
1500 DISK
OPERATING SYSTEM

DOS.H

User's Guide

Version 2 (Upgraded to 2.5.1)

May, 1980

Document No. 50308

DATAPOINT
COPYRIGHT© 1980 BY DATAPOINT CORPORATION. PRINTED IN U.S.A

NOTICE

1500 DISK OPERATING SYSTEM
DOS.H

User's Guide

Version 2 (Upgraded to 2.5.1)

May, 1980

Document No. 50308

Datapoint strongly recommends that its customers use Datapoint

Customer supplies. These disks, diskettes, cassettes, ribbons

and other products are certified by Datapoint to meet all Datapoint

Hardware specifications for consistent optimum performance.

PREFACE

The purpose of this User's Guide is to provide the user of

the Datapoint 1500 DOS that information required to generate a

system, make effective use of the available commands, and to make

user-written programs compatible with the DOS.

The Datapoint 1500 processor has a different architecture

from previous Datapoint processors (1100, 2200, 5500, etc). DOS.H

is designed to minimize these differences from the user's point of

view while providing capabilities consistent with the features of

the new processor. Wherever possible, DOS.H commands are

identical to corresponding commands in other Datapoint

"Dot-series" operating systems (DOS.A, DOS.B, etc.).

The 9320 disk system referred to in this User's Guide is

Datapoint's cartridge disk system with a Four-Port Communications

Adapter. Not all cartridge disk systems include the

Communications Adapter, and those where it is not included are

designated as 9310 cartridge disk systems. All references herein

to the 9320 disk are valid for the 9310 disk as well.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Planning for DOS.H
1.2 Performance of DOS.H
1.3 Functional Differences Between Versions of DOS.H

1.3.1 Compatibility of Utility Programs
1.4 Hardware Support Required

2. FUNDAMENTALS OF DOS.H
2.1 Diskette Systems

2.1.1 Diskette Media
2.1.2 Loading and Unloading Diskettes
2.1.3 Drive Numbering and Switches
2.1.4 Care and Handling of Diskettes
2.1.5 Preparing Diskettes for Use
2.1.6 Suggested Diskette Organization Techniques

2.2 Cartridge Disk Systems
2.2.1 Cartridge Disk Media
2.2.2 Drive Numbering with 9320 Cartridge Disks
2.2.3 Care and Handling of Cartridge Disks
2.2.4 Preparing Cartridge Disks for Use

3. EQUIPMENT CARE
3.1 Environment
3.2 Processor
3.3 Disks and Disk Drives
3.4 System Printer

4. SYSTEM GENERATION
4.1 Initial Generation

4.1.1 Initial Loading
4.2 UPGRADE/H
4.3 Scratch Disk Generation

5. DISK FILES
5.1 File Names
5.2 File Creation
5.3 File Deletion
5.4 File Protection

6. OPERATOR COMMANDS
6.1 Command Line

6.1.1 Order-Dependency in the Command Line
6.2 General Command Characteristics

ii

page

1-1
1-1
1-2
1-3
1-3
1-3

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-5
2-7
2-7
2-8
2-9
2-9

3-1
3-1
3-1
3-2
3-2

4-1
4-1
4-1
4-2
4-3

5-1
5-1
5-2
5-3
5-3

6-1
6-1
6-2
6-3

{

6.2.1 General Command Format
6.3 Signon Messages
6.4 Common Error Messages

7. ABTONOFF COMMAND
7.1 Purpose

8. APP COMMAND
8.1 Purpose
8.2 Use

9. AUTO COMMAND

10. AUTOKEY COMMAND
10.1 Introduction to AUTOKEY
10.2 The Auto-Restart Facility
10.3 Automatic Program Execution Using AUTO
10.4 Auto-Restart Facilities Using AUTOKEY
10.5 A Simple Example
10.6 Special Considerations
10.7 AUTOKEY and DATABUS

11. BACKUP COMMAND
11.1 Purpose
11.2 Use
11.3 Exact Image Copy
11.4 Reorganizing Files

11.4.1 Copying DOS to Output Disk
11.4.2 Deleting Named Files
11.4.3 Copying Named Files

11.5 Use of KEYBOARD and DISPLAY Keys
11.6 Error Messages
11.7 Reorganizing Files for Faster Processing
11.8 BACKUP with CHAIN
11.9 Clicks during Copying

12. BLOKEDIT COMMAND
12.1 Purpose
12.2 File Descriptions

12.2.1 Command Statement Lines
12.2.2 Source File
12.2.3 New File

12.3 Using BLOKEDIT
12.4 Messages

12.4.1 Informative Messages
12.4.2 Fatal Errors
12.4.3 Selective Fatal Errors

iii

6-3
6-3
6-4

7-1
7-1

8-1
8-1
8-1

9-1

10-1
10-1
10-1
10-1
10-2
10-2
10-3
10-4

11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-4
11-4
11-4
11-6
11-7
11-7

12-1
12-1
12-1
12-2
12-3
12-3
12-4
12-4
12-6
12-6
12-8

13. BOOT COMMAND

14. BUILD COMMAND
14.1 Purpose
14.2 Use
14.3 A Simple Example
14.4 Error Messages

15. CAT COMMAND
15.1 Purpose
15.2 Use

16. CHAIN COMMAND
16.1 Introduction
16.2 Tag (Parameter) Definition
16.3 Tag Substitution
16.4 Compilation Phase Directives

16.4.1 IF Directive
16.4.2 ELSE/XIF Directives
16.4.3 BEGIN/END Directives
16.4.4 ABORT Directives

16.5 Comments
16.6 Resuming An Aborted CHAIN
16.7 Notes On Usage of CHAIN
16.8 Error Messages

17. CHANGE COMMAND

18. CLOCK COMMAND

19. COPY COMMAND
19.1 Purpose
19.2 Use
19.3 Error Messages

20. DOSGEN COMMAND
20.1 Purpose
20.2 Use of DOSGEN
20.3 Special Considerations
20.4 Error Messages

21. DSKCHK15 COMMAND
21.1 Purpose
21.2 Use
21.3 Options

21.3.1 "L" Option
21.3.2 "F" Option

21.4 Program Operation

iv

13-1

14-1
14-1
14-1
14-2
14-3

15-1
15-1
15-1

16-1
16-1
16-2
16-3
16-4
16-4
16-5
16-6
16-7
16-8
16-9

16-10
16-11

17-1

18-1

19-1
19-1
19-1
19-3

20-1
20-1
20-1
20-2
20-2

21-1
21-1
21-1
21-1
21-1
21-2
21-2

21.4.1 System Tables and Data
21.5 Execution Phases

21.5.1 Initialization
21.5.2 HDI Checking
21.5.3 CAT Che~king
21.5.4 Directory Checking
21.5.5 RIB Checking
21.5.6 Cluster Allocation Phase 1
21.5.7 Cluster Allocation Phase 2
21.5.8 Lock-out CAT Checking

21.6 Examples of Command Lines
21.7 Operational Messages
21.8 Error Messages

21.8.1 Initialization Error Messages
21.8.2 C.A.T. Errors
21.8.3 HDI Errors
21.8.4 Directory Errors
21.8.5 R.I.B. Errors
21.8.6 Lockout CAT Errors

22. DUMP COMMAND
22.1 Purpose
22.2 Use
22.3 Informational Messages Provided
22.4 Level One Commands To DUMP
22.5 Level Two Commands To DUMP
22.6 Level Three Commands To DUMP
22.7 Level Four Commands To DUMP
22.8 Level Five Commands to DUMP
22.9 Error Messages

23. EDIT COMMAND
23.1 Introduction
23.2 General Description of The 1500 Editor
23.3 Special Features of the 1500 Editor
23.4 Software Required
23.5 Operation

23.5.1 Invoking the 1500 Editor
23.5.2 Files

23.6 Parameter List
23.6.1 Margin Bell
23.6.2 Tab Key Character
23.6.3 Mode
23.6.4 Update
23.6.5 Key-click
23.6.6 Space Compression
23.6.7 Non-verification.

23.7 Examples

v

21-2
21-2
21-2
21-3
21-3
21-3
21-4
21-5
21-5
21-5
21-5
21-6
21-8
21-8

21-10
21-12
21-13
21-15
21-18

22-1
22-1
22-1
22-2
22-4
22-4
22-5
22-6
22-6
22-7

23-1
23-1
23-1
23-2
23-3
23-3
23-3
23-4
23-4
23-5
23-5
23-5
23-6
23-6
23-6
23-6
23 7

23.8 Data Entry and Retrieval
23.8.1 Data Entry
23.8.2 Multi-line Record Entry

23.9 Data Retrieval
23.10 EDITOR Command Format
23.11 Basic EDITOR Commands
23.12 Setting Tabs
23.13 Setting TEXT Mode
23.14 INSERTing a Line
23.15 DELETEing a Line
23.16 COPYing a Line
23.17 MODIFYing a Line
23.18 LOCATEing a Line
23.19 ENDing the EDIT
23.20 Intermediate Commands
23.21 Changing Special Characters
23.22 Changing Tabs
23.23 Changing Modes and Options
23.24 Deleting Lines
23.25 MODIFY Command

23.25.1 Line Modification
23.25.2 Field Modification

23.26 Line Splitting
23.27 Line Concatenation
23.28 File Search Commands
23.29 BYPASS End of File
23.30 Terminating the EDIT
23.31 Advanced Commands
23.32 Recovery Procedures
23.33 Glossary of EDIT Terms
23.34 Command List
23.35 EDIT ERROR MESSAGES
23.36 Configuration Sector
23.37 Example of a Definition File

24. ENCODE/DECOD~ COMMANDS
24.1 Purpose
24.2 Use
24.3 Error Messages

25. FILES COMMAND
25.1 Command Description
25.2 Default Messag~s
25.3 File Descriptions
25.4 Error Messages

26. FIX COMMAND
26.1 Purpose

vi

23-8
23-8
23-9
23-9

23-10
23-11
23-11
23-11
23-12
23-12
23-13
23-14
23-15
23-15
23-16
23-16
23-17
23-18
23-18
23-19
23-20
23-21
23-22
23-22
23-22
23-24
23-25
23-26
23-30
23-31
23-35
23-41
23-42
23-44

24-1
24-1
24-1
24-2

25-1
25-1
25-2
25-3
25-4

26-1
26-1

26.2 Operation
26.3 Commands
26.4 Error Messages

27. FREE COMMAND
27.1 Purpose
27.2 Use
27.3 Error Messages

28. INDEX COMMAND
28.1 Introduction
28.2 System Requirements
28.3 Operation

28.3.1 Parameters
28.4 Choosing A Record Key
28.5 Preprocessing the File

28.5.1 Invoking Reformat
28.5.2 Considerations for Unattended Indexing

28.6 INDEX Messages
28.7 lSI File Structures
28.8 Examples of the Use of INDEX

29. KILL COMMAND
29.1 Description
29.2 Error Messages

30. LIST COMMAND
30.1 Purpose
30.2 Parameters
30.3 INPUT File Specification
30.4 Starting Point
30.5 OUTPUT File Specification
30.6 output Device
30.7 Output Format
30.8 Format Control
30.9 Operator Controls
30.10 Error Conditions

31. MANUAL COMMAND

32. NAME COMMAND

33. PUTIPL COMMAND

34. PUTVOLID COMMAND

35. REFORMAT COMMAND
35.1 Introduction

vii

26-1
26-1
26·-3

27-1
27-1
27-1
27-2

28-1
28-1
28-1
28-1
28-2
28-3
28-3
28-4
28-4
28-5
28-7
28-7

29-1
29-1
29-2

30-1
30-1
30-1
30-2
30-2
30-3
30-3
30-4
30-4
30-5
30-5

31-1

32-1

33-1

34-1

35-1
35-1

35.2 Operation
35.3 Output File Formats
35.4 Reasons for Reformatting
35.5 Reformat Messages
35.6 Text File Formats

36. REMAP COMMAND
36.1 Purpose
36.2 Logical Drive Mapping Table Display
36.3 Use

36.3.1 Specific Remapping
36.3.2 General Remapping

36.4 Messages
36.5 Error Messages

37. SAPP COMMAND

38. SORT COMMAND
38.1 Introduction
38.2 General information
38.3 Fundamental SORT Concepts

38.3.1 File Formats
38.3.2 The Key Options
38.3.3 How to Sort a File

38.4 The Other Options
38.4.1 Generalized Command Statement Format
38.4.2 Keys-overlapping and in Backwards Order
38.4.3 Collating Sequence File
38.4.4 Ascending and Descending Sequences
38.4.5 Input/output File Format Options
38.4.6 Limited output format option
38.4.7 TAG file output format option
38.4.8 KEYTAG File Output Format Option
38.4.9 Hardcopy output option
38.4.10 Primary/Secondary sorting considerations
38.4.11 Key file Drive Number
38.4.12 Disk space requirements

38.5 The use of CHAIN with SORT
38.5.1 How to Set up a chain file for SORT
38.5.2 Naming a repetitive SORT procedure
38.5.3 Using CHAIN to cause a merge

38.6 SORT Execution-Time Messages

39. SUR COMMAND
39.1 Purpose
39.2 About Subdirectories

39.2.1 Creation of Subdirectories
39.2.2 Deletion of Subdirectories

viii

35-1
35-3
35-3
35-4
35-7

36-1
36-1
36-1
36-2
36-2
36-2
36-3
36-5

37-1

38-1
38-1
38-1
38-2
38-2
38-3
38-4
38-4
38-4

38-10
38-10
38-10
38-11
38-11
38-15
38-16
38-17
38-17
38-18
38-19
38-19
38-20
38-20
38-21
38-21

39-1
39-1
39-1
39-2
39-2

39.2.3 Being "in a Subdirectory" 39-2
39.2.4 Scope of a File Name 39-3
39.2.5 About Subdirectory SYSTEM 39-3
39.2.6 Files vs. the User Being "in a Subdirectory" 39-4
39.2.7 Getting a File into a Subdirectory 39-4

39.3 Usage 39-5
39.3.1 Establishing a "Current Subdirectory" 39-5
39.3.2 Creating a Subdirectory 39-5
39.3.3 Deleting a Subdirectory 39-5
39.3.4 Renaming a Subdirectory 39-6
39.3.5 Displaying Subdireotories 39-6
39.3.6 Error Messages 39-6

40. UTILITY/SYS

41. SYSTEM DESCRIPTION
41.1 System Philosophy
41.2 System Features

42. SYSTEM STRUCTURE
42.1 Disk Structure

42.1.1 Introduction
42.1.2 Disk Space Management: CAT and Lockout CAT
42.1.3 Files: HDI, Directory, Mapping Bytes, RIB
42.1.4 Sector Identification
42.1.5 Addressing Byte Structures

42.1.5.1 PDA - Physical Disk Address
42.1.5.2 RIB Address/Protection
42~1.5.3 Segment Descriptor - used in RIB to define a

segment.
42.1.5.4 Physical File Number

42.2 Disk Data Formats
42.3 Memory Mapping

42.3.1 32K System
42.3.2 64K System

42.4 Disk Overlays
42.5 The Command Interpreter

43. DOS ERROR MESSAGES

44. 1500 ROMGUIDE
44.1 System ROM Functions

44.1.1 Startup Procedure
44.1.2 Display Format

44.2 The Command Interpreter
44.2.1 Command Syntax
44.2.2 Input Command List

44.3 Hardware Error Messages

ix

40-1

41-1
41-1
41-1

42-1
42-1
42-1
42-2
42-3
42-4
42-5
42-5
42-5

42-6
42-6
42-7
42-8
42-8
42-9

42-10
42-10

43-1

44-1
44-1
44-1
44-1
44-2
44-2
44-3
44-5

Appendix A. DISK COMPARISON CHARTS A-1

x

CHAPTER 1. INTRODUCTION

Datapoint Corporation~s disk operating systems (DOS) are
comprehensive systems of facilities for sophisticated data management.

DOS provides the operator with a powerful set of system commands by
which the operator can control data movement and data processing from
the system console. These commands allow the system operator to
accomplish tasks that often are substantially more difficult on other
computing systems. Sorting a large file, for instance, can be
accomplished in one single command line. In spite of the simplicity of
operation, a wide range of features is provided in the DOS facilities
package.

To the user, DOS offers a set of facilities to simplify and
generalize his task and file management. Concepts like dynamic disk
space allocation allow programs to operate efficiently without regard to
the amount of space required for the data files being used. In
addition, the disk file structure used by DOS allows for direct random
access. DOS also makes use of fully space-compressed text files.

These features, combined with the ability to support up to one
million bytes of diskette storage and up to 40 million bytes of
cartridge disk storage, provide a wide range of data processing and
intelligent data entry capabilities.

1.1 Planning for DOS.H

There are three basic configurations for the DOS.H 1500 Disk
Operating System:

--32K with two or four diskette drives
--64K with two or four diskette drives
--64K with two or four diskette drives and one to four 9320

cartridge disk drives.

A serial printer may be connected to any of these system configurations,
and is of great value in a business data processing system that requires
hardcopy reporting. The four-diskette-drive system is a must if larger
file storage and greater disk 1/0 is desired, and the 9320 cartridge
disks, with their larger storage capacity and greater speed will greatly
enhance system performance.

CHAPTER 1. INTRODUCTION 1-1

Greater memory is a consideration when running SORT and other
programs concurrently, editing large files, and for overall system
efficiency. Note that 9320 disks are supported only on 64K processors.

If the system is configured with only diskettes, then the number of
drives needed should be considered. Use of a single diskette drive is
possible, but the user should at least have access to a qouble-drive
system for backup purposes. Some consideration must be given to the
question of copying files from one diskette to another. Since DOS.H
software is distributed on diskettes from Datapoint Corporation, the
user will need to have at least one two-drive system to copy the
software from the diskette received from Datapoint to his working
diskette(s). Single-drive systems should be considered only by those
intending to use them as satellite systems--that is, as data-entry
stations only--and, in this case, there should be at least one other
system with two or more drives on which to ~evelop programs, create
diskette backup, and perform file processing.

1.2 Performance of DOS.H

Users who are currently using Datapoint computers in cassette
based systems will find sUbstantial improvements in performance when
they upgrade to DOS.H. The diskette drives are several times faster
than the cassettes for ordinary sequential data transfers; random-access
type operations (such as sorting and indexed sequential access
method--ISAM-- file access) can easily be two orders of magnitude faster
than is attained using tape cassettes.

Even further upgrade is obtained by adding the 9320 cartridge disk
system. The ten-megabyte capacity of this disk offers a capability
approaching that of the large capacity, high performance, disk operating
systems while still being contained in a small-system package.

Users who are currently working with competitive disk-based
equipment will generally find that total system performance of Datapoint
systems will exceed that to which they are accustomed. This improvement
is due to the generally superior data handling techniques and file
structuring that are incorporated in Datapoint's DOS.H. These
characteristics stern from the fact that instead of employing a lower
performance cassette-style file structure as a base for the operating
system, Datapoint chose instead to adapt the same advanced and dynamic
disk file access techniques that are used in its other disk operating
systems to the new small-disk media. The result is a degree of software
sophistication previously unavailable in business-oriented systems of
this size.

1-2 1500 DISK OPERATING SYSTEM

/

\.. ...

1.3 Functional Differences Between Versions of DOS.H

The following is a list of the functional differences between DOS.H
2.4.2 and DOS.H 2.5.1.

1. Support for up to four 9320 disk controllers with four logical
drives on each controller has been added to the 64K system. This
system will support 16 logical drives (numbered 0-15), of which up
to four may be diskettes.

2. Support for the 9320 disks has been added to the standard DOS
utilities.

3. A new utility has been added to support the 9320 cartridge disks.
REMAP will allow the logical remapping of drives under a 64K system
with 9320 disks on-line. This permits the user to have any mix of
9320 disks and diskettes that is desired, (up to four diskettes),
and to change this mix at any time.

4. The concurrent region in the 64K system has been decreased by 2K,
to 10K, to allow for the 9320 disk handlers. On a 64K system with
no 9320 disks spinning, the disk handlers are not present, so the
concurrent region is a full 12K.

1.3.1 Compatibility of Utility Programs

The set of facilities described in this manual come as a
complete package and are compatible within the 1500 DOS.H system.
Additionally, programs written in DATABUS will generally run unmodified
on_DOS.H~.

1.4 Hardware Support Required

The standard configuration required for DOS.H is a Datapoint
1500 with 36K of memory (32K of RAM, and 4K of ROM), and two or four
diskette drives. The 1500 is also available with 64K of memory (60K
RAM, 4K ROM). This system supports both diskettes and the 9320
cartridge disks.

CHAPTER 1. INTRODUCTION 1-3

CHAPTER 2. FUNDAMENTALS OF DOS.H

Basic information on the hardware, the disks themselves, and
the organization of data on the disk files is requisite to setting up
the user~s system. A general overview of physical elements and disk
organization is presented here.

A 1500 DOS.H system may be configured with diskettes only, or with
a 64K processor, diskettes, and 9320 disks. The appearance of the
system to the user is different between these two configurations. If
9320 disks are being used, reference to this chapter, the chapter on
System Generation, and the appendix on Disk Comparison should be made to
understand these differences. Especially important is an understanding
of logical drive and controller numbering with 9320 disks.

2.1 Diskette Systems

A diskette system supports up to four diskette drives through
two integral controllers units. Each diskette controller contains 256
bytes of high speed, random access memory which buffers one sector
between the diskette drives and Datapoint computer.

2.1.1 Diskette Media

The diskette drives use a flexible disk for data storage.
Thi~ diske.tte is media- and format~.com.p,a.tJ.R.J.g VIi tQ. :the,,,IBM",3Z40,...s.t..¥-~
flex i-bie dis kett-e:.:-· ..

.. _~ ,., "', '" .. oJ-'~·· .' "",.~,","",-,.::"",",,~~ .,,-

Data is recorded in 77 concentric circles on only one side of the
diskette (according to the IBM standards for diskette data interchange).
Each such circle is referred to as a track. Although each such track on
the diskette actually contains 26 physical records of 128 bytes each,
these are paired by the controller so that to the Datapoint computer,
each track appears instead to consist of 13 records, called sectors, of
256 bytes each. In Datapoint documentation, the term sector always
refers to a 256-byte logical sector unless stated otherwise.

The diskette is permanently enclosed within a durable, opaque
plastic cover. This cover aids insertion of the diskette into the
drives and provides structural rigidity when the diskette is not in use.
The cover also furnishes a degree of environmental protection, guarding

CHAPTER 2. FUNDAMENTALS OF DOS.H 2-1

the oxide surface from accidents caused by careless handling.

2.1.2 Loading and Unloading Diskettes

The diskette loading slot is protected by a cover/handle that
slides up and down to open and to secure the loading aperture. Pushing
on the rectangular pushbutton below the cover disengages the latch and
permits insertion and removal of the diskette.

The opaque plastic cover on the diskette has three holes on each
side through which the oxide-coated surface can be seen. Only the holes
on the labelled side are relevant to this discussion.

The large, round hole in the center permits installation on the
drive. A hub on the drive clamps to the diskette, causing it to spin
within its plastic cover.

The longer, narrower radial slot near the edge of the plastic cover
permits the read/write head in the drive to contact the diskette's oxide
coating for data transfer operations.

The small, round hole near the center permits exposure of the
disk~s index hole. This is a small opening on the recording surface
which is sensed by the controller for purposes of timing and control.

These holes are described in detail in order to provide reference
for inserting the diskette into the drive, as follows:

1. First, hold the diskette with the label side facing up.

2. Next, insert the edge of the diskette with the long slot
into the drive.

3. When the long slot is inserted first, the small hole near
the center is then the last of the three holes to enter
the drive.

Always ensure that the labelled surface of the diskette is facing
upwards.

,
On insertion, a spring resistance is felt when the diskette is

about three-quarters of the way into the drive. Press the diskette
gently into place until the spring catches with a faint click. The
diskette will then stay in place of its own accord. When the diskette
is in place, pull the door/cover down until it latches closed. The

2-2 1500 DISK OPERATING SYSTEM

drive's hub engages as soon as the door is latched, bringing the
diskette online almost immediately. Diskette input/output activity is
indicated by the LED below the diskette door on the front of the
diskette unit.

To remove a diskette, first ensure that all input/output activity
has stopped; if the door/cover is opened in the middle of a write
operation, improper data deposition will result. When I/O activity is
complete, press the pushbutton beneath the door. The diskette will pop
out, much like toast from a toaster. As soon as the diskette is removed
from the drive, place it in its protective paper envelope to keep the
exposed surface safe from abrasive contaminants and mishandling.

2.1.3 Drive Numbering and Switches

--32K OR 64K SYSTEM WITH ONE OR TWO DISKETTE CONTROLLERS

Diskette drives are normally installed in the cabinet starting
from the right. The first controller electrically in-line
to the 1500 processor is controller 1. The drives are,
from right to left, drive 0 and drive 1. The second
diskette controller, if it exists, is controller 2. The
drives here are, from right to left, drive 2 and drive 3.

These .drive numbers are sometimes referred to as the logical drive
numbers, and frequently as simply the drive number. This equating of
logical and physical diskette drive numbers is only valid on a system
with no 9320 disks spinning.

Power for the disk drives is provided through the cable connecting
them to the processor. There is no power switch on the diskette drive
cabinet.

The power switch for the system is on the 1500 processor. There
are no other user controls on the diskette system.

2.1.4 Care and Handling of Diskettes

Diskettes will give long and trouble-free service if they are
handled with reasonable care. Important considerations for handling
this media are emphasized below.

1. Diskettes should always be placed in their protective
paper envelopes when not in use. The envelopes should

CHAPTER 2. FUNDAMENTALS OF DOS.H 2-3

then be stored in the carton in which they were shipped.

2. Do not force too many diskettes into one box.
Avoid placing diskettes under pressure; this can warp
the diskette, causing read/write errors and/or failure
of the recording surface to spin.

3. Diskettes should not be rolled, folded, or
otherwise subjected to strain that could cause
creasing.

4. Never touch the oxide coating of the diskette surface;
skin oils deposited through the holes in the plastic
cover attract and retain dust and other contaminants.
Never permit the oxide coating to make contact with another
hard surface; the smallest abrasion can scrape away the
information-carrying oxide, resulting in unrecoverable
errors on the disk.

5. Never subject diskettes to strong magnetic fields.

6. When mailing diskettes, ensure they are placed between
two sheets of corrugated cardboard to maintain rigidity
and provide protection through the mails. Diskettes may
be packed in a suitable protective carrier available
in singles or multiples from many disk manufacturers.
These carriers are specifically designed for sending
diskettes through the mail.

7. Diskettes can generally be taken through airport
security X-ray and metal-detecting equipment without
damaging the information recorded on the surface.

2.1.5 Preparing Diskettes for Use

When a diskette is first received from the manufacturer, it
contains formatting information recorded across all boundaries on the
surface. This information is provided to allow the controller to
identify where a given sector is on the surface of the diskette, and
also allows the controller to verify proper head positioning in the
drive mechanism. Normal reading and writing on the diskette does not
destroy the formatting information.

Only diskettes in IBM 3740 format (128-byte sectors) are usable by
DOS.H •• Diskettes that have been reformatted with bad tracks flagged and'

2-4 1500 DISK OPERATING SYSTEM

alternate tracks substituted cannot be used. Diskettes in System 32
format (256-byte sectors) or IBM 3600 format (512-byte sectors) also
cannot be used.

Diskettes cannot be used by DOS.H until they have been initialized
with the DOSGEN program described in the command section of this manual.
Datapoint DOS.H uses its own unique file structure, capable of
sophisticated data and file manipulation. This structure requires
DOSGEN generation of basic system tables on the diskette before it can
be used with DOS.H.

A special note regarding diskettes and cartridge disks which are to
be used in the booted drive is appropriate here. ("Boot" is the term
used to describe bringing the system into a ready state. It is
discussed later in the chapter on initial generation.) All of the DOS.H
commands use DOS FUNCTIONS which are described in the DOS.D User's
Guide. These functions are resident on the disk in the file
SYSTEM7/SYS. When updated versions of DOS.H and associated utilities
are received from Datapoint Corporation, the file SYSTEM7/SYS may also
have one or more new DOS FUNCTIONS resident. In this instance,
wholesale copying of DOS.H commands from newly received disks to older
disks (overwriting the older versions of SYSTEM7/SYS) should be avoided.
The indiscriminate copying often results in command programs that do not
work when the older version of SYSTEM7/SYS is present on the disk in the
booted drive. The user should therefore keep his DOS.H commands disk
(UTILITY/SYS, etc.) intact, using the newly-released disk to generate as
many new system disks as he needs, and not supplying new commands to
previously DOSGENed disks.

2.1.6 Suggested Diskette Organization Techniques

Due to the relatively small capacity of the flexible _
diskette, compared with the larger disk systems, careful consideration
should be given to placement of files. For program development, the
following convention is suggested.

1. DOS.H SYSTEM DISKETTES: These contain the system files
and whichever DOS.H commands are regularly used. This is
the diskette used in drive zero during program generation,
debugging, and other DOS system-type functions. It will
contain all of the DOS.H itself and DOS.H commands released
by Datapoint. This diskette will also frequently contain
the editor scratch file, SCRATCH/TXT.

2. SOURCE PROGRAM DISKETTES: These diskettes can be considered
as library file diskettes. They contain DATABUS programs,

CHAPTER 2. FUNDAMENTALS OF DOS.H 2-5

DATAFORM forms, and other user text files that are used
during program generation. Once these programs are
finalized, they can be copied to DOS.H System disks or.
User System disks, as appropriate.

3. USER SYSTEM DISKETTES: These diskettes are similar
to DOS System diskettes, but differ in that they
are intended for more specific applications. They will
generally be used with DATABUS 1500, or DATAFORM and/or
have large numbers of user-written applications on them.
These diskettes generally will not contain the more
specialized DOS.H commands such as DSKCHK15, APP, CHANGE,
DUMP, and the like.

4. DATA FILES DISKETTES: These diskettes contain user dat,
files. Typical characteristics of files on this typ~/
of diskette: non-executable; user information such as
program output data, documentation, and data which
is user-entered or user-generated, but not program
code.

5. SCRATCH DISKETTES: These diskettes contain no important
files. Their suggested use is for transferring files
from one diskette to another, and for providing large
unallocated areas to be used as scratch files for
programs such as the SORT and EDIT commands.

As support for the above five basic types of diskettes, the
followng cOlor-coding convention is suggested for disk labels:

Red
Green
Blue
Yellow
Grey

DOS System diskettes
User System diskettes
Text files (source programs and text data)
Data files
Scratch disks

For best results, users should use only diskettes provided by those
manufacturers recommended by Datapoint Corporation, as these diskettes
are completely tested and certified. The use of substandard media can
cause intermittent problems.

2-6 1500 DISK OPERATING SYSTEM

\.

2.2 Cartridge Disk Systems

The 9320 cartridge disk system is a ten-megabyte
disk-and-drive unit contained in a desk-top cabinet. Its integral
controller contains a 256-byte (one sector) memory which functions as a
speed buffer between the processor and the disk. Two switches are
present on the front panel of the disk unit: RUN/LOAD and WRITE PROTECT
ON/OFF.

When the RUN/LOAD switch is in the LOAD position, the controller
stops the disk and unloads the heads to allow loading or unloading of
cartridges. When this switch is in the RUN position, the disk is spun
up and the heads are loaded.

When the WRITE PROTECT switch is ON, the disk is put in a read-only
mode. The 1500 processor will hang beeping if a WRITE operation is
attempted while the disk unit is write-protected.

A three position power switch is located on the back panel of the
disk unit and functions as follows:

OFF: No power is supplied to the disk unit.
LOCAL: Power is supplied to the disk unit.

REMOTE: Power supply is controlled by power indication signal on the
I/O bus connected to the 1500 processor. I

.A disk is considered to be spinning if the back panel~wer switch
is REMOTE or LOCAL and the RUN/LOAD switch is RUN. Otherwise, the disk
is considered not to be spinning.

2.2.1 Cartridge Disk Media

A rigid, plastic cartridge, approximately 11"x11"x1", is the
permanent housing for a 10.5" disk with two usable sides. Data is
recorded on both surfaces of the disk, single density, 392 tracks per
side. Each track is composed of 48 sectors, and each sector contains
the Datapoint standard 256 bytes.

On the right front of the 9320 desk-top unit is a bottom-hinged,
pull-down door. A large (1"x5") depression on the top of the door
serves as a finger-pull to draw it open. As a security feature, the
door cannot be opened when the drive is spinning. Nor can the door be
opened when power to the 9320 System is disconnected or otherwise off.
(These precautions help to insure the integrity of I/O
operation--although it is possible that input data will be disturbed if
the drive is switched to LOAD while a write procedure is taking place.)

CHAPTER 2. FUNDAMENTALS OF DOS.H 2-7

To insert a cartridge, after the drive is in the LOAD mode and the
door is open, hold the cartridge so that its label is facing up (and the
side with the centered metal circle is facing down), and the h00k-shaped
corner is at the right rear. No other orientation will be admitted to
the drive cage.

Once the cartridge is inserted, drive heads access the disk through
the normally closed rear access window. This window opens when an
unseen plunger, located in the extreme left rear of the drive cage,
penetrates the narrow slot on the left rear corner of the cartridge
case. To bring the disk online, close the door and switch the front
panel switch to RUN.

To unload the cartridge, first ensure that 1/0 activity is
complete. Then switch the front panel switch to LOAD. The door will
open only when power to the unit is on. Lift the cartridge out
carefully and place it in its storage rack.

2.2.2 Drive Numbering with 9320 Cartridge Disks

--64K SYSTEM WITH ONE OR TWO DISKETTE CONTROLLERS AND
ONE TO FOUR 9320 CONTROLLERS

The following discussion of drive numbering assumes that
the 9320 disks are spinning. If the 9320 disks are not
spinning, the system appears to be the same as a 64K system
with only diskettes. DOS informs the user that it has
recognized 9320 disks on-line (spinning) by the message,
"DOS LOGICAL DRIVES 0 THRU 11 ARE ON 9320 DISKS, 12 THRU
15 ARE ON DISKETTES" after the DOS sign-on. This reflects
the difference in logical drive mapping with 9320 disks.

The diskette controller numbers are 1 and 2, as with no 9320 disks,
but the logical drive numbers are mapped differently by DOS.H. Logical
drives on controller 1 are, ,from right to left, drive 12 and drive 13.
Logical drives on controller 2, if present, are, from right to left,
drive 14 and drive 15.

The first 9320 disk controller electrically in-line to the
processor is controller 8, with logical drives 0-3. The second
controller is controller 9, with logical drives 4-7. The third is
controller 10, with logical drives 8-11. The fourth controller, which
is not recognized by DOS.H at load time since the diskettes are mapped,
is controller 11, with logical drives 12-15.

2-8 1500 DISK OPERATING SYSTEM

This logical mapping of diskette and 9320 drives can be changed
(e.g., to delete diskette controllers 1 and 2, and add 9320 controller
11) via the DOS utility REMAP.

2.2.3 Care and Handling of Cartridge Disks

Size and shape of the cartridge make it convenient to handle and
store. Since the disk surface is entirely enclosed, there is maximum
protection from abrasion and contaminants, and the rigid case can be
positioned book-style on a shelf when not in use. Alternatively, the
hook-shaped corner can suspend the cartridge on a horizontal rod for
storage.

It is strongly recommended that a cartridge be kept in the drive at
all times, even when the drive is off, to protect the heads from
airborne contaminants.

2.2.4 Preparing Cartridge Disks for Use

When the cartridge disk is received from the manufacturer,
formatting information is already recorded across all boundaries on the
surface. This information is provided to allow the controller to
identify where a given sector is located on the surface of the disk, and
also allows the controller to verify proper head positioning in the
drive mechanism. Normal reading and writing on the disk does not destroy
the formatting information.

Only disks in the 9320 format are usable in the system.
cannot be put into use until they have been initialized using
command program described in a later section of this manual.
cartridge disk requires the generation of basic system tables
can be used with DOS.H.

CHAPTER 2. FUNDAMENTALS OF DOS.H

Disks
the DOSGEN
The 9320
before it

2-9

CHAPTER 3. EQUIPMENT CARE

Computers, disk drives, printers, and other data processing
equipment are delicate devices that must be operated correctly, and then
handled with some degree of care to perform properly.

3.1 Environment

Datapoint systems must be installed in an area with adequate
air conditioning. The Datapoint 1500 and its associated peripherals
require a temperature range of 50 to 105 degrees Fahrenheit (10 to 40.5
degrees Centigrade). Humidity must be kept low enough to avoid moisture
condensation (below 80%), but high enough to avoid excessive static
electricity problems (above 10%).

The machine area must be reasonably clean and dust-free. While
excessive cleanliness is not necessary, accumulations of dust and
cigarette ashes can seriously affect machine operation. Spilled liquids
are also hazardous.

Processors and peripherals require "clean" power to avoid erratic
operation. Machine room power should be supplied from a completely
separate transformer when possible. Ensure that devices such as adding
machines and power tools are not connected to the same power leads that
are used for computer equipment. Electric motors in these devices cause
severe power line noise that may interfere with machine operation.
Isolation transformers to insure a supply of clean power for Datapoint
equipment should be used when necessary.

3.2 Processor

The only user-maintenance on the processor is an occasional
dusting and cleaning of the cabinet, CRT screen, and keyboard.

Be sure the ventilation slots on the rear of the processor are
never blocked; impeded air flow will cause overheating.

CHAPTER 3. EQUIPMENT CARE 3-1

3.3 Disks and Disk Drives

Ensure that all operators know how to insert and remove
diskettes and disk cartridges in the drives. Diskettes and disk
cartridges must be stored properly in an environment similar to that
provided for the equipment. Refer to the chapter, "Fundamentals of
DOS.H," for details on disk handling. Other publications carrying this
information are the Guide to Operating Datapoint Equipment and the
Datapoint Product Specifications (green sheets).

The drives must not be subjected to bumps or jolts; this can cause
head misalignment. Physical location of the drives must allow adequate
air circulation for cooling purposes.

3.4 System Printer

The printer should be dusted occasionally in keeping with the
necessary environmental cleanliness practices. Printer ribbons must be
changed periodically to maintain print quality. Cloth ribbons left in
use for too long can disintegrate, making print quality marginal at
best. To avoid paper jams, ensure that the paper is aligned properly
when loaded, and that there are no obstructions in the paper path.

3-2 1500 DISK OPERATING SYSTEM

CHAPTER 4. SYSTEM GENERATION

Before a disk can be used with DOS it must first be prepared
by writing onto it basic system tables. Also, a surface verification
must be performed so any bad areas of the disk surface will not be used.
On a new installation, the system utility programs must be placed onto
the disk for use. All these operations constitute system generation.
With DOS.H there are two methods of system generation. The method used
depends on the condition of the disk being prepared. If the disk is a
new one, the method to be used is termed initial generation. This
procedure writes the basic system tables and the directory onto the disk
for the first time. If the disk has previously been in use, its tables
and directory may require updating in order to accomodate a new reV1Slon
of the Disk Operating System. The method is then called an upgrade.

4.1 Initial Generation

Datapoint distributes the Disk Operating System (DOS.H) and
utilities on a single diskette. This diskette contains all programs
necessary for generation of further system disks. In the chapter titled
"Fundamentals of DOS.H," under the section, 'Preparing the Disks for
Use,' there is general information about system generation. Specific
procedures are found in the chapter describing the DOSGEN command.

4.1.1 Initial Loading

Initial loading of DOS.H, as described here, is known as
'hard booting.'

To load DOS.H into the 1500 processor, the diskette should be
inserted into the right hand drive of diskette controller 1. The
RESTART and INT keys are then depressed simultaneously to initiate the
loading of the DOS. To load the DOS from any of the other diskette
drives, the DSP key is depressed to increment the diskette drive number
that is being searched for a diskette. Note that the first on-line
diskette found (starting with the right-hand drive of controller 1) will
be the diskette that is loaded. Whichever of these drives loads the
system is then recognized by DOS.H as the booted drive.

Loading DOS.H with the 9320 disk spinning follows the same
procedure outlined above; however, the DOS handles the booted drive

CHAPTER 4. SYSTEM GENERATION 4-1

designation differently in a normal system load. As above, the system
is loaded from the diskette, but the booted drive will be the first
on-line 9320 drive found. (Remember, with 9320 disks spinning, the
diskettes are mapped as logical drives 12-15.) To inhibit the 9320
drive from becoming the booted drive, the F5 and F4 keys are held down
during system loading until a click is heard. In this way, the diskette
drive that the DOS was loaded from will be recognized as the booted
drive. This is useful for DOSGENing 9320 disks, or using UPGRADE/H.

The booted drive designation is valid until the next hard boot, or
until the DOS utility BOOT is invoked to change the booted drive. The
utility REMAP can also be used to change the booted drive.

In,most cases, the booted drive must be kept physically on-line at
all times, since DOS.H searches it first when encountering a
non-specific drive command. DOS.H also sometimes places work files on
the booted drive.

4.2 UPGRADE/H

An upgrade facility is available to accomodate upgrading
existing diskette systems and diskette/cartridge disk systems. The
program is a standard text file called UPGRADE/H (where H is the letter
specification of the DOS in use). It is used as a chain procedure by
the command:

CHAIN UPGRADE/H;IN=<input drive>,OUT=<output drive>

This command upgrades the tables and directory in drive OUT from the
diskette in drive IN.

Disk files are then copied with the COPY utility. Since SYSTEM7/SYS
contains the sUbdirectory information, the new disk will have the same
sUbdirectory information as the old one. After the system files are
copied, the new utility files are copied to replace any old utilities on
the output diskette. The program PUTIPL (described in a later chapter)
is then run to place the necessary initial program loader (IPL) blocks
on drive OUT.

Since UPGRADE is a text file, it can be edited to modify the chain
procedure that is used. This allows adjustment to special needs. Care
should be exercised, however; any modification performed should be very
carefully considered to assure a good upgrade. System conversions are a
complex process and errors made at this juncture can result in an
unusable diskette or lost data.

4-2 1500 DISK OPERATING SYSTEM

4.3 Scratch Disk Generation

Any diskett~ or disk cartridge that is to be used in a DOS
system must first be prepared by writing onto it the necessary system
tables and basic system files. Scratch disks or new system disks must
be produced using the initial generation method and the DOSGEN command
that is discussed above.

CHAPTER 4. SYSTEM GENERATION 4-3

CHAPTER 5. DISK FILES

On all DOS-supported diskettes and cartridge disks,
information is stored in sectors, each of which contains 256 bytes of
information. Sectors containing related information are organized in a
single structured group called a file. All information on a diskette
and cartridge disk will generally be organized in files, except for
certain system tables.

5.1 File Names

When calling up or creating a file from the console keyboard,
the file is usually identified by a three-part designation consisting of
a name, an extension, and a logical drive number. The first part of the
name is the unique identifier. It consists of up to eight alphanumeric
characters--none of the special characters are, however, allowed in a
file name. Typical file names might be:

EDIT
EMPLOYEE
23NOV79

PAYROLL
5500
X1

The second part of the name, the extension, identifies the type of
file. This may be from one to three alphanumeric characters. If an
extension is used in a file name, it is separated from the name by a
slash (I). The extension further identifies the file and usually
indicates the type of information contained in the file. A "TXT"
extension means text, and usually implies data. "CMD" implies an object
code file to be used as a command program from the system console.
Other common extensions are lSI, DBC, OVn, SYS, PRT, and REL.

The logical drive number specifies the logical drive on which the
file is (or will be) located. Drive specification is identified by a
leading colon (:) and has the form ":DRn" and ":Dn" where "n" is the
logical drive number that was assigned at installation. It may also be
specified as ":<volid>." The ":<volid>" form allows logical volume
identification, regardless of the physical drive on which the disk is
located. Valid drive numbers for diskettes are 0-3 on a system with no
9320 disk spinning. Note that on a 64K system with 9320 disks, the DOS
utility REMAP may be used to change the logical drive numbers. Valid
drive numbers of a 9320 cartridge disk system are 0-15; they may also be
changed via REMAP. <Volid> is an eight-character identifier placed on
the disk by the PUTVOLID program. This command is discussed in a later

CHAPTER 5. DISK FILES 5-1

chapter.

The complete form of the name is thus:

NAME/EXTENSION:DRIVE

All three parts of the file name usually are not needed when a file name
is entered as part of a command, though they can be specified. The
presence or absence of any part of a file name is determined by the
special separators "I" and ":"~. Syntactically correct file 'names are:

IABS:DR1
ITXT

NAME/ABS:DRO
NAME/REL
NAME:DO
NAME

:DO
NAME:DOSH1

If a portion of the file name is not used, DOS and various of the
utility programs apply default values. The default value depends on the
location of the name on the command line, and on the command in use.

The first field on any command line is the command program to be
run. For this field, a name must be given. If no extension is given,
the default is then CMD, and the default drive is any drive. (An "any
drive" default usually means a search of all drives, starting with drive
zero.) If the command name is preceded by an asterisk (*), or a colon
(:), the default extension and all-drive search do not apply; the
leading character indicates that the given name is to be located as a
member of the UTILITY/SYS (an "absolute library") before it is searched
for as a file. Thus, if the program is not found in UTILITY/SYS, the
Command Interpreter attempts to load a command file by that name.

The default values for file names given as parameters to a command
are described separately for each command in the chapters following.

5.2 File Creation

Files are always created implicitly.
never specifically instructs ~he system to
command that writes to an output file will
or will automatically create a new file if

That is, the operator
create a given file. Any
write into an existing file
necessary.

A file to be created will be placed on the drive specified in its
file name field or specified in default values applied to its name.
When a file is being created on a specific drive, files with the same
name and extension on other drives are unaffected. If no drive is
specified in the name or by default, the file is created on any drive

5-2 1500 DISK OPERATING SYSTEM

which has free space. The search for available space starts on drive
zero. "Available space" means one free space in the drive's directory,
in which to place the name of the new file, and at least one cluster of
free space on the disk, in which to place the data the file will
contain. A "cluster" is the smallest unit of disk space that can be
assigned to a file; clusters are defined in the chapter on System
Structure.

5.3 File Deletion

Deletion of a file is always performed explicitly by operator
command. The deletion command, KILL, is described in a later chapter.
No other standard DOS command programs delete an existing file, although
overwriting procedures such as system generation and BACKUP naturally
destroy all files on the output disk.

5.4 File Protection

DOS files can be given three types of protection: write
protection, delete protection, and no protection. If a file is
write-protected, it cannot be written into, deleted, or renamed. If a
file is delete-protected, it cannot be deleted, although it may be
overwritten, thereby effectively destroying any data perviously written
into it. If a file has no protection, it may, of course, be modified in
any manner. The CHANGE command, described later, is used to set the
protection of a file.

CHAPTER 5. DISK FILES 5-3

CHAPTER 6. OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an
integral CRT display through which the internal computer communicates
with the operator. The system console also includes a typewriter-style
keyboard which the operator uses to communicate with the computer. The
Disk Operating System is normally controlled by commands entered at this
system console.

When DOS first becomes ready for commands, it displays a signon
message on the CRT and says "READY". Upon completion of any job the DOS
generally again displays "READY". Whenever the ready message is shown,
the operator may key in a command, and this will be displayed on the
bottom line of the CRT as it is keyed in. While typing a command, the
BACKSPACE key will erase one character to make corrections, and the
CANCEL key will erase the entire line.

6.1 Command Line

The command line is a directive that generally consists of
from one to three parts, specifying first the job that is to be
performed; second, the name of the disk file to be operated one, or
special system directives; and third, any options for the job. The
command programs provided with DOS are described in the following
chapters. All information that must be entered for each command is
specified in detail. A command line is always terminated by the ENTER
key.

In general, a command line is entered as:

<field> <field>,<field>,<field>;[options]

The first <field> on the line always specifies the program to be run.
Fields following the program name indicate a DOS file name and possibly
a special file such as a subdirectory name. Separators between the
fields, usually the space and the comma, must be given special
attention. For readability, the first two fields are most often
separated by a space; subsequent fields are separated by a comma. A
command usually appears as:

SORT ACCTFILE,SRTFILE,:DR1;2-11

In this example, the first field, SORT, is the program to be executed.

CHAPTER 6. OPERATOR COMMANDS 6-1

It is separated from the second field by a space. Subsequent fields,
"ACCTFILE", "SRTFILE", and "DR1", are separated by commas. The fields
following the program name, SORT, provide additional information to the
SORT program. [Options] following the <fields> are always separated
from the preceding field by a semicolon. In the above exmple, "2-11" is
the option. The colon (:) within the fourth field ":DR1" is a special
separator used within a file name. The slash (/) is also used in this
way, as shown in the preceding chapter, "Disk Files."

Aside from the separators noted above, most special characters (0,
$, %, &, @, and other characters which are neither alpha nor numeric)
act as separators in the same way as the space and the comma. In
general, any character that is not a syntactically valid part of a file
name is interpreted as a field separator. The command example above
could have been entered as:

SORT@ACCTFILE=SRTFILE$:DR1;2-11

The use of special characters is not recommended, however, since the
resulting command line is confusing and difficult to interpret.

As already noted, the first field on the command line specifies the
program to be executed. For any command, this first field must be
given. Any other fields mayor may not be needed for a particular
command. The command program must be a loadable object file, loading
above the resident operating system, or the program load will fail and
the DOS will return to "READY" condition. If program specified to be
run cannot be found, the the DOS displays the message "WHAT?" and waits
for another command. When the program name specification is preceded by
an asterisk (*), the UTILITY/SYS file will be searched for the command.
If it is not found there, the Command Interpreter then looks for a
separate command file.

6.1.1 Order-Dependency in the Command Line

Fields on the command line are often order-dependent. If a
command is being used which accepts several fields and one of the fields
is not wanted, skip that field by entering two separators with nothing
between them. Such a command would look like:

SORT ACCTFILE,,:DR1;2-11

By using two commas, ":DR1" is recognized as the fourth field on the
line, with the third field being nUll.

6-2 1500 DISK OPERATING SYSTEM

6.2 General Command Characteristics

Some features of the commands suplied with the Disk Operating
System apply to most of the DOS commands. These characteristics and the
messages that can appear following them are discussed briefly.

6.2.1 General Command Format

When the command line is discussed, the first field is called
the "command;" subsequent fields before the semicolon are called
<filespec>; characters following the semicolon are called "options" or
"parameters." The general format of the command line is:

Command [<filespec>][,<filespec>][,<filespec>] .•. [joptions]

The item referred to as "Command" is required on a command line.
This first field defines the command being issued to the system.

The items referred to as "<filespec>" represent one or more
specifications for files. These files generally are input, output,
scratch, or other files to be used by the command program. Usually, the
first such specification represents input files(s); the following
specifications represent output or scratch file(s).

A square bracket is used here to indicate fields whose presence is
optional. The pointed bracket convention (as in <filespec» represents
replacement fields where the replacement field name is contained within
the pointed brckets. The brackets are used here as text cues only and
are not keyed in on the command line.

6.3 Signon Messages

When a system command is entered, the command program being
invoked will always display a message identifying itself. The message
includes the version number of the command program. The primary purpose
of this signon message is to allow the operator to determine, in the
event of some difficulty, which version of the command is in use.

CHAPTER 6. OPERATOR COMMANDS 6-3

6.4 Common Error Messages

There are basically three types of error messages that may be
displayed. The error messages common to many of the DOS utilities are
listed here, the DOS error messages are listed in Chapter 43, and
hardware error messages are listed in Chapter 44.

INVALID DRIVE

This message appears when one of the drive specifications given by the
operator is invalid. Either the drive specification was not of the
correct format, or the drive number specified exceeds the range
available under the resident Disk Operating System. The other
possibility is that a <volid> was specified, and the proper disk was not
on any online drive.

NAME IN USE

This message generally occurs when the command's continued execution
would necessarily result in a conflict of the specified file name with
an already existing file.

NAME REQUIRED

This message indicates that a file specified on the command line could
not be found. Generally the name as specified is misspelled or
otherwise incorrectly entered. However, the message will sometimes
occur because the file desired is not in the current subdirectly. (A
sUbdirectory is described later in the SUR command.)

NO! THAT FILE IS PROTECTED

This message indicates that a request was made to modify a file having
write or delete protection.

WHAT?

This message means that the command name (the first item on the command
line) is illegal. Most often, the command specified is not valid, or is
not in the current subdirectory or the SYSTEM directory.

WRONG DOS!!

This message indicates that the command being attempted is not
compatible with the DOS being used.

6-4 1500 DISK OPERATING SYSTEM

CHAPTER 7. ABTONOFF COMMAND

7.1 Purpose

Within the DOS, there is a flag which is set by several of
the utilities under certain conditions. This is the ABTIF bit,
which may be tested with the IIABTIF operator in a CHAIN (see the
CHAIN command). If the flag is on, the chain will abort when
tested by IIABTIF; otherwise it will continue. The ABTONOFF
command is a means of insuring the setting of this flag. The
format of the command line is as follows:

ABTONOFF [<parameter>]

The only valid values of the parameter are ON and OFF, and these
determine the settings of the flag. If ABTONOFF is executed with
no parameters, the current setting of the flag is displayed, but
it is not changed.

CHAPTER 7. ABTONOFF COMMAND 7-1

CHAPTER 8. APP COMMAND

8.1 Purpose

The APP command appends two object files ~0gether creating a
third. Object files are files containing absolute object code in
a format that can be loaded by the DOS loader.

8.2 Use

APP <file spec>,[<file spec>],<file spec>

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
of the input files are disturbed. If extensions are not supplied,
ABS is assumed. The first two files (if a second is specified)
must exist. If the third file does not already exist, it will be
created. The first file's transfer address, if present, is
discarded and the new file is terminated by the transfer address
of the second file, if one is present. The transfer address of an
object file is defined as the entry point of the program contained
in the file.

Omitting the second file specification causes the first file
to be copied into the third file. For example:

APP DOG"CAT

will copy the fil& DOG/ABS into the file CAT/ABS.

The first and third file specifications are required. If
either is omitted, the message

NAME REQUIRED

will be displayed. The second and third file specifications must
not be the same. If they are, the message

FILES TWO AND THREE MUST BE DIFFERENT

will be displayed. If a non-object record is encountered, the
message

CHAPTER 8. APP COMMAND 8-1

FILE X CONTAINS A NON-OBJECT RECORD

will be displayed with the value of X being 1 or 2 to correspond
with the position of the file specification on the command line.

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the example above, is one technique for releasing excessive
unused space at the end of an object file. However, it should be
noted that the APP command cannot be used to append overlay
library files. If this is attempted, the message

YOU CANNOT APPEND OVERLAY LIBRARIES

will be displayed. If the third file specified is write
protected, the message

FILE THREE WRITE PROTECTED.

will be displayed

Another use of the APP command is to append patches to object
files, since the object file being APPed may load at the same
address as object code in the original program. However, since
the new code is at the end of the module, it is loaded over the
old code.

8-2 1500 DISK OPERATING SYSTEM

CHAPTER 9. AUTO COMMAND

AUTO - Set Auto Execution

AUTO <file spec>

The AUTO command establishes the indicated program to be
automatically executed upon the loading of DOS. If no extension
is supplied, ABS is assumed. The message

AUTO NOW SET TO NAME/EXTENSION (PFN).

will be displayed when the named file is set for auto execution.
A check is made to see if the file is an object file and if the
file is on the booted drive. If the specified file does not
exist, the message

NO SUCH NAME

will be displayed. Note that if a program has been set to
auto-execute, its execution can be inhibited by depression of the
keyboard (KBD) key when DOS is loaded. Any attempt to auto a file
not on the booted drive will cause the message

YOU CAN'T AUTO THAT FILE!

to be displayed. If there was already a file set for
auto-execution, the message:

AUTO WAS SET TO NAME/EXTENSION (PFN).

will be displayed ~efore the new auto-execution setting has been
made.

If no <file spec> is entered on the command line, no change
in the current auto-execute program will be made. If no program
was set for auto-execution the message:

NAME REQUIRED

will be displayed.

Note that the AUTO command does not make provIsIon for file
specifications to be given to the program which is to be
automatically executed. This makes it impossible to use AUTO for

CHAPTER 9. AUTO COMMAND 9-1

programs requiring or ac~epting such parameters. AUTO also does
not place anything in the DOS communications region (MCR$).
Therefore, programs which use overlays with the same name (but
different extension) as the program will not run. For more
information, refer to the chapter describing the AUTOKEY command.

Auto-execution mode is cleared with the MANUAL command,
described in a later chapter.

Programs contained in absolute libraries (UTILITY/SYS for
example) cannot generally be "AUTO'd" directly. Use the AUTOKEY
command described below, then "AUTO AUTOKEY/CMD". If an absolute
library is specified for auto-execution, the first member of that
library will be the program executed. System files cannot be
"AUTO'd" under any circumstances.

9-2 1500 DISK OPERATING SYSTEM

CHAPTER 10. AUTOKEY COMMAND

10.1 Introduction to AUTOKEY

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing tasks, perhaps
running via the DOS command chaining facility (see CHAIN), to be
run during the evening hours when no operator is present. (An
example might be the creation of several new index files for one
or more large, ISAM-accessed data bases). However, the momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, un interruptible
power supplies. When this happens to a computer running in
unattended mode, the office staff will generally return the' next
morning to find their computer sitting idle and its work
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their processing tasks following such an
interruption. The purpose of the AUTOKEY (and AUTO) commands is
to provide a software mechanism for users who wish to handle such
unusua~ circumstances and provide for the restarting of a
processing task.

10.2 The Auto-Restart Facility

The 1500 is provided with firmware auto-restart. Thus if the
machine ever halts, for example due to a power failure, on being
started again, it will attempt to load the operating system.

10.3 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATABUS system,
for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatiQally
executed whenever DOS comes up. (Note that any loading and
running of the DOS, whether by an auto-restart, manually
restarting the machine, or under program control, will activate

CHAPTER 10. AUTOKEY COMMAND 10-1

this facility).

The AUTO command is used to establish a program to receive
control when DOS comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been provided.

10.4 Auto-Restart Facilities Using AUTOKEY

AUTOKEY is simply a command program which can be AUTO'd. The
way it works is very simple. If it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console. If ~UTOKEY
is run from the system console (or likewise from an active CHAIN),
it simply displays the command line it is currently configured to
supply and offers the user the option of changing that stored
command line.

The command line supplied to AUTOKEY could do anything
specifiable in one command line to the DOS; DATABUS could be
brought up, a SORT invoked, a user's own special restart program
started or even a CHAIN begun. AUTOKEY, when used with AUTO,
MANUAL, and CHAIN can therefore provide a very powerful facility.

10.5 A Simple Example

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY

at the system console. AUTOKEY will display a signon message and
display the current autokey line if there is one. It then asks if
this line is to be changed. If "N" is answered, AUTOKEY simply
returns to the DOS and the DOS "READY" message is displayed. If
"Y" is answered, AUTOKEY requests the new command line to be
configured and then returns to the DOS and "READY".

Alternatively, if the user wishes to simply specify a new
command line to be configured regardless of the current setting of
the AUTOKEY command line, he can merely place the new command line
after the "AUTOKEY" that invokes the AUTOKEY command.

10-2 1500 DISK OPERATING SYSTEM

As a simple example, suppose that the XYZ company has several
1500s running DATABUS, which run completely unattended at night to
produce reports. An electrical surge from a lightning bolt causes
the power to be cut off for 15 seconds. As soon as power is
restored, their Datapoint 1500 computers re-boot their DOS and
warm~start the DATABUS system. (OVERNITE/DBC is the Databus
program that controls the report preparation.) One command
sequence to accomplish this would look like the following:

AUTO KEY
DOS.H AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y
ENTER NEW AUTOKEY LINE:
DB15 OVERNITE
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMO (nnn)
READY

An alternate form of the above would be the following:

AUTOKEY DB15 OVERNITE
DOS.H AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
ENTER NEW AUTOKEY LINE:
OB15 OVERNITE (supplied automatically)
READY
A~TO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass it is to hold down the keyboard (KBD) key while the
DOS is coming up. This action bypasses the auto-executed program
and enters the normal command interpreter. The user then can use
the MANUAL command to clear the auto-execution option.

10.6 Special Considerations

When building long chain files that allow for automatic
restart, several considerations must be made. Among these are
that a file must not be changed in such a way that the change
cannot be repeated if the previous checkpoint is actually used.
To accomplish this, frequently the file being updated must be
copied out to a scratch file, and the scratch file then updated.
Following the completion of the update is when another checkpoint

CHAPTER 10. AUTOKEY COMMAND 10-3

would be taken. The next phase would copy the updated file back
over the original. Note that a checkpoint (i.e. resetting the
AUTOKEY command line) would have to be before the creation of the
dummy copy to be updated; putting a checkpoint between the
creation of the copy to update and the actual updating process
could result in the updating of a partially updated copy. A
little thought when choosing places to update the AUTOKEY command
line is called for to ensure that the chain may be resumed from
any of them without incorrect results.

10.7 AUTOKEY and DATABUS

Some users who make frequent use of the DATABUS ROLLOUT
feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DB15;R will mean that whenever the system rolls out to
any program or chain of programs, DATABUS is automatically brought
back up when that program or chain of programs finishes,
regardless of whether or not DB15;R was included at the end of the
port's chain file.

10-4 1500 DISK OPERATING SYSTEM

CHAPTER 11. BACKUP COMMAND

11.1 Purpose

The BACKUP command provides for making disk-to-disk copies of
DOS. The user can make either an exact image copy of the input
disk or can select reorganization, which will group files by
extension and file name, remove unnecessary segmentation and allow
deletion of unnecessary files. Reorganization also allows copying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. The user also may optionally create a
data disk containing null DOS system files with the use of the "N"
option.

Disks may have a symbolic volume identification (see the
PUTVOLID command). If the user chooses to backup without file
reorganization, the VOLID on the output disk will be replaced. If
the the file reorganization option is chosen, the output disk
VOLID will be unaffected.

Note that a BACKUP may only take place between like media; a
disk to diskette backup or vice-versa will not be allowed, due to
the differences in size betweeen the two media.

11.2 U~e

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>[;N]

Input drive and output drive are specified as :DRn, or :Dn,
or :<volid>. The optional "N" parameter will allow the user to
create a data disk containing null DOS system files on the output
drive. The purpose of doing so is to make more space available on
the output disk. The remaining user files will be copied as if
the "N" option had not been specified. The program will respond by
displaying the message:

DRIVE n SCRATCH?

If the disk on drive n is scratch, enter a nyu. Any other
reply will cause the program to return to DOS. If you do reply
nyu, the program will display the message:

CHAPTER 11. BACKUP COMMAND 11-1

ARE YOU SURE?

If you are absolutely sure that you want to write over the
output disk, type "Y" again and press the ENTER key. Any other
reply will cause the program to return to DOS. If the output
(logical) disk has not been DOSGENed or the DOS file structure on
it has been damaged, the message:

DOSGEN YOUR OUTPUT DISK FIRST!

will appear and control returns to DOS. If the output disk has
been DOSGENed and seems in reasonable condition, the following
message is displayed:

FILE REORGANIZATION?

If different cylinders are locked out on the input and output
disks (if the disks' lockout CATs do not match), an exact image
BACKUP is not possible so the "FILE REORGANIZATION?" question is
bypassed. Instead, a message appears specifying that
reorganization is required and BACKUP with reorganization proceeds
as described below.

If you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
question. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire an
exact image copy of your input disk, enter an "N" in response to
the reorganization question.

11.3 Exact Image Copy

If you have typed "N" in response to the file reorganization
question, the program will ask the question:

DO YOU WANT THE OUTPUT COPY VERIFIED?

This question should always be answered "Yes". It takes only
a little longer to verify the output copy, but verification can
catch a significant number of errors.

The program then asks:

DO YOU WANT TO COPY UNALLOCATED CLUSTERS?

11-2 1500 DISK OPERATING SYSTEM

Type "Y" and press the ENTER key if you want all data on the
disk copied regardless of whether or not it is in an area
allocated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or the
output disk has never been fully initialized with data.

Type "N" and press the ENTER key if you wish to copy your
disk as quickly as possible without copying unused areas of the
input disk. "Y" and "N" are the only replies allowed.

11.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
question, the program will copy the System files (unless the "N"
option was specified), sort the Directory names, and allow the
operator to delete files before copying the files to the disk
copy.

Backup with reoganization to the booted drive is not
possible.

11 .4.1 Copying DOS to Output ;Di sk

Various program status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk unless the "N"
option was given on the command line. If the "N" option was given,
the message:

SYSTEM FILES WON'T BE COPIED

will be output and null DOS system files will be created on the
output drive.

11.4.2 Deleting Named Files

When all directory names have been sorted into file extension
followed by file name sequence the following question will be
displayed:

EXCLUDE ANY FILES DURING REORGANIZATION?

Type "N" and press the ENTER key if all files are to be
copied. Type "Y" and press the ENTER key if you wish to delete
any files. If you reply "Y" a message asking which files are NOT

CHAPTER 11. BACKUP COMMAND 11-3

to be copied will appear. The screen will be filled by a numbered
list of files for you to choose from. Type the number or range of
numbers (nn or nn-nn) found next to names of individual files you
wish deleted. Type "ALL" and press the ENTER key if you wish to
delete all of the files in the list. The files selected for
deletion will be erased from the list. When all desired deletions
have been made from a list, type "." and press the ENTER key to
advance to the next list of file names.

When all file name lists have been examined, the program will
advance to the "Copying Named Files" phase.

11.4.3 Copying Named Files

Before copying, the files named in the system directory are
sorted into ascending order, first by extension, then by name.
The name of each file is displayed as it is copied. All files are
written as close together as possible with a minimum of
seglaen ta tion.

11.5 Use of KEYBOARD and DISPLAY Keys

The keyboard (KBD) and display (DS?) keys may be pressed any
time messages are being displayed. Depressing the display (DSP)
key will hold the current display until the key is released.
Depressing the keyboard (KBD) key will cause the program to
terminate and return to DOS.

11.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive> and
<output-drive> specification.

INPUT AND OUTPUT MUST NOT BE ON THE SAME PHYSICAL DRIVE.

Action: <input-drive> and <output-drive> have been specified as
the same drive. Retype BACKUP command with correct specification.

BAD CLUSTER ALLOCATION TABLE!

11-4 1500 DISK OPERATING SYSTEM

Action: A bad Cluster Allocation Table has been detected on the
input disk. The Cluster Allocation Table may be able to be fixed
using the DSKCHK15 command.

INPUT DISK LOCKOUT CAT UNREADABLE

Action: A read error has been detected on the input lockout CAT.
Reorganization will be done automatically.

OUTPUT DISK LOCKOUT CAT UNREADABLE

Action: A read error has been detected on the output lockout CAT.
Reorganization will be done automatically.

THE DISK'S LOCKED-OUT CYLINDERS DO NOT MATCH

Action: The input and output disk CAT's do not match.
Reorganization will be done automatically.

BOOTED DRIVE IS ILLEGAL OUTPUT DRIVE DURING REORGANIZATION!

Action: You cannot backup to the booted drive if reorganization
has been specified. Retype BACKUP command with correct drive
specifications.

BACKUP PROCESSING ABORTED!

Action: None! The keyboard (KBD) key was hit causing BACKUP to
abort it's current processing.

UNABLE TO OPEN INPUT FILE!

Action: BACKUP was unable to open the input file currently being
proces~ed. The file will be bypassed and processing will
continue.

DUPLICATE NAME. NOT COPIED.

Action: BACKUP has encountered a file name that has already been
copied to the output disk. The file will be bypassed and
processing will continue.

SYSTEM TABLE SECTORS OF BACKUP DISK ARE UNUSABLE!

Action: Your scratch disk cannot be used for a system disk due to
surface defects in the sectors used for system tables. Use
another output disk and start over.

CHAPTER 11. BACKUP COMMAND 11-5

SYSTEMn/SYS IS MISSING!

Action: Your input DOS disk cannot be reorganized due to a missing
system file. Catalog the missing system file on your input disk
and start over.

PARITY- :DRn address

Action: An irrecoverable parity error has been detected on drive n
during the BACKUP operation. The address is shown for each error.
If drive n is your output disk, DOSGEN must be rerun to lockout
the bad addresses or use a different scratch disk for exact image
copy. If drive n is your input disk, new parity will be computed
and the record will be copied. Note the error address and check
for errors when copy is complete.

CANNOT BACKUP BETWEEN DIFFERENT MEDIA

Action: Only disk-to-disk or diskette-to-diskette BACKUPs are
allowed.

BACKUP CANNOT EXECUTE WITH CONCURRENCY ACTIVE

Action: Allow the concurrent job to terminate and re-enter the
BACKUP command.

11.7 Reorganizing Files for Faster Processing

After a DOS disk has been used for awhile, the file structure
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to increased disk access time. system degradation is especially
noticeable when DATABUS is being used. File reorganization using
the BACKUP program is one way to clean up DOS disks and improve
their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

· File segments are consolidated

· Files are packed more closely together

· Related files are clustered together

· Unused trash files are removed (optionally)

11-6 1500 DISK OPERATING SYSTEM

· Files are rewritten reducing marginal parity errors

11.8 BACKUP with CHAIN

Because BACKUP does not abort if parity errors occur, and due
to the complexity of the questions (which may depend upon the
condition of the input and output disks) BACKUP should not
generally be invoked from CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

11.9 Clicks during Copying

A click occurs each time an unused sector is copied
(reorganization mode only). A file which, when copied, results in
many clicks (more than three, perhaps) can probably be reduced in
size, without any data loss, by using APP or SAPP as appropriate.

CHAPTER 11. BACKUP COMMAND 11-7

CHAPTER 12. BLOKEDIT COMMAND

12.1 Purpose

The BLOKEDIT command is a program for DOS text file
manipulation. It copies lines of text from any DOS text file(s)
to create a new text file.

The BLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files.

Existing program source file re-arranging by
copying the lines of source-code into a new
sequence (into a new source file).

Re-arranging lines or paragraphs of a SCRIBE
file into a new file.

In this Chapter, the following applies:

Text file means a DOS text file as defined in
the REFORMAT chapter.

Line means one line of a text file as displayed
by the DOS LIST program.

12.2 File Descriptions

BLOKEDIT deals only with text files. For any given
application, there will be one text file called the COMMAND FILE
which will hold the controlling commands for BLOKEDIT. Optionally
the controlling commands may be entered directly to BLOKEDIT via
the keyboard by defaulting the command file parameter. There will
be one or more text files called SOURCE FILES from which lines of
text will be copied. And there will be one text file called the
NEW FILE which will be the desired end result for the application.

CHAPTER 12. BLOKEDIT COMMAND 12-1

12.2.1 Command Statement Lines

The command statements are the controlling factor for a
BLOKEDIT execution. The command statements specify which source
files will be used and which lines of text will be copied from
them. If the command statements are to be read from a command
file it must be generated by the DOS EDIT command, or DOS BUILD
command, etc., before BLOKEDIT can be used.

There are three kinds of statement lines that are meaningful
to BLOKEDIT: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
period.

This is an example of COMMENT LINES:

. THESE THREE LINES ARE COMMENT LINES.

As in program source files, a comment line may have
explanatory notes or nothing at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or
source file LINr-NITMBERS, or begins with a double quote symbol
(II). --

The following are some example command lines:

FILENAME/EXT:DRO
1-100
350-377
150/TXT

NAME THE SOURCE FILE
COPY LINES 1 THRU 100
COpy LINES 350 THRU 377
NAME THE SOURCE FILE

A-command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE FILE is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name. If the source file name begins with a digit the file
extension must be given.

A command line that begins with a digit indicates that the
command line will have one or more numbers, which are the numbers

12-2 1500 DISK OPERATING SYSTEM

of the lines to be copied from the source file previously
specified into the new file.

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
(") is the (") itself, therefore the rest of the line can be used
for comments.

A QUOTED LINE is a line between a pair of command lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

" THIS IS THE BEGINNING OF QUOTED LINES COMMAND LINE.
CHAIN REORG
DB15;R
" THIS IS THE END OF QUOTED LINES COMMAND LINE

There may be more than one quoted line between the command
lines that begin with ("). A quoted line will be copied directly
from the command file or keyboard to the new file. Quoted lines
enable a BLOKEDIT user to include original lines of text in a new
file along with lines copied from source files.

12.2.2 Source File

The SOURCE FILE is a text file from which lines will be
copied. Source files are named in the command lines for a
BLOKEDIT application, and the lines to be copied from the source
file will also be specified in the command lines. It will be
useful to have a listing of a source file with line numbers, as
produced by the LIST command, when creating the command statement
lines for a BLOKEDIT application.

12.2.3 New File

The NEW FILE is a text file produced by the BLOKEDIT command.
The new file is named at BLOKEDIT execution time by the second
file specificati6n entered on the command line.

CHAPTER 12. BLOKEDIT COMMAND 12-3

12.3 Using BLOKED!T

Before the BLOKEDIT command can be used, one must create a
command file, unless the command statements are to be entered via
the keyboard. When the BLOKEDIT command is to be executed, the
operator must enter the following command line:

BLOKEDIT [<file spec>J,<file spec>[;OJ

The first file specification refers to the command file. If not
specified the commands will be entered via the keyboard. The
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are
searched. If no drive is given for the second file, the drive
given or assumed for the first file is used. The output file must
not already exist unless the "a'l option is used. Only if the
Overwrite (0) option is specified will BLOKEDIT overwrite an
existing file. If commands are being entered through the keyboard
and the output file already exists, the user will be asked if it
is to be ovirwritten.

12.4 Messages

This section describes the operator messages that BLOKEDIT
may display on the CRT screen during execution. Some of the
messages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.
If the keyboard was selected as input to BLOKEDIT, the user will
be prompted by the "Please enter a BLOKEDIT command Enter * to
exit. II message when input is required. The character * will
terminate BLOKEDIT and return to DOS.

12-4 1500 DISK OPERATING SYSTEM

The general format of the CRT display screen varies depending on
the source of the BLOKEDIT command statements.

If the command statements are being read from a command file
the format of the display is:

/ DOS.VER. TEXT FILE BLOKEDIT
PROCESSING COMMAND LINE nnn

DATE OUTPUT FILE IS XXXXX/XXX \

I
I
I
I

\
/

CURRENT SOURCE IS XXXXXXXX/XXX:DRn

Error Message Displayed Here If Necessary

I
I
I
I

\
/

I
I
I
I

I I
I I

,--/
If the command statements are being entered via the CRT keyboard,
the format is:

/ DOS.VER. TEXT FILE BLOKEDIT DATE OUTPUT FILE IS XXXXX/XXX ,
PROCESSING COMMAND LINE nnn CURRENT SOURCE FILE IS -NONE-/ :DR

I
I
I
I

\ ,
/ /

PLEASE ENTER A BLOKEDIT COMMAND ENTER * TO EXIT

\ /

As BLOKEDIT commands are entered on line 12, they are rolled
through lines 3 through 17.

CHAPTER 12. BLOKEDIT COMMAND 12-5

12.4.1 Informative Messages

PROCESSING COMMAND LINE .• CURRENT SOURCE FILE IS •• I .. :DR.

This message is the BLOKEDIT monitor message. This message
is displayed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
currently being processed and the name, extension, and drive
number of the last named source file.

SOURCE FILE WENT TO E.O.F.

This messge is displayed if the source file from which lines
were being copied ended before the specified lines were finished.

BLOKEDIT TRANSFER COMPLETE
OUTPUT FILE WAS name LINE COUNT WAS nnn

This message is displayed when all of the command file lines
have been executed. If the command statements are being entered
via the CRT keyboard, this condition will be determined when an
asterisk (*) is entered. If the command statements are being read
from a command file, either an asterisk (*) or an end of file
(EOF) will determine the condition. The number of lines in the new
file is displayed following the second line.

12.4.2 Fatal Errors

If BLOKEDIT detects a fatal error in the command statement
line the monitor message is rolled up the screen, an appropriate
error message is displayed, and the program returns an error
condition to the DOS.

NEW FILE NAME IS REQUIRED

This message is displayed if the operator did not name a new
file when the BLOKEDIT command was called.

COMMAND FILE DRIVE IS INVALID

This message is displayed if the operator specified a drive
number for the command file that is invalid.

NEW FILE DRIVE IS INVALID

This message is displayed if the operator specified for the
new file a drive number that is invalid.

12-6 1500 DISK OPERATING SYSTEM

COMMAND AND NEW FILE NAMES CAN NOT BE IDENTICAL

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives
for the files were specified or assumed to be the same.
Defaulting of extensions and drives is described in an earlier
paragraph.

NEW FILE AND SOURCE FILES CAN NOT SE IDENTICAL

This message is displayed if the operator specified source
file and new file names are the same and the extension and the
drive for the files were specified or assumed to be the same.
Defaulting of extensions and drives is described in an earlier
paragraph.

COMMAND FILE NOT FOUND

This message is displayed if the command file name was not
found on the drive(s) specified or assumed.

NEW FILE NAME IN USE

This message is displayed if the specified output file was
found on the drive(s) specified or assumed. SLOKEDIT will n~
write into an existing file if commands are being read from a
command file unless the "0" option was specified. If commands are
being entered to SLOKEDIT via the keyboard, the operator is given
the option to overwrite the existing file.

NEW FILE NAME IN USE, OVERWRITE IT?

If the operator answers Yes (Y) the file is overwritten.
If the reply is No (N) SLOKEDIT returns control to DOS.

***SAD FILE SPECIFICATION**'

This message is displayed if the first character of a command
file line, other than a quoted line, is an upper-case alpha
character but the DOS file specification was not recognizeable.

CHAPTER 12. SLOKEDIT COMMAND 12-7

12.4.3 Selective Fatal Errors

These errors are fatal when BLOKEDIT is reading a command
file, and informative when commands are being entered via the
keyboard.

SOURCE FILE NOT FOUND

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

BAD LINE NUMBER SPECIFICATION

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizable
line number specification.

Here are some examples of valid line numbers:

4
999999
100-364

A single digit is acceptable.
A line number may have up to six digits.
First and last line to be selected are
separated by a dash.

34,55-78,100-147 Commas separate line specifications.

Here are some examples of invalid line numbers:

1A

1234567
17-34-77

Only "-", ",", or space after a digit,
unless the line is a source file
name beginning with a digit. If it is,
an extension must be given.
Number has more than six digits.
Only two numbers separated by "-".

LINE NUMBER ZERO IS NOT VALID

This message is displayed if a line number of zero is
specifed in a command line. It is ignored if entered via the
keyboard.

START LINE NO. > END LINE NO.

This message is displayed if the first number of a line
number pair is larger than the second number of the pair, as in:
235-176. It is ignored if entered via the keyboard.

12-8 1500 DISK OPERATING SYSTEM

BAD DATA IN SOURCE FILE LINE nnn

This message is displayed if BLOKEDIT discovers non-ASCII
characters in a source file. The line number will be displayed
following the message. If commands are being entered via the
keyboard, the source file is reselected and the next command is
requested.

NO VALID SOURCE FILE FOR TRANSFER

This message is displayed if BLOKEDIT discovers line numbers
to be transfered from a source file when there is no open source
file.

FORMAT OR RANGE ERROR ON SOURCE FILE

This message is displayed if DOS discovers a file which can
not be read. If commands are being entered via the keyboard the
source file will be de-selected, and the next command requested.

CHAPTER 12. BLOKEDIT COMMAND 12-9

CHAPTER 13. BOOT COMMAND

The BOOT command allows the user to change the disk drive
from which operating system overlays and utilities are loaded
without physically restarting the system. This causes DOS to be
reloaded from the selected drive after execution.

The BOOT command line is:

BOOT <:Dnn> <;<DOS command line»

For example:

BOOT :DR1

Would cause drive 1 to be treated as the system drive for loading
programs and utilities until the system is physically rebooted or
BOOT is run to change it. This is an example of soft booting.

To check which drive is the currently booted drive, just
enter BOOT on the command line, and the current booted drive
number will be displayed. Then, BOOT will ask for a new boot drive
number. Entering an asterisk here will cause the program to
return to DOS.

CHAPTER 13. BOOT COMMAND 13-1

CHAPTER 14. BUILD COMMAND

14.1 Purpose

BUILD provides an alternative means to create a text file
without having to use the standard DOS editor. BUILD is useful for
rapid generation of very short text files, such as two and three
line CHAIN files. Also, BUILD is usable from within a CHAIN.

14.2 Use

The BUILD command is invoked by entering the command line:

BUILD <file spec>[;<end character>]

The file specification defines the output file. This output
file specification is always required. If the named file does not
exist, it is created. The default extension is TXT.

The end character is optional. If no end character is
specified-on the command line, BUILD terminates upon receiving a
null input line (a null input line is a line consisting of only an
ENTER; a blank line is not a null line).

BUILD accepts input lines from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it displays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specified
end character, if any, as the first character entered. If the end
character is present as the only character of the entered line,
the end line is discarded (it is not written to the output file),
and an end of file mark is written to the output file and the
output file closed by returning to DOS.

Entering an end character followed by a string will pass the
string to the output line without the end character and will not
terminate BUILD. This action allows entering CHAIN commands into
a chain file being written by BUILD from within an active CHAIN.

CHAPTER 14. BUILD COMMAND 14-1

14.3 A Simple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
auto-execute request can be accomplished later with a single
command line entered at the keyboard. All that is required is to '
enter at the system console:

BUILD <chain file spec>;*
AUTOKEY <program name>
AUTO AUTOKEY/CMD
*
Upon recelvlng the "*" input line, BUILD closes the output

file and terminates. Note that in the two places where the "*"
appears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain files). After the BUILD command is finished,
the output file named on the BUILD command line contains the
following two lines:

AUTOKEY <program name>
AUTO AUTOKEY/CMD

It is also possible, through BUILD nesting, to create chain
files which during execution of the chain construct other chain
files and execute them automatically upon completion of the first
chain (since any statement of a chain file is allowed to be a
CHAIN command).

The references to CHAIN made here may be premature, since
CHAIN is discussed in a later chapter, but are included because
BUILD and CHAIN can be a powerful facility when used together in
this manner.

The keyboard (KBD) and display (DSP) keys may be pressed any
time messages are being displayed. The keys will be effective
just prior to the display of the prompting ":". Depressing the
display (DSP) key will hold the current display until the key is
released. Depressing the keyboard (KBD) key will cause the
program to terminate and return to DOS.

14-2 1500 DISK OPERATING SYSTEM

14.4 Error Messages

The following error messages can occur during the execution
of BUILD.

INVALID DRIVE SPECIFICATION

This message is displayed if the drive specification entered
for the output file is not within the range of valid drives.

INVALID FILE SPECIFICATION

This message is displayed if the file specification entered
for the output file is blank.

CHAPTER 14. BUILD COMMAND 14-3

CHAPTER 15. CAT COMMAND

15.1 Purpose

The CAT command selectively displays filenames in the DOS
directory or members in a library directory. One may choose to
display all cataloged filenames on all drives online or specific
filenames on specific drives.

15.2 Use

The CAT command is invoked by entering the command line:

CAT [<name>][</ext>][:DR<n>][,L]

where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <n> specifies the logical disk drive number, and L
specifies list only those files in the current subdirectory.

To display members of a library directory enter:

CAT <library name>*

To display members of the UTILITY/SYS directory enter:

CAT *

DOS Directory entries are displayed in the form:

NAME/EXTENSION (PFN)P

where PFN is the physical file number in octal (0-0377) and P is
the protection on the file; D for deletion, W for write, and blank
for none. If the file displayed is in a subdirectory other than
system, the directory entry is displayed in the form

NAME/EXTENSION-(PFN)P

with the dash indicating a sUbdirectory entry. All drives are
searched, unless a specific drive is requested, and as each drive
is scanned, the line:

CHAPTER 15. CAT COMMAND 15-1

---- DRIVE n VOLUME ID (volid) SUBDIRECTORY (subdirectory name)

is displayed. This line is not displayed if the drive is not on
line, or if no files from it are to be displayed.

Depressing the display (DSP) key causes the catalog display
to pause as long as the key is held. Depressing the keyboard
(KBD) key causes the catalog display to terminate. If the CAT
command is parameterized by only an extension, only files of that
extension will be displayed. If the CAT command is parameterized
by only a name, only files of that name (all extensions) will be
displayed. If the CAT command is parameterized by a name and an
extension, only files of that root name and extension (all drives)
will be displayed. If the CAT command is parameterized by only
the drive number, only files on that drive will be displayed. If
only a portion of the filename is entered, all files beginning
with the letters specified will be displayed. For example,
entering:

CAT IT

would cause the display of all files on all on-line drives whose
extensions start with "T".

Entering:

CAT MA:WORK2

would cause the display of all files on symbolic drive "WORK2"
whose file names start with "MA".

15-2 1500 DISK OPERATING SYSTEM

CHAPTER 16. CHAIN COMMAND

16.1 Introduction

The CHAIN command enables the sequential execution of more
than one command program without operator intervention. To
accomplish this, the user creates a chain input file that contains
commands to invoke the programs to be used, plus all the inputs
that are required by these programs. This input file is then
compiled by CHAIN into a procedure file, which then replaces the
keyboard entry routines--key-ins which would normally be performed
by the operator--with appropriate instruction lines that cause the
routines to execute automatically. Each time a program would
normally request a line or character to be entered from the
keyboard, it is read instead from the procedure file.

The chain input file may be created by EDIT or BUILD, and is
a listing of all the commands, comments, tags, and directives
needed to call up and execute the several jobs or programs.

CHAIN command functions in two phases, compilation of the
input file and execution of the procedure file. In the
compilation phase, statements are read from the user-created input
file and compiled into the procedure file named CHAIN/SYS. The
CHAIN/SYS file then consists only of statements necessary for the
execution phase. In the execution phase, CHAIN interfaces with
the Operating System and handles control and retrieval of
information from the procedure file. CHAIN/OV1, a DOS utility,
fetches each line from the procedure file. If the line read is
longer than the maximum specified by the calling program the
program is aborted and the chain abandoned.

When a program invoked by the CHAIN procedure file terminates
normally (rather than in error) , the CHAIN/OV1 routine reads the
next statement, if present, from the procedure file. If the end
of file is reached when DOS is requesting another command, the
CHAIN is determined to be finished. At this time, normal
termination of CHAIN, the procedure file is deleted and commands
can be entered via the keyboard. If the end of file is reached at
any other time, the CHAIN will abort abnormally, and the procedure

CHAPTER 16. CHAIN COMMAND 16-1

file will not be deleted. In any case, CHAIN will return to DOS.

The CHAIN command line specifies the name of the text file to
be compiled and the parameters, if any, of the file:

CHAIN <input filespec><jparameter><,parameter> .•.

As shown, parameters follow the semicolon after the input file
name. If there are many parameters, as there may be in a long,
complex CHAIN, the minus sign (-) after the last parameter on the
command line, in place of the normal comma, allows the parameters
to be continued on the next line.

16.2 Tag (Parameter) Definition

The CHAIN command line can contain both tag names and/or tag
names and values for the tags. These parameters follow the
semicolon (j) on the command line which invokes CHAIN. The tag
names can be from one to eight characters in length and may have
values from one to seventy characters in length. A tag must
contain only letters or digits. The value of a tag may contain
any valid character except comma (,), equals (=) or pound sign
(D). The character restriction depends on the syntax being used.

A tag is defined just by its presence on the CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOITjLIST,DATE=30NOV76,TIME=1500hr

CHAIN DOITjLIST,DATED30NOV76D,TIMED1500hrD

(New Syntax)

(Old Syntax)

Both syntax structures are supported and the results of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null valuej DATE has the value of 30NOV76 and TIME has
the value of 1500hr.

CHAIN allows two uses to be made of tags:

1.) A tag can be tested to determine whether it was defined
on the CHAIN command line.

2.) The value of the tag can be substituted on CHAIN input
statements before the line is written to the Procedure File.

16-2 1500 DISK OPERATING SYSTEM

16.3 Tag Substitution

A tag value is substituted whenever a pair of "II" symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given on the CHAIN command line. For
example, with the following contents of an EDITed file called
"DOlT":

MSTRRCV RUNjXL
ACCOUNTS RECEIVABLE ON IIDATEII - #TIMEII
MSTRRCV IINAMElljXL
#NAMEII LATE/30 DAYS ACCOUNTS ON IIDATEII - #TIMEII

and with the CHAIN program invoked by
"CHAIN DOITjTIME=2400hr,DATE=29NOV79,NAME=LIST1,"
the procedure file will contain:

MSTRRCV RUNjXL
ACCOUNTS RECEIVABLE ON 29NOV79 - 2400hr
MSTRRCV LIST1jXL
LIST1 LATE/30 DAYS ACCOUNTS ON 29NOV79 - 2400hr

If a tag is mentioned on the CHAIN command line but given no
value, and if the value is to be used for substitution, a null
value is substituted for the IItag# within the line. The effect is
that the IItag# characters disappear from the line. For example,
if CHAIN was invoked by "CHAIN DOITjTIME,DATE=29NOV79,
NAME=LIST1," the procedure file will contain:

MSTRRCV RUNjXL
ACCOUNTS RECEIVABLE ON 29NOV79 -
MSTRRCV LIST1jXL
LIST1 LATE/30 DAYS ACCOUNTS ON 29NOV79 -

If a tag is not mentioned on the CHAIN command line but is to
be used for substitution in the procedure file, no value is
substituted, and the value IItagll appears as is in the procedure
file.

CHAPTER 16. CHAIN COMMAND 16-3

16.4 Compilation Phase Directives

All CHAIN directives are denoted by the characters II as the
first two on a line. Any number of spaces (including zero) are
scanned until the CHAIN directive is reached. The first thing
after the II must be a valid CHAIN directive or else an error
message is issued and CHAIN is aborted. The following is a list of
these statements.

IIIFS
IIIFC
IIXIF
IIELSE
IIBEGIN
IIEND
II.
11*
IIABORT
IIABTIF

16.4.1 IF Directive

IF SET (TAG DEFINED)
IF CLEAR (TAG NOT DEFINED)
END OF IF
REVERSE EFFECT OF IF
BRACKETS A GROUP OF
IF/ELSE/XIF STATEMENTS
EXECUTION TIME COMMENT
EXECUTION TIME BREAKPOINT
ABORT CHAIN COMPILATION
CONDITIONALLY ABORT CHAIN EXECUTION
COMPILATION TIME COMMENT. (Note that the
slashes are not present)

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted. If an IF directive tests positive, it has an effect;
if an IF directive tests negative succeeding lines in the chain
file are skipped (compilation is turned off) until a later
directive turns the compilation back on.

For example:
IIIFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist. The opposite of
this is true for the IFC directive.

For example:
IIIFC LIST

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

Simple logical operations can be performed on IF directives.
The tags to be used are separated by logical operators. The

16-4 1500 DISK OPERATING SYSTEM

logical OR is indicated by 'l' (vertical bar) or ',' (comma). The
logical AND is indicated by '&' (ampersand) or '.' (period). For
example the following lines are in the file DOlT:

IIIFS DATE&TIMElQUICK or
DBCMP15 TEST

IIIFS DATE.TIME,QUICK
DBCMP15 TEST

If DATE AND TIME OR QUICK are defined on the CHAIN command line
the DBCMP15 test line will be included in the procedure file.
CHAIN DOIT;DATE=30NOV76,TIME=1500hr or CHAIN DOIT;QUICK or CHAIN
DOIT;DATE,TIME will all result in a true logical condition and the
DBCMP15 line will be included.

IF directives are only evaluated if lines are being included.
If one IF directive has proven negative and has inhibited the use
of lines, all following IF directives will be ignored until either
an ELSE or XIF statement is found.

For example:
IIIFS DATE
IIIFS TIME
DBCMP15 TEST
IIXIF

If DATE was not defined, all lines until the IIXIF will be
ignored. In this example the IIIFS TIME statement would not be
evaluated and the DBCMP15 TEST would not be included even if TIME
was defined.

16.4.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
will unconditionally terminate the range of the last IF directive.
The second is the ELSE directive; it will reverse the results of
the last IF directive; that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

For example, the DOlT file contains the following lines:

IIIFS LIST
DBCMP15 TEST;L
IIELSE
DBCMP15 TEST
IIXIF
IIIFS COPY

CHAPTER 16. CHAIN COMMAND 16-5

COPY TEST/DBC,:D1
IIXIF

If CHAIN is invoked by 'CHAIN DOIT;LIST' the procedure file
will contain

DBCMP15 TEST;L

If invoked by 'CHAIN DOIT;COPY', the procedure file will contain

DBCMP15 TEST
COPY TEST/DBC, :D1

16.4.3 BEGINIEND Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGINIEND
counter is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGINIEND counter is
incremented. If an END operator is encountered, then the
BEGINIEND counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGINIEND counter is
not equal to zero. For example:

II IFS FLAG1
DBCMP15 TEST1;XL
TEST PROGRAM ONE
II ELSE
II BEGIN
II IFS FLAG2
DBCMP15 TEST2;XL
TEST PROGRAM TWO
II ELSE
DBCMP15 TESTTEST;XL
TEST TESTER
II XIF
II END
II XIF
II IFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
II XIF

The 6th through the 12th lines will not be used if FLAG1
exists, notwithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGINIEND pair prevented

16-6 1500 DISK OPERATING SYSTEM

these statements from having any effect.

16.4.4 ABORT Directives

The IIABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

IIIFC TIMEIDATE
.**** TIME AND DATE ARE BOTH REQUIRED
IIABORT
IIXIF

If the Procedure File is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would ABORT.

The IIABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes the ABTIF bit,
internal to DOS.H, to be tested. If the bit is on, the chaining
will abort. If errors have been found during the execution of the
last program the ABTIF bit should be set. For example, the
procedure file contains:

KILL TESTFILE/DBC
Y
IIABTIf
KILL OUTPUT/TXT
Y

If the file TESTFILE/DBC is not found by KILL, the ABTIF bit would
be set. When the IIABTIF statement is processed the abnormal
program completion bit will be checked, and in this case it will
be on, so the CHAIN will be aborted. There is a utility,
ABTONOFF, whose function it is to turn the ABTIF bit on or off.
Thus CHAIN files which make use of the ABTIF facility should use
this utiltiy to make sure the bit is off before starting. See the
chapter on the ABTONOFF command for further information.

CHAPTER 16. CHAIN COMMAND 16-7

16.5 Comments

CHAIN allows for two types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear until just before that command is to be executed. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
example, the procedure file containing:

II. COMPILATION OF THE TEST PROGRAM
DBCMP15 TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the compilation
was executed. A variation on the execution time comment is the
operator break point. An operator break point in a comment line
causes the comment line to be displayed, the processor to BEEP,
and execution is suspended until the operator depresses the KBD or
DSP key. For example, the procedure file containing:

11* INSERT SOURCE DISKETTE INTO DRIVE 1
COPY TEST/TXT,:D1
COPY TEST1/TXT, :D1
COPY TEST/INC,:D1

The second type of comment line is a compilation time
comment. This line is not included in the procedure but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

COMPILATION OF TEST PROGRAM
II IFS LIST

YOU ARE GOING TO GET A LISTING
DBCMP15 TEST;XL
TEST PROGRAM
II ELSE

YOU AREN'T GOING TO GET A LISTING
DBCMP15 TEST

16-8 1500 DISK OPERATING SYSTEM

and the CHAIN command:

CHAIN MAKELISTiLIST

was given, then only the lines:

· COMPILATION OF TEST PROGRAM
· YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
however, the CHAIN command:

CHAIN MAKE TEST

was given, then only the lines:

· COMPILATION OF TEST PROGRAM
• YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

16.6 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command, it
stores CHAIN/SYS file pointers for the line to be used. If
something goes wrong during the DOS command which follows and the
procedure is aborted, CHAIN still knows where it was in the
CHAIN/SYS file when the problem occurred. Since CHAIN does not
delete the CHAIN/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAIN/SYS
file, if the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. Thus, one can recover from jammed paper in a printer half
way through a listing by simply fixing the printer, and then
entering the CHAIN * command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

CHAPTER 16. CHAIN COMMAND 16-9

This simply restarts the chain with the next available line
in the procedure. If the next line had been intended as a keyin
(response) line for the failed program (as opposed to a DOS
command line) the chain will generally immediately abort again.
However, by restarting the chain in this manner, repeatedly if
necessary, the invalid step can usually be bypassed and chaining
resumed.

Note that CHAIN/OV1 is not guaranteed to always work. If the
pointers to the CHAIN/SYS file are lost, only CHAIN * will work.

16.7 Notes On Usage of CHAIN

CHAIN then replaces the DOS keyboard entry routine.
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the Editor, can be invoked from a
chain file but editing must be done manually by the operator. The
CHAIN program itself can be called from within a CHAIN file. The
chain is aborted when a CHAIN-invoked program makes an exit to DOS
that implies that an error of some kind has been made. The error
message given by the program will generally remain on the screen
after the chain is aborted.

Some programs can go through a rather complex set of requests
for input which can make them hard to use with the CHAIN program
without making a mistake. For this reason, most DOS programs
allow almost all options to be specified on the command line and
keep the variation in the number of keyin requests to a mlnlmum.
It is good practice for all programs to be written with this in
mind to facilitate their use with CHAIN.

An additional item to keep in mind is the fact that some DOS
programs use their own keyboard entry routine as well as the one
provided by the DOS. This enables the program to avoid the use of
the CHAIN procedural lines when special operator intervention is
required. Also, if a keyin line from the CHAIN procedure file is
longer than that requested by the executing program, the CHAIN
will be abor ted.

16-10 1500 DISK OPERATING SYSTEM

16.8 Error Messages

The following error messages can occur during the compilation
phase of CHAIN. All errors displayed will cause CHAIN to terminate
its current execution and return to DOS.

BAD DEVICE SPECIfICATION.

This message is displayed if the drive specification for the
CHAIN command file is not within the range of valid drives.

NO SUCH NAME.

This message is displayed if the CHAIN command file does not
exist.

NAME REQUIRED.

This message is displayed if the CHAIN command file was not
entered on the command line.

CHAIN OVERLAY MISSING.

This message is displayed if the CHAIN overlay (CHAIN/OV1)
does not exist on the same drive that the CHAIN command is on.

CONDITION SPECIfICATION ERROR.

This message is displayed whenever a logical operator other
than a I:' (vertical bar), ',I (comma), '&' (ampersand), or '.'
(period) is encountered in the command file.

LINE OVERfLOW DURING VALUE SUBSTITUTION.

This message is displayed whenever a value substitution
causes the generated logical CHAIN/SYS record to be larger than 80
characters.

TAG VALUE NOT TERMINATED.

This message is displayed if the line continuation character
(-) is encountered and it is not followed by a carriage return
character.

OPTION SPECIFICATION ERROR

This message is displayed if a tag name on the command line

CHAPTER 16. CHAIN COMMAND 16-11

is either blank or followed by a terminator other than a '#'
(pound sign), ':' (equal sign), ,_, (dash), or a I,' (comma).

SYMBOL TABLE OVERFLOW.

This message is displayed if the symbol table overflows
during the compilation phase of CHAIN. The symbol table has 2K
(2048) bytes in it.

TAG DEFINED MORE THAN ONCE.

This message is displayed if a defined tag appears more than
once on the command line.

CHAINING ALREADY ACTIVE.

This message is displayed if a CHAIN * command is encountered
within the CHAIN/SYS file during the execution phase of CHAIN.
The message would actually appear during the compilation phase of
the CHAIN command executed inside the execution phase of CHAIN.

UNDEFINED CHAIN OPERATOR.

This message is displayed if anyone of the CHAIN directives
is encountered without a carriage return following the directive
encountered.

THE CHAIN/SYS FILE HAS BEEN DELETED.

This message is displayed whenever an attempt to restart a
CHAIN file is made and the CHAIN/SYS file does not exist on the
same drive as the CHAIN command.

CHAINING ABORTED.

This message is displayed if a IIABORT directive is
encountered.

The following error message can occur during the execution
phase of CHAIN.

CHAINING ABORTED. -ABTIF- ERROR BIT ON.

This message is displayed if a IIABTIF directive is
encountered and the ABTIF error bit is on.

16-12 1500 DISK OPERATING SYSTEM

CHAPTER 17. CHANGE COMMAND

CHANGE - Change a file's protection

CHANGE <file spec>;p

The CHANGE command enables one to write-protect, delete
protect, or clear the protection of a disk file. If a file is
delete -or write-protected, a KILL command (or program generated
KILL) cannot affect it. If a file is write protected, it cannot
be written into by the standard system routines.

The option parameter "p" is used above to indicate the
protection for the file specified. Protection can be specified
as:

For example:

D - delete protect
W - write protect
X - clear protection.

CHANGE NAME/EXTENSION;D
CHANGE NAME/EXTENSION:DR1;X

will delete protect the file in
protection in the second case.
given, or if the file indicated
cannot be found, the message

the first case, and remove all
If a first specification is not

by the first file specification

FILE NAME MISSING.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

and a sample CHANGE line will be displayed. If the semicolon (;)
is replaced with any other character, the message

PROTECTION UNCHANGED.

will be displayed and no protection change will occur. If the
drive specification entered is invalid, the message

CHAPTER 17. CHANGE COMMAND 17-1

INVALID DRIVE

will be displayed and no protection change will occur.

17-2 1500 DISK OPERATING SYSTEM

CHAPTER 18. CLOCK COMMAND

The Datapoint 1500 maintains an internal time-of-day and date
clock. When the machine is first powered up, the clock is cleared
to zero, and is marked as not having been set. The CLOCK command
may be used to read the clock and display the time and date on the
screen, as well as to set either the time, the date, or both.

The format of the CLOCK command is as follows:

CLOCK[;S]

The S option is the only one recognized, and indicates that the
clock is to be set, regardless of whether it had been set
previously. If no options are specified, the time and date will
be displayed if the clock has been set. If it had not been set,
the program will request the time and date. The program allows
two formats for the date: the familiar "MM/DD/YY" format, and the
full display format, for example: AUGUST 23, 1977. Three-letter
abbreviations for the month are allowed, as well as specifying
only the last two digits of the year. The time is entered in the
form "HH:MM:SS", but the seconds field is optional, and will
default to zero. When the time and date have been entered, the
program asks, "ARE YOU SURE". The clock will not be set until a
"Y" answer is given for this question, allowing a certain amount
of control over the seconds portion of the time.

When the program asks for the date, which is requested first,
a null response (simply pressing the ENTER key) indicates that the
current date is to be used. Entering an asterisk ("*") terminates
the program immediately. The same applies to the time, except
that of course a null entry indicates that the current time is to
be used. If the clock had not been set since power-up, null
entries will not-be accepted.

The CLOCK command gives various messages for error conditions
such as invalid dates or times. These are all self-explanatory
and all allow the information to be keyed in again.

CHAPTER 18. CLOCK COMMAND 18-1

CHAPTER 19. COPY COMMAND

19.1 Purpose

It is frequently useful to make a copy of a disk file. It
may be desired, for example, to make a copy on a separate disk for
backup or distribution purposes.

The COpy command allows a user to selectively update
(replace) an existing file, or create (add) a new file to receive
the copy. These options used in combination with the CHAIN
utility provide an easy method of updating and maintaining DOS
disks.

The COPY command does not make assumptions about the format
of the sectors being copied, but merely copies the file
sector-for-sector. It can copy all types of disk files. Some
particular types of files are still unmovable, however. The
outstanding example is INDEX files, usually with extension lSI.
These cannot be moved because index files contain internal
pointers indicating their actual physical location on the disk
volume. These are made invalid when the file is moved to another
place on the disk.

19.2 Use

Note that DOS.H provides two different COPY routines. The
selection of which COPY routine is invoked by the COpy command
line is made by DOS. A fast COpy routine is invoked if
concurrency is inactive, else the normal COPY routine is invoked.
The only outward difference between the two is that the fast COPY
routine does not click for unallocated sectors or format errors.

The COpy command is invoked by entering at the system
console:

COPY <file spec>,<file spec>
COPY <file spec>,<file spec>;R
COPY <file spec>,<file spec>;A
COpy <file spec>,<file spec>;7

UNCONDITIONAL:

CHAPTER 19.

Unconditional copy
Replace only
Add only
Copy SYSTEM7/SYS

COPY COMMAND 19-1

This option will cause the first specified file to be copied
into the second one. Attributes of the first file, such as
its protection, are copied to the second file as well.

REPLACE:

ADD:

This option will copy a file only to an existing file. If
the output file does not exist no copy of data takes place
and an informative message is given, "file-name NOT COPIED".

This option will copy a file only if the output file does not
already exist. If the output file does exist no copy of data
takes place and an informative message is given "file-name
NOT COPIED".

COpy SYSTEM7/SYS:
This is used only when upgrading disks. Since the
subdirectory information is kept in SYSTEM7/SYS, it is
sometimes necessary to copy the other(information in that
file, without overwriting the subdirectories. This option
assumes that the output file already exists, and the copy
starts with the second sector of each file, after the sector
which contains the subdirectory data. Thus a user may
upgrade disks to a new version of the operating system
without destroying the subdirectories on the output disk.

The only portion of the file specifications that is
specifically required is the name of the input file. The
extension of the input file, if none is specified, is assumed to
be TXT. If a drive specification is entered for the. input file,
then only that specific qrive is searched for the indicated file.
If no drive specification for the input file is given, all drives
are searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
file's extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output
file unless a particular drive is specified.

Example: to copy file PAYROLL/TXT from symbolic drive "WORK2"
to symbolic drive "VlORK1"

COPY PAYROLL:WORK2,:WORK1

Example: to make another copy of PROGRAM/ASS on drive zero,
but to be named MYPROG.

COPY PROGRAM/ASS,MYPROG:DRO

19-2 1500 DISK OPERATING SYSTEM

Example: to make another copy of PAYROLL/TXT drive 0, on
drive 1 only if it does not already exist on drive 1.

COPY PAYROLL:DO, :D1jA

Example: to update (replace only) TREK/ABS, a file on drive 0
from a newer version on drive 1.

COPY TREK/ABS:DR1, :DROjR

A file may not be copied to itself. However it may be copied
to a file of the same name on another drive.

The COPY command issues a click each time an unused sector is
copied. If more than four or so clicks occur at the end of
copying a file, it usually indicates that the file is larger than
necessary to contain the data in it. In this case, moving the
file using APP or SAPP can sometimes help to reduce its size.
Clicks ocurring during the copying (before the end of the file)
indicate sectors containing DOS format errors, possibly implying a
sector accidentally destroyed by some faulty program.

19.3 Error Messages

The following error messages can occur during the execution
of COPY.

CAN'T FIND THAT FILE.

This message is displayed if the input file specified does not
exist.

I NEED THE NAME OF THE INPUT FILE.

This message is displayed if the input filename is not entered on
the command line.

INVALID DRIVE

This message is displayed if the drive specification entered for
input or output file in not in range of the valid drives.

INVALID VALUE IN PARAMETER LIST.

This message is displayed if a parameter other than 'R', 'A', or
'7' is entered on the command line.

CHAPTER 19. COpy COMMAND 19-3

'7' OPTION IS ONLY VALID WHEN COPYING SYSTEM7/SYS.

This message is displayed if the '7' option is entered on the
command line for any file name other than SYSTEM7/SYS.

19-4 1500 DISK OPERATING SYSTEM

CHAPTER 20. DOSGEN COMMAND

20.1 Purpose

Before any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, (where the names of the
files contained on the disk are stored), as well as a map showing
which places on the disk are bad and should not be used. The
purpose of the DOSGEN command is to provide the user with a simple
way of accomplishing this preparation.

Note that the use of DOSGEN requires at least a two-drive
system, since DOSGEN cannot be made to write on the drive from
which it is executed.

20.2 Use of DOSGEN

To DOSGEN a disk enter:

DOSGEN <drive spec>

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any tracks on the
volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to cause
the DOS to lock out one or more tracks of the disk from DOS
access. This can be useful in some special applications where it
is desired to not allow DOS programs access to a file stored in
unusual format. If the user does wish to lock out any tracks, he
may do so by specifying one or more track numbers, in the format:

12,14,16,25-28,40

CHAPTER 20. DOSGEN COMMAND 20-1

The above example would cause tracks 12, 14, 16, 25, 26, 27,
28, and 40 to be locked out. Note that the track numbers to be
locked out are given in decimal as opposed to octal.

After the operator has specified which, if any, tracks are to
be locked out, the DOSGEN command checks for bad sectors on the
disk and issues a message indicating any tracks it finds which
contain bad sectors. Any tracks found bad are automatically
locked out and will not be used by DOS. The remainder of the
operation is completely automatic and indicates its completion
with the familiar DOS message, "READY".

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEM7/SYS and UTILITY/LNK, if UTILITY/LNK was present on the
same drive as DOSGEN.

20.3 Special Considerations

An important thing to remember is that disks must be
formatted before DOSGEN can be used on them. Disks and diskettes
for the 1500 drives come pre-formatted from the manufacturer. A
disk that has been formatted with tracks locked out (error mapped)
cannot be DOSGENed. Note that leaving logical drives unDOSGENed
on 9320 disk packs will cause system data failures if those
unDOSGENed drives are accessed.

20.4 Error Messages

The following error messages can occur during the execution
of DOSGEN.

COPY/CMD, PUTIPL/CMD, CHAIN/CMD, AND CHAIN/OV1 MUST ALSO BE
PRESENT.

This message is displayed if anyone of the files mentioned in
the above error message does not exist on the "booted" drive.

ERROR IN DOS FUNCTION

This message is displayed if any of the calls to the DOS
functions to get a specified directory sector, or a physical disk
address of a CAT returns with an error condition.

DRIVE OFF LINE.

20-2 1500 DISK OPERATING SYSTEM

This message is displayed if the specified drive entered on
the command line is off line.

UNABLE TO WRITE CLUSTER ALLOCATION TABLE CORRECTLY ON DISK.

This messge is displayed if a write error is encountered
while attempting to write the cluster allocation table (CAT) to
the drive entered on the command line.

UNABLE TO READ CLUSTER ALLOCATION TABLE CORRECTLY FROM DISK.

This message is displayed if a read error is encountered
while attempting to read the cluster allocation table (CAT) from
the drive entered on the command line.

UNABLE TO WRITE DIRECTORY CORRECTLY ON DISK.

This message is displayed if a write error is encountered
while attempting to write the directory to the drive entered on
the command line.

UNABLE TO READ DIRECTORY CORRECTLY ON DISK.

This message is displayed if a read error is encountered
while attempting to read the directory from the drive entered on
the command line.

INVALID REQUEST.

This message is displayed if anything other than a drive
specification is entered on the command line.

INVALID DRIVE.

This message is displayed if the drive specification entered
on the command line is not in the range of valid drives.

YOU CAN NOT DOSGEN THE "BOOTED" DRIVE.

This message is displayed if the drive specification entered is
the same as that for the "booted'! drive.

CHAPTER 20. DOSGEN COMMAND 20-3

CHAPTER 21. DSKCHK15 COMMAND

21.1 Purpose

The purpose of DSKCHK15 is to repair a logically-damaged DOS
volume. The performance of the DOS is directly related to the
correctness of disk-resident system tables.

DSKCHK15 checks all system tables, such as the CAT,
directory, etc. for format and content. DSKCHK15 is able to
determine in most cases when an error in system data occurs, what
the error is, and if the system data can be reconstructed from the
other data on the disk.

21.2 Use

DSKCHK15 is invoked by entering:

DSKCHK15 [<drivespec>][;options]

The only entry necessary on the Command Line is "DSKCHK15".
The drive specification may be entered as a standard drive
specification (:DO) or as a VaLID (:PAYROLL). If no drive
specification is entered on the command line, the program will ask
for one. If no options are selected the default is logging to the
screen only and the fix option turned off.

21.3 Options

Option letters that may be used are IlL" and "F", and to be
activated they must be entered on the command line.

21.3.1 "L" Option

Local Printer On - when specified all messages will be
printed on the printer as well as displayed to the screen.

CHAPTER 21. DSKCHK15 COMMAND 21-1

21.3.2 "F" Option

System Fix Option - causes the program to compute the correct
data when an error in System Data is detected, if this computation
is possible, and allows the user to fix the data in error if he so
chooses.

If an error in system data is detected, and the correct data
can not be computed from the other pertinent usable data on the
disk, the operator is so informed and may be asked if he wishes
the file or entry deleted. All error correction messages contain
a "no-change" option which will cause the program to continue to
the next check without changing the data on the disk being
checked. The "F" option is illegal and automatically deactivated
if DSKCHK15 is run from CHAIN or while JOB15 is active.

21.4 Program Operation

21.4.1 System Tables and Data

Descriptions of the DOS tables, system data and their uses
may be found in the chapter on System Structure.

All of the descriptions below are written for the "F" (fix)
option active. If this option is not active the operation is the
same except that no request for corrective action is made.

21.5 Execution Phases

There are many execution phases in DSKCHK15, some of which
are dependent on the type of disk being checked. For example, if
a 9320 disk is being checked, the Hashed Directory Index (HDI)
will be tested, but the directory mapping bytes will not be
tested, since they do not exist on 9320 drives.

21.5.1 Initialization

During initialization the program displays a signon message,
and the option parameters are scanned. If the "F" (fix) option
was selected the correction features are enabled. If the drive
specification was not specified on the command line, it is asked
for during this phase.

21-2 1500 DISK OPERATING SYSTEM

21.5.2 HDI Checking

This phase is dependent on the type of disk being checked,
and is not executed on diskettes, since diskettes use directory
mapping bytes.

This phase checks the HDI (Hashed Directory Index) by
comparing the master to the backup. If an error is found, an
error message is displayed, but no corrective action is allowed at
this time. If no errors are detected, an appropriate message is
displayed.

21.5.3 CAT Checking

The first phase of checking reads the CAT on the disk being
checked, and compares the master to the backup. If an error
occurs in reading either copy, or in comparing the copies, an
error message will be displayed, but no corrective action is
allowed at this time. If no errors are detected an appropriate
message is displayed.

21.5.4 Directory Checking

During this phase each directory page is read and checked.
The master is compared to the backup copy, and if the compare
fails the entry affected is displayed. The program then asks
which entry should be retained, or if both entries should be
deleted.

When an unsuccessful read occurs in either the master or
backup, an error message is displayed and the compare is skipped.
The good page is used to continue the checks. If both pages fail
to read successfully an appropriate message is displayed and the
next page is checked.

If either or both pages read successfully, and when all
compare errors are resolved, each entry is checked for valid
format. If a deleted entry is encountered it is checked to see
that the delete is complete. If it is not, an error message is
displayed and the program asks if the error is to be corrected.

The RIB PDA is checked to see that it points to a valid
location on the disk. If an error is detected, an appropriate
message is displayed, and the program asks if the entry should be
deleted. If this entry is deleted, no space for it will be
allocated in the computed CAT.

CHAPTER 21. DSKCHK15 COMMAND 21-3

The program then proceeds by checking the filename/ext for
valid characters. Each character should fall into the range of
A-Z or 0-9. If the program finds an invalid character, a warning
message is displayed and the program continues.

For diskettes, the program generates a mapping byte for each page
as the page is checked. If the computed mapping byte does not
match the mapping byte on the diskette, a message is displayed and
the computed mapping byte is entered into the computed CAT sector
being generated.

For 9320 disks, a HDI byte is generated for each file in the
directory page being checked. If the computed hash byte does not
match the master HDI byte for that file, a warning message is
displayed, but no corrective action is allowed at this time.

21.5.5 RIB Checking

After all directory pages have been checked, the RIB for each
entry in the directory is checked for format and space allocation
validity. The RIB master and backup are first read and compared.
If either copy is not read successfully, the program asks if the
good copy is to be written to the copy with the read failure. If
a read failure occurs on both copies an error message will inform
the user and the program will ask if the file is to be deleted.
No space will be allocated for that file in the computed CAT.

If a compare error is detected, the filename and the first 16
bytes of both copies is displayed and the program will ask which
copy is to be retained on the disk.

After the RIB master and backup have been read and compared,
and all errors resolved, the RIB format is checked for the correct
PFN, LRN, and an 0377 in the 4th byte. Any format error detected
will be displayed, and the corrective action requested.

Each segment descriptor is then checked to see that it points
to a valid location on the disk, and that the first sector of the
segment has the proper PFN. The space allocation is computed and
checked against the CAT and Lockout CAT for conflicts. If a
conflict occurs with the Lockout CAT the program will ask if the
Lockout CAT is to be rewritten to free this space. If a conflict
is detected with another file, the conflicting area is analyzed
and displayed with a request for action. If no conflicting areas
are found, the next two phases are skipped and the program
continues with the Lockout CAT check.

21-4 1500 DISK OPERATING SYSTEM

21.5.6 Cluster Allocation Phase 1

If a conflict was detected while checking the RIBs this phase
is activated to reread all the good RIBs and find all other
conflicts.

21.5.7 Cluster Allocation Phase 2

Upon the determination of all conflicting clusters, they are
scanned to see which RIBs conflict and an opportunity to delete
one or another or both conflicting files is given. If no change
is requested, the CAT is updated with the conflicting clusters so
there is protection from another file writing into this area.

21.5.8 Lock-out CAT Checking

If no change in the Lockout CAT has been made previously, it
is now read and compared to its backup and checked against the CAT
to see that all locked out space is also allocated in the CAT. If
changes were made in previous phases of the program the generated
Lockout CAT is checked against the CAT and if no errors are
detected it is written to the disk.

Any errors detected in this phase cause a descriptive message
to be displayed and the program asks if a new Lockout CAT should
be written. This new Lockout CAT, if written, will only have the
space for the system tables locked out.

21.6 Examples of Command Lines

The following are examples of Command Line entries:

DSKCHK15, : DO will cause the error messages to go to the
screen, and only verification of system tables will be active.

DSKCHK15 :DO;L

This causes messages to be printed as well as displayed on the
screen.

DSKCHK15 :DO;LF (or FL)

In this example error messages are printed as well as displayed,
and the fix option is active. This means that if any errors are

CHAPTER 21. DSKCHK15 COMMAND 21-5

detected, the operator will be asked for a response.

21.7 Operational Messages

These are the informational messages. They keep the operator
informed of what the program is doing.

CHECKING HDI

The program is checking the HDI master and backup for
read errors in either, and for a match between the two.

CHECKING C.A.T. FOR FORMAT

The program is reading the CAT master and copy and
checking for read errors in either, and for a match
between the two.

C.A.T. MASTER AND BACKUP LOOK O.K.

The CAT master and backup were read without error, and
the master compared correctly with the backup.

CHECKING DIRECTORY PAGE nnn

The directory page nnn master and copy have been read
without error. This message also indicates that the
directory entries on this page are being checked for
format. During this check a directory mapping image is
also being constructed and checked against the one on the
diskette if necessary.

CHECKING RIBS

21-6

The directory checking is complete, and the RIB's are
now being checked.

1500 DISK OPERATING SYSTEM

CHECKING RIB FOR PFN nnn

The RIB for PFN nnn is now being read and checked for
format errors and allocation conflicts.

CLUSTER ALLOCATION PHASE 1

If cluster conflicts occur while checking RIBs and the
'F' option is set, this phase is executed to verify and
find all conflicts.

CLUSTER ALLOCATION PHASE 2

This phase follows phase 1 above to resolve any or all
conflicts.

CHECKING LOCK-OUT C.A.T.

The lock-out CAT master and backup are being read and
compared, and checking that the locked-out space is
allocated in the CAT.

ALL LOCKED-OUT CYLINDERS ARE ALLOCATED IN THE C.A.T.

Indicates that no read errors occured, the master matched
the copy, and that all cylinders locked-out are allocated
in the CAT.

MATCHING COMPUTED C.A.T. TO DISKETTE

or

MATCHING COMPUTED C.A.T. TO DISK

The CAT computed from the R.I.B.s and the computed
directory mapping bytes are being compared against that
read from the diskette or the disk.

CHAPTER 21. DSKCHK15 COMMAND 21-7

COMPUTED C.A.T. MATCHES DISKETTE

or

COMPUTED C.A.T. MATCHES DISK

The CAT read from the diskette or disk matched the data
computed from the R.I.B.s and that the directory mapping
bytes (when applicable) match.

COMPUTED HDI MATCHES DISK

The HDI computed during directory checking matches the
master HDI read from disk.

DSKCHK15 DONE

All checking functions that were active are complete and
control is being returned to the DOS.

21.8 Error Messages

The following error messages can occur during the execution
of DSKCHK15:

21.8.1 Initialization Error Messages

DRIVE OFF LINE

21-8

When accessed the drive being checked was found to be off
line.

1500 DISK OPERATING SYSTEM

INVALID DRIVE

The drive selected was not in the range of valid drives.

INVALID OPTION PARAMETER
VALID OPTIONS ARE L=LIST F=FIX

An option other than those listed was detected.

ENTER DRIVE (LIKE :DO, :D1, OR :VOLID)

An invalid drive specification or no drive specification
was detected.

PROGRAM NOT LOADABLE

One or more of the library members of DSKCHK15 are
missing. The members in DSKCHK15 are:

DSKCINIT
DSKCVER1
DSKCVER2
DSKCVER3
DSKCVR3B
DSKCVR3C
DSKCVER4

CONCURRENCY ACTIVE - "F" OPTION HAS BEEN DEACTIVATED

The fix (F) option is not allowed with concurrency
active.

THIS PROGRAM IS RUNNING FROM A CHAIN - THE "F" OPTION HAS BEEN
DEACTIVATED

The fix (F) option is not allowed during the execution of
CHAIN.

CHAPTER 21. DSKCHK15 COMMAND 21-9

*** BAD PDA *** NO READ OR WRITE TO DISK(ETTE)
DSKCHK15 CANNOT REPAIR (MSB,LSB)

An invalid PDA was found in a RIB. DSKCHK15 cannot
repair this error.

** ERROR ** READ FAILURE AT DOS PDA (MSB,LSB)

A hard parity error was found at the PDA indicated. This
indicates a physically bad disk, which DSKCHK15 cannot
repair.

21.8.2 C.A.T. Errors

ERROR ON READ OF C.A.T. MASTER

An un-recoverable read error occured during the read of
the master C.A.T. sector. No action is taken at this
time.

ERROR ON READ OF C.A.T. BACKUP

An un-recoverable read error occured during the read of
the backup C.A.T. sector. No action is taken at this
time.

C.A.T. MASTER AND BACKUP DO NOT MATCH
C.A.T. WILL BE RECONSTRUCTED FROM THE RIBS

The CAT master and backup buffers in memory do not
compare correctly. No action is taken at this time.
When a computed CAT has been constructed, it will be
compared to the master and backup CAT, and at that time
corrective action may be taken.

Before the computed CAT is compared to the disk, the program
checks internal error flags, and if any of the errors above are
found to have occured, one or more of the following messages may
be displayed.

21-10 1500 DISK OPERATING SYSTEM

ERROR ON READ OF C.A.T. MASTER - WRITE BACKUP TO MASTER?

An error was detected on the initial read of the CAT
master, but the backup copy was read successfully.
Answer ing "Y" causes the backup to be wr i t ten to the
master. The" N" answer causes no change.

ERROR ON READ OF C.A.T. BACKUP - WRITE MASTER TO BACKUP?

An error was detected on the initial read of the CAT
backup, but the master copy was read successfully.
Answering "Y" causes the master to be written to the
backup. The "N" answer causes no change.

BOTH CAT COPIES BAD - WRITE COMPUTED CAT TO BOTH ?

Neither copy of the CAT could be read successfully.
Answering "Y" causes the computed CAT to be written to
the CAT master and backup sectors on the disk. The "N"
answer results in no change.

CAT MASTER AND BACKUP DID NOT MATCH
WRITE COMPUTED CAT TO DISKETTE ?

or

CAT MASTER AND BACKUP DID NOT MATCH
WRITE COMPUTED CAT TO DISK?

After the initial read the CAT master and backup did not
compare. Answering "Y" causes the computed CAT to be
written to the CAT master and backup sectors on the
diskette or the disk. The "N" answer results in no
change.

CHAPTER 21. DSKCHK15 COMMAND 21-11

COMPUTED CAT DOES NOT MATCH DISKETTE
WRITE COMPUTED CAT TO DISKETTE ?

or

COMPUTED CAT DOES NOT MATCH DISK
WRITE COMPUTED CAT TO DISK?

The computed CAT constructed from the
the CAT on the diskette or the disk.
causes the computed CAT to be written
and backup sectors on the disk or the
answer results in no change.

21.8.3 HDI Errors

HDI MASTER AND BACKUP DO NOT MATCH
HDI WILL BE RECONSTRUCTED FROM DIRECTORY

RIBs does not match
Answering "Y"
to the CAT master
disk. The "N"

The Hash Directory Index master and backup did not match
and will be reconstructed during the final phase.

ERROR ON READ OF HDI MASTER

Parity error found while reading the HDI master.

ERROR ON READ OF HDI BACKUP

Parity error found while reading the HDI backup.

WRITE NEW HDI TO DISK?

21-12

With the fix option set, the operator will be able to try
to write a new HDI.

1500 DISK OPERATING SYSTEM

21.8.4 Directory Errors

The following error messages may appear when the program is
checking the directory.

ERROR ON READ OF DIRECTORY MASTER

The current directory master page could not be read
successfully. If the "F" option is active the request
"WRITE BACKUP TO MASTER ?" will also appear. If this
request is answered "Y" the current backup page will be
written to the correct directory master sector on the
disk.

ERROR ON READ OF DIRECTORY BACKUP

The current directory backup page could not be read
successfully. If the "F" option is active the request
"WRITE MASTER TO BACKUP ?" will also appear. If this
request is answered llyn the current master page will be
written to the correct directory backup sector on the
disk.

BOTH PAGES READ BAD
NO SPACE WILL BE ALLOCATED FOR THE FILES ON THIS PAGE

Neither the master nor backup pages could be read
successfully. The page can not be fixed and no space
will be allocated in the computed CAT for the files on
this page, nor will the directory mapping byte for this
page be updated.

DIRECTORY ENTRIES DO NOT MATCH - PFN nnn

The current master and backup page do not match. The
master and backup copies of the entry that do not match
will be displayed in one of the formats below:

CHAPTER 21. DSKCHK15 COMMAND 21-13

DIRECTORY ENTRIES DO NOT MATCH - PFN 000
MASTER -

001 303 000 000 123 131 123 124 105 115 062 040 123 131 123 377
S Y S T E M 2 S Y S

BACKUP -
001 003 000 000 123 131 123 124 105 115 060 040 123 131 123 377

S Y S T E M a S Y S
ACTION: l=MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE

DELETE INCOMPLETE PFN nnn
WRITE DELETE TO DIRECTORY ?

The entry for PFN nnn was found to have one or more bytes
other than 0377. The "Y" answer causes a deleted entry
to be written to the directory for this entry. The "N"
answer causes no change.

INVALID PDA IN PFN - nnn
DELETE THE ENTRY ?

The entry for PFN nnn pOints to a physical disk address
that is not valid for a RIB location. The "Y" answer
causes the entry to be deleted from the directory master
and backup. The "N" answer causes no change.

WARNING FILENAME/EXT FOR PFN nnn
CONTAINS INVALID CHARACTERS

The filename/ext for PFN nnn contains characters that are
not in the range of A-Z or 0-9. This is a warning only,
and does not allow any corrective action.

DIRECTORY MAPPING BYTE DOES NOT MATCH GENERATED BYTE FOR PAGE nnn

21-14

The directory mapping byte generated for the current page
(nnn) does not match the mapping byte on the diskette.
The generated byte is entered into the directory mapping
area in the computed CAT and will cause a match error
when the computed CAT is compared to the CAT on the
diskette.

1500 DISK OPERATING SYSTEM

?

21.8.5 R.I.B. Errors

The error message and display formats that follow may all be
displayed in the RIB checking phase of program execution.

ERROR ON READ OF RIB MASTER
ACTION: l=BACKUP>MASTER 4=NO CHANGE?

The RIB master could not be read successfully, but
reading the backup was successful. The "1" answer causes
the backup RIB to be copied to the master with the
correct LRN. The "4" answer causes no change on the
disk, and the backup RIB is used for further checks.

ERROR ON READ OF RIB BACKUP
ACTION: 2=MASTER>BACKUP 4=NO CHANGE?

The RIB backup could not be read successfully, but
reading the master was successful. The "1" answer causes
the master RIB to be copied to the backup with the
correct LRN. The "4" answer causes no change on the
disk.

MASTER AND BACKUP READ ERRORS - DELETE THE FILE ?

Neither copy could be read successfully. No recovery of
data is possible, and the file may be deleted from the
disk, or no change may be made. Either action results in
no space for this file being allocated in the computed
CAT.

CHAPTER 21. DSKCHK15 COMMAND 21-15

RIB MASTER AND BACKUP DO NOT MATCH

The RIB master and backup copies did not compare
correctly. Only the area of the RIB used by the system
is compared. The responses are self- explanatory. For
any action except "3" the resulting master is used for
checking allocation. If the file is deleted, no further
checks are made, and no space is allocated in the
constructed CAT.

RIB MASTER AND BACKUP DO NOT MATCH '" FILE - filename/ext
RIB MASTER -

000 000 000 377 001 004 377 377 377 377 377 377 377 377 377 377
RIB BACKUP -

000 001 000 377 001 104 377 377 377 377 377 377 377 377 377 377
ACTION: 1=MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE?

RIB FORMAT ERROR

One or more of the first four bytes of the RIB was
incorrect. The total message will display in the format
below. Only the error explanations and pointers for
which errors were detected will be displayed.

RIB FORMAT ERROR '*' FILE - name/ext
000 123 125 105 000 377 377 377 377 377 377 377 377 377 377 377
~ - - -

2 3 4

1 - PFN INCORRECT
2 - LRN LSB NOT 000
3 - LRN MSB NOT 000
4 - 4TH BYTE NOT 0377

ACTION: 1=DELETE THE FILE 2=CORRECT ERROR(S) 3=NO CHANGE?

RIB BACKUP LRN ERROR
CORRECT THE ERROR ?

21-16

The RIB backup LRN was not 001, but the rest of the
backup matched the RIB master. The "Y" answer causes the
correct LRN to be written to the RIB backup sector.

1500 DISK OPERATING SYSTEM

INVALID SEGMENT DESCRIPTOR # nnn - RIB WILL NOT BE CHECKED

The segment descriptor for segment nnn pointed to a
location that can not physically exist on the disk being
checked. No further checking of the RIB will occur.

SPACE ALLOCATION CONFLICTS WITH PREVIOUS ALLOCATION

The space allocated for the current segment of this file
is in conflict with space allocated to a previously
checked file. Additional information is displayed in the
format below.

FILENAME/EXT
PFN 000

CONFLICTING CLUSTERS 007
CLUSTERS IN FILE 005

* FILENAME/EXT
* PFN 001
* 007
* 002

ACTION: l=DELETE PFN 000 2=DELETE PFN 001 3=NO CHANGE?

This indicates that PFN 000 and PFN 001 have 7 clusters
in conflict, and that 5 of them have records from PFN-OOO
and 2 have records from PFN-001. In this example PFN-OOl
should probably be deleted.

CURRENT FILE OVERLAYS LOCKED OUT SPACE
FREE THIS SPACE IN LOCKOUT CAT ?

Some of the space allocated to the file being checked
occupies space that is locked-out. Answering "Y" causes
the cylinders in the LOCKOUT CAT which the file overlays
to be removed from the LOCKOUT CAT. The "N" answer
causes no change in the LOCKOUT CAT.

INVALID PFN IN FIRST SECTOR OF SEGMENT nnn *** FILE - FILENAME/ABS

The PFN in the first sector of segment nnn does not match
the PFN of the file being checked. This message is
informational, as this may be a normal condition in some
files. The program will take no corrective action.

CHAPTER 21. DSKCHK15 COMMAND 21-17

21.8.6 Lockout CAT Errors

LOCKOUT MASTER AND BACKUP DON'T MATCH
WRITE NEW LOCKOUT CAT TO DISKETTE ?

or

LOCKOUT MASTER AND BACKUP DON'T MATCH
WRITE NEW LOCKOUT CAT TO DISK?

The Lockout CAT master and backup do not compare.
Answering tty" causes a Lockout CAT with only the space
for the System Tables locked-out to be written to the
diskette or the disk. The "N" answer causes no change.

LOCKED OUT CYLINDER nnn NOT ALLOCATED IN CAT
WRITE NEW LOCKOUT CAT TO DISKETTE ?

or

LOCKED OUT CYLINDER nnn NOT ALLOCATED IN CAT
WRITE NEW LOCKOUT CAT TO DISK?

The locked out cylinder nnn is not allocated in the CAT.
Answering "Y" causes a Lockout CAT with only the space
for the System Tables locked-out to be written to the
diskette or the disk. The "N" answer causes no change.

ERROR ON READ OF LOCKOUT CAT
WRITE NEW LOCKOUT CAT TO DISKETTE?

or

ERROR ON READ OF LOCKOUT CAT
WRITE NEW LOCKOUT CAT TO DISK?

21-18

The LOCK-OUT CAT read was in error possibly due to a
parity error or a sector not found. The user now has the
opportunity to try to write the calculated LOCK-OUT CAT
back to the diskette or the disk.

1500 DISK OPERATING SYSTEM

CHAPTER 22. DUMP COMMAND

22.1 Purpose

Occasionally while writing into files on disk (in particular,
during the program debugging stage) it is useful to be able to
verify that the formatting of the information into the standard
text format is being done correctly. Or perhaps a random-access
file must be inspected, one that is not in the standard text
format.

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on a disk. The
display includes both the octal and ASCII contents of every byte
on the sector. No examination for control bytes of any kind is
made, allowing the user to see the precise contents of every
physical location in the disk sector.

22.2 Use

The DUMP command is invoked by entering:

DUMP

or

DUMP <file spec)

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level
LEVEL TWO - File level
LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directory level

The (optional) entry file and/or drive specifications on the
command line allow the first one or two input levels in DUMP to be
automatically bypassed.

When the DUMP command is used, the top line of the display is

CHAPTER 22. DUMP COMMAND 22-1

the primary control line. Input is accepted on this line. This
line is broken into four basic areas, one corresponding to each of
the first four control levels. The primary control level at any
given time during the operation of the DUMP command can be
determined by the position of the flashing cursor on the control
line.

For example, if the flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUMP command is operating
at level one. If the cursor is positioned after the "FILE:"
legend on the control line, the DUMP command is operating at level
two, etc.

22.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector just read and to describe any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates
that the sector being displayed is the primary RIB for the
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indicates that the sector being displayed is the secondary
RIB for the currently opened file.

CLUSTER ALLOCATION TABLE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that
the sector being displayed is the secondary backup CAT for the
current logical drive. The CAT is also maintained in duplicate
just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each
logical drive is a sector that indicates which areas have been
locked out, prohibiting their use by DOS. This message indicates
that the sector being displayed is the Lockout CAT for the current
logical drive.

22-2 1500 DISK OPERATING SYSTEM

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sector being displayed is the secondary backup
copy of the sector.

SYSTEM DIRECTORY SECTOR. This message indicates that the
sector being displayed is one of the DOS directory sectors. The
directory sector number (in decimal and in octal) immediately
follows the message.

USER DATA SECTOR. This message indicates that the sector is
not recognized as one of the above special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the
sector requested for display either was not found on the disk or
that a CRCC (Cyclic Reduncancy Check Code or parity) error
repeatedly occurred during the read operation. The sector
displayed is the data as it was read from the disk, unless the
sector was not found.

DISK OFFLINE. This message indicates that the currently
specified logical drive is not on line.

DISK SECTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its physical file number, and the two following bytes are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a file will fall
into this class. It merely means that if the sector were read
with the DOS READ$ routine, a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector
requested (by-Ioglcal recora-number) is not within the range of
the currentTY opened file.

FILE NOT FOUND. This message indicates that the file
requested could not be found. This does not necessarily mean that
the file does not exist. For example, the file could be in a
non-current subdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive.

INVALID PHYSICAL ADDRESS. This message indicates that the
physical disk address specified is invalid.

The remainder of the display contains the contents of the
current sector most recently read. The display is arranged as

CHAPTER 22. DUMP COMMAND 22-3

sixteen groups of sixteen bytes each. Each of these groups is
preceded by the three octal digit offset of that group within the
sector. Each sixteen byte group consists of the octal and ASCII
contents of each of the sixteen bytes in that group. Each byte's
contents form a column one character wide and four lines high,
where the first three lines are the value of the byte, in octal,
and the fourth line is the ASCII value of that character. Notice
that the character is not examined for special significance before
it is displayed, so DUMP may display characters other than the
normal ASCII set.

22.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred to level two. Non-specific drive mode is disabled.

* - DUMP command returns control to the DOS.

22.5 Level Two Commands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to level
four.

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the
file is displayed and control transfers to level three.

22-4 1500 DISK OPERATING SYSTEM

I - The current physical file number is incremented and the
new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN is
incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control is
transferred to level three.

D - D works just like the I command above except that instead
of incrementing the PFN, it is decremented.

Opfn - The directory sector containing the entry
corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred to level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
These directory sector numbers are always specified in octal.

* - Return control to level one.

22.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted:

<enter> - The current sector is shown and control is
transferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it is assumed
to be octal; otherwise it is assumed to be decimal. The number
specified is the user (as opposed to system) LRN. The system LRN,
the value in bytes one and two in the sector, is always two
greater than the user LRN. The two numbers displayed at level
three in the control line are the user LRN in decimal (the one
with leading zeros suppressed) and octal (the one in parentheses,
with leading zeros).

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access it
and display the sector.

* - Return to the File level of control (level two).

CHAPTER 22. DUMP COMMAND 22-5

22.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical disk addresses, and as such is not
usually as useful as the LRN level. However, when access to a
specific sector on the disk is desired, it can be achieved using
DUMP level four. It is important to realize that the physical
disk addresses specified are logical physical disk addresses, i.e.
the DOS PDA as defined in chapter 42. They are not necessarily
the same as actual physical locations on the disk. The logical
disk addresses are remapped onto the disk into different hard
physical sector numbers than those indicated by the logical
physical disk address. The important thing to understand here is
that the disk addresses used in the level four control of DUMP are
the two-byte PDA: cylinder, cluster/sector.

The commands accepted at level four of DUMP are as follows:

msb,lsb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (least
significant byte) is always considered to be in octal, regardless
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format, undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

I - Increment to the next logical sector.
D - Decrement to previous logical sector.
* Return control to level two if no file is opened,

or level three otherwise.

22.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command is
operating at control level five (system directory sector level),
the following commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low order four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leading zero indicates the number is in
octal, otherwise decimal is assumed.

22-6 1500 DISK OPERATING SYSTEM

I - The current directory sector number is incremented and
the corresponding directory sector is displayed.

D - The current directory sector number is decremented and
the corresponding directory sector is displayed.

* - Return control to level two.

22.9 Error Messages

Only one error message is issued by the DUMP command. It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in the booted drive has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 22. DUMP COMMAND 22-7

CHAPTER 23. EDIT COMMAND

The 1500 Editor is a vastly enhanced editor. All available
memory is used as a circular buffer which allows rolling backwards
through a file. Users may combine the primitive EDIT commands to
create "user-defi ned" command s for repeti ti v e ed i ting ta sks . The
use of two scratch files protects the input file from modification
until EDIT is completed. Text files now carry their individual
configuration (tabs, etc.) in their first sector. Many command
enhancements and additions have been made for consistency and
usability.

23.1 Introduction

The 1500 Editor is used to create and to update source data
files on a disk. The editor enables the creation of files in a
variety of formats: text files, DATABUS source code files, or
many user-designed data files.

A Glossary of the many terms and phrases used throughout this
section is provided in the section 'Glossary of EDIT Terms'. A
list of commands and brief definitions is provided in the 'Command
List' section. Also included at the end of the chapter is an
explanation of error messages, the format of the configuration
sector and an example of an EDIT/DEF file.

23.2 General Description of The 1500 Editor

All available memory is used as a circular buffer which
allows rolling backwards through a file. Some files may fit
completely in memory so there is no time-consuming copying back
and forth to a SCRATCH file. This also speeds up FINDs and
LOCATEs and reduces disk "thrashing".

The 1500 Editor offers additional file security since the
original source file is not modified until the :E command is
entered. The use of two scratch files protects the input file
from modification until the 1500 Editor is completed. It also
allows multiple passes on a file using the 'ONE-PASS' option.

This does, however, slow the end of edit since text in memory
must be written out to the scratch file (if in use) and then the
scratch file must be completely copied to the original file.

CHAPTER 23. EDIT COMMAND 23-1

Text files carry their individual configuration (tabs, etc.)
in their first sector.

Command enhancements have been made for consistency and
usability for the user. For instance, MODIFY has a VERIFY option
and FINDs and LOCATEs allow a field parameter and display the full
screen.

23.3 Special Features of the 1500 Editor

Some of the enhancements over prior Editors include:

** EDIT allows rolling backward on the screen.

** EDIT does not open a new file until it checks with the
user that a new file is to be created.

** Null lines (that is, lines that have been deleted or
scratched) do not appear on the screen.

** Default configuration information such as tabs, special
characters and modes is preserved with each file.

** Space-compression is an option.

** Tabs may be set by integer column number as well as by
spacing across the tab ruler.

** Field designation is part of the :D, :F, and :L commands.

** Keyclicking may be turned on and off during execution (:K,
:KI).

** The get command (:G) can be used to roll the screen
forward or backward a specified number of lines, or to
roll the screen to a specified line number in the file.

** :E\ can be used to truncate the beginning of the file.

** :E- rolls backwards to the beginning of the text contained
in memory.

** The modify commands may all be used with the verification
option.

23-2 1500 DISK OPERATING SYSTEM

** Other commands are:
:A* Append without moving the pointer.
:D* Display the last DELETE string.
:1 [string] Insert the specified string.
:0 Abort; go back to DOS without modifying the

file.
:OX [DOS Command] Abort to DOS, then execute

the specified command.
:V Split the pointed line into two lines.
:W Concatenate the pointed line with the one

below it.

The EDIT commands may be combined to form 'user-defined'
command strings (:0 through :9). Additional commands allow
conditionQl or unconditional skips along the command string.
These command strings may be pre-defined in an EDITable file
(default EDIT/DEF) which is automatically loaded when EDIT is
executed.

EDIT will recogni~e configuration sectors of most other
Datapoint Editors which are similar to EDIT in operation and
appearance.

23.4 Software Required

The 1500 Editor requires a DOS. H operating system.

23.5 Operation

23.5.1 Invoking the 1500 Editor

The 1500 Edit program command line syntax is shown below.
Items in square brackets are optional;f1, f2, and f3 are file
specifications; the parameter list consists of abbreviated
notations which cause special functions to occur.

EDIT <f1>[,<f2>][,<f3>][;parameter list]

CHAPTER 23. EDIT COMMAND 23-3

23.5.2 Files

<f1> is the source file, [<f2>] is the scratch file and
[<f3>] is the definition file. The source file <f1> is assumed to
have an extension of TXT if none is provided. If there is no file
of the specified name, a new file is created after checking with
the operator. If no scratch file [<f2>] is specified, a primary
scratch file 'SCRATCH/TXT' and a secondary scratch file
'SCRATCH/XTX' are used. Since the second scratch file will be
named <scratch file name>/XTX, the extension XTX for <f2> is NOT
allowed. The definition file [<f3>] is assumed to be EDIT/DEF
unless otherwise specified.

23.6 Parameter List

A parameter list, indicated by the SEMI-COLON (;) following
the file specifications, may be included. That list may include
nine parameters which are order independent. The possible
parameters are:

[;[margin][tab key][mode][shift][line][update]
[keyclick][space-compression][non-verification]]

At the start of an edit, the values for these nine parameters are
taken from the command line. Values for [margins], [tab key],
[mode], [shift], [line], [key click] and [space-compression] not
given on the command line are taken from the source file
configuration sector, if there is one. The source file is updated
unless otherwise specified on the command line and verification
mode is assumed. Care should be exercised to be sure that not
more than one mode, margin, etc. is specified on the command line
or the desired value may not be selected.

When a file has been edited with EDIT, a special sector
called the "configuration sector" is written at the beginning of
the file. The sector contains the tabs, modes and special
characters in effect when the edit was completed. These default
values are used in place of any such parameters not specified on
the command line.

If no command line parameter list is provided and the source
file has no configuration sector, or an unrecognizable one, then
tabs are set at 9, 15 and 30 with space-compression, a margin at
75, no keyclick and the space bar for tabbing is assumed.

23-4 1500 DISK OPERATING SYSTEM

23.6.1 Margin Bell

A number in the parameter list is taken to be the margin
designator; this causes the margin 'bell' to ring at the
designated margin. The default margin is 75. Allowable values
are 1 through 79.

For example ";30" causes the processor to beep in column 30.

23.6.2 Tab Key Character

A tab key character encountered in the parameter list, i.e.,
non-alpha, non-numeric, non-colon, non-command special character
(\,<,>,etc.) replaces the assumed tab key character (SPACE BAR, in
DATABUS mode; SEMI-COLON in Text mode.)

For example, ";A" causes the caret key (A) to replace the
assumed character as the tab key. Note: Special characters such
as 0, &, >, <, \, and blank are not allowed as tab key options.

23.6.3 Mode

A different set of assumptions is used if one of the 'mode'
parameters is set. DATABUS / DATAFORM (D) mode sets the tab stops
to 10 and 20, tab key to SPACE BAR, no word wraparound, space
insertion after a period, plus or asterisk in horizontal column
one, and shift inversion on. The Assembler (A) mode is the same
except tabs of 9, 15, and 30.

Text mode (T) sets no tabstops, does no shift inversion and
enables the word wrap-around feature. The [shift] option'S' and
the [line] option 'L' are recognized only if the text mode 'T' is
set (either on the command line or in the configuration file). To
activate line truncation instead of word wrap-around in Text mode,
enter 'L' in the parameter list. To enable shift key inversion in
Text mode, enter the parameter'S' in the list.

See the Edit Glossary (23.33) for complete definitions of the
various modes.

CHAPTER 23. EDIT COMMAND 23-5

23.6.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. A second scratch file may
also be used as the edit proceeds. When the edit is terminated,
the physical source file is normally updated.

The 'ONE-PASS' parameter '0' may be set in the parameter
list. Then, at the completion of the edit, the scratch file
contains the updated information and the source file is unchanged.

23.6.5 Key-click

If the 'K' parameter is set, a 'click' sounds each time a key
is struck.

23.6.6 Space Compression

EDIT normally space-compresses. If an 'E' appears as a
parameter on the command line, spaces are "expanded", that is, NOT
space-compressed. In expanded mode, EDIT reads in either
space-compressed or non-space-compressed data but puts out only
non-space-compressed records. To clear expanded mode, enter a 'G'
on the command line. The space compression option (either 'E' or
'G') is stored with the file in the configuration sector, but may
be changed by putting the desired option on the command line.

23.6.7 Non-verification

Four EDIT command s: : E/, : E\, : B, and : 0 question the user:

SURE?

before executing. In certain special cases, for instance, when
running under CHAIN, it is inconvenient to provide the 'Y'. The
non-verification parameter on the command line allows the user to
answer 'YES' in advance by placing a 'Y' on the command line.
When 'Y' has been placed on the command line and the commands :E/,
:E\, :8, or :0 are entered, no verification is requested from the
user.

23-6 1500 DISK OPERATING SYSTEM

23.7 Examples

To perform standard editing, enter the command:

EDIT <source>

to edit a text file enter the command:

EDIT <source>;T

To also change the margin bell to ring at column 35 (e.g. for
labels) enter the command:

EDIT <source>;35T

The parameters set the bell at 35 and select the Text mode. Note
that the pprameters are not order dependent; therefore, the
co~mand:

EDIT <source>;T35

achieves the same results.

EDIT <source>;E

produces a file in which all spaces are written out (or
non-space-compressed).

To write the edited text into a second file, without updating
the original file, enter the command:

EDIT <source>,<new file>;OT

If the file is DATABUS program code, replace 'T' with 'D'.

A second file, with the same name as <fl> but with a
different extension, may be used as the scratch file by entering:

EDIT <fl>,I<extension>

Note that the extension XTX is not allowed for the scratch
file specification.

Once the initial command (and parameter list) has been
entered, the Editor sign-on message will appear on the screen
followed with the file's configuration information (e.g. tabs,
special characters, margin, keyclick, word wrap-around, shift
inversion and space-compression) with the cursor left on the

CHAPTER 23. EDIT COMMAND 23-7

'command line'. From this position data may be entered, lines may
be fetched from the source file, or editor commands may be
entered.

23.8 Data Entry and Retrieval

23.8.1 Data Entry

To enter text, simply type on the bottom or "command" line.
When the ENTER key is presssed the screen rolls up one line. The
command line is once again blank and the cursor is at the
beginning of the command Line, ready to accept more input.

When a SPACE is typed to the right of the margin bell column
(except in column 79) and word wrap-around is enabled, the editor
will automatically roll up the screen and begin a new line. If a
non-space character is typed into the last column of the screen
and word wrap-around is enabled, the last word on the line is
removed and, after the screen is rolled up, that word is placed on
t~e command line, where data entry may proceed.

The lines that have been rolled above the command lines are
referred to as "screen lines".

When typing on a "screen line" (as the result of a command),
the ENTER key causes the cursor to return to the command line. To
continue data entry at the same screen area, the Pseudo-ENTER key
may be, used. This key (shift DEL) causes (in all but command
mode), a new blank line to be inserted at that point on the screen
so that data entry may proceed.

The BACKSPACE key erases the last character and moves the
cursor back one position. The CANCEL key erases the line back to
the previous tabstop, or back to the beginning of the line if no
tabs are set.

Typing the tab key character causes the cursor to move to the
next tab stop to the right. If there are no tab stops to the
right of the cursor, the tab key character is accepted as a normal
data character.

23-8 1500 DISK OPERATING SYSTEM

23.8.2 Multi-line Record Entry

A record in a disk file is a string of characters, perhaps
including space compression characters, that is terminated with an
octal 015. Normally the length of a record is no greater than 80
characters, including the octal 015, and corresponds to a screen
line.

Multi-line records are records in a disk file that are
greater than 79 characters long and must be continued to the next
line when displayed on the screen.

To enter mUlti-line records, use the continue character. The
assumed continue character is '&'. When this character is keyed
in the first column, the continue indicator (a solid triangle) is
displayed. If the continue character is keyed in any other
column, it .is accepted as a normal data character.

Note that although multi-line records are indicated on the
screen, the editor treats them as if they were separate lines.
The copy command, for instance, copies only the pointed line and
NOT all of the lines in the multi-line record. The only time EDIT
recognizes lines as part of a multi-line record is during output.

Any line beginning with a continue indicator is joined to the
previous line on output, forming records greater than 79
characters, if required. Note that records of greater than 253
characters are not supported by EDIT.

When creating or modifying multi-line records, trailing
spaces on a line often need to appear to force the line to be
greater than 79 characters. In EDIT, trailing spaces are NOT
deleted when they have been entered or read in from a file.
However, when EDIT modifies, appends or copies a line, trailing
spaces are deleted from that line. Note that to update a
multi-line record with trailing spaces the record must be
re-entered.

23.9 Data Retrieval

To fetch data from the source file, hold down the display
(DSP) key and press the keyboard (KSD) keY:--As-IOng-as the two
keys are-depressed, data is fetche~displayed on the command line
and rolled up the screen. If the end of file is reached, no more
data is fetched and the machine beeps.

To fetch data backwards, hold down the keyboard (KSD) key and

CHAPTER 23. EDIT COMMAND 23-9

press the display (DSP) key. As long as the two keys are
depressed, the screen-rolls down and prior lines inserted on the
top line. If the beginning of the file contained in memory is
reached, the machine beeps, and no mora data is fetched.

To fetch a single line, the shifted DEL key may be pressed.
Using this key insures that only one input line is fetched.

All of available memory is used as a circular buffer. As the
operator proceeds through the file, EDIT writes lines from the end
of the buffer out to disk, maintaining a pre-screen buffer so the
user can roll backwards. Rolling backwards is restricted by the
size of the pre-screen buffer. Of course, if the file is small
enough to fit completely in memory, there is no restriction.
Sometimes the processor appears to hang while it is doing buffer
management. If on the command line, and a colon is not in the
first column, a pseudo-enter anywhere on the command line will
fetch another line.

Note: Since so much is held in memory, when editing a very large
file for the first time it is recommended that a :E be done
periodically to prevent total loss in event of accidental Boot, or
power loss.

23.10 EDITOR Command Format

The text appearing on the screen lines (i.e. the lines above
the command line) may be edited using a set of 'commands'. A
'pointer' (» in the left hand column of the screen indicates the
line which the command affects.

To move the pointer up, press the keyboard (KBD) key. To
move the pointer down, press the display (DSP) key. The pointer
wraps around from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:D) or part
of the screen (:SC and :SB), insert (:1) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also available
to search the file for specific text (:F and :L), for the end of
the file (:EO or :E*), or for a particular line by number (:G).

An editor command is always preceeded by ~ COLON (:). To
enter a command, type a colon in the first column of the command
line with the appropriate command character(s) and any necessary
parameters following. The command characters may be upper or
lower case. To force a line to contain a colon in the first

23-10 1500 DISK OPERATING SYSTEM

column as text, start the line with two colons (the first one is
discarded and the line shifted left).

23.11 Basic EDITOR Commands

The' following commands are a few basic editor commands (such
as FIND, DELETE, and MODIFY) so that the user can get started
without worrying about complex command forms. Remember that the
'pointer' on the screen must point to the line affected by the
command. Intermediate commands (for experienced users) and
advanced commands (for handling repetitive Editing tasks) will be
discussed later.

23.12 Setting Tabs

:T - TAB set - this command enables the user to reset the tab
stops during execution. The command causes a line of numbers to
be displayed across the bottom of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry. A maximum of 20 tab stops
may be set.

See the section on 'Changing Tabs' for more information on
setting tabs.

23.13 Setting TEXT Mode

:X - TEXT - this command enables word wrap-around and
disables shift key inversion and space insertion after leading
periods, pluses, and asterisks. It automatically enters the tab
set command (:T), so that tab stops may be cleared by the
operator. The tab key character is not changed; therefore, the
":<tab key>" command must be used to set a new tab key character
if one is desired.

See the section on 'Changing Modes and Options' for more
information.

CHAPTER 23. EDIT COMMAND 23-11

23.14 INSERTing a Line

:1 - INSERT - Perform a line insert at the pointed line.

This command causes the lines from the bottom of the screen
to the pointed line (but NOT including the pointed line) to roll
down one line on the screen. A blank line is inserted below the
pointed line, the pointer moves down to point to the blank line
and the cursor is left at the beginning of the new blank line
where data entry may proceed.

If word wrap-around is enabled and the end of the new line is
reached during text entry, the new line (and all lines above it on
the screen) roll up leaving a blank line containing the overflow
from the previously INSERTed line. The cursor is left following
the overflow awaiting continued data enty. When the ENTER key is
pressed, the cursor returns to the command line and the new text,
if any, remains on the screen in its new position.

If the ENTER key is hit in the first column of the blank
INSERTed line, the screen rolls up to fill the null line, leaving
the screen in its original form.

If the Pseudo-ENTER key (SHIFT/DEL) is used instead of the
ENTER key to terminate an INSERTed line, another INSERTion is
performed and the cursor remains on the newly INSERTed blank line
awaiting data entry of another line.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line with the changes. The original line may then be
DELETEd.

23.15 DELETEing a Line

:D - DELETE - delete the entire pointed line.

Blanks are written over the entire pointed line and the
cursor is left on the now null line where new text may be entered.
When the new line has been entered, it may be terminated with the
ENTER key. This leaves a new blank line in the place of the
DELETEd line, the pointer at the new line and the cursor returned
to the command line.

If no replacement text is~needed, pressing the ENTER key
again, while the pointer is at the blank line, causes the screen
to roll up one line from the bottom to fill the blank line with

23-12 1500 DISK OPERATING SYSTEM

the line that was originally below it, leaves the pointer in the
same vertical position and returns the cursor to the command line.
At the end of the file (last screen of data) this action leaves a
blank bottom screen line. This line is a "phantom" line with no
real existence in the text file. It will not be written to disk.

If a new line is written in the place of the DELETEd line and
word wrap-around is enabled, the new line plus the screen lines
above the new line roll up, as described in the "INSERTing" a Line
section.

If the new line is terminated with a Pseudo-ENTER key, the
cursor does not return to the command line. Instead, an INSERTion
is made at the pointed line.

For other approaches to deleting lines, see "Deleting Lines"
in the UIntermediate Commands" section.

23.16 COPYing a Line

:A - APPEND - copies the pointed line to the bottom of the
screen, and rolls the screen up one line. The cursor returns to
the command line and the pOinter stays with the original pointed
line by moving up one position when the screen rolls up. (Use :A*
to keep the pointer in the same vertical position on an APPEND).

:C - COpy - deletes the pointed line from the screen, rolls
up the screen, copies the pointed line to the bottom of the
screen, and deletes the pointed line.

When the COpy command is entered, the pointed line is DELETEd
and text may be entered in the now blank pointed line. As with
the DELETE and INSERT commands, multiple lines may be inserted in
the screen lines when word-wrap is enabled or by terminating lines
with the Pseudo-ENTER key.

When the new text entry is terminated with the ENTER key, the
cursor returns to the command line. The original pointed line has
been written following the line that was on the bottom of the
screen when the COpy command was initiated. If one or more new
lines has been inserted during the COPY, the user must roll up the
screen to view the moved line.

If no new text was entered, i.e., the ENTER key was entered
as the first character on the new line, the screen rolls up to
fill the null line and the pointer remains in the same vertical
position. Since the screen has rolled up, the pointer is now

CHAPTER 23. EDIT COMMAND 23-13

pointing to the line following the first copied line so that a
group of lines may be easily copied to another part of the screen.

23.17 MODIFYing a Line

:M [old text][command separator] [new text] - MODIFY - a
modify command allows the operator to:

1) replace [old text] by [new text] «),
2) insert [new text] after [old text] (»
3) or append (i.e., truncate and add) [new text] after

[old text] (\).

For instance:

:M [old text]<[new text]

replaces [old text] on the pointed line with [new text]. The
command:

:M [old text]>[new text]

inserts [new text] immediately following [old text] on the pointed
line. The command:

:M [old text]\[new text]

truncates the pointed line immediately following [old text] and
then appends [new text].

If [old text] is not found in the pointed line, the machine
beeps and returns to the command line without making any
modification to the pointed line. Modifications at the end of the
file (on the last screen of data) can create "phantom" lines as
described above under "DELETEing a Line".

For the "replace" and "append" forms of the MODIFY command,
the [NEW TEXT] may be null, effectively deleting the [OLD TEXT] or
truncating the line, respectively. For the "append" form, the
[OLD TEXT] may be null, indicating that the line is to be deleted
from the beginning. If a field is specified, the field is
deleted. See the section on Field Modification for further
explanation. For the many various forms of this command see the
'MODIFY Command' section.

23-14 1500 DISK OPERATING SYSTEM

23.18 LOCATEing a Line

:L - LOCATE next - typed exactly :L[ENTER], finds the next
line of text. If positioned at the end of the file, the 'next'
line is the first line of the file.

:L [old text] - LOCATE match - searches for a line containing
embedded text matching [old text]. Leading spaces should be
supplied if meaningful.

For additional approaches to locating a line, see the 'File
Search Commands' section.

23.19 ENDing the EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text. The
search may be aborted by pressing the KEYBOARD key.

:E - END - causes the remainder of the logical source file to
be copied to the logical scratch file and then, if the logical
scratch is not the physical input file, the scratch file is copied
back to the source file.

The command line is left on the screen as long as the copy
from source to scratch is in progress; it is erased during the
final copy from scratch back to source.

The END may be aborted as long as the command line is still
displayed, by pressing the keyboard (KBD) and display (DSP) keys
simultaneously. When the final copy is completed, control is
returned to DOS.

NOTE: If EDIT is exited by any other means than one of the ":E"
commands, the format of the scratch file is not guaranteed. Also,
if a system error such as "FILE SPACE FULL" is encountered while a
":E" is in progress, the format of the files is not guaranteed.

CHAPTER 23. EDIT COMMAND 23-15

23.20 Intermediate Commands

Most of the following commands are expansions of the ones in
the previous section. One additional concept introduced in this
section is that of "fields". A field is a portion of the line
between two consecutive tabs. Field one is between the left
margin and the first tab, field two is between the first and
second tab, etc. Even though up to twenty tabs may be set, only
the first nine fields may be referenced.

23.21 Changing Special Characters

:[tab key] - change the tab key character to any non-alpha,
non-numeric, non-COLON, non-command special character
(/,<,>,etc.), or non-ENTER character typed after a leading colon
on the command line.

:[old modify operator] [new modify operator] - change the old
modify operator to the new one specified.

:[old continue character] [new continue character] - change
the old continue character to be new one specified.

:CH - display the current special characters.

For instance, if a user wants to use "]" for the tab key, ":"
for the modify replace operator, "_" for the modify insert
operator, and "l" for the modify append operator, the following
commands are typed:

:]
: < :
:> -
: \

Then to check that they were properly changed, the user
types:

: CH

which displays:

:CH TAB KEY:] CONTINUE: & MODIFY REPLACE:: INSERT: - APPEND:

23-16 1500 DISK OPERATING SYSTEM

Note that none of the modify operators nor the continue
character may be the same character and the special character
must be (like the tab character) non-alpha, non-numeric,
non-colon, non-ENTER and not >, <, \, &, or other designated
special characters. A beep sounds if a character change command
is invalid.

At the end of EDIT, the special characters and tabs are
stored in the updated file. The next time that EDIT is used with
the file, the same characters are used if not changed by the
command line parameters. The tabs and special characters are
displayed below the sign-on message.

23.22 Changing Tabs

:T - TAB set - enables the user to reset the tab stops during
execution. The command causes a line of numbers to be displayed
across the bottom of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry and for referencing fields
(the portion of the line between consecutive tab stops). A
maximum of 20 tab stops may be set.

NOTE: If the cancel key is depressed, it will cause the numbers
on the screen to no longer be displayed but the tab set still
remains in operation until the enter key is depressed.

:T [nn][,nn] ... - TAB set by column
to reset the tab stops by column number.
":T 9,15,30" sets the tabs to columns 9,
20 tab stops may be set.

number - enables the user
For instance, entering

15, and 30. A maximum of

At the end of the EDIT, the tab positions and special
characters are stored in the updated file. The next time that the
file is EDITed, the same tabs and special characters are used.
They are displayed immediately below the sign-on message.

The following command sets tabs to pre-determined default
values.

:TD - Set Datashare/Databus tabs at columns 10 and 20.

CHAPTER 23. EDIT COMMAND 23-17

23.23 Changing Modes and Options

:X - TEXT - enables word wrap-around and disables shift key
inversion and space insertion after periods, pluses, and asterisks
in horizontal column one. It automatically enters the TAB set
command (:T), so that tab stops may be cleared by the operator.
The tab key character is not changed; therefore, the ":[tab key]"
command must be used to set a new tab key character if one is
desired.

:XI - Invert TEXT - enables shift key inversion and disables
word wrap-around and enables space insertion after periods,
pluses, and asterisks in horizontal column one. It automatically
enters the TAB set command so that tab stops may be reset by the
operator.

:K - Keyclick - causes the machine to 'click' every time a
key is struck.

:KI - Keyclick Invert - turns off the 'click', if set.

23.24 Deleting Lines

The user may delete the leading part of a line, the whole
line, or multiple lines.

:D - DELETE - deletes the entire pointed line (See 'DELETing
Lines' in the 'BASIC EDITOR COMMANDS' section).

:D [old text] - DELETE through - deletes all characters from
the left edge of the pointed line through (and including) the
specified [old text]. The remaining characters are left justified
and re-displayed. The cursor returns automatically to the command
line.

:D[#] [old text] - DELETE through field - deletes all
characters from the left edge of the pointed line through (and
including) the specified [old text] in the specified field. The
remaining characters in that field onIy-are left justified and
re-displayed. All characters following the specified field are
also deleted. Note: [old text] is required for :D [#]. The
cursor returns automatically to the command line.

:SC - SCRATCH above - this command erases the lines from the
top of the screen down to the pointed line, inclusive. The cursor
and pointer are moved to the top line where data entry may
proceed.

23-18 1500 DISK OPERATING SYSTEM

:SB - SCRATCH below - this command erases the lines from the·
pointed line to the bottom of the screen, inclusive. The cursor
is left on the pointed line, where data entry may proceed.

As with the DELETE command, additional lines of text may be
inserted with word wrap-around, if enabled, or by terminating each
line with Pseudo-ENTER instead of ENTER. If no replacement is to
be made after :SC or :SB, tap the ENTER key once more to put the
cursor on the command line.

23.25 MODIFY Command

The general form of the MODIFY command is:

:M[V][D] [old text][modify operator][new text]

where [V] is the VERIFY option, [D] is the optional field number,
and [modify operator] is the command separator which defines the
action of the command. Both [old text] and [new text] fields are
optional. If [old text] is omitted, the command takes effect at
the left-most edge of the pointed line (or at the left edge of the
specified field). If the [new text] field is omitted, a null, or
zero-length field is used to execute the modification. Note that
the [old text] cannot include any of the modify operator
characters; [new text] may contain one of these characters. If
necessary, the modify operators can be changed as described above
in 'Changing Special Characters' to avoid bad interpretations of
modify commands.

The VERIFY option causes the cursor to blink at the first
character to be modified. The user then has three responses. If
he presses 'Y' for 'YES', the modification takes place. If he
presses the ENTER key, control returns to the command line. If he
presses any other key, the modify command continues to search the
line for another occurrence of [old text] to modify.

CAUTION: In all MODIFY commands, if the pointed line becomes
longer than 79 characters, right truncation will occur, unless
word wraparound is in effect.

CHAPTER 23. EDIT COMMAND 23-19

23.25.1 Line Modification

The following descriptions are of the line modification
version of the MODIFY command.

:M[V] [old text][replace operator][new text] - MODIFY
(replace) - replace the specified [old text] by the specified [new
text]. The "less than" character «) is the default command
separator which indicates replacement. If [new text] field is
omitted, the [old text] is simply deleted and the line compressed
to the left.

For example to modify the text line:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: ":M BROWN<RED"
redisplayed like this:

causes the line to be

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: ":M.< 1234 TIMES." to the above line
generates a line like:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK 1234 TIMES.

If the replacement causes the line to become longer than 79
characters and word wrap-around is enabled, the trailing word is
wrapped around and a new line is inserted containing the entire
last word. If the [new text] is shorter than the [old text] it
replaces, the line is shortened.

After the pointed line is redisplayed, the cursor is returned
to the command line.

:M[V] [old text][insert operator][new text] - MODIFY (insert)
- the command separator "greater than" (» is the default
character causing the [new text] to be inserted in the pointed
line immediately after the [old text].

:M[V] [old text][append operator][new text] - MODIFY (append)
- the "backslash" (') is the default command separator causing
everything in the pointed line past the [old text] to be replaced
by the [new text].

:M or :M[#] - MODIFY repeat - typed exactly :M[ENTER] or
:M[#][ENTER], uses the [old text][sep][new text] from the last
MODIFY command. This is useful when making the same change

23-20 .1500 DISK OPERATING SYSTEM

repeatedly. Note that the field number is not saved, and must
therefore be supplied if necessary.

:MV or :MV[#] - MODIFY VERIFY repeat - typed exactly
:MV[ENTER] or :MV[D][ENTER] is the same as the above command
except that it invokes verification.

:M* - MODIFY display - display the expression entered for the
last MODIFY. After the saved command is displayed, the cursor is
turned off and the operator must press ENTER to proceed. No
MODIFY is actually performed.

Note: Trailing spaces on the modified line are always
deleted. This action may cause a multi-line record to be
shortened.

23.25.2 Field Modification

In field modification mode, the MODIFY command acts only on a
specific field and does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

:M[V][#] [old text][modify operator][new text] - MODIFY field
- where the pound sign [D] is a number from 1 to 9 designating the
TAB field to be modified (or the starting point to search for
matching [old text]). This command may be executed in any of the
previous Modify forms.

Modification is performed within the specified field only.
Thus, a replacement or append shorter than the original field is
blank filled and subsequent fields will maintain their position
and content. An insertion longer than the specified field is
truncated (with the exception of the last field whenever word
wrap-around is in effect).

NOTE: Remember when using the repeat form of the MODIFY
command that the modification applies to the entire line if the
field number is omitted.

CHAPTER 23. EDIT COMMAND 23-21

23.26 Line Splitting

:V [old text] - SPLIT - split the pointed line after the text
matching [old text] and insert the remainder of the line past the
matching text below the pointed line. The pointer remains in its
original position. This is useful for INSERTing sentences in the
midst of text without doing a group of cumbersome MODIFYs.

23.27 Line Concatenation

:W - CONCATENATE - append the line below the pointed line to
the pointed line. The pointed line is assumed to haVe a trailing
space if word wrap-around is in effect. This is useful in text·
mode where a MODIFY has caused words to wrap-around to the next
line and the operator wishes to include them with the following
line.

23.28 File Search Commands

Manual operator-controlled searches may be performed by
depressing the keyboard (KED) and display (DSP) keys
simultaneously to cause data to be fetched from the file (forward
or backward depending which key is pressed first) and displayed on
the screen. This continues until either key is released. The :EO
command performs the same function automatically, i.e., it causes
lines to be fetched and displayed until the end of the file is
reached. Pressing the DISPLAY key causes the :EO command to pause
until it is released. To terminate an :EO command, press the
keyboard (KED) key. To fetch a single line, use the Pseudo-ENTER
key (shift DEL) .

The :E- command works the same way as the :EO except that it
fetches lines backwards through the file in memory rolling the
screen down.

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E* command. This
searches for the end of file and displays the last screen of data.

For more information on the :E commands, see the section on
'Terminating the EDIT' .

FINDs and LOCATEs search the file for a line containing
specific text. When a line has been found, it is aligned with the
pointer on the screen so that it may be operated on. Lines above
and below the line are also displayed. FINDs and LOCATEs allow

23-22 1500 DISK OPERATING SYSTEM

field specification, that is, if a field is specified, only lines
with the specific text in that field are found.

A FIND or LOCATE wraps entirely around the file. If the
requested text is not found, the last screen image when the FIND
or LOCATE was executed is displayed and the machine beeps. A FIND
or LOCATE may be aborted by pressing the keyboard (KBD) key.

The [old text] specified for a FIND command is saved. The
saved [old text] may be redisplayed or used again. FIND, LOCATE,
DELETE, and QUERY store the [old text] in the same save area.

:F [old text] - FIND match - the input file is searched for a
line starting with the specified [old text]. Leading spaces in
the file's lines will be ignored and should not be entered as part
of [old text]. Note that this command should be typed exactly
:F[SPACE][old text]. The:L command should be used if leading
spaces are important.

:F[SPACE] - FIND same match - if the FIND command is followed
by exactly one space and the ENTER key, the previous FIND (DELETE,
QUERY, or LOCATE) [old text] is used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F[U] - FIND in field [U] - search for a field starting with
the desired text. Field FINDs may be used in either of the
command formats: :F[U] [old text] or :F[U][SPACE].

:F* - FIND display - the asterisk (*) after the FIND command
causes the [old text] of the previous FIND, DELETE, QUERY, or
LOCATE command to be displayed. The cursor is turned off and the
operator must press ENTER to proceed. No FIND is performed.

:L - LOCATE next - typed exactly :L[ENTER], finds the next
line of text. If positioned at the end of the file, the screen is
cleared and the 'next' line brought up is the first line of the
file, ie. file wraparound.

:L [old text] - LOCATE match - similar to FIND match except
that the locate command searches for a line containing imbedded
text matching [old text]. Leading spaces should be supplied if
meaningful.

:L[space] - LOCATE same match - typed exactly
:L[SPACE][ENTER], uses the [old text] specified by the previous
LOCATE, DELETE, QUERY, or FIND command to perform a search.

:L[U] - LOCATE in field [U] _ locate desired string in

CHAPTER 23. EDIT COMMAND 23-23

specified field.
command formats:

Field LOCATES may be used in either of the above
:L[U] [old text] or :L[U][SPACE].

:L* - LOCATE display - display the [old text] entered for the
previous LOCATE, DELETE, QUERY, or FIND command. As in the FIND
display, the cursor is turned off and the operator must press
ENTER to continue. No LOCATE is actually performed.

There are several variations on the GET command that allow
the user to quickly jump forward or backward through a file or to
a specific line by number.

:G - GET next screen - clears the screen and refills it with
the next screen image.

: G- - GET pr ior sc reen - cl ear s the sc reen and "refi 11 sit
with the prior screen image.

:Gnnnnn - GET nnnnn lines - fetches nnnnn (from 1 to 65,535)
lines from the file or until the end of file. For example, ":G1"
rolls the screen up one line, and displays the next line.

:G-nnnnn - GET nnnnn lines backward - same as the above
command except that it fetches backwards through the file in
memory, and rolls the screen down.

:GAnnnnn - GET Absolute [nnnnn]th line - position the file so
that the [nnnnn]th line of the file (counting from the beginning
of the file) is displayed on the bottom line of the screen.

23.29 BYPASS End of File

:B - BYPASS - fetch a line from the file, bypassing the end
of file. This may be a true end of file or one caused by RECORD
FORMAT errors, PARITY errors, or a RANGE TRAP (see Recovery
Procedures). Subsequent lines may then be fetched by the normal
mechanisms. This command is intended as a recovery tool for use
only if the file has been accidentally shortened or contains badly
formatted records.

NOTE: There are certain file conditions which :B cannot handle
and/or correct.

23-24 1500 DISK OPERATING SYSTEM

23.30 Terminating the EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text. The
search may be aborted by pressing the keyboard (KBD) key.

:EO - EOF with display - this command causes the data to be
fetched and displayed on the screen continuously until end of file
is reached. The search may be temporarily stopped by pressing the
display (DSP) key or terminated by pressing the keyboard (KBD)
key.

:E- - Display to the beginning of file - works exactly as the
:EO command above except that it fetches backward through the file
in memory, rolling the screen down.

:E - END - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then, if the logical scratch is not the physical input file, the
scratch file is copied back to the source file.

The command line is left on the screen as long as the copy
from source to scratch is in progress; it is erased during the
final copy from scratch back to source.

The END may be aborted as long as the command line is still
displayed, by pressing the keyboard (KBD) and display (DSP) keys
simultaneously. When the final copy is completed, control is
returned to DOS.

:E/ - END/DEL - same as the END command, except the edited
file is truncated below the bottom line on the screen.

More specifically, this command causes the remainder of the
source file to be deleted (the lines currently on the screen are
written out), and, if the logical scratch file is not the physical
source file, the scratch file is copied back to the source file.
When the file is completely updated, the system is reloaded.

:E\ - END/DEL - same as the END command, except the edited
file is truncated above the top line on the screen.

More specifically, this command causes the prior portion of
the source file to be deleted (the lines currently on the screen
are written out), and the remainder of the file to be written out
to the scratch file. If the logical scratch file is not the
physical source file, the scratch file is copied back to the

CHAPTER 23. EDIT COMMAND 23-25

source file. When the file is completely updated, the system is
reloaded.

:0 - this command causes the EDITOR to return to DOS without
updating the source file.

:OX [DOS command string] - this command causes EDIT to return
to DOS without updating the source file and then execute the DOS
command string.

NOTE: If EDIT is exited using either :0 or :OX the format of
neither SCRATCH/TXT nor SCRATCH/XTX is guaranteed correct. Also,
if a file is created and EDIT is exited using :0 or :OX rather
than :E etc., then the format of the newly created file is not
guaranteed.

23.31 Advanced Commands

:0 [user-defined command string] - Define the user-defined
command string zero.

:0 - Execute user-defined command string zero.

The user may define and execute up to ten EDIT command
strings. These strings may use themselves, do conditional skips
of commands, and request operator response. This gives the EDIT
the capability of doing sophisticated file modification in a
semi-automatic manner (the user always has complete control).

The user may define commands ":0" through ":9" as one or more
EDIT commands. The defined command may be a single command (e.g.
a complicated MODIFY command) that is used quite often, but one
the user doesn't want to type in every time he needs it. Or it
may be a string of commands separated with Pseudo-ENTER (shift
DEL) characters. The Pseudo-ENTER character appears as a solid
triangle on the screen. The command string should be terminated
with a Pseudo-ENTER (shift DEL) if trailing spaces are
significant. A carat is used in place of the solid triangle in
the examples below. For instance, if the user types:

:2 :M abcdefghijklmnop(ponmlkjihgfedcba

he has defined command 2. Every time that he types in:

: 2

the pointed line is modified in the specified manner. If the user

23-26 1500 DISK OPERATING SYSTEM

types:

:5 :M abcde<edcba~:M fghij<jihgf

he has defined command 5 as a pair of modify commands. Every time
that he types in:

: 5

the pointed line has both modifications done in sequence just as
if the user has typed them in separately. If the first
modification fails, the second one is not performed.

If the user needs to replace every occurrence of the string
"LABEL" in his file with "LABEL1", he may define a command as:

:2 :L LABEL ~M LABEL <LABEL1~2

Note: a new definition discards the old definition. Also, the
colon following the Pseudo-ENTER character is optional. The user
may then type:

: 2

which loops changing "LABEL" to "LABEL1" everywhere it is found
in the file. The command string terminates when the LOCATE fails.
Of course the user can always terminate the command with the
keyboard (KBD) key.

For a more complicated example, the user may be EDITing the
disk file which may be created by the DOS FILES Command, and
define two commands as:

:8 :M2 \:DRO,:DR1~:M <COPY~:9
:9 :Z-:M /</~:9~:G1~:Z~:Q /~:8~:Z*

Then he may set a tab at column 13 (immediately after the file
extension in the FILES-created file). By typing:

: 8

the user creates a CHAIN file for copying all the files from drive
zero to drive one.

Modify commands used on the last screen of lines from the
file generate a "phantom" line below the present screen lines.
Creation of this line means that a :G1 command will always be
successful following a modify. For this reason, repetitive

CHAPTER 23. EDIT COMMAND 23-27

commands should be constructed to use a locate or query command
that will fail when the instruction should terminate. The
examples above illustrate use of this type of test to terminate a
repetive command. The phantom lines that can appear at the end of
a file during EDIT are null lines and will not appear in the
updated disk file.

The execution of any command string may be temporarily
stopped by holding down the display (DSP) key or terminated by
pressing the keyboard (KBD) key.

:0* - Display the user-defined command string zero on the
bottom of the screen

:00 - Display the user-defined command strings zero through
nine on the top of the screen.

The above commands allow the user to examine command strings
individually in relation to the text on the screen or to examine
them all at once in relation to each other. Press ENTER to
terminate the above displays.

:0< - Insert user-defined command string zero into the file
text immediately below the pointed line.

:0) - Define user-defined command string zero from the text
in the pointed line on the screen.

The above commands allow the user to save the command strings
in the text of his file. It also simplifies the modification of
command strings as the user can use MODIFY on the string rather
than keying in the entire string again. It also assists in
defining several similar command strings.

A definition file with a default name of EDIT/DEF may be
created by the user to contain a set of user pre-defined command
strings. These are loaded automatically every time that EDIT is
executed. This is an EDITable file. Remember, the user can force
a colon as the first character on a line by starting the line with
a double colon. The definition file may contain comment lines
(e.g. lines starting with "+", "*", or ".") or null lines. The
sequence of the defined command strings has no effect. Command
strings may be multiple defined; the last definition will be the
one in effect.

:99 [user-defined command string] - Define an initialization
command string in the definition file.

23-28 1500 DISK OPERATING SYSTEM

If an initialization command is defined in the definition
file, it is executed automatically when EDIT is executed. It may
be defined to do things such as change the tab key, turn on key
click, change the modify operators, set tab stops, or even do file
modification without operator intervention. The automatic
execution of the initialization command may be overridden by
pressing the keyboard (KBD) key when executing EDIT.
NOTE: These changes will not change the screen display of
parameters.

:Z* - Terminate execution of the user-defined command string
and return control to the bottom keyin line.

:Z - Skip over one command after the following command in the
user-defined command string if the following command fails.

:Z[n] - Skip over En] commands (1 to 9) after the following
command in the user-defined command string if the following
command fails.

Almost every EDITOR command either "succeeds" or "fails".
For instance, LOCATE succeeds if it finds a line containing the
specified text and fails if it doesn't. The MODIFY command fails
if the string to be modified is not found or if, using the VERIFY
option, the user has pressed the ENTER key. The GET fails if the
end of file is reached. The use of the above commands allows
conditionally skipping over commands in the user-defined command
depending on the success of a command.

CHAPTER 23. EDIT COMMAND 23-29

:U[n] - Unconditionally skip over en] commands (1 to 9) in
the user-defined command string.

This allows skipping over commands that might be jumped to by
a conditional skip.

:Q [string] - QUERY, setting a succeed or fail condition, if
the specified string is contained in the pointed line.

This command works similar to the FIND or LOCATE command in
that it uses the line save area and allows field specification.
It does not affect the pointed line at all but sets up a
conditional skip. For instance, if command 3 were defined:

then its execution would GET lines until the pointer pointed to a
line containing the string "ABC" in field 2. While the QUERY
fails, the first conditional skip command (":Z") causes execution
of the command string to skip over the ":Z*", GET a line, and then
start over. When the QUERY succeeds, the ":Z*" is executed which
terminates the command string. This example effectively does a
LOCATE while displaying all the lines examined.

See the Appendix 'Example of an EDIT/DEF File' for more
user-defined commands.

23.32 Recovery Procedures

A 'FORMAT TRAP' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some other program.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

A 'PA RITY TRAP' occur s when a record is mi sr ead from the
disk. This may be caused by physical misalignment of the disk
read head or a bad surface on the disk.

These three errors cause the EDITOR to believe that it has
reached the end of file. To read past an end of file, use the
BYPASS command, ":B", repeatedly if necessary.

23-30 1500 DISK OPERATING SYSTEM

File Recovery

If the source file is lost (e.g., erroneously KILLed), one of
the scratch files may contain a useful copy. Since the scratch
files (SCRATCH/TXT or SCRATCH/XTX) usually contain a copy of the
last file edited, they may be used to recover only that file.

Note: If the file fits completely within the memory buffer,
scratch files are never used.

Also Note: There are some file conditions that EDIT cannot
correct!

23.33 Glossary of EDIT Terms

Assembler Mode - assumed if 'A' appears in the parameter list.
Tab stops are set at 9, 15, and 30 (may be changed during
execution). The SPACE BAR is assumed to be the tab key
character (maybe changed in parameter list or during
execution). Shift key inversion and word wraparound are
assumed. A leading plus (+), period (.), or asterisk
(*), generate a following space for comment lines.

Command - characters typed at the left edge of the command line
following a COLON (:) which have special meaning to the
editor.

Command line - the bottom line of the screen where most data is
entered, lines are fetched and commands are typed.

Configuration sector - the first sector of a file which has been
written by EDIT. It is invisible to most other programs.
When the configuration sector exists, it contains the
tabs, bell margin, special characters, click option, mode
and space-compression information and is used for the
editor defaults.

Continue Character - a character which when entered in the first
column causes a continue indicator to appear (see below).
The default continue character is the ampersand (&) which
may be changed during execution.

Continue Indicator - A solid triangle appearing in the first
column which means that the previous record exceeds 79
characters. When the continue character has been entered

CHAPTER 23. EDIT COMMAND 23-31

in the first column, the continue indicator appears and
its presence means the line containing the indicator is
joined on output to the previous line, possibly creating
records greater than 79 characters.

DATABUS mode - assumed if a 'D' appears in the parameter list.
Tab stops are set at 10 and 20 (may be changed during
execution). The SPACE BAR is assumed to be the tab key
character (this may be changed in the parameter list or
during execution). Shift key inversion and no word
wrap-around are assumed. Leading periods (.), pluses
(+), and asterisks (*) generate a following space (.) or
(+) or (*) for comment lines.

Definition file - this is an EDITable file, containing pre-defined
user command strings, which is automatically loaded when
the Editor is executed. The definition file may also
contain ah initialization command (":99") which is
automatically executed unless the keyboard (KBD) key is
pressed. The default name for the file is EDIT/DEF.

Field number - a digit used in commands to designate the portion
of the pointed line between two consecutive tab stops.
Field '1' is always from column 1 to the first tabstop;
thus, in Assembler mode, '1' designates the label field,
'2' the opcode field, '3' the expression field and '4'
the comment field. During field modification, leading
and trailing fields are preserved.

Line insert - results from an INSERT command, data entry or
modification when word wrap-around is in effect, or use
of the Pseudo-ENTER key. The lines below the pointed
line are rolled down and a new, blank line is generated
at the pointed line.

Logical scratch file - current output file.

Logical source file - current input file.

Modify operator - the character in a MODIFY command which
indicates what is to be done. The default replace
operator is the "less than" symbol «), the default
insert operator is the "greater than" symbol (», and the
default append operator is the "backslash" (\).

Multi-line Record - a line on disk that is greater than 79
characters, displaying as more than one line on the
screen with each continued line marked with a continue

23-32 1500 DISK OPERATING SYSTEM

indicator.

New text - a group of characters, typed immediately after a modify
operator in a modify command, which will become part of
the line being modified.

Old text - a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND or LOCATE
commands) .

One-pass option - assumed if an '0' appears in the parameter list.
The one-pass option does not update the physical source
file.

Parameter list - initialization information provided when the
editor is first executed. Following file specifications,
a SEMI-COLON (j) indicates the presence of a parameter
list. The mode (A, D, or T), one-pass option (0), tab
character, margin bell column, key-click (K),
space-compression (E or G), non-verification (Y) and (in
text mode - T), 'shift inversion' (S), and 'no word
wrap-around' (L) may be set.

Pointed line - a pointer C» in the left hand margin is used to
reference lines for modification by command. The line to
the right of the pointer is the pointed line.

Physical scratch file - specified (or implied SCRATCH/TXT) output
file.

Physical source file - specified input file.

Pseudo-ENTER - the key marked DEL
as the Pseudo-ENTER key.
of the command line, one
source file.

(always shifted) is referred to
If pressed in the first column

line of text is fetched from the

If pressed while entering a command, a user-defined
command string separator is entered.

In all other modes, the Pseudo-ENTER key causes a new
line to be inserted so that data entry may proceed in the
same area of the screen. If pressed on the last screen
line, it causes the processor to beep.

Scratch file - at any point in time, the logical scratch file is
the output file.

CHAPTER 23. EDIT COMMAND 23-33

Screen line - any of the lines on the screen which may be
referenced by the command pointer. The command line
(bottom line) is not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that, in lower case, alpha
characters appear upper case.

Source file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or one of the scratch files.

Space-compression - an "abbreviation" written to a disk file when
two or more blank spaces are consecutive in a string.
For example, "HI THERE" is converted to
"HI(011)(006)THERE" where (011) is the space compression
indicator, (006) is the number of spaces compressed and
integers in parenthesis are octal codes. The default
mode is 'G' for space-compressed mode. The 'E' option on
the command line causes spaces to be expanded, i.e.,
written out with no space-compression.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list with an'S'). Word
wrap-around is performed (this feature may be turned off
by an 'L' in the parameter list).

Word - a word is defined as any group of less than 70 characters
preceeded by a space.

Word wrap-around - a feature of text mode. During data entry a
space to the right of the margin bell column causes an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 79 characters, the
trailing characters, including the last word on the line,

23-34 1500 DISK OPERATING SYSTEM

are moved to a new line which is inserted below the
original line. Control then returns to the command line.

23.34 Command List

The full set of EDITOR commands are listed below. All legal
combinations of options are included. ESP] represents a space.
[ENT] represents the ENTER key. [#] represents the field number
(in the range 1-9). Commands may be either upper or lower case.

:[NEW TAB KEY][ENT] - Replace the old tab key character with the
new one. The default for the tab key character is the
space bar.

:[OLD CONTINUE CHARACTER][SP][NEW CONTINUE CHARACTER][ENT] -
Replace the old continue character (for input of long
records) with the new one. The default for the continue
character is the ampersand (&).

:[OLD REPLACE OPERATOR][SP][NEW REPLACE OPERATOR][ENT] - Replace
the old modify-replace character with the new one. The
default for the modify-replace character is the "less
than" «) symbol.

:[OLD INSERT OPERATOR][SP][NEW INSERT OPERATOR][ENT] - Replace
the old modify-insert character with the new one. The
default for the modify-insert character is the "greater
than" (» symbol.

:[OLD APPEND OPERATOR][SP][NEW APPEND OPERATOR][ENT] - Replace
the old modify-append character with the new one. The
default for the modify-append character is the
"backslash" (\).

::[string][ENT] - Force a line beginning with a colon to be
entered into the text of the file.

:A[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line and move the pointer up one
line.

:A*[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line without moving the pointer.
This allows defining a command that does multiple ":A*"s
to copy multiple lines.

CHAPTER 23. EDIT COMMAND 23-35

:B[ENTER] - BYPASS the end of file which may be caused by RECORD
FORMAT, PARITY, or RANGE errors.

:C[ENT] - Copy the pointed line to the bottom of the screen,
delete the pointed line, and key in a new line there (if
desired).

:CH[ENT] - Display the current tab key character and MODIFY
operators.

:D*[ENT] - Display the previously defined string used by DELETE,
FIND, LOCATE, or QUERY.

:D[ENT] - Delete the pointed line and key in a new line there (if
desired).

:D[SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the pointed line.

:D[SP][string][ENT] - Delete up through the specified string in
the pointed line.

:D[#][SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the specified field of the pointed line, and all
characters in trailing fields.

:D[#][SP][string][ENT] - Delete up through the specified string
in the specified field in the pointed line, and all
characters in trailing fields.

:E[ENT] - END the EDIT by copying the modified file back to the
original source file.

:E/[ENT] - END the EDIT by copying the modified file back to the
original source file up to the bottom line displayed on
the screen. This deletes the trailing portion of the
file.

:E\[ENT] - END the EDIT by copying the modified file back to the
original source file starting with the top line of the
screen up to the end of the file. This deletes the
preceding portion of the file.

:EO[ENT] - Display the file forwards (rolling the screen up) to
the end of file. The display (DSP) key stops the

23-36 1500 DISK OPERATING SYSTEM

display until it is released. The keyboard (KBD) key
terminates the display and returns to the command line.

:E-[ENT] - Display the file backwards (rolling the screen down)
to the beginning of the file contained in memory. The
display (DSP) key stops the display until it is
released. The keyboard (KBD) key terminates the display
and returns to the command line.

:E*[ENT] - Display the last line of the file at the bottom of the
screen (immediately above the COMMAND LINE).

:EX[sp][DOS Command and string][ENT] - End the EDIT by copying
the modified file back to the original source file, then
execute the DOS command string.

:F*[ENT] - Display the previously defined string used by FIND,
DELETE, LOCATE, or QUERY.

:F[SP][ENT] - Find a line starting with the previously defined
string.

:F[SP][string][ENT] - Find a line starting with the defined
string.

:F[#][SP][ENT] - Find a line starting in the specified field with
the previously defined string.

:F[#][SP][string][ENT] - Find a line starting in the specified
field with the defined string.

:G[ENT] - Display the next screen-full of lines.

:G-[ENT] - Display the prior screen-full of lines.

:G[nnnnn][ENT] - Roll up the screen and display [nnnnn] lines
where the number may range from 1 to 65,535 lines. This
stops at the end of file.

:G-[nnnnn][ENT] - Roll down the screen and display [nnnnn] lines.
This stops if the beginning of the memory buffer is
reached.

:GA[nnnnn] - Display the [nnnnn]th line of the file. This rolls
forward or backward through the file depending on the
current location in the file.

:I[ENT] - Insert by keying in a new line immediately below the

CHAPTER 23. EDIT COMMAND 23-37

pointed line.

:I[SP][string][ENT] - Insert the specified string immediately
below the pointed line.

:K[ENT] - Turn on the key click.

:KI[ENT] - Turn off the key click (Key click Invert).

:L*[ENT] - Display the previously defined string used by LOCATE,
DELETE, FIND, or QUERY.

:L[ENT] - Roll up the screen one line. At the end of the file,
this causes the file to wrap-around to the beginning.

:L[SP][ENT] - LOCATE a line containing the previously defined
string.

:L[SP][string][ENT] - LOCATE a line containing the defined
string.

:L[#][SP][ENT] - LOCATE a line containing the previously defined
string in the specified field.

:M*[ENT] - Display the previous MODIFY command line.

:M[ENT] - Modify the pointed line using the previous MODIFY
command line.

:MV[ENT] - MODIFY with VERIFY the pointed line using the previous
MODIFY command line.

:MV[#][ENT] - Repeat the previous MODIFY command line with VERIFY
applied to the specified field.

:M[SP][modify string][ENT] - MODIFY the pointed line as specified
by the modify string.

:MV[SP][modify string][ENT] - MODIFY with VERIFY the pointed line
as specified by the modify string.

:M[#][SP][modify string][ENT] - MODIFY the specified field in the
pointed line as specified by the modify string.

:MV[#][SP][modify string][ENT] - MODIFY with VERIFY the specified
field in the pointed line as specified by the modify
string.

23-38 1500 DISK OPERATING SYSTEM

Modify strings are of the following formats. The
default replace operator is the "less than" symbol «).
The default insert operator is the "greater than" symbol
(». The default append operator is the "backslash"
symbol (\). [string1] and [string2] are optional.

[string1][replace operator][string2] - Replace string1
with string2.

[string1][insert operator][string2] - Insert string2
immediately following string1.

[string1][append operator][string2] - Truncate the line
immediately following string1 and append string2.

:O[ENT] - Return to the Operating System without updating the
original source file.

:OX[sp][DOS command string] - Return to operating system without
updating the original source file and execute the given
DOS command string.

:Q*[ENT] - Display the previously defined string used by QUERY,
DELETE, FIND, or LOCATE.

:Q[SP][ENT] - QUERY (setting a succeed or fail condition) if the
previously defined string is contained within the
pointed line.

:Q[SP][string][ENT] - QUERY if the given string is contained
within the pointed line.

:Q[#][SP][ENT] - QUERY if the previously defined string is
contained within the specified field of the pointed
line.

:Q[#][SP][string][ENT] - QUERY if the given string is contained
within the specified field of the pointed line.

:SB[ENT] - SCRATCH BELOW deletes all the lines on the screen from
the pointed line down through the bottom line and then
allows keying in a new line at pointed line.

:SC[ENT] - SCRATCH deletes all the lines on the screen from the
top line down through the pointed line and then allows
keying in a new line at the top screen line.

:T[ENT] - Set TAB stops by displaying a line of column numbers

CHAPTER 23. EDIT COMMAND 23-39

and allowing the user to space across setting tabs by
typing non-blanks. Up to 20 tabs may be set.

:T[SP][nn][,nn] ••• [ENT] - Set tab stops to the columns specified
by [nn][,nn] •.. where [nn] ranges from 1 to 79. Up to
20 tabs may be set.

:TD[ENT] - Set TAB stops for Databus or Datashare (columns 10 and
20).

:U[ENT] - UNCONDITIONAL skip over the following command in the
user-defined command string.

:U[n][ENT] - UNCONDITIONAL skip over En] (1 to 9) following
commands in the user-defined command string.

:V[SP][string][ENT] - Split the pointed line after the text in
the line matching [string] and insert the remainder of
the line immediately below the pointed line.

:W[ENT] - Concatenate the line below the pointed line to the
pointed line. If word wrap-around is in effect, the
pointed line is assumed to have a trailing space.

:X[ENT] - Change to TEXT mode with word wrap-around and no shift
inversion and then set tab stops (as in :T above).

:Z[ENT] - Skip over 1 command after the following command in the
user-defined command string if the following command
fails.

:Z[n][ENT] - Skip over en] (1 to 9) commands after the following
command in the user defined command string if the
following command fails.

:Z*[ENT] - Terminate execution of the user-defined command string
and return control to the bottom keyin line.

NOTE: The following commands, though refering to zero,
actually refer to all the user-definable commands zero
through nine.

:O[ENT] - Execute user-defined command zero.

:O*[ENT] - Display user-defined command zero.

:O[SP][user-defined command string][ENT] - Define user-defined
command zero. The command string consists of one or

23-40 1500 DISK OPERATING SYSTEM

more EDIT commands separated with a Pseudo-ENTER (shift
DEL) character. The colon immediately following the
Pseudo-ENTER character is optional.

:O<[ENT] - Insert user-defined command zero into the file text
immediately below the pointed line.

:O>[ENT] - Define user-defined command zero as the pointed line
on the screen. The combination of this and the above
command allow user-defined commands to be saved in the
text of the file and to be EDITed.

:OO[ENT] - Display the user-defined commands zero through nine.

:99[SP][user-defined command string][ENT] - This is the
initialization command which is executed when the EDIT
is started. It may be overridden by pressing the
keyboard (KBD) key while bringing up EDIT. This command
may only be used in the definition file (/DEF) and not
during the actual EDIT.

23.35 EDIT ERROR MESSAGES

The following is a list of error messages that may occur
during EDIT:

NAME REQUIRED - supply either the name of a new file or the name
of the file that is to be edited.

SYSTEM FILES MAY NOT BE EDITED! - Files whose Physical File
Numbers are 0 through 7 are designated as system files and cannot
be edited without disastrous results.

SCRATCH FILE MAY NOT BE A SYSTEM FILE! - AGAIN This would be
disastrous as mentioned above.

POSSIBLE OBJECT FILE! CONTINUE EDIT (YIN)? - Occurs if a Binary 0
is found as the first byte in Logical Record Number 0 and it is
not part of an End of File mark.

BAD DEVICE - the drive specification on one of the three file
specifications is either invalid or refers to a drive not on-line.

BOTH SOURCE AND SCRATCH FILES CANNOT BE SAME - either the same
file specification has been entered in the first and second
positions on the command line or the first file specification is
"SCRATCH" and no scratch file specification is given (hence using

CHAPTER 23. EDIT COMMAND 23-41

the default name of SCRATCH) .

BAD EXTENSION (XTX) FOR SCRATCH - since EDIT uses two scratch
files where the second scratch file has the name of the first
scratch file and the extension XTX, the extension XTX is not
allowed in the scratch file specification.

BAD OPTION PARAMETER - an invalid character appears on the command
line.

INPUT FILE MUST EXIST IN "ONE-PASS" - the "0" option may not be
used during creation of a new file

FAULTY DEFINITION FILE - either the file in the third file
specification is not a valid definition file, or EDIT/DEF (the
default definition file) does not contain the user-defined
commands in the proper form.

TRAPS - FORMAT, RANGE and PARITY traps may occur when there is
some problem with the head alignment of the disk drive or when
there is something wrong with the file (see the chapter "Recovery
Procedures")

Processor "Beeps" - the usual indication of an error in the
command just keyed in: rolling off the beginning of the text in
memory, rolling off the end of the file, locating text not in the
file, or keying in an unrecognizable command (see the "failure"
conditions in the chapter "Advanced Commands").

23.36 Configuration Sector

A file that has been written with EDIT contains configuration
information in the first sector. This sector begins with an octal
003 so that it is invisible to most programs. As a convenience,
the tab settings, special characters and modes are contained in
the sector so that these defaults are used the next time the file
is edited. If the file has been SAPPed or REFORMATted, for
example, the configuration sector is not preserved.

The following describes the contents of the configuration
sector. A three-digit integer in parentheses represents an octal
byte.

(003) * 0 0 0 0 0 0 0 0 (015) 1500 General Editor <version> (015)

<tab numbers> (015) <bell position> (015)

23-42 1500 DISK OPERATING SYSTEM

<tab key> <continue character> <modify replace operator>

<modify insert operator> <modify append operator>

<key click switch> <shift inversion switch> <word wrap-around switch>

<text mode switch> <expand mode switch>

<scratch filename> <definition filename> (015) (003)

where:

<tab numbers>

are decimal integers separated by spaces representing the tab
positions and the field lengths. For example, tabs (9,15,30)
are represented by "1 8 9 6 15 15 30 50 "

<bell posi tion>

is a decimal number of at most two digits.

< tab key>
<continue character>
<modify replace operator>
<modify insert operator>
<modify append operator>

are the actual ASCII characters.

<key click switch>

is "N" if off and "K" if the click option is on.

CHAPTER 23. EDIT COMMAND 23-43

<shift inversion switch>

is "N" if no shift inversion and" " if shift inversion is on.

<word wrap-around switch>

is "W" for word-wrap and "N" if not.

<text mode switch>

is "T" if text mode or "N" if not.

<expand mode switch>

is "E" when space compression is inhibited and "N" if space
compression is desired.

<scratch filename>

is the eleven (11) character name and extension of the scratch
file.

<definition filename>

is the eleven (11) character name and extension of the
defini tion file.

23.37 Example of a Definition File

This is an example of a definition file for EDIT. Note that comments
may appear. Although this contains some useful general-purpose
user-defined commands, the most common use of command strings is for a
special editing job. Care should be used in defining user command
strings to make sure they perform as intended! For this illustration,
the caret (~) is used to represent the SHIFT/DEL triangle.

For example, a file needs "?" following every line beginning wi th a "*"

23-44 1500 DISK OPERATING SYSTEM

Many times user-defined commands are required for a one-time application.

Here are some more general examples:

Global search and replace with verification:

:1 :z":mv":1":1 -:,'"

This function assumes that the modification and the locate have been
done previously so the repeated form of the command is used. This
string can be modified to add field parameters for the locate and
modify commands or the verfication option removed from the modify
command.

De 1 e t e un til :

By using the :Q function, "query" a particular string for the line the
cursor is pointing to. This sets up a string for the repeated form of
the :Q command. This function deletes all lines beginning with the
pointed line up until it finds the particular string entered at first.

Insert line of asterisks:

Use this function to insert a line of asterisk (or modify the string
to insert lines of periods or underscores).

Draw a box of asterisks:

CHAPTER 23. EDIT COMMAND 23-45

Use the line function (:3) to draw the top of the box. Do a :xi to insure
that "format" (no word wrap) mode is in effect. Now go down to where the
bottom of the box is to be drawn and key in :4. This draws a box of
asterisks.

Marking updated lines within Databus mode:

This is an easy way to mark modified lines .

. Leave :8 empty for "local" user-defined commands.

23-46 1500 DISK OPERATING SYSTEM

CHAPTER 24. ENCODE/DECODE COMMANDS

24.1 Purpose

The ENCODE command is used to convert disk files containing
data in any format into 79 character records containing only ASCII
characters. Data in encoded format can be copied or transmitted
by all Datapoint programs.

The DECODE command is used to translate encoded data files
back into an exact duplicates of the original disk files.

24.2 Use

ENCODE <file spec>,[<file spec>]

The ENCODE command converts the first file into encoded
format and writes the data into the second file. If extensions
are not supplied, ASS is assumed for the first file and ENC is
assumed for the second file. If the second file is not specified,
the name of the first file with an extension of ENC is assumed.
The second file will be created if it does not already exist.
Encoded data creates a file 50 percent larger than the original.

DECODE <file spec>,[<file spec>]

The DECODE command converts the first file from encoded
format back into binary and writes the data into the second file.
If extensions are not supplied, ENC is assumed for the first file
and ASS is assumed for the second file. If the second file is not
specified, the name of the first file with an extension of ASS is
assumed. The second file will be created if it does not already
exist.

ENCODE reads and converts binary data until either a valid
text end of file is read or allocated file space is exausted.
Data in encoded form is always terminated with a valid text end of
file.

CHAPTER 24. ENCODE/DECODE COMMANDS 24-1

24.3 Error Messages

INPUT FILE MUST BE SPECIFIED!

will be displayed if the first file specification is omitted.

INPUT FILE DOES NOT EXIST!

will be displayed if the first file specified cannot be found in
the DOS directory.

OUTPUT WOULD DESTROY INPUT FILE!

will be displayed if the first and second file specifications are
identical.

INPUT FILE CONTAINS BAD DATA!

will be displayed if an encoded data file cannot be decoded into
its original binary form.

INVALID DRIVE

will be displayed if any drive specified on the command line is
invalid.

24-2 1500 DISK OPERATING SYSTEM

CHAPTER 25. FILES COMMAND

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertaining to all DOS files or to
only those files with names and/or extensions beginning with the
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described in the chapter on System Structure) is also extracted
for each d ir ec tory en try. Ex tr ac ted da ta is in ter preted and
displayed on the screen, listed on a serial printer, or written to
a disk file.

25.1 Command Description

To execute the FILES program, type in the name FILES followed
by selection criteria and display options (if option codes are to
be used):

FILES [<name>][/<ext>][:DRn],[<subdir>][,<output-file>][joptions]

<name> Select entries for files with names beginning
with the 1-8 characters specified.

<ext> Select entries for files with name extensions
starting with the 1-3 characters specified.

:DRn Specifies the disk drive to be selected.
If this field is omitted, the booted drive
will be selected.

<subdir> Specifies the named subdirectory from which
to select entries.

<output-file> Specifies the disk file to which the
selected entries will be written, if disk
file output is specified.

CHAPTER 25. FILES COMMAND 25-1

options: The following option codes are available, and
may be entered in any order:

N - Suppress file allocation map.
D - Display on CRT.
L - List on printer.
F - Write output to disk as DOS

text-format file.

If options are keyed and D, L,and F are omitted, then D is
assumed. D, L, and F options are mutually exclusive; output can
be sent to only one device. If F is keyed and the <output file
spec> is not present in the command line, one is requested by the
message:

DOS OUTPUT FILE SPEC:

25.2 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is
entered, file allocation information will be displayed for each
selected file. Next, the following message will be displayed:

LIST ON PRINTER?

If the user enters "Y" or "YES" in response to this message,
the printer will be selected for output. If a printer has been
selected for output, the following message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered, which will be displayed
at the top of each page of printed output.

If no printer is available, or if the operator has rejected
printer output, the program will ask for disk output:

25-2 1500 DISK OPERATING SYSTEM

WRITE OUTPUT ON DISK?

If the user enters "Y" or "YES", output will be written to a
disk file, otherwise output will be displayed on the CRT. If disk
output is selected, an output file name will be requested unless
one was provided on the command line.

One use for a list of files on the disk is for generating a
CHAIN file to perform repetitive operations such as COPYing or
KILLing several files. The editor may be used to modify the file
written by FILES, as shown in the Editor command string example.

25.3 File Descriptions

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

DW flags following the Physical File Number (PFN) indicate if
the file is delete protected (D), or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.
When allocation map information is printed or displayed, the
program displays totals lines specifying the total number of files
listed and the total number of sectors in those files. Disk
output never has totals lines.

Depressing the display (DSP) key during display or printing
of file descriptions will cause the program to pause until the key
is released. Depressing the keyboard (KBD) key will cause the
program to terminate and return control to the operating system.

Allocation map information describes each segment in the file
by giving the track and cluster starting address of the segment
and its length in sectors. One line is displayed for each
segment. See the chapter on System Structure for a description of
disk space allocation.

CHAPTER 25. FILES COMMAND 25-3

25.4 Error Messages

* PARITY ERROR *
FILES can not continue due to an unrecoverable parity error

encountered while trying to read data from the disk.

* DRIVE OFFLINE *
FILES is unable to connect to the disk drive selected by the

operator (booted drive if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries have been found that meet the user's
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.

UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.

PRINTER NOT AVAILABLE

An option code specifies a printer that is in use by the
other partition.

PRINTER OFF LINE

The printer responded with a status of off line.

ERROR IN DOS FUNCTION

A DOS function call to read the RIB for a file has returned
in error.

SUBDIRECTORY NOT FOUND

The sUbdirectory name specified on the command line can not
be found.

25-4 1500 DISK OPERATING SYSTEM

CHAPTER 26. FIX COMMAND

26.1 Purpose

The FIX program can be used to modify bytes of DOS-Ioadable
object code in an absolute code file. This program can be very
dangerous and should be used only by qualified assembler language
programmers or by someone following specific directions provided
by Datapoint.

26.2 Operation

To invoke FIX, enter the command:

FIX <file spec>

The program will display a sign-on message and will then
display an initial line of six zeros, two spaces, and three more
zeros on the bottom CRT line. (The zeros represent the current
address and its contents.)

000000 000

The screen is then rolled up. The program then waits for a
command from the operator. The <file spec> must specify a
DOS-loadable object file. If no extension is provided, ASS is
assumed.

Commands are in the form [number][character] where the number
is assumed to be octal. If the number is omitted, a value of zero
is used. Commands are terminated by the ENTER key. Following a
command, the current address and its contents are re-displayed.

26.3 Commands

The following is a list of command characters with their
effect:

ENTER - Set current address. There are three cases for ENTER
given below:

CHAPTER 26. FIX COMMAND 26-1

nnnM

I

nnn.

D

T

A

If no block of object code is currently in
memory (as at the beginning of execution or after a block
has been rewritten), search the object file forward until
a block containing the given location is found, then
display the contents of that location. If the address
does not exist in the object file, the current address is
left at zero.

If a block of code is in memory and the location given is
within the limits of the block, the contents of the
location will be displayed.

If a block is in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound. To
access the desired address the current block must first
be aborted (A) or transferred (T).

- Change the contents of the current address to the number
given.

Increment the current address (up to the maximum address
in the current block).

Change contents of current address to number given and
automatically increment the current address and display
the contents of the resulting location.

- Decrement the current address (down to the minimum
address in the current block).

- Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start from the beginning of the file. No modification is
made to the stored file until a T command is executed.

- Abort processing the current block, set the current
address back to zero.

o OR * - Return to the operating system - if there is a block of
object code in memory, it is not written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER key had been pressed.

26-2 1500 DISK OPERATING SYSTEM

26.4 Error Messages

If the <filespec> is not an absolute object code file, the
message

RECORD FORMAT ERROR

is displayed.

If the file specified on the command line is not found, the
message

NO SUCH NAME

is displayed.

If the file specified on the command line is an overlay
library, the message

YOU CAN'T FIX AN OVERLAY LIBRARY

is displayed.

CHAPTER 26. FIX COMMAND 26-3

CHAPTER 27. FREE COMMAND

27.1 Purpose

As a disk becomes full, it is useful to know how many
256-byte sectors remain available for allocation. Other useful
information is the number of empty slots in the directory
remaining for the allocation of file names. The FREE command
displays these two values.

27.2 Use

The FREE command accepts a drive specification. It may be
entered simply as:

FREE

which will cause the free space and files for all the on-line
drives to be displayed. It may also be entered as:

FREE :<drive spec>

which will display the FREE space and files for the specified
drive only.

The command scans all drives that it finds on-line and
displays (1) the number of available file names (representing
possible files to be created) and (2) the number of available
sectors it finds on each.

Holding down the display (DSP) key will cause FREE to pause.
Pressing the keyboard (KBD) key will cause FREE to terminate and
return to the operating system.

CHAPTER 27. FREE COMMAND 27-1

27.3 Error Messages

If the drive specification entered on the command line is not
within the range of valid drives, the message,

BAD DRIVE SPECIFICATION

is displayed. If the call to the DOS function to get the number
of clusters per cylinder returns in error, the message

BAD DOS FUNCTION

is displayed.

27-2 1500 DISK OPERATING SYSTEM

CHAPTER 28. INDEX COMMAND

28.1 Introduction

The DOS INDEX command (with the DOS SORT Command) is used to
create the tree structure required by programs using the indexed
sequential access method (ISAM), to create a Key tag file from the
INDEX file, to create the INDEX file from a Key tag file, or to
recreate the INDEX file.

The INDEX command has the capability of creating index files
from any DOS text files. The indexed access method can then
rapidly access records in this file either in sequential or random
order. Records in files to be indexed must contain a record key
up to 118 characters long contained in the first 249 bytes of each
record.

It is possible to build many independent indices to permit
access to records of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

28.2 System Requirements

INDEX runs under the DOS operating system. In addition, INDEX
uses the DOS SORT command, which must be resident on an online
disk at the time INDEX is used. If the INDEX command is to
pre-process the text file, the REFORMAT command must be available.
(See the Section on PREPROCESSING the file). If the INDEX command
is to be used to recreate the tree structure file, the NAME
command must be available.

28.3 Operation

When the INDEX command is to be executed, the operator must
enter:

INDEX <filespec>[,<filespec>][,<filespec>J[,<drive>J;<parameters>

where only the first file specification and key field description

CHAPTER 28. INDEX COMMAND 28-1

are mandatory, and specify the file to be indexed. The default
extension is TXT. The second file specification is the name of
the INDEX file to be created. If no file is specified, the name
of the first file is used with default extension of lSI. If no
drive is specified, the INDEX file will be placed on the same
drive as the file to be indexed. INDEX files may have any names
at all - and be located on physically different drives from the
file being indexed. However, high-level languages using ISAM
files (DATABUS, for example) assume the INDEX file will have the
normal lSI extension, and if the input file is drive-directed, the
lSI and TXT files must be on the same drive.

The third file specification is for the
file. The third file name will also default
first file with a default extension of TAG.
specification, which may only specify drive,
put its intermediate work files. Otherwise,
optimize drive selection.

28.3.1 Parameters

intermediate tag
to the name of the
The fourth file
tells SORT where to
SORT will attempt to

In addition to the parameters that INDEX itself recognizes,
the user may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done), or a primary record
specification to be passed to SORT. Parameters recognized by
INDEX are as follows:

K Create a Key tag file from the lSI file.
I Create an lSI file from the Key tag file.
X Recreate the lSI file, handling insertions and

deletions.
F Preprocess the input file with REFORMAT.
E Index in EBCDIC collating sequence.

mmm-nnn -- Key specification

The Key tag file is a standard text file containing the
pointer and key of each record to be indexed. The format is
explained in the SORT chapter. The file may be LISTed, EDITed or
transmitted. This last feature allows the lSI file to be created
at a remote site without invoking SORT.

The format of the key is mmm-nnn [,mmm-nnn] [,mmm-nnn] •••
where mmm is the beginning character position of the key field in
each logical record and nnn is the ending position of the key
field. Note that each record must have a unique key.

The primary record specification is an option that allows the

28-2 1500 DISK OPERATING SYSTEM

user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is PNNNTC. The P
must always appear. The field following P, denoted by NNN,
represents the column in each logical record where a one position
field exists that differentiates records in the file. The
location of this one character field must be 1 to 249. The T can
have one of two values. It can be either an equal sign C=) or a
pound sign CD). If the former, it means create the ISAM index
file from all records that contain the ASCII character C in
position NNN. If it is a pound sign, it means that the ISAM file
will be created from all records that do not contain the value of
C in position NNN.

In general the parameters for INDEX can be specified in any
order and may optionally be separated from each other by a blank
or a comma. The onl y ex ception to thi sis when a pr imar y record
specification exists, it must precede the key field specification
and be separated from the key by a blank or a comma.

28.4 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. Of course, you must choose a
key which will uniquely determine the record you wish to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be
keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

28.5 Preprocessing the File

In file structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become, after
much use, non-optimal for searching.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

CHAPTER 28. INDEX COMMAND 28-3

28.5.1 Invoking Reformat

The INDEX utility will automatically invoke REFORMAT if the
"F,r option is present when INDEX is invoked. You must have
specified the options that REFORMAT will need to process the file.
CAUTION: when INDEX invokes REFORMAT, it is done so in place.

Note that if multiple indices are to be created, reformatting
need only be specified for the first INDEX step, and MUST not be
specified later if it was not specified in the first step.
Although REFORMAT will not destroy the file, specifying
reformatting may invalidate any previously built indices.

Basically, you must tell REFORMAT what format the records of
the file are to have after preprocessing. You may select record
compression, space and record compression, or blocking. Since the
reformatting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For additional details on the
REFORMAT utility, see the REFORMAT section of this guide.

28.5.2 Considerations for Unattended Indexing

Users who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and used AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly from INDEX. The reason is that
REFORMAT (when invoked by INDEX) uses the REFORMAT-in-place mode
of the REFORMAT command. This is because it is faster, and allows
the reformatting of a file which is too big for the available
scratch space on a single-drive, almost full diskette. Although
REFORMAT is very careful not to damage the file being processed,
if the file is actually in the process of being reformattedd in
place when a power failure occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
file, setting another checkpoint, reformatting the scratch file
back into the original (using a separate REFORMAT command) ,
setting a further checkpoint, and finally INDEXing the file using
INDEX. In this way there is always an undamaged file with which
execution can resume if necessary.

28-4 1500 DISK OPERATING SYSTEM

28.6 INDEX Messages

The INDEX command displays several messages on the operator's
console. They are listed below with explanations, in the sequence
in which they may appear.

DOS.H VER n.n INDEX COMMAND - date
This is the signon message that gives the user the
version of DOS required and the date of the INDEX
command.

INFILE NAME MISSING.
This indicates that the user has omitted the first,
and required, file specification.

KEYTAG FILE BEING BUILT.
This indicates that INDEX is now creating the ASCII
KEYTAG file requested with the "K" option.

SORT COMMAND MISSING.
This indicates that INDEX needs to invoke the SORT
command but could not find it on any of the on-line
drives.

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND.
This indicates that the user has requested
preprocessing of his file by the REFORMAT command.

REFORMAT COMMAND MISSING.
This indicates that INDEX needs to invoke the REFORMAT
command but ~ould not find it on any of the on-line
drives.

REFORMAT COMMAND LINE:
This is the parameter list passed to the REFORMAT
command.

INDEX WILL USE EBCDIC SORT.
The user has requested an index using the EBCDIC
collating sequence.

SORT COMMAND LINE:
This is the parameter list passed to the SORT command.

REFORMAT UNLOADABLE!
This indicat~s that there is something wrong with the
REFORMAT command object file. It needs to be

CHAPTER 28. INDEX COMMAND 28-5

reloaded.

SORT UNLOADABLE!
This indicates that there is something wrong with the
SORT command object file. It needs to be reloaded.

BUILDING LOWEST LEVEL INDEX.
This indicates that INDEX is now creating the lowest
level of the index file.

NULL INDEX FILE CREATED.
This indicates that an empty tag file was created by
SORT. The index file created is usable by programs
using ISAM for adding records.

LONG KEY ENCOUNTERED AND TRUNCATED.
This indicates that the tag file contained a key that
was longer than 118 characters. It was truncated to
118 characters.

DUPLICATE KEY: <key>
Two keys in the tag file were found to be identical
and the first 60 characters of the key are displayed.
INDEX will continue so as to display any other
duplicate keys that may be found.

INDEX TERMINATED WITH DUPLICATE KEYS.
Duplicate keys have been found and a null lSI file
will be created. ABTIF bit set; CHAIN not terminated.
The tag file is not deleted and since it is in
standard text format, it may be EDITed to remove or
modify the duplicate key and tag. Or a program (e.g.
in DATABUS) may be written to display the records
containing the duplicate keys so the user may resolve
the ambiguity. INDEX may then be reinvoked using the
"I" option.

BUILDING -NEXT- LEVEL INDEX.
This indicates that the lower level of the index file
has been completed and the next level is now being
created.

SYSTEM7/SYS MISSING!?
This indicates that an attempt to open SYSTEM7/SYS
while looking for a subdirectory name has failed.
SYSTEM7/SYS is assumed to be on the same drive as the
lSI file.

28-6 1500 DISK OPERATING SYSTEM

DONE.
The creation of the index file is now completed.

Other error messages may be generated by REFORMAT or SORT.
See the appropriate chapter for an explanation.

28.1 lSI File Structures

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys, and contains
pointers to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the lSI file
cannot be moved without re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the lSI file
will destroy it.

The different levels of indices all have the same content,
except for the lowest level index. Index levels are built up
until an intermediate level of index will fit in a single disk
sector. This becomes the highest level of index. This
requirement is the reason for the 118-character limitation on key
length.

28.8 Examples of the Use of INDEX

First, a simple example in which only a single lSI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATABUS terminal to
inquire on the current status of each deadbeat. Thus, while the
file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is
keyed by bank number (8 digits) and account number (1 digits)
concatenated and in positions 1 to 15 of each record.

CHAPTER 28. INDEX COMMAND 28-1

In order to create the index file, the operator must type:

INDEX DEADBEAT;1-15

The INDEX program will then create a file DEADBEAT/lSI which
DATABUS can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each NSF check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
number in positions 16 to 18, and a date field in positions 19 to
24. As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

In order to create the indices r~quired for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STORE;16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/lSI,
DATE/lSI, STORE/lSI, and NAME/lSI. Each file is logically
separate, yet all are on the same volume as DEADBEAT/TXT.

Now the store owners have uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
diskette for all the index files and the text file. In addition,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called Datapoint to
complain, and their local Systems Engineer has told them they need
to REFORMAT the files when they re-INDEX, and has sold them
another diskette drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;FR1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. If reformatting had not been done when the first index
was built, it could not be correctly done later without
invalidating the previously built indices.

28-8 1500 DISK OPERATING SYSTEM

Now, several years later, the grocery chain has expanded and
has a large diskette system at their main store. The owners are
doing so much processing that there is not the time to run the
above INDEX programs as each one invokes SORT. However, they wish
to keep access time to the minimum. Also, the DEADBEAT file is so
large that numerous additions and deletions hardly affect the
size.

Every night the operator now types:

INDEX BANK;X
INDEX DATE;X
INDEX STORE;X
INDEX NAME;X

which recreates the index files. Then during weekly processing,
the operator does the processing above which invokes REFORMAT.

The store owners have wisely dispersed some of their data
processing to their branch stores. So each night the operator
also types:

INDEX BANK;K
INDEX DATE;K
INDEX STORE;K
INDEX NAME;K

which creates tag files of the four indices. The operator then
transmits DEADBEAT/TXT, BANK/TAG, DATA/TAG, STORE/TAG, and
NAME/TAG to each of the branch stores. The operator at the branch
store, after receiving these files, types:

INDEX DEADBEAT,BANK,BANK;I
INDEX DEADBEAT,DATE,DATE;I
INDEX DEADBEAT,STORE,STORE;I
INDEX DEADBEAT,NAME,NAME;I

which creates a local set of indices without invoking SORT.

Note: In the above example that created a BANK tag file, the
command line with defaults is:

INDEX BANK/TXT,BANK/ISI,BANK/TAG;K

As only the lSI and TAG files are needed for creation of the tag
file, the same results could have been achieved by typing:

INDEX ,BANK,BANK;K

CHAPTER 28. INDEX COMMAND 28-9

CHAPTER 29. KILL COMMAND

29.1 Description

KILL - Delete a file from the directory

KILL [<file spec>]

The KILL command deletes the specified file from the system
if the file is not protected. If the file is protected in any
way, the message

NO!

will be displayed. If the file specification is not given on the
command line (file names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE? EXAMPLE: SCRATCH ITXT:DR1 U143 :DRl
I :DR

will appear. The user must keyin an eight character filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "D" and the drive
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NO SUCH NAME.

will appear. A file can be specified by physical file number by
entering "U", followed by the octal PFN, followed by 8 spaces and
the drive specification. If the specified file cannot be found
(both a name and an extension must always be supplied unless using
PFN) , the message:

NO SUCH NAME.

will be displayed. If the file is found and is not protected, the
message:

THAT FILE IS <filename> ON DRIVE n

will appear. Then the operator must additionally answer the

CHAPTER 29. KILL COMMAND 29-1

message:

ARE YOU SURE?

with a 'Y' before the actual deletion of the file is achieved.

NOTE: If Kill is used in a chain file, an answer to the question
"ARE YOU SURE?" must be entered into the chain file as the Kill
utility is expecting it. After the deletion has occurred the
following message is displayed:

* FILE DELETED *

29.2 Error Messages

If a drive specification is entered on the command line that
is not within the range of valid drives, the message

INVALID DRIVE.

is displayed. If a PFN is entered without a preceeding pound sign
(II), the message

THAT ISN'T THE RIGHT FORMAT FOR YOUR REPLY.

is displayed. If the format for the PFN is not exactly as
described, the message

INVALID FORMAT FOR PFN REPLY.

is displayed. If the PFN entered is the same as the auto execute
PFN, the message

AUTO CLEARED.

is displayed. If a 'N' is entered in response to the "ARE YOU
SURE?" question, the message

I DIDN'T THINK SO.

is displayed. If only the KILL command is entered and the program
has responded with "WHAT FILE? EXAMPLE ••.••• " and an ENTER key is
entered in response to that question, the message

OKAY, SO YOU CHANGED YOUR MIND.

is displayed. If an OPEN on SYSTEM7/SYS fails, the message

29-2 1500 DISK OPERATING SYSTEM

SYSTEM7/SYS MISSING !?

is displayed. It is assumed to be on the same drive as the file
being killed.

CHAPTER 29. KILL COMMAND 29-3

CHAPTER 30. LIST COMMAND

30.1 Purpose

The LIST command will list any DOS standard format text file
on the screen or a serial printer.

The command can be used for such things as:

A quick scan of a file by displaying it on the screen
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT COMMAND
FILE.

In this chapter, the following terms apply:

Text file means a file with records containing only ASCII
characters, except for space-compression bytes and the
End-Of-Record and end of file marks. Files created by EDIT
and those produced by DATABUS are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 characters of a record will be
displayed; when listed on a printer only the first 124
characters will be printed. (The remaining eight characters
contain a line number.)

Record means the user logical record number (LRN). The first
LRN of a file is zero.

30.2 Parameters

-When the LIST program is to be executed, the operator must
type:

LIST <filespec> [,<spec2>][,<filespec2>][;options]

CHAPTER 30. LIST COMMAND 30-1

Available options are:

L list on printer
D Display on CRT
X suppress line numbers
F list Formatted print file
P output formatted Print file
Q Queue formatted print file, appending to an existing file
Nn set Number of lines per page to n
I list in Indexed sequence

Options may be entered in any sequence.

30.3 INPUT File Specification

The file specification «filespec» must refer to a DOS text
file. If no extension is supplied with the file name, an
extension is assumed depending on the options given. A default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) causes a default
extension of lSI and the option "F" (list a file with format
control bytes) causes a default extension of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec> is omitted, the message

NAME REQUIRED.

is displayed. If the file indicated by <filespec> is not found on
an online volume, the message

NO SUCH NAME.

is displayed.

30.4 Starting Point

The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter (spec2>. For example:

LIST <filespec>,L400

would list the specified file beginning with line 400 of the file.
If the line number specification exceeds the number of lines in
the file, LIST returns to DOS after displaying the message:

30-2 1500 DISK OPERATING SYSTEM

FILE EXHAUSTED BEFORE LINE FOUND.

LIST <filespec>,R18

would directly access logical record 18 of the specified file and
list, starting at line number 1. If RANGE or FORMAT errors occur,
the error type is indicated and another record number is
requested.

For instance, if the record number specification exceeds the
number of records, the message

RANGE - NEXT RECORD NUMBER:

is displayed.

The DEFAULT value for the second parameter is line 1 and
record O.

30.5 OUTPUT File Specification

If the options "P" (write to a print file on disk) or "Q"
('QUEUED' write to a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec2) may be used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

Output from either the "P" or "Q" option is a text file with
print control characters as described in the Format Control
section. The file will be paged with headings; line numbers will
be included unless suppressed by the "X" option.

30.6 Output Device

The operator may specify an output device other than the CRT
display by including an optional parameter of "L" (serial
printer), "P", or "Q". For example:

LIST <filespec>;L

would list the specified file on a Datapoint serial printer
beginning at line number one.

For either print or disk output, LIST will request a heading,
which will be placed at the top of every page of output.

CHAPTER 30. LIST COMMAND 30-3

The DEFAULT output device is the CRT display which may be
specified by entering a "0".

30.7 Output Format

A parameter is available to suppress line numbers. If the
'X' is entered, lines of up to 132 characters will be printed.
For ex ampl e:

LIST <filespec>;LX

would put the output on the printer without line numbers,

LIST <filespec>;X

would display the listing, showing 80 characters per line on the
CRT.

Any paged output (from the "L","P", or "Q" options) is
normally listed at 54 lines per page. The "Nn" option can be used
to change the number of lines per page, n being the desired
lines/page count.

30.8 Format Control

The parameter "F" is available to allow the handling of print
files (those with a format character in the first column of each
line). If "F" is entered, the file will be listed without line
numbers, page numbers, or headings, since all these items should
already be in the print file. The following format characters
cause the indicated action to be taken before the line is printed.

1 - Skip to top of form

+ - Suppress line feed

(space) - Single line feed

o - Double line feed

Triple line feed

Any other character in the first column will be handled as a space
(single line feed) and discarded.

30-4 1500 DISK OPERATING SYSTEM

30.9 Operator Controls

The listing consists of a continuous stream of the listed
file's text. To cause the listing to pause, the operator may hold
down the display (DSP) key. To abort the listing, the operator
may depress the keyboard (KBD) key.

30.10 Error Conditions

If printer output was specified and the printer is not
available, LIST beeps and displays the message:

PRINTER NOT AVAILABLE

is displayed. If the printer is offline, the message:

PRINTER OFF LINE

is displayed. If the printer is made ready, listing will proceed.
The keyboard (KBD) key may be depressed to abort the LIST at this
point if necessary.

LIST checks to be sure the text end of file is exactly six
zeroes and a three (see Text File Formats in the REFORMAT
chapter). If the EOF is not exactly correct, LIST displays the
message:

INVALID END OF FILE.

is displayed. LIST can be used to test for a bad EOF since most
text-handling programs are not so particular about EOF format.

When <spec2> has been entered to start LIST at a particular
record number, LIST traps FORMAT or RANGE errors and allows a new
starting location to be entered. In any other usage, LIST does
not trap FORMAT or RANGE errors and any such errors are fatal. If
LIST does trap FORMAT and RANGE errors, either of the following
messages may be displayed.

RANGE - NEXT RECORD NUMBER:
FORMAT - NEXT RECORD NUMBER:

The operator has the option to enter the next record number
to be processed by LIST at this time. If the "I" option is used
LIST will search for the indexed file on all drives and if not
found, the message

CHAPTER 30. LIST COMMAND 30-5

INDEXED FILE NOT FOUND!

is displayed. It should be noted at this point, that since the
indexed file can be on any drive and possibly on multiple drives,
only the indexed file with the same physical file number (PFN) as
contained in the index file will be accepted as the correct file.

If any parameter other than the allowable parameters is
entered on the command line, the message

PARAMETER ERROR. ALLOWED PARAMETERS ARE D,L,P,Q,X,Nn,F, and
I.

is displayed. If the "L", "P", or "Q" options are entered such
that more than one of them exists on the command line, the message

PARAMETER ERROR. MULTIPLE PRINT DEVICES REQUESTED.

is displayed. If the number of lines per page is specified on the
command line as more than 255 or less than 1, the message

NUMBER OF LINES PER PAGE MUST BE 1 - 255!

is displayed. If the second parameter on the command line entered
is not in the form "Ln" or "Rn", the message

BAD SECOND FILE SPEC! SHOULD BE "Ln" OR "Rn"!

is displayed. If the lSI file has been moved, the message

INDEX FILE DOESN'T POINT TO ITSELF!

is displayed. If the "I" option has been specified with either of
the "L" or the "R" options for the second parameter on the command
line, the message

ISAM AND LINE/RECORD COUNT INCOMPATIBLE.

is displayed. If an invalid end of file is detected anywhere in
the specified file, the message

INVALID END-OF-FILE AT LRN XXXXX.

is displayed with the logical record number (LRN) displayed within
the message. If the physical end of sector mark is missing in any
of the sectors processed, the message

MISSING END-OF-PHYSICAL-RECORD AT LRN XXXXX.

30-6 1500 DISK OPERATING SYSTEM

is displayed with the logical record number (LRN) displayed in the
message.

CHAPTER 30. LIST COMMAND 30-7

CHAPTER 31. MANUAL COMMAND

The MANUAL command is used to Clear Auto Execution. Its
syntax is as follows:

MANUAL

If the auto-execution name has not been set the message

AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed. If the booted drive is off line, the message

* SYSTEM DRIVE OFF LINE *
will be displayed. If a parity error is encountered when
attempting to read in the AUTO command from disk, the message

* SYSTEM DATA FAILURE *
will be displayed.

CHAPTER 31. MANUAL COMMAND 31-1

CHAPTER 32. NAME COMMAND

The NAME command is used to Change the name, extension or
subdirectory of a file. Its syntax is as follows:

NAME <file spec1>,[<file spec2>][,<subdirectory name>]

NAME will not affect the content of the files. The first
file specification refers to the current file name and the second
file specification is the new name and/or extension to be
assigned. If no extension is supplied in the first file
specification, ABS is assumed. If no extension is supplied in the
second file specification, the extension of the first file is
assumed. If no extensions are supplied, both files will be
assumed to have extensions of ABS. The drive number should only
be specified in the first file specification.

If the NAME command is used to move a file from one
subdirectory to another the second file specification may be
omitted (unless the filename and/or extension are to be changed)
and the subdirectory name denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file spec1>,,<subdirectory name>

In both uses of the NAME command, two specifications are required.
If either name is not given, the message

NAME REQUIRED.

will be displayed. If the second name is already defined on the
drive that contains the first file, the message

NAME IN USE.

will be displayed. Note that the drive specification on the
second name is ignored. If the first name is not found on an
online disk, the message

NO SUCH NAME.

will be displayed. If the subdirectory name keyed is not found
on the disk containing the file to be renamed, the message

CHAPTER 32. NAME COMMAND 32-1

NO SUCH SUBDIRECTORY.

will be displayed. If the third parameter is not specified, the
file is "brought into" the current subdirectory at the completion
of the renaming process. If an attempt is made to change the name
of a file which is write protected, the message

NO! THAT FILE IS PROTECTED.

is displayed. If an attempt is made to name a file into a non -
existent subdirectory name, the message

NO SUCH SUBDIRECTORY

is displayed. If SYSTEM7/SYS does not exist on the disk on which
the file is being renamed, the message

THAT DRIVE HAS NO SUBDIRECTORY

is displayed. If any errors are encountered while attempting to
read or write the directory, the message

* SYSTEM DATA FAILURE *
will be displayed.

32-2 1500 DISK OPERATING SYSTEM

CHAPTER 33. PUTIPL COMMAND

The PUTIPL command writes an IPL (Initial Program Loader)
block and DOS boot blocks to the diskette.

PUTIPL <:DRIVE>

If the drive number is not specified in the command line, PUTIPL
will display the following:

LOGICAL DRIVE TO BE WRITTEN (O .• n OR "*" TO EXIT TO DOS)

Where n = 1,3, or 15 depending on the maximum number of logical
drives currently recognized by DOS. Respond with the drive number
that you want to write to.

NOTE: IPL blocks cannot be written to 9320 disks.

This program is invoked automatically by the DOSGEN and
BACKUP utilities. It may also be used when upgrading diskettes,
or as part of a recovery procedure if information on the diskette
has been damaged. If the specified drive is off-line, the message

OUTPUT DRIVE IS OFF-LINE.

will be displayed. If a parity error is encountered while
attempting to write to the diskette on the output drive, the
message

WRITE PARITY ERROR ON OUTPUT DRIVE.

will be displayed. If no problems are encountered, the program
will display the message

THE SECTORS HAVE BEEN SUCCESSFULLY WRITTEN

and then exit. If an attempt was made to write the blocks onto a
9320 disk the program will display the message

BOOT BLOCKS CAN ONLY BE WRITTEN ON DISKETTES

and then exit.

CHAPTER 33. PUTIPL COMMAND 33-1

CHAPTER 34. PUTVOLID COMMAND

The PUTVOLID command writes a symbolic volume identification
(VOLID) onto a disk.

PUTVOLID <VOLID><:DRIVE>;<OWNER ID>

Where VOLID is 1 to 8 characters in length, DRIVE is the logical
drive to be written to, and OWNER 10 is any information the user
wants. The VOLID may contain only alpha-numeric characters;
special characters are not allowed.

If only a drive number is entered, the existing VOLID for that
drive will be displayed. If the drive number is not entered, the
message

OUTPUT DRIVE NUMBER REQUIRED.

will be displayed. If the drive number specified is off line, the
message

:DRn OFF-LINE.

is displayed with the off line drive number in the message. If
the DOS identification letter does not already exist irr the volume
identification for the drive specified, the message

VOLUME NAME MISSING.

will be displayed. If a write parity error (CRC) is encountered
on the output drive, the message

CRC ERROR ON :DRn.

will be displayed with the drive number displayed in the message.
If the <OWNER 10> is not entered, the message

MISSING OWNER-ID.

will be displayed.

CHAPTER 34. PUTVOLID COMMAND 34-1

CHAPTER 35. REFORMAT COMMAND

35.1 Introduction

The DOS REFORMAT command is used to change the internal disk
format of text (non-object) files. Additionally, it can recover
disk space left unused when files are updated by the DATABUS
indexed sequential access method. REFORMAT can compress a file in
place on disk provided that such compression does not entail the
writing of a logical disk sector prior to the time that sector is
read. REFORMAT maintains logical consistency in such cases and
will not write on a disk file until it has checked to be sure it
can complete its job successfully.

35.2 Operation

When the REFORMAT program is to be executed, the operator
must type:

REFORMAT <file-spec>[,<file-spec>J[;<parameters>J

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification.

The parameter list describes the format the output file is to
take, and whether REFORMAT is to free any disk space that might be
vacated by the reformatting process. In addition, the user can
specify that REFORMAT is to pad short records, and either truncate
or segment long records. REFORMAT will produce three different
kinds of output files: record compressed, space and record
compressed, or blocked records (see the section on TEXT FILE
FORMATS). Note that REFORMAT will not produce blocked space
compressed records or space compressed non record compressed files
although such files can be used as input to the REFORMAT program.
If no parameters are given, the output file is blocked one record
per sector.

CHAPTER 35. REFORMAT COMMAND 35-1

Parameters passed to REFORMAT may be separated by spaces or
commas. The valid parameters are as follows:

Parameter Description

B<n> The output file will be blocked. This implies no space
or record compression, with <n> logical records per
physical sector.

C The output file will be space and record compressed.
The number of logical records per physical sector will
be indeterminate.

R The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
indeterminate.

L<n> The length of each logical record will be adjusted to
<n> characters. Note that if the logical records are
space compressed, this will not make the physical length
of the records <n> characters. If the logical record is
shorter than <n> characters, it will be padded with
blanks to the proper length. If the logical record is
longer than <n> characters, the action taken depends on
the T and S parameter.

T (Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

S (Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

If neither S nor T is specified, and an input record of
length greater than <n> is found, a message is issued
and REFORMAT gives up.

D If reformatting is done in place and this parameter is
specified, any disk space vacated by the refor~atting
process will be returned to the operating system for
re-use.

35-2 1500 DISK OPERATING SYSTEM

35.3 Output File Formats

The REFORMAT utility permits you to select essentially three
different output file formats. It will produce blocked files that
are not space compressed, record compressed files that are not
space compressed, and files that are both record and space
compressed. In addition, it has a subcommand to permit you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify
space compression, the physical length of each record will be
identical. This is especially useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two sub commands available to tell REFORMAT what to do
with records whose logical length exceeds the specified output
length. You may select either truncation of the input record, or
you may segment it into two (or more) output records, each of the
logical length specified.

35.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - which
record and space compresses its output. REFORMAT can then
reprocess the file into the correct format for DATABUS random
access.

Secondly, when a file is accessed with DATABUS indexed
sequential access method, any additions may result in an increase
in the physical size of the file. Similarly, deleted records are
simply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

CHAPTER 35. REFORMAT COMMAND 35-3

35.5 Reformat Messages

The REFORMAT utility program produces several messages on the
operator's console. The contents and, where necessary, meaning of
those messages follow:

DOS.H VER n.n REFORMAT COMMAND - date
Self-explanatory sign on message.

COMMAND LINE ERROR: 015 missing
This is an internal error and should be reported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED
TO PREVENT POSSIBLE LOSS OF DATA

REFORMAT has detected an invalid end of file mark. In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS
DELETE PROTECTED.

Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE
WRITTEN INTO OR SHORTENED.

You have requested REFORMAT to output to a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter list.
This message is followed by the valid options you may
specify.

ILLEGAL, CONFLICTING OR DUPLICATE OPTIONS
You have specified two mutually exclusive options.

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION.
YOU CANNOT HAVE BOTH

Self-explanatory.

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS
Self-explanatory.

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND
You specified blocking but omitted the blocking
factor.

35-4 1500 DISK OPERATING SYSTEM

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND
You must specify the logical record length of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two file specifications.

HOw DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR?

Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED, MUST
BE <= 250 BYTES.

Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF THE RECORDS YOU HAVE.

Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE
SIZE OF THE RECORDS YOU HAVE

While processing the input file, REFORMAT came across
a record that was larger than the specified logical
record length. Since you specified neither
segmentation nor truncation, this is recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. FILES CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self-explanatory.

YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE
DO NOT SPECIFY ANY OUTPUT FILE.

Self-explanatory.

CHAPTER 35. REFORMAT COMMAND 35-5

OUTPUT FILE NOT FOUND ON DRIVE X.
OUTPUT FILE FOUND ON DRIVE Y.
OUTPUT FILE WILL BE CREATED ON DRIVE Z.

These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either the second or third.
REFORMAT could not find the output file on the same
drive as the input file. It either found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same drive as the one the input file is
on.

REFORMAT IN-PLACE REQUESTED.
PRESCAN IN PROGRESS.

REFORMAT is checking to make sure it can properly
process the file in-place.

FILE ALREADY WAS IN THE SPECIFIED FORMAT
Self-explanatory.

COPYING WITH REFORMATTING IN PROGRESS
Self-explanatory.

REFORMAT-IN-PLACE IS IN PROGRESS.
DO NOT DISTURB!!!

Self-explanatory.

NAME REQUIRED
Either you gave only an extension or drive for the
input file, or you specified the output file first,
followed by the input file.

INVALID DEVICE
An invalid drive was specified for the input file.

NO SUCH NAME
The input file specified cannot be found.

INVALID DRIVE SPECIFICATION
The drive specification entered for one of the file
specifications was not in a valid format.

35-6 1500 DISK OPERATING SYSTEM

35.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various control characters with special meanings. It
is illegal to have the control characters in the text portion of
the file. According to DOS convention, any character between 000
and 037 is considered a control character.

Each physical record of a text file is a logical diskette
sector, and contains 256 characters. The first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
lengths and offsets given below are octal (base 8). The format of
a logical sector is as follows:

Offset Length

000 001

001 002

003 373

376 002

Description

Physical file number of this file. For a
detailed description of physical file
organization, see the chapter on System
Structure.

Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

Text. 251 bytes of text and control characters,
depending upon the format of the file.

Two characters reserved.

The text part of each file is considered a logical stream,
crossing sector boundaries without being logically discontinuous.
Demarcations of logical record boundaries are made solely by
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 used to
denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
<ENT> used to denote the end of a logical record, and 032
used to denote deleted data.

CHAPTER 35. REFORMAT COMMAND 35-7

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the data contained in them. In this way, a
proliferation of different file structures, and the special
routines needed to treat such special cases has been avoided.
This does not mean that there cannot be a relation between
physical and logical structure, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as a special case. For example, random access to a data
file is defined in the DATABUS language. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is
not inherent in the makeup of a random file, in fact, such files
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is of no pre-determined length.
Instead, the record is terminated with a single ENT character. In
this way, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. The character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP
can never occur as the next-to-Iast text character in a physical
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records while for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000 000 000 000 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

35-8 1500 DISK OPERATING SYSTEM

CHAPTER 36. REMAP COMMAND

36.1 Purpose

REMAP allows the logical remapping of disk and diskette
controllers, and thus the logical drives of the controllers, on
64K systems with 9320 disks spinning.

DOS.H maintains a logical drive mapping table as a means of
locating drives from logical drive numbers. The table maps all
logical drive numbers, regardless of whether or not the
corresponding mapped drive is on-line, or even exists. The user
is urged to be aware of his particular controller and drive
configuration.

This table is present only if the DOS was hard-booted with
9320 disks spinning, as this is the only configuration in which
logical drives may be remapped. The initial configuration of the
map table (after each hard boot) is as follows: Logical drives 0-3
are mapped on 9320 controller 8, drives 4-7 are mapped on
controller 9, drives 8-11 are mapped on controller 10, drives
12-13 are mapped on diskette controller 1, and drives 14-15 are
mapped on diskette controller 2, if controller 2 is supported by
the machine. Note that 9320 controller 11 is not mapped
initially.

REMAP deals only with disk and diskette controllers, not with
logical drives. The addition and deletion of controllers will, of
course, affect the logical drives of the controller.

36.2 Logical Drive Mapping Table Display

The DOS logical drive mapping table is displayed after each
change made to it during REMAP. The display shows the logical
drive number, disk type, and controller number for logical drives
0-15. An asterisk after the logical drive number indicates that
this drive is the booted drive.

CHAPTER 36. REMAP COMMAND 36-1

36.3 Use

The command line for REMAP is:

REMAP[;D]

The "D" option simply displays the current mapping table and
returns to DOS.

36.3.1 Specific Remapping

The most common use of REMAP will probably be to change the
mapping of logical drives 12-15. As noted above, after the
initial hard boot, logical drives 12-15 are mapped on diskette
controllers 1 and 2. Many users will want to bring the fourth
9320 controller (controller 11) logically on-line to utilize
sixteen logical 9320 drives. Conversely, drives 12-15 may need to
be remapped onto diskettes if they were previously mapped on 9320
controller 11. Therefore, REMAP first checks the mapping of
logical drives 12-15. If these drives are mapped on diskette or
on 9320 controller 11, the user is asked if the specific remapping
operation, as described above, should take place. If the user
responds with a fyI, the specific remap occurs and REMAP returns
to DOS.

36.3.2 General Remapping

If REMAP finds that logical drives 12-15 are not mapped on
diskettes or on controller 11, or that one of the drives 12-15 is
the booted drive, or the user responded with an 'N' to the
specific remapping prompt, REMAP will ask if general remapping is
to take place. If the user replies 'N', REMAP returns to DOS. If
the reply is fyI, REMAP displays the mapping table, and the user
is free to add and delete controllers at will.

The user is advised to exercise caution in general remapping,
as the addition and deletion of controllers will affect the
mapping of logical drives. If, for example, an operator assumes
that a particular logical drive is on a particular controller,
when in fact that logical drive has been remapped onto another
controller, confusion may ensue.

In the general remapping phase, REMAP will first display the
current logical drive mapping table, then a command may be
entered. Valid commands are 'E' or ,*, to exit, 'A' to add a
controller, and 'D' to delete a controller. If 'A' or 'D' is

36-2 1500 DISK OPERATING SYSTEM

entered, a controller number is requested. Valid controller
numbers are 1-2 for diskette, and 8-11 for 9320 disks. A '*' may
be entered here to return to the command entry level. If no error
occured in adding or deleting a controller, the logical mapping is
displayed again, and another command may be entered. If an error
did occur, the error message is displayed, the logical mapping is
unchanged, and another command may be entered.

If the execution of a 'delete controller' command would
result in the deletion of the booted drive, the user is asked to
verify that the booted drive is to be deleted. If the booted
drive is deleted, a search to find an on-line drive to become the
booted drive is performed before REMAP returns to DOS. If no such
drive could be found, the mapping table is restored to its state
upon entry to REMAP.

The final display of the mapping table reflects the current
mapping, and the current booted drive is flagged with an asterisk.

36.4 Messages

If REMAP is invoked with no 9320 disks spining

NO 9320 DISKS ARE RUNNING; LOGICAL DRIVES ARE O-n

will be displayed. The logical mapping in this case cannot be
changed, and the diskettes are mapped as logical drives 0 - n,
where n is 1 or 3, depending on the number of diskettes supported
by the machine.

If REMAP is invoked with a concurrent job active

NO REMAPPING WITH CONCURRENCY ACTIVE

will be displayed after the logical mapping is displayed. The
mapping may not be changed in this case.

If REMAP finds that logical drives 12-15 are on diskette, the
mapping of drives 12-15 will be displayed and the prompt

MAP LOGICAL DRIVES 12-15 ONTO 9320 CONTROLLER 11 ?

will be displayed. This is a specific remap query.

CHAPTER 36. REMAP COMMAND 36-3

If REMAP finds that logical drives 12-15 are mapped on 9320
controller 11, this fact will be displayed and the other specific
remap prompt

MAP LOGICAL DRIVES 12-15 ONTO DISKETTE CQNTROLLERS 1 AND 2 ?

will be displayed.

If the specific remap phase was bypassed, either by the user
responding 'N' to the specific remap prompt, or by REMAP
determining that the specific REMAP could not be performed

DO YOU WANT TO PERFORM GENERAL REMAPPING ?

will be displayed.

If the general remap phase was taken

ADD CONTROLLER, DELETE CONTROLLER, OR EXIT?

will be displayed to request entry of a command.

If a valid command was entered

CONTROLLER NUMBER?

will be displayed to request a controller number.

If the booted drive would be deleted by the execution of a delete
command

DO YOU WANT TO DELETE THE BOOTED DRIVE ?

will be displayed.

36-4 1500 DISK OPERATING SYSTEM

36.5 Error Messages

These error messages are displayed when an error was
encountered while trying to service a command.

If an attempt was made to add a controller that was already in the
table

THAT CONTROLLER IS ALREADY MAPPED

will be displayed.

If an attempt was made to delete a controller that was not in the
table

THAT CONTROLLER IS NOT MAPPED

will be displayed.

If an attempt was made to add diskette controller 2 on a machine
that does not support two diskette controllers

THAT CONTROLLER DOES NOT EXIST

will be displayed to remind the user that logical drives may not
be mapped on a second diskette controller.

If the addition of a controller would result in the mapping of
more than 16 logical drives, or if there is not enough contiguous
space in the table for all the drives of the controller

CAN'T ADD THAT MANY DRIVES

will be displayed

If, after the deletion of the booted drive, another drive to
become the booted drive cannot be found

CAN'T FIND A BOOTED DRIVE. MAP TABLE UNCHANGED

will be displayed.

CHAPTER 36. REMAP COMMAND 36-5

CHAPTER 37. SAPP COMMAND

The SAPP command is used to append two source files, creating
a third file.

SAPP <file spec>,[<file spec>],<file spec>

The SAPP command appends the second source file after the first
and puts the results into the third file. If extensions are not
supplied, TXT is assumed. The first two files must exist. If the
third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. One reason for this is to
deallocate excess space at the end of the file, since the COpy
utility copies by sectors, not records. Neither the first nor
second files are changed. Note that the first and third
specifications may be the same, in which case the text from the
second file is appended to the first file. However, the second
and third specifications may not name the same file. If the third
file specification is not given, it will be defaulted to the first
file specification with the extension fTXT if and only if the
second file specification was not given. If the second and third
file specifications are the same, the message

FILES TWO AND THREE MUST BE DIFFERENT

will be displayed.

The first file specification is always required. The third
file specification is required if the second file specification is
given. If the file specification is omitted in either case, the
message

NAME REQUIRED

will be displayed. If any of the file specifications are not
valid file names, the message

NAME NOT FOUND

CHAPTER 37. SAPP COMMAND 37-1

will be displayed. If any of the drive specifications are not
valid, the message

INVALID DEVICE

will be displayed.

37-2 1500 DISK OPERATING SYSTEM

CHAPTER 38. SORT COMMAND

38.1 Introduction

The Disk Operating System SORT utility enables the user to
initiate file sorts directly from the keyboard. SORT will not run
while the concurrent job facility is active within a 32K 1500
processor. However, it will run in a 64K 1500 processor at any
time.

Using a multi-train radix sort technique, the Datapoint 1500
processor achieves quite reasonable speed. The list of options
also compares favorably with much more extensive systems. Since
it uses the full dynamic nature of the DOS, it is extremely easy
to operate. (Users who have spent several hours figuring out how
to set up the myriad of SORT work datasets required by other
systems for even the simplest sorts know what we mean.)

For more sophisticated users, SORT may be called from other
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name then callable either
from the keyboard or another program, such as a DATABUS program.
CHAIN also extends the SORT package to operate as a merge, as
well.

38.2 General information

SORT attempts to optimize its speed by placing its work files
on a 9320 disk separate from the input and output files, or, if no
9320 disks are spinning, on a diskette separate from both the
input and output files. Both SORT work files are always placed on
the same drive. If SORT selects a drive with insufficient space,
it will abort. It may then be necessary to drive-direct its work
files.

CHAPTER 38. SORT COMMAND 38-1

38.3 Fundamental SORT Concepts

38.3.1 File Formats

All Datapoint systems use a universal text file structure
recognized by DATABUS, EDIT, Terminal emulators, etc. Therefore,
any text file generated by or for any of the above, may be sorted.
The file to be sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Blocked
or Sequential. Blocked files are required to have an equal number
of logical records wholly contained within each physical disk
record. The maximum record size for blocked records is 249 bytes
(plus end-of-record and end-of-sector control bytes for a total of
251 bytes). Sequential records have no fixed relationship to
physical disk records and are written as densely as possible in
the given file space. Nonetheless, blocked files can be read
sequentially in the identical way that sequential files are read.
In fact, both types of files, when read sequentially, are
indistinguishable. Blocked files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

Space compression implies that the logical position and the
physical position of a character in a record may differ. SORT
will always expand the spaces to determine the logical position of
a character.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a NEW file which is a
restructured COPY of the original file. The original file is
never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with one restriction - see the section on
Input/Output File Format Options).

38-2 1500 DISK OPERATING SYSTEM

38.3.2 The Key Options

The KEY of a sort is the FIELD or that part of the record
which is to ORDER the sequence of records. For instance, it can
be a person's name, state, employee number, amount in debt or any
aspect of the data base identifiable by a fixed position in the
record, based upon the column count from the beginning of the
record.

Consider the following record (column count scale below for
reference only):

Mule, Francis A. 2422196123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 23. The employee number
spans columns 24-30. The street address is 31-42. The city is
43-58. The State is 59-60

If each person had a record in the file exactly in the above
format, SORT could order the sequence of records in the file by
any of the above fields. For instance, to get an alphabetical
list of the records by name, the key would be 1 to 23 (hereafter
referred to as 1-23). The key for sequencing the file in order of
employee number would be 24-30. The key for ordering the records
by state, then city and then employee number would be
59-60,43-58,24-30.

Any portion of the record can be used as a key. Care must be
taken when selecting a key to include no more characters than
necessary, since each character added to the key slows down the
sort.

The key specified for SORT is concatenated to a single
string, then sorted character-by-character, with the left-most
character being of most significance. It is very important to
realize the effect of a right-to-Ieft character sort. To appear
in the "right" sequence numeric fields must be right-justified,
character fields must be left-justified. If signed numeric fields
are sorted, the sign should be moved to the left-most position and
the magnitude right-justified; otherwise the resulting sorted
sequence will contain positive and negative values in no
discernible order, since the "-" and "+" signs are just another
character to SORT. A full explanation of character sort concepts
is beyond the scope of this manual. Interested users should
consult an appropriate information science textbook.

CHAPTER 38. SORT COMMAND 38-3

38.3.3 How to Sort a File

Sorting a file is done from the keyboard of the DOS. All the
operator must know is the name of the file to be sorted, the name
desired for the sorted output file, and the columns containing the
key.

For instance, the keyboard-issued command for the above
example to sort on the name field (1-23), would be:

SORT EMPLFILE,SORTFILE;1-23

This is assuming that the name of that file was EMPLFILE. It
is also the operator's decision as to what the resultant sorted
file is called, as the command could have easily been:

SORT EMPLFILE,EMPSORT;1-23

as well. The second file named is where the resultant sorted
output will be placed.

More complicat~d keys may be stated as well and the command
to sort by state and then name would be:

SORT EMPLFILE,SORTFILE;59-60,1-23

That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a
source code file for a Databus program on the disk. Such programs
can be sorted by op-code and provide an interesting analysis of
the usage of each instruction type:

SORT INFILE,OUTFILE;9-12

38.4 The Other Options

38.4.1 Generalized Command Statement Format

The following is the generalized statement format for the
Datapoint DOS SORT:

SORT IN,OUT[,:DRn][,SEQ][;[[F][O][R][H][GNNNTC][N]][K1] ... [,0n][,Kn]]

Information contained within a pair of square brackets

38-4 1500 DISK OPERATING SYSTEM

[] is optional; information within brackets is
order-dependent. Commas may be used to delimit parameters.
(Note that commas MUST be used to delimit sort-key groups.)
The first four fields (those ahead of the semi-colon) are
considered to be file specification fields. The fields
following the semicolon are considered to be SORT key
parameters. Default conditions are listed below. Typical
statements obeying this format are:

(1) SORT INFILE,OUTFILE
(2) SORT INFILE,OUTFILE;1-3,7-20
(3) SORT INFILE,OUTFILE;ID1-3
(4) SORT INFILE,OUTFILE;IDL7-20
(5) SORT INFILE,OUTFILE;LH11-20
(6) SORT INFILE,OUTFILE, ,EBCDIC/SEQ
(7) SORT INFILE,OUTFILE,:DRO,SEQFILE/SEQ:DR1

All the above statements will invoke a sort. Each will
provide different results. However, notice that in (1)
there are no other parameters than the file specifiers.
That is because all the specifiable parameters have a
default value in case there is no specification for it.

The following list defines the parameters which can be
specified:

IN This specifies the input file. This file must
exist on disk.

OUT ..•.••• This specifies the output file. This
specification is optional IF AND ONLY IF the 'L'
AND 'H' options are used. If an output file is
specified AND no drive is specified AND the file
exists on a drive on-line to the system then the
output file will over-write the existing file. If
an output file is specified AND no disk drive is
specified AND no file of that name exists on a
drive on-line to the system THEN a file of the
given name will be created on the same drive as
the input file.

:DRn ••...• This specifies the drive for the sort key file.
This is only a working scratch file needed during
the sort. SORT will attempt to pick the optimum
drive on which to put the work file on a
multi-drive system. Experience or special
considerations may cause the user to want to

CHAPTER 38. SORT COMMAND 38-5

specify a work drive.

SEQ •.•••.. NON-ASCII COLLATING SEQUENCE FILE
This specifies the file which contains the
collating sequence to be used. If omitted, ASCII
will be assumed.

F •...••••. FORMAT.
This parameter specifies the output file format:
blocked or space compressed (standard editor
output format). If the user specifies I (and the
input file is also blocked), then the output file
will be left blocked.

Without typing the 'I', the output file will be
record compressed no matter what the input file.
If and only if the input file is a blocked file
(one logical record per sector), you may include
the 'I' parameter and cause the output file to be
blocked. If the input file is not blocked, the
resultant output file format will be
indeterminate.

0 ORDER.
This parameter specifies the output file collating
sequence: Ascending or Descending. The actual
character entered is 'A' or 'D'. The default
value is 'A'.

Without typing the 'D', the collating sequence
order is considered ASCENDING. Including the 'D'
parameter will cause the collating sequence to
operate in DESCENDING order. Note that if some
keys are to be sorted in ascending order and other
keys in descending order, the "On" specification
described below should precede each key whose
order differs from the order of the key preceeding
it. However, if all keys are to be ordered in the
same sequence, this parameter need only be
specified once.

R •...•.••• RECORD FORMAT.
This parameter specifies a special output record
format: Limited output file format or Tag file or
Key tag file output. The actual character entered
is 'L' or 'T' or 'K'. The default value is no
special output record format; that is, neither
'L' nor 'T' nor 'K', so that the records in the

38-6 1500 DISK OPERATING SYSTEM

output file will be exact copies (FULL IMAGE
RECORDS) of the records in the input file.

Normally, the sort transfers all of the records of
the input file to the output file. It is
possible, not only to transfer part of each
record, but to select only certain records or to
include constant literals in each record as well.
Including the 'L' parameter in the list of
parameters will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited Output
Format Option.

By entering the 'T' character an output file is
generated which consists only of binary record
number and buffer byte pointers to the input file
records. See the section on Tag File Output
Format Option.

By entering the 'K' character a standard text
format output file is generated which consists of
records containing a 5 byte user logical record
number, a 3 byte buffer address, and the key.
These records are space-compressed and have
trailing spaces truncated. See the section on
Key tag File Output Format Option.

H •..•..•.• HARDCOPY OUTPUT.
This parameter specifies that the output of the
SORT will be listed on a printer. The actual
character entered is 'H'. The default value is no
hardcopy output.

Without typing the 'H' no printing will occur and
SORT will require that an output file be named.
If the 'H' parameter is given and an output file
is named then SORT will list the output to a
printer and will generate an output file. If the
'HI parameter is given and no output file is named
then SORT will list the output to a printer and no
diskette file output will be generated.

If the 'H' and the 'L' parameters are given, the
'L' parameter must precede, the 'H' parameter;
'L' must be used if 'H' is used.

SORT will print to a serial printer. See the

CHAPTER 38. SORT COMMAND 38-7

section on Hardcopy Output Option.

G ••..••.•• GROUP INDICATOR
This parameter specifies that the input file
consists of Primary and Secondary records and
specifies which Group is to be sorted. The actual
character entered is 'PI for primary or'S' for
secondary. There is no default value.

If the 'PI or'S' option is entered then the NNNTC
options must follow it.

In a file with Primary and Secondary records, a
string of records with a Primary record as the
first record and Secondary records following it is
considered one block, or group, of records.

When the file is sorted on Primary records the
output file has the blocks of records re-ordered
so that the Primary records are in the sorted
sequence; no change is made in the sequence of
the Secondary records following each Primary
record. When the file is sorted on Secondary
records and the first' key specified is in
ascending-5equence, the output file has the blocks
of records in the same order as in the input file,
but the Secondary records within each block are in
the sorted sequences.

When the file is sorted on Secondary records and
the first key specified is in descending sequence,
the output file has the blocks of records in
reversed order as the input file, but the
Secondary records within each block are in the
sorted sequence.

SORT has no provision for the sorting of Primary
and" Secondary records in the same SORT run.
See CHARACTER for example.

NNN ••••••. NUMERIC position of Primary/Secondary flag.

38-8

This parameter specifies the character position
for the character (the 'c' parameter) indicating
whether the record is a Primary or Secondary
record. The number must be specified if the
option is taken and must fall in the range 1 to
249.
See CHARACTER for example.

1500 DISK OPERATING SYSTEM

T ..•...... TYPE of evaluation.
This parameter specifies equivalence or
inequivalence of the group indicator character;
that is, whether the character in the record will
be equal to or not equal to the character
specified. The actual character entered is '='
for equal or 'H' for not equal. There is no
default character, '=' or 'H' must be given if the
option is taken.

If '=' is given then if the character in the NNNth
position of an input file record is EQUAL to the
group indicator character -- indicated by 'c'
below -- then the 'record is a member of the
specified sort group -- indicated by 'G' above.
Otherwise, it is not a member of the specified
group.
See CHARACTER for example.

C .••.•...• CHARACTER, group indicator
This parameter specifies the actual test character
for determination of a record's membership in the
sort group. The actual character entered is any
member of the available character set -- this
means any combination of eight bits -- except 015.
There is no default character. The character
immediately following the 'T' parameter is taken
to be the 'c' parameter -- except a 015.

This example sums up the above four groups:
jP240=*

N ...•..... This parameter specifies no space compression on
output. This applies to Full Image and Limited
Output files. It does not apply for blocked or
Tag files. If the input file is space-compressed,
the 'N' parameter will cause the output file to be
non-compressed. If the input file is not
space-compressed, the output file will not be
compressed, regardless of the N parameter.

K1 SSS-EEE
This is the first sort key specification. If no
key is specified, the SORT will assume 1-10,i.e.
the first ten characters of the record.
SSS is the starting key position.
EEE is the ending key position. The key is limited
to 118 characters and must be contained within the

CHAPTER 38. SORT COMMAND 38-9

first 249 characters of the record.

On •....... This specifies the order for the nth key
(ascending and descending are indicated by 'A' or
'D'). If omitted the order used on the previous
key is assumed.

Kn ..••.... SSS-EEE
The nth sort key specification. The maximum number
of keys is that which can be typed without
exceeding the input line.

38.4.2 Keys-overlapping and in Backwards Order

The key specification need not be only forward. A
specification of 17-12 will cause the 6 delimited characters to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or
character last.

Key specifications may also be overlapping: 1-20,30-15
overlaps 15 to 20. When this occurs, the system will optimize the
sort and save time over re-sorting on those columns again.

38.4.3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character set. The
sequence file may have any name, but the extension must be /SEQ
(SEQ is the default extension).

38.4.4 Ascending and Descending Sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Mr. Aardvark would be
last. The order of collating (when alphabetic, numeric, and
punctuation characters all occur in the same column), follows the
character set order. The sequence may be specified for each sort
key. However, it need not be specified if it is the same as the
key which preceeds it. Therefore, it is possible to sort portions
of the key in ascending order and portions in descending order.

38-10 1500 DISK OPERATING SYSTEM

38.4.5 Input/output File Format Options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will provide SORT with all of the records in the
file whether the file was originally blocked or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If the input file is blocked, that is one logical record or
string per physical disk record, then you have a choice of output
formats (F option). If 'I' is chosen, that is blocked, then each
output disk record will contain an exact copy of the appropriate
input file record. If 'I' is not specified, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in record-compressed sequential
format.

If the input file is sequential in its original format, then
there is only one choice for the output format; the output file
format for a sort on an input file which is sequential must be
sequential.

38.4.6 Limited output format option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
SORT. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and
telephone number, NOT all the other payroll information.
Therefore, SORT permits transferring only that part of the data
base desired.

The following is the generalized statement format for the
limited output specification which is entered as a second line of
parameters:

«SSS[-EEE]~*A'QQQ')[/(P~NNNTC)]>[,<DUPLICATE OF PRECEEDING>] ...

For notation's sake, different items within parentheses
are separated by~. Only one item within a pair of
parentheses may be specified. Items within square brackets
[] are optional and items within corner brackets <> may be
repeated and must be separated by commas.

CHAPTER 38. SORT COMMAND 38-11

The following list defines the parameters which can be
specified:

SSS• STARTING position within input record.
EEE .•..... ENDING position within input record.

These parameters specify the character positions
within the input record to be copied to the output
record. The EEE specification is optional; if it
is not specified then only one character, the
character at SSS, will be copied from the input
record to the output record. The SSS and EEE
options must fall in the range 1 to 249.

* ASCII TAG output.
This parameter specifies that an ASCII pointer to
the input record appear in the output record. The
ASCII pointer points to the input file logical
record number and the byte in that physical
diskette record containing the first byte of the
input file logical record. If the 'I' parameter
was specified in the SORT options then, since the
byte in the physical diskette record containing
the first byte of the input file logical record
will always be '1', the '1' will not appear. The
ASCII pointer is a DATASHARE compatible,
leading-zero and space-compressed ASCII number.
The number of digits for the logical record number
pointer is five; the largest number that can be
represented is 65,535. The number of digits for
the byte pointer (if it is generated; that is, the
'I' parameter was not specified) is three; the
largest number that can be represented is 250.

QQQ QUOTED character string.
This parameter specifies an actual string of
quoted characters that is to be copied into the
output record. The quoting symbol is the single
quote 'mark. The string may include any
characters except the' mark itself and 015, and
must be less than 90 characters long.

P •......•. PRIMARy record to be source.

38-12

This parameter specifies that the information
specified by the prior set of START/END positions
is to be extracted from the primary record for the
current record block, rather than the present
(secondary) record. This parameter has no effect
when an output record is being generated from a

1500 DISK OPERATING SYSTEM

primary record.

NNN NUMERIC position of evaluation character.
This parameter specifies the character position
for the character (the 'e' parameter below)
indicating whether the information specified by
the prior set of START/END positions is to be
copied from the input record to the output record.
The number must fall in the range 1 to 249.

T TYPE of evaluation.
This parameter specifies the equivalence or
inequivalence of the evaluation character; that
is, whether the character in the input record
should be EQUAL to or NOT EQUAL to the evaluation
charater. The actual character entered is '=' for
equal or 'H' for not equal. If the evaluation is
satisfied, then the information specified by the
prior set of START/END positions will be copied to
the output record.

C .•.•..... CHARACTER, record evaluation.
This parameter specifies the actual test character
for record evaluation. The actual character
entered is any character except 015.

In the same manner that the key of the records is
specified by fixed column number, i.e. 1-10 for the first
ten characters, the limited output feature specifies that
part of the records are to be transferred. Should the
response 1-10 be given to the limited output format request,
only the first ten characters of each record will be
transferred to the output file. The limited output format
specifier operates in the same manner as the specification
of multiple discontiguous sort key fields. For instance,
1-10,50-70 would transfer thirty-one characters from each
record of the input file to the output file. The eleventh
character in the output record would be the fiftieth
character of the input record, etc.

To invoke the limited output format option, the
operator includes the 'L' parameter in the specifier list.
If and only if the L is specified during the SORT call, will
there be a second question asked of the operator on the next
line:

LIMITED OUTPUT FILE FORMAT:

CHAPTER 38. SORT COMMAND 38-13

This question requires at least one field specification
or constant (see next paragraph). The number of field and
constant specifications is only limited by that which can
fit on the keyed in line.

To permit even more utility in report generation, SORT
allows inclusion of constants in the output record that
didn't occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employee's name appears in columns
80 to 110 and his telephone number was in columns 171 to
180. To make a telephone directory in alphabetical order,
one could answer the following to the limited file output
format request:

80-110,' - ',171-180

Note that this would put out the name followed by one
space, a hyphen, one more space and the number. Any number
of input file fields and constants can be placed in the
output file up to the limit of the line on which the
specification is typed.

Often not every record of the input file is needed in
the output file. Limited output allows selection of records
from the input file, based on character evaluation on one
character position. For example, if a primary/secondary
file is being sorted and only the primary records are
desired in the output file, the command could appear as:

SORT INFILE,OUTFILE;LP1=*,2-10
LIMITED OUTPUT FILE FORMAT:
1-85/1=*

Columns 1-85 of the input record will be written to the
output file if column one is an *.

Limited output can be used to make more complex
selections. If it is desired to output records containing a
o in column 5 OR a 1 in column 6, the command would be:

SORT INFILE,OUTFILE;L5-8,12-15
LIMITED OUTPUT FILE FORMAT:
1-85/5=0,1-85/6=1

To output records containing a 0 in column 5 AND a 1 in
column 6 would require two SORTs, the first using a limited
output to test column 5 and using only a 1-character key, to

38-14 1500 DISK OPERATING SYSTEM

make the SORT as fast as possible. The second SORT would
use a limited output testing column 6 and would be given a
sort key to correctly order the output file.

There is no relationship between the primary I
secondary specification on the command line and the
conditional output specification on the limited output
format line.

Also note that the output file requires proportionately
less room than the input file when limited. Often this fact
can be put to use when the disk file space is nearly
exhausted and a SOHT is required.

38.4.7 TAG file output format option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on diskette merely to have it in different sequences
consumes much of diskette space, and indeed if the file is a very
large file many copies of it may not fit onto even two diskettes.

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long -
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer Pointer -- a pointer to the beginning of the actual
desired record within the diskette physical buffer).

SORT provides for the generation of such an indexing file, a
TAG file, by the 'T' variation of the 'R' option. A TAG file may
be generated for either a sequential or blocked file, and will
have the same format for either file. The format of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
diskette record.

CHAPTER 38. SORT COMMAND 38-15

4. The Physical-End-Of-Record mark is an 003 and the rest OOO's.

5. The End Of File mark is: beginning at the first byte in the
physical record, six OOO's, one 003, and the rest OOO's.

TAG files may be used by other programs and utilities (such
as INDEX) as Record Address files).

If the TAG file option is specified then the LIMITED OUTPUT
FILE FORMAT or the HARDCOPY OUTPUT can NOT be specified.

If a TAG file is generated when the 'P' (PRIMARY SORT)
option is specified then TAG file pointers will be generated only
to the PRIMARY records in the input file.

If a TAG file is generated when the'S' (SECONDARY SORT)
option is specified then TAG file pointers will be generated that
point to each PRIMARY record of the input file (in their original
sequence) each primary tag being followed by pointers to the
SECONDARY records in the record block in their sorted sequence.

When a TAG file is generated for 'P' or'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the indexed file to
determine when a record block begins or ends.

38.4.8 KEYTAG File Output Format Option

Requesting a Key tag file output will cause a file (default
extension "TXT") to be created. This EDIT-compatible text file
contains the record pointers and the key. The record pointers
(first 8 bytes of the record) consist of a 5 byte logical record
number (range a to 65,535) and a 3 byte buffer address. The
record number is the user logical record number, that is, zero
points to the first data sector.

If a sequence file (e.g., EBCDIC/SEQ) is used, the key
produced by this option will be translated to that sequence. If
the untranslated key is desired, a Key tag file may be created by
requesting ASCII TAG output from the Limited Output Format Option.

38-16 1500 DISK OPERATING SYSTEM

38.4.9 Hardcopy output option

Many times it is desired to have a hardco~y printed output
from a SORT instead of or in addition to the creation of a
diskette output file. This can be easily accomplished with SORT
by s peci fyi ng the 'H' (HARDCOPY) opt ion along wi th the 'L'
(LIMITED OUTPUT STRING) option. The 'H' option is essentially an
expansion of the 'L' option because disk data files are almost
~ever suitable for full image output to a printer; decimal points
need to be inserted into dollar and cents amounts, dashes need to
be inserted into part numbers, and spaces need to be placed
between dollar amounts and part numbers to columnate the data, and
so on. If it is desired to list output records in full image
format, it is only neccessary to give:

1 - n

(where n is the maximum printable character on the printer) as the
limited output string specification.

Sort will not send a line of over 132 characters to a
printer. If the limited output specification designates a longer
output record, then the full specified formatting will be applied
to the diskette output file (if any), but only the first 132
characters of the record will be printed.

If the following special characters are imbedded in the
output record, they will be interpreted as indicated:

015 = End-Of-Record and Carriage-Return/Line Feed.
012 = Line Feed.
014 = Form Feed.

Note
printing
totally.
hardcopy
since no

that if the printer goes off-line for any reason while
the hardcopy output, SORT will discontinue the printing
If no output file had been specified along with the

option, and the printer goes off-line, SORT will abort
output will be produced.

38.4.10 Primary/Secondary sorting considerations

If the 'P' (PRIMARY) or'S' (SECONDARY) SORT option is used,
then the input file must have a PSPSPS format in order for
SORT to work as expected, where P is one primary record and S is
one or more secondary records. The first record in the file
should always be a primary record, and the last record should be a
secondary record. There should always be at least one secondary

CHAPTER 38. SORT COMMAND 38-17

record following each primary record. Tertiary and further level
records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file
using the 'PI or'S' options even if the file does not faithfully
follow the above rules. However, the user must exercise great
caution if he is to successfully "fudge" a system as complex as
SORT. Pitfalls are many. For example, if a file has the format
PPPPSPSPS .•. , and a sort is done using the'S' option, the output
file will probably not contain the first three primary records at
all. This case occurs because when sorting using the'S' option,
pointers are generated for only the secondary records, prefixed by
a pointer to the record preceeding the first secondary record of a
record block. Since no secondary pointers were ever generated for
the first three primary records, they are simply lost. It should
be easy to imagine what would happen to a file if a tertiary sort
were attempted.

38.4.11 Key File Drive Number

There are three file systems associated with a SORT. The
first is, of course, the input file. The second is the output
file. The third is the keyfile system. (The user only uses the
output file--the keyfile system is a scratch file used by the
system during sorting). There are actually two files which get
opened during the sort for the keyfile system. They are
*SORTKEY/SYS and *SORTMRG/SYS. These two files can grow to
considerable sizes during the sorting procedure since they are
proportional to the number of records and the size of the key
field.

There are two considerations for the location of the keyfile
system. The first is the problem of room. The keyfile must be on
a drive with sufficient room to hold it. The second is speed.
The greatest increase in,speed occurs in removing the keyfile
system from the same drive as the input file. Greater speeds can
occur if it is, as well, not on the same drive as the output file.
Normally the SORT does a pretty good job of determining the best
location of the two keyfile files and it shouldn't be necessary to
specify anything for this. However, under complex circumstances,
it may be desirable for the operator to specify the drive number
for the keyfile. Should this be the case, the user should type in
the <:DRk> specification as indicated in the general command
format in the Generalized Command Statement Format section.

38-18 1500 DISK OPERATING SYSTEM

38.4.12 Disk space requirements

A formula for determining the room in physical disk records
that will be required for the SORT work files is:

2N(L+P+3)
R = + 4T

S

where: R = Room in physical disk records (sectors) required on
disk.

N = Number of logical records in input file for which keys
will be generated:
= number of records in file if not sorting on 'PI or
'S' .
= number of primary records in file if sorting on 'P'.
= number of secondary records in file if sorting on
'S' .

L = Length of the sort key in bytes.
p = 3 if sorting on secondary records,

o if not sorting on secondary records.
T = number of sort key trains.
S = bytes per block of physical space available to the user

(nominally 253 bytes)

The value of T can be computed approximately, as:

N(L+P+3)
T =

5700

38.5 The use of CHAIN with SORT

The reader should first familiarize himself with CHAIN by
thoroughly reading the CHAIN Section.

CHAIN is a system whereby the operator of a Datapoint DOS may
pre-define a procedural sequence of his own programs, system
commands and utilities (including keyboard answers to questions
requested by these programs) and have them automatically executed
after being invoked by a single command. This feature is
especially powerful when using SORT since there may be a
repetitive sequence of routines with complex parameterizations.
Little room for operator error remains when only one command is
required to kick off many jobs.

A DATABUS program can link to SORT by executing a ROLLOUT

CHAPTER 38. SORT COMMAND 38-19

instruction to a user-built CHAIN file which includes the SORT
command line and, if specified, the Limited Output specification
line and a Hardcopy Heading line, followed by the DATABUS command
line with 'R' option (DB15jR) to re-Ioad the DATABUS Interpreter.

38.5.1 How to Set up a chain file for SORT

The author of a chain file only needs to remember that ALL
questions that the system requests INCLUDING those initiated by
the executing programs MUST BE ANSWERED from the chain file just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort

"SORT INFILE,OUTFILEjI3-42"

could be done through chain. To do this, use EDIT or BUILD to
type in that exact sequence of characters into a file. Note that
the file will, in this case, consist of a single line as typed
above. The file can be any name, but for purposes of simplifying
the explanation, it shall be referred to as "CHAINFIL". If
"CHAINFIL" consists of that single line, and if the operator types
the command "CHAIN CHAINFIL" to the DOS, the SORT specified above
would be initiated. If the 'L' specification were included in the
statement above, then SORT would ask for another line of
information. In this case, the file "CHAINFIL" would have to have
two lines in it with the first being the SORT command and the
second being the limited output file format specification.

38.5.2 Naming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together, and for which a single command to invoke the
procedure would be a great simplification.

For instance, in the telephone directory example above, the
process of sorting the file into a limited output file and then
listing it on the printer could be procedurized as follows:

SORT EMPFILE,TELFILE;L80-110
80-110,' - ',171-180
LIST TELFILE;XL
TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the answer to the limited format initiated

38-20 1500 DISK OPERATING SYSTEM

by the 'L' in the SORT command. The third is the DOS LIST command
with the specifiers of 'X' which says 'without line numbers' and
the 'L' which means the printer. Then there is a fourth line
which the LIST command requests--the heading. This question must
also be answered in the chain file. If the above four statements
were placed in a file by the Editor (or by any other means) and
then CHAIN were invoked with that file specified, the result would
be a printed telephone directory from the personnel files.

38.5.3 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file
called 'MASTER' and a file of records to be added, in sequence, to
the master file called 'ADDfILE'. To merge these two files in
sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN can cause an effective MERGE and assign it a
single name as follows:

SAPP MASTER,ADDFILE,MASTER
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT
y
NAME SCRATCH/TXT,MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3-5) Renames the SCRATCH file as the new MASTER file. Thus, it is
apparent that a merge can be effectively achieved using SORT and
by using chain to pre-define the procedure.

38.6 SORT Execution-Time Messages

This section describes the operator messages that SORT may
display on the CRT screen during execution. Some of the messages
are monitor messages to keep the operator informed of the progress
of the program, while other messages are error messages.

DOS. VER. n.n SORT COMMAND - date

This message is the SORT sign-on.

SORT OVERLAY MISSING.

CHAPTER 38. SORT COMMAND 38-21

This message is displayed if the SORT/OV1 file is not on the
same drive as the SORT/CMD file.

SORT CAN NOT EXECUTE IN 32K WHEN JOB15 IS ACTIVE

This message is displayed if an attempt to execute SORT in a
32K 1500 processor is made when JOB15 is already active.

INPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
first file specification. This would happen if a command line
such as:

SORT ,OUTFILE or SORT /TXT,OUTFILE

were entered.

OUTPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
second file specification AND if the 'L' and 'H' options were
not specified.

BAD DEVICE SPECIFICATION.

This message is displayed if a drive specification in a file
specification was not entered in a valid format.

OUTPUT FILE SAME AS INPUT.

This message is displayed if the filename and extention of the
INPUT file and the OUTPUT file are the same, and the DRIVE
NUMBER for each file is the same or not specified for EACH
file.

INPUT FILE NOT FOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
extension is supplied in the file specification an extension of
TXT will be assumed; in this case if a file FILENAME/TXT is not
on-line or on the drive specified then the INPUT file will not
be found.

38-22 1500 DISK OPERATING SYSTEM

INPUT FILE RIB ERROR.

This message is displayed if a read parity error occurs when
the INPUT file's RIB is checked to determine the INPUT file's
length.

KEY FILE SPECIFICATION ERROR.

This message is displayed if a filename or extension is given
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file is not a valid drive specification.

SORT KEY FILE PLACED ON DRIVE #

This message is displayed if the KEY DRIVE was not specified on
a multi-drive system. The message is to notify the operator of
the location of the KEY file. The # stands for a valid drive
number.

OPTION FIELD ERROR.

This message is displayed if a semicolon C;) is entered at the
end of the SORT command line but is not followed by any option
specifications.

OPTION SPECIFICATION DUPLICATION.

This message is displayed if a command line such as:

SORT INFILE,OUTFILE;DLA

were entered. The 'D' and 'A' options are both variations of
the ORDER option, and obviously both cannot occur
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This message is displayed if the 'H' option is specified but
the 'L' option was not given previously.

CHAPTER 38. SORT COMMAND 38-23

PRINTER NOT AVAILABLE!

This message is displayed if the 'L' and 'H' options have been
specified but the printer is currently offline or in use by the
concurrent partition. The message will flash until the printer
is available and will then go away. Depressing the keyboard
key will cause an exit from SORT.

ILLEGAL HEADER SPECIFICATION.

This message is displayed if the 'PI or'S' option is given but
is immediately followed by the 015 byte -- the "ENTER" key.

ILLEGAL HEADER KEY EVALUATION.

This message is displayed if the character immediately
following the 'PNNN' or 'SNNN' option is not ,-, or '#'.

ILLEGAL SORT KEY SPECIFICATION.

This message is displayed if a key position of 0 or greater
than 249 was specified, or if a key position was not terminated
by , or - or 015, or if a two-position key was not terminated
by, or 015.

SORT KEY TOO LONG.

This message is displayed if the total sort key is longer than
118 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed if the same record positions were
specified for more than one sort key group. SORT does not
repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key position and a header indication
position. The position is removed as a sort key position and
the key is thus shortened. The effect is as for the previous
message.

38-24 1500 DISK OPERATING SYSTEM

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command
line including all option specifications and if the ILl option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is displayed if the ILl option was given but the
limitation specification was only 015 -- the rtENTERrt key. If
the ILl option is given then a non-empty limited output
specification string must also be given.

INVALID LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in the section on Limited Output
Format Option. Usually the fault is that a comma was not
placed between option specification groups, or double quotes
C") were used instead of single quotes (I) •

ENTER THE HARDCOPY HEADING:

This message is displayed when the limited output specification
has been accepted and if the IHI option was given. The
operator must enter from 0 to 79 characters of information
which will be printed at the top of each page printed during
SORT output generation.

SEQUENCE FILE NAME REQUIRED

This message is displayed when the sequence file field is blank
and the file specification fields have not been terminated with
a semi-colon or an end of line designator.

SEQUENCE FILE NOT FOUND

This message is displayed when SORT requests the sequence file
be OPENed and DOS cannot locate the file on the disk drive
indicated. Note that if the drive is not specified, the drive
on which the SORT/CMD resides is implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed when SORT determines that the
sequence file specified is not an absolute object file.

CHAPTER 38. SORT COMMAND 38-25

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SORT receives an error return
when an attempt is made to load the sequence file. The value
of n may be 0-6 and is defined as follows:

o If file does not exist
1 If disk drive is off-line
2 If directory parity error
3 If RIB parity fault
4 If file parity fault
5 If off end of physical file
6 If record of illegal format

LIMITATION SPECIFICATION OVERFLOW

This message indicates that limited output parameters entered
require more memory than the 256 bytes allocated by SORT.

INTERNAL ERROR -- GET SYSTEM HELP !!!

This message indicates a probable hardware error occurred
during a limited output string sort. SORT cannot continue
executing.

PRINTER OFFLINE - PRINTING ABORTED

This message indicates the printer went off-line during the
hardcopy output phase. SORT will not continue printing.

NO OUTPUT SPECIFIED - SORT ABORTED

This message will only be displayed after the PRINTER OFFLINE
message. Since printing was aborted, and no output file was
generated, there will be no output from SORT. Therefore, SORT
will not continue.

THE FOLLOWING MESSAGES MAY BE DISPLAYED DURING SORT
INITIALIZATION IF SORT WERE-rINKED TO BY ANOTHE~OGRAM.
These messages result from internal-errors if they occur while
running standard Datapoint-supplied 1500 software.

INVALID LIMITATION STRING ADDRESS.

INVALID HARDCOPY HEADING STRING ADDRESS.

38-26 1500 DISK OPERATING SYSTEM

INVALID USER EXIT ADDRESS.

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.

LIMITATION STRING MISSING.

HARDCOPY HEADING STRING MISSING.

The following messages are displayed afer the SORT
initiaIIzation is completed:---

BUILDING SORT KEY TRAIN n.

This message is displayed when all parameter specifications
have been accepted and SORT has started the extraction of the
sort keys from records of the INPUT file and is writing them to
the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed if there was not adequate room on the
KEY DRIVE to hold the *SORTKEY/SYS file. If *SORTKEY/SYS file
overflow occurs the file is deleted from the disk before the
message is displayed.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. A null output file (first record EOF) is prepared
before SORT ends.

INTERMEDIATE SORT PASS n.

This message is generated during sorting of the sort key trains
on the *SORTKEY/SYS file. The only actual sorting done during
a sort is that which can be done on the initial sort key
trains, which are made short enough that they will fit in
memory. After the sorting of the keys within each initial
train, the trains are merged sixteen abreast into larger

CHAPTER 38. SORT COMMAND 38-27

trains, repeatedly until only one train remains.

INTERMEDIATE MERGE PASS n, TRAIN n.

This message is displayed if more than sixteen sort key trains
exist during a merge pass. The intermediate merge pass number
is the Nth iteration of the merge process. The train number is
the number of the train being output by the merge pass. If
more than one train is output by an intermediate merge pass
then at least one more intermediate merge pass will be
required. If more than sixteen trains are output by an
intermediate merge pass then at least two more intermediate
merge passes will be required, and so on.

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file from the data in the now fully sorted and merged sort key
file and from the records in the INPUT file. The sort train
number corresponds to the current state of progress as measured
against the number of trains generated by the next to the last
intermediate merge pass.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the merge file.

OUTPUT FILE OVERFLOW

This message indicates not enough disk space is available for
the output file.

38-28 1500 DISK OPERATING SYSTEM

CHAPTER 39. SUR COMMAND

39.1 Purpose

When a specific disk is used for more than one purpose, some
inconveniences occasionally turn up. Assume for a moment that a
user has a disk which is being used for program generation on each
of two more or less unrelated project~. When he uses the CAT
command, for instance, he will normally see a whole range of
files, some of which are not related to the project in which he is
currently interested. At times like this, it would be convenient
to logically partition the directory so that a user would only
have a portion of it, that portion which contains the files with
which he is currently working, available to him at one time.

39.2 About Subdirectories

The use of the SUR (Subdirectory Utility Routine) command
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. Each such sUbdirectory
can then contain zero or more files, up to the combined maximum of
256 files per logical drive. Each subdirectory on a disk has a
unique name. Two subdirectories always exist on all drives;
these are called SYSTEM and MAIN. The names for the other
subdirectories are assigned by the user as he establishes them,
and follow the same rules as for any standard DOS file name. As a
sUbdirectory is created, the name specified by the user is related
to a unique number which is referred to as the subdirectory
number. The relationship between subdirectory names and
subdirectory numbers is not unlike the relationship between DOS
file names and physical file numbers. A given subdirectory may
have different numbers on different drives, even though the
sUbdirectory name is the same.

Up to thirty-one subdirectories may exist on a single
including the two "fixed" subdirectories, SYSTEM and MAIN.
the user is allowed to create up to twenty-nine additional
subdirectories.

disk,
Thus

It is important to realize that subdirectories are not a way
of getting more than 256 files on a drive. This they cannot do.
The thing that subdirectories are good for is partitioning the

CHAPTER 39. SUR COMMAND 39-1

directory and restricting the scope of a file name. This allows
several files of the same name to exist on one disk at the same
time, without causing the DOS to become confused as to which is
the one to be referenced at any time. The way the DOS achieves
this is that each of the files is in a "different subdirectory",
and hence is uniquely identified even though the name and
extension may be identical.

39.2.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to specify a name for the proposed subdirectory and
request its creation. Creation ~f a subdirectory does not
actually result in any real change to the directory on disk at
all. All it does is to cause the specified name to be entered
into a table in SYSTEM7/SYS (yes, that's why SYSTEM7 isn't write
protected), kept on disk, which relates each subdirectory name
with its subdirectory number. The user is allowed to specify
which drive on which he wishes to create the subdirectory; if he
does not indicate a specific drive, the named subdirectory is
placed onto all on-line drives, if possible.

39.2.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of a subdirectory does not result
in KILLing the files within the range of that subdirectory. If a
subdirectory to be deleted contains one or more files, the files
are first moved from that subdirectory to the one called MAIN
before the named subdirectory is deleted. The user is allowed to
specify from which drives the subdirectory is to be deleted; if he
does not indicate a specific drive, the named subdirectory is
deleted from all on-line drives on which it appears.

39.2.3 Being "in a Subdirectory"

The user can define at any time which of the subdirectories
on each of his disks contain the current files he is interested
in. This is done with the SUR command by specifying the name of
the subdirectory containing the files of current interest. This
action causes him to be placed "into" the named subdirectory on
the drive specified. (If no specific drive is mentioned, he will
be placed "into" the sUbdirectory specified on all on-line drives
containing a subdirectory with the given name). It is appropriate

39-2 1500 DISK OPERATING SYSTEM

to point out that the current subdirectory on each drive need not
have the same name; for example, the user could easily be in
subdirectory PROGRAMS on drive zero and in subdirectory DATABASE
on drive one at the same time.

Once in a specific sUbdirectory on a drive, that state does
not normally change until the user requests being placed into a
different subdirectory (again via the SUR command) or re-boots the
DOS. Rebooting the DOS causes the user to be placed into the
sUbdirectory named SYSTEM on all drives.

39.2.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is looking for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In
order for the DOS to "find" the given file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If no such file can be found, the DOS
returns indicating that the specified file cannot be found and
therefore probably does not exist.

When subdirectories are in use, this matching of name and
extension is expanded so that in addition to a file's name and
extension matching those specified by the requesting program, the
file must also be within either the current subdirectory (for that
drive) or the one called SYSTEM in order to be "found".

Therefore the scope of a file name can be more or less
defined via the following: when a user is in subdirectory X on
driv.e Y, files can be "seen" by his program only if they are in
either subdirectory X or sUbdirectory SYSTEM. Files in any other
subdirectory will not appear to exist.

39.2.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
sUbdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
sUbdirectory named SYSTEM. When the sUbdirectory named SYSTEM is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which sUbdirectory they themselves
are actually in. .

CHAPTER 39. SUR COMMAND 39-3

A little caution must be used when a user is in subdirectory
SYSTEM on a disk with multiple files of the same name and
extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available when the user is ~in~ the SYSTEM
sUbdirectory. The result, in this situation, is that one of the
files of the desired name and extension will be referenced; which
one is referenced is, however, undefined. Therefore, good
practice dictates that if a user has more than one file with the
same name and extension on some drive, that he make a point of
always knowing which sUbdirectory he is in (and that it is not
SYSTEM) if it matters to him which of his files of the samename
he references.

39.2.6 Files vs. the User Being "in a Subdirectory"

It is important not to confuse the two distinct concepts of a
file being in a sUbdirectory as opposed to that of [a user] ~being
in a subdirectory".

A file being in a specific sUbdirectory is a way of saying
that the-1Tle cannot be accessed when the current subdirectory is
neither that specific subdirectory nor SYSTEM. This relationship,
that of a file being in a specific subdirectory, is retained more
or less permanently; if a file is placed in subdirectory SUBDIR1
today on a disk, the disk can be removed and stored on a shelf;
if tomorrow the disk is taken down from the shelf and re-mounted,
that file will still be in subdirectory SUBDIR1.

A user being in a specific sUbdirectory is a way of saying
that the sUbdirectory in question is "the current subdirectory" on
one or more logical drives. The "current subdirectory" on a drive
is less permanent and reflects the use of the SUR command since
the previous time the DOS was loaded.

39.2.7 Getting a File into a Subdirectory

In general, there are three ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenever a file is created, it is always placed into
the current subdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved between
subdirectories with the NAME command. The NAME command can take a
file within the scope of the current subdirectory and put it into

39-4 1500 DISK OPERATING SYSTEM

the current subdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can
place it into any other subdirectory the user might wish to put it
into.

39.3 Usage

The SUR command is parameterized as follows:

SUR [<name>][/<function>][:DR<n>][,<new name>]

The function performed by SUR is determined by the absence or
value of the <function> field and the name field, as described
below.

39.3.1 Establishing a "Current Subdirectory"

If the function field is not given, SUR establishes the named
subdirectory as the current sUbdirectory on all drives on which
the named sUbdirectory exists. If the named subdirectory does
not exist on one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,
then only the current subdirectory on the specified drive is
subject to change.

39.3.2 Creating a Subdirectory

If the function field is INEW, SUR creates the named
subdirectory on all drives on which the named sUbdirectory does
not exist. The current subdirectory is not affected by the
operation. If a specific drive is mentioned, then the named
subdirectory is only created on the specified drive.

39.3.3 Deleting a Subdirectory

If the function field is IDEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory exists.
If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. If
the subdirectory being deleted is the current sUbdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYSTEM and MAIN cannot be deleted. If a specific
drive is mentioned, then the named subdirectory is only deleted
from the specified drive.

CHAPTER 39. SUR COMMAND 39-5

39.3.4 Renaming a Subdirectory

If the function field is IREN, SUR renames the named
sUbdirectory on any drives on which the named subdirectory exists,
to the name specified in the new subdirectory name field. If any
files are in the named subdirectory, they will be in the
subdirectory specified by the new subdirectory name field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

39.3.5 Displaying Subdirectories

If the sUbdirectory name field is not given, SUR displays the
names of all subdirectories on all on-line drives. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
sUbdirectory name is the sUbdirectory number associated with that
name (in octal); an asterisk indicates the current subdirectory
on each drive. If a specific drive is mentioned, then only the
subdirectories present on the specified drive are displayed.

39.3.6 Error Messages

If the drive specification entered on the command line is not
within the range of valid drives, the message

INVALID DEVICE.

will be displayed. If the function field is IREN and the new name
is not entered on the command line, the message

NAME REQUIRED.

will be displayed. If the sUbdirectory name does not exist, the
message

- DRIVE X HAS NO SUBDIRECTORY.

will be displayed with the drive number (X) displayed in the
message. If a specified subdirectory does not exist, the message

- NOT IN DRIVE XIS SUBDIRECTORY.

will be displayed with the drive number (X) displayed in the

39-6 1500 DISK OPERATING SYSTEM

message. If an attempt is made to create an already existing
subdirectory, the message

- ALREADY IN DRIVE X's SUBDIRECTORY.

will be displayed with the drive number (X) displayed in the
message. If an attempt to create more than thirty-one (31)
subdirectories is made, the message

- DRIVE X's SUBDIRECTORY IS FULL.

will be displayed with the drive number (X) displayed in the
message. If an attempt is made to read or write to the directory
sector and errors are encountered, the message

* SYSTEM DATA FAILURE ON DRIVE X *
will be displayed with the drive number (X) displayed in the
message. If the function field entered is not INEW, IREN, or IDEL,
the message

* INVALID EXTENSION *
will be displayed. If an attempt is made to delete subdirectories
"SYSTEM" or "MAIN", the message

* MAY NOT BE DELETED *
will be displayed. If an attempt is made to rename subdirectories
"SYSTEM" or "MAIN", the message

* MAY NOT BE RENAMED *
will be displayed. If a specified drive is off line, the message

* DRIVE OFF LINE *
will be displayed.

CHAPTER 39. SUR COMMAND 39-'7

CHAPTER 40. UTILITY/SYS

All of the standard DOS commands are available as separate
programs on disk. However, many of them may also be obtained in
an absolute library named "UTILITY/SYS". This has the following
advantages:

1. Free up many directory entries and some data space.
2. Makes most of the utility programs available on any disk,

i.e., UTILITY/SYS can be on any drive on-line.
3. Makes upgrading the utilities easier, since only one file

need be replaced, rather than many separate command files.

To display the members in UTILITY/SYS, enter:

CAT *

Note: the CAT command also displays the directory of any library
(see CAT command).

When keyboard commands are entered, the specified command
will automatically be located as either a separate disk file or a
member of UTILITY/SYS. Normally a separate file name is first
checked, then the library member. To reverse the normal
precedence put a leading * or : in front of the command name. For
example:

*CHANGE SCRATCH/TXT;X
or

:CHANGE SCRATCH/TXT;X

See the section on the Command Interpreter for details on
selection of a command from the disk directory or from
UTILITY/SYS.

Members of UTILITY/SYS may be extracted to individual command
files by use of the LIBSYS15 program. These individual command
files can be placed as needed on disks that may not have enough
room for all of UTILITY/SYS.

CHAPTER 40. UTILITY/SYS 40-1

CHAPTER 41. SYSTEM DESCRIPTION

41.1 System Philosophy

The objective of DOS.H is to allow maximum use of the
capabilities of a Datapoint disk system with a minimum of effort.
The DOS.H disk structure provides dynamic space allocation and
full random file access capability. Also provided are an
extensive set of utility programs to perform many basic data
processing functions. In all system utilities, the operator
commands are as simple as possible while providing a versatile
program capability. Error codes and program messages are mostly
presented in standard English, avoiding complex, incomprehensible
messages.

DOS.H is not a supervisory system; it imposes practically no
overhead. The DOS.H facilities provide a base for DATABUS,
DATAFORM, and many other Datapoint systems.

41.2 System Features

To minimize the space used by infrequently used code, DOS.H
uses disk-resident overlays for the disk file opening, closing,
and allocation routines. Most of the system error messages also
reside in an overlay, allowing fully descriptive messages without
using a prohibitive amount of memory. A set of short utility
routines (DOS Functions) uses a separate overlay area.

The operating system uses one or two diskette controllers
with at least one physical diskette drive attached, and may have
up to four controllers with 9320 cartridge disks added. Each
"on-line" drive -- a drive containing a disk ready to read -- is
assumed to contain a valid DOS.H disk, which will have all
necessary system tables and files present and in correct format.
This assumption on the part of the system requires caution on the
part of the operator if a disk not fitting this description is
mounted. If, for instance, a disk has been mounted to be
DOSGENed, the operator must not run any programs that will attempt
to use the disk before it has been initialized, or an abort will
occur indicating SYSTEM DATA FAILURE.

CHAPTER 41. SYSTEM DESCRIPTION 41-1

DOS.H is designed to be run interactively by an operator at
the processor console. The operator generally enters commands
from the keyboard, which the operating system interprets and
executes. During execution, status information needed by the
executing program is requested from the operator via CRT messages
expecting a keyed response.

A DOS utility program (CHAIN) allows execution of predefined
processes automatically in a non-interactive fashion, so no
operator attention is required. Other utility programs extend
this automatic capability such that the system can be made almost
completely operator-independent if desired.

41-2 1500 DISK OPERATING SYSTEM

CHAPTER 42. SYSTEM STRUCTURE

42.1 Disk Structure

42.1.1 Introduction

DOS.H 2.5.1 supports the standard IBM format diskettes, and
with the 64k system, the 9320 cartridge disk. This support is
transparent; the user usually need not be concerned with the type
of disk being accessed. Of course there are certain times when
the disk type should be considered, for example when using REMAP,
DOSGEN, BACKUP, and at system loading time. Reference should be
made to the appendix on Disk Comparison for details on the
difference in structure between diskettes and 9320 disks.

A 9320 disk pack is divided into four logical drives,while a
diskette is by itself a single logical drive. Each logical drive
is a self contained data structure containing up to 256 files and
the necessary system information to access the files and manage
file space on the disk. No system information on a drive
references any other drive, with the possible exception of lSI
(Index) files; these may be the index to a file on another drive.

The basic unit of disk storage is the sector, a group of 256
characters. All disk input/output is done in sectors. The
smallest allocatable unit of disk space, and the unit the system
deals with, is the cluster. A cluster is a group of sectors, the
number of which depend on the disk type. The basic unit of user
storage is the file, which is allocated in clusters.

Two system tables resident on each logical drive manage
cluster allocation. The Cluster Allocation Table (CAT) maps those
clusters which are allocated to a file. When space is needed for
a file, the CAT is searched and free contiguous clusters are given
to the files. The Lockout CAT maps those cylinders that were
determined to be physically bad by DOSGEN, and those cylinders
which the user requested DOSGEN to lock-out.

File space is mapped in segments, a segment being a group of
contiguous clusters. A segment may not be larger than 32
clusters, but may be less than that as cluster availability and

CHAPTER 42. SYSTEM STRUCTURE 42-1

file space requirements dictate.

The first sector of every file is the file's Retrieval
Information Block (RIB), which maps the segments of the file.
File space is allocated in segments, and the CAT is searched for
up to 32 contiguous clusters to make up the segment. When file
space is de-allocated, unused clusters of the segments are
returned to the CAT.

The Directory contains the names of files and pointers to
their RIBs, thus completely defining a file. Since directory
searches are done frequently, there is another syste~ table
associated with the directory to speed searches. On diskette, the
CAT contains Directory Mapping Bytes (DMB), which are a count of
the number of files in each of the 16 directory sectors. On 9320
disks, the Hashed Directory Index (HDI) is used to locate a file
in the directory.

All of the system tables, the CAT, Lockout CAT, RIB,
Directory, and HDI are kept in duplicate for backup purposes.

42.1.2 Disk Space Management: CAT and Lockout CAT

The Lockout CAT indicates locked out cylinders--cylinders
which will not be used by the DOS. Cylinders are automatically
locked out at DOS generation if they are found bad by the surface
verification. Cylinders may be manually specified for lockout
during system generation or by using DSKCHK15. Cylinder 0 is
always locked out for system use. Each byte of the Lockout CAT
represents a cylinder: byte O=cylinder 0, byte 1=cylinder 1, byte
2=cylinder 2, etc. The byte value is 0377 (017 on diskettes) if
the cylinder is locked out, and is 000, otherwise. Thus, on
diskettes, each of the four low-order bits of the byte maps a
cluster on the cylinder.

The CAT indicates available space for the DOS; CAT updates
are performed auto~atically as space allocation or deallocation is
performed. As in the Lockout CAT, each byte of the CAT represents
a cylinder. Each bit of a byte represents a cluster of the
cylinder: bit 7=cluster 0, bit 6=cluster 1, etc. (For diskettes,
bits 7-4 are zero, bit 3=cluster 0, bit 2=cluster 1, bit 1=cluster
2, and bit O=cluster 3). If a bit is set (1), the cluster it
represents is either in use by a file or locked out; if a bit is
clear (0), the cluster is free.

The CAT and Lockout CAT observe some fixed format rules:

42-2 1500 DISK OPERATING SYSTEM

Byte 0 is always 0377
Bytes 1 through n (where n is the number of

cylinders on the disk - 1) may be any values
as described above

Bytes n+l through 0356 are 377.
Bytes 0357-0376 are directory mapping bytes, which

indicate the number of files allocated in the
corresponding directory track. Values range from
0-020. These are only present on diskettes.
On disks, these bytes are 0377s.

Byte 0377 is any value. This is the auto-execute PFN and
is normally zero.

42.1.3 Files: HDI, Directory, Mapping Bytes, RIB

The Hashed Directory Index (HDI) provides access to, and
controls allocation of, the Directory on 9320 disks. Each byte of
the HDI represents a directory entry, offset from the beginning of
the index by PFN. Thus, byte O=PFN 0, byte l=PFN 1, and so on.
If the value of the byte is 0377 the directory entry it represents
is not in use. When a PFN is in use, a hash code (value 0-376)
generated from the file name is placed in the byte. This value
indicates the PFN is in use, and is used to speed directory
searching when a file is being located by name.

Directory mapping bytes are used to speed directory accesses
on diskettes. The mapping bytes are bytes 0357-0376 of the CAT.
Each byte represents a directory sector (0-15) and the value in
the byte represents the number of entries (0-16) in use in that
sector.

The Directory is 16 sectors (logically referenced as 0-15)
containing 256 directory entries, 16 entries per sector. A
directory entry contains the name, protection, and subdirectory of
a file; it also points to the file's RIB. Directory entry format:

Bytes 0-1 are the RIB address/protection. (See

CHAPTER 42. SYSTEM STRUCTURE 42-3

"Addressing Byte Structures".)
Bytes 2-3 are unused (normally zero)
Bytes 4-11 are the file name. A file name is usually

ASCII characters as described in the DISK FILES
chapter under File Names, padded with blanks to
be eight characters long, but may be any values.

Bytes 12-14 are the file extension. Same format rules
as file name.

Byte 15 is the subdirectory number, usually 0377,
indicating subdirectory SYSTEM.

A Retrieval Information Block (RIB) maps a file's domain on
disk. A file is composed of segments, each segment being composed
of contiguous clusters. The RIB contains up to 126 segment
descriptors which completely describe the clusters allocated to a
file.

LRN
LSB MSB

Each segment descriptor (SO) is two bytes long (see "Addressing
Byte Structures"). A segment descriptor of 0377,0377 indicates
the end of the RIB. The fourth byte of a RIB is always 0377. The
RIB is always the first sector of the file; the RIB copy is the
second sector and is identical to the RIB except that its LRN is
1.

42.1.4 Sector Identification

Every sector of a file contains in its first byte the PFN of
the file. The next two bytes are the Logical Record Number (LRN),
stored least significant byte first. The PFN and LRN are
primarily intended as validation fields when a file record is
read. When a file record is written, the PFN and LRN are set
correctly; reading a record with a PFN that does not match or an
out-of-sequence LRN constitutes a Record Format Error.

Not every sector in the space allocated to a file has this
PFN and LRN data. Only sectors that have been used for the file
have this information set. Unused sectors may have anything in

42-4 1500 DISK OPERATING SYSTEM

the first three bytes.

42.1.5 Addressing Byte Structures

42.1.5.1 PDA - Physical Disk Address

MSB

716151413121110 I
I cylinder

address

LSB

UI6IS11413IEIO I
sector
number
cluster
number

The cluster number references a cluster within a cylinder;
values are 0-7 except for diskettes which use values 0,2,4,6 for
sectors 0,1,2,3 respectively. The sector number references a
sector within a cluster.

Note: This is the DOS. H "PDA" and must not be confused wi th
the hardware disk addressing of the controller.

42.1.5.2 RIB Address/Protection

This is used in a directory entry to point to the beginning
of a file.

MSB

7 161S141EIIO I
cylinder
address

The cylinder address and
sector number of zero, is the

LSB

write protection
(l=protected)
delete protection
(l=protected)
unassigned
cluster number

cluster number, with an assumed
PDA of the first sector of the file.

CHAPTER 42. SYSTEM STRUCTURE 42-5

42.1.5.3 Segment Descriptor - used in RIB to define a segment.

MSB LSB

I 7 '6 15114 13 1211\ 0 I
i L number of .

clusters m~nus 1
cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the
segment. The length of the segment in clusters is given by the
low-order five bits of the lsb; length can be 1-32 clusters.

42.1.5.4 Physical File Number

The physical file number is used to access the directory, the
directory mapping bytes and the HDI.

directory sector number
directory entry number

The directory sector number specifies a sector of the
directory (0-15). The directory entry number (0-15) specifies an
entry within a sector.

Note: Since directory entries are 020 bytes long, if the
low-order four bits of the PFN are set to 0, the resulting value
is the byte location of the beginning of the specified directory
en try. For e x am pIe, P F N 03 04 ref ere n c est he d ire c tor yen try
beginning at byte 0300 (entry number 014) of sector 4 of the
directory.

42-6 1500 DISK OPERATING SYSTEM

42.2 Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long, the
first three bytes of each sector being reserved for system sector
identification as described above. The DOS and its utility
programs do make a number of assumptions concerning file structure
however, and system operation is much simpler if all files are
structured to match these assumptions.

DOS makes assumptions about the structure of text files and
about absolute object code files. The structure expected for text
files under DOS is described in the chapter on REFORMAT. Any file
to be processed by the standard text-handling facilities of DOS
must have the standard text format described.

If a file is to be loaded by the system loader, it must be an
object code file in the following format:

load load N bytes of
000 address address N object code data block 0377

lsb msb comElement

HL L HL

~~--------------------~~--------------------~/ L one data block

Note that this is the format of output files from Datapoint
assemblers. Any number of data blocks may appear in a record.
The leading byte of a data block will always be either 0,
indicating a block follows, or 0377, indicating end of record.
The special case of N being zero is used to indicate end of file,
in which case the HL given is taken to be the starting address of
the program loaded.

CHAPTER 42. SYSTEM STRUCTURE 42-7

logical EOR

42.3 Memory Mapping

The DOS occupies memory as shown by the following map:

42.3.1 32K System

3SK
Concurrent
Job Area (S.5K)

29.5K
Program
Area (12K)

17.5K
Resident Operating System,
Overlay Area, and
Tasking Support (13.5K)

4K
Read-Only Memory (4K)

OK

42-8 1500 DISK OPERATING SYSTEM

42.3.2 64K System

~----------------------------64K
9320 Disk Drivers (If Present) (2K)

~--------------------------~62K
Concurrent
Job
Area (10-12K)

~--------------------------~52K
Program
Area (34.5K)

~--------------------------~17.5K
Resident Operating System,
Overlay Area, and
Tasking Support (13.5K)

~----------------------------~4K
Read-Only Memory (4K)

~------------------------------OK

CHAPTER 42. SYSTEM STRUCTURE 42-9

42.4 Disk Overlays

DOS uses disk overlays to reduce its main memory
requirements. The overlays are in disk files SYSTEM1/SYS through
SYSTEM7/SYS. The memory-resident DOS is stored in the disk file
SYSTEMO/SYS. These eight files must reside in PFN's 0 through 7,
the PFN corresponding to the number in the file name.

The system overlay files load into
the system as needed. The exception to
is the communications/tasking package.
when the system is first booted, and is
the next manual boot. The functions of

memory and are loaded by
this is SYSTEM4/SYS, which
It is loaded into memory
not reloaded again until
the overlays are:

SYSTEM1/SYS - PREP/ALLOC - create a new file or allocate
more space

SYSTEM2/SYS - CLOSE - close a file
SYSTEM3/SYS - OPEN - open an existing file
SYSTEM4/SYS - TASK - system tasking handler
SYSTEM5/SYS - ABORT - display an error message
SYSTEM6/SYS - SCREEN - initialize a RAM display screen

SYSTEM7/SYS is the DOS Function overlay. The DOS Functions
are short overlay routines and load into a separate area of
memory. Also, the first sector of SYSTEM7/SYS is used to store
subdirectory names (see the SUR command). When DOS needs an
overlay file, it searches for the file on the booted drive only.

42.5 The Command Interpreter

The command interpreter receives command lines from the
keyboard, as described in the chapter on Operator Commands,
storing the command line in memory in the Monitor Communication
Region (MCR$). When the line is terminated (ENTER key, 015), the
stored command line is scanned and the indicated command program
is loaded and executed.

While the command interpreter is waiting for character entry
from the keyboard, it runs a test on the disk buffer memory. As
soon as a character is ready from the keyboard, the disk buffer
memory test is terminated and the normal keyin routine is entered.
Even just striking the CANCEL key will terminate the disk buffer
memory test. If an error is detected by the disk buffer memory
test, the message "DISK BUFFER FAULT" is displayed and the screen
is rolled up one line.

42-10 1500 DISK OPERATING SYSTEM

Whenever the command interpreter is entered via its main
entry point, which most programs use, it will execute the program
set for auto-execution if there is one. This happens whenever the
operating system is reloaded. If the keyboard (KBD) key is
depressed, auto-execution is not performed.

When a command line has been entered, the command interpreter
must attempt to loca te and 10 ad the spec i fied command progr am. If
the command is obviously bad (a null entry line) the interpreter
immediately displays "WHAT?" and waits for a new line. Normally
the first field on the command line will be normalized to the form
shown below and the file thus specified will be searched for. The
sequence of searching for a requested program depends on the
format of the command line.

If the operator entered a leading "*" or ":" as part of the
command name, a flag called UTILSW (UTILity SWitch) is set,
incicating that the specified command is to be located as a member
of UTILITY/SYS. If a drive specification was entered as part of
the command name, the search goes only to the specified drive, as
indicated in the sequence shown below.

The first test the interpreter performs is to check the drive
specification entered, if any. If the drive specification is
invalid, an error message is displayed and a new command line
requested. If the drive specified is valid, or if no drive was
specified, the interpreter searches for the command as outlined
below.

1. If a drive was specified:
a. If UTILSW is set:

(1) Open UTILITY/SYS on the specified drive. If the
file is missing or if the speci fied command is
not a member, say "WHA T?" , else run the program.

b. If UTILSW is not set:
(1) Attempt to open the command file on the specified

drive. If successful, run the program. El se:
(2) If no extension was specified in the command

name, open UTILITY/SYSon the specified drive and
search for the command as a member of the
library. Else:

(3) "WHAT?" and get another command.
2. If no drive was specified:

a. If UT ILS\.j is set:
(1) Open UTILITY/SYS on the booted drive and search

for the command as a member of the library.
Else:

(2) Try to open command as a file on booted drive.

CHAPTER 42. SYSTEM STRUCTURE 42-11

Else:
(3) Check for command in UTILITY/SYS on any drive.

Else:
(4) Try to open comand as a file on any drive. Else:
(5) ,I WHAT?" and get another command.

b. If UTILSW is not set:
(1) Try to open command as a file on booted drive.

El se:
(2) If no extension was specified in the command

name, open UTILITY/SYS on the booted drive and
check for the command as a member of the library.
Else:

(3) Try to open command as a file on any drive. Else:
(4) If no extension was specified in the command

name, open UTILITY/SYS on any drive and check for
the command as a member of the library. Else:

(5) "WHAT?" and get ano ther command.

The command interpreter uses lexical scanning routines to
interpret the entered command line. The command interpreter scans
up to four file specifications from the command line. The file
name scan is terminated by a semicolon (;) or end-of-string (015).
The file specifications are entered in a normalized symbolic form
into the corresponding logical file table entries (0 through 3).
The normalized form is not the same as normal LFT information, the
LFT area simply provides convenient storage for the file
specifications. The format of the normalized form is shown here:

DRCODE (1) - Drive select code: logical drive number in
binary, no drive spec (0377), invalid drive
spec (0376)

0377 (1) - PDN location of normal LFT, set to 0377 to
indicate the LFT is closed.

FILENAME (8) - File name specified, padded with trailing
spaces to 8 characters. Eight spaces if no
name given.

FILEEXT (3) - File extension specified. Three spaces if no
extension entered.

DRSPEC (3) - Logical drive specification (spaces if no
spec) .

When a program receives control from the command interpreter,
LFTls one through three (zero was used to load the program itself)
contain normalized entries as indicated above, and MCR$ still
contains the command as entered, so the program can retrieve
information from its command line. If a program is auto-executed,
none of this command line information is available, so any program
which tests for information as provided above cannot be

42-12 1500 DISK OPERATING SYSTEM

auto-executed. Conversely, any program intended for
auto-execution must not look for command information. The command
AUTOKEY is provided to allow automatic execution of programs
requiring command line information.

CHAPTER 42. SYSTEM STRUCTURE 42-13

CHAPTER 43. DOS ERROR MESSAGES

When a fatal error occurs during program execution and the
error is not handled by the program, DOS aborts the program and
displays one of the following error messages:

PARITY FAILURE DURING READ
A parity fault occurred while a disk data record was
being read.

PARITY FAILURE DURING WRITE
A parity fault occurred while a disk data record was
being written.

RECORD FORMAT ERROR
The physical file number or logical record number in the
record read did not match the values contained in the
logical file table.

RECORD NUMBER OUT OF RANGE
The record accessed had a logical record number less than
zero or, during reads, was outside the physical space
allocated to the file.

WRITE PROTECT VIOLATION
An attempt was made to write to a file that had its write
protection bit set.

DELETE PROTECT VIOLATION
An attempt was made to delete a file that had either its
write or delete protection bit set.

rILE SPACE FULL
An attempt was made to allocate space when either the
disk was physically full or no more segment descriptor
slots were available in the RIB for the given file.

DRIVE OFF LINE
The drive went off line after the file was opened.

FAILURE IN SYSTEM DATA
An unrecoverable parity error occurred while the system
was dealing with one of the disk tables or a Retrieval
Information Block (RIB), or a RIB with incorrect format
was accessed.

CHAPTER 43. DOS ERROR MESSAGES 43-1

INTERNAL SYSTEM ERROR

BAD DRIVE

The error message routine was parameterized with an
invalid error message number!

The drive specification given on the DOS command line is
invalid.

SYS. DRIVE OIL
The currently "booted" drive has gone off-line.

43-2 1500 DISK OPERATING SYSTEM

CHAPTER 44. 1500 ROMGUIDE

44.1 System ROM Functions

The DATAPOINT 1500 diagnostic tool is a ROM resident program
whose immediate accessibility creates a flexible interface between
the user and machine. This guide is intended to provide the 1500
User with that information essential to the use of the resident
diagnostic system.

44.1.1 Startup Procedure

The following conditions may cause entry to the diagnostic
system:

*
*

Entry through a BREAKPOINT set by the diagnostic
system.
Various kinds of hardware errors will also cause
the diagnostic system to be entered.

To force entry into the diagnostic system, depress in sequence:
DISPLAY, INTERRUPT, RESTART, keeping each key depressed until all
three are down. Then release INTERRUPT or RESTART. This will
bring up the diagnostic system display, and commands may be
entered. It is important to understand that the diagnostic system
operates as a task, the same as all the other tasks in the system,
although of higher priority. Thus while the diagnostic tool is in
the wait state, other tasks may be running. This may be a problem
when trying to diagnose programs with multiple tasks, especially
those which do unorthodox things with the display.

44.1.2 Display Format

The diagnostic display consists of four lines and occupies
the bottom-right corner of the screen.

AAAAAA
* NNN
MMMMMM

nnnnnnn*

CURADR
ASCII,8 BIT OCTAL C[CURADR]
LSB,MSB ADDRESS FORMED AT CURADR.
COMMAND INTERPRETER

CHAPTER 44. 1500 ROMGUIDE 44-1

The first (top) line shows the current sixteen bit address.

The second line contains both an ASCII (One character shown
as *) and an 8-bit octal (Three characters shown as NNN)
representation of the contents of the current address byte.

The third line shows the LSB,MSB of an address when the LSB
is pointed to by the CURADR. In other words, CURADR points to a
memory location which itself is an address. If it's the LSB, it
is combined with the next memory location (MSB), turned around for
greater readability and displayed.

44.2 The Command Interpreter

The bottom line of the display is an interpreter used to
input commands to the diagnostic tool. The blinking cursor
signifies that the Command Interpreter is awaiting user input.

Data is entered serially into the input display buffer. The
cursor is displaced to the right successively as this occurs. The
Backspace key erases the character most recently entered, shifting
the entry cursor to the left one space. The cancel key deletes
the entry. All commands are terminated by the ENTER key. In
other words, the command keyin works exactly like the standard DOS
keyin.

All commands are single characters. Commands which accept
input arguments are preceded by the argument, which is entered in
octal. Not all commands require an input argument. Illegal input
is ignored, evoking a beep from the 1500. Commands are executed
when the ENTER key is depressed, after the entire command has been
entered. If the command is one which returns to debug, the cursor
reappears, and the routine waits for further input.

44.2.1 Command Syntax

This explanation of the command syntax uses the following
notation:

nnnn ••. Indicates an optional sequence of octal digits not to
exceed the number of n's given.

44-2

If input argument contains more than eight bits of
significance special results will occur. In general what
will happen is that two bytes of memory will be affected

1500 DISK OPERATING SYSTEM

12345

by the command, either a register pair or a memory
address in LSB,MSB format.

There are several special com~ands whose accidental
execution is inhibited by the requirement that they
contain this unique argument.

44.2.2 Input Command List

nA This is a diskette test command. It will cause the
drive (bits 0-1) and controller (bits 2-3) indicated by
II nil to seek to track 38 and read sector zero
continuously, ignoring any read errors. It is used for
aligning the head in the diskette drive. See the notes
on error reporting under the liZ" command.

12345R This is a system reset command. It resets the
firmware, clears the display, loads an abbreviated
character set, and reenters the diagnostic system. The
interrupted program will not be able to continue
execution after this command is executed.

12345T Start rotating bit memory test. Displays Memory Size
and Pass Counter in right-bottom corner of screen.
Maintains running display of Test Failures. The memory
test may be interrupted by forcing entry into the
diagnostic system again. However, it stops only at the
end of a complete pass.

nV This is another diskette test. It causes the drive
(bits 0-1) and controller (bits 2-3) indicated by "n"
to seek to track 76 and then begin reading every sector
on the diskette, starting with track zero, sector zero,
and stopping if errors are detected. See the notes on
error reporting under the liZ" command. The notation
In' should be 0 for Drive 0, 1 for Drive 1, 4 for Drive
2, and 5 for Drive 3.

nX Start a continuous diskette controller buffer test on
conroller indicated by n (n=O f'or controller OJ n=4 for
controller 1). If an error occurs, the debugger is
reentered with the current address set to that of a
three-byte status save area. The first byte contains
the value read from the buffer, the next byte contains
the expected value. The third byte contains the buffer

CHAPTER 44. 1500 ROMGUI DE 44-3

position. To stop the test, push the RESTART and
INTERRUPT keys with the DISPLAY key held down.

nZ This is another diskette test. It causes the selected
drive (bits 0-1) and controller (bits 2-3) indicated by
n to continuously seek between tracks 1 and 2, reading
sector zero on each track and ignoring any read errors.
This operation may also be stopped by reentering the
diagnostic system. In that case, it will stop at the
end of the next diskette 1/0 operation. Its primary
use is aligning the Track Zero sensor in the diskette
drive.
The A, V, and Z commands may all stop for certain kinda
of errors. When and if they do, the current address
(in the standard diagnostic display) will point to a
three-byte save area. The first byte of this area
contains the diskette status. The second byte contains
the current track number, and the third byte contains
the current sector number.

(Cancel> Cancel entry line.

(BSP> Backspace on entry line.

44-4

? Display the current version of the firmware. The
current address is set to point to a two-byte area
which contains the version number.

1500 DISK OPERATING SYSTEM

44.3 Hardware Error Messages

There are certain error conditions which are detected in the
hardware which may cause the diagnostic display to come up. If
these occur, the top line of the diagnostic display, in the lower
right-hand corner of the screen, has a message which indicates the
error. Some of these are caused by software conditions but are
indicated as hardware errors. These are as follows:

LRA ERR -- This is caused by an internal error in a system
program.

MEM ERR -- This indicates that the system detected a parity error
in the memory. This is a true hardware error. To attempt to
clear it, the machine should be powered off and back on. If this
error persists, run the memory test (12345T), and place a service
call.

KBD ERR This is another error which is generally caused by an
error in a system program.

NMI ERR -- This error is only caused by errors in the system
programs.

CHAPTER 44. 1500 ROMGUIDE 44-5

APPENDIX A. DISK COMPARISON CHARTS

This appendix lists the attributes of the disk types supported by
DOS.H on the 1500 processor.

APPENDIX A. DISK COMPARISON CHARTS A-1

ATTRIBUTE

Min. processor required

Disk controller/drive type

Physical drives on system

Logical drives per
physical drive

Disk type

Cylinders used/logical drive

Tracks used per logical drive

Sec tor s/ tr ack

Sectors/logical drive

Bytes/logical drive

User sectors/logical drive
(with system files)

User bytes/logical drive

Sectors/cluster

Clusters/track

Clusters/cylinder

Max. clusters per segment

Max. sectors per segment

Max. sectors per file

Directory search

A-2 1500 DISK OPERATING SYSTEM

DISKETTE

32K

1542,1543

1-4

IBM diskette
128-byte
so ft sec tor ed

77

77

13

1001

256,256

696

118,176

3

4

4

32

96

696

DMB

9320 DISK

64K

9320

0-4

4

9320
cartridge

49

196

48

9408

2,408,448

9000

2,304,000

24

2

8

32

768

9000

HDI

This table lists the PDAs of sytem tables on the supported disk
types. Here, "cylinder" refers to the PDA MSB, and "sector" refers
to the PDA LSB. All PDAs are in MSB,LSB octal format.

TABLE PDA

CAT

Backup CAT

Lockout CAT

Backup Lockout CAT

HDI

Backup HDI

Directory Location

DISKETTE

041,014

042,014

043,014

044,014

sector 014
cylinders
021 to 040

9320 DISK

0,0

0,040

0,01

0,041

0,02

0,042

cylinder
sectors
07 to 026

°
Directory backup location sector 014

cylinders
01 to 020

cylinder 0
sectors
047 to 066

APPENDIX A. DISK COMPARISON CHARTS A-3

Manual Name __ __

Manual Number ______________________________________ ___

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

1

: Did you find this manual understandable, usable, and well-organized? Please make suggestions for
: improvement.

~I
::il
C
:Ii
E
o ..
III
Z
::i

" z
o
oJ
(..
:>
u

Name _______________________________________ Date ________________________________ __

Organization __ _

Street __ __

City. _______________________ State ___________ Zip Code _________________________ _

All comments and suggestions become the property of Datapoint.

Fold Here

_____________________________ --.!"~I~ '2.e~ ~n2.~t~~ __________________________ _

BUSINESS REPLY MAl L
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
DIRECTOR OF SOFTWARE SUPPORT
8550 Datapoint Drive, Mail Station# N60
San Antonio, Texas 78284

111111 FIRST CLASS
Permit
5774

San Antonio
Texas

	00000
	00001
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	08-01
	08-02
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	17-01
	17-02
	18-01
	18-02
	19-01
	19-02
	19-03
	19-04
	20-01
	20-02
	20-03
	20-04
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	23-43
	23-44
	23-45
	23-46
	24-01
	24-02
	25-01
	25-02
	25-03
	25-04
	26-01
	26-02
	26-03
	26-04
	27-01
	27-02
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	29-01
	29-02
	29-03
	29-04
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	31-01
	31-02
	32-01
	32-02
	33-01
	33-02
	34-01
	34-02
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	35-08
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	37-01
	37-02
	38-01
	38-02
	38-03
	38-04
	38-05
	38-06
	38-07
	38-08
	38-09
	38-10
	38-11
	38-12
	38-13
	38-14
	38-15
	38-16
	38-17
	38-18
	38-19
	38-20
	38-21
	38-22
	38-23
	38-24
	38-25
	38-26
	38-27
	38-28
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	40-01
	40-02
	41-01
	41-02
	42-01
	42-02
	42-03
	42-04
	42-05
	42-06
	42-07
	42-08
	42-09
	42-10
	42-11
	42-12
	42-13
	42-14
	43-01
	43-02
	44-01
	44-02
	44-03
	44-04
	44-05
	44-06
	A-01
	A-02
	A-03
	A-04
	replyA
	replyB

