4,196,450
Miller et al.
[54] SELECTIVE COPYING APPARATUS
[75] Inventors: Armin Miller; Maxwell G. Maginness, both of Palo Alto, Calif.
[73] Assignee: Datacopy Corporation, Palo Alto, Calif.
[21] Appl. No.: 924,645
[22] Filed: Jul. 14, 1978

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 760,427, Jan. 18, 1977, abandoned.
[51] Int. Cl. ${ }^{2}$ H04N 1/40
[52] U.S. C.
358/256; 358/903; 358/280; 364/523
[58] Field of Search 358/256, 903, 280;

364/523

References Cited

U.S. PATENT DOCUMENTS

```
3,828,319 8/1974 Owen
358/256
3,913,719 10/1975 Frey ................................... 197/1 R
```

Primary Examiner-Howard W. Britton Attorney, Agent, or Firm-Owen L. Lamb

ABSTRACT
Selective copying apparatus wherein selected portions of a source document are copied onto a copy paper at any position on the copy paper and wherein information is deleted or inserted by the user from an input keyboard. A manually-operated portable scanner is used by the operator to scan a selected portion of the document by placing the scanner at the desired line position and moving the scanner across the document. The scanned image is converted into digital data. A copier responds to the digital data and copies the scanned image onto a copy paper at a line position which is also selected by the operator. Thus, the image selected by the operator on the source document is reproduced at a position on the copy paper which is also separately selected by the operator.

3,346,692 10/1967 Garfield 358/256
18 Claims, 8 Drawing Figures

FIG. 1

FIG. 2

FIG. 3

KEYBOARD AND CONTROL MODULE
FIG. 4

FIG. 5

FIG. 6

FIG. 8

SELECTIVE COPYING APPARATUS

RELATED APPLICATIONS

The present application is a continuation-in-part of 5 copending application Ser. No. 760,427, filed Jan. 18, 1977, by Armin Miller and Maxwell G. Maginness, entitled "Selective Copying Apparatus," and now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to selective copying apparatus and more particularly to apparatus for manually scanning images, storing the images, and reproducing said images at selected positions of a recording device.
2. Description of the Prior Art

Selective copying and editing of printed material is one of the most universally performed functions of individuals who deal with information in books, documents, labels, forms, catalogs, printouts, and drawings. The useful content of the source material is but a small fraction of the total material available. For example, only a paragraph, footnote, single-line equation, or drawing may be all that is needed to be excerpted. At present, most sêlective copying is done either by hand or by copying a full page in a conventional copier and then cutting out the material required. This "cut-andpaste" operation is time consuming.

Prior attempts have been made to provide portable selective copying apparatus so that it is not necessary to carry source material to a copy machine. In the prior apparatus, a hand-held reading probe is swept across the source material and the pörtion scanned is transferred to a visible hard-copy printout. An example of such a device is shown in U.S. Pat. No. 3,052,755 which issued to E. Garfield on Sept. 4, 1962. In this patent, a scanning instrument is hand-held and swept over the printed matter to be copied. A light source within the scanner reflects off the printed page. A light-conducting rod picks up the reflecting light and transmits it to a photoelectric cell. The voltage from the photoelectric cell is then transmitted over a cable to a printer. The printer is comprised to a stylus which rides on a strip of electrosensitive paper so that when a voltage is applied to the stylus a mark is made on the paper strip. Thus a printed mark on the page being copied produces a corresponding mark on the paper strip. The amplitude of the sweep of the light source inside the scanner is adjustable for various sized printed letters.

A subsequent U.S. Pat. No. 3,064,078 which issued on Nov. 13, 1962 to E. Garfield discloses a similar apparatus with a different reproducing print head. The reproducing instrument has a mirror which focuses a light beam on the print medium. Light-sensitive paper is used so that printing occurs in response to the light beam. The amplitude of the sweep of the reproducing mirror is adjustable to correspond to the amplitude of the sweep of the light source within the selective scanner.

A parallel version of the above patent is described in U.S. Pat. No. 3,318,996 which issued to E. Garfield et al on May 9, 1967. This patent uses light-conducting fiber rods arranged in a vertical column over the printed matter. The transmitting ends of the rods are placed adjacent to photocells, one photocell for each rod. The paralle outputs of the photocells are transmitted to the printer which has a like number of stylii in parallel across a paper strip. Electrostatic paper is used for
printing information on the strip corresponding to that scanned by the rods. Synchronization of the paper strip which is moved past the print elements is accomplished by a roller on the scanner which rotates as the scanner is swept across the page. Futhermore, a mask is provided to mask out the number of rods to thus adjust the amount of the document scanned to accommodate different height printed characters.
In all of the above patents, printing is accomplished on a paper strip which is able to print only one continuous line of matter which is scanned. It is still necessary for a user to cut and paste in oder to edit the scanned material, even though the material is selectively scanned. Thus, if the user wants to arrange the scanned information at different places on a printed document, it must first be cut from the paper strip and arranged on the printed page. While these patents provide means for selectively copying, they do not provide means for selectively reproducing the copied material anywhere on a printed page.
A limited form of editing is provided in U.S. Pat. No. 3,512,129 which issued to E. Garfield on May 12, 1970. In this apparatus, character recognition is provided which is connected to the scanning device. A scanned character is recognized as a particular letter and is converted to machine-readable form, that is, to a standard computer code such as ASCII. A typewriter is connected to receive this code and to type out the information in printed form. This apparatus will only prepare a typewritten document and will only reproduce selected portions of typewritten documents of a type font which can be recognized by the character recognition circuits. For example, in order for the character recognition circuits to read a type font which is different from that produced by the typewriter itself, it is necessary to have character recognition circuits for each such type font to be recognized. With the large number of type fonts in use today, it is readily seen that an enormously complex character recognition unit is necessary in order to render this apparatus useful in a practical sense.

SUMMARY OF THE INVENTION

It is a primary object of this invention to provide a selective copying system wherein selected portions of a source document may be copied by a user onto any selected position of a copy paper and wherein new material may be added by the user from an inputer source.

It is also an object of this invention to provide a selective copier wherein any font desired by the user can be entered into the control circuits so that a type font which is compatible with the type font of the material being selectively copied can be inserted by the operator onto the output copy.
It is also an object of this invention to provide a selective copying apparatus having editing and format control wherein the sequence, the position on the page, fields to be scanned, the position of the reproduced image on the copy paper, and information entered by means of a keyboard are all under control of the operator.

The above objects are accomplished in accordance with the invention by providing a manually-operated portable scanner which is adapted to scan a selected portion of a source document by placing the scanner at a selected line position on the source document and moving the scanner across the material to be repro-
duced. The scanned image is converted into digital data. A reproducing element responsive to digital data is provided for copying the scanned image onto a recording device such as a copy paper or a video display screen. Controls are provided for selectively positioning the reproducing element at any vertical or horizontal point on the recording device to thus provide full flexibility in editing.

In accordance with an aspect of the invention, a keyboard input is provided which selects type fonts under control of the operator. The type fonts are read from a storage device and are in a digital form which is compatible with the reproducing element.

The invention has the advantage that the sequence and position of the information copied on the displayed or printed page is fully controllable by the operator. Furthermore, information can be entered by a keyboard and reproduced at any position on the display screen or copy paper and in a type font which is easily changed to be compatible with the type font of the information in the source document.

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overall block diagram of a selective scanning and copying system comprising a first embodiment of the present invention;

FIG. 2 is a more detailed block diagram of the print head and control logic of FIG. 1;

FIG. 3 is a more detailed block diagram of the camera logic block of FIG. 1; and

FIG. 4 is a more detailed diagram of the keyboard and control module block of FIG. 1.

FIG. 5 is an overall block diagram of a selective scanning and copying system comprising a second experiment of the present invention; and,

FIGS. 6-8 are a flow chart of microprogramming for the microprocessors shown in FIGS. 1 and 5.

DESCRIPTION OF FIRST EMBODIMENT

Referring now to FIG. 1, an overall block schematic diagram of a selective scanning and copying system comprising a first embodiment of the invention is shown. Data transfer between different parts of the system is controlled by a low speed microprocessor 10 connected to a low speed data bus 12 and a high speed microprocessor 14 having a high speed data bus 16. The low speed microprocessor (an Intel 8080 or similar type microprocessor) controls all overall system operations with the exception of the high speed data operations which are controlled by a high speed microprocessor. The high speed microprocessor (comprised of an Intel 3000 family computing elements or similar type microprocessor) operates in the 200 nanosecond range and its function is to control high speed data transfer. It also performs limited arithmetic operations for bit manipulation and data formatting. (Products of Intel Corp. referred to in this specification are described in the Intel 1976 Data Catalog, published by Intel Corp., 3065 Bowers Avenue, Santa Clara, CA 95051.)

A small capacity Intel random-access memory (RAM) 18 is connected to the low speed bus 12. This RAM is used as a variable storage for microprograms The prin ing elements (tantalum nitride thin film resistor elements on an insulating substrate) on 5 mil centers. The thermal
printing head prints characters and pictures on heat-sensitive paper, producing a mosaic of dots, each of which is heated to about $300^{\circ} \mathrm{C}$. by pulse-shaped signals. The size of each dot is about 3-4 mils in diameter. (An example of this type of print head is the thermal print head used in the Okifax 600, a facsimile device manufactured by Oki Electric Industry Company, Ltd., Tokyo, Japan.)

Serial print data 35 is supplied over the high speed bus under control of the high speed microprocessor and passes through a serial to parallel converter 58 which generates pulse-shaped signals 59 compatible with the printing elements of the print head 60 . The thermal printer makes marks on the print paper in accordance with which of the input lines 59 are energized.

Motion control commands from the low speed processor are supplied over line 49 to synchronization controls 50. The commands are translated into signals to control the X stepping control 50 which causes the print head to move in a horizontal direction, Y stepping control 54 which causes the print head to move in the vertical direction, and paper feed 56 which causes a new sheet of paper to be fed under the print head.

As the print head 60 moves across the paper, a pattern of dots is produced based on the signals 59. Printing occurs with a resolution of 200 dots per inch in the X and Y directions.

This produces high resolution graphics and a typewriter quality alphanumerics in response to character 30 patterns supplied over the print data line 35. Thus the output can be alphanumeric, graphs, pictures, maps, signatures, and other image data.

For example, conventional characters of 5×7 dots with one dot spacing between them can be generated, and since the print head is composed of a column of 128 heating elements it is possible to generate multiple rows of 5×7 alphanumerics at a time. Since each dot position is individually addressable, any combination of alphanumerics and graphics is possible for the printed output.

CAMERA

Referring now to FIG. 3, the camera logic block 42 of FIG. 1 will be described. A scanner 62 and 256 elements 64 arranged in a vertical column. These elements are scanned in accordance with the scan height adjustment 66 to provide a serial output 68 to a digitizer 70 and a $4: 1$ compressor 72. The output is scan data which is supplied to the high speed data bus. As the scanner is moved across the image page, a strobe output is generated by the scanner movement sensor 74 every time the camera moves 0.0025 inches. The scanner is provided with control buttons 76, one of which when depressed by the operator activates scanner 62 and indicates that a read operation is taking place.

Another button is provided for carriage return so that the operator can control print head movement directly from the scanner while it is hand held.

Since a selective copying operation is manually per- 60 formed, the scan increment can vary in size. In oder to prevent an overrun in the RAM buffer 44, the camera 42 is equipped with an indicator light and an audible tone to indicate to the user that the scanning operation must be interrupted until the transfer out of RAM 44 (to 6 the tape unit, printer, etc.) is complete.

Hand-held scanners of the type just described are manufactured by Datacopy Corp., of Palo Alto, Calif.

Line feed-advances the print head in an amount determined by the value of the scan height adjustment setting on the camera without altering the print paper location. As an alternative, the print paper is moved with respect to the print head by the same amount.
Tab-this is a print head advance which moves the print head in tabulated steps. This allows the head to move to various predetermined columns.
Top of form-this switch advances the print paper with respect to the print head to set the beginning of a page.
Light original-this lowers the video detection threshold to record a faint original image on the document being copied. This remains activated until the next carriage return operation.
Expand-this function provides a two-to-one magnification of the original material.

Strike-this function provides an overwritten pattern rendering the original print unreadable over a swath determined by the scan height adjustment setting.

CAMERA TO PRINTER OPERATION

As the camera is moved over a line of information to be scanned, the data is placed on the high-speed bus 16 by the scan data output 41. Additionally, every 0.0025 inches of camera movement causes a strobe output on line 43 which is connected to both microprocessors. The low-speed microprocessor in response to the strobe signal synchronizes the movement of the print head shown in FIG. 2. The print head is caused to move in a horizontal direction from a point determined by the margin and tab settings.
The strobe line 43 to the high-speed microprocessor allows the high-speed microprocessor to control the transfer of the scanned data 41 to the RAM buffer 44. The RAM buffer also performs a smoothing operation to match the speed of the camera with the speed of the print head. Print data from the RAM buffer is transferred over the high-speed data bus to the print head and controls 34 over the print data line 35 . As shown in FIG. 2, the print data is supplied to a serial-to-parallel converter 58 which energizes outputs 59 to the print head 60 . This causes the printer to print a column which corresponds to the information scanned on the source document

KEYBOARD TO PRINTER OPERATION

Initially, a font pattern for each key of the keyboard 22 is stored in the random-access memory 18. When a key on the keyboard is depressed, a coded representation of the key is transmitted over keyboard interface 82 to the random-access memory 18. The code is used to address RAM 18 and thus select one of the font patterns corresponding to the key depressed and this pattern is outputted to the low-speed bus 12. The font pattern is transferred over the interprocessor link 40 to the highspeed bus 16 and from the high-speed bus into the RAM buffer 44. The high-speed microprocessor then transfers the data from the RAM buffer 44 to the print head and control 34. A strobe signal indicating that the key has been struck is transferred over the operation control line 24 to the low-speed microprocessor 10. The lowspeed microprocessor 10 then controls the motion of the print head 34 over the motion control line 30 . The low-speed microprocessor synchronizes the entire operation by controlling the high-speed microprocessor over control line 11.

CAMERA TO COMMUNICATION CONTROL OPERATION

The scan data from the camera 42 passes over the scan data line 41 and onto the high-speed bus 16. The high-speed microprocessor compresses the data, and buffers enough data for a tape record into the RAM buffer 44. When a tape record has been accumulated, the data is loaded onto the tape unit 36. The high-speed microprocessor signals the low-speed microprocessor over control line 15 and the low-speed microprocessor establishes communication with the external device over the communication control 32. The tape record is then loaded back into the RAM buffer 44 and from the RAM buffer over the high-speed bus to the communication control where it is transmitted out over the commucation lines. Thus, the high-speed processor controls stated on page 8-3 the system (referred to generically as the MCS-80 Microcomputer System) provides LSI blocks that interface with one another through a standard system bus. This bus corresponds to the low-speed bus 12 shown in FIG. 1. The microprocessor chip has TTL drive capability which makes it fully compatible with the previously described National Semiconductor Keyboard encoder circuit.

The details of how the low-speed microprocessor is on page 86 er definitions. For example, the low-speed bus 12 connections correspond to pins D7-D0 for data and pins A15A0 for address information. Data from the keyboard and control module enter the low-speed microprocessor over this data bus. This data bus provides bidirectional communication between the CPU, memory, and I/O devices for instructions and data transfers.

The ROM 20 and RAM 18 shown in FIG. 1 are provided by Intel for use with the 8080 .

HIGH-SPEED MICROPROCESSOR 14

The high-speed microprocessor 14 is an Intel 3000 series microcomputer system or the equivalent. Its function is to control high-speed data transfer. The highspeed microprocessor 14 is connected via the highspeed bus to all of the input/output devices, the communication control 32, the print head and control 34, the tape unit 36, the floppy disc 38, the camera 42 , and the cathode ray tube display 46. The series 3000 family of computing elements is specifically designed by Intel for high performance applications such as high-speed controllers. The entire component family has been designed to interconnect directly, minimizing the need for ancillary circuitry

The $\mathbf{3 0 0 0}$ series microcomputer system is TTL compatible and therefore is fully compatible with the lowspeed microprocessor when the microprocessor is implemented with the Intel 8080 system.

The interconnections for the 3002 central processing unit (CPE) are shown on page 9-14 of the Intel data catalog. A functional block diagram showing the data buses is shown on page 9-15. The CPE provides a twobit wide slice through a microprogrammed central processor and that therefore for an N -bit wide bus, ($\mathrm{N} / 2$) CPEs are wired together. For a standard 8-bit wide bus, four 3002 CPEs are wired together.

On page 9-15 of the Intel data catalog the M-bus and the I-bus inputs are described. The M inputs are arranged to bring data from an external main memory into the CPE. Therefore this is the bus that is used to bring data from the RAM buffer 44 into the CPE. The I-bus inputs are arranged to bring data from an external I/O system into the CPE. This permits a large number of I/O devices to be connected to the I-bus.
The high-speed bus 16 is comprised of the memory data-in lines N0, N1, etc., the data-out lines D0, D1, etc., and, the main memory-address lines A0, A1, etc., for addressing the RAM buffer 44. The I bus provides for an external-device input such as from the low-speed microprocessor over the line $\mathbf{1 1}$ corresponding to inputs IO, I1, etc. These lines connect to the D0-D7 lines of the 8080 microprocessor. These two microprocessors are designed to be compatible by Intel.

For data flow in the other direction over line 15 in FIG. 1 information flows from the M and D bus of the 3002 to the D0-D7 bus of the 8080. Information over the line 11 of FIG. 1 is from the memory-address bus A15A0 and the data bus D7-D0 of the 8080 to the I bus of the $\mathbf{3 0 0 0}$. The $\mathbf{3 0 0 0}$ series computer is specifically designed to handle high-speed data transfers such as from a high-speed disc or other high-speed real-time I/O devices such as from a high resolution scanning device 5 camera 42.

INTERPROCESSOR LINK 40

The interprocessor link 40 allows communication between the low-speed microprocessor and the highspeed microprocessor in order to synchronize the various operations. The circuitry within this block is supplied by Intel under the part number 3212 multimode latch buffer described on page 9-26 of the above-identified Intel data catalog. A logic diagram is shown on page 9-28 of the Intel data catalog and the bus connections are shown for an 8 -bit wide data bus. The control lines corresponding to control line $\mathbf{3 0}$ of FIG. 1 are also
shown and described by their function and the pin connections.

CATHODE RAY TUBE 46

A suitable cathode ray tube display is described in the Intel data catalog on page $6-22$. This device is TTL compatible, and is connected to the Intel $\mathbf{3 0 0 0}$ series computer by means of the data bus.

PROGRAMMING FOR THE LOW-SPEED MICROPROCESSOR 10 AND THE HIGH-SPEED MICROPROCESSOR 14

Programming is not necessary in any of the devices shown in FIG. 1 with the exception of the low-speed microprocessor 10 and the high-speed microprocessor 14. All the other blocks are either input/output devices, or memories and these devices are passive, unintelligent devices which require instruction and control from a main programmed computer.

Intel provides a microcomputer development system for supporting product design from program development through prototype debug to production and field test. One such product has been provided for both the MCS-80 (the 8080 microprocessor) and the series 3000 microcomputer systems.

The development system is called the MDS-800 Intellec MDS and is described beginning at page 10-3 of the Intel data catalog. In addition to providing all the necessary control and data transfer circuitry to interface with peripherals, such as CRT, line printer, and PROM programmer, the MDS system includes diagnostic capabilities for user-configured systems. It also includes debug functions such as tracing program flow, single stepping, and examining and altering CPU registers in memory locations.

Intel contemplates the use of its 8080 microprocessor in conjunction with its $\mathbf{3 0 0 0}$ series computer as an intelligent controller and the implementation of such a system is supported by the MDS-800 development system. The development of microprograms to perform the functions specified require no more than routine coding. The program described in the flow charts of FIG. 6 through FIG. 7 illustrates a suitable program which can be readily reduced to Intel 8080 microprocessor compatible user's code, by one having ordinary skill in the art. This program flow is described after the following description of a second embodiment of the invention. A source code listing is provided in APPENDIX II and APPENDIX III. This code is in a large language which is compatible with the Texas Instruments TM-990/100 M microcomputer described subsequently with respect to the second embodiment of the invention. One skilled in microprogramming can utilize the code listing to produce a similar code listing compatible with the Intel 55 microprocessor's described with respect to FIG. 1.

DESCRIPTION OF SECOND EMBODIMENT

Referring now to FIG. 5, an overall block schematic diagram of a selective scanning and copying system comprising a second embodiment of the invention is shown. Data transfer between different parts of the system is controlled by a microprocessor 100 which is connected to a data bus, 102. The microprocessor is a TMS-9900, which is part of the TM- $990 / 100 \mathrm{M} \mathrm{mi}-$ crocomputer system manufactured by Texas Instruments, Houston, Tex. Other parts of the system include RAM 104, a programmable ROM 106, and serial I/O controller 108. A keyboard and display 110, which is
compatible with the microcomputer is Model L-1500, manufactured by Keytronic of Spokane, Wash. This keyboard provides the IBM-3277 interactional terminal with a visual display. The functions described with respect to the keyboard and control module of FIG. 4 are implemented along with other key functions shown in APPENDIX I.

PRINTHEAD AND CONTROL

The printhead and control, 114, is shown in detail in 10 FIG. 2 and has been described previously with respect to that figure. The printhead and control, 114, is attached to a serial I/O interface, 112, which provides the appropriate signal levels to attach to the serial I/O controller of the microcomputer system.

CAMERA CONTROLS

The camera, 116, has been described previously with respect to FIG. 3. A push-to-read switch is located on the camera and is depressed to prepare the camera for scanning images. Scanning is effected by moving the camera from left to right in a continuous motion. If the camera movement is stopped, or text wider than 4.25 inches is scanned, the microprocessor begins a data reduction cycle and displays or prints the processed image.
The camera, 116, is connected to a camera interface and processor, 118, which provides appropriate interfacing to a video bus, 120. The output from the camera signal processor is a serial 512 -bit data stream, representing one line scan. The camera interface, 118, collects four scans and then writes this data into a camera buffer memory, 122, which is also connected to the video bus, $\mathbf{1 2 0}$. The data is written into the buffer memory in 4×4 bit cells, using 128 write cycles and are temporarily stored in first-in, first-out registers.

VIDEO SUBSYSTEM

The video subsystem is comprised of video raster logic, 126, with interfaces a cathode ray tube (CRT) monitor, 128, with the video bus, 120. Also included is a video-interface-to-microprocessor logic, 130, which matches the signal levels to the TMS-9900 microproces-sor-interface-to-video logic, 132. These interfaces are specified by the manufactures of the apparatus. A suitable video subsystem for use with the TMS-9900 microprocessor is the Model 3408 high-resolution graphics terminal manufactured by Data Copy Corporation of Palo Alto, Calif. The Model 3408 comprises four subsystems including a CRT monitor, display generator, TI-9900 microprocessor, and power supply, and is specifically designed to operate in a system as contemplated by applicant's FIG. 5. The image information is stored in a random-access memory, which is part of the display generator, in order to allow for continuous display refresh.

MICROPROCESSOR SUBSYSTEM AND MICROPROGRAMMING

As referenced previously, the microprocessor is a Texas Instruments TMS-9900 contained on a TM$990 / 100 \mathrm{M}$ microcomputer board. Also included on the board is a PROM, 106 , containing 32 K bytes of microcode; 512 bytes of random-access memory, RAM, storage, 104 , two programmable integral timers, and a serial interface 108, 112.

The programmed microprocessor performs several functions in the system including: the functions of setting tabs, margins, and selectively - changing them. Also included is the function of changing the scan height of the scanner. The embodiment of FIG. 1 is preferred because it employs a high-speed
microprocessor, 14, used as a high-speed input/output controller to obtain higher performance with respect to the camera-to-print-head operations. The embodiment of FIG. 5 is functionally identical to the configuration of FIG. 1 with the exception that the high-speed microprocessor controller is not utilized. Therefore, the interprocessor link, 40, shown in FIG. 1 is essentially a short circuit connecting both the high-speed bus and the lowspeed bus together. This enables the input/output devices to operate over a single bus, but at a lower speed than would be possible were a high-speed microprocessor control utilized. The net result is a camera-scanning operation which is slower than would be possible with the configuration of FIG. 1. Only the camera and camera buffer memory, 122, run together at high speed on a direct-memory access basis, the data being transferred to the print head and control by means of the video interface to microprocessor data path.

Referring to FIGS. 6, 7, and 8, an overview of the microprogram data flow will now be described. The flow starts on FIG. 6 with the program examining various inputs in the system. If the camera press-to-read button, decision block 150, is activiated the flow proceeds to block 152, which initializes the camera buffer memory, 122, to its beginning and the RAM 104 to the beginning of the print buffer area set aside therein. The flow controls to block 154, which enables the system for camera tachometer controlled data transfer. The flow continues to block 156, which enables the system for printing as data is received from the camera buffer memory, 122. At decision block 158 the omnispace controls (to be described with respect to FIG. 7) are suppressed. At block 160 the keyboard input is suppressed so that the ASCII characters are inhibited. The program flow now proceeds to block 162 and enters an idle loop. In this loop data are transferred from the camera, is converted from serial data to parallel, and the printer prints a column which corresponds to the information scanned on the source document. The flow continues to block 164, in which up to three remaining swathes for the camera scan are printed. The camera buffer is then cleared at block 166 and the flow returns to the initialize step, 168, to initialize to the beginning of the input buffer and the beginning of the print buffer.
While not shown in this flow chart, the microcode of APPENDIX II performs a similar operation to display the scanned data on the CRT.
Referring again to FIG. 6, assume that there is an ASCII input from the keyboard and that therefore the decision out of block 170 is yes. In this event the program controls the reading of a character from the keyboard at block 172. The read-only memory (20 of FIG. 1, or 106 of FIG. 5) converts the ASCII characters to a dot matrix format in block 174. In block 176, a column of the dot matrix is outputted to the print head. In block 178 the column is printed, and in block 180 the programming advances to the next print column and the print head is moved accordingly. At block 182 the loop is repeated until the last print column is printed in which event the program returns to the starting point. A similar operation takes place in the microcode with respect to displaying the information on the CRT monitor.

Referring to FIG. 7, the program flow for the omnispace control will be described. The omnispace control is a four-way rocker switch, or pushbutton switches, which provide for spacing either to the left or to the right, and to space up or down, in order to control independent movement of the print head. A similar

Video is initialized here for white-on-black display of input characters (camera images are always black-onwhite). Control now drops through to CLEARTN.

CLEARTN: May also be reached by keying \#1 on 65 the keyboard. Depending on the status of the reverse video setting, the currently displayed memory bank only is either cleared or set, i.e., darkened or lit. Control then flows to HOME.

HOME: May also be reached by keying \#32 on the keyboard. The subroutine to allow subsequent camera motion detection is called on the keyboard. The cursor position is initialized to the upper-left corner of the screen and control drops through to CARETN.
CARETN: May also be reached by keying the carriage return key on the keyboard. The cursor horizontal position is arbitrarily set to the left software margin value. As this carriage return always includes a line feed, control now flows to LINEFEED. Do not confuse this routine with that of camera carriage return.
LINEFEED: May also be reached by keying the index button on the keyboard. The cursor vertical position is decremented by one line (160 mils). If this would be below the bottom of the screen, the cursor is reset to the home position. The cursor vertical position is displayed on the numeric display by calling subroutine CNVTM. Control drops through to SAVECURSE.
SAVECURSE: This point is also reached after completion of any processing for camera input or on completion of any keyboard input. The data at the cursor location (16 spots down and 16 spots to the right) is saved and its complement is saved. The cursor blink time routine is initialized, and control drops through to NOACTION.
NOACTION: This routine continuously tests for keyboard input alternated by tests for camera input. If either occurs, the first action will be to ensure the cursor is replaced by the original data. While neither occurs, a counter counts down the blink time and at timeout calls BLINKURSR to swap the data at the cursor location with its complement. If no camera or keyboard input occurs, this loop will continue indefinitely. If keyboard input occurs, control transfers to ISCHAR. If camera input occurs, control transfers to CAMERIN.
ISCHAR: immediately calls CURSREST to ensure the original data is restored before any modifications are made. The character is then input from the keyboard and tested to see if it is one of the control characters, if so, control transfers to the appropriate routine. If not a control character and if space exists to generate a character in, then subroutine PCHAR is called to generate the character. Following this, if insufficient space exists for another character to the right of the most recent one, then a carriage return and linefeed are generated automatically. Otherwise control is transferred to SAVECURS (defined earlier).
PCHAR: is a subroutine to generate a character. At the current cursor position all characters are 9 bits wide and 16 bits high. Because the 4×4 bit cell array is not a submultiple of nine, the bits have to be shifted appropriately depending on the bit address of the cursor currently.

CAMERIN: is reached only from NOACTION (this is not a subroutine) and initially uses CURSREST to ensure the cursor is removed and the original data restored. First this section determines the length of the scan.

If the camera interface fails to transfer data for more than one msec since the previous transfer, the routine times out and begins to shrink the data by $4: 1$ linearly (16 to 1 by area). This is performed columnwise, top to bottom (to the assigned scan height), in groups of 16 cells of 4×4 bits. Each 4×4 cell in the original camera data determines one bit in the resultant display of the scanned area. This is achieved by counting the number of nonzero bits in the original cell and if this count is
greater than the threshold, a one is placed in the result. else a zero.
For typewritten material this threshold should be biased to save ones, but for 50% black images (e.g.,
5 pictures) probably 50% of the cell size (i.e., 8) would be better.

BANKSET: A second character is input and its low three bits are used to set the bank to be displayed.

SCNDWN: decreases the current scan height setting 0 by one increment, i.e., 16 counts. The routine allows a minimum height of one cell (i.e., 4 bits). The CNVTM subroutine is called to display the current scan height.

SCNUP: increases the current scan height setting by one increment (i.e, 16 counts), but the maximum of 128 cells (512 counts) cannot be exceeded. This shares code with SCNDN.
RELLFT: will assign a software left margin unless present cursor location is equal to the left margin previously set, in which case the left margin will reset to zero.

RELRIT: Same as RELLFT, but for the right software margin.
RETCAM: Code for the camera carriage return function which is equivalent to a normal carriage return but with a line feed equal in height to the current scan height setting.

CLEAR: Code to set all of the currently displayed bank to all zeros or all ones depending on the current reverse video mode.

STCAMDET: Subroutine to set a horizontal line containing the recognition code so that subsequent data stored by the camera interface will alter this data and allow detection of depression of the press-to-read button and subsequent camera movement.

TABIT: Code to determine the location to tab to from the unordered table of all assigned tabstops.

SETAB: Code to find if a current tab already has the same value as the cursor and if so to delete it. If none is equal, and no more room in table, to ignore it, otherwise to add the current cursor location to the tab table to define a tap stop for the future.

BLINKURSR: Subroutine to swap the contents of the 164×4 cells at the current cursor location with their alternate (complemented) values, hence blinking the cursor.

While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Address	Data	APPENDIX I KEYBOARD PROM	Key \#
		Function	
00	00		
01	00	Suppressed RESET	64
02	00		
03	00		
04	00		
05	00		
06	00		
07	00		
08	0 C	Clear	1
09	0D	Bank	17
0A	15	Scan ht. incr	33
0B	16	Scan ht. deer	49
OC	7A	z	51
0D	61	a	35
OE	71	4	19

-continued					-continued			
		APPENDIX I KEYBOARD PROM	Key \#	5	Address	Data	APPENDIX I KEYBOARD PROM Function	Key \#
Address	Data	Function						
-	.				,	-		
D9	00				-	.		
DA	3A	:	44		ED	00		
DB	00				EE	09	TAB	18
	.					00		
	.			10	FO	00		
	0				.	.		
DF	00				.	.		
E0	9 F	Tibug Mode	14					
E1	20	Space	65		F5	00		
E2	1A	Omnispace up	47		F6	OB	HOME	32
E 3	08	Omnispace left	47	15	F7	02	RIGHT MARGIN	16
E4	18	omnispace right	63		F8	00		
E5	0A	Omnispace down	48		.	.		
E6	14	Carriage return	46			.		
E7	5F	-	12					
E8	00				FF	00		
				20				

APPENDIX II

MICROCODE FOR CRT OUTPUT ROM				
1000	0460	BEGIN	B	POWAON
	1050			
1004	FF70	ORIGDAL	DEF	SAVORIG
1006	FF50	CURSDAL	DEF	CURSOR CELLS
1008	03 E 8	OTCURS	DEC	1000
100A	0002	CAMBANK	DEC	2
100 C	0004	D4	DEC	4
100 E	0350	COLOVR	DEC	848
1010	00FF	LOBYT	HEX	00 FF
1012	FF2E	DFTABL	DEF	LFTMRGN
1014	0010	MAXTB	DEC	16
1016	0008	D8	DEC	8
1018	3132	ASC1ASC2	ASC	12
101A	0080	MXSCAN	DEC	512
101C	842 E	RECOGNIS	HEX	842F
101E	047B	MAXROCR	DEC	1147
1020	011 C	MAXROCEL	HEX	11 C
1022	00D4	MAXCLCEL	HEX	D4
1024	0010	D16	DEC	16
1026	FF4E	DFRITMRG	DEF	RITEMRGN
1028	046B	MAXRO	DEC	1131
102A	0009	D9	DEC	9
102C	0020	D 32	DEC	32
102E	0012	D18	DEC	18
1030	0086	MEANRCEL	HEX	86
1032	OODO	D200	DEC	200
1034	0002	D2	DEC	2
1036	1 FE0	IOAD	HEX	IFEO
. 1038	OBOD	HOMCHR	HEX	OBOD
103A	IDFF	VIDCHR		
	\checkmark FEFF			
	FFFF			
1040	OCFF	CLR/SCAL	HEX	OCFF
1042	1615	SCNDN/UP	HEX	1615
1044	0701	RMRGTBST	HEX	0701
1046	0 FO 2	LTRLRTRL	HEX	0F02
1048	9 F 1 B	SWTCHCGN	HEX	9F1B
104A	0614	CMCRTCRT	HEX	0614
104C	0509	LNFDTAB	HEX	0509
104E	0A1A	DN/UPCHR	HEX	0A1A
1050	C820	POWAON	MOV	SCNINC.D8
	1016			
	FFAA			
1056	C820		MOV	TCURS.OTCURS
	1008			
	FFA?			
105C	C820		MOV	SHOBANK.D3
	17E8			
	FFA8			
1062	04EO	TBMRNRLS	CLR	LFTMRGIN
	FF2C			
	1000			
	1000			
106A	C120		MOV	R4.DFTABL

APPENDIX II-continued

	-	MICROCODE FOR CRT OUTPUT ROM		
	1012			
106E	C160		MOV	R5,MAXTB
	1014			
1072	04F4	TABZRO	CLR	(R4.I +)
1074	0605		DEC	R5
1076	18FD		JOC	TABZRO
1078	C820		MOV	RITMRGN,COLOVR
	100E			
	FF4E			
107E	C820		MOV	SCANHT,MXSCAN
	101A			
	FFAC			
1084	04E0		CLR	STCH
	FF2A			
1088	C820	CLEARTN	MOV	BANK,SHOBANK
	FFA8			
	8006			
108E	06A0		BAL	CLEAR
	1384			
1092	06A0	HOME	BAL	STCAMDET
	14BA			
1096	C820		MOV	CURSRO,MAXROCR
	101E			
	FF26			
109C	0460			
	10E0			
10A0	COAO	LINEFEED	MOV	R2,CURSRO
	FF26			
10A4	60A0		SUB	R2.D16
	1024			
10A8	C142		MOV	R5,R2
10AA	6160		SUB	RS,D16
	1024			
	11 E 7		JLT	HOME
10B0	C802	SHORO	MOV	CURSRO,R2
	FF26			
10B4	CIEO		MOV	R7,D8
	17F4			
10B8	1001		JMP	* +1
	1806			
10BC	COAO	SAVECURS	MOV	R2.CURSCO
	FF24			
10 CO	CIE0		MOV	R7.D4
	100 C			
10 C 4	1001		JMP	* +1
	1806			
10 C 8	COEO		MOV	R3.CURSCO
	FF24			
10CC	0823		SRA	R3.2
10CE	D820		MOVB	CURS.D16
	1025			
	FFAS			
10D4	C803		MOV	COLAD.R3
	8004			
10D8	C2A0		MOV	R10,CURSDAL
	1006			
10DC	C220		MOV	R8,ORIGDAL
	1004			
10EO	COAO		MOV	R2.CURSRO
	FF26			
10E4	0822		SRA	R2.2
10E6	C120		MOV	R4.D4
	100 C			
10EA	0701		SETO	R1
10EC	C160		MOV	R5.D2
	1034			
10F0	2160		COC	R5.CURSCO
	FF24			
10F4	1601		JNE	SVCURS
10 F 6	0981		SRL	R1.8
10F8	C160	SVCURS	MOV	R5.D4
	100 C			
10FC	C802	SVCRSO	MOV	ROWAD.R2
	8002			
1100	C820		MOV	BANK.SHOBANK
	FFA8			
	8006			
$\begin{aligned} & 1106 \\ & 1108 \end{aligned}$	OboE		NOP	
	C260		MOV	R9.INDATA
	8000			

APPENDIX II-continued

MICROCODE FOR CRT OUTPUT ROM				
110 C	CE09		MOV	(R8.I +) R9
110 E	1000		SZC	R9,R1
	0549		SOC	R9,R1
1112	CE89		MOV	(R10.I+).R9
1114	0602		DEC	R2
1116	0605		DEC	R5
1118	16F1		JNE	SVCRSRO
111 A	AOA0		A	R2.D4
	100 C			
111E	0583		INC	R3
1120	C803		MOV	COLAD, R3
	8004			
1124	0701		SETO	R1
1126	0604		DEC	R4
1128	16E7		JNE	SVCURS
112A	C820		MOV	CURSTIM.TCURS
	FFA2			
	FF28			
1130	04 C 6		CLR	R6
1132	04 E 0	NOACTION	CLR	TCOL
	FFA0			
1136	C320		MOV	R12.IOAD
	1036			
113 A	C3E0		MOV	R15.MAXROCEL
	1020			
113 E	1000		NOP	
1140	IFOF		TB	15
1142	1601		JNE	* +2
1144	1025		JMP	ISCHAR
1146	C820		MOV	ROWAD.MAXROCEL
	1020			
	8002			
114 C	C360		MOV	R13,SHOBANK
	FFA8			
1150	C820		MOV	COLAD.TCOL
	FFAO			
	8004			
1156	081D		SRA	R13.1
1158	OAID		SLA	R13.1
115A	C80D		MOVB	BANK.R13
	8006			
115E	OB00		NOP	
1160	8820		C	RECOGNIS.INDATA
	8000			
	101C			
1166	1302		JEQ	* +2
1168	0460		B	CAMERIN
	1630			
116 C	0620		DEC	CURSTIM
	FF28			
1170	1502		JGT	* +2
1172	06A0		BAL	BLINKURSR
	155E			
1176	0460		B	NOACTION2
	1136			
117A	FFFF	CURSREST	EQU	
	FFFF			
	FFFF			
1180	C34B		MOV	R13.R11
1182	9820		CB	CURS.D16
	1025			
	FFAS			
1188	1302		JEQ	
118A	06A0		BAL	BLINKURSOR
	155E			
118E	045D		B	R13.1
1190	06 A 0	ISCHAR	BAL	CURSREST
	1180			
1194	1608		STCR	R $8 . \mathrm{L}=8$
1196	IEOF		SBZ	15
1198	9220		CB	R8.HOMCHR
	1038			
119 C	1602		JNE	* +2
119 E	0460		B	HOME
	1092			
11A2	9920		CB	R8.BANKAS
	1039			
11 Ab	1602		JNE	* +2
11 A 8	$\begin{aligned} & 0460 \\ & 12 \mathrm{~A} 0 \end{aligned}$		B	BANKSET

APPENDIX II-continued			
MICROCODE FOR CRT OUTPUT ROM			
11 AC	$\begin{aligned} & 9220 \\ & 1040 \end{aligned}$	CB	R8.CLR
1180	1602	JNE	* +2
1182	0460	B	CLEARTN
	1088		
1186	9220	CB	R8,SCALE
	1041		
11 BA	1602	JNE	* +2
$11 B C$	0460	(B	STSCALE)
	12BE		
$11 \mathrm{C0}$	9220	CB	R8.SCANDN
	1042		
$11 \mathrm{C4}$	1602	JNE	* +2
11 C 6	0460	B	SCNDWN
	12BE		
11CA	9220	CB	R8,SCANUP
	1043		
11CE	0460	B	SCNUP
	12DC		
11D4	9220	CB	R8,RLTBMRG
	1044		
11D8	1602	JNE	* +2
11DA	0460	B	TBMRGNRELES
	1062		
11DE	9220	CB	R8,LFTREL
	1046		
11E2	1602	JNE	$*+2$
11E4	0460	B	RELLFT
	12F0		
11E8	9220	CB	R8.RITREL
	1047		
11EC	1602	JNE	* +2
IIEE	0460	B	RELRIT
	1304		
11F2	9220	CB	R8,TABSET
	1045		
11F6	1602	JNE	* +2
11F8	0460	B	SETAB
	1524		
11FC	9220	CB	R8,SWITCH
	1048		
1200	1602	JNE	* +2
1202	0460	B	TIBUG
	014E		
1206	9220	CB	R8.CGEN
	1049		
120A	1602	JNE	* +2
120 C	0460	B	CNTRUTINE
	1350		
1210	9220	CB	R8.CAMCRET
	104A		
1214	1602	JNE	* +2
1216	0460	B	RETCAM
	1318		
121A	1000	NOP	
	1000		
121E	9220	CB	R8,CRET
	104B		
1222	1602	JNE	* +2
1224	0460	B	CARETN
	109 C		
1228	9220	CB	R8.LNFED
	104C		
122A	1602	JNE	* +2
122C	. 0460	B	LINEFEED
	10 AO		
1232	9220	CB	R8,DNCHR
	104E		
1236	1602	JNE	* +2
1238	0460	B	DNMOV
	15EE		
123C	9220	CB	R8.UPCHR
	104F		
1240	1602	JNE	* +2
1242	0460	B	UPMOV
	15D8		
1246	9220	CB	R8.LFTCHR
	17FE		
124A	1602	JNE	* +2
124C	0460	B	LEFTGO

MICROCODE FOR CRT OUTPUT ROM				
	1600			
1250	9220		CB	R8.VIDCHR
	103A			
1254	1602		JNE	* +2
1256	0460		B	REVIDEO
	1298			
125A	CIEO		MOV	R7.CURSCO
	FF24			
125E	A1E0		ADD	R7.D9
	102A			
1262	81 E 0		C	R7.RITEMRGIN
	FF4E			
1266	1501		JLT	* +2
1268	1015		B	NEXTCH
126 A	9220		CB	R8.RITCHR
	17FF			
126 E	1602		JNE	* +2
1270	0460		B	RITEGO
	1610			
1274	9220		CB	R8.TAB
	104D			
1278	1602		JNE	* +2
127A	0460		B	TABIT
	14 E 8			
127E	06 A 0		BAL	PCHAR
	13 CO			
1282	1000			
	1000			
	1000			
128A	8820		C	CURSCO.COLOVR
	FF24			
	100E			
128 E	1102		JGT	NEXTCH
1290	0460		B	CARETN
	109 C			
1294	0460	NEXTCH	B	SAVECURS
	10BC			
1298	0560	REVIDEO	INV	STCH
	FF2A			
129C	1009		JMP	NX1
	FFFF			
12 A 0	06A0	BANKSET	BAL	K YBDWT
	1070			
12 A 4	0B88		SRC	R8.8
12A6	C808		MOV	SHOBANK.R8
	FFA8			
12AA	C820		MOV	BANK.SHOBANK
	FFA8			
	8006			
1280	0460	NXI	B	NEXTCH
	1294			
12B4	26A0	STSCALE	BAL	KYBDWT
	1D70			
12B8	D220		MOVB	SCAIL.R8
	FFA6			
12BC	10F9		JMP	NXI
12BE	COAO	SCNDWN	MOV	R2.SCNHT
12 CO	FFAC			
12C2	60 AD		S	R2.SCNINC
	FFAA			
12 C 6	1502		JGT	OKSCNDN
12 C 8	COAO		MOV	R2.D8
	1016			
12 CC	C802	OKSNDN	MOV	SCNHT.R2
	FFAC			
12D0	C1E0		MOV	R7.HEXD
	17FC			
12D4	06A0		BAL	CNVTM
	$1 \mathrm{B06}$			
12D8	10FI		JMP	NX1
	FFFF			
12DC	COAO	SCNUP	MOV	R2.SCNHT
	FFAC			
12E0	A0A0		ADD	R2.SCANINC
	FFAA			
12 E 4	80 AO		C	R2.MXSCAN
	101A			
12E8	15F1	SCNON	JHT	OKSCNDN
12EA	COAO	BGNSHSCN	MOV	R2.MXSCN
	101A			

APPENDIX II-continued

MICROCODE FOR CRT OUTPUT ROM				
12EE	l0EE		JMP	OKSCNDN
12FO	Cla 0	RELLFT	MOV	R6.CURSCO
	FF24			
12 F 4	81A0		C	R6,LFTMRGN
	FF2C			
12 F 8	1601		JNE	* +1
12FA	04 C 6		CLR	R6
12FC	C806		MOV	LFTMRGN.R6
	FF2C			
1300	0460	NX2	B	NX1
	12B0			
1304	C1A0	RELRIT	MOC	R6.CURSCO
	FF24			
1308	81A0		C	R6.RITEMRGN
	FF4E			
130 C	1602		JNE	* +2
130 E	Clao		MOV	R6.OVERCO
	17FA			
1312	C806		MOV	RITMRGIN.R6
	FF4E			
1316	10F4		JMP	NX2
1318	C820	RETCAM	EQU	
	FF2C			
131C	FF24	RTCAMI	MOV	CURSCO.LEFTMRGN
131E	C820		MOV	COLAD,CURSCO
	FF24			
	8004			
1324	C220		MOV	R8.SCANHT
	FFAC			
1328	9820		CB	SCAIL.ASCI
	1018			
	FFA6			
132E	1306		JEQ	HTSCN
1330	0810		SRA	R0.I
1332	9820		CB	SCAIL.ASC2
	1019			
	FFA6			
1338	1301		JEQ	HTSCN
133A	0810	(NOP)	SRA	R0.1
133C	0508	HTSCN	NEG	R8
133E	A220		ADD	R8,CURSRO
	FF26			
1342	C808		MOV	CURSRO,R8
	FF26			
1346	0460	QUITC	B	
	1626			
134A	FFFF			
	FFFF			
	FFFF			
1350	04E0	CNTRUTIN	CLR	STCH
	FF2A			
1354	6820	ROLOOP	SUB	CURSRO.DI6
	1024			
	FF26			
135A	04E0	COLOOP	CLR	CURSCO
	FF24			
135E	C220	CHALOOP	MOV	R8,STCH
	FF2A			
1362	0B88		SRC	R8.8
1364	0640		BAL	PCHAR
	13C0			
1368	05A0		INC	STCH
	FF2A			
136 C	1F0F		TB	15
136E	- 13EB		JEQ	QUITC
1370	8820		C	CURSCO.COLOVR
	100E			
	FF24			
1376	15F3		JLT	CHALOOP
1378	8820		C	CURSRO.D32
	102C			
	FF26			
137 E	11EA		JLT	ROLOOP
1380	10E2		JMP	QUITC
	10EB			
1384	04E0	CLEAR	CLR	COL
	FF9C			
1388	C820	ClROW	MOV	COLAD.COL
	FF9C			
	8004			

APPENDIX II-continued

MICROCODE FOR CRT OUTPUT ROM				
138 E	04E0	CLRLOOP	CLR	ROW
	FF9E			
1392	C820		MOV	ROWAD.ROW
	FF9E			
	8002			
1398	05A0		INC	Row
	FF9E			
139 C	C820		MOV	WRIDATA.OLWD
	FF2A			
	8000			
13 A 2	8820		C	ROW.CELOVRO
	13B8			
	FF9E			
13 A 8	16F4		JNE	CLRLOOP
13 AA	05A0		INC	COL
	FF9C			
13AE	8820		C	COL.CELOVCO
	13BA			
	FF9C			
13B4	16E9		JNE	CLROW
13B6	045B		B	R11.1
13B8	011 D	CELOVRO	HEX	11D
13 BA	00D5	CELOVCO	HEX	D5
13BC	FFFF			
	FFFF			
13 CO	C820	PCHAR	EQU	
	FF26			
	FF9E			
13C6	4220		SZC	R8,NDHIBITE
	17F8			
13 CA	C820		MOV	COL.CURSCO
	FF24			
	FF9C			
13D0	0848		SRA	R8.4
13D2	A220		A	R8.CHAROFSET
	17F6			
13D6	C120		MOV	R4. $=$ D 9
	102A			
13DA	C1B8	MOVERT	MOV	R6.(R81+)
	9820			
	FF2A			
	1034			
13E2	1601		CB	OLWD.HEXO
	0546			
			JEQ	* +1
			INV	R6
13E6	C 020		MOV	R0.COL
	FF9C			
I3EA	0240		ANDI	R0.0003
	0003			
13EE	0A10		SLA	R0.1
	0460			
	1400			
	FFFF			
	.			
	-			
	FFFF			
1400	C800		MOV	REMAINWD.R0
	FF9A			
1404	1000		NEG	R0
1406	1000		A	R0.D8
1408	1000		SLA	R0.1
140 A	0A10		SRC	R6
	0B06			
140E	C806		MOV	REMAN.R6
	FF98			
1412	C820		MOV	VTCNT.D4
	100C			
	FF92			
1418	C2A0		mov	R10.COL
	FF9C			
141C	082A		SRA	R10.2
14IE	C80A		MOV	COLAD.R10
	8004			
1422	C2A0		mov	R10.NDLOI?
	17F2			
1426	CIE0		MOV	R7.REMAINWD
	FF9A			
142A	81 E 0		C	R7.D2

APPENDIX II-continued				
MICROCODE FOR CRT OUTPUTROM				
	1034			
142E	1601		JNE	* +2
1430	0B4A		SRC	R10.4
1432	81 E 0		C	R7,D4
	100 C			
1436	1601		JNE	${ }^{*}+1$
1438	0B8A		SRC	R10,8
143A	81E0		C	R7.D6
	17F0			
143E	1601		JNE	* +2
1440	OBCA		SRC	R10.12
1442	C80A	MASKSET	MOV	ANDI,R10
	FF96			
1446	054A		INV	R10
1448	C80A		MOV	AND2,R10
	FF94			
144C	CIE0	ALLVT	MOV	R7.ROW
	FF9E			
1450	0827		SRA	R7.2
1452	C807	ALLVT2	MOV	ROWAD.R7
	8002			
	1000			
1458	1000		NOP	
145A	C820		MOV	BANK,SHOBANK
	FFA8			
	8006			
1460	1000		NOP	
1462	C160		MOV	R5,BUFDATA
	8000			
1466	4160		AND	R5,AND2
	FF94			
146A	Clia		MOV	R6,REMAN
	FF98			
146E	C006		MOV	R0,R6
1470	41A0		AND	R6, ANDI
	FF96			
1474	OBCO		SRC	R0,12(=SLC4)
1476	C800		MOV	REMAN.R0
	FF98	-		
147A	E146		IOR	R5.R6
147C	C805		MOV	BUFDATA@1000,R5
	8000			
1480	0607		DEC	R7
	1000			
1484	0620		DEC	VTCNT
	FF92			
1488	1302		JEQ	* +2
148A	0460		B	ALLVT2
	. 1452			
	1000			
1490	2620		CZC	R8,HEXF
	17EE			
1494	1601		JNE	* +2
1496	0648		DECT	R8
1498	05A0		INC	COL
	FF9C			
149C.	1000			
	1000			
	1000			
14A2	0604		DEC	R4
14A4	1302		JEQ	* +2
14A6	0460		B	MOVERT
	13DA			
14AA	C820		MOV	CURSRO,ROW
	FF9E			
	FF26	,		
1480	C820		MOV	CURSCO.COL
	FF9C			
	FF24			
1486	045B		B	R11.IRETURN
	FFFF			
14BA	C820	STCAMDET	MOV	BANK.CAMBANK
	100A			
	8006			
14 CO	C820		MOV	ROWAD.MAXROCEL
	1020			
	1002			
14C6	C160		MOV	RS.MAXCOLCEL
	1022			
14CA	04C4		CER	R4
		;		

APPENDIX II-continued

MICROCODE FOR CRT OUTPUT				
14CC	C804	LOOPSET	mov	COLAD.R4
	8004			
14D0	1000		NOP	
14D2	C820		mov	BUFDATA.RECOGNIS
	101 C			
	8000			
14D8	0584		INC	R4
14DA	0605		DEC	R5
14DC	16F7		JNE	LOOPSET
14DE	C820		MOV	ROWAD,MEANROCEL
	1030			
	8002			
14 E 4	0460	LOPSET2	DEC	R4
	1DC8			
14 E 8	C160	TABIT	MOV	R5.MAXTB
	1014			
14EC	0585		INC	R 5
14EE	C120		MOV	R4.DFTABL
	1012			
14F2	C060		MOV	R1.DFRITMRG
	1026			
14F6	C0E0		MOV	R3.MAXROCR
	101E			
14FA	0706	FNDTAB	SETO	R6
14FC	61 A0		SUB	R6.CURSCO
	FF24			
1500	A194		ADD	R6.(R4.1)
1502	150A		JGT	MBTAB
1504	05 C 4	TABLUP	INCT	R4
1506	0605		DEC	R5
1508	15F8		JGT	Findtab
150A	C211		MOV	R8.(R1.I)
150 C	6220		SUB	R8,CURSCO
	FF24			
1510	$\begin{aligned} & \text { A808 } \\ & \text { FF24 } \end{aligned}$		ADD	CURSCO.R8
1514	0460		B	NEXTCH
	1294			
1518	C086	MBTAB	MOV	R2.R6
151A	6183		SUB	R6.R3
151C	1502		JGT	TABTOO
15IE	COC2		MOV	R3,R2
1520	C044		MOV	R1.R4
1522	10 FO	TABTOO	JMP	TABLUP
1524	C120	SETAB	MOV	R4,DFTABL
	1012			
1528	C160		MOV	R 5.MXTAB
	1014			
152C	C060	FNTABLP	MOV	R1.CURSCO
	FF24			
1530	1312		JEQ	TABRET
1532	6054		SUB	RI.(R4.I)
1534	1312		JEQ	TABCLR
1536	05C4		INCT	R4
1538	0605		DEC	R5
153 A	15F8		JGT	FNTABLP
$\begin{aligned} & 153 \mathrm{C} \\ & 153 \mathrm{E} \end{aligned}$	1000		NOP	
	C160		MOV	R5.MXTB
	1014			
1542	$\begin{aligned} & \mathrm{Cl} 20 \\ & 1012 \end{aligned}$		MOV	R4.DFTABL
15461548	C054	TBSTLP	MOV	R1.(R4.1)
	1304		JEQ	TABSET
1548 154 A	05C4		INCT	R4
154 C154 E	0605		DEC	R5
	15 FB		JGT	TBSTLP
1550	1002		JMP	TABRET
1552	C520	TABSET	MOV	(R4.1), CURSCO
	FF24			
1556	0460	TABRET	B	NEXTCH
	1294			
155A	04D4	TABCLR	CLR	(R4.1)
155C	10FC		JMP	TABRET
155E	C820	BLINKURSR	MOVB	BANK.SHOBANK
	FFA8			
	8006			
1564	C0AO		MOV	R2.CURSRO
	FF26			
	0×22			

APPENDIX II-continued

APPENDIX II-continued

PPENDIX II-continued

$\begin{gathered} \text { MICROCODE FOR CRT OUTPUT } \\ \text { ROM } \\ \hline \end{gathered}$					
16A6	C3E0		MOV	R15.MEANROCEL	
	1030				\therefore
	1000				
16 AC	04E0		CLR	TCOL	
	FFA0				
16B0	C1A0		MOV	R6.MAXCOLCEL	:
16B4	1022 10 C 7		JMP	CAMWAIT	
	3020				
	FFIE				
16BA	C820	ONETOONE	MOV	SVCURSRO.CURSRO	
	FF26				
	FF12				
16 C 0	C820	HSWATH	MOV	CURSRO.SVCURSRO	
	FF12				
	FF26				
16 C 6	A820		ADD	CURSCO.D4	
	100C				
	FF24				
16 CC	8820		C	COLOVR.CURSCO	
	FF24				
	100E				
16D2	1102		JLT	* +2	
16D4	0460		B	QUITSHO	
	1DB8				
16D8	1000		NOP		
	1000				
16DC	Cl 20		MOV	R4.SCANHT	
	FFAC				
16E0	1002		NOP		
	FFFF				
16E4	FFFF		NOP		
16E6	C804		MOV	REMHT.R4	
	FFIA				
16EA	C820		MOV	HIRONOW,HIRO	
	FFIE				
	FF18				
16F0	COEO	VSWATH	MOV	R3.D4	
	100C				
16F4	C120		MOV	R4.REMHT	
	FF1A				
16F8	1602		JNE	*+2	
16FA	0460		B		
	1D80				
16FE	6120		SUB	R4.D4	
	100 C				
1702	1101		JLT	* +2	
1704	1003		JMP	SW1	
1706	COEO		MOV	R3.REMHT	
	FF1A				
170A	04C4		CLR	R4	
170C	C0AO	SW1	MOV	R2,D4	
	100 C				
1710	C804		MOV	REMHT.R4	
	FF1A				
1714	C260		MOV	R9.ORIGDAL	
	1004				
1718	C803	SW2	MOV	SWATHT.R3	
	FF16				
171 C	C820		MOV	CROW.HIRONOW	
	FF18				
	FF14				
1722	C820		MOV	COLAD, TCOL	
	FFA0				
	8004				
1728	C0E0		MOV	R3.SWATHT	
	FF16				
172 C	C820	SWVRCL	MOV	ROWAD.CROW	
	FF14				
	8002				
1732	0BC0		NOP		
1734	C80D		MOV	BANK.R13	\cdots
	100A				
	8000				
173A	OBOO		NOP		
173C	CE60		MOV	(R91+).INDATA	
	8000				
1740	0620		DEC	CROW	
	FFI4				
1744	0603		DEC	R. 3	

APPENDIX II-continued

MICROCODE FOR CRT OUTPUTROM				
$\begin{aligned} & 1746 \\ & 1748 \end{aligned}$	16F2		JNE	SWVTCL
	COEO		mov	R3.SWATHT
	FFI6			
174C	05A0		INC	TCOL
	FFAO			
1750	0602		DEC	R2
1752	1302		JEQ	* +2
1754	0460		B	SW2
	1718			
1758	6820		S	HIRONOW.D4
	100 C			
	FF18			
175E	C260		MOV	R9,ORIGDAL
	1004 1000		NOP	
1762	1000			
1766	9820		CB	SCAIL.ASCI
	1018			
	FFAg			
176C	1602		JNE	* +2
176E	0460		B	SWEAT
	177 E			
1772	9820		CB	SCAIL,ASC2
	1019			
	FFA6			
1778	1602		JNE	* +2
177A	0460		B	SWEAT
	177 E			
177E	C2A0	SWEAT	MOV	R10.D16
	1024			
1782	04 C 0		CLR	Ro
1784	C060	SIXTN	SRC	R0.15
17861788188	1024		MOV	R1.D16
	04 C 7		CLR	R7
178 A178 C	C189		mov	R6.(R9I+)
	1000		NOP	
178 E	1305		JEQ	NOONES
1790	0B16	BITCNT	SRC	R6.1
1792	1501		JGT	NOTHISONE
1794	0587		INC	R7
1796	0601 16FB	NOTHISON	DEC	R1
$\begin{aligned} & 179 \mathrm{~A} \\ & 179 \mathrm{C} \end{aligned}$	08F0		JNE	BITCNT
	81 E 0	NOONES	C	R7.MAXB
	17E4			
17 A 0	1501		JLE	NOTONE
17 A 2	0580	SETONE	inc	R0
17 A 4	1000	NOTONE	NOP	
	1000			
17 AB	060A		DEC	R10
17 AA	16EC		JNE	SIXTN
17 AC	1000			
17AE			mov	BANK.SHOBANK
	${ }_{8006}$			
1784	8006 $C 060$		mov	RI.CURSRO
	FF26			
$\begin{aligned} & 17 \mathrm{B8} \\ & 17 \mathrm{BA} \end{aligned}$	0821		SRA	R1.2
	C801		mov	ROWAD.R1
	8002			
17BE	$\begin{aligned} & \text { C060 } \\ & \text { FF24 } \end{aligned}$		MOV	RI.CURSCO
17 C 2	0821		SRA	R1. 2
17 C 4	C801		mov	COLAD.RI
	8004			
17C8	1000		NOP	
17CA	C800		MOV	Datout.ro
	8000			
17CE	${ }^{6820}$		SUB	CURSRO.D4
	${ }_{\text {FF26 }}$			
17 D 4	1000		NOP	
	1000			
17D8	${ }^{6820}$		SUB	TCOL.D4
	100 C			
	frao			
17DE	0460		B	VSWATH
	FFFF			
17E4	000 C	MAXB	DEC	14

APPENDIX II-continued

MICROCODE FOR CRT OUTPUTROM				
17E6	00D5	HXD5	HEX	D 5^{*}
17E8	0003	D3	DEC	3
17EA	1000	OVTIM	DEC	24K
17EC	0001	DI	DEC	1
17EE	000F	HEXF	HEX	000F
17F0	0006	D6	DEC	6
17F2	0FFF	NDL012	HEX	OFFF
17F4	0008	D8	DEC	8
17 F 6	0800	CHROFSET	HEX	2800
17F8	80FF	NDHIBYTE	HEX	80FF
17FA	0358	OVERCO	DEC	852
17FC	000D	HEXD	DEC	13
17FE	0818	LT/RTCHR	HEX	0818
1D80	6820	NOVSWATH	SUB	SCANLN.D4
	100 C			
	FF90			
1D86	170 E		JNC	ENDREDU
1D88	A820		ADD	TCOL.D4
	100C			
	FFA0			
ID8E	8820		C	TCOL.MAXCOLEL
	100 C			
	FFAO			
1D94	1605		JNE	NOCHNG
1D96	C820		MOV	HIROMEANROCEL
	1030			
	FFIE			
1D9C	04E0		CLR	TCOL
	FFA0			
1DA0	0460	NOCHNG	B	HSWATH
	16C0			
1DA4	C820	ENDREDU	MOV	ROW.SWCURSRO
	FF12			
	FF26			
IDAA	06A0		BAL	STCAMDET
	14BA			
IDAE	0460		B	NEXTCH
	1294			
1DB8	06A0	QUITSHO	BAL	STCOMDET
	14BA			!
1DBC	0460		B	RTCAM1
	1318			
1DC8	0604		MOV	BUFDATA,RECOGNIS
	C820			
	101C			
	8000			
1DD0	0585		INC	R5
1DD2	C804		MOV	COLAD.R4
	8004			
10D6	8160		C	R5,MAXCOLCEL
	17E6			
	16F6			
$\begin{aligned} & \text { 1DDC } \\ & \text { 1DDE } \\ & \text { 1DE } \end{aligned}$	045B		JNE	LOPSET2
	FFFF		B	R11.1
	C820	CARETN	MOV	CURSRO,LFTMRGIN
	FF2C			
	FF24			
	0460			
	10A0			
	FF12	SVCURSRO	BSS	1
	FF14	CROW		1
	FF16	SWATHT		1
	FF18	HIRONOW		1
	FF1A	REMHT		1
	FFIC	SWATDIR		1
	FFIE	HIRO		1
	FF20	THISCAN		1
	FF22	NEGIT		1
	FF24	CURSCO		1
	FF26	CURSRO		1
	FF28	CURSTIM		1
	FF2A	STCH		1
	FF2C	LFTMRGN		1
	FF2E	ARATAB		16
	.			
	FF4D			
	FF4E	RITMRGN		1

APPENDIX II-continued

\left.| | APPENDIX II-continued | | |
| :---: | :--- | :--- | :---: |
| | MICROCODE FOR CRT OUTPUT | | |
| ROM | | | |$\right]$

APPENDIX III				
		MICROCODE FOR PRINTER OUTPUT		
24 CO	FFFF.FFFF			AC2
24 C 4	$04 \mathrm{C6}$	POWAON	CLR	R6
C6	C806.FEEO		MOV	KAD.R6 set up
CA	C806.FEE2		MOV	YAD.R6 home
CE	C820.27A2.FEE4		MOV	SCANHT.MXSCAN
		TBMRGNRELES	MOV	RITMRGN.MAXX set rite margin at extreme
D4	1000.1000.10004C6		CLR	R6 ${ }^{\text {d }}$
DC	C806.FEEC		MOV	LFTMRGN.R6
EO	C160.27CC		MOV	R5.MAXTB the \# of tabs allowed
E4	C120.27AC. 1000		MOV	R4.DFTABL
EA	C506.1000	TABZRO	MOV	(R4.).R6. clear lab table
EE	05 C 4		INCT	R4
F0	0605		DEC	R5
F2	18FB. 1000		JOC	TABZRO
F6	C820.2780.FFOE		MOV	RITMRGN.MAXX
FC	0460.2350		B	HOMOOV
2000	06A0.2260	READY	EQU	*
			BAL	XEND
04	C.320.27A8	KYBDWY	MOV	RI2.IOAD (old = IFEO)
08	1F0F		TB	15 keyhoard weight
0A	16 FE		JNE	KYBDWT
OC	3606		STCR	R6.L $=8$
OE	1E0F. 1000		SBZ	15 reset data available
			NOP	
12	91 A 0.2796		CB	R6.HOMCHR
16	1602		JNE	* +3
18	0460,2350		13	HOMOOV
IC	91 A0.2798		CB	RG.UPCHR
20	1602		JNE	* +3
22	0460.236A		B	UPMOV
26	91 A 0.279 A		CB	R6.DNCHR
2A	1602		JNE	* +3
2 C	0460.2376		B	DNMOV
30	$91 \mathrm{A0.27AE}$		CB	R6.RLTBMRG release tahs margins
34	1602			$*+3$
36	0460.24 D 4		B	TBMRGNRELES
3 A	9140.2780		CB	R6.LFTREL set relabe left margin
3E	1602		JNE	* +3 :
40	460.23 FA		B	RELLFT
4	9140.27132		CB	R6.RITREL
48	1602		JNE	* +3
4 A	460.23 E 0		B	RELRIT set release rile margin

-continued

APPENDIX III					
	C0	3	D3	DEC	3
	C2	4	D4	DEC	4
	C4	2	D2	DEC	2
	C6	1600	SCANDN	HEX	1600 char
	27C8	1500	SCANUP	HEX	1500 char
	27CA	000D	HEXD	HEX	D
	27CC	0010	MXTB	DEC	16 max \# of tabs
	27CE	40	D64	DEC	64
	27D0	7	D7	DEC	7
	27D2	000F	D15	DEC	15
	27D4	3C	D60	DEC	60
	27D6	19	D27	DEC	25
	27D8	100	TABSET	HEX	100
	27DA	600	CAMCRET	HEX	600
	27DC	E000	OFSET	HEX	E000 Char ROM begin address
	27DE	FFOE	DFRTMRGN	DEF	RITEMRGN
	27E0	OOEO	YTIME		
	E2	0048	XTIME		
	E4	0060	HEATIME		
	E6	0060	COOLTIME		
	E8	IEED	LOAD2	HEX	IEE0
	355E	C820.FFA 8.1006	BLINKURSR	MOVB	BANK.SHOBANK
	64	C0A0.FF26.0822		MOV	R2.CURSRO
	6A	C802,1002.C0E0,		SRA	R2 2 places
		FF24		MOV	ROWAD.R2 unnecessary
				MOV	R3.CURSCO
	72	0823.C803,1004		ARS	R.3, 2 places
				MOV	COLAD.R3
	78	C220,3006		MOV	R8.CURSDAL
	7 C	9820,3025,FFA5		$C B$	CURS.D16
	82	1306		JEQ	CURSPIK
	$206 \mathrm{C}=$	$\begin{aligned} & 1000,1000,91 \mathrm{~A} 0 . \\ & 27 \mathrm{BD} \end{aligned}$		CB	R6.TIBUGCHR
	74	1602		JNE	
	76	0460.3000		BLWP	CRT
	7 A	91.40 .27 C 6		CB	R6.SCANDN
	7E	1602		JNE	$+2$
	80	460.23 Cb		B	SCNDOWN
	84	91A0.27C8		CB	R6,SCANUP
	88	1602		JNE	* +2
	8A	460.23A0		B	SCNUP
	8E	91A0.27D8		CB	R6.TABSET
	92	1602		JNE	* +2
	94	460.2420		B	SETAB
	98	91A0.27DA		CB	R6.CAMCRET
	9 C	1602		JNE	* +2
	9 E	460.2548		B	RETCAM
	A2	C120.FEE0		MOV	R4.XAD
	A6	A120,27B8		ADD	R4.D60 the nbrofsteps/char
	AA	6120.FF0E		SUB	R.RITEMRGIN
	AE	1102		JLT	* + 2 (
	BO	460,2000		B	READY don't do anything fo this as no room to print
	B4	91 A 0.279 E		CB	R6.RITCHR
	B8	1602		JNE	* +2
	BA	460.2380		B	RITEGO
	BE	91 A 0.27 BA		CB	R6.TAB
	C 2	1602		JNE	* +2
	C4	460.2470		B	TABIT
	C8	460.2100		B	PCHAR
	CC	FFFF			
			POWRESET	BAL	SCNEND
(1A8)	2350	C220.FEE0	HOMOOV	MOV	XAD to R8
	54	0508		NEG	R8
	56	06A0.2200		BAL	XMOV
	5A	C220.FEE2		MOV	YAD to R8
	5 E	0508	YUPMOV	NEG	R8
(1B0)	2360	6A0.2280	YMOVTO	BAL	YMOV
	64	COA0.FEE4		MOV	R2.SCANHT
	68	1004		JMP	PAST
	236 A	C220.27A4	UPMOV	MOV	YSTEP 10 R8
	6 E	460,235E			B YUPMOV
			PAST	B	INCSCN display scauht
	72	0460.23B2		NOP	
	2376	C220.27A4	DNMOOV	MOV	YSTEP to R8
	7A	460.2360		B	YMOVT)
	37 E	FFFF			
(1C0)	2380	C220.27A6	RITEGO	MOV	XSTEP to R ${ }^{\text {d }}$
	84	06A0.2200	XGO	BAL	XMOV
	88	0460.2000		B	READY
	238 C	C220.27A6	LEFTGO	MOV	XSTEP 0 R P

APPENDIX III				
90	0508		NEG	R8
92	0460.2384		B	XGO
396				

*iffer the Ist step \& after the ?nd last step
*the wait before the next step is two times
*as tong as normal

22CE	0605	YTIMKIL	DEC	R5 count time down to zero
2D0	15FE		JGT	YTIMKIL
2D2	0580		INC	R0 so it's not the first time
2D4	0608		DEC	R8 count down the steps
2D6	1204		JLE	YEND no more Y steps
2D8	0460,229A. 1000.1000		B	YSTPLP
*here you have finished the movemen so display				
22E0	CIE0.278C	YEND	MOV	R7.D8 is Y display address
2E4	C060.FEE2		MOV	R1.YAD
2E8	C34B		MOV	R11.R13 save return address
2EA	$\begin{aligned} & 06 \mathrm{~A} 0.2300 .1000 \\ & 1000 \end{aligned}$		BAL	CNVT 7 display 4 digits
2F2	06A0.2330		BAL	DDIG \& the hiest digit (5th)
2F6	045D		B	R13.I return

*rontine to move the printhead in the X axis atone the hamber of steph given in the Reg $\& \&$ sign is fo progress to the right. No other registern have meaning on entry or exit from this routine.

F200	04CF	XMOV	CLR	R15
202	058F		INC	R15 positive increment
204	04 C 0		CLR	R0 to show first step delay
206	C120.2794		MOV	R4, XRITE normal to rite
20A	C208		MOV	R8.R8 get sign of movement
20 C	1329.1505	JEQ XEND	JGT	SXTPLP it is normal
*here the movement is to be to the left not site				
210	C120.2792.1000		MOV	R4.XLFT NOP NOP
216	050F		NEG	R15
218	0508		NEG	R8
21 A	C320.27E8	XSTPLP	MOV	R12.10AD2
21 E	CO60,FEE0		MOV	R1.XAD
222	A04F		ADD	R1.R15
224	111B.1000	-	JLT	XEND don't go to left of left margin

APPENDIX III				
228	8060.2780		C	R1.MAXX would this go to rite of margin
22 C	1 A 19		JL	XEND it would be too far
22 E	C801.FEE0		MOV	XAD.RI
232	3184		LDCR	$\begin{aligned} & \text { R4.L }=4 \text { output direction } \\ & \text { bits } \end{aligned}$
234	1000.1000		MOV	R12.HIAD
238	1000)		$\begin{aligned} & \text { LDCR } \\ & \text { MOV } \end{aligned}$	R4.L = 2 any reg would do R5.XTIME
23 A	$\begin{aligned} & \mathrm{C160,27E} 2.8220 . \\ & 27 \mathrm{C} 4 \end{aligned}$		C	R8.D2 is it 2nd last step?
242	1.303		JEQ	XDBLTM yes so longer delay
244	8000		C	R0.R0 is it the first step
246	1603.1000		JNE	XTIMKL
24A	0A25	XDBLTM	SLA	R 5.2 places (4 times longer wait)
24C	0605	XTIMKL	DEC	R5 wait for the step
24 E	15FE		JGT	XTIMKL to settle
250	0580		INC	R0 so it isnt tat time
252	0608.1000		DEC	R8 count down the steps
256	1202		JLE	XEND
258	0460.221A		B	XSTPLP more steps needed
*here the semping necesary is complete wo dieplay				
25C	045B.FFFF			
260	C0A0.FEE0	XEND	MOV	R2.XAD
264	04 Cl		CLR	R1
266	3 C 60.27 CO		DIV	R1.D3 (3 steps for 5 mils)
26A	CiE0.27C2		MOV	R 7.D4
26 E	C34B		MOV	R13,R11 save return address
270	06A0.2300		BAL	CNVT display 4 digit X address
274	045D		B	R13.I return
276				
SCANUP EQU*				
- wabroutine to increase the sam lu in step of the wan ht increment				
3 A 0	C060.FEE4		MOV	SCNHT.R2
3 A 4	A0A0,26EA		ADD	SCNINC.R2
3 A 8	80A0.27A2		C	R2.MXSCAN would that be too high?
3 AC	1802		JH?	INCSCN NOT too far
3AE	C0A0.27A2	SCNEND	MOV	MXSCAN.R2 yes too high
3 B 2	C802.FEE4	INCSCN	MOV	R2.SCNHT
$3 \mathrm{B6}$	C1E0.27CA		MOV	HEXD.R7 set for diplay
3BA	C34B		MOV	R1I.R13 sae return address
3 BC	6A0.2306		BAL	CNVTNM display 4 digits
*of sean lit. the tha in hidden *hy wraparound to mon caistem :adidres.				
3 CO	4C6		CLR	R6 so return not confused
3 C 2	460.2000		B	READY return to caller.
-				
- mow rubine to deereare san hi				
3 C 6	COA0.FEE4	SCANDN	MOV	SCNHT to R2
3 CA	60 A 0.26 EA			SCNINC.R2
3 CE	1502		JGT	OKSCNDN
3 D 0	4C2		CLR	R2
3 D 2	0582		INC	R2 set minimum ht
3D4	460.23B2		OKSCNDN B	INCSCN
3D8	FFFF, FFFF, FFFF.FFFF			
3 E 0	CIAO.FEEO	RELRIT	MOV	R6.XAD
3E4	8820.FF0E.FEE0		C	RITEMRGN.XAD
3EA	1602		JNE	* +2
3 EC	Cla 0.2780		MOV	R6.MAXX
3 F 0	C806.FFOE		MOV	RITEMRGN.R6
3 F 4	460.2000		B	READY
3 F 8	FFFF			
3 FA	CIAO.FEEO	RELLFT	MOV	R6.XAD
3 FE	8820.FEEC.FEEO		C	LFTMRGN.XAD
404	1601		JNE	* +2
406	4 C 6		CLR	Ro
408	C800.FEEC	MOV	R6.LFTMRGN	
40 C	460.2000		B	READY
410	whe be next			
470	C160.27CC	TABIT	MOV	R4.MXTB \# of tabs poss
74	9585		INC	R 5 wo rite margin stops it

-continued

APPENDIX III					
	76	C120.27AC		MOV	R4.DFTABL
*now to liad the tab setting clonest to the rite of the current head promition					
	7A	COE0.2780		MOV	R3.MAXX
	7E	OA13,CO60,27DE		SLA	R3 I place so even rite margin is to left
				MOV	RI.DFRTMRG so if at rite margin
	482		FNDTAB	SETO	R6 i.e. 1 this to require some notion to the rite
	84	0706			
	86	61 A0.FEEO		SUB	R6,XAD
	8A	A194		ADD	R6.(R4.I)
	8 C	150D		JGT	MBTAB well it is to the rite
	8E	1000	TABLUP	NOP	
	90	05C4		INCT	R4
	92	0605		DEC	R5
(24A)	94	15FY		JGT	FNDTAB loop till end or find
*if it drops thru here then in R is is tib array addres needed					
	96	C211		MOV	R8.(R1.1)
	98	6220.FEE0		SUB	R8.XAD
	9 C	06A0,2200		BAL	XMOV go the tab
	A0	460,2000		B	READY having tabbed what next
	A4	FFFF			
	A6	FFFF			
*row this is to rite of the present lece hut it may mon be the closest to the rite					
	4 AB	C086	MBTAB	MOV	R2.R6 save this distance
	AA	6183.1000		SUB	R6 R 3 is it closer than the last?
	A4	1502		JGT	TABTOO no it is not close
*yenit was closer					
	B0	C0C2		MOV	R3.R2 save the nu closer dist
	B2	C044		MOV	R1.R4 save the location
	B4	0460,248E	TABTOO	B	TABLUP maybe another is closer
	4B8	cont			
*here yu are to sel a tab					
	420	C120,27AC	SETAB	MOV	R4.DFTABL
	24	C160.27CC		MOV	R5.MXTB
	28	1000,1000,1000, 1000			
*first, is any present tab already at this X address					
	430	C060.FEE0	FNTABLP	MOV	R1,XAD
	434	1315		JEQ	TABRET no tab set at zero
	436	6054		SUB	R1.(R4.I)
	438	1316		JEQ	TABCLR is same so drop this tab
	43A	05C4		INCT	R4
	43 C	0605		DEC	R5
	43 E	15F8		JGT	FNTABLP
	440	1000		NOP	
*at end this meams ne tab $=10$ current XAD					
	442	C160.27CC		MOV	R5 MXTB
	446	Cl20.27AC		MOV	R4.DFTABL
	44A	C054	TBSTLP	MOV	R1.(R4.I)
	44 C	1307		JEQ	TABSET yes it is free
	44 E	05C4		INCT	R4
	450	0605		DEC	R5
	452	15FB		JGT	TBSTLP
	454	1000		NOP	
*if yu het here there was net room for this TAB w be inserted so gu shld complain					
	456	0460.2000		8	READY or else ignore reque
	45A	FFFF			
	45C	C520.FEE0	TABSET	MOV	(R4.I).XAD
	460	0460,2000	TABRET	B	READY
	464	FFFF			
	466	4D4	TABCLR	CLR	(R4.1)
	468	0460.2000		B	READY
	46A	continue			
	F510	C220.27D4.1000	SPACIT	MOV	R8. $=$ D60 is 205 mil steps for char
	16	06A0.220)	XMX	BAL	XMOV
	1 A	0460.2000		B	READY (= OPERATOR)

APPENDIX III				
1E	C220.FEE0	CRETN	MOV	R8.XAD
22	6220,FEEC, 1300		SUB	R8.LETMRGN
			JE	* +1
		CRETURN	NEG	R8
28	0508.06A0.2200		BAL	XMOV
2E	1000.1000			
32	C220,27D6	LNFEED	MOV	R8. $=$ D25 (3 hits per spot *9 spots hi)
36	06A0.2280		BAL	YMOV
3A	0460.2000		B	READY
3 E	1000			
40	C220.FEEO.	ALLEFT	MOV (NEG R8)	R8.XAD
F544	460.2532		CRETURN	

-continued

APPENDIX III			
	FFA0		
1 C	1000,1000,1000	CLR	TCOL
22	CC20,3036 PAWAIT2	MOV	R12,IOAD
26	1F0F	TB	15
28	1602	JNE	* +2
2A	0460,2008	B	PISCHAR
*now mo char was entered has anylling been read by canmera yet -			
2 E	C820,3020,1002	MOV	ROWAD,MAXROCEL
34	0B00. 1000	TIME.	NOP
38	C820,FFAO, 1004	MOV	COLAD,TCOL
3E	0B00. 1000	TIME.	NOP
42	C360,3034	MOV	R13,CAMBANK
46	081D	SRA	R13.1
48	OA1D	SLA	R13.1
	address		
4A	C80D, 1006	MOV	RANK.R13
		TIME,	NOP
4E	OB00.1000.8820.1000.301c	C	RECOGNIS.INDATA
58	1302	JEQ	* +2
SA	0460.2670	B	PCAMERIN
5E	1000.1000	NOP,	NOP
62	0460.2622	JMP	PAWAIT2
66	next FFFF,FFFF.FFFF.FFFF,FFFF		
*here camera movememt was detected			
2670	C160,37EA PCAMERIN	MOV	R5,OVTIM
74	8820,3022,FFA0	C	TCOL, MAXCOLCEL
7 A	1602.0460.26F6	JE	PMABEND at end
80	05A0.FFA0	INC	TCOL
84	C806.1002.0B00. PCAMWAIT	MOV	ROWAD.R6
	1000 nop	TIME.	NOP
		MOV	COLAD.TCOL
8 C	$0 \mathrm{~B} 00,1000$	TIME.	NOP
96	C80D. 1006	MOV	BANK,R13
9 A	0B00.1000	TIME	NOP
9 E	C220,1000address	MOV	R8.INDATA
A2	8220,301C	C	R8.RECOGNIS
A6	16E4	JNE	PCAMERIN
A8	0605	DEC	R5
	nop		
AA	1BEC, 1000.1000	J11	PCAMWAIT
*now if camera reads data which is accidentally = reeognis yo will timie out also			
B0	05A0,FFA0	INC	TCOL
B4	C820.FFA0. 1004	MOV	COLAD.TCOL
BA	0800.1000	TIME.	NOP
BE	C220,1000address	MOV	R8.INDATA
C2	8220,301C	C	R8.RECOGNIS
C6	16D4	JNE	PCAMERIN
C8	C1E0.FFA0 PPRINANYWAY	MOV	R7.TCOL is $\frac{1}{4}$ bitcut
CC	81A0,3020,1302.	C	R6,MAXROCEL
	AIE0.3022	JEQ	* +2
		ADD	R7,MAXCOLCEL
D6	1000.1000.1000	SRA	R 7.2 ? ? not for one to one
26DC	1000	SLA	R7.2 ??
26DE	04E0,FFA0	CLR	TCOL
6 E 2 -	C807.FF90	MOV	SCANLN.R7
*here yu are to print the camera input			
0810	O4E0.FF10 PONETOONE?	CLR	DIREC initiative to rite
14	04E0.FFA0,C820,	CLR	TCOL assume camera scan
	FEE2.FF12	MOV	SVCURSROMAD
1E	C820.3020.FFIE	MOV	HIRO,MAXROCEL
24	C820,FEE0,FEDA	MOV	SVCURSCO.XAD
2A	C820.37EC.FED8	MOV	INCRE.D1
30	C820.FF90.FED6	MOV	SVSCNLN.SCANLN
36	C820.FEE4.FFIA. 1000.1000.1000.	MOV	REMHT.SCANHT
	$\begin{aligned} & 1000.1000 .1 \\ & 1000,1000 \end{aligned}$		
46	1002.FFFF.FFFF PHSWATH	MOV	SVCURSCO.SVCURSCO?
4 C	C820.FED6.FF90	mov	SCANLN.SVSCNLN
52	C120.FF1A PVSWATH	MOV	R4.REMHT??
56	$\begin{aligned} & 1000.1000 .1000 . \\ & 1000.1000 .1000 \end{aligned}$	NOP NOP NOP NOP NOP	
62	C0E0.37F4 PSW3	MOV	R3.D8 (32 bit head)
66	C120.FF1A	MOV	R4.REMHT
6 A	1602	JNE	* +2
6 C	0460,386A PNOVSWATH	B	PNOVSWATH shld never read here
70	6120.37 F 4	SUB	R4.D8 32 bit head normal
			swath ht

-continued

APPENDIX III				
74	1101		JLT	PSW0
76	1005		JMP	PSWI
78	COE $0 . \mathrm{FF} 1 \mathrm{~A}$ nops	PSW0	MOV	R3.REMHT
7 C	04C4.1000,1000		CLR	R4
82	COA0,300C	PSWI	MOV	R2.D4 (4 cols in cel)
86	$\begin{aligned} & \text { 1001.FFFF } \\ & \text { nop } \end{aligned}$			
8 A	C260.3000.1000 nop nop 1000.1000		MOV	R9.CURSDAL
94	C803.FFl6	PSW2	MOV	SWATHT.R3
98	C820.FFIE.FFI4. nop nop 1000.1000.1000		MOV	CROW.HIRO
A4	C820.FFA0.1004	PSWVTCL	MOV	COLAD.TCOL
AA	0B00		TIME	
AC	C820.FFI4, 1002		MOV	ROWAD.CROW
B2	0B00		TIME	
B4	C820.FFA8. 1006		MOV	BANK.CAMBANK
BA	next			
BA	OBOO address		TIME	
BC	CE60. 1000		MOV	R9+. INDATA
C0	0620.FFI4		DEC	CROW
C4	0603		DEC	R3
C6	16EE		JNE	PSWVTCL swatch vert col
C8	1000.1000.1000			
-now yu hate + y cols ilat ean be primed				
CE	C260,3006		MOV	R9.CURSDAL
D2	C060,3024	PTOLEFT	MOV	R1.DI6 (64 shift reg stage
D6	COE0,37F4		MOV	R3.D8 (D16 for 64)
DA	C020.08FC		MOV	R0.D12 for SRC
DE	C182		MOV	R6.R2
E0	9820,FF10,300C	PLFRT	CB	DIREC.D4 (hi byte is 0)
E6	1603		JNE	* +2
E8	0506.A1A0.2786		NEG	R6
			ADD	R6.D5
*here yuare to primt to lett				
EE	1004.FFFF,		NOP.NOP	
F2	FF.FF.FFFF		NOP.NOP NOP.NOP	room for fixes
	nop			
F8	C219.1000		MOV	R8.(R91)
FC	0548		INV	R8 so print black on white
FE	81A0.37EC		C	R2.D1 Ist of 4
902	130B		JEQ	PRITMOS
904	$0 \mathrm{B08}$		SRC	R8.0 reg 0 has 4 or C
906	$81 \mathrm{A0.3034}$		C	R2.D2
90 A	1306		JEQ	PRITMOS
0 C	0B08		SRC	R8.0
OE	81A0.37E8		C	R6.D3
12	1301		JEQ	PRITMOS
14	0B08		SRC	R8.0
16	$\begin{aligned} & 31 \mathrm{C} 8.0 \mathrm{~B} 18.31 \mathrm{C} 8 . \\ & \text { OB18.30C8 } \end{aligned}$	PRITMOS	LDCR	R8.L $=4$
20	0B18.30C8		DEC	R1 (\# of shift reg cycles
24	0601			
26	0603		DEC	R3
28	16E6		JNE	PTOLEFT??
*now to till up reat of slift reg to ged data to hit end				
92A	0 A 21		SLA	R1.2
92 C	0601	PFLUSH	DEC	R1
2E	1106		JLT	PENCOLSWAT
30	04C8		CLR	R8
32	30 C 8		LDCR	R8.3
34	10FB		JMP	PFLUSH
36	FF.FF.FF			
3 C	06 A 0.216 C	PENCOLSWAT	BAL	HEATONOFF prim
40	1000 nop			
42	9820.300C.FFIO		CB	DIREC.D4 to rite is 0
48	1302		JEQ	PRTI
4 A	0508		NEG	R8 (set by Heatomoff at 3
4 C	1003		JMP	PRT2
4 E	$8820.2780 . \mathrm{FEE} 0$	PRTI	C	XADMAXX
			JNE	* +2
			B	RTREV
54	1339.06A0.2200.	PRT2	BAL	XMOV
	05C9.0602.1689		INCT	R9
60	1000		DEC	R2

-continued

APPENDIX III				
			JNE	PTOLEFT
62	A820,FED8,FFA0		ADD	TCOL, INCRE
68	1101		JLT	PRT4
6 A	1011		JMP	PRT5
6C	1000 nop			
*yu are at leff of sereen but miybe not left of seam				
6 E	8820,3030,FFI4	PRT4	C	CROW.MEANROCEL
74	1532.1001.FFFF		JGT	LFTREV
7 A	C820,3022.FFA0.		MOV	TCOL, MAXCOLCEL yu just
	A820,OFFE.FFIE,			completed left going
	0460.09BC.FFFF			swath
			ADD	HIRO, BLKDIF
			JMP	PMVX
8 C	0620.FF90	PRT5	DEC	SCANLN
90	1320.1000		JEQ	PREVERS
94	9820,FF10.300C		CB	DIREC.D4 is it 0 for rite
9 A	1610,1000 nop		JNE	PMVX?
9 E	9820,3030.FF14		C	CROW,MEANROCEL
A4	1502		JGT	PRT3
A6	100A, 1000 nop		JMP	PMVX
AA	$8820.37 \mathrm{E} 6 . \mathrm{FFA} 0$	PRT3	C	TCOL.HEXD5
B0	1605		JNE	PMVX
*se go to lefi of lower camera seetion but on same swati				
9 B 2	04E0,FFA0	-	CLR	TCOL
	(0) 6820.3FFE,FFIE			
B6			SUB	HIRO.BLDKIF (is dif tween)
		PMVX		MAXROCEL \& MEANROCEL)
BC	1001,FFFF		NOP	NOP in R8 is amt + direc ± 3
C0	0460,0862,FFFF,		B	PSW3
	FFFF			
C8	D820,300D,FF10	RTREV	MOVB	DIREC, (D4 + 1) set for leffo
CE	1008.FFFF		JMP	DIRC
D2	PREVERS	CB	DIREC.D4	
9820.3-				
	00C.FF10			
D8	13F7		JEQ	RTREV just completed going rite
DA	1000	LFTREV	NOP	
DC	04E0,FFIO		CLR	DIREC
E0	0520.FED8	DIRC	NEG	INCRE
E4	C220.FF16		MOV	
				is approx the ht of 32 heads shld be 32 if rite
	nops			size \& full ht)
E8	1000.0A28		SLA	R8.2
EC	06A0,2280		BAL	YMOV
F0	6820.FFI6.FFIE		SUB	HIRO.SWATHT
F6	A820,FED6.FFAO		ADD	TCOL.INCRE correct for overshoot
FC	6820.FF16.FF1A		SUB	REMHT.SWATHT is it end of print
A02	1302		JEQ	* +2 yest
04	0460,		B	PHSWATH go print next swath
	nop			
A08	C220.FF12.1000		MOV	R8.SVCURSRO
A0E	6220.FEE2		SUB	R8,YAD
A 12	06A0.2280		Bal	YMOV leave print head at top
A16	1000		NOP	
*his is end of prim the sean				
*hut yu may te at wrong end of scan				
A18	9820.2000.FF10		CB	DIREC.D4
1 E	1306		JEQ	ENDPRINT
20	C220.FED6		MOV	R8.SVSCANLN
24	OA28.1000 nop		SLA	R8. 2
28	06A0.2200		BAL	XMOV mov to rite side if on left
2 C	0460.2000	ENDPRINT	B	NEXTCH
	A 30 next\& OFFEE $=0096$			
\& OFF		BLKDIF	MEANROCEL + this = MAXROCEL	
	OFFC $=000 \mathrm{C}$	D12		
26 E 6	C $820.3020 . \mathrm{FFIE}$		MOV	HIRO.MAXROCEL
EC	0460.0810		B	P ONETOONE
F0	1000.1000.1000			
F6	81 A 0.3030	PMABEND	C	R6.MEANROCEL
FA	13E6		JEQ	PPRINANYWAY
FC	C1A0.3030		MOV	R6.MEANROCEL

-continued

continued				
	APPENDIX III			
2700	04E0.FFA0	CLR	TCOL	
2704	0460.2684	B	PCAMWAIT	
2708	next			

What is claimed is:

1. A selective image copier comprising:
a scanner, manually operable by a user thereof, including manually-activated means for serially scanning a portion of said image, whereby electrical signals are produced corresponding in intensity to the portion of the image scanned;
means responsive to said scanner for digitizing said electrical signals to thereby produce first-digital signals;
means for sensing movement of said scanner, said movement being by a scan increment which places said scanning means at a different location on said image;
a printing medium;
a print head comprising a plurality of print elements arranged in a print column;
means responsive to said first-digital signals from said digitizing means for applying second-digital signals corresponding to said first-digital signals in parallel simultaneously to said print elements to thereby print an image on said printing medium in response to said second signals;
motion-control means for imparting relative motion between said print head and said printing medium in a direction which is orthogonal to said print column, said movement being by a print increment which bears a predetermined relationship to said scan increment; and
means connected to said motion-control means, responsive to said scanner-movement-sensing means, for synchronizing the relative movement of said print head and printing medium with the movement of said scanner.
2. The combination in accordance with claim 1 wherein said digitizing means further comprises a data buffer for storing digital signals, and means for modifying digital signals stored in said data buffer.
3. The combination in accordance with claim 2 wherein said manually-operable scanner further includes indicator means for indicating at said scanner that said data buffer is unable to store data, whereby overrun of said buffer is prevented by said user deactivating said serial-scanning means.
4. The combination in accordance with claim 2 wherein said means for modifying includes a microprocessor and keyboard input means to said microprocessor whereby said print head is controlled by said keyboard so that information in addition to said scanned image is printed on said print medium.
5. The combination in accordance with claim 1 further comprising:
means for imparting relative motion between said print head and said print medium in such a direction and by such an amount as to effectuate line indexing of the printed image on said print medium.
6. In a selective copying system wherein selected portions of a source document image are copied by a user onto a copy paper, the improvement comprising:
a manually-operated, portable scanner adapted to scan a selected portion of said document by a user placing said scanner at any selected line position on
said source document, said scanner adapted to be used to scan said document in a user-selected sequence;
printing means including a pring head responsive to said scanner for copying said scanned image onto said copy paper; and
means for positioning said print head anywhere on said copy paper in a user-selected sequence;
whereby the portion of the image selected by said user on said source document is reproducible at any position on said copy paper, said position being separately selected by said user.
7. The combination in accordance with claim 6 wherein said scanner further comprises:
first means for converting signals corresponding to a scanned image into digital first-print data; and
wherein said printing control means further comprises:
second means for inputting additional digital secondprint data;
means responsive to said first-and-second means for transmitting said first- and second-print data to said print head; and
means at said print head responsive to said print data for printing said scanned image and said additional print data onto said copy paper.
8. The combination in accordance with claim 6 wherein said scanner includes variable field selection means for changing the amount of the source document scanned and said printing means includes means for advancing the reproduced image by an amount determined by the setting of said variable field selection means.
9. A selective-image recorder comprising:
a scanner including means for serially scanning a portion of said image, whereby a series of electrical signals are produced corresponding in intensity to the portion of the image scanned;
means responsive to said scanner for digitizing said series of electrical signals to thereby produce a series of first-digital signals;
a buffer for storing said first-digital signals;
means for sensing movement of said scanner, said movement being by a scan increment which places said scanning means at a different location on said image;
a recording medium;
a recording head comprising recording means for recording digital data on said recording medium;
means responsive to said buffer for applying seconddigital signals corresponding to said first-digital signals to said recording head to thereby record data on said recording mediumin response to said second signals; and
motion-control means for imparting relative motion between said recording medium and said recording head, said movement being by an increment which bears a predetermined relationship to said scan increment;
whereby variable length selectively-scanned material is recorded on said recording medium as a series of adjacent digital data records.
10. The combination in accordance with claim 9 wherein said recording head is a thermal print head and 5 said recording medium is heat-sensitive paper.
11. The combination in accordance with claim 9 wherein said recording head is a magnetic tape head and said recording medium is magnetic recording tape.
12. The combination in accordance with claim 9 further comprising means for modifying digital signals stored in said data buffer.
13. The combination in accordance with claim 9 wherein said scanner further includes indicator means for indicating at said scanner that said data buffer is unable to store data, whereby overrun of said buffer is prevented by said user deactivating said serial scanning means.
14. The combination in accordance with claim 1220 wherein said recording head is a print head, said recording medium is a print medium, and said means for modifying includes a microprocessor whereby said print head is controlled by said keyboard so that information
in addition to said scanned image is printed on said print medium.
15. The combination in accordance with claim 10 further comprising:
means for imparting relative motion between said print head and said heat-sensitive paper in such a direction and by such an amount as to effectuate line indexing of the printed image on said paper.
16. The combination in accordance with claim 12

10 wherein said means for modifying includes a microprocessor and keyboard input means to said microprocessor whereby said motion control means is controlled by said keyboard so that information in addition to said scanned image is recorded on said recording 15 medium.
17. The combination in accordance with claim 9 wherein said recording medium is the screen of a cathode ray tube and said recording means is an electron beam.
18. The combination in accordance with claim 16 wherein said recording medium is the screen of a cathode ray tube and said recording means is an electron beam.

