JANUARY 8. : 987

A RCNET
 LOCAL AREA NETWORK CONTROLLER
 ```DESIGNER'S GUIDE```

Table of 1 Contents
1.0 GENERAL INFORMATION 1
1.1 ARCNET-PC FAMILY DESCRIPTION 1

1. 2 ARCNET FAMILY FEATURES : 2
2.0 SPECIFICATIONS 3
2.1 ARCNET-PC FAMILY BLOCK DIAGRAM 3
2.1.1 ARCNET - PC1OO. 200. 300 3
2.1.2 ARCNET-PC110, 210. 310: 3
2.2 PHYSICAL SPECIFICATIONS 4
2.3 TOPOLOGICAL SPECIFICATIONS 4
2.3.1 ARCNET-PC 100.110 4
2.3.2 ARCNET-PC 200, 210 4
2.3.3 ARCNET-PC 300, 310 5
2.3.4 TOPOLOGY EXAMPLE 5
3.0 ARCNET-PC SWITCH CONFIGURATION 6
3.1 SWITCH GROUPS OVERVIEW 6
3.2 SWITCH GROUP \#2 SETTINGS 6
3.2.1 SWITCHES 1 - 8 NODE ADDRESS VALUE 6
3.3 SWITCH GROUP *1 SETTINGS 6
3.3.1 SWITCHES 1 - 6 I/O ADDRESS VALUE 6
3.3.2 SWITCHES 7 - 10 RAM BUFFER ADDRESS VALUE 7
4.O ARCNET-PC JUAPER CONFIGURATION 7
5.0 ARCNET-PC REGISTERS 8
6.0 ARCNET-PC HEMORY ADDRESSING 8
7.0 THEORY OF OPERATIOK 8
7.1 Addreee Decoding 8
7.1 Addrese Decoding 9
7.2 Internal Addreme-Data Bua 9
7.3 Weit State Generator 9
7.4 Interrupts 9
7.5 Cable Tranaceiver 10
8.0 PROGRAMMING CONSIDERATIONS 10
Appendicea 11

1.0 GENERAL INFORMATION

1.1 ARCNET-PC FAMILY DESCRIPTION

SMC'a ARCNET-PC fanily of network controller boarde providea the user with a simplified intarface between the IBM PC bus and an ARCNET modified token paseing Local Area Network. The ARCNET-PC, in addition, provides the complete controller for the local area network, which results in virtuably user transparent network operation and control.

The ARCNET locsl area network was originally developed by the Datapoint Corporation as high performance local area network uaed to interconnect sophisticated computing systems. Now the performance capabilities of this network are available to users of IBM PC and PC compatible computer aystens. The ARCNET-PC fanily incorporates the Standard Microsyatems aingle chip COM go26 Local Area Network Controller snd COM 9032 ARCNET Local Area Network Trenscelver LSI circuite to provide complete ARCNET protocol handling on aingle boerd. A $2 K$ on-board Data Packet Buffer is used to provide four pages of packet atorage. This may be dynamically user defined to provide double buffering for both tranamit and receive functions. The controller may be polled or interrupt driven. An on-board $8 K$ prom socket ia available to the user for auto boot PROM instaliation thus enabling a floppy-lesa PC to access a Local Area Network. The menory mapped Data Packet Buffer, I/O-mapped COM 9026 Controller and $8 K$ PROM socket provide a flexible well rounded PC Local Area Network Controller.

ARCNET-PC100, PC110 - The ARCNET PC100 containa the SMC HYC9068 hybrid RG-62/U coaxial tranaceiver which connecta computers to the ARCNET TOKEN PASSING LOGICAL RING CONfiguration fi.e. Free Form Tree topologyj. The meximum diatence for comanication between ective device unita ia 2000'. The ARCNET-PC110 contalna the aene logic, but ia a Surface Mounted Half Slot board.

ARCNET-PC200, PC210 - Contains the SMC 9058 High Impedance Tranaceiver bybrid that allows up to 8 ARCNET- PC200's to be dalay chained over a maximum diatance of 1000°. The PC210 is a ahort siot SMT veraion of the ARCNET-PC200 and both these units are compatible with the PC100. PC110's.

ARCNET-PC300, PC310 - Contains a Fiber Optic Transceiver hybrid that will allow ARCNET-PC300's, PC310'a to commanicate over a distance of 4000' between active units and is well auited as a tranamiasion medium in a high noise/RF environment. The ARCNETPC310 is a half slot Surface Mount Devices version of the ARCNETpC300.

```
1.2 ARCNET FAMILY FEATURES :
* Provides a simplified interfigce between IBM/IBM compatibie
    personal computers and the ARCNET modified token pagaing Loca:
    Area Network.
- Compatible with ARCNET baseband coax transmission network
* Uses Standard Microsystems' COM 9026 LAN Controller and COM
    9032 LAN Tranacelver to aimplify the physical and link level
    ARCNET protocols.
* Supports up to 255 nodes per network segment
* Complete network controlier
* 2.5 Megabit data rate
* On-board 2K Data Packet Buffer holds up to four data packets
    to provide double bufxered trenemit and receive functions
* Multi transmisaion media capability
                - COAX CABLE, FIBER OPTIC
- On-board Tranaceiver hybrid provides greater reliability
* On-board 8K x 8 PROM socket
- Base address of 8K PROM and Data Packet Buffer is switch
    salectable in 64K aegmenta
- COM 9026 I/O base address is switch selectable in iG byte
    segmonts
* Controller may be polled or interrupt driven with interrupts
    jumpered to IRO2, IRO3, IROS, or IRQ7
```


2.0 SPECIFICATIONS

2.1 ARCNET-PC FAMILY BLOCK DIAGRAM
2.1.1 ARCNET- PC100, 200. 300:

LEGEND:
C1 BNC REG2 Coax Connector/SMA 200 micron Fiber Optic Connector IC1 IC2
sMC CON 9026 LAN Controller SMC COM 9032 LAN Tranacelver

- DEVICE DRIVERS :

ARCNET-PC100, 110 - SMC9OG8 HYBRID RG62/U COAX TRANSCEIVER ARCNET-PC200, 210 - SMC9058 HIGH IMPEDANCE RG62/U HYERID TRANSCEIVER ARCNET-PC300, 310 - FIBER OPTIC TRANSCEIVER

2.2 PHYSICAL SPECIFICATIONS:

```
ARCNET Controller:
Cable Tranacaiver:
Network Implementation:
System Bua:
Memory:
Power Requirement: - 5 volta a g00 ma. max.0
SMC COM 9026 LAN Contraller
SMC COM 9032 LAN Tranaceiver
Compatible with Datapoint ARCNET LAN
network apecificationa. Uaea a bese banc
ayatem with RG62/U (93 ohm) coex or 200
micron step index fiber optic cable.
Compatible with IBM Peraonal Computer Bua
2K x 8 Static Ram Data Packet Buffer
8K x 8 PROM Location
Phyaicel Dimenatona
    ARCNET-PC100.200,300:
    ARCNET-PC110,210,310:
8.5" by 3.9"
5.25* by 3.9"
Environmental Operation: 00 to 700 C
Coax Connector:
Isolated Ground BNC
Fiber Optic Connector: SMA 200 micron atep index aingle fiber
* POWER REQUIREMENTS for the PC200,210 would have an increase
of 60 ma a +5 volta
    10 ma - -5 volta
```


2.3 TOPOLOGICAL SPECIFICATIONS

2.3.1 ARCNET-PC 100.110

The PC100.110 products are used in a Free-Form Tree topology with the following distance restrictions:

12000 feet maximun distance between active hubs and/or ARCNET-PC 100,110 controller boards.

2100 feet maximum distence betwaen pasisve hub port and an ective hub port or ARCNET-PC 100,110 boerd.
2.3.2 ARCNET-PC 200, 210

The ARCMET-PC 200, 210 controller boarda are used in a phyaical Bus Format topology while retaining a logical Token Paasing ring format. The topological restrictions are as follows:

1 Maximum bus length of 1000 feet with up to 8 ARCNETpC200.210 boarde tapped off the bus using "T" coaxial connectors.

2 Each end of the bus is to be termineted by either an ective hub port or a 93 Ohm terminator.
2.3.2 ARCNET-PC 200, 210 cont.

3 For extended Bus lengths, a single pC200 node on a 1000 foot bus can be replaced by one port of a 2 port SMC ACTIVE LINK which can then axtend the bus an additional 1000 feet with up to 7 ARCNET-pC200. 210 unita tapped off.

4 An ARCNET-PC 200 or PC210 CAN be used in place of ARCNETPC 100 or PCilo if it is used in conjunction with a "T" and Terminator on the PC100 coaxial cable - See diagram.
2.3.3 ARCNET-PC 300, 310

The ARCNET-PC 300, 310 are Fiber Optic ARCNET boards that can be used in network with the following constraints:

1 Meximum distance is 4000 feet of 200 micron fiber optic cable.

2 To uae with an existing ARCNET network, the ARCNET-PC 300,310 can be connected to either an SMC ACTIVE LINK-OPT for uae with PC200, 210 basad ayatem or an SMC ACTIVE HUBOPT for use with multiple Fiber Optic ARCNET units.

2.3.4 TOPOLOGY EXAMPLE

The following example of a physical network leyout is intended to demonstrate the interconnectability of SMC AFCNET:

3.1 SWITCH GROUPS QVERVIEW:

A switch is equivalent to logical 1 when rocker or slide is set to the down position and logicel 0 when the rocker or silde is atet to the up position. The switches within the Switch Group represent the binary equivelent of the addresa value required for proper software operation. Refer to your Softwere documentation for the proper addreses and interrupt values.

3.2 SWITCH GROUP *2 SETTINGS:

3.2.1 SWITCHES 1 - 8 NODE ADDRESS VALUE

All the awitches in Switch Group w2 are used to set the station eddress. The station addrese value must be unique to each atation. The LSB for the node addreas is awiteh 1.

EXAMPLE: Ewitches
12345678
SWITCH GROUP 2

\mathbf{U}	\mathbf{U}	-	-	U	U	U	U
-	-	\mathbf{D}	\mathbf{D}	-	-	-	-

$U=$ up, on, closed
$D=$ down, off, open

Thia setting has a value of $4+8=12$ Decimal or OC HEX for a atation eddress or NODE ID of OC.

3.3 SWITCH GROUP W1 SETTINGS:

3.3.1 SWITCHES 1 - 6 I/O ADDRESS VALUE

Switches 1-G set the base I/O eddrese whose value is 16 times the HEX value of the awitchet. The LSB for the I/O Addreas la awitctr 6.

EXAMPLE: awitehea
123456
SWITCH
GROUP 1

U mup, on, closed
$D=$ down, off, open
The value of the above attting is equal to 32 * 4 * $2=46$ Decimal or $2 E H E X$ which is used as a bese I/O addrase of 2EO.

```
3.3.2 SWITCHES 7 - 10 RAM BUFFER ADDRESS VALUE
```

Switchea 7-10 set the base address (aegment) of the memory
buffer whose value is 64 K [or 10000 HEX] times the value of
the binary representation of the switches. The LSB for the
Buffer Addresa ia switch 10.

The value of the above aetting is equal to 8 + 4 2 $=14$ Decimel or E HEX which 1 a uaed as a RAM buffer addresa of EOOO:O
4.0 ARCNET-PC JUMPER CONFIGURATION

JUMPER

PC100 TYPE	PC110 TYPE	FUNCTION				
JP1	JP7	COM	9026	IMTR	- IRO7	
JP2	JP6	COM	9026	INTR	- IRQS	
JP3	JPS	COM	9026	INTR	= IRO4	
JP4	JP4	COK	9026	INTR	- IRO3	
JPS	JP3	COM	9026	INTR	- IRO2	
JP6*	JP2	COM	9026	ET2	(Normally	open)
JP7*	JP1	COM	9026	ET1 ((Normally	open)

- Refer to Extended Timeout Function in Appendix A.O
5.O ARCNET-PC REGISTERS
A3 AD A1 AO

REGISTER
$0 \quad 0 \quad 0 \quad \operatorname{COM} 9026$ Interrupt Mask/Statug Registar
0×1 COM 9026 Commend Register
$10 \quad X \quad A \quad A R C N E T-P C$ Software Reatet
$X=$ Don't Care.

See Appendix A.O COM 9026 Data Sheet for bit definitions of eech regiater.
6.0 ARCMET-PC MEMORY ADDRESSING

7.0 THEORY OF OPERATION

While reeding this section refer to Appendix C.O - ARCNET-PC Block Diegras. For a detalled diacuasion of the COM 9026 refer to the data sheet in Appendix A.O.
7.1 Addrees: Decoding

The ARCNET-PC family is an interface between the IBM Personal computer and the ARCNET modified token peseing locel aree network. The on-board $2 K X \quad 8$ data packet buffer and $8 K X 8$ pron are memory mapped in the control systen'a memory address apece, whereas the COM 9026 regiaters and ARCNET-PC software reatet function are IO mepped in the control systens Io addrese apace. Addrese lines Aig through Ais compere with switches si-7 through si-10 to produce signel MREQ when a proceseor cycle requeste accese to on-board ran or prom.
7.1 Address Decoding cont.

MREQ $i s$ further decoded to produce signals RIMe to access the 9026, RAM to acceas the edditional 2 KX 8 ram. and PROM to acceas the $8 K \times 8$ prom. The COM 9026 recelvea aignal RIM* and producea all bus controlilng aignala to allow the proceseor eynchronized accesa to the data packet buffer.

Address lines Ag through A4 compare with switches Si-1 to Si-6 to produce aignal IOREO when proceseor cycle requesta acceas to a COM 9026 regiater, or wishes to perform an ARCNET-PC aottwara reaet. Signal IOREO ia decoded further to produce aignala RIOREO* to eccese the COM 9026 registera and RESREO. to access the ARCNETPC software reaet circuitry. The COM 9026 receivea aignel RIOREQe and produces ell bua controliing aignala to allow the proceseor synchronized seceas to COM 9026 registars. RESREO eneblea a oneshot timer, of epproximately 200 milliaeconds, to reaet the COM 9026 and COM 9032 under aoftware control. While RESREO is active. the procesaor should not try to acceas COM 9026 Regiatere or the Date Packet Buffer.

7.2 Internal Addreas-Data Bua

Ali geting of addreas and data on the internal bua (IAIO through IAS and IAD7 through IADO) ia controlled by the COM 9026. For detailed timing apecifications aeteppendix A.O. Signala ADIE* and ILE allow chipe $A 10$ and $A 27$ (74LS244) to gate lower addreas and dete respectively onto the internal bue. Signala WAIT. R/w., RIOREO*, and RIM* allow deta on the internal bue to be driven onto the IBM bue by A26 (74LS373). Signal AIEw allown eddreas lines Alo through As to addreses the ram buffer.

7.3 Wait State Generator

The COM 9026 effects erbitration and synchronous acceas to the data packet buffer and COK 9026 registera through the uae of the I/O CHRDY line. The COn 9026 aseerta aignal waIT at the atart of a procesaor 7.3 Wait State Generator cont.
access cyele to indicete it is not ready to trenafer data. waIT aserta I/O CHRDY to produce procesaor wait cycles. Signela IOREQ. and MREO using As (74L3175), A1 (74LSOO), and A-25 (7406) asaure proper synchronizing of the I/O CHRDY aignal. The COM 9026 returna WAIT to ita inactive atete when $1 t$ is ready for the procesaor to complete its cycla.

7.5 Cable Tranaceiver

The cable tranacelvar conaista of the COM 9032, either the SMC HYC9058 or SMC HYC9068 hybird coaxiel driver, and BNC connector ji. The ceble trenaceivera function ia to convert TX pulaes from the COM 9026 to a format required by Datapoint ARCNET local area network specificationa, and alao to convert signala from the cable to NRZ dete required by the COK 9026 RX input. The Detapoint ARCNET implementation ues a beseband astem with RG62/U (93 ohm) cosx. For e detailed discuasion of this implementation. gee Appendix B.O.

8.0 PROGRAMAING CONSIDERATIONS

For a demcription of basic COM 9026 programing considerations. refer to Technical Note TNS-2. Appendix B.0. aection titled Programming the COM 9026.

When using the ARCNET-PC software reset function, an IO read or IO write to IO location XX8H, where XX values are determined by IO addreas alection mitches. will produce approximately a 200 miliisecond reset of the COM 9026 and COM 9032. During the time theab devicea are being reade, the procesaor ahould not acceaa COM 9026 regiatera or the Data Packet Buffer.

Local Area Network Controller LANC ${ }^{\text {M }}$

FEATURES

-2.5 M bit data rate
—ARCNET'local area network controller
EModified token passing protocol
Self-reconfiguring as nodes are added or deleted from network

- Handles variable length data packets
- 16 bit CRC check and generation
- System efficiency increases with network loading
- Standard microprocessor interface
\square Supports up to 255 nodes per network segment
Ability to interrupt processor at conclusion of commands
\square Interfaces to an external 1 K or 2 K RAM buffer
\square Arbitrates buffer accesses between processor and COM 9026
\square Replaces over $100 \mathrm{MSI} / \mathrm{SSI}$ parts
\square Ability to transmit broadcast messages
Compatible with broadband or baseband systems
E Compatible with any interconnect media (twisted pair, coax, etc.)

PIN CONFIGURATION
Arbitrary network configurations can be used (star, tree, etc.)
\square Single +5 volt supply
}

GENERAL DESCRIPTION

The COM 9026 is a special purpose communications adapter for interconnecting processors and intelligent peripherals using the ARCNET local area network. The ARCNET local area network is a self-polling "modified token passing" network operating at a 2.5 M bit data rate. A "modified token passing" scheme is one in which all token passes are acknowledged by the node accepting the token. The token passing network scheme avoids the fluctuating channel access times caused by data collisions in so-called CSMA CD schemes such as Ethernet.
The COM 9026 circuit contains a microprogrammed sequencer and all the logic necessary to control the token passing mechanism on the network and send and receive data packets at the appropriate time. A maximum of 255 nodes may be connected to the network with each node being assigned a unique ID.

The COM 9026 establishes the network configuration, and automatically re-configures the network as new nodes are added or deleted from the network. The COM 9026 performs address decode, CRC checking and generation, and packet acknowledgement, as well as other network management functions. The COM 9026 interfaces directly to the host processor through a standard multiplexed address data bus.
An external RAM buffer of up to 2 K locations is used to hold up to four data packets with a maximum length of 508 bytes per message. The RAM buffer is accessed both by the processor and the COM 9026. The processor can write commands to the COM 9026 and also read COM 9026 status. The COM 9026 will provide all signals necessary to allow smooth arbitration of all RAM buffer operations.
*ARCNET is a registered trademark of the Datapoint Corporation.

DESCRIPTION OF PIN FUNCTIONS (refer to figure 2)

PINNO.	NAME	SYMBOL	FUNCTION
31, 32, 35	$\begin{aligned} & \text { ADDRESS } 10 \text {. } \\ & 9,8 \end{aligned}$	A10, A9, A8	These three output signals are the three most significant bits of the RAM buffer address. These signals are in their high impedance state except during COM 9026 access cycles to the RAM buffer. A10 and A9 will take on the value nn as specified in the ENABLE RECEIVE or ENABLE TRANSMIT commands to or from page nn and should be viewed as page select bits. For packets less than 256 bytes a 1 K buffer can be used with AB unconnected. For packets greater than 256 bytes, a 2 K buffer is needed with A 8 connected.
$\begin{gathered} 21,22,23 . \\ 24,25,26 \\ 27,28 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ADDAESS } \\ & \text { DATA } 7.0 \end{aligned}$	AD7-ADO	These 8 bidirectional signals are the lower 8 bits of the RAM buffer address and the 8 bit data path in and out of the COM 9026. ADO is aiso used for I/O command decoding of the processor control or status commands to the COM 9026.
8	I/O REQUEST	IOREQ	This input signal indicates that the processor is requesting the use of the data bus to receive status information or to issue a command to the COM 9026. This signal is sampled internally on the falling edge of AS.
9	MEMORY REQUEST	MREQ	This input signal indicates that the processor is requesting the use of the data bus to transfer data to or from the RAM buffer. This signal is sampled internally on the falling edge of AS.
7	READ/WRITE	R/ \bar{W}	A high level on this input signal indicates that the processor's access cycle to the COM 9026 or the RAM buffer will be a read cycle. A low level indicates that a write cycle will be performed to either the RAM buffer or the COM 9026. The write cycle will not be compieted, however, until the DWR input is asserted. This signal is an internal transparent latch gated with AS.
10	ADDRESS STROBE	AS	This input signal is used by the COM 9026 to sample the state of the IOREQ. $\overline{M R E Q}$ and RW inputs. The COM 9026 bus arbitration is initiated on the falling edge of this signal.
11	REQUEST	REQ	This output signal acknowledges the fact that the processor's $1 / \mathrm{Q}$ or memory cycle has been sampled. The signal is equal to MREQ or IOREQ passed through an internal transparent latch gated with AS.
12	WAIT	WAIT	This output signal is asserted by the COM 9026 at the start of a processor access cycle to indicate that it is not ready to transfer data. WAIT returns to its inactive state when the COM 9026 is ready for the processor to complete its cycle.
6	$\begin{aligned} & \text { DELAYED } \\ & \text { WRITE } \end{aligned}$	DWR	This input signal informs the COM 9026 that valid data is present on the processor's data bus for write cycles. The COM 9026 will remain in the WAIT state until this signal is asserted. DWR has no effect on read cycles. If the processor is able to satisfy the write data setup time, it is recommended that this signal be grounded.
29	INTERRUPT REQUEST	INTR	This output signal is asserted when an enabled interrupt condition has occured. INTR returns to its inactive state by resetting the interrupting status condition or the corresponding interrupt mask bit.
18	INTERFACE LATCH ENABLE	$\overline{\text { ILE }}$	This output signal, in conjunction with ADIE, gates the processor's address/data bus (PAD7-PADO) onto the interface address/data bus (IAD7-IADO) during the data valid portion of a Processor Write RAM or Processor Write COM 9026 operation.
14	ADDRESS DATA INPUT ENABLE	$\overline{\text { ADIE }}$	This output signal enables the processor's address/data bus (PAD7-PADO) captured by AS or ILE onto the interface address/data bus (IAD7-IADO).
13	ADDRESS INPUT ENABLE	$\overline{\text { AIE }}$	This output signal enables the processor's upper 3 address bits (PA10-PA8) onto the interfice address bus (IA10-IA8).
15	LATCH	\bar{L}	This output signal latches the interface address/data bus (IAD7-IADO) into a latch which feeds the lower 8 address bits of the RAM buffer during address valid time of all RAM buffer access cycles.
17	WRITE ENABLE	$\overline{W E}$	This output signal is used as a write pulse to the external RAM buffer. Data is referenced to the trailing edge of $W E$.
16	OUTPUT ENABLE	$\overline{\mathrm{OE}}$	This output signal enables the RAM buffer output data onto the interface address/data bus (IAD7-IADO) during the data valid portion of all RAM butfer read operations.
33	ID LOAD	$\overline{\overline{D L D}}$	This output signal synchronously loads the value selected by the ID switches into an external shift register in preparation for shifting the ID into the COM 9026. The shift register is clocked with the same signal that leeds the COM 9026 on pin 19 (CLK). The timing associated with this signal and IDDAT (pin 34) is illustrated in figure 19.
34	ID DATA IN	IDDAT	This input signal is the serialized output from the external ID shift register. The ID is shifted in most significant bit first. A high level is defined as a logic " 1 ".
1.3	EXTENDED TIMEOUT FUNCTION 2, 1	ET2, ET1	The levels on these two input pins specity the timeout durations used by the COM 9026 in its network protocol. Refer to the section entitled "Extended Timeout Function" for details.
37	$\begin{array}{\|l} \hline \text { TRANSMIT } \\ \text { DATA } \\ \hline \end{array}$	$\overline{T X}$	This output signal contains the serial transmit data to the CABLE TRANSCEIVER.
38	$\begin{aligned} & \text { RECEIVE } \\ & \text { DATA } \\ & \hline \end{aligned}$	RX	This input signal contains the senal receive data from the CABLE TRANSCEIVER.

DESCRIPTION OF PIN FUNCTIONS (Continued)

PIN NO.	NAME	SYMBOL	FUNCTION
4.5	TEST PIN 2 TEST PIN 1	$\begin{aligned} & \text { TEST2 } \\ & \text { TEST1 } \end{aligned}$	These input pins are grounded for normal chip operation. These pins are used in conjunction with ET2 and ET1 to enable various internal diagnostic functions when performing chip level testing.
30	$\begin{aligned} & \text { ECHO } \\ & \text { DIAGNOSTIC } \\ & \text { ENABLE } \end{aligned}$	$\overline{\mathrm{ECHO}}$	When this input signal is low, the COM 9026 will re-transmit all messages of length less than 254 bytes. This input should be tied high for normal chip operation and is only utilized when performing chip level testing.
19	CLOCK	CLK	A continuous 5 MHz clock input used for timing of the COM 9026 bus cycles, bus arbitration, serial ID input, and the internal timers.
2	CA	CA	This input signal is a 5 MHz clock used to control the operation of the COM 9026 microcoded sequencer. This input is periodically halted in the high state by the DSYNC output.
36	$\begin{aligned} & \text { DELAYED } \\ & \text { SYNC } \end{aligned}$	DSYNC	This output signal is asserted by the COM 9026 to cause the external clock generator logic to halt the CA clock. Refer to figure 9.
40	POWER ON RESET	$\overline{\text { POR }}$	This input signal clears the COM 9026 microcoded sequencer program counter to zero and initializes various internal control flags and status bits. The POR status bit is aiso set which causes the INTR output to be asserted. Repeated assertion of this signal will degrade the performance of the network.
39	$+5 \mathrm{VOLT}$ SUPPLY	$V_{c c}$	Power Supply
20	GROUND	GND	Ground

PROTOCOL DESCRIPTION

LINE PROTOCOL DESCRIPTION

The line protocol can be described as isochronous because each byte is preceded by a start interval and ended with a stop interval. Unlike asynchronous protocols, there is a constant amount of time separating each data byte. Each byte will take up exactly 11 clock intervals with a single clock interval being 400 nanoseconds in duration. As a result, 1 byte is transmitted every 4.4 microseconds and the time to transmit a message can be exactiy determined. The line idles in a spacing (logic 0) condition. A logic ' 0 ' is defined as no line activity and a logic 1 is defined as a pulse of 200 nanoseconds duration. A transmission starts with an ALERT BURST consisting of 6 unit intervals of mark (logic 1). Eight bit data characters are then sent with each character preceded by 2 unit intervals of mark and one unit interval of space. Five types of transmission can be sent as described below:

Invitations To Transmit

An ALERT BURST followed by three characters; an EOT (end of transmission-ASCll code 04 HEX) and two (repeated) DID (Destination IDentification) characters. This message is used to pass the token from one node to another.

Free Buffer Enquiries

An ALERT BURST followed by three characters; an ENQ (ENQuiry-ASCII code 05 HEX) and two (repeated) DID (Destination IDentification) characters. This message is used to ask another node if it is able to accept a packet of data.

Data Packets

An ALERT BURST followed by the following characters:

- an SOH (start of header-ASCII code 01 HEX)
-a SID (Source IDentification) character
-two (repeated) DID (destination IDentification) characters.
-a single COUNT character which is the 2 's complement of the number of data bytes to follow if a 'short packet" is being sent or 00 HEX followed by a COUNT character which is the 2 's complement of the number
of data bytes to follow if a "long packet" is being sent.
-N data bytes where COUNT $=256-\mathrm{N}$ (512- N for a "long packet")
-two CRC (Cyclic Redundancy Check) characters. The CRC polynomial used is $X^{16}+X^{15}+X^{2}+1$.

Acknowledgements

An ALERT BURST followed by one character; an ACK (ACKnowledgement-ASCII code 06 HEX) character: This message is used to acknowledge reception of a packet or as an affirmative response to FREE BUFFER ENQUIRIES.

Negative Acknowledgements

An ALERT BURST followed by one character; a NAK (Negative AcKnowledgement-ASCll code 15 HEX). This message is used as a negative response to FREE BUFFER ENQUIRIES.

NETWORK PROTOCOL DESCRIPTION

Communication on the network is based on a "modified token passing" protocol. A "modified token passing" scheme is one in which all token passes are acknowledged by the node receiving the token. Establishment of the network configuration and management of the network protocol are handled entirely by the COM 9026's internal microcoded sequencer. A processor or intelligent peripheral transmits data by simply loading a data packet and its destination ID into the RAM buffer, and issuing a command to enable the transmitter. When the COM 9026 next receives the token, it verifies that the receiving node is ready by first transmitting a FREE BUFFER ENQUIRY message. If the receiving node transmits an ACKnowledge message, the data packet is transmitted followed by a 16 bit CRC. If the receiving node cannot accept the packet (typically its receiver is inhibited), it transmits a Negative AcKnowledge message and the transmitter passes the token. Once it has been established that the receiving node can accept the packet and transmission is complete, the receiving node will verify the packet.

If the packet is received successfully, the receiving node transmits an acknowledge message (or nothing if it is received unsuccessfully) allowing the transmitter to set the appropriate status bits to indicating successful or unsucessful delivery of the packet. An interrupt mask permits the COM 9026 to generate an interrupt to the processor when selected status bits become true. Figure 3 is a flow chart illustrating the internal operation of the COM 9026.

NETWORK RECONFIGURATION

A significant advantage of the COM 9026 is its ability to adapt to changes on the network. Whenever a new node is activated or deactivated a NETWORK RECONFIGURATION is performed. When a new COM 9026 is turned on (creating a new active node on the network), or if the COM 9026 has not received an INVITATION TO TRANSMIT for 840 milliseconds, it causes a NETWORK RECONFIGURATION by sending a RECONFIGURE BURST consisting of eight marks and one space repeated 765 times. The purpose of this burst is to terminate all activity on the network. Since this burst is longer than any other type of transmission, the burst will interfere with the next INVITATION TO TRANSMIT, destroy the token and keep any other node from assuming control of the line. It also provides line activity which allows the COM 9026 sending the INVITATION TO TRANSMIT to release control of the line.
When any COM 9026 sees an idle line for greater than 78.2 microseconds, which will only occur when the token is lost, each COM 9026 starts an internal time out equal to 146 microseconds times the quantity 255 minus its own ID. It also sets the internally stored NID (next ID representing the next possible ID node) equal to its own ID. If the timeout expires with no line activity, the COM 9026 starts sending INVITATIONS TO TRANSMIT with the DID equal to the currently stored NID. Within a given network, only one COM 9026 will timeout (the one with the highest ID number). After sending the INVITATION TO TRANSMIT, the COM 9026 waits for activity on the line. If there is no activity for 74.7
microseconds, the COM 9026 increments the NID value and transmits another INVITATION TO TRANSMIT using the new NID equal to the DID. If activity appears before the 74.7 microsecond timeout expires, the COM 9026 releases control of the line. During NETWORK RECONFIGURATION. INVITATIONS TO TRANSMIT will be sent to all 256 possible ID's. Each COM 9026 on the network will finally have saved a NID value equal to the ID of the COM 9026 that assumed control from it. From then until the next NETWORK RECONFIGURATION, controi is passed directly from one node to the next with no wasted INVITATIONS TO TRANSMIT sent to ID's not on the network. When a node is powered off, the previous node will attempt to pass it the token by issuing an INVITATION TO TRANSMIT. Since this node will not respond, the previous node will time out and transmit another INVITATION TO TRANSMIT to an incremented ID and eventually a response will be received.
The time required to do a NETWORK RECONFIGURATION depends on the number of nodes in the network, the propogation delay between nodes and the highest $1 D$ number on network but will be in the range of 24 to 61 milliseconds.

BROADCAST MESSAGES

Broadcasting gives a particular node the ability to transmit a data packet to all nodes on the network simultaneously. ID zero is reserved for this feature and no node on the network can be assigned ID zero. To broadcast a message, the transmitting node's processor simply loads the RAM buffer with the data packet and sets the destination ID (DID) equal to zero. Figure 8 illustrates the position of each byte in the packet with the DID residing at address 01 HEX of the current page selected in the TRANSMIT command. Each individual node has the ability to ignore broadcast messages by setting the most signficant bit of the ENABLE RECEIVE TO PAGE nn command (see "WRITE COM 9026 COMMANDS") to a logic zero.

COM 9026 OPERATION

BUFFER CONFIGURATION

During a transmit sequence, the COM 9026 fetches data from the Transmit Buffer, a 256 (or 512) byte segment of the RAM buffer. The appropriate buffer size is specified in the DEFINE CONFIGURATION command. When long packets are enabled, the COM 9026 will interpret the packet as a long or short packet depending on whether the contents
of buffer location 02 is zero or non zero. During a receive sequence, the COM 9026 stores data in the receive buffer, also a 256 (or 512) byte segment of the RAM buffer. The processor I/O command which enables either the COM 9026 receiver or the COM 9026 transmitter also initializes the respective buffer page register. The formats of the buffers (both 256 and 512 byte) are shown below.

FIGUPE 8-	ADDRESS	FORMAT	ADDRESS	FORMAT	$N=$ DATA PACKET LENGTH $\mathrm{SID}=$ SOURCE 10 DID = DESTINATION ID (0 FOR BROADCASTS)
RAM BUFFEP	0	SID	0	SID	
	1	DID	1	DID	
PACKET	2	COUNT $=256-\mathrm{N}$	2	0	
CONFIGURATION		NOT USED	3	$\frac{\text { COUNT }=512-\mathrm{N}}{\text { NOT }}$	
	COUNT	DATA BYTEI		USEO	
		DATA BYTE 2			
		*	COUNT	DATA BYTE 1	
		-		DATABYTE 2	
		OATA BYTE N-1		*	
	255	DATABYTEN		-	
		NOT		DATABYTEN-1	
	511	USED	511	DATABYTEN	
		SHORT PACKET (256OR512BYTEPAGE)		LONG PACKET (512 BYTE PAGE)	

FIGURE 3-9026 OPERATION

PROCESSOR INTERFACE

Figure 2 illustrates a typical COM 9026 to processor interface. The signals on the left side of this figure represent typical processor signals with a 16 bit address bus and an 8 bit data bus with the data bus multiplexed onto the lower 8 address lines (PAD7-PADO). The processor sees a network node (a node consists of a COM 9026, RAM buffer. cable transceiver. etc. as shown in figure 2) as 2 K memory locations and 4 IO locations within the COM 9026.
The RAM buffer is used to hold data packets temporarily prior to transmission on the network and as temporary storage of all received data packets directed to the particular node. The size of the buffer can be as large as 2 K byte locatrons providing four pages at a maximum of 512 bytes per page. For packet lengths smaller than 256 bytes, a 1 K RAM buffer can be used to provide four pages of storage. In this case address line IA8 (sourced from either the COM 9026 or the processor) should be left unconnected. Since four pages of RAM buffer are provided, both transmit and receive operations can be double buffered with respect to the processor. For instance, after one data packet has been loaded into a particular page within the RAM buffer and a transmit command for that page has been issued, the processor can start loading another page with the next message in a multimessage transmission sequence. Similarly after one message is received and completely loaded into one page of the RAM buffer by the COM 9026, another receive command can be issued to allow reception of the next packet while the first packet is read by the processor. In general, the four pages in the RAM buffer can be used for transmit or receive in any combination. in addition, the processor
will also use the interface bus (|A10-|A8, |AD7-|ADO) when performing I/O access cycles (status reads from the COM 9026 or command writes to the COM 9026).
To accomplish this double buffering scheme, the RAM buffer must behave as a dual port memory. To allow this RAM to be a standard component, arbitration and control on the interface bus (IA10-IA8, IAD7-IADO) is required to permit both the COM 9026 and the processor access to the RAM buffer and, at the same time, permit all processor l/O operations to or from the COM 9026.
Processor access cycle requests begin on the trailing edge of AS if either IOREQ or MREQ is asserted. These access cycles run completely asynchronous with respect to the COM 9026. Because of this, upon processor access cycle requests. the COM 9026 immediately puts the processor into a wait state by asserting the WAlT output. This gives the COM 9026 the ability to synchronize and control the processor access cycle. When the processor access cycle is synchronized by the COM 9026, the WAIT signal is eventually removed allowing the processor to complete its cycle.
For processor RAM buffer access cycles, $\overline{\text { AIE }}$ and $\overline{\text { ADIE }}$ enable the processor address captured during AS time onto the interface address bus (IA10-IA8, IAD7-IADO). The signal \bar{L} will capture the 8 least significant bits of this address (appearing on IAD7-IAD0) before the data is multiplexed onto it. At the falling edge of L, a stable address is presented to the RAM buffer. For read cycles, $\overline{O E}$ allows the addressed RAM buffer data to source the interface address data bus (IAD7-IAD0). In figure 2, this information is passed into a transparent latch gated with WAIT. At the falling edge of WAIT, the data accessed by the processor is captured

and driven out via the logic function RD anded with REQ. For processor I/O read cycles from the COM 9026, $\overline{\text { ADIE }}$ and AIE are used to enable the processor address into the COM 9026. Data out of the COM 9026 is gated through the transparent latch and appears on the processor's data bus with the same control signals used for RAM read cycles.
For processor write cycles, after the falling edge of \bar{L}, the COM 9026 produces a WE (write enable) output to the RAM butfer, and the ILE output from the COM 9026 allows the processor data to source the interface address/data bus (IAD7-IADO). At this time the COM 9026 waits for DWR before concluding the cycle by removing the WAIT output. DWR should only be used if the processor cannot deliver the data to be written in enough time to satisfy the write setup time requirements of the RAM buffer. By delaying the activation of DWR, the period of the write cycle will be extended until the write data is valid. Since the architecture and operation of the COM 9026 requires periodic reading and writing of the RAM buffer in a timely manner, holding the DWR input off for a long period of time, or likewise by running the processor at a slow speed, can result in a data overtiow condition. It is therefore recommended that if the processor write data setup time to the RAM buffer is met, then the DWR input should be grounded.
For processor I/O write cycles to the COM 9026, $\overline{\text { ADIE and }}$ $\overline{\mathrm{AIE}}$ are used to enable the processor's address onto the interface data bus. ILE is used to enable the processor's write data into the COM 9026. Delaying the activation of DWR will hold up the COM 9026 cycle requiring the same precautions as stated for Processor RAM Write cycles.

As stated previously, processor requests occur at the falling edge of AS if either IOREQ or MREQ are active. COM 9026 requests occur when the transmitter or receiver need to read or write the RAM buffer in the course of executing the command. If the COM 9026 requests a bus cycle at the same time as the processor, or shortly after the processor, the COM 9026 cycle will follow immediately after the processor cycle. Figure 4 illustrates the timing relationship of a Processor RAM Read cycle followed by a COM 9026 RAM read cycle. Once the AS signal captures the processor address to the RAM buffer and requests a bus cycle, it takes 4 CLK periods for the processor cycle to end. Figure 4 breaks up these 4 CLK periods into 8 half clock interval labeled $1 P$ through 8P. A COM 9026 access cycle will take 5 CLK periods to end. Figure 4 breaks up these 5 CLK periods into 10 half intervals labeled 1C through 10C.

If a processor cycle request occurs atter a COM 9026 request has already been granted, the COM 9026 cycle will occur first, as shown in figure 5 . Figure 5 illustrates the timing relationship of a COM 9026 RAM Write cycle followed by a Processor RAM Write cycle. Due to the asynchronous nature of the bus requests (AS and CLK), the transition from the end of the COM 9026 cycle to the beginning of the processor cycle might have some dead time. Refering to figure 5. if AS falling edge occurs after the start of half CLK interval 9 C , no real contenticn exists and it will take between 200 and 500 nanoseconds before the processor cycle can start. The start of the processor cycle is defined as the time when the COM 9026 produces a leading edge on both $\overline{\text { ADIE }}$ and $\overline{\mathrm{AIE}}$. If the processor request occurs before the end of half

FIGURE 5-COM 9026 WRITE RAM FOLLOWED BY PROCESSOR WRITE RAM

CLK interval 5 C (figure 5 illustrates this situation), then the processor cycle will always start at half CLK interval 1P. The uncertainty is introduced when the processor request occurs during half CLK intervals $6 \mathrm{C}, 7 \mathrm{C}$ or 8 C . In this case, the processor cycle will start between 200 and 500 nanoseconds later depending on the particular timing relation between AS and CLK. The maximum time between processor request and processor cycle start. which occurs when the processor request comes just after a COM 9026 request, is 1300 nanoseconds. It should be noted that all times specified above assume a nominal CLK period of 200 nanoseconds.
Figures 6 and 7 illustrate timing for Processor Read COM 9026 and Processor Write COM 9026 respectively. These cycles are also shown divided into 8 half clock intervals (1P through 8 P) and can be inserted within figures 4 and 5 if these processor cycles occur.

POWER UP AND INITIALIZATION

The COM has the following power up requirements:
1 -The $\overline{\text { POR input must be active for at least } 100}$ milliseconds.
2-The CLK input must run for at least 10 clock cycles before the POR input is removed.
3-While $\overline{\text { POR }}$ is asserted, the CA input may be running or held high. If the CA input is running, POR may be released asynchronously with respect to CA. If the CA input is held high, POR may be released before CA begins running.
During $\overline{\mathrm{POR}}$ the status register will assume the following state:

BIT 7 (RI) set to a logic " 1 ".
BIT 6 (ETS2) not affected
BIT 5 (ETS1) not affected
BIT 4 (POR) set to a logic " 1 ".
BIT 3 (TEST) set to a logic " 0 ".

BIT 2 (RECON) set to a logic " 0 "
BIT 1 (TMA) set to a logic " 0 ".
BIT 0 (TA) set to a logic " 1 ".
In addition the $\overline{\text { DSYNC output is reset inactive high and the }}$ interrupt mask register is reset (no maskable interrupts enabled). Page 00 is selected for both the receive and the transmit RAM buffer. After the $\overline{\text { POR }}$ signal is removed, the COM 9026 will generate an interrupt from the nonmaskable Power On Reset interrupt. The COM 9026 will start operation four CA clock cycles after the $\overline{\mathrm{POR}}$ signal is removed. At this time, the COM 9026, after reading its ID from the external shift register, will execute two write cycles to the RAM buffer. Address 00 HEX will be written with the data D1 HEX and address 01 HEX will be written with the ID number as previously read from the external shift register. The processor may then read RAM buffer address 01 to determine the COM 9026 ID. It should be noted that the data pattern D1 written into the RAM has been chosen arbitrarily. Only if the D1 pattern appears in the RAM buffer can proper operation be assured.

CLOCK GENERATOR

The COM 9026 uses two separate clock inputs namely CA and CLK. The CLK input is a 5 MHz free running clock and the CA input is a startstop clock periodically stopped and started to allow the COM 9026 to synchronize to the incoming data that appears on the RX input.
Figure 9 illustrates the timing of the CA clock generator and its relationship to the DSYNC output and the RX input. The DSYNC output is used to control the stopping of the CA clock. On the next rising edge of the CA input after DSYNC is asserted, CA will remain in the high state. The CA clock remains halted in the high state as long as the RX signal remains high. When the RX signal goes low, the CA clock is restarted and remains running until the next falling edge of DSYNC. (See figure 20 for an implementation of this circuit.)

FIGURE 6-PROCESSOR READ COM 9026

FIGURE 7—PROCESSOR WRITE COM 9026

FIGURE 9-CA CLOCK GENERATOR TIMING

EXTENDED TIMEOUT FUNCTION

There are three timeouts associated with the COM 9026 operation.

Response Time

This timeout is equal to the round trip propagation delay between the 2 furthest nodes on the network plus the maximum turn around time (the time it takes a particular COM 9026 to start sending a message in response to a received message) which is known to be 12 microseconds. The round trip propagation delay is a function of the transmission media and network topology. For a typical system using RG62 coax in a baseband system, a one way cable propagation delay of 31 microseconds transiates to a distance of about 4 miles. The flow chart in figure 3 uses a value of 74.7 microseconds ($31+31+12+$ margin) to determine if any node will respond.

Idle Time

This time is associated with a NETWORK RECONFIGURATION. Refering to figure 3, during a NETWORK RECONFIGURATION one node will continually transmit INVITATIONS TO TRANSMIT until it encounters an active node. Every other node on the network must distinguish between this operation and an entirely idle line. During NETWORK RECONFIGURATION, activity will appear on the line every 78 microseconds. This 78 microsecond is equal to the response time of 74.7 microseconds plus the time it takes the COM 9026 to retransmit another message (usually another (NVITATION TO TRANSMIT). The actual timeout is set to 78.2 microseconds to allow for margin.

Reconfiguration Time

If any node does not receive the token within this time, the node will initiate a NETWORK RECONFIGURATION.

The ET2 and ET1 inputs allow the network to operate over longer distances than the 4 miles stated eariier. DC levels on these inputs control the maximum distances over which the COM 9026 can operate by controlling the 3 timeout values described above. Table 1 illustrates the response time and reconfiguration time as a function of the ET2 and ET1 inputs. The idle time will always be equal to the response time plus 3.5 microseconds. It should be noted that for proper network operation, all COM 9026's connected to the same network must have the same response time, idle time and reconfiguration time.

ET2	ET1	RESPONSE	RECONFIGURATION
1	1	74.7	TIME (ms)
1	0	283.4	840
0	1	561.8	1680
0	0	1118.6	1680

TABLE 1
COM 9026 INTERNAL PROGRAMMABLE TIMER VALUES

I/ O COMMANDS

10 commands are executed by activating the IOREQ input. The COM 9026 will interrogate the ADO and the $R \bar{W}$ inputs at the AS time to execute commands according to the following table:

IOREQ	ADO	R \bar{W}	FUNCTION
low	low	low	write interrupt mask
low	low	high	read status register
low	high	low	write COM 9026 command
low	high	high	reserved for future use

READ STATUS REGISTER

Execution of this command places the contents of the status register on the data bus (AD7-ADO) during the read portion of the processor's read cycle. The COM 9026 status register contents are defined as follows:
BIT 7 -Receiver inhibited (RI)-This bit, if set high, indicates that a packet has been deposited into the RAM buffer page nn as specified by the last ENABLE RECEIVE TO PAGE nn command. The setting of this bit can cause an interrupt via INTR if enabled during a WRITE INFERRUPT MASK command. No messages will be received until an ENABLE RECEIVE TO PAGE nn command is issued. After any message is received, the receiver is automatically inhibited by setting this bit to a logic one.
BIT 6-Extended Timeout Status 2 (ETS2)-This bit reflects the currentlogic value tied to the ET2 input pin (pin 1).
BIT 5-Extended Timeout Status 1 (ETS1)-This bit reflects the current logic value tied to the ET1 inputpin (pin 3).

BIT 4-Power On Reset (POR)-This bit, if set high. indicates that the COM 9026 has received an active signal on the $\overline{P O R}$ input (pin 40). The setting of this bit will cause a nonmaskable interrupt via INTR.
BIT 3-Test (TEST) - This bit is intended for test and diagnostic purposes. It will be a logic zero under any normal operating conditions.
BIT 2-Recontiguration (RECON)-This bit, if set high, indicates that the reconfiguration timer has timed out because the RX input was idle for 78.2 microseconds. The setting of this bit can cause an interrupt via INTR if enabled by the WRITE INTERRUPT MASK command. The bit is reset low during a CLEAR FLAGS command.
BIT 1-Transmit Message Acknowledged (TMA)-This bit. if set high, indicates that the packet transmitted as a result of an ENABLE TRANSMIT FROM PAGE nn command has been positively acknowledged. This bit should only be considered valid after the TA bit (bit 0) is set. Broadcast mesages are never acknowledged.
BIT 0-Transmitter Available (TA)-This bit, if set high, indicates that the transmitter is available for transmitting. This bit is set at the conclusion of a ENABLE TRANSMIT FROM PAGE nn command or upon the execution of a DISABLE TRANSMITTER command. The setting of this bit can cause an interrupt via INTR if enabled by the WRITE INTERRUPT MASK command.

WRITE INTERRUPT MASK

The COM 9026 is capable of generating an interrupt signal when certain status bits become true. A write to the MASK register specifies which status bits can generate the interrupt. The bit positions in the MASK register are in the same position as their corresponding status bits in the STATUS register with a logic one in a bit position enabling the corresponding interrupt. The setting of the TMA, EST1, and EST2 status bits will never cause an interrupt. The POR status bit will cause a non-maskable interrupt regardless of the value of the corresponding MASK register bit. The MASK register takes on the following bit definition:

BIT 7	Bit 6	BIT 5	EIT 4	EIT 3	BIT 2	EIT 1	Bito
RECEIVE INHEIT	$x \times X$	XXX	XXX	$x \times x$	RECON TIMER	$x \times x$	TRANSMITTEA available

The three maskable status bits are anded with their respective mask bits, and the results, along with the POR status bit, are or'ed to produce the processor interrupt signal INTR. This signal returns to its inactive low state when the interrupting status bit is reset to a logic " 0 " or when the corresponding bit in the MASK register is reset to a logic " 0 ". To clear an interrupt generated as a result of a Power On Reset or Reconfiguration occurance, the CLEAR FLAGS command should be used. To clear an interrupt generated as a result of a completed transmission (TA) or a completed reception (RI), the corresponding masks bits should be reset to a logic zero.

WRITE COM 9026 COMMANDS

Execution of the following commands are initiated by performing a processor I/O write with the written data defining the following commands:

WRITTEN DATA	COMMAND				
00000000	reserved for future use				
00000001	DISABLE TRANSMITTER-This command will cancel any pending transmit command				
	(transmission has not yet started) when the COM 9026 next receives the token. This com-				
mand will set the TA (Transmitter Available) status bit when the token is received.		$	$	00000010	DISABLE RECEIVER T This command will cancel any pending receive command. If
:---	:---				
	the COM 9026 is not yet reciving a packet. the RI (Receiver Inhibited) bit will be set				
the next time the token is received. If packet reception is already underway, reception					
will run to its normal conclusion.					

All other combinations of written data are not permitted and can result in incorrect chip and/or network operation.

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{C c}=5.0 \mathrm{~V} \pm 5 \%\right)$

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}=5 \%\right)$

	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
tow,	CLK pulse width	65			ns	
$t_{\text {PGA }} 1$	CLK period	190	200	600	ns	
tom:	CLK off time	65			ns	
tow2	CA pulse width	60			ns	
togaz	CA period	190			ns	
tora?	CA off time	60	100	300	ns	
t_{f}	CLK, CA rise time			20	ns	
t_{6}	CLK, CA fall time			20	ns	
$t_{\text {t }}$	width of addr. strobe	50			ns	
t_{2}	REQ output delay	0		100	ns	
t_{3}	WAIT assertion delay	0		200	ns	
t_{4}	delay to rising edge of processor cycle	10		$2 t_{p}+100$	ns	$t_{P}=t_{\text {PGA }}$
t_{5}	data hold into COM 9026	80			ns	
4	setup COM 9026 data out	60			ns	
t_{7}	WE delay from CLK	0		100	ns	
t_{m}	$\overline{T X}$ on delay from CA falling edge	10		150	ns	
t_{9}	TX off delay from CA rising edge	10		150	ns	
	AS period	$7 / 2 t_{0}$			ns	$t_{\text {P }}=\mathrm{t}_{\text {Ptaz }}$
t.,	DSYNC delay from CA rising edge	10		150	ns	
\dagger_{12}	delay to wait off	20		100	ns	
t_{13}	DWR setup time	50			ns	
t, 4	ILE delay from CLK	10		100	ns	
t,	processor addr. setup from $\overline{A D I E}$,			50	ns	
1,5	processor command setup time	125			ns	
t, 7	addr. enable setup time to \bar{L}	50			ns	
$t_{1,8}$	addr. hold time from \bar{L}	50			ns	
t_{19}	strobe and data hold for read	20			ns	
t_{20}	$A D$ bus HI impedance to OEs	0			ns	
t_{2},	delay of IDLD from CLK rising edge	0		120	ns	
t_{22}	delay of IDDAT from CLK rising edge	0		50	ns	
t_{23}	off delay from CLK rising edge	0		100	ns	
t_{26}	addr. to RAM data valid			300	nis	
t_{25}	OE selup to WAIT falling edge	140			ns	
t_{25}	strobe \& data hold for write	50			ns	
t_{2}	addr. enable setup to WAIT	300			ns	
t_{28}	$\overline{\text { ADIE }}$ to OE delay	40			ns	
t_{29}	COM 9026 write data hold time	80			ns	
t_{30}	OE to RAM data valid	0		140	ns	
t_{31}	status setup to AS falling edge	50			ns	
t_{32}	status hold from AS falling edge	50			ns	
t_{33}	$R X$ setup to CA rising edge	80			ns	
t_{3}	RX hold time from CA rising edge	30			ns	
t_{35}	$\overline{\mathrm{POR}}$ active time	100			ms	after V_{x} has been stable for time t_{35}, the minimum POF active time is 10 cycles of CLK.

The above timing information is valid for a worst case 40% to 60% duty cycle on CLK. All times are measured from the 50% point of the signals.

FIGURE 12-TRANSMIT AND RECEIVE TIMING

FIGURE 13-PROCESSOR WRITE RAM AC TIMING

FIGURE 14-PROCESSOR READ RAM AC TIMING

FIGURE 15-COM 9026 READ RAM AC TIMING

FIGURE 16—COM 9026 WRITE RAM AC TIMING

FIGURE 17-PROCESSOR READ COM 9026 AC TIMING

FIGURE 18-PROCESSOR WRITE COM 9026 AC TIMING

IDDAT

FIGURE 19-ID INPUT AC TIMING

STANDARD MICROSTSTEMS

 CORPORATION tions; consequentiy complete information sufficient for construction purposes is not necessarlly given. The information has been carefully checked and is believed to be entirely reliabie. However, no responsibility is assumed tor inaccuracies. Furthermore, such intormation does not convey to the purchaser of the semiconductor devices described any ficense under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

The purpose of this technical note is to provide the information and schematncs needed to implement the CLOCK GENERATOR and the CABLE TRANSCEIVER for the COM 9026. In addition, some discussion of the transmission media nerwork topology and network performance is included.

CLOCK GENERATOR

Figures 1 and 2 llustrate the CLOCK GENERATOR and associated timing respectively. The purpose of this circuitry is to generate the CLK and CA signals for the COM 9026. A 20 MHz oscillator is used to allow proper control of the starting and stopping of the CA signal. The CLK signal is generated from a divide by 4 circuit using 274 S112's.

The line protocol of the COM 9026 is designed to ensure that a negative transition always occurs 1 bit time before a particular byte of any transmission. A three bit field of 110. which proceeds every byte. provides the required negative transtion. The " 0 " in this three bit field may be thought of as a start bit and the " 11 " may be thought of as two stop bits from the previous byte. When the COM 9026 is waiting for another byte (or the first byte) within a message, it will resynchronize the CA clock by temporarily halting the CA clock at the high level. It accomplishes this by lowering the DSYNC signal. When the RX line experrences a high to low transition (the " 0 " in the three bit field), the CA clock is restarted which in tum causes the DSYNC signal to be raised to the high level. The circuitry of figure 1 assumes an RX bit spacing of 400 nanoseconds which must be equal to twice the period of the CA clock. The circuitry of figure 1 is set up such that the next low to high transtion of the CA clock occurs between 200 and 250 nanoseconds after the high to low transtion on RX. This places the point at which the COM 9026 samples the RX input approximately midway into the bit. Every other low to high transition on CA thereatter will
be used to sample the 8 bit data byte that follows. Once the byte is received. the DSYNC signal is again activated in preparation for the next high to low transition on the RX line indicating the start of the next data byte. The DSYNC output will return to its high (inactive) state after each CA synchronization is established. Figure 3 illustrates the relationship of the DSYNC, CA and RX signals before, during, and after CA synchronization.

The technique used for synchronization is similar to that of standard asynchronous protocols where a sample point within an asynchronous signal is found and used for each byte transmitted. Traditionally, a 16 X or 64 X clock is used to provide the resolution needed to find the proper sample point for low frequency transmission. Because of the 2.5 M bit rate provided by the COM 9026. a $2 \times$ clock (the CA signal) is used in conjunction with an external $8 \times$ ciock (20 MHz) to allow determination of a reliable sample point.

It should be noted that the DSYNC output can never become active low duning a COM 9026 transmission. At the end of a transmission, the COM 9026 will wait about 6 microseconds. By this time the line should be quiet and the RX input will be sitting in a space (low) condition. At this time, the COM 9026 will wait for the RX input to become high (level sensitive not edge sensitive) which occurs dur* ing the alert burst of the next transmission. At this time. the COM 9026 starts reception by lowering the USYNC signal.

FIGURE 1: CLOCK GENERATION*
-Suggested circuit when using the COM9026 without ine COM9032.

CABLE TRANSCEIVER

The circuitry of figure 1 and the COM 9026 assume the data appearing on the RX signal is NRZ with a high level indicating a logic " 1 " and a low levelindicating a logic " 0 ". The bit boundaries are spaced at 400 nanosecond intervals. establishing the 2.5 M bit data rate. The COM 9026 . when transmitting data on \bar{X}. will produce a negative pulse of 200 nanoseconos in duration to indicate a logic " 1 " and no pulse to indicate a logic "0". Figure 5 illustrates a typical data transmission.

The CABLE TRANSCEIVER's function is first to conven the 200 nanosecond \bar{X} pulses output by the COM 9026 to a format consistant with the transmission media and network topology and. second. to convert signals from the cable to the NRZ data required by the COM 9026's RX input. Starting with the TX and RX signais. many different cable transceiver implementations can result to allow for broadband or baseband networks using twisted pair, coax, or fiber optics as the transmission media. Figures 4 and 6 illustrate a typical CABLE TRANSCEIVER used to implement Datapoint s ARCNET* local area network. The ARCNET* implementation uses a baseband system with RG62 (93 onm) coax.

Referning to figure 4, a 200 nanosecond negative pulse on \bar{X} is converted to two 100 nanosecond negative pulses shown as PULSE 1 and PULSE 2. These two signals are used to create a 200 nanosecond wide dipuise signal by being driven into opposite sides of RF transtormer T1 and finally coupled onto the coax as shown in figure 6. Figure 7 shows the timing relationship between CA, TX. PULSE 1 and PULSE 2. The waveform of the resultant dipulse is also shown in figure 7.

Referring to figure 6, a dipulse appearing on the coax
is coupled to the receiver via RF transformer T1 and oassed through a filter network matched to the 93 ohm character. istic impedance of the coax. The filter output feeds a 75108 comparator which produces a positive pulse on RCVD for each dipulse received from the coax. The RCVD signai feecs the circuitry shown in figure 4 which converts these ouises to NRZ data on the RX signal entering the COM 9026. Figure 8 illustrates the timing associated with this function.

The CABLE TRANSCEIVER shown in figures 4 and 6 has been designed to operate in a baseband cable system using a network topology where any 2 nodes are connected by a single path which is terminated at both enos with the cable's characteristic impedance. Figure 9 Illustrates a typical free forming tree topology which is used in the ARCNET* implementation. By using central HUBs. eacn node connects through a length of cable to a port on a HUB with the cable terminated as previously described. No taps are used on the coax.

The COM 9032 local area network transcelver. housed in a 16 pin package. can replace all the logic shown in figures 1 and 4 and simplity the building of ARCNET* compatible networks by performing the following functions:
1- Generation of CA and CLK clocks for the COM 9026 with high voltage drive.
2. Creation of PULSE 1 and PULSE 2 waveforms during transmit.
3- Conversion of received data to NRZ format.
These functions are performed exactiy as the TTL implementation shown in figures 1 and 4. Figure 10 illustrates the COM 9032 used with the COM 9026 to implement an ARCNET* compatible cable transceiver.
-ARCNET is a registered trademark of the Datapoint Corooration

FIGURE 4: TRANSMIT AND RECEIVE LOGIC*

- Suggested ercuit when using the COM9026 without the COM9032.

FIGURE 5: TYPICAL $\overline{T X}$ WAVEFORM

FIGURE 6: ARCNET* CABLE TRANSCEIVER

FIGURE 7: DIPULSE GENERATION

FIGURE 8: RX WAVEFORM GENERATION

HUB ELECTRONICS

Figures 11a and 11 b illustrate a typical implementation of an active HUB. The HUB may be thought of as an amplifier and a number of ideal taps mounted in the same box. Each tap is ideal in that it causes no insertion loss. no tap loss and provides total suppression of reflections. Each of the ports on the HUB may be connected to a network node. to another HUB. to an unterminated length of coax. or to nothing at all. The reflections caused by connecting an unterminated length of coax is taken into account in the HUB implementation and will not have any negative effects on network operation.

When no activity appears on the HUB ports. the HUB enters the idle state and all recervers are enabled. This state corresponds to a clear condition within the octal register which provides disable signals to the transmitters of all ports through the interface modules. As soon as any port senses activity (port n), one of 874 S74's is clocked low causing the output of AND 1 to go low. This in turn brings the signal SET to a high which causes the octal register to be clocked through AND 2. The clocking of the octal register causes one output to remain low (the one corresponding to the port which sensed activity designated as port n) and the other seven outputs to go high. This allows port n to transmit (repeat) its signal to all other ports. For each pulse sensed. the delay module will generate PULSE 1 and PULSE 2 which is used by all other ports to generate the dipulse as shown in figure 7. The HUB remains in this active state until the transmission it is repeating is finished. At this time it returns to the idle state.

The determination of when a transmission is finished is based on time. There are never more than nine consecutive spacing elements in a transmission (the start element and eight zeros). Therefore, a dipulse is received at least once every ten unit intervals (4 microseconds). The COM

9026 has a turnaround time somewhat greater than 12 microseconds so there will be at eeast a $i 2$ microsecond interval of no activity between the end of the last cata element of one transmission and the start of the alert burst of the next transmission. Were it not for the potential reflection problem caused by an unterminated or unconnected ength of coax. the HUB could droo dack into the ide state when the receiver has not heard anything for some period of time between 4 and 12 microseconds.

In order to provide protection against reflections. the HUB should not fall back into the idle state until any and all reflections cease. For individual runs of coax not greater than 2000 feet (RG62 coax), a reflection from a shorted or unterminated cable will return in less than 4.9 microseconds. Changing the 4 microsecond limit to 4.9 microseconds will allow the HUB and the network to be unaffected by reflections. For the duration of the packet. retriggerable one shot OS1 will never fire. The 5.5 microsecond duration of OS 1 will determine when a packet transmission has concluded by sensing a lack of activity for greater than 4.9 microseconds. When OS 1 fires. OS2 produces a 150 nanosecond pulse which resets the octal register, resets the signal SET and clears all 874 S74's. This corresponds to the idle state of the HUB and the process repeats when the next packet is received.

It is possible to implement a passive HUB as shown in figure 12. This arrangement allows for a maximum of 4 ports. For proper operation, each port must be terminated in 93 ohms either by connecting it to an active node or attaching a 93 ohm BNC terminator to the unconnected port. When the ports are terminated properly, each port will have an input impedance of 93 ohms. Due to the considerable loss experienced in this arrangement. it is recommended that no more than 4 nodes be connected in this manner.

FIGURE 9: TYPICAL NETWORK TOPOLOGY

FIGURE 10: ARCNET* COMPATIBLE CABLE TRANSCEIVER USING THE COM 9032

TI-1T TOP VIEW (minciacuts Las)

FIGURE 11B: TYPICAL ACTIVE HUB ELECTRONICS (INTERFACE MODULE)

FIGURE 12: 4 PORT PASSIVE HUB

PROGRAMMING THE COM 9026

Packet Transmission

Transmission of a message begins with the processor selecting a page in the RAM buffer and writing the packet. Figure 13 illustrates the RAM buffer format for a message of length 120 (78 HEX) from ID \#4C HEX to ID \#B2 HEX. Note that address 02 of the selected page contains the 2's complement of the number of data bytes in the message. Figure 14 illustrates the RAM buffer format for a message of length 300 (12C HEX; long packet) from ID \#2F to ID \#D8. Note that address 02 must contain all zeros with address 03 equal to the 2 's complement of the number of data bytes in the message. The 2's complement for long packets is calculated with respect to 512 but only 8 bits are used in RAM butfer address 03. The COM 9026 will keep track of the 9th bit internally. The RAM buffer is arranged such that the last data byte will always reside in address 255 (FF HEX) for short packets and address 511 (1FF HEX) for long packets. Broadcast messages will be transmitted if address 01 is set to 00.

Once the buffer is loaded, the processor must wait for the TA status bit to become a logic one. The TA bit informs the processor that a previous transmit command has concluded and another transmit command can be issued. Each time the message is loaded and a transmit command issued. it will take a vanable amount of time before the message is transmitted depending on the tratfic on the network and the location of the token at the time the transmit command was issued. Typically, the conclusion of the transmit command. which is flagged when TA becomes a logic one. generates an interrupt. While waiting for the interrupt to occur, the processor can load another page in the RAM butfer with the next message to be sent in anticipation of the transmitter becoming available (TA becomes a logic one). In this way, double buffering is accomplished by loading a second message while the first message is being transmitted. The interrupt will then allow the software to time the repeated issuing of transmit commands.

Before a message is transmitted, the destination node is asked if it is able to receive the message via a FREE BUFFER ENQUIRY transmission. This is done automatically by the COM 9026 with no software intervention. If the destination node is not servicing its COM 9026, for what-
ever reason. the receiver at the destination node will be inhibited (RI set to a logic one) and the source node will never be able to deliver the packet and set the TA bit to a logic one. Because of this, there should be a sottware timeout on the TA bit. When the timer times out. the processor snould disable the transmitter which torces the COM 9026 to abandon the transmission and causes the TA bit to set to a logic one when the node next receives the token. If the source node attempts to transmit a packet to a nonexistent node. the packet will never be delivered but the TA bit will always be set to a logic one. In this situation, the TMA bit will never get set.

If the disable transmitter command does not cause the TA bit to be set in the time it takes the token to maxe a round trip through the network, it will indicate one of three situations:
1-The node is disconnected from the network.
2-There are no other active nodes on the network.
3-The external receive circuitry has failed.
These situations can be determined by using another software timeout which is greater than the worst case tume for a round trip token pass which occurs when all nodes transmit a maximum length message.

It should be noted that each node, upon packet transmission, ignores the value of the SID in the buffer and instead inserts the ID number as specified by the external switches.

Packet Reception

To enable the receiver for packet reception, the processor selects a page in the buffer to use and waits for the RI status bit to become a logic one. The RI bit informs the processor that a previous RECEIVE command has concluded and another RECEIVE command can be issued. Each ume a receive command is issued, the reception can take a variable length of time since there is no way of telling when another node will decide to transmit a message directed at this node. The RECEIVE command will reserve a particular page of memory in the RAM buffer for reception. Only the successful reception of a packet, or the issuing of a DISABLE RECEIVE command will set the RI bit to a logic one thus freeng up the page in the RAM buffer for processor accesses.

ADDRESS	DATA	ADDRESS	DATA
00	4 C	00	2 F
01 02	82 88 $(=100-78)$		
		03	D4($=200-12 \mathrm{C})$
		D4	DATA BYTE 1
88 89	data byte 1 DATA BYTE 2	D5	DATA BYTE 2
8A	DATA BYTE 3		data byte 3
		1FF	DATA BYTE 300
FF	DATA BYTE 120		
FIGURE 13: TYPICAL SHORT PACKET BUFFER FOR TRANSMIT		FIGURE 14: TYPICAL LONG PACKET BUFFER FOR TRANSMIT	

Typicaily, the conclusion of a RECEIVE commana. which is flagged by the il bit being set to a logic one. will generate an interrupt and allow the processor to read or operate on the message as required. Figure 15 illustrates the contents of a page in the RAM buffer after a packet is recerved for a source iD \# of F3 and a destination ID \# of 91 with a packet length of 201 bytes (C9 HEX). Figure 16 illustrates the contents on the RAM buffer after a packet is recerved from a source ID \# of C3 and a destination ID \# of $1 F$ with a packet length of 490 bytes (1EA HEX). The COM 9026 will deposit packets in the RAM buffer in a format identical to the transmit format allowing for a message to be received and then retransmitted without rearranging any bytes in the RAM buffer.

COM 9026 Interrupts

When using the interrupt structure of the COM 9026 to time the issuing of the transmit and receive commands. certain procedures should be followed. The INT output of the COM 9026 is generated in a vanety of ways. For the transmitter. the INT output is generated by the logic function TA anded with bit zero in the interrupt mask register. Assuming the mask register bit is set to a logic one. allowing transmitter interrupts to occur. when the TA bit gets set to a logic one. the interrupt is simultaneousiy generated. In order to clear the interrupt and prevent repeated servicing of the same interrupt. either another transmit command should be loaded (if there is another message ready to be transmitted) which will reset the TA bit to a logic zero, or bit zero of the internupt mask register should be reset to a logic zero.

During reception, the INT output is generated by the logic function Rl anded with bit 7 of the interrupt mask register. Assuming the mask register bit 7 is set to a logic one. allowing receive interrupts to occur. when the Ri bit gets set to a logic one. an interrupt is simultaneously generated. As for the transmitter, the interrupt should be cleared during the interrupt service routine. The clearing of the intermupt is accomplished by either issuing another receive command (if a page in the RAM buffer has been freed up to accept a new data packet) or by resetting bit 7 of the internupt mask register to a logic zero.

Network Performance

The most important parameter used to measure performance in a local area network is the amount of time a node has to wait before being able to send a message. This
parameter actually denotes the number of messaçes zer second leaving each node. In the token passing screme used by the COM 9026. this walt time is oouncea oy re ume it takes the token to make a round ino through zach node on the network. This time is a function of ine numeder of nodes on the network, the traffic activity ana the numbeof bytes transmitted in each message. There are also sore delay times that are intrinsic to the COM 9025 coniricutng to this wait time.

The COM 9026 will perform a simple token pass it receives the token, has nothing to transmit and passes ine token to the Next (D) in approximately 28 microseconas. Therefore. the best time for a round thip token pass to eacn node can be expressed as follows:

$$
\mathrm{Tb}=28 \mathrm{~N} \text { microseconds }
$$

where N equals the number of nodes on the network. When a particular node receives the toxen and has a message to transmit. the COM 9026 introduces an additional time of 113 microseconds plus 4.4 microseconds for eacn byte transmitted in the message. Therefore. the worst case time for a round trip token pass. which exists when eacn node on the network has a message to transmit. can be expressed as follows:

$$
T w=T b+(113-4.4 B) N \text { microseconds }
$$

where B equals the average number of oytes sent per message. Combining terms. the watt time. Twatt. is bounded oy the following equation:

$28 \mathrm{~N}<$ Twait $<(141-4.4 \mathrm{~B}$) N microseconas

In a typical network consisting of 10 nodes with an average message iength of 100 bytes. Twat will fall between 280 microseconds (no messages sent) and 5.81 milliseconds (when all 10 nodes send 100 oyte messages). If only a single node is sending messages. It can send one every 833 microseconds: a rate of 1200 messages per secona or 120,000 bytes per second. If all 10 nodes send 100 byte messages, each node will be able to send a message every 5.81 milliseconds: a rate of 172 messages per second or 17,200 bytes per second.

In actual practice. Datapoint Corporation has instaled many ARCNET systems with as many as 200 nodes acive at any given time. A typical network supports two totaly independent operating systems and a wide variety of uses including program loading. word processing. print spooling. program development. electronic mail. etc. The tratic load on this type network rarely falls below 400 messages

per second. yet less than 2% of the nodes send a message on any single token tho. The time required for a token trip. therefore. stays very close to the no traffic value with peaks of three times the no traffic value being extremely rare.

The COM 9026 has some interesting features that allow one to monitor the dynamic performance of the network from any node. During any message transmission, each node will recelve the source ID (SID) and destination ID (DID) and store the SID into RAM buffer location 02 of the current page enacled for recerve. If the message is not directed at the particular node. the message itself is not deposited into the RAM buffer. Every node. therefore, will store at least the source of every message sent on the network making it possible to monitor the traffic activity.

In addition. continual loading of a TRANSMIT command followed immediately by a DISABLE TRANSMIT command makes it possible to measure the time for one complete token pass. Once the DISABLE TRANSMIT command is loaded. the command will not actually end until the node next receives the token. In this case, the TA bit in the status register is used to inform the host processor that the token has been passed through the node since only receipt of the token will allow the DISABLE TRANSMIT command to be completed. By measuring the time berween successive settings of the TA status bit, an accurate measure of the time for every round trip token pass can be determined.

A NETWORK RECONFIGURATION occurs whenever a new network node is first activated onto the system. In the normal course of events, nodes are always being activated. and the system adjusts this by initiating a NET. WORK RECONFIGURATION. The time to complete a NETWORK RECONFIGURATHON and return to a normal operating environment is a function of the propagation delay between nodes. the number of nodes on the network, and the highest 10 number on the network. Figure 17 is a graph illustrating the reconfiguration time as a function of the number of nodes on the network and the highest ID number and shows a range of 21 to 61 milliseconds. The reconfiguration time shown assumes no cable propagation delay. The recontiguration time has no long lasting effect on the system performance and will only increase the time of a single token pass by the actual time of recontiguration.

Similarly, when a node is deactivated, the node that usually passes the token will have to continually try to pass the token to the next highest ID. The time it takes for a node
to pass the token and find the next active node is a function of the difference in ID numbers of the deactivated noce and the next highest active node. For example, if node $\# 3$ passes to node \#10 and node \#10 passes to node \#20. and if node \#10 is deactivated, then node \#3 will issue an INVITATION TO TRANSMIT to nodes $10,11,12 \ldots$ etc. and tinally node 20 where it will detect line activity and complete the token pass. In this example. node \#3 will issue eleven INVITA. TION's TO TRANSMIT, all but the last one taking 93.6 microseconds (see appendix 1; TOKEN PASS with no response). before finally finding activity at node $\# 20$. In this example. the extra time associated with this system adjustment will be 10 times 93.6 microseconds plus the response time of the active node which must be less than 74 microseconds assuming a one way cabie propagation delay of 31 microseconds. Just as with the NETWORK RECONFIGURATION, this adjustment has no long lasting effect on the system performance and will only increase the time of a single token pass by an amount equal to the time taken to find the next active node on the network.

For a more detailed discussion of the critical performance parameters, refer to appendix 1 .

Extended Length Message Operation

The COM 9026 can transmit and receive short packets (maximum length of 253 bytes) or long packets (maximum length of 508 bytes). When only short packets are used. it is possible to use either a 1 K or 2K RAM buffer. When both long and short packets are used, a 2K RAM buffer must be used.

Use of the extended length message feature is controlled via the DEFINE CONFIGURATION command. This command allows the user to set the long packet enabie flag. When this flag is set and the contents of RAM buffer address 02 is zero, the packet is treated as a long packet with RAM buffer address 03 pointing to the address containing the first byte in the message. In this case, the last byte in the message resides in RAM buffer address 511. When the long packet enable flag is set, both long and short packets can be handled. However, when the long packet enable flag is reset, only short packets can be handled.

Whatever the packet length. the COUNT byte will always point to an address stuated in the first 256 bytes of the page selected. Because of this, message lengths of 254 through 256 bytes must be padded out to a length of at least 257 bytes in order to be handled.

Nodes equipped and configured for extended length messages can coexist in the same system as nodes not contigured for extended length messages. The DEFINE CONFIGURATION command merely intorms the COM 9026 of the existence of an external 2 K buffer and thus need only be issued at initialization time. Operation with standard length messages (less than 254 bytes) proceeds in the normal fashion.

If an extended length message is sent to a node that does not have its long packet enable flag set. the receiver will ignore it. The transmitting COM 9026 will set its TA bit but not the TMA bit. If an attempt is made to have a node transmit an extended length message when the node does not have its long packet enable flag set. the packet will not be sent and the TA bit will stay off until a DISABLE TRANSMITTER command is issued. To the host processor, this situation will appear exactly as if a transmission were attempted to a node that has its receiver inhibited.

The following information is provided for the benefit of users wishing to perform therr own pertormance analysis．The equations shown in the section entitled NETWORK PER． FORMANCE have assumed no cable propagation deiay． The information that toilows will accurately incluce all cable delays．

The lengths of the five types of COM 9026 transmis－ sions are shown below：
INVITATIONS TO TRANSMIT（ITT）

$$
\begin{array}{ll}
\text { ALERT BURST } & =2.4 \mu \mathrm{~s}(6 \text { bits }) \\
\text { EOT. DID. DID } & =\frac{13.2 \mu \mathrm{~s}}{15.6 \mu \mathrm{~s}}(33 \mathrm{bits})
\end{array}
$$

FREE BUFFER ENQUIRIES（FBE）

ALEAT BURST	$=2.4 \mu \mathrm{~s}(6$ bits $)$
ENQ．DID．DID	$=\frac{13.2 \mu \mathrm{~s}}{15.6 \mu \mathrm{~s}}(33$ bits $)$

PACKETS（PAC）

ALERT BURST

$=2.4 \mu \mathrm{~s}$（ 6 bits ）
SOH．SID，DID，DID．
COUNT $\quad=22.0 \mu \mathrm{~s}$（ 55 bits）
B CHARACTERS $=4.48 \mu \mathrm{~s}(55 \mathrm{~B}$ bits）
CAC，CAC

$$
=\frac{8.8 \mu s(22 \text { bits })}{33.2 \mu s}+4.48 \mu s
$$

ACXNOWLEDGEMENTS（ACK）

$$
\begin{aligned}
\text { ALERT BURST } & =2.4 \mu s(6 \text { bits }) \\
& =\frac{4.4 \mu s}{6.8 \mu s}(11 \text { bits })
\end{aligned}
$$

NEGATIVE ACKNOWLEDGEMENTS（NAK）

$$
\begin{aligned}
\text { ALEFT BURST } & =2.4 \mu s \text { (} 6 \text { bits }) \\
\text { NAK } & =\frac{4.4 \mu s}{6.8 \mu s}(11 \text { bits })
\end{aligned}
$$

In addition，there are certain deley constants and cable propagation times requred for analysis as described below： CHIP TURNAROUND TIME（Tla）$=12.6 \mu s$

This time is defined as the time from the end of any recerved transmission until the start of a response．

TOKEN PROPAGATION DELAY（TPR）

This time is defined as the CABLE propagation time between the node holding the token and the node recerving the token．

MESSAGE PROPAGATION TIME（Tpm）

This time is defined as the CABLE propagation time between the node holding the troken and the node recerving a message．
BROADCAST DRAMY TME（Tbd）$=15.6 \mu$ ．
This time is defined as the time from the end of a trans－ mitted broadcast packet until the start of a token pass．

RESPONSE TMEOUT（TP）

This tine is the maximum amount of a time a COM 9026 will wait for a resporese which should be greater than or equal to twice the maximum cable propagation delay（the delay between the two furthest nodes）plus the CHIP TURN． AROUND TIME as detined above．This value is program－ mable using the ET1 and ET2 inputs．

RECOVERY TIME（Tre）$=\mathbf{3 . 4} \boldsymbol{\mu}$＊
This time is the amoumt from the end of the RESPONSE TIMEOUT until the start of a token pass．

Given the above numbers，it is possible to calculate the tume a token will＂dwell＂at any noce．A number of cases are detaled below．In each case，the time calculated is the time from the start of one token pass to the start of the next token pass．For all cases a Trp of $74.6 \mu \mathrm{~s} \mathrm{is}$ assumed．
SIMPLE TOKEN PASS（no message sent）

TOKEN PASS AND MESSAGE（receiver innibited）

ITT	15.6 us
Tta	$12.6 \mu s+T p t$
FBE	15.6 上s
Tla	$12.6 \mu \mathrm{~s}$＋Tpm
NAK	6.8 us
Tha	12.6 上s + Tpm
	75.8 上s + Tpt

TOKEN PASS AND MESSAGE（broadcast）

$$
\begin{aligned}
& \text { ITT } 15.6 \mu \\
& \text { Tta } 12.6 \mu s \text { + Tpt } \\
& \text { PAC } 33.2 \mu s+4.4 B \mu s \\
& \text { Tbd } 15.6 \mu \mathrm{~s} \\
& \overline{77.0 \mu s}+4.48 \mu s+T p
\end{aligned}
$$

TOKEN PASS AND MESSAGE（ACK gets lost）

ITT	$15.6 \mu \mathrm{~s}$
Tta	$12.6 \mu \mathrm{~s}+\mathrm{Tpt}$
FBE	$15.6 \mu \mathrm{~s}$
Tta	$12.6 \mu \mathrm{~s}+\mathrm{Tpm}$
ACK	$6.8 \mu \mathrm{~s}$
Tha	$12.6 \mu \mathrm{~s}+$ Tpm
PAC	$33.2 \mu \mathrm{~s}+4.4 \mathrm{~N} \mu \mathrm{~s}$
Trp	$74.6 \mu \mathrm{~s}$
Trc	$\frac{3.4 \mu \mathrm{~s}}{187.0 \mu \mathrm{~s}}+4.48 \mu \mathrm{~s}+\mathrm{Tpt}+2 \mathrm{Tpm}$

TOKEN PASS AND MESSAGE（destination node

ITT	$15.6 \mu \mathrm{~s}$
Tta	$12.6 \mu \mathrm{~s}$
FBE	$15.6 \mu \mathrm{~s}$
Trp	$74.8 \mu \mathrm{~s}$
Tre	$3.4 \mu \mathrm{~s}$
$121.8 \mu \mathrm{~s}$	

TOKEN PASS（no response）

ITT	$15.6 \mu \mathrm{~s}$
Tr	$7.6 \mu \mathrm{~s}$
TrC	$3.4 \mu \mathrm{~s}$
$93.6 \mu \mathrm{~s}$	

STANDARD MICROSYSTEMS CORPORATION

53 Micus and noucrauge in intan cran 273－590

