
en -:s:
"'tJ .. - '------'"""

." -m
o
c
en
m
::IJ

--en
G')
c -o
m

§
~ SIMPLIFIED USER'S GUIDE
~ For Cassette, Diskette, and Disk Systems

DATAPOINT CORPORATION I)

A SIMPLIFIED USER'S GUIDE

TO

THE THREE DATAFORMS:

DISKETTE DATAFORM

CASSETTE DATAFORM

DISK-BASED CASSETTE DATAFORM

A language for form generation, data checking, computation
and data capture employing the Datapolnt line of Dispersad
Data Processing Equipment.

The text in this manual was entered, edited and typeset using a
Datapoint 2200 Business Processor with a phototypesetter and the Scribe

Text Processing Program.

Manual No. 50051-01 September, 1975
The '0' logo, Datapoint, Datashare, Dataform, Databus, and Scribe are trademarks of Datapoint Corporation registered in the U.S. Patent Office.

Copyright Datapoint Corporation 1975 Printed in U.S.A.

Table of Contents

CHAPTER 1 Overview .. 1
Introduction ... 3
How to Use This Book ... 3
Some Encouragement .. 4
Planning for DATAFORM .. 5

CHAPTER 2 Level I DISKETTE DATAFORM .. 7
Using Level

Part I
Part II

Part III

I - Sequence Overview .. 9
Determining the Screen Format .. 10
Features of the Form Generator ... 11

Step 1. Defining Form Text/Field Lengths 11
Step 2. Defining Field Types .. 12
Step 3. Assigning Justification and Fill 14
Step 4. Defining Which Fields are Required 15
Step 5. Assigning Semi-Constants/Constants 17
Step 6. Assigning Programs to Fields 18
Step 7. Displaying Other Forms ... 19

Manual Linking ... 20
Automatic Linking•.. 20
Review - Form Generator Concept ... 21
Building Complete Data Entry System ... 22
Operating the DISKETTE 1100 .. 23

Section 1. Generating the Screen Form 24
Step 1. Rurining the Operating System 24
Step 2. The Form Generation ... 25
Step 3. Creating the Form .. 25
Step 4: Assigning Edit Types ... 27
Step 5. Assigning Field Justific'ation/Fill 28
Step 6. Assigning Required Fields 29
Step 7. Assigning Semi-Constant Field Data 30
Step 8. Assigning Constant Field Data 30
Step 9. Assigning Programs to Fields 30
Step 10. Linking to Other Forms ... 30
Step 11. Recording the Form Onto Diskette 31
Step 12. Modifying Previously Generated Form 31

Part IV The Finished Data Entry Package ... 32
Data Entry Commands .. 34
Data Entry Operating Modes ~ .. 35
Operating the Finished Data Entry System 37
Where to Go From Here ... 38

Part V A Summary of Data Entry Commands ... 39

CHAPTER 3 Level II DISKETTE DATAFORM .. .41
Introduction .. ,43

Part I Data Flow in DATAFORM ... 44
What is a Field Program? .. .44
The Data Buffers45
Concepts of Programming .. .47
Starting the Program .. .48
Program Structure .. .48
Use of Labels48
Executable Statements or Instructions .. 50
Exit Paths .. 51
Entry Point .. 51
Program Results and Some Thoughts .. 51
Generating a Code Number ... 52
Range Checking ... 55

Part II Generating a DISKETTE DATAFORM Program 57
Step 1. Designing the Program .. 57
Step 2. Typing in the Program .. 58
Step 3. Compiling the Program ... 60
Step 4. Combining Form and Program 61
Step 5. Testing the Complete Data Entry System 62

Part III Summary of the Language Components .. 63
Fields and Labels ... 63
Tables ... 64
Exit Paths ... 64
Executable Statements .. 65

Statements That Transfer Information .. 66
Statements to Perform Arithmetic Operations 67
Statements That Perform Comparisons 68
Statements That Provide for Output Control 70
Statements That Cause Transfer of Control.. 71
Statements That Affect Field Pointer ... 72

A Note on Numeric Fields .. 73
A Note on Check Digits .. 73

Part IV Program Examples ... 75
Dealer File .. 75
Form Generation ... 75
Program Generation ... 75
Validate Date ... 77
Order Entry .. 77
Part Number Entry Program ... 79

Part V The Print Utility .. 82

CHAPTER 4 CASSETTE DATAFORM .. 83
Part I Overview .. 85

Introduction ... 85
Equipment Needed ... 85
Programs Required ... 85

Part II Level I Step-by-Step Guide ... 88
Step 1. Load Form Generator Tape 88
Step 2. Creating the Form .. 88
Step 3. Load Finished Form Into Memory 89
Step 4. Assigning Field Types ... 89
Step 5. Assigning Required Fields ... 90
Step 6. Assigning Semi-Constant/Constant Field 91
Step 7. Assigning Programs to Fields 91
Step 8. Linking to Other Forms .. 92
Step 9. Write Form With Edits to Front Tape 92
Step 10. Catalog the Form .. 92
Step 11. Dat~ Entry Operating Modes 93
Step 12. Entering Data ... 94
Step 13. Closing the Cassette Data File 95
Step 14. Reviewing and Modifying the Data 95

Summary .. 95
Part III Level II Step-by-Step Guide .. 96

Step 1. Designing the Program .. 96
Step 2. Typing in the Program .. 96
Step 3. Compiling the Program ... 97
Step 4. Combining Form and Program 97
Step 5. Testing the Complete Data Entry System 98

CHAPTER 5 CARTRIDGE DISK DATAFORM .. 99
Part I Overview .. 101

Introduction .. 101
Equipment Needed ... 101
Programs Required .. 101

ii

Part II Level I Step-by-Step Guide ... 103
Step 1. The Form Generator .. 103
Step 2. Creating the Form .. 103
Step 3. Form Creation Passes ... 103
Step 4. Recording the Form Onto the Disk 103
Step 5. Operating the Data Entry System 103
Step 6. Closing the Disk Data File 104
Step 7. Adding to and Modifying the Data 104

The Configurator ... 105
Summary .. 105

Part III Level II Step-by-Step Guide ... 106
Step 1. Designing the Program .. 106
Step 2. Typing in the Program .. 106
Step 3. Compiling the Program ... 106
Step 4. Combining Form and Program 107
Step 5. Operating the Complete Data Entry System 107

APPENDIX A DISKETTE DATAFORM ... 109
Specification Statements .. 109
Executable Statements .. 109
Exit Paths .. 110
Data Buffers ... 111
Compiler Error Messages ... 111
Generator Error M essages ... 113
Interpreter Error Messages .. 114
Common System Error Messages ... 115
Print Utility Errors ... 116

APPENDIX B CASSETTE DATAFORM .. 117
Specification Statements ... :117
Executable Statements .. 117
Exit Paths .. 118
Data Buffers ... 118
Compiler Errors ... 119
Common System Errors .. 121
Configurator Errors ... 122
Generator Errors ... 122
Interpreter Errors ... 123
The Configurator ... 124

APPENDIX C DISK DATAFORM ... 125
Specification Statements .. 125
Executable Statements .. 125
Exit Paths .. 125
Data Buffers .. 126
Generator Errors .. 127
Configurator Errors ... 128
I nterpreter Ertors ... 129
Compiler Errors ... 130
Com mon System Errors .. 132

APPENDIX D THE THREE DATAFORMS ... 133
Efficient Pro.gramming Techniques ... 133
Form Generation Function Keys .. 134
Data Entry Interpreter Function Keys .. 135

APPENDIX E DUPLICATING DISKETTE FILES ... 137

APPENDIX F EDITOR COMMANDS .. 139

iii

CHAPTER ONE

OVERVIEW

1

Introduction

Placing computer power and communications where business
transactions occur (such as a distant sales office) rather than sending
the documentation of a transaction via surface or air transporation to a
centrally located large computer, has an appeal because of its
convenience and its cost-saving features. The concept of Remote
Intelligent Data Entry has allowed businesses to cut costs, save time
and reduce errors by having a computer at the job location which
checks data as it is keyed in.

Anyone wishing to utilize intelligent data entry devices, though,
has had to overcome the programming obstacle. Also, an intelligent
data entry system requires changes and improvements, during business
growth, which means that a manager is committed to numerous
programming changes.

DATAFORM provides a solution to the intelligent data entry
programming problem. Level I DATAFORM allows fast and easy screen
format generation and data capture with fundamental editing
capabilities. If more complex operations are required, short subprograms
may be written in Level II DATAFORM -- a unique high-level language.
Data is stored ~n diskette, cassette, or disk and is readily available for
subsequent transmission to another Datapoint Processor or other
computer for processing. For more information on communications see
the DATAPOLL communications language manual.

DATAFORM is an intriguing language because it offers enough
power and versatility to impress an experienced programmer, and yet
offers simplicity of use for the non-programmer. The combination of
the Datapoint Processor (1100, 2200, 5500) and the DATAFORM
Simplified User's Guide make· it easy for an individual who is totally
non-computer oriented to jump the programming hurdle. The aim of
this book is to do just that -- ease you over the hurdle.

How to Use This Book

This text offers an introduction to DATAFORM, an explanation of
its capabilities and sufficient background to write applications programs
for all but the most complex data entry operations. If more technical
coverage is required, an expanded DATAFORM Program User's Guide
offers a complete reference for each of the three DAT AFORMS.

This Simplified User's Guide provides information on DISKETTE
DATAFORM, CASSETTE DATAFORM, and DISK DATAFORM. If you
have very little data processing background, it is recommended that
you read all of the sections which pertain to your equipment. However,
if you have sufficient data processing background to jump right into
the Diskette form and program, go directly to the Step~by-Step Parts of
that chapter. If you wish to gain as much knowledge of form
generation as you can, but already have programming background, you
can work your way through Level I and then jump to the Step-by-Step
Level II Part.

DATAFORM is divided into two levels, Levels I and II. All
DATAFORMS are highly similar so only a detailed treatment of the
Diskette version is given with the features of the others given in
separate chapters.

3

Level I

Reading the Form Generator Section will indicate just how
fast screen forms with many editing and error-checking
capabilities can be generated. Data can be stored on
diskette, cassette, or disk and later transmitted with
DATAPOLL or other communications packages. No further
work is required to create an operational data entry
system.
The text is roughly divided. into two major sections. The
first describes the vocabu lary of forms, form generation
concepts, and use of field editing criteria. The second
section deals with the steps and operations actually used
to create a working data entry system. Once the first
section has been read and understood, the second section
can be used for practice or as a reference. An
Abbreviated Step-by-Step Guide is also included.

Level II

If more complex error-checking or computation on the
entered data is needed, the user should read this section,
as it deals with the DATAFORM Programming Language.
This straight-forward language allows short programs to
operate on the entered data and can perform arithmetic
and other sophisticated tasks.
Since Level II DATAFORM is actually programming, a
short introduction to programming is offered. The actual
steps involved are so short that users lacking
programming experience should not become discouraged.
DATAFORM'S structure approaches English language
instructions and should not be viewed as territory only for
professional programmers. If you're still skeptical, go
through the book and ask a programmer friend to help
you over any troublesome spots.

Some Encouragement

Once an individual has actually gone through form generation and
other steps, his general reaction is "That's not hard". It is more a task
of explanation than implementation. So take this feeling on faith -
once you've read through the text and run a form, we're sure you'll
agree -- that it's easy!

One more thing. If you're planning on building a system using
the Level II language features, remember that you'll be working with
several different concepts: designing the program system, creating
forms, writing the programs, cataloguing, and integrating a complete
working data entry system.

Each step of this process
following a step-by-step process
of chances to make mistakes.

4

involves learning new techniques and
-- both of which will give you plenty
Don't be discouraged. Any computer

system which works for you as much as DATAFORM does will require
some patience and understanding until you know the steps and
sequences involved. Once mastered, you'll be competent in a powerful
and useful business system.

So read on and enjoy. If you run into questions or problems,
your Datapoint Systems Engineer or Account Manager can provide help.

Planning for DATAFORM

In preparing to program the Datapoint Processor, you should
examine your business forms to take full advantage of the large and
easy-to-read screen. All of the 12 lines and 80 columns may be used
for data entry. Often, judicious placement of fields can save the use of
two or more forms. The use of more than one form is no problem. It
is frequently done purposely to simplify operations.

DATAFORM planning work sheets are available to arrange a
suitable screen image. The work sheets also include space to note the
various edit and error-checking criteria used.

Outside of the economic considerations, the choice of equipment
is mainly one of storage area and speed of operation. The Diskette
1100 and Disk Systems are considerably faster than the Cassette
System and have a great deal more storage area for forms, programs,
data, etc. The Diskette 1100 System has roughly 1/4 million character
storage area per drive; the maximum of four drives would represent
storage area of roughly one million characters. The Cartridge Disk
System offers roughly a 2 1/2 million character storage area on each
cartridge; the maximum of four drives represents about a 10 million
character storage area. For comparison, a cassette will store
approximately 120,000 characters per side.

5

CHAPTER TWO

LEVEL I DISKETTE DATAFORM

(NOTE: All DATAFORMS are very similar. The general features
of DATAFORM are covered here with emphasis on a
diskette-based system. If you're planning a system using
cassettes or cartridge disk, read this section first then read the
section that covers the specific language.)

7

Using the Level I DATAFORM - A Sequence Overview

Before we begin the nuts and bolts discussion of what it takes to
get an intelligent data entry system up and running let's briefly talk
about where we're headed.

The complete Level I start-to-finish sequence involves three parts:

Form Definition
You first decide on what the form will look like on the
screen. If you're working from standard company formats,
great. If not, just make up a good format, such as a
name and address form. A large graph-paper screen
sheet format is available for this purpose, although if
you're just puttering around, loose placement will suffice.
The large screen gives lots of room. For teaching
purposes, we will be using one simple format throughout
the book.

Form Generation
During this step you will actually create the form on the
screen and assign various editing and error-checking
criteria. This is the most technical part but actually takes
the least time.

Data Entry
This is the result of your work. The operator can load
your form, enter data in it, have the data checked for
errors and write the data back to diskette. This will be a
complete, working intelligent data entry system. When
data entry is complete, the diskette will contain a record
of all the data, ready to be transmitted to another location
or, in some cases, processed locally right in your own
office using other programs for the Diskette 1100.

That's all there is to it. It looks easy and it is.

9

PART I
Determining the Screen Format

Let's first examine the elements of a simple form. Naturally, to
make the tasks easier, we'll pick a fairly simple format that lends itself
to clarity. The data entry operation involves a vocabulary of its own
and we want to cover that first. Probably, the worst part about
learning a new programming or system technique is figuring out the
terms.

t/Je-;e /f)f;e/6p,e 'h tJJKtP
()6et/ 10 IndIcate the
in/t;rIl1BtiOl7 ci%ired

GREEN EARTH GARDEN
S\10PPE.

FreE!%ine D~) N\inl'l~

OUSTOMeR I!!JFORJ.1ATlON (!Af<1)

ezch Dlani< line ;5;; A!v1E_+"-,,::,~c....r,",,,-,,'::'="""""==t~-;----
'lieJd:) where i"lorma- f'"T"I7I'CT
fiO'! 15 to be /tiled OII'\N":.!..._---:f~"""-...:::..::~~~""""<..L..J.J.<>.."'--''--

/11 br the tJ6er--+--7'1Tryy ---4~~""'"".L.;'-IC<.l-<"-------
grATE ;£/ot'/da.
llI'CO~ 9/00/ 4 the telephone flvmber

could be one 18IJV
-Add fJr tt.ree ~,.ate
Slnall me£, ---

:rel£~oNf C 402) tf22: ~ 0500
CJJGTO/Ii\€R No._...:!:Z=3~~,.--=-__
YUR0-\A58 AMOl>IolT E; 42,1(£

SAMPLE BUSINESS FORM & ITS PARTS
Drawing No. 1

t/t1"!J lie/diS 811 ':4!pJ,a /.
C1h161$t6 PI i1lpkb6f;
char$dt:I-s ""if
the iJtfdrt'!6 tJ~
nVIJ'1W$ &xl tJlpha.
cJ,Ar;ofer,g ;;!id is
Wmed ''#/;xed''

The total information on this form is called a "record," i.e., the
information could be referred to as Ruby Tuesday's record. The total
group of customer records stored is a "file".

We can suppose, for the moment, that the owners of the Green
Earth Garden Shoppe fill out a card on each customer and use the
card information for advertising mailings or credit information on those
accounts desiring mail orders or a monthly bill.

In any case, our job will be to build a DATAFORM form allowing
an operator to load this card data onto a diskette for later transmission
to Green Earth's home office in Los Angeles. For the sake of clarity,
we'll just place this form loosely on the screen. Naturally, if you were
working with a genuine application, far more thought would go into
form text placement.

10

PART II
Features of the Form Generator

Before covering the actual operation of the features, a word of
explanation as to just how these features are entered into the machine.
Form Generation proceeds in a series of steps as follows.

The system user first creates a screen image by actually typing
form text and fields on the screen. After the form is complete, the user
begins a series of steps or 'passes'. In each of these passes, the form
reappears on the screen and the various criteria are typed in and
automatically placed in memory. After all the passes are done, the
completed form is written to the diskette for later use. It can also be
recalled for revision, if necessary.

Although this sounds intricate, it isn't. The actual process of
completing all the passes takes approximately 15 minutes.

Rather than burden our discussion now with the mechanics of the
procedures, we'll cover the basic principles first, then give a
step-by-step procedure for the passes. That way, you'll have a better
understanding of what you're doing when you actually generate a form.

Step 1. Defining Form Text and Field Lengths
The space in which the operator is to type in the information is

defined by vertical bars and underlines. Each field must be started
with a vertical bar, which counts as a character space and begins the
field. Underlines (_) or carets (A) are used to define the rest of the
field.

In the example below, a colon is used to aid the operator. It is
purely esthetic and could have been omitted but, as will be shown
later, provides a visual break between form text and the field.

the form text ~field A 10 character field
~N.5I_---__ -- (9 underlines + 1 vertical bar)

(Note that the vertical bar is the first character position of the
field. It tells the computer where to begin data entry.

This small form will easily fit on the screen of the Datapoint so
we can arrange it in the following manner, as shown on the next page:

11

IJ. " '1.:
1

• ,
10

\I

I •
DATAPOINT SCREEN

80 ClCWMN6 WIO.

NAME: '-----------------------~ these, {!ie/tis wil/lltX8fC STREiT: 1________________________ 25 Gh.racter5 f!IiIOh
CITY:I ____________ _

&fAil: 1-........... ------- this .field aooept:s t;WO ch8rtlo/:l8r.9)
Z\P CODe: 1____ tJ,e stRntlkird aibrevinion ~orstste6

DEFINING FIELDS WITH UNDERLINES & VERTICAL BARS
Drawing No.2

Note the Area Code and State fields. As an example, we're
going to assume that the majority of customers at this location are
from Minnesota and have the same Area Code. These fields will be
automatically written in to save work but can be changed if an
out-of-state customer card is encountered. More on this later.

Up to 126 fields or a total of 249 data character slots may be
created for each form, which should be more than sufficient!

Step 2. Defining Field TYPEs
The second step in generating a form is the TYPE definition.

This allows the form designer to specify what category of data he will
accept in that field. If the operator attempts otherwise, the Datapoint
will emit an audio "Beep" and reject the characters. This is a first in a
series of 'passes' to provide field editing.

NOTE: During the ensuing editing steps, the forms reappear on the
screen and permit the letters to be typed in. We'll show how this is
done in a moment.

Now let's define what TYPE restrictions are available:

Code

A (Alpha)

12

Meaning

Accepts upper case alphabet
characters, A thru Z or a space
character (blank). The field is left
justified (typed from the left border
of the field) and unused character
spaces are filled with blanks.

D (Digit)

N (Numeric)

M (Mixed)

o (Minus
Overpunch)

No type specified
(Blank)

Specifies numbers only for a field.
Only numbers 0 thru 9 are
acceptable; left justified with blanks
filling unused character spaces.

Same as Digit but a minus sign (-)
and a decimal point are allowed; no
plus signs allowed, however.
When the field is entered, it is
checked to contain one or less
decimal points and the minus sign
must be in the leftmost position.
Also, a maximum of 16 numbers to
the left and 8 to the right of the
decimal point are allowed.

Both Alpha and Numeric types (0-9,
A-Z, minus sign and decimal point)
can be filled in. The field is blank
filled to the right if not completely
used.

Numeric, Minus-overpunched field
must conform to the numeric format
with the exception of the last digit.
Typing a MINUS key instead of the
enter key in this type of field will
cause the right most digit to be
"overpunched" with a minus sign,
i.e., a '1' becomes a 'J'. In the
REQUIRED pass, do not assign fill
control F or B or Keyin-continuous
K or X. This feature is sometimes
used in applications where a
keypunch machine is to be replaced.

If no letter is used, no restrictions
or operations are performed on the
field.

Users who have worked with a keypunch will find these terms familiar
and common to data preparation and error-checking.

Let's look at our form and see how the TYPE edit codes enhance
the data entry operation.

13

J

6

7

8 ,
10

\I

II.

DATAPOINT SCREEN

DEFINING 'TYPE' FIELD RESTRICTIONS
Drawing No. 3

10

Step 3. Assigning Justification and Fill
Now that the field types are set, let's justify our fields so that

characters butt up against the left or right edge of the field and fill
control them (unused character space filled with zeros or blanks).
Let's look at the available options for this second 'pass':

J (Right Justify)

Z (Trailing Zeros)

R (Left Zeros)

Causes the field to be right justified
and the unused character positions
on the left, blank filled upon
completion of keyin.

Causes trailing zeros to be added
upon completion of keyin.

Causes the field to be right justified
and left zero filled upon completion
of keyin.

Now let's apply them to our form. As a convention. Alphabetic
and Alphanumeric fields are usually displayed left justified and right
blank filled; Numeric and Digit fields are usually displayed right
justified and left blank filled. Since our Alpha and Mixed fields are
already left justified and right blank filled, we won't change them.
However. let's type in 'J' in the Numeric field (Purchase Amounts) to
change it to right justified and left blank filled.

14

DATAPOINT SCREEN

I

2

3

NAME: 1 ________________________ _

ST~ET': 1 _______________________ _

CliVI 1 ____________ _

4- srATE:L

S ZIP COO!;: L __ _
6 nLePHONE: (1 __) L_- L __

7 CIJ6TOMeR. \'10. '. 1- - - ---
S PO~AMDONT:_?J-------
q

10

II

12

31/ ~ i"t1!i9{Jiek/ Will be
t'1,!ht Jvstilier:f I70W

DEFINING JUSTIFICATION & FILL
Drawing No. 4

Step 4. Defining Which Fields are Required
In most data entry operations there are certain fields which the

operator may elect not to fill in and conversely there are usually
several fields which must be filled or the record will be incomplete.

For example, our Green Earth format would certainly be
meaningless if the operator neglected to key in the name of the
customer. DATAFORM allows the system planner (that's you) to require
field entry when needed. A variation of this requirement is to insist
that all the spaces in a field must be filled.

Let's examine what options are available in the required pass and
then use these in the Green Earth form.

R (Required)

F (Fill Controlled)

B (Required
& Fill Controlled)

A required field demands the
operator fill in at least one
character. The field may not be
skipped and left empty.

This restriction requires that all
positions must be filled in. After a
fill controlled field is complete, the
operator is automatically tabbed to
the next field. An option exists in
that the field may be entirely
skipped if the ENTER key is pressed
before any data is entered.

This restriction
Required and Fill.
not be skipped
completely filled in.

combines both
The field may

and must be

15

P (Program
Reserved)

S (Program
Reserved &
Required)

K (Keyin
Continuous)

X (Required &
Keyin-continuous)

Blank (No
Restriction)

When a DATAFORM program has
been created that will perform some
operation or computation and
perhaps display the result, 'P'
prevents the operator from keying
into this field. Chapter 3 on the
Level II language covers this in
detail.

If a field will be filled by a program,
this restriction requires that the
program must be executed before
that record may be written to
diskette. Again, more on this in
Chapter 3.

A field will be automatically entered
when the last position in the field is
keyed in; otherwise, the Enter key
must be pressed to move to the
next field.

Same as Keyin-continuous, but at
least one character must be entered.
Once the last position of the field is
keyed in, the next field will be
automatically entered; otherwise the
ENTER-key must be pressed.

If none of the above are used then
the operator may bypass the field.

These restrictions, as we said before, are implemented during a
form generation operation or 'pass', which will be explained in detail
later.

Now let's see how we can put these features to use on our
example form:

16

2

3
...
5 ,
7

e
q

10

\I

I!L

DATAPOINT SCREEN
90

: Q.-" _________ ~---?1k __ ..t: ""_
STU-roT: R________________ tItHe l[eMs

C.ITV~ R. ___________ _

STATE: R_ ~cIJmllfil:;bI!,·{!il/ed i~

ZIP 0006: F ___ ~ ~ Coll1p/etei'/, i.e.,311-f1ivedigit'5

T&L.EPWONIi: (f-->r--- F __ ./' or bl{p6Hl!Jti:lt tie /NigINIIII!

CUSTOMeR. NO.~ ____ ~__ -thie Ae/d i6ctJ111pJe11!11{

PIlROW.5E AMou.n-: ~_______ DpViOntll- nOl'fstrid:.iol?s

DEFINING REQUIRED OR OPTION FIELDS
Drawing No. 5

Step 5. Assigning Semi-Constant I Constant Fields
In our application, we noted that most of the customers would be

from Minnesota and most likely have the Area Code 612. By defining
fields as Semi-Constant, the form will be displayed with the anticipated
data already entered. The operator has two choices: the field may be
accepted as is (i.e., the Semi-Constant characters) and skipped over, or
the field may be changed by simply typing in correct data over the
displayed data (the Semi-Constant characters).

In cases where a field must not be altered, such as an identifying
record of the originating office, a Constant field may be defined. The
operator cannot change the contents of this field and it will be written
to diskette in that manner each time a form transaction is completed.

We can make use of the Semi-Constant field in our application in
the State Field and the Area Code portion of the Telephone Number
Field.

2-

3
4

DATAPOINT SCREEN

HAMIi: l ___________________ _

SY T: 1-------- --------------~-_--7 the ~ 8nti ~ip coie- I/I'(l,

OI"'Y: 1____________ 6emi-()()fI6tJ111"fJ .field", and.
"'AT.~ Mh' mB'f be. ~ (//# ill'lt!elieti

5 ZIP CODa: ,----

ft TlIL.ePHoe-JE~ (.. ~) 1---1-_-
7 Gl)JoTOM&R.No.:I ______ _

8 PURCMA.Se. A.MOOtoIT: • _______ _

9

10

II

12

DEFINING SEMI-CONSTANT & CONSTANT DATA
Drawing No. 6

17

For some applications, it might be useful to create a form with
all Constant data for use as an identifier at the beginning of each
day's operation, or as a set of instructions to the operator. This can
be done by making the whole form out of 'Constant' data. Note that at
least one field must be left for the operator to fill or the form will
hang, locked in place, as there'll be no way to tell it that we're done
with it! Fields which are to be used for Constants or Semi-Constants
may not be defined with the caret (I\). Finally, note that neither
vertical bars (I) nor underscores (_) may be used as characters
inside a Constant or Semi-constant field. For Constant data, a caret (A)
may be used to enter a blank space.

Step 6. Assigning OAT AFORM Programs to Fields
As mentioned earlier, Level II of DATAFORM allows programs to

be written in a high-level language that performs a wide variety of
tasks. These programs are created in a separate operation which will
be covered later. However, the Form Generator Program provides the
means to tie these programs to. the appropriate form fields, so at least
an explanation is due here. If you plan on using a program, now's the
time to specify it.

The operational DATAFORM programs are usually short and
designed to work on one particular field or any number of fields on the
screen. This step or pass of the form generator permits the system
designer to type, into a field, a letter, A through Z, which corresponds
to a program. Only 26 programs may be assigned to one screen form
because of the limits of the English alphabet.

We can assume, for example's sake, that we've written a short
program that checks for the correct check digit in the account number,
as in the following illustration:

18

2

3
1-

5

6

DATAPOINT SCREEN 90

~:I ____ -_------------------5TRI&T:I _______________________ _

CITY: 1 _____________ _

9rA"'~I-
ZIP COPE: 1 ___ _

TiLePNONE: (1 __) 1---1 __ -

PrllJ'"6IfI A #hec1i6 the rMoe 01-
s CIIIt!IbJmB,. nllMber alltt that
the. al"9it66IJ/lUlCe.i!J CO""(JJ3.7;.
More IJfI '/;hie in L&i&1 JL

7 c\,)!(rl)~8RtoID.: A-------
9 PIIR~~ AIAO\)t.IT: + _____ _
9

10

1/

12.

DATAFORM LANGUAGE PROGRAMS MAY BE ASSIGNED
Drawing No. 7

Remember that the use of these programs is optional. If you feel
the Form Generator features will meet system requirements, this step or
'pass' may be skipped. If you call for a program in this step and then
elect not to write it, don't worry. If the Form Generator can't find the
referenced program, it continues normal generation and notifies you
with a 'Program Missing' message on the screen.

All this will be covered in Chapter 3 under Level II DISKETTE
DATAFORM.

Step 7. Displaying Other Forms
In many business applications, a single screen form won't be

adequate. Numerous business transactions require much field
information to describe the heading, then lists for item entries.

An example of this might be an order for parts. The first
screen's format consists of shipping, billing and destination information.
After completing that, the next form will contain a list for the ordered
parts, with the option of calling up as many screen forms as needed to
fill the parts order.

&ILL10:
~1"1t):

FORMI

t
QUA".

¢ ,-2._

1-

1 ~2.

LIN

ItI.wRtf "11)

oesc.P. • ----- ----
+1

.... 1Dl1 ~-------........

a"A'" DeSd". ~
.J\. 4_
.,., S_

"-
PoIIrM 3

LlN,Kr--~

THE FORM GENERATOR PERMITS LINKING TO OTHER FORMS
AUTOMATICALLY OR THROUGH MANUAL OPERATOR CONTROL

Drawing No. 8

The Linking Technique
During the generation of forms, numbers are assigned to each

screen form. When, during data entry, the operator has decided that
this form is complete, (and DATAFORM agrees!) control keys are
pressed (see Part III) which allows the present data to be written to the
diskette. After data is written, normally the form in use is redisplayed
with the data fields cleared ready for the next record. To have one
form link to another, a LINK Number is defined for each form. This
number tells which form should be fetched and displayed next. The
LINK Number is the Form Number, and like the Form Number, 01
through 99 can be assigned during Form Generation.

It would be helpful to the people receiving the data if you made
a Constant field and placed the form number in that field. Therefore, if
a form is skipped, they will know what original format was used.

For example's sake, we'll assign arbitrary form numbers ourselves,
so that we'll know which form to link with. DATAFORM looks at the
link number, which you've assigned to the form, and then finds it. You
can even have the last form reference the first, creating a complete
loop-around.

Two kinds of linking are available: Manual and Automatic.

19

Manual Linking
If you'll look ahead to Part IV, you'll see that upon pressing and

holding down the DISPLAY key, the numeric pad can perform a wide
variety of control functions for data entry, very much as we did for
form generation.

As surmised, WRITE DATA control function takes the data from
the form and writes it on the diskette. The original form you were
using comes back up on the screen, (fields blank) ready to be filled in
again. If the LOAD NEXT FORM function key is pressed, the program
looks to see what link number has been specified, finds that form and
displays it on the screen. So, using this feature, the operator can elect
to keep entering data on the same form or call up the next form by
pressing the LOAD NEXT FORM key; by hitting the LOAD NEXT FORM
function key twice the third form can be loaded; by doing it three
times, it loops back to the first form.

During Form Generation time the LINK must be set to the next
form to be used by typing "LlNK~". The message "NEXT FORM =

000:" will appear. This means that you haven't set any
links yet. If you had, it would read "NEXT FORM = 002:", for example.
To set a link to Form 03, type in '003'.

For example, suppose the data entry job consists of three
separate forms and we wish to use manual linking as follows:

r--_...;~...;;O;.;;;R:;,.J'I4;..:l __, ~ 7-~ r--_....;F~QR;:;;;:...;NI;.;....:3:.----.
NM\e:�______ ~I ~ PARTI'lO.~I_____ I S\oIIP"R)!I ____ _
,A0I)R.E.6: 1_____ ~ 1'(P~: 1_____ ~ &lu."Tl:I: t ____ _

~--~---,~

LIN'"
NaT FO~ ~_':.'t.

LlIIIK
NU'T FORM __ :;;1

MANUAL LINKING
Drawing No. 9

Note that after filling out the first form, the operator has a
choice. If the WRITE DATA function keys are pressed, the data will be
transferred to diskette and a blank FORM 1 redisplayed. To use FORM
2, the LOAD NEXT FORM function must also be pressed. If LOAD
NEXT FORM is activated twice, FORM 3 will come up. After FORM 3,
LOAD NEXT FORM will bring up FORM 1 again. If the application
requires that a series of forms must be filled out, the chance exists
that the operator might neglect to write the data to diskette before
loading the next form and beginning to fill it out. The Auto-Link
feature solves that problem.

Automatic Linking
Where the application consists of, say, a three part form, we want

to link to the next part of that form right away. Automatic linking
begins fetching the next form as soon as the WRITE DATA key is
pressed. The LOAD NEXT FORM requirement is made unnecessary.
This eliminates the possibility of forgetting to WRITE and LOAD, as
pressing the WRITE DATA function key will do both.

20

""M.~ 1 _____ I "''''" ... , ,---- I~
!!o,""P-n:>: 1 _____

APOM~I 1 _____ Il1LL. TO\ 1 _____ ~ 1'YF'E~ 1 _____

i'). :!J
LINK

NatT 1bIQI\;txI:-3

AUTOMATIC LINKING
Drawing No. 10

Automatic Linking is accomplished by the same LINK command,
but a minus sign (-) must prefix the link numeral. For example, filling
in the message space with NEXT FORM = 000:-2 specifies that the form
assigned number two will be linked automatically when the WRITE
DATA function key is pressed.

For a working environment where the same series of forms will
be filled in, the Automatic Link will be most useful. In fact, you
probably should make most of your applications run under Auto-Link to
save time, data errors and keystrokes.

REVIEW - Form Generator Concepts

We've covered the seven steps that make up the features of the
Level I (Form Generator System). It's not necessary to use all of these
features. In fact, once the form is created, all the steps can be
bypassed eliminating any data editing, optional programs or linking.

To help clarify what the various steps accomplish, you can
imagine each step creating an overlay to the original form. For
example, if you could imagine all the steps recorded somehow on clear
sheets you could look through all at once and see the net result of the
steps or 'passes'.

A COMPOSITE OF THE FORM GENERATOR STEPS
Drawing No. 11

21

PART III
Building a Complete Data Entry System

Now that we've covered all the entry editing features of
DATAFORM and dazzled you with its capability (or perhaps you've"
jumped directly to this point) let's actually run through all the steps
and put together a sample system. The object will be to create a form,
assign some field-checking and editing criteria to it and finally use this
new form to write data onto the diskette. The end result will be a
working data entry system.

To accomplish this, you'll need the following items:

1. A Datapoint Diskette 1100 System with at least one
drive and preferably two.

2. A pre-recorded diskette containing the DATAFORM
form generator and language. This diskette is item
DF11SYS 1.1 Order Model Code 20174.

3. Several blank diskettes.

4. If your Datapoint system has a printer attached,
great. DATAFORM will work with any of the Datapoint
printers.

Before we begin warming up the Diskette 1100 system for our
data entry operation, take a few moments to consider the diskette
you're holding. It's a remarkable device capable of storing about a
quarter of a million characters and locating those stored characters
very quickly. To assure a long lifetime for your diskettes observe a
few simple rules in their handling

Do not lay the diskette down anywhere without its envelope on it,
as it picks up dust and lint which cause errors.

If~II~~11
p-

o

~ P(Q)

2. Illl ~

THE ONLY THREE PLACES FOR A DISKETTE
Drawing No. 12

I"'"'

There are normally only three places for a diskette -- in your hand, in
the drive or in the envelope.

22

Do not write on the diskette with a ballpoint pen because it makes an
impression on the recording surface. Also, keep the diskette away from
magnetic fields such as those generated by heavy electrical equipment
(and magnets!). While the diskette is often referred to as a 'flexible'
disk, bending can injure it and the name shouldn't be taken literally.

You'll notice several holes or cutouts in the paper holder (not the
removable jacket) - these are where the drive mechanism touches the
surface. Be careful not to touch the surface or you might find the drive
trying to decode your fingerprint!

t-Iu~eK6'f~17

THE DISKETTE 1100
Drawing No. 13

Operating the DISKETTE 1100
Initially, make sure the Diskette 1100 System is running by

plugging it in and switching it ON. The Processor ON-OFF switch
should be left in the ON (rear) position, and the Diskette System should
be switched ON using the console ON-OFF switch by your right knee
as you sit at the console. You can tell that the 1100 is running by the
little lamps located under the RUN and STOP keys -- the STOP key
will be lit initially.

CONSOLE & PROCESSOR POWER SWITCHES
Drawing No. 14

For a complete pictorial guide to operating the equipment, see a
copy of "Guide to Operating Datapoint Equipment", Model Code 60252.

23

Duplicating the DATAFORM Diskette

It's a good idea to create a second copy of the DATAFORM
diskette. Chances are very good that nothing will happen to the
diskette, but if you lay your Cuban cigar on your only copy then it's
tough to go on unless you happen to have an extra.

Incidentally, all data processing media, such as diskettes,
cassettes and disks, should be regularly duplicated. If you manage to

. harm or lose one, the volume of information lost can be staggering.
So staggering as to make the cost and time to duplicate the media
immeasurable.

See Appendix E for the duplicating procedure and copying your
diskettes. Cassette duplicating is also covered.

Section 1. Generating the Screen Form

Step 1. Running the Operating System
The diskette marked DF11SYS goes in the drive nearest the

processor - Drive O. Normally, the first item is numbered 1 but in the
computer trade, numbering starts at zero. Naturally, the second drive is
called Drive 1.

To insert the diskette, slide the door open on Drive 0 and slide
the diskette in until you hear a faint click and the diskette is securely
locked in. Be sure the diskette faces the correct way (see the
drawing). Then slide the black door over the slot opening. The
diskette is now loaded and ready for use.

INSERT THE DISKETTE IN THE CORRECT POSITION
Drawing No. 15

To begin running the Diskette Operating System, press the
RESTART key, which is located on the far right side of the keyboard.
This begins the 'DOS' program which enables you to run other
programs. After pressing the RESTART key the screen will look like
this:

24

DOS.C; J»;t'AR)lt-Ir ~'S PSKCRRA\It-iG-9tstaA 1/fIfSOtl\.\

,rPDV
-I· , "

THE PROCESSOR SCREEN CURSOR
Drawing No. 16

You'll notice a blinking rectangle of light appear under the
message. This marker is known as the cursor and shows you where a
letter would appear if you typed a character from the keyboard.

Step 2. The Form Generator
You need to ask DOS (which is now running) to load the Form

Generator program (which is on the diskette in drive 0) and to assign
the yet-to-be- created form a name and a number. We'll use SHOP01
as an identifier for our first form for the Green Earth Garden Shoppe.
The name that you give to your form must contain no more than six
alphabetic characters; the number must be between 1 and 99.

A few notes about the typographic conventions we use in this
book:

1. The ~ mark means to press the ENTER key, which is located
where the carriage return key would be on a typewriter. The mark
actually never appears on the terminal.

~~JDDn
~~JD~

DATAPOINT PROCESSOR ENTER KEY
Drawing No. 17

2. To correct a typing mistak'e, use the BACKSPACE or CANCEL
key to backwards erase one character at a time. Characters can be
corrected this way until ENTER is pressed, at which time the typed in
information is processed. Here is how our terminal looked when we
entered the name of the program to be run and the name of the first
form:

DOS. C DATApOl\J\ CD2.PORAnot-l'S D\SI(OPE~Tt~& ge1E1II.va<S1~ l.l
ReADY
DF UGE:N S\-IOP ~ I ..s- The name 0(tl/l' ~i~t .form

J/15K6TIf. VATAfORM G6tJ6RATOR. I. I
R~AOI{
:i~ , ,-

RUNNING THE FORM GENERATOR PROGRAM
Drawing No. 18

Now you must type in OLD or NEW.
previously keyed in, type "OLDl" to fetch
starting work on a new form, type "NEWJ'~

If you're revising a form
it for revision. If you are

Step 3. Creating the Form
After typing NEW, the screen will blank out and the cursor will

appear in the upper left hand corner.
You now are ready to go through pass 1 of form generation.

25

The cursor will appear on the screen. To move the cursor around the
screen, press a key from the numeric pad while holding down the
DISPLAY key. Each numeric key when used this way, performs a
different function. The following drawing shows the many functions
possible.

! (8)' I Cursor :

l Up t i
I ,
I ,

I (Sj
: Duplicate:
, I
I Character: , ,

0 0 Char---
acter
Insert

0 CD Cursor
Left
+---------

0 0 Word
Remove

I ¢ I
I I l' I Character I Cursor :
I t I
I Remove ,Down '
l (91)1 (2) I

0
0
IT]
[J

Erase
Frame

Cursor
Right
~

- ------
Form
Expand

Erase
Line

h- this o'Verla'l is actlJsl
size. '10fJ can GoP,!
iihe pS8e and cvb
out the i:empl8te-.

DATAFORM Form Generator Functions-Use Display Key

I 0 I KEYBrnRDI

I 0 I DISPLAY I
Keyboara Key Causes Repeat Function

FORM GENERATOR COMMANDS VIA NUMERIC KEYBOARD
Drawing No. 19

Using these keys, the cursor can be moved around the screen
and a variety of other functions performed. Holding the KEYBOARD
key down, along with another key or key combination causes that
character or function to be repeated. (Remember that these special
functions are only used for generating the screen form -- these same
keys have different meaning in data entry operations).

Probably the best way to become familiar with the screen format
generation process is to sit down and type characters on the screen

26

and then tryout all the buttons to see what happens. For purposes of
simplicity, you can create any form by using the cursor movement keys
and the BACKSPACE and ENTER keys.

As a first project you can type in the following Garden Shoppe's
form. This form is shown in detail so if you're jumping into this project
mid-book, you can cookbook together this form. We'll be using this
form throughout most of the book.

N~M;: , ____________________ _

2 CTlU!IT: 1------------------------
3 OITY: 1 ____________ _

4- ST4T;~I_

S ZIP 000.: 1----

" TaLIEPWO~ •• (l--)'---L--
7 CUSTOMER NO.: 1-------

8 PtlItC.&AH AfjIOUMT: + 1-------

II

10

II

12.

THE COMPLETE GARDEN SHOPPE SCREEN FORMAT
Drawing No. 20

After you've typed the form to correspond to our final format
above, hold the DISPLAY key down and press the CANCEL key. While
this sounds strange, this combination of keys tells the Form Generator
program that you've finished typing or arranging your form and you
wish to proceed to the next step. Pressing the DISPLAY and CANCEL
keys together places your screen format in memory, and tells the Form
Generator program that no more changes will be forthcoming. The
display "nnnn DATA" and "nnnn BYTES LEFT" will then appear (nnnn
means some numbers will be represented here).

Step 4. Assigning Edit Types
Remember the types of restrictions we could place on each field?

Here's a refresher:

A Uppercase Alpha (A to Z) and Space Bar; left justified
and blank filled

D Numeric Digits (0-9); left justified and blank filled

N Numeric Field -- Digits (0-9), one decimal point and a
leading minus sign; left justified and blank filled

M Mixed -- Combines Alpha (A) and Numeric (N)

27

o Minus-Overpunch -- Typing a minus sign in this
Numeric field causes the rightmost non-space character
to be overpunched (Le. a '1' becomes a 'J')

To assign these restrictions to fields, type 'TYPE~' and your form will
reappear with the cursor waiting for your first entry. Type in the
appropriate code and hit the ENTER key. The vertical bar will be
replaced by the letter which you entered. You can elect to skip over
the field by hitting the ENTER key and assigning no restrictions. If
you make a mistake, keep going. After the last field has been
assigned, the cursor will jump back to the first field giving you a
chance for second thoughts or error corrections. The CANCEL key
may be used at this time to clear unwanted letters. The finished
screen now looks like this:

NAME: A ______________________ _
STREIT: M _____________________ _

CITV: A _________ _

~TAT.:A_
%\PCDOa: D ___ _
"T'IELePWON&: (0_) 0 __ -[7 ___ _

GU6TolII\.R No.: D _____ _
PURCNA51i AMO\JNT~ .N ____ _

ASSIGNING TYPE'S TO FIELDS
Drawing No. 21

Once you've done that, press the DISPLAY and CANCEL keys again
READY will reappear.

Step 5. Assigning Field Justification I Fill
JUSTIFY provides left or right justification and blank or zero fill

to fields whose default condition does not satisfy your requirements.
The following is a nutshell review of the JUSTIFY codes:

J Right justification and leading blanks

Z Left justification and zero filled

R Right justification and zero filled

Type "JUS~" and enter a 'J' at the beginning of the Purchase Amount
field.

28

!llA1\Ae: 1 ______________________ _
STREET: 1 ________________________ _

CITY: 1 _________ _

STATE:L
ZIP c.ooe~ , ____ _
T6I..WHONe: (1 __) L_- '-__ _
coerO~5R. No.: 1 _____ _

PlJRDAA65 ~:-t u-----
ASSIGNING JUSTIFICATION & FILL TO FIELDS

Drawing No. 22

Once filled in, type DISPLAY/CANCEl.

Step 6. Assigning REQUIRED Fields
REQUIRE forces the operator to fill in certain fields according to

the following codes:

R Required Field (at least one character)

F Fill controlled Field

B Required and Fill Controlled

P Program Reserved (no keyin permitted)

S Required and Program Reserved

K Keyin-continuous (automatically entered with the last
character)

X Required and Keyin-continuous

Type "REQ,}." and fill the following when the form reappears:

~E~~------------------------6T~5IT:R _______________________ _

CITY: R _________ _

5T~T5: R_
%IP co .. : Fo ___ _

T&LEPMONE:(F_->F_ - F __ _

CU6TOM6R. NO.: 1----------
POP.a~A9 ,.MOONr~.R ___ _

ASSIGNING REQUIRED FIELDS
Drawing No. 23

29

Once filled in, type the DISPLAY/CANCEL combination.

Step 7. Assigning SEMI-CONSTANT Field Data
Our example has two fields which will usually remain the same.

Type "SEM~" and now type in the needed text. Use the ENTER key to
skip over fields which will have no SEMI·CONSTANT text. Ours will
look like this:

~e~I _____________________ ___
S'T1tt!8T: 1 _______________________ _

CIT'{: 1 _________ _

STA'TIi: MN
Z,1P COPE; '-__ _

TELEP\40WIi ~(&''l.) 1 __ -1 __ _
CUSTOMER NO.~ 1 ______ _

P\JR~ AtoOoINT:'I ___ _

ASSIGNING SEMI·CONSTANT FIELD DATA
Drawing No. 24

Once filled in, type DISPLAY/CANCEL again.

Step 8: Assigning CONSTANT Field Data
This function works exactly like the SEMI·CONSTANT feature

except the operator cannot change the contents of the field. Type
"CON~" and proceed as in the previous step. If you need CONSTANT
spaces, enter the caret (I\) for each space desired. Positions not set
to some character are not valid. Our example uses no CONSTANT
fields.

Step 9. Assigning Programs to Fields
In many cases you might want to have a DATAFORM program

operate on a field. The programs can be named A through Z and you
can assign them by typing "PRO~" and then typing in the appropriate
letter in the field. The chapter on Level II covers this in detail. It's
handled, however, in the same manner as other steps.
DISPLAY/CANCEL gets you out of this step also. Our example uses
no programs, so skip this step entirely.

Step 10. LiNKing to Other Forms
By typing the command "LlNK~" the message "NEXT FORM =

000:" will appear. The 000 means you haven't set any
links yet (unless you're revising an old form and then the number will
be the previously assigned link) and, if you like, you can provide for
manual linking to another form by completing the message as NEXT
FORM = 000:002, or more simply NEXT FORM = 000:2 if you're aghast
at typing too many zeros.

Remember that the forms were numbered when we used the
Forms Generator (SHOP01). If we wanted this form to link up with

30

another form, such as SHOP02, then the LINK would be instructed to
link to form 002 and this number would be typed in now. Our example
used only one form, so this entire step is omitted.

Step 11. Recording the Finished Form onto the Diskette
If you've been following the example, you should have completed

all the necessary steps and are left with "READY" on the screen. Type
/fOUn", and when the completed form is written to diskette, the
messages appear on the screen, as shown in the following illustration:

thi(;i~~.v
mIlCh /0,.,..,
sp8cei61e1t

SCREEN MESSAGES AFTER LOADING A FINISHED FORM
Drawing No. 25

At this time any mistakes you made will be listed. If your form
contains too many fields or requires too much data area (both are very
rare events) then a message "nnn BYTES OVER" will appear and you'll
have to condense the form (information in Appendix D will help you
with this). One byte is equal to one character.

You can now type "OLD~ "or "NEWJ" in again and revise
SHOP01 or type in another form if you wish, such as SHOP02.

Note: Had a program letter been assigned during the program
assignment pass, the message "PROGRAM MISSING" would also be
displayed, should you not have a program written for this form on
diskette. Level II DATAFORM explains program generation.

Step 12. Modifying a Previously Generated Form
If you've recorded a form on diskette, it maybe easier to change

it rather than to start fresh. Begin at Step 1 but type "OLD.l." rather
than "NEWIl". If only edit criteria is to be changed, do not type in
"REVISE~", but instead enter the edit (i.e., TYPE, JUS, etc.) which is to
be changed. REVISE is used only when the format of the form is to
be changed. The old form will be displayed when you type "REVJ" or
when new edit restrictions such as "TYPE~" are entered. If REVISE is
used, all the edit criteria must be re-entered. DISPLAY/CANCEL, then
"OUn- will then write the revised form out to diskette.

31

PART IV
The Finished Data Entry Package

This is the end result of our labors. During the Data Entry
phase, the operator sits before the Datapoint, follows the cursor on the
screen form and loads data onto the diskette. Before we begin to type
in the data, let's look at what's been created so far, and where we're
headed.

We have, out on diskette, a file called SHOP01/DFF. The /DFF
was added automatically by OAT AFORM to note that it's a
"DATAFORM FILE".

Another file, named SHOP01/DFD will automatically be created
when we begin to keyin the data using our form. The /DFD stands for
"DATAFORM Data", logically enough.

If you are skeptical about this, type in CAT,2(short for CATALOG)
and the Operating System will show you all the files on the diskette.
Try CAT after you've finished doing the example - the files that
weren't there before will now be part of your working system.

By the way, the diskette files you will be working with can be
automatically expanded, ended or modified without regard for the
complexities that accompany conventional complex systems.

To begin the actual data entry operation type in the command as
follows: I ~ADY

~I DFII -SHoPjt)1

THE START OF THE DATA ENTRY OPERATION
Drawing No. 26

Two lines then appear on the screen - "DISKETTE DATAFORM
INTERPRETER 1.1" and "SELECT DATA MODE". To start a new file,
type "Start}" or "S~".

The DATAFORM interpreter responds with "START FILE?" as a
safeguard to insure that you know that you are starting a new file
(therefore, if one exists, it will be written over). Type "Y~" to start a
new file or "N~" if you now realize that you typed "S~" by mistake.

So, if you have actually followed our example to this point, the
Garden Shoppe form would be glowing on the screen and now you're
ready for the data to be entered!

32

NAMe.: A~ ::>M,'f\{
A~·. ''Z.~I/IIAI..I..'ST.
en",: N11'.
~TI>CTe , NY
ZIP~'-----
c..I1J'ONl6IlWO.: -----1'1>_ ,4MO\>t<T:t __ -- __

5df~~1
YOU NOW HAVE A WORKING DATA ENTRY SYSTEM

Drawing No. 27

Data Entry Operator Controls

Note that the cursor appears at the beginning of the first
non-Constant field to be filled in. You can try filling in a few fields to
get the hang of it. Note that a click is heard each time a character is
typed and accepted and that a beep is emitted if you try to type
alphabetic characters in a numeric-only field, or if any other error
occurs.

During the data entry process (DATAFORM Interpreter) two
programs might be considered to be running at the same time -- a type
of Monitor and the Data Entry (fill-in-the-form) program. The first
message to appear was written by the Monitor. Typing "START~"
brought the form up on the screen and began the data entry process.
There are many reasons you might want to get back to this Monitor
and we'll be discussing these in the section called "Data Entry
Operation Modes".

To make the data entry operation human-oriented and easy, the
numeric pad is again used for special functions. The illustration below
shows a template with the data entry functions indicated. As before,
with the Form Generator, the DISPLAY key must be pressed in
conjunction with the Numeric Pad keys, to make use of the special
functions.

Rewind
Data
File

Monitor

Load
Next
Form

Backspace
Record

Record Delete (5)

Field Duplicate (0)

Read
Record

Erase
Form
Data

Back
Field
Tab

Write
Data

s- Thi~ fJVeI"l~1(,~ /1./
size. Yw C6I1 Copy the
~ and &lit ()(It the
tMtpl8fe, - or, /YJIJ/'e

d,,~/e pl8St,~ tI"II!J6
are ;;v;n1able.

DATAFORM Data Entry Functions - Use Display Key

DATA ENTRY COMMANDS VIA NUMERIC KEYBOARD
Drawing No. 28

33

Besides these, the ENTER, BACKSPACE, and CANCEL keys are also
used during data entry. You'll want to tryout each function, so an
explanation is listed here.

DATA ENTRY COMMANDS

Tab Forward and Backward.
The ENTER key is used as a forward tab (jump to the next field)

and the Backspace Field function (DISPLAY/3) permits backward
tabbing. Forward tabbing past required fields is not permitted as the
operator must enter at least one character in these. Note that Alpha or
Numeric editing occurs while the field is being keyed into. When the
field is complete, further editing is performed on numeric and right
justified fields to insure compliance with format restrictions. Also if you
had assigned a Level II program to operate on this field, the program
would not be run until all other editing had been performed
successfu lIy.

When errors are detected in a field, instead of moving to the
next field, the cursor will be placed at the beginning of the field just
entered and a Beep will be sounded. The illegal data will not be
erased automatically but will be written over when the correct data is
typed in. If the operator decides to tab past the field, the last
accepted data (blanks if none has been entered) will be displayed.

Field Erase - (CANCEL key).
The CANCEL key causes the current field to be erased and the

cursor repositioned to the start of the field.

Form Data Erase - (DISPLAY and 6).
Simultaneously pressing the DISPLAY and 6 keys clears the data

without writing it to diskette and redisplays the cleaned form, plus
Constants and Semi-Constants.

Field Duplication - (DISPLAY and 0).
Once a form has been completed, the data can be written to

diskette (see Write Data). The data entered during this time is stored
in memory such that it is available to the operator for field duplications
through use of the DISPLAY and 0 keys. This causes the field data,
from the same field of the previous form which was written to diskette,
to be written into the present field. Using this feature, you can easily
enter data where much of it is the same. The differences between
forms can be edited in, rather than retyping all the data fields.

Write Data - (DISPLAY and Period keys).
The DISPLAY and period keys cause the form data to be written

to diskette. If only a single form is used, all data fields will be cleared
(except for the Constants and Semi-Constants) and the form will be
redisplayed with the cursor waiting in the first non-Constant field. If
Auto-Link is specfied for the form, the linked form is automatically
loaded and displayed. NOTE: unless Auto-Link is used with the
automatic write feature, it is possible to Load Next Form without having
written the data to diskette; beware of this hazard.

34

Load Next Form - (DISPLAY and 1).
The next form specified by the LINK criteria entered on the form

will be brought into memory when the DISPLAY and 1 keys are
pressed. If no link has been specified, the same form will be cleared
of data and redisplayed, or possibly the words "BAD FORM" may be
displayed and you may be returned to Monitor. If the latter occurs,
make sure you close the data file.

Delete Record - (DISPLAY and 5).
The DISPLAY and 5 keys cause the current diskette data record

(the data currently entered on the screen) to be deleted from the data
file.

Return to Monitor - (DISPLAY and 4).
The DISPLAY and 4 keys cause the Data Entry Interpreter to

return to the Monitor. Only in the Monitor mode can the various data
entry functions be utilized. See "Data Entry Operating Modes" which
follows.

Data Entry Operating Modes

During use of the DATAFORM level I package a file of records is
created on diskette. This diskette file is the end result of the
intelligent data entry operation. Many times an operator will find it
necessary to change previously entered data or examine it or add more
data to an existing file.

DATAFORM, in addition to easy form generation, provides a powerful
facility for modifying (editing) data files. The operator reviews entered
data. If a print-out of the outward data is required, there's a facility to
do that, too.

The /Jats 5ntry
Mode, ~h1,.t5 d6ta
1:0 be k~ed. in -

-the d8ts {!,Ie.
is Open

"The lI/()fJit-or Mode
pe,.mi'ts tI1e operdtor
to examinf!J ()f" mocf,ly

ent&'ed data
Fde 111()6tb!!- cJo6e4

THE TWO MODES OF DATAFORM
Drawing No. 29

When we first keyed in "DF11 SHOP01 ~", we told the Operating
System to get the Monitor running and also look in the file named.
SHOP01 to find the first form. After that, we were in the Monitor Mode
and selected our first task to be START. These are often useful things
that the Monitor mode can do.

The one thing to keep in mind is the file you're working with. If
you're in Data Entry Mode and want to use one of the Monitor
functions, be sure to close the file with the END Monitor command.
This puts a marker on your file and assures data integrity. You can
always re-open the file for later operations.

35

Writing a Beginning of Data Mark (START)
As we mentioned earlier, begin every initial data entry operation

with START. If you use START with an existing data file, however,
you'll wipe out all the old data. You can type "START 001~" (or'S' 1
') or any valid form number to begin with a specific form. If you keyin
simply "START~", DATAFORM will select Form 1. Since we want to open
a new data file, answer YES to the question "START FILE?". This
question is asked to make sure you don't destroy a needed data file.

Writing the END of Data Mark (END).
Whether you're finishing up with a data entry project or closing

up shop for the day you must write an END mark on the data file to
preserve the good data. After doing your last Write Data, press
DISPLAY/4 and when "DF-READY" appears, you'll be in Monitor mode.
Then you may type "END~". The question "END FILE?" should be
answered "YES~ ", unless you know that you are positioned somewhere
in the middle of your data file. The data file will be 'Closed' -- up to
that point the file is considered 'Open'. "END" should be needed only
when entering data under ADD or START conditions.

Adding to an Existing Data File (ADD)
Suppose you have ended your data entry job for the day and

someone comes breathlessly running in with a last minute record to be
added. No big problem. If you're in Monitor mode, type "ADD~" and
specify a valid form number. The Monitor will fetch the form number
you indicated. While you are typing the new record, DATAFORM will find
the End of Data mark and position the diskette to write the next record.
You may now key in any number of records. (Be sure you type "END~"
when finished.)

Modifying an Existing Data File (MOD)
The same person who handed you the additional data might well

have informed you that an earlier entered record needs to be changed.
By typing "MOD 01j" or any valid form number in the Monitor mode,
the diskette finds and displays the first data record to allow you to
search forward for the record you need to correct. Pressing Read
Record (DISPLAY and 9) advances the file forward and displays each
record (only data records created by the selected form are displayed).
Pressing Backspace (DISPLAY and 8) permits you to read each record
in the reverse direction. Additionally, you can position to the
beginning of the data file by using Rewind (DISPLAY and 7).

When the data in a record is displayed, you have two options:
leave the data unchanged, or retype any field on the screen and press
Write Data (DISPLAY and Period) to overwrite the original record.

Switching to Data Entry Mode (DATA)
If you . return to the monitor and find that you need to correct

your latest data entry and you haven't typed END yet, type "DATA~" to
return to Data Entry mode.

36

Review the Data File (REW)
This function takes you back to the beginning of the data file

and displays the first record. You must be in Monitor mode when you
type "REWt" (or "R~"). This function is particularly useful when used
with the MOD or FIND functions. Use the numeric keys to advance
through the records.

Locating and Modifying a Specific Record (FIND)
If you need to find a certain record, and you know that it

contains some unique field entry such as "125 SHELL ST." in the
Street field, that record can be quickly located using FIND. The
specified form will be displayed so that the operator can type into any
field he wishes to use as a key in searching the data file. It is also
permissible to key into more than one field at a time for each search.
Type all the information into the fields you wish searched. The Monitor
will compare the records with the data entered for a match. After the
appropriate field(s) have been filled, press the Read Record function
(DISPLAY and 9) to initiate the search. If a match is not found, the
message, "END OF DATA" is displayed and control is returned to the
Monitor. Be careful not to do an END after a FIND. To halt a record
search, press both the KEYBOARD and DISPLAY keys simultaneously.
The search will halt and control will return to the Monitor; the file will
be intact.

Operating the Finished Data Entry System

You've created a working, sophisticated intelligent data entry
system! Now, if you're in a production environment, show the operator
how to enter the commands and use the numeric pad. Then, all that
needs to be done is to have the operator practice a little with the
system that you created. He or she will get the hang of it very
quickly. No technical education is needed to produce accurate and
rapid data entry. Remember, that "START" will start your data file
anew, and erase all your operators practice data. Working (or "live")
data may now be entered by the operator. Note that when a form is
completely filled out and written (DISPLAY and Period) to diskette, the
same form will pop up on the screen automatically with all fields blank.
The cursor will await your keyin in the first non-Constant field. If you
have no more data to enter, just go to Monitor (DISPLAY and 4) mode
and type "END~". Remember to answer the question "END FILE?".

Once your good data has been written to diskette and ENDed,
the data may be processed on the Datapoint 1100 by other progr!3ms or
transferred on telephone lines using DATAPOLL or a number of the
other communications programs (see the DATAPOLL Simplified User's
GUide).

If you are done for the time being, and you've ENDed all data
files, you can leave the Datapoint 1100 by opening the black door in
Drive 0, pressing the EJECT button, and taking out the DATAFORM
diskette (putting it in its protective wrapper, of course). If no one else
will be using the Datapoint 1100, you will want to turn the console
ON-OFF switch (right by your knee) to OFF.

37

The Diskette 1100 and OAT AFORM are economical and fast. This
strongpoint allows you to quickly generate a form and turn it around
for Data Entry use -- very impressive if you're trying to convince
someone of the virtues of intelligent data entry; for example a sales or
corporate management demonstration. You could actually create a form
while they watched, type in the editing features and then enter data.

Where to Go from Here

Now that you're competent in Level I, you have a choice: get
busy and put the Datapoint to work with Level I or keep reading to see
if the Level II programming power might be useful.

38

PART V
A SUMMARY OF DATA ENTRY COMMANDS

(Monitor Mode)

Function Key Operation

START n S n START-initialize a data file
ADD n A n ADD to the end of a data file
LOAD n L n LOAD (display) specified form
DATA D Switch to DATA Entry mode
MOD n M n MODIFY data records
FIND n F n FIND matching record
END E Write END of file on data file
REW R REWIND data file to first record
n means the number of the form

Data Entry Function Keys
(Data Entry Mode)

ALL DATA ENTRY:
Forward Tab
Backspace Field
Field Erase
Form Data Erase
Field Duplication
Write Data to Diskette
Load Next Form
Delete Record
Return to Monitor

MODIFY & FIND:
Read Next Record
Backspace Record
Display Record 1
Abort Record Search

ENTER
DISPLAY/3
CANCEL
DISPLAY/6
DISPLAY/O
DISPLAY/Period
DISPLAY/1
DISPLAY/5
DISPLAY/4

DISPLAY/9
DISPLAY/8
DISPLAY/?
DISPLAY/KEYBOARD

REWINO ~ READ
RE(X)R() RECORe)

7 8 9
RE1\JRN PEl..E1C ERASE

TO ~eccRD FORM MONITOR

4- 5 6
LOA!' WKS9'tCE
NE)(T 1=\E1..0 FORM , 2. 3

AELD WRITE
DAT'A O\JPLlCATION RiOOR1)

0 •
DATA ENTRY FUNCTIONS

Drawing No. 30

39

CHAPTER THREE

LEVEL II DISKETTE DATAFORM

41

Introduction

As you learned from the first two chapters, Level_l_ DATAFOR~
provides a quick and straightforward means of building screen forms
with some editing capability. In many cases the entire data entry task
can be accomplished using only Level I capability.

Instances will arise, however, where complex error-checking or
computation is required. For those cases, the powerful DATAFORM
programming language may be used. This language can be used to
generate short or long programs that are integrated with the forms
themselves.

How to Use This Chapter
This chapter approaches the programming language in four parts:
1. A discussion of the general concepts and instructions.
2. The step-by-step operation to get an actual program running

on the Datapoint Processor.
3. A thorough discussion of the DATAFORM language.
4. Program examples.

If you've never programmed before, this chapter will offer new
insights into the ways and techniques of handling business information.
Since space will not permit a comprehensive treatment of the
fundamentals of programming, brief explanations of these concepts
accompany the discussions of each topic. To assist in the learning
process, many examples are used.

Necessary Equipment:
1. A Datapoint 1100 system with at least two Diskette drives.
2. The DF11 SYS diskette you used for Level 1 form generation.
3. A Diskette that contains the full version of DOS.C (model code

20175). This diskette contains the Editor, which is a program that
allows you to create and modify your programs.

43

PART I
Data Flow in DATAFORM

What is a Field Program?
The programming language' contained in DATAFORM is somewhat

unique in that it's field oriented. That is, all the information available
to the program is contained in the fields which are filled by the person
operating the data entry system. The operation of a field program may
include access of all of the data, Gin error message with audio or visual
indications or other operations such as linking to another form or
writing the data to diskette.

The field program assigned to operate on a certain field performs
a set of manipulations or tests which may include checking for valid
data in the field, or performing a calculation to relieve the operator of
that task. For .example,.in the Green Earth form (which we used in Level
I) you might want to check that a state abbreviation is valid, (Le., that
it is one of the 50 states). Or you might want to accumulate the
purchase amount for subsequent use in a batch total form.

),IAMIi: 1 ______________________ _

STJaaU: 1 ____________________ :.::._:. __ ---'"

FIEL.O
~M

THE FIELD PROGRAM OPERATES ON DATA IN THAT FIELD
Drawing No. 31

To simplify programming, two names are used to designate data
buffers (temporary data holding areas):

44

1. The data keyed into the current field (INPUT)

2. The portion of the total data record (all the
information entered on the screen) assigned to that field
(OUTPUT).

Before we start to build that program, let's see where the data
moves without a field program.

~.:I------trnIBI'T:\ _____ _

SCRE&N

LEVEL I DATA FLOW (NO FIELD PROGRAM)
Drawing No. 32

The Data Buffers
Field Data is entered via the Datapoint Processor keyboard and,

upon completion of the field, passes through the series of Level I
editing criteria established during the Form Generator operations. This
field data is then in the temporary "Input Buffer". (A buffer is a
temporary resting place for data.) Thus, at anyone time, the Input
Buffer reflects all data that the operator has keyed in, while the Output
Buffer contains the data to be written to diskette.

th,.I;,tJ 16
Hi" !teyed il1

INPUT BUFFER REFLECTS DATA ON SCREEN
Drawing No. 33

45

tJ,e pror.WI ~Jcs on
t:h!! eMItMts P! ~
brJIl,l'S. sur« t»I ellspllIIf
In the .screen il-".6'"

"OUTPUT"
~------------~

DATA FLOW USING A LEVEL II FIELD PROGRAM
Drawing No. 34

If a field program is assigned, the data that has just been
entered and edited by Level I DATAFORMi may now be edited by the field
program. At this time, the assigned field program (the thing you're
going to write) begins to operate upon the data in the Input Buffer.
The dala in the Input Buffer is known as INPUT and the Data Buffer is
known as OUTPUT. It becomes the responsibility of the field program
to move the Input data to the Output Buffer, so don't forget or you'll
mistakenly write blank records on your diskette!

Since you are now well aware that OAT AFORM is field-oriented,
let's talk about how these fields can be accessed. As far as a field
program is concerned, the data of the current field is always in INPUT
and, after the program has completed it's operation on that field, it
must be transferred to OUTPUT.

However, there will arise situations where you might want to
compare the contents of one field previously entered against another.
For example, if the shipping address state was different from the billing
address state, the program could convey a warning to the operator.

To use and access fields other than the current one (INPUT),
each field is assigned a number. You won't find these numbers
appearing on the screen or in a print-out, but they're there. The fields
are numbered left to right, top to bottom.

46

FIELD IDENTIFICATION BY NUMBER
Drawing No. 35

Our Green Earth form has a total of ten fields and if for some
reason we wanted to validate the State (field 4) by checking it against
some other code in the sixth field we can do it in a number of ways.
The simplest way is to assign a name to the state field (e.g., STATE
FIELD 4) and then we may refer to that name in our validation
program.

In review, you know that the Input Buffer contains the immediate
contents of the field, the Output Buffer will eventually reflect all that
the operator can key in on that screen form and that each field has a
number.

Concepts of Programming
Although the DATAFORM programming language can accomplish

a wide variety of tasks, as can any other programming language, one
of the most frequent tasks will be the validation of field data. Let's
look at what happens when a program begins operation on a field.
We'll use a flow chart (a block diagram of logical steps) to save space.

2. S&£ IF ll\E ~,.
~DI~\6""US::> PRa'JOS

I~ ~~'-IN-D~I~~=~~~ ~----~--~ '!>. T~ ONE OF ~o
~ - Po &cOD E)C.\T

OR A So'D E,)I.\T

ERROR GO 1t> N~
FlELD

FLOW CHART OF VALIDATION PROGRAM
Drawing No. 36

The process outlined in the flow chart works exactly like a cook
sorting potatoes. The program starts each time the cook picks up a
potato. The "picture" of what good potatoes look like is in his mind
and each comparison allows him to toss the potato in the garbage
(bad exit) or in the peeling bin (good exit) for later use. This program,
running on the cook's mind, allows him to pare the bad spot off the
bad potato, however, and compare it again to see if it's now
acceptable.

The DATAFORM program can run in exactly the same manner.
Let's examine the elements of this sequence and see how we should
use them.

47

Starting the Program
Remember that during the Form Generator section (Level I) there

was a pass for PROGRAMS to be assigned. You could assign up to
26 programs (the number of letters in the alphabet) by assigning a
letter to that field. Since we're going to be operating on the State
field of the Green Earth form, we should have assigned a letter to that
field.

PROGRAM LETTER ASSIGNED DURING LEVEL I PROGRAM PASS
Drawing No. 37

When a letter is assigned, the field program begins running its
tasks after all of the Level I validation has been finished. By the way,
you can only assign one program to operate on anyone field. You
can't request programs A, B, and C to operate when a certain field is
entered; so keep that in mind when writing your program.

Program Structure
Field programs are essentially divided into two parts. First there

is the part containing all data descriptions, messages and tables. (This
is what the data is compared to -- the cook's vision of a perfect
potato!) The statements which set up this part of the program are
called specification statements, or non-executable instructions. Their
purpose is simply to set up data for the program's use; they don't
actually do work.

The second part is the executable statements. The program
name (such as A *) appears as a label on the very first executable
statement, and it is this statement that begins the sequence of data
entry process events whenever a field program is assigned. The
executable statements do the work and make the exit, be it good or
bad.

Use of Labels
Labels (the names that we give to statements) make it possible to

reference things without being concerned about exactly where they are
located in the maze of computer memory. Labels start in column one,
are alphanumeric, and should not exceed eight characters.

We have seen that data just keyed in is called INPUT, that we
can talk about the portion of the data buffer corresponding to the
current field as OUTPUT (thus the actual location of OUTPUT changes
with each new field). We can also assign names to portions of the
data buffer corresponding to specific fields in the form, e.g., STATE
FIELD 4. We can create additional buffers with names and contents of
our own choosing as in the following illustration.

48

relltWtM STATE
"tIme tI" ~
I~~

FIELD ACCESS VIA LABEL & NUMERIC POSITION OF FIELD
Drawing No. 38

The "STATE FIELD 4" statement allows us to use the name
STATE in our program with the result that the contents of Field 4 will
be used. This technique of using a handy name to identify a field is
called "Labeling" and you'll see much more of it.

The field programs have special one letter names. These are
typed into the appropriate field during the PROGRAM Assignment Pass
of form generation. To identify a particular label as the beginning of a
program, we make the first character a letter and put an asterisk after
it; ,:5rogram 's' starts executing at the instruction labeled S*.
Instructions within programs may also have names so that one
instruction can direct processing to another point in the program.

Let's suppose that you want to see if the State, which the
operator has typed in, is a valid abbreviation. To accomplish this we
must build our own "buffer" filled with valid abbreviations of states.
The technique of creating your own buffer is necessary if you want to
compare the INPUT field to specific lists, maintain cumulative totals
separate from the data that is written on diskette, or display messages
when errors occur. So once you understand this technique you will
have a useful tool for all kinds of applications.

To accomplish the task of seeing if the State which was keyed in
is a valid abbreviation, the first step is to create the buffer. For the
sake of brevity we'll only use 5 states, although we could have used
all 50. Here's what the buffer looks like set up in the DATAFORM
language:

STA1"LI5T WOR.K. "MN" "Ml" ·WII
' ·IL""IN"

~ J J J I

fl!-.labeJ ~ tire etlltaftltJnV:':> file. d#ts ~
USING THE WORK INSTRUCTION TO SET UP DATA

Drawing No. 39

"STATLlST" is the name that the group of state abbreviations is
stored under. WORK is an instruction that informs the computer to
store these abbreviations in memory for future use. Note that if there
was only one valid State abbreviation the operator is allowed to key
into, STATLIST could be rearranged to make sure that abbreviation was
keyed in.

GTATLlST WORK "MN"
A WORK AREA WITH ONLY ONE ITEM

Drawing No. 40

49

Executable Statements or Instructions
The tables or lists or non-executable statements (as you will),

provide us a basis with which to compare our incoming data. The
instructions that do work include the comparison instruction (which
we'll work with) plus a wide variety of others. In this section, only the
commands necessary to our program are explained. See section 3 fora
complete description of the language.

For example, let's take the list of valid abbreviations labeled
"STATLlST", which we created, and add the necessary executable
instruction to have the field in INPUT compared against the valid
abbreviation in the list in STATLIST. A flow chart will show the
sequence of events.

""~5D
STA"Tf£I-I'ST
I-I-e.I oR -".,gLE'

Af.K. OR!PJI1bR
-ro ReKE'(I--~

"T1I.FlEL.D

FLOW CHART OF THE COMPARISON (IF-INTABLE) PATHS
Drawing No. 41

The object will be to see if the State abbreviation, which the
operator keyed in, matches one of the abbreviations in the STATLIST.
This instruction comes out in almost pure English. We will use a
comparison instruction known as IF-THEN.

,,",EN SfORE

t jI. it does ffI8tch STI:1R6;
iI 1'I6f;, do iN /'n&tnJctiOl7
en 1M ""'Iowing 'me

CHECKING INPUT DATA USING IF-INTABLE INSTRUCTION
Drawing No. 42

The IF-THEN instruction is told to consider STATLIST as a table,
compare INPUT to see if it's the same as any of the entries INTABLE,
then if it finds it in the table, to STORE it. If it does not find the field
in the table, the instruction is ignored and the program drops to the
next instruction, which (for example) might be "AGAIN". Both STORE
and AGAIN are exit instructions.

One of the critical elements of the field program is its termination
or "exit path". It is important to understand the "exit" instruction as it
affects both data movement into the Data Buffer and transfer of

50

program control to the next field or form. So the exit instruction has a
lot to do with what happens next.

Exit Paths
To exit, so that data entry can resume and the Input Buffer can

be written to the Output Buffer, the statement "STORE" can be used.
To cause the INPUT data to be rejected and force the operator to
re-enter (retype) the field, the statement "AGAIN" can be used. For
example, if the State abbreviation in the Green Earth form was wrong,
our problem will exit out the error path .using "AGAIN". So, the bad
data failure path is "AGAIN" while the success path is "STORE".

Entry Point
So we've added the executable instruction and the concept of the

exit paths. Now all we need is an entry point and this program will
actually run. Remember that program A was assigned to the State
field durin!;) Level I. To identify the program and note the starting
point we use the same A with an asterisk after it in the very first
space. Remember, the first few spaces are reserved for labels. Here's
the complete program ready to go.

Chc Wle "./if1/;

STATL.I'S'T WOR"- "MN"/'MI .. t W''',· Il.","IN"

A* IF INPUT IWTA8LE STATUS, T ... eN e;n,RE
) AGAIN

L tM f"'"DIJ'"8m stllr't" poi"t
and 118me., The Pro$ram
pass of! LeVel I musf:i
sped!y this progriflfJ7, ;1 it
is to be erecuted.

COMPLETE PROGRAM WITH FLOWCHART
Drawing No. 43

Program Results and Some Thoughts
The important thing to remember is that if the program didn't find

a match, it would go to the next instruction (which is AGAIN). That's
how simple the process of generating a program is. Now let's look at
the program elements in detail.

In thi's example there is no processing done if the field is good
and no special error message if the field is bad.

To expand the program let's investigate how to display an error
message. The first thing to do is to set up a buffer containing the
error message.

51

8ADMS& WDr?K" BAD $fATE"
Drawing No. 44

The new program uses the MESSAGE instruction to display the
error message on the bottom line of the screen. (You recall the screen
is 12 lines deep by 80 columns wide.)

Complete the program as follows:

""ORiCSA(;) STATE"
WORI<.. .. ""N .. "M1 H UW'" ·11.· .. '11/ ..
I~ INP\)T INTABU: f>TATuST iHEN SfbRE
M~ 8A-DM&6-
A6A1N

Drawing No. 45

If you don't like the message on the bottom line, an alternative
instruction, SHOW may be used. This instruction puts the message in
the current field position. The message should be the same length as
the field, however. If it is longer, only the number of positions allowed
for that field will be displayed, and the rest will be truncated (or cut
off) as follows:

ZIP'COOf;:

T6Li~e:

WORK. "gAD5TAiE"
WORK.",.,.f\J- ,"M'·,"W'","IL.!',"'W"
rF 'NPUT rNTA8lE STRUST THeN sroRE
$I;CMI SAPMS&
~IN

~ (/6ing Mt$~65, the Me6safe.
SAO 5rA1E 4fPei1r6 on the In7ttom Iip~

DISPLAYING ERROR MESSAGE UNDER PROGRAM CONTROL
Drawing No. 46

MESSAGE and SHOW statements may also be used to display
computation or conversion results.

Generating A Code Number
Let's expand our program again so that it has a processing step.

We will convert the State abbreviation to a number and then store that
number and show it to the operator.

52

g,ADM&&
STAT"I.I'bT
St"AT6NO
lVI,

W~ -3AVsuqe"
WORK. "MN·,"MI "tW'" J"IL.~·IN"
WoRK. "",," ""'2.w -f/)3"·/IJ4" .n\50" '" ,,,, J , J7"
IF INPUT INTA8\E 5mTU5T lHEN COOP
M~ 6'\DMS(;-
.e6AIN
COI'IvSR:T" IN?IJT 8V smru6T AND ~NO

61vIN& O\JTP\TT
SOHO\lV
NE)(T

VALIDATION PROGRAM WITH PROCESSING ADDED
Drawing No. 47

This program has several new features. One of the most
important involves labeling an executable instruction and, by use of
that, jumping over two instructions. GOOD is the label and it is placed
out against the left hand margin like STATLIST and A* were. The
program has several things happening, so a flow chart might make
things clearer.

EXPANDED PROGRAM WITH CODE NUMBER CONVERSION
Drawing No. 48

Ignoring the CONVERT instruction for the moment, there are two
new instructions in this program:

1. SHOW with no name following it means SHOW
OUTPUT; otherwise SHOW the contents of the field whose

53

name follows

2. NEXT just moves you to the next field and awaits
your keyin

If we want to have both the state abbreviation and the State
number in the data record we would have to make changes both to the
Green Earth form and to our program.

First, the form needs another field to hold the state code we're
going to generate.

NAME: 1 ____________________ _

S"fU1IT: 1 ________________ _

Grty: , _________ _

STAT&! L. cooe: .~ ~----
--- the. lleW Ctlde wiH ;. IvtIIm.tle#Hy

'tIP COPIi: 1---- d'-pl.veri i" tl/J.litJIJ
""'LI!9Io1ot& ... ~ (1 __)1 __ - , __ _

CU6TOMIm NO':------

V"ReWa. AtAOUN't":4------

ADDING A FIELD TO HOLD A STATE CODE
Drawing No. 49

The new field should be assigned a code of 'P', Program
Reserved, during the REQUIRE pass of form generation.

The "GOOD" part of our program (which is assigned to the State
field) will look like this:

I=I~LO+I
CQ\IV6~ INPIJi BY srATLI6f AND 6TA11iNO 61V1tJ6- Nm:tO
STORe

Drawing No. 50

The FIELD instruction is now being used in conjunction with the
CONVERT instruction to access a "relative" field instead of an absolute
field. Here we want the field that is +1 from the current field. We no
longer have to SHOW the results of the conversion since it will be
displayed automatically in the Code field when the State field is
entered. This is because the Code field is defined as Program
Reserved, causing the contents to be displayed and entered
automatically.

54

Notice that referencing NXTFLD didn't actually change the normal
flow of data entry. The STORE was still dealing with the INPUT and
OUTPUT for the State abbreviation field -- not the State Code field.

IIIA1-'''·.I_______________________ ___'ihi.;6 "'"sid -2-

~ --tit ;,,1 • .-' I ST"evt"" ___________ ;;.::::=::::=__ 16 ,,-
e,,.....: 1 _____________ _

STI<T.:..tC0P6·.I_~ --this'~ i:he CtJrren6lie.ld
%Iveooa: 1____ ~ 'GIIisis -I,tJltI +/

FIELDS CAN BE ACCESSED RELATIVE TO CURRENT LOCATION
Drawing No. 51

Range Checking
Data entry often involves seeing if numbers lie within a certain

range. The following example checks to see if the entered date is
from 1 through 31.

P,t.VTA&IE WOR\<. "fI'" ,""If
Fit" If lfllNT' "GrIN~ ~LE TWiN ~t>\

S-msE

RANGE-CHECKING A DATE
Drawing No. 52

The IF-NOTINRANGE refers to the DAYTABLE label which, by use
of a WORK statement, defines the acceptable range of the data. By
placing quotes around the '01' and '31' and separating them by a
comma, the WORK statement defines a range from 1 through 31. A
similar program to check month range could be easily written:

wos:z.K "/211")·12"
1(: INI'UT N<mNAAN6i: MONTA8LE 1lfEN N:JAIN

5'tbRE

Drawing No. 53

55

A data entry program might use three short programs like these
to check the reasonableness of a date entered by the operator. A
more complex version can be written to check for the correct number
of days in months with 28, 30 or 31 days.

Any business computer worth its salt must be able to handle
addition, subtraction, division and multiplication. A data entry operation
might multiply price times quantity and then compare its result with
what the operator keys in. Or it can do more extensive computation
on numbers that have been keyed in, and take the burden off a central
(home office) computer. In any case, arithmetic is easy when using the
DATAFORM programming language.

As an example, let's take the contents of the current field and
add it to the contents of the first field and display the total in the very
last field. The following example is a form that does just that.

NI3R RED ~NCILS OR.DER6D: 1 __
N~R gwe PE"NC\\..6 o~: L_
1UrAL. 'PSNCAUS ORDER.eD~ '-__

Drawing No. 54

To display the total, we'll use program Q to store the input from
field 1 (red pencils) and program R to do the computation (adding
input from fields 1 and 2), as follows:

56

WfRJ{ .«If)f){6"
ADD INPIl\ TOibrAL
STD~
ADD INM TO 12rrAL.
~e INfOT 1tJ OOTPUT
Cl-\AtJ&g +I
~ 1U1"AL.
Ney:f

SIMPLE COMPUTATION PROGRAM
Drawing No. 55

PART II
Generating a DATAFORM Level II Program

Several steps (naturally) are involved in writing a program and
loading it onto your data entry system diskette. Here's a summary of
those steps that are necessary to create a finished program:

1. Designing the needed program
2. Typing in the program
3. Compiling the program (converting it to computer
readable form)
4. Combining form and program
5. Testing the complete data entry system

NOTE:You will need an additional diskette that contains the full version of
DOS.C to create Level II DATAFORM programs. This diskette (model
code number 20175) contains the Editor, the program that lets you
create your programs.

Step 1. Designing the Program
For purposes of illustration, we will write a program that will

operate on the Customer Number field of the Green Earth Garden
Shoppe form. While this program could easily be made more specific,
it will serve as a good illustration.

When the Green Earth Garden Shoppe customer form was
generated, the Customer Number field required a seven digit, numeric,
right justified zero-filled field. During the Program Assignment pass
(PRO), this field did not have a program assigned. However, a
program will now be assigned to examine the customer number and
reject it if it is greater than 1,999,999. If it is accepted, the cursor will
proceed to the next field. If it is rejected, an error message will be
displayed on line 12 of the screen and the cursor will be repositioned
at the beginning of the keyin field for you to try again.

Let's examine a DATAFORM Program that will do this for us.

g,ADNO
MAXNO
AI-

SAD

WORK "IM~P6lZNOM6EQ"
WORK. "Imqqq"
IF INPI>T ~ MAXNO Ttl~ SAD
STORe
M6S5A&e 6ADNO
A6AIN

LEVEL II PROGRAM TO CHECK CUSTOMER NUMBER
Drawing No. 56

57

Step 2. Typing in the Program
You need two diskettes to help you begin the creation of your

field program. Along with DF11SYS, the diskette you used for Level I
DATAFORM work, you neerl a diskette that contains the full version of
DOS.C (model code number 20175). The DF11 SYS diskette contains a
very limited version of the operating system (DOS.C), and we'll need
the extensive facilities of the Editor, which is contained on the
DOS.C diskette.

The Editor is a program that allows you to create and modify
your program. You'll find just how easy it is to type in your program
and make any corrections using this Editor.

Turn the Diskette 1100 system ON if it isn't already. Put the
DF11 SYS Diskette in Drive 0 and the DOS.C Diskette in Drive 1. Press
RESTART.

Once the READY message appears, we're going to use the Editor
program. To create the DATAFORM field program for our form, named
SHOP01, type "EDIT SHOP01 ;D~".

The ";D" tells the Editor that we want to use the preset tabbing
facility. To make the job easier, the Editor program has preset tab
stops for labels and instructions. Tab 1 is located at the left edge,
where the labels are typed. Tab 2 is located about 9 spaces from the
left edge, where instructions begin. If you tap the space bar while
you're in the first tab area (columns 1-8), you'll automatically be
skipped over to the ninth column, where you can begin typing your
instructions (see the illustration below).

The drawing below shows what your program will look like when
it is typed in. Be sure to use only upper case (CAPS) letters for the
program instructions(messages and labels may be both upper and lower
case). And remember to tap the ENTER key after each line is finished.

~.fw..in~

~ ·'M~ toll)MeeR"
..,oRJ(." \~'lqqw
IF t"'P.1T 6A&A~ ~ T\(E~ 8AD
'&TolW
MewbtlNi1ii eAPWO
P1iA,tJ

lr_z
SCREEN PROGRAM TYPED IN UNDER GENERAL EDITOR

Drawing No. 57

What if you make a mistake? If you make it while typing, the
BACKSPACE key will rub out the offending characters and the
CANCEL key will obliterate the entire line.

However, let's suppose that you've finished typing in the program,
and several errors mysteriously escaped your attention. This will give
us a chance to show some of the power of the Editor program.

58

Notice the small arrowhead (» in the left-most column. Press
the KEYBOARD and DISPLAY keys one at a time and watch the
arrowhead (line pointer) move up and down. By fiddling with these
two keys, you can point out any line with an error.

Now, with the cursor in the left-most position at the bottom of the
screen, you can type in the Editor commands to get at the error. All
Editor commands are prefaced with a colon. Unless you begin each
command with a colon, the Editor will assume it's just another line of
the program. Remember that the arrowhead must be pointing (each
time) to the line which is to be changed. Here are three of the most
versatile Editor commands:

:DEL

:INS

:MOD

(Delete) Blots out the entire indicated line
and lets you try again.

(Insert) Opens up a space between two
lines so that another line may be
squeezed in.

(Modify) This command lets you change
individual characters or a group of
characters. Suppose you accidentally
typed DSPLAY and didn't notice it. Point
the arrowhead at the line and type ":MOD
DSPLAY < DISPLAY". The Less Than «)
Symbol is always placed between the old
and new characters. This line will now
contain. the proper word.

DSPLAY < DISPLAY

(otO) t (NJW)
(REPLACES)

Other standard Editor commands may also be used (see Appendix
F). The commands may be shortened to one letter, if desired, i.e.
:MOD can be :M.

All this will be somewhat hazy until you have some experience at
hammering away at the keyboard. One last step - when you've got
everything so it looks good, stop and contemplate your handiwork.
Then type the last and most important Editor command.

:END (End of Program) Indicates to the Editor
that the programmer is done writing text
and to write a complete, perfect copy of
his text (source program) to a diskette file
by the name of SHOP01/TXT.

59

If you don't type ":END~", and you skip to the next step, the
processor will toss your program to the electronic winds, and you'll
have to painstakingly type in the program again.

Step 3. 'Compiling the Program
After you have typed :END, the Compiler should be run. The

Compiler will process the text you typed in under the Editor (EDIT),
and create an object file (computer-readable language).

The Compiler searches for a printer and if it finds one connected
to your Datapoint 1100 Diskette system, it asks if a listing (printout of
the program) is to be produced.

If you answer "YES~", the Compiler asks "LlST CODE TOO?"
The Compiler is asking if you want the octal equivalent (machine
translatable code that represents your DATA FORM program in the
computer's memory) printed out in addition to the program. You
probably will never need to see this code, so answer "No.t".

Whether you request a printout or not, the Compiler displays an
identifying message, "DISKETTE DATA FORM COMPILER 1.1".

Also, if you requested a printout, the Compiler asks for a heading
for the printout. We'll use "SHOP01 PROGRAM" for our heading.

So, if you request a printout, your screen will look like this:

D06.C I>ATAPDI\lTCOIZfORAnot.l'O "DI5"'1>RiAAl\NG5I\~T611 ~~N 1.1
W>Qy
DfllCMP 5t401'1lJ1
L.16T oN PR.1~f I{E'S
U6i' cooe TOO ~ NO
DI~1(i"fT6' VATAfORM COMPll.ER., \.1
J.leAVI~6-: 5\o4OPf2'1 ~

Drawing No. 58
If you do not have a printer attached to your Diskette 1100

System, your screen should look like this:

~.C OATAf'Olr.Yl' COJtPflRAl1ON'$ DISK ~u&S\l5TSM ~\lI·1
ReAD'{
~II CMP 6"0f11
t71~ /7~ COMPlt..eRI.,

Drawing No. 59
When the compiler is done with your program, the screen will look

like this:

DI~ DPtTAfQlM OOMPlL£R 1.1
st'ORA6£. ~D It.! ~MAL.: ~2. ~urA'fUt.e a 0MwI0N
F'ao~:

A 00030
eND OF COMPIl.A1l0N: NO 6~

Drawing No. 60

60

Then the Operating System will display "READY".
A file has now been created by the name SHOP01/DFP. The

printout of the program should look as follows:

PAGE 1 SHOP01/TXT RECt:IPTS

LINE LABEL OPERANDS
1.
2. BAD NO WORK "IMPROPER NUMBER"

~. MAXNO WORK "1999999"
~. A .. IF INPUT GT MAXNO THEN BAD
5. STORE
6. BAD MESSAGE BONO
7. AGAIN

STORAGE USED IN DECIMAL: ~2 RELOCATABLEI o COMMON.

FIELD PROGRAM$:
A 000:50

END OF COMPILATION: NO ERRORS.

If there are any errors, the offending statement will be flagged
with an asterisk, and an error type shown. These messages will be
inserted between the lines of the printout, but the screen display will
only show the lines of code which are in error. The "END OF
COMPILATION" message shows the total number of errors. To correct
any errors, simply re-edit and recompile the program.

Step 4. Combining Form and Program.
To add the Field Program to the form, it is necessary to return to

the Form Generation procedure. If you did assign the correct program
letter during generation, these three steps are all that is required:

1. To access the 'DATAFORM generator, type "DF11GEN
SHOP01~".

2. Since your form already exists, type "OLD}".

3. To include the compiled Field Program with the form
and to return to the DOS program, type "OUT~".

Since we did not assign a program letter during form creation (Level I),
we'll have to QO back and do it now. Follow these easy steps:

1. To access the DATAFORM generator, type "DF11GEN SHOP01~".

2. Since the form already exists, type "OLD).".

3. To change the PROGRAM assignment, type "PRO~"

61

(Remember, don't do a REVISE unless you want to go
through all the FORM generation passes again.)

4. Press the ENTER key to skip through each field until
you are in the Customer Number field. Type an "A" and
press DISPLAY ICANCEl.

5. Now that you're done, type "OUTA ". NOTE: If these
instructions are confusing, skim through Chapter 2, Level I again.

If your program was not out there, or was not yet compiled, the
display would show a "PROGRAM MISSING" message. In any event,
the next displays are "nnnn BYTES LEFT" (nnnn is some number),
"DONE-LOAD NEXT SYSTEM", and then the Diskette Operating System
message appears.

Step 5. Operating the Complete Data Entry System.
Data entry for Level II programs is similar to data entry for Level

I programs (discussed in Part IV of Chapter II). The only difference is
that your Field program will check certain data entries.

To enter data into our Green Earth Garden Shoppe form, we'll
type "DF11 SHOP01 ;St". The ";S~" tells the system that we want to
start data entry and delete any file that may contain data for the
SHOP01 form. This way we don't have to answer the question "SELECT
DATA MODE".

Similarly, later we can add data to the end of our data file by
typing "DF11 SHOP01;A ~". Start and Add are the only two
DATAFORM commands that can be added to the initial command in
this way.

The form will appear on the screen. Enter data in the same
manner as you did in Level I. Notice, however, that if you try to type
a number larger than 1,999,999 in the Customer Number Field, your
program will display the message "IMPROPER NUMBER" and reject it
by beeping and returning the cursor to the beginning of the field.

r---.. IJ,/s nllme-- wi If be-
0U!mIM1Al ,",0. : 2.00000O ~oted
PIIIUlH'-" "MoIJI\IT:

THE PROGRAM REJECTS WRONG NUMBERS
Drawing No. 61

After testing, give this form to a data entry operator to begin the
data entry. You now have a completely functioning data entry system
with expanded (program) editing.

When you (or the data entry operator) are done with the data
entry, ";ENDJ" the last entry and type "OUT,)." to get out the
DATAFORM data entry program. Remove the diskettes and turn off the
terminal and you're free to do something else.

62

PART III
Summary of the Language Components

The preceding sections showed just how useful field programs
can be. To offer ourselves wider horizons, however, a thorough
discussion of the language is necessary. This section outlines the
many capabilities of the language.

Fields and Labels
First let's take a closer look at fields and labels. A field is any

physical location in either the program or the form where data is
stored. Each field has an associated length. A label identifies a
location in memory, i.e. the location of a field or instruction. Finally, to
throw you a bit of a curve, four pre-defined labels represent fields.
They are:

INPUT

OUTPUT

NULL

RETRY

This addresses the field which contains
the data just keyed in.

This addresses the field which contains
the data which is waiting to be written to
the data file.

This defines a null or no-data field.

This field contains a flag.

NOTE: A flag is usually a one character "clue" which is checked
during the program to see if a certain thing has or has not occured
yet.

Fields can also be defined by additional specification statements as
follows:

label DATA n,m or STUFF1 DATA 1,20

Data statements point to the data record (output buffer) where nand m
refer to the first and last column of the data record to be referenced
by the label (STUFF1).

WORK statements pre-define characters:

label WORK "PREDEFINED CHARACTERS"

WORK is also used in defining working storage for octal constants (for
more advanced applications). Finally, the WORK statement can be
used to reserve space:

label WORK 5

63

where 5 indicates the size of the non pre-defined working storage for
temporary storage of data; i.e., A place in- memory will be reserved for
five characters.

The COMMON statement can be used the same as WORK
statement. Also, non pre-defined COMMON statements can be used to
pass data between forms.

label COMMON "CONSTANTS" or label COMMON 5

The REDEFINE statement defines a field which is a subfield of
another defined field.

label2 REDEFINE label1, n, m

Now, label2 defines a field that starts with column n of field label1 and
is m columns in length.

The FIELD Statement can define either the absolute or relative
field in the form output.

label FIELD n

This defines the nth field in the form.

label FIELD /sign/ m

(sign is a + or -)

This defines the field number relative to the present field, i.e. m fields
(+ or -) away from the field that you're presently working in.

Tables
A table is a number of fields, grouped successively, with a label

pointing to the first field in the table.

label WORK "TB1 ", "TB2", "TB3"

This will define a table with three entries, TB1, TB2, and TB3. Each
entry has a length of three and the table has a length of nine plus the
END OF TABLE Byte (the space 'taken up by one character or 8
computer-readable bits) for a total of 10 characters (Bytes).

Exit Paths

AGAIN

CLOSE

64

Re-requests the current field, after an
error is detected

Passes control back to the DATAFORM
Interpreter after an End Of File Mark
(:END) is written. That is, an End of File
mark is written on the data file and the
message "READY" is displayed, leaving
the operator in Monitor mode

END

NEXT

STORE

CHAIN

Passes control back to the DATAFORM
Interpreter (for subsequent LINK, NEXT,
etc.) after writing OUTPUT to diskette

The current field number is incremented
and the cursor is moved to the next
sequential field (no data is stored)

Moves INPUT to OUTPUT and positions to
the next field in the form. In other words,
it's the same as MOVE INPUT TO OUTPUT
and NEXT

Load the specified form as if the operator
had typed "LOAD n" and start execution
at the first non-Constant field of the new
form. In the following example, form 5
would be loaded:

LABEL
A*

WORK
CHAIN

"05"
LABEL

Executable Statements
Executable Statements are instructions to the DATAFORM

Interpreter to "00 Something". Most of the Executable Statements
work with fields and with tables to perform advanced editing and data
manipulation based on programmed logic.

Executable Statements fall into six groups:

1. Instructions which transfer information (MOVE,
CONVERT, etc.)

2. Instructions that perform arithmetic (ADD, SUB, MUL,
DIV)

3. Instructions which transfer control (GOTO, CALL,
AGAIN, STORE, etc.)

4. Instructions which compare then transfer control (IF
condition THEN)

5. Instructions which provide output control, i.e. write on
the screen or the diskette (SHOW, WRITE, etc.)

6. Instructions which affect the field index (CHANGE,
RESET)

65

66

STATEMENTS THAT TRANSFER INFORMATION

ALIGN

CONVERT

LOOKUP

MOVE

This statement transfers numerical data
from one field to another field, aligning
the decimal point in the first field with the
decimal point on the second field. If no
decimal point exists, it is assumed to be
at the right-most edge of the destination
field. Truncation occurs if the receiving
field is smaller.

EXAMPLE:
FLD1 WORK "123.74"
FLD2 WORK "0000.0"

ALIGN FLD1 TO FLD2
FLD2 will become "0123.7"

This statement looks for an entry in Table
1 equal to Field #1 and if found, moves
the corresponding entry from Table #2 to
Field #2.

EXAMPLE:
TBL 1 WORK "01 ","02","03","04"
TBL2 WORK "JAN","FEB","MAR","APR"
FLD1 WORK "03"
FLD2 WORK "XXX"

CONVERT FLD1 BY TBL1 AND TBL2 GIVING FLD2

FLD2 will now be "MAR"

This statement uses one field as a
numeric (numbers should be used to be
certain of results) index to a table, and
moves the indexed table entry to a
second field.

EXAMPLE:
FLD1 WORK "02"
TBL1 WORK "MON","TUE","WED"
FLD2 WORK "XXX"

LOOKUP FLD1 IN TBL 1 GIVING FLD2
FLD2 will now be "TUE"

This statement literally "moves" one field
to another field location

EXAMPLE:
FLD1 WORK "ABCD"
FLD2 WORK "WXY"
FLD3 WORK "123456"

MOVE FLD1 TO FLD2

FL02 will now be "ABC"
MOVE FLD1 TO FL03

FL03 will be "ABC056"

Characters are left justified with truncation at the right, if the
receiving field is smaller, and no filler if the receiving field is larger.

SET This statement causes the first character
of one field to be moved to all positions
of a second field

EXAMPLE:
FL01 WORK "0"
FL02 WORK "123456789"

SET FL02 TO Fl01
When done, FL02 will be "000000000"

STATEMENTS TO PERFORM ARITHMETIC OPERATIONS

ADD

SUBTRACT
or SUB

MULTIPLY
or MPY
or MUL

This statelJlent adds two numeric fields
and puts the result either in the second
field or in a designated third field.

EXAMPLE:
Fl01 WORK "123.4"
Fl02 WORK "101.2"
Fl03 WORK "000.0"

ADD FL01 TO Fl02
This will make Fl02 equal to "224.6"

ADD FL01 TO Fl02 GIVING Fl03
Fl02 will remain "101.2" and Fl03 will be "224.6"

This statement subtracts one numeric field
from a second field, and puts the result in
either the second field or a third field.

EXAMPLE:
Fl01 WORK "124.4"
FL02 WORK "243.6"
FL03 WORK "000.0"

SUB Fl01 FROM Fl02
Fl02 will now be "119.2"

SUB Fl01 FROM Fl02 GIVING Fl03
Fl02 will be unchanged and Fl03 will be "119.2"

This statement multiplies one field by
another field, placing the result either
in the second field or in a third field.

67

DIVIDE
or DIV

EXAMPLE:
FLD1 WORK "10.4"
FLD2 WORK "04.0"
FLD3 WORK "00.0"

MPY FLD1 BY FLD2
'FLD2 will now equal "41.6"

MPY FLD1 BY FLD2 GIVING FLD3

FLD2 will remain unchanged and FLD3 will be "41.6"

This statement causes one numeric field
to be divided into a second numeric field,
with the result going into the second field
or into a third designated field.

EXAMPLE:
FLD1 WORK "04.0"
FLD2 WORK "16.4"
FLD3 WORK "00.0"

DIV FLD1 INTO FLD2
FLD2 will now equal "04.1"

DIV FLD1 INTO FLD2 GIVING FLD3
FLD2 will be unchanged and FLD3 will be "04.1"

STATEMENTS THAT PERFORM COMPARISONS

The general formats for comparison statements are:

label IF field1 RELATION field2 THEN label1
label IF field1 RELATION table1 THEN label1

If the relation is true, the program is directed to the statement
designated by label1 or to the exit path designated by pre-designated
table1. Relations are defined in the following sections.

ASCII Comparisons.
Fields can be compared on a character basis from left to right.

The length of field1 determines the length of the comparison. If field1
is longer than field2, the results are indeterminate. The relation can
have the following values in ASCII Comparison.

68

EQUAL or EQU or EQ
GE or GEQ (Greater or Equal)
GREATER or GT or GTR
LE or LEQ (Less than or ·Equal)
LESSTHAN or LESS or L T
NOTEQUAL or NE or NEQ

EXAMPLE:
FLD1 WORK "0123"
FLD2 WORK "0122"

IF FLD1 EQ FLD2 THEN LBL 1
NEXT

LBL 1 something

Since they are not equal, processing will fall through to the NEXT
statement.

Table Lookup
A table can be checked to see if a matching field is in the table.

The relation can have the following values in Table Lookup:

INRANGE or INR
NOTINRANGE or NIR
INTABLE or INT
NOTINTABLE or NIT

EXAMPLE:
TBL 1 WORK"1 ","2","3","4"
FLD1 WORK "2"

IF FLD1 INT TBL1 THEN LBL1
NEXT

LBL 1 something

Since FLD1 is in the table, control will be passed to the
statement at LBL 1., rather than "NEXT". The length of FLD1 is used
in the Lookup.

Check Digit Verification
Numeric fields that contain a check digit can be verified with

CK10 (Mod 10 Check) or CK11 (Mod 11 Check). The format is:

label IF field1 CK10 field2 THEN label,1

Field 1 contains the numeric field with the check digit in the least
significant position. Field2 contains the weighing factor and is
assumed to be one character shorter than Field1.

EXAMPLE:
FLD1 WORK "864213574"
FLD2 WORK "12121212"

IF FLD1 CK10 FLD2 THEN LBL 1
AGAIN

LBL 1 SOMETHING

Since the check is TRUE, control will pass to LBL 1.

69

STATEMENTS THAT PROVIDE FOR OUTPUT CONTROL

There are several executable statements that give the field
program control over data output to the display screen or to the data
diskette.

Write to Data File
The WRITE statement will write the form output buffer to the data

file on the diskette. Control is returned to the next program statement.
The data area is not cleared. The format is:

label WRITE

Display A Message On the Screen
The MESSAGE statement will write the specified message on the

bottom line of the screen (line 12). It causes the bottom line of the
form (if the form has anything on line 12) to be erased, the message to
be displayed and the INPUT field to be destroyed.

EXAMPLE:
MSG WORK "CHECK ERROR"

MESSAGE MSG

Display a Message in the Current Field
The SHOW statement can display either a designated message or

the current field value in the current field area on the screen. If the
contents of the input buffer is to be saved, it should be done before
the SHOW. SHOW destroys the current field portion of the input
buffer! The format for displaying a message is:

label1 SHOW label2

EXAMPLE:
MSG WORK "BAD INPUT"

SHOW MSG

The format for displaying the current value of the data record is:

label SHOW

EXAMPLE:
Q* MOVE INPUT TO OUTPUT

SHOW

Issue the BEEP Sound
The BEEP statement causes the machine to BEEP.

EXAMPLE: BEEP

Remember that the exit "AGAIN" does an automatic "BEEP".

70

Load a New Form
The CHAIN statement causes a different form to be loaded. The

current data record is not written. The specified form is loaded and
control is passed to the Interpreter at the first field of the new form.

FORMAT: label2 CHAIN Label1

EXAMPLE: LABEl1 WORK "05"

CHAIN LABEL 1

Display the Current Form
The FORMSHOW statement will cause the current form to be

redisplayed on the screen with all data fields cleared. The output
record is not cleared. The INPUT buffer is destroyed.

FORMAT: label FORMSHOW

Remember, this is not an exit.

STATEMENTS THAT CAUSE TRANSFER OF CONTROL

Unconditional Transfer
The GOTO statement causes an unconditional transfer of control.

FORMAT: label GOTO label1

EXAMPLE: GOTO LBL1

Subroutines
A subroutine is a group of commonly used executable statements

that can be called up for use again and again. The subroutine is
called up by the CALL statement. The RETURN statement, within the
subroutine, causes control to be transferred back to the main program
to the statement following the CALL statement.

FORMAT: label1 CALL label2

Subroutine

EXAMPLE:

{

label2 executable statement
executable statement
executable statement
executable statement
RETURN

This subroutine displays the error message
"BAD INPUT" and returns to the statement
following the CALL

71

MSG WORK "BAD INPUT"
CALL BIMSG

BIMSG MESSAGE MSG
RETURN

STATEMENTS THAT AFFECT FIELD POINTER

Move INPUT Field Pointer
When a field program is called after the operator completes the

field entry, there exists a pointer to the current field number which. is
used by certain executable statements and exit paths. This pointer can
be changed by the CHANGE statement and reset to its original value
by the RESET statement.

The CHANGE statement can refer to the field number in either a
relative or an absolute manner.

An example of relative field pointer positioning is:

CHANGE + 1
or CHANGE - 3

where the number defines the relative pointer movement from your
present field.

The absolute positioning is shown by the example:

CHANGE 6

where the pointer is directed toward the sixth field in the form.
The pointer can be returned to its original position with the

RESET command. In the following example, notice how the pOinter
position is CHANGE and RESET.

72

RESET

T. CAAN6E -I f-----~ thepDl'nf&is-io -PieJt:/ 'T~.
OI,ANG5 I .. mw tIJ liefJ "ONe"
Cl-lANGre ... , .. ItOIAI to -liefrl "TWO"
CtVoIII&Ei 402, .. fJQuJ t1J -lieJ« "FPtIft"
~ .. /lOlA) bael<. ~ tk ".i1illllllie1cl "rllRH I'
~

USING CHANGE TO MOVE FIELD POINTER
Drawing No. 62

A NOTE ON NUMERIC FIELDS

Numeric fields must contain only numeric digits (0 to 9), an
optional decimal point, and an optional minus sign. There can be no
more than one decimal point and if a minus sign is present, it must be
in the leftmost significant position.

Also, there can be no more than sixteen significant digits to the
left of the decimal point and no more than eight to the right of the
decimal point.

A NOTE ON CHECK DIGITS

A check digit is a single digit which is appended to a number
that is generally used for identification purposes (such as an account
number, credit card number, etc.) in order to validate that number. The
check digit is generated through the use of a mathematic algorithm
(procedure) using a fixed weighing factor. When the identification
number which already includes the check digit is entered into a data
entry system, it can be checked for a correct check digit and rejected
if not correct. This can greatly reduce errors generated by incorrectly
entering the identification number.

Mod 10 check digits are generated and checked as follows:

Keyin ID 2345676
ID Number 234567
Weight factor 121212

Sum of Digits of Product

1
Products

~JJ Effective Weights
Basic ID .. 0 + 2 2

3 x 2 = (116 .. (II + 6 6
4 x 1 = (114 .. ~ + 4 4
5 x 2 = 1(11 .. 1 + iJ 1
6 x 1 = ~6 .. $1 + 6 6
7 x 2 = 14 .. 1 + 4 5

TOTAL = 24

To determine the Mod 10 check digit, subtract the total (24) from
the next highest multiple of the base 10 (30) to yield 6. The total 10
number. will now be 2345676.

Mod 11 check digits are generated and checked as follows:

Keyin ID

ID Number

Weight Factor

2345676
234567
765432

73

Products

1 Effective wei9hts1:l

Basic ID ! x

3 x 6 18

4 x 5 2¢

5 x 4 2¢

6 x 3 18

7 x 2 14

TOTAL =1"4

To determine the Mod 11 check digit, subtract the total (104)
from the next highest multiple of 11 (110) to yield 6. The total I D
number will now be 2345676.

If a check digit of 10 is yielded, it will be made zero, therefore
only 2345670 will compare favorably.

74

Dealer File

PART IV
Program Examples

The purpose of this form is to create a dealer file. Each record
in the file will contain the date of the entry, the dealer's name and
address and the shipping address. Since several entries will be made
on the same date, the date field should only have to be entered once.
Also, the operator should be able to indicate that the shipping address
is the same as the mailing address.

Form Generation
The City and State Fields are Semi-Constant fields and are

entered in the form as underline (_) fields. During the SEM Pass, the
city and state are entered. Note that when the city is entered, the field
is space-filled with carets. If this was not done, the field would be
improperly filled on the data file.

Program Generation
There are three field programs assigned to this form: A*, B*,

and C*.
Program A* is assigned to the Date field. The program forces

the operator to enter the date the first time the program is run after
loading. After the date field has been initialized, a null input (ENTER
key only) allows the stored date to be used.

Program B* is assigned to the "Ship To" keyin field. If the keyin
is an "S", the Address, City, State, and Zip fields are moved from the
preceding fields and the form record is written to diskette.

Program C* is assigned to the Ship To Zip field. It will be called
at the end of the form if an "S" was not entered in the "Ship To"
field. It causes the complete form record to be written to diskette.

DATE I
DEALER I
ADDRESS I
CITY SAN ANTONIO

SHIP TO <
ADDRESS I
CITY SAN ANTONIO

SIZE
TYPE
REQUIRED
PROGRAM

SIZE
TYPE
REQUIRED
PROGRAM

DATE J

6
o
F
A

DEALER I
34
M
R

LARGE LOT FURNITURE COMPAN~
San Antonio, Texas

STATE TX ZIP J

STATE TX ZIP J

LARGELOT FURNITURE COMPANY
San Antonio, Texas

75

ADDRESS I
SIZE 33
'l'YPE M
REQUIRED R
PROGRAM

CITY SAN ANTONIO
SIZE 27
TYPE A
REQUIRED R
PROGRAM

SHIP TO <
SIZE 1
'l'YPE A
REQUIRED B
PROGRAM B

ADDRESS I
SIZE. 33
TYPE M
REQUIRED R
PROGRAM

CITY SAN ANTONIO
SIZE 27
TYPE A
REQUIRED R
PROGRAM

LABEL
DATE
SP

A*

GOT

GO

S5
ADDRl
CITYl
STATEl
ZIPl
ADDR2
CITY2
STATE2
ZIP2

B*

76

OPERANDS
WORK ..
\~ORK ..

IF
IF
MOVE
SHOW
NEXT
MOVE
GOTO

WORK
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

IF
MOVE
CALL
MOVE
CALL
MOVE
CALL
MOVE
.CALL
END

NULL NE INPUT THEN GO
SP EO DATE THEN AGAIN
DATE TO OUTPUT

INPUT TO DATE
GOT

liS"
3
4
5
6
8
9
HI
11

INPUT NE SS THEN NEXT
ADDRI TO ADDR2
CHG
CITYl '1'0 CITY2
CHG
STATEl TO STATE2
CHG
ZIPl TO ZIP2
eHG

STATE TX
2
A
B

STATE TX
2
A
B

ZIP I
5
o
B

ZIP I
5
D
B
C

CHG CHANGE+l

.
C*

SHOW
RETURN

MOVE INPUT TO OUTPUT
END

Validate Date
This program checks the date input for probable errors. It

verifies that the month is in the range of 01 through 12, that the date
is within the maximum for the month, and that the year is 75.

SIZE
TYPE
RF:QUIRBD
PROGRAM

ENTER DATE: I II II
222
D D D
B 8 B
H I J

LA ~~ t; L
~iNTH

DYINM

OPERANDS
WORK
WORK

"01","12"
"31","2811,"31","30","31","3e":

113111,'13111,1130 1',1131",1130 11 ,"3111

MXDY WORK "00"
YR WORK "74"

H* IF INPUT NIR MNTH THEN AGAIN
LOOKUP INPUT IN DYINM GIVING MXDY

STORE

1* IF INPUT GT MXDY THEN ~GAIN
STORE

J* IF INPUT NE YR THEN AGAIN
STORE

Order Entry
This is a two-part form in which the heading information is

entered on the. first form and the item information is entered on the
second form. The second form is written for each line number.

For each Heading Record there can be any number of Item
Records. The Heading Form will be Form 6 and the Item Form, Form
7.

Form 6 -- The first three fields are for the date (month, day, year)
and are just keyin fields, i.e., they do not appear in the Output Record.
They call progr,ems A*, B*, and C* which create the date code in Field
5. The format of the five digit date code is (year)/(day in year).
Checks are made to insure that the date is reasonable.

The fourth field is a Constant field, which is the first Output
Field. This identified the Heading Record in the data.

Fields 6 t\1rough 10 are for the Name and Address.

77

Field 11 is the tax rate, and calls program D*. This program
checks to insure that the tax rate is in an appropriate range and stores
it in a COMMON location for further use by Form 7.

The operator can go back at any time if his form entry is found
to be incorrect. Then the operator presses DISPLAY and Period, and
the form is written to the diskette and Form 7 is called.

DATE: < /< /< FORM 10: 006
NAME: 1- - -
AOORESS:-r---------------
CITY: 1 --------

TAX RATE: 0.0 '6

DATE CODE: 1

STATE: ZIP:

IiHEN ALL FIELDS HAVE BEEN ENTERED TO YOUR SATISFACTION, PLEASE PRE:SS THE: DIS~LAY

AND PE:RIOD KEYS SIMULTANEOUSLY IN ORDER TO WRITE THE DATA TO THE FILE AND LOAD

THE NEXT FORM FOR ENTRY OF THE LINE ITEMS ••••••••

FORM: 06, LINK: -07. DATA RECORD: 120 BYTES, FREE SPACE: 4279 BYTES

SIZE
TYPE
JUS'rIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRE:D
PROGRAM

SIZE:
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

DATE, <.-/<.-/<- FORM 10: 0116
2 2 2 3
0 0 0 0

B B B B
A B C

NAME: 1
3S- ----------
M

R

ADDRESS: 1,.-_____ _
32
M

R

CITY: ~r--------
A

R

TAX RATE: 0.0 %
3
N

R
o

DATE CODE:

STATE: 1
2-
A

B

5--

o

S

ZIP, 1
5--
o

B

WHEN ALL FIELDS HAVE BEEN ENTERED TO YOUR SA'fISFACTION, PLEASE PRE.,S THE DISPLAY

AND PERIOD KEYS SIMULTANEOUSLY IN ORDER TO WRITE THE DATA' TO THE FILE AND LOAD
THE NEXT FORM FOR ENTRY OF 'fHE LINE ITEMS ••••••••

lABEL OPERANDS

• CONSTANT, VARIABLE & TABLE DATA

TAX
HOLDMO
MORNG
TOTDAY

78

COMl10N "".0"
\~ORK ""0-
WORK ""1","12 A

WORK "008","831",""59","09"",
"120· ... 151· ... 181·.·212·'
"243","273"."304","334","365"

YR O."d'A 4,5
DAY DATA 6,9
DAMO WORK " 0"0"
ONE WORK 1101 1'

XHLD ~IORK ""00"
YRRNG I'/ORK 1175 11 ," 76"
TXRNG WORK "0.0",d6.0/f
CKMO WORK "00"

. PROGRAM A - INPUT & CHECK MONTH

A* IF INPllT NIR MORNG THEN AGAIN
MOVE INPUT TO HOLOMO
NEXT

PROGRAM B - INPU'f DAY & CALCULATE JULIAN DATE

B* IF INPUT L'l' ONE THEN AGAIN
LOOKUP HOLD~IO IN TOTOA~ GIVING DM10
ADD INPUT TO 0.'\140
ADD ONE TO HOLOHO GIVING CK~IO

LOOKUP CKMO IN TOTDAY GIVING XHLD
IF DAMO GT XHLD THEN AGAIN
MOVE DMIO TO DAY
NEXT

PROGRAM C - INPUT & CH8CK YEAR

C· IF INPUT NIR YRRNG THEN AGAIN
MOVE INPUT TO YR
CHANGE +2
S!lO\~ YR
NEXT

PROGRAM 0 - INPUT & CHECK TAX BASE

D* ALIGN INPUT TO 'rAX
H' TAX NIR TXRNG 'rHEN AGAIN
MOVE TAX TO OUTPUT
SHOW 'rAX
WRITE
NEXT

Part. Number Entry Program
Form 7 -- Part number entry program. Field 1 is a Constant

Identification field. Fields 2 through 4 allow entry at part number,
quantity and cost. A Null input at Field 2 Chains back to Form 6.

Field 4 calls program M which calculates the total tax and total
amount for the line item.

The operator can go back at any time to change the form if an
error is found. DISPLAY/Period directs writing to the diskette and
brings up subsequent Line Item Forms.

PART NUMBER
1 __ -

QTY
1

FORM ID: 007

AMOUNT
$1

ENTER DECIMAL, TOO

TAX
$1 ___ _

TOTAL
$1 ___ -

WHEN ALL FIELDS HAVE BEEN ENTERED TO YOUR SATISFACTION, PLEASE PRESS THE DISPLAY

AND PERIOD KEYS SIMULTANEOUSLY IN ORDER TO WRITE THE DATA TO THE FILE AND LOAD
ANOTHER (EMPTY) LINE ITEM FORM. THEN YOU MAY EITHER PRESS THE ENTER KEY WHILE
IN THE PART NUMBER FIELD, IF YOU RAVE NO MORE LINE ITEMS THIS ORDER, OR ENTER
ANOTHER LINE ITEM. PRESSING ENTER WILL GIVE YOU THE ORDER HEADER FORM AGAIN ••••

79

FORM: 07, LINK: 06, DATA RECORD: 043 BYTES, FREE SPACE: 4364 BYTES

FORM 10: 007
SIZE
TYPE
JUS'rIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

PART NUMBER
1 ----8
0
J
F
L

QTY
1 -3
D
J
R

3
o

B

AHOl' NT TAX
$1 $1

7 1-1----

N N

R S
M

ENTER DECIMAL, TOO

TOTAL
$1
1r---
N

S

WHEN ALL FIELDS HAVE BEEN ENTERED TO YOUR SATISFACTION, PLE:ASE: PRESS THE DISPLAY

AND PERIOD KEYS SIMULTANEOUSLY IN ORDER TO WRITE THE DATA TO TilE FILE AND LOAD
ANOTHER (EMPTY), LINE ITEM FORM. THEN YOU flAY EITHER PRESS THE ENTER KEY WHILE
IN THE PART NUMBER FIELD, IF YOU HAVE NO MORE LINE ITEMS THIS ORDER, OR ENTER
ANOTHER LINE ITEM. PRESSING ENTER WILL GIVE YOU THE OROER HEADER FORM AGAIN ••••

LABEL OPERANDS

• CONSTANT, VARIABLE & TABLE DATA

TAX
TOTAL
TTAX
C
WKAMT
QTY
WTX
SIX

COMMON 4
DATA 33,43
DATA 22,32
WORK "100"
WORK "0000.00"
DATA 12,14
WORK "0.00""
WORK "6"

• PROGRAM' L - IF INPUT NUL~, CHAIN TO FORM 6

· L* IF NULL EQ INPUT THEN GO
STORE

GO CHAIN SIX

• PROGRAM M - CALCULATE TOTAL PRICE, INCLUDING TAX

· M* ALIGN INPUT TO WKAMT
MOVE WKAMT TO OUTPUT
SHOW
DIV C INTO TAX GIVING WTX
MPY QTY BY WKAMT
MPY wrx BY WKMIT GIVING TTAX
ADD WKAMT TO TTAX GIVING TOTAL
CHANGE +1
SHOW
CHANGE +1
SHOW
NEXT

00675142HORATIO HORNBLOWER
NER NYl20516.0

006751·12HORATIO HORNBLOWER
NER NY120516.0

00711111111 20040.000000000000400000000084

"07222'.2222 40020.000000000000~00000000084

00733333333 100100.000000000006000000001060

00675142JOHNNY APPLESEED
TREE IL618205.0

80

113 CAPTAIN STREET

113 CAP'rAIN STREET

110 ORCHARD STREET

SCHOO

SCHOO

APPLE

00675l42JOHNNY APPLESEED 110 ORCHARD STREET APPLE
TREE IL618205.0

00744444444 21000.000000000010000000002100

00755555555 80500.000000000020000000004200

0e675142MARK TWAIN 18 STERNWHEELER LANE RIVER
CiTY MS492014.5

00675142MARK TWAIN IB STERNWHEELER LANE RIVER
CITY MS492014.5

00766666666 500250.000000000011200000002612

00675142DON DIEGO 1 SAN PEDRO ROAD BAHA
CA951295.5

00675142DON DIEGO 1 SAN PEDRO ROAD BAHA
CA951295.5

00777777777 24500.000000000049500000009495

00788888888 100042.000000000002300000000443

81

PART V

The Print Utility
You can use the Print Utility program to print your data files or

your DATAFORM forms. To print the SHOP01 form, type "DF11PRT
SHOP01~" To print the SHOP01 data, type "DF11 PRT SHOP01 ;D~". To
print both the SHOP01 form and data, type "DF11 PRT SHOP01 ;A~".

For more details about the Print Utility, see the DISKETTE
DATAFORM User's Guide.

82

CHAPTER FOUR

CASSETTE DATAFORM

83

Introduction

PART I
Overview

The previous chapters discussed the design, generation, and
testing of a form, as well as the writing, compiling, and use of an
accompanying program. Although the cassette is a different media
altogether, the concepts of form creation, form generation, programming
and data entry are very similar in the manner in which they apply to
all three types of DATAFORM.

If, after reading this chapter, more specific information concerning
CASSETTE DATAFORM is needed, it can be found in the CASSETTE
DATAFORM User's Guide. This chapter assumes a basic knowledge of
DATAFORM concepts from the preceding chapters and familiarity with
Datapoint equipment.

Equipment Needed:

1. Any Datapoint Processor with cassette capability (1100,
2200, 5500) and at least 8K of memory. Forms and
programs generated on one Datapoint Processor (say, the
1100) can be used interchangeably with any other
Datapoint Processor (say, the 2200 or 5500).

2. At least five cassette tapes, three of which will be
program tapes and two blank or "scratch" tapes; see
Programs Required section, below, for a description of the
prog ram tapes.

3. A printer is very useful for printing out data files,
forms, programs, and doing a multitude of tasks. Any of
the printers which are presently offered, such as the
Servo, Belt, Matrix, 300 or 600 LPM Printers, can be used
for these duties.

Programs Required:

NOTE: Any programming system will undergo a series of
improvements and changes during usage, so the user should request
the latest version of the cassette programs. Since this book covers
only the fundamental elements of DATAFORM, no problems should be
encountered using a later version of the program.

The complete CASSETTE DATAFORM programming system
resides on three cassettes. Note that these three cassettes are only
used during actual preparation, and that the final system used by the
operator for data entry operation is on one cassette. The cassettes
consists of:

85

1. DF2FGS

2. DF2SYS

3. DF2PGS

DATAFORM Form Generator (Form
Generator and some additional functions).
Model Code 20078.

DATAFORM Systems (Interpreter,
Configurator and Utilities --final form and
program catalog). Model Code 20080.

DATAFORM Program Generator (Program
Editor, Compiler and Print Utility). Model
Code 20079.

Additionally, other system utilities, such as DATAPOLL, the
automatic communications polling and answering program, are available
in cassette form.

Drawing No. 63, on the next page, represents all the phases in
the development of an operational Level I CASSETTE DAT AFORM data
entry system. The ensuing parts of this chapter represent abbreviated
step-by-step guides for Levels I and II, expanded to include any factors
peculiar to cassette operation.

86

aTEPS:

<D DEFlNE" SCReEN FoRMAT.
NAIIIII' ____________ _

",..,:_--------
..... IT' ---------

@ GENERRE TWE FORM WfTlot DF2F&S CA6SET11: AND CREAn:
R:lRM CASS6TTE'.

CASSETTE OAT AFORM LEVEL I
SYSTEM DEVELOPMENT PHASES

Drawing No_ 63

87

PART II
Level I Step-by-Step Guide

Before we begin creating a Level I data entry system,. a word
about cassettes. Do not place your cassettes on top of the Datapoint
Processor while it is in operation; and don't place cassettes near any
magnetic substance. Stray magnetic fields can destroy the data on the
tape. Keep tapes in a relatively dustfree environment.

Here's an operating tip -- when mounting a cassette, make sure
that the clear leader is not exposed. Use a pencil to wind the
sprockets around such that only brown tape is showing, as in the
following illustration.

~L~--------7r~~

",.,. eel,.. ~ t."..
1I1'f'U'"m, lis ." """-"

nfJb cIetJ,.

A CASSETTE OPERATION t1INT
Drawing No. 64

This assures us that the tape deck won't be confused in thinking it's
reached the end of a cassette, and refuse to rewind it in the correct
direction.

Now, let's create a working Level I CASSETTE DATAFORM data
entry system.

STEP 1. Load the Form Generator Tape
Insert the DF2FGS tape into the rear cassette deck, label side up.

Note that the cassette is actually mounted into the rails on the door of
the deck. Press the door down, flush with the case, and push the
black tab handle forward. You'll hear the tab. handle assembly slide in
with a solid clunk.

Press the RESTART key. Then put one of the blank tapes (we'll
label ours FORM01) in the front deck. After "READY" appears, type
"NEWt" ("~" means press the ENTER key).

STEP 2. Creating the Form
Type the desired form on the screen in the exact same manner

as described in the Diskette DATAFORM chapters (see chapter 2). We'll
use the following form for our examples. Remember to use the
numeric pad to help create the form.

88

NVMERIC I14D

Datapoint Screen

CREATING THE FORM
Drawing No. 65

STEP 3. Load Finished Form into Memory
After you have typed the form in exactly the format you like, hold

down the DISPLAY key and then press the CANCEL key.

STEP 4. Assigning Field TYPEs
After the "BYTES LEFT" message has appeared, keyin "TYPE~ ".

Enter desired edits in each field.

TYPEs allowed:

N Numeric; allows one decimal point with a leading
minus sign; left justified and trailing blanks

A Alphabetic only

D Numeric only; left justified with trailing blanks

M Mixed; Alphabetic and Numeric

L Same as N, but with traiiing zeros

R Same as N, but right justified and left zero filled

B Same as N, but right justified and left blank filled

89

No Entry -- No field restrictions

NOTE: These TYPEs are different than the TYPEs
allowed in Diskette DATAF0RM.

After all the fields are defined, press DISPLAY/CANCEL.

Datapoint Screen

NAME: A _______ _
NIIMseR.: N ______ _

OR-161M: A _______ _

O&STIMA"1"\ON: A ____ _

c:::::: T ___ t - "- -,.--
JI".t tit. I.' A .#111 AI (0,. ",,,.,..) Ik'ft -6yp~ ;"

FIELD TYPES
Drawing No. 66

STEP 5. Assigning REQUIREd fields
After "READY" has appeared on the screen, type "REQ~".

Conditions allowed:

R Operator must enter at least one character

F Operator must fill all positions

8 Combines both Required and Fill; field may not be
skipped and must be completely filled in

P The program enters the data

S Must execute program before record may be written

No Entry -- Operator may skip this field

NOTE: These conditions are different than the conditions allowed
in Diskette DATAFORM.

Now press DISPLAY and CANCEL keys simultaneously.

90

Datapoint Screen

HAMfi: R ________ _

NU~~\ ________ ~

()C:t\6olN: ______ _

OBi6TltolIcfION: R ______ _

the ~.t.r ,.. .110_
ft, ./Cip ~ ItelJ~1 b"t
h(lt"Uw~

REQUIRED TYPES
Drawing No. 67

STEP 6. Assigning SEMI-CONSTANT/CONSTANT Fields
After "READY" appears on screen, type "SEM ~" or "CON,). ".

Any text typed in the fields becomes automatically displayed each time
the form is called up. If a Semi-Constant field is set up, the operator
may overwrite the field during Data Entry mode. Then press
DISPLAY/CANCEL. .

Datapoint Screen

"'t.AIIi": ________ _

N\JMIICiR.~ ________ _

OR,.,t.! \ e-lelAJ YoR" ___ _

~MAT\ON: _____ _

71ri, Will H ,,,t,.,,,,.r-io.(/y ~ I;' "'wi", ~ ...
~r't"'" ~ m~ ;{;~",_ "",'II" ahl-.."t .,,~
IJ. Y. J 11"'" dIt! IIf'l!1"Ib:Jr tvill Ie NIle • ., 'Z"nIIPble

SEMI-CONSTANT/CONSTANT FIELDS
Drawing No. 68

STEP 7. Assigning Programs to Fields
As mentioned earlier, Level " of DATAFORM allows programs to

be written in a high level language that performs a wide variety of
tasks. This step or pass of the Form Generator permits the system
designer to type in the letters A through Z which corresponds to the
maximum 26 programs which may be assigned to one form.

We can assume, for the sake of an example, that we've written a
short program that checks for the correct range in a customer number.

91

Ult.Ali: _________ _

N\JMIHR..·.A _______ _

OR,.,,,, ~ New ..-0«"-___ _
~..,..,.\ON: _____ _

PROGRAM ASSIGNMENT
Drawing No. 69

Remember that the use of these programs is optional. If you feel
the Form Generator features will meet system requirements, this step or
pass may be skipped. If you call for a program in this step, and then
elect not to write it, don't worry. If the Interpreter can't find the
referenced program, it keeps going.

Program writing is explained in the Level II Cassette DATAFORM
section.

STEP 8. LINKING to Other Forms
Should you desire to link to another form, you would do it at this

point by typing "LINK ~ ". The message "NEXT FORM = 000:" will
appear. This means you haven't set any links yet. If you had, it
would read "NEXT FORM = 002:", for example. To set a link to Form
03, type in "0032" (or "3 ~ "). DISPLAY /CANCEL is not needed here.
Since Cassette LINKing works the same as Diskette LINKing, see Part
III of Chapter 2 for complete LINKing details.

STEP 9. Write Form with Edits to Front Tape
After "READY" has· reappeared, type "OUT -. ". Had a program

been assigned to this form, the message "DO YOU HAVE A PROGRAM
TAPE?" wou Id be displayed. An answer of "NOt." wou Id allow you to
proceed without the program. "

Any error messages which oqcur during form generation are
explained in Appendix B. /

l

STEP 10. Catalog the Form
After the "DONE-LOAD NEXT SYSTEM" message appears, remove

the DF2FGS tape from the rear deck and replace it with the system
tape, DF2SYS. Immediately after pressing the RESTART key, press the
DISPLAY and KEYBOARD keys down and hold them oown until the
"DF2 CONFIGURATOR" message appears. Holding these keys down
forces the program to be in Configurator mode. The Configurator
allows us to enter our form in the system catalog (a catalog is a
record of where everything is, so once we enter our form in the
catalog, the system will know that it exists).

92

Type "CAT ~" to see if there already are any entries in the
catalog. To delete any unwanted entries, type "CHOP01~ ". To enter
the form in the catalog, type "I N'1 t ". When the "READY" message
appears, TAKE YOUR FORM TAPE OUT of the front deck.

Handy Configurator Features
These Configurator commands will be very useful to you as you

use the CASSETTE DATAFORM system.

INT
CAT

IN n
DEL n
CHOP n

REP n
DUP

DUP-ALL

OUT n

COpy

FPRINT n
FPRINT ALL
DPRINT

loads the Interpreter
Display the contents of the System tape
(Catalog)
Add form n to the System Catalog
Delete form number n.
Delete all forms from n to the end of the
catalog
Replace form n.
Duplicate the System tape without forms
into the blank cassette in the front deck.
Same as DUP but also copies all
cataloged forms.
Copy file n to a scratch cassette in the
front deck. This allows you to modify a
form and then recatalog it.
Copy the data entered via your form to
the cassette in the front deck.
Print catalogued form n.
Print all catalogued forms
Print the data tape contents

These commands are explained in detail in the CASSETTE
DATAFORM User's Guide.

STEP 11. Data Entry Operating Modes
After the message "READY" is displayed, type in "INTjl" to load

the Interpreter. When the message "OF 2 INTERPRETER" is displayed,
place your remaining blank tape in the front deck and type "START
001~" (or "S 1.}"). You will have to answer YES to the question "ARE
YOU SURE?".

There are other modes which may be used in data entry, and
they are as follows:

Function Key Operation

START n S n START - initialize a .data tape
ADD n A n ADD to the end of a data tape
CONTINUE C CONTINUE data entry afte r

modification
LOAD n L n LOAD the specified form
DATA 0 Switch to DATA entry mode

93

MOD n M n MODIFY data records
FIND n F n FIND or search for matching data

record
END E Write END of file on data tape
REW R REWIND data tape to first record

n means the number of the form

STEP 12. Entering Data
Type the data into the form (as an operator would) and observe

field checking operations. Correct errors by using the CANCEL and
BACKSPACE keys. The following keys are also used:

Function Key

Write data to tape DISPLAY and Period

Forward tab ENTER

Backward tab DISPLAY and 3

Duplicate field DISPLAY and Zero

NOTE: The Data Entry Numeric Pad Template from the Diskette
chapter can be used here, with -the exception of the Numeric 5 key
(Delete Record).

94

"'~w.~: ~ftT .1IOII1IoIIoLO __ _
NIlfIlen.; 444-_____ _

~"I"": tJaN VGA,\(. ___ _

Oe~IM'Ctlo~: W ... ~,.a."PlW o.c.

TIle "U'" tn,,, ,r~ DI5PIA¥ bill PEP/()[) 11 "'rife
'tIIi, 1".f,t-",.t,iI" 7# UI¥.

THE FINISHED PROGRAM IN OPERATION
Drawing No. 70

WAME': 6Soae.E 0IE1N5Ll.. ___ _

HIJMBEQ.·. ,,, ______ _

O~ItJIN: LONOOtL __ _

~IIIATlot.1: LO!lA~i'L.ES __ _

NtJte !/erg #rift the "f¥,,6'tcr eI~~ tI ",,.iOe.
over th~ 5t!hIi. ~I'/t -fieflff.

SAME FORM FILLED IN DIFFERENTLY
Drawing No. 71

After all the necessary data is entered in the fields for each form
press DISPLAY and Period to write the data to tape. The form will
automatically be displayed again with blank fields, awaiting keyin at the
first non-Constant field.

STEP 13. Closing the Cassette Data File
Atter all the forms are entered, press the DISPLAY and 4 keys.

After "READY" has appeared, type "END.l" (or "E~") to close the data
tape (front tape). The "ARE YOU SURE" question asks if you are at
the end of the file. Since you are at the end of the file, answer "YES ".

STEP 14. Reviewing and Modifying the Data
If necessary, type "MOD ~" (or "M ;).") to rewind the tape and

begin the manual search by displaying the first record. To examine
subsequent records, press DISPlAY and 9. This advances the tape one
record at a time and displays its contents. The tape search can also
be reversed by using DISPLAY and 8.

Atter the new information is typed into each field, press ENTER.
Then, to rewrite the modified record to cassette, press DISPLAY and
Period. Because of the exact positioning required, you can only
reposition and remodify a record four times.

You may now modify another record or press DISPLAY/4 then
employ any of the modes listed in Step 11.

SUMMARY

Although this example is greatly simplified, it is, nonetheless, a
working data entry system. It demonstrates the use of the DATAFORM
Form Generator and System Interpreter (Monitor and Configurator).
Additional sophisticated error checking and data manipulation power
can be added by using field programs written in the DATAFORM
programming language. These will be explained in the Level II part of
this chapter, which follows.

95

PART III
Level II Step-by-Step Guide

Here's a summary of the steps that are necessary to create a
finished field program:

1. Design the needed program
2. Type in the field program; it will be put on the blank
tape
3. Compile the field program (convert it to computer
readable language)
4. Combine the compiled program and the forms tape
5. Test the finished data entry system

STEP 1. Designing the Program
For purposes of illustration, we will use the same form that we

used in Level I, and add a field program to operate on the Number
field.

When our form was generated, the Number field required an eight
digit numeric right justified blank-filled field. During the Program
Assignment pass (PRO), this field did not have a program assigned.
However, now we'll assign a program that will examine the number and
reject it if it is greater than 1,999,999. If it is accepted, the cursor will
proceed to the next field. If it is rejected, an error message will be
displayed on line 12 (bottom line) of the screen, and the cursor will be
repositioned at the beginning of. the keyin field for re-entry.

Now, let's keyin a DATAFORM program that will do this for us.

STEP 2. Typing in the Program
Mount the DF2PGS tape in

front deck and press RESTART.
the screen will look like this:

the rear deck, a blank tape in the
When the tape has finished loading,

DF2 E.OIT
eM?, OI.D, NBW, pllPj PARAMETERoS
?

Drawing No. 72

Type "NEW ~" (or "N ~ "). This tells the Program Generator
System tape that we're going to make a new program and also calls
for the Editor program (GEDIT). If you had wanted to modify an old
program, "OLD~" (or "O~") would be keyed in at this point.

The screen will blank out and the cursor will appear in the lower
left hand corner. Use the same basic Editor commands as those
explained in the Diskette section (Part II of Chapter 3) to type in the
following Field program.

96

~

(TMbl
(I •• >

~ .,f'/\~ NUN8I!R"
Y'ORJ(.. .. \ ,""""q N

IF IloIP.1T sgaA~ MA~ ~E~ SAD
~"OIU!
M~&AGi4ii eADWO
Ji6A\W

lr.o 2.

SCREEN WITH PROGRAM TYPED IN UNDER EDITOR OF DF2PGS
Drawing No. 73

STEP 3. Compiling the Program
After you have typed ":END~" (or ":E"), the DF2PGS program will

automatically compile (make computer-readable) the text you typed in
under the Editor (GEDIT).

When the Compiler has finished loading, it will display the "DF2
COMPILER" message.

If there is a printer attached to your Datapoint Processor, you will
be asked "LlST ON LOCAL PRINTER?" If you want a copy of your
program, type "YES~". It will then ask "LlST CODE TOO?" Since
you probably won't ever need to see the actual machine code for your
program, type "NO~".

When the compilation and printing are complete, the following
display will appear:

~ VS6D IN veCIMAL.: 42 R5LOCA1a8Le'j ~ COMMOlJ
FIIX-O PR06AAMS:

A rt>,¢3f)
I)I'JO OF- eoMPILATIOt-J: t.IO f~2S

Drawing No. 74

STEP 4. Combining Form and Program
To add the Field Program to the form, it is necessary to repeat

the Form Generation Phase.

A. Place the previously created Form tape (the one
marked Form 1) in the front deck and the Form Generator
Program (DF2FGS) Tape in the rear deck. Press
RESTART.

B. When the Form Generator Program is loaded, it will
display "DF2 GENERATOR" and await your keyin with
"READY" and a blinking cursor. Since we want to re-edit
our old tape, the first command to type is "OLD ".

C. After the "READY" message appears, the various
passes (TYPE, REO, LINK, SEM, CON, PRO) can be

97

redone. Since we have to assign our new program to the
Number field, type "PRO~" to enter the Program
Assignment Pass. To make the assignment, press the
ENTER key until the cursor is in the first column of the
Number field. Type 'A' to make the program assignment,
then press the DISPLAY/CANCEL keys to return to the
Monitor.

D. Now type "OUTAl" to dump the form to the front tape.
Since a program is now specified, the following will be
displayed:

PROGRAM BASE ADDRESS nnnn DO YOU HAVE A
PROGRAM TAPE?

Answer YES and you will be instructed to "PLACE TAPE IN REAR
DECK AND PRESS ENTER". Remove the DF2FGS tape from the rear
deck and replace it with the program tape (the one labeled "Program
A"). Then, press ENTER and wait while the tapes move and the
display "REPLACE DF2FGS TAPE, PRESS ENTER" comes up. Your
program is now added to the form tape. Put the DF2FGS tape back
into the back deck and press ENTER. Your program will now be
added to the Form Generator tape, too. A message similar to the
following will appear:

III 11;34- 8"(T€5 \.EFT U DoNE - LOAD N,&~T 5'c5T6M

Drawing No. 75

You can now remove both tapes.

STEP 5. Using the Complete Data Entry System
Load the DF2SYS tape ill the rear deck and press RESTART.

When the "DF2 INTERPRETER" and "READY" messages appear, put a
blank tape in the front deck and type "S)". Answer "YES'}'; to the
"ARE YOU SURE?" question because you· really do want to start over.

After you see the "READY" message, remove the DF2SYS tape
and put the tape labeled Form 1 in the rear deck. Now type "NEWj) "
and you're ready to use your form and field program for data entry.

If you try' to type a number larger than 1,999,999 in the NUMBER
field, the program will display the message "IMPROPER NUMBER" and
reject it by beeping and returning the cursor to the field.

98

WRONG NUMBERS ARE REJECTED BY THE PROGRAM
Drawing No. 76

CHAPTER FIVE

CARTRIDGE DISK DATAFORM

99

Introduction

PART I
Overview

DISK DATAFORM was originally conceived as a CASSETTE
DATAFORM supportive system. However, it has grown until today it is
an integral DATAFORM system of its own. It still supports CASSETTE
DATAFORM, however, and greatly speeds up the generation of forms
and the editing and compilation of programs for cassettes.

If, after reading this chapter, more specific information concerning
DISK DATAFORM is needed, it can be found in the DISK DATAFORM
User's Guide. This chapter, however, assumes a certain degree of
knowledge of DAT AFORM concepts (from the previous chapters) and
familiarity with Datapoint equipment.

Equipment Needed:

1. A Datapoint 2200 or 5500 with 16K or more of memory.
Forms and programs generated on one Datapoint
Processor can be used interchangeably with any other
Datapoint Processor

2. At least one Cartridge Disk Drive. A second Disk
Drive is handy for duplicating your Cartridge Disk Pack.

3. At least one Cartridge Disk Pack with System Files on
it; the DISK DATAFORM Files can be put on the pack
with the use of two DISK DATAFORM cassettes (see
Programs Required section).

4. A printer is extremely useful for printing out data files,
forms programs, and doing a multitude of tasks. Any of
the printers which are presently offered, such as the
Servo, Belt, Matrix, 300 or 600 LPM Printers, can be used
for these duties.

Programs Required:

NOTE: Any programming system will undergo a series of
improvements and changes during usage, so the user should request
the latest version of the DISK DATAFORM programs. Since this book
covers only the fundamental elements of DATAFORM, no problems
should be encountered using a later version of the programs.

The DISK DATA FORM program is on two cassettes (Model Code
20081). The contents of each cassette should be added to your
cartridge disk pack by placing the cassette in the front deck and
typing "MIN; AO ".

Once you've added the contents of both cassettes to your

101

cartridge disk pack, the following files will have been added to the
cartridge disk:

DFEDIT/CMD
DFCMP/CMD
DFGEN/CMD
DFINT/CMD
DFCON/CMD
CDF2CON/ABS
CDF2INT/ABS

DOSDF2 Program Editor
DOSDF2 Program Compiler
DOSDF2 Form Generator
DOSDF2 Interpreter
DOSDF2 Configurator
DF2 Configurator
DF2 Interpreter

Also, 15 files labeled DDFXTND/OVA through DDFXTND/OVO,
which are the DOSDF2 Extended Interpreter Overlays, and 15 files
labeled CDFXTND/OVA through CDFXTND/OVO, which are the cassette
DF2 Extended Interpreter Overlays, are included. Thus, 37 new files
will have been added to your Cartridge Disk.

NOTE: The Overlay file names must not be changed.

Additionally, other system utilities such as DATAPOLL, the
automatic communications polling and answering program, are available
in cassette form.

The ensuing parts of this chapter represent abbreviated
step-by-step guides for Levels I and II, expanded to include any
features peculiar to DISK DATAFORM operation.

102

PART II
Level I Step by-Step Guide

Here's a brief outline of how to create a working DATAFORM
Data Entry program using the Cartridge Disk System.

STEP 1. The Form Generator
With the Disk System on and your Cartridge Disk Pack in Drive

0, press the RESTART key.

NOTE: If a Datapoint 5500 is used, both the RESTART and RUN keys
must be pressed simultaneously.

Your form name must follow the same rules as the names of Diskette
and Cassette forms. That is, the name is six characters or less and a
number from 1 to 99 follows it. We'll use SEND01 for the name of our
form.

After the Disk Operating System (DOS) displays "READY", type
"DFGEN SEND01~".

The "DOS DF2 GENERATOR" and "READY" messages will
appear, with a blinking cursor underneath. Since we're creating a new
form, type "NEW,}" n' means press the ENTER key). A cursor should
appear in the extreme upper left position of the screen, awaiting
creation of your form.

STEP 2. Creating the Form
Type the desired form on the screen using the numeric pad

features. See Part II of Chapter 2 for the form creation explanation.
Type "DISPLAY/CANCEL" when you're finished.

STEP 3. Form Creation Passes
Use the instructions from the previous chapter (CASSETTE

DATAFORM) to go through these form creation passes.

1. Assigning Field TYPEs.
2. Assigning REQUIRED Fields.
3. Assigning SEM I-CONSTANT /CONST ANT Fields.
4. Assigning PROGRAMs to Fields.
5. LiNKing to other Forms.

STEP 4. Recording the Form onto the Disk
By now, you should have completed all the necessary steps and

are left with "READY" on the screen. Type "OUT;}." and the displays
"PROGRAM BASE ADDRESS: nnnn", "nnnn BYTES LEFT" and
"DONE-LOAD NEXT SYSTEM" will appear (nnnn is some number). If
an error is detected, it will be indicated at this time.

STEP 5. Operating the Data Entry System
Type "DFINT SEND01 ~" to start data entry. When the displays

"DOS DF2 INTERPRETER" and "SELECT DATA MODE" are shown on

103

the screen, type "START~" (or "S~ If). After you answer "YES,)" to the
"ARE YOU SURE?" question, the form will appear waiting for data
entry in the first non-constant field.

Type the data (as an operator would) and observe field checking
operations. Correct errors by use of the CANCEL and BACKSPACE
keys. The following keys are also used:

Function Keys

Write Data to Disk DISPLAY/Period

Forward Tab ENTER

Backward Tab DISPLAY/3

Duplicate Field DISPLAY/O

Erase Form Data DISPLAY/6

STEP 6. Closing the Disk Data File
After all the necessary data is entered in the fields, press

DISPLAY and Period to write the data to disk. The form will
automatically be displayed again with blank fields, awaiting keyin at the
first non-Constant field. If you have entered all of your data, press
DISPLAY and 4 to go back to Monitor. Then type in "END~' (or "E}")
and be sure to answer the question "ARE YOU SURE?". This question
reminds you that you should be positioned at the end of your data file
before saying "END" as it writes an End Of File (EOF) mark wherever
you are. END does one additional thing in DISK DATAFORM; it returns
you to the Operating System.

STEP 7. Adding to and Modifying the Data
Type "ADD~" (or "A~") to position to the End Of File and begin

adding additional records. Type "MOD~" (or "M ~") to position to the
beginning of the data file. Then use DISPLAY and 9 to advance
through the data file (displaying each time) a record at a time. Note
that DISPLAY and 8 takes you back a record at a time.

Records displayed can be changed according to information
re-typed (be sure to press ENTER), and then rewritten to the disk when
DISPLAY and Period are pressed. The following modes may also be
used:

Function Key Operation

CONTINUE C CONTINUE data entry after
modification

LOAD n L n LOAD the specified form
DATA 0 Switch to DATA entry mode
FIND n F n FIND or search for matching data

record
REW R REWIND data file to first record

n means the number of the form

104

The Configurator
To generate a cassette system tape, you'll have to use the

cassette Configurator. See the Level 1 CASSETTE DATAFORM section
for a description of how to use the Configurator. The forms to be
written to tape must first be cataloged, using the "IN" command.

Then, type "DFCON SEND".

NOTE: This is the only time the form number must not be included in
the name.

A file named SEND/CAT is generated.
Use the "DUP ALL" or "LGO" command to write a system tape

(DF2SYS) with all the forms specified in the catalog (contained in File
SEND/CAT).

Additional information concerning the Configurator can be found
in the DISK DATAFORM User's Guide.

SUMMARY

Although this example is greatly simplified, it is, nonetheless, a
working data entry system. Additional sophisticated error checking and
data manipulation power can be added by using field programs written
in the DATAFORM language. These will be explained in Part III, which
follows.

105

PART III
Level II Step-by-Step Guide

Here's the summary of the steps that are necessary to create a
finished field program:

1. Design the needed program
2. Type in the program
3. Compile the program (convert it to computer readable
language)
4. Combine the compiled program and the forms
5. Test the finished data entry system

STEP 1. Designing the Program
For purposes of illustration, we will use the same form that we

used in Level I of Cassette OATAFORM, and add a program to operate
on the Number field.

When our form was generated, the Number field required an eight
digit numeric right justified blank-filled field. During the Program
Assignment pass (PRO), this field did not have a program assigned.
However, a program will now be assigned to examine the number and
reject it if it is greater than 1,999,999. If it is accepted, the cursor will
proceed to the next field. If it is rejected, an error message will be
displayed on line 12 (bottom line) .of the screen, and the cursor will be
repositioned at the beginning of the keyin field for re-entry.

Now, let's keyin a DATAFORM program that will do this for us.

STEP 2. Typing in the Program •... : •.....
The Disk System should be turned ON, the Cartridge Disk Pack

installed in Drive 0 and the drive set to RUN. Press RESTART and
when "DISK OPERATING SYSTEM" and "READY" appear, call up the
General Editor (GEDIT) by typing "OFEOIT SEN001 ;Or.

The ";D" allows you to use DATAFORM tabbing (explained in
part III of Chapter 3).

Type in the following field program using the Editor functions
described in Part III of Chapter 3.

STEP 3. Compiling the Program
After you have typed ":END~" (or ":E"), the Operating System

will come up READY. To compile (make computer-readable) the text
you typed in under the Editor (GEDIT), type "DFCMP SEND01~".

You will have to answer "L1ST ON LOCAL PRINTER?" if there's
a printer attached to your system.

106

If there are any errors, the offending statement will be flagged
with an asterisk, and an error type shown. These diagnostics will be
inserted between the lines of the printout, but the screen display will
only show the lines of code which are in error. The End of
Compilation will then show the total number of errors. To correct any
errors, simply re-edit and re-compile the program.

STEP 4. Combining Form and Program
To add the Field Program to the form, it is necessary to repeat

the Form Generation Phase. However, if you did indeed assign the
correct program letter during generation, a short procedure is all that is
required. It's done in three steps as follows:

1. "DFGEN SEND01)"

2. "OLD}"

3. "OUT~"

Since we did not assign a program letter during generation
(Level I), we should do so as follows:

1. "DFGEN SEND01J"

2. "OLD)"

3. "PRO J "

4. Press the ENTER key until you are in the Number
Field, type an 'A' and then press DISPLAY/CANCEL

5. "ouTl"

STEP 5. Operating the Complete Data Entry System.
Begin data entry by typing "DFINT SEND01 ~ ". Then enter

"START" or simply "S.}." to begin a new file. Enter data in the same
manner as you did in Level I. Notice, however, that if you try to type
a number larger than 1 ,999,999 in the Number Field, your program will
display the m~ssage "IMPROPER NUMBER" and reject it by Beeping
and returning the cursor to the beginning of the field.

107

APPENDIX A

DISKETTE DATAFORM

DATA

WORK

DISKETTE DATAFORM SPECIFICATION STATEMENTS

Output data record location

COMMON

REDEFINE

FIELD

Define work area

Define common area

Redefine labels

Define fields

ALIGN

DISKETTE OATAFORM EXECUTABLE STATEMENTS

Move and align decimal point

BACKSPACE

DELETE

ENTRYMODE

FIELDNO

MODIFYMODE

PEOF

READ

Position data file back n records

Delete current record from the data file

Change to ADD/START Data Entry mode

Put current field number in label

Change to Modify mode

Position to end of data file

Read next record into data area

WEOF

CONVERT

LOOKUP

MOVE

Write an End Of File (EOF) mark on data file

Field conversion using two tables

SET

ADD

SUBTRACT

Indexed tCible lookup

Data move

Fill entire field with a single character

Addition

Subtraction

109

MULTIPLY

DIVIDE

IF

EQUAL
GREATER
LEQ
GEQ
LESSTHAN
NOTEQUAL
INRANGE
INTABLE
NOTINRANGE
NOTINTABLE
CK10
CK11

WRITE

MESSAGE

SHOW

BEEP

CHAIN

FORMSHOW

GOTO

CALL

RETURN

CHANGE

RESET

AGAIN

CLOSE

END

NEXT

110

Multiplication

Division

Comparison

Equal to
Greater than
Less than or equal to
Greater than or equal to
Less than
Not equal to
In range of table
In table
Not in range of table
Not in table
Mod 10 check digit routine
Mod 11 check digit routine

Write output data to diskette

Display a message on line 12

Display current field data

Beep sound

Load next form

Display form

Transfer control

Enter Subroutine

Exit Subroutine

Move field pointer

Reset field pointer

DISKEnE DATAFORM EXIT PATHS

Repeat field

END the file and return to the Operating System

Write data and do next form

Keyin next field

STORE

INPUT

OUTPUT

NULL

RETRY

NAME REQUIRED

Move input to output and go to next field

DISKETTE DATAFORM DATA BUFFERS

Keyed in data buffer -- one field

Form output data buffer -- one field

Location of Binary zero in data buffer

Data entry mode flag
o = Data Entry mode
1 = Modify mode

DISKETTE DATAFORM
COMPILER ERROR MESSAGES

The name of the program source file must be typed in the initial
command line.

BAD LABEL INITIATOR

A character that was neither a decimal point nor a space nor
alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the asterisk contains a character
which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than those operators appearing in this Appendix was
the first non blank symbol after column 1 (or after the label, if one
exists).

NUMBER FROM 1-249 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the specified
range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was not a
comma.

111

FlELD2 IS LESS THAN FIELD1

In a DATA statement, the second field is less than the first.

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

DOUBLE QUOTE ASSUMED

A pre-defined constant either in WORK or COMMON statements should
be terminated by a double quotation mark. If it is not there, it is
assumed.

ILLEGAL LITERAL

In a table, every item enclosed in double quotation marks must be of
equal length. Those that are of different length than the first item are
flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the following
line must have a blank in column one, and the first symbol on the line
must be a double quotation mark. If either of these is not the case,
the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight pre-defined
labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific Reserved Word - for example, the TO in an ADD statement
- has been misspelled. The misspelled word is assumed to be the
one expected, and the next symbol is expected to be a legal label.

ILLEGAL CONDITION

The connective in an IF statement is not one of those listed in this
Appendix. Nothing about the connective is assumed.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously in the
program (or it is one of the eight pre-defined labels). The second and
any subsequent definitions of the label are ignored.

112

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at 246,
excluding the pre-defined labels. All labels after this maximum is
reached are ignored.

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 bytes or reserved amount.
Anything defined as COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR

The program counter, at the end of pass two does not equal the
program counter at the end of pass one. This is an internal compiler
error message.

COMMON PRECEDES RESERVE

A RESERVE statement was encountered after a COMMON statement.
Since reserve changes the starting address of common, this is an
illegal situation.

DISKETTE FORM GENERATOR ERROR MESSAGES

BAD FORM NAME

The form name specified in the command line did not end with a two
digit number.

BAD FORM

There is no form in memory or the form in memory cannot be written
out, or have any pass except REVISE executed, because of some error
condition.

NO FIELDS DEFINED

Forms may not be created without at least one field (this may be a
keyin only field).

MORE THAN 126 FIELDS

During image generation more than 126 data fields were defined. The
form must be revised before it may be written out.

MORE THAN 249 DATA

During image generation more than 249 data characters were defined.
The form must be revised before it may be written out.

113

xxx DATA
YYY BYTES LEFT

The messages appear immediately after the image generation phase of
form generation. They are for information only.

YYY BYTES OVER

If this message appears after image generation, the form image, data
area and edit table have combined to overflow the user space.
Something must be reduced.

PROGRAM BASE ADDRESS XXXXX

This is the address (in decimal) of the first location in the user space
available for program code.

PROGRAM MISSING

A program specified in the program pass is not contained in the
program file (or there is no program file at all).

DISKETTE DATAFORM INTERPRETER ERROR MESSAGES

CONTINUOUS BEEPING DURING DATA ENTRY

An illegal constant has been defined at form generation time. The
constant must be reset to conform with the edit criteria before
proceeding.

CONTINUOUS CLICKING DURING DATA ENTRY

An all-Constant form with no keyin field has been loaded. The form
must be corrected before data entry may proceed.

SELECT DATA MODE

No START, ADD, MOD or FIND command has been executed.

END OF DATA

End of file has been reached on the data file.

DATA FILE OPEN

An "open" type operation was attempted before ending the current data
file.

114

DATA FILE CLOSED

A close type instruction was attempted before opening the current data
file.

NO FIELDS

Somehow you got a form with no fields defined.

NO LINK SET

The operator attempted to load the linked form and no link was set.

RLE SPACE FULL

The data file has reached the limit of the disk space. All records
posted to the write routine have been written and an end-of-file marker
is written. The user should type "OS" to return to the operating
system. You can, however, modify the file if desired.

DISKETTE DATAFORM COMMON SYSTEM ERROR MESSAGES

FILE MISSING or FORM MISSING

The form number specified is not present as SYSNAMnn/DFF.

In the Interpreter, this message may mean that the next form specified
in the current form's link is not present, or that your command
assumes that there is a form in memory (e.g., DATA) and none is
loaded.

NAME REQUIRED

The initial command line did not include the system name or form
name required by the program.

ILLEGAL DEVICE SPECIFICATION

The initial command line included a disk drive specification which was
improperly formated.

BAD NUMBER

The form number may have been omitted, out of range (1-99) or
non-numeric. Or, the form specified is not in the catalog. Note that if
the form number is omitted in a command which optionally accepts
form numbers (e.g., START n) the command line cannot end with a
space.

115

PRINT UTILITY ERRORS

BAD SYSTEM NAME

Name specified in the command line cannot possibly be a system name
since it is greater than 8 characters.

NO PRINTER

A DF11 PRT command was attempted with no printer connected or
switched on.

116

APPENDIX B

CASSETTE DATAFORM

CASSETTE DATAFORM SPECIFICATION STATEMENTS

DATA Output data record locations

WORK Define work area

COMMON Define common area

EQU Define octal addresses

REDEFINE Redefine new labels to old labels

FIELD Define fields

CASSETTE DATAFORM EXECUTABLE STATEMENTS

ALIGN

CONVERT

LOOKUP

MOVE

SET

ADD

SUBTRACT

MULTIPLY

DIVIDE

IF

EQUAL
GREATER
LEQ
GEQ
LESSTHAN
NOTEQUAL
INRANGE
INTABLE
NOTINRANGE

Move and align decimal point

Field conversion through table lookup

Indexed table lookup

Data move

Fill entire field with a single character

Addition

Subtraction

Multiplication

Division

Comparison

Equal to
Greater than
Less than or equal to
Greater than or equal to
Less than
Not equal to
In range of table
In table
Not in range of table

117

NOTINTABLE
CK10
CK11

WRITE

MESSAGE

SHOW

BEEP

CHAIN

FORMSHOW

GOTO

CALL

RETURN

CHANGE

RESET

AGAIN

CLOSE

END

NEXT

STORE

INPUT

OUTPUT

NULL

RETRY

118

Not in table
Mod 10 check digit routine
Mod 11 check digit routine

Write output data to tape

Display a message on line 12

Display current field data

Beep sound

Load next form

Display form

Transfer control

Enter Subroutine

Exit Subroutine

Move field pointer

Reset field pointer

CASSETTE DATAFORM EXIT PATHS

Repeat field

END the file and return to the Operating System

Write data and do next form

Keyin next field

Move input to output and go to next field

CASSETTE DATAFORM DATA BUFFERS

Keyed in data buffer -- one field

Form output data buffer -- one field

Location of Binary zero in data buffer

Data entry mode flag
o = Data Entry mode
1 = Modify mode

CASSETTE DATAFORM COMPILER ERRORS

PARITY ERROR: A/C?

A parity error persisted on a cassette read operation after five retries.
A response of 'A' will abort the compilation; a response of 'C' will use
the bad block as if nothing were wrong with it. and continue the
compilation.

BAD LABEL INITIATOR

A character that was neither ~ decimal point nor a space nor
alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the asterisk contains a character
which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than those statement operators appearing in this
Appendix was the first nonblank symbol after column 1 (or after the
label. if one exists).

NUMBER FROM 1-245 EXPECTED

The indicated symbol is non-numeric. or if numeric. not in the specified
range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was not a
comma.

FlELD2 IS LESS THAN FIELD1

In a DATA statement. the second field is less than the first.

LABEL REQUIRED

THE DATA. REDEFINE and WORK statements all require a label.

DOUBLE QUOTE ASSUMED

A pre-defined constant either in WORK or COMMON statements should
be terminated by a double quotation mark. If it is not there. it is
assumed.

119

ILLEGAL LITERAL

In a table, every item enclosed in double quotation marks must be of
equal length. Those that are of different length than the first item are
flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the following
line must have a blank in column one, and the first symbol on the line
must be a double quotation mark. If either of these is not the case,
the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight pre-defined
labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific Reserved Word -- for example, the TO in an ADD statement
- has been misspelled. The misspelled word is assumed to be the
one expected, and the next symbol is expected to be a legal label.

ILLEGAL CONDITION

The connective in an IF statement is not one of those listed in this
Appendix. Nothing about the connective is assumed.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously in the
program (or it is one of the eight pre-defined labels). The second and
any subsequent definitions of the label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at 125,
including the pre-defined labels. All labels after this maximum is
reached are ignored.

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 bytes. Anything defined as
COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR

The program counter at the end of pass two does not equal the
program counter at the end of pass one. This is an internal compiler
error message.

120

CASSETTE DATAFORM COMMON SYSTEM ERRORS

FILE MISSING

Some form, present in the catalog, is mlssmg on the system tape, or
the file marker necessary for positioning the input tape is missing, or a
form is short (Le., it doesn't contain the necessary 6 blocks).

BAD NUMBER

The form number may have been omitted, out of range (1-99) or
non-numeric. Or, the form specified is not in the catalog. Note that if
the form number is omitted in a command which optionally accepts
form numbers (e.g., START n), the command line cannot end with a
space.
In the Interpreter, this message may mean that the next form specified
in the current form's link is not in the catalog, or that your command
assumes that there is a form· in memory (e.g., ENTER) and none is
loaded.

PARITY ERROR ON DECK n

Indicates a parity error was detected --where n is the cassette deck
number (1 is the rear deck and 2 is the front deck). Before this
message is displayed, four attempts are made to read the record.

INTERNAL ERROR x ON DECK n

This message indicates a tape or tape deck failure. The x is replaced
by a letter indicating the error condition as follows:

D Parity error
E End of tape
F End Of File (EOF)
G Unfindable file
Z Write failure

Generally these errors occur only if something is severely wrong with
the cassette. Error Z may occur if the Write Protect tab has been
punched on the cassette or if the tape is improperly inserted in the
deck. If Error Z occurs often, a hardware failure should be suspected.
The letter n in the message is replaced by the number of the tape
deck on which the error occured (deck 1 is the rear deck and deck 2
is the front deck).

121

CASSETTE DATAFORM CONFIGURATOR ERRORS

END OF FILE MISSING

End of tape reached during COPY - an End Of File (EOF) marker is
automatically written.

AUTO NOT SET

This is given in response to a MANUAL command if the Auto-Load
entry is not set.

FORM CATALOG IS UNLOADABLE, DUMMY CATALOG GENERATED

File 1 of the forms catalog is in error and a dummy (full) catalog has
been substituted. Steps should be taken to recover the system.

NUMBER IN USE

The form number specified for an IN command was already assigned.

CASSETTE DATAFORM GENERATOR ERRORS

BAD FORM

The form just written is unloadable due to parity errors or missing
blocks.

MORE THAN 126 FIELDS

During image generation, more than 126 data fields were defined. The
form must be revised before it may be written out.

MORE THAN 245 DATA

During image generation, more than 245 data character slots were
defined. The form must be revised before it may be written out.

xxx DATA
YYY BYTES LEFT

The messages appear immediately after the image generation phase of
form generation. They are for information only.

YYY BYTES OVER

If this message appears after image generation, the form image, data
area and edit table have combined to overflow the user space.
Something must be reduced.

122

CASSETTE DATAFORM INTERPRETER ERRORS

CONTINUOUS BEEPING DURING DATA ENTRY

An illegal Constant has been defined at form generation time. The
Constant must be reset to conform with the edit criteria before
proceeding.

CONTINUOUS CLICKING DURING DATA ENTRY

An all-Constant form with no keyin field has been loaded. The form
must be corrected before data entry may proceed.

TAPE CLOSED

No START, ADD, MOD or FIND command has been executed.

END OF TAPE

End of tape was encountered during data entry or an unrecoverable
tape error occured during writing. If the error occurs due to end of
tape, the data tape is automatically backspaced twice and an End Of
File (EOF) marker is written. If it is a write-parity error, the EOF is
written where the record would have been. This means that the last
two records since the operator is keying one in are lost. Totals being
accumulated by field programs may no longer be valid.

REWRITE LIMIT REACHED, TO VIEW PRESS ENTER

During modification, the record in memory has been rewritten 4 times
and cannot be rewritten again; however, it can be interrogated. To
reset the Rewrite Counter to zero, use the COPY command of the
Configurator.

BAD DATA

There is a parity error in the data.

BAD FORM

There is a parity error in the form or a block is missing.

END OF DATA

End Of File has been reached on the data tape.

TAPE OPEN

An "Open" type operation was attempted before ending the current
data tape.

123

THE CONFIGURATOR
The DATAFORM Configurator is a part of the System Program

(DF2SYS) tape. Some of its features include:

INT
CAT

IN
DEL
CHOP

REP
DUP
DUP-ALL
OUT
COPY
FPRINT
FPRINT ALL
DPRINT
LGO

Loads the Interpreter
Display the contents of the System

tape (Catalog)
Add new forms to the System Catalog
Delete forms from the System Catalog
Delete multiple forms from the System

Catalog
Replace forms on the System Catalog
Duplicate the System tape without forms
Duplicate the System with forms
Recover a catalogued form
Copy a data tape
Print a copy of a catalogued form
Print a copy of all catalogued forms
Print a copy of the data tape 'contents
Create a Load and Go Interpreter (one

which has only the Interpreter, forms and a
Boot loader, so that it can be brought up
faster for data entry.

An in-depth explanation of the Configurator can be found in the
CASSETTE DATAFORM User's Guide.

124

APPENDIX C

CARTRIDGE DISK DATAFORM

DISK DATAFORM SPECIFICATION STATEMENTS

DATA Output data record locations

WORK Define work area

COMMON Define common area

EQU Define octal addresses

REDEFINE Redefine new labels to old labels

FIELD Define fields

DISK DATAFORM EXECUTABLE STATEMENTS

ALIGN

CONVERT

LOOKUP

MOVE

SET

ADD

SUBTRACT

MULTIPLY

DIVIDE

IF

EQUAL
GREATER
LEQ
GEQ
LESSTHAN
NOTEQUAL
INRANGE
INTABLE
NOTINRANGE

Move and align decimal point

Field conversion using two tables

Indexed table lookup

Data move

Fill entire field with a single character

Addition

Subtraction

Multiplication

Division

Comparison

Equal to
Greater than
Less than or equal to
Greater than or equal to
Less than
Not equal to
I n range of table
In table
Not in range of table

125

NOTINTABLE
CK10
CK11

WRITE

MESSAGE

SHOW

BEEP

CHAIN

FORMSHOW

GOTO

CALL

RETURN

GHANGE

RESET

AGAIN

CLOSE

END

NEXT

STORE

INPUT

OUTPUT

NULL

RETRY

126

Not in table
Mod 10 check digit routine
Mod 11 check digit routine

Write output data to disk

Display a message on line 12

Display current field data

Beep sound

Load next form

Display form

Transfer control

Enter Subroutine

Exit Subroutine

Move field pointer

Reset field pointer

DISK DATAFORM EXIT PATHS

Repeat field

END the file and return to the Operating System

Write data and do next form

Keyin next field

Move input to output and go to next field

DISK DATAFORM DATA BUFFERS

Keyed in data buffer -- one field

Form output data buffer -- one field

Location of Binary zero in data buffer

Data entry mode flag
o = Data Entry mode
1 = Modify mode

DISK DATAFORM GENERATOR ERRORS

BAD FORM NAME

The form name specified in the command line did not end with a two
digit number.

BAD FORM

The form in memory cannot be written out, or have any pass except
REVISE executed, because of some error condition.

NO FIELDS DEFINED

Forms may not be created without at least one field (this may be a
keyin only field).

NO ROOM FOR CONSTANTS

All fields in the form were defined using the caret, therefore Constants
and Semi-Constants may not be entered.

MORE THAN 126 FIELDS

During image generation more than 126 data fields were defined. The
form must be revised before it may be written out.

MORE THAN 245 DATA

During image generation more than 245 data characters were defined.
The form must be revised before it may be written out.

XXX DATA
YYY BYTES LEFT

The messages appear immediately after the image generation phase of
form generation. They are for information only.

YYY BYTES OVER

If this message appears after image generation, the form image, data
area and edit table have combined to overflow the user space.
Something must be reduced.

EXTENDED INTERPRETER MISSING

The Extended Interpreters must be catalogued exactly DDFXTND/OVA
through IOVO. If the file is not present and an Extended Interpreter is
required, this message will appear.

127

PROGRAM X MISSING

A program specified in the program pass is not contained in the
program file (or there is no program file at all).

DISK DATAFORM CONFIGURATOR ERRORS

BAD SYSTEM NAME

Name specified in the command line cannot possibly be a system name
since it is greater than 8 characters.

ILLEGAL SYSTEM NAME

During a DUP, DUP ALL OR LGO command one of the DATAFORM 2
cassette program files was not found.

VERIFY FAILURE

During a DUP, DUP ALL or LGO command, while re-reading the tape
to verify it, a tape error was encountered.

PARITY ERROR ON DECK 2
COPY, OMIT or END?

A parity error was encountered on a tape being copied. The user has
the option to copy the erroneous record (type 'G /), omit it but continue
the copy (type '0'), or terminate the copy at that point ('E/) which
writes an End Of File (EOF) marker on the new tape.

INTERNAL ERROR x ON DECK n

This message indicates a tape or tape deck failure. The x is replaced
by a letter indicating the error condition:

D parity error
E end of tape
F end of file
G unfindable file
Z write failure

Generally these errors occur only if something is severely wrong with
the cassette. Error Z may occur if the Write Protect tab has been
punched on the cassette or if the tape is improperly inserted in the
deck. If error Z occurs often, a hardware failure should be suspected.

The letter 'n' in the message is replaced by the number of the tape
deck on which the error occured (deck 1 is the rear deck, deck 2 is
the front).

128

END OF FILE MISSING

End of tape reached during COPY -- an End Of File (EOF) marker is
automatically written.

NUMBER IN USE

The form number specified for an IN command was already assigned.

NO PRINTER

A DPRINT or FPRINT command was attempted with no printer
connected or switched on.

DISK DATAFORM INTERPRETER ERRORS

CONTINUOUS BEEPING DURING. DATA ENTRY

An illegal Constant has been defined at form generation time. The
Constant must be reset to conform with the edit criteria before
proceeding.

CONTINUOUS CLICKING DURING DATA ENTRY

An all-Constant form with no keyin field has been loaded. The form
must be corrected before data entry may proceed.

SELECT DATA MODE

No START, ADD, MOD or FIND command has been executed.

END OF DATA

End Of File (EOF) has been reached on the data file.

DATA FILE OPEN

An "Open" type operation was attempted before ending the current
data file.

DATA FILE CLOSED

A "Close" type instruction was attempted before opening the current
data file.

NO FIELDS

Somehow you got a form with no fields defined.

129

NO LINK SET

The operator attempted to load the linked form and no link was set.

DISK DATAFORM COMPILER ERRORS

NAME REQUIRED

The name of the program source file must be typed in the initial
command line.

BAD LABEL INITIATOR

A character that was neither a decimal point nor a space nor
alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The oharacter string pointed to by the asterisk contains a character
which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than those statement operators appearing in this
Appendix was the first nonblank symbol after column 1 (or after the
label, if one exists).

NUMBER FROM 1-245 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the specified
range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was not a
comma.

FlELD2 IS LESS THAN FIELD1

In a DATA statement, the second field is less than the first.

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

DOUBLE QUOTE ASSUMED

A pre-defined Constant either in WORK or COMMON statements should

130

be terminated by a double quotation mark. If it is not there, it is
assumed.

ILLEGAL LITERAL

In a table, every item enclosed in double quotation marks must be of
equal length. Those that are of different length than the first item are
flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the following
line must have a blank in column one, and the first symbol on the line
must be a double quotation mark. If either of these is not the case,
the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight pre-defined
labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD statement -
has been misspelled. The misspelled word is assumed to be the one
expected, and the next symbol is expected to be a legal label.

ILLEGAL CONDITION

The connective in an IF statement is not one of those listed in this
Appendix. Nothing about the connective is assumed.

DUPLICATE LABEL

The label beginning on the line being listed, is duplicated previously in
the program (or it is one of the eight pre-defined labels). The second
and any subsequent definitions of the label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at 125,
including the pre-defined labels. All labels after this maximum is
reached are ignored.

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 bytes. Anything defined as
COMMON after this length will not be accepted.

131

PROGRAM COUNTER ERROR

The program counter, at the end of pass two does not equal the
program counter at the end of pass one. This is an internal compiler
error message.

DISK DATAFORM COMMON SYSTEM ERRORS

FILE MISSING or FORM MISSING

The form number specified is not present as SYSNAM/DFF.
In the Interpreter, this message may mean that the next form specified
in the current form's link, is not present, or that your command
assumes that there is a form in memory and none is loaded.

NAME REQUIRED

The initial· command line did not include the system name or form
name required by the program.

ILLEGAL DEVICE SPECIFICATION

The initial command line included a disk drive specification which was
improperly formatted.

BAD NUMBER

The form number may have been omitted, out of range (1-99) or
non-numeric. Or, the form specified is not in the catalog. Note that if
the form number is omitted in a command which optionally accepts
form numbers (e.g., START n), the command line cannot end with a
space.

132

APPENDIX D

THE THREE DATAFORMS

Efficient Programming Techniques

You are only given a certain amount of memory space to
contain your program. If you've filled this space, or are coming
close, use these helpful hints to make your program use less
space.

1. Use carets (A) rather than underlines (_) for field definitions. The
carets compress the unused spaces. See the DATAFORM
Reference Manual for the DATAFORM you are using.

2. Place semi-colons at the end of all non-table, non-range variables
to suppress the end-of-table character.

3. Use REDEFINE to create Constants or tables which are subsets
of other Constants or tables. This technique may also be used
for computation or hold areas if the redefined variables are not
needed at the same time.

4. Use subroutines to perform repeated operations.

5. Use field displacement referencing to generalize programs used
with line-items (i.e., where the same set of fields is entered
several times within one form).

6. Use INPUT, OUTPUT and RESET to generalize programs and thus
avoid duplication of code.

7. Keep Constants in the form itself by defining them at form
generation time instead of using a field program to set them.

8. Combine several fields into one wherever possible (each field
requires 6 additional bytes of edit table).

9. Use LOOKUP instead of CONVERT to save one of the tables.

10. Use data areas as work areas whenever possible, thus saving
intermediate hold areas.

11. Execute all programs on last field if possible, on the assumption
t.hat the operator is usually right, to save NEXT and STORE
instructions.

12. Don't use CHANGE/SHOW/CHANGE instructions since NEXT will
automatically show and bypass if field is defined as "Program
Reserved".

133

Form Generation Function Keys

There is a set of function keys available in the form generation
mode only. When the DISPLAY key is pressed, certain char~cters

become function keys. These function keys can all be found on the
number pad. The following functions are available:

7 Character insert
8 Up cursor
9 Erase to end of frame
4 Left cursor
5 Character duplicate
6 Right cursor
1 Word remove
2 Down cursor
3 Form expand (downward)
o Character remove

Erase to end of line

The BACKSPACE key and DISPLAY/4 have the same function of
non-destructive left cursor movement. Backspacing from column 1
back to column 80 of the previous line is permitted.

The CANCEL key erases the entire line the cursor is on and
places the cursor at the beginning of the line.

The KEYBOARD key acts as a REPEAT key for all characters and
for most function keys.

The DISPLAY/CANCEL function causes an edit table to be
generated with the field position and length set and all edit conditions
set to default values.

NUMBER PAD OVERLAY

Char UP Erase
Insert Frame

Dup
LEFT Char RIGHT

Word Form
Remove DOWN Expand

Erase
Character Remove Line

134

Data Entry Interpreter Function Keys

Mode

All Data Entry

MODIFY and FIND

Rewind
Data
File

Return

Monitor

Load
Form

Keys

DISPLAY/4
DISPLAY/.

ENTER
DISPLAY/3
DISPLAY/5

DISPLAY/6
DISPLAY/1
DISPLAY/O

DISPLAY/?
DISPLAy/a
DISPLAY/9

BSP
Record

Del

Record

Duplicate Field

Function

Return to Monitor
Write data record
or rewrite it
Forward tab
Backward tab
Delete record
(Diskette only)
Erase data area
Load next form
Duplicate field

Rewind data file
Backspace record
Read record

Read
Record

Erase
Form
Data

BSP
Field

Write
Record

135

APPENDIX E

DUPLICATING DISKETTE AND CASSETTE FILES

You should regularly make backup copies of all your
diskette files. You can use the COPY program to do this for
you.

Load the complete DOS system diskette, just as you did to
use the DOS EDITOR (for Level \I DATAFORM). Instead of using
the Editor, use the COPY program.

For example, to copy file SHOP01/DFF from Drive 0 to
Drive 1, type

"COPY SHOP01/DFF:DRO,:DR1}"

Cassette files are just as easy to duplicate, but it is done
differently. To make a copy of the system tape with 'all
catalogued forms, place a blank cassette in the front deck and
the DF2SYS cassette in the rear deck and type "DUP ALL~".

137

APPENDIX F

EDITOR COMMANDS

The DOS Editor program enables you to create and modify files.
All Editor commands are prefixed with a colon (:) to distinguish them
from text lines. The pointer must be positioned at the line that needs
correcting (use t:,e KEYBOARD and DISPLAY keys to do this).

A full description of all Editor commands is in the DOS User's
Guide. Here is an abbreviated list:

:D
:D text

:E
:E*
:EO

:F text
:1
:L
:L text
:M old<new
:SC

:SB

Delete entire line
Delete all characters from the left edge of the line
through and including the specified text.
End of file. Write file to disk.
Display last line of file on screen.
Display data continuously on screen through last
line of file.
Find line starting with text.
Insert a line.
Type next line in the file.
Find imbedded text.
Replace old text with new text.
Erase the lines form top of screen down to and
including the pointed line.
Erase the lines through the bottom of the screen.

139

..

DATAPOINT CORPORATION

D
The Leader in Dispersed Data Processing

9725 Datapoint Drive
San Antonio . Texas 78284

512/690-7151

1

