,
Display

Operator
Input

'START'

~ __ ORM tape

'TEST'

nitialized
DATA tape

FORM loaded

'END'

DATA ENTRY FLOW

1-26

DF2SYS
(load INTERPRETER)

'START n"

FORM ---"Ii
Display

Operator
Input

"END'

(FORM 'n' loaded)

In tialized
DATA tape

DATA tape
ended

A third way to open a data tape is to
an old tape to which changes must be made.
by executing either the MOD or the FIND
described later.

specify that it is
This is indicated

command which are

4.1.3 CONTINUE adding to an Existing Data Tape

If the data tape is very long and is already positioned
at the end or in the midst of the data, the:

CONTINUE

command may be used. This command backspaces the tape once,
to insure that it is in front of the end of file marker and
then reads forward to the end of the data.

It is primarily intended to enable resumption of data
entry mode after error corrections have been performed. 4.2
Loading a Form

4.2.1 Testing NEW Forms

A single form, not yet cataloged on the Dataform System
tape, may be loaded using the:

NEW

command. The DF2SYS tape should be removed and replaced with
the form tape before typing 'NEW'.

4.2.2 LOADing Catalogued Forms

To initially l2A£ a ~, from the system form library,
or to replace the form currently in memory, the:

LOAD n

command may be used. Form'n' will be brought into memory
and, if the data tape has been initiated, the form is
entered; otherwise, the message 'TAPE CLOSED' is displayed
and control is returned to the monitor.

New forms may be loaded without disturbing the position
of the data tape. Each data record contains the form number
on which it was created so that subsequent modi fication or
other processing can identify data generated on a particular
form.

Note that the form is not reloaded if the number
specified is the same as the current form.

Any time a form is loaded! a search .t:2.t .Ya f.2.r:m.
specified Qy the l!nk ~ initiateg (eyen if ~ linkeg fQtm

1-27

II !!.Q.t. .Y.§.l cataloged I). If the link is set to zero, no
search is performed. Other tape operations, such as writing
data, reading data, or positioning the data tape, cannot be
performed until the linked file is found or all files on the
system tape have been searched completely. That is, data may
be entered on the form but may not be written to tape until
the next form is found. If the form is not on the tape, the
message 'BAD FORM' will appear the next time a tape operation
(e.g. writing data) is performed.

Linked forms (and LOAD statements in field programs) are
ignored if the form in memory was loaded using the 'TEST'
command.

4.3 Entering DATA ENTRY Mode

To switch iQ ~ entry ~ initially or to return to
data entry mode from the monitor, the operator may type:

DATA

If no form is in memory or if the data tape is not open, an
error message will be displayed and control will return to
the monitor. Data currently in. memory will not be disturbed
and will be displayed whenever the form is re-entered.

4.4 Revising Existing Data Tape

4.4.1 MODIFY

Any data record on a finished data tape can be accessed
for revi§w ~ ~ ~ ohanged. The MODIFY command:

MOD [n]

(where n is an optional form number) enables the operator to
manually aocess any data record created by a specified form
and to then either bypass or change that reoord on the data
tape. When the 'MODIFY' oommand is typed, the operator is
asked to place a data tape in the front deok. The tape is
searohed for the first data reoord oreated by the ourrent
form. Once a reoord has been found, the data tape is in an
, open' mode and may be searched in a forward direction by
pressing the read next record function key, or, from the
monitor mode, by typing another 'MODIFY' oommand. To access
reoords already passed over, use the rewind function key to
rewind the data tape (like the initial MOD oommand).

During modification, a new form may be loaded (wi thout
disturbing the position of the data tape) and that form will
subsequently be used for finding data records. Once a record

1-28

has been found by the MOD command, the contents of all fields
will be displayed in the form. Recorded data supercedes
constants, thus, the actual data from the tape will be
displayed; however, constants H1l.l. Ja .u.i ~ ~ .d.i.Ja
record when the field is entered (as they are for new
records).

Data may be changed at this time by retyping the field.
Press ENTER in the first column of a field to leave the data
unchanged. The edi t criteria and field programs associated
with the form are still in effect.

4.4.2 Rewriting Existing Records

Data records are rewritten by the use of the write
function key. If the record was fetched using the MODIFY
comamnd, the next data record will automatically be read and
displayed. If, however, the record was fetched by the FIND
command, control is returned to the monitor.

Each data record contains a rewrite number. .!'lWm ~
rewri te number reaches h !l2. further modification Q.f. that
record is permitted. The COPY command of the Configura tor
will reset rewrite counts so that data may be further
modified. (The number of rewrites is limited to prevent loss
of data due to tape deck positioning errors.)

If no field needs to be changed, the next record can be
fetched by pressing the read next record function key; note
that any modifications made will be destroyed by the read
function. The write function mY§l be used to cause updating
of the record (unless the write is executed by the field
program, in which case the field assigned the program must be
entered) .

4.4.3 FINDing a Specified Record

If unique data in the record to be corrected is known,
the:

FIND En]

command, where 'n' is an optional form number, may be used.
This command loads the specified form (if different from the
current form) and displays the form so the operator may type
characters into any fields to use as a key 1n searching the
tape. No edit criteria or field programs are applied when
setting up the match data. Thus, right justification and
zero fill will not be performed.

When the data to be matched has been entered, the
operator presses the read record function key to start the
search. The interpreter will search the data tape forward

1-29

looking for the record generated by the specified fo'rm and
containing the specified data.

Once the matching data has been found, operation
proceeds as in the MOD command. Note that this search may
also be aborted by pressing the KEYBOARD and DISPLAY keys
which returns control to the monitor.

If a match is not found, the message:

END OF DATA

appears and control is returned to the monitor.

4.4.4 Aborting Tape Searches

The tape search may be aborted by depressing both the
KEYBOARD and DISPLAY keys. The operator may want to stop n
search if, for example, the wrong data tape is in place, the
wrong form is specified, or the wrong match data is given for
a FIND. Control will be returned to the monitor.

4.5 Positioning the Data Tape

The data tape may not be positioned as long as it is in
the ADD/START mode of data entry. The Read and Rewind
function keys will be rejected.

4.5.1 Backspace Record Function

If, in the ADD/START mode, the Backspaoe Record function
key is pressed, an end of file marker 1s written on the tape
and the user 1s automatioally switched to MODIFY mode before
the tape 1s baokspaoed.

In the MODIFY mode, the Baokspaoe Reoord funotion key
oauses the tape to baokspaoe twice and read forward once
under form number control, that is, if the record being read
was not created by the current form, subsequent records will
be read until a form number match is found.

The backspace record function may also be performed by
typing the oommand:

BACKSPACE

This command executes exaotly as does the function key.

4.5.2 Rewinding the Data Tape

There are two ways to rewind a tape during data
modification. From the mon1 tor, the operator may type the

1-30

command 'REWIND'. This causes the data tape in the front deck
to be rewound and positioned to the first data record created
by the form currently loaded.

If, while viewing records during modification, the
operator wants to rewind the tape in order to view records
already passed, the rewind function key may be used.

4.6 ENDing the Data Tape

The operator cannot switch from the START or ADD mode to
the MOD or FIND mode without writing end of file markers on
the data tape. Return to the monitor via the System Control
function key and use the:

END

command to ' close' ~ tape. If the operator is in the
modification mode, the command will be rejected. The END
command does not rewind the tape, nor does it clear any
totals being accumulated by the current field program.

4.1 Data Entry Action

In the START, ADD, CONTINUE, DATA, MODIFY and FIND
modes, the cursor will be positioned at the first free
position of the first field. If, as in the modify mode, data
is present, the current contents of the data record will be
displayed.

Data set by a CONSTANT command at form generation is
displayed and the cursor is placed Bt the first non-constant
position on the form. However, data set by the SEMI-CONSTANT
command when the form was generated will be displayed and the
cursor will be placed in the the first pOSition of the field
(over the semi-constant).

If partial constants are set at the right hand end of
the field, data must be typed up to the constants; otherwise,
the constant data may be omitted in the output record.

During data entry, a CLICK sound is made for each
accepted character. If a character fails to pass the edi t
criteria for the field (alpha, numeric or mixed) a BEEP is
sounded and the cursor does not advance.

When typing data, pressing .the ENTER key (or in
fill-controlled fields, typing the last character) will cause
the field to be further edited (right justified, zero filled,
etc.) and, if no errors are found, the cursor will move to
the next field. After the last field of a form is entered,

1-31

the cursor will b,(! placed b~ck ",.1:.. the ,be.gJ.nningQf· the first
field awaiting a ,wrl'tft fUl)cti:Qn 'or, :otJie:r comm~pas fro~: the
operator. ' .. ,. '" '. ' .. :, -, '.

'-' ... ,'1 ';, <>:: ... ; ,;:

The ENTER key is use,d, ,as a forwarQ UJ2. k.ey ,and the
Backspace Field functi.on key' permits· .. · backwardta·bbing.
Forward tabbing past .required fi'e·l.ds .is' fl.Ot' pe~mit,tecL Not,e
that alpha/numeric ~diting 'ocdu~~ ai th~ fr~ld'ii'6~ing keyed
in. When the field is complete, further editing is performed
on numeric and right justified fields to .insl,l~e "cQmpliance
wi th forma t restrictions (e. g., minus' '. sig'ri' rii't,t'st 'be" 'to the
left of the field). User" fi,eld program~ "a,r"e ~ not e,xecuted
until all other editing hCi'S: 'bae'n ·'p'e'rformecf. s'ucc'e's's'fullY.

, " " :,. ,.,' >,; t ,1, '

, ' . ,

4.8 Data Erase Function Key

The erase function clears the data area (without ~~iting
it to tape) and redisplays the cleared for~~ ·112 indication
a giyt;!n II fielg programS ~,:'~ erase" '¥.J\pt'.9,p',tiiA w.n.
executt;!d ~

4.9 Field Duplication Function Key

Once a form has been compl eted, the' :dcH?a "rS='tra'rlsferred
to a second buffer from which it is writt,en. to tape. This
secondary bu ffer is a~ail~Qle to the Qi:?,era,toF" f,or f,iel,d
duplication by means of the tit;!lt;J guplication' furict i 9n W.
If no previous record has bean ,~r.,i,tten, or' ifth~pr~,ceding
record was cre'ted by a diffe~ent for~, the ~~~~lts of
pressing the duplication function key are not determiried.

4. 10 Opera tor Errors Dur ing ria ta Eri.trly
, : . ",

When errors are detedted in, a field, instel:td' of moving
to the next field the cursor will be placed at, th.e 'beginning
of the field just entered and a beep will' be sounded. The
illegal data is not set in thega.ta area .in memO.r,y, but will
still appear on the screen. If the operato~:~e~ides to tab
past the field, the last ,accepted data (blank if' ('lone has
been entered) will be displayed.' "

4.11 Write Function Key

A data record will be written to tape whenever the Write
Function key is pressed. The data recP!'d is ,wri,tten. e.ven if
no data' or only incompl ete " data hasi b,eeri.":,,'er.lter.ed,. If,
however, required fields ,have ndt b~en compl,.ete,'d; :themacnine
BEEPS and the cursor is placed at the first'urifilled requi~ed
field. The data is not wrl tten " to tape. If_ :~n 'lneornplete

, ~ - ,; .

1-32
.... - "

data record is written, it will contain zeros in all fields
defined as zero filled (right justified, zero filled and left
justified, zero filled) and spaces (or constants, if any) in
all other unfilled fields.

After the current data has been written to tape, all
data fields will be cleared to null values (or to the form
constants or semi-constants if any) and the form will be
reentered at the beginning. If, however, the auto-link flag
is set (see AUTO LINKING in Section 2), when the write
function is executed, the data is written out and the linked
form is automatically loaded and displayed.

4.12 Loading Linked Forms

The next form (specified by the linkage information in
the current form) will be brought into memory when the Load
Form function key is pressed. The opera-tor must record the
current data record (using the Write function key) prior to
loading the next form, since pressing the Load Form function
key does not write and clears any data in memory.

Control can be returned to the monitor from the data
entry mode by use of the System Control function key.

4.13 Returning Control to the Monitor

. Whenever, while entering data into a form, it becomes
necessary to type one of the Interpreter ~commands' listed
in Appendix C, the operator must press the System Control
function key to return control to the monitor. Only then may
the needed command be typed.

I-33

Th~ pr-im~r-y:. t;'ule .. ,-~f,~~st, .. (!:J'l:~~.,seAur..,.1.~it\ ~,~:; kIU'L;,BACKUP
tape~; . ~. e ~, 'copynF~,~dS~;, pF~~YS,);u~.ci, i ~F~~G~ r 11,i~H~ 1 :,~~~ .9Ql'Y
util~ ty pr-o.gr-am,. Opqe' :(~rtTis ,:hav.,er~ ,b~~n:, ,;g~;:~~o~S, c: ~qp'Y, khe
Datafor-m .systemtape~,~~!n~ tqe O~~,~Att.:< iqml1lDa,nP'r 1 t~~s.t·~.r.,f,9r-V1
and program tapes sh04:~,t. ~'~i :::ca,~~f~~.;1:y.';i.~~~·e~!~ii\an,9,,is tor~(t· "

If p'ar- i ty e r-r,6,rs' :~ ~;V;~~'dp: .';'i ~ ;)~~.~ s¥ ~~~~'t P£~U~}~,r,J~';: ~~e~ ti'on
of the tape, the RIN'com'mand can be used to copy the forms
onto another Dataform system.

,,"1"'-" I .)~.t(j f; <"4\: t'.¥" ': '. ~.
If err-or-s develop in the form's ·'themselve~ 'it may be

possible ,to REPLACE, or p'~J.,E~~ or, ,CHq~~ ,~r,e~r~<?nEj~uj~ Clf~\as.
,,~, ,. I ~..' ,>: , ., : "' ,' , ~ ~ , ", '~/"i" ~ ~ ,

Parity 'errors' "in ~tp~: '," fO,~~~,: ,"9~taj:rog:",~1,t,~;: t'¢~}-ise . ,J:~p~
message :'

to . appear. If CAT. ~s ~yped" t,h~. gumUlY QltalQg .t.QU.. ,.apsumes
.ill. fOrm§', 1-1 23 .. ~ , \J;ll;L .. ,b:,: ,.,~i~~l'al,e«('\:<l I(~~~' ,(~rtris;':lOq,., ~h.e
tape are conseoutiv~ one" may 'CHO?the last actUal form' + 1.
This will cause the catalog to be rewritten, hopefully
elimi nating the previo~J. ~'f.r,l?r~,; pne { ,rnP,-:~:,«~l,s'I?'" ,';~;~~I1lP~, ,to
salvage the forms by OUT lh~ th~fu one at a tim~:

5.2 DATA TAPES

Duri'hg data 8rltry ,"'e-ac"h" rec'Q~rC1. _~~s. ':~r ~t~~p,~:' r":'76,~.~qand
oompared to the original data. "'If' a tailur-e oocurs, the
oper-ator is informed that the tape has been ended pr-ior- to
the record containing the err-or. A new data tape must be
initiated (using START) and the last record (which may be
retrieved using the field duplication function key) and the
one in progr-ess when the failure occur-ed must be r-e-keyed and
re-wr-itten.

Three types of pr-oblems can arise with data tapes:

parity err-ors
missing end of file markers
or rewrite limit reaohed.

Since r-ead-after-write technique is used to write data
records initially, undetected parity errors should be rare.
These will most likely occur during err-or cor-rection
modification.

1-34

The COPY command can be used in any of the above cases
to correct the tape. The rewrite count is automatically
reset by the COpy command. Parity errors may be omitted or
copied (in the hopes of later correcting the record by
modification). If a file marker is missing, a parity error
will usually be encountered, in which case the END option of
the copy command may be used.

Another technique for adding a lost or omi tted end of
file marker is to use the Interpreter:

Find the last record using the MOD command (or FIND if
the actual data is known).

Remove the data tape.

Place a scratch tape in the front deck, and type START.
Once the starting file marker has been wri tten, the
scratch tape is replaced by the actual data tape.

Type END; this will write an end of file after the last
record.

5.3 FORM TAPES

If, during the intial generation process, an
unrecoverable error occurs at the point of writing the form,
the Generator, DF2FGS, may be reloaded immediately and the
RECOVER command executed. This command causes the form still
in memory to be accessed. One of the form generation passes,
e.g., TYPE, may be executed to insure that the form 1s still
intact. Then try OUT'ing the form again, using a new
cassette in the front deck.

If one of the system files could not be loaded, use
another copy of DF2FGS to recover the form.

1-35

TYPED
CODE

A
D
N
M
L
R
B

CANCEL

MEANING

Appendix A
Type codes

Alpha (A - Z and space)
Digit (0 - 9)
Numeric (0 - 9, period and minus)
Mixed alpha and numeric
Numeric,Left Justified/Zero filled
Numeric,Right Justified/Zero filled
Numeric,Right Justified/Blank filled
Clears edit criteria

Right justified fields are filled with leading zeros (R)
or blanks (B). During data entry, the field is justified and
re-displayed after the ENTER key is pressed. Numeric fields
are 1 imi ted to 12 places of significance to the left and 4
places to the right of the decimal point.

~equire Codes

TYPED
CODE MEANING

R Required (at least 1 character must be keyed)
F Fill Controlled (all characters must be keyed)

(ENTER key allowed only to bypass field)
B Both Fill Control and Require
P Program Reserve (no keyin)
S Required and Program Reserve

(field is checked prior to write)

A-1

Appendix B
Image Generation Function Keys

There is a set of function keys available in the image
generation mode only. When the DISPLAY key is pressed,
certain characters become function keys. These function keys
can all be found on the number pad. The following functions
are available:

7 - character insert
8 - up cursor
9 - erase to end of frame
4 - left cursor
5 - character duplicate
6 - right cursor
1 - word remove
2 - down cursor
3 - form expand (downward)
o - character remove

- erase to end of line

The BACKSPACE key and DISPLAY/4 have the same function
of non-destructive left cursor movement. Backspacing from
column 1 back to column 80 is permitted.

The CANCEL key erases the entire line the cursor is on
and places the cursor at the beginning of the line.

The KEYBOARD key acts as a REPEAT key for all characters
and for most function keys.

The DISPLAY/CANCEL function causes an edit table to be
generated with the field position and length set and all edit
conditions set to default values.

NUMBER PAD OVERLAY

Char UP Erasel
Insert Frame I

Dup I
I

LEFT Char RIGHT I
I

Word Form I
I

Remove DOWN Expand:

Character Erase
Remove Line

Cut this overlay out and use for reference during form
generation.

B-1

Appendix C
Data Entry Interpreter Function Keys

Mode

All Data Entry

Modify and Find

Ksu. Tvped

DISPLAY/4
DISPLAY/.

ENTER
DISPLAY/3
DISPLAY/6
DISPLAY/1

DISPLAY/7
DISPLAY/8
DISPLAY/9

C-1

Function

return to monitor
write data record
or rewrite it
forward tab
backward tab
erase data area
load next form

rewind data tape
backspace record
read record

Appendix D
Error Messages

SYSTEM ERRORS

FILE MISSING

BAD NUMBER

Some form, present in the catalog, is missing on
the system tape, or the fil e marker necessary for
positioning the input tape is missing, or a form is
short (i.e. it doesn't contain the necessary 6
blocks).

The form number may have been omitted, out of range
(1-123) or non-numeric. Or, the form specified is
not in the catalog. Note that if the form number
is omitted in a command which optionally accepts
form numbers (e. g. START [n]) the command line
cannot end with a space.

In the Interpreter, this message may mean that the
next form specified (in the current form's link) is
not in the catalog, or that your command assumes
that there is a form in memory (e. g. ENTER) and
none is loaded.

PARITY ERROR ON DECK X
Indicates a parity error was detected - where X is
the deck number (1 = system tape, 2 = front deck).
Before this message is displayed, four attempts are
made to read the record.

INTERNAL ERROR n ON DECK m
This message indicates a tape or tape deck failure.
The n is replaced by a letter indicating the error
condition:

D - parity error
E - end of tape
F - end of file
G - unfindable file
Z - write failure

Generally these errors occur only if something is
severly wrong with the cassette. Error Z may occur
if the write protect tab has been punched on the
cassette or if the tape is improperly inserted in
the deck. If error Z occurs often a hardware
failure should be suspected.

The letter 'm' in the message is replaced by the
number of the tape deck on which the error occured

D-1

(deok 1 is the reard~Qkt deok 2 is the front).

CONFIGURATOR ERROR§

END O1i' FILE MISSING';""j ,,' " ' "
End of tape reaohed during COpy - an~~d'~f'til~
marker is automatioally written. -"I: ,,:

AUTO NOT SET
Is given in r'esponse, ~'9 ~; 'MAN'PAi.: 'c'<>~m~,nd if the
auto-load ep~ry. is, not :;set.' ; , :" _ :;_

. , ",

FORM CATALOG UNLOADABLE, DUMMY CATALOG GENERATED '
File 1, the forms oatalog is in error" ,~ , dummy
(full) catalog }l~s"b,~en ,s~b~~itu,t~,d".,:.,: ~t;,ep-s' should
be taken to reoo,ver t;.he sy~tem (~ee ,~eotion 5). '

.h , ' "', ' ., ' .,

NUMBER IN USE
The form number sp'eo:t'.fied for a'n' ')W, o'binmand was
already aSSigned. ' '

GENERATOR ERROR~

BAD FORM
,The form just ~r:itte.n' 1,s: ',~'riloadflQl:~; dU,e :to pari ty
errors or mr~singbl06ks~ " C'

, .~

MORE THAN 126 FIELDS
th'a'ri ":12~,datE1 fi.eld~
Q~" rev~~ed , before it

Durin~ image gene~ation more
were' defined'.' The fo:r'm must
may be written 6~t; , :' I ' , '-'

"
,'~ ,

MORE THAN 245 DATA ~

XXX DATA
YYY BYTES

During image gneeration more th,aq . ~#5 , data
characters were defineq. The form. mus~, be re'vl'sed
before i,~ may ·b~',,!ritt~~:"o,Ut. ",'. """',."':',:

," ,'I '" " "

LEFT
The messages appear 1mmed1~telY ,~fter the image
generation phase of form gener.'at1,on. .They is, for
information only.

YYY BYTES OVER
If this messag~ ~p,p~~r,s after ,~mage ge.n\~r;"ation, the
form image, data 'a~ea and edit table' have combined
to overflow the user space. S~mething must be
reduced.

INTERPRETER ERRORS

Continuous Beeping during data entry
An illegal - constan't has ,been def,lned at form

.D-2

generat.ion time. The constant must be reset to
conform with the edit criteria before proceding.

Continuous Clicking during data entry
An all constant form wi th no keyin field has been
loaded. The form must be corrected before data
entry may proceed.

TAPE CLOSED
No START, ADD, MOD or FIND command has been
executed.

END OF TAPE
End of tape was encountered during data entry or an
unrecoverable tape error occurred during wri ting.
If the error occurs due to end of tape, the data
tape is automatically backspaced twice and an end
of file marker is written. If it is a write-parity
error, the end of file is written where the record
would have been. This means the last two records
(since the opera tor is keying one in) are lost.
Totals being accumulated by field programs may no
longer be valid.

REWRITE LIMIT REACHED TO VIEW PRESS ENTER

BAD DATA

BAD FORM

During modification, the record in memory has been
rewri t ten 4 times and cannot be written again;
however, it can be interrogated. To reset the
rewri te counter to zero, use the COPY command of
the Configurator.

There is a parity error in the data.

There is a parity error in the form or a block is
missing.

END OF DATA

TAPE OPEN

End of file has been reached on the data tape.

An 'open type operation was attempted before
ENDing the current data tape.

D-3

CONFIGURATOR:
CATALOG
CHOP
COpy

DELETE
DPRINT
DUP
DUP ALL
FPRINT
IN

INTERPRETER
LGO
OUT
REPLACE
RIN

GENERATOR:
CONSTANT
LINK
NEW
OLD
OUT
PROGRAM
REQUIRE
REVISE
SEMI-CONSTANT
TYPE

INTERPRETER:
ADD
BACKSPACE
CONTINUE
DATA
END
FIND
LOAD
MODIFY
NEW
REWIND
START

Appendix E
COMMANDS

display the forms in the catalog
delete specified form and all subsequent forms
copy a data tape and reset rewrite counters to
zero.
delete the specified form
print data tape
duplicate the main system with a blank catalog
duplicate the entire system including forms
print form
input a form assigning the specified form
number
run the Dataform Interpreter
write faster loading Interpreter
output the specified form
replace the specified form
replace the catalog and forms with the catalog
and forms of another Dataform system.

set constants into the form
def~ne next form linkage
clear the work area for a new form
load old form from front deck
write the current form record to tape
assign program letters to fields
set required fields
revise the current form
set semi-constant data into the form
set edit keys for the current form

add to the end of a data tape
backspace a record on data tape
resume data entry after modification
switch to data entry mode
write an end of file on the data tape
search for matching data record
load the specified form
modify data records
load un-cataloged form
rewind data tape
initialize a data tape

E-1

Appendix F
Sample Form Generation

EMPLOYEE PAYROLL RECORD

Name I--------------------~-------- Title Code :-- Dept 1-I

Dependents ,- State Code ,_ Social Security :--:----
Workman's Compensation (0 to 9)
Male/Female (0/1) I

Exempt/Nonexempt (0/1) 1
Married/Single (0/1) :

Hourly Rate
Date Hired
State Tax
Insurance

Advance

,-----
I ,-----
I ,-----
I 1-----
I

Amount Last Increase $1-----
Date Terminated :----
Disability Tax :----
Auto Insurance I--~-

FICA Status (exempt=O,

Date Last Increase :----
Date of Birth :----
City Tax :----
Life Insurance 1-----

nonexempt=l): Page 2? <

Sample Form - During Form Generation
NEW or REVISE command

Form text, data and keyin field definitions are set. If no constants or
semi-constants are added, this is the way the form text will look during data
entry except that the carets will be replaced by spaces.

EMPLOYEE PAYROLL RECORD

Name' A Title Code D Dept D
Dependents D State Code D_ Social Security D D
Exempt/Nonexempt (Oil) D Workman's Compensation (0 to 9) D

MalelFemale (Oil) D Married/Single (Oil) D

Hourly Rate
Date Hired"
Stat'E~ T~x
'Insuran~6e

Advance

$R
D
R
R' .
R

Amount Last Increase $R
, . ·ba~eTerminat:ed D

Di$ability' Tj~ R
Auto: 'Ihsuranc~ ·'R .
FICA Status(~xem.pt=O,

'., "I

ji. '

Date Last Increase D
. Date of Birth D

.' "Ci tY'TaxR
. Llfelhsarance ":R

nonexempt=1) D Page 2? A

Sample Form - During TYPE pass

These:w'fll rlotb'edisplayed durin'gdafa entry.
',"~i :,"" ._:.; ::i" :;,.< .:<'~_ --r;,~.r,

" :-

I':rj
I

w

Name I
I

EMPLOYEE PAYROLL RECORD

Dependents I State Code
Exempt/Nonexempt (0/1)
Married/Single (0/1)

42
1
o

Ti tIe Code I Dept I
Social Security I I
Workman's Compensation
Male/Female (0/1) 1

(0 to 9)

Hourly Rate $1
Date Hired 1
State Tax I
Insurance

Advance
I
I
I

Amount Last Increase $1
Date Terminated I
Disability Tax I
Auto Insurance I
FICA Status (exempt=O,

Date Last Increase
Date of Birth
City Tax
Life Insurance

nonexempt=1) 1

Sample Form - During SEMI-CONSTANT pass

Several fields are preset to commonly entered values. These may be typed over by
the operator. The CONSTANT pass looks the same, however, constants may not be
typed over during data entry.

EMPLOYEE PAYROLL RECORD

Name R Title Code B Dept B
Dependents B State Code F Social Security R R
Exempt/Nonexempt (0/1) F Workman's Compensation (0 to 9) F

Male/Female (0/1) B Married/Single (0/1) B

Hourly Rate $R
Date Hired B
State Tax R
Insurance

Advance

Amount Last Increase $1
Date Terminated F
Disability Tax I
Auto Insurance I
FICA Status (exempt=O,

Date Last Increase F
Date of Birth F
City Tax R
Life Insurance I

nonexempt=l) B Page 2? <

Sample Form - During REQUIRED pass

This pass indicates if fields are required, fill-controlled, program reserved,
etc.

t'1j
I

111

Name , ,
EMPLOYEE PAYROLL RECORD

Dependents I State Code
Exempt/Nonexempt (0/1)
Married/Single (0/1)

, ,-
A
A

Title Code I Dept I
Social Security: I
Workman's Compensation
Male/Female (0/1) A

(0 to 9) B

Hourly Rate $1
Date Hired D
State Tax
Insurance

Advance

Amount Last Increase $1
Date Terminated D
Disability Tax
Auto Insurance I

FICA Status (exempt=O,

Date Last Increase D
Date of Birth D
City Tax
Life Insurance I

nonexempt=1) A Page 27 X

Sample Form - During PROGRAM pass

Program ' A' checks range 0-1, ' B' checks 0-9, 'D' checks for valid dates and 'X'
checks for a 'Y' or 'N' to determine if another form should be loaded.

SECTION II

DATAFORM LANGUAGE

TABLE OF CONTENTS
SECTION II

1.0 Elements of the Language
1.1 Labels 1
1.2 Pre-defined labels 1
1.3 Field program names 1
1.4 Blanks 2
1.5 Comments 2

2.0 Specification Statements
2.1 DATA -- Accessing the output buffer 3
2.2 WORK -- Intra-form work areas 3
2.3 COMMON -- Inter-form work areas 6
2.4 EQU -- External definitions 6
2.5 REDEFINE -- Redefinition of work areas 7
2.6 FIELD -- References to specific field numbers 8

3.0 Executable statements
3.1 Transfers of information 9

3.1.1 ALIGN 9
3.1.2 CONVERT 10
3.1.3 LOOKUP 10
3. 1 .4 MOVE 11
3. 1.5 SET 11

3.2 Arithmetic operations 12
3.3 Comparisons 13
3.4 Output control 14

3.4.1 WRITE 14
3.4.2 MESSAGE 14
3.4.3 SHOW 15
3.4.4 BEEP 15
3.4.5 CHAIN 16
3.4.6 FORMSHOW 16

3.5 Transfers of control
3.5. 1 GOTO
3.5.2 CALL and RETURN
3.5.3 CHANGE and RESET
3.5.4 Pre-defined Labels

4.0 Pre-defined labels
4. 1 AGAIN
4.2 END
4.3 INPUT
4.4 NEXT
4.5 NULL
4.6 OUTPUT
4.7 RETRY
4.8 STORE

16
16
17
17
17

19
19
19
19
19
20
20
20

5.0

.6.0

Program Generati(),n':l; . ':: .. ", 't) .< ,.1.:: c;'
5. 1 Edi ting a source' progr1:i.m, " ,'., ,
5.2 The compilation JSroocess" A

5.3 The compilation listing
5.4 The program tape
5.5 Form generation
5.6 Testing

Program Execution
6.1 Post process execution "
6.2 Operator tabbing
6.3 Pre-process execution
6.4 Program reserved field~d.'
6.5 Form constants ,:,,"" '"

, ," ,") :.::: "

APPENDIX A: Sample pr,?~I"a·li1s
, "

B: Error messa~~~

',;. F):"" ::'

, I. ; "-'

r :1 ,'; _. ~.\ ' ,

.- \' . ,
"

\ , j', : '

", '

APPJ::NDIX

APPENDIX
" I ,..{ , '~ ,

C: Commands iraq'uli'ing t'h'e" extended int'flrpreter

APPENDIX D: Code reduction techniques
: I ~'. "'~" :'. . : ,

APPENDIX E: Instruction list

21
21
22
23

,23
'24

25
25
25
.25
25

1.0 Elements of the language

The DATAFORM 2 language consists of two kinds of statements:
executable statements (i.e., those that do actual data
manipulation), and specification statements (i.e., those
that describe the different kinds of data available).

1.1 Labels

Any statement which is referenced elsewhere in the program
will have a label. A label:

1) begins in oolumn 1.
2) consists solely of alphanumerio characters.
3) may be any number of oharaoters in length,

although all characters after the first el~ht
are ignored.

1.2 Pre-defined labels

Seven labels are pre-defined to the compiler. These labels
are listed here, and discussed more fully below in section
4.0.

1. AGAIN 5. NULL
2. END 6. OUTPUT
3. INPUT 7. STORE
4. NEXT 8. RETRY

If any of these labels is re-defined in the program, the
re-deflnition will be flagged as a duplicate label error and
the re-deflnition will be ignored. The maximum number of
labels allowed by the compiler, inoluding pre-defined
labels, is 100. Any labels defined after this maximum is
reached are ignored. Examples of labels:

A
2765
FIELD17
LABELSTATEMENT

1.3 Field program names

(truncated to LABELSTA)

A field program name is the address at which the interpreter
begins execution of a program. A field program name is
defined as a label immediately succeeded (no intervening
blanks) by an asterisk (I). Only the first character of a

11-01

field program name is passed to the interpreter; therefore,
program names should be only one character in length. In
addition, the interpreter deals only with alpha~etic program
names; therefore, the one character should be alphabetic.
The compiler does not check for duplicate program names for
the same character; if there are duplicates, it passes both
to the interpreter. Since program names must be alphabetic
and only one character in length, the maximum number of
program names that the interpreter deals with is 26.
Examples of program names:

1.4 Blanks

E*
z*

One or more blanks are treated as a field separator. A
label must be separated from an operand (with the exception
of the program name asterisk described above) by at least
one blank. Blanks are ignored except as field separators.

1.5 Comments

Comments are of two types -- entire line comments, or
partial line comments. Entire line comments begin with a
period in column 1. Any line which has a period in column 1
is ignored entirely by the compiler. Partial line comments
may begin on a line whenever the syntax for that line is
complete. Partial line oomments should also begin wi th a
period, and are allowed on all statements except whero noted
in the discussion of the individual statements below.

A line that beg1ns wi th a plus s1gn (+) 1s a comment wi th
the special property of forcing that line to begin at the
top of a new page.

11-02

2.0 Types of specification statements

The six types of specification statements are:
statements; WORK statements; COMMON statements;
statements; REDEFINE statements; and FIELD statements.

DATA
EQU

2.1 DATA -- Accessing the output buffer

DATA statements refer to specific columns of the output data
record (the form). The general format of the DATA statement
is:

<label> DATA n,m

where 'n' and 'm' are decimal numbers in the range 1-245.
The number 'n' refers to an ini tial column of the output
data record, and the number 'm' refers to a terminal column
of the output data record. The columns defined by the DATA
statement need not correspond to specific fields of the
form. Areas may be redefined. Therefore, columns defined
by the DATA statement may be:

1) identical to fields on the form;
2) a sub-grouping of a large field into smaller

fields;
3) a combination of smaller fields into a larger

field;
4) an overlapping of fields on the form.

Syntax restrictions:

Examples:

1) 'n' and 'm' must be greater than zero but less
than 246.

2) m must be greater than or equal to 'n'.
3) the DATA statement must have a label.

NAME DATA 1,29 multiple column field
IDCODE DATA 30,30 single column field
Ar~OUNT DATA 31,39
DOLLARS DATA 31,31 Sub-group of l~rp;er
CENTS DATA 38,39 field

2.2 WORK -- Intra-form work areas

The WORK statement is used to reserve space within a field

11-03

program for ,?9~9; :non: ,p~e.!4,t;~'l.d'~ ~an.:Q.;\':.I?t'e6-defined working
storage (the latter consisting of ASCII or'octal constants,
or tables). To reserve non pre-defined working storage, the
following format is used:

'i ',>', ".' ~'," ~ '1.';, ' ! f~ :.i ... :, .~, (":, :'):'4 ',:,

(label)·, "',,' WORK ",n,. ',' .. ,,~ t " .• ' ','
" <,~ \ ' '\ " , • \" .' I' • , ... , .. f

where "n' is a decimal' ~u~'b~'r 'l'~"the '~~n~~ J;_24k i'~~'i~si~e.
The area called <label> would have an item length of 'n'.

Working storage is.,, .pr~-d~,.~i,~~d ,·,.,i t~·; A~Ca;a::\ Q,ha~a'd.te~s· by
inclosing the desired characters in double quotation marks.
Exampl/9s: " .:.< : :~·.,i>·~ :·,;.'%r,,'·;,,:'.',:··,~;:· '"

"'~' .. ' '"

<label> W'ORK "P'R'E~:bE'FINED' C:HrRic'T~~~" .«.,~~, ,:

A special forcing character ,'·f", is ,u$:.e,Q: :,t.o ' force' the
character immediately following' it to be included in the
string;, by using thi .. s .char~,9ter:": tf1e, doubIEt-:-:<t.uot.ation,·mark
and tHe forcing cha;racter may, ,appe,ar 'I in ,,;' the:. ',' i.character
string; ";. """ :,;".:"' " ,

. <l~b:ei.> :. ',,' . WORK ;!F.OR.C.J?P.':·DO'UP.kJ{QUQ~E ;,:,' *'J', IlND;~(~
<label.> .. ' .. iWORK "FORCJ;p .. F:OR,Clt\G:;; #'IP~·:.' '1.; ;.. "

,.'1,., '·~.l',·' :i:,,'}',)j,:~.~),i' ',' ~', ";.~J :.'
Each WORK statement that is pre-defined generates a code
segment. Ev~r,y. :pr~-d~.fined "'I",or~~ng> t:$;t:or:.age : eegment is by
defaul~ : terminated ,.wi,th ,.an .additi:on~L"·':,.~.pe·cial end-of-table
character, an octal zero. This cha.r~.o ... t:e:r: is inc luded in
computing i the:. ove~~all~" .. :lengt,~,o,f. ~.;;t.l;l~ ,["wQl"king storage
segment, but is not included in computi~g~·the item length.
It is po.ssible;. t() 1 : .. ~uppr'ss.-... c ;~:h.e." \"spe~~.al' end-of-table
charaoter in a pre-defined working storage statement by
following the terminal double quo'tra.-t-1 . .Cl!bJ.'~ma.·~: ;wtt!t.1~, a
semicolon. Examples:

WORK t
WORK2

, \ ':, ..'. , " (, -,::::, " .. I:,.~ ,'';> '\ ~:. "

The first example will generate the following five bytes:
0104,0101,0124,0101,000. The second will gen.61!a.t.~:H,:.bhe
followi ng four bytes: 0104,0101,0124,0101. The individual
item lengt,hs. a~.~ ~o~. ,affeo1:-,ed i',by·" the semiQo~on; only the
amount! of c~~e.geq.r~~!d ~~,~'f~Q~~d. ~~:: }·t

".,,, ",.' ~'(. ','.

Tables are pre~defin~d;byiqclu~~Q~ betw~en double qoutat1on
marks as well,., ,Tpe item ;.fen.gtn; O.tJ the tat'i:e,<.i s determined
by the length of each 1 tem' in double quotation marks. In
these four examples:

LABEL 1
LABEL2
LABEL3

LABEL4 WORK "123456"

all of the working storage tables have the same table length
(six characters plus one special end-of-table character for
a total table length of seven), but the individual item
lengths are respectively 1, 2, 3, and 6. The overall length
is not used for table lookups or range checks; table length,
however, is meaningful for the CONVERT and the table and
range IF comparisons.

Pre-defined working storage areas may have an overall length
greater than can be contained on one input code line;
therefore working storage i terns may be continued on more
than one line by using a colon, as in this example:

LABEL 1 WORK "123456","789012":
"345678":
"901234"

Working storage may be predefined with octal values. This
is done by presenting one or more octal constants, the first
of which (and .2!llY the first) is prefixed by the alphabetic
letter "0". Each octal constan~ generates only one byte of
working storage. An octal constant may consist of a strinR
of any number of octal digits; however, only the least
significant eight bits of the string are placed in the
generated byte. Octal constants may be grouped together
using a comma to separate each constant, and may be
continued from one line to another by terminating the first
line wi th a colon. Each octal work area is succeded (by
default) by a single binary zero, inserted automatically by
the compiler, which is used as a table terminator. A
semicolon following the last octal constant will suppress
the defaul t zero generation. The i tern length of an octal
constant area is one. Octal constants and ASCII character
strinp;s may not be mixed in the same WORK statement; WOHK
statements are either octal or ASCII. Exnmplns of octal
WORK statements:

<labe11>
<labe12>
<labe13>

Syntax restrictions:

\WRK 015
WO RK 015, 16, 17 , 20
WO RK 01 5, 1 6, 17 , 20:

25,26,27,30:
35

1) the WORK statement must have a label.
2) in a table, all i terns must be of the same

length.
3) line comments may appear on WORK statements 11'

the comment is preceeded by a period.
4) the length of non pre-defined areas may not

11-05

2.3 COMMON

exceed. 245 •. Th~:~otal lengilt .. :of a pre-defined
table oan be greater than 245, although the
maxim\lm .i te~, :len:gt.h.· is,;Wh:at:.can·.!be ,·packed on
one line •. ·.·.·.1~ .. ' .-" :' •.. :-,.)::,~,",,'.: ~> ::~ .. ',

, , ... '.1 " ,) '.'.'

, ' • ' " 'n- " ;"' • :.: 1 ,r~.: ~ .• ": 't t '" t.) .:" ,'..' ~', e. "

Inter-form ,work,,~reas.·, J i j ':,:' i'i; '. ': :\i'·,." '."

COMMON statements are identical syntactioally to WORK
statements. Tbeir ,ma.in ".~j,ff~r.~I1Qe' is,', .O·I)-en·,or.:,:fum~tU·on\" The
COMMON area is. used., for., .'tr~.;ri·s-.fera:l ot~'..'iniQrtma t'ion, .:b·etween
forms "j or for t,he. savirts,of '.:i~fQ'~rnat'ion,,,·~\.taed::,c·in (: one form
only, alth()ugh mul t.ipl.e t:orms ·,are 10a.4ied·~5 ~.",(:', '- ';",;":' ;, f.,.:

It is important for eve.ry pr.ogram using .. l,nformation saved
through COMMON to have ~he\same relative locations of areas
inside the COMMON blook. The statement:

<label), ,COM~ON·n '. , ','

should be used t9. "Skip' "6Vflr:'n' ,~n~s;d"' ~~~~s ,1.~side the
COMMON blook , if' t~QseIJt;>'Y'~~ls.. are; :rl'qt, :,',1."ef~renced. by: the
current form, and arereferenged" by anotrh~,t:' -,(·Q:rm. "

I}

Syntax restriotions~, , :,' t,'
, '.'

, ::', fi~ ~;;'

1) COM.MON' s.tatemen~s .. need not :na;y~:, labels, unless
the bloak of, in,formation ,,·isv to. be~e:ferenced

; in thegrogram."·r., .,,',,; .. 'f,·:1.: . ,:.'~
,2) ,the ,ma~lmum .. to~~l leng~h 'Qf' ",tQ~ COM.MON·, 'block

2.4 EQU

is 100 bytes.-., . ,,). 'li . ;'. ;, .'

3) llne oomm~nt;s,lIl.'y -,appeap;.,o.n:, .QOMMP,Ns,ta·tements
if they ,,are pr,e.oe{l,Qed,. by a .. p,er1:,o..<t~.;·\·':·' '
, '" " ,." ,j ,

, ,; ',' .
• '.(T.~'

. Externai defin'i tio'n's
" J " , • , .. !, l~"

The EQU statement is .used". to define i ,.absolute octal
addresses. Following the.' EQU"1.s a string: ;o.f octal digits,
denoting an absolute .octal,' a.~dress •. 'l'l1~L!ni tial oharacter
of the string need not'be ~. zero, although a zero will serve
as a reminder that the st~ing is octal rather than decimal.

If the system has more than minimal (mj;.nima.1 = 8K>. memory,
this extra memory may contain previ6usi~'~ssem~led assembly
(as distinot from Dataform) .. ,l~ngua·ge, programs, which may be
referenoed by using. the, EQP. statep1ent ·.to·(def~ne a label, and
then transferring oontrol to that ~aq~l, .. ~see seotion 3.5 of
this manual. for tranater of oontr-ql, stat.errl(~ts and Seotion
III for ass~mbly lah~ua~e.~nt~~taql~g)~ r~¢x.fuplcs:

11-06

8K
12K

EQU 020000
EQU 30000

2.5 REDEFINE -- Redefinition of buffer and work areas

The REDEFINE statement is used to associate a new label with
an elsewhere defined label.

The general format of the REDEFINE is:

<labe12> REDEFINE labe11,n,m

The number 'n-1' is added to the previously defined address
for labe11 and becomes the initial address of labe12. The
item length of labe11 is ignored, and the number 'm' becomes
the item length for labe12.

For example, suppose a table is defined as follows:

TABLE1 WORK "123456789012"

The item length of TABLE 1 is 12. Then consider:

TABLE2 REDEFINE TABLE1,1,6
TABLE3 REDEFINE TABLE1,1,4
TABLE4 REDEFINE TABLE1,1,3
TABLES REDEFINE TABLE1,3,2
TABLE6 REDEr'INE TABLE 1,1, 1

The same memory locations are "re-grouped" under different
labels, so that the effect is the same as:

TABLE2
TABLE3
TABLE4
TABLES
TABLE6

WORK "123456","789012"
WORK "1234","5678","9012"
WORK "123","456","789","012"
WORK "34","56","78","90","12"
WORK "7","8","9","0","1","2"

The REDEFINE is not restricted to WORK statements; COMMON
and DATA statements may also be REDEFINE'd.

Syntax restrictions:

1) on' and 'm' must be greater than zero but less
than 245.

2) the REDEFINE must have a label.
3) partial line comments may appear after the

'm" •
4) The REDEFINE statement

follow the label that

11-07

should immediately
is being redefined

(i.e., labell in the general format of the
REDEFINE above). The REDEFINE statement is
not flagged in error if it appears elsewhere,
but erroneous values may be generated if the
REDEFINE suooeeds the statements that
referenoe the REDEFINE'd label.

2.6 FIELD -- Referenoes to speoifio field numbers

The FIELD statement assigns names to areas of the output
reoord oorresponding to on the displayed form. Two types of
field referenoes are provided -- absolute and relative. The
absolute format is used to reference specific fields of the
form. Its format is:

<label> FIELD n

where the 'n' is a decimal number from 1-245.

The relative format is used to referenoe an offset (either
positive or negative) of the current field. The relative
format is:

<label> FIELD [sign]n

where [sign] is either a '+' or a
number from 1-245. For example:

FLD7
NXTFLD
LSTFLD

FIELD 7
FIELD +1
FIELD -1

, ,
- ; and 'n' is a decimal

Labels assigned via FIELD statements may be ret'erenoed in
any type of arithmetio or oonditional statement. For
example:

ADD LSTFLD TO INPUT GIVING NXTFLD

11-08

3.0 EXECUTABLE STATEMENTS

Executable statements are all statements other than
specification statements. They have to do with: 1)
transfers of data; 2) arithmetic; 3) comparisons; 4) output;
and 5) transfers of control.

In the subsequent discussion of generated code formats, all
addresses are two bytes in length, and are stored as MSB,
LSB. Relocatable addreases have the sign bit of the MSB set
to a one. Absolute addresses are all addresses other than
relocatable addresses, and are as they were defined.

3.1 Transfers of information

Data is moved from one location to another using one of six
possible verbs: ALIGN, CONVERT, LOOKUP, EDIT, MOVE, or SET.

3.1. 1 ALIGN

The ALIGN verb format is:

<LABEL> ALIGN field1 TO field2

The ALIGN first checks both field1 and field2 for the
presence of a decimal point. If none exists, it 1s assumed
to De at the rightmost edge of the field. After determining
the decimal point, field1 is moved to field2, with decimal
points aligned. In field2 , either truncation or zero-fill
or both may occur. Examples:

FIELD1 FIELD2 FIELD2
(before) (after)

10. 1 0000. 0010.
10. 1 00.00 10. 10
10. 1 0.000 0.100
1.234 0000. 000 1.
1.234 00.00 01.23

NOTE: If field2 is in the data area, the decimal format may
be initialized by setting (during form generation)
semi-constant zeros with a decimal point in the appropriate
position.

CODE: The ALIGN generates 7 bytes of code: op, field2
length, field2 address, field1 length, field1 address.

11-09

3.1.2 CONVERT Extended

The CONVERT verb format is:

': ; ' .. '(la:~~ii .,,: ';tONV~~iT :rl~,~,l~j.'~:)y (~~'!l~j~ 1" \~N.D~';'table2
t.. " ; .' 'j:' ,: ~ ,1 '; ," :,GI'f~~,G; t:lel;Q4~:',~;,;,:,' '·,1 <

" ,

.' , ... y -: : ~',I " ,\ I..,., ~ , ~ :.J 'i . .. ~ ;,' i (t· ~~ .: ~" h ' : ~
The CONVERT verb will try to' find field 1 in table 1. The
length of fie~,dl. ~~ u"sed, fO,r ",~ .. h~"s.ear.c"h'~;l,._".'P~;~;c:,c<?,~r:e$ponding
entry ,~n ta~le2,1,s ~O\T~~ t..o ,_~ie} .. :~,~~:.,! ~~~mp.tl~s ~"';<' ',', ': \ :~'

, • ,. ~ ,~ t J.' ~ TASCE1 ",' ''i''A'SLE2'':' ' , l' :,f, .~; :':: ')',' '::,
. •• >. ! \ • !'" < ", I' f' , (':!' "':-. '\ • '

:01 ;'JAN'!;'~ ",:,~, """""'.' ", .,','
'02 ,,":', 'FE'S" \ ;: 'I ?>~.:"" .. ~.,\";;:~)!.' :}~Lj.:\., ',(;~'.

03 MAR
04 APR
etc etc " If: (~' '. ,',"j :~ .. " ,', .

After a convert, ';,' "

FIELD1 /"
04

FIEL'D2 '
APR

07
01

JUL
JAN

" ,

I'
~ ,.." ,)

The item length of table2 is ,us~d ~p'ldeter..qJ.,ine,th~ ~9sition
of the corresponding element an'd' th'e length of the move from
table2 tq field2, (~pe ,item", length" ;o.,!"" field2 is also
checked); therefore, ea6h s$pai'"ate item fn' table2 should be
enclosed in double ,quotat1"Qll ma.~~.;9", 'j:~'~" ,,', , ,"', ,

It' the i~em" 1's' no~ "fOJJnq iit:':,t'a~Hd~·:~'~,~{,.~~lve;~e~,t, at data
takes place. ' .. ,~,,: ";";)f, i":;:,~(, ;':-:l"", .. ,L',;--'"':,·

" '1,.,' , (' <,. I" "t",,~,.v: ',' ~,,:';; "/~,, \" (,t 4' ~,:~;;' ,,,"- ,""', ;:'1: ",'
CODE: 'The CONVERT gener'ate.~. J2 .. ,byte~" Q.(,.. CQ4,~ ~ .. pp t" ,table 1
address, field 1 length, 'fiel,n' address ~ 'fleld2' iength,
t'1eld2 address,r: t.ble2 length, . table2 a,~,dre·ss.

, " . , , ' " , ,~l '

3.1.3 LOOKUP
:) i

, , ,~ , ,
.,' '_I t

The LOOKUP verb ;'to.r'ma t is:

" ('"
; ~ > I 1

:' '
" "",'

, ' . ~ ,

~,~'

Extended

<label> LOO~OP'f1eldl IN tablel GIVING field2
, ' ,

The LOOKUP verb wfi.f' u'S~'~;f~ei'd1 /lS :'a'h:~,ln;de~:,in;~~'l'ABLE1.
The i t~m., t~~s , s'e~'~'o~~?, . ~,i,li,,'~'e i y.lJib,V .. ~r~.,: ,:t~;\;:ti~'~Fl2.~ ",: .. .1.! the
index value is ~greater than the length of t,h~ "t~,ttle, the
value moved into field2 is 1ndeterminate. The example of
section 3.. 1.2 a bov,e, , ,q~~l d b.~ .. 9pd~O ,as :,,', 'i " ,. i'

, .-. ; " '" "

, : i,

11-10

<label> LOOKUP field1 IN table2 GIVING field2

The LOOKUP verb should be used when there are no 'gaps' in
the table from which the data movement takes place. The
CONVERT verb should be used when the table has gaps, or is
randomly ordered. The LOOKUP uses field1 as an item by item
index into the table, and hence will always find a match;
the CONVERT verb searches through the first table until it
finds a match.

CODE: The LOOKUP generates 10 bytes of code: op, table 1
length, table1 address, field1 length, field1 address,
field2 length, field2 address.

3.1.4 MOVE

The move verb format is:

<label> MOVE field1 TO field2

Field 1 is moved, left justified, to field2. If the length
of field1 is less than the length of field2, field1's length
is used in the move. Subsequent characters in field2 are
not changed; their values are as they were before the MOVE.
If the length of field2 is less than the length of field1,
field2's length is used.

CODE: The MOVE generates 7 bytes of code: op, field2
length, field2 address, field1 length, field1 address.

3.1.5 SET

The SET verb format is:

<label> SET field1 to field2

The first character of field2 is spread throughout field1 -
as for zeroing out a total, or blank filling a message. The
example:

ASTERISK
TOTAL
<label>

WORK "*"
WORK "00000000"
SET TOTAL TO ASTERISK

would set the entire 8 character total field to asterisks.
This should not be used to zero a field containing a decimal
point which is to be used as a destination for ALIGN or any
arithmetic statements since that decimal will be ovcrstored.

11-11

,f, '.(. , '
, - ~ ' .. '

CODg: The SET generates 6 bytes of code: op, field2
address, field1 lengt,h,. f'ie-ld1r·add~ess.' :j- "./ '~.J:;',,; - ':';':

" 1,\ •

, .. ~ ,-,.; . ';.
\ l'

, " ,~ , ~: • ~ "':..: i'. Q • ,\' j'~ '""

!
3.2 Arithmet.ic .oper~t'ions' :, '.:.- .". '..' MULTIPLYi,':-i Ext'e'nded

! .. '~ """. ~" .. ~:" '.:' ~J}IVI'J)E(\~: Ext"e·n<tled
: .~. '~£ 'e ' I

The standard arithmetic functions of add, subtract, multiply
and divide, are prQ-vi--d·ed.,: These'~ sta~eineil;ts -: mt1;s~' t):S;. 1'n the
followi ng formats (specifically, t. It'he coninalliti v.es·' . b'etween
label1 and label2 must not va-ryb, ",' "',> ,< .. ""

<label>
<label>

<label>

<label>

ADD label1 TO label2
SUBTRACT label1 FROM label2
(SUBTRACT may be abbreviated SUB)
MULTIPLY label1 BY label2
(MULTIPLY may· be', ab'brevla,ted MUL or

MPY)
DIVIDK labe11 INT~1.be12
(DIVIDE may be abbreviated DIV)

, ' ~ '.0. ' .. ~':'::.; .. ,4 : L. 1 ,

Alternatively, .any of, tne: :ab'ove '"foar -'·:may ·be'm<:fdi:fied by
appending the phrase <G:I-VING,·label3>bo: them. : ''Tbe . -r;esult of
this is that "the contents ,of', the ,!"irs,t':, two. ,la,bels; are: not
affected, but their' :'sum :~(d'ifferenc'e, \, 'pro:duot, '!q6utlent)
appears at the third label rather: ,·,t:nan' the ',second:
Examples:

<label>
<label>

"1 " , ~" ' ,," ,

, ADD'label1 TO: ,label2 ',GIVINGlabe13
MPY label1 BY label2 GIVING label3

This forma t causes an • ALIGN label2 TO label3' to be
generated prior to the arithmetic statement. 'l.':~'.', i ".

NOTE: Significance may be lost., a:t'·":tilis .. ' f;>QHit:, (before
computation) if label3 has fewer places of significanoe than
label2. ',' . . , ",' "

The result of any ard.thmetio· ;w,.t:lll : be";aligned to "the a·ecimal
point 1,n the'l\esul.t f1eld.,.,,:Tru-noation'1'8 pelltformed. ·at',!bot-h
ends of the field and leading zeros are suppl·ied it'
necessary; thus, in a field defined as right justified and
blank filled, performing an 'ADD NULL TO field' will replace
the leading blanks by, zeros. " "

CODE: If the arithmetic statements have a GIVING appended,
they will generate a J byt~ A~IGN!of'label~!to labeL3 before'
genera~ing the ,normCJ17 '·Qyt.e$ " of,· -code fop rtne ·ariti.hm'etic
operation: op, label4,length. label2 (addl"esa,.,labell.,length,
label1 address. .:; .~ e. . '.

, ;- - '

11-12

3.3 Comparisons CK10 - Extended
CKll - Extended

The general format of the comparison is:

<label> IF fieldl (RELATION field2 THEN labell

If the relation is true, control is transfered to label 1.
Three types of relations may be defined:

Examples:

1) ASCII comparisons (EQ, EQU, EQUAL, GE, GEQ,
GREATER, GT, GTR, LE, LEQ, LESS, LESSTHAN, LT,
NE, NEQ, NOTEQUAL are all acceptable). The
character values in field1 are compared, from
left to right, to the characters in field2
(using .tM. length 2I. field 1 12 terminate ~
compare). Differing lengths do not cause
unequal compares; however, if field1 1s longer
than field2, the results are indeterminate.

2) table lookup (INR, INHANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT, NOTINTABLE). Field1 is
"looked-up" in the table defined at field2.
The length of field' is used.

3) check digi t verification. Field 1 is tested
for correctness of check digit wi th either a
mod 10 (CK10) or a mod 11 (CK11) check
performed, using the contents of field2 as a
weighting factor. Field 1 should contain the
check digit in the least significant position.
Field2 is assumed to be one character shorter
than field 1.

FIELDl
ACCOUNTNO
MONTH
DAY
DAYTABLE
MONTHTABLE
ZERO
WEIGHTl
•

FIELD 1
DATA 21,27
DA TA 1,2
DA TA 3,4
WORK "01","31"
WO RK "0 1" , "0 2"
WORK "000000"
WORK "212121"

• Check field1 for strictly positive
•
A· IF FIELD1 GREATER ZERO THEN

AGAIN
•
• Check for null input
•
B· IF NULL EQ INPUT THEN AGAIN

11-13

STORE

•
• Check for negative.
•
C*

•

IF FIELDl LT ZERO THEN STORE
AGAIN

• Check range using table
•
•
D*

•

IF DAY NOTINRANGE DAYTABLE THEN AGAIN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

• Perform Mod10 cheok digit validation
•
E* IF ACCOUNTNO CK10 WEIGHT1 THEN STOR~

AGAIN

CODE: The IF generates 8 bytes of code: op, field2 address,
fieldl length, field1 address, labell address.

3.4 Output control

Three output statements are provided: WRITE, MESSAGE and
SHOW. (See also END and CLOSE in Section 4.) The BEEP
statement provides an audible tone, and the LOAD s~atement
is used to load another form (in addition to the auto-load
and linking-load features of the interpreter).

3.4.1 WRITE

The WRITE statement will write the data area to the front
oassette deok. Control is returned to the next statement 1n
the user' s program. (See also END 1n seotion 4.) The data
area in memory is not oleared, and may be passed to another
form for further oomputation or may be used for auto-duping
selected data. Its format is:

<label> WRITE

CODE: The WRITE generates only a 1 byte op code.

3.4.2 MESSAGE

The MESSAGE statement will write the specified field on the
bottom line of the soreen. Example:

(label> MESSAGE fieldl

The bottom line ot' the t'orm will be erased. However, the
message is only temporary and the bottom line of the form

11-14

will be restored when the operator writes the data record or
erases the current record.

NOTE: The INPUT field is destroyed by the MESSAGE
statement.

CODE: The MESSAGE generates 4 bytes of code: op, field 1
length, field1 address.

3.4.3 SHOW

The SHOW statement will display a message in the current
field area of the screen. If no message label is indicated,
the SHOW statement defaults to the contents of the data
record corresponding to the current field. Example:

or
<label>
<labeI1>

SHOW
SHOW <labeI2>

The SHOW may be used if computations or table lookup
conversions were made to change the value of the field. For
example:

CRDRTAB
LSTFLD
CD
MSG
S*

WORK "CREDIT","DEBIT "
FIELD -1
WORK "C","D"
WORK" ";
CONVERT LSTFLD BY CD AND CRDRTAB
GIVING MSG
NEXT

Program'S' is assigned to a keyin field (i.e. a field which
reserves no data space) which is set to 'program reserve'
(to automatically execute the program with no operator
intervention). The program tests the preceeding field and
displays a message corresponding to that value, for operator
information.

NOTE: The INPUT field is destroyed by the SHOW statement.

CODE: The SHOW generates 3 bytes of code: 9P code, label2
address.

3.4.4 BEEP

When executed, the BEEP command causes the machine to issue
a single beep sound. The format is simply:

<label> BEEP

CODE: The BEEP command generates only the 1 byte op code.

11-15

3.4.5 CHAIN

The CHAIN oommand" e·n~t>~es t,he ;u~ep. to~ lQ~d a .. ,,~.peci (ic~.'Jorm
when he exi ts his program. The format is: " .I" ,: '.,h,;' :,'

, , , '.1' , " : ,\ ~ ,~.:, ' '.'" .' ~ ., , ,,: :

where n is the number of the form to be loaded (from 1 to
126 decimal, inolusive). The current data r~O,Q;rd .i,s.not
written; however, the flag indicating data present'is' ·re'set.
The specified, fo,rm,. is, lpaded, and i cpntrol ,$.s'(passf3d t,o, the
Interpreter at, the first ;f,ield or. t'h.e .:new;', form •...... ":., ., , ,

I •• ,.. '. F ,_~

3.4.6 FORMSHOW , ~ , .
"";".'! , '~ ~ ,

The FORMSHOW statement will 'oa:~se th~ a'ilrrent form to be
redisplayed. All, d,~ta,fl~lds ~ .t.Qst, pot'ien ,,~;i.,ll ,,:b.tr(cltl'.~red.
The output r.ecQrc1, is, .. n,ot .~f'tected : a ,(l,d :, .ti:t~ ,c~.r.re,n~""J~eld
index is not changed. Example: .) "',':':,: ..

<lab~l>', ,~ORMSHOW , ,;

CODE:
code.

.,?': ' , ; l-
The ,FORMSHOW .oommand :sen·erates only", the 1 byte op

"
l/

. "~ .' ~ l~', ';:' ", < " , ' :...;"

3.5 Transfers of oontrol, I ','.. :: \ i ' , '~~,; ,\' ;, ' ,'. :" l_' ,'",.11 -:.;, I'

L "", .:. ,'I' ~ -~. :.,,- ., .. ,'. ' • ,I; .~<: .. 0 ~ "'~.,: ' r. (; ,,'~ .\

The three transf,er (,O,f "prQgr.m Q.Q,~,trQ~;' st~t(~~Pr~s;.,alj~, the
GOTO st:atement, c, the)C~LL ,:.~t~te~en~, :';~~;, ~,~e ,-,:~~TURN
statement. The two field ohanging statements, ;~re~h~, GtiANGE
and RESET statements. ' ".'

(,

3.5.1 GOTO
, , . .'~, '.' ~\~i' ~' ;'. _ .: ;.' ':', 't,l')....... ,I,~ ., .~\ • I ' ,

Control is immediately transferredt.o tii'e'labe<l" cf9;Llowing
1< ' • '- ' .,J " :

the GOTO:

<label> GOTO labell

For the pre-defined: l~9'els,'~ .. \ ,~,'~e" f~ord, 'QO,1;Q, i,~,' 9Pt1.on!ll<~~. ' , For
programer defined labels, it is mandatory. Examplest

I

CODE: The GOTO generates 3 bytes of code: op, label

':,)jII-16

/

address.

3.5.2 CALL and RETURN

A single level of subroutine nesting is provided wi th the
CALL and RETURN statements. A program may contain more than
one set of CALL and RETURN statements but a CALLed
subprogram may not CALL another subprogram. The statement
formats are:

<label>
<label>

CALL <subprogramname>
RETURN

If a RETURN is executed wi th no preceeding CALL (in the
current field program) a GOTO NEXT is executed.

CODE: The CALL generates 3 bytes of code: op, subprogram
address. The RETURN generates only a 1 byte op code.

3.5.3 CHANGE and RESET

The transfer of data input control is the CHANGE statement.
To change the input pointer from the current field (i. e. ,
the sequence number of the field as it appears in the form)
to another field, the new field number or displacement is
specified immediately after the CHANGE verb:

<label> CHANGE [sign)n

lo'or exampl e:

CHANGE +1

After this instruction is executed, INPUT still contains the
keyed-in data; however, the current field number has been
incremented by one and OUTPUT now reflects the positions in
the data record corresponding to the new field.

CHANGE 1

After this instruction, however, the current field number
has been changed to the first field in the form - field 1.

When the
field is
a RESET
pointers

field program is entered the number of the current
saved and may be restored at any time by executing

command. This statement will reset the field
to the field current when the program was entered.

CODE: The CHANGE generates 3 bytes of code: op, flag, field
number or displacement. The RESET generates only a 1 byte
op code.

11-11

3.5.4 Pre-defined Labels

There are seven pre-defined labels which cause a transfer of
control from the field program back to the DATAFORM
Interpreter. These labels may be used as the destination
address of comparison or GOTO instructions, as in the
example:

B* IF NULL EQ INPUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

c* ADD INPUT TO TOTAL
STORE

See the next section for detailed description of all
pre-defined labels.

II-18

~.o PRE-DEFINED LABELS

The seven pre-defined labels were first listed in section
1.1. They are discussed below.

~. 1 AGAIN

This label passes control back to the DATAFORM Interpreter
at a point which indicates an errol" to the operator and
re-requests the current field.

~.2 CLOSE

This label passes control back to the DATAFOHM Interpreter
at the point corresponding to the operator typing the 'END'
command. That is, an end of file marker is written on the
data tape and the 'READY' message is displayed, leaving the
operator in monitor mode.

~.3 END

This label passes control back to the DATAFORM Interpreter
at the point corresponding to the operator depressing the
write function key.

~.~ INPUT

This label designates the data keyed-in immediately prior to
entering the field program. The data in INPUT has not yet
been stored in the data record. It's length is defined at
execution time by the length of the current field, and, it
has oeen validated according to the edit criteria in the
form itself prior to executing the field program.

~.5 NEXT

This label returns control to the Interpreter at the point
at which the current field number is incremented. The
cursor is moved to the next sequential field. (No data is
stored.)

~.6 NULL

This label is a location which contains a binary zero. It
may be used to determine, by testing the output record, if
this is the first time data is entered. Example:

<label1) IF NULL EQUAL OUTPUT THEN labe12

11-19

'~ote that NULL should be referenced first since the length
of the first operator is used for the comparison.

4.7 OUTPUT

This label designates the contents of the data record for
the current field. If no data has been stored, OUTPUT has
the value of binary zero (NULL). The length of OUTPUT is
defined at execution time by the length of the current
field. OUTPUT is undefined for 'keyin' fields.

4.8 RETRY

This label is a location in the interpreter which contains a
binary flag indicating whether the system is in modify or
normal data entry mode. It can be checked by the user
program by comparing it to NULL. If RETRY equals NULL the
system is in normal data entry mode.

4.9 STORE

INPUT is W. moved to the data record before control is
transferred t~ a field program. The field program must do
one of three things:

1) MOVE INPUT TO OUTPUT
2) MOVE somethingelse TO OUTPUT (where

, somethingelse' mayor may not be based upon
INPUT)

3) exit the field program through the interpreter
label STORE, which will automatically MOVE
INPUT TO OUTPUT and position to "the next field
in the form.

11-20

5.0 PROGRAM GENERATION

Compilation of a program consists of two processes: using
the editor to create a new source program, or edit an
existing program; and compiling a new, newly edited, or old
program.

5.1 Editing a source program

The Da taform 2 edi tor and compiler are resident on an LGO
tape. The first file loaded is the editor, to permit
editing or creating a tape to be input to the compiler. The
Dataform editor is a special version of the General purpose
editor; its command structure is that or the General purpose
editor. The first display or the editor is:

CMP,OLD,NEW,DUP;PARAMETERS

?

A response of 'c' will begin the compilation of the cassette
in the front deck with no editing of it. A response of '0'
wi 11 edi t the informa tion on the front casset te onto the
real" cassette, and at the end of the editing process will
copy the real" cassette onto the front. A response of 'N'
will enter the new information onto the front cassette only.
A response of "D" will copy the front cassette onto the real"
cassette and wait for a new cassette to be inserted in the
front, and will then copy the real" cassette to the front.
The . PARAMETERS' field is discussed in the General Purpose
Edi tor Hanual. The" Da tabus' option, which sets a tabs top
at column 9, is initially set, and should be used for
Da tat'orm.

5.2 The compilation process

At the termination of the editing process, the compiler is
loaded. The compiler displays:

DATAFORM 2 COMPILER 1.1

on the screen. If a printer is part of the compiling
system, it asks if a listing is to be produced. It then
reads through the front cassette preparing a symbol table,
until it comes across a filemark. The front cassette is
tnen rewound. The actual code generation and listing
production takes place on the second pass over the input
tape. The code produced is intermediately stored on the

11-21

real" cassette, in the system: ,s.Cir~atch file (number 40). When
the second pass over the front cassette is completed, the
intermediately stored information on the real" cassette is
transferred to the front cassette. At the completion of the
transf~r, some or all ~f.of ~hese'message~ wil~ be'dtspl~yed
on the screen;!. .,. ;'. ':,.

STORAGE USED IN DECIMAL: 00000 RELOCATABLE, oOOOOeOMMON
EXTENDED INTERPRETER REQUIRED
FIELD PROGRAMS:

A 00000
Z 00000

END OF COMPILATION: NO ERRORS.
or END OF COMPILATION: n ERRORS.

These are descriptions of, the program, telling ··t:he length of
the entire program, whether or. not the .extended1n.terpreter
is required, and listing, in octal, the rel'OcB'table, starting
address of each of the programs defined. The End' 'message
lists the number ot' errors in decimal, if any occurred.
After this message, the machine 'beeps' ,·the keyboard and
display lights are turned on, and the machine is set in an
infinite loop. The compilation is then complete.

,

Any errol" messages are automatically displayed on the
screen, ,with an asterisk· indio$ting the par't of tl'le source
line in error. The display may besto'pped, mO'men,tarily by
depression of either the keyboard or display'keys~ ..

,- <, .

5.3 The compilation listing

The first act of the compiler is to test whether:~'s~r~~ or
local printer is a part of the'compiling system. I-f ;'either
of them are, t he message = . , ; .

or,
LIST ON, SERVO PRINTER?·
LIST ON LOCAL P,RINTER?

is displayed. A response of 'y' to this message will result
in a printed listing of the program~ as'it is: comp11~d. The
listing consists of foul" parts:

1) the line numbe~.
2) the initial address (either absolute or

relocatable) associated with the
statement line.

3) the code (in octal) generated, for that
line, eight bytes per·printedrlin~, uSihg:
as many printed lines \ as : necessary for'
the amount of code generated.

4) the l~neas ·it was 'input. . > ." ,

11-22

5.4 The Program Tape

When compilation is complete, the tape on the front deck
contains two files: the source statements (file 0) and the
compiled code (file 1). The compiled code file consists of
a header record and both relocatable and absolute object
code records.

The header record (which is in a fake object format)
contains the number of the extended interpreter required (if
any), the length of the relocatable object code, and the
names and starting addresses of all field programs in the
file.

5.5 Form Generation

The compiled program must be combined wi th a ' form' which
contains the screen image, field defini tions and program
references (see Section II, 2). To combine the form and
program files, load DF2FGS. If the form image has already
been generated, place the form tape in the front deck and
type 'OLD'; otherwise, generate a new form.

When the form is in memory, place a tape in the front deck
and type 'OUT'. This will cause the program relocator
overlay to be loaded. If programs have been speci fied for
the form (during the PROG pass of the generator), the
question:

DO YOU WANT TO USE A NEW PROGRAM TAPE

will appear. Type 'y' and the message:

PLACE THE PROGRAM TAPE IN THE REAR DECK AND PRESS ENTER

will be displayed. Place a compiled program tape in the
rear deck and press ENTER.

The header record is read to determine if this file contains
any of the required programs. If it does, the entire file
is copied to the front deck. The relocatable addresses at
the beginning of each record are changed to absolute
addresses by adding the address of the next free byte 01'
user space (this will be different for each form).

If there are still unresolved program references, the
new-program question will be repeated. If the user answers
'N' or all external references have been resolved, the form
(pointers, image, edit table) is written on the front tape.

If an extended interpreter is required, the message:

11-23

REPLACE DF2FGS AND PRESS ENTER

is displayed. Remove the program tape and put the system
tape back 1n the rear deck and press ENTER. The required
version of the extended interpreter will be copied to the
end of the form.

When the form tape is completed, an end of file is written
and the message:

nnn BYTES LEFT
DONE-LOAD NEXT SYSTEM

appears. Remove the form tape from the front deck.

All tapes should then be checked to see that they have
appropriate labels on them, to avoid confusion later.

5.6 Testing

Place the DF 2SYS tape in the rear deck and press RESTART.
Place a blank tape (for data) in the front deck. When the
Interpreter is running, type START to initialize the data
tape. Then remove the DF2SYS tape and place the form tape
in the real" deck. Type 'NEW' to cause the form to be loaded
into memory. The form will be displayed with the cursor in
the first data entry position. The user may then proceed to
test the form. Undefined programs will not be executed,
commands to automatically load other forms will be ignored
in the test mode.

11-24

6.0 PROGRAM EXECUTION

6.1 Post process execution

Field programs are always executed as a 'post-process' to
data entry, that is, the program is not executed until the
data has been keyed in and accepted by the basic
interpreter. Thus, alpha/numeric checks, right
justification, etc. will already have been performed on the
input.

6.2 Operator tabbing

If the operator chooses to bypass a field which is not
required, INPUT contains a null field (binary zeros).

If the cursor enters a field during backward or forward
tabbing and no new data is entered, the data currently in
tne output record (which mayor may not be a null field) is
passed to the field program. If, however, new data is keyed
in, the new data is presented to the field program in the
INPUT area while previously entered data is still available
in the OUTPUT area. It' the previously entered data is
cancelled by the operator, a null INPUT field is passed to
the program.

6.3 Pre-process execution

To execute a pre-process', the user must assign that
pre-process program to the preceeding field (making certain
to store or provide for storing the input data).

6.4 Program reserved fields

Data entry in a field may be prevented by designating that
field as a 'program-reserved' (P) field during the REQUIRED
pass of form generation. In that case, the field program is
executed immediately upon reaching the field and the area
designated by INPUT is meaningless.

6.5 Form constants

Constants and semi-constants are set into the output area
prior to data entry. However, fields containing constants
will be passed through the basic interpreter as if the
constant characters had been keyed in. They will be edited
and passed to the field program in the INPUT area.

11-25

PARITIAL

SIZE
TYPE
REQUIRED
PROGRAM

MOVE SIGN

APPENDIX A: Sample programs

FORM

NUMBER <_ "'_ ,---'"'-,
I I

7 6 1
R

P P
S

TO RIGHT END OF FIELD

INSIGN
INREST
NXTF'LD
SIGN
SPACE
MINUS

•

REDEFINE INPUT,1,1
REDEFINE INPUT,2,6
FIELD+1
FIELD+2
WORK" ";
WORK "-";

Input to "keyin' field, move sign and store
in next data field on form

S* IF NULL NE INPUT THEN MOVE
IF NULL EQ NXTFLD THEN AGAIN
NEXT

MOVE MOVE INREST TO NXTFLD
MOVE INSIGN TO SIGN

TOTAL
HOLDS
HOLDR
HOLD

•

IF MINUS EQ INSIGN THEN NEXT
MOVE SPACE TO SIGN
NEXT

Routine to do arithmetic with sign inverted field

WORK "00000.00"
WO RK "0";
WORK "000.00"
REDEFINE HOLDS,1,7

Save keyed in total and zero computed total

A* MOVE INPUT TO OUTPUT
SUB TOTAL FROM TOTAL
CHANGE 3
CALL ADD
CHANGE 6
CALL ADD
RESET
IF TOTAL NE OUTPUT THEN AGAIN
END

Routine to add sign inverted data

A- 1

•
ADD MOVE NXTFLD TO HOLDS

MOVE OUTPUT TO HOLDR
ADD HOLD TO TOTAL
RETURN

MOD 10 CHECK DIGITS

MOD 11

WEIGHTO WORK "165432"
CKO IF INPUT CK10 WEIGHTO THb:N STORE

AGAIN
WEIGHT1 WORK "21212"
CK1 IF INPUT CK10 WEIGHT1 THEN STORE

AGAIN
WEIGHT3 WORK "1131131"
CK3 IF INPUT CK10 WEIGHT3 THEN STORE

AGAIN
CHECK DIGITS

WEIGHT2 WORK "432165Q32"
CK2 IF INPUT CK11 WEIGHT2 THEN STORE

AGAIN
WEIGHT4 WORK "182345618"
CK4 IF INPUT CK11 WEIGHT4 THEN STORE

AGAIN

COMPUTE REQUIRED CHECK DIGIT

CKWORK
CKDIG
CKIN
1
WEIGHT

'C*

Cl

C2

WORK "000000";
WORK "0";
REDEFINE CKWORK,1,1
WORK "1";
WORK "121212";
MOVE INPUT TO CKWORK
SUB CKDIG FROM CKDIG
IF CKIN CK10 WEIGHT THEN C2
ADD 1 TO CKDIG
GOTO C1
MOVE CKIN TO OUTPUT
NEXT

A- 3

PARITAL FORM

DATE
SIZE
TYPE
REQUIRED
PROGRAM

1 1 I 1_1- _

222
D DD
F F F

J

JULIAN DATE CONVERSION

JULIAN I
5 "'," '"
~" ' .

P

" I',''',.'

JDAY
DAYS
LEAPYR
INMO
INDAY
INYR
JULIAN
JYR

WORK' "00003105909'0'1201511.81212243213'304334 11

K1
K02

REDEFINE JDAY, 1 ,3 ',;,
WORK "7680848892"
REDEFINE INPUT,J,2
REDEFINE ~NPUr~3,2

, REDEFINE INPUT ,5,2
FIELD +'
FIELD +2
REDEFINE,JDAY~6,1
WORK 't 02" ;

Pr~gram starts here'

use input month as in(I~X:eO daY'~/~O'nth table
•
J* LOOKUP INMO Itt: DAYS,' GlVINO' JULIAN I

• add input days

ADD INDAY TO JULIAN

• check for leap year

MOVE INYR ~O J1R I, ~ ,

IF INYR NIT LEAPYR THEN N~XT
IF INMO LE K02 THEN NEXT
ADD K1 TO JULIAN

• JUlian date is in next field - it should be

NBXT

A- 4

program reserve

CHECK FOR DECIMAL

DEC32
DEC
FLD32
•

•
OP32
•

•
FMAT32
FMATRET

•

FORMAT 000.00

REDEFINE INPUT,4,1
WORK "."
WORK "000.00"

Use this if null field is permitted

IF DEC32 EQ NULL THEN FMATRET

Enter here if field is required

IF DEC32 NE DEC THEN AGAIN
RETURN

If field in form is not initialized
align input, store and redisplay

FMAT32 ALIGN INPUT TO FLD32

•
FMAT32

MOVE FLD32 TO OUTPUT
SHOW • Note that input must be saved
RETURN • before SHOW executed

If form contains semi-constant 000.00

ALIGN INPUT TO OUTPUT
RETURN

A- 5

SHIFT LEFT and RIGHT

FLD WORK 10
FLD1 REDEFINE FLD,1,1
LFLD REDEFINE FLD,2,9
HOLD WORK 9
FILL WORK "0"
•
• Shift left thru same field
•
SHFTLFT MOVE LFLD TO FLD

RETURN
•

Shift right thru hold field filling on left
•
SHFTRGT MOVE FLO TO HOLD

HOVE HOLD TO LFLD
MOVE FILL TO FLD1
RETURN

A- 6

PARTIAL FORH
CREDIT/DEBIT <------ 1-- --

I

SIZE 7 6
TYPE R
REQUIRED S
PROGRAM M

MINUS OVERPUNCH

FLD1
SIGN1
FLD2
SIGN2

MOPCH1
MOPCH2
MINUS
KO
•

•

•
NXTFLD
•

REDEFINE INPUT,2,6
REDEFINE INPUT,1,1
REDEFINE INPUT,1,6
REDEFINE INPUT,7,1

WORK "0123456789"
WORK "1","J","K","L","M","N","O","P","Q","R"
WORK "-"
REDEFINE MOPCH1,1,1

Convert units position to minus overpunch using sign
at left

input field should be 'keyin' (i.e. no output space reserved)
store conversion in next field (should be program reserved)

FIELD +1

• check for null field
•
M* CALL NULLCK
•
• check for sign
•

IF SIGN1 NE MINUS THEN PLUS
•
• convert units position to minus overpunch character
•

CONVERT SIGN2 BY MOPCH1 AND MOPCH2 GIVING SIGN2
PLUS MOVE FLD1 TO NXTFLD

NEXT

CHECK FOR NULL FIELD ON INPUT

•

NULLCK
SAMECK

Check for null or repeated input on optional fields

IF NULL EO INPUT THEN STORE
IF INPUT EQ OUTPUT THEN NEXT
D~'T'IJD"I

-:a:
I

(X)

CHARACTER CONVErlSION FOR A FIELD

•
•

•
INl
INMOV
ASCII

EBCDIC

CVTWK
WKl
WKSAV
K29
COUNT
KOO
•
C*
C1

CVTNAME

Character conversion for a field is accomplished
by shifting thru the field

REDEFINE INPUT,l,l
REDEFINE INPUT,2,29
WORK " 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZI#"##$%&'()="

"+*?I. ,<>_-@;:"
WORK 0100,360,361,362,363,364,365,366,367,370,371,301,302;

303,304,305,306,307,310,311,321,322,323,324,325,326;
327,330,331,342,343,344,345,346,347,350,351,132,177;
173,133,154,120,175,115,135,176,116,134,157,000,113;
153,114,156,155,140,174,136,172

DATA 1,30
REDEFINE CVTWK,2,29
REDEFINE CVTWK,30,1
WORK "29"
WORK "00"
WORK "00"

MOVE K29 TO COUNT
CALL CVTNAME

MOVE INMOV TO INPUT
MOVE W1 TO CVTWK
SUB K1 FROM COUNT
IF KOO HE COUNT THEN Cl

• Initialize counter
• Convert 1 input char & store in
• units psn of output
• Shift input left
• Shift output left
• Decrement counter
• at end convert last character

A RETURN will default to NEXT if the routine was not Called

CONVERT IN1 BY ASCII AND EBCDIC GIVING WKSAV
RETURN

BLANK FILL DISPLAY - ZERO FILL OUTPUT

• Data field on form should have type 'B' - right justified,
blank filled on the left

ZF ADD NULL TO INPUT
STORE

REFORMAT DATA RECORD

5
EOL
EOR
DEC

FIELD 5
WORK 015
WORK 03
WORK ft."

• END OF LINE ITEM
• END OF RECORD - STORE THIS AFTER LAST 015

After last field of line item, reserve a single position
field and store an 015

B* MOVE EOL TO OUTPUT
NEXT

•

At first field of line item, check for a special character
e.g. a minus, a decimal pOint, a leading space, etc.
If the special character is present, set an end of record
into the field and force writing of the field

A* IF DEC NE INPUT THEN STORE
MOVE EOR TO OUTPUT
END

OR write the record yourself and erase the line item data
preserving the header information

HEADER DATA 1,30
REST DATA 31,201 .
A* IF DEC NE INPUT THEN STORE

MOVE EOR TO OUTPUT

DATAl
DATA2
DATA3
DATA4

WRITE
SET REST TO NULL
FORMSHOW
CHANGE 5
AGAIN

To eli~aDate unused positions in the data record
shift the data left prior to writing

DATA 29,199
DATA 30,200
DATA 51,198
DATA 58,199

NOTE that the data is no longer in the assigned positions
and therefore may not be edited (MOD and FIND) oy the original form

MOVE EOL TO OUTPUT
MOVE DA1A2 TO DATAl
MOVE DA1A4 TO DATA3
END

• THE LAST FIELD IS A FAKE
• SHIFT END OF RECORD OVER 1ST UNUSED BYTE
• SHIFT AGAIN OVER 2ND UNUSED BYTE

Enter data out of order by using CHANGE instructions

A- 9

•
PARTIAL FORM

SHIPPED TO
I,. __ ... __ "...ft~ __ .,..ft

f

A PROGRAM

PROGRAM

PROGRAM

ENTERING

ADDRESS

DATE

FIELDS
NXTfLD
FLD~ .
FLD.
A*

B*

C*

SAVE

' AA""",.. ___ ,...A

f

A • .", 1 ..
I I

C

OUT OF ORDER
FIELD+1
FIELD 1
FIELD 1
CALL SAVE
CHANGE' +1
NEXT
CALL SAVE
CHANG£. 8
NEXT
CALL SAVE
CHANGE 2
NEXT
MOVE INPUT
RETURN

TO OUTPUT

A-10

SHIPPED FROM

ADDRESS

DATE

, ___ ___ A ____ ,....

I

A
I _ _.,..,A_"~ __
I '/

B
I ~ I •• I ~
I I I

TOTAL ACCUMULATION

TOTAL
A*

•
B*

COMMON "00000.00"
SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
STORE

or

SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
MOVE INPUT TO OUTPUT
MESSAGE TOTAL
NEXT

For Intra-form totals

1 r'IELD 1
C* ADD FLDl TO FLD2 GIVING TOTAL

AUD FLD3 TO TOTAL
ADD FLD4 TO TOTAL
IF TOTAL EQ FLD5 THEN END
CHANGE 1
AGAIN

For line-item totals
use definitions like these

•
FLD1 FIELD -5
FLD2 FIELD -4
FLD3 FIELD -3
FLD4 FIELD -2
FLD5 FIELD -1

A-ll

• Display current value of
• the accumulator

PARTIAL FORM
NAME l~ftft~~~ft_ft~A_ft DATE I~I~I~

REQUIRED P P P
ACCOUNT I~~---- <

p
PROGRAM V

MODIFY MODE VERIFY PROGRAM

0 WORK "0";
1 WORK "1";
RETRY WORK "3";
HOLD WORK tf " N WORK "0";
•
• VERIFY PROGRAM
•
V* IF INPUT EQ OUTPUT THEN OK

ADD 1 TO N
IF N EQ RETRY THEN CKHOLD
MOVE INPUT TO HOLD
AGAIN

CKHOLD IF INPUT NE HOLD THEN VAGAIN
MOVE INPUT TO OUTPUT

OK SUB N FROM N
NEXT

•
VAGAIN SUB N FROM N

AGAIN

• LAST FIELD PROGRAM REWRITES RECORD

V L

• (IN MODIFY MODE NEXT RECORD AUTOMATICALLY READ)
•
L* END

A-12

APPENDIX B: COMPILER ERROR MESSAGES

PARITY ERROR: A/C?

A parity error persisted on a cassette read operation after
five retries. A response of 'A' will abort the compilation;
a response of 'c' will use the bad block as if nothing were
wrong with it.

BAD LABEL INITIATIOR

A character that was neither a decimal point nor a space nor
alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the asterisk contains a
character which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than those operators appearing in APPENDIX G
was the first non blank symbol after column 1 (or after the
label, if one exists).

NUMBER FROM 1-245 EXPECTED

The indicated symbol is nun-numeric, or if numeric, not in
the specified range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was
not a comma.

FIELD2 IS LESS THAN FIELDl

In a DATA statement, the second field is less than the
first.

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. If it is
not there, it is assumed.

ILLEGAL LITERAL

In a table, every item enclosed in double quotation marks

B-1

must be of equal length. Those that are of different length
than the first item are flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a .line, the
following line must have a blank in column one, and the
first symbol on the line must be a double quotation mark.
If either of these is not the case, the continuation is an
improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight
pre-defined labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled word is
assumed to be the one expected, and the next symbol is
expected to be a legal label.

ILLEGAL CONDITION

The connective in an IF statement is not one of those listed
in section 3.3. Nothing about the connective is assumed.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously
in the program (or it is one of the eight pre-defined
labels). The second (and any subsequent) d~rinitions of the
label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is
fixed at 125, including the pre-defined labels. All labels
after this maximum is reached are ignored.

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 bytes. Anything defined
as COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR

The program counter, at the end of pass two does not equal
the program counter at the end of pass one. This is an
internal compiler error message.

B-2

APPENDIX C: COMMANDS REQUIRING THE EXTENDED INTERPRETER

ROUTINE

MULTIPLY
DIVIDE
CONVERT
CK10 & CK11

DECIMAL
SIZE

83·
183·
83

161

*MUL/DIV OVERHEAD 56
EXTENDED INTERPRETER OVERHEAD 18
COMt~ON 100

(REQUIRED WITH EXTENDED INTERPRETER)

C-l

APPENDIX D: Code Reduction Techniques

1. Use carets (..) in field definitions (remember they are
compressed while dashes are not).

2. Use ' common instead of' 'work' if any extended
interpreter is used (100 bytes of common is reserved
whether you use it or not).

3. Place semi-colons at the end of all non-table, non-range
variables to suppress the end-of-table character.

4. Use 'redefine' to create constants or tables which are
subsets of other constants or tables. This technique
may also be used for computation or hold areas if the
redefined variables are not needed at the same time.

5. Use subroutines to perform repeated operations.

6. Use field displacement referencing to generalize
programs used with line-items (i.e., where the same set
of fields is entered several times within one form).

7. Use' input', ' ou tput' and ' reset' to generalize programs
and thus avoid duplication of code.

8. Keep constants in the form itself (by defining them at
form generation time) instead of using a field program
to set them.

9. Combine several fields into one wherever possible (each
field requires 6 additional bytes of edit table).

10. Avoid extended interpreter functions when possi ble (by
coding multiplies using add's, etc.).

11. Use 'Lookup' instead of 'Convert' to save one of the
tables.

12. Use data areas as work areas whenever possible, thus
saving intermediate hold areas.

13. Execute all programs on last field if possible, on the
assumption that the operator is usually right, to save
'NEXT' and 'STORE' instructions.

14. Don't use CHANGE/SHOW/CHANGE instructions if NEXT will
automatically show and bypass if field is defined as
'program reserved'.

D-1

APPENDIX E: ALPHABETICAL LISTING OF STATEMENT TYPES

NAME OPCODE SECTION

ADD 0117 12
AGAIN 19
ALIGN 0113 9
BEEP 0137 15
CALL 0124 17
CHAIN 0130 16
CHANGE 0126 17
CLOSE 19
COMMON 6
CONVERT 0116 10
DATA 3
DIVIDE 0122 12
END 19
EQU 6
FORMSHOW 0134 16
FIELD 8
GOTO 0123 16
IF CK10 0135 13
IF CK 11 0136 1 3
IF INT 0100 1 3
IF NIT 0101 13
H' INR 0102 13
IF NIR 0103 13
IF EQ 0104 13
IF NE 0105 13
IF GE 0106 13
IF LE 0107 13
IF GREATER 0110 13
IF LESS o 1 1 1 13
INPUT 19
LOOKUP 0115 10
MESSAGE 0131 14
MOVE 0112 1 1
MULTIPLY 0121 12
NEXT 19
NULL 19
OUTPUT 20
REDEFINE 7
RESET 0127 17
RETRY 20
RETURN 0125 17
SET 0114 1 1
SHOW 0133 15
STORE 20
SUBTRACT 0120 12
WORK 3
WRITE 0132 14

E-1

SECTION III
Programmers Manual

Table of Contents
Section III

1.0 System Structure of the Interpreter

2.0 Edit Table Format
2.1 Format
2.2 Work Area
2.3 Routines to Access Edit Table

3.0 Structure of a Form in Memory
3.1 Pointers
3.2 Data Buffers
3.3 Form Image
3.4 Edit Table
3.5 Field Programs 5
3.6 Extended Interpreter

4.0 Subroutines Available in the Interpreter
4.1 Interrupt Handler
4.2 Cassette Drivers
4.3 Keyboard Input
4.4 CRT Display
4.5 Form and Data Access
4.6 String Arithmetic

5.0 T8
5.1 Program
5.2 Form
5.3 Data

6.0 10s
6.1 External References
6.2 Interpreter Processing Addresses
6.3 Interpreter Data Areas
6.4 Loading Assembly Language Programs

.~ ,.

1

2
2
3
3

4
4
4
4
5

5

6
6
6
6
6
7
7

8
8
9

10
10
10
11

1.0 System Structure of the Interpreter

The Interpreter resides wi thin an 8K Da tapoint 2200.
Of the 8K the first 6. 5K is reserved for the Interpreter.
The remainder is shared by the user~s data area, edit
tables, form image, and, if necessary, field programs
(which, in turn, may required the extended interpreter). In
the Interpreter, memory is allocated as follows:

subroutines·

variable data

interrupt handler

cassette drivers

keyboard 1/0

command handler

field program
interpreter

string arithmetic

form pointers

user space*

00000-00777

01000-01643

0'1644-01751

01752-04717

04720-062'72

06373-12142

12144-13421

13422-14523

14524-14740

14741-17777

* Some Interpreter subroutines are initially set in the user
space area and are moved into low memory when the
Interpreter is first executed.

1

2.0 Edit Table Fermat

2.1 Fermat

Fer each flelddefined'by', a, :,fC'i;rm;) a "six 'b~t~:;':edl t:l t~:ble
entry is generated,.' ~The" entP,y: conta:tns:;

, • • i> ~ • i .~

horizentalpoaitton
vertical pO"siton: ',i
length ef field
positien in eutput recerd

, edi t key' , """
field pregram, letter

The hO,rizO,ntal pO,sitiO,n (0-79) indicates the starting celumn
ef the field in the screen i,mage.' rh's" ':v$rt.ioal pesi tien
(0-11) indicates the line ef the screen image cehtaining the
field. The infermatien is used:,to, di'splay 't'rt'h'ff-' fleld as well
as to, access data stored in the ferm image rdr the field
(i.e., censtants).

The length ef the field is the",numb'er: ot'.:,'lQlharacters the
o'perater may key in ('1-80). This number is asseciated at
executiO,n time wi th tne labels INPl:JT~" Q'l)TJ>ij1': 'tmtl wi th field
references in user field pregrams.

The pesi tiO,n: O,f tbe field in the, ,data, r,e,ecMViis: actually an
index (0-24t~) into' the O,utput buffer. If the: field is a
'keyin' field,· i.e., no, data space"ls"l"'eS'er'V'EH'n the pesitien
value is 0377.

The edit key is a cembinatio'n ef bits indicating the edits
set in the Generat,or p~ss,~~ TJeE ~,all,d" EEQUIRED, •. '"' The bi ts in
the edit key have the fO,llO,wing meanings:

: 17 I 6 I 5' I 4 1 ,3 12; 'J , < .-.' ,b ,f; () I ",'
\' "!."'-: "'. , , , , \ ,

, ~,r ,'\ \~Alpha"
\ \ \ \ \ \ \ Numeric Field

\ \ \ \ \ \ No, Keyin
\ \ \ \ , Right Justified

\ \ \ \ Zero, Fill
\ \ \ Numeric Digits

\ \ Fill Centro'lled
\ Required

The alpha and numeric digi t bits are beth set fer the
'mixed' field type.

The field prO,gram letter is set to, binary zero, if no, field
program is assigned; O,therwise, the actual ASCII letter is
stored in this byte.

2

The number of the last field in the edi t table (the first
field is zero) is used to determine the length of the table.
In addition, there is an 0377 stored after the last entry.

2.2 Work Area

During data entry, the edi t table entry for the current
field is moved to a work area in the data page for ease of
referencing. The variables:

COLUMN
LINE
LENGTH
PSN
EDTKEY
USER

contain the six byte entry. ' SAVFLD' contains the current
field number.

2.3 Routines to Access Edit Table

There are several routines available to access the edi t
table entries. EDTPNT is the most basic routine. This
routine uses the value in the C-register to set the HL
registers to the address of the corresponding field.

MOVEDT saves the field number in the C-register in SAVFLD,
and moves the corresponding edit table entry to the work
area and into the registers. It also posi tions the cursor
to the field.

NEXT and LAST use the saved field number to access the next
or the preceeding field. Both routines call MOVEDT.

3

3.0 Struoture of Form in Memory

3.1 Pointers

The form is defined by a fixed set of pointers:

linked form number
field program pointers
maximum field number
edit table pointer
data-write buffer pointer
length of data reoord
form line pointers

The variable NEXTF oontains the number of the linked form
(000 if no link, otherwise it is the physioal file number of
the form), and the variable PAGE3 is the auto-link flap; (0
or 0377).

For eaoh possible field program foul" bytes are reserved
starting at the label USERA. The foul" bytes are zero if the
oorresponding program letter is not present. If a program
is present, whether referenoed or not, the first pail" of
bytes oontains the 'base address' to be used for all
relati ve addresses wi thin the fiel d program. The seoond
pail" of bytes oontains the starting address of the program.
(Note: All addresses are stored MSB,LSB.) Unresolved
program referenoes oontain an ootal 377 in the first byte.

The edi t table is always referenoed via the address
pointer, SEDIT, and the maximum field number, EEDIT, whioh
is oheoked against the requested field.

3.2 Data Buffers

The input data buffer is always in a fixed posi tion, DATA,
at the end of all form pointers. It"s length is define by
the variable LDATA.

The output buffer, to whioh the data is moved prior to
writing, is in a variable position. It is set at the end of
the data buffer, at a point defined by the length of the
data reoord + 8. The address of the output buffer is in
SMATCH. The output buffer is also used when performing FIND
operations. The data oontained in the output buffer is
available to the operator by means of the field dup function
key (DISPLAY/D).

3.3 Form Image

The oompressed form is stored beyond the two data buffers
and it is referenoed indireotly through the pointers
starting at LINES. If the address in the table of pointers

4

starting at LINES, corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen.

3.4 Edit Table

The edit table is. generated beyond the compressed form. The
byte immediately after the edit table terminator (0377) is
available for user programs.

3.5 Field Programs

When programs are attached to the form, using the Field
Program Relocator, blocks starting at relocatable addresses
are giving absolute addresses based on at the first
available space after the form edit table. Non-reloca table
records from the field program (e. g. COMMON), are simply
passed through to the form tape.

3.6 Extended Interpreter

There are fifteen extended interpreters which contain all
possible combinations of four extended commands (convert and
lookup, and CK10 and CK11 are combined for purposes of the
extended interpreter). Thus, extended interpreter 1
contains only check digi ts, 2 contains the mul tiply
subroutine, 3 both check digi ts and mul ti ply, 4 divide, 5
divide and check digit, 6 multiply and divide, 7 multiply,
di vide and check digits, 8 conversions, 9 conversions and
check digi ts, 10 conversions and mul tiply, 11 conversions,
multiply and check digits, 12 conversions and divide, 13
conversions, divide and check digi ts, 14 conve rsions,
multiply and divide, and 15 contains all extended functions.

The extended interpreters are all assembled so that
they end 100 bytes plus 3 to 18 bytes (for jump
instructions) from the end of memory (in an 8K machine);
thus leaving a maximum amount of user space. Three to
eighteen of the bytes are reserved for a jump table into the
extended interpreter itself, since the starting addresses of
the subroutines change for each of the fifteen leve).s of
interpreter.

5

4.0 Subroutines Available in the Interpreter

4.1 Interrupt Handler

The Dataform interrupt handler, INTRPT, is labelled and
works like the D.O.S. interrupt handler. There is, however,
room for only two interrupt processes. Process 1 is reserved
for the cassette driver.

4.2 Cassette Drivers

The names and parameterization of the cassette routines
in Dataform are the same as for the D.O.S. cassette
routines. There are two additional routines available:
THAW$ and LOAD$.

TRAW$ is a tape write routine which automatically
performs a read-after-write function. It is used to write
the data records and is parameterized as is TWHIT$.

LOAD$ will load object code (forms are in object code
format) at the addresses specified by each record. The tape
must be positioned past the file marker before calling
LOAD$. The only parameter is the deck in the B register.
The routine loads continuously until a file marker is
encountered. The tape is left positioned beyond the file
marker record and the variable NXTFIL contains the number in
that file marker record. LOAD$ returns as soon as the load
operation has been initiated. Thus t the user must call
TWAIT$ to determine when the load has been completed.

4.3 Keyboard Input Routine

There are two entry points to the keyboard input
routine, KEYIN and KEYIN$. When the routine is entercd at
KEY IN, the edi t type and length for the current f.ield nre
applied to the input. In addition, it is assumed that the
corresponding area of the form image is in the HL registers.
This area is checked for constants. If entered at KEYIN$,
fake parameters are provided to permi t twenty characters
wi th no edi t restrictions. The input is always stored in
TEMP.

4.4 CRT Display Routine

The di spl ay routine also has two entry points, DSPLY$
and DSPLY. If entered at DSPLY, the cursor position will be
set to the bottom line and the screen will be rolled up
after the message is displayed (all messages must be
terminated by an 015). If entered at DSPLY:j;, the contents
of DE will be used to position the cursor and no rollup will
take place at the end of the display.

6

There are two special characters permitted in the
display input message: 023, which may only appear at the
beginning of the message, cause the screen to rollup one
line, and 011, which may appear anywhere in the message,
followed by a count indicates space compression. In
addition, binary zeros are converted to underscores and
spaces are QQ1 displayed at all (i.e., the cursor is simply
positioned to the right).

The routine called REWRT redisplays the form (with no
data).

4.5 Form and Data Access Routines

The routine GETADR uses the contents of the variables
HP and VP to locate to positions in the form image
corresponding to the current field (this is where constants
and semi-constants are stored).

GETDAT sets HL to the address in the data buffer
corresponding to the current field. The B-register contains
the length of the field.

MOVEDT uses the value in the C-register to access the
edi t table entry corresponding to that field and moves the
six byte entry to a work area for easy referencing. It also
saves the field number in the variable SAVFLD.

4.6 String Arithmetic Package

The string arithmetic package used in Dataform requires
the following parameters:

HL = destination and field operated on
DE = operator (i.e., divisor)
the length of HL is in BLEN
the length of DE is in ALEN

Only the add and subtract functions are available in the
basic interpreter. The addresses of multiply and divide
change depending on the particular level of extended
interpreter being used.

The entry point for add is ADD$ and for subtract is
SUB$.

7

5.0 TAPE FORMATS

All Dataform tapes are written according to Datapoint
standard formats. File marker records, record types and
lengths conform to the Serial Numeric tape format and
internal structure of the records is based on GEDIT (for
text) and ASM (for program and form) formats.

Tapes may be IN'd to disk and processed; however, data
records OUT' d from disk will no longer have the necessary
form number at the end.

5.1 PROGRAM

IFMISource Statements in IFMI Header I Relocatable and Absolute IFM f
10 'GEDIT compressed fmt 11 1 (obj) , object code forma t /1271

------~-~---------------~-----------~----~-------------~-------------1
' ____ Standard object

format: H/L/-H/-LI
Relocatable addresses
in MSB. Absolute and
relocatable not mixed
withing blocks.

/000100013771377IC-MSBIC-LSBlflagIProgIMSBILSBI ••• IProgIMSB/LSBIOI

I / I
Fake starting

address of
block

I
Length of

relocatable
code

1
I
I
I
I

Program names and
addresses

Terminator

Extended interpreter
number

5.2 FORM

IFMIFMI 0 P T ION A L
10 11 I User programs
I and common

Form pOinters, image
and edit tables

8

OPT ION A L IFM 1
Extended 11271
Interpreter I 1

5.3 DATA

IFM I Data records - to length defined by form I FM I FM I
I 0 I I 127 11 27 I

IRecord type IData IData ••• IData 1015 1003 IForm IRewritel
I and Pari ty I I I 1 1 I Number I Coun ter I

1
Serial Numeric

format

9

I
1

Logical
end

I
Physical

I 1
I Number of

end I Rewrite
I changes
I (1-ASCII)

Number of
controlling

form (1-binary)

6.0 Assembly language interfacing and overlays

6.1 External References

Facilities are provided in the Dataform language to
reference points outside the program, locations which may be
either in the Interpreter itself or in an assembly language
program separately assembled by the user.

The EQU instruction assigns an address to a label which may
then be referenced by any of the branching statements in
Da taform (GOTO, CALL, etc.). If this facili ty is used, it
is up to the user to return control to the proper point in
the Intepreter or the field program.

6.2 Interpreter Processing Addresses

A jump table of Interpreter entry points 1s provided no that
these address will not change in future versions:

NEXT$
AGAIN$
STORE$
END$
ERASE
WEOF$
RETURN$

EQU
EQU
EQU
EQU
EQU
EQU
EQU

o 114?
01152
01155
01160
01166
01163
013014

To return to a field program after being
assembly language program should jump
Otherwise, a jump to the appropriate exit
return control to the Interpreter.

6.3 Interpreter Uata Areas

called, the
to RETURN:!;.
routine will

Various In terpreter data areas may be needed by the u~or
programs. The variable TEMP is the keyin buffer and it i~
this area which is accessed when 'INPUT' is referenced in a
field program. INPUT is compiled as an address of 01000 and
a length of zero. At execution time, the length of the
current field is substituted. OUTPUT, compiled as address
zero and length zero, is resolved at execution time. It is
converted to the length and address in the data buffer of
the current field.

Labels defined in FIELD statements are compiled with lengths
of one and a special code in the MSB portion of the address.
Tf the MSB is 0370, the LSB represents an index to the field
table (i. e. the field number supplied by the programmer,
mi nus one). If the MSI3 is 0375, the LSB represcn ts A

displacement which, at execution time, is added to th~
current field number in order to resolve the lenr:th and
address information.

10

Note that referencing a field other than the current field
does not change the number of the current field.

6.4 Loading the Assembly Language Program

Since the format of a form tape and that of assembly code is
the same, an assembly language overlay may be loaded by
using the 'NEW' command of the Interpreter. The user should
first load the form using 'NEW' and then the overlay.

Once the form and program have been tested, there are
several ways to put the system together:

1) The assembly program may be cataloged as a
separate form and be loaded by either the operator
or by a field program.

2) The form and the assembly language program may
be appended together using the facilities of either
the Cassette Tape or Disk Operating System.

3) The assembly language program may be appended to
the Intepreter (again using the tape or disk
operating system) so that it is always available.
This should be done only if the program is never
overlayed by anything else. The user must be
careful to insure that the appended program
contains the proper transfer address for the
Interpreter.

11

