
CASSETTE OAT AFORM II
DF2/DF2E

Usar's Guida
Version 2

March, 1976

Model Code No. 50104

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

COPYRIGHTC 1976 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

PREFACE

DATAFORM 2 provides a personalized data entry system for use

on DATAPOINT processors. Two cassette based DATAFORM systems are

supported -- one (DF2) is intended for use on 8K processors; and

one (DF2E) is intended for use on 12K processors. The differences

between DF2 and DF2E are only two: first, DF2E has much more

available user space (5017 characters, rather than 1550); and

second, DF2E has all extended interpreter functions memory

resident (there are no extended interpreter overlays). Throughout

this manual, wherever DF2 is discussed, DF2E is also implied

(except, of course, for discussions of the extended interpreter).

"Forms" are created for display on the processor's screen,

and the data entry operator then simply fills in the form. The

data is then recorded, and at any time may be retrieved and

revised using the same form to view and edit the recorded data.

Each "form" is custom designed, and editing criteria are

assigned to the data fields on the form at the time the form is

generated. Programs written in the high level DATAFORM language

may also be assigned to fields at this time. Forms and programs

are then combined and become a unique DATAFORM system.

i

\

Four stages of development are involved in g~I'lerating a
DATAFORM "system": the editor and compiler are used to create

field programs~ the form generator is used to create forms~ the

configura tor is used to combine the forms into a system~ and the

data entry interpreter is qsed ~o control data entry.

Since DATAFORM uses standardized data record formats, further

proceSSing of the data can proceed under any DATABUS, BASIC, or

RPG program. Additionally, anyone of a nu~ber of available

communications programs or terminal emulators (including DATAPOLL

and EM2780) may be used to transmit DATAFORM data files for

fUrther processing at remote sites.

Chapter one provides a general description of DATAFORM,and

continUing chapters describe form generation and data entry using

the forms.

ThroLlghout this manual, afield appearing between pointed

brackets, as:

<filename>

ii

denotes a required field: whereas, a field appearing between

square brackets, as:

[, fi lename]

denotes an optional field, whose use is explained in subsequent

discussion.

To convert DF2 version 1 systems to DF2 version 2 systems,

each fteld pr09ram should be re-compiled, and each form should be

re-generated.

iii

TABLE OF CONTENTS

I.GENERAL DATAFORM TERMS AND CONCEPTS
1.1 What is a FORM?
1.2 What is a FIELD PROGRAM?
1.3 User Space and How It's Allocated
1.4 Some DATA ENTRY Features

2.THE FORM GENERATOR
2.1 Data Field
2.2 Keyin Only Field
2.3 User Space
2.4 Form Worksheet
2.5 The NEW command

2.5.1 Repeat Key (KEYBOARD)
2.5.2 Cursor Movement Function Keys (2,4,6,8)
2.5.3 Character Insert FUnction Key (7)
2.5.4 Characte~ Remove Function Key (0)
2.5.5 Erase Function Keys (1,.,9)
2.5.6 Line Insert Function Key (3)
2.5.7 Duplicate Character Function Key (5)
2.5.8 Return to Monitor Function Key (CANCEL)

2.6 Assignment of Edit Criteria
2.6.1 The TYPE Pass

2.6.1.1 Alphabetic (A)
2.6.1.2 Digit (D)
2.6.1.3 Numeric (N)
2.6.1.4 Mixed (M)
2.6.1.5 Left Justify and Zero Fill (L)
2.6.1.6 Right Justify and Zero Fill (R)
2.6.1.7 Right Justify and Blank Fill (B)

2.6.2 The REQUIRE Pass
2.6.2.1 Required (R)
2.6.2.2 Fill Controlled (F)
2.6.2.3 Required and Fill Controlled (B)
2.6.2.4 Program Reserved (P)
2.6.2.5 Required and Program Reserved (S)

2.6.3 The SEMI-CONSTANT and CONSTANT Passes
2.6.4 The PROGRAM P4sa
2.6.5 The LINK Pass

2.6.5.1 Setting a Manual Link
2.6.5.2 Setting an Auto Link
2.6.5.3 Clearing a Link

2.7 The OUT Command
2.8 The REVISE Command

iv

page
1-1
1-3
1-4
1-6
1-6

2-1
2-1
2-2
2-2
2-3
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-13
2-13
2-14

2.9 The OLD Command
2.10 The RECOVER Command

3.THE COMPILER
3.1 Labels
3.2 Field Program Names
3.3 Spaces
3.4 Comments
3.5 'Specification Statements

3.5.1 DATA
3.5.2 WORK
3.5.3 COMMON
3.5.4 EQU
3.5.5 REDEFINE
3.5.6 FIELD

3.6 Executable Statements
3.6.1 Transfers of Information

3.6.1~1 ALIGN
3.6.1.2,CONVERT
3.6.1.3 LOOKUP
3. 6.1 • 4 MOVE
3.6.1.5 SET

3.6.2 ADD, SUBTRACT, MULTIPLY, DIVIDE
3.6.3 IF,
3.6.4 Output Control

3.6.4.1 BEEP
3.6.4.2 CHAIN
3.6.4.3 FORMSHOW
3.6.4.4 MESSAGE
3.6.4.5 SHOW
3.6.4.6 WRITE

3.6.5 Transfers of Control
3.6.5~1 GOTO
3.6.5.2 CALL and RETURN

3.6.6 CHANGE and RESET
3.7 Pre-defined Labels

3'~ 7.1' AGAIN
3.7.2 CLOSE
3.7.3 END
3.7,; 4 INPUT'
3.,7.5 NEXT
3.7.6 NULL
3.7.7 OUTPUT
3.7.8 RETRY
3. 7. 9 s'rORE

3.8 Program Generation
3.8.1 Editing a Source Program
3.8.~ Compiling a Source Program

v

2 15
2-15

3.,..1
3-1
)-2
3-2
3-2
3-2
3 ... 3
3-4
3-6

, 3-7
3-7
3-8
3-9
3-9
3-9

3-10
3-11
3-11
3-12
3-12
3.,..13
3-15
3-16
3..;16
3-16
3-17
3-17
3-18
3-18
3-18
3-19
3-19
3-20
3-21
3..;21
3-21
3-21
3-21
3-21
3-22
3-22
3..;22
3-22
3-22
3-23

3.8.3 Printing a Compilation Listing·
3.8.4 The Program File

3.9 Program Execution
3.9.1 Post-process Execution
3.9.2 Operator Tabbing
3.9.3 Pre-process Execution
3.9.4 Program Reserved Fields
3.9.5 Form Constants

4.THE INTERPRETER
4.1 The START Command
4.2 The ADD Command
4.3 The CONTINUE Command
4.4 The LOAD Command
4.5 The DATA Command
4.6 Revising an Existing Data File

4.6.1 The MODIFY Command
4.6.2 The FIND Command
4.6.3 Rewriting Existing Records

4.7 The BACKSPACE Command
4.8 The REWIND Command
4.9 The END Command
4.10 The NEW Command
4.11 Data Entry Action
4.12 Interpreter Function Keys

4.12.1 The Form Data Duplicate Function Key (0)
4.12.2 The Load Next Form FUnction Key (1)
4.12.3 The Backspace Field Function Key (3)
4.12.4 The Return to Monitor Function Key (4)
4.12.5 The Form Data Erase FUnction Key (6)
4.12.6 The Rewind Data File Function Key (7)
4.12.7 The Backspace Record Function Key (8)
4.12.8 The Read Record Function Key (9)
4.12.9 The Write Record Function Key (.)

4.13 Data Record

5.THE CONFIGURATOR
5.1 The CAT Command
5.2 The IN Command
5.3 The DELETE Command
5.4 The CHOP Command
5.5 The OUT Command
5.6 The DUP Command
5~7 The DUP ALL Command
5.8 The LGO Command
5.9 The COpy command
5.10 The DPRINT Command
5.11 The FPRINT Command

vi

3-24
3-24
3-25
3-25
3-25
3-25
3-25
3-25

4-1
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-6
4-7
4-7
4-7
4-8
4-8
4-9
4-9
4-9
4-9
4-9

4-10
4-10
4-10
4-10
4-10
4-11

5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-4
5-4

5.12 The REPLACE Command'
S .13 \ The, RIN Command
5.14 The INT Command

6.RECOVERY PROCEDURES
6.1· DATAFORM Sys~em Tape Recov~ry
6.2, Data Tapes" "
6.3 FormTap~s \

7.INFORMATION FOR THE'PRQGRAMMER
7.1 system Structure of the Interpreter
7.2 The Edi t ,Table

7.2.1 Edit Table Format
7.2,.2 Work Area
7.2.3 Routines to Access the ~dit Table,

7.3 Structure of the Form in Memory
7.3..1 Pointers
].3.2 Data Buffers
7.3.3 Form Image
7.3.4 Edit Criteria Table
7.3.5 Field Programs
7.3.6 Extended'Interpreter

7.4 Subroutines Available inthi Interpreter
7.4.1 Keyboard Input Routine
7.4.2 Display Routine
7.4.3 Form and Data Access Routines
7~4.4 String Arithmetic Pabkage

7.5 Assembly Language Intirfacing and OVerlays
7.5.1 Program Base Address
7.5.2 External References
7.5.3 Returning to the Interpreter
7.5.4 Interpreter Data Area.
7.5.5 Loading the Assembly Language Program

Appendix A. SAMPLE PROGRAMS

Appendix B. COMMANDS

Appendix C. INTERPRETER FUNCTION KEYS

Appendix D. FORM,GENERATOR FUNCTION KEYS

Appendix E. FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA

Appendix F. ALPHABETICAL LISTING OF STATEMENT TYPES

Appendix G. STATEMENTS REQUIRING THE EXTENDED INTERPRETER

vii

5-:-5
5-5
5,...5

6-1
6-1
6-.1
6-2

7-1
7-1
7-1
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-5
7-5
7-5 , '
7-5
7,...6
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-9

7-10

Appendix H. INTERPRETER FLAG ADDR~SSES

Appendix I. ERROR MESSAGES

Appendix J. USER SPACE REDUCTION TECHNIQUES

Appendix K~ SAMPLE FORM GENERAtION

viii

CHAPTER 1. GENERAL DATAFORM TERMS AND CONCEPTS

DATAFORM 2,is released on three LGO cassettes. It is listed
in the software catalog as DF2 (for 8K processors) and DF2E (for
12K processors).

The DF2 tape one is the data entry system tape. It contains
the configurator, an empty form catalog, and the data entry
interpreter.

The DF2 tape two is the form generation system tape. It
contains the form generator, the field program relocator, and (for
DF2 only) 15 versions of the extended int~rpreter.

The DF 2 tape three is the program generation system tape. It
contains the source code editor and the compiler.

CHAPTER 1. GENERAL DATAFORM TERMS AND CONCEPTS 1-1

FORM GENERATION AND TEST
without programs

Generator --~---> form ----~--> Interpreter ---~----> data

FORM GENERATION AND TEST
with programs

Editor -----> program ------> Compiler -----~-> program
source object

I
1
I
I

------------------------~-----~--------~~----------1
I
I
I
I
V . form

Generator -------> with -------> Interpreter -------> data
program

1-2 CASSETTE DATAFORM II

1.1 What is a FORM?

A "FORM" in this user's guide refers to the processor's
screen image. This screen image is created by the form generator.
It contains labeling information, defines the length and positions
of "data fields", and reserves space for "keyin only fields".

The amount of data, the number of fields and the amount of
constant information in the form image determine exactly how much
memory the form requires.

The form generator may also be used to assign edit criteria
to the data fields. The criteria are assigned field-by-field in
separate passes over the form image.

These criteria include the field type:

Alpha
Alphanumeric
NUmeric digits
Numeric left justified/blank filled
Nu~eric left justified/zero filled
Numeric right justified/blank filled
Numeric right justified/zero filled

entry restrictions:

Fill controlled
Program reserved
Required
Required/fill controlled
Required/program reserved

semi-constant data; constant data; and automatic form control
(linking to other forms).

In addition, "field programs" may be aSSigned during form
generation. Up to twenty-six unique field programs may be
referenced in a singletorm. The same field p~ogram may be
assigned to more than one field.

Special function keys, which are discussed in the chapter on
the form generator, are provided which enable cursor, character,
line, and screen manipulation.

The screen image, basic edit criteria and field programs, if

CHAPTER 1. GENERAL DA'rAFORM TERMS AND CONCEPTS 1-3

any, comprise the "form" which is subsequently interpreted by the
DATAFORM interpreter. .

1.2 What is a FIELD PROGRAM?

If extended editing and basic computations are required ina
form, a program written and compi~ed in theD]).'I'AFQRM language is
necessary. This language provides aCCess to the entire data record
(on a character or field basis) and definition of working storage
variables, tables, messages, etc. COMMON storage is available to
pass information between forms. The DATAFORM lartguage provides the
following capabilities:

Arithmetic
Add
Subtract

* Multiply
It Divide

Data Manipulation
Align
Move
Set

* Lookup
* Convert

Data Entry Control
Change
Reset

Data Checking
In range
In tab~e
Not in range
Not in table

Check Digits

Compares

* Ck10
* Ck11

Equal
Greater than
Greater than or equal
Less than
Less than or equal
Not equal

1-4 CASSETTE DATAFORl>1 I I

Branching

Output

Again
Call
Chain
Go to
Next
Return
Store

Beep
Close
End
Formshow
Message
Show
Write

Data Definition
Common
Data

Data Buffers

Equ
Field
Redefine
vvork

Input
Output

The subroutines to execute these commands are divided into
. two groups: the interpreter and the extended interpreter. The
starred (*) commands- in the preceedin~ list require the extended
interpreter, which is discussed in the chapter on the form
generator.

The field programs may be assigned to particular fields in a
pass of the form generator. When the form is written out, the
relocatable program will be converted to "absolute" code and
written to the form file.

During data entry, the field program is executed after the
operator enters data into the field where the program assignment
was made. The program is executed even if the operator bypasses
the field.

CHAPTER 1. GENERAL DATAFORM TERMS AND CONCEPTS 1-5

1.3 User Space and How It's Allocated

When a·new form is being created, a certain amount of memory,
called "user space", available. For DF2, the available user space
is 1550 characters. For DF2E, the available user space is 5017
characters. This space, however, encompasses all the following:

Common storage
Extended interpreter (if required)
Field programs (if required)
Form image
Keyin data buffer
Writing data buffer

The form generator indicates t.he amount of free space as soon
as the form image has been defined. The program and, if necessary,
the extended trtterpreter must fit in the remaining free space.

1.4 Some DATA ENTRY Features

In conjunction with the DISPLAY key, the number pad keys
provide the opera tor wi th the following special functions:

Backspace field
Backspace record
Form data duplication
Form data era se
Load next form
Read record
Return to monitor
Rewind data file
Write record

If semi-constant data is defined in the form, it may be
accepted or over-written by the data entry operator. Constant data
cannot be over-written, and is placed in the data record as is.·

Forms may be loaded in any order under either program or
operator control.

Operator correction of previously generated data may be
accomplished at any time by either a manual, record-by-record, or
an automatic search, with re-writing in-place permitted.

Data may be added to the end of an existing data file
(positioning is automatic).

1-6 CASSETTE bATAFORM II

CHAPTER 2. THE FORM GENERATOR

A DATAFORM "form" is an image displayed on the processor's
screen which contains form text (explanatory information for the
operator, not to be written to the data file), ~ fields
(special characters which define a field to be filled in by the
operator and to be written on the data file) and keyin only fields
(special characters which define a field to be entered [but not
stored in the data record]). The processor's screen is 80
characters wide and 12 lines high and any of the 960 positions on
the screen may be used in the form.

I Each form is created and maintained in object code format on
a single cassette. The configurator is used to copy the form to
the system tape, as a part of a system of forms. To load the form
generator, place the DF2 tape two in the rear disk and press
RESTART. The generator displays a sign on message:

DF2 GENERATOR RELEASE 2.n -- ddmmmyy

2.1 Data Field

A data field is part of the form image which starts at a
vertical bar (I) and is continued by carets (-) or underscores
(_). A field stops at the first non-caret or non-underscore
character or the right hand edge of the screen·

Each data field causes a corresponding number of positions to
be reserved in the two data areas (one used for entering and one
used for writing data), and each field generates a six character
set of edit criteria. Each field defined has a "field number"
corresponding to its relative position in the form (and pointing
to its entry in the edit criteria table). The uppermost, leftmost
field is number one. Fields are numbered from left to right, line
by line, from the top of the form down.

The construction "\---11 defines a four character data field;
"I" defines a single c~a~acter field and "" I" defines three
adjacent single character fields. The differences between one
3-character field and three I-character fields are:

1) Only one set of edit criteria applies to the
3-character field whereas each I-character field may
be assigned different set of edit criteria.

CHAPTER 2. THE FORM GENERATOR 2-1

2) Since each set of edit criteria takes. 6 characters,
the· three I-character fields require more user space
than the single 3-character field.

3) Only one field program maY.be assigned to the
3-character field, ~hereas eaeh I-character field
may have its own field program. . .

4) The single 3 character field may be right justified
and/or zero filled,

Fields defined by carets will be "space compressed" in the
form image· (BUT NOT IN THE DATA RECORD 1). When the form is
displayed, space compressed fields will initially appear blank. As
the cursor enters the field, the appropriate number of underscores
will be displayed. Space comdefined by underscor~s are not
compressed. The underscore characters are saved as part of the
form image. .

Constants and semi-constants are stored in the field
~escrtptton area of the form image and therefore can be defined
only for fields initially defined by underscores.

The maximum number of characters in a single data field is 80
since the right hand edge of the screen always terminates a field
definition.

2.2 Keyin Only Field

A keyin only field, with the exception of the initial
character, is defined exactly as is a data field. Keyin only
fields begin with a les~ than character «) and are continued by
carets or underscores. They may appear anywhere in the form. Keyin
only fields create· a six character set of edit criteria like other
fields and thus have a corresponding "field number"· However, no
space is reserved for these fields in the data record. A keyin
only field may be used as a verify·field, or as a program message
field. Nothing in a keyin only field ever gets written to the
data file.

2.3 User Space

There is a fixed amount of space available which must contain
the form image, the data input/output areas, the edit criteria
table, and field programs. This fixed area is called "user space".
There is no limit (other than the size of the screen) to the
amount of text one may include in a form. There is, however, a
limit to the number of field definitions (126) and to the number

2-2 CASSETTE DATAFORM II

of data characters (245) which can be defined. The total user
space available in DF2 is 1550 characters; the total user space
available in DF2E is 5017 characters.

The number of data characters, defined in the form image,
reserve two areas: the keyin data area and the writing data area·
In addition, each field (whether an actual data field or a keyin
only field) defined in the form image requires a six character set
of edit criteria. The characters displayed in the form image, both
labeling information and field defining characters (excluding
carets) require user space. Spaces (and carets) in the form image
are "compressed", i.e., they are represented by a space
compression character followed by the number of spaces compressed
at that point. One terminator character is added to each line of
the form image; however, lines which are completely blank require
no space at all.

The amount of user space required for the data record, edit
criteria table and form image is subtracted from the total user
space and the amount remaining is indicated at the end of the form
image generation pass.

In addition to the data record, edit criteria table and form
image, user space may be allocated to field programs (which in
turn may require an extended interpreter). The length of a field
program is indicated on the listing and on the screen at the end
of program compilation. The size of the various extended
interpreters is listed in an APPENDIX. Ii ~ extended interpreter
is required, 100 characters of COMMON storage ~ also required.

When the form is written to the form file, the amount of user
space remaining (or the excess allocated, if any) is displayed on
the screen. If an excess is allocated, either the form or (if
present) the field programs should be revised.

2.4 Form Worksheet

To aid in the design of forms, a "DATAFORM Worksheet" is
available. This worksheet provides space for designing the screen
image ~nd for recording the various edit criter~a, constants,
etc. ,which will have to oe assigned at fortn generation time. The
worksheet also serves asa record of the form and as a quick
reference for generator commands and function keys.

A printotit of completed forms, similar in format to the
worksheet, may be obtained using the print utili ty of the
configurator.

CHAPTER 2. THE FORM GENERATOR 2-3

2. 5 The NEW command

To generate a new form, enter the:

NEW

command to clear the screen and ent~r the image generation mode.

Titles and field definitions may be entered. Pressing the
ENTER key places the cursor at the bEl9inning of the next line;
pressing ENTER without entering· any text leaves a blank line in
the form.

Additional form manipulation is available with the DISPLAY
key and keys on the number pad. When the DISPLAY key is pressed,
the keys in the number pad to the right of the keyboard (or the
regular number keys) become a set of special functiqn keys
enabling: the movement of the cursor up, down, left and right; the
insertion and deletion of .characters; the deletion of words; the
insertion of lines; and the erasure of lines and portions of the
screen.

A key becomes a special fUnction key if it is prElssed
simultaneously with the DISPLAY key. That is, holding down the
DISPLAY key while pressing th~ desired number key turns the number
key into a special fUnction key.

The following is a summary of the special fUnction keys:

7
8,
9
4
5
6
1
2
3,
o

CANCEL

Character insert
Cursor up
Erase to end of screen
Cursor left
Duplicate character
Cursor right
Word remove
Cursor down
Line insert
Character remove
Erase to end of line
Return to monitor

Additionally, the CANCEL key (J1Q..t.t.h.g CANCEL function key)
will. erase an entire line.

2-4 CASSETTE DATAFORM II

2.5.1 Repeat Key (KEYBOARD)

The KEYBOARD key causes a character (and many functions) to
be repeated. That is, holding down the KEYBOARD key while pressing
a character causes the character to be repeated as long as the
KEYBOARD key is held down. Also, holding down the DISPLAY and
KEYBOARD keys while pressing a number pad key causes the special
function key to be repeated.

2.5.2 Cursor Movement FUnction Keys (2,4,6,8)

There are four cursor movement function keys which are
non-destructive; i.e., they pass over characters on the screen
without erasing them. The cursor down function key (2) moves the
cursor DOWN, the cursor up fUnction key (8) moves the cursor UP,
the cursor right function key (6) moves the cursor RIGHT, and the
cursor left fUnction key (4) moves the cursor LEFT.

The BACKSPACE key also moves the cursor to the LEFT in a
non-destructive manner. Backspacing will wrap around from column 1
of a line to column 80 of the preceding line, except, of course,
on the top line.

The SPACE bar is destructive; i.e., it erases the characters
it passes over, and moves the cursor to th~ RIGHT.

All cursor movement function keys may be repeated.

2.5.3 Character Insert FUnction Key (7)

The characterins~rt fUnction key (7), at the upper left of
the number pad, opens a space for character insertion wherever the
cursor is positioned on the screen. This function key may be
repeated. Characters at the end of the line are truncated, not
wrapped around.

2.5.4 Character Remove Function Key (0)

The character remove fUnction key (0), at the lower left of
the number pad, causes the character at the cursor to be removed
and the rema.ining chau:a.cters to be concatenated to the left. The
line is blank filled on the right. This function key may not be
repeated.

CHAPTER 2. THE FORM GENERATOR 2-5

, ,

2.5.5 EraSe Functidti Keys (li.,9)

There are several keys available to erase all or part of the
screen image. The erase function keys may not be repeated. The
word remove fUnction key (1) causes a word (that is, a group of
characters edged by spaces) to be removed. The line is
concatenated, and blank filled on the right. The cursor may be
placed anywhere in 'the word when the word remove fUnction key is
pressed.

The erase to end of line fUnction key (.) causes the line to
be era sed from the position of the cursor to the right hand edge
of the screen.

The erase to end of screen function key (9) causes all
characters to be erased from the cursor to the end of the screen,
i.e., through line 12 character 80. This key could be used to
clear the entire screen, if the cursor were placed in the upper
left corner of the screen.

The CANCEL key (not the CANCEL function key) causes the
entire line that the cursor is on to be era sed, and places the
cursor in the first position of the line.

2.5.6 Line Insert Function Key (3)

The line insert function key (3) causes a blank line to be
inserted at the line where the cursor is blinking. The line at the
cursor and all 'lower lines are rolled dOwn the screen one line.
The twelfth line will disappear. This fUnction key may not be
repeated.

2~5.7 Duplicate Character Function Key (5)

The dupli<;:at~ character fUnction key (5) causes the character
immediately above the cursor to be dfiplicated in the current
cursor position. This function key may be repeated. It has no
effect when the cursor is placed on the top line of the screen.

2.5.8 Return to Monitor Function Key (CANCEL)

When the screen has the desired appearance, the return to
monitor function key (CANCEL) returns 6ontrol to the generator's
monitor.

2-6 CASSETTE DATAFORM II

At this point the generator displays the message:

nnnn DATA

mmmm B yrrES LEFT

~ndicating the number of characters in the data record and the
number of characters remaining in the user space. If the number of
characters in the data record is greater than 245, the generator
displays the messag~:

MORE THAN 245 DATA

The form must immediately be revised to reduce the number of
characters. If more than 126 fields are defined, the generator
displays the message:

MORE THAN 126 FIELDS

Again, the form must immediately be revised to reduce the number
of fields.

If the combined space required by the form ~ma~e, data areas
and edit criteria table exceeds the available us~r space, the
generator displays the message:

nnnn BYTES OVER

The form must be revised to fit the user space available.
Suggestions for saving space are discussed in an APPENDIX.

2.6 Assignment of Edit Criteria

When the form image has been generated, the form is still
only in memory and no edit criteria have been assigned.

Edit criteria may be assigned to each field of a form.
Different kinds of edit criteria may be assigned in different
"passes" over the fields of a form. Each type of edit-defining
pass (TYPE, REQUIRED, SEMI-CONSTANT, CONSTANT, PROGRAM, LINK) must
be requested separately, and, finally, the form must be written to
the form file by use of the OUT command. The edit-defining passes
may be requested in any order. Any or all edit-defining passes may
be omitted, and passes may be repeated to review or to change the
criteria.

During each pass, the form is redisplayed with the cursor at
the first field definition (i. e., the first vertical bar (I) or

CHAPTER 2. THE FORM GENERATOR 2-7

less than «) sign). Anyone of the accepted edit criteria for
that pass may be assigned, the field may be bypassed without
changing or assigning the edit criteria (by pressing the ENTER
key), or the edit criteria may be cleared (by pressing the CANCEL
key) •

If a pass is re-executed, the current edit criteria will be
displayed as each field is reached. If no change is needed,
pressing the ENTE~ key proceeds frOm field to field.

The backspaCe field function key (B) may be pressed to
. position back to the previous field. When the desired edit
criteria have been assigned, the return tomoni tor fUnction key
(C~NCEL) will return control to the monitor.

To request a pass, enter the name of the pass. Only the first
3 letters of a pass need to be entered to initiate the pass.

2.6.1 The TYPE Pass

The TYPE pass ts entered to set restrictions on the
characters which may be entered into a field; and, for numeric
fields, to indicate whether the entered characters should be left
or right-justified, and blank- or zero-filled within a field. The
acceptable types for this pass are discussed below.

If no TYPE edit criteria is assigned to a field, any
character is acceptable in any position of that field.

2.6.1.1 Alphabetic (A)

The alphab&tic edit criteria for the TYPE pass (A) indicates
that characters entered must be uppercase alphabetics (A through
Z) or space. Alphabetic fields are left justified and blank fill~d
on the right.

2.6.1.2 Digit (D) ,

The digit edi~ ~riteria for the TYPE pass (D) indicates that
characters entered.must be strictly numeric (0-9). Digit fields
are left justified and blank filled ort the right.

2-8 CASSETTE DATAFORM II

2. 6.1 • 3 Numer ic (N)

The numeric edit criteria for the TYPE pass (N) indicates
that characters entered must be of the set of: digits (0-9), a
decimal point, or a minus sign (plus signs are not allowed).
Numeric fields are left justified and blank filled on the right.

During data entry, numeric fields are checked to contain one
decimal point at most. If a minus sign is present, it must be the
left most character. And, no more than twelve positions are
permitted to the left and four to the right of the decimal point.

2.6.1.4 Mixed (M)

The mixed edit criteria for the TYPE pass (M) indicates that
characters entered must be of the set of: Alphabetics, space,
digits, decimal point, or minus sign. No other special characters
are allowed. Mixed fields are left justified and blank filled on
the right.

2.6.1.5 Left Justify and Zero Fill (L)

The left justify and zero fill edit criteria for the TYPE
paSs (L) ha~ the same restrictions as the numeric edit criteria;
however, the field is left justified and zero filled on the right.

2.6.1.6 Right Justify and Zero Fill (R)

The right justify and zero fill edit criteria for the TYPE
pass (R) has the same restrictions as the numeric edit criteria;
however, the field is right justified and zero filled on the left.

2.6.1.7 Right Justify and Blank Fill (B)

The right justify and blank fill edit criteria for the TYPE
pass (B) has the same restrictions as the nUmeric edit criteria;
however, the field is right justified and blank filled on the
left.

2.6.2 The REQUIRE Pass

The REQUIRE pass is entered to establish that a field may not
be bypassed (tabbed past without entering data) during data entry,
or that all characters must be entered, or that the field is not
to be filled by an operator but is to be filled by a field
program.

CHAPTER 2. THE FORM GENERATOR 2-9

If no require edit criteria is assigned to a field, the ENTER
key must, be pressed somewhere in 'the field to proceed to the next
field.

2.6.2.1 Required CR)

The required edit criteria for the REQUIRE pass (R) indicates
that a field is ,required. This means that during data entry, at
least one character must be entered into the field.

2.6.2.2 Fill Controlled (F)

The fill controlled edit criteria for the TYPE pass (F)
indicates that a field is to be fill controlled. This means that
during data entry, the field must be completely filled by the
operator.

Fields whose edit criteria for the type pass is R, B, or L
should not be fill controlled. For these fields, the interpreter
aligns the data after the ENTER key is pressed.

I

Fill controlled fields may be bypassed, however, if the ENTER
key is pressed in the first column of the field. The ENTER key is
an unacceptable key elsewhere in the field.

2.6.2.3 Required and Fill Controlled (B)

The required and fill controll.d edit criteria for the
REQUIRE pass (B) indicates that a field is both required (R) and
fill controlled (F). The ENTER key is an unacceptable key.

2.6.2.4 Program Reserved (P)

The program reserved edit criteria for the REQUIRE pass (P)
indicates that a field will be filled by a field program. No
operator keyin is permitted in this field.

This edit criteria may also be set on a keyin only field to
reserve it as an alternate message display area.

2.6.2.5 Required and Program Reserved (S)

The required and program reserved edit criteria for the
REQUIRE pass (S) indicates that a field is both program reserved
(P) and required tR). This will prevent writing of the data record
if data has not been entered into a program reserved field by a
field program.

2-10 CASSETTE DATAFORM II

2.6.3 The SEMI-CONSTANT and CONSTANT Passes

The SEMI-CONSTANT or CONSTANT pass is entered to set
semi-constants or constants into a field in a form. Semi-constants
and constants are characters set into .a data field in the form
image. During data entry the operator has the option to accept or
over-write data set by the SEMI-CONSTANT pass; whereas, data set
by the CONSTANT pass automatically becomes part of the data record
and cannot be rejected b~ the operator. Both commands cause the
form to be displayed with the cursor in the first field capable of
accepting constant or semi-constant information.

Semi-constants and constants may only be set in fields
initially defined at image generation time by underscores.

In the CONSTANT pass, the SPACE bar does not se·t constant
spaces into the field but permits movement to the desired position
within the data field. If constant spaces are required, the caret
key (-) must be used. In addition, neither constant nor
semi-constant underscores (_), vertical bars (I) or carets (-) can
be set within the field. The CANCEL key will clear any constant
field previously set. The BACKSPACE key positions back one
character and erases the last character entered.

During the CONSTANT pass, no editing is performed on
constants entered. Unacceptable constants will cause the
interpreter to hang beeping during data entry. Unacceptable
semi-constants will be displayed. This feature may be useful for
presenting prompting information to the operator, e.g., a date
field may have the unacceptable semi-constant "YYMMDD" set to
guide the operator.

Al~o, an entire form of constant data should not be prepared;
at least one position must be left for the operator - so that the
form may be viewed and/or. written to the data file. All-constant
forms (or forms wi th no fields) will cause the interpreter to hang
clicking at data entry time.

Partial semi-constants at the beginning or in the middle of a
field are meaningless since the operator will have to enter data
over them to enter the remainder of the field.

Once semi-constants or constants have been set, they will
always appear when the form is disp].ayed (e.g., during the TYPE or
REQUIRE pass). Semi-constants and constants are not destroyed by
assigning edit criteria during other passes.

CHAPTER 2. THE FORM GENERATOR 2-11

Semi-constants and, constants should be' cleared before
executing the REVISE command since their presence ,will change the
field definitions.

2.6.4 The PROGRAM Pass

The PROGRAM pass is entered to assign field program names to
fields. Field progra~s are written in the DATAFORM 2 language,
which is discussed in a later chapter~ Each program is identified
by a Single alphabetic character (A - Z). A program is assigned to
a field by entering the appropriate program letter in any field
where a special processing program will' be written.

The same field program may be assigned to several fields,
e.g., a year and month range check could be used for any date
field. Up to twenty-six unique field programs may be aSSigned in
one form.

2.6.5 The LINK Pass

The LINK p'ass is entered to aSSign a "link"to another form
so that the operator need never be concerned with a form number.
Each form in a DATAFORM system may have a pointer, called a
"li.nk", to the next form to be used. This pointer must be defined
at form generation time. Form links should be planned so that
cassette motion is minimized. That is, forms which are linked
should be close to each other in the catalog.

A form link may be ~ither of two types: a manual link or an
automatic link. The operator must press a special function key to
load a manual link~d form after the record has been written. An
auto linked form is ~utomatically loaded whenever a data record is
written.

When the LINK pass is entered, ,the message:

NEXT FORMnnn:

appears (where nnn is the number of the current linked form in
decimal, initially OOO). The current linkage information may be
viewed by entering the LINK pass and then simply pressing the
ENTER key to leave the value unchanged.

2-12 CASSETTE DATAFORM II

2.6.5.1 Setting a Manual Link

To set a manual link, enter the number of the form (followed
by the ENTER key) which is to be displayed when the operator
presses the form load fUnction key.

2.6.5.2 Setting an Auto Link

One data entry transaction may require several DATAFORM
"forms", e.g. forms 1, 2 and 3 (PAYOl, PAY02 and PAY03) may make
up one payroll transaction. In order to fill in form lance, then
form 2 once, then form 3, the operator would have to use the write
function (to write out the data) and then the form load function
(to load the next form).

To facilitate use of multiple image forms (i.e. sets of forms
to be completed in sequence and then reused), the next form links
can be set at form generation time to auto-load a new form
whenever data is written.

To set an auto-link precede the form number with a minus
sign. Thus, when generating form one in the multi-image example
above, enter "-2" as the auto link for form 17 enter "-3" as the
auto link for form tW07 and "-I" as the auto link for form 3
(which makes form 3 wrap around to form 1).

2.6.5.3 Clearing a Link

To clear a form link, enter a zero when the "NEXT FORlill"
message is displayed.

2.7 The OUT Command

During the entire form generation time the form is only in
memory. To record the form and its associated edit criteria in the
form file on the front deck, enter the:

OUT

command. If no errors have been detected (e.g., too many fields,
too long a data record), the form will be written to the form
file. If field programs have been specified, the generater
displays the message:

DO YOU HAVE A PROGRAM TAPE?

If the field program is not yet available, enter "NO". Then, all

CHAPTER 2. THE FORM GENERATOR 2-13

references to the program will be ignored during data entry.

If a field program tape is available, enter "YES". The
generator displays the message:

PLACE PROGRAM TAPE IN REAR DECK AND PRESS ENTER

The DF 2 tape two should be removed, and the fie Id program tape
created by DF2 tape three should be placed in the rear deck. If a
program letter is referenced, the program file will be copied from
the rear deck to the front deck. If program references are still
unresolved, this process will be repeated. If the extended
interpreter is required, the generator displays the·message:

poor GENERATOR TAPE IN REAR DECK AND PRESS ENTER

The system tape should be replaced, and the appropriate extended
interpreterw1ll . be copied to the form file.

At the c6mpletion of the form writing process, the generator
displays either the message:

PROGRAM BASE ADDRESS mmmm

nnn BYTES LEFT

DONE-LOAD NEXT SYSTEM

and halts; or the message:
,

nnn BYTES OVER

This message means that the form i~age plus the data record plus
the field program is too large to be contained in available user
space~ Either the form or the field programs must be revised to
fit into the user space. All numbers including the address
displayed here ~re decimal.

The form recorded on the front deck may now be tested or
cataloged on the DF2 tape one.

2.8 The REVISE Command

If an error in the form image is discovered after the image
has been generated, the:

REVISE

2-14 CASSETTE DATAFORM II

command places the generator in the image generation mode with the
current form intact. All edit criteria are cleared which means
that all passes have to be re-executed after the form has been
revised.

If the form is not in memory, the OLD command must be entered
before the REVISE command to load the old form into memory.

NOTE: If constants had already been set into the form, it is best
to enter the CONSTANT pass and clear (using the CANCEL key) all
constant fields (since constants destroy the field definition
characters) before entering the REVISE command.

2.9 The OLD Command

Once a form has been recorded it may be retrieved and
modified. The:

OLD

command loads the form into memory from the front cassette. Any
pass of the generator may be executed; however, note that the
REVISE command will clear all edit criteria.

If the field programs associated with a form have changed,
simply enter OLD, to reload the form, and OUT, to attach the new
version of the programs. Any time a form is read via the OLD
command, all field programs required must be re-attached to the
form.

2.10 The RECOVER Command

If an unrecoverable error occurs at the point of writing the
form during the initial generation process, the form may still be
recovered by reloading the generator and entering the:

RECOVER

command. This command causes the form still in memory to be
accessed. One form gen~ration pass, e.g., TYPE, should be entered
to insure that the form is still intact. Then, with a new cassette
in the front deck, the OUT command should be entered.

CHAPTER 2. THE FORM GENERATOR 2-15

TYPE REQ
assign assign
edit edit
criteria criteria

GENERATING A NEW FORM .

NEW
make form image

SEMI CON
define define
semi- constants
constant

I
I
I
I
I
I

OUT
write form to form file

2-16 CASSETTE DATAFORM II

PRO
assign
program
letters

LINK
,set manual
or auto
link

CHAPTER 3. THE COMPILER

The DF2 interpreter provides field editing capabilities on a
character-for-character basis. Field programs written in the
DATAFORM 2 language provide much greater field editing
capabilities. The DATAFORM 2 language is a high level programming
language, similar in structure to DATABUS and other high level
languages. A field program can perform almost any kind of field
(and even character) manipulation: check digit, range, and table
checks; complete arithmetic processing; inter-form communication;
complex data record movement; code-set conversions; etc.

The DATAFORM 2 language is concise, yet powerful. The basic
ingredients of the language are, as in any programming language,
statements which describe data (called "specification" statements
in the DATAFORM 2 language), and statements which manipulate data
(called "executable" statements).

3.1 Labels

Any DArAFORM 2 statement may have a label, and some must have
a labeh. A "label" begins in column one and consists of up to
eight alphanumeric characters ldctually, the label may consist of
any number of alphanumeric characters, although all characters
after the first eight are ignored).

Labels have three uses: first, to name data items; second, to
provide a means for branching and sUbroutine calls within a
DATAFORM 2 program; and third, to name field programs (that is, to
associate program code segments to specific fields in the form
image).

At most 95 labels may be defined in a DATAFORM 2 compilation.

The following are examples of acceptable labels:

A
2765
F~EL017
LABELSTATEMENT (truncated to LABELSTA)

CHAPTER 3. THE COMPILER 3-1

3.2 Field Program Names

The form generator uses a label called a ~field program name"
to associate a specific starting address of a DATAFORM 2 program
segment with a specific field of a form. A field program name is a
label which is terminated by a star (*), and there are no bl~nks
between the label and the star. Since only the firstcharactar of
a field program name is passed to the form generator, it is
pointless (and probably could be confusing) to name field programs
with labels which are longer than one character. In addition, the
generator requires an alphabetic field program name. It is .
important to note that the compiler does not check for duplicate
field program names; if there are duplicates, it passes both to
the generator.

The following are examples of program n~mes:

3.3 Spaces

E*
Z*

The DATAFORM 2 compiler is a "free-form" compiler -- that is,
the space character () is by and large ignored by the compiler.
Multiple spaces are treated as a sin~le space, and a single space
is ignored except as a field separator. Spaces may be included as
desired to improve readability.

3.4 Comments

Comments, too, are ignored by the DATAFORM 2 compiler.

There are two kinds of comments -- comments which appear on a
code line aftei the code; and comments which appear on a line by
themselves. Comment lines must begin with a period (.) or a plus
(+) in column 1. If a listing is printed, a comment that begins
wi th a plus ·causes a page to be ejected on the printer and the
comment line to be printed on the top line of the next page of the
listing.

3.5 Specification Statements

As mentioned earlier, specification statements are statements
which describe data. The DATAFORM 2 language contains: the DATA
statement (used to access the output data record); the WORK
statement (used for data storage within a single form); the COMMON
statement (used for data communication between forms); the EQU

3-2 CASSE'rTE DATAFORM II

statement (used to describe absolute values); the REDEFINE
statement (used to associate a label with a previously defined
label); and the FIELD statement (used to describe fields of the
screen image form).

Every specification statement has associated with it an "item
length". The item length is the number of characters which make up
an individual item of that statement. The item length of each
specification statement below is the length of the entire
statement, unless otherwise indicated.

3.5.1 DATA

The DATA statement refers to specific columns of the OUTPUT
data record. The general format of the DATA statement is:

<label> . DATA <n> < , m>

where Un" and "m" are decimal numbers in the range 1-245. The
number "n" refers to an initial column of the OUTPUT data record,
and the number "m" refers to a terminal column of the OUTPUT data
.record. The item length associated with the DATA statement is:
(m-n)+1. The columns defined by the DATA statement do not
necessarily correspond to specific fields of the form. Areas may
be redefined. The columns defin~d by a DATA statement may be:

1) identical to fields on the form;
2) a sub-grouping of a large field into smaller fields;
3) a combination of smaller fields into a larger field;
4) an overlapping of fields on the form.

The following syntax restrictions apply to the DATA statement:

1) Un" and "m" must both be greater than zero but less
than 246.

2) "m" must be greater than or equal to Un".
3) The DATA statement must have a label.

Examples of the DATA statement:

NAl'1E
IDCODE
AMOUNT
DOLLARS
CENTS

DATA l, 29
DATA 30,30
DATA 31,39
DATA 31,37
DATA 38,39

multiple column field
single column field

Sub-group of larger
field

CHAPTER 3. THE COMPILER 3-3

3.5.2 WORK

The WORK statement is used to reserve space wi thin a field
program. Space reserved may be uninitialized, or may contain ASCII
or octal constants (or tables).

To simply reserve uninitialized space within a field program,
the following format of the WORK statement is used:

<label> WORK en>

where en> is a decimal number in the range 1~245. The area to
which <label> refers has an item length of en>.

Working stprage may contain ASCII characteis. The characters
are enclosed in double quotation marks, as in the following
example:

WORDS WORK "PRE-DEFINED CHARACTERS"

A special forcing character (#) may be used to "force" the
character immediately following it to be included in the stringr
by using this character, the double .quotation mark and the forcing
character may themselves appear in the character string:

NICKNAME
Nm1BERl

WORK "I AM #"SHORTY#"."
WORK "I AM ## 1."

Each WORK statemept that contains constants generates a code
segment. Normally, every constant working storage segment is
terminated with an additional, special end-of-table character, an
octal zero. This character is included in the over-all length of
the working storage segment, but is not included in the item
length. To conserve memory, it is possible to suppress the special
end-of-table character in a constant working storage segment by
following the last item of the working storage segment with a
semicolon, as in the following examples:

WORKI
WORK2

WORK "DATA"
WORK "DATA";

The first example will generate the following five octal
characters: 0104,0101,0124,0101,000. Th~ second will generate the
following four octal characters: 0104,0101,0124,0101. The iten
length of both statements above is four.

Working storage may contain tables as well. The item length OJ: the

3-4 CASSETTE DATAFORM II

t!=lble is d,etermined by the length of the fir st i tern in double
qGotation marks. Each item in the WORK statement table must be the
same length. Individual items are separated by a comma.

In the following example:

TABLE1
TABLE2
TABLE3
TABLE4

WORK "1","2","3","4","5","6"
WORK "12","34","56"
WORK "123","456"
WORK "123456"

all of the working storage tables have the same table length (six
characters plus one special end-of-table character for a total
table length of seven), but the individual item lengths are
respectively 1, 2, 3, and 6.

Working storage items may be continued on more than one line
by using a colon, as in this example:

LABELl WORK "123456","789012":
"345678":
".901234"

Working storage may contain octal constants. The first octal
constant (and only the first) i3 prefixed by the alphabetic letter
"a". Each octal constant generateS only one character of working
storage. An octal constant may consist of any number of octal
digitsi however, only the least significant eight bits are placed
in the octal character. Octal constants may be separated from one
another by a comma, and may be continued from one line to another
by use of the colon. Octal constants, like other constants, are
terminated with an octal zero; a semicolon after the last constant
will suppress the zero. The item length of an octal constant work
area is one. Octal constants and ASCII character strings may not
be mixed in the same WORK statement; WORK statements are either
octal or ASCII.

The following are examples of octal WORK statements:

OCTAL1
OCTAL2
OCTAL3

OCTAL4

WORK 015i
WORK 015.16,17,20
WORK 015,16,17,20:

25,26,27,30:
35

WORK 0107

CHAPTER 3. THE COMPILER 3-5

The following syntax restrictions apply to the WORK statement:

1) The WORK statement must have a label.
2) If the WORK statement defines a table, all items in

the table must be of the same length.
3) A comment may appear 6n a WORK statement ~f the

comment is preceeded by a period.
4) If the WORK statement merely reserves space (i. e.,

does not contain any constants), the amount of space
reserved must be in the range 1-245.

3.5.3 COMMON

The COMMON statement is used to assign labels and reserve
space within the 100 character COMMON block. COMMON statements are
identical syntactically to WORK statements. Their main difference
is ohe 6f functlon~ The COMMON area is used for transferal of
information between forms, or for the saving of information used
in one form only, although multiple forms are loaded. The format
of the COMMON statement is:

[label] COMMON <n>

The following ex~mple could be used to pass a 6 character
total, from one form to another:

TOTAL COMMON 6

It is im~ortant for every program using information saved
through COMMON to have the same relative locations of areas inside
the COl~MON block. 'References to COMMON data in second and
subsequent form's programs must be in the same order. A dummy
COMMON statement, such as:

DUMMY COMMON 6

should be used to skip over 6 unused characters inside the COMMON
block, if those characters are not referenced by the current form,
but are referenced by another form.

3-6 CASSETTE DATAFORM II

The following syntax restrictions apply to the COMMON statement:

3.5.4 EQU

1) A label is not required on a COMMON statement.
2) The maximum total length of the COMMON block is 100

characters~
3) A comment may appear on a COMMON statement if the

comment is preceeded by a period.

The EQU statement is used to associate an octal address value
with a label. Following the EOU is a string of octal digits,
denoting an ab~olute octal address. The initial character of the
string need not be a zero, although a zero will serve as a
reminder that the string is octal rather than decimal.

The minimum memory required for the DF2 interpreter is 8K.
The minimum memory required for the DF2E interpreter is 12K. If
the system has more memory available, this extra memory may
contain previously assembled assembly (as distinct from DATAFORM
2) : language programs, which may be referenced by using the EOU
statement to define a label, and then transferring control to that
label (see later sections of this manual for transfer of control
statements and for asse~bly lartguage interfacing).

The following are examples of the EOU statement:

8K
12K

3.5.5 REDEFINE

EOU 020000
EOU 30000

The REDEFINE statement is used to associate a new label with
an elsewhere defined label-

The general format of the REDEFINE statement is:

<labeI2> REDEFINE <labell><,n><,m>

The value "n~l" is added to the previously defined initial value
for <labell> and becomes tp$ ini tial val~e of < laba1.2 >. The item
length of <label!> is ignored, and the number "m" becomes the item
length for <labeI2>.

For example, suppose a table is defined as follows:

TABLE1 WORK "123456789012"

CHAPTER 3. THE COMPILER 3-7

The item length of TABLE1 is 12. Then consider:

TABLE2
TABLE3
TABLE4
TABLE5
TABLE6

REDEFINE TABLE1,l,6
REDEFINE TABLEl,1,4
REDEFINE TABLEl,l,3
REDEFINE TABLEl,3,2
REDEFINE TABLE1,7,l

The same memory l,ocations are "re-grouped" under different labels,
so that the effect is the same as:

TABLE2
TABLE3
TABLE4
TABLE5
TABLE6

WORK "123456","789012"
WORK "1234","S678";"9U12"
WORK "123","456","789","012"
WORK "34","56","78","90","12"
WORK "7","8","9","0","1","2"

The REDEFINE statement may redefine WORK and COMMON statements
(and the pre-defined label INPUT).

The foJlowi.ng syntax restrictions apply to the REDEFINE statement:

3.5.6 FIELD

1) Both <n> and <m> must be in the range 1-245.
2) The REDEFINE statement must have a label.
3) The field following <m> may be used as a comment

field.
4) The REDEFINE statement should immediately follow the

label that is being redefined (i.e., <label1> in the
general format of the REDEFINE above). The REDEFINE
statement is not flagged in error if it appears
elsewhere, but erroneous values may be generated if
the REDEFINE statement does not immediately follow
the label that is being redefined.

The FIELD statement is used to reference the OUTPUT fields of
the displayed form. The field reference may be absolute or
relative to the current field. The absolute field reference is
used to reference specific fields of the form.

The format of the absolute FIELD statement is:

<label> FIELD <n>

where"n" is a decimal number in the range 1-126.

3-8 CASSETTE DATAFORM II

The relative field reference is used to reference an offset
(either positive or negative) of the current field.

The format of the relative field statement is:

<label> FIELD <sign><n>

where <sign> is either a .,+" or a
in the range 1-126.

.. .. - , and "n" is a decimal number

The following are examples of the FIELD statement:

FIELD7
NEXTFLD
LASTFLD

FIELD 7
FIELD +1
FIELD -1

The label appearing on a FIELD statement may be referenced in any
type of arithmetic or conditional statement, as in the following

'example:

ADD LASTFLD TO INPUT GIVING NEXTFLD

3.6 Executable Statements

Executable statements are ~hose statements concerning: 1)
transfers of information; 2) arithmetic; 3) comparisons; 4)
output; 5) transfers of control; and 6) current field assignment.

3.6.1 Transfers of Information

Data is moved from one location to another using one of five
possible statements: ALIGN, CONVERT, LOOKUP, MOVE, or SET.

3. 6. 1. 1 ALI GN

The ALIGN statement format is:

[l'abell ALIGN <fieldl> TO <field2>

The ALIGN first checks both <fieldl> and <field2> for the presence
of a, decimal point. If none exists, it, is C\~sQmeq to Qe at the
rightmost edge of the field. After determining the decimal point,
<fieldl> is moved to <field2>, with decimal points aligned. In
<field2>, either truncation or zero-fill or both may occur.

CHAPTER 3. THE COMPILER 3-9

\

In the following examples, the source field and the destination
field (both before and after the ALIGN) are shown:

MOVEIT ALIGN FIELDI TO FIELD2

FIELDI FIELD2 FIELD2
(before) (after)

10.1 0000. 0010.
10.1 00.00 10.10
10.1 0.000 0.100
1.234 0000. 0001.
1.234 00.00 01.23

NOTE: If <field2> is in the data area, the decimal format may be
initialized by setting (during form generation) semi-constant
zeros with a decimal pOint in the appropriate position.

3~6.l.2 CONVERT

The CONVERT statement format is:

[label] CONVERT <fieldl> BY <tablel> AND <table2> GIVING <field2 >

The CONVERT statement will try to find <field1> in <tablel>. The
length of <field!> is used for the search. The corresponding entry
in <table2> is moved to <field2>.

Given the following specification statements:

TABLE! WORK ~MA~, ~Ny~,~KS","MT","TX"

TABLE2 WORK "BOSTON","ALBANY","TOPEKA":
"HELENA" , "AUSTIN"

and the following executable statement:

CONVERT FIELD! BY TABLEI AND TABLE2 GIVING FIELD2

the fo11 owing wi 11 be the contents of FIELD2 if the contents of
FIELDl are as indicated:

fIELDl
'rx
MA
KS

FIELD2
AUSTIN
BOS'rON
'rOPEKA

The item length of <table2> is used to determine the position

3-!0 CASSETTE DATAFORM II

of the corresponding element and the length of the move from
<table2> to <field2> (the item length of <field2> is also
checked); therefore, each separate item in <table2> should be
enclosed in double quotation marks.

If the item is not found in <table1>, no movement of data
takes place.

The CONVERT statement should be used when the table has gaps,
or is randomly ordered.

NOTE: the CONVERT statement requires a portion of the extened
DATAFORM interpreter.

3.6.1.3 LOOKUP

The LOOKUP statement format is:

[label] LOOKUP <field1> IN <table1> GIVING <field2>

The LOOKUP statement will use <field1> as an index into <table1>.
The item thus selected will be moved to <field2>. If the index
value is greater than the length of the table, the value moved
into <field2> is indeterminate. The following is an example of the
LOOKUP statement:

TABLE WORK "JAN", "FEB", "MAR", "APR", "MAY", "JUN":
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"

LOOKUP NUMBER IN TABLE GIVING NAME

The LOOKUP statement should be used when there are no "gaps"
in the table from which the data movement takes place. The LOOKUP
uses <field1> as an item by item index into the table, and hence
will always find a match, even though it may be outside the range
of the table. (if the index is too large).

NOTE: The LOOKUP statement requires a portion of the extended
DATAFORM interpreter.

3.6.1.4 MOVE

The move statement format is:

[label] MOVE <field1> TO <field2>

<field1> is moved, left justified, to <field2>. If the length of
<field1> is less than the length of <field2>, <field1>'slength is
used in the move. Subsequent characters in <field2> are not

CHAPTER 3. THE COMPILER 3-11

\

changed; their. valUes are as they were before the MOVE. If the
length of <field2> is less than the length of <field!>, <field2>'s
length is used, meaning that ~ome characters may b~ trrincated (or
lost). An example of the MOVE statement is: .

MOVE TOTAL TO WORK!

3.6.1.5 SET

The SET statement format is:

[label] SET <field!> TQ <field2>

The first character of <field2> is spread throughout <field!>
as for zeroing out a total, or blank filling a message.

The following example:

STAR
TOTAL
<label>

WORK "*"
WORK "00000000"
SET TOTAL TO STAR

would set the entire 8 character TOTAL field to stars. The SET
sta temen t should not be used to zero a field containing a decimal
point which is to be used as a destination for ALIGN or any
arithmetic statements, since the decimal, too, will be overstored.

3.6.2 ADD, SUBTRACT, MULTIPLY, DIVIDE

The standard arithmetic functions of add, subtract, multiply
and divide are provided. These statements must be in the following
formats (specifically, the connectives between <label!> and
<labe12> must not vary):

[label)
[label)

[label]

[label)

ADD <label!> TO <label2>
SUBTRACT <label!> FROM <label2>
(SUBTRACT may be abbreviated SUB)
MULTIPLY <label!> BY <label2>
(MULTIPLY may be abbreviated MUL or MULT
or MPY)
DIVIDE <label!> INTO <label2>
(DIVIDE may be abbreviated DIV)

Alternatively, any of the above four may be modified by appending
the phrase [GIVING label3) to them. The result of this is that the
contents of the first two labels are not affected, but their sum
(difference, product, qUotient) appears at the third label rather
than the second.

3-12 CASSETTE DATAFORM II

NOTE: A comment may appear on an arithmetic statement if the
comment is preceeded by a period.

The following are examples of arithmetic statements:

ADD INPUT TO SUBTOTAL
SUB DISCOUNT FROM PURCHASE
MULTIPLY PRICE BY QUANTITY
DIVIDE TOTEST INTO TOTSCORE
ADD INPUT TO OLDBAL GIVING NEWBAL
DIV TOTEST INTO SCORE GIVING AVESCORE

If GIVING <label3> is appended to an arithmetic statement, an
"ALIGN <label2> TO <label3>" is generated prior to the arithmetic
statement.

NOTE: Significance may be lost with GIVING <labe13> (before
computation) if <labeI3> has fewer places of significance than
<labeI2>.

The result of any arithmetic will be aligned to the decimal point
in the result field. Truncation is performed at both ends of the
field and leading zeros are supplied in non-significant leading
characters. In a field defined as right justified and blank
filled, performing an "ADD NULL TO <field>" will replace the
leading blanks by zeros.

NOTE: The MULTIPLY and DIVIDE statements require a portion of the
extended interpreter.

3.6.3 IF

The general format of the IF statement is:

[label1] IF <field1> <relation> <field2> THEN <labeI2>

If <relation> is true, control is transfered to <label2>, which
may be a pre~defined label like STORE. If <relation> is false, the
next statement in the program is executed. Three types of
relations may be defined:

1) ASCII comparisons (EQ, EQU, EQUAL, GE, GEQ, GREATER,
GT, GTR, LE, LEQ, LESS, LESSTHAN, LT, NE, NEQ,
NOTEQUAL are all acceptable). The characters in
<field1> are compared, from left to right, to the
characters in <field2> (using the item length of
field1 to terminate the compare). Differing lengths
do not cause unequal compares; however, if <field1 >

CHAPTER 3. THE COMPILER 3-13

is longer than <field2>, the results are
indeterminate. .

2) Table lookup (INR, INRANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT, NOTINTABLE). <fieldl> is
"looked~up" in the table defined at <field2>. The
length of <field1> is u~ed.

3) Check digit verification. <field1> is tested for
correctness of check digit with either a mod 10
(CKIO) or a mod 11 (CKll) check performed ; using the
contents of <field2> as a weighting factor. <field1>
should contain the check digit in the least
significant position. <field2> is assumed to be one
character shorter than <field1>.

3-14 CASSETTE DATAFORM II

The following are examples of the usage of the IF statements:

AMOUNT
ACCOUNTNO
MONTH
DAY
DAYTABLE
MONTHTABLE
ZE:RO
WEIGHTl

FIELD 1
DATA 21, 27
DATA l,2
DATA 3,4
WORK "01","31"
WORK "01","12"
WORK "000000"
WORK "212121"

• Checkfieldl for strictly positive

A* IF ru~OUNT GREATER ZERO THEN STORE
AGAIN

• Check for null input

B* IF NULL EO INPUT THEN AGAIN

• Check for negative.

C* IF AMOUNT LT ZERO THEN STORE
AGAIN

Check range using table

D* IF DAY NOTINRANGE DAYTABLE THEN AGAIN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

• Perform Mod10 check digit validation

E* IF ACCOUNTNO CK10 WEIGHTl THEN STORE
AGAIN

NOTE: The CKI0 and CK11 forms of the IF statement require a
portion of the extended interpreter.

3.6.4 Output Cont~o~

The BEEP statement provides an aUdible tone. The CHAIN
statement is used to load another form (in addition to the
auto-.load and linking-load features of the interpreter). Three
statements are provided for displaying information on the
processor's screen: FORMSHOW, MESSAGE, and SHOW; and the WRITE
statement is provided to write out the data record under program

CHAPTER 3. THE COMPILER 3-15

control.

3.6.4.1 BEEP

When the BEEP statement is executed, the processor issues a
single BEEP sound. The format of the BEEP statement is:

, [label] BEEP

The CHAIN statement loads a specific form. The format of the
CHAIN statement is:

(label] CHAIN <n>

where <n> is the decimal number of the form to be ~oaded (from 1
to 124). The form whose catalog number is <n> is loaded. The
current data record is not written: however, the flag indicating
data present is cleared. The specified form is loaded and control
is passed to the interpreter at the first non-constant field of
the new form.

A CHAIN to the form currently in memory reloads that form and
all its programs.

3.6.4.3 FORMSHOW

The FORMS HOW statement causes the current form to be
redisplayed. All data fields on the screen will be cleared. The
output record is not affected and the current field index is not
changed.

The format of the FORMSHOW statement is:

[label] FORMSHOW

In the following example:

WRITE
FORMS HOW

the last data record written is still in memory; however, it will
be erased from' the screen and will appear only as each field is
reached by the operator.

NOTE: The INPUT field is destroyed when the FORMS HOW statement is
executed.

3-16 CASSETTE DATAFORM II

3.6.4.4 MESSAGE

The MESSAGE statement writes the specified message on the
bottom line of the screen. The format of the MESSAGE statement is:

[labell] MESSAGE <label2>

The following is an example of the MESSAGE statement:

ERR WORK "ACCOUNT IS OVERDRAWN"
MESSAGE ERR

The MESSAGE statement always erases the bottom line of the form.
However, the message is only temporary and the bottom line of the
form will be restored when the operator writes the data record or
erases the current record.

NOTE: The INPUT field is destroyed when the MESSAGE statement is
executed.

3.6.4.5 SHOW

The SHOW statement displays a message in the current field
area of the screen.

If no [label2] is indicated the SHOW statement defaults to
the contents of the OUTPUT buffer corresponding to the current
field. The format of the SHOW statement is:

. [labell] SHOW [label2]

The following are examples of the SHOW statement:

SHOW
or SHOW TOTAL

CHAPTER 3. THE COMPILER 3-17

The SHOW may be used if .computations or table lookup conversions
were made to change the value of the current field, as in the·
following example:

CRDRTAB
LSTFLD
CD
MSG
S*

WORK "CREDIT","DEBIT »

FIELD·-l
WORK "C","D"
WORK ." "i
CONVERT LSTFLD BY CD AND CRDRTABGIVING MSG
SHOW MSG
NEXT

Program .. s .. is assigned to a keyin only field (i.e. a field which
reserves no data space) which is set to "program reserved"· .(to
automatically execute the program with no operator intervention).
The program tests the preceding field and displays a message
corresponding to that value, for operator information.

NOTE: The INPUT field is destroyed when the SHOW statement is
executed.

3.6.4.6 WRITE

The WRITE statement writes the data record to the data file.
The format for the WRITE statement is:

[label] WRITE

Control is returned to the next statement in the field program.
The data area in memory is not cleared, and may be used for
fUrther computation or for auto-duping selected data.

3.6.5 Transfers of Control

The three transfer of program control statements are the GOTO
statement, the CALL statement, and the RETURN statement.

3.6.5.1 GOTO

Control is immediately transferred to the label following the
GOTO:

GOTO <labell>

For the pre-defined labels, the word GOTO is optional. For
programmer defined labels, it is mandatory.

3-18 CASSETTE DATAFORM II

The following are examples of the GOTO statement:

3.6.5.2 CALL and RETURN

GOTO WITHDRAW
GOTO NEXT
NEXT

A single level of sUbroutine nesting is provided with the
CALL and RETURN statements. A program may contain more than one
set of CALL and RETURN statements -- but a CALLed subprogram may
hot CALL another subprogram.

The statement formats are:

[label] CALL <subprogramname>
RETURN

If a RETURN is executed with no preceeding CALL (in the current
field program) a GOTO NEXT is executed.

3.6.6 CHANGE and RESET

The CHANGE statement is used to transfer the input pointer
from the current field (i.e., the sequence number of the field as
it appears in the form) to another field. The new field number or
displacement from the current field number is specified
immediately after the CHANGE statement:

[label] CHANGE [sign]<n>

For example, after the statement:

CHANGE +1

is executed, INPUT still contains the entered data; however, the
current field number has been incremented bY one and OUTPUT now
reflects the position in the data record corresponding to the new
field. After the statement:

CHANGE 1

is executed, however, the current field number has been changed to
the first field in the form, that is, field 1.

When a field program is entered the number of the current field is
saved and may be restored at any time. The:

CHAPTER 3. THE COMPILER 3-19

RESET

statement will reset the field pointer to the field current when
the program was entered.

3.7 Pre-defined Labels

The nine labels discussed in this section may not be defined
in field programs. They have specific meaning to the interpreter,
and are included automatically in every compilation.

The pre-defined labels INPUT, NULL, OUTPUT,' and RETRY refer
to locations within the interpreter. These four labels may be used
as source or destination operands in data movement and comparison
statements~ Examples of the use of these labels ar~ given below.

MOVE INPUT TO OUTPUT
IF NULL EO INFUT THEN AGAIN
IF NULL EO RETRY THEN STORE

The pre-defined labels ,AGAIN, CLOSE; END, NEXT and STORE
CdUSO a transfer of control from the tield program back to the
interpreter. These five labels may be used as the destination
address of comparison or GOTO instructions, as in the example:

B* IF NULL EO INPUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

C*

D*
E*
F*

ADD INPUT TO TOTAL
STORE
NEXT
CLOSE
END

AGAIN, CLOSE, END, NEXT and STORE are means of exiting a field
program. It is important to note that the interpreter does not
place data in the OUTPUT buffer before a field program is called.
It is the responsibility of the field program to do one of three
things:

1) MOVE INPUT TO OUTPUT
2) MOVE <somethingelse> TO OUTPUT (where

<somethingelse> mayor may not be based upon
INPUT)

3) Exi t ,th~, field program through the interpreter
label STORE, which will automatically MOVE

3-20 CASSETTE DATAFORl'-1 II

3.7.1 AGAIN

INPUT TO OUTPUT and position to the next field
in the form.

This label returns control to the interpreter at a point
which indicates an error to the operator and re-requests the
current field. That is, the processor BEEPS and returns the cursor
to the first pOSition of the field.

3.7.2 CLOSE

This label returns control to the interpreter at a point
corresponding to the operator entering the "END" command. That is,
an end of file mark is written on the data file, the "READY"
message is displayed, and control is returned to the interpreter's
monitor.

3.7.3 END

This label returns control to the interpreter at the point as
if the operator had pressed the write data function key.

3.7.4 INPUT

This label designates the contents of the keyin buffer
immediately prior to entering the field program. The data in INPUT
has not yet been stored in the OUTPUT buffer. It's length is the
length of the current field, and it has been validated according
to the edit criteria in the form itself prior to executing the
field program.

3.7.5 NEXT

This label returns control to the interpreter at a point at
which the current field number is incremented. The cursor is moved
to the next sequential field. No data is stored.

3.7.6 NULL

This label design&tes a location in the interpreter which
contains a binary zero. It may be used to determine if the data
file is .in normal data entry mode or modify mode; or if data is
present in the output record (meaning that this field had been
entered before). The item length of NULL is always less than the
item length of any variable. Therefore, in comparisons, NULL
should be referenced first since the length of the first operand
is used for the comparison.

CHAPTER 3. THE COMPILER 3-21

3.7.7 OUTPUT

This label designates the contents of the data output buffer
for the current field. If no data has been stored, OUTPUT has the
value of binary zero (NULL). The length of OUTPUT is defined at
execution time by the length of the current field. OUTPUT is
undefined for keyin only fields.

3.7.8 RETRY

This label designates a location in the interpret~r which
contains a binary flag indicating whether the data file is in
modify or data entry mode. It can be checked by a field program by
comparing it to NULL. If NULL equals RETRY the data file is in
data entry mode.

3.7.9 STORE

This label returns control to the interpreter at a point
where the current contents of INPUT is transferred to the OUTPUT
buffer. That is, exiting a field program through STORE is
equivalent to:

MOVE INPUT TO OUTPUT
NEXT

3.8 Program Generation

Compilation of a program consists of two processes: using the
DATAFORM editor to create a new source program, or edit an
existing program; and using the DATAFORM compiler to compile a
new, newly edited, or old program.

The editor and compiler are resident on the DF2 tape three.
The first file on the tape is the editor, and the second file on
the tape is the compiler.

3.8.1 Editing a Source Program

The editor is a special version of the general purpose
editor; its command structure is that of the general purpose
editor. The commands of the general purpose editor are discussed
in the GEDIT user's guide, model number 50005.

3-22 CASSETTE DATAFORM II

The editor displays a sign on message:

DF2 EDIT RELEASE 2.n -- ddmmmyy

CMP,OLD,NEW,DUPiPARAMETERS?

If "c" is entered, the compiler will be loaded to compile the
source program on the front cassette deck. If "0" is entered, the
source file on the front cassette will be edited. If "N" is
entered, a new file will be created on the front cassette. If "D"
is entered, the front cassette will be copied to the rear
cassette, and then duplicated onto a different cassette on the
front deck.

3.8.2 Compiling a Source Program

When the source program has been edited, the compiler is
loaded. The compiler displays a sign-on message:

DF2 COMPILER RELEASE 2.n -- ddmmmyy

The compiler makes a first pass through the source file preparing
a symbol table. Xhe actual code generation and listing'production
take place on the second pass over the input file. At the
completion of the compilation, some or all of these messages are
displayed on the screen:

STORAGE USED IN DECIMAL: 00000 RELOCATABLE, 00000 COMMON
EXTENDED INTERPRETER REQUIRED
FIELD PROGRAMS:

A 00000
Z 00000

.END OF COMPILATION: NO ERRORS.
or END OF COMPILATION: n ERRORS.

These are descriptions of the program, telling the length of the
entire program, whether or not the extended interpreter is
required, and listing, in octal, the relocatable starting address
of each of the programs defined. The END message lists the number
of errors in decimal, if any occurred. After this the processor
beeps, and executes an infinite loop.

Any error messages are automatically displayed on the screen,
wi th a star indicating the part of the source line in error. The
display may be stopped momentarily by pressing either the KEYBOARD
or DISPLAY keys.

CHAPTER 3. THE COMPILER 3-23

3.8.3 Printing a Compilation Listing

The first ~ction of the co~piler is to test whether a servo
or local printer is a part of the compiling system. If either of
them are, the message: .

or
LIs'r iON SERVO PRINTER?
LIST ON LOCAL PRINTER?

is displayed. A response of "Y" to this message will result in a
printed listing of the program, as it is compiled. The listing
consists of three parts:

1) The line number.
2) The initial address (either absolute or

relocatable) associated with the
statement line.

3) The line as it was input.

If d listing is to be printed, the message:

CODE TOO?

is displayed. A response of "Y" to this message will place
the code generated for ~ach line (eight characters per
printed line, using as many lines as necessary for the
amount of code generated) on the listing.

If a listing is requested, a heading line may be
entered.

3.8.4 The Program File

When compilation is cOmpleta, the tape in the front deck
contains two files: the source statements of the program in file
0, and the compiled code in file 1. The compiled code file
consists of a header record and both relocatable and absolute
object code records.

The header record contains the number of the extended interpreter
required (if any), the length of the relocatable object code, and
the names and starting addresses of all field programs in the
file.

3-24 CASSETTE DATAFORM II

3.9 Program Execution

3.9.1 Post-process Execution

Field programs are always executed as a "post-process" to
data entry; that is, the program is not executed until the data
has been entered, edited, and accepted by the interpreter. Thus,
alpha-numeric checks, right justification, etc., will already have
been performed on the input.

3.9.2 Operator Tabbing

If the operator chooses to bypass a field which is not
required, INPUT is NULL (binary zero).

If the cursor enters a field during backward or forward tabbing
and no new data is entered, the data currently in the output
record (which mayor may not be NULL) is passed to the field
program. If, however, new data is entered, the new data is
presented to the field program in the INPUT area while previously
entered data is still available in the OUTPUT area. If the
previously entered data is cancelled by the operator, INPUT is
NULL.

3.9.3 Pre-process Execution

To execute a field program as a "pre-process", the
pre-process program should be assigned to a preceding field.

3.9.4 Program Reserved Fields

If a field is designated as a "program reserved" field, data
for that field is to be assigned by a field program. When the
field is entered, the field program is executed immediately and
the area designated by INPUT is undefined.

3.9.5 Form Constants

Constants and semi-constants are set into the OUTPUT area
prior to data entry. However, fields containing constants will be
passed through the basic interpreter as if the constant characters
had been entered. They will be edited and passed to the field
program in the INPUT area. Unacceptable constants will cause the
interpreter to hang beeping during data entry.

CHAPTER 3. THE COMPILER 3-25

CHAPTER 4. THE INTERPRETER

Data entry using DF2 involves loading the interpreter, then
loading a form, and finally entering data into the fields defined
by the form. When the data has been entered on the screen to the
operator's satisfaction, and the data record has been written to
the data file (by an operator fUnction key or a field program
instruction) then the same form is cleared and redisplayed with
only "constant" and "semi-constant" data appearing.

To start data en try, place the OF 2 tape one in the rear deck
and press RESTART. The interpreter displays a sign on message:

DF2 INTERPRETER RELEASE 2.n - ddmmmyy

The START and ADD commands place the data file in an "OPEN"
mode. The data file must be placed in the "CLOSED" mode (e.g., by
use of the END command), before another-START or ADD command may
be entered. The interpreter will respond to the commands discussed
below. A form number (in decimal) is optional in most of these
commands: if it is omitted, the current form will be assumed. An
error may occur if a form number is required and none is currently
in use.

Only the first letter of a command is recognized~ for
example, "START 2" may al so be entered as "S 2 ".

CHAPTER 4. THE INTERPRETER 4-1

DATA ENTRY FLOW

INTERPRETER

Enter START
Operator Command

Operator
Input

Enter END
Operator Command

DATA TAPE

4-2 CASSE1TE DATAFORM II

4.1 The START Command

The:

s'rART [hn]

command initializes a data tape and causes data to be placed at
the beginning of the data file. If a form number is specified on
the START command; or if a form is currently in memory; the form
is "entered" -- i.e., the form is displayed with the cursor at the
first non-constant field. If there is no form in memory, control
is returned to the interpreter's monitor.

NOTE: The START command does not check for possibly valid data in
the data file; care must be taken so that a possibly valid data
file is not overwritten.

4.2 The ADD Command

If the data file already exists, the:

ADD [nn]

command positions to the end of any data already in the file. If a
form number is specified on the ADD command; or if a form is
currently in memory; the form will be entered at the same time the
data file is being positioned. If there is no form in memory,
control is returned to the interpreter's monitor.

4.3 Th~ CONTINUE Command

If the data file is open, and the interpreter is positioned
in the midst of the file, the:

CONTINUE [nn]

command backspaces the data file one logical record, and reads
forward until an end of file mark is found. Other action is
identical to the ADD command.

CHAPTER 4. THE INTERPRETER 4-3

4.4 The LOAD Command

The:

LOAD <nn>

command loads form number <nn> into memory. If a data file has
been opened, the form is entered. If no data file has been opened,
the message:

TAPE CLOSED

is displayed and control is returned to the interpreter'~ monitor.

New forms may be loaded without disturbing the position of
the data file. Each data record contains the form number with
which it was created so that subsequent modification or other
processing can identify data generated on a particular form.

If the form is not in the catalog, the message:

BAD FORM

will appear.

4.5 The DATA Command

The:

DATA

command places the data file in the data entry mode initially, or
returns to the data entry mode from the interpreter's monitor. If
no form is in memory or if the data file is not open, an error
message is displayed and control returns to the monitor. Data
currently in memory will not be disturbed and will be displayed
whenever the form is re-entered.

4.6 Revising an Existing Data File

4-4 CASSETTE DATAFORM II

4.6.1 The MOOIFYCommand

Any data record on a DF2 generated data file can be accessed
for review or correction. The:

MOD [nn]

command enables the operator to manually access any data record
created by a specified form and to then either bypass or change
that record on the data file. The file is searched for the first
data record created by the current form. Once a record has been
found, the data file is in an "open" mode and may be searched in a
forward direction by pressing the read next record function key
(9), or, from the monitor mode, by entering another MOD command.
To access records already passed over, the rewind function key (7)
rewinds the data file (as does the initial MOD command).

If the data file is in the ADD/START mode, the MOD command
automatically writes an end of file mark on the data file.

During modification, a new form may be loaded (without
disturbing the position of the data file) and that form will
subsequently be used for finding data records. Once a record has
been found by the MOD command, the contents of all fields will be
displayed in the form. Previously recorded data supercedes form
constants, thus, the actual data from the file will be displayed,
overlaying the form's constants (and changing its display, if
different). However, the fOrm's constants will be set into the
data record when the field is entered (as they are for new
records) •

Data in a field may be changed at this time by entering new
data in the field. Pressing ENTER in the first column of a field
leaves the data unchanged. The edit criteria and field programs
associated with the fields are still in effect~ and will be
re-executed.

4.6.2 The FIND Command

If unique data in the record to be CorrecteQ is known, the:

FIND [nn]

command may be used. This command loads the specified form (if
different from the current form) and displays the form so the
operator may enter characters into any fields to use as ~ key in
searching the file. All edit criteria are applied to fields

CHAPTER 4. THE INTERPRETER 4-5

(except field programs and required edit criteria) when setting up
the match data.

\

When the data to be matc.hed has been entered, the operator
must remernberto press the ENTER key after data has been entered
in the last . field, of the search key· before pressing the read
record function key (9) to start the search •. The interpreter will
search thedafa file forward looking for the record generated by
the specified form and containing the specified data.

once the matching data has been found, operation proceeds as
in the MOD commcmd.

Ifa match is not found, the message:

END OF DATA

appears and control is returned to the interpreter~ s monitor.

The search may be terminated by preSSing both the KEYBOARD
and DISPLAY keys simultaneously. The operator may·want to stop a
search if, for example, the wrong form is specified i or the wrong
match data is given for a FIND. Control will be returned to the
interpreter's monitor •.. '

4.6.3 Rewriting Existing'Records

Data records are rewritten, in both FIND and MODIFY modes, by
the use of the write record fUnction key (.). If the record was
fetched using the MOD command, the next data record will
a utoma tically be read and di splayed. If the record was fetched by
the FIND command, control is returned to the.interpreter's
monitor. ,

If no field needs to be changed, the next record can be
fetched by pressing the read next record fUnction key (9); note
that any modifications made will be destroyed by the read
function. The write record fUnction key (.) must be used to cause
updating of the record (unless the write is executed by the field
program, in which case the field assigned the program must be
entered). .

Records may be re-written up to 4 tiines. The configurator
provides a command to reset the rewrite counters of a data file,
so that more modifications may be made.

4-6 CASSETTE DATAFORM II

4.7 The BACKSPACE Command

In the ADD/START mode, the

BACKSPACE

command backspaces the data file one logical record after writing
an end of file mark on the data file and placing the data file in
the MODIFY mode.

In the MODIFY mode, the BACKSPACE command back~paces twice
and reads forward once under form number control; that is, if the
record being read was not created by the current form, preceding
records will be read until a form number match is found.

The backspace record fUnction key (8) also backspaces the
data file.

4.8 The REWIND Command

The:

REWIND

command rewinds the data file and positions to the first data
recorq created by the form currently loaded.

If the data file is in the ADD/START mode, the REWIND command
automatically writes an end of file mark on the data file.

The rewind fUnction key (7) also rewinds the data file.

4.9 The END Command

The:

END

command writes an end of file mark on the data file. Switching
from START/ADD mode to MOOIF¥ mode aU'j:.Qfi,lat;icql).y writes an end of
file mark on the data file. The ~ND command is rejected in the
MODIFY mode.

CHAPTER 4. THE INTERPRETER 4-7

4.10 The NEW Command

To test a new form, place a blank t~pe in the f~ont dec~ and
enter START. The tape which contains the fOrlJl to be tested should
replace the DF2 tap~ one in the rear d~ck. The:

NEW

command should be entered. The interpreter w;ill load the form from
the rear deck.

4~11 Data Entry Action

In the data,entry mode, data set bya CONSTANT command at
form generation is displayed and the cursor is placed at the first
non-constant position on the form. Data set by the SEMI-CONSTANT
command at form generation time is displayed and the cUrsor is
placed in the the first position of the field (ov~r the
semi-constant).

If partial constants are set at the right hand end of the
field, data must be entered up to the constants; 'otherwise, the
constant data may be omitted in the'output record.

During data entry, a CLICK sound is made for each accepted
character. If a character fails to pass the TYPE edit criteria for
the field (alpha, numeric or mixed) a BEEP is sounded and the
cursor does not advance.

When entering data, pressing the ENTER key (or in
fill-controlled fields, entering the lastchara'cter) causes the
field to be further edited (right justi~ied,zero filled, checked
by program, etc.) and, if no errors are found, the cursor moves to
the next £ield. After the last field of a form is entered, the
cursor is placed back at the beginning of the first field.

When the interpreter detects an error in a field, it places
the cursor at the beginning of the field just entered and causes
the processor to BEEP. The cursor does not advance to the next
field. The unacceptable data is not set in the data area in
memory, but still appears on the screen. If the operator decides
to tab past the field, the last accepted data (blank if none has
beerientered) i~ displayed.

4-8 CASSETTE DATAFOru~ II

4.12 Interpreter Function Keys

The ENTER key is used as a forward tab key and the backspace
field function key (3) is used as a backward tab key. Forward
tabbing past required fields is not permitted. Note that TYPE edit
criteria are applied as data is being entered into the field. When
the ENTER key is pressed (or when the field is complete, for fill
controlled fields), further editing is performed on numeric and
right justified fields to insure compliance with format
restrictions (e.g., minus sign must be to the left of the field).
Field programs are not executed until all other edit critera have
been applied successfully.

4.12.1 The Form Data Duplicate Function Key (0)

Once a form has b(=en comp 1 eted, the da ta is trcmsferr.ed to
the OUTPUT buffer from which lt is written to the data file. The
OUTPUT buffer is available to the operator for field duplication
by means of the form data duplicate function key (0). If no
previous record has been written, or if the preceding record wa s
created by a different form, the results of pressing the form data
duplicate function key (0) are undefined.

4.12.2 The Load Next Form Function Key (1)

The next form (specified by the linkage information in the
current form) will be brought into memory when the load next form
function key (1) is pressed. The current data record must be
recorded, either under program control, or by use of the write
record function key (.), prior to loading the next form, since
preSSing the load next form fUnction key does not write the data
record, but instead clears any data in memory.

4.12.3 The Backspace Field Function Key (3)

The backspace field function key (3) is used to retreat from
a field to the previous field~ No indication is given to field
programs that the backspace field fUnction has been executed.

4.12.4 The RetUrn to Monttor Function Key (4)

Whenever it becomes necessary to execute one of the
interpreter "commands" while entering data into a form, the
operator must press the return to monitor function key (4) to
return control to the interpreter's monitor. Only then may the
command be executed.

CHAPTER 4. THE INTERPRETER 4-9

4.12.5 The Form Data Erase Function Key (6)

The form data erase function key (6) ctearsthe entire data
area (without writing it to the file) and redisplays the cleared
form. No indication is given to field programs that the form data
erase fUnction has been executed.

4.12.6 The Rewind Data File FunCtion Key (7)

The rewind data file function key (7) rewinds the data file
and po si tions to the ,fir st da ta record ore a ted by the curren tl y
loaded form.

If the data file was in the ADO/START mode, an end of file
mark is written on the data file before the file is rewound; and
the file is placed in the MODIFY mode.

4.12.7 The Backspace Record Function Key (8)

If the data file is in the ADO/START mode, the backspace
record function key (8) caUses the interpreter towri te an end of
tile mark on the data file, place the data file in fot0DIFY mode,
and di.splay the next preceding data record written using the
current form- '

If the data file is in the MODIFY mode, the backspace record
function key (8) Causes the interpretert() display the next
preceding data record written using the current form.

4.12.8 The Read Record Function Key {9)

The read record fUnction key (9) is acceptable only in MODIFY
mode. It causes the interpreter to search forward in the data file
for the next record that was written by the current form.

4.12.9 The Wri teRecord Function KeY (.)

The write record function key (.) is used to write the
current data record to the data file. If one or more required
fields have not been completed when the write record function key
,ts pressed, the processor BEEPs and the cursor is placed at the
first unfilled required field. No data is written to the file. If
all required fields are completed, a data record will be written
to the data file whenever the write record function key is
pressed. The data record is written even if only incomplete data
has been entered. If an incomplete data record is written, it will
contain ASCII iri all fields defined as zero filled (right

4-10 CASSETTE DATAFORM II

justified, zero filled and left justified, zero filled) and spaces
(or constants, if any) in all other unfilled fields.

After the current record has been written to the data file,
the form is re-displayed with all data f.ields cleared to NULL (or
to the form constants or semi-constants if any), ready for
re-entry of data from the beginning. If, however, an auto-link is
set when the write record function is executed, the data is
written out and the linked form is automatically loaded and
displayed.

4.13 Data Record

The length of the data record generated during data entry is
determined by the combined lengths of all data fields in the form.
The maximum data record length is 245 characters. The data record
written to the data file will also automatically contain a form
number (1 binary character) and a rewrite counter (1 ASCII
character) •

The format of the record is:

Data fields (written to their defined lengths) in the
order they appear on the form (from left to right and
from top to bottom).

Logical and physical record terminators (015,003).

The form number plus two (1 binary character) of the
form which created the data record.

Rewrite counter (1 ASCII character).

Records are not blocked in any way. Each physical record
contains. one logical data record. Data fields left empty are
filled with either spaces or zeros, depending on the field type
edit criteria.

CHAPTER 4. THE INTERPRETER 4-11

CHAPTER 5. THE CONFIGURATOR

Once a form has been generated and tested, it should be
cataloged on the DF2 tape one. The entire system of forms should
be designed carefully to provide both the simplest a~dtfastest
operations for data entry. The configurator is used to record and
manipulate forms in a DATAFORM 2 system.

To load the configurator, place the DF2 tape one in the rear
deck and press RESTART. The configurator is the first program on
the tape; however, unless the DISPLAY key is held down until the
message:

DF2 CONFIGURATOR RELEASE 2.n -- ddmmmyy

is displayed, the configurator will automatically load the
interpreter.

A form number (in decimal) is required by most of the
commands discussed in this chapter.

5.1 The CAT Command

A "catalog" file is maintained as file one on the system tape
one. It identifies each form by a decimal number in the range
1-124 inclusive. The:

CAT

command is used to display the form numbers which are already
assigned to forms on the DF2 tape one.

5.2 The IN Command

The:

IN <nn>

command 1s used to "input" a form created by the form generator.
The form which is on the tape in the front deck is copied to the
DF2 tape one and its number is added to the form catalog. The
catalog is then rewritten.

CHAPTER 5. THE CONFIGURATOR 5-1

5.3 The DELETE Command

To remove a form from· thesystern c~taloq , enter:

DEL <nn>
. .

If th~ form bE~ing deleted is not the last. form on the QF2 tape
one, a scratch cassette tape must be placed in the front deck.
This is necesBary because the cataloged forms must be reorganized
on anothertaJ?e before being rewritten to the DF2 tape. .

5.4 The CHOP Command

Tore~ove multiple forms from the system catalog, enterl

CHOP <nn>

The CHOP command deletes the specified form number artd all
subsequent (hi.gher numbered) forms from the system catalog.

S.5 The out Command

A single form may be transferred from the system tape one to
a scratch tape in the front deck by entering:

OUT <nn>

The form written is in the same format as a form written bY
the. form generator.

5.6 The DUP Command

TO generate a DF2 tape one {configurator, blank catalog, and
interpreter), place a scratch tape in the front deck and enter:

DUP

'rhe new system one tape will have no forms in its catalog.
·1

5.7 The DUP ALL Command

To generate a DF2 tape one complete with forms on the front
cassette·deck,' place a scratch tape in the front deck and enter:

DUP. ALL

The DUP ALL command writes the configurator, catalog, interpreter,

5-2 CASSETTE DATAFORM II

and all forms indicated in the catalog, onto the tape in the front
cassette deck.

5.8 The LGO Command

To generate a faster loading version of the interpreter and
its forms, place a scratch tape in the front deck and enter:

LGO

This command omits the configurator and catalog files. No form
manipulation can be performed on the LGO version of the system.
All forms specified in the catalog are written to tape.

5.9 The COpy command

Data tapes may incur tape parity errors or particular data
records may reach the rewrite limit by being modified the maximum
number of times. To copy a data tape, enter:

COpy

This command resets the rewrite counter in each record back to
zero, and, if tape errors are encountered, provides the option of
omitting the record, terminating the copy, or attempting to copy.
the bad data.

When the COpy command is executed, the message:

PLACE DATA TAPE IN FRONT DECK, BLANK TAPE IN REAR
WHEN READY PRESS ENTER

will appear. Once the ENTER key is pressed, the tape in the front
deck will be copied to the tape in the rear deck. If errors are
encounterd on the data tape in the front deck, the following
message will appear:

PARITY ERROR ON DECK 2
COPY, OMIT, END?

If "0" is entered, the had reqord is bypa slSed and the oOPY
proceeds. If liE" is entered, the copy is terminated with an end of
file mark written on the tape in the rear deck. If "c" is entered,
the bad record will be written on the tape in the rear deck (the
copied record will have no parity error; however, the record will
probably be miss.i.ng data or contain erroneous data) and the copy
will continue.

CHAPTER 5. THE CONFIGURATOR 5-3

If the end of the tape is reached on the front deck and no
end of file mark has been detected, the COpy command will
automatically backspace the tape in the rear deck twice and write
an end of file mark on it. The tape in the front deck is not
disturbed. Not.e that if this occurs, the final record count is
unreliable.

When the copy is completed, the following message is
displayed:

nnn BECORDS COPIED

5.10 The DPRINT Command

To print a data file, enter:

DPRINT

This command prints each logical record from the tape in the front
deck, 80 characters per line, on whichever printer (local or
servo) is available. If the data records contain an embedded 015,
it is interpreted' as a carriage return. If the data record
contains an embedded 003, printing of the record terminates
prematurely at that point.

5.11 The FPRINT Command

To print a form image, enter:

FPRINT [nn]

where linn" if; 'an 'optional form number. If a number is entered,
only that form is printed. If no form number is entered, a form
image from the front cassette deck will be printed.

If:

FJ'RINT ALL

is entered, ,.11 cataloged forms are printed in nUmerical order.

Forms w.ll be printed twice; once as the total imag£? would
appear to thp operator and again, one line at a time, followed by
the size of :he fiebl and the TYPE, REQUIRED, and PROGRAM edit
criteria for each fiold.

5-4 CASSETT1~ DATAFORM II

5.12 The REPLACE Command

To replace a form on the DF2 tape one with an updated or
corrected form, place the new form in the front cassette deck and
enter

REPLACE <nn>

A new form from the front cassette will be copied to the DF2
tape one, replacing the old form which was there.

5.13 The RIN Command

The:

RIN

command is used to replace the entire catalog and forms of one DF2
tape one with the catalog and forms of another DF2 tape one. The
~IN command is used to upgrade systems as new releases of DF2 are
made.

Place the new release of the DF2 tape one in the rear deck,
press RESTART, and hold down the DISPLAY key while the
configurator is loading. Place the old DF2 tape one in the front
deck, and when the READY message is displayed by the configurator,
enter the RIN command. The catalog and all forms from the cassette
in the front deck will be copied to the ca ssette in the rear deck.

5.14 The INT Command

The:

INT

command is used to transfer control from the configurator to the
interpreter. The interpreter is loaded from the rear deck, and
data entry may begin.

CHAPTER 5. THE CONFIGURATOR 5-5

CHAPTER 6. RECOVERY PROCEDURES

6.1 DATAFORM System Tape Recovery

An old and well-established rule of computer systems is to
keep backups. In accordance with this rule, copy .the three DF2
tapes using the COpy utility program (NOT the COpy command of the
configurator). Once forms have been cataloged, copy the DF2 tape
one, using the DUP ALL command. The original form and program
tapes should be kept, and should be carefully labeled and stored.

If parity errors develop in the system program section of the
DF 2 tape one, the RIN command can be used to copy the forms onto
another DF2 tape one.

If parity errors develop in the forms themselves it may be
possible to REPLACE or DELETE or CHOP the erroneous areas.

Parity errors in the forms catalog will cause the message:

FORMS CATALOG UNLOADABLE, DUMMY CATALOG GENERATED

to appear. The dummy catalog has entries for all forms, from 1 to
124. If the forms on the tape are consecutive, CHOP with a number
that is one greater than the highest numbered form will cause the
catalog to be rewritten, hopefully eliminating the catalog error.
The forms may also be salvaged by using the OUT command, once for
each form.

6.2 Data Tapes

During data entry, each record is written, re-read, and
compared to the written data. If a parity failure occurs, the
operator is informed that the tape has been ended prior to the
record containing the error. A new data tape must be substituted,
the START command used, an4 tbe last recOfQ (Wbich m~Y be
retrieved using the field duplication function key) and the one in
progre~s when the failure occured must be re-keyed and re-written.

The two cassette files may later be concatenated using the
CTOS or DOS SAPP utility.

CHAPTER 6. RECOVERY PROCEDURES 6-1

Three types of problems can arise with data tapes:

1. The tape may acquire a parity error.
2. The tape may be missing an end offil~ mark.
3. A data record may have its rewrite limit reached.

Since a read-a fter-wri te technique is used to write all data
records, undetected parity errors should be rare. These. will most
likely occur during error correction and modification.

The COpy command of the configurator cJn b~ used iri any of
the above ca ses to correct the tape. The rewrite count is
automatically reset to zero by the COpy command. Parity errors may
be omitted, or copied (in the· hopes of later correcting the record
by modification). If a file mark is missing, a parity error will
usually be encountered. The COpy command .can be used to write an
end of file mark on the data tape.

A better technique for adding a lost or .omitt~d end of file
mark is to use the interpreter:

1. Locate the last record using the MOD or FIND command. If
there is any doubt as to which is the last record, use the
LISTER utility program.

2. Remove the data tape.

3. Place a scratch tape in the front deck, and enter ST~RT. Once
the starting file mark has been written, the scratch tape
should be replaced by the actual data tape.

4. Enter END, which will write an end of file mark after the
last record.

6.3 Form Tapes

If an unrecoverable error occurs while writing the form
during the initial generation process, the form may still be
recovered. The generator sho~ld be reloaded immediately and the
RECOVER command should be used.

If one o:E the system f.iles on tape two is not loadable,
another copy of, the DF2 tape two should be used to recover the
form.

6-2. CASSETTE DATAFORM II

CHAPTER 7. INFORMATION FOR THE PROGRAMMER

7.1 System Structure of the Interpreter

The DF2 interpreter resides within a 8K DATAPOINT processor.
The 8K is divided as follows. The first page (from 01000-01377) is
for interpreter common area. Interpreter code precedes the user
area. The user area contains the data area, edit tables, form
image, and, if necessary, field programs (which, in turn, may
required the extended interpreter). The following is a memory map
of the interpreter:

I interpreter routines I 00000-00777 I
I I I
I variable data I 01000-01604 I
I I I
I interrupt & cassette handlerl 01607-04702 I
I I I
I keyboard I/O I 04703-06412 I
I I I
I command handler I Ot>413-12202 I
I I I
I instruction interpreter I 12203-13421 I
I I I
I string arithmetic I 13422-14523 I
I I I
I form pointers I 14524-14740 I
I I I
I user space I 14741-17777 I
I I I

7.2 The Edit Table

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-1

7.2.1 Edit Table Format,

For each field defined by a form, a six character set of edit
criteria is generated. This entry describes the field in detail,
as follows:

Horizontal position
Vertical positon
Length of field
Position in output record
Edit key
Field program letter

The horizontal position (0-79) indicates the starting column of
the field in the screen image. The vertical position (0-11)
indicates the line of the screeni~agecontaining the field. The
information is used to display the field as well as to access data
stored' in the form image for the field (i. e., constants).

The length of field is the number of characters the operator
may enter -- from 1 ~o 80. This number is associated at execution
time with the labels INPUT, OUTPUT and with field references in
field programs.

The position in output record is actually an index (0-244)
into the OUTPUT buffer. If the field is a "keyin" field,i."e., no
data space is reserved, the position's value is 0377.

The edit key is a combination of bits indicating the edit
criteria set in the generator TYPE and REQUIRED passes. The bits
in the edit key have the following meanings:

7 6 5 41 3 2 1 101

\ \ \ \ \ \ \ _._. Alpha
\ \ \ \ \ \ \ Numeric Field

\ \ \ \ \ \ NO Keyin
\ \ \ \ \ . Right Justified

\ \ \ \ Zero Fill
\ \ \ Numeric Digits

\ \ Fill Controlled
\ Required

The alpha and numeric digit bits are both set for the "mixed"
field type.

The field program letter is set to binary zero if no field

7-2 :::ASSETTE DATAFORM II

program is assigned; otherwise, the actual ASCII letter is stored
in this character. The number of the last field in the screen
image (the first is zero) is used to determine the length of the
edit table. In addition, there is an 0377 stored after the last
entry in the edit table.

7.2.2 Work Area

During da~a entry, the six character set of edit criteria for
the current field is moved to a work area in the data page for
ease of referencing. The variables:

COLUMN
LINE
LENGTH
PSN
EDT KEY
USER

contain the six character set of edit criteria. The location
"SAVFLD" contains the current field number.

7.2.3 Routines to Access the Edit Table

There are several sUbroutines available to access the set of
edit criteria. "EDTPNT" is the most basic subroutine. This
subroutine uses the val ue in the C-register to set the HL
registers to the address of the corresponding set of edit
criteria.

"MOVEDT" stores the field number at "SAVFLD", and moves the
corresponding set of edit criteria to the work area and into the
registers. It also positions the cursor to the field.

"NEXT" and "LAST" use the field number at "SAVFLD" to access
the next or the preceding field. Both sUbroutines call "MOVEDT".

7.3 Structure of the Form in Memory

The form is defined by a fixed set of pointers:

Linked form number
Field program pointers
Maximum field number

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-3

Edit table pointer ,
Data-wiitebuffer pointer
Length of data record
Form line po;inters

The variable "NEXTF" contains the number of the linked form
(000 if no link, linked form number +2 if, a link is set) ,and the
variable "PAGE)" is the auto-link flag (0 or 0377)~

For each possible field program four'characters are reserved
starting at the label "USERA".' The four characters are zero if the
corresponding program letter is, not present. If a program is
present, whether referenced or not, the first pair of characters
contains the "base add,ress" to be used for all' :r:-elative addresses
within the field program. The second pair of characters contains
the starting address of the program .. (Note: All addresses are
stored MSB,LSB.) Unresolved program references contain an octal
377 in the first character.

The set of edit criteria is al waysreferel\ced via the address
pointer "SEDIT"; the requested field is always checked against the
maximum field number, flEEDIT". '

1.).2 Data Buffers

The OUTPUT buffer is always in a fixed, position IIDATA" at,the
end of all form pointers. Its length, isd~finedbY the variable
"LDATA". The OUTPUT buffer, to which the da ta is moved prior to
writing, is in a variable position. It is' set at the end of the
data buffer, at a point defined by the length of the data
record+8. The address of the OUTPUT buffer is in IISMATCW' • The
OUTPUT buffer is also used when performing FIND operations. The
data contained in the OUTPUT buffer is available to the operator
by means of the form da ta duplication fUnction key (0).

7.3.3 Form Image

The compressed form is stored beyond the two output buffers
and it is referenced indirectly through the 'pointers starting at
the label "LINES". If the address in the table of pointers
starting at "LINES", corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen.

7-4 CASSETTE DATAFORM II

7.3.4 Edit Criteria Table

The edit criteria table is generated beyond the compressed
form. The character immediately after the edit table terminator
(0377) is available for field programs.

7.3.5 Field Programs

When programs are attached to the form, blocks starting at
relocatable addresses are given absolute addresses based at the
first available space after the form edit table (the program base
address). Non-relocatable records from the field program (e.g.
COMMON), are simply passed through to the form file.

7.3.6 Extended Interpreter

There are fifteen extended interpreters which contain all
possible combinations of four extended interpreter .commands
(CONVERT and LOOKUP are combined as one command, as are CK10 and
CK11). Thus, extended interpreter 1 contains only check digits; 2
contains the multiply subroutine; 3 contains both check digits and
multiply; 4 contains ,divide; 5 contains divide and check digit; 6
contains multiply and divide; 1 contains multiply, divide and
check digits; 8 contains conversions; 9 contains conversions and
check digits; 10 contains conversions and multiply; 11 contains
conversions, multiply ~nd check digits; 12 contains conversions
and divide; 13 contains conversions, divide and check digits; 14
contains conversions, multiply and divide; and 15 contains all
extended functions.

The extended interpreters are all assembled so that they end
at an address 100 characters (plus 3 to 18 characters for jump
instructions) from the end of memory; thus leaving a maximum
amount of user space. Three to eighteen of the characters are
reserved for a jump table into the extended interpreter itself,
since the starting addresses of the SUbroutines change for each of
the fifteen levels of interpreter.

7.4 Subroutines Available in the Interpreter

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-5

7.4.1 Keyboard Input Routine

The interpreter contains its own keyboard' input routine which
has two entry points. When the routine is entered at "KEYIN", the
edit type and length for the.current field are appliedto'the
input. In addi t:1.on , it is as.sumed that the corresponding area of
the form image is in the HL registers. This area is checked .for
constants. If entered at nKEYIN$U,paraineters are provided to
permitkeyin of twenty characters with no edit restrictions. ~
input .1.2 always stored .in ~. .

7.4.2 Display Routine

The display routine also has two entry points, "DSPLYS" and
"DSPLY". If the display routine is entered at "DSPLY", the cursor
position will beset to the bottom line of the. screen and the
screen will be rolled up after the message is displayed. The
message must be terminated by an 015. If the display routine is
entered at "DSPLYS" r the contents of DE will be used toposi tion
the curSQr and no rollup will take place at the end of the
display.

There are two special characters perm;itted in the display
input message: 023, which may appear only at the beginning of the
message (causing the screen to rollup one line): and all ·followed
by a count, which may appear anywhere in the, message (indicating
space compression). In addition, binary z~rosareconverted to
underscores and spaces are D..Q.:t. displayed at all (i.e., the cursor
is simply pOSitioned to the iight). The message being displayed is
always expanded into TEMP.

The routine called "REWRT" redisplays the form (with no
data)·

7.4.3 Form and Data Access Routines

The routihe "GETADR" uses the contents of the variables "HP"
and "VP" to locate to positions in the form image corresponding to
the current field (this is where constants and semi-constants are
stored).

"GETDAT II sets HL to the address in the data buffer
corresponding to t,he current field. The B-register contains the
length of the field.

"1-10VEDT" uses the value in the C-register to access the edit
table entry corresponding to that field and moves the six

7-6 CASSETTE DATAFORM II

· \

character entry to a work area for easy referencing. It also saves
the field number in the variable II SAVFLD " •

7.4.4 String Arithmetic Package

The string arithmetic package used in DATAFORM requires the
following parameters:

HL = destination and field operated on
DE = operator (i.e., divisor)
th~ length of HL is in BLEN
the length of DE is in ALEN

Only the add and subtract fUnctions are available in the
basic interpreter. The addresses of multiply and divide change
depending on the particular level of extended interpreter being
used.

The entry point for add is ADDS and for subtract is SUBS.

7.5 Assembly Language Interfacing and Overlays

7.5.1 Program Base Address

When the form generator outputs a form, it displays a
message:

PROGRAM BASE ADDRESS mmmm

The value, mmmm, is the decimal starting address of the form's
programs. This information is of particular interest if assembly
language programs are to be included with the form. The technique
for utilizing this information is:

1. Generate a form and record the program base
address.

2. Generate and assemble the assembly language
program set at the program base address.

3. Compute the length (in decimql) of the
assembly language program.

4. Generate and compile the DATAFORM 2 program
with a labeled WORK statement the same size
as the assembly language program. (It may be
necessary to use two WORK statements since
the maximum reservable amount is 245
characters.)

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-7

5. Rerun the . torm generator. Enter OLD to
retrieve the form'and OUT .towritethe form
with the OATAFORM '~program attached.

6. Use the OOS\ or CTOS '.'APP tI command to attach
the assembly language program to t,he form:

APP <assembly>,<form>,<newform>

This form may now be used by the ·interpreter.

NOTE: .The assembly program and OATAFORM form should always
be appended' in this order i since, during conversion to
cassette systems, the extended interpreter and all
subsequent code are replaced by the casssette extended
interpreter. .

7.5.2 External References

Facilities are provided in the OATAFORM .2 language to
reference points outsidetl)e program, locations which maybe
ei ther in the interpreter itself or in a separately assembled
assembly language program.

The EQU instruction aSSigns an addr;'esstoa label whi.ch may
then be referenced by any of the brancbiogstatementsinOATAFORM
2 (GOTO,CALL, etc.). If this facility is used, the assembler
return instruction "RET" will return control to either the
statement after a CALL or to the NEXT point in the interpreter.

7.5.3 Returning to the Interpreter

A table of interpreter entry points is provided so that these
address may be accessed at the same point in, future versions :

NEXT$
AGAIN$
STORE$
ENO$
WEOF$

EQU
EQU
EQU
EQU
EQU

01147
01152
01155
01160
01163

To return to a field program after being called, the assembly
language should Simply return, "RET". Otherwi se, a jump to the
appropriate exit routine will return control to the interpreter.

7-8 CASSETTE DATAFORM II

7.5.4 Interpreter D~ta Areas

Various interpreter data areas may be needed by the assembly
language programs. The variable 'fEMP is the single item keyin
buffer and it is this area which is accessed when "INPUT." is
referenced in a field program. References to "INPUT" are co~piled
as an address of 01000 and a length of zero. At execution time,
the length o.f the current ·f ie ld is subst.:j. tuted OUTPUT, compiled as
address zero. and length zero., is res61v~d at executian time. It is
canverted to. the length and address in the -data buffer af the
current field.

Labels defined in FIELD statements are ca~piied with lengths
af ane and a special code in the MSB portion af the address. If
the MSB is 0370, the LSB represents an index to. the field table
(i.e. the field number supplied by the programmer, minus ane). rf
the MSB is 0375, the LSB represents a displacement which, at
execution tim~, is added to. the current field number in arder to.
resolve the length and address infarmation.

NOTE: Referencing a field ather than the current field daes nat
change the number af the current field.

Several variables in the interpreter may be useful to. the
DATAFORM 2 program. To. access external data, i.e., data in the
interpreter ar created by an assembly language routine, first EQU
a label, then REDEFINE the label, aSSigning it the proper length.
For example, the current field number (in binary, starting at
zera), is at lacatian 01141. To. test far field 5:

CURFLD
CURENT
FLD5
TEST

EQU 1141
REDEFINE CURFLD,1,1
WORK 04
IF CURENT EQUAL FLD5 THEN XXXX

When the aperatar presses the ENTER key in the first pasitian
af a field, the current data is at INPUT and is then passed to. the
field program~ The variable at location 01140, SAVNUM, cantains a
flag which is 0 if no. data was entered, and is nan-O if data was
entered.

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-9

7.5.5 Loading the l\.ssembly Language Program

Since the format of a form and that of assembly code is the
same, an assembly languag~ overlay maYbe loaded by cataloging it
on the form tape and then entering "LOAOnn".

Once the form and program have been tested:
ways to put the system tog.ether: .

there are

1) The assembly program may be cataloged as a separate
form and be loaded by either the operator or by a
field program.

2) The form and the assembly language program may be
appended together using the facilities of the CTOS
or DOS.

7-10 CASSETTE OATAFORM II

APPENDIX A. SAMPLE PROGRAMS

< I I
SIZE 7 6 1
TYP~ .R
REQUIRED P P
PROGRAll.1 S

SAMPLE PROGRAM - MOVE SIGN FROM LEFT END TO RIGHT END

INSIGN REDEFINE INPUT,l,l
INREST REDEFINE INPUT,2,6
NXTFLD FIELD +1
SIGN FIELD +2
SPACE WORK " ...

I

i'1INUS WORK U_II.
I

• INPUT TO KEYIN ONLY FIELD; MOVE
• SIGN AND STORE IN NEXT FIELD

S*

MOVE1

IF
IF
NEXT
MOVE
MOVE
IF
MOVE
NEXT

NULL NE INPUT THEN MOVE1
NULL EQ NXTFLO THEN 'AGAIN

INREST TO NXTFLD
INSIGN TO SIGN
MINUS EQ" INSIGN . THEN NEXT
SPACE TO SIGN

APPENDIX A. SAMPLE PROGRAMS A-1

I I I I I = I I
SIZE 6 1 i 6 1 6 1
TYPE R. R
REOUIRED P P
PROGRAM K

SAMPLE PROGRAM - ARITHMETfC OPERATIONS ON FIELDS WITH .SIGN ON RIGHT

LFT
LFTSIGN
LFTVALU.
MID
MIDSIGN
MIDVALU
SUM
SUMSIGN
SUMVALU
ADD
SUB
MPY
DIV
SPACE
ZED
VALUl
SIGN!
OP
VALU2
VALU3
SIGN3

K'"

ADDl

SUB1

WORK
REDEFINE
REDEFINE
WORK
REDEFINE
REDEFINE
WORK
REDEFINE
REDEFINE
WORK
WORK
WORK
WORK
WORK
WORK
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

MOVE
MOVE
MOVE
MOVE
MOVE
IF
IF
IF
IF
CijANGg
AGAIN
ADD
GOTO
SUB

7· . ,
LFT,l,!

·LFT,2,6
7;
MID,!,!
MID,2,6
7;
SUM,!,!
SUM,2,6
"+ II.;,
"", II.;

"/" ;
" I, • ,
"0" ;
1
2
3
4
6
7

INPUT TO OUTPUT
VALU! TO LFTVALU
SIGNl TO LFTSIGN
VALU2 TO MIDVALU
INPUT TO MIDSIGN
OP EO ADD THEN ADDl
OP EO SUB THEN SUBl
OP EO MPY THEN MPYI
OP EO DIV THEN DIVl
3

MID TO LFT GIVING SUM
DONE
MID FROM LFT GIVING SUM

A-2 CASSETTE DATAFORM II

GOTO DONE
MPYI MPY MID BY LFT GIVING SUM

GOTO DONE
DIVI DIV MID INTO LFT GIVING SUl-1
DONE MOVE SUMVALU TO VALU3

IF SUMSIGN EQ ZED THEN BLANK
MOVE SUMSIGN TO SIGN3
NEXT

BLANK 1-10VE SPACE TO SIGN3
NEXT

APPENDIX A. SAMPLE PROGRAMS A-3

\
I <

SIZE 6 7
TYPE D.
REQUIRED \ P
PROGRAM C

SAMPLE PROGRAM TO COMPUTE CHECK DIGIT (MOD 10)

COMBO WORK "0000000":
CKWORK REDEFINE COMBO,1,6
CKDIG REDEFINE COMBO,7,1
NXTFLD . FIELD +1
ONE WORK \ Ill. ";
WEIGHT W~RK \ "121212";

G* MOVE INPUT TO CKWORK
. SUB CKDIG FROM CKDIG

Cl IF COMBO CKIO WEIGHT THEN C2
ADD ONE TOCKDIG
GOTO C1 .

C2 MOVE COMBO TO NXTFLD
STORE

A-4, CASSETTE DATAFORM II

MM DD YY JULIAN
1_- I- I- I- I-

SIZE 2 2 2 2 3
TYPE R R R
REQUIRED P P
PROGRAM G H J

SAMPLE PROGRAM TO CONVERT TO JULIAN DATE

ADDER

LEAPYR
l.\lONTH
DAY
HOLD
K1
K02
INDAY
INMO
JYR
JDAY

G*

H*

J*

\OWRK

WORK
WORK
WORK
WORK
WORK
WORK
FIELD
FIELD
FIELD
FIELD

IF
STORE

IF
STORE

ALIGN
LOOKUP
ADD
MOVE
IF
IF
ADD
STORE

"000 " , "031" , "059" , "090 " , "120'" , " 151 " :
"181","212","243","273","304","334"
"76","80","84",1188 11 ,"92","96"
"01","12"
"01" , II 31 "
"000" ;
"1" ;
"02 11 ;
-1
-2
+1
+2

INPUT NIR MONTH THEN AGAIN

INPUT NIR DAY THEN AGAIN

INMO TO HOLD
HOLD IN ADDER GIVING JDAY
INDAY TO JDAY
INPUT TO JYR
INPUT NIT LEAPYR THEN STORE
INMO LE K02 THEN STORE
K1 TO JDAY

APPENDIX A.SAMPLE PROGRAMS A-5

< I- I
SIZE 7 5 1
TYPE R
REOUIRED P P
PROGRAM M

SAMPLE PROGRAM TO CREATE MINUS OVER PUNCH TYPE CHARACTER

SIGN
VALU
LAST
NXTFLD
PUNCH
ZERO
MINUS
ZED
TABLE

M*

PUNT

REDEFINE
REDEFINE
REDEFINE
FIELD
FIELD
WORK
WORK

. WORK .
WORK

MOVE
MOVE
IF
IF
LOOKUP
NEXT
MOVE
NEXT

,
INPUT,1 ~ 1
INPUT,2,5
INPUT,7,1
+1
+2
"0 It;
U_" • ,
"{ ~'.;
"J " , I. Kit, "L It , It Mit, .IN It :

"0", "P", "0"·, "R"

VALU TO NXTFLD
tAST TO PUNCH
SIGN NEOMINUS THE.N NEXT
LAST EO ZERO THaN PUNT·
LAST IN TABLE GI VING PUNCH

ZED TO PUNCH

A-6 . CASSETTE DATAFORM II

1 ________________________ __

SIZE 30
TYPE M
REQUIRED
PROGRAM C

SAMPLE PROGRAM ILLUSTRATING CHARACTER CONVERSION

IN1
INMOVE
ALLOUT
WK1
~~KMOVE

ASCII

EBCDIC

SINGLE
K29
COUNT
KOO
K1

C*
C1

REDEFINE
REDEFINE
DATA
REDEFINE
REDEFINE
VWRK

WORK

REDEFINE
HORK
WORK
WORK
WORK

MOVE
CONVERT
MOVE
MOVE
SUB
IF
NEXT

INPUT,1,1
INPUT,2,29
1,30
ALLOOT,30,1
ALLOUT,2,29
"ABCDEFGHIJKL" :
"MNOPQRSTUVWX":
"YZ0123456789"
0301,302,303,304,305,306:
307,310,311,i21,322,323:
324,325,326,327,330,331:
342,343,344,345,346,347:
350,351,360,361,362,363:
364,365,366,367,370,371
EBCDIC,l,l
"29";
"00" ;
"00";
11111 i.

K29 TO COUNT
IN1 BY ASCII AND SINGLE GIVING WK1
INMOVE TO INPUT
WKMOVE TO ALLOUT
K1 FROM COUNT
KOO NE COUNT THEN C1

APPENDIX A. SAMPLE PROGRAMS A-7

SHIPPED TO 1 . SHIPPED FRQM I
SIZE 15 15
TYPE
REQUIRED
PROGRAM A A

ADDRESS 1 ADDRESS 1
SIZE 15 15
TYPE
REQUIRED
PROGRAM A B

DATE 1_1_1- DATE 1_1_1-
SIZE 2 2 2 2 2 2
TYPE R R R R R R
REQUIRED
PROGRAM C

SAMPLE PROGRAM ILLUSTRATING ENTERING FIELDS "OUT OF ORDER"

A* CALL SAVE.
CHp+NGE +1
NEXT

, .
B* CALL SAVE

CHANGE 7
NEXT

C* CALL SAVE
CHANGE: 1
NEXT . .

SAVE MOVE· INPUT TO OUTPUT
RETURN

A-8 CASSETTE DA.TAFORM II

SIZE
TYPE
REQUIRED
PROGRAM

THIS IS THE FIELD
1 ______ _

15

v

SAMPLE PROGRAM TO ILLUSTRATE MODIFY MODE VERFICATION

ONE
THREE
HOLD
COUNT

V*

TRY

OK

ATTEMPT

WORK
WORK
WORK
WORK

IF
IF

. ADD
IF
MOVE
AGAIN
IF
MOVE
SUB
NEXT
SUB
AGAIN

II 111 ;
113 11 ;

"
"0" ;

II • ,

RETRY EQ NULL THEN STORE
INPUT EQ OUTPUT THEN OK
ONE TO COUNT
COUNT EQ THREE THEN TRY
INPUT TO HOLD

INPUT NE HOLD THEN ATTEMPT
INPUT TO OUTPUT
COUNT FROM COUNT

COUNT FROM COUNT

APPENDIX A. SAMPLE PROGRAMS A-9

I
SIZE 7
TYPE R
REQUIRED
PROGRAM A

I
SIZE 7
TYPE R
REQUIRED
PROGRAM A

1
SIZE 7
TYPE R
REQUIRED
PROGRAM A

I
SIZE 7
TYPE R
REQUIRED
PROGRAM A

I
SIZE 7
TYPE R
REQUIRED
PROGRAM A

0000.00
SIZE 7
TYPE
REQUIRED p
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (FIRST STYLE)

TOTAL ..
A*

FIELD

SUB
ADD
STORE

6

OUTPUT FROM TOTAL
INPUT TO TOTAL

A-10 CASSE'rTE DATAFORM II

1
SIZE 7
TYPE R
REQUIRED
PROGRAl-1 F

1 __ ,_._-

SIZE 7
TYPE R
REQUIRED
PROGRAM F

1 __ -

SIZE 7
TYPE R
REQUIRED
PROGRAM F

I
SIZE 7
TYPE R
REQUIRED
PROGRAM F

0000.00
SIZE 7
TYPE
REQUIRED P
PROGRAr>1

SA£"lPLE PROGRAM - TOTAL ACCUMULATION (SECOND STYLE)

BLANK WORK II II • ,
SUM FIELD 5

F* SUB OUTPUT FROM SUM
ADD INPUT TO SUM
t'40VE INPUT TO OUTPUT
MESSAGE BLANK
["lESSAGE SUM
NEXT

APPENDIX A. SAMPLE PROGRAMS A-II

\

I
SIZE 7
TYPE R
REQUIRED
PROGRAM Z

I
SIZE 7
TYPE R
REQUIRED
PROGRAM Y

I
SIZE 7
TYPE R
REQUIRED
PROGRAM X

I
SIZE 7
TYPE R
REQUIRED
PROGRAM W

0000.00
SIZE 7
TYPE
REQUIRED P
PROGRAM

SAMPLE ·PROGRAM - TOTAL ACCUMULATION (THIRD STYLE)

ONE FIELD 1
TWO FIELD 2
THREE FIELD 3
FOUR FIELD 4
FIVE FIELD 5

Z* ADD INPUT· TO TWO GIVING FIVE
GOTO EXITl

y* ADD ONE TO INPUT GIVING FIVE
~XItl ADD THREE TO FIVE

GOTO EXIT2
x* ADD ONE TO TWO GIVING FIVE

A-12 CASSETTE DATAFORM II

ADD INPUT TO FIVE
EXIT2 ADD FOUR TO FIVE

STORE
W* ADD ONE TO TWO GIVING FIVE

ADD THREE TO FIVE
ADD INPUT TO FIVE
STORE

APPENDIX A. SAMPLE PROGRAMS A-13

I
SIZE 7
TYPE R
REQUIRED
PROGRAM P

I
SIZE 7
TYPE R
REQUIRED
PROGRAM Q

I
SIZE 7
TYPE R
REQUIRED ,
PROGRAM R

I
SIZE 7
TYPE R
REQUIRED
PROGRAM S

0000.00
SIZE 7
TYPE
REQUIRED P
PROGRAM

SAMPLE PROGRAM TOTAL ACCUMULATION (FOURTH STYLE)

ONE FIELD 1
TWO FIELD 2
THREE FIELD 3
FOUR FIELD 4

. fIVE FIELD 5
BLANK WORK " ... ,
P* ADD INPUT TO TWO GIVING FIVE

GOTO EXITl
Q* ADD ONE TO INPUT GIVING FIVE
EXITI ADD THREE TO FIVE

A-14 CASSETTE DATAFORM II

GOTO EXIT2
R* ADD ONE TO TWO GIVING FIVE

ADD INPUT TO FIVE
EXIT2 ADD FOUR TO FIVE

GO TO EXIT3
S* ADD ONE TO TWO GIVING FIVE

ADD THREE TO FIVE
ADD INPUT TO FIVE

EXIT3 MOVE INPUT TO OUTPUT
MESSAGE BLANK
MESSAGE FIVE
NEXT

APPENDIX A. SAMPLE PROGRAMS A-15

0.0.0.0..0.0
SIZE 7
TYPE R ..
REQUIRED
PROGRAM

0.0.0.0..0.0.
SIZE 7
TYPE R
REQUIRED
PROGRAM

0.0.0.0..0.0.
SIZE 7
TYPE R
REQUIRED
PROGRAM

0.000..00
SIZE 7
'rYPE R
REQUIRED
PROGRAi-1

0.0.0.0.0.0
SIZE 7
TYPE R
REQUIRED R
PROGRAM T

SA1'-1PLE PROGRAM - TOTAL ACCUMULATION ,CHECKING AGAINST KEYED IN TOTAL

FIRST
SECOND
THIRD
FOURTH
TEMP
SILVER
GOLD
SHINE

'1'*

FIELD
FIELD
FIELD
FIELD
WORK
WORK
WORK
REDEFINE

ADD

1
2
3
4
"0.0.0.0.00";
"CORRECT" ;
"NOT CORRECT; 0.000.00 IS CORRECT"
GOLD,14,7

FIRST TO SECOND GIVING TEMP

A-16 CASSETTE DATAFORM II

GREEN

ADD
ADD
IF
MOVE
MESSAGE
AGAIN
MOVE
MESSAGE
NEXT

THIRD TO TEMP
FOURTH TO TEMP
TEMP EO INPUT THEN GREEN
TEMP TO SHINE
GOLD

INPUT TO OUTPUT
SILVER

APPENDIX A. SAMPLE PROGRAMS A-17

CONFIGURATOR:
CATALOG
CHOP

COpy

DELETE
DPRINT
DUP

DUP ALL

FPRINT
IN

INT
LGO
OUT
REP
RIN

GENERATQR:
CONSTANT
LINK
NEW
OLD
ouri'

PROGRM1
RECOVER

REQUIRE

REVISE
SElII[I -CONSTANT

TYPE

INTERPRETER:
ADD

APPENDIX B. COMMANDS

Section
5.1
5.4

5.9

5.3
5.10
5.6

5.7

5.11
5.2

5.14
5.8
5.5
5.12
5.13

2.6.3
2.6.5
2.5
2.9
2.7

2.6.4
2.10

2.6.2

2.8
2.6.3

2.6.1

4.2

Action
display the forms in the catalog
delete specified form and all
subsequent forms
copy a data tape and reset rewrite
counters to zero.
delete the specified form
print data file
duplicate the main system wi th a
blank catalog.
duplicate the entire system
including forms
print form
input a form assigning the
specified form number
load the Interpreter
write faster loading Interpreter
output the specified form
replace the specified form
replace the catalog and forms with
the catalog and forms of another
DATAFORM system

set constants into the form
define next form linkage
clear the work area for a new form
load old form from front deck
write the current form to front
cassette
assign program letters to fields
recover form from memory if a form
wri te has failed
set required, fill control or
program reserve 9Qit criteria
revise the current form
set semi-constant data into the
form
set alphabetic or numeric edit
criteria

add to the end of a data file

APPENDIX B. COMMANDS B-1

BACKSPACE
CONTINUE

DATA
END

FIND
LOAD
MODIFY
NEW
REWIND
START

4.5
4.9

4.6.2
4.4
4.6.1
4.10
4.8
4.1

backspace a record on data file
add to the end ofa data file if
the file is already open
switch to data entry mode
write an end of file on the data
file
search fer matching data record
load the specified form
modify data records
load an uncataloged form
rewind data file
initialize a data tape

B-2 CASSETTE DATAFORM II

APPENDIX C. INTERPRETER FUNCTION KEYS

The interpreter has a set of special function keys available
in data entry and modify modes. When the DISPLAY key is pressed
simultaneously write a number pad key, the number pad key becomes
a special function key. The following functions are available:

Key Entered Function

All Data Entry write record
0 form data

duplicate
1 load next form
3 backspace field
4 return to monitor
6 form data erase

Modify and Find Only 7 rewind data file
8 backspace record
9 read record

APPENDIX C. INTERPRETER FUNCTION KEYS C-l

NUMBER PAD OVERLAY

Backspace
Record

S 11r~ fN8i'/~'f I~ II.'

0[!]~
siZ4. Yw CiI1 ecPr the

Rewind
Read

~ and &lit wt r:I1e

Data
tem{J/6fe - ()f", ,,1#~

Record aw4b1e. pI115t!~ tl'lI!IS
File JJre iN8t18ile.

000 Erase
Monitor Form

Data

Load 00ITJ Back
Next Field
Form Tab

I ¢ ID Write
Data

I 011 Dl~~_
Record Delete (5)

Field Duplicate (0)

OAT AFORM Data Entry Functions - Use Display Key

DATA ENTRY COMMANDS VIA NUMERIC KEYBOARD

C-2 CASSETTE DATAFORM II

APPENDIX D. FORM GENERATOR FUNCTION KEYS

The form generator has a set of special fUnction keys
available in the image generation mode only. When the DISPLAY key
is pressed simultaneously with a number pad key, the number pad
key become special fUnction key. The following functions are
available:

7 - character insert
8 - cursor up
9 - erase to end of screen
4 - cursor left
5 - character duplicate
6 - cursor right
1 - word remove
2 - cursor down
3 - form expand (downward)
o - character remove

- erase to end of line
CANCEL - return to monitor

The BACKSPACE key and cursor left function key have the same
fUnction. Backspacing from column 1 back to column 80 is
permitted. All cursor movement with the special fUnction keys is
non-destructive.

The CANCEL key erases the entire line the cursor is on and
places the cursor at the beginning of the line.

The KEYBOARD key acts as a repeat key for all characters and
for most function keys.

The CANCEL fUnction key returns to the form generator's
monitor. The ENTER key places the cursor at the beginning of the
next lower line.

APPENDIX D. FORM GENERATOR FUNCTION KEYS D-1

Char-
acter
Insert

Cursor
Left
4--

Word
Remove

NUMBER PAD OVERLAY

I (S}I
I Cursor : .

f :Up
• , ,
I csj
:Duplicate: , .
• Character:
' i

[2] 0 0
0 0 G
0 eDIT]
I ¢ I
l Character ! Cursor l !
I I ,
I Remove ,Down I

l (Ill)! (2)1

[J

Erase
Frame

---- --
Cursor
Right ---.. -----_ ...

Fo!'rn
Expand

1--------

Erase
Line

1-------

DATAFORM Form Generator Functions":Use Display Key

Keyboaro Key Causes Repeat Function

~thi$ o'Verlay is Bctusl
size. '10(} csnotJp'l
"fIhe pSge and cut
out- the temp/Gte".

• · I
I

• I

I 0 I KtY8O\RDI

I 0 I DISPLAY I
FORM GENERATOR COMMANDS VIA NUMERIC KEYBOARD

D-2 CASSETTE DATAFORM II

APPENDIX E. FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA

TYPE MEANING

A Alpha (A - Z and space)
D Digit (0 - 9)
N Numeric (0 - 9, decimal point and leading

minus)
M Mixed alpha and numeric
L Numeric, left Justified/zero filled
R Numerlc, right Justified/zero filled
B Numeric, right Justifi.ed/blank fi.l1.ed

CANCEL CJedYS edit criteria

Right justified fields are filled with leading zeros (R) or
clanks (B). During data entry, the field is justified and
re-displayed after the ENTER key is pressed. Numeric fields are
limited to 12 places of significance to the left and 4 places to
the right of the decimal point.

REQUIRE MEANING

R Required (1 character necessary)
F Fill controlled (all characters

necessary) (ENTER key allowed only
to bypass field)

B Both fill control and require
P Program reserve (no keyin)
S Required and program reserve

(field is checked prior to write)

APPENDIX E. FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA E-1

APPE::NDIX f. ALPHABETICAL LISTING OF STATELV1ENT TYPES

NAME SECTION

ADD 3.6.2
J\GAIN 3.7
ALIGN 3.6.1.1
BEEP 3.6.4
CALL 3.6.5.2
CHAIN 3.6.4.2
CHANGE 3.6.6
CLOSE 3.7.2
COl>1MON 3.5.3
CONVERT 3.6.1.2
DATA 3.5.1
IJIVIDE 3.6.2
END 3.7.3
EQU 3.5.4
FOR(>1SHOVJ 3.6.4.3
FIELD 3.5.6
G0TO 3.6.5.1
IF CKIO 3.6.3
IF CK11 3.6.3
IF INT 3.6.3
IF NIT 3.6.3
IF INR 3.6.3
IF NIR 3.6.3
IF EQ 3.6.3
IF NE 3.6.3
IF GE 3.6.3
IF LE 3.6.3
IF GREATER 3.6.3
IF LESS 3.6.3
INPUT 3.7.4
LOOKUP 3.6.1.3
lJIESSAGE 3.6.4.4
1.'10VE 3.6-l.4
l'1U L'rI PLY 3.6.2
NEXT 3.7.5
NULL 3.7.6
OUTPu'r 3.7.7
REDEFINE 3.5.5

.RESET 3.6.6
RETRY 3.7.8

APPENDIX F. ALPHABETICAL LISTING OF STATE1'1EN'f 'rYPES F-1

RETURN
SET
SHOW
STORE
SUBTRACT;
WORK
WRITE

3.6.5.2
3.6.1.5
3.6>.4.5
3.7.9
3.6.2
3.5.2
3.6.4.6

F-2 CASSETTE DATAFORM II

AP~ENDrx G. STATEMENTS REQUIRING THE EXTENDED INTERPRETER ~.

ROUTINE

fliULTI PLY
DIVIDE
CONVERT & LOOKUP
CKI0 & CKII

DECIMAL
SIZE

83*
183*

83
161

*!'IUL/DIV OVERHEAD 56
EXTENDED INTERPRETER OVERHEAD 18
COMMON 100

(REQUIRED WITH EXTENDED INTERPRETER)

APPENDIX G. STA'rEl'1ENTS REQUIRING THE EXTENDED INTERPRETER C-1

LABEL

'l'EHP
COLU[\,lN
LINE
LENGTH
PSN
EDTKEY
USER
SA VNUi"l

I~EHOLD

FOiU1NO
CURI
l'-JEXTt'
PAGE3
BASE
NEXT$
AGAIN$
STORE$
ENDS
"mOFS
ERASE$

APPENDIX H. INTERPRETER FLAG ADDRESSES

LOCATION

01000
01130
01131
01132
01133
01134
01135
01140

01143
01146
01201
014524
014525
01177
01147
01152
01155
01160
01163
01166

'INPUT' buffer
edit entry - horizontal position

vertical position
field length
position in OUTPUT
edit criteria
program letter

number of characters entered
(0 if ENTER pressed)
I/O mode/status word
current form number +4 (in binary)
address of next DATAFORM instruction
1 inked form number +4 (in bi\nary)
Auto link flag
program base address
transfer to NEXT
transfer to AGAIN
transfer to STORE
transfer to END
transfer to CLOSE
erase function key

APPENDIX H. INTERPRETER FLAG ADDRESSES H-1

APPENDIX I. ERROR MESSAGES

COMPILER MESSAGES:

PARITY ERROR: AIC

A parity error persisted on a cassette read operation after five
retries- A response of "A" will abort the compilation; a response
of "c" will use the bad block as if nothing were wrong with it,
and continue the compilation.

13/\D LABEL INI'fIATOR

A character that was neither a decimal point nor a plus nor a
space nor alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

~he character string pointed to by the star contains a character
which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than the accepted statement types was the first
nonblank symbol after column 1 (or after the .label, if one
extsts) .

NU~BER FROM 1-245 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the
specified range.

COMi'Ll:i EXPECTED

The symbol after the first number in a DATA statement was not a
comma.

FIELD2 IS LESS THAN FIELD1

In d DATA statement, the second field is less than the first.

APPENDIX I. ERROR MESSAGES 1-1

,

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. If it· is not
there, it is assumed.

ILLEGAL LITERAL

In a table, every item enclosed in double quotation m~rks must be
of equal length. Those that are of different length than the
first item are flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the following
line must have a blank in column one, and the first symbol on the
line must be a double quotation mark. If either of these is not
the case, the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the nine pre-defined
labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled word is assumed
to be the one expected, and the next symbol is expected to be a
legal laoel.

ILLEGAL CONDITION

The connective in an IF statement is not acceptable.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously in
the program (or it is one of the nine pre-defined labels). The
second (~nd any subsequent) definitions of the label are ignored.

1-2 CASS~TTE DATAFORM II

r.JIAXH1U[I1 LABELS REACHED

'1.'he maximum number of labels allowed by the DF2 compiler is fixed
a.t 95, excludi_ng the pre-defined labels; the maximum number of
labels allowed by the DF2E Compiler is fixed at 246. All labels
after this maximum is reached are ignored.

CO~MON LIMIT EXCEEDED

7he COMMON block may not exceed 100 characters. Anything defined
as COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR

The program counter at the end of pass two does not equal the
proyram counter at the end of pass one. This is an internal
COfilpUer error message.

APPENDIX I. ERROR MESSAGES 1-3

COi1MONSYSTEM ERRORS

FILE MISSING

BAD NUlV1BER

A form whose number is in the catalog is·
missing on the system tape: or the file mark
necessary for positioning the input tape is
missing; or a form does not contain the
necessary 6 blocks.

The form number may have been omitted, out of
range (1-124) or non-numeric. Or, the form
specified is not in the catalog. Note that if
the form number is omitted in a command which
optionally accepts form numbers (e.g. START
[nn]) the commarid line cannot end with a space.

In the interpreter, this message may mean that
. the next form specified (in the current form's
link) is not present: or that the command
assumes that there is a form in memory and no
form·is loaded.

PARITY ERROR ON DECK Y
COpy, OMIT or END?

A parity error was encountered on a tape being
copied on deck y. Entering a "C" will copy the
erroneous record: entering an "0" will omit the
erroneous record: and entering an "E" will end
the copy at that point by writing an end of
file mark on the new tape.

INTERN.\L ERROR x ON DECK Y
This message indicates a tape or tape deck
failure. The "x" is replaced by a letter.
indicating the error condition:

. D - parity error
E - end of tape
F - end of file
G - unfindable file
Z - write failure

Generally these errors occur only if something
is severly wrong with the cassette. One cause
of error Z is trying to write on a cassette
whose write protect tab has been punched;
another cause of error Z is a cassette which is

1-4 CASSETTE DATAFORM II

improperly inserted in the deck. If error Z
occurs and the cause is not apparent, a
hardware failUre should be suspected.

The letter "y" in the message is replaced by
the number of the tape deck on which the error
occured (deck 1 is the rear deck, deck 2 is the
front) •

APPENDIX I. ERROR MESSAGES 1-5

\

CONFIGURATOR ERRORS

END OF FILE MISSING
End of tape reached during COpy .- an end of
file mark is automatically written.

Nur,1BER IN USE
The form number specified for an IN command was
already assigned.

FORM CA'rALOG UNLOADABLE,DUMMYC,AT,ALOG GENERATED
The. form catalog is in error, and a full
catalog has been substituted. See the chapter
on recovery for help in recovering the system
data.

l-6 CASSETTE DATAFORM II

GENERATOR ERRORS

BAD FORil1
The form in memory cannot be written out, or
have any pass except REVISE executed, because
of some error condition~

NO FIELDS DEFINED
Each form created must hav~ at least one field
(this may be a keyin only field).

NO ROOM FOR CONSTANTS
Constants and semi constants can only be
assigned to fields of a form which were
initially defined using the underscore (as
opposed to the caret). This message is
displayed if no constants can be assigned.

l>10RE THAN 126 FIELDS
During image generation more than 126 data
fields were defined. The form must be revised
before it may be written o~t.

HORE THAN 245 DATA

xxxx DATA

During image generation more than 245 data
characters were defined. The form must be
revised before it may be written out.

yyyy BYTES LEFT
'I'he messages appear immediately after the image
generation phase of form generation. They are
for information only- "xxx" and "yyy" are
decimal numbers.

yyyy BYTES OVER
If this message appears after image generation,
the form imaget data area and edit table have
combined to overflow the user space. Something
must be reduCed. "yyy" is a decimal number.

APPENDIX I. ERROR MESSAGES 1-7

INTERPRETER ERRQRS

Continuous Bee~i~g during data entry
A constant which fails to meet an edit criteria
(e.g., an alphabetic, in a numeric field)
character has been defined at form generation
time. The constant must be reset to conform
with the edit criteria before.proceding.

Continuous Clicking during data entry
An all constant form with no keyin field has
been loaded. The form must be corrected before
data entry may proceed.

TAPE CLOSED
No START, ADD, MOD or FIND command has been
executed.

END OF TAPE

TAPE OPEN

End of tape was encountered during data entry;
or an unrecoverabletap~ error occurred during
writing. If the error is due to end of tape,
the data tape is backspaced twice and an end of
file mark is written where the record would
have been. Two records are lost in either case.

An END command must be exec~ted before an ADD
or START command can be entered.

REWRITE LIMIT REACHED TO VIEW PRESS ENTER

BAD DATA

BAD FORM

During modification, the record in memory has
been rewritten four times and cannot be
rewritten again. It may only be viewed. The
configurator must be used to reset the rewrite
counter to zero.

A parity error exists on a data record.

A parity error exists on a form; or a form is
incomplete.

END OF DATA
End of file has been reached on the data tape.

1-8 CASSETTE DATAFORM II

BAD OP
During execution of a field program, an
unacceptable op code was encountered.

APPENDIX I. ERROR MESSAGES 1-9

APPENDIX J. USER SPACE REDUCTION TECHNIQUES

1. Use carets (-) in field definitions (remember they are
compressed in the form image (but not the data record) while
underscores (_) are not).

2. Use COMMON instead of v~ORK if any extended interpreter is used
(100 characters of COMMON are reserved whether they are used
or not). If COMMON is used, it should be specified all at the
same time to prevent multiple short records from being written
in the form (this considerably slows down form loading).

3. Place semi-colons at the end of all non-table, non-range
variables to suppre~~ the end-of-table character.

4. Use REDEFINE to create constants or tables which are subsets
of other constants or tables. This technique may also be used
for computation or hold areas if the redefined variables are
not needed at the same time.

S. Us'e sUbroutines to perform repeated operations.

6. Use field displacement referencing to generalize programs used
with line-items (i.e., where the same set of fields is entered
several times within one form).

7. Use INPUT, OUTPUT and RESET to generalize programs and thus
avoid duplication of code.

8. Keep constants in the form itself (by defining them at form
generation time) instead of using a field program to set them.

9. Combine several fields into one wherever possible (each field
requires 6 additional characters of edit table).

10. Avoid extended interpreter functions when possible (by coding
multiplies using add, etc.).

11. Use LOOKUP instead of CONVERT to save one of the tables.

12. Use data areas as work areas whenever possible, thus saving
intermediate hold areas.

13. Execute all programs on last field if possible to save NEXT
and STORE instructions.

APPENDIX J. USER SPACE REDUCTION TECHNIQUES J-l

\

14. ~void CHANGE/SHOW/CHANGE as a series of instructions. Keep in
mind that fields declared "program reserved" will show up on
the screen in their sequence although the operator cannot
keyin to them.

J-2 CASSETTE DATAFORM II

I~

V

Name

APPENDIX K. SAMPLE FORM GENERATION

Sample Form -- During NEW or REJISE Pass

Form text, data, and keyin only field definitions are set in
either the NEW or REVISE pass. If no constants or
semi-constants are added, this is the way the form text will
look during data entry except that the carets will be
replaced by spaces.

EMPLOYEE PAYROLL RECO:W

I~~~~~~~~~~~~~~~~~~~~~~~-~~~-~ Title Code I~~ Dept I~

I I I

Dependents ,~ State Code ,~ Social Security , ,--_ , , , I

Exempt/Nonexempt (0/1) I Workman's Compensation (0 I

Married/Single (0/1) , Male/Female (0/1) ,
I I

to 9) I
I

Hourly Rate $:~~~~~ Amount Last Increase $l~~~~~ Date Last Increase $l~~~~~
Date Hired , Date Terminated 1---"'- Date of Birth , -, , I

State Tax , Disabili ty Tax
,_

City Tax
,_

I I I

Insurance '_A Auto Insurance , Life Insurance I"'
I I I

Advance I FICA Status (exempt:O, nonexempt:1) I Page 27 < I I

APPENDIX K. SAMPLE FORM GENERATION K-l

/

~

I""

1/

Name

Sample Form -- During TYPE Pass

The field type edit criteria are set in the TYPE pass. Edit
criteria will not be displayed during data entry.

EMPLOYEE PAYROLL RECORD

A Title Code D Dept D
State Code D Social Security D D Dependents D

Exempt/Nonexempt (0/1) D Workman's Compensation (0 to 9) D
Married/Single (0/1) D Male/Female (0/1) D

Hourly Rate $N Amount Last Increase $N Date Last Increase $D
Date Hired D Date Terminated D Da te of Birth D
State Tax N Disability Tax N City Tax N
Insurance N Auto Insurance N Life Insurance N

Advance N FICA Status (exempt=O, nonexempt= 1) D Page 2?

K-2 CASSETTE DATAFORM II

/

A

""

Sample Form -- During SEMI-CONSTANT Pass

Several fields are preset to commonly entered values in the
SEMI-CONSTANT pass. These may be accepted or rejected by the
operator during data entry. The CONSTANT pass looks the
same; however, constants may not be rejected during data
entry.

I~ ____ -------------------------~/
EMPLOYEE PAYROLL RECORD

Name : Title Code i Dept i
Dependents i State Code 42 Social Security i i
Exempt/Nonexempt (0/1) Workman's Compensation (0 to 9) :
Married/Single (0/1) 0 Male/Female (0/1) 1

Hourly Rate $: Amount Last Increase $: Date Last Increase $:
Date Hired : Date Terminated : Date of Birth :
State Tax: Disability Tax : City Tax :
Insurance: Auto Insurance : Life Insurance :

Advance: FICA Status (exempt=O, nonexempt=1) 1 Page 27 <

/

APPENDIX K. SAMPLE FORM GENERATION K-3

Sample Form -- During REQUIRED Pass

Required, fill controlled, and program reserved edit
criteria are set in the REQUIRED pass. Edit criteria will
not be displayed during data entry.

~ /).-------------------------------------,-----------------(

EMPLOYEE PAYROLL RECORD

Name R Title Code B Dept B
Dependents B State Code F Social Security R . R
Exempt/Nonexempt (0/1) F Workman's Compensation (0 to 9) F
Married/Single (0/1) B Male/Female (0/1) B

Hourly Rate $X Amount Last Increase $X Date Last Increase $F
Date Hired B Date Terminated F Date of Birth F
State Tax X Disability Tax R City Tax R
Insurance Auto Insurance I Life Insurance I

Advance FICA Status (exempt=O, nonexempt:1) B Page 21 <

K-4 CASSETTE DATAFORM II

~

I

V

Name

Sample Form -- During PROGHAM Pass

Field program names are set in the PROGRAM pass. Program "A"
checks range 0-'; "B" checks range 0-9; "D" checks for valid
dates; and "X" checks for a "Y" or "N" to determine if
another form should be loaded. Program names will not be
displayed during data entry. .

EMPLOYEE PAYROLL RECO~!D

I Title Code I Dept I
I I I

Dependents I State Code I Social Security I I
I I I I

Exempt/Nonexempt (0/1) A Workman's Cdmpensation (0
Harried/Single (0/1) A Male/Female (0/ 1) A

to 9)

Hourly Rate $1 Amount Last Incre·ase $1 Date Last Increase
Date Hired D Date Terminated D Date of Birth
State Tax I Disability Tax I City Tax I I

Insurance I Auto Insurance I Life Insurance I I

B

$D
D
I
I
I
I

Advance I FICA Status (exempt=O, nonexempt=1) A Page I

APPENDIX K. SAMPLE FORM GENERATION K-S

/

2? X

~

