
ffi\cdJW@l[(l)©®cdJ
. u®©[Fu[(l)D~(lJ]®~ D[(l)

DATASHARE
, A Simplified User'sGuide"

DATAPOINT CORPORATION

6-7

9

11

Errata Sheet
Advanced Techniques in DATASHARE

A Simplified User's Guide

Revision

DATASHARE does not allow you to specify an
extension to the physical file name in OPEN
or PREPARE statements. The extension for a
data file is assumed to be, and must be,
/TXT.

SEQ should be initialized with a FORM
statement at the beginning of the program
to -1.

The third line in the example should be:
MATCH "ACE CARDS" TO NAME

12 In both examples, the
SEQ INIT "-1"

statements should be changed to
SEQ FORt,1 "-1"

22 The key used for indexed access must be
character data, defined by a DIM or INIT
statement, and not numeric data (defined by
a FORM statement).

29 The PI instruction cannot be
prevent interrupts when a KEYIN,
CONSOLE, or PR INT in struc tion
executed.

used to
DISPLAY,
must be

Advanced
Techniques in

DATASHARE

A Simplified User's Guide

Manual No. 50049-00 November, 1975

The "D" logo, Datapoint, Datashare, Dataform, Databus, and Scribe
are trademarks of Datapoint Corporation registered in the U.s. Patent Office.

Copyright Datapoint Corporation 1975 Printed in U.S.A.

Table of Contents

CHAPTER ONE Introduction .1

Prerequisites ..•.•. .1

CHAPTER 'IWO - Effective Data File Utilization 3

Introduction
The Three Types of Data Files
Physically Sequential Access

Applications ·
Wha tis a Record?
Physical Records ..
Logical Records ..
Space Compression
The Physical File Name
Logical File Names
Positioning and Accessing
Physically Sequential WRITE Statements
Writing the End-of-File Mark •........
Physically Sequential READ Statements
A Few Hint s About Reading.
Physically Sequential Program Examples

Physically Random Access
Applications •...•.
Wha tis a Record?
Physical Records.
Logical Records •..
Carefully Structure Your Files
Space Compre ssion ..
The Physical File Name •..
Logical File Names ...•..•
Positioning and AcceSSing
READ and WRITE Statements
The WRITAB Instruction .••.
Writing the End-of-File
Random Access Program

Mark
Examples

Indexed Access •..•
Indexing is Based on Keys
The INDEX Utility
The Five Indexed Operations
Logical and Physical Files
Indexed READ Statements.
The READKS Instruction ..
Indexed WRITE Statements
UPDATE Modifies the Most Recent
INSERT Updates Other Indexes ...

Record

• ••• 3
. .3

• •• 4
.4
.4

• •• 4
• •• 5

.5
• •• 6

.7
• •••• 8

• •• 8
..... 10

..10
...• 11

· .12
.13

• .13
· .13

.13

.14

.14
..15

· •• 15
· •• 16

· .17
.18

.. 19

..19

.. 19

.• 21
.22

· .22
•• 23

•••••• 23
• •• 24

.25
..25
•• 26

.27

DELETE Delete s a Record •.•..•.•.••.•.•.••••••••••••• 27
Writing the End-of-File Mark •..•.••••.•.•..••••..... 27
Indexed Program Example .•.•••..•...••.•.•••....••••• 27

Common File Access Considerations .•.•....•...••.....•.••• 28
The REFORMAT Utility •.•...••.....•••.••••....••...•..•..• 30

How to Use REFORMAT•.•...•...•.•.••....•....••. 30
REFORMAT Messages .•.••.•••.....•.••••......•••..••.• 31

Helpful Hints•.•..••..••..•.••.••...•....••....•.. 31
Close the File Properly .•.•....••••••......•......•. 31
Group I/O Into One Statement •.••..•.•....•..••..••.• 32
Use REFORMAT to Reorganize Your Files •••.•..••••••.• 32
Write EOF at End-of-File ••.•.•••...•....•.•....••••. 32

CHAPTER THREE - Providing System Security •.•.• · •. ············35

Introduction .•.•••.•..•••••...•.••.•.•....••.•••...•••..• 35
Separate Programs for Each Port ••.•.•.••••....•..•.•.•.•• 35
Consider Your System ...•.•........•.......•...•.....•.•.. 36
The ANSWER Program •••••.•••••.•.•••••••••••••.••••.•••••• 36

The User Must Satisfy the ANSWER Program •.•••.•.••.• 36
A Simple ANSWER Program .•••...•.••••.....•.•.••...•• 36
A More Advanced Example •.•••••.•••....•.••.•.•.•.••• 37

The MASTER Program ...••..••.•.•..•.•.•..•..••............ 38
A Simple MASTER Program ..•.•••....•..•.••.•••..••.•. 39
A More Advanced Example .•....•••.......•...•.••..••• 39

CHAPTER FOUR - Virtual memory Programming Considerations ••••. 41

Introduction ••••.••.•••.••..•.•..••••..•.••.•...•••...••• 41
What is Virtual Memory? ...•....•.•.••...•.•..•••......•.• ~1

DATASHARE Manages the Memory Allocation .•.•.•..•.... 41
DATASHARE Code is Never ~1odified .•...•.••..•.••..... 42
Program Code is Accessed Often .•.•.•.•.•.•.•.••.•••• 42

Virtual Memory Implimentation ..•.••.•..••.•••..•.•••.•••. 42
Code is Divided Into Pages ..••.•..••••..•..•.••..••• 42
The Disk Limits the Number of Pages ...••.•..•••.•..• 43
Where Are the Page Boundaries? •...••.••.••••.•...••. 44

Progr amming Hint s .. 44
Repeat Code Rather than Call Subroutines ..•••••...•• 45
Carefully Structure Loops .••.•••••.••.••.•••...•••.. 45
Use the TABPAGE In struc tion .••••••.•••...••.••.••••• 45
A Bad Example •.•...•.•..•.•..••••••.••...••.•••.•... 45
A Good Example .•..••...•...••••.••••.•.•.••..•.•••.• 46

CHAPTER FIVE - Printing•.....•..•.•..•.•••....••..•••.••• 47

In troduc tion ... 47
How System Printing is Done•••••••....••••••.••••..• 47

Remember to RELEASE the System Printer! .•••.•.••••.• 48
Managing the Printer .•••.•........•.••••...•.•••...•..••• 48

Write to a Data File, Then Print .•••.•...••••...••.• 48
Use One Port to Print All System Print Files •••.•••• 49

CHAPTER SIX - ROLLOUT and CHAIN •.•.•..•.•...•..•.•.•.••..•.•• 51

Introduction
ROLLOUT Must be Configured

Hbw ROLLOUT Works ...
All Other Programs are

ROLLOUT •••
Suspended

When to Use
ROLLOUT Inconveniences Other
ROLLOUT Precautions

The CHAIN FILE .••.••.•
The
The

APPENDIX A

CHAIN Command
CHAIN File Contents

Instruction Summary

Users

.51
.• 51

..•....• 51
.51

...•• 52
. •• 52

• .52
• .53

. •• 53
• .53

.55

APPENDIX B - ASCI I Character Set ..••....•..••••..•••.•.•..... 61

CHAPTER JNE

Introduction

DATASHARE is Datapoint's timesharing system that provides
for the simultaneous execution of up to 16 DATABUS programs.
The DATABUS language is a very simple and direct high-level
business-oriented computing language that is easily suited to a
variety of business applications.

All Datapoint languages run under sophisticated, yet
easy-to-use operating systems that create standard file formats.
Da tapoint systems have completely dynamic user-oriented files
that eliminate the traditional complexity associated with
creating files and managing them. This book explains how to use
those files efficiently along with other topics.

This book contains an in-depth coverage of several
DATASHARE features, including:

1. Data file access methods (physically sequential,
physically random, and indexed).

2. The ANSWER and MASTER control programs.
3. Virtual memory programming considerations.
4. Printing facilities.
5. ROLLOUT procedures and CHAIN files for the execution

of DOS commands.

Helpful hints are interjected throughout this book to help
you make your DATASHARE system run smoothly, efficiently, and
economically.

Prerequisites
This book assumes a basic familiarity with the DATABUS

language and the DATASHARE system. But don't be scared off.
All of the concepts discussed are carefully illustrated so that
even a novice programmer can pick up useful skills that can be
incorporated into a DATASHARE operating environment.

This book does not fully explain the DATABUS programming
language. For information about the DATABUS language, consult
the DATABUS Simplified User's Guide and the DATABUS User's
Guide. Appendix A of this book contains an abbreviated listing
of all DATABUS instructions.

The details of how to set up and use your DATASHARE system
are explained in the DATASHARE User's Guide.

1

CHAPTER 'IWO

Effective Data File Utilization

In troduction
All programs that can be executed under DATASHARE must be

written in the DATABUS programming language. The DATABUS
language lets you create data files on disk and later access the
stored data in many ways that will fit your particular
application. This chapter will show you how data is organized in
those files and how the data can be accessed. Helpful hints
will be interjected so you can efficiently use your data files
and, consequently, increase the speed of your DATASHARE system.

You should already have an elementary knowledge of how to
use data files. However, many DATASHARE users do not know about
several simpl e technique s tha t can make their programs run
faster and make more efficient and effective use of the data in
the files. This chapter will show you how to use these
techniques. Read on to find out how easy it is to improve the
way your DATASHARE programs use data files.

One thing that we're sure you'll discover as you learn how
to use data files is just how easy data files are to use. The
file access methods are all specifically designed to incorporate
speedy access and efficiency of disk space utilization with a
minimal amount of programming.

This chapter delves into many details of exactly how the
data is written to disk and read from disk. This discussion is
essential to a clear understanding of how you, the user, can
optimize your file access applications.

The Three Types of Data Files
Data can be arranged in data files in three basic ways:

1. PHYSICALLY SEQUENTIALLY the data is read in
exactly the same order as it is written into the
files. This is used in applications where data is to
be accessed in chronological (first to last) order.)

2. PHYSICALLY RANDOMLY the groups of data are
numbered, beginning at 0, and any group can be read
by specifying its number. This is used in
application where a number can easily identify the
group of data you want to access.

3. INDEXED SEQUENTIALLY each group of data is
accessed by a unique field of information in that
group. This is used when a unique field of
information can specify the group of data that you
want to access.

With the DATABUS language, it is very easy to effectively
use all three of these types of data file structures. The next
three sections describe how to use these three types of data

3

files. If you are unsure of which type of arrangement you want
to use for your data, read the beginning of each of these
sections.

Physically Sequential Access

The most basic method for storing data is physically
sequentially. When data is written to a file physically
sequentially, each new record (or group of data) is written
immediately after the previous record. When data is read from a
file physically sequentially, the records are read in the exact
same sequential order that they were written. A special
character is inserted between each record to distinguish one
record from another.

Applications
Physically sequential access is ideal for many

applications. You can use it to keep a log file of each day's
activities, such as sales orders, in chronological order. Or
you can use it to contain a list of names and addresses that are
used as labels for regular mailings.

In general, physically sequential access should be used for
any data that you want to in sert and access in chronological
(first to last) order.

What is a Record?
A record is a group of related data.

related data records.
A file is a group of

r-------flll.~ Ptle----------.._

~~~~in~eMe 

FILES ARE DIVIDED INTO RECORDS 

There are two types of records. A physical record is 
limited to a certain size (249 data characters) and corresponds 
to a physical sector of the disk where it is stored. A logical 
record corresponds to a grouping of data that is logically 
related, regardless of size. 

Physical Records 
The most basic structure within a file is a physical 

record. A physical record can contain up to 249 data 
characters. The end of each physical record is denoted by a 003 
character. You do not have to put the 003 character at the end 
of the physical record; it is automatically put there by 
DATASHARE. 

4 
~ --~~-~~---- ~--~~-----~~-~~~-~---- ------~~---



PHYSICAL RECORDS CONTAIN 249 CHARACTERS 

Hi th .physically sequential access, you never need to pay 
a ttention to physical record boundaries. Wha tis important to 
you are logical records. 

Logical Records 
The next level of structuring is the logical record. A 

logical record is a' grouping of data that is logically related. 
WRITES and READS are based on logical record boundaries. There 
is no limit to the length of a logical record. Logical records 
are terminated by a 015 character. As wi th physical records, 
DATASHARE supplies this character for you. 

Physically sequential WRITES use Datapoint's record 
compressed file struct ure, where logical records span physical 
record boundaries, as in the following illustration: 

~ JOI-IN &~uJN 

end. (lllfJg!'aII1 ~nI 
",,.,If,s 

~~I \.AND -_-: ___ 

~~E-~= =_==V=A~::F:=======:==:~~~ 
~";1 D Newer\.! 

WITH PHYSICALLY SEQUENTIAL WRITES, LOGICAL RECORDS SPAN PHYSICAL 
RECORD BOUNDARIES 

This record compressed structure conserves space by packing 
the logical records closely together. Datapoint has another 
technique for conserving space. This technique is called space 
compression, and is also performed automatically for you. 

Space Compression 
When DATABUS finds two or more blank spaces in the data 

that is to be written to a disk file, it uses space compression 
to save space on the disk. For example, if it encounters 
"123 JOHN ST.", it converts it to "123(011) (005)JOHN ST.", 
where (011) is the space compression indicator and (005) is the 
number of spaces that are compressed. In this way, only two 
bytes (character positions) are used to store the spaces instead 
of five. 

5 



1Sl7e: SMIT~ 
sue SM'T~ i ~ (5' WHrn:r STR6E"T 
~ 'LnuntPeI" H-~ 
/n.li~~", ODrtIp,.~ 

DON'T WASTE DISK SPACE -- COMPRESS IT 

Space compression is always turned on with physically 
sequential writes unless you are also writing to the same 
physical file using physically random or indexed insertion 
wr i tes. If you are mixing access methods wi thin the same 
physical file, you can make sure that space compression is 
turned on wi th the II *+ II control signal in the physically random 
and indexed WRITE statements, as in the following illustration: 

WRITE FILE1,KEYi*+,NAME,ADDRESS,CITYi 
WRITE FILEA,SEQiSTATE,ZIP 

IF YOU MIX ACCESS METHODS, YOU MUST TURN ON THE SPACe 
COMPRESSION 

You must turn on space compression wi th the II *+ II signal in 
every physically random or indexed in sertion WRITE or· space 
compression will be turned off. All physically sequential READ 
statements prop~rly expand the space compressed notation. 

NOTE: With other access methods, you should not 
space compressed records because the total number 
may not be the same in one space compressed 
another. 

The Physical File Name 

do updates on 
of characters 
record as in 

The physical file name is the name that corresponds to the 
actual name the data file has on disk. This name can be up to 
eight characters long (the first character must be alphabetic) 
and is followed by a slash and a three-character extension that 
specifies the type of file that it is. 

Data files usually have the extension of /TXT. This is the 
same extension that is used for any file that has not yet been 
processed by a compiler. Your DATABUS program source code (the 
file you created wi th the DATABUS language instructions) also 
ha s the extension of /TXT. When you compile your DATABUS 
program, however, you get another file that is named the same as 
the source file but has an extension.of /DBC. This /DBC file is 
the one that is actually executed under DATASHARE. Each time 
you recompile your Program, you wipe out the old /DBC file and 
create a new one. 

6 



THE PHYSICAL FILE NAME 

DATABUS assumes that the extension for your physical data 
file name will be /TXT. This means that if you do not include 
an extension, /TXT is assumed. In other words, ORDERS/TXT and 
ORDERS specify the same data file. 

Logical File Names 
The logical file name is the name that is associated with 

the physical fil e name. It is used throughout the program to 
reference the physical file specified in the OPEN or PREPARE 
sta temen t. 

In every DATABUS program, the logical file name must be 
declared to be a logical file name through the use of the FILE 
sta temen t. For exampl e, to use the logical file name FILEl 
throughout the program, you must include this FILE statement at 
the beginning of the program: 

FILEl FILE 

Then the logical file name declared in the FILE statement must 
be associated with a physical file name through the use of a 
PREPARE (for new files) or OPEN (for existing files) statement. 

For example, to create a new file named ORDERS/TXT and use 
the logical name FILEl to access it, you have to use the 
following two statements: 

FILEl FILE 
PREPARE FILEl, "ORDERS" 

(the /TXT extension specifies a text file and is assumed if not 
included in the PREPARE or OPEN statement). Once the file is 
created, it must be used with the OPEN statement. The following 
statements reference the existing file ORDERS/TXT and associate 
with it the logical name FILEl: 

FILEl FILE 
OPEN FILEl, "ORDERS" 

FILEl is the logical name tha tis used in all READ and 
WRITE statements. Because the OPEN or PREPARE statements 
associate this name with a physical file (ORDERS/TXT), DATASHARE 
knows where to go to physically read or write the data. 

Why does DATABUS insist on two names, one logical and one 
physical, for the same file? It is actually done as a 
convenience to the programmer. If, for example, a different 
physical file is used every month, yet the same program is used, 
the programmer only has to change the physical name specified in 
the OPEN or PREPARE statement. The logical file name can remain 

7 



the same. This saves a lot of time because the programmer ·does 
not have to change every line in the program that refers to that 
file. 

Positioning and Accessing 
The current po si tion in a data fil e is defined by two 

pointers, the physical record pointer (0 through the number of 
records in the file) and the character pointer (1 through 249). 
These pointers are kept internally by DATASHARE and are used by 
all of the access methods. 

RECORD AND CHARACTER POINTERS KEEP TRACK OF THE CURRENT LOCATION 
IN THE FILE 

When the file is opened (with an OPEN or PREPARE 
sta temen t), the physical record pointer is set to 0 and the 
character pointer is set to 1. 

All READ and WRITE operations sequentially increment the 
character pointer a s the individual character s are read or 
wr i tten. If the physical record terminator (003) is reached 
during a READ or if the 249th character is written during a 
WRITE, the physical record pointer is incremented by one, the 
character pointer is reset to 1, and the logical record is 
continued on to the nex~ physical record. 

I GoNZALES SjW AtJTONIO IX I~I 
e"c tJI /48'&.1/ ~ 

1'S~1'IfL '--" 

LOGICAL RECORDS SPAN PHYSICAL RECORD BOUNDARIES 

Physically Sequential WRITE Statements 
You have already learned that you have to declare a logical 

and physical file name for your data file with the FILE and OPEN 
or PREPARE statements. You have also learned how space is 
compressed and records are compressed to save space on the disk. 
And you have learned how DATABUS keeps track of the physical 
posi tion in a data fi,le through record and character pointers. 
Now you will learn how to write data into a file. 

When you PREPARE or OPEN your file, you are positioned at 
the first record. This is fine if it's a new file, but if you 
want to add data to an existing file, you must read to the 
end-of-file and then wri teo Remember to do thi s or you may 
overwrite valuable data. 

8 



BE CAREFUL NOT TO OVERWRITE VALUABLE INFORMATION 

As we've stated before, physically sequential WRITE 
statements pay no attention to physical record boundaries. Each 
WRITE writes one logical record to disk unless a semicolon ends 
the list of variables. In this case, the logical record is not 
ended with that sta tement. The format for a physically 
sequential WRITE is: 

WRITE filename,SEQivariables 

where filename is the logical name of the file, SEQ should be 
initialized at the beginning of the program to -1, and variables 
are the data that should be written to disk. SEQ is the 
var iable tha t indicate s tha t thi sis physically sequential 
access· For example: 

WRITE FILE 1, SEQ iNAHE, ADDRESS, CITY, STATE 

writes the values of NAME, ADDRESS, CITY, and STATE as one 
logical record in logical FILEI wherever the previous READ or 
WRITE left off. After STATE is written, the 015 mark is written 
denoting the end of the logical record. This logical record will 
span as many physical records as necessary to hold the data. 

#"/~~~}:;;:r"'-~~~-
PHYSICALLY SEQUENTIAL WRITES SIMPLY PICK UP FROM WHERE THE LAST 

READ OR WRITE ENDED 

To avoid writing the end of logical record mark at the end 
of the list of variables, conclude the list with a semicolon (i) 
in the following manner: 

WRITE FILEI, SEQ iNAt1E, ADDRESS, CITY, STATE i 

Data from the next WRITE statement will then be included in 
the same logical record as this data. 

Under most circumstances, you should avoid using the 
semicolon at the end of the WRITE statement. Try to get all of 
the data for each logical record ready before you write it to 
disk. More than one WRITE statement for a logical record wastes 
time because the disk head must be positioned twice for the same 

9 



logical record. 
You can include a 015 in the list of variables to signify 

the end of a logical record if you want to write more than one 
logical record wi th a sing Ie WRITE sta temen t. Other control 
characters include *ZF, which is used before numeric variable to 
cause it to be right justified and zero filled on the left, or 
*HP, to convert a numeric variable to a "minus over-punch" 
format. For example: 

WRITE FILE2,SEQiA,B,C,015,D,E,*ZF,F 

writes two logical records in as many physical records as 
necessary. The first logical record consists of the values for 
the variables A, B, ~nd C. The second logical record contains 
the value s for D, E, and F. F must be a numeric var iable 
because it will be zero filled on the left. 

Writing the End-of-File Mark 
After you are done wr i ting a physically sequential file, 

you should wri te an end-of-file mark. Be sure you are 
positioned at the end of the file (the last data record has just 
been written) or you will wri te the end-of-fil e mark in the 
middle of your data. The WEOF instruction, which will write the 
mark, has the following format: 

WEOF file, SEQ 

where file is the name of the logical file. 
Then use the CLOSE instruction to release any extra 

allocated space. 
If you later add da ta to your fil e, you must READ to 

end-of-file, then WRITE your da ta. You should write another 
end-of-file mark when you are done adding data to your file, and 
then CLOSE it. 

Physically Sequential READ Statements 
To read a physically sequential file, the READ statement is 

used. It works much the same as a WRITE statement. All READ 
statements for a file must either come before the WRITE 
statements for the file, or after the end-of-file mark has been 
wri tten, the file ha s been closed, and the file ha s been 
reopened. 

The READ statement reads from where the record and 
character pointers are positioned to the end of the logical 
record or until the list of variables is satisfied. Unless a 
semicolon (i) ends the list of variables, the record and 
character pointers are left pointing to the beginning of the 
next logical record. Physical record boundarie s are ignored, 
for all practical purposes. Remember to initialize SEQ to -1 at 
the beginning of the program to signify that you are using 
physically sequential access. The following statements give 
examples of physically sequential READS and explain how they 
operate. 

10 



READ FILEl, SEQ iNA1'IE, ADDRESS, CITY, STATE 

NAME, ADDRESS, CITY, and STATE are read from logical FILEl. 
The character pointers are left pointing to the following 
logical record. 

READ FILEl,SEQiNAME,ADDRESS,CITY,STATEi 

This is the same as above example except that the character 
pOinters are left pOinting to the next character after STATE. 

ilhI46~~_~ ~7\r=:cn<!: heX~ ,,!~".:'9i~ ~e, 

_9~ q l0.3~1 F. scurr J::'.!~/.D 
PHYS ICALLY SEQUENTIAL READS S IMPLY PICK UP FRml WHERE THE LAST 

READ ENDED 

A Few Hints About Reading 
Physically sequential data files are characterized by the 

fact that to get any information out of the file, you must start 
a t the beg inning and READ un til you find it. The COMPARE and 
MATCH instructions provide useful methods of checking to see if 
you're reading the record tha t you need. COr.1PARE is used to 
make sure that two numbers are the same and MATCH is used to 
make sure that two character strings are the same. So, for 
example, to check to see if you're reading the record for the 
Ace Cards Co., you could use the following statements: 

LOOP 

BAD 

GOOD 

READ FILEl,SEQiNAME,ADR,BILL 
GOTO BAD IF OVER 
MATCH NAME TO "ACE CARDS" 
GOTO GOOD IF EQUAL 
GOTO LOOP 
DISPLAY "**NO SUCH NAME**" 
GOTO START 
DISPLAY ADR, *N, "OWES: $", BILL 
GOTO START 

Notice how we checked for the OVER condition. Thi sis a 
safeguard against not finding a match. If end-of-file is 
reached, the OVER condition is set. By checking this condition, 
you can tell if the entire file has been read and checked. 

11 



Physically Sequential Program Examples 
The following DATASHARE program writes each account number, 

name, and address to a disk file named ORDERS/TXT: 

DONE 
ACNT 
NAME 
ADR 
CITY 
STATE 
ZIP 
SEQ 
AFILE 

LOOP 

FIN 

INIT "00000" 
DIM 5 
DIM 20 
DIM 20 
DIM 15 
DIM 2 
DIM 5 
INIT "-1" 
FILE 
PREPARE AFILE, "ORDERS" 
KEYIN *ES, "ACCOUNT NUMBER:" ,ACNT: 

*N,",NAME:",N~ME,*N,"ADDRESS:",ADR: 

* N, "c IT y: " , CIT Y , *N, "s TA TE : " , S TA TE: 
*N, "ZI P: " , ZI P 

MATCH DONE TO ACNT 
GOTO FIN IF EQUAL 
WRITE AFILE,SEQiACNT,NAME,ADR,CITY,STATE,ZIP 
GOTO LOOP 
WEOF AFILE,SEQ 
CLOSE AFILE 
STOP 

This program asks the operator to fill in all the data 
fields, one at a time. Note how one KEYIN statement is used to 
collect all the data. It is more efficient to use one long KEYIN 
or DISPLAY sta tement than many short one s because of the . way 
DA TA SHARE handles those instructions. All input and output 
statements should be written this way, with one long statement 
rather than several short ones. 

The following program reads the SAMPLE data file and prints 
it. Notice how the OVER condition is checked to see if the 
end-of-file has been reached. 

12 

ACNT 
NM1E 
ADR 
CITY 
STATE 
ZIP 
SEQ 
AFILE 

LOOP 

FIN 

DIM 5 
DIl"1 20 
DIM 20 
DIM 15 
om 2 
DIM 5 
INIT "-1" 
FILE 
OPEN AFILE, "SAMPLE" 
READ AFILE,SEQiACNT,NAMEiADR,CITY,STATE,ZIP 
GOTO FIN IF OVER 
PRINT *N, "ACCOUNT NUMBER" ,ACNT, *N, *10,NAME: 

*N,*10,ADR,*N,*10,CITY,*37,STATE,*40,ZIP 
RELEASE 
STOP 



Physically Random Access 

The fastest random access method available under DATASHARE 
is physically random access. To perform a physically random 
access, a number is used to point to the specific group of data 
that you want to access. Physical random access is best if used 
with groups of data (called records) that contain less than 249 
characters. 

Appl ications 
Use physically random access for any grouping of data that 

has a natural sequential numbering scheme to it. For example, 
if a hardware store ha s parts tha t number from 1 to 137, each 
part can be described in a separate'record and accessed by part 
number. Or, if you have orders that number from 900 to 1000, 
you can put each order in a separate record and subtract 900 
from the order number to get the record number. 

Wha tis a Record? 
A record is a group of related data. A file is a group of 

related data records. 

FILES ARE DIVIDED INTO RECORDS 

There are two types of records. A physical record is 
limited to a certain size (249 data characters) and corresponds 
to a physical sector of the disk where it is stored. A logical 
record corresponds to a grouping of data that is logically 
related, regardless of size. 

Physical Records 
The most basic structure wi thin a file is a physical 

record. A physical record can contain up to 249 data 
characters. The end of each physical record is denoted by a 003 
character. You do not have to put the 003 character at the end 
of the physical record; it is automatically put there by 
DATASHARE. 

~~~~ I~%~I~I r~21~~lil 
PHYSICAL RECORDS CONTAIN 249 CHARACTERS

13

With physically random access, the physical record number
(number ing starts a t zero) is spec ified in the READ or WRITE
statement to point to a record of data to be read or written.

NOTE: The physical record number never needs to be wr i tten in
the data file. Because all physical records are written
sequen tially, DATABUS knows which record corresponds wi th a
particular physical record number.

A NUMBER POINTS TO THE PHYSICAL RECORD IN THE FILE

Logical Records
The next level of structuring is the logical record. A

logical record is a group of logically related data. For most
practical purposes, each logical record should contain 249 or
less characters so it will fit in one physical record. Logical
records are terminated by a 015 character.

Wha tever space in the physical record is not taken up by
the logical record is wasted because the physically random
access method relies on physical record boundaries. This means
that physically random files are NOT record compressed, as are
physically sequential files.

EXTRA PHYSICAL RECORD SPACE IS WASTED

Carefully Structure Your Files
Because the random records are accessed by a number

indica ting the physical record in the file, it is important to
write the data so that logical records begin at physical record
boundaries. If you use the physically random WRITE statements,
you will automatically start each logical record at a physical
record boundary. Do not use the REFORMAT utility on your data
file and put more than one logical record per physical record,
because when you later access the data it will not be- in the
proper order and logical records wi 11 not beg in on physical
record boundaries.

If, for some reason, your data file becomes record
compressed so that each logical record does not begin on a
physical recorc;i boundary, you can use the REFORMAT util i ty to
reblock your da ta (see the REFORMAT section of thi s chapter).
If you edit your physically random fil e using the DATASHARE

14

Editor or the DOS Editor, you will have to REFORMAT the file to
get it back to the proper format with logical records starting
at physical record boundaries.

Space Compression
Spa ce compression (expl ained fully under Physically

Sequential Acces s) is a utoma tically turned of f for physically
random WRITE sta temen ts. Thi sis because physically random
WRITAB and READ statements can use absolute tabbing, which does
not properly expand the space compressed nota tion. See the
WRITAB and READ sections for an explanation of absolute tabbing.

ABSOLUTE TABBING OPERATIONS DO NOT PROPERLY EXPAND SPACE
C OtvlPRESS ION

If you are sure tha t you wi 11 not wan t to use tabbing, you
can begin each WRITE statement with a "*+" control signal to
signifiy that space compression for that statement should be
turned on. The following example illustra te s how space
compression can be turned on for a physically random WRITE :

WRITE FILE2,NUMi *+,NAME,ADR

If you find that your file is space compressed and shouldn't be,
you can use the REFORMAT utility to ge t rid of the space
compression (see the REFORHAT section of this chapter).

The Physical File Name
The physical file name is the name that corresponds to the

actual name the data file has on disk. This name can be up to
eight characters long (the first character must be alphabetic)
and is followed by a sla sh and a three-character exten sion tha t
specifies the type of file that it is.

All data files usually have the extension of ITXT. This is
the same extension that is used for any file that has not yet
been processed by a compiler. Your DATABUS program source code
(the file you created with the DATABUS language instructions)
al so ha s the exten sion 0 f ITXT. ~vhen you compile your DATABUS
program, however, you get another file that is named the same as
the source fil e but ha s an exten sion of IDBC. Thi s IDBC file is
the one that is actually executed under DATASHARE. Each time
you recompile your program, you wipe out the old IDBC file and
create a new one.

15

THE PHYSICAL FILE NAME

DATABUS assumes that the extension for your physical data
file name will be /TXT. This means that if you do not include
an extension, /TXT is assumed. In other words, ORDERS/TXT and
ORDERS specify the same data file.

Logical File Names
The logical file name is the name that is associated with

the physical fil e name. It is used throughout the program to
reference the physical file specified in the OPEN or PREPARE
sta temen t.

In every DATABUS program, the logical file name must be
declared to be a logical file name through the use of the FILE
statement. For example, to use the logical file name FILEl
throughout the program, you must include this FILE statement at
the beginning of the program:

FILEl FILE

Then the logical file name declared in the FILE statement must
be a ssoc ia ted with a physical fil e name through the use of a
PREPARE (for new files) or OPEN (for existing files) statement.

For example, to create a new file named ORDERS/TXT and use
the logical name FILEl to access it, you have to use the
following two statements:

FILEl FILE
PREPARE FILEl, "ORDERS"

(the /TXT extension specifies a text file and is assumed if not
included in the PREPARE or OPEN statement). Once the file is
created, it must be used with the OPEN statement. The following
statements reference the existing file ORDERS/TXT and associate
with it the logical name FILEl:

FILEl FILE
OPEN FILEl, "ORDERS"

FILEl is the logical name tha t i-s used in all READ and WRITE
statements. Because the OPEN or PREPARE statements associate
this name with a physical file (ORDERS/TXT), DATASHARE knows
where to go to physically READ or WRITE the data.

Why does DATABUS'insist on two names, one logical and one
physical, for the same file? It is actually done as a
convenience to the programmer. If, for example, a different
physical file is used every month, yet the same program is used,
the programmer only has to change the physical name specified in
the OPEN or PREPARE sta tement. The logical fil e name can remain

16

the same. Th~s saves a lot of time because the programmer does
not have to change every line in the program that refers to that
file.

Positioning and Accessing
The current po si tion in a data fil e is defined by two

pointers, the physical record pointer (0 through the number of
records in the file) and the character pOinter (1 through 249).
With physically random access, the physical record pointer
corresponds to the record pointer specified in the READ or WRITE
statement. These pointers are kept internally by DATASHARE and
are used by the access method.

tit, d.p.ItJCp "",";,trY' point6
~ a "f'eet"",. chvd(Jt;er/" tlt.~

RECORD AND CHARACTER POINTERS KEEP TRACK OF THE CURRENT LOCATION
IN THE FILE

Hhen the file is opened (with an OPEN or PREPARE
statement), the record pointer is set to 0 and the character
pointer is set to 1.

All READ and WRITE operations sequentially increment the
pointers. If more than 249 characters are written with a single
WRITE statement, the record pointer is incremented by one and
the character pointer is reset to 1. All physically random
READs and WRITEs begin on physical record boundaries, with the
character pointer set at 1.

vvha t if physical random records exceed 249 characters?
They are continued on to the next physical record. The
following random record will begin on the following physical
record boundary. If thi sis the ca se for your random records,
be sure to recipricate for this by properly incrementing the
record number used in READs and WRITEs

SAMPLE RANDOM FILE WITH TWO PHYSICAL RECORDS PER LOGICAL RECORD

For the above example, you would use every other physical
record number, starting at zero, to access the logical records.

17

READ and WRITE Statements
To read or wr i te a physically random access file, use the

following READ or WRITE statements:

READ filename,numberivariables
WRITE filename,numberivariables

where filename is the logical name of the file, number is a
variable containing the number of the physical record to be
accessed, and variables are the data to be read or written.

There are two control character s tha t are used in
physically random WRITES. These are *ZF, which is used before a
numeric variable to cause it to be right justified and zero
filled on the left, or *MP, to convert a numeric variable to a
"minus over-punch" format.

Tabbing controls can be added to the list of variables to
be read so that selected character positions may be read from a
record wi thout having to read all of the po si tions in the
record. To use tabbing, precede the column number or variable
containing the column number with an asterisk (*). For example,
*10 will tab to the tenth character po si tion in a physical
record.

• I I I I

3 IA'aI414-'Q'~'Q'1 :P'A'U:
:~:v; : I-/~"-:CJ: I! : ;

LP'*t/ol? 10
*10 TABS TO THE TENTH CHARACTER POSITION IN A PHYSICAL RECORD

CAUTION:
records.

Tabbing will not properly expand space compressed

The following examples show how to use the READ and WRITE
sta tement s:

WRITE FILE3, NUl"1 iNAr1E, NUMBER, CODE

Thi s wri tes physical record number N UM. The value s for NAME,
NUMBER, and CODE are wr i tten. An end of 1 ogical r~cord mark
(015) and end of physical record mark (003) is wri tten after
CODE.

WRITE FILE3, NUM iNAr1E, NUMBER, CODE i

This wri tes physical record number NUM. The values for NAME,
NUMBER, and CODE are wr i tten. No end of record marks are
written. The next WRITE will continue to fill up the same
logical record.

READ FILE3,NUMiNAME,*40;CODE

This reads physical record number NUM. The values for NAME and
CODE are read. Any data between the end of NAME and column 40
is ignored. File pointers then point to the beginning of the

18
~- ~---~--~-.-- -----~.~-~~-------~-.------- --~--------.---------

next logical record.

READ FILE3, NUM iNAt-m, NUMBER i

Thi s reads NAME and Nrn-mER from physical record number NUM.
File pOinters are left pointing to the next character position
following NUMBER.

READ FILE3,ZEROii

Assume that the numeric variable ZERO is defined to be zero in
value. This statement causes the file pointers to be positioned
to the physical beg inning of the fil e exactly as if an OPEN
statement had been executed.

The WRITAB Instruction
The WRITAB instruction allows you to write characters into

any character po si tion s 0 f a physical record without di st urbing
the rest of the record. The record must already exist. To use
tabbing, precede the col umn n umber with an asterisk (*). The
following variable is written starting at the character position
specified. If no positioning is specified, the writing starts
at the beginning of the physical record. For example:

WRITAB FILE 4 ,NUM iA, *70, B, *10, C, *NAME, "NAME"

writes the value for A at· the beginning of the record, B at
column 70, C at column 10, and "NAME" at the position specified
by NA!1E. Note that WRITAB, like other random access WRITEs, does
not use space compression. It will not properly expand the
character pOSitions of space compressed records.

Writing the End-of-File Mark
After you have wr i tten your random access fil e, or if you

have added data to the file, you must add an end-of-file (EOF)
mark after the last record. To do this, increment the record
counter variable to one past the last record written, and then
use the WEOF instruction. The WEOF instruction has this format:

WEOF file,NUM

where file is the logical file name and NUM is the record
counter variable.

Then use the CLOSE instruction to close the data file.
To add data to the physically random file, increment the

record counter variable to one past the last record written
(this corresponds to the end-of-file record) and begin to write.
Because you've overwritten the end-of-file mark, a new one must
be written when you are done adding data to your file.

Random Access Program Examples
In the following DATABUS program, all of the

characteristics of a company's parts are inventoried in a

19

physically random file. Record 0 describes the file. This is a
particularly appropr ia te appl ica tion for a physically random
file because the parts are numbered from 1 to 79.

Thi s program create s a fil e named PARTS/TXT and wri te s the
first logical and physical record that describes the file. Then
the user is requested to keyin a description, price, and
quantity for each part in chronological order. Once the 79 part
descriptions have been entered, an end-of-file mark is written.
The variable PARTNO contains the number of the physical record
for each en try.

PARTNO
ONE
ZERO
DESC
PRICE
QUAN
NPART
PARTS

LOOP

DONE

FORI'1 " 1"
FOR~·1 "1"
FORM "0"
DIM 15
FORH 3.2
FORM 5
FORM "80"
FILE
PREPARE PARTS, "PARTS"
WRITE PARTS, ZEROi "PART INVENTORY"
DISP.LAY *ES, "PART NUMBER" ,PARTNO
KEYIN *N, "DESCRI PTION:" , DESC, *N, "PR ICE: $"

PRICE, *N, "QUANTITY:" ,QUAN
WRITE PARTS,PARTNOiPARTNO,DESC,PRICE,QUAN
ADD ONE TO PARTNO
COMPARE PARTNO TO NPART
GOTO DONE IF EQUAL
GOTO LOOP
DISPLAY *ES, "THANKS"
WEOF PARTS, PARTNO
CLOSE PARTS
STOP

This DATABUS program, when executed, creates a file named
PARTS/TXT. The first nine records might have been filled in to
resemble the following:

PART INVENTORY
lWRENCH
2WRENCH
3WRENCH
4WRENCH
5~'VRENCH

6WRENCH
7HA1'lMER
8HAMMER

2.95
3.95
4.95
6.50
7.95
9.95
4.95
6.95

300
300
400
100
300
400
300
600

To see wha t quanti ty of a spec ific part exi st s, and
po ssibly change tha t value, the following program wa s written.
This progam asks the user for the number of the part that he
want s checked. The program reads tha t record and di splays the
quantity inventoried. The user is given the opportunity to
change the number of parts inventoried. Then the user is asked

20
_ .. _ _--- - --.--.--.. -.-.~.-.-.--~ .. __ ._._._-- .-. -~----.. ~~~~~-

if he is finished changing the file.
Note the use of the OVER condi tion check. If a record

cannot be found, the OVER flag is set. The checking of the OVER
flag is an easy way to check if the part number specified is
included in the file.

PARTNO
QUAN
CHANGE
YES
DONE
NQUAN
PARTS

LOOP

END

ERROR

FIX

FIN

FORM 2
FORM 3
Dni 1
INIT "Y"
DIM 1
FORM 3
FILE
OPEN PARTS, "PARTS"
KEYIN *ES, "QUANTITY CORRECTION PROGRAM":

*P1: 3, "PART NUMBER: "PARTNO
READ PARTS, PARTNOi *27, QUAN
GOTO ERROR IF OVER
DISPLAY *P1:5,"EXISTING QUANTITY IS",QUAN
KEYIN *P 1: 6, "DO YOU WANT TO CHANGE IT?"

CHANGE
r·1ATCH CHANGE TO YES
GOTO FIX IF EQUAL
KEYIN *P1: 8, "ARE YOU DONE?",DONE
MATCH DONE TO YES
GOTO FIN IF EQUAL
GOTO LOOP
DISPLAY ,*P1:9,"**BAD PART NUMBER**"
GOTO LOOP
KEYIN *P1:7,"NEW VALUE:",NQUAN
WRITAB PARTS, PARTNOi *27 ,NQUAN i
GOTO END
CLOSE PARTS
DISPLA Y *P 1: 9, "THANKS"
STOP

Indexed Access

When you use indexed access, you use two files. One file
is the actual data file. The other file contains the index
structure. Because data files may be accessed in many different
ways, a data file can have several index files associated with
it.

You can create the data file using physically sequential or
random access WRITE statements. Once the file is created, you
use the DOS INDEX command to create the index files. Because
indexing isba sed on field s in logical records, the da ta file
can be record and space compressed. In thi s section, the word
record refers to a logical record. The data in each logical
record can be space compressed and the fields will be properly
in terpreted.

Indexing is based on the standard ASCII collating sequence.
See Appendix B for a chart of ASCII values.

21

Indexing is Based on Keys
Indexing is based on a key. A key is a field of data in

each record. Each key must be unique. The key can be alphabetic
or numeric. In the following example, the first nine digits in
each field represent the person's social security number and is
used a s a key to that record.

3474bQOOOJOi-ItJ Q. Pv6L-IC ., ..

4>l07~21 ((SUSAN SUl\lSHlNE', ...

2SQ I I zoq I JANE 1X>E
L ~ !/Ot'fj,1 $6:IPI",'f;r DVIII"dIr f~ f/6ed as

an I~ing K.ef tz> ~~M...

A KEY IS A FIELD OF DATA

Before you write the data file, you should consider the
best arrangement for the data so the key choice can easily be
made. The key must be in the same posi tion in each logical
record.

;The INDEX Util i ty
To use the INDEX utility, you must ROLLOUT to DOS and issue

the INDEX command at the console or include it in a CHAIN file.
See Chapter Six for an explanation of ROLLOUT and examples of
its use. The INDEX command has this format:

INDEX input,outputikey

where input is the name of the data file, output is the name of
the index file that INDEX will create, and key specifies the
field tha tis used a s the index. If an output fil e name is not
specified, the input file name will be used with an /ISI
extension.

For example, if the data file given in the previous example
is named CLASS1/TXT, then this command:

INDEX CLASS1i 1-9

creates CLASS1/ISI, an index file containing the index structure
based on the social security numbers at the beginning of each
record.

22

~ the ;"UK .?1i!

CLA551/ISI
1203~5S7

13IZISSH2.
ZO;3Stf 157'1
347~2.2.1
34'02-Q.3750
3QOO2.05O'l

..v--- the d£& hie.

CLAS51/TXT
....... -.

120~sq!5'b7 ~

ZO~eqIS7q ~ ~ w_
347~~21 - .-

THE INDEX FILE CONTAINS POINTERS TO INDEX ENTRIES IN THE DATA
FILE:

You can create several index files for the same data file
by using the INDEX utility on different fields and specifying
different output files. For example, these commands:

INDEX CLASS1, CLASS1Ai 1-9
INDEX CLASS1, CLASS1B i 24-28

create two index files for the CIASS1 data file. CIASS1A/ISI
contains the index structure based on the characters in the
first nine positions in the data file. CLASS1B/ISI contains the
index structure for the data in positions 24 through 28. When
you want to read or wri te based on the key declared in
CLASS1A/ISI, you open CLASS1A/ISI, which automatically points to
CIASS1/TXT, the da ta fil e. When you wan t to use the index in
CLASS1B/ISI, you open CLASS1B/ISI, which also points to
CLASS1/TXT, the data file.

The Five Indexed Operations
Once the index is created for a data file, there are five

ba sic indexed opera tions you can perform on a file. The se
operations are:

1. Reading a record of a given key value
2. Reading the record of the next sequential key value
3. Updating the record that was last accessed through the

index
4. Inserting a new record of a given unique key value
5. Del~ting a record of a given key value

All of these operations are discussed in the following sections.

Logical and Physical Files
For indexed files, the IFILE declaration must be used to

declare that a file is an indexed file. The following statement
declares that FILEA is the logical name for an indexed file:

FILEA

To
physical

IFILE

associate this logical file name with an existing
index file, you must use the OPEN sta tement. The

23

sta temen t:

OPEN FILEA, "CODES"

associates the logical name FILEA with the existing index file
CODES/lSI. (In this case, the /ISI extension is assumed if an
extension is not specified because this is an index file
declaration). CODES/lSI is the index structure that points to
the CODES data file.

Indexed READ Statements
Indexed READ statements use this format:

READ file,keYivariables

where file is the logical file name (declared as an IFILE), key
is a var iabl e con ta ining the characters you are looking for in
the index, ahd variables are the list of data items. The index
file is searched for the key given in the string variable key.
The key is considered to match an item in the index file if both
have exactly the same number of characters and all of them match
or if all of the characters up through the length of the index
i tern rna tch and then the rest of the character s in the key
variable are spaces.

Remember that there are no trailing spaces in the index key
items. Thi s mean s tha t even if the INDEX utility is told to
index on column 1 through 9, and if that field in a certain
record con si st s of only one character followed by eight spaces,
the index file key i tern would consist of that one character
followed by the key terminator character~

If a match is found, the record containing the matched key
is read from the beginning, including the key value.

If no match is fo~nd, the OVER condition flag is set. It
is, therefore, a good idea to include a statement similar to the
following, which transfers control to label BAD, where an error
message is displayed:

GOTO BAD IF OVER

The following READ statements show how indexed reads can be
performed:

READ FILE,KEYiKEY,NAME,ADDRESS

This reads the record containing KEY, and since KEY is the first
variable in the record, reads KEY along with NAME and ADDRESS.

READ FILE,KEYiKEY,NAME,ADDRESSi

Thi sis similar to the above operation, but saves time by not
scanning to the end of the logical record containing the KEY.

READ FILE,NULLiKEY,NAME,ADDRESS

24

Ass uming that NULL is given a
re-read. This re-reads the
accessed.

null value, this is an indexed
last logical record that was

READ FILE, KE Y i *20, NAME i

This reads the record containing KEY and reads data into the
variable NA!1E starting at character posi tion 20. The semicolon
is used because it is not necessary to read any other data in
the record at this time.

CAUTION: The tabbing facility illustrated above, like all
DATASHARE tabbing facilities, will not properly expand space and
record compressed files.

The READKS In struc tion
All of the key pointers are stored sequentially, in ASCII

collating sequence, in the index file (see Appendix 8 for a list
of ASCII values). The READKS instruction is used to read the
record pointed to by the next sequential key entry in th~ index
file. The following illustration shows how READKS can be used:

~ '/Ida. ltie

JOHN5O}.l
JONes
KEL.L\{

LON6-

~lO~ -
..-...- K.6u-y -----....
~JOHNSON--

.............. JoNES --

--- LAN6-L'1---

READKS READS THE SEQUENTIALLY NEXT KEY IN THE INDEX FILE

The READKS instruction follows this format:

READKS fileivariables

where file is the name of the logical file and variables are the
da ta tha tis to be read.

For exam pi e, thi s READKS, statement can be used:

READ KS FI LE i *20, NAI.\lE

Thi s reads the var iable NAf-1E from the 20th character po si tion in
the next sequential keyed record.

Indexed WRITE Statements
To do indexed in sertion wr i tes, use the WRITE sta temen t,

which has this format:

WRITE file,keYivariables

where file is the name of the logical file and variables are the

25

da ta that is to be wr i tten in to the file. Key must not be null
and must not already exist in the index.

The key is in serted in the index fil e and the record is
written at the end of the data file. A new end-of-file mark is
automatically placed after the added record. If your data file
has more than one associated index file, use the INSERT
instruction to add the key values to the other indexes. See the
INSERT section for instructions on how to use this.

When inserting items whose keys fall randomly wi thin the
collating sequence, you can usually insert a number of records
equal to one-tenth of the total number of records in the file
before the insertions will take significantly longer. It
generally is a good- idea to REFORf.1AT wi th record compression and
then rerun the INDEX utility a s often a s practical when many
insertions and deletions are being performed. This will keep the
speed of insertions and indexed accesses as high as possible.

The following examples show how indexed insertion \,iRITE
statements work:

WRITE FILE,KEY;KEY,NAME,ADDRESS

This writes a new record containing the values for KEY, NAME,
and ADDRESS at the end of the data file. An end-of-file mark is
automatically written after ADDRESS. The index is updated.

WRITE FILE,KEY;KEY,NAME,ADDRESS;

This also writes a new record, but does not write an end-of-file
mark at the end of the file. The index is updated. You could
use this if you wanted to finish writing the record physically
se quentially, and then wr i te an EOF mark a t the end of the file
yourself. You must be careful, however, that no other DATASHARE
user is going to do an insertion in that file before the EOF
mark is written, or they will get a RANGE trap error.

If you are going to add a lot of data to your file, it
often is a good idea to add it physically sequentially and then
create a new index structure by re-running the INDEX utility.

UPDATE f.1odifies the Most Recent Record
The UPDATE instruction allows you to modify the last record

that was accessed with a READ or READKS operation. You do not
supply the key because it knows which key to use. UPDATE ha s
the following format:

UPDATE file;variables

where file is the logical file name and variables are the data
that is to be overwritten. For example:

UPDATE FILE;*20,ADDRESS

reads the last indexed accessed record in FILE and overstores
the data in ADDRESS starting at the 20th character.

26

NOTE: Remember that tabbing instructions do not properly expand
space and record compressed notation.

INSERT Updates Other Indexes
Often you will have more than one index for a data file.

The indexed insertion WRITE statement only updates one index.
To update any other indexes, use the INSERT instruction. When
the INSERT operation is performed, the specified key is inserted
into the specified index file. This must be performed after the
a ssoc ia ted indexed in sertion WRITE and before another WRITE.
The format of the INSERT instruction is:

INSERT fil e, key

where file is the name of the logical index file and key is the
key that is to be inserted in the index.

DELETE Deletes a Record
DELETE allows a record to be physically deleted from a data

file and for it s key to be deleted from the speci fied index.
The DELETE instruction is also used to delete keys from any
extra index files for that data file. The DELETE instruction
has this format:

DELETE file, key

where file is the name of the logical file and key is to be
deleted from the index.

As suming tha t the da ta file INVO ICE ha s three a ssocia ted
logical index files, INVOICEA, INOIVCEB, and INVOICEC, the
following instructions will delete the record pointed to by KEY
and delete the index entries in the three index files:

DELETE INVOICEA, KEY
DELETE INVO ICEB, KEY
DELETE INVOICEC, KEY

Because the DELETE operation actually just overstores the
logical record with 032 delete characters, it does not release
any space. Therefore, it is a good idea to REFORMAT and then
re-index the file if you are doing a lot of deletions. REFORMAT
will release this extra space. See the REFORMAT section of this
chapter.

Writing the End-of-File Mark
When you create the data file, you use physically

sequential or random access methods and use the WEOF command.
When you add data using indexed insertion HRITE statements, the
end-of-file mark is automatically written for you.

Indexed Program Example
The following example

suitable for indexed access.
each employee based on that

illustrates just one appl ication
A company keeps information about

employee's social security number.

27

A data file ha s been set up with the social security number in
the first nine character positions. An index was created based
on tha t field.

In this program, the user is asked to type in a social
security number. If the social security number is found, all
information about that person is displayed on the screen. If it
isn't found, an error message is displayed. A social security
number of nine zeroes ends the program.

DONE
SS
NAME
ADR
CITY
STATE
ZI P
AFILE

LOOP

BAD

FIN

INIT "000000000"
DIM 9
Dm 20
DIM 20
DIM 15
DIM 2
DIM 5
IFILE
OPEN AFILE, "CLASS1"
KEYIN *ES, "SOCIAL SECURITY NUMBER:" ,SS
READ AFILE,SSiSS,NAME,ADR,CITY,STATE,ZIP
GOTO BAD IF OVER
DISPLAY *Pl:3,NAME,*Pl:4,ADR,*Pl:5,CITY:

" ",STATE," ", ZIP
GOTO LOOP
[1ATCH SS TO DONE
GOTO FIN IF EQUAL
DISPLAY *Pl:3,"**BAD NUMBER**"
GOTO LOOP
DISPLAY *P 1: 3, "THANKS"
STOP

Common File Access Considerations

Since DATASHARE is capable of executing several programs at
once, more than one program can acce s s a single file a t any
given time. There is no problem if these accesses are not
modifying the contents of the file or if they are modifying
different records in the same file.

However, if a certain record may be modified by more than
one program a t a time, a lockout mechani sm is needed to allow
one program to finish its modification before another program
can start.

28

,
:-,

IF MORE THAN ONE USER TRIES TO !JIODIFY A RECORD, A PROBLEM CAN
DEVELOP

The Prevent Interruptions (PI) instruction enables a
programmer to prevent certain types of program activities from
being interrupted by another program for up to 20 instructions.
The number of instructions must always be a fixed decimal
number, not a numeric variable. The instructions included
cannot include KEYIN, DISPLAY, or CONSOLE. The following
example shows an effective use of the PI instruction:

PI 4
READ FILE, KEY iNAME, QUAN, STOCK
SUB QTY FROM QUAN
GOTO NOTNUFF IF LESS
UPDATE FILE iNAME, QUAN,STOCK

Interruptions will be prevented from the PI instruction through
the UPDATE instruction.

If, the user, rather than the program, needs to make a
decision before a modification is made, the coding becomes more
elaborate. The PI instruction cannot be used to prevent
interrupts when a KEYIN, DISPLAY, or CONSOLE instruction must be
executed. First the value should be read in and displayed for
the user. Before a modification is made, however, the value
should be rechecked. The following instructions illustrate
thi s:

READ FILE, KEY iNAlJIE, QUAN, STOCK
DISPLAY *ES,NAME,*N,QUAN,*N,STOCK
KEYIN *N,"CHANGE?",CHANGE
!-1ATCH CHANGE TO "YES"
GOTO NO IF NOT EQUAL
KEYIN *N,"NEW QUANTITY:" ,NQUAN
PI 4
READ FILE, KE Y iNAME, QUAN1, STOCK
MATCH QUANl TO QUAN
GOTO NE IF NOT EQUAL
UPDATE FILE, KEY iNAME,NQUAN,STOCK

29

If the user wants to change the value, he supplies the new
value and the 01 d value is checked to see if it ha s been
changed. If it has been changed, control is switched to another
part of the program, which tells the user that the value has
been changed by someone else and asks the user if he still wants
to change the value.

The REFORMAT Utility

The DOS REFORMAT utility is used to change the internal
disk format of a data file. REFORMAT permits you to select
essentially three different output file formats:

1. Blocked files that are not space compressed.
2. Record compre ssed file s tha t are not space

compressed.
3. Files that are both record compressed and space

compressed.

Record compression and space compression are expl ained in
the Physically Sequential Access section of this chapter.

Blocked files are used for physically random access, where
each logical record must be associated with a distinct physical
record. Often it is convenient to create a random file through
the use of the Editor, which record and space compresses its
output. REFORMAT can then reprocess the file into the correct
format for random access.

Also, when a file is accessed wi th the indexed access
method, any additions or deletions result in an increase in the
physical size of the file. REFORMAT recovers vacated space and
releases extra allocated space.

How to Use REFORMAT
REFORMAT must be run under DOS,

ROLLOUT must be used to acces s DOS
REFORMAT command ha s t hi s fo rma t:

and not under DATASHARE.
(see Chapter Six). The

REFORMAT file1,file2iparameters

where file1 is the input file, file2 is optional and specifies
the name output file which will contain a reformatted version of
file1 (if this is omitted, file1 will be reformatted in place),
and parameters include those listed below:

30

PARAMETER DESCRIPT ION

Bn The output file will be blocked with n
logical records per physical record a'nd
wi th no space or record compression.
(You will usually want to use 1 as the
value for n.)

C The output file will be space and record
compressed. The number of logical

R

Ln

records per physical record will be
indeterminate.

The output file will be
compre ssed. The number of
records per physical record
indetermina te.

record
logical

will be

The length of each logical record will
be adjusted to n characters. If the
logical record is shorter than n
characters, it will be padded with
blanks to the proper length. If the
log ical record is longer than n
characters, the action taken depends on
the T or S parameter; which also must be
specified:

T Truncate the logical
necessary. All extra
will be lost.

record if
characters

S Segment the logical record into as
many logical records as necessary,
with each containing n characters,
padded if necessary.

D If reformatting is done in place and
this parameter is specified, any disk
space vacated by the reformatting
proce s sis ret urned to the opera ting
system for reuse.

REFORMAT Messages
Because there are so many error messages that REFORMAT can

display, and because those messages are explained in the DOS.
User's Guide, refer to that book for an explanation of the
REFO~~AT messages.

Helpful Hints

Once you understand how to use data files, these hints will
help you use them even more effectively. The se hints wi 11 help
your DATASHARE program execute faster and more efficiently.

Close the File Properly
The CLOSE instruction can mean the difference between a lot

of wasted space on a disk and the efficient use of the space on
a disk. When a file is created, file space is allocated in
segments. Under DOS.A each segment contains 192 physical
records. Under DOS. B each segment contains 240 physical
records. When a CLOSE instruction is executed, all extra
physical records are given back to the operating system and can
be used to form another segment. Without the CLOSE instruction,

31

any extra physical records will still be allocated to your data
file.

USE CLOSE TO GET RID OF EXTRA SPACE

Group I/O into One Statement
If you group all of your reads or writes for one logical

record into one statement, there will only be one physical disk
head movement. But because there may be other DATASHARE users
on the system and you may be using system routines, if you use
several small read or wr i te continuous sta temen ts (ending in a
semicolon) the disk read/write head will have to reposi tion
several times. Obviously this takes more time, so if you have
the data area available to store one entire logical record, read
or write it all at once.

The following exampl e requires three di sk head movemen ts
and wastes execution time:

READ AFILE,SEQiNAMEi
DISPLAY *ES,NAME
READ AFILE,SEQiADR,CITY,STATE,ZIPi
DISPLAY *N,ADR,*N,CITY,*N,STATE,* N,ZIP
READ AFILE, SEQ iNUM 1, NUM 2, NUM 3

This requires only one disk head movement, efficiently uses
execution time, and accomplishes the same result.

READ AFILE,SEQiNAME,ADR,CITY,STATE:
ZIP, NUM 1,NUM 2, NUM 3

DISPLAY *ES,NAME,*N,ADR,*N,CITY,* N,STATE,*N,ZIP

Use REFORMAT to Reorganize Your Files
If you are using indexed access, and add or

you should use the REFORMAT util~ty to release
space. See the REFORMAT section of this
REFORMAT, you must re-index your index file.

Write EOF at End-of-File

delete records,
extra allocated
chapter. After

The v'mOF in struc tion does not a utoma tically space to the
end of file to write an end-of-file mark. You must be
positioned at the end of the data file, or the EOF mark will be
wri tten in the middl e of your da ta area. If the EOF mark is
written in the middle of your data area, you will overwrite some
of your data. Also, if you are reading physically sequentially,
you will not be able to read past the EOF mark.

32

The WEOF in struction should not be used
insertion WRITES because the end-of-file is
written after each write for you.

with indexed
a utoma tically

33

CHAPTER THREE

PROVIDING SYSTEM SECURITY

In troduc tion
Be fore a DA TASHARE system can be used, t here must be an

ANSWER and a MASTER program for every port. The ANSWER program
allows you to force the user to give some sort of identification
before he is allowed to use the DATASHARE system. The ANSWER
program chains to the MASTER program, when the STOP instruction
is executed. The MASTER program usually reque st s the name of
the program that the user wants to execute.

These programs, wri tten in the DATABUS programming
language, are created under the DOS Editor and are compiled just
like any other DATASHARE program.

Separate Programs for Each Port
Because DATASHARE looks for an ANSWER and a MASTER program

for each port, the ANSWER and MASTER programs are named ANSWERl
and MASTER1 for port 1, ANSWER2 and MASTER2 for port 2, etc.

EACH PORT CAN USE ITS OWN ANSWER AND MASTER PROGRAMS

If DATASHARE cannot find the ANSWER or MASTER program for a
port, it will look for programs named ANSWER or MASTER, and will
use those programs. If those programs do not exist, that port
will never become active even if it is configured into the
system.

You may want to use separate ANSWER and MASTER programs to
individualize the access procedure for each port. For example,
you could use a different ANSWER and ~1ASTER program sequence for
the DATASHARE port you have in the accounting area than the
programs for the port in the shipping area.

Certain programs, including DSREMOT and the DATASHARE
Editor, need to- know the port number associated with the port
from which they are executing. To use the se programs, separate
MASTER programs. must be used for each port and the port number
must be the first data character of the MASTER program for that
port.

35

Consider Your System
The ANSWER and MASTER programs must be tailored to fit your

operating environment. Careful consideration will allow you to
provide personal access restrictions and to enforce file access
1 imi ta tions.

The ANSWER Program

The ANSWER program can provide the opportunity to require
tha t the user identi fie s himsel; properly before he use s the
system. In an environment where security is important, this
feature becomes an essential safeguard.

The User Must Satisfy the ANSWER Program
When a user first sign s on to the system and is executing

in the ANSWER program, he cannot escape identification requests
by striking the INTERRUPT Key. The user must satisfy the
requirements of the ANSWER program before he can be granted
access to the DATASHARE system.

The ANSWER program can contain whatever identification
sequence fits your operating environments. If you do not desire
to use any identification whatsoever, your ANSWER program can be
very short, possibly containing only an identifying message and
a STOP statement. Two examples of ANSWER programs follow.

One essential security measure to take for all ANSWER
programs is to make a backup copy of each ANSWER program on
cassette and then destroy the source file for those programs.
This insures that no one will use the Editor to list the program
and find the security codes.

A Simple Answer Program
The following example shows a very simple answer program

for port 3. First this program displays the port number on the
user's display screen and displays its name on the console.
Then the program asks the DATASHARE user to supply an
identification ("ACCOUNTING"). If the identification matches, a
STOP statement is executed, which causes a chain to the MASTER
program. If the identification doesn't match, an error message
is displayed and the user has to try again.

36

PORTN
ID
IOCODE

LOOP

GOOD

FORM "3"
DIM 10
INIT "ACCOUNTING"
DISPLAY *ES, "DATASHARE PORT" ,PORTN
CONSOLE "ANSWER", PORTN
KE YIN *E OF F , "I D: " , I D
MATCH ID TO IDCODE
GOTO GOOD IF EQUAL
DISPLAY "***INVALID ID ***"
GOTO LOOP
STOP
STOP

I f you look closely a t the KE YIN sta temen t, you'll notice
how a simple security measure was enforced. The *EOFF control
inhibits the display of all characters that are typed in by the
user. Because the echo is turned on after each KEYIN statement,
the *EOFF control must he included at the start of each
statement in which no echo is desired.

Because the input characters are not echoed back on the
di splay screen, no one can see the identi fica tion code tha t the
user is typing. Therefore, unauthorized people cannot see this
identification and use the DATAS~RE system.

A More Advanced Example
The simple example used only two simple security measures:

an iden ti fica tion wa s reque sted and the echo wa s turned of f
while the identification was typed in. There are several other
convenience and security measures that can be easily built into
any ANSWER program.

One added security measure is to use the employee's social
securi ty number, or some other unique identi fier, for
identi fication in stead of just one iden ti tier for the en tire
group. This insures that only a select group of people can use
the system.

Another added security measure is to limit the number of
bad identifications allowed, so an unauthorized user can't keep
entering identifications to try to. break the system's security.
After a certain number of tries, the ANSWER program can alert
the operator tha t someone who apparently does not know the
identification code is trying to access the system and prohibit
the user from entering a valid identification.

The following program incorporates both of these added
features. There are only five people that are allowed to use
this DATASHARE port. If the user does not enter an acceptable
number after three tries, the user is not allowed access to the
system even if he does enter a valid identification.

Notice the use of the *W wait statements. Each *W causes a
one-second wai t. Use the *W rather than a counter or closed
loop to cause a wait because the *W uses very little processor
time. A counter or a closed loop, on the other hand, uses a lot
of processor time and will slow down the entire DATASHARE
system.

PORTN FORl'1 "3"
10 DIM 9
JANE INIT "342869387"
SALLY INIT "289374621 "
BOB INIT "293872159"
JOHN INIT "359123572 "
GEORGE INIT "381298724"
ZERO FORM "0 "
CTR FORM "3 "
ONE FORM "1"

DISPLAY *ES, "DATASHARE PORT" , PORTN
CONSOLE "ANSWER", PORTN

LOOP KEYIN *E OF F , "10: " , I 0

37

WARN
BAD

cm1PARE CTR TO ZERO
GOTO WARN IF EQUAL
MATCH 10 TO JANE
STOP IF EQUAL
MATCH 10 TO SALLY
STOP IF EQUAL
MATCH 10 TO BOB
STOP IF EQUAL
MATCH 10 TO JOHN
STOP IF EQUAL
MATCH 10 TO GEORGE
STOP IF EQUAL
DISPLAY "**BAD IDENTIFICATION**"
SUB ONE FROM CTR
GOTO WARN IF EQUAL
GOTO LOOP
CONSOLE "NO 10 FOR PORT" ,PORTN
DISPLAY "**NO VALID 10 ENTERED**", *N:

"**PORT EXECUTION STOPPED**",*W,*W,*W,*W
GOTO BAD

NOTE: A user could try to sign on to the system again after he
has been stopped by the above program by turning his port off by
the power swi tch and then turning it on again or redialing (if
he is using a dial-up port). If you know that a port is used as
a dial-up, you can revise the above program to di sconnect the
port. A CHAIN "ANSWER" sta tement will di sconnec t a dial-up
terminal. Thus, the only change necessary to change this
program to disconnect a dial-up connection is to change the last
line of the program to read CHAIN "ANSWER".

When the terminal is reconnected to the DATASHARE system,
the user must again try to satisfy the ANSWER program requests.

The MASTER Program

After the DATASHARE user has satisfied the requirements of
the ANSWER program, the MASTER program is automatically
executed. The MASTER program usually requests the name of the
program that the user wishes to exeeute.

The DOS directory, which contains the list of programs
available, cannot be directly accessed by the MASTER program, so
either the user must kpow which program name s he wants or the
programmer must set up some way for the user to obtain the names
of the programs. This can easily be done by setting up a file
that contains the names of all of the programs. The MASTER
program can then display the name of the available programs by
reading this file.

Every STOP statement is actually considered to be a CHAIN
MASTER statement by DATASHARE. Therefore, after each program is
executed, control returns to the MASTER program for that port.

38
--------- -------~~ -----~

A Simple MASTER Program
This simple MASTER program merely requests the name of the

program that the user wants to execute. A CHAIN is executed to
t ha t program, and if the program does not exi st, an error
message is displayed. The RELEASE statement is included in case
the previously executing program for that port forgot to release
the printer.

PORTN
FILNAM

LOOP

NONAME

FORM "3"
DIM 8
RELEASE
CONSOLE "MASTER" ,PORTN
KEY IN *1'1, *E L, "PRO GRAM NAME:", FI LNAM
TRAP NONAME IF CFAIL
CHAIN FILNAM
DISPLAY "**NO SUCH PROGRA~1**"
GOTO LOOP

A More Advanced Example
The simple example offers no help to the DATASHARE user who

does not remember the name of the program he wants to execute.
It also allows any user at any port to execute any DATASHARE
program.

Thi s more advanced exampl e use s a fil e named HELP to
contain the names of the files that the user can access. The
user can request that these file names be listed for him, and
the program checks tha t the user enter s only one of the file
names listed in the file.

PORTN
HELP
FILE
HELPF
NUM
NAME
ZERO
ONE

LOOP

LOOP 1

FORM "3"
I1'1IT "HELP"
DIM 8
FILE
FORM 2
DIM 8
FORM "0"
FORt1 "1"
RELEASE
OPEN HELPF, "HELP"
CONSOLE "MASTER", PORTN
DISPLAY *ES, "MASTER PROGRAM FOR PORT" ,PORTN
KEYIN "TYPE HELP FOR HELP", *N, "PROGRAM NAME:", FILE
MATCH FILE TO HELP
GOTO LIST IF EQUAL
MOVE ZERO TO NOM
READ HELPF,NUMiNAME
GOTO BAD IF OVER
MATCH NAME TO FILE
GOTO OK IF EQUAL
ADD ONE TO NUM
GOTO LOOP1

39

40

BAD

LIST
LISTLP

OK

DISPLAY u**NO SUCH FILE**u
GOTO LOOP
MOVE ZERO TO Nm1
READ HELPF ,NUM ;NM1E
GOTO LOOP IF OVER
DISPLAY NAME
ADD ONE TO N UM
GOTO LISTLP
CHAIN FILE

CHAPTER FOUR

Virtual Memory Programming Considerations

. Introduction
DAT~SHARE uses virtual memory techniques to give each user

the illusion that there is more ma in memory ava ilable to him
than actually exists. Virtual memory allows users at several
ports to execute large programs that would otherwise overflow
the existing memory space.

Once you understand how virtual memory works, you'll find
that it may be easy to increase your program's execution speed
by carefully struc tur ing yo ur programs. And since each program
affect s the speed of the entire DATASHARE system, caref ully
structured programs also help to increase the execution speed of
all other executing programs.

Wha tis Virtual Memory?

One of the most important aspects of any computer system is
the main memory. Memory holds the information that tells the
computer what it is to do at any given time. Memory also holds
part of the data that the computer is going to work with.

Main memory space in any computer processor is limited.
Disks, cassettes, and magnetic tapes are among the devices that
are use to store the data, including information and
in structions, when the processor doesn't immedia tely need it.
When the processor needs tha t in forma tion or in struction, it
must read it from the storage media into main memory, if it
isn't there already.

INFORMATION IS STORED ON DISK UNTIL IT IS NEEDED

DATASHARE Manages the Memory Allocation
The DATASHARE program, with the help of the Disk Operating

System (DOS), decides when new data must be read into main
memory. To do this, it employs virtual memory techniques that
allow DATASHARE to keep track of the memory or storage location
of all of the data.

DATA SHARE tells the Da tapoint processor where the
information is stored on the disk and where it should go in main
memory. Because it takes time to read data from disk to main
memory, DATASHARE tries to minimize the number of reads and
writes that are necessary.

41

DATASHARE Code is Never Modified
Datapoint's DATASHARE system code is reentrant, which means

tha tit is never modi fied and can be shared by more than one
program at a time. Because it is never modi fied, t he system
DATASHARE code must only be read from disk, and never written
back. This feature really saves the processor time because the
processor never needs to write the code back to disk.

Because it is reentrant, more than one DATASHARE port can
execute a section of DATASHARE system code a t anyone time.
This permits all the ports to share the memory space allocated
to the DATASHARE program itself.

DATASHARE system code is also very compact. A very few
instructions are capable of invoking a large amount of processor
activity. Therefore, only a small amount of new DATASHARE
system code must be read from the disk to main memory.

Program Code is Accessed Often
. DATABUS code for user programs ,is also reentrant, but the

code for your DATABUS program is used very differently from the
DATASHARE system code because it is accessed at a very high
rate. Sections of program code are constantly read into main
memory. Unless all the ports share one DATABUS program, several
DATABUS programs must often appear to be .resident in main memory
for execution at various ports.

The next section discusses exactly how DATASHARE manages to
swap system and program code. There are many effective ways you
can structure your DATABUS programs to minimize the amount of
swapping tha tis nece ssary.

Virtual Memory Implementation

Code is Divided Into Pages
DATABUS program code and DATASHARE system code is read into

main memory in chunks that are called pages. Each page contains
250 bytes (a byte is an executable unit, often a character).

Each time a byte of program code needs to be fetched by the
DATASHARE interpreter, a check is made to determine if that byte
is immediately available in memory or if the page containing the
byte must be read in from di sk. DATA SHARE ' s virtual memory
techniques determine when a page must be swapped from disk to
main memory. The page in main memory never needs to be written
back to disk beca use the program code is never modi fied. The
scheme used isba sed on pur e demand, wi th the 1 east recently
used page being overwritten to make space for the new page.

42

THE LEAST RECENTLY USED PAGE IS OVERWRITTEN WHEN A NEW PAGE
NEEDS TO BE READ TO MAIN MEMORY

The Di sk Limi ts t he Number of Page s
The number of pages t ha t can be resident in rna in memory at

one time is limited by the disk controller that you are using
with your DATASHARE system.

The 9350 series cartridge disk controller allows four pages
to be resident in main memory at a time. The DATASHARE system
code uses one page, leaving three pages for user programs. '

~'J.1O!~......-D41if6ilMRE" fI«,6 f'lIf6t

Vier ""'6'".IIm~ ~ t1te dfM,.
.31'"qt16

YOU CAN HAVE FOUR PAGES IN MEMORY IF YOU'RE USING A
CARTRIDGE DISK SYSTEM

The 9370 series mass storage disk controller allows 16
pages to be resident in main memory at a time. The DATASHARE
system code uses four of these pages, leaving 12 pages for user
programs.

43

YOU CAN HAVE 16 PAGES IN MEMORY IF YOU'RE USING A
MASS STORAGE DISK SYSTEM

Attaching more disk drives to your DATASHARE system will
not increase the number of pages allowed because one disk
controller controls all of the disk drives. More disks,
however, can increase the amount of supplementary storage
available to your system. The number of pages that can be
resident in main memory at anyone time has serious implications
on your DATASHARE system performance. The more pages that are in
main memory, the fewer page swaps necessary.

Where are the Page Boundaries?
How can you tell if your code is crossing page boundaries?

It's easy. Look carefully at the 5-digit octal number that is
printed at the left side of your DATABUS program when it is
compiled and li sted on the printer. Whenever the middl e digit
changes to a four, or back again to a zero, a page boundary has
been crossed.

In the following example, the page boundaries are marked:

013 72 W4 SUB C1, X
01405 ADD C2,Y

01772 MOVE BASE,SIX
02005 RESET BASE TO 4

02372 SUB "1" ,MOVE
02413 GOTO CONT IF NOT ZERO

WHEN THE MIDDLE OCTAL DIGIT CHANGES TO A 4 OR A 0,
A PAGE BOUNDARY HAS BEEN CROSSED

Programming Hints

Each time your DATABUS program code crosses a page
boundary, a new page will have to be read into main memory.
There are several effective ways you can minimize the amount of
page swapping in your program.

44

Repeat Code Rather than Call Subroutines
One way to increase execution speed is to repeat small

sections of code a s much as possible rather than call a
subroutine each time tha t code is needed. It is fa ster to
repeat short sections of instructions rather than to call a
subroutine each time those instructions are needed if the
subroutine is located in a different page from the location
where it is called.

2200 DATASHARE allows each program to use 16, 000 bytes of
effective memory space. 5500 DATASHARE allows each program to
use 32,000 bytes of effective memory space. Because this limit
is much 1 arger than most DATASHARE programs ever need to use,
repeating code usually will not enlarge a program beyond the
1 imi t.

Carefully Structure Loops
Loops are sections of code that are repeated. If a loop

spans page boundar ies, each page will have to be swapped back
and forth between rna in memory and the disk. Therefore, it is
best to keep loops small and compact.

Use the TABPAGE In struc tion
The TABPAGE in struc tion forces sections of a program to

start at a new page boundary. This instruction should only be
added after the program is completely debugged, and should be
used with caution.

You should never 1 iberally scatter TABPAGE in struc tions
throughout your program. This usually will result in an
increase in the number of pages that must be read into main
memory, which severely decreases execution speed.

A TABPAGE instruction can also cause more harm than help in
another way. You may be able to increase the execution speed of
one part of your program, but actually decrease it in another
part of your program because the TABPAGE causes other sect,ions
of instructions to cross page boundaries at different places.

The best use for a TABPAGE instruction is to force
often-repeated loops to reside entirely within one or two pages.
Look caref ully a t your program once it works and dec ide if the
TABPAGE instruction can really help you.

A Bad Example
The following section of instructions is

illustration of how NOT to structure a program:

LOOP

L1

KEYIN "NA~1E",NAt'1E

MATCH NAME TO "SALLY"
GOTO L1 IF NOT EQUAL
DISPLAY "SALLY'S IDENTIFICATION PROGRAM"
CALL SALLY
GOTO lOOK
MATCH NAME TO "JANET"
GOTO L2 IF NOT EQUAL
DISPLAY "JANET'S IDENTIFICATION PROGRAM"
CALL JANET

a good

45

L2

L3

lOOK

GOTO lOOK
MATCH NAME TO "BILL"
GOT L3 IF NOT EQUAL
DISPLAY "BILL'S IDENTIFICATION PROGRAM"
CALL BILL
GOTO lOOK
DISPLAY "BAD IDENTIFICATION--TRY AGAIN"
GOTO LOOP
KEYIN "PROGRAM NUMBER:" ,NUM

There are two serious problems with this section of
in struc tions. The bigge st problem stems from the CALL
statements. It's very doubtful if the subroutines are really
necessary since control ha s to be transferred somewhere else
anyway. It would be better to .just transfer control to a
section of code that includes the instructions that would be in
the subroutine s.

Subroutines should be universal in nature. Code should be
written in-line unless it is called from various places in the
program. Because it does not appear tha t the se subroutines
would be applicable to any other part of the program, it is best
to avoid using the subroutines.

The second problem ha s to do wi th the size of the main
loop. Loops should be kept as small as possible. The DISPLAY
statements should be outside of the loop.

A Good Example
Notice how small the main loop is in the following example.

No subroutines are called; instead, the instructions are
included in the main program. This makes sense because control
has to be transferred somewhere else anyway.

LOOP

SALLY

46

KEYIN "NAME:" ,NAME
MATCH NAt-1E TO "SALLY"
GOTO SALLY IF EQUAL
MATCH NA1"lE TO "JANET"
GOTO JANET IF EQUAL
["lATCH NA1'lE TO "BILL"
GOTO BILL IF EQUAL
DISPLAY "BAD IDENTIFICATION--TRY AGA IN"
GOTO LOOP
KEYIN "SALLY'S IDENTIFICATION PROGRAM",*N:

"CODE WORD?",CODE

CHAPTER FIVE

Printing

In trod uc tion
Each DATASHARE system can have one system printer attached

to it. Thi s mean s tha t all port s have to share tha tone
printer. This can create problems if too many users want to
pr in tat the same time. The se probl ems can be circumvented,
however, by careful program planning.

Thi s chapter di scusse s the alloca tion of the system
pr in ter, which is directly a ttached to the central processor.
Each port can have a terminal printer attached to it, however.
The Datapoint 9292 Belt Printer can be used as a terminal
pr inter.

To use the 9292 Serial Interface Belt Printer at a
DATASHARE terminal, all you have to do is include the printer
control characters in the DISPLAY statement. To turn on the
terminal printer, use the 020 control characters (with a 3360
terminal) or the 032 control characters (with a 3600 terminal).
To turn the terminal printer off, use the 024 control
characters. All variables listed between the on and off
characters will be printed. In the following example, NAt-m and
ADDRESS are listed on the printer from a 3600 terminal:

DISPLAY 032,NAME,ADDRESS,024

OJtrA6IIARF 0* .. halle..~f'Ied;if?f_pr,."ter
a,ut .a 7:_,;,al P"'i~ O/) tMch tlIr"'inN.

TERMINAL AND SYSTEM PRINTER LAYOUTS

How System Printing is Done

When a user executes the first PRINT instruction in a
program, DATASHARE checks to see if the printer is' available.
If the printer is available, the program is given exclusive
control over the printer. That program retains control over the
printer until it executes a RELEASE instruction. If the printer
is not available, execution is halted until it becomes
availabl e.

47

ONLY ONE PORT PRINTS AT A TIME

Remember to RELEASE the System Printer!
Once your program gets control of thepr inter , it has

control until it executes a RELEASE. If you forget to include a
RELEASE sta temen tat the end of your pr inting operations in a
program, the printer will hang, waiting for that instruction.
Your other programs will not be able to use the printer, and
neither will anyone else's programs.

One sa feguard again st a user forgetting to RELEASE the
printer is to include a RELEASE statement as the first
instruction in the MASTER program. Because a STOP instruction
in a DATASHARE system i s actually a CHAIN ~~ASTER sta tement,
control is pa ssed to the MASTER program immedia tely a fter a
program is executed. Putting a RELEASE in struction a t the
beginning of any other program will not solve the problem, since
DATASHARE ignore s all relea se s except those belonging to the
program that is printing.

Managing the Printer

There are a few effective controls that you can implement
on your DATASHARE system to effectively utilize the one system
printer. Some of these ways are very simple to implement;
others are rather complex. Remember that any method should be
tailored to your needs and requirements.

Write to a Data File, Then Print
Many user s have found tha tit is more convenient to have

their programs write to a data fil e be fore it is printed. A
utility program can be written to read the data file and display
it on the user's display screen. The user can check the file to
be sure that the output is correct before it is printed.

48
------------- -------------------------

}bdJ ,. EQC011

~ b-,

/ WRIT5 mE' £lATA To 0181<
~CH6CK. IT

c;.. THfilJ PRlAJr IT

1'...'
J

I

:

I
-~
~

Use One Port to Print All System Print Files

I.<::::::..~

J

J
:

;~

'"'>"I
--=>

If you can afford to dedicate one DATASHARE port to
printing, you can write a queuing program for all print files on
the system printer that are written to disk. This one port
could constantly execute this queuing program.

This is the way this queuing program could work. Anytime a
user want s to en.ter the name of a da ta file into the queue that
is to be printed, he could execute a program that asks for the
name of the da ta file. The name 0 f the data file is entered
into the queue file. When the print program, operating on the
dedicated port, is done printing one file, it reads the queue
file for the next file name.

You can add some special featUres to each printout this
way. You could print a beginning and ending burst page with
each file. The burst page could contain the time, date, and
name of the file for easy identification.

49

CHAPTER SIX

ROLLOUT and CHAIN

In trod uc tion
ROLLOUT allows a DATASHARE user to temporarily stop

DATASHARE execution at all of the ports and execute DOS
commands. Once the DOS commands have been executed, DATASHARE
can be restored to its previous status.

The DOS commands that are to be executed are contained in a
CHAIN file. The CR.a.IN file specifies the sequence of DOS
commands that are executed. The last instruction in the CHAIN
file usually should be DSBACK, which restores the DATASHARE
system to its previous status.

ROLLOUT is useful for compiling DATABUS programs, creating
an index for a file, or sorting a file. These are operations
that cannot be done under ordinary DATASHARE operation.

ROLLOUT Must be Configured
When you configure your DATASHARE system with the DSCON

program, you are asked if ROLLOUT is to be configured. If you
answer "YES", users will be able to execute ROLLOUT instructions
from their DATABUS programs. If you answer "NO", users will not
be able to use the ROLLOUT facilities.

If you are not sure if ROLLOUT has been configured for your
system, you can run the DSCON program again.

ROLLOUT is
DATABUS program.

How ROLLOUT Works

initiated by the ROLLOUT instruction in
The ROLLOUT instruction has this format:

ROLLOUT string

a

where string specifies the function that is to be initially
executed by DOS. Usually the string is a CHAIN command. The
string can be initialized as a variable, as in this example:

ROLCMD INIT "CHAIN DOSFILE"
ROLLOUT ROLCl-1.D

Or the string can be a quoted string in the command, as in this
. example:

ROLLOUT "CHAIN DOSFILE"

See the CHAIN section of thi s chapter to see how to set up
the CHAIN file.

All Other Programs are Suspended
When a DATABUS program running from any port executes a

ROLLOUT in struction, execution is temporarily suspended a tall
other ports until a DSBACK command is executed. The system
status and memory is written out to a disk file named

51

ROLLF ILE/SYS.
At the 2200 or 5500 console, a beep is sounded to alert the

opera tor tha t a ROLLOUT is ini tia ted. DATASHARE is suspended
and DOS is initialized. The DATASHARE time clock is stopped
during ROLLOUT unless the DSBACKTD command is executed. The
ROLLOUT program suppl ie s the commands for DOS. When the DOS
fUnctions are completed, the console is left at DOS level unless
a DSBACK command is executed to restore the DATASHARE
interpreter system to its previous status.

If the console is left at DOS level, DOS commands can be
entered at the console. A DSBACK command will return the system
to DATASHARE control.

When to Use ROLLOUT
The ROLLOUT feature is particularly useful when a file

needs to be sorted with the DOS SORT command or if an index file
needs to be made wi th the DOS INDEX command. Because DATABUS
programs must be compiled under DOS, ROLLOUT can be used for
DATABUS compilations. Examples of some of these functions are
given in the CHAIN description of this chapter.

ROLLOUT Inconveniences Other Users
ROLLOUT inconveniences other DATASHARE users because it

temporarily suspends the execution of their programs. They must
wait (hopefully patiently) .until the ROLLOUT is over.
There fore, you should use ROLLOUT with di scretion and
consideration of other users.

Also, unless the other users are informed in some way that
a ROLLOUT is occurring, they will not know wha tis happening
when a ROLLOUT is executed. Since their terminals appear
inactive, they may think the system has gone down for some other
reason.

ROLLOUT Precautions
There are a number of precautions which must be observed

during the use of ROLLOUT. The functions performed under DOS
must not a ffect any of the operations tha t were taking pl ace
under DATASHARE. For example, any of the ANSWER or MASTER
programs must not be changed and files that are open and in use
must not be modified or deleted.

When control returns to DATASHARE, certain items in memory
reflecting the state of the DOS file structure are restored. If
these items are no longer the same, terrible things can happen
to the DATASHARE interpreter system. Operations to be watched
in particular include the changing of the object code of any
program that is running, the changing of any files that are
open, and the re-arrangement of any disks with files in use
within a multi-drive system.

Note that changing the DATASHARE configuration will not
have effect until the next time the DATASHARE system is
initialized. Reinitializing the system after ROLLOUT will not
see the configuration change.

52

The CHAIN File

The CHAIN Command
The CHAIN command tells DOS to look at the disk file

specified for the list of DOS commands that are to be executed.
Basically, the CHAIN file takes the place of a user entering the
commands at the system console under DOS.

To specify the name of the file that contains the DOS
commands, specify that file name in the CHAIN command string, in
the following manner:

CHAIN DOSFILE

The CHAIN File Contents
The easiest way to create a CHAIN file is to use the

Editor. Each line in the CHAIN file contains an instruction for
DOS to execute. Wha t you put in your CHAIN file, of cour se,
depends on your particular application. All CHAIN files should
end with the OS BACK command.

The following CHAIN file simply asks DOS to sort a file:

SORT AFILE,BFILE
DSBACK

This CHAIN file contains INDEX commands for indexed files:

INDEX CLASS1,CLASSIAil-9
INDEX CLASS1,CLASSIBilO-15
DSBACK

CHAIN files can contain any DOS commands. Remember not to
include commands that change the state of the DOS file structure
(see the ROLLOUT Precautions section for a complete list of
precautions). See the DOS. User's Guide for an explanation of
DOS commands.

53

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character str ing

event

list

name

label

nvar

nval

nlit

svar

sval

slit

nlist

The result of any arithmetic or string
operation: OVER, LESS, EQUAL, ZERO, or
EOS (EQUAL and ZERO are two names for the
same condition).

Any string of printing ASCII characters.

The occurrence of a program trap: PARITY,
RANGE, FORMAT, CFAIL, or 10.

A list of variables or controls appearing
in an input/output instruction.

Any combination of letters (A-Z) and
digits (0-9) starting with a letter (only
the first eight characters are used).

A name assigned to a statement.

A name assigned to a statement defining a
numeric string variable.

A name assigned to an operand defining a
numeric string variable or an immediate
numeric value.

An immediate numeric value.

A name assigned to a statement defining a
character string variable.

A name assigned to an operand defining a
character string variable or a quoted
alphanumeric character.

An immediate character string, enclosed
in double quotes (").

A serieS of contiguous numeric variables.

55

slist

rn

seq

key

null

A series of contiguous string variables.

A positive record number (>= 0) used to
randomly READ or WRITE on a file.

I

A negative number l (< 0) used to READ or
WRITE on a file sequentially.

A non-null string used as a key to
indexed accesses.

A null string used as a key to an indexed
read.

FOR THE FOLLOWING SUMMARY:

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive (one
or the other but not both must be used).

56

COMPILER DIRECTIVES

label
label

EQU
EQUATE
INC
INCLUDE

FILE DECLARATIONS

label
label

FILE
IFILE

DATA DEFINITIONS

label
label
label
label
label
label
label
label

CONTROL

FORM
FORM
DIM
IN IT
FORM
FORM
DIM
INIT

GOTO
GOTO
GOTO
BRANCH
CALL
CALL
CALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT

10
100
filename[/extl
filename [/extl

n·m
"456.23"
n
"character string"
*n.m
*"456.23"
*n
*"CHARACTER STRING"

(label)
(label) IF (condition)
(label) IF NOT (condition)
(nvar) OF (label list)
(label)
(label) IF (condition)
(label) IF NOT (condition)

IF (condition)
IF NOT (condition)

IF (condition)
IF NOT (condition)
(sval)
(sli t)
(label) IF (event)
(event)
(svar)
(slit)

57

CHARACTER STRING HANDLING

MATCH (svar) TO (svar)
MATCH (slit) TO (svar)
MOVE (svar) TO (svar)
MOVE (slit) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nl it) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
APPEND (sl it) TO (svar)
APPEND (nvar) TO (svar:)
CMOVE (sval) TO (svar)
CMATCH (sval) TO (sval)
BUMP (svar)
BUMP (svar) BY (nli t)
RESET (svar) TO (sval)
RESET (svar) TO (nvar)
RESET (svar)
ENDSET (svar)
LENSET (svar)
CLEAR (svar)
EXTEND (svar)
LOAD (svar) FROM (nvar) OF (slist)
STORE (svar) INTO (nvar) OF (slist)
STORE \ (slit) INTO (nvar) OF (slist)
CLOCK TIME TO (svar)
CLOCK pAY TO (svar)
CLOCK 'YEAR TO (svar)
TYPE (svar)
SEARCH (nvar) IN (nlist) TO (nvar) WITH (nvar)
SEARCH (svar) IN (slist) TO (nvar) USING (nvar)
REPLACE (svar) IN (svar)
REP (sli t) IN (svar)

58

ARITHMETIC

ADD
ADD
SUB
SUB
SUBTRACT
MULT
MULT
MULTIPLY
DIV
DIV
DIVIDE
MOVE
[.fOVE
COMPARE
COMPARE
LOAD
STORE
STORE
CHECKll
CKll
CHECKIO
CKIO

INPUT/OUTPUT

KEYIN
DISPLAY
BEEP
PRINT
PREPARE
PREP
OPEN
CLOSE
WRITE
WRITAB
WEOF
UPDATE
READ
READKS
DELETE
INSERT

(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar)
(nlit) FROM (nvar)
(nlitlnvar) FROM (nvar)
(nvar) BY (nvar)
(nlit) BY (nvar)
(nlitlnvar) BY (nvar)
(nvar) INTO (nvar)
(nlit) INTO (nvar)
(nlitlnvar) INTO (nvar)
(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar) OF (nlist)
(nvar) INTO (nvar) OF (nlist)
(nlit) INTO (nvar) OR (nlist)
(svar) BY (svar)
(svar) BY (slit)
(svar) BY (svar)
(svar) BY (sli t)

(li st)
(li st)

(list)
(file),(svarlslit)
(file) , (svar I sli t)
(filel ifile), (svarl slit)
(filel ifile)
(f i lei if i 1 e) , rn I se q I ke y [i [(li st)] [i]]
(file) , rn I seq i (list) [i]
(filelifile) ,rnlseq
(ifile) [i [(list)] [i)]
(f i lei i f i 1 e) , r n I se q I ke yin u 1 i (; I (lis t [;]))
(if il e) ; (; I (li st [;]))
(ifile) , (svar)
(if il e) , (sv ar)

59

APPENDIX B.

KEYBOARD CODING (ASCII)

A-101 a -141 0-060 -072

B -102 b 142 1-061 -073

C-l03 c -143 2062 < -074

0-104 d -144 3-063 075

E -105 e -145 4064 > -076

F -106 f -146 5065 7 -077

G-107 9 -147 6-066 133

H-ll0 h -150 7067 - -176

I -111 i -151 8-070 J -135

J -112 j -152 9-071 I\. 136

Space-040 -137

K-113 k-153

L -114 I -154 1-041 @ -100

M-115 m-155 "-042 { 173

Nl16 n -156 #043 \ 134

0-117 0-157 $-044 -140

P -120 p -160 %-045 I -174

0-121 q -161 &-046 } -175

R-122 r -162 ' -047 Enter015

S -123 s -163 (050 Cancel-030

T -124 t -164)051 Backspace-O 1 0

U-125 u -165 *-052 Del-l77

V-126 v -166 +-D53

W-127 w-167 , -054

X-130 x-170 - -055

Y -131 y -171 _ -056

Z -132 z -172 / -057

61

HOME OFFICE:
9725 Datapoint Drive
San Antonio, Texas 78284

SALES OFFICES:
Atlanta/(404) 458-6423
Boston/(617) 890-0440
Chicago/(312) 298-1240
Cincinnati/(513) 481-2600
Cleveland/(216) 831-0550
Dallas/(214) 661-5536
Denver/(303) 770-3921
Des Moines/(515) 225-9070
Detroit/(313) 478-6070
Greensboro/(919) 299-8401
Hartford/(203) 677-4551
Houston/(713) 688-5791
Kansas City/(913) 321-5802
Los Angeles/(213) 645-5400
Milwaukee/(414) 453-1425
Minneapolis/(612) 854-4054
New Orleans/(504) 522-5457
New York/(212) 736-3710
Orlando/(305) 896-1940
Philadelphia/(215) 667-9477
Phoenix/(602) 265-3909
Pittsburgh/(412) 931-3663
Portland/(503) 223~2411
San Diego/(714) 460-2020
San Francisco/(415) 968-7020
Seattle/(206) 455-2044
St. Louis/(314) 878-6595
Stamford/(203) 359-4175

Tu Isa/(918) 664-2295
Union/(201) 964-8761
Washington, D.C.!(703) 790-0555

INTERNATIONAL:
Australia/Sydney/(2) 922-3100
Austria/Vienna/0222/36 21 41
Belgium/Brussels/3762030
Brazil/Rio de Janeiro/222-4611
Canada/Toronto/(416) 438-9800
Denmark/Copenhagen/(02)96 53 66
Ecuador/Guayaquil/394 844
England/London/(1) 903-6261
Finland/Helsinki/(90j 661 991
France/Paris/(1) 657-13-31
Germany/Hannover/(0511) 634-011
Holland/Rotterdam/(10) 216244
Hong Kong/(5) 243-121
Iran/Tehran/8538857
Israel/Tel-Aviv/(03) 410565
Italy/Milan/316 333
Japan/Tokyo/(264) 6131
Lebanon/Beirut/(348) 340/1/2
Norway /OsI0/153490
The Philippines/Makati Rizal/877 294
Singapore/Singapore/911788
South Africa/Johannesburg/724-9301
Spain/Las Arenas/63 64 00
Sweden/Stockholm/(8) 188295
Switzerland/Lyss Berne/(32) 844240
Taiwan/Taipei/768-1114
USA/Los Angeles, Calif./(213) 475-6777

DATAPOINT CORPORATION

The Leader in Dispersed Data Processing

The text in this catalog was entered, edited and typeset using
a Datapoint 2200 with the SeR IBE text processing program

and a phototypesetter.

