
PRODUCT SPECIFICATION &
HARDWARE REFERENCE

MANUAL

DATAPOINT 5500

Manual No. 60181-02

May 27, 1977

DATAPOINT CORPORATION

The leader in dispersed data processing ™

DATAPOINT 5500
PRODUCT SPECIFICATION &

HARDWARE REFERENCE MANUAL

Manual No. 60181-02

Revised 5/77

Copyright' 1977 by Datapoint Corporation
Printed in U.S.A.

The "D" logo, Datapotnt. Oatashare. Oataform. Databus. Oatapoll. Scnbe. and The Leader 1n Dispersed Data Processing

are trademarks of Datapoint Corporation. Registered 1n the U.S. Patent Office.

TABLE OF CONTENTS

PART
1 GENERAL FEATURES

1.1 Introduction .. 1
1.2 System Eiements .. 1
1.3 CRT Display .. 1
1.4 Keyboard ... 1
1.5 Processor .. 1
1.6 Cassette Tapes .. 1
1. 7 General Specifications .. 1
1.8 Peripherals ... 1
1.9 Model Codes ... 2

2 KEYBOARD
2.1 Keyboard Operation ... 3

Keyboard Codes (Table 2-1) .. .4
3 DISPLAY l

3.1 General Description ... 5
3.2 Display Operation ... 5-6

4 CASSETTE TAPES
4.1 General Description ... 7
4.2 Operations ... 7
4.3 Status .. 7
4.4 Control ... 7-8

5 PROCESSOR
5.1 Processor Registers ... 9
5.2 Comparison with Datapoint 2200 System ... 9
5.2.1 Input/Output .. 9
5.2.2 Input Parity Checking ... 9
5.2.3 Output Parity Checking .. 9
5.2.4 Compatibility with 2200 System Peripherals ... 9
5.3 Memory .. 9
5.3.1 Parity Checking ... 10
5.3.2 Physical Layout ... 1 O
5.3.3 Address Generation ... 10
5.4 Pushdown Stack ... 10-11
5.5 Control Flip-flops ... 11
5.6 System ROM Functions ... 11
5.7 Interrupt Handling .. 12
5.8 Processor Instructions .. 12
5.8.1 Comparison to 2200 System Instructions .. 12-13
5.8.2 Presentation Format .. 15
5.8.3 Catagory 1 - 2200 Instructions .. 15-20
5.8.4 Category 2 - Augmented Category 1 Instructions 21-22
5.8.5 Category 3 - Multi-byte (string) Operations ... 22-25
5.8.6 Category 4 - Processor State Save and Restore Instructions 25-26
5.8.7 Category 5 - Address Manipulation Instructions 26-28
5.8.8 Category 6 - Operating System Control ... 28

6 INPUT/OUTPUT OPERATIONS
6.1 Input/Output Physical Connections ... 29
6.2 Input/Output Electrical and Timing Requirements 29-30
6.2.1 Output Line Circuits ... 30
6.2.2 Input Line Circuits .. 30
6.2.3 Power and Ground Lines .. 30
6.2.4 Device Address .. 30-31
6.2.5 Data and Control Output .. 31
6.2.6 Status/Data Input ... 31-32
6.2.7 System Clock ... 32

FIGURES 6-1A THAU 6-6C .. 33-41

APPENDIX A SYSTEM ROM OPERATING DESCRIPTION

CHAPTER
1 SYSTEM ROM FUNCTIONS

1.1 Introduction43

..

1.2
1.3

2 DEBUG
2.1
2.2
2.3
2.4
2.5
2.6

Powerup .. .43
Restart .. .43

Introduction45
Startup Procedure45
Saving the Machine State .. .45
Display Format45
Command Syntax45-46
Input Command List ... 46-48

r

PREFACE

The computer-oriented user will find this manual useful for
evaluation of Datapoint 5500 system capabilities and limita­
tions. However, only the hardware considerations are cov­
ered in this manual. The full utility of the Datapoint 5500
system cannot be appreciated until the available software
support for the machine has been reviewed.

There is a complete family of software packages available
for the Datapoint 5500 system including high-level lan­
guages, operating systems, source code and text editors,
communications programs, utility programs, etc. Reference
should be made to the latest issue of the Datapoint Software
Catalog for more complete information.

-----IBV2"
____ __J

47.0 cm

5500 SYSTEM

r------19o/s" --------.. II

50.0 cm

Intentionally Blank

PART 1
GENERAL FEATURES

1.1 Introduction

The Datapoint 5500 is a low cost versatile business­
oriented data processing system. The Model 5548 provid­
ing the basic processor functions and including a keyboard,
display, 48K bytes of user program memory space, 4096
bytes of system memory, and two cassette tapes.

1.2 System Elements

There are four basic elements in the 5500 system plus the
capability to interface to a number of external peripheral
devices.

This chapter introduces the basic elements: CRT, key­
board, processor and cassettes. Further information may be
obtained from the following chapters.

1.3 CRT Display

The CRT Display provides the following features:

a. 7" x 3W' viewing area;
b. 960 characters;
c. BO-character by 12-1 i ne format;
d. Software defined 128-character font;
e. 60 frames-per-second refresh rate (50 frames-per­

second when using 50 hertz power);
f. 5 x 7 matrix character generation;
g. 5 x 7 solid, blinking cursor, alternates with characters,

nondestructive;
h. Single control line erasure, frame erasure, page roll-up

and roll-down;
i. Direct control of all CRT functions by the processor,

providing tab, editing, form control, etc; and
j. Writing rate up to 50,000 characters per second.

1.4 Keyboard

The integral keyboard provides a basic 55-key alphanu­
meric group, an 11-key numeric group and five system con­
trol keys.

The keyboard provides a unique multi-key roll-over char­
acteristic providing maximum ease of typing. Transfer of
characters from the keyboard is under control of the pro­
cessor. An audible "click" providing an acoustical feedback
to the typist is available under program or software control.

A programmable audio "beep" is also provided when it is
desired to gain a typist's attention.

1.5 Processor

The integral processor provides all control functions and

includes:

* 8-bit memory word length (plus parity)
* Complete parallel 1/0 system
'' Automatic power-up restart

The instruction set contains all instructions used in the
Datapoint 1100 and 2200 systems, providing complete up­
ward program and input-output compatibility. In addition,
the 5500 processor characteristics provide:

Higher operating speed
Double precision arithmetic
String arithmetic, moves, logic, etc.
Multiple-byte 1/0 transfers
Indexing and basing
State saving and restoring instructions

* Privileged instructions
Segmented and protected memory

* Memory and 1/0 parity
* Additional registers

1.6 Cassette Tape Decks

Two read-write tape decks are provided for program and
. data storage. The deck accepts Norelco (Phillips)-type cas­
settes and provides:

a. 47 characters per inch density;
b. Bi-directional operation; and
c. Processor controlled data transfer, direction control,

and high-speed rewind.

1. 7 General Specifications

POWER REQUIREMENTS:
115 or 240 VAC (+/-10%), 60 or 50 Hz

EQUIPMENT DIMENSIONS:
Width: 18.5 in. (47.0cm)1
Height: 9.6 in. (24.5 cm)
Depth: 19.6 in. (50.0 cm)
Weight: 47 lbs. (21.3 kg)

OPERATING ENVIRONMENT:
10° to 38° C (50° to 100° F)
20 to 80% Relative Humidity (Non-Condensing)

1.8 Peripherals

The 5500 will accommodate a wide variety of external
peripherals, such as asynchronous and synchronous com­
munications adaptors, printers, disks, and magnetic tapes.

r
Refer to the Datapoint Equipment Catalog (Model Code

60001) for a complete description of these peripherals.

1.9 Model Codes

5548 Datapoint 5500, 48K User Memory 115 VAC, 50/60 Hz
5563 230 VAC Power Option

2

PART2
KEYBOARD

The keyboard on the Datapoint processor performs the
functions of data entry and processor control.

The integral keyboard provides a basic 55-key al­
phanumeric key group, an 11-key numeric group and five
system control keys.

The keyboard provides a unique multi-key roll-over charac­
teristic providing maximum ease of typing. Transfer of
characters from the keyboard is under control of the proces­
sor. An audible "click" providing an acoustical feedback to
the operator is available under software control.

A programmable audio "beep" is also provided when it is
desired to gain the operator's attention.

The 11-key matrix may be optionally supplied with control
key coding rather than numeric key coding and with keytops
engraved to customer specifications.

The five control keys exert control over the processor.
Their names and associated functions are as follows:

RUN
Momentary contact switch which, when depressed, causes

the processor to begin execution of the instruction located at
the address in memory currently addressed by the program
counter.

STOP
Momentary contact switch which, when depressed, causes

instruction execution to halt at the completion of the current
instruction.

KEYBOARD
Momentary contact switch which sets a status bit that may

be tested at any time by the processor.

DISPLAY
Momentary contact switch with a function similar to that of

KEYBOARD switch.

RESTART
Momentary contact switch which causes the processor to

halt and load the diskette operating system from the diskette
in drive 0. To protect against accidental restart, the restart
function is inhibited unless the RESTART and RUN keys are
depressed simultaneously.

2.1 Keyboard Operation

The keyboard is addressed by the rrocessor by loading the
A register* with 0341 octal and executing an EX ADR com­
mand. (The CRT display also uses this address. Data trans­
fers to the processor are from the keyboard and transfers
from the processor are to the display.) Following the address
sequence the CRT/keyboard status word can be loaded into
the A register by executing an INPUT instruction. Bit 1 of the
A register may be tested by the program to determine if a
character is ready for transfer from the keyboard. Bits 2 and 3
will indicate if either the KEYBOARD or DISPLAY control
switch is pressed.

CRT/Keyboard Status Word

CRT Write Ready
Keyboard Read Ready

Keyboard control switch depressed
~--Display control switch depressed

'------1 for RAM display
'--------Unassigned

The External Commands associated with the operation of
the keyboard are as follows:

a. EX BEEP. This command produces a 1500 Hertz tone
for a duration of about 400 msec. The tone could be
used as an error or ready signal to the keyboard
operator.

b. EX CLICK. This command produces an audible click
which could be used to acknowledge receipt of a valid
character when a key is depressed.

c. EX COM1 (Command 1). Presents a control word con­
tained in the A register to the keyboard. Bit 5 of the
control word controls the KEYBOARD switch light and
bit 6 controls the DISPLAY switch light as follows:

CRT/Keyboard Control Word

4 3 2 1 0

CRT control
._____ ___ Keyboard Light (1 =on, O=off)

'-------Display Light (1 =on, O=off)
~-----Set cursor to auto-increment mode.

Note: The CRT Write Ready must be true before the EX
COM1 can be issued.

* For 1/0 transfers in the 5500, the A ~egister is used if an­
other register is not specified. See Part 5, category 2, for
further information.

3

TABLE 2-1*
KEYBOARD CODING (ASCII)

A-101 a - 141 0-060 :-072
B-102 b - 142 1-061 ;-073
C-103 c - 143 2-062 <-074
D-104 d - 144 3-063 =-075
E-105 e - 145 4-064 >-076
F-106 f - 146 5-065 . ?-077
G-107 g - 147 6-066 [-133
H-110 h - 150 7-067 \-176 ' 1-111 i - 151 8-070]-135
J-112 j - 152 9-071 /\-136
K-113 k - 153 Space-040 _-137
L-114 I - 154 !-041 @-100

M-115 m - 155 "-042 { - 173
N-116 n - 156 #-043 ' - 134
0-117 0 - 157 $-044 I - 140
P-120 p - 160 l/r-045 I - 174
Q-121 q - 161 &-046 } - 175
R-122 r - 162 '-047 Enter - 015
S-123 s - 163 (-050 Cancel - 030
T-124 t - 164)-051 Backspace - 010
U-125 u - 165 *-052 Del - 177
V-126 v - 166 +-053
W-127 w - 167 ,-054
X-130 x - 170 --055
Y-131 y - 171 .-056
Z-132 z - 172 /-057

SPECIAL NUMBER PAD OPTION
(.)-016
(0)-020
(1)-021
(2)-022
(3)-023
(4)-024
(5)-025
(6)-026
(7)-027
(8)-030
(9)-031

* All characters are represented in octal.

4

PART3
DISPLAY

3.1 General Description

The 5500 display provides extended character generation
flexibility and fast character transfer rates. The display sys­
tem includes: CRT Display of 12 lines of 80 characters,
power line screen refresh rate, 960 cells of random access
memory holding the screen image, a program loadable ran­
dom access character generation memory capable of pro­
ducing 128 individuals 5 by 7 dot matrix characters, a group
of registers utilized to position the cursor, and automatic
cursor increment provisions. The maximum character trans­
fer rate to the CRT is determined by processor input/output
speed. The upper limit of the display transfer rate is approxi­
mately 50,000 characters per second.

3.2 Display Operation

The CRT is addressed by the processor by loading the
A register with octal 0341 and executing an EX ADR com­
mand. (Note that the keyboard also uses this address, see
Part 2.) Following the address sequence, the CRT/
keyboard status word can be loaded into the A register by
executing an INPUT instruction. The CRT status assignment
is as follows: Bit 0 of the status word indicates that the CRT is
ready to accept data or commands if it is set to a logical 1.
(Note that this status bit will indicate a logical one if the
cursor is positioned to an invalid screen position.) Bits 1, 2
and 3 are used for keyboard status.

CRT /Keyboard Status Word

l1 l6 lsl4l 3!2 l1lt1_

T I
~LCRT Write Ready

. ~Keyboard Use
1 for RAM Display (always set)

'-----------Unassigned

Control of the CRT is accomplished through the use of the
following external commands:

a. EX COM1 (Command 1) transfers a control word con­
tained in the A register to the CRT. The bit assignments and
their functions are as follows:

7 6 5 4 3 2

Roll-down 1 line
Erase from cursor to end of line

Erase from cursor to end of frame
'-----Roll-up 1 line

'------Cursor ON/OFF (on=1, off=O)
'------Keyboard Light (on=1, off=O)

'-------Display Light (on=1, off=O)
Auto Cursor Increment Mode

(O=No Auto Increment)

The following explanations assume that the CRT has been
addressed.

BIT 0: Each execution of EX COM1 with this bit set to 1
causes the roll-down operation to occur. All dis­
played characters (not the cursor) are moved down
one line. The bottom line on the screen is lost and the
top line is filled with the pattern in position 040 octal
of the character generation memory. The Write
Ready status bit goes false until the roll~down opera­
tion is complete; another EX COM1 must not be is­
sued during th.is time.

BIT 1: Each execution of EX COM1 with this bit set to 1
causes erasure from (including) the current cursor
position to the end of the line. The character dis­
played in the erased positions is determined by the
pattern in position 040 octal of the character genera­
tion memory. The Write Ready status bit 51oes false
until this operation is complete; another EX COM1
must not be issued during this time.

BIT 2: Each execution of EX COM1 with this bit set to 1
causes erasure from (including) the current cursor
position to the end of the frame. The character dis­
played in the erased position is determined by the
pattern in position 040 octal of the character genera­
tion memory. The Write Ready status bit goes false
until this operation is complete; another EX COM1
must not be issued during this time.

BIT 3: Each execution of EX COM1 with this bit set to 1
causes the roll-up operation to occur. All displayed
characters (not the cursor) are moved up one line.
The top line on the screen is lost and the bottom line
is filled with the pattern in position 040 octal of the
character generation memo~y. The Write Ready
status bit goes false until the roll-up operation is
complete; another EX COM1 must not be issued dur­
ing this time.

BIT 4: The cursor image may be turned on or off through the
control word. The cursor position is the same in
either case. The cursor image is automatically turned
off whenever the processor is in the HALT state, and
will be turned on again when RUN is depressed if the
cursor was on prior to the HALT.

BITS
5, 6: Keyboard & Display Light - See Part 2.

BIT 7: When this bit is set to 1, the automatic cursor incre­
ment feature is in effect. In auto cursor increment
mode, the cursor moves one character to the right
after each EX WRITE command. The vertical position
of the cursor does not change. If the last character
(horizontal position 79) is written, the cursor will in­
crement off the screen and the CRT Write Ready
status bit will stay true until the cursor is re-posi­
tioned back onto the screen.

5

b. EX COM2 (Command 2) positions the cursor to the
horizontal character slot designated by the contents of the A
register. Character positions 0-79 (decimal) or 0-0117 (octal)
are valid.

c. EX COM3 (Command 3) positions the cursor to the line
designated by the contents of the A register. Line numbers
0-11 (decimal) or 0-013 (octal) are valid.

d. EX COM4 (Command 4) places the character generator
memory in the load mode and sets the load pointer to the
contents of the A register. Character positions 0-127 (deci­
mal) or 0-0177 (octal) are valid.

e. EX WRITE transfers the character in the A register to the
screen image memory at the position indicated by the cursor
position. The cursor need not be on for this transfer to occur.
If the auto cursor increment feature is enabled the cursor
position will be incremented after the transfer. When the
character generation memory has been set to the load mode,
the above transfer is inhibited (as is the automatic cursor
increment) and EX WRITE transfers data from the A register
to the character generation memory. Execution of an EX
WRITE (to either the screen image memory or the character
generation memory) causes the Write Ready status bit to go
false for up to 17 microseconds. Unless a delay of at least this
duration is guaranteed by the program, the Write Ready sta­
tus bit should be checked before execution of an EX WRITE,
EX COM1, EX COM2, EX COM3 or EX COM4 after a previous
EX WRITE. Note that EX COM2 and EX COM3 do not affect
the Write Ready status.

Five successive byte transfers are required to load a com­
plete 5 by 7 character dot pattern. The loading format is
illustrated by the following diagram which illustrates the let­
ter "A" loaded into memory:

Bit No. 6 x x x

6

5 x
4 x
3 x
2 x
1 x
0 x

1

x x x

2 3 4

Transfer
Number

(EX WRITE)

x
x
x
x
x
x
5

For example, the procedure for loading the character loca­
tion 0101 with an "A" as illustrated would consist of the
following character transfers:

•
•
•
LA 0101 Set load pointer to
EX COM4 Location 0101
LB 077
CALL DWRITE Load column 1
LB 0110
CALL DWRITE Load column 2
CALL DWRITE Load column 3
CALL DWRITE Load column 4
LB 077
CALL DWRITE Load column 5
•
•
•

The DWRITE subroutine below is used here instead of an
EX WRITE instruction to guarantee the 17 microseconds
delay required between executions of EX WRITE instruc­
tions:

•
•

DYIJRITE
EXB WRITE

DWRITW IN
SRC
JFQ DWRITW
RET

After all five columns of a character have been loaded, the
character load pointer is automatically incremented to the
following character. In the case of the above example the
load pointer will be incremented to location 0102. Note that it
is only necessary to issue additional EX COM4, when nonse­
quential character locations are being loaded. The display
logic card is removed from the load mode by the execution of
an EX COM1 (with A=O if no other function is desired).

As mentioned previously, the Write Ready status bit goes
false during the roll-up, roll-down, erase-to-end-of-line and
erase-to-end-of-frame operations. The maximum periods
during which Write Ready will be false for each of these
operations is tabulated below for 60 Hz and 50 Hz primary
power frequency:

OPERATION 50HZ 60HZ

Roll up 21.1 msec 17.8 msec
Roll down 21.1 msec 17.8 msec
Erase to-end-of-line 21.1 msec 17.8 msec
Erase-to-end-of-frame 35 msec 31.7 msec

PART4

CASSETTE TAPES

4.1 General Description

The Datapoint 5500 contains two cassette tape recording
devices for storage of programs and data. Since the hard­
ware Restart (Appendix A, 1.3) uses the rear deck (number
one), programs will typically be on it while data areas will
be on the front deck (number two). However, once the ma­
chine is initially loaded, either deck may be used for both
purposes.

Data on the tape is organized by record (of any length).
Records are written and read at 350 eight-bit characters per
second. See Table 4-1 for a list of physical specifications.

4.2 Operations

Data is recorded or read in bit serial fashion on one track.
Each eight bit character is framed by three sync bits on either
side of the character.

The first eight bit string framed by valid sync code groups
(010) indicates the beginning of a record. The appearance of
eleven ones in a row indicates the end of a record. Sync code
groups after the first character in a record and before the end
of the record are ignored.

Note that the sync codes are valid for tape motion in either
direction so the tape may be read backwards, although in the
reverse direction the data bits will appear reversed (bit 0 will
be bit 7, 1 will be 6, etc.)

This is what a typical record looks like:

! 111111jo1 o! d d d d d d d d lo 1 o Id d d d d I
-...- -. '

Inter
Record
Gap

Sync 1st Character
Code in Record

Sync 2nd Character
Code

lo1olddddddddjo10!11111111 l111 !111I -- .._.,..-. ------...---- --
Sync Last Character Sync End of Record Inter
Code in Record Code Mark Record

Gap

4.3 status

The cassette tape unit is addressed by the processor by
loading the A register with 0360 octal and executing the EX
ADR instruction. Following this sequence, the tape unit
status can be loaded into the A register by executing an
INPUT instruction. The bit assignments are as follows:

TAPE STATUS WORD

----Deck Ready

----End of Tape
---Read Ready

----Write Ready
---Inter-Record Gap

Unassigned

Cassette in Place
Unassigned

DECK READY Deck Ready will be set whenever the tape
unit is ready to accept another command.
(Only the TSTOP command should be is­
sued if this bit is false). When Deck Ready
is true the tape will be stopped, a cassette
in the selected deck, and the head en­
gaged. This bit should be checked after
selecting a deck.

END OF TAPE End of Tape indicates that the cassette
has run onto leader (in either direction).

READ READY Read Ready indicates that the selected
deck has read another character.

WRITE READY Write Ready indicates that the selected
deck is ready to write another character.

INTER-RECORD Inter-Record Gap indicates selected
GAP deck has come across an inter-record gap

(invalid sync code).

CASSETTE IN
PLACE

Cassette in Place indicates that a cassette
is physically in place in the selected deck.

4.4 Control (Table 4-2)

When the cassette tape unit is addressed the following
instructions will control the action of the tape:

a. EX TSTOP causes any motion of either deck to be
stopped and any read or write operations to be termi­
nated. When everything has settled, the Ready status
bit will come true and operations may be resumed.

7

b. EX DECK 1 causes deck one (rear) to be the currently
selected deck. Before commanding a deck selection,
care should be taken that the currently selected deck
has completed all operations.

c. EX DECK 2 causes deck two (front) to be the currently
selected deck. Note the precaution in (b).

d. EX ABK causes the currently selected deck to be set
in forward motion and, after 70 msec, for the read cir­
cuitry to be enabled. The Read Ready status bit will
come true upon appearance of a valid character.
When an invalid sync code is encountered the Inter­
Record Gap status bit comes true and tape motion is
automatically stopped. Note that this will happen only
after at least one valid character has been found.
Once the Read Ready status bit comes true, the
character must be taken within 2.8 msec. or it will be
overwritten with the next one. The tape read hard­
ware double-buffers incoming characters to allow the
2.8 msec. character availability.

e. EX BSP is similar to EX ABK except that tape motion
is in the reverse direction so· the data bits will be
reversed.

f. EX SF is similar to EX ABK except the tape is not
stopped upon appearance of an Inter-Record Gap, and
if allowed to continue will start to read the next record
on the tape. In this case, the Read Ready status bit will
come true again after the first character of the next

TABLE 4·1

record is read. Only EX TSTOP will stop the motion
initiated by EX SF.

g. EX SB is similar to EX SF except that tape motion is in
the reverse direction and the data bits are reversed.

h. EX WBK causes the currently selected deck to be set
in forward motion and all status bits except the Write
Ready to go false. A character must then be presented
within 2.8 msec. (the first character will be accepted
at once due to the buffering in the tape hardware and
then there will be a pause while the tape comes up to
speed), at which time the Write Ready will go false
until the writing circuitry is ready to accept another
character. An end of record is signaled to the hard­
ware by withholding a character for a period of time
longer than the 2.8 msec. specified above. When this
is done, the Write Ready will go false, an Inter-Record
Gap will be written, the tape motion will cease and the
Deck Ready status bit will come true again.

i. EX REWIND causes the tape to be rewound to the
beginning on the selected deck. Worst case rewind
time is approximately 40 seconds.

j. PUNCH TABS on the cassette cartridge are used for
"write protect" and "automatic restart." The punch
tab on the left (as you face the processor) inhibits the
ability to write on tape, when punched. When the tab
on the right is punched, it causes an automatic restart
whenever a halt or power-up occurs.

TAPE UNIT PHYSICAL SPECIFICATIONS

8

Density
Speed
Recording Rate
Capacity
Start/Stop time (Inter-Record Gap)
Start/Stop Distance (Inter-Record Gap)
Rewind Speed
Rewind Time (max 300 ft.)
Character Transfer Time
Tracks

EX
OCTAL COMMAND

NAME CODE COMMAND

DECK1 155 Select Deck 1
DECK2 157 Select Deck 2
ABK 161 Read Block

WBK 163 Write Block

-- 165 (Unassigned)
BSP 167 Backspace

One Block
SF 171 Slew Forward

SB 173 Slew Backward

REWIND 175 Rewind

TSTOP 177 Stop Tape

47 characters/inch
7.5 ips
350 c.p.s.
130,000 characters (typical)
280 msec.

TABLE 4·2

DESCRIPTION

2 inches
90 ips
40 sec.
2.8 msec.
2

Connects deck 1 to 1/0 bus
Connects deck 2 to 1/0 bus
Enables read circuitry and sets
tape in forward motion
Enables write circuitry and sets
tape in forward motion
--
Backs up the selected tape
one record
Sets selected tape deck in
forward motion
Sets selected tape deck in
backward motion
Rewinds the selected deck to
beginning of tape
Halts motion of the selected
tape deck

DEVICE
ADDRESS

0360

I
0360

--
0360

0360

PART5
PROCESSOR

The processor in the 5500 is comprised of two sets of eight
8-bit program accessible registers, two sets of 4 control
flags, 48K bytes of user memory, a 16-bit program counter,
an 8-bit instruction register, an 8-bit base register, a 16-level
push down Stack, a special 4-bit instruction modification
register and a 16-word memory sector table.

5.1 Processor Registers

The eight programmable registers are named A, B, C, D, E,
H, L, and X. The flag flip-flops are named C (carry), Z (zero), S
(sign), and P (parity). There are two sets of these registers and
flags and access to them depends upon the mode the pro­
cessor is in. Upon Restart or whenever the Alpha mode in­
struction is executed, all Alpha mode registers and flags are
accessible by the program. Whenever a Beta mode instruc­
tion is executed, the Beta mode registers and flags are ac­
cessible. No other registers or functions within the machine
are affected by the processor mode.

Registers A-Lare general purpose registers which may be
interchanged with each other as to their functions. When an
arithmetic, logical or 1/0 instruction is used and a register is
not specified, the "A" register is assumed to hold the ac­
cumulator result.

When using registers for addressing, they may be paired
together to form a 16-bit address; XA, BC, DE and HL. If a pair
of registers is not specified, the HL registers will be assumed.

The X register is a working page register and is not nor­
mally used for the same functions as registers A-L, except to
form a 16-bit address word.

P - The P register is the "location counter" for the program
and contains the address of the next instruction to be exe­
cuted. This register is stored in the pushdown Stack upon the
execution of a "CALL" instruction and is loaded with the
effective address upon execution of a "JUMP", "CALL" or
"RETURN" instruction. The P register is 16 bits long.

I - The I register is the register which holds the "operation
code" of the instruction currently being executed. The con­
tents of I are gated through a decoding network to determine
what operation, internal or external, is to be performed. I is 8
bits long. This register is for internal hardware sequencing
and is transparent to the user.

5.2 Compt1rlson With Datapoint 2200 System

5.2.1 Input/Output

Besides simply executing 1/0 instructions faster than the
2200 system (input instructions are twice as fast and output

instructions are approximately the same speed), the 5500
system 1/0 has parity checking while maintaining control
over compatibility with 2200 devices.

5.2.2 Input Parity Checking

A ninth wire has been added to the input and output data
paths of the 1/0 bus (there are several unused wires in the
2200 1/0 cable). A second INPUT instruction (PIN) has been
added which will cause an interrupt if there is not an odd
number of ones out of the nine bits on the input bus when the
data is strobed into the processor. Note that if a non-existent
device is addressed and then a status check made, a parity
fault will occur because the status will be nine zeros,
which is an even number (zero) of ones. Also note that using
the INPUT instruction will never cause a parity fault interrupt,
allowing all 2200 programs to execute properly on the 5500
systems (see Section 5.2.4).

5.2.3 Output Parity Checking

In addition to the output bus parity bit, there is another
input wire to the processor called the Output Parity Fault
line. If this wire is low during the parity fault check window
(about 40 nanoseconds wide occurring 4 to 6 microseconds
after the trailing edge of any output strobe), the output parity
fault interrupt will occur. A 5500 system 1/0 device can
check for an even number of ones out of the nine output bits
at the leading edge of the output strobe. If there are an even
number of ones, the device can hold the Output Parity Fault
line low until the leading edge of the next 1/0 strobe, thus
causing the Output Parity Fault interrupt.

5.2.4 Compt1tlbility With 2200 System
Peripherals

5500 system peripherals may not be directly compatible
with the 2200 because of the use of output parity checking.
However, 2200 peripherals can be made to work on the 5500
system if the PIN (parity checking input) instruction is not
used. Also 5500 system peripherals may be used on 2200
systems via an 1/0 option strap. The three additonal wires
used in the 5500 system 1/0 bus are currently not used in the
2200 system 1/0.

5.3 Memory

In addition to having more memory capability than the 2200
system, the 5500 memory system features parity checking
and advanced memory space handling.

9

5.3.1 Parity Checking

Each byte in the memory system has a ninth bit which is
used for parity checking. Even parity is written into every
location automatically when the machine is powered up and
into the given location whenever a data byte is written (the
words are written such that there are always an even number
of ones out of the total number of nine bits). Whenever a data
byte is read, a check for even parity is made and a special
interrupt invoked if the check fails. This interrupt supplies the
address of the failing memory location for diagnostic pur­
poses. Note that if a non-existent memory location is ac­
cessed, a parity fault will not occur because all zeros (even
number of ones) will be read. In addition to the RAM, the 5500
contains a ROM (read-only memory) which is used for power
initialization, RESTART, debugging, memory testing, and
other system functions. The parity bit for ROM is generated,
artificially.

5.3.2 Physical Layout

The 5500 contains provisions for five memory boards. The
first four boards contain 12K bytes of RAM each for a total
user RAM capacity of 48K bytes. The fifth board is reserved
for the ROM and RAM which is used exclusively for system
control software.

module #5

module #4

module #3

module #2

module #1

16K
RESERVED FOR

SYSTEM ROM AND RAM

12K

12K

12K

12K

Figure 5-1
MEMORY MAP

5.3.3 Address Generation

0177777

0140000

0110000

0060000

0030000

0000000

The above diagram is a map of the physical memory layout.
This memory is referenced by what is called a physical mem­
ory address. Board 1 is physical locations O through 0027777
(octal), board 2 is 0030000 through 0057777, board 3 is
0060000 through 0107777, board 4 is 0110000 through
0137777, with the ROM and RAM residing in the area above
0137777.

User programs use what is called a logical memory ad­
dress. This is the 16-bit value created by the program and is
translated to the proper physical memory address by a
mechanism in the processor. The translation mechanism
utilizes a base register and a memory sector table as depicted
in Figure 5-2.

10

If the logical memory address is between 0100000 and
0137777, its upper eight bits are added (two's complement)
to the eight bit base register. The lower eight bits of the
logical memory address and the eight bits from the adder are
called the based logical memory address. The base register
may be negative (two's complement) for creating based logi­
cal memory addresses lower than 0100000.

The upper four blts of the based logical memory address
form an address for the 16-word 6-bit sector table. This table
divides the 64K based logical memory space into sixteen 4K
byte sectors, each of which may be translated to any physical
4K memory section and may be protected from being ac­
cessed if the USER mode flag is set or from being written into
regardless of the state of the USER mode flag (these protec­
tions are indicated by two of the bits from the sector table).
(Note that many people in the computer industry refer to the
sector table as a page table. However, the reference has been
changed here to avoid confusion with the term "page" used
elsewhere to denote a 256 byte section of logical memory
space starting at an address of 0 modulo 256.)

The mapping of based logical memory space to physical
memory space is achieved by having four of the output bits
from the sector table used for the upper four bits of the
physical memory address and the lower twelve bits of the
based logical memory address used for the lower twelve bits
of the physical memory address. The 16th entry into the
sector table is always set to point to the last 4K section of
physical memory (0170000 through 0177777) with USER ac­
cess not enabled to insure proper access to the information
above 0167777 when the machine is initialized.

With the address generation mechanism described above,
two major efficiencies can be realized. The first is ease of
reentrant coding for multiple user tasks. The program can
load into the base register the base address (in multiples of
256 bytes) of the non-reentrant data area minus 0100000 and
then all logical memory references made between 0100000
and 0100000 plus the length of the data area will automati­
cally be translated into the proper based logical memory
address. The second major efficiency is provided by the sec­
tor table. Besides providing the ability to implement a com­
pletely protected monitor, it provides ease in running several
independent partitions in memory at once.

5.4 Pushdown Stack

A feature of the 5500 is the incorporation into the pro­
cessor's structure of a pushdown Stack. This is useful for
subroutine calling, saving the value of register pairs, cal­
culating an address and then jumping to it without having to
overstore a JUMP instruction, making an abortive exit from a
subroutine (returning control to a location other than the one
after the CALL instruction), and saving the state of the ma­
chine (if there is at least one free stack location).

Information may be transferred between either the
P-counter and the Stack or any register pair and the Stack.
The Stack is actually a separate scratch pad memory of six­
teen 16-bit words which is addressed by a four-bit up/down
counter. Whenever a CALL or PUSH instruction is executed,
the P-counter or indicated register pair is written into the
Stack word pointed out by the P-counter which is then in­
cremented. The pointer ends-around to 0 if it is incremented

BASE
ENABLE

r\
~

2s

21

20

-
LOGICAL
MEMORY
ADDRESS

--~
·~

BASE
REGISTER

l I ' . 1 • . "'

+

Figure 5-2

past 15. Whenever a RETURN or POP instruction is executed,
the Stack pointer is first decremented (ending around to 15 if
it is decremented below 0) and then the P-counter or indi­
cated register pair is loaded from the pointed location. Note
that the above description implies that the maximum sub­
routine nesting depth is sixteen and will be less if data is also
pushed onto the Stack. That is, the seventeenth CALL or
PUSH will overstore the value written in the first if no RE­
TURN or POP instructions intervene.

PUSH or
CALL

__..._ .l

Address of CALL 5

Address of CALL 4

Address of CALL 3

Address of CALL 2

Address of CALL 1

16 bits
Note: Some of the complex

multi-byte instructions
use 1 or 2 Stack entries.

_.. -- POP or
RETURN

Maximum
capacity

16 CALLS

SECTOR WRITE EN
TABLE

23

22

ABLE

NAB LE ~ACCESSE

21
A
D
R 2•

5.5 Control Flip-Flops

r---
21s

__..

-"' . 212

-- 211

...... 2s

21
__..

......
__..

__.. 20

....___

PHYSICAL
MEMORY
ADDRESS

Also contained in the basic processor are eight control
(flag) flip-flops (four in ALPHA mode and four in BETA mode)
which reflect the state of the arithmetic logic unit and which
can be tested through the execution of a CONDITIONAL
JUMP, CALL or RETURN instruction. The flip-flop
mnemonics with their associated functions are as follows:

C-Carry flip-flop. Set when an arithmetic operation results
in either a carry (add) or borrow (subtract).

Z - Zero flip-flop. Set when the result of an arithmetic or
logical operation is equal to zero.

S - Sign flip-flop. Reflects the state of bit 7 after an arithme­
tic or logical operation.

P - Parity flip-flop. Indicates parity after any arithmetic or
logical operation. This is entirely separate from the 1/0 or
memory parity system referred to elsewhere. If this flip-flop is
set (true) there are an odd number of one bits; if it is reset
(false), there are an even number of one bits.

5.6 System ROM Functions

See Appendix A for a complete description of the 5500
processor ROM features.

11

5. 7 Interrupt Handling

There are nine different interrupt events possible in the
5500. All except the power-up interrupt use the System Call
mechanism (see instruction description) to the memory loca­
tion explained below. The System Call mechanism pushes
the current value of the P-counter onto the Stack, turns off
the one millisecond interrupt and USER mode, and forces
execution to continue at the indicated vector location. Note
that one of the interrupts is actually the SYSTEM CALL (SC)
instruction and that the other interrupts use the same mech­
anism but jump to different locations.

The following describe the - interrupt vector entry point
locations. Note that all of these are into System RAM loca­
tions, initialized on power-up. See Appendix A for a descrip­
tion of how those are handled in the system ROM.

0167400 MEMORY PARITY FAULT

This is caused by a memory read resulting in a nine bit word
with an odd number of ones. Before the P-counter was
pushed onto the Stack by the System Call mechanism, the
based logical memory address of the faulty memory cell was
pushed onto the Stack.

0167406 INPUT PARITY FAULT

This is caused by a PIN or MIN instruction (see instruction
explanation) resulting in a nine bit word from the 1/0 Bus with
an even number of ones. The P-counter value pushed onto
the Stack points to the PIN or MIN instruction.

0167414 OUTPUT PARITY FAULT

This is caused by the Output Parity Fault line on the 1/0 Bus
being low during the parity fault check window (about 40
nanoseconds occurring 4 to 6 us afterthe trailing edge of any
output strobe). The Output Parity Fault line can be held low
by 5500 System 1/0 devices if they see an even number of
ones out of the nine bits of the 1/0 Bus. The P-counter value
pushed onto the Stack points to the output instructions.

0167422 WRITE PROTECT VIOLATION

This is caused by a memory write operation being attemp­
ted on a sector of memory for which the Write Enable bit (A3
in the sector table entry) has not been set.

Note that during multiple byte operations which use two
Stack entries the P-counter is used during the instruction to
hold a data address. If a write protect violation occurs during
one of these instructions, the value pushed onto the Stack
will be a data address instead of the P-counter value (the real
P-countervalue being some indeterminate number of entries
further down on the Stack). For this reason, one cannot
determine the state of the machine if a write protect violation
occurs and therefore a virtual storage scheme cannot b1
implemented.

0167430 ACCESS PROTECT VIOLATION

This is caused by the USER mode flag being set and a
memory operation being performed on a sector of memory

12

for which the access enable bit (A2 in the page sector table
entry) has not been set. The same note concerning multiple
byte operations and the write protect violation interrupt
applies to the access protect violation interrupt.

0167436 PRIVILEGED INSTRUCTION VIOLATION

This is caused by the execution of an 1/0 instruction or an
instructior:i capable of changing the sector table or base
register while the USER mode flag is set. The P-countervalue
pushed onto the Stack points to the instruction which caused
the interrupt.

0167444 ONE MILLISECOND INTERRUPT

This is caused every 1000 microseconds. These interrupts
can be inhibited with the DI instruction as in the 2200 system
(and are inhibited with RESTART or POWERUP).

0167452 USER SYSTEM CALL

This is caused by the execution of an SC instruction.

0167460 BREAK POINT

This is caused by the execution of a BP instruction.

5.8 Processor Instructions

The 5500 processor instructions have been divided into six
categories for convenience of presentation.

* Category one: All instructions contained
in 1100 and 2200 system processors.

* Category two: 2200 system instructions
which have been enhanced with
additional register referencing capability.

* Category three: Multi-byte (string)
instructions.

* Category four: Instructions for saving
and restoring the state of the processor.

* Category five: Address manipulation
instructions.

* Category six: Operating system control
instructions.

5.8.1 Comparison to 2200 System Instructions

The 5500 has a number of instructions not in 2200 system
processors. Before these instructions can be described,
however, the new data paths in the processor must be de­
scribed. A new discrete register (not part of the register stack
containing the general purpose registers) has been added. It
is a working register called the implicit register.

Many 2200 instructions reference the A register implicitly

(e.g., use it for an accumulator or load it from the 1/0 Bus).
The register that is implicitly referenced in the 5500 in these
cases is still the A register unless an instruction is executed
which changes the implicitly referenced register for the fol­
lowing instruction only. There are eight instructions (one
byte long) which allow the implicit register to be loaded with
one through eight (implying registers A, B, C, D, E, H, L, or X).
Once this is done, interrupts are inhibited until the following
instruction is completed. If the following instruction would
reference the A register implicitly in the 2200, the 5500 will
reference the register implied by the implicit register instead.
This also applies to the instructions where HL is the implied
register pair specifying an address. The implicit register can
be used to specify a different register pair (implying register
pairs BC, DE, HL or XA). Notice the use ofthe word "implied",
as reference will be made to the "implied register" in later
descriptions.

!"he instructions which set the implicit register will not be
described separately since they are used only to augment the
function code (op code) of the instruction that follows. In
some cases the value of the implicit register will not deter­
mine a register reference but will modify an operation action
instead. The implicit register is also used for a loop counter in
many of the multi-byte instructions. Since the implicit regis­
ter is only 4 bits wide the multi byte instructions that do use it
for a loop counter are limited to executing the loop sixteen
times (usually meaning that fields are limited to sixteen bytes
in width). However, some of the multi-byte instructions use a
general purpose register for the loop counter enabling them
to loop 256 times. Note, however, that the one millisecond
interrupt can occur only during the fetch of a new instruction
if interrupts are enabled at all. This means that for some of the
longer multi-byte instructions, interrupts can be disabled for
as long as 850 microseconds. This would be troublesome if
one was using the one millisecond clock for short-term time
critical work. The full 256 byte capability was included, how­
ever, in the event that one might find it useful if time critical
work was not being performed.

Two additional general purpose registers have been added
to the 5500 processors. By general purpose, it is meant that
there is one for each mode (ALPHA and BETA and that they
reside in the register stack along with the rest of the general
purpose registers. In the 5500, this register (numbered 7) in
the general purpose register stack is called the X register.

The X register is not quite as generally accessible as the
rest of the registers, due to the fact that register number 7 is
used to specify memory in many instructions. However, the X
register can be loaded immediately as well as be accessed via
the implicit register mechanism and also by several instruc­
tions which use the X register's contents as the upper eight
bits of an address. The X register is generally used in the 5500
system to indicate a working storage page in memory. (Here
the word' 'page is used to denote a 256 byte section of logical
memory space.)

The use of the X register enables several of the instructions
which provide a fixed memory address in the instruction to
be one byte shorter by not having to specify the upper eight
bits of the address (using the contents of the X register
instead). Experience in programming the 2200 system has
shown that one working storage page is generally quite
adequate to hold most of the·items accessed most often by a
given program and that these items are accessed often
enough to make the X register concept useful both in terms

of saving memory and increasing speed.
Additional programming conventions developed with the

2200 system have been reflected in the 5500 instruction set.
The BC and DE registers are often used as pairs to form a
sixteen bit value (B or D being the MSP and C or E being the
LSP). Several of the new instructions treat these pairs speci­
fically as sixteen bit values.

13

Intentionally Blank

5.8.2 Presentation Format

A description of each 5500 instruction is given below, In
order to simplify the presentation, the following symbols and
abbreviations are used:

Operation:

Op Code:

Timing:

Length:

Stack:
Entry:

Exit:

Algorithm:

() ---+

v
41-
.JL
A
B
c
D
E
H
L
x
M

p

Stack

(OP)

(rs)

(rd)

(r)

(rp)

Symbolic representation of
instruction description.
Operation Code, expressed in
octal.
Execution time in microseconds.
(Note: memory refresh overhead
is 5% implying that a program
will execute, on
the average, 5% slower than the sum
of the indicated tirr ings.)
Number of bytes in the instruction.
(Used when the len]th may not be
especially obvious trom the
op code or the
instruction diagram.)
Number of stack entries.
Conditions necessary before
execution.
Conditions existing after
~ution.

Steps taken to perform the
instruction execution.
The contents of.
Is replaced by
Is transferred to.
Is compared with.
Logical "Or" operation.
Logical "Exclusive Or" operatio.,
Logical "AND" operation.

8-bit processor registers

Memory location
designated by the contents
of HL or the designated
register pair.
Program counter. (When shown P+X
location relative to first byte of instruction).
Pushdown Stack

One of the eight ALU
operations (AD, AC, SU, SB
ND, XR, OR, CP)
A source general register
(ABCDEHL)(s=O to 6).
A destination general register
(ABCDEHL) (d=O to 6).
A general register (ABCDEHLX).
(s or d =0 to 7)
One of the pairs of registers (BC DE HL XA).

r

rp

A register select op code.
No byte is necessary
for selection of the A register.
Otherwise: B=0111, C=062,
D=0113, E=0174, H=0115
L'."'0176, X=022
A register pair select op code.
No byte is necessary for
the selection of HL.

(wv)
Otherwise: BC=062, DE= 0174, XA=022.
An 8-bit value used

(adr)

(cf)

(exp)

data

loc

in an instruction.
A 16-bit value used in
an instruction with the
LSP first, followed by the MSP.
Control flags (CZSP) (c=O to 3)
(Often called flip-flops).
External command, listed in
Table 5-1.
An expression reducing to
an 8-bit immediate value.
An expression reducing to
a 16-bit address.

5.8.3 Category 1 - 2200 System Instructions

LOAD IMMEDIATE
Op Code: Od6 (wv)
Timing: 1.8
Operation: (vvv)-+(r)

L (r)

Transfers the contents of the operand given in the instruction
to the register specified by bits 3-5 of the instruction word.

1. d is the destination designator.
2. None of the flag flip-flops are changed.

LOAD L(rd)M, L(rd)(rs), LM(rs)
For L(rd)M: Op Code: 3d7

Timing: 2.6
Operation: (M)-+(rd) d ~6

For L(rd)(rs): Op Code: 3ds
Timing: 1.2
Operation: (rs)-+(rd) s~6. d~6

For LM(rs): Op Code: 37s
Timing:2.6
Operation: (rs)-+(M) s ~6

Transfers the operand from the source specified by bits 0-2 of
the instruction word to the destination specified by bits 3-5 of
the instruction word.

17 3 615 ; 312 : 01

1. The data source is unaffected.
2. sand d both = 7 results in a HALT instruction.
3. None of the flag flip-flops are changed.

15

ADD IMMEDIATE
Op Code: 004 (wv)
Timing: 2.2
Operation: (A) + (P+1)-A

AD data

Adds the value of the (data) operand to the contents of the A
register and retains the sum in the A register.

1. Carry flip-flop set if add overflow occurs; otherwise carry
is reset.

2. The Sign, Zero and Parity flip-flops indicate the status of
the A register at completion.

ADD
For AD(rs): Op Code: 20s

Timing: 1.4
Operation: (A) + (rs)-A

For ADM: Op Code: 207
Timing: 2.6
Operation: (A) + (M)-A

AD(rs), ADM

This instruction is identical to ADD IMMEDIATE with the
exception of operand source.

s specifies the operand source.

ADD WITH CARRY IMMEDIATE
Op Code: u14 (wv)
Timing: 2.2
Operation: (A) + (P+1) + (Carry)-A

AC data

Adds the Carry bit and contents of the operand to the con­
tents of the A register and retains the sum in the A register.

1. If add overflow occurs, the Carry flip-flop is set; otherwise
Carry is reset.

2. The Sign, Zero and Parity flip-flops indicate the status of
the A register at completion.

ADD WITH CARRY
For AC(rs): Op Code: 21 s

Timing: 1.4
Operation: (A) + (Carry) + (rs)-A

For ACM: Op Code: 217
Timing: 2.6
Operation: (A) + (Carry) + (M)-A

AC(rs), ACM

This instruction is identical to ADD WITH CARRY IMMEDIATE
with the exception of operand source.

16

s specifies the operand source.

SUBTRACT IMMEDIATE
Op Code: 024 (wv)
Timing: 2.0
Operation: (A) - (P+1)-+A

SU data

Subtracts the value of the operand from the contents in the A
register and retains the difference in the A register.

1. The Carry flip-flop is set if underflow occurs. otherwise
carry is reset.

2. The Zero, Sign and Parity flip-flops represent the status of
the A register at comoletion.

SUBTRACT
For SU(rs): Op Code: 22s

Timing: 1.4
Operation: (A)-(rs)--A

For SUM: Op Code: 227
Timing: 2.6
Operation: (A)-(M)-+A

SU(rs), SUM

This instruction is identical to SUBTRACT IMMEDIATE with
the exception of operand source.

s specifies the operand source.

SUBTRACT WITH BORROW IMMEDIATE
Op Code: 034 (wv)
Timing: 2.2
Operation: (A)-(P+1) - (Carry)-A

SB data

Subtracts the value of the operand and the Carry bit from the
contents of the A register, and retains the difference in the A
register.

1

7

0

6

1

5

:

3

1

2

:

0

I 70PERAN~ I

1. Sets the Carry flip-flop if underflow occurs; otherwise
resets Carry.

2. The Zero, Sign, and Parity flip-flops represent the status of
the A register at completion.

SUBTRACT WITH BORROW
For SB(rs): Op Code: 23s

Timing: 1.4
Operation: (A)-(rs)-(Carry)-+A

For SBM: Op Code: 237
Timing: 2.6
Operation: (A)-(M) - (Carry)-+A

SB(rs), SBM

This instruction is identical to SUBTRACT WITH BORROW
IMMEDIATE with the exception of the operand source.

s specifies the operand source.

AND IMMEDIATE
Op Code: 044 (wv)
Timing: 2.2
Operation: (A)..A.(P+1)-+A

ND data

Forms the logical product of the contents of the A register
with the value of the operand and places the result in the A
register.

1. Resets the Carry flip-flop upon completion.
2. The Zero, Sign and Parity flip flops represent the status of

the A register upon completion.

(A Reg)
(P+1)
(A Reg)

AND

Sample Operation:

000011
011001
0 0 0 0 o. 1

For ND(rs): Op Code: 24s
Timing: 1.4
Operation: (AWrs)-A

For NDM: Op Code: 247
Timing: 2.6
Operation: (AWM)--+A

1
0
0

ND(rs), NDM

This instruction is identical to AND IMMEDIATE with the
exception of operand source.

s specifies the operand source.

OR IMMEDIATE
Op Code: 064 (wv)
Timing: 2.0
Operation: (A) V (P+1)- A

OR data

Forms the logical sum of the contents of the A Register and
the value of the operand, and places the result in the A
register.

1. Resets the Carry flip-flop upon completion.
2. The Zero, Sign and Parity flip-flops represent the status of

the A register upon completion.

(A Reg)
(P+1)
(A Reg)

OR

Sample Operation:

0 0 0 0 1 1 1 1
01 00110
0 0 1

For OR(rs): Op Code: 26s
Timing: 1.4 ·
Operation: (A) V (rs)-A

For ORM: Op Code: 267
Timing: 2.6
Operation: (A) V (M)-+A

OR(rs),ORM

This instruction is identical to OR IMMEDIATE with the ex­
ception of operand source.

s specifies operand source.

EXCLUSIVE OR IMMEDIATE
Op Code: 054 (wv)
Timing: 2.0
Operation: (A)..ir(P+1)-+A

XR data

Forms the logical difference of the contents of the A register
and the value of the operand, and places the result in the A
register.

1. Resets the Carry t11p-flop at completion.
2. The Zero, Sign and Parity flip-flops represent the status of

the A register upon completion.

Sample operation:

(A Reg) 0 0 0 0

(P+1) 0 1 0 0 0

(A Reg) 0 0 0 0

EXCLUSIVE OR
For XR(rs): Op Code: 25s

Timing: 1.4
Operation: (A) -If (rs)-+A

For XRM: Op Code: 257
Timing: 2.6
Operation: (A) -If (M)-+A

XR(rs), XRM

This instruction is identical to EXCLUSIVE OR IMMEDIATE
with the exception of operand source.

s specifies the operand source.

17

COMPARE IMMEDIATE
Op Code: 074 (vvv)
Timing: 1.8
Operation: (A) : (P+1)

CP d•t•

Compares the contents of the A register with the value of the
operand.

1. The flag flip-flops assume the same state as they would for
a Subtract instruction.

2. The contents of the A register are unaffected.

COMPARE CP(rs), CPM
For CP(rs): Op Code: 27s

Timing: 1.2
Operation: (A):(rs)

For CPM: Op Code: 277
Timing: 2.4
Operation: (A) :(M)

This instruction is identical to COMPARE IMMEDIATE with
the exception of operand source.

172615;312~01
s specifies the operand sources

UNCONDITIONAL JUMP
Op Code: 104 (adr)
Timing:2.8
Operation: (adr)- P

JMP loc

An unconditional transfer of control. The second byte of the
instruction represents the least significant portion of the
jump address, while the third byte of the instruction repre­
sents the most significant portion.

P+1 P+2

7
12 4 0 17 LSP 0 17 MSP 0 I

Op Code Address

JUMP IF CONDITION TRUE
Op Code: 1(c+4) 0 (adr)
Timing: 2.8 if condition true

1.4 if condition false
Operation: If condition true, (adr)- P

JT(cf) loc

Examines the designated flip-flop. If set, transfers control to
(adr). If reset, executes the next sequentially available in­
struction.

P+1 P+2

l1 1 6 1 5c~4 3 ,2o10 l1 LSP

0

1

7

MSP

0

1

Op Code Address

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

18

this instruction.

JUMP IF CONDITION FALSE
Op Code: 1c0 (adr)
Timing: 2.8 if condition false

1.4 if condition true
Operation: if condition false, (adr)--+ P

JF(cf) loc

Examines the designated flip-flop. If reset, transfers control
to (adr). If set, executes the next sequentially available in­
struction.

P+1 P+2

Op Code Address

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

this instruction.

SUBROUTINE CALL
Op Code: 106 (adr)
Timing: 2.8
Operation: P+3--+ Stack, (adr) --P

CALL loc

Transfers the address of the next sequentially available in­
struction to the pushdown Stack, and transfers control to
the address specified by the contents of the two memory
locations immediately following the Op Code.

P+1 P+2

17 1 615 ~ 312 6 017 LSP 0 17 MSP 0 I
Op Code Address

The Stack is open"ended in operation. If it is overfilled, the
deepest address will be lost.

SUBROUTINE CALL IF CONDITION TRUE CT(cf) loc
Op Code: 1(c+4)2 (adr)
Timing: 3.2 if condition true

1.6 if condition false
Operation: If condition true, P+3- Stack, (adr) -- P

Examines the designated flip-flop. If set, transfers the ad­
dress of the next sequentially available instruction to the
pushdown Stack, and transfers control to (adr). If reset, exe­
cutes the next sequentially available instruction.

P+l P+2

1

7

1

6

1

5 ~ 3

1

2 ~ 0

1

7

LSP

0

1

7

MSP

0

I
Op Code Address

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

this instruction.
3. The Stack is open-ended in operation. If it is overfilled, the

deepest address will be lost.

SUBROUTINE CALL IF CONDITION FALSE CF(cf) loc
Op Code: 1c2 (adr)
Timing: 3.2 if condition false

1.6 if condition true
Operation: If condition false, P+3-+ Stack, (adr) - P

Examines the designated flip-flop. If reset, transfers the ad-

•

dress of the next sequentially available instruction to the
pushdown Stack, and transfers control to (adr). If set, exe­
cutes the next sequentially available instruction.

P+1 P+2

I ' 1

6

1

5

: ' I 2 ~ °17 LSP °17 MSP

0

I
Op Code Address

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

this instruction.
3. The Stack is open-ended in operation. If it is overfilled, the

deepest address will be lost.

SUBROUTINE RETURN
Op Code: 007
Timing: 1.8
Operation: (Stack) -P

RET

Transfers control to the address specified by the most recent
entry into the pushdown Stack. Deletes the most recent entry
from the Stack.

The effect of attempting more RETURN instructions than the
Stack is capable of handling is undefined.

SUBROUTINE RETURN IF CONDITION TRUE RT(cf)
Op Code: o (c+4) 3
Timing: 2.0 if condition true

1.0 if condition false
Operation: If condition true, (Stack) - P.

Examines the designated flip-flop. If set, transfers control to
the address specified by the most recent entry into the
pushdown Stack and deletes the most recent entry into the
Stack. If reset, executes the next sequentially available in­
struction.

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

this instruction.
3. The effect of attempting more RETURN instructions than

the Stack is capable of handling is undefined.

SUBROUTINE RETURN IF CONDITION FALSE RF(cf)
Op Code: Oc3
Timing: 2.0 if condition false

1.0 if condition true
Operation: If condition false, (Stack) - P

Examines the designated flip-flop. If reset, transfers control
to the address specified by the most recent entry into the
pushdown Stack and deletes the most recent entry into the
Stack. If set, executes the next sequentially available instruc­
tion.

1. c designates which flip-flop (condition) is to be tested.
2. The condition of the selected flip-flop is unchanged by

this instruction.
3. The effect of attempting more RETURN instructions than

the Stack is capable of handling is undefined.

SHIFT RIGHT CIR,CULAR
Op Code: 012
Timing: 1.4
Operation: A(Nl-A(N-1); AO-A7, AO- Carry

SRC

Shifts the contents of the A register right in a circular fashion.
Shifts the least significant bit into the most significant bit
position. Upon completion of the operation, the Carry flip­
flop is equal to the most significant bit.

The Zero, Parity and Sign flip-flops are not affected by this
instruction.

SHIFT LEFT CIRCULAR SLC
Op Code: 002
Timing: 1.4
Operation: AtN-1)- A(N); A7-+Ao A?- Carry

Shifts the contents of the A register left in a circular fashion.
Shifts the most significant bit into the least significant bit
position. Upon completion of the operation, the Carry flip­
floo is eaual to the least significant bit.

The Zero, Parity and Sign flip-flops are not affected by this
instruction.

NO OPERATION
Op Code: 300
Timing: 1.2
Operation: P + 1-P

No operation is performed

1
7

3
6 I 5 ~ 3 I 2 ~ o I

NOP

The Zero, Parity and Sign flip-flops are not affected by this
instruction.

HALT
Op Code: 000, 001, or 377
Timing: Execution stops
Operation: The processor halts

HALT

When the START button on the console is depressed, opera­
tion resumes at P+1.

If USER mode is set this instruction will cause a privileged
instruction interrupt to occur.

19

POP
Op Code: 060
Timing: 2.2
Operation: (Stack)-+H,L

POP

Transfers the most recent Stack entry into the H & L registers.

H=MSP, L=LSP

PUSH
Op Code: 070
Timing: 1.8
Operation: H, L-+ Stack

PUSH

Transfers the contents of the H & L registers into the
pushdown Stack. H=MSP, L=LSP.

INPUT
Op Code: 101
Timing: 5.0
Operation: (1/0 Bus)-+A

INPUT

Transfers the contents of the 1/0 Bus to the A register.

171615~312~01
Priv. Note: If USER mode is set, this instruction will cause

a privileged instruction interrupt to occur.

ENABLE INTERRUPTS
Op Code: 050
Timing: 1.4

El

Following the next instruction, El will allow the interrupts to
occur until a DISABLE INTERRUPT instruction is executed.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

DISABLE INTERRUPTS
Op Code: 040
Timing: 1.4

DI

Prevents interrupts trom occurring until an ENABLE INTER­
RUPT instruction is executed.

20

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

SELECT ALPHA MODE
Op Code: 030
Timing: 1.4

ALPHA

Selects the ALPHA MODE registers and control flip-flops.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

SELECT BETA MODE
Op Code: 020
Timing: 1.4

BETA

Selects the BETA MODE registers and control flip-flops.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

EXTERNAL COMMAND
Op Code: 121 to 153
Timing: 9.2

EX (expt

Operation: Performs 1/0 control according to (exp)

These instructions perform the functions necessary for con­
trol of the 1/0 System and external devices. Many of these
functions are specifically related to operation of particular
devices. The device oriented commands for the Keyboard,
CRT Display, and diskette drives are explained in the sections
covering these devices.

l~~,~~~1~:~1
Priv. Note: If USER mode is set, this instruction will cause

a privileged instruction interrupt to occur.

Table 5-1 is a list of the External Commands. For a detailed
discussion of their use, reference should be made to Part 6
(Input/Output Operations) and to descriptions of the sepa­
rate external devices. External Commands 155-177 are not
listed, as they apply to systems with integral cassette units
and are described in Part 4 (Cassette Tapes).

--------------------------------------- ------------- -------------

•

TABLE 5-1
EXTERNAL COMMANDS

EX (exp)

OCTAL
(exp) CODE COMMAND

ADR 121 Address

STATUS 123 Sense Status

DATA 125 Sense Data

WRITE 127 Write Strobe

COM1 131 Command 1

COM2 133 Command 2

COM3 135 Command 3

COM4 137 Command 4

- 141 (Unassigned)
- 143 (Unassign~d)

- 145 (Unassigned)
- 147 (Unassigned)
BEEP 151 Beep

CLICK 153 Click

5.8.4 Category 2 - Augmented Category 1
Instructions

DEVICE
DESCRIPTION ADDRESS

Selects device specified by ALL
A register ~
Connects selected device status
to input lines
Connects selected device data to
input lines
Signals selected device that output
data word is on output lines
Outputs a control function to
selected device
Outputs a control function to
selected device
Outputs a control function to
selected device ~

Outputs a control function to ALL
selected device
- -
- -
- -
- -
Activates tone producing ALL
mechanism
Activates audible click producing ALL
mechanism

ARITHMETIC AND LOGICAL OPERATIONS TO
OTHER THAN THE A REGISTER

Examples: LOAD REGISTER FROM MEMORY
USING BC, DE, OR XA FOR THE
ADDRESS L(rd)M (rp)

Mnemonics:
(op)(rs) (r)
(op)M (r)
(op)(r) (vvv)

ADAB adds A to B
A:DMC adds (HL) to C
sue 20 subtracts 20
from C

Op Code: rp 3d7
Timing: 3.4
Operation: (M)-(rp),d ~ 7
Length: 2 bvtes
Example: LEM BC

Identical to the L(rd)M instruction et that the specified re­
gister pair, instead of HL, is used for the memory address.

LOAD MEMORY .FROM REGISTER
USING BC, DE, OR XA FOR THE
ADDRESS

Op Code: rp 37s
Timing: 3.4
Operation: (rs)--+M, s~6

Length: 2 bytes
Example: LMB DE

LM(rs) (rp)

Identical to the LM(rd) instruction except that the specified
register pair, instead of HL, is used for the memory address.

SRC (r)
SLC (r)

SRCB shifts Bright
SLCD shifts D left

Op Codes: r 2ps, r Op?, r Op4, r 012, r 002
Timing: Add 1.0 to equivalent category 1 instruction tim­

ing.
Length: Add 1 byte to the equivalent category 1 instruction.

Identical to the equivalent category 1 arithmetic operations
except that the specified register, instead of the A register,
is used.

SHIFT RIGHT EXTENDED
For SRE:

SRE, SRE(r)

Op Code: 032
Timing: 1.4
Operation: AN--+A(N-1) Carry--+A1. M-Carry
Length: 1 byte

21

For SRE(r): Op Code: r 032
Timing: 2.4
Operation: (r)N-+(r)(N-1) Carry-+ (r)7.(r)o-..Carry
Length: 2 bytes

The register is shifted right one place with the left hand bit
being replaced by the Carry and the Carry being replaced by
the right-hand bit.

1/0 USING OTHER THAN THE
A REGISTER

For IN(r): Op Code: r 101
Timing: 6.0
Operation: (1/0 Bus) -.(r)
Length: 2 bytes

IN(r), EX(rs) (exp)

For EX (rs) (exp): Op Code: r 121, r 123, etc.
Timing: 10.2
Operation: Performs 1/0 control with specified register ac­

cording to (exp)
Length: 2 bytes

Identical to the 2200 1/0 operations except that the specified
register, instead of the A register, is used.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

PARITY CHECKING INPUT
For PIN: Op Code: 103

Timing: 5.4
Length: 1 byte

For PIN (r): Op Code: r 103
Timing: 6.4
Length: 2 bytes

PIN, PIN(r)

Identical to the INPUT instruction except that if the nine bits
of the 1/0 Bus contain an even number of ones, an interrupt
will occur.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

PUSH USING BC, DE, OR XA
Op Code: rp 070
Timing: 2.6
Operation: (rp)-+ Stack
Length: 2 bytes

PUSH (rp)

Pushes the specified register pair onto the Stack.

PUSH IMMEDIATE
Op Code: 051 (adr)
Timing: 2.6
Operation: (adr)--+ Stack
Length: 3 bytes

PUSH toe

Pushes the contents of the operand onto the Stack.

POP USING BC, DE, OR XA
Op Code: rp 060
Timing: 3.0 usec.
Operation: (Stack) ---+ (rp)
Length: 2 bytes

Pops the Stack into the specified register pair.

22

POP(rp)

5.8.5 Category 3 - Multi-byte (string)
Operations

BLOCK TRANSFER OR BLOCK
TRANSFER REVERSE
For BT: Op Code: 021

Timing: 4.8+Ne3.2
+(Ne0.2) if B=loO
-(0.8) if end check succeeds
N=number of steps done

Length: 1 byte
For BTR: Op Code: 111 021

Timing: 5.8+Ne3.6
+(Ne0.2) if Bol=O

-(0.8) if end check succeeds.
N=number of steps done.

Length: 2 bytes

BT,BTR

The Block Transfer instructions move the number of bytes
specified in the C register from the field pointed to by HL to
the field pointed to by DE while adding the contents of the A
register to each byte transferred. BT causes the pointers to
be incremented after each transfer while BTR causes the
pointers to be decremented after each transfer. If the B regis­
ter is not zero, the transfer will stop if a character which is
equal to the 2's complement of the B register is stored in the
destination field (stops after the matching character is
moved).
Entry:

Exit:

Stack:
Caution:

HL=location of first source byte.
DE= location of first destination byte.
C=number of bytes to move (C=1 to

255; 0 tor 256).
B=2's complement of terminating

character if not 0.
A=8-bit value added to each byte as

it is moved (for de-zoning and
zoning decimal numbers).

HL=location past last source byte.
DE=location past last destination

byte.
A=entry value.
B=entry value.
C=zero or count before terminator

character found.
Condition flags are all altered.
2 entries used.
Since BT and BTR instructions can

take up to 820 microseconds to
execute,care must be exercised
in their use if time critical
interrupt driven programs
are to be simultaneously
executed.

BLOCK CONVERT BCV
Op Code: 062 021
Timing: 5.8+Ne4.8

+(Ne0.2) if B=O
-(0.8) if end check succeeds.
N=number of steps done

Length: 2 bytes
BLOCK CONVERT is a variation of BLOCK TRANSFER
where the field pointed to by the DE registers is translated
byte-by-byte using the translate table pointed to by the HL
register pair.

Entry:

Exit:

HL=location of the translate table
(must not cross a page
boundary).

DE=location of the first byte to be
translated.

C=number of bytes to move
B=2's complement of terminating

character if not 0.
A=no entry value used.
HL=undefined
DE=location past last destination

byte
A=LSB of last table position used

for translation.
B=entry value.
C=zero or count before termination

character found.

Algorithm: 1. Get the byte pointed to by DE.
2. Set A to the result of the byte

added to L.
3. Get the byte pointed to by

HA. This is the table's translated
byte.

4. Store the translated byte where
DE points

5. Increment DE.
6. B is added to the translated

byte.
7. Stop if the Carry and Zero

conditions are true - a
match is found.

8. Decrement the C register.
9. Go to Step 1 if result

is non-zero.
Stack: 2 entries used
Caution: Since BCV instructions can take

over 820 microseconds to
execute, care must be taken
in their use if
time critical interrupt driven
programs are to be simultaneously
executed.

BINARY FIELD ADD WITH CARRY
OR SUBTRACT WITH BORROW BFAC, BFSB
For BFAC: Op Code: 011

Timing: 5.0 + Ce2.8
Length: 1 byte

For BFSB: Op Code: 031
Timing: 5.0 + Ce2.8
Length: 1 byte

These instructions take the field pointed to by HL and either
add it to or subtract it from the field pointed to by DE, leaving
the result in the field pointed by DE. The fields may be 1
through 16 bytes in length.

Entry: HL=location of right hand byte of
the operand field.

DE=location of right hand byte of
the accumulator field

C=the field width (1 through 16; 0
or 16 implies 16).

Carry=carry or borrow into the
operation.

Exit: HL=location to left of the left hand
byte of the operand field.

DE=location to left of the left
hand byte of the Accumulator
field.

C=indeterminate.
Carry=c.arry or borrow out of the

operation (all the
condition flags are altered).

Algorithm: 1. Load the implicit register from C.
2. Get the byte pointed to by HL.
3. Add it with carry or subtract

it with borrow from the byte
pointed to by DE and store the
result where DE points.

4. Decrement HL and DE by one.
5. Decrement the implicit register

by one.
6. Go to step 2 if the implicit

register is not now zero.
Stack: 2 entries used

BLOCK COMPARE
Op Code: 041
Timing: 5.2 + Ne2.6

-(0.8) if mismatch found.
N=number if steps done.

Length: 1 byte

BCP

This instruction matches two strings of bytes from left to right
until either a mismatch is found or the specified maximum
number of bytes have been scanned.
Entry: HL=location of left hand byte of the

subtracting field.
DE=location of left hand byte of the

~ubtracted from field.
C=the maximum number of bytes to

scan (1 thru 255; O implies 256).
Exit: IF A MISMATCH WAS FOUND:

HL=location after the last byte
examined in the subtracting
field

DE=location after the last byte
examined in the subtracted
from field.

C=entry value minus number of
bytes that matched

Condition flags all reflect the result
of the subtract instruction that
found the two bytes differing.

IF ALL BYTES MATCHED
HL=location after the last byte in

the subtracting field
DE=location after the last byte in

the subtracted from field
C=zero
Condition flags are all altered.

(Zero condition being set true)
Algorithm: 1. Get the byte pointed to by HL.

2. Subtract it from the byte
pointed to by DE.

3. Increment DE and HL.

23

r--

Stack:

4. Exit if the Zero condition is
false.

5. Decrement C.
6. Go to Step 1 if C is not

equal to zero.
7. Exit with the Zero condition true.
2 entries used.

Caution: BCP can take up to 722 microseconds to execute.

DECIMAL FIELD ADD WITH CARRY

Op Code: 111 041
Timing: 6.4 + Ce4.4 If a carry occurred on every

digit, +(Ke0.2) is if no carries occurred (K is
number of carry outs).

Length: 2 bytes.

DFAC

This instruction takes the field of zoned BCD digits pointed to
by HL and adds it to the field of zoned BCD digits pointed to
by DE, leaving the result in the field pointed to by DE. The
zone bits of the result field are set to the zone bits in the B
register. The fields may be 1 through 16 bytes in length.
Entry: Same as for the BFAC instruction

except B=output zoning (right 4
bits must be O; left 4 bits must
be other than 0000).

Exit: Same as for the BFAC instruction
except A register is destroyed.

B=entrv value.
Algorithm: 1. Load the implicit register from C.

2. Get the byte pointed to by HL.
3. Add it with carry to the byte

pointed to by DE.
4. Strip away the zone bits.
5. Clear the Carry and go to step 7

if the result is less than 10.
6. Subtract 10 from the result and

set the Carry.
7. Set the zoning bits.
8. Store the result where DE points.
9. Decrement HL and DE by one.
10. Decrement the implicit register by one.
11. Go to step 2 if the implicit

register is not zero.

NOTE: The bi nary values for the zoned BCD digits with xxxx
not equal to 0000 are as follows (the digits are not
packed, i.e., only one digit per byte):

O:xxxxOOOO
1 :xxxx0001
2:xxxx0010
3:xxxx0011
4:xxxx0100

5:xxxx0101
6:xxxx0110
7:xxxx0111
8:xxxx1000
9:xxxx1001

DECIMAL FIELD SUBTRACT WITH BORROW

Op Code: 062 041

BFSB

Timing: 6.4+ Ce3.6 if a borrow occurred on every digit;
+(Ke0.4) for each borrow that occurred (K is
number of carry outs).

Length: 1 byte

This instruction takes the field of zoned BCD digits pointed to

24

by HL and substracts it from the field of zoned BCD digits
pointed to be DE, leaving the result in the field pointed to by
DE. The zone bits of the two fields must be identical. The zone
bits of the result field are set to the zone bits in the B register.
The fields may be 1 through 16 bytes in length.
Entry: same as for the DFAC instruction.
Exit: same as for the DFAC instruction.
Algorithm: 1. Load the implicit register from C.

Stack:

2. Get the byte pointed to by HL.
3. Subtract it, with borrow, from

the byte pointed to by DE.
4. Go to Step 6 and clear the Carry

if the byte result is not negative.
5. Add 10 to the result and set the

Carry.
6. Set the zone bits to those in

the B register.
7. Store the result where DE points.
8. Decrement HL and DE by one.
9. Decrement the implicit register

by one.
10. Go to Step 2 if the implicit

register is not zero.
2 entries used.

BINARY FIELD SHIFT LEFT
Op Code: 075
Timing: 3.8+Ce2.2
Length: 1 byte

BFSL

This instruction shifts a field of bytes in memory left one bit
position as if all of the bytes made up one continuous word.
Entry: HL=location of right-hand byte

of the field.
C=the field width (1 through 16;

O or 16 implies 16).
Carry=bit shifted out on the left

Exit: HL=location left of the left-hand
byte of the field.

C=indeterminate.
A= indeterminate.
Carry=bit shifted out on the left.
All other flags are indeterminate.

Stack: 2 entries used.

BINARY FIELD SHIFT RIGHT
Op Code: 111 075
Timing: 4.6 + C • 2.0
Length: 2 bytes

BFSR

This instruction is similar to BFSL except the shift is in the
opposite direction.
Entry: HL=location of left-hand byte

of the field.
C=the field width (1 through 16;

0 or 16 implies 16)
Carry=bit shifted in on left.

Exit: HL=location right of the right-hand

Stack:

byte of the field.
C=indeterminate.
A=indeterminate.
Carry=bit shifted out on the right.
All other flags are indeterminate.
2 entries used.

MULTIPLE INPUT
Op Code: 111 061
Timing: 3.0 + 8.4 per byte transferred
Length: 2 bytes

MIN

This instruction moves the number of bytes specified in the C
register from a buffered input device to the field pointed to by
L. The number of bytes moved is the number in the C register
modulo 16. To make transferring up to 256 bytes easy yet
interruptable, the full eight bit value of the C register is re­
tained during loop counting and exit is made with the C
register containing its entry value minus the number of bytes
transferred, HL containing its entry value plus the number of
bytes transferred, and the Zero condition code reflecting the
eight bit result of the last decrementation of the C register.
Thus the interruptable loop for transferring the number of
bytes indicated by the eight bit value in the C register yet not
inhibiting interrupts more than 155 microseconds would ap­
pear as follows:

LOOP LA DEVADR
DI
EX ADR
EX DATA
El
MIN
JFZ LOOP

Note that the device must be re-addressed for each execution
of the MIN instruction if an interrupt could cause some
other device to be addressed. The MIN instruction causes a
parity checking input strobe to be executed every 8.4 mic­
roseconds. This execution operates without regard to any
status bits of any kind. There is no existing 2200 system 1/0
device capable of using this instruction and it is included for
use with 5500 system 1/0 devices with parity generation and
faster buffers allowing them to be used as data rates equiva­
lent to DMA channels. The MIN instruction has all of the
advantages of a non-1/0 device interrupting system (lower
software overhead in high throughput situations, superior
control over the occurrence of events allowing probability of
correctness in the program logic and repeatability of event
occurrence, and simpler hardware using lower speeds and
noise filtered buses) and yet achieves DMA throughput rates.

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

Entry: HL=location of first destination byte
C=number of bytes to move (this

number 1s taken modulo 16 and if
it is O modulo 16 then 16 bytes
will be moved).

Exit: HL=location of entry value plus
number of bytes moved

C=entry value minus number of bytes moved
Algorithm: 1. Execute a parity checking INPUT.

2. Store the byte where HL points.
3. Increment HL.
4. Load the implicit register from C.
5. Decrement C using the ALU.
6. Decrement the implicit register.
7. Exit if the implicit register is

zero.
8. Decrement the P-counter.

Stack:

9. Re-fetch the instruction without
allowing interrupts.

1 entry used.

NOTE: To input a block of 256 bytes using the loop described
above would take 2550 microseconds if no interrupts occur­
red (an average of 10 microseconds per byte).

MULTIPLE OUTPUT
Op Code: 111 071
Timing: 3.0 + 8.8 per byte transferred
Length: 2 bytes

MOUT

This instruction is similar to the MIN instruction except for
timing and the direction of information flow. MOUT moves
the number of bytes specified in the C register from the field
pointed to by HL to a buffered output device. A byte is written
using the EX WRITE strobe every 8.8 microseconds and inter­
rupts can be inhibited for a maximum of 161 microseconds.
As with MIN there is no existing 2200 system 1/0 device
capable of being used with the MOUT instruction.

NOTE: To output a block of 256 bytes using a loop similar to
the one described for MIN (a MOUT instruction would appear
where a MIN instruction appears in the example) would take
2650 microseconds if no interrupts occurred (an average of
10.4 microseconds per byte).

Priv. Note: If USER mode is set, this instruction will cause
a privileged instruction interrupt to occur.

5.8.6 Category 4 - Processor State Save and
Restore Instructions

STACK STORE
Op Code: 065
Timing: 1.6+Ce2.4
Length: 1 byte

STKS

The STACK STORE instruction POPs a specified number of
Stack entries and stores them (LSB followed by MSB) in the
field pointed to by HL. Upon entry, HL points to the left-hand
byte.

Entry:

Exit:

HL=first location in the storage area
C=the number of entries to be POPPED

and stored (1 through 16; O·or 16
implies 16)

HL and C indeterminate
Condition flags unchanged

STACK LOAD
Op Code: 111 065
Timing: 4.4+C•2.2
Length: 2 bytes

STKL

The STACK LOAD instruction pushes onto the Stack the
specified number of entries from the field pointed to by HL.
Upon entry HL points to the right hand byte and the entries
are loaded in reverse order to allow restoring the Stack from
locations stored using the STKS instruction.

Entry:

Exit:

HL=last location in the storage area
C=the number of entries to be

PUSHED (1 through 16; 0 or 16
implies 16)

HL=indeterminate

25

C=indeterminate
Condition flags unchanged.

REGISTER STORE
Op Code: 055
Timing: 13.2
Length: 1 byte

REGS

The REGISTER STORE instruction stores all of the registers
for the currently selected mode (ALPHA or BETA) in the field
pointed to by the top entry of the Stack. This entry points to
the right-hand byte of the field and the registers are stored in
reverse order moving to the left. When the instruction termi­
nates, the top entry of the Stack points to the left of the
left-hand byte in the field. For example, if entry is made with
the top entry of the Stack pointing to location 02007 (octal),
the registers are stored as follows:

02000:A
02001 :B
02002:C
02003:D
02004:E
02005:H
02006:L
02007:X

In the above example, the top entry of the Stack will be 01777
when the instruction terminates. The contents of neither the
registers nor the condition flags for the given mode are al­
tered by this instruction.

REGISTER LOAD
Op Code: 111 065
Timing: 12.2
Length: 2 bytes

REGL

The REGISTER LOAD instruction loads all of the registers for
a given mode (ALPHA or BETA) from the field pointed to by
HL. Upon entry, HL points to the right-hand byte of the field.
The registers are loaded in reverse order moving to the left in
the field. In this manner, the registers can be reloaded from
values stored by the REGS instruction. In the example given
for the REGS instruction, if the REGL instruction were enter­
ed with HL=02007, the registers shown would be loaded
from the locations shown. The condition flags are not altered
by this instruction.

CONDITION CODE SAVE
Op Code: 042, r 042
Timing 2.4 if Zero true and Carry false;

2.6 if Zero and Carry true;
3.0 for other cases.
Add 1.0 if r specified.

LP.ngth: 1 byte or 2 bytes if r specified.

CCS, CCS(r)

This instruction loads the register (r) with a value such that if
the value is added to itself using the AD operation, the condi­
tion flags will all be restored to their state before the CCS
instruction was executed. The logic equations for the value
loaded into (r) are:

26

A7=Carry
A6=Sign
A5=A4=A3=A2=0
A1 =Not Zero and Not Sign
AO=Not Zero and Not Parity

This instruction does not alter the state of any of the condi­
tion flags. If (r) is not specified, the A register is used.

5.8. 7 C•tegory 5 - AddreH M•nipul•tlon
Instructions

INCREMENT REGISTER PAIR

Mnemonics
INCP HL
INCP HL,2
INCP HL,A
INCP BC
INCP BC,2
INCP BC,A
INCP DE
INCP DE,2
INCP DE,A
INCP XA
INCP XA,2
INCP XA,A

Op Codes
015
117 015
017
062 015
113 015
062 017
174 015
115 015
174 017
022 015
111 015
022 017

Timing
2.8
3.8
3.0
3.6
3.8
3.8
3.6
3.8
3.8
3.6
3.8
3.8

INCP

These instructions increment the indicated register pair by
either one, two or the contents of the A register. The incre­
ment value is added to the LSP register and then the carry is
added to the MSP register. The Carry Condition flag reflects
the carry from the incrementation. The rest of the flags are
indeterminate. The A register is not changed, except in the
XA case.

DECREMENT REGISTER PAIR

Mnemonics
DECP HL
DECP HL,2
DECP HL,A
DECP BC
DECP BC,2
DECP BC,A
DECP DE
DECP DE,2
DECP DE,A
DECP XA
DECP XA,2
DECP XA,A

Op Codes
035
117 035
037
062 035
113 035
062 037
174 035
115 035
174 037
022 035
111 035
022 037

Timing
2.8
3.8
3.0
3.6
3.8
3.8
3.6
3.8
3.8
3.6
3.8
3.8

DECP

These instructions decrement the indicated register pair by
either one, two, or the contents of the A register. The decre­
ment value is subtracted from the LSP register and then the
borrow is subtracted from the MSP register. The Carry Condi­
tion flag relects the borrow from the decrementation. The
rest of the flags are indeterminate. The A register is not
changed, except in the case of XA.

DOUBLE LOAD DL

Mnemonics
DL DE,HL
DL BC,HL

Op Codes
047
111 047

Timing
3.6
5.4

---------------------------------------·------------

DL BC.BC 062 047 4.8

DL BC.DE 113 047 5.2

DL DE.BC 174 047 4.8
DL DE.DE 115 047 5.2
DL HL,BC 176 047 4.8
DL HL,DE 117 047 5.2
DL HL,HL 057 3.6

These instructions load the register pair specified by the first
operand from the memory location pointed to by the register
pair specified by the second operand. The LSP register (C, E,
or L) is loaded from the specified memory location and the
MSP register (B,D, or H) is loaded from the next higher
memory location. Note that indirect addressing can be ac­
complished by loading a register pair from the locations that
the pair specify (DL HL,HL for example).

DOUBLE STORE

Mnemonics
DS DE,HL
DS BC,HL
DS BC.DE
DS DE.BC
DS HL,BC
DS HL,DE

Op Codes
027
111 027
113 027
174 027
176 027
117 027

Timing
3.6
5.4
5.2
4.8
4.8
5.2

DS

These instructions store the register pair specified by the first
operand into the memory locations pointed to by the register
pair specified by the second operand. The LSP register (C,E,
or L) is stored in the specified memory location and the MSP
register (B,D or H) is stored in the next higher location.

PAGED LOAD PL

Mnemonics Op Codes Timing
PL A,(loc) 105 LSP 3.0
PL B,(loc) 114 LSP 3.0
PL C,(loc) 124 LSP 3.0
PL D,(loc) 134 LSP 3.0
PL E,(loc) 144 LSP 3.0
PL H,(loc) 154 LSP 3.0
PL L,(loc) 164 LSP 3.0

These instructions load the specified register from the mem­
ory location specified by the LSP given in the instruction and
the X register.

PAGED STORE PS

Mnemonics Op Codes Timing
PS A,(loc) 107 LSP 3.0
PS B,(loc) 116 LSP 3.0
PS C,(loc) 126 LSP 3.0

PS D,(loc) 136 LSP 3.0
PS E,(loc) 146 LSP 3.0
PS H,(loc) 156 LSP 3.0
PS L,(loc) 166 LSP 3.0

These instructions store the specified register in the memory
location specified by the LSP given in the instruction and the
MSP given in the X register.

DOUBLE PAGED LOAD DPL

Mnemonics Op Codes Timing
DPL BC,(loc) 111 124 LSP 5.0
DPL DE,(loc) 113 144 LSP 5.0

DPL HL,(loc) 115 164 LSP 5.0

These instructions load the specified register pair from the
memory locations specified by the LSP given in the instruc­
tion and the MSP given in the X register. The C,E, or L register
is loaded from the specified memory location and the B,D, or
H register is loaded from the next higher location.

DOUBLE PAGED STORE

Mnemonics
DPS BC,(loc)
DPS DE,(loc)
DPS HL,(loc)

Op Codes
111 126 LSP
113 146 LSP
115 166 LSP

Timing
5.0
5.0
5.0

DPS

These instructions store the specified register pair in the
locations specified by the LSP given in the instruction and
the MSP given in the X register. The C, E or L register is stored
in the specified location and the B, Dor H register is stored in
the next higher location.

INCREMENT AND DECREMENT INDEX INCi, DECI

Mnemonics Op Codes Timing
INCi (disp), (index)
DECI (disp), (index)
INCl*(disp), (index)
DECl*(disp),(index)

005 LSP(i) 7.4
025 LSP(i) 7.6
111 005 LSP MSP(i) 9.4
111 025 LSP MSP(i) 9.6

The processor has a construct called an index which is a
16-bit value kept in memory. The concept is similar to index
registers except that all the values are kept in the page of
memory pointed to by the X register. The index is specified by
a single byte in the instructions (shown as (i) above) which
points to the memory location containing the LSP of the
index value, the MSP being in the next higher memory loca­
tion ((i) specifies the LSP of the index address while the X
register specifies the MSP of the index address). The in­
struction also contains a displacement (shown as (disp)
above) that is either one or two bytes in length (depending
upon the op code). These instructions either increment or
decrement the value of the index by the displacement. The
Carry condition flag reflects the carry or borrow from the
incrementation or decrementation. The rest of the condition
flags are indeterminate.

Stack: 1 entry used

LOAD FROM INDEX INCREMENTED OR DE·
CREMENTED LFll, LFID

Mnemonics
LFll BC,(disp), (index)
LFID BC,(disp),(index)
LFll BC,*(disp),(index)
LFID BC,*(disp),(index)
LFll DE,(disp),(index)
LFID DE,(disp),(index)

Op Codes
062 005 LSP(i)
062 025 LSP(i)
113 005 LSP MSP(i)
113 025 LSP MSP(i)
174 005 LSP(i)
174 025 LSP(i)

Timing
7.4
7.6
8.4
8.6
7.4
7.6

27

LFll DE, *(disp),(index)
LFID DE, *(disp),(index)
LFll HL,(disp),(index)
LFID HL,(disp),(index)
LFll HL,*(disp),(index)
LFID HL,*(disp),(index)

115 005 LSP MSP(i)
115 025 LSP MSP(i)
176 005 LSP(i)
176 025 ISP(i)
117 005 LSP MSP(i)
117 025 LSP MSP(i)

8.4
8.6
7.4
7.6
8.4
8.6

These instructions are similar to the INCi and DECI instruc­
tions except that they load the specified pair of registers with
the result of adding or subtracting the displacement to or
from the index value of the index. The condition flags are
similarly affected.
Stack: 1 entry used.

5.8.8 Category 6 - Operating System Control

BASE REGISTER LOAD
Op Code: 072, r 072
Timing: 1.2 or 2.2 if r specified.
Length: 1 or 2 if r specified

BRL, BRL(r)

This instruction loads the base register from the specified
register. Note that the base register cannot be saved. For this
reason, loading the base register will normally be a monitor
function, allowing the monitor to keep within itself the value
of the base register for user state storage purposes. This
instruction will cause a privileged instruction interrupt if the
USER mode flag is set. If (r) is not specified, the A register is
used.

NOP JUMP
Op Code: 045
Timing: 1.4
Length: 3 bytes.

NOJ loc

This instruction increments the P-counter twice. It is
useful for overstoring jump instructions which might be exe­
cuted while being overstored. The procedure to overstore a
jump instruction would be to first overstore the op code with
an 045 (NOP JUMP) and then update the address portion.
Then the op code could be overstored with the appropriate
jump instruction. The primary use of this instruction is for
overstoring the interrupt vector jump instructions for the
interrupts which cannot be disabled (such as MEMORY PAR­
ITY FAULT) and which might happen while the jump is being
overstored.

SYSTEM CALL
Op Code: 067
Timing: 1.8

SC

This instruction causes the USER mode flag to be cleared,
the last entry in the sector table to be set to the last 4K section
of physical memory space with access protection, and a
CALL to be performed to location 0167452 (in the ROM). This
is the mechanism via which the user would communicate
with an operating system that used the USER mode.

28

USER RETURN UR
Op Code: 111 102
Timing: 2.0

This instruction is identical to the RETURN instruction (op
code 007) except that additionally the USER mode flag is set.

SECTOR TABLE LOAD
OP Code: 077·
Timing: 3.2+Ce1.8
Length: 1 byte

STL

This instruction loads up to the first 15 entries in the sector
table. This table contains six bits for each entry. The right
hand two bits are not used and should always be set to zero.
Bit 2 is set for access enable. Bit 3 is set for write enable. The
left-hand four bits are used to map that entry into a particular
4K section of physical memory space. This instruction will
cause a privileged instruction interrupt if the USER mode flag
is set.

Entry:

Exit:
Stack:

HL=location of first byte in table
of up to 15 to load.

C=number of entries to load (0 to 15).
No registers or conditions changed.
1 entry used.

BREAKPOINT
Op Code: 052
Timing: 2.2
Length: 1 byte

BP

This instruction is similar to a SYSTEM CALL (SC) instruction
except the call is performed to location 0167460 of system
RAM. This will cause entry into the system DEBUG routine if
the location is not changed.

ENABLE INTERRUPTS AND JUMP
Op Code: 111 050
Timing: 4.4
Length: 4 bytes

EJMP

This instruction is identical to the ENABLE INTERRUPTS (El)
instruction except that additionally a jump is performed to
the (LSP, MSP) address.

ENABLE INTERRUPTS AND RETURN
Op Code: 062 050
Timing: 3.8
Length: 2 bytes

EUR

This instruction is identical to the combination of the ENA­
BLE INTERRUPTS, Set USER Mode Flag and RETURN in­
structions.

•

---~---

•

PART&
INPUT/OUTPUT

The 5500 communicates with and exercises program con­
trol over external devices via the Input/Output System Bus.
The keyboard and display, while internal, are also peripherals
that operate from this 1/0 Bus.

All external devices are connected to the 1/0 Bus in.parallel,
"daisy chain" fashion.

Each external device is assigned (by jumpers in the
peripheral device's controller) an Input/Output "address"
which is unique to that device. At any time, one device is
designated by the processor as currently addressed, and
only communication between the processor and that device
is possible. All other devices on the 1/0 Bus are logically,
although not electrically, disconnected from the 1/0 Bus.

Signals on the 1/0 Bus may be divided into six groups.
These are:

1. Nine output lines designated AOUTO (-)through AOUT8 (-).
Eight lines (AOUTO-AOUT7) carry data and control informa­
tion from the processor to the external device. AOUT8 (-) is
the parity bit for these lines. The (-) signs indicate that the
data is logically inverted, i.e., low voltage equals a binary one.

2. Nine input lines designated AINO (-)through AIN8 (-).Eight
lines (AINO-AIN7) carry data and status information from the
external device to the processor. AIN8 (-)is the parity bit for
the other 8 lines.

3. Nine output control and data strobes.

4. The system clock line.

5. The output data parity error flag line from the external
devices to the processor.

6. Twelve power and ground lines. Four of these are ground
lines and serve as signal ground for the 1/0 Bus and power
ground for devices which obtain operating power from the
1/0 Bus.

6.1 Input/Output Physical Connections

The Input/Output System Bus connector on the 5500 is a
50-pin Amphenol Series 17 receptacle with female contacts,
with provisions for screw lock assemblies.

Each external device has two 50-pin Input/Output Bus

connectors; one an Amphenol Series 17 female plug with
male contacts labelled "1/0 Bus In" and the other an Am­
phenol Series 17 male plug with female contacts labelled "1/0
Bus Out". Both of these connectors have provisions for
screw lock assemblies.

Datapoint Universal Input/Output cables have a male con­
nector at one end and a female at the other.

Connection is made from the 5500 1/0 connector to the "1/0
Bus In" connector of an external device via a Universal 1/0
cable. If more than one device is connected to the 1/0 Bus,
connection is made from the "1/0 Bus Out" connector of the
first device to the "1/0 Bus In" connector of the second
device with a Universal 1/0 Cable. The process is repeated for
other external devices.

Every external device must connect each of the 50 pins
(including spares) of its "1/0 Bus In" connector to the corres­
ponding pins of its "1/0 Bus Out" connector in addition to
connection to those lines required for the particular device.
This is required for continuity of all signal, power and ground
lines on the 1/0 Bus.

The following table gives 1/0 Bus pin assignments:

TABLE 6·1
1/0 PIN ASSIGNMENTS

SIGNAL
AOUTO (-)
AOUT 1 (-)
AOUT 2 (-)
AOUT 3 (-)
AOUT 4 (-)

AOUT 5 (-)
AOUT 6 (-)
AOUT 7 (-)
AOUT8 (-) (Parity Out)
INPUT(-)
EX ADR (-)
EX STATUS(-)
EX DATA(-)
EX WRITE(-)
EX COM1 (-)
EX COM2 (-)
EX COM3 (-)
EX COM4 (-)
SYSTEM CLOCK
AINO (-)
AINI(-)
AIN2 (-)
AIN3 (-)
AIN4 (-)
AIN5 (-)
AIN6 (-)
AIN7 (-)
AIN8 (-)(Parity In)
PERR (-) (Parity Error Flag)
GROUND
+5V
-5V
+12V
-12V
+24V
Spare (unused)

(-) indicates Negative true logic

PIN NUMBER
44
45
46
29
30
31
32
33
34
12
15
13
14
19
20
21
22
23
39

1
2
3
4
5
6
7

18
17
16

40,41,42,43
8, 9, 10, 11

27
25
24
26

28, 35, 36, 37,
38, 47, 48, 49,

50

6.2 Input/Output Electrical and Timing Requirements

This section describes interface circuits and timing re-

29

- --~

quirements for operation of external devices on the 5500
Input/Output System Bus.

6.2.1 Output Line Circuits

Four output line driver circuits are used in the Datapoint
5500. These are all illustrated in Figure 6-1.

Figure 6-1A is the drive used for the eight AOUTO (-)
through AOUT7 (-)data lines and the AOUT8 (-) parity line.

Figure 6-1 B is the drive used for the (old version) system
clock line and all strobe lines except the INPUT(-) strobe. The
(new version) clock line, which is asynchronous with the
system, uses the driver circuit shown in Figure 6-1 E.

Figure 6-1C is the drive used for the INPUT(-) strobe line.
The (old version) external devices use the receiver shown

in Figure 6-1 D. This receiver is a differential comparator
whose reference voltage is + 1.8 volts DC. The input is fil­
tered for transient noise immunity and diode clamped to the
reference voltage. Resistive source impedance for the refer­
ence must be less than 50 ohms and should be bypassed as
required for reliable operation.

Current flowing into the line input of the differential com­
parator device (excluding current through the clamp diodes
to the reference voltage) must be less than 50 microamperes.

The minimum voltage slew rate at the line input to the
comparator device (after the resistor-capacitor roll-off net­
work) in response to a change of state of the 1/0 Bus signal is
.7 volt per microsecond. At this slew rate, the delay from the
time the line input to the comparator device is equal to the
reference voltage (changing in either direction) until the
comparator output changes state must be less than .2 mic­
roseconds.

In addition, plus and minus .1 volt hysteresis must be in­
corporated in the receiver for any output strobes whose
transitions (versus level) are used by the interface logic cir­
cuitry. This requirement prevents logic malfunctions due to
spurious receiver responses (multiple transitions) to an out­
put strobe signal.

All (new version) external devices use the receiver circuit
shown in Figure 6-1 F for all data, strobe and clock lines.

The circuit uses an SN75141 single ended line receiver that
is referenced to +2 volts, ±5 %. The input is filtered against
fast transient pulses and diode clamped to protect against
excessive DC input voltages. The positive clamp value is
determined by the zener diode value. The zener diode must
not be biased "on" but left "floating" to prevent loading of
the 1/0 bus when the external device is powered down.

Current drawn from any bus output signal by any one
receiver circuit, with the external device powered or unpow­
ered, must not be greater than 100 microamperes.

The signal delay through an AOUT receiver is shown in
~igure 6-1 G. The delays are measured from the input of the
triter to the output of the receiver and include filter delay and
receiver propagation delays.

6.2.2 Input Line Circuits

The eight AINO (-)through AIN7 (-)lines carry data or status
information from the selected external device to the proces­
sor. Input line AIN8 (-)is the parity bit for the input data lines.

Each external device (old version) connects to each of
these 9 lines by means of the "tri-state" gate circuit shown in

30

Figure 6-2A. Figure 6-2D shows the new version line drivers
for the AIN (-)and PERR(-) lines. When the device is enabled
for data status input, the tri-state gates are enabled and the
logic levels for the AIN (-) lines are:

1 =0 volts
0=+5volts

Unless enabled, the external device must maintain these
drivers in the "off" (high impedance) state.

All external devices connect to the AIN (-) lines in parallel
with similar circuits.

Figure 6-2B shows the circuit used for the parity error
return line PERR(-). It is an open collector gate circuit and
the conditions for its output are given in Section 6.2.5.

The +5 volt pullup voltage for the 4.7k pullup resistors
must be that provided by the 5500 on the 1/0 Bus, so that even
if the external device interface is powered independent of the
processor and is turned off, the 1/0 Bus will be operative. In
addition, the tri-state gates used for the AIN (-)lines must be
powered from the 1/0 Bus +5 volt line and must be main­
tained in the disabled (high impedance) state when power is
removed from the external device. (Note the voltage variation
range of the 1/0 Bus +5 volt line in 6.2.3.)

The 4.7k pull up resistor must be present on all AIN (-)lines
even if the device does not logically use the line.

Figure 6-2C shows the (old version) line receiver used in
the 5500 for the nine AIN (-) lines and for the PERR (-) line.
Figure 6-2E shows the line receivers (new version) used in the
5500 for AIN (-) lines and the PERR (-) line.

6.2.3 Power and Ground Lines

The Input/Output System Bus provides ground (common
signal and power) and various supply voltages for operation
of external devices on the 1/0 Bus.

Each external device must connect all 12 power and
ground lines (see Table 6-1) between its "1/0 Bus In" connec­
tor and "1/0 Bus Out" connector in addition to +5V and
ground connections to its own circuitry.

Except as discussed in 6.2.2 above (+5 volts) current must
not be drawn from these voltages by the external device.

The 1/0 Bus +5 volt line may vary in voltage from +4.8 volts
to +6.3 volts. The external device must operate without dam­
age or malfunction over this range.

6 2.4 Device Address

The processor addresses an external device by means of
the EX ADR (-) strobe. The address of the device to be
selected appears on the AOUTO(-) th rough AOUT7(-) lines. As
in all output operations, AOUT8(-) provides odd parity infor­
mation (i.e., the total number of logic 1 'son the AOUTO(-) thru
AOUT8(-) lines is odd).

All AOUT (-) lines are stable from 2.0 microseconds before
the leading (negative) edge of the EX ADA(-) strobe until 2.0
microseconds after the trailing (positive) edge of the strobe.

Logic levels on the nine AOUT(-) lines are as follows:

Logic 1 =0 volts
Logic 0=5 volts

The device whose addr~ss appears on the AOUTO(-)
through AOUT7(-) lines must be edge-triggered to the ad­
dressed state on the leading (negative) edge of the EX ADR(-)
strobe it the 9-bit parity result is correct.

It the parity result is incorrect the device remains or be­
comes unaddressed and indicates an 1/0 Bus parity error by
taking the PERR (-) line to O volts (see 6.2.5), even if the
presented address appears to be its own.

If the presented address is not its own but the parity result
is correct, the device merely remains or becomes unaddres­
sed · it does not take the PERR(-) line to 0 volts.

o'nce addressed, the device stays addressed until another
EX ADR(-) strobe occurs and the AOUT(-) lines indicate an
address other than its own.

The device must recognize output strobes (other than EX
ADR(-)), or place data or status information on the AIN(-) lines
only while addressed (see 6.2.5. and 6.2.6).

The device must be forced to the unaddressed state by
initial application of +5 volt power from the 1/0 Bus and must
also be set to the unaddressed state by initial application of
its own logic supply voltage.

In addition, the device must insure that neither the tri-state
drivers on the AIN(-) lines (see 6.2.6) nor the PERR(-) driver
circuit (see 6.2.5) become erroneously enabled for any period
of time during application or removal of the device logic
supply voltage.

Although all eight AOUTO(-) thru AOUT7(-) lines are used,
only tour of the lines are used to detect the address (This
gives a maximum number of 70 unique addresses). In this
scheme there is always an equal number of logical zeros and
ones. To detectthe address, eitherthe tour ones or tour zeros
would be checked tor proper placement. Shown below is a
typical systems address:

3 1 0 l 3

A7 A6 A5 A4 A3 A2 A1 AO
1 1 0 0 0 0 1 1

The complete (8 bit) octal address here is 0303.

Only a tour input gate is required to detect any of these
addresses. Strapping must be arranged so that each gate
input can connect to one of the AOUT lines.

Typical logic implementation of these functions is illus­
trated in Figure 6-3.

Address strapping will be provided by means of a plug with
selective wiring or mechanical posts to which wires will be
soldered.

6.2.5 Data and Control Output

All data or control information is transferred from the pro­
cessor to external devices using one of the following strobes:

EX DATA(-)
EX STATUS(-)
EX WRITE(-)

EX COM1(-)
EX COM2 (-)
EX COM3(-)
EX COM4(-)

Each of these is a 2.0 microsecond negative pulse to the 0
volt level.

Except tor EX ADR(-), these strobes must not be recog­
nized by the device unless it is addressed.

Logic levels on the AOUTO(-) thru AOUT8(-) lines are as
follows:

1 =0 volts
0=+5 volts

Odd parity is used on the AOUTO(-) thru AOUT8 (-) lines;
i.e., the state of AOUT8(-) is such that the number of logic 1 s
(0 volts) on these 9 lines is odd. .

The processor is capable of two types of output operation:
normal and multiple.

In normal output mode, the nine AOUT(-) lines are stable
from 2.0 microseconds before the leading (negative) edge of
the strobe until 2.0 microseconds following the trailing (posi­
tive) edge of the strobe (see Figure 6-4A).

In multiple output mode, up to 16 (program determined)
consecutive EX WRITE output strobes can be executed using
the timing shown in Figure 6-4B. The AOUT(-) lines are valid
2.0 microseconds before the leading (negative) edge of the
2.0 microsecond strobe as above, but only remain valid until
the trailing (positive) edge. The time from the leading edge of
one strobe to the leading edge of the next is 8.0 mic­
roseconds and new data is presented on the AOUT(-) lines
with each strobe.

Devices required to utilize the multiple output operation
must be able to accept data at the rate of one byte every 8
microseconds.

In either normal or multiple output operations, the device
must edge-load the contents of the AOUT(-) lines on the
leading (negative) edge of the strobe.

If the external device is addressed when a strobe is re­
ceived and the 9-bit parity result is incorrect, the device must
set the PERR(-) line to 0 volts on the leading edge of the
strobe. This requirement pertains to only those strobes used
by the external device. If a strobe is not used at all, the device
may ignore parity tor the strobe. Note that the device must
check parity on all output strobes used even if the data given
with the strobe is not used. This is a validity check upon the
existence of the strobe.

In addition to setting the PERR(-) line to 0 volts when
incorrect parity is detected, the device must ignore the strobe
if it would cause an irreversable action in the device. The
definition of irreversability is device dependent and is made
specific in each device's specification.

Once the PERR(-) line has been set to 0 volts, the device
must maintain this state until another strobe (including EX
ADR(-)), is received with correct parity.

Figure 6-5 shows a typical logic implementation of these
functions.

PERR(-) must be initialized to the "off" state (+5V) upon
initial application of 1/0 Bus +5 volts or the device logic
supply voltage.

31

6.2.6 Status/Data Input

Both data (if applicable) and status are transmitted from
the external device to the processor over the eight AINO(-)
thru AIN7(-) lines. Input line AIN8(-) is the parity bit for the
other AIN(-) lines. The device must generate odd parity if the
PIN or MIN instructions are used; i.e., the number of logic 1s
(0 volts) on these 9 lines must be odd.

The device is in status mode and will place status informa­
tion on the AIN(-) lines immediately after being addressed or
upon receipt of an EX STATUS(-) strobe. The device is placed
in data mode and will place data on the AIN(-) lines im­
mediately upon receipt of an EX DATA(-) strobe. If the device
is in data mode, either an EX ADA(-) or EX STATUS(-) strobe
returns it to status mode.

All data/status mode changes must be activated by the
leading (negative) edge of the associated strobe.

The device must maintain all AIN(-) lines in the "off" (high
impedance) state while it is not addressed and for 1.5 mic­
roseconds (±30%) after becoming addressed. The 1.5 mic­
rosecond delay prevents the tri-state drivers from being ena­
bled before the drivers of another device become disabled.
Note that this delay applies only to enabling the tri-state driv­
ers: all other logic functions on the interface may respond to
becoming addressed on the leading (negative) edge of the
EX ADA(-) strobe.

An output-only device (such as a printer) which does not
transmit data to the processor need not incorporate the two
modes; rather, it may stay in status mode at all times.

See Figure 6-5 for typical logic implementation of these
functions.

The processor is capable of two types of input operations:
normal and multiple.

In normal input mode a negative going 2.0 microsecond
INPUT(-) strobe is generated by the processor to indicate to
the addressed device that the data or status information on
the AIN(-) lines has been taken. The AINO(-) thru AIN8(-) lines
must be valid 3.5 microseconds before the leading edge of
the INPUT(-) strobe. This time is with respect to the INPUT(-)
strobe at the processor 1/0 Bus connector and does not
include cable or device line receiver delay.

The data lines are sampled by the processor on the leading
(negative) edge of the INPUT(-) strobe, so the device may
change the AIN(-) lines immediately after detection of this
edge.

In multiple input mode, up to 16 (program determined)
INPUT(-) strobes may occur at 8.0 microseconds intervals
(8.0 microseconds between leading edges). The device must
present new valid data within 4.5 microseconds after the
leading edge of the INPUT(-) strobe. This time is with respect
to the INPUT(-) strobe at the 1/0 Bus connector and does not
include cable or device line receiver delays.

All devices must be able to present valid status or data
within 4.5 microseconds of the leading edge of any 1/0 Bus
strobe at the connector. This does not mean that new data
must be available within this time but that the device must
either give a status indicating that new data is not ready or,
once having indicated that new data is ready, be able to
produce valid data if a strobe is given which demands that
data. This is the output to input strobe specification.

32

Figure 6-6A shows normal input strobe timing. Figure 6-6 B
shows multiple input strobe timing. Figure 6-6C shows out­
put to input strobe timing.

6.2. 7 System Clock

The system clock signal is a 153.75 KHz square wave pro­
vided by the 5500 as a convenient, accurate time base for use
by external devices. Its accuracy is plus or minus .02 percent.
It is not synchronized in any way to any other signals on the
Bus.

FIG. 6-1A OLD VERSION
AOUT(-) DRIVERS

TRI-STATE

741250R
EQUIVALENT

FIG. 6-1Aa NEW VERSION
AOUT(-) DRIVERS

+12V

FIG 6-1 B STROBE (EXCEPT
INPUT(-)) DRIVERS

2.2K

7407 OR
EQUIVALENT

FIG. 6-1C INPUT(-) STROBE DRIVER

7407

18K

IN

FIG. 6-10 EXTERNAL
DEVICE RECEIVER (AOUT)
(Old Version)

50 PF

+5V

470 ll

-------·OUTPUT

47 n

2N2369A

22K)

+5V

~,.------41• OUT

100!!

+12V +5V

I

100 n

+1 sv
REFERENCE

DIFFERENTIAL
COMPARATOR

33

34

+5V

2.2K

:..---------------------- 153.6KHZ CLOCK

7407

NEW VERSION
USER CLOCK DRIVER

FIGURE 6-1 E (OLD VERSION USE DRIVER FIG. 6-18)

"FLOATING," REFER TO RECEIVERS, PARA 6.2.1

IN4350A

2.4K

I47PF

RECEIVER
REFERENCE
GENERATOR

+12V

2.7V

IN4148

IN4148

+5V

NEW VERSION
AOUT(-) RECEIVER

FIGURE 6-IF

TO MORE
RECEIVERS

REFERENCE VOLTAGE
TO MORE

RECEIVERS

(,)
(J1

STROBES

DATA

..

INPUT

OUTPUT

I
I
I I
I I \ 1 o% ,7f- I
I I I I I
I ~ 160NS I 14 ~ 180NS

I Y.' : 1' l 1.5V I I

1
....__ __ I 11.sv

INPUT

OUTPUT

I. J 170NS ~ ~ 190NS

10%

H150NS

14-- 400NS---tj

NEW VERSION PROPAGATION DELAYS

FIGURE 6-1G

rl 150NS

I
I

J..- 410NS~

(OLD VERSION)
FIG. 6-2A EXTERNAL DEVICE

STATUS/DATA __ D_R_iv_E_R _________ 1/0 BUS

ENABLE TRI-STATE

FIG. 6-28 EXTERNAL DEVICE

PERR(-) DRIVER OPEN COLLECTOR

IN

FIG. 6-2C ST A TUS/DAT A
LINE RECEIVERS
(OLD VERSION)

7403 OR EQUIV

+5V

4 7K *

* 470 ll for PERR (-) LINE

36

+5V

4.7K

18K

50 PF

I

,..._-----OUT

33 (!

+1.8V
REFERENCE

DIFFERENTIAL
COMPARATOR

CONTROL
ENABLE--+ LOGIC

DATA ---+
STATUS--+

+5V

4.7K*

DATA/STATUS
TTL LEVELS

NEW VERSION
AIN(-) DRIVER
FIGURE 6-2D

+5V

47PFI

2.2K

1/0 BUS +5 VOLTS

47 PF

22K

-5V

+2.0V
REFERENCE

4.7K

2N2369A

--

,,, 470!! for PERR(-) receiver

NEW VERSION PROCESSOR
AIN RECEIVER

FIG 6-2E

AIN

37

38

EX ADR STROBE

(FROM LI NE RECEIVER)

__fl_

AO OUT ~~=--~~~~~,..-~~~~~~~A~D~~DRESS • JUMPERS

A1 OUT

A2 OUT

A3 OUT

A4 OUT

AS OUT

A6 OUT

A? OUT

AOUT LINES
FROM LINE
RECEIVER

ABOUT

1/0 BUS +5V

DEVICE +5V

(IF APPLICABLE)

GOOD
ODD PARITY PARITY

CHECKER

POWER ON
RESET

POWER ON
n

RESET

FIGURE 6-3 DEVICE ADDRESS LOGIC

LJ
POWER ON

RESET

0
(\J

0
(\J

I­
=> a..
I­
=>
0
_J
<(

:2:
a:
0 z
<(
~

ch

Cf)

::!.

Cf)

::!.

f- w
:::> CD
()_ 0 -
f- a: I
:::> -
otri

0
_J

<(
>

0
(\J

0
(\J

0
(\J

-

Cf)

::!.

Cf)

::!.

Cf)

::!.

0 Cf)

(\J ::!.

I­
=> a..
I­
=>
0
w
_J
a..
5
:::>
:2:
CD
~

ch

wl
f- w
iI CD
50
+ g:

UJ

0
_J

:;

0
_J

:;

39

-l'>-
0

!!
f:)
c
:zl 8 DATA BITS
rn
qt
en

-en
0-1 v

I "" ,. 2/1

a""' <c ~
MUX

rn~
(x 8)

:zl a en ,. - ... 0 ,. 8 STATUS BITS z --z ,,
EX STATUS c ... (-)STROBE

"" 0
f:) I
n LJ

SELECT

"11 I I y • ., +5 v

0
JJ
~ Ex A~~ n - D s

0
sTATus(+) I ooD PARITY

::Z: STRO~ L /DATA(-) GENERATOR

~ C MODE

CJ)

0
z
JJ I R
m ,,
m
JJ
--i EX DATA
0 (-JSTROBE ,,
G5

~ LJ
Ol

~ ADDRESSED I 1 5
~ (FIG 6-3) T MICROSECOND

DELAY

I T I •
TRI-STATE
ENABLE(+)

AIN 1(-)

A IN 2(-)

AIN3(-)

A IN4(-)

A IN 5(-)

AIN6(-)

A IN 7(-)

TRI-STATE
+vcc

AIN8(-)

1/0 BUS • +5 V

AIN(-)
LINES

35

VALID

FIGURE 6-6B MULTIPLE INPUT STROBE TIMING

µ.s I· 3.5

INPUT(-) STROBE

A IN(-)
LINES

20
µ.s

... ~......_......._..._., ___ v_A_L_ID-----1'-""~-'-''-"--

FIGURE 6-6C MINIMUM OUTPUT
STROBE TO INPUT
STROBE TIMING

µ.S
... , .. 35 ..I .. 20

µ.s µ.s
25

VALID

OUTPUT 1- 2 0 I 2 0 I 2 5 I 3 5 I 2.0 I STROBE(-) ~------µ.~s-~.,.~~-.--µ.~s-_.,.,.~r•4------µ.-s _____ _.,.,.~--------=f~S-----~--~••t--_:_lu~s-~ ...

A OUT(-)
LINES

INPUT(-) STROBE
AT 5500 CONNECTOR

A IN(-)
LINES

VALID

VALID

...I

I

41

Intentionally Blank

APPENDIX A
SYSTEM ROM OPERATING DESCRIPTION

CHAPTER 1. SYSTEM ROM FUNCTIONS

1.1 INTRODUCTION

The Datapoint 5500 ROM occupies the top 4K of physical
memory. (From 0170000 to 0177777). Four major routines are
executed in the ROM with which the user should be familiar.
They are POWERUP, RESTART, DEBUG and MEMORY TEST.

1.2 POWERUP

The first major ROM routine, POWER UP, is executed when
the 5500 is (initially)supplied with power. This routine dis­
ables the one millisecond interrupt, selects ALPHA Mode,
writes zeroes in all of RAM Memory to initialize memory parity
(note that there is no machine state to save), and calls a
subroutine SETUP which does six things:

(1) Loads the Sector Table entries O => 016 (0 => 14
decimal) with values to make a one-for-one trans­
lation from based logical space to physical space
with no protection set. (Note that the 017th entry in
the Sector Table is always set to point to the last 4K
sector of physical memory (0170000 = > 0177777)
with USER and WRITE access disabled.)

(2) Clears the User Mode Flag.

(3) Initializes the Base Register to zero.

(4) Loads a partial character set in the RAM display.

(5) Clears all entries in the Breakpoint Table (which is
also in System RAM).

(6) Initializes the Interrupt Vector Table in System RAM
(to the internal trap messages).

The vectors are loaded as indicated in the following
RAM memory locations:

0167400
0167406
0167414
0167422
0167430
0167436
0167444
0167452
0167460

MEMORY PARITY FAILURE VECTOR.
INPUT PARITY FAILURE VECTOR.
OUTPUT PARITY FAILURE VECTOR.
WRITE PROTECT VIOLATION VECTOR.
ACCESS PROTECT VIOLATION VECTOR.
PRIVELEDGED INSTR VIOLATION VECTOR.
ONE MILLISECOND CLOCK VECTOR.
USER SYSTEM CALL VECTOR.
BREAKPOINT VECTOR.

Note that the MILLISECOND INTERRUPT is disabled dur­
ing the time its System RAM vector is executed. Under the
normal ROM initialization sequence, this vector is pointed

back into the ROM where the MILLISECOND INTERRUPT is
re-enabled prior to RETURN to the delayed process. If a user
program alters the MILLISECOND INTERRUPT Vector, it
must also be responsible for re-enabling interrupts (El).

System RAM is the term used to denote the last 256-byte
page of RAM Memory (From 0167400 to 0167777) which
contains Interrupt Vector Locations in the first 128 bytes and

the Machine State Storage Area and the Diagnostic Scratch
Area in the second 128 bytes.

Interrupts are generated in 5500 firmware through the
"System-Call" mechanism which shifts program execution
into 5500 ROM locations which contain JMP's to Interrupt
Vectors in the System RAM.
to Interrupt Vectors in the System RAM.

The Interrupt Vectors consist of six byte entries to enable
Vector Address Modification through the use of the NOJ
instruction. (See NOJ description in Sec. 5.8.8.)

The POWERUP sequence concludes by loading the RAM
display with an abbreviated ASCII character set (all unloaded
characters are set to triangles) and HALTING to invoke the
bootstrap mechanism.

The POWERUP routine contains an operating feature
which gives the user the capability of exchanging the logical
mapping of the portion of memory which contains the Sys­
tem RAM with the zeroth (bottom) Memory Sector. This fea­
ture could conceivably be of use in the case where the Sys­
tem RAM memory failed and the user wanted to get into
DEBUG to run the memory test (particularly if the memory
failure was intermittent). To do this the KEYBOARD and DIS­
PLAY Keys must BOTH be depressed at the time of POW­
ERUP.
(Hint: Try this if the machine will not enter DEBUG.)

1.3 RESTART

The second major ROM routine, RESTART, is invoked
either by momentarily depressing the RESTART and RUN
Keys or if the machine is halted by other than the STOP Key
and the Auto-Restart switch inside the machine is in the Auto
position.

The Diagnostic routine (DEBUG) will be entered if the DIS­
PLAY Key is depressed during the RESTART operation.

RESTART disables the one millisecond interrupt, puts the
5500 in ALPHA Mode, and checks for diagnostic activation
(DISPLAY Key down). If DEBUG is not selected for execution,
RESTART calls SETUP.

Finally, RESTART waits for a cassette to be in place in the
rear deck of the 5500 after which the tape in the rear deck is
rewound and the first block of data read into RAM memory
starting at location 0. Once the block is loaded, execution is
transferred to location O if the DISPLAY key is not depressed.
If the DISPLAY key is depressed at the conclusion of the
block being read, DEBUG is entered.

43

Intentionally Blank

--- ------------

CHAPTER 2. DEBUG

2.1 INTRODUCTION

The Datapoint 5500 DEBUG is a ROM-resident program
whose immediate accessibility creates a flexible interface
between user and machine. This guide is intended to provide
the 5500 user with that information essential to the use of the
ROM-DEBUG System Test.

2.2 STARTUP PROCEDURE

There are four methods of entry to DEBUG:

(1) Forcing entry through manual intervention.

(2) Entry through a BREAKPOINT set by DEBUG.

(3) Entry through a BREAKPOINT imbedded in the
user program.

(4) Entry as the consequence of a RETURN from a
DEBUG Call Command.

TO FORCE ENTRY INTO DEBUG:

DEPRESS IN SEQUENCE: DISPLAY, RUN, RESTART;
keeping each key depressed until all three are down.

Then release RUN or RESTART.

This will bring up the DEBUG display and commands may
be entered.

2.3 SAVING THE MACHINE STATE

When DEBUG is entered through console intervention,
most of the user's program state is undisturbed. What is not
saved is the state of the interrupt enable flip-flop (interrupts
are disabled), the state of the base register or sector table
(these two are not changed upon entry to DEBUG), the state
of ALPHNBETA Mode flip-flop (all registers are saved), the
state of the 1/0 system (what device is addressed and the state
of its status/data selection flip-flop), and the bottom two
Stack locations.

What is saved are the ALPHA/BETA Mode registers and
condition code flip-flops, the P-counter (PC) and 14 Stack
entries.

Note that there exist default values upon exit from DEBUG
for:

(1) ALPHA/BETA Mode flip-flop.

(2) Currently addressed device and its Status/Data
Mode flip-flop.

These can be changed using DEBUG commands ('A', 'G',
and 'R').

2.4 DISPLAY FORMAT

The 5500 DEBUG display consists of 4 lines and occupies
the bottom-right corner of the screen.

BBBBBB
NNN

MMMMMM
nnnnnnn·"

MEMORY ADDRESS
ASCII, 8 BIT OCTAL C[CURADR]
LSB, MSB ADDRESS FORMED AT CURADR.
COMMAND INTERPRETER

The first line shows the current memory (Based) six­
teen bit address, referred to as CURADR below.

The second line contains both an ASCII (One character
shown as *) and an 8-bit octal (Three characters shown as
NNN) representation of the contents of the current physical
address byte.

The third line contains an octal representation of the
16-bit value whose LSB is at CURADR and whose MSB is at
CURADR+1. (This is the address format used by JMP, CALL,
and DA mnemonics).

THE COMMAND INTERPRETER

The bottom line of the display is used to edit and input
commands to DEBUG. The blinking cursor signifies that the
Command Interpreter is awaiting user input.

Data is entered serially into the input display buffer. The
cursor is displaced to the right successively as this occurs.
The BACKSPACE Key erases the character most recently
entered, shifting the entry cursor to the left one space. The
CANCEL Kev deletes the entire entry.

All commands are single characters. Commands which
accept input arguments are preceded by the argument which
is entered in octal. Not all commands require an input argu­
ment. The last character input to the interpreter must be a
legal command. Illegal input is ignored, evoking a BEEP from
the 5500. Commands are executed upon their entry into the
interpreter (no ENTER Key is required and the command
ch.aracter is not displayed), with the current contents of the
entry line being cleared. Upon command completion the
cursor reappears, awaiting further input.

2.5 COMMAND SYNTAX

This explanation of the command syntax uses the follow­
ing notation:

nnn Indicates an optional sequence of octal
digits not to exceed the number of n's
given.

(nnn) nnn If input argument contains more than
eight bits of significance, special results
will occur. In general what will happen is

45

that two bytes of memory will be affected
by the command, either a register pair or
a memory address in LSB, MSB format.

nnnnnn 16-bit argument. No digits usually
causes special action.

12345 There exists a set of special commands
whose accidental execution is inhibited
by the requirement that they contain this
unique argument.

2.6 INPUT COMMAND LIST

46

nnnA Address the given or current (if nnn not
given) 1/0 device. The current 1/0 device
is the last one selected by this command.
No check is made on address format.
STATUS is displayed as C[CURADR].
Note that the current device is readdres­
sed and put into the mode last accessed
(Data mode if 'F' or 'G' have been exe­
cuted subsequent to last 'A' command)
prior to resuming execution through
CALL, EXECUTE, JUMP or USER RE­
TURN Commands.

nnnnnnB Store a BREAKPOINT instruction at the
given or current address. Upon BP
execution the state of the machine is
saved, the memory location at which the
BP was set is restored to its original
value and the corresponding BP table
entry is cleared.

The following notes reference the use of
the 'B' command.

Overlay BREAKPOINT will not loop. That
is: It is not possible to successfully set a
BREAKPOINT in the same memory loca­
tion in order to iterate the execution of a
program loop. To iterate BREAKPOINT
through a looping sequence requires
'double BREAKPOINTING'.

Ten BREAKPOINTS can be active at any
one time. Note that BP's DISABLE inter­
rupts and leave them disabled prior to
resuming execution through CALL,
EXECUTE, JUMP or USER RETURN
commands. This is done to enable test­
ing of foreground routines with DEBUG.
(If it becomes necessary to use DEBUG
with interrupts enabled, the user can en­
able interrupts on return with the "i"
command.) Note that it is impossible for
the machine to determine its current re­
gister (ALPH/BETA) mode. Therefore the
'R' command mode flip-flop is set to
ALPHA when a BP is encountered. If the
user wishes to test code written in BETA

Mode it is necessary that he manually
put the 5500 in BETA Mode (with the 'R'
command) prior to resumption of execu­
tion through CALL, EXECUTE, JUMP or
USER RETURN commands. Similarly,
the USER may have to address the
proper 1/0 device (with A) and perhaps
put it into DATA Mode (with G) before
continuing execution from a BREAK­
POINT. Note that DEBUG will not set a
BREAKPOINT over another BREAK­
POINT.

nnnnnnC Call the given or current address. The
Machine State is restored before execu­
tion control is passed to the Subroutine.
A RETURN from the Called Subroutine
causes re-entry into DEBUG and hence,
for the Machine State to again be saved.

nnnnnnD Decrement the current address value by
one or value (nnnnnn).

E Continue execution from a forced or
BREAKPOINT entry into DEBUG.
Machine State is restored prior to re­
sumption of execution. The interrupts
are left disabled. The register mode is set
to the last R value (initialized to ALPHA
Mode upon BP or forced entry), the base
register and sector table are not
changed, and the 1/0 device is addressed
and optionally set to DATA Mode.

nnnF Fetch next data byte from current or
given 1/0 device. The F Command will
automatically put device in DATA Mode
and the device will subsequently be put
in DATA mode when the E command is
given.

nnnG Go to DATA mode in the current or given
1/0 device when the E command is given.

Increment the current address value by
one.

nnnnnnJ Jump to the given or current address.
Machine State is restored prior to re­
sumption of execution.

12345K Set ASCII keyin mode. Will allow ASCII
data to be entered into CURADR in auto­
i ncrement mode (i.e. will update
CURADR). BACKSPACE moves
CURADR back and displays its contents.
DELete moves CURADR forward and
displays its contents. CANCEL causes a
return to normal mode.

L Link to the address pointed to by the
Current Address. CURADR is replaced
by line 3 (the 16-bit LSB, MSB address

formed at CURADR, CURADR+1). The
remaining display parameters are upda­
ted appropriately. Note that initial dis­
play state upon entry into DEBUG can be
regenerated by performing the 'S' com­
mand, followed immediately by the 'L'
command.

(nnn) nnnM Modify the contents of the current ad­
dress location. If the value of the Input
Argument exceeds eight significant bits,
two memory locations will be modified,
treating the input argument as an ad­
dress in LSB, MSB Format for JMP and
DA. (A CLICK is sounded to notify the
operator if an MSB is stored).

N '' NOT USED *

nnnnnnP Load the Base Register with the 8-bit
value = (nnnnnn - 0100000)

123450 Load the Sector Table. CURADR =>Ta­
ble whose first byte equals the number of
entries to be loaded. The following bytes
contain arguments to be loaded into the
Sector Table.

R Switch ALPHA/BETA Mode register dis­
play. The ASCII character displayed after
command execution tells the current
display mode: A=ALPHA, B=BETA.

nnS Display the specified Stack item (up to
015 Octal). Note: RESTART pushed P
onto the top of the ST ACK.

12345T Start memory test. Displays Memory
Size and Pass Counter in right-bottom
corner of screen. Maintains running dis­
play of test failures.

nnnnnnU User mode execute. Command sets
USER mode and then executes E Com­
mand. (Interrupts disabled)

nnnV EX COM4 The 1/0 device must be add-
ressed with A command.

nnnW EX WRITE STATUS is displayed.
nnnX EX COM1 after the command is

issued.
nnnY EX COM2 'nnn' is the current

output byte.
nnnZ EX COM3 The previous nnn value is

used if none is given.

SHIFTED COMMAND CHARACTERS

nnn x
(nnn) nnn a

nnn b
(nnn) nnn c

nnn d
(nnn)nnn e

nnn h
(nnn) nnn I

nnn f

nnn y
nnn z

Display 'X' register or modify to (nnn)
'A' modify register pair if input
'B' argument exceeds eight bits
'C'
'D' the LSB register specifies the
'E' pair (i.e. L for H & L)
'H'
'L'

Displays or modifies the condition flag
byte.
Flag bits: 7=>C; 6=>S; 1 = > - Z & - S; 0
= >- Z & - P.
The bit pattern which displays the condi­
tion flags will replicate the previous state
when added to itself.

EX DATA with (nnn) on output Bus.
EX STATUS, with (nnn) on output Bus.

nnnnnnENTER Set Current Address to nnnnnn. Com­
mand has no effect unless it is preceded
by an Input Argument.

CANCEL Cancel entry line.

BACKSPACE Backspace on entry line.

(nnn) nnn. Modify the contents and then increment
the current address. If Input Argument
has more than eight significant bits, two
memory locations are modified, treating
the argument as an address in LSB, MSB
Format. (a CLICK is sounded).

(nnn) nnn A Modify the contents and then increment
the current address. If Input Argument is
null, the last non-null value given is used.
If 'last value' exceeded eight bits of sig­
nificance, two memory locations will be
modified. (a CLICK is sounded).

Clear all active (DEBUG set) break­
points, restoring values.

47

5500 ROM DEBUG COMMAND SUMMARY

nnn A
nnn nnn B

nnn nnn C
D

E

nnn F

nnn G

nnn nnn J
12345 K

L

(nnn) nnn M

N
(nnn) nnn P

12345 Q
R

nn S
12345 T

nnn nnn U

nnn V

Address the (n) or current 1/0 device.
Set a breakpoint to the (n) or current

address.
Call the (n) or current address.

Decrement the current address by
1.

Continue execution or replace top stack
location with (n) and continue execu­
tion.

Fetch next data byte from (n) or current
device.

Go to DATA mode in (n) or current de­
vice on "E', 'U' or 'i' command.

Increment the current address by
1.

Jump to the given (n) or current address.
Set ASCII keyin mode.
Link to address pointed to by current

address.
Modify the contents of the current ad-

dress.
NOT USED''

Load Base register with (nnnnnn -
0100000)>8
Load the sector table.
Switch ALPHA/BETA mode and display.
Display the (Nth) Stack location item.
Start the 5500 memory test.
Continue execution as in 'E' command
but in USER mode. (Interrupts disabled)
EX COM4 Device must be

addressed for 1/0
commands.

nn W EX WRITE Status is displayed after
command issue.

nnn X EX COM1
nnn Y EX COM2
nnn l EX COM3

'nnn' is the output byte.

SHIFTED COMMAND CHARACTERS

48

nnn x
(nnn) nnn a

nnn b
(nnn) nnn c

nnn d
(nnn) nnn e

nnn h
(nnn) nnn I

nnn f

nnnnnn ENT
CAN

BKSP
(nnn) nnn.

nnn (nnn)/\

Display X register or modify to (nnn)
A modify register pair if
B argument exceeds eight bits.
c
D The LSB register specifies
E the pair. (i.e. L for H&L)
H
L

Displays or updates the condition flags.
Set current address to 'nnnnnn'.
Cancel entry line.
Backspace one on entry line.
Modify and increment.
Modify and increment using the last

non-null value.

I
-·

