
c:
RESEARCH J INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

UPDATE
REFERENCE MANUAL

SR-0013

Copyright© 1977, 1978, 1979, 1980, 1981, 1982, 1983,
1984 by CRAY RESEARCH, INC. This manual or parts
thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0013

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

May, 1977 - Original printing.

A June, 1979 - This printing represents a complete rewrite of
the manual and brings it into agreement with release 1.06.
Changes are not noted by change bars.

A-Ol

B

B-Ol

C

D

D-Ol

SR-0013

December, 1979 - This change packet brings the manual into
agreement with release version 1.07. Changes are noted by
change bars.

December, 1979 - This reprint includes change packet A-Ol.
It contains no other changes.

April, 1980 - This change packet brings the manual into
agreement with release version 1.08. Changes are noted by
change bars.

November, 1980 - This reprint incorporates change packet
B-Ol. It contains no technical changes. with this
printing, the publication number has been changed from
2240013 to SR-0013.

June, 1981 - Rewrite. This printing is a complete rewrite
of the manual, bringing the documentation into agreement
with the 1.10 version of the released software. Major
changes are the addition of the SQ control statement
option, the NOSEQ directive, and the SEQ directive.
Changes are not noted by change bars. This printing
obsoletes all previous editions.

May, 1982 - This change packet brings the manual into
agreement with release version 1.11. Major changes include
the addition of the declared modifications option parameter
(DC) on the UPDATE control statement, the DECLARE
directive, the DC parameter on the IDENT directive, and
UPDATE messages. Miscellaneous technical and editorial
changes are also included.

ii E

D-02

E

E-Ol

SR-0013

May, 1983 - This change packet brings the manual into
agreement with release version 1.12. Major changes include
adding the YANK and UNYANK directives, UPDATE messages, and
the Y and C fields to the identifier table format of the
random PL structure. Miscellaneous technical and editorial
changes are also included.

January, 1984 - This rewrite brings the manual into agreement
with release 1.13. New directives are COPY, DEFINE, ELSE,
ELSEIF, ENDIF, IF, MASTER, PURGE, RESTORE, REWIND, SKIPF, and
WIDTH. New control statement parameters are ML and IF1 and
parameters I, DW, and * were changed. Other changes include
reorganization of section 1 and new examples in section 4.

November, 1984 - This change packet brings the manual into
agreement with release version 1.14. New additions to the
manual include section 5, and Appendixes D and E. AUDPL
messages have been appended to the end of Appendix B changing
the name from UPDATE MESSAGES to MESSAGES. NS was added to
the output options in section 2 and changes were made to the
following directives: REWIND, RESTORE, COPY, DEFINE.

iii E-Ol

PREFACE

This manual describes UPDATE, a program from Cray Research, Inc.
UPDATE is used for modifying, editing, and updating source language
programs on the Cray Operating System (COS). UPDATE is the means for
managing and tracking software changes. UPDATE allows repeated
results and simplifies the integration of separately produced changes
into a single program.

UPDATE executes under control of the Cray Operating System (COS) as
described in the CRAY-OS Version 1 Reference Manual, publication
SR-OOll. The reader is assumed to be familiar with features of COS.

SR-OOl3 v E

CONTENTS

PREFACE

1.

2.

3.

INTRODUCTION

OVERVIEW
DEFINITIONS •

Decks •
Source decks
Directives
Modification sets •
Source datasets •
Compile datasets
Input datasets

PROGRAM LIBRARIES •
Program library restrictions

CREATING A PROGRAM LIBRARY
MODIFYING A PROGRAM LIBRARY •

Procedure for modifying a PL
Processing PL modifications •

UPDATE MODES
ORGANIZING UPDATE INPUT •

Associativity of input
Overlapping modifications •
Declared modifications

LISTABLE OUTPUT •
Page header lines •
Messages
Listing options •

CONVENTIONS •

UPDATE CONTROL STATEMENT

UPDATE DIRECTIVES •

CATEGORIES OF UPDATE DIRECTIVES •
Modification directives •
Input edit directives •
Run option directives •
Compile dataset directives

SR-0013 vii

v

1-1

1-1
1-1
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-12

2-1

3-1

3-1
3-1
3-2
3-2
3-2

E

4.

CATEGORIES OF UPDATE DIRECTIVES (continued)
DECK and COMDECK directives

DIRECTIVE FORMAT
Line identification • • • •
Identifier names
Directive format examples •

DIRECTIVES •••• • • • • • •
/ - Conunent • • • • • • • • • • • • • •
BEFORE - Insert before a line •
CALL - Call conunon deck • • • •
COMDECK - Introduce A COMMON DECK •
COMPILE - Specify compile or source dataset •
COpy - Copy text •• • • • • • • •
CWEOF - Conditionally write end-of-file •
DECK - Introduce a deck • • • • • • • • •
DECLARE - Declare deck for modifications
DEFINE - Define names •
DELETE - Delete lines • • • • • • •
EDIT - Edit decks • • • • • • • • • •
ELSE - Reverse condition
ELSEIF - Test condition • •
ENDIF - End conditional text • • • • • • • •
IDENT - Identify modification set •
IF - Begin conditional text •
INSERT - Insert after a line
LIST and NOLIST - Resume or stop listing ••••
MASTER - Change input master character
MOVEDK - Move a deck
PURGE - Remove modification set •
PURGEDK - Remove deck • • • •
READ - Read alternative input •
RESTORE - Reactivate lines
REWIND •• • • • • • • • • •
SEQ and NOSEQ - Start or stop sequence number writing •
SKIPF - Skip dataset files •••••• • • • • • • • •
WEOF - Write end of file • • • • • • • •
WIDTH - Change line width in compile dataset
YANK and UNYANK - Delete or restore decks and

modification sets • • • • • • • • • • • • •

EXAMPLES

CREATING A PROGRAM LIBRARY
MODIFYING A PROGRAM LIBRARY
READ FROM ALTERNATIVE DATASET •
INPUT DATASET NOT $IN • • • • •
MULTIPLE INPUT DATASETS • • • •
GENERATING A COMPILE DATASET FROM SOURCE
COMPILE DATASET FROM A COMMON DECK
EXTRACTING DECKS FOR A SOURCE DATASET • • •

SR-0013 viii

3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-10
3-10
3-11
3-11
3-12
3-12
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-19

3-20

4-1

4-1
4-3
4-4
4-5
4-5
4-6
4-6
4-6

E

4. EXAMPLES (continued)

5.

EXTRACTING DECKS FOR COMPILATION (NO SOURCE)
RESEQUENCING A PL •
DECK REMOVAL AND POSITIONING
PL EDITING
CHANGING THE DATA WIDTH •
CONDITIONAL TEXT
EXAMPLE SHOWING DATASET CONTENTS

PROGRAM LIBRARY AUDIT UTILITY •

RESTRICTIONS
OUTPUT

Listing dataset
Output format •
Output from text line options and directives

Active lines •
Inactive lines •
Compiler dataset generation directives •
Conditional text directives
Modification histories •

Output from summary options •
Program library summary
Identifier list
Sorted identifier list •
Deck line counts •
Modification set summary •
Overlapping modification set list
Status of modification sets
Common-deck cross reference

Reconstructed modification sets •
Modification dataset •
Binary identifier list dataset •

INPUT.
Scope of list options and directives •
AUDPL control statement
AUDPL directives •
History Modification history
PULLMOD - Pulled modification sets or decks

APPENDIX SECTION

A.

B.

CHARACTER SET.

MESSAGES

UPDATE MESSAGES •
AUDPL LOGFILE MESSAGES

SR-0013 ix

4-7
4-7
4-7
4-8
4-8
4-9
4-11

5-1

5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-4
5-4
5-5
5-6
5-6
5-6
5-6
5-7
5-10
5-14
5-15

A-I

B-1

B-1
B-5

E-Ol

C. UPDATE PROGRAM LIBRARY FORMATS C-l

D. BINARY IDENTIFIER DATASET FORMAT D-l

E. UPDATE DIRECTIVE SUMMARY E-l

FIGURES

1-1 Data flow through UPDATE ••• • • • • • • • • • • • • • • 1-2
1-2 Sequence of decks and UPDATE tables in a program library 1-6
C-l PL format 1 • • • • • • • • C-l
C-2 PL format 2 • C-4

TABLE

1-1 Dataset contents for Full, Quick, and Normal modes 1-9

INDEX

SR-0013 x E-Ol

INTRODUCTION

UPDATE is a line-oriented text editor for maintaining programs in the
form of source code, as well as other types of text data. UPDATE creates
and modifies datasets called program libraries (PLs) and produces output
that can be used as input to other programs, particularly compilers and
assemblers.

UPDATE executes on all series and models of Cray Computer Systems under
control of the Cray Operating System (COS). UPDATE is invoked with the
UPDATE control statement (see section 2).

OVERVIEW

UPDATE can create a new program library (PL) or modify an existing PL.
These two functions cannot occur in the same run. Figure 1-1 summarizes
the use of UPDATE.

For a creation run, input must include source decks, and can include a
source dataset from an earlier UPDATE run, modification sets, and input
directives. Output from a creation run can include a new PL, listings, a
compile dataset, and a source dataset.

For a modification run, input must include a PL and can include new
decks, modification sets, and input directives. Output from a
modification run can be a selected listing, a compile dataset, source
decks, and a new PL. (The term new PL applies to a PL that is output
by UPDATE in either a modification or creation run.)

DEFINITIONS

This subsection presents brief definitions for terms used later in this
section. Unless noted, they are defined in greater detail in subsequent
paragraphs.

• A deok is a contiguous ordered set of lines that can be
referenced with a single name.

SR-0013 1-1 E

1

Input datasets UPDATE

Creating a program library

/

/
/

/

Program library

Input datasets

/
/

/
/

UPDATE

Modifying a program library

/
/

/
/

/

/

dataset

dataset

dataset

dataset

Figure 1-1. Data flow through UPDATE

SR-0013 1-2

To assembler,
compiler, or
other program

To subsequent
UPDATE runs
(creation or
modification)

To assembler,
compiler, or
other program

To subsequent
UPDATE runs

E

• A program library (PL) is a dataset created by UPDATE and
containing one or more decks. PLs are discussed under the next
major heading, Program Libraries.

• A souroe deok includes all text and directives that were or will
become a deck in a PL, and can derive from a source dataset. A
source deck can be input to or output from UPDATE.

• A direotive is a command to UPDATE from the input or embedded in
the PL.

• A modifioation set is a group of changes to be applied to
existing decks in a PL.

• An input dataset can include source decks, modification sets,
and directives.

• A souroe dataset is a file that is a current, edited copy of one
or more source decks from a PL. It is written by UPDATE: decks
from a source dataset can be used subsequently input to UPDATE.

• A oompile dataset is produced by UPDATE for use as input to an
assembler, compiler, or other program.

• A listing dataset is output by UPDATE and contains messages and
requested information to be read by the user. Listing datasets
are discussed later in this section under the major heading
Listable Output.

DECKS

A deck is a contiguous ordered set of lines that can be referenced with a
single name. It can be a program or part of a program, or other data.
It is input to UPDATE to become part of a PL. UPDATE supports two types
of decks: regular and common.

• A regular deok, or deck, is placed sequentially in the PL and
has one location in the PL and in the compile and source datasets1
it begins with the DECK directive.

• A oommon deok begins with the COMDECK directive: it is placed
sequentially in the PL and has one location in the PL and in the
source dataset, but its contents can be copied to any number of
locations in the compile dataset. A common deck call can appear
anywhere in a regular or common deck. (See the CALL directive,
section 3.) During compile dataset generation, a common deck call
is replaced by the text of the common deck.

SR-0013 1-3 E

SOURCE DECKS

A source deck includes all text and directives that will become a new
deck in a program library, or lines and embedded directives from a single
deck in the source dataset. It begins with a DECK or COMDECK directive
and ends with the last line before the next DECK, COMDECK, IDENT, or
modification directive, or the end of input.

DIRECTIVES

Directives are commands to UPDATE. They are in the input to UPDATE or
are embedded in the PL. Directives are of the following types, described
in section 3:

• Modifioation directives change a PL and are input in
modification sets. The effects of modification directives are
saved and can be yanked (undone).

• Input edit directives change a PL but are not saved and cannot
be yanked.

• Run option directives do not change a PL and are not saved~ most
select I/O options for a run.

• Compile dataset directives determine the contents of compile
datasets and are embedded in the PL.

• The DECK and COMDECK directives define decks.

MODIFICATION SETS

A modifioation set is a group of UPDATE modification directives to be
applied to existing decks in a PL in either a creation or modification
run. The directives that can be used in a modification set are INSERT,
BEFORE, DELETE, and RESTORE. Source decks, input edit directives, and
run option directives can be within a modification set but are not
associated with it. Changes associated with a modification set can be
removed from the program library, either temporarily or permanently, with
the YANK, UNYANK, and PURGE directives.

A modification set begins with a modification identifier, specified by an
IDENT directive~ a set ends with the next IDENT directive or the end of
input.

SR-0013 1-4 E

SOURCE DATASETS

A source dataset is a file that is a current, edited copy of one or more
decks from a PL. It is written by UPDATE and can be used as input to
UPDATE to create a new PL or to add new decks and common decks to an
existing PL. A source dataset consists of a single file of active text
lines, compile dataset directives, and DECK and COMDECK directives from
selected decks in the PL. See table 1-1 for the contents of a source
dataset.

The length of each line in the source dataset is determined by the DW
parameter on the control statement. Sequencing information is added if
the SQ option is specified.

Because the source dataset contains UPDATE directives, it is usually not
used as input to language processors. (The source dataset always begins
with a DECK or COMDECK directive.)

COMPILE DATASETS

A compile dataset contains one or more files of active text lines from
selected decks in the PL. Compile dataset directives are not written to
the compile dataset, but are processed as the compile dataset is
written: common decks are expanded, conditional text directives are
evaluated, and the dataset is broken into files by the WEOF and CWEOF
directives. See table 1-1 for the contents of a compile dataset.

The length of each line is controlled by the DW control statement
parameter and by the WIDTH directive. Each text line not between a NOSEQ
and SEQ directive is followed by an identifier and sequence number~ the
identifier is the name of the deck or common deck for an original line,
or the name of the modification set that added the line.

INPUT DATASETS

An input dataset can include source decks, modification sets, and input
directives. A source dataset from one UPDATE run can be used as an input
dataset for a later UPDATE run. An input dataset is specified with the I
control statement parameter or with the READ directive. Input datasets
containing more than one file must be specified once for each file to be
read.

SR-0013 1-5 E

PROGRAM LIBRARIES

A program library is a dataset containing one or more decks, which is
created by UPDATE. Each deck is a file that is specially formatted for
use as input to future UPDATE runs. Following the last deck in a PL,
UPDATE supplies a directory consisting of 'tables describing each deck,
each modification set identifier, and the entire PL (figure 1-2). These
tables differ, depending on whether the PL has random or sequential
organization. (See Appendix C for information on PL formats.)

Deck 1

Deck 2

Deck n

UPDATE
directory

Figure 1-2. Sequence of decks and UPDATE
tables in a program library

A deck begins with a DECK or COMDECK directiveJ it contains lines of text
and can contain compile dataset directives. Each text line or directive
is assigned an identifier and sequence number. The identifier of an
original line from the deck is the deck or common deck nameJ a line added
later has as its identifier the name of the modification set that added
it. The DECK or COMDECK directive has sequence number 1. Remaining
lines in the deck are sequenced beginning with number 2. Lines added by
modification sets begin with sequence number 1.

Deleted lines remain in the PL with an inactive status. Each text line
or directive in the PL is preceded by a descriptor with the line's
identifier and sequence number and a correction history recording
modifications to the line.

PROGRAM LIBRARY RESTRICTIONS

The number of lines within one modification set or one deck cannot exceed
131,071. The number of identifiers (that is, modification set
identifiers or deck names) in one PL must not exceed 16,383.

UPDATE cannot read a PL from a magnetic tape dataset.

SR-0013 1-6 E

CREATING A PROGRAM LIBRARY

The user creates a program library by supplying the following:

1. An UPDATE control statement

2. UPDATE directives

3. Input text

The input text for creation of a new PL consists of one or more source
decks prepared by the user, or the source dataset from an earlier UPDATE
run. Modification sets can also be applied in a creation run. A
creation run is designated by P=O on the UPDATE control statement. (See
section 2.)

The DECK and COMDECK directives specify whether a new deck will be a
regular deck or common deck. Other directives within the source decks
affect the output listing, call common decks, or write end-of-file
records. (See section 3, Compile dataset directives.)

MODIFYING A PROGRAM LIBRARY

The user can modify the PL by adding or purging decks or by adding or
deleting (deactivating) lines from existing decks. Modifications are
applied against an existing PL to produce a new PL, or an up-to-date
compile or source dataset.

PROCEDURE FOR MODIFYING A PL

To modify a PL, the user supplies the following:

1. An UPDATE control statement directing the computer to modify that
PL

2. UPDATE directives specifying the modification set identifier or
the deck identifier, lines to be deleted, and the locations of
insertions

3. Any new lines to be added

Input for a modification run can include new decks or common decks,
modification sets, input edit directives, and run option directives.
When a PL has been modified, the newly generated dataset is known as a
n~PL.

SR-0013 1-7 E

A modification set begins with an IDENT directive containing a
modification set identifier; a new deck begins with a DECK directive
containing a deck name. If text is to be inserted at a location
specified in the directive, that text must immediately follow the
directive. Decks can also-contain certain directives such as CALL,
CWEOF, and WEOF. (See section 3, Compile dataset directives.)

Following a modification run, the new PL, if generated, consists of
modified decks, an updated Identifier Table, and an updated PL
information file. (See Appendix C, PL format 2.)

Directives can cause lines to be inserted or deleted from the PL. A
deletion does not physically remove the line but deactivates it; that is,
the line is logically removed and does not appear in compile or source
output. UPDATE maintains a record of active and inactive lines. (See
Appendix C, PL format 2.) If the line status bit indicates an inactive
line, the line is effectively deleted until restored. If the line status
is active, the line remains in the deck.

PROCESSING PL MODIFICATIONS

UPDATE processes modifications in two passes:

• During the first pass, UPDATE scans the directives and new text
and constructs tables for use during the second pass.

• During the second pass, UPDATE modifies each deck on a
deck-by-deck basis, deleting lines and sequencing and identifying
each new line according to its modification set identifier.

If compile output is desired from a modification run, UPDATE creates it
during the second pass. Calls for common decks are replaced with copies
of the common deck at this time. The calls can be in the original decks
or inserted during a modification run. Other embedded directives are
also executed at this time.

UPDATE MODES

The UPDATE control statement specifies either Full, Quick, or Normal mode
(F, Q, or parameter omitted). Mode determines the contents of the
compile dataset, the source dataset, and the new PL. (See table 1-1.)

In Full mode, all active lines in the PL are written to the compile
dataset or the source dataset. The sequence is determined by the PL
Identifier Table. No COMPILE directive is necessary.

SR-0013 1-8 E

Table 1-1. Dataset contents for Full, Quick, and Normal modes

Compile dataset contents
(Embedded directives

Mode processed)

Full All decks and called
common decks

Quick Only decks specified by
COMPILE directives,
UPDATE control statement
parameter Q, and called
common decks

Normal Decks specified by
COMPILE directives,
modified decks, and
decks calling modified
common decks

Source dataset contents
(Embedded directives

New PL dataset contents
(Embedded directives

considered text but not written to new PL)
processed)

All decks and all All decks and all
common decks

Decks and common decks
specified by COMPILE
directives, UPDATE
control statement
parameter Q, and
called common decks

common decks

Only decks specified
by COMPILE directives,
UPDATE control statement
parameter Q, and all
common decks

Decks and common decks Same as Full mode
specified by COMPILE
directives, modified
decks, and decks calling
modified common decks

In Quick mode, decks specified with the Q parameter and decks specified
by a COMPILE directive are written to the compile dataset or the source
dataset, and to the new PL. The sequence is determined by the PL
Identifier Table unless the K control statement option is used.
Modifications to decks that are not specified with the Q parameter or by
a COMPILE directive are not processed.

In Normal mode, decks specified by COMPILE directives, modified decks,
and decks calling modified common decks are written to compile or source
datasets, and all decks are written to the new PL.

ORGANIZING UPDATE INPUT

This subsection describes aspects of input to UPDATE that must be
considered to obtain correct output.

SR-0013 1-9 E

ASSOCIATIVITY OF INPUT

The result of an UPDATE run should be the same whether input is processed
in one UPDATE run or in several. That is, modifications can be grouped
in different ways in a series of runs without affecting the result, as in
the associative principle of mathematics. (This does not imply that the
order of modifications can be changed without affecting the result.) The
directives that are exceptions to this principle are EDIT, COPY, and
DEFINE. In addition, results are unpredictable if the input does not
begin with an IDENT directive, or if the MASTER directive is used but not
at the beginning of each separate section of input. PURGEDK can follow
modifications to the purged deck only if those modifications are declared.

OVERLAPPING MODIFICATIONS

UPDATE can handle modifications to text added earlier in the same UPDATE
run, but overlapping or conflicting modifications generate caution and
note messages. Messages about overlapping modifications are written to
the listing or error datasets if the value given for the ML control
statement parameter is less than the default of 3. Caution messages are
given for conflicts between directives, which occur when more than one
directive inserts new text in the same place, and for implicit overlaps,
when newly inserted text is deleted by a later modification set. Notes
are given when a directive explicitly references a line added by an
earlier modification set in the same UPDATE run.

DECLARED MODIFICATIONS

A mod dectaration specifies the deck to be modified by subsequent
directives. Mod declarations are required when the dectared
modifications option is specified on the UPDATE control statement
(DC=ON). A mod declaration can be a DECLARE directive or the DC
parameter on the IDENT directive. If mod declarations are required, one
of these kinds of mod declaration must precede modification of a deck.

Modifications following the DECLARE directive affect only the specified
deck or common deck. An UPDATE error is generated for each modification
directive that affects any deck other than the declared deck.

If declared modifications are optional (DC=OFF or DC omitted on the
control statement), DECLARE directives are optional and honored when they
appear. An IDENT directive clears the previous mod declaration.

SR-0013 1-10 E

LISTABLE OUTPUT

UPDATE can produce a listing dataset and an error dataset, as specified
on the UPDATE control statement. The error dataset contains only
messages. The listing dataset contains these messages plus information
requested by the control statement options CD, ED, 10, IF, IN, and UM.

Listable output is divided into pages. The number of lines per page is
controlled by the LPP parameter on the OPTION control statement (see the
CRAY-OS Version 1 Reference Manual, publication SR-OOll).

PAGE HEADER LINES

Each page of output in the listing and error datasets contains two lines
of header with the following information:

• Job name

• UPDATE revision level and compilation date

• Current date and time

• Page number for this UPDATE listing

• A description of the output on this page. For the input listing,
this includes the name of the deck, common deck, or modification
set being input~ for the modification summary, this includes the
name of the deck or common deck currently being processed.

• Date when the PL was created

• Name of the last identifier added to the PL

MESSAGES

Listing messages have five levels of severity: comment, note, caution,
warning, and fatal error. The highest level to be omitted from a listing
or error dataset is specified by the ML control statement parameter. The
default is to write only error and warning messages. This parameter does
not affect logfile messages.

LISTING OPTIONS

The UPDATE control statement allows the following set of options for
listable output.

SR-0013 1-11 E

The CD option writes a list of decks contained in the compile dataset.
All compile dataset directives (for example, CALL and WEOF) from those
decks and and any invoked common decks are also written to the listing
dataset when this option is used.

The ED option causes a summary of all modifications to be written to the
listing dataset. This summary is divided according to decks and common
decks. The affected line of text and the name of the modification set
that adds the change or is yanked or purged are written to the listing
dataset. Each line is accompanied by its identifier and sequence number
and the type of change (INSERT, DELETE, RESTORE, or PURGE).

The ID option lists in the listing dataset all identifiers known at the
end of the UPDATE run. A deck name is preceded by a single asterisk (*),
a common deck by two asterisks (**), and a yanked identifier by a minus
sign (-). Purged identifiers are not included in this list, since they
are no longer known to UPDATE. Identifiers that have been unyanked are
the same as identifiers that were never yanked.

When the IF option is used, a list of defined names for the current
UPDATE run and a conditional text summary is written to the listing
dataset. The conditional text summary includes a list of all conditional
text directives (IF, ELSEIF, ELSE, and ENDIF), along with the nesting
level of the directive and the value of the conditional clause (TRUE,
FALSE, or SKIP). The number of text lines, including compile dataset
directives, that were processed or skipped between each pair of
directives is also given.

The IN option writes an echo of the input to UPDATE to the listing
dataset. The input is divided according to decks, common decks, and
modification sets.

The UM option writes to,the listing and error datasets a list of
modifications that remain unprocessed at the end of the UPDATE run either
because they refer to nonexistent lines or because they modify decks that
were not updated if Quick mode was specified.

CONVENTIONS

Conventions used in this publication to describe statement and directive
syntax are listed below.

UPPERCASE

UNDERLINED
UPPERCASE

SR-0013

Identifies the command verb or literal parameter

Specifies the abbreviation of the verb or parameter

1-12 E

Italic8

[] Brackets

{} Braces

••• Ellipsis

SR-0013

Define generic terms which represent the words or
symbols to be supplied by the user

Enclose optional portions of a command format

Enclose two or more literal parameters when only
one of the parameters can be used

Indicates optional use of the preceding item one
or more times in succession

1-13 E

UPDATE CONTROL STATEMENT

The UPDATE control statement loads the UPDATE program into the user field
and begins execution. The UPDATE statement is put in the control
statement file of a user job deck~ the statement's format is shown
below. Parameters on the UPDATE statement specify datasets to be used,
contents of the UPDATE listing, and other features of the run.

Conventions used in the UPDATE statement are described in section 1.

p=pdn

N=ndn,L= 7,dn,E= edn,s=sdn, *=m,/=o,Dw=dw,DC=do,

Dataset name of the PL
If omitted or P, the input PL is $PL.
If p=pdn, the input PL is pdn.
If P=O, no PL is used~ this is for a creation run only.

I=idnl:idn2:···:idnn

SR-0013

Names of input datasets~ these datasets contain the
directives and text for the UPDATE run. They are read in
the order given. Up to 100 can be specified.

If I or omitted, the input dataset is the next file of
$IN.
If I=idn, the input dataset is a dataset with the name
idn.
If 1=0, no input dataset is read (invalid for a creation
run) •
If I=idnl:idn2: ••• :idnn' the first input dataset to be
read is idnl' the second is idn2' etc.

2-1 E

2

c=cdn

N=ndn

L=tdn

E=edn

S=sdn

SR-OOl3

Name of the compile dataset: decks that are determined by
the UPDATE mode (F, Q, or Normal: see table 1-1) are
written on the specified dataset.

If C or omitted, the compile output is written to $CPL.
If c=odn, the compile output is written to dataset
odn.
If C=O, no compile dataset is generated.

Name of the new PL dataset. The contents of the new PL are
determined by the UPDATE mode (see table 1-1).

If omitted in a modification run, no new PL is written.
If omitted in a creation run, the new PL is written to
$NPL.
If N, the new PL is written to $NPL.
If N=ndn, the new PL is ndn.
If N=O, no new PL is written.

Name of the listing dataset: this dataset receives the
UPDATE list output.

If omitted or L, the list output is written to $OUT.
If L=tdn, the list output is written to the dataset
named tdn.
If L=O, no list output is generated.

Name of the error listing dataset; this dataset contains
errors, warnings, cautions, and notes as requested by the
ML parameter.

If omitted or E, the output is written to $OUT.
If E=edn, the output is written to edn.
If E=O, errors are written to the listing dataset only.

NOTE

If E and L specify the same dataset, L is honored
and E is set to 0.

Source dataset name: the contents of this dataset are
determined by the UPDATE mode (see table 1-1). This
dataset can be the input for a subsequent creation run.

If omitted or S=O, no source output is generated.
If s=sdn, the source output is written to sdn.
If S, the source output is written to $SR.

2-2 E

I

*=m Master character. The first character of directives read
from the input file or written to the source file. Invalid
master characters are comma, period, colon, equal sign, and
space. The keyword alone is invalid.

If omitted in a creation run, the master character for
directives is *.
If omitted in a modification run, the master character is
that used in the creation run for the PL.
If *~, the master character for directives is m.

I=c Comment character, indicates a comment. The keyword alone
is invalid.

Dw=dw

SR-0013

If omitted, the comment character is I.
If I=c, the comment character is c.

Data width value; the number of characters of data written
to each line in the compile and source datasets. Columns
dW+l through dW+1S contain sequencing information for
compile output and, if the SQ option is in effect, for
source output. If SQ is not specified, source output
records are dw columns wide.

If omitted or DW with no value specified, in a creation
run, columns 1 through 72 contain data.
If omitted or DW in a modification run, columns
1 through lastdw contain data, where lastdw was the DW
value when the PL was written.
If Dw=dw or Dw=Ldw, columns 1 through dw contain data. The
dw range is 1-256.

The number of characters per line written to the new PL is
max(dw,pldw,80), where pldw is the number of characters
per line in the existing PL.

NOTE

When the data width value is omitted, DW is specified
alone, or the data width value is specified as ~;
dW+l through dW+8 contain an identifier,
right-justified with leading spaces; dw+9 contains a
period; and dw+10 through dw+1S contain a sequence
number, left-justified with trailing spaces.

When the data width value is specified as LdW, the
entire sequencing field of the compile output is
left-justified.

2-3 E-Ol

DC=dc

ML=n

I

F, Q, or

SR-0013

Declared modifications option. This ensures that
modifications apply to the correct deck or common deck.
Declaration of PL modifications might be required (see
sections 1 and 3).

If DC is omitted or DC=OFF, the mod declaration is not
required, but is enforced if present.
If DC=ON or DC alone, the mod declaration is required.

Message level: highest level of severity for UPDATE
listing messages to be suppressed. For example, ML=2
allows CAUTION, WARNING, and ERROR messages to be printed
to the listing or error datasets. The default, used when
the parameter is omitted or the keyword alone is specified,
is 3. (UPDATE logfile messages are not affected by the ML
parameter.) The following levels are available.

Level Severity Description

I COMMENT Currently unused
2 NOTE Information not related 'to errors
3 CAUTION Possible error
4 WARNING Probable error
5 ERROR Fatal error

omitted
Full, Quick, or Normal UPDATE run. This determines the
contents of the compile dataset, the source dataset, and
the contents of the new PL (see table 1-1).

F Full UPDATE mode. All active lines are
processed. The sequence is determined by
the PL Identifier Table. No COMPILE
directive is necessary.

Q[=dl :d2:···:dn]
Q='dl ,d2,···,dj.dk,···,dn'

Quick UPDATE mode. Decks that are specified
with the Q parameter and decks specified by
a COMPILE directive are written to the
compile dataset and/or the source dataset,
and to the new PL. The sequence is
determined by the PL Identifier Table unless
the K option is used. Corrections to decks
that are not specified with the Q parameter
or by a COMPILE directive are not included.

In the first method shown, up to 100 decks
can be specified. After all input has been
entered, unknown deck names are errors.

In the second method shown, single decks are
separated by commas, and ranges of decks are

2-4 E-Ol

I

I

omitted

separated by periods. After all input has
been entered, unknown deck names are
errors. The maximum size of the string used
with the second method is 96 characters.
The two methods cannot be combined.

Normal UPDATE mode. Decks specified by
COMPILE directives, modified decks, and
decks calling modified common decks are
written to compile and/or source datasets.

options (Keyword only)

SR-OOl3

The following output options are available on the control
statement. Listing options are described in more detail in
section I under Listable Output.

NA Do not abort if directive errors or modification
errors occur. All requested datasets are generated.

NR Do not rewind the source dataset or compile dataset
at the beginning or end of UPDATE execution.

IF write a conditional text summary to ldn.
IN List the input to ldn.
ID write the identifier summary to ldn.
ED write the edited line summary to ldn.
CD write the generation directives for the compile

dataset to ldn.
OM write unprocessed modifications to the listing

dataset and/or the error dataset.
SQ Update the source output that is provided with

sequencing beginning in column dw+l. SQ has no
effect on the compile dataset output.

NS Suppress line sequence information in the compile
dataset. SEQ and NOSEQ directives are ignored when
this option is used. NS has no effect on the source
dataset output.

K Order all decks that are written to the compile
dataset and to new PL datasets, as directed by the Q
parameter values on the control statement and the
COMPILE directives. This option is ignored in full
or normal mode.

NOTE

If a modification set affects two or more decks and
the K option is in effect, the sequence numbers of
inserted lines can be inconsistent with sequencing
that has occurred without the K option.

~5 E-Ol

Examples:

(1) UPDATE,P=O,N=NEWPL,I=INPUT.

This example shows how a program library is created. P=O specifies no
existing PL. The new PL will be written to NEWPL. The input is read
from INPUT. The compile output is written to $CPL; all decks are
selected.

(2) UPDATE,P,I=MODS,Q=DECK3:DECK2:DECK4,K,NR,NA.

This example shows a modification of a PL. The parameters indicate the
following:

• P=$PL is implied.

• The input is read from MODS.

• Quick mode with the K output option. If a single COMPILE
directive is used (*COMPILE DECKl.DECK4), DECKI through DECK4 are
written to $CPL in the following order:

DECK 3
DECK 2
DECK 4
DECK 1

• $CPL is not rewound by UPDATE before or after execution.

• UPDATE does not abort if directive or modification errors occur.

SR-0013 2-6 E

UPDATE DIRECTIVES

UPDATE tasks are specified by a set of directives that usually occupy a
file of the input dataset (typically $IN) but can reside on one or more
separate datasets.

This section gives the general format and rules for directives and
describes the directives in alphabetical order. In this manual, * is
used as the master character for directive descriptions. Conventions
used in UPDATE directives are described in section 1.

CATEGORIES OF UPDATE DIRECTIVES

Directives are grouped in five categories:

• Modification directives

• Input edit directives

• Run option directives

• Compile dataset directives

• DECK and COMDECK directives

MODIFICATION DIRECTIVES

3

Modification directives modify text in the PL by adding new lines or
changing the active status of existing lines. The changes made by these
directives are associated with a modification set, and these are the only
changes that are affected by a YANK, UNYANK, or PURGE directive. The
directives in this category are:

BEFORE
COpy (form 1)

DELETE
I DENT

INSERT
RESTORE

The COpy directive has two forms. Form 1 copies text from a section of
the PL to the input stream; the added text is associated with a
modification set if the COpy directive follows an insertion directive

SR-0013 3-1 E

(INSERT, BEFORE, DELETE, or RESTORE). Form 2 is a run option directive,
described later. If a COpy directive follows a DECK or COMDECK
directive, the new text is associated with that deck or common deck but
not with a modification set.

INPUT EDIT DIRECTIVES

Input edit directives make changes to a PL dealing with previous
modifications and the order of decks. They are processed in the UPDATE
run in which they are input, are not saved in the PL, and are not
associated with a modification set. Directives in this category are:

EDIT
MOVEDK

RUN OPTION DIRECTIVES

PURGE
PURGEDK

UNYANK
YANK

Run option directives are processed in the UPDATE run in which they are
input. They do not change the PL, are not saved in the PL, and are not
associated with a modification set. Most run option directives specify
input or output options. The comment is also included in this group.
Directives in this category are:

/oomment
COMPILE
COpy (form 2)
DECLARE

DEFINE
LIST
MASTER
NOLIST

READ
REWIND
SKIPF

The form of the COpy directive in this group copies text from the PL to a
dataset specified by the user.

COMPILE DATASET DIRECTIVES

Compile dataset directives determine the contents and format of the
compile dataset. These directives are embedded in the PL as lines that
can be added or deleted the same as text lines. The compile dataset
directives are:

CALL
CWEOF
ELSE
ELSEIF

SR-OOl3

ENDIF
IF
NOSEQ

3-2

SEQ
WEOF
WIDTH

E

DECK AND COMDECK DIRECTIVES

The DECK and COMDECK directives do not fit the categories described in
the previous paragraphs. They insert new text into the PL and so are
modification directives, but they are not associated with a modification
set. DECK and COMDECK directives are stored in the PL. However, unlike
the compile dataset directives, they cannot be deleted like text; nor can
text be inserted before them.

DIRECTIVE FORMAT

A directive has the following syntax:

Parameters:

m
d
p
comment

Master character
Directive name or abbreviated name
Parameter, dependent on directive
Optional comment

The first comma can be replaced by one or more spaces. The comment, if
present, must be preceded by one or more spaces.

The underlined uppercase format of the directives specifies the
abbreviation of the directive. Parameters in brackets are optional.

LINE IDENTIFICATION

Each modification set and each deck (or common deck) has a unique
identifier. This identifier is the name from the corresponding DECK,
COMDECK, or IDENT directive.

The sequence number for a line from the original deck derives from the
line's position within the deck. New lines inserted by a modification
set are sequenced in the order in which they will appear in the deck (not
necessarily the same order as they appeared in the input dataset) •

A given line is uniquely referred to by id.seq, where id is the
deck or modification set identifier name, and seq is the line sequence
number.

Once a deck (or common deck) or modification set becomes a part of a new
PL, id.seq is permanent.

SR-OOl3 3-3 E

IDENTIFIER NAMES

Each identifier (deck, common deck, or modification set name) is a 1- to
8-character name assigned when the identifier is first used. Names
cannot include commas, periods, blanks, colons, or equal signs but can
include any other character in the ASCII code range of 418 through 1768
(see Appendix A) •

On some directives, names can be specified as an inclusive range. Where
a range of names is specified, the parameter consists of the name of the
first identifier in the range, a period, and the final identifier in the
range. The format is as follows:

decknamefirst·decknamelast

Periods as used above should not be confused with periods that separate
line sequence numbers from deck identifiers or from modification set
identifiers, as described previously under the heading Line
Identification. The DELETE, RESTORE, and COpy directives use a comma to
separate names that define a range, to avoid ambiguity about the periods
used for line sequence numbers.

DIRECTIVE FORMAT EXAMPLES

Examples of UPDATE directive syntax follow.

*BEFORE,X.23

*EDIT DECK1.DECK2

@D X.76,Y.79

$/COMMENT

$$COMMENT

SR-0013

The default master character (*) is used.
Line 23 of X is specified.

The range from DECKl through DECK2 is
specified.

The range from line 76 of X through line 79
of Y is specified. @ is the master character.

$ is master character; / is comment character.

$ is both the master and comment character.

3-4 E

DIRECTIVES

The set of directives recognized by UPDATE follows in alphabetical order.

/ - COMMENT

A comment, indicated by the comment character, is copied to the list
output.

Format:

/ Default comment character. Any other comment character is
specified on the UPDATE control statement.

BEFORE - INSERT BEFORE A LINE

The BEFORE directive indicates that lines immediately following it are to
be inserted before the line specified.

Format:

*BEFORE id.seq

id Deck or modification set identifier name

seq Line sequence number

CALL - CALL COMMON DECK

The CALL directive indicates the location at which the named common deck
is to be placed when the compile dataset is generated. The combination
of common decks and CALL directives allows a user to maintain a single
copy of common text and be assured that the most up-to-date copy is
always used in a deck that calls it. A common deck can contain CALL
directives for other common decks but must not contain a CALL for

SR-OOl3 3-5 E

itself. Indirect recursion is also prohibited. That is, if common deck
A calls common deck B, common deck B is not allowed to call common deck
A. The CALL directive is embedded in a deck, common deck, or input text,
and is assigned a sequence number accordingly.

Format:

*CALL comdeck

comdeck Name of the common deck

COMDECK - INTRODUCE A COMMON DECK

The COMDECK directive introduces a common deck. Lines up to the next
DECK, COMDECK, IDENT, INSERT, DELETE, BEFORE, RESTORE, or end of input
comprise the common deck. Other directives are interpreted but do not
terminate the common deck.

The COMDECK directive is the first line of the common deck and is
assigned sequence number 1.

Format:

cmdk Name of the common deck

NOPROP No propagation parameter. If specified, this parameter
indicates to UPDATE that decks calling this deck are not to
be automatically considered as modified whenever this
common deck is modified. If omitted, and the common deck
is modified, all decks containing CALLS for this common
deck are also considered modified.

COMPILE - SPECIFY COMPILE OR SOURCE DATASETS

COMPILE directives specify the contents of the compile and/or source
datasets. In selecting decks for compile output, called common decks

SR-0013 3-6 E

need not be specified. Generating source output requires all desired
common decks to be specified.

COMPILE directives can occur anywhere in the input but must not refer to
unknown decks, such as decks introduced later in the same run,
misspellings, etc.

Parameter order is significant only when the K control statement
parameter is selected. Parameter order then specifies deck order for the
compile and new PL datasets. The decks are otherwise written in the
order they appear in the PL Identifier Table.

Format:

p Single deck name or a common deck name

Range of deck names and/or common deck names.

COpy - COpy TEXT

The COpy directive has two forms, for performing two different functions.

Form I copies text from the old PL for insertion into the new PL, as if
it were in the input stream. In this form, COpy must be used with an
insertion directive (INSERT, BEFORE, RESTORE, or DELETE) or be included
in a new deck or common deck. Text is copied before any modifications
are applied, so this form of COpy can be used to move text from one PL
location to another if lines are deleted from their original location.

Form 2 copies text from the old PL into a separate dataset, which is
specified on the directive. Sequence information can also be added to
the copied text if the SEQ keyword is used. The line length is the same
as that for the source dataset.

SR-OOI3

NOTE

Text copied for the COpy directive is from the old
program library and does not include any modifications
from the current UPDATE run.

3-7 E

I
Formats:

*£OPl p,idl .seQl,id2.seq2 (form i)

*£OP! p,idl .seQl,id2.seQ2,dn[,SEQ] (form 2)

p Name of the deck or common deck from which text is to be
copied

id Deck name or modification set identifier name

seq Line sequence number

dn Name of dataset to which text is to be copied. This cannot
be a dataset name already being used by UPDATE, as
specified on the control statement.

SEQ Specified if sequence information is to be added to text or
copied to a dataset

idl.seQl Starting line
id2.seQ2 Ending line

The starting and ending line have no default values; that
is, COpy p with no line numbers specified is invalid.

CWEOF - CONDITIONALLY WRITE END-OF-FILE

The CWEOF directive directs UPDATE to write an end-of-file to the compile
dataset if the compile dataset was not positioned after an end-of-file ,'1'

nor at the beginning of data. The CWEOF directive is embedded in a deck,
common deck, or input text, and is assigned an identifier and a sequence
number. The CWEOF directive is ignored if no compile output is requested.

Format:

DECK - INTRODUCE A DECK

The DECK directive introduces a new deck; it is the first line in the
deck and has sequence number 1. Lines up to the next DECK, COMDECK,

SR-0013 3-8 E-Ol

IDENT, INSERT, DELETE, BEFORE, RESTORE, or end of input comprise the
deck. Input edit directives and run option directives are interpreted
but do not terminate the deck. The new deck is placed in the new PL at
the end of existing decks and common decks, and following new common
decks. Decks can contain embedded directives (for example, CALL, CWEOF
or WEOF).

Format:

*DECK deok

deok Name of new deck

DECLARE - DECLARE DECK FOR MODIFICATIONS

The DECLARE directive requires that subsequent modifications are applied
to the named deck. This is one of two methods of declaring
modifications1 see section 1 under Declared Modifications.

Format:

p Name of deck or common deck

DEFINE - DEFINE NAMES

The DEFINE directive defines a name to be used by an IF directive. Names
declared with this directive do not need to be unique from deck or common
deck names or modification set identifiers. Defined names are known only
in the run in which they are defined1 they are not stored in the PL.

SR-OOl3 3-9 E

Format:

n Defined name

DELETE - DELETE LINES

The DELETE directive allows a user to delete (deactivate) lines or ranges
of lines and optionally replace them with lines appearing after the
DELETE directive.

A deleted line is copied to the new PL. The line retains its
identification but is flagged as inactive. Inactive lines are not
included in compile and source output. A deletion range must not cross a
deck boundary.

Formats:

*DELETE idl .seQl,id2.seq2

*DELETE idl .seQl,seQ2

*~ELETE idl.seQl

(range delete)

(range delete, short form)

(single line delete)

id Deck or modification set identifier name

seq Line sequence number

EDIT - EDIT DECKS

The EDIT directive removes deleted lines and lines made inactive by a
YANK directive from the specified decks. Removed lines cannot be
recovered from the PL. No resequencing is performed. UPDATE edits only
those decks noted explicitly on the EDIT directive.

SR-0013 3-10 E-Ol

Format:

p

NOTE

EDIT removes all lines that are inactive after all
modifications in the current UPDATE run have been
applied: this includes lines deleted in modifications
that follow the EDIT directive in the input. Lines in
ranges that are restored by modifications following
EDIT in the input are not removed.

Single deck or common deck

Range of decks and/or common decks

ELSE - REVERSE CONDITION

The ELSE directive reverses the condition from the previous IF or ELSEIF
directive, unless the previous IF or ELSEIF was skipped, to determine
whether the text following it is written to the compile dataset. ELSE
cannot be used without an IF. Only one ELSE can be used with an IF, and
ELSE must follow all ELSEIFs associated with that IF.

Format:

ELSEIF - TEST CONDITION

The ELSEIF directive specifies a condition for evaluation when no
previous condition in-the same IF group was true. If the condition is
evaluated to be true, the text following the directive is written to the
compile dataset, and the text following all further ELSEIF and ELSE
directives in this IF group is skipped. If the condition is false or is
not evaluated, all directives up to the next IF, ELSEIF, ELSE, or ENDIF

SR-0013 3-11 E

are ignored. ELSEIF must have a matching IF, and cannot follow ELSE;
otherwise an error message is issued.

Format:

*ELSEIF type,name[, ••• ,boolean,type,name]

type

name

boolean

Type of conditional name, either DECK, I DENT , or DEF. If
DECK, the name must be a deck or common deck name; if
I DENT , the name must be a modification set identifier; and
if DEF, the name must have been introduced with the DEFINE
directive. A minus sign before the type negates the
condition.

A deck or common deck name, modification set identifier, or
defined name, depending on the value of type. Each
clause of the condition is true if a name of the proper
type is known or, if negated, if the name is unknown.

A logical operator: AND, OR, or XOR. AND has precedence
over OR and is evaluated first. OR has precedence over XOR.

ENDIF - END CONDITIONAL TEXT

The ENDIF directive ends a conditional text range and an IF group. Each
ENDIF must have a matching IF: otherwise an error message is issued.

Format:

IDENT - IDENTIFY MODIFICATION SET

The IDENT directive provides the modification set identifier that is to
be associated with all of the changes in a modification set. IDENT is
the first line in a modification set. When no new PL is being generated,
IDENT is optional. The default identifier is *.NOID.*.

SR-0013 3-12 E

Format:

ident

U=U

K=k

DC=p

Modification set identifier

Unknown modification identifierJ specifies an unknown
identifier dependency. This dependency is met if UPDATE
cannot find any of the specified identifiers in its list of
identifiers in the program library or among identifiers
added earlier in the same UPDATE run. An identifier is
unknown if it is not the name of a deck, common deck, or
modification set already added to the program library.

Known modification identifiers~ specifies a known
identifier dependency. The dependency is met if UPDATE
finds all the specified identifiers in its list of
identifiers that are already in the PL or added earlier in
the same UPDATE run.

Deck or common deck declared to contain lines referenced by
subsequent modifications (see section 1). If all
dependencies are met, p must be known to UPDATE. DC=. is
equivalent to omitting the DC parameter.

The number of dependencies is limited only by what fits on the directive
line. If all dependencies are not met, UPDATE skips all input up to the
following IDENT directive or end of input, and the modification set
identifier remains unknown. A count of skipped IDENTs is written to the
logfile, and a note is written to the listing and error datasets for each
skipped IDENT if ML=l is specified on the UPDATE control statement.

Another way of writing U and K arguments is to include "U=" or K=" for
each argument, as shown below:

Example:

*IDENT MOD84,K=MOD83,U=MOD8S

This directive assigns the identifier MOD84 to the modification set.
UPDATE processes the modification set only if MOD83 is known and MOD8S is
unknown.

SR-0013 3-13 E

IF - BEGIN CONDITIONAL TEXT

The IF directive begins a conditional text range and gives the condition
under which the range is written to the compile dataset. IF is the
beginning of an IF group, which can include ELSEIF and ELSE directives
and must end with an ENDIF directive. IF groups can be nested to any
level.

If the condition is true, the text following the directive is written to
the compile dataset, and the text following all ELSEIF and ELSE
directives in the IF group is skipped. If the condition is false, all
directives up to the next IF, ELSEIF, ELSE, or ENDIF are ignored.
Skipped text and directives are written to the new PL and to the source
dataset but not to the compile dataset.

Format:

*IF type,name[, ••• ,boolean,type,name]

type Type of conditional name: either DECK, I DENT , or DEF. If
DECK, name must be a deck or common deck name; if IDENT,
name must be a modification set identifier; if DEF, name
must have been introduced with the DEFINE directive. A
minus sign before the type negates the condition.

name Deck or common deck name, modification set identifier, or
defined name, depending on the value of type. Each
condition is true if a name of the proper type is known; a
negated condition is true if the name is unknown.

boolean A logical operator: AND, OR, or XOR. AND has precedence
over OR and is evaluated first; OR has precedence over
XOR. The number of clauses is limited only by the length
of the directive line.

INSERT - INSERT AFTER A LINE

The INSERT directive indicates that the lines immediately following are
to be inserted after the line specified.

SR-0013 3-14 E

Format:

*INSERT id.seq

id Deck or modification set identifier name

seq Line sequence number

LIST AND NOLIST - RESUME OR STOP LISTING

LIST and NOLIST directives resume the listing or stop the listing,
respectively, of ,lines in the input stream. These directives can occur
anywhere in the input and control the input listing but are otherwise
ignored.

The L=O UPDATE statement parameter overrides the LIST directive. The
NOLIST directive overrides the UPDATE control statement option IN.

Formats:

*LIST

*NOLIST

MASTER - CHANGE INPUT MASTER CHARACTER

The MASTER directive changes the master character for directives in the
input. Directives stored in the PL use an unprintable code for the
master character and are not affected by this directive. The master
character for directives written to the source file is also not affected.

Format:

I *MASTER m I
m New master character for directives in the input dataset(s)

SR-0013 3-15 E

MOVEDK - MOVE A DECK

The MOVEDK directive causes UPDATE to move an entire deck from its
present location to a point immediately following a specified destination
deck. The sequencing information within the moved deck is unchanged.
The moved deck resides at the indicated point immediately after this
directive is successfully processed by UPDATE.

Format:

dkl Deck or common deck to be moved

dk2 Destination deck or common deck; the new position of
dkl is immediately after dk2 •

Specifies beginning of the PL

PURGE - REMOVE MODIFICATION SET

The PURGE directive removes all text added in a modification set and
restores all lines deleted by that set and deletes all lines restored by
it. PURGE starts with the last modification set listed, and works in
reverse order. PURGE is similar to YANK, but its effects are permanent:
the affected lines and the identifier name are not written to the new
PL. Only modification sets added with a version of UPDATE from release
1.12 or later can be purged.

Format (note that the two final periods are not an ellipsis) :

id Modification set identifier

Inclusive range of modification set identifiers

Identifier i~ and all identifiers introduced after i~

SR-0013 3-16 E

PURGEDK - REMOVE DECK

The PURGEDK directive permanently removes the deck from the PL.

Format:

*PURGEDK dk

dk Name of deck or common deck to be removed

READ - READ ALTERNATIVE INPUT

The READ directive causes UPDATE to begin reading input from the named
dataset starting at its current position. An end of file on an input
dataset causes UPDATE to resume reading from the previous dataset. READ
directives can appear anywhere but must not be recursive.

Format:

dn Name of dataset

RESTORE - REACTIVATE LINES

The RESTORE directive restores (reactivates) lines or ranges of lines
that have previously been deleted, and can add new text. The optional
new text appears on lines immediately following the RESTORE, and is
inserted following the reactivated line(s). A RESTORE range cannot cross
a deck boundary.

SR-0013 3-17 E

I

I

I

Formats:

*~STORE idl .seQl,id2.seQ2

*~STORE idl .seQl,seQ2

(range restore)

(range restore, short form)

(single line restore)

id Deck or modification set identifier name

seq Line sequence numbers

REWIND

The REWIND directive rewinds a local dataset. The dataset is positioned
at its initial point. If the dataset is already at its initial point,
this directive has no effect.

Format:

*REWIND dn

dn Name of dataset to be rewound

SEQ AND NOSEQ - START OR STOP SEQUENCE NUMBER WRITING

SEQ and NOSEQ begin writing or stop writing, respectively, sequence
numbers to the compile dataset. The compile dataset output contains dw
data columns per record without sequence numbers or dW+15 with sequence
numbers. The DW parameter and the WIDTH directive determine the value of
dw. The SEQ and NOSEQ directives are embedded in a deck, common deck,
or input text, and are assigned a sequence number. The SEQ and NOSEQ
directives are ignored if no compile output is requested or if the NS
control statement option is specified.

SR-0013 3-18 E-Ol

Formats:

*SEQ

*NOSEQ

SKIPF - SKIP DATASET FILES

The SKIPF directive skips one or more files in a local dataset.

Format:

*SKIPF dn[,n]

dn Name of dataset in which to skip a file

n Number of files to skip; default is 1.

WEOF - WRITE END OF FILE

A WEOF directive causes UPDATE to write an end of file to the compile
dataset. The WEOF directive is embedded in a deck, common deck, or input
text, and is assigned a sequence number. The WEOF directive is ignored
if no compile output is requested.

Format:

I*~FI

WIDTH - CHANGE LINE WIDTH IN COMPILE DATASET

The WIDTH directive changes the number of characters of data written to
each line in the compile dataset.

SR-0013 3-19 E

Until a WIDTH directive is encountered in the PL, the data width
specified with the DW control statement parameter or its default is
used. The WIDTH directive is ignored if no compile output is requested.

The WIDTH directive does not affect the number of characters stored for
each line in the PL or written to the source dataset. If the value given
with the WIDTH directive is 9reater than the number of characters stored
in the PL, then each line wr1tten to the compile dataset is padded with
blanks. If less, each line is truncated at the right.

Format:

dU) Data width; the number of characters of data written to
each line in the compile dataset. Columns dw+I through
dW+15 contain spaces and sequencing information.

YANK AND UNYANK - DELETE OR RESTORE DECKS AND MODIFICATION SETS

The YANK directive temporarily deletes (deactivates) a deck, common deck,
or modification set from a PL, but only if the entity to be yanked or
unyanked was created by a version of UPDATE that contained the YANK
directive. YANK causes all lines in a deck or common deck to be
deactivated whether they are original to the deck or added later by a
modification set.

The UNYANK directive restores (activates) a deck, common deck, or
modification set previously deactivated.

YANK and UNYANK start with the last modification set listed, and work in
reverse order. Both directives can be placed anywhere in the input.
They can be within a modification set started by an IDENT directive,
although they are not associated with any modification set.

Formats (note that the two final periods are not an ellipsis):

*YANK idl[,id2, ••• ,idj.idk, ••• ,idn ••]

*UNYANK idl[,id2, ••• ,idj.idk, ••• ,idn ••]

SR-0013 3-20 E

id Deck, common deck or modification set identifier name

idj.idk Inclusive range of identifiers

i~.. Identifier i~ and all identifiers introduced after i~

SR-0013 3-21 E

EXAMPLES 4

This section presents examples of UPDATE in use. Refer to section 1 for
UPDATE definitions and procedures.

CREATING A PROGRAM LIBRARY

This example shows the creation of program library PRLIB1. The PL
consists of two decks - deck ABC and common deck XYZ. The P=O entry in
the UPDATE statement indicates that there is no existing PL. The
omission of the other possible parameters indicates the standard defaults
(see section 2).

JOB,JN=CREATEl.
UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB1.

eo!
*DK ABC
deck ABC
*CDK XYZ
deck XYZ
eo!

The following examples show the creation of program library PRLIB2. The
PL consists of decks ABC and XYZ. Each example contains a COMPILE
directive.

In this example, because of the S parameter, a source dataset that
consists of deck ABC will be generated and saved.

JOB,JN=CREATE2.
UPDATE,P=O,C=O,S.
SAVE,DN=$NPL,PDN=PRLIB2.
SAVE,DN=$SR,PDN=DSX.

eo!

SR-0013 4-1 E

*DK ABC
deck ABC
*CDK XYZ
deck XYZ
*C ABC
eo!

In this example a compile dataset that consists of deck ABC will be
generated and compiled.

JOB,JN=CREATE3.
UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB2.
CFT,I=$CPL.

eo!
*DK ABC
deck ABC
*CDK XYZ
deck XYZ
*C ABC
eo!

In this example, program library PRLIB3 is created. The PL consists of
source dataset DSl and deck XYZ. Note that dataset DSl is a previously
generated dataset that can contain any number of decks.

JOB,JN=CREATE4.
ACCESS,DN=DSl.
UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB3.

eo!
*READ DSl
*DK XYZ
deck XYZ
eo!

The next example creates a new PL named $NPL that consists of two common
decks and two regular decks. The library is saved as a permanent dataset
named MYUPDATEPL.

SR-OOl3 4-2 E

JOB,JN=CREATE5.
UPDATE,P=O,N,F.
SAVE, DN=$NPL, PDN=MYUPDATEPL.
eo!
*CDK CA
common deck CA
*CDK CB
common deck CB
*DK A
deck A

*DK B
deck B
eo!

MODIFYING A PROGRAM LIBRARY

Full UPDATE: Generate new PL

End of control statement file

End of directives file

The following job (1) updates the previously generated library, (2)
creates a compile dataset containing decks A through C and any common
decks they call, and (3) generates an updated version of the PL. This
library is saved as the next edition of permanent dataset MYUPDATEPL.

JOB,JN=MODIFYI.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,N.

SAVE,DN=$NPL,PDN=MYUPDATEPL.
eo!
*ID MODI
*D A.15,A.20

text tines

*1 B.119

text tines
*DK C
deck C
*C A.C

eo!

Access highest edition number
Compile dataset contents determined
by C directives: new PL generated.
Save as next higher edition number
End of control statement file
Modification set named MODI
Replace lines 15 through 20 of deck
A with new text lines

Insert lines after line 119 of deck
B

Introduce new deck

Write decks A and C and any common
decks they call to compile dataset
$CPL. (Deck B is also written.)
End of directives file

The following job tests modification set MOD2. The changes are not
permanently incorporated into the library: that is, no new PL is
generated and saved. The UPDATE list options are turned off. The
contents of the compile dataset are determined by *C directives.

SR-0013 4-3 E

JOB,JN=MODIFY2.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,L=O,C=COMPILE.
CAL,I=COMPILE.
LOR.
REWIND,DN=$IN.
COPYF,I=$IN,O=MOD2.
REWIND,DN=MOD2.
SAVE,DN=MOD2.
eo!
*ID MOD2
*0 MODl.2
text lines
*B C.3
text line8
*C A.C

eo!

READ FROM ALTERNATIVE DATASET

Access highest edition number

Save modification set MOD2
End of control statement file

Replace line 2 of MODI modifications

Insert lines before line 3 of deck C

Write decks A, B, and C and any
common decks they call to compile
dataset $CPL
End of directives file

MOD2 changes are introduced from datasets MOD2, DECK, and $IN. The
contents of the compile dataset are determined by the Q option on the
UPDATE statement.

JOB,JN=READALT.
ACCESS,DN=MOD2,PDN=MOD2.
ACCESS,DN=DECK,PDN=DECK.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,Q=A:B:C:D,N.
CAL,I=$CPL.
LDR.
SAVE,DN=$NPL,PDN=MYUPDATEPL.
eo!
*READ MOD2

*READ DECK

eo!
*0 C.12,C.16
*B B.17

text lines
*CDK CD
common deck CD
eo!

SR-0013 4-4

Access latest edition number

Save next higher edition

Dataset MOD2 contains modification
set MOD2 from previous example
Contents of dataset DECK:

*DK 0
deck 0

*CDK CC
common deck CC

Delete lines 12 through 16 of deck C
Insert lines before line 17 in deck
B

E

INPUT DATASET NOT $IN

The following job adds to the PL a common deck named CE and replaces
lines of code in an existing deck with a call to CE. The input stream is
on dataset UPIN. No compile dataset is generated.

JOB,JN=UPIN.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
ACCESS,DN=UPIN,PDN=MYUPIN.
UPDATE,N,C=O,I=UPIN.
SAVE,DN=$NPL,PDN=MYUPDATEPL.
eo!

The following are contents of directives dataset UPIN:

*ID MOD3
*CDK CE
corrunon deck CE
*D C.25,C.463
*CALL CE

eo!

MULTIPLE INPUT DATASETS

Add common deck CE

CALL directiv~ inserted as text in
place of deleted lines
End of directives file

Input datasets are specified by the I control statement parameter and by
the READ directive. These can be used together or alone. All of the
following UPDATE runs will have the same effect.

JOB,JN=INPUTI.
ACCESS,DN=MODI.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL,I=MODI:MOD2:MOD3.

JOB,JN=INPUT2.
ACCESS,DN=MODI.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL.
eo!
*READ MODI
*READ MOD2
*READ MOD3

SR-OOI3 4-5 E

JOB,JN=INPUT3.
ACCESS,DN=MODI.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL,I=$IN:MOD3.
eo!
*READ MODI
*READ MOD2

GENERATING A COMPILE DATASET FROM SOURCE

UPDATE can be used to generate compile datasets from source datasets
without writing a program library. This can be useful when common
information is needed in several places, and UPDATE is used to expand
common decks.

JOB,JN=COMPILE.
ACCESS,DN=SOURCE.
UPDATE,I=SOURCE,C=COMPILE,P=O,N=O.
SAVE,DN=COMPILE.

COMPILE DATASET FROM A COMMON DECK

A common deck is not written to the compile dataset unless it is called
by a deck written to the compile dataset. A common deck that is not
called by any deck to be written to the compile dataset can be included
by adding a dummy deck that calls the common deck.

JOB,JN=COMMON.
ACCESS,DN=MYPL.
UPDATE,P=MYPL,C=COMOI.
SAVE,DN=COMOI.
eo!
*DECK DUMMY
*CALL COMOI.

EXTRACTING DECKS FOR A SOURCE DATASET

The following job does not change the PL but extracts selected decks and
any decks they call for compilation and inclusion on a source dataset
($SR). The master character is $, which was used when program library

FPL was created.

SR-OOI3 4-6 E

JOB,JN=UPLIB.
ACCESS,DN=FPL.
UPDATE,P=FPL,*=$,S,Q=SQRT:TANH:SIN,I=O.
CAL,I=$CPL.
SAVE,DN=$SR,PDN=MYFTN.
eo!

EXTRACTING DECKS FOR COMPILATION (NO SOURCE)

A very common situation is the generation of a compile dataset which is a
subset of the PL decks. No input dataset or source dataset is provided.
The following job illustrates the easiest way to perform this task.

JOB,JN=GET.
ACCESS,DN=$PL,PDN=COSPL.
UPDATE,I=O,Q=ST:CT:E:J:S.

The decks selected (ST, CT, E, J, and S) are all written to $CPL, ready
for assembly.

RESEQUENCING A PL

A program library is resequenced by generating a source dataset from the
old PL and using it as input to a creation UPDATE run. The new program
library has the same decks and common decks as the old PL, but all
information about modifications is gone.

JOB,JN=RESEQ.
ACCESS,DN=$PL,PDN=OLDPL.
UPDATE,F,S,I=O.
UPDATE,P=O,I=$SR.
SAVE,DN=$NPL,PDN=NEWPL.

DECK REMOVAL AND POSITIONING

The following job illustrates the PURGEDK and MOVEDK directives in a
typical application. The program library MYUPDATEPL currently consists
of the following decks:

SR-OOI3 4-7 E

CDK CA
CDK CB
DK A
DK B
DK C
CDK CC
CDK CD
DK D
CDK CE

This job replaces deck B with a new version in the same position relative
to decks A and C.

JOB,JN=NEWB.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,L=O,C=O,N,F.
SAVE,DN=$NPL,PDN=MYUPDATEPL.
eo!
*PURGEDK B
*DK B
text lines
*MOVEDK B:A
eo!

PL EDITING

As modifications to a PL accumulate, the user can reduce the size of the
PL by permanently removing deactivated lines from one or more decks.
This process is known as editing. The EDIT directive specifies a deck or
group of decks to be edited.

JOB,JN=EDITPL.
ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,C=O,N.
SAVE,DN=$NPL,PDN=MYUPDATEPL.
eo!
*EDIT A.D
*EDIT CA.CD
eo!

CHANGING THE DATA WIDTH

Edit decks A through D
Edit common decks CA through CD
End of directives file

The following UPDATE runs create a PL, then build several new versions of
that PL with different data widths. The number of characters stored for

SR-OOl3 4-8 E

each line in the new PL is never less than the number of characters per
line in the old PL, so that if the data width is decreased later no
characters will have been lost. The data width of the compile dataset
can be changed by using the WIDTH directive.

Control statement Characters Eer line

Compile dataset: New PL:

UPDATE,P=0,N=PL1. 72 80

UPDATE,P=PL1,N=PL2,DW=80. 80 80

UPDATE,P=PL2,N=0. 80 N/A

UPDATE,P=PL2,N=PL3,DW=116. 116 116

UPDATE,P=PL3,N=PL4,DW=112 112 116

UPDATE,P=PL4,N=PL5. 112 116

CONDITIONAL TEXT

Conditional text directives are used for text and directives that are
always in the program library but are not always used to generate the
compile dataset. The conditions that are tested can be either permanent
or temporary; they are permanent if they test the existence of decks or
modification set identifiers in the program library, or temporary if they
check for defined names, which are known only in the UPDATE run in which
they are defined.

Deck SUBX in the following example contains text that is written to the
compile dataset only if one of the names STACK and MULTI has been defined
in that UPDATE run.

*DECK SUBX
unconditionaL text
*IF DEF,STACK,OR,DEF,MULTI
conditionaL text if either STACK or MULTI is defined
*IF DEF,MULTI
conditionaL text onLy if MULTI is defined
*ENDIF
conditionaL text if either STACK or MULTI is defined
*ELSE
conditionaL text if neither STACK nor MULTI is defined
*ENDIF
unconditionaL text

SR-0013 4-9 E

When neither STACK nor MULTI is defined, the following compile dataset is
written:

unconditional text
conditional text used if STACK and MULTI ape undefined
unconditional text

When STACK is defined, the following compile dataset is written:

unconditional text
conditional text used if eithep STACK OPMULTI is defined
conditional text used if eithep STACK oPMULTI is defined
unconditional text

When MULTI is defined, the following compile dataset is written:

unconditional text
conditional text used if eithep STACK OPMULTI is defined
conditional text used only if MULTI is defined
conditional text used if eithep STACK OP MULTI is defined
unconditional text

SUBX.2
SUBX.10
SUBX.12

SUBX.2
SUBX.4
SUBX.8
SUBX.12

SUBX.2
SUBX.4
SUBX.6
SUBX.8
SUBX.12

Conditional text directives can be used to surround compile dataset
directives whose use is conditional. For example, if sequencing
information is not wanted for some decks in the compile datasets for a
program library, directives to turn off the sequencing can be in
conditional text ranges.

The following is the source dataset for such a program library:

*DECK A
*IF -DEF,SEQ
*NOSEQ
*ENDIF
text fop deck A

* SEQ
*DECK B
text fop deck B
*DECK C
*IF -DEF,SEQ
*NOSEQ
*ENDIF
text fop deck C
* SEQ

If the name SEQ is not defined in an UPDATE run, the following compile
dataset is written:

SR-0013 4-10 E

text for deck A
text for deck B

text for deck C

B.2

The name SEQ is defined by adding the command *DEFINE SEQ to the input.
When the name SEQ is defined, the following compile dataset is written:

text for deck A
text for deck B

text for deck C

EXAMPLE SHOWING DATASET CONTENTS

A.5
B.2
C.5

The following example shows the contents of the input, compile, and
source datasets for several typical UPDATE runs.

Create a new program library from text and directives in $IN:

UPDATE,P=O,N=PLI.

Compile dataset (in $CPL) :

PROGRAM EXAMPLE EXAMPLE. 2
REAL A(lO),B(lO) BLOCKl.2
COMMON /BLOCKI/ A,B BLOCKl.3
READ * ,A,B EXAMPLE. 4
CALL DIVIDE EXAMPLE. 5
WRITE *,A,B EXAMPLE.6
STOP EXAMPLE. 7
END EXAMPLE. 8
SUBROUTINE DIVIDE DIVIDE. 2
REAL A(lO),B(lO) BLOCKl.2
COMMON /BLOCKI/ A,B BLOCKl.3
DO 100 1=1,10 DIVIDE. 4
A (I) =A (I) /B (I) DIVIDE. 5

100 CONTINUE DIVIDE.6
RETURN DIVIDE. 7
END DIVIDE.8

The program library in dataset PLI is modified with the following control
statement:

UPDATE,P=PLl,N=PL2,F.

SR-0013 4-11 E

The following input dataset is read from the next file of $IN:

*IDENT MOD1,DC=DIVIDE
*/
*/ - Modify subroutine DIVIDE in deck DIVIDE
*/
*BEFORE DIVIDE.S

IF (B(I).NE.O) THEN
*INSERT DIVIDE.S

*/

ELSE
A (I) =0

ENDIF

*IDENT MOD2A,DC=BLOCKl
*/
*/ - Modify common deck BLOCK1 in common deck BLOCKl
*/
*DELETE BLOCK1.2

*/

PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)

*IDENT MOD2B,DC=DIVIDE
*/
*/ - Modify subroutine DIVIDE in deck DIVIDE
*/
*DELETE DIVIDE.4

DO 100 I=l,SIZE
*IDENT MOD3A,DC=EXAMPLE
*1 EXAMPLE.2

LOGICAL IA
*1 EXAMPLE.3

IF (IA(» WRITE *,'Enter ',SIZE,' values for X and y:'
*IDENT MOD3B,DC=.
*/
*/ - Add a new subroutine written in CAL
*/
*DECK EOFl
*CWEOF
*DECK IA

I DENT IA

*
*
*
IA

SR-0013

Return true if interactive, false if batch

ENTER
GET,Sl
Sl
EXIT
END

NP=O
S6&S7,JCIA,AO
Sl<D'63

4-12 E

The new compile dataset is again in $CPL:

PROGRAM EXAMPLE
LOGICAL IA
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON /BLOCKI/ A,B
IF (IA(» WRITE *,'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END
SUBROUTINE DIVIDE
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON /BLOCKI/ A,B
DO 100 I=l,SIZE
IF (B(I).NE.O) THEN

A(I)=A(I)/B(I)
ELSE

A(I)=O
ENDIF

100 CONTINUE
RETURN
END

eo!
I DENT IA

*
* Return true if interactive, false if batch
*
IA ENTER NP=O

GET,Sl S6&S7,JCIA,AO
Sl Sl<D'63
EXIT
END

EXAMPLE.2
MOD3A.l
MOD2A.l
MOD2A.2

BLOCKl.3
MOD3A.2

EXAMPLE.4
EXAMPLE. 5
EXAMPLE.6
EXAMPLE. 7
EXAMPLE.8

DIVIDE. 2
MOD2A.l
MOD2A.2

BLOCKl.3
MOD2B.l

MODI. 1
DIVIDE. 5

MODl.2
MODl.3
MODl.4

DIVIDE. 6
DIVIDE.7
DIVIDE. 8

IA.2
IA.3
IA.4
IA.5
IA.6
IA.7
IA.8
IA.9
IA.lO

Having the compile dataset divided into more than one file is useful when
a single PL contains subroutines written in more than one language; a
single UPDATE can be used to generate input to more than one language
processor. The generation job for program EXAMPLE would be:

UPDATE,P=PL2,I=0,F.
CFT,I=$CPL,L=O.
CAL,I=$CPL,L=O.

A resequenced version of the program library can be created by generating
a source dataset from PL2 and using that as input to UPDATE in a creation
run, using the following control statements:

SR-0013 4-13 E

UPDATE,P=PL2,F,I=0,S=SOURCE.
UPDATE,P=0,N=PL3,I=SOURCE.

The source dataset is in SOURCE:

*COMDECK BLOCK1
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKII A,B

*DECK EXAMPLE
PROGRAM EXAMPLE
LOGICAL IA

*CALL BLOCK1
IF (IA(» WRITE *,'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END

*DECK DIVIDE
SUBROUTINE DIVIDE

*CALL BLOCK1
DO 100 I=l,SIZE
IF (B(I).NE.O) THEN

A (I) =A (I) IB (I)
ELSE

A(I)=O
ENDIF

100 CONTINUE
RETURN
END

*DECK EOFl
*CWEOF
*DECK IA

I DENT
*

IA

* Return true if interactive,
*
IA ENTER NP=O

GET,S1 S6&S7,JCIA,AO
S1 S1<D'63
EXIT
END

SR-0013 4-14

false if batch

E

The compile dataset ($CPL) from the resequenced program library:

100

eo!
I DENT

*
*
*
IA

PROGRAM EXAMPLE
LOGICAL IA
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON /BLOCKI/ A,B
IF (IA(» WRITE *,'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END
SUBROUTINE DIVIDE
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON /BLOCK1/ A,B
DO 100 I=l,SIZE
IF (B(I) .NE.O) THEN

A (I) =A (I) /B (I)
ELSE

A(I)=O
ENDIF
CONTINUE
RETURN
END

IA

Return true if interactive, false if batch

ENTER
GET,Sl
Sl
EXIT
END

NP=O
S6&S7,JCIA,AO
Sl<D'63

SR-0013 4-15

EXAMPLE. 2
EXAMPLE. 3

BLOCKl.2
BLOCKI.3
BLOCKI.4

EXAMPLE.5
EXAMPLE. 6
EXAMPLE.7
EXAMPLE. 8
EXAMPLE.9
EXAMPLE.IO

DIVIDE. 2
BLOCKI.2
BLOCKI.3
BLOCKl.4
DIVIDE. 4
DIVIDE. 5
DIVIDE.6
DIVIDE.7
DIVIDE.8
DIVIDE. 9
DIVIDE.lO
DIVIDE. II
DIVIDE.12

IA.2
IA.3
IA.4
IA.5
IA.6
IA.7
IA.8
IA.9
IA.lO

E

•

PROGRAM LIBRARY
AUDIT UTILITY

5

The program library audit utility (AUDPL) provides information about
program libraries (PLs) written by UPDATE. From an input program library
dataset, the program library audit lists specified text lines from decks
and common decks, lists changes made to text lines, gives a summary of
specified aspects of a program library, and writes reconstructed
modification sets to a modification sets dataset. AUDPL makes no changes
to a program library.

RESTRICTIONS

The AUDPL utility processes program libraries written by a version of
UPDATE from release 1.13 or later. Program libraries written by an
earlier UPDATE must be rewritten by a new version of UPDATE before they
can be processed by AUDPL.

The PULLMOD directive and PM control statement parameter work correctly
only for modification sets added by an UPDATE from release 1.12 or
later. Earlier modification sets do not have valid modification
histories in the program library. Insertions can be reconstructed for
these modification sets, but not deletions.

AUDPL cannot read a program library from a magnetic tape dataset.

Reconstructed modification sets will not be complete if an UPDATE EDIT
directive has removed lines deleted by the modification set.

Modification sets added before a PL was resequenced cannot be
reconstructed.

OUTPUT

AUDPL can generate one, two, or three forms of output datasets: a listing
dataset, a modifications dataset, and a binary identifier list dataset.
The following pages describe the content of the datasets and the commands
that control their content and format.

SR-0013 5-1 E-Ol

I

LISTING DATASET

The listing dataset contains PL text lines, reconstructed modification
sets, and other information written in response to parameters in the
AUDPL control statement and directives in the input dataset.

Output format

By default, the listing dataset is divided into pages. The number of
lines per page is controlled by the LPP parameter in the OPTION control
statement (see the CRAY-OS Version 1 Reference Manual, publication
SR-OOlI). The LW control statement parameter controls the width of the
listing_ The LW parameter can also be used to inhibit the division of
the listing dataset into pages.

The output for a text line is preceded by the name of the deck to which
it belongs and a flag that gives special attributes of the line. It is
also followed by the line's identifier and sequence number.

A text line continues for as many output lines as are needed to write all
significant characters. Text lines are written according to their
positions in the PL, with active and inactive lines interspersed. The
order of decks and common decks in the listing is determined by their
order in the PL, which is the same as their order in the identifier list.

Output from text line options and directives

The following categories of output in the listing dataset are produced by
text line options and directives.

Active lines - The A option writes active lines from decks and common
decks specified with the DK parameter. The ACTIVE directive also writes
active lines from decks and common decks to the listing.

Inactive lines - The I option writes inactive lines from the decks and
common decks specified with the DK parameter. The INACTIV directive also
writes inactive lines to the listing. Inactive lines are flagged with
'<i>' between the deck name and the text for the line.

Compile dataset generation directives - The D option lists all active
text lines containing compile dataset generation directives for each deck
and common deck specified with the DK parameter. The DIR directive
writes these lines for directives in decks or ranges named in the DIR
directive. Directives are flagged with '<d>' in the flag field of
the output for the line.

SR-OOl3 5-2 E-OI

I

Conditional text directives - The C option writes all active text lines
containing the conditional text directives IF, ELSEIF, ELSE, and ENDIF
for each deck and common deck specified with the DK parameter. The COND
directive writes these lines for directives in decks or ranges named in
the COND directive. The nesting level of the directive appears in the
flag field of the output for the line, for example, '<0>' for the
outer level.

Modification histories - The H option and HISTORY directive write
modification histories. The listing of each text line, either active or
inactive, is followed by a list of changes that have been made to the
line. This list tells which modifications have deleted or restored the
line, and whether the modifications that made the changes have been
yanked.

Ouput from summary options

The following categories of output in the listing dataset are produced by
summary options.

Program library summary - The P option writes general information about
the program library. The summary consists of the following:

• The name of the dataset containing the program library

• The date the PL was written

• The last identifier added to the PL

• The default master character

• The default data width for the compile and source datasets written
by UPDATE. The data width is determined by the UPDATE DW
parameters specified when the PL was built.

• The number of characters of data stored for each line in the PL.
This may be more than the number written to the compile and source
datasets.

• The number of decks, common decks, and modification set
identifiers in the program library

Identifier list - The L option lists all identifiers in the program
library (the same function as the ID option in UPDATE). In the output, a
deck name is preceded by a single asterisk (*), a common deck by two
asterisks (**), and a yanked identifier by a minus sign (-). Purged
identifiers are not included in this list since they are no longer in the
PL. Identifiers that have been unyanked are the same as identifiers that
were never yanked.

SR-00l3 5-3 E-OI

•

Sorted identifier list - The N option writes an ASCII collation order
list of all identifiers in the program library to the listing dataset.
The list is divided into separate sections for common decks, decks, and
modification sets.

Deck line counts - The K option writes the number of active and inactive
text lines in each deck and common deck in the program library to the
listing dataset.

Modification set summary - The M option writes a modification set cross
reference to the listing dataset. The cross reference consists of the
following:

• A list of decks changed by each modification set

• A list of modification sets that changed each deck

Overlapping modification set list - The 0 option writes a list of
overlapping modification sets in each deck. The list shows for each
modification set, the modification sets that overlap it and the
modification sets it overlaps. A modification set overlaps an earlier
modification set if it changes the status of text lines changed by the
earlier modification set.

Status of modification sets - The S option separates the modification set
identifiers into the following groups:

• Active modification sets. A modification set is active if at
least one change remains unaffected by subsequent modifications.

• Inactive modification sets. A modification set is inactive if
every change has been superseded by a subsequent modification.

• Dead modification sets. A modification set is dead if no longer
listed in the modification history of any line, active or
inactive, in the program library.

Common-deck cross reference - The X option writes a common-deck cross
reference. The cross reference lists the following:

• The common decks called from each deck

• The decks calling each common deck

• Uncalled common decks

The output indicates the number of times a common deck is called from
each deck. Common decks using the no-propagation option on the COMDECK
directive are flagged with a plus sign (+) in the cross reference listing.

SR-OOl3 5-4 E-Ol

I

Reconstructed modification sets

The CM option generates a copy of the reconstructed modification sets
written to the modifications dataset for the PULLMOD directive and PM
parameter. If the data width for the reconstructed modification sets is
greater than the listing width, the reconstructed modifications are
truncated.

Comments written to the reconstructed modification set give the following:

• The names of the deck(s) to which the modification set applies

• A list of earlier modification sets upon which the reconstructed
one depends, that is, modification sets directly referenced by one
or more directives

• A list of earlier modification sets that the reconstructed
modification set overlaps, that is, modifications sets that had
already modified one or more lines that were deleted or restored
by the reconstructed modification set.

• A list of later modification sets that overlap the reconstructed
one

A reconstructed modification set may differ from the original set.
However, it produces the same results when applied to a PL from which the
reconstructed modification set and all later modification sets have been
purged. It also produces the same results when applied to the PL before
the original modification set was added.

Example:

UPDATE,P=PLI,N=PL2,F,I=MODI,S=SI,C=Cl.
AUDPL,P=PL2,PM=MODl,M=MODlP.
UPDATE,P=PLl,N=PL2P,I=MODlP,S=SlP,C=ClP.

In the first line of this example, UPDATE modifies the program library
PLI with the modification set MODI and writes a new program library PL2,
a source dataset Sl, and a compile dataset Cl.

In the second line, AUDPL uses PL2 to reconstruct MODI on the dataset
MODIP.

In the third line, UPDATE modifies the original program library, PLI,
with the reconstructed modification set MODIP and writes PL2P, SIP, and
CIP.

As long as modifications from program library PLI have not been purged
from PL2 and no EDIT directive has been used after MODI was added, the
following relationships will hold:

SR-0013 5-5 E-OI

I

• Modifications dataset MODlP is equivalent to input dataset MODl in
that it inserts and deletes the same text lines although it may
use different sequences of directives to do so.

• Program library PL2P is identical to program library PL2

• Source dataset SlP is identical to source dataset Sl

• Compile dataset C1P is identical to compile dataset Cl

MODIFICATIONS DATASET

UPDATE writes the modification sets reconstructed by the PULLMOD
directive and the P.M control statement parameter to the modifications
dataset. The modifications dataset can be used as input to a subsequent
UPDATE run.

The DW parameter on the control statement determines the length of each
line in the modifications dataset. No end-of-file is written between
modification sets, so the modifications dataset is a single file. If the
NR control statement option is specified, no end-of-file is written at
the end of the modifications dataset.

BINARY IDENTIFIER LIST DATASET

The binary identifier list dataset receives a list of identifiers from
the program library. It includes the name of each identifier and
information about whether the identifier is a deck, common deck, or
modification set identifier, and whether it has been yanked. For a
description of the format of the binary identifier list dataset see
Appendix E.

INPUT

AUDPL is invoked by a control statement. It responds to list options and
other parameters in the control statement and to directives in the input
dataset. This sUbsection discusses the scope of the list options and
directives, the AUDPL control statement, and the directives.

SR-0013 5-6 E-Ol

I

SCOPE OF LIST OPTIONS AND DIRECTIVES

The list options in the control statement can be text line options or
summary options. The text line options (A, C, D, H, and I) and the PM
control statement parameter apply only to the decks specified with the DK
parameter in the control statement. The summary options (K, L, M, N, 0,
P, S, and X) apply to the entire program library.

Directives (ACTIVE, COND, DIR, HISTORY, INACTIV, and PULLMOD) can be
limited in scope by appending DK=deck to the directive line. The search
for a text range is limited to the deck specified by the DK parameter on
the directive1 this can save execution time if the entire PL would have
to be searched otherwise. When a PULLMOD directive is limited by the DK
parameter, the requested modification sets are reconstructed only for the
declared deck.

The DK control statement parameter has no effect on directives, and the
DK parameter on directives has no effect on control statement list
options or the B or PM parameters.

AUDPL CONTROL STATEMENT

The AUDPL control statement loads the AUDPL program into the user field
and begins execution. The AUDPL statement is put in the control
statement file of a user job.

Format:

AUDPL,P=pdn,I=idn,L=ldn,M=mdn,B=bdn,

p=pdn

SR-OOl3

*=m,l=c,Dw=d~,LW=l~,Ju=ju,DK=list,

PM=list,LO=string,CM,NA,NR.

Program library dataset name.
If omitted or P, the program library is $PL.
If P=pdn, the program library is pdn.
P=O is invalid.

5-7 E-Ol

I

I=idn

L=ldn

M=mdn

B=bdn

Input dataset name. This dataset contains the directives
for the AUDPL run.

If I, the input dataset is the next file of $IN.
If I=idn, the input dataset is idn.
If omitted or 1=0, no input dataset is read.

Listing dataset name. This dataset receives the AUDPL list
output.

If omitted or L, the list output is written to $OUT.
If L=ldn, the list output is written to ldn.
If L=O, no list output is generated.

Modifications dataset name. This dataset receives
reconstructed modification sets as selected by the PM
control statement option or the PULLMOD directive.

If omitted or M, the modifications dataset is $MODS.
If M=mdn, the modification sets are written to mdn.
If M=O, no modifications dataset is written.

Binary identifier list dataset name. This dataset receives
a list of identifier names from the program library.

If B, the identifier dataset is $BID.
If B=bdn, the identifier dataset is bdn.
If omitted or B=O, no binary identifier list dataset is
written.

*=m Master character for directives written to the listing and
modifications datasets. Invalid master characters are
comma, period, colon, equal sign, and space.

If omitted, the master character is read from the PL.
If *=m, m is used as the master character.
The keyword alone is invalid.

I=c Comment character for comments written to the modifications
dataset. (The comment character for AUDPL comments is
always I.)

DW=dW

SR-0013

If the option is omitted, the comment character for the
comment directive is I.
If I=c, the comment character for the comment directive
is c.
The keyword alone is invalid.

Data width value; the number of characters of data written
to each line in the modifications dataset.

If Dw=dw, columns l-dw contain data. The DW range is
1-256.
If omitted or the DW keyword alone, columns l-lastdw
contain data, where lastdw was the DW value on the
UPDATE statement when the PL was written.

5-8 E-Ol

I

LW='l,w

JU=ju

Listing width; the length of each line written to the
listing dataset.

If LW='l,w, the width of the listing dataset is 'l,lJ
characters. Valid values are 80 and 132.
When the listing width is specified as C'l,w, the listing
is continuous, that is, not divided into pages.
If omitted or LW, the width of the listing dataset is 132
characters and the listing is divided into pages.

Justification; how the identifier name and sequence number
of each line are justified.

The identifier and sequence number are printed at the
right of the AUDPL listing, regardless of the value of OW.
If the option is omitted, the JU keyword alone, or JU=C,
the identifier name is right-justified and the sequence
number is preceded by a period and left-justified.
If JU=N, the identifier name is left-justified and the
sequence number right-justified, with no period in
between. If JU=L, the entire sequencing field is
left-justified with a period between the identifier and
sequence number.

DK=dk1:dk2:···:dkn
DK='dkl,dk2,···,dKj.dkk,···,dkn'

Decks to which text line list options A, C, 0, H, and I and
the PM parameter apply. The OK control statement parameter
has no effect on directives.

In the first method shown, up to 100 decks can be specified.

In the second method shown, single decks are separated by
commas, and ranges of decks are separated by periods. The
maximum size of the string is 96 characters. The two
methods can not be combined.

If OK is omitted, the text line list options apply to all
decks in the PL.
The keyword alone is invalid.

PM=idl :id2 :···:id
PM-' °d °d 01'1 °d °d •

- 1.- l' "l, 2 ' • • • , "l,d j.1.- k'···' 1.- n
Pulled modification sets; reconstructs modification sets

SR-0013

for the identifiers in the list. The scope of the search
for text modified by the named identifiers is the decks
specified with the OK control statement parameter.

In the first method shown, up to 100 identifiers can be
specified.

In the second method shown, single identifiers are
separated by commas, and ranges of identifiers are

5-9 E-Ol

LO=string

CM

NA

NR

I SR-0013

separated by periods. The maximum size of the string is 96
characters. The two methods can not be combined.

The keyword alone is invalid.

Listing options. The string contains characters
representing options. The default is no list options. The
following summarizes the options. Refer to the preceding
subsection for descriptions.

Options A, C, 0, H, and I are text line options and, if a
OK parameter was given, apply only to the decks named
with the OK parameter.

A - writes active lines to ldn.
C - writes conditional text directives to ldn; the

output is a subset of the output of option D.
o - writes compile dataset generation directives to

ldn; the output is a subset of the output of
option A.

H - writes modification histories to ldn, along with
active and inactive text lines.

I - writes inactive lines to ldn.

Options K, L, M, N, 0, P, S, and X are summary options
and apply to the entire program library.

K - writes deck line counts to ldn.
L - writes identifier list to ldn.
M - writes modification set cross reference to ldn.
N - writes identifier list in ASCII collation order to

l~. ,
o - writes overlapping modification set list to ldn.
P - writes a short summary of the program library to

ldn.
S - writes the status of modification sets
X - writes a common deck cross reference to ldn.

Copy modifications. write the reconstructed modification
sets to ldn as well as to mdn. Keyword only.

No abort; if nonfatal errors are detected AUDPL does not
abort until all processing has been completed. Keyword
only.

No rewind; do not rewind modifications dataset or binary
identifier list dataset at beginning or end of AUOPL
execution. Keyword only.

5-10 E-OI

I

AUDPL DIRECTIVES

AUDPL recognizes a set of directives read from the input dataset. These
directives specify a more limited part of the program library than do the
list options in the control statement.

A directive has the following syntax:

Parameters:

d Directive name or abbreviation

Pi Parameter, dependent on directive

o ommen t Optional comment.

The first comma can be replaced with one or more spaces. The optional
comment must be preceded by one or more spaces.

The uppercase format of the directives specifies the abbreviation of the
directive. Parameters in brackets are optional.

Range specification formats

The set of range specifications recognized by AUDPL follows in
alphabetical order.

Text ranges - Using the directives ACTIVE, CONO, DIR, HISTORY, and
INACTIV single line, a range of text lines, or an entire deck can be
specified with the following formats.

Single line:

Text range, long form:

SR-0013 5-11 E-01

I

Text range, short form: (The second identifier is the same as the first.)

Parameters:

idi Deck name or modification set identifier name

seqi Line sequence number

idl.seql First line in text range

id2.seQ2 Last line in text range

A text range cannot cross deck boundaries.

Examples:

MAIN.l36

In this example, the directive applies to a single line, MAIN.l36.

MAIN.l38,MOD3.5

Here, the directive applies to the range of text lines beginning with
line MAIN.l38 and ending with MOD3.5.

MAIN.l47,162

The directive applies to the range of text lines beginning with line
MAIN.147 and ending with line MAIN.162.

Identifier ranges - The PULLMOD directive allows modification set and
deck identifiers to be specified as a single identifier, an inclusive
range, or a common prefix with the following formats. The order of
identifiers in the PL's identifier table (as shown in the list from the L
option) determines which identifiers are in a range.

Single identifiers:

SR-0013 5-12 E-Ol

I

Identifier range:

Common prefix:

Parameters:

idi Modification set or deck identifier name.

p: Prefix consisting of the beginning characters that some
identifiers have in common. PULLMOD selects all
modification sets or decks whose identifiers begin with the
prefix. The prefix is followed by a colon.

Example:

*PULLMOD M01234AA.M02345CM,M05623AB,M07890:

In this example, PULLMOD will apply to the modification sets represented
by the identifiers in the range MOl234AA to M02345CM, the identifier
M05623AB, and all identifiers whose first six characters are M07890.

Directives

The set of directives recognized by AUDPL follows in alphabetical order.

ACTIVE - ACTIVE LINES

ACTIVE writes to the listing dataset all active text lines in a text
range or an entire deck.

Format:

*ACTIVE idl.8eql,id2.8eq2[,DK~eok]

*ACTIVE deok

SR-OOI3 5-13 E-Ol

I

Parameters:

idl.seql First line in text range

id2.seq2 Last line in text range

DK~eck Deck or common deck containing the text range

deck Deck or common deck name, specifies entire deck

COND - CONDITIONAL TEXT DIRECTIVES

COND writes to the listing dataset all active text lines that contain the
conditional text directives IF, ELSEIF, ELSE, and ENDIF.

Format:

*COND idl.seql,id2.seq2[,DK~eck]

*COND deck

Parameters:

idl.seql First line in the text range

id2.seq2 Last line in the text range

DK~eck Deck or common deck containing the text range

deck Deck or common deck name, specifies entire deck

DIR - COMPILE DATASET GENERATION DIRECTIVES

DIR writes to the listing dataset all active text lines that contain
compile dataset generation directives.

Format:

*DIR idl.seql,id2.seq2[,DK~eck]

*DIR deck

SR-0013 5-14 E-Ol

I

idl.seql First line in the text range

id2.seq2 Last line in the text range

DK~eck Deck or common deck containing the text range

deck Deck or common deck name, specifies entire deck

HISTORY - MODIFICATION HISTORY

HISTORY writes the modification history for a single line or a text
range. The modification history for a line identifies the modification
sets that deleted and restored the line. Yanked modification sets that
affected the line are flagged. All active and inactive lines in the
range are listed.

Format:

*HISTORY idl.seql,id2.seq2[,DK~eck]

*HISTORY deck

Parameters:

idl.seql First line in the text range

id2.seQ2 Last line in the text range

DK~eck Deck or common deck containing the text range

deck Deck or common deck name, specifies entire deck

INACTIV - INACTIVE LINES

INACTIV writes inactive text lines in a text range or an entire deck.

Format:

*INACTIV idl .seQl,id2.seq2[,DK=deck]

*INACTIV deck

SR-0013 5-15 E-Ol

I

Parameters:

idl.seql First line in the text range

id2.seq2 Last line in the text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name, specifies entire deck

PULLMOD - PULLED MODIFICATION SETS OR DECKS

PULLMOD reconstructs one or more modification sets or decks. The output
is written to the modifications dataset, which has the same format as an
UPDATE input file. It is echoed to the listing dataset if the CM control
statement option is used.

PULLMOD works correctly only for modification sets added with a version
of UPDATE from release 1.12 or later. Deletions from earlier
modification sets cannot be reconstructed because those modification sets
do not have valid modification histories in the program libra~y.

Format:

*PULLMOD
idl,id2,···,idj.idk,···,P:, ••• ,idn[,DK=deck]

Parameters:

idi Single identifier

idj.idk Range of identifiers

p: Prefix representing all modification sets or decks whose
identifiers begin with the specified characters. The
prefix is followed by a colon.

DK=deck The deck for which the modification set is to be
reconstructed

/ - Comment

A comment appears only in the input dataset and is ignored by AUDPL.

SR-0013 5-16 E-Ol

I

Format:

*/aomment

Parameter:

aomment An optional comment

AUDPL SAMPLE LISTING

***** Program library summary

Dataset containing the program library: PL2

Date the dataset was written: 07/16/84

Last identifier added to the PL: IA

Default master character for directives
read from the input and written to
a source dataset: *

Default data width for compile and
source datasets: 72

Data width of text stored in the PL: 80

Number of decks: 4

Number of common decks: 1

Number of modification set identifiers: 5

***** Identifier list

* EXAMPLE **BLOCKI *DIVIDE MODI MOD2A MOD2B MOD3A

*** 4 decks 1 common decks 5 modification set identifiers

***** Common decks

BLOCK 1

***** Decks

DIVIDE EOFI EXAMPLE IA

***** Modification set identifiers

MODI MOD2A MOD2B MOD3A MOD3B

*** 4 decks 1 common decks 5 modification set identifiers

SR-0013 5-17

MOD3B * EOFI *IA

E-01

I

***** Text line listings

EXAMPLE <d>
EXAMPLE
EXAMPLE
EXAMPLE <d>

*DECK EXAMPLE
PROGRAM EXAMPLE
LOGICAL IA

*CALL BLOCKl

EXAMPLE.
EXAMPLE. 2

MOD3A.l
EXAMPLE.

EXAMPLE
EXAMPLE

IF (IA(» WRITE *,'Enter ',SIZE,' values for X and Y:'
READ *,A,B

MOD3A.2
EXAMPLE. 4
EXAMPLE. 5
EXAMPLE. 6
EXAMPLE. 7
EXAMPLE. 8

EXAMPLE CALL DIVIDE
EXAMPLE WRITE *,A,B
EXAMPLE STOP
EXAMPLE END

Dec k EXAMPLE has 10 active lines, o inactive lines

BLOCKl
BLOCKl

BLOCKl
BLOCK 1
BLOCKl

<d< *COMDECK BLOCKl
<i> REAL A(lO),B(lO)

deleted by MOD2A
PARAMETER (SIZE-100)
REAL A(SIZE),B(SIZE)
COMMON /BLOCK1/ A,B

Common deck BLOCKl has 4 active lines,

DIVIDE <d> *DECK DIVIDE
DIVIDE.
DIVIDE SUBROUTINE DIVIDE
DIVIDE. 2
DIVIDE <d> *CALL BLOCKl
DIVIDE.
DIVIDE <i> DO 100 I 1,10
DIVIDE.

deleted by MOD2B
DIVIDE DO 100 I = 1,SIZE
MOD2B.l
DIVIDE IF (B(I).NE.O) THEN
MOD1.l
DIVIDE A(I) = A(I)/B(I)
DIVIDE. 5
DIVIDE ELSE
MOD1.2
DIVIDE A(I) 0
MOD 1. 3
DIVIDE ENDIF
MOD1.4
DIVIDE 100 CONTINUE
DIVIDE. 6
DIVIDE RETURN
DIVIDE. 7
DIVIDE END
DIVIDE. 8

SR-0013

1 inactive lines

5-18

BLOCK1.
BLOCK1.

MOD2A.l
MOD2A.2

BLOCK1.3

E-Ol

I

Deck DIVIDE has 12 active lines, 1 inactive lines

EOFl <d> *DECK EOFl
EOFl.
EOFl <d> *CWEOF
EOF1.

Deck EOFl has 2 active lines, o inactive lines

IA <d> *DECK IA
IA.
IA IDENT IA
IA.2
IA *
IA.3
IA * Return true if interactive, false if batch
IA.4
IA *
lA.S

IA IA ENTER NP=O
IA.6
IA GET,Sl S6&S7,JCIA,AO
IA.7
lA Sl Sl<O'63
IA.8
IA EXIT
IA.9
IA END
IA.ID

Deck IA has 10 active lines, 0 inactive lines

The entire PL has 38 active lines, 2 inactive lines

Deck type deck name active lines inactive lines

conunon deck BLOCK 1 4 1
deck DIVIDE 12 1
deck EOFl 2 0
deck EXAMPLE 10 0
deck IA 10 0

The entire PL has
4 decks and

38 active lines,
1 conunon decks.

2 inactive lines,

SR-0013 5-19 E-01

I

***** Common decks called by each deck

Deck DIVIDE calls: BLOCKl

Deck EXAMPLE calls: BLOCKl

***** Decks calling each common deck

BLOCKl is called by: DIVIDE EXAMPLE

***** Active modification sets (last modification to at least one line)

MOD 1 MOD2A MOD2B MOD3A

***** Dead modification sets (not in the modification history of any line)

MOD3B

***** Modification sets that changed each deck and common deck

BLOCK 1 is modified by: MOD2A

DIVIDE is modified by: MODl MOD2B

EXAMPLE is modified by: MOD3A

***** Decks and common decks changed by each modification set

MOD 1 modifies decks: DIVIDE

MOD2A modifies decks: BLOCKl

MOD2B modifies decks: DIVIDE

MOD3A mod if ies decks: EXAMPLE

***** Overlapping mods in deck EXAMPLE

EXAMPLE is overlapped by: EXAMPLE

EXAMPLE overlaps mod (s) : EXAMPLE
/EOF

SR-0013 5-20 E-Ol

I

ID MOD 2A
*/
*/ - MOD2A modifies deck(s): BLOCK 1
*/
*DC BLOCKI
*D BLOCKl.2

PARAMETER (SIZE=lOO)
REAL A(SIZE),B(SIZE)

*/
*/ - End of MOD2A
*/

*ID MOD2B
*/
*/ - MOD2B modifies deck(s): DIVIDE
*/
*DC DIVIDE
*D DIVIDE.4

DO 100 I = 1,SIZE
*/
*/ - End of MOD2B
*/
/EOF

*DECK EXAMPLE
PROGRAM EXAMPLE

*CALL BLOCK 1
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END

SR-0013 5-21 E-01

APPENDIX SECTION

CHARACTER SET A

Characters used by UPDATE are shown below. Code values are octal. Codes
000 through 037 (NUL through US) and 177 (DEL) are not recognized.
Separators (s) are invalid for name, master, and comment characters.

Character ASCII Code Character ASCII Code

Space 040 (s) 1 061

• 041 2 062 ·
.. 042 3 063

:It 043 4 064

$ 044 5 065

% 045 6 066

& 046 7 067

• 047 8 070

(050 9 071

) 051 : 072 (s)

* 052 . 073 ,

+ 053 < 074

, 054 (s) = 075 (s)

- 055 > 076

· 056 (s) ? 077

/ 057 @ 100

0 060 A 101

SR-0013 A-I E

Charac;::ter ASCII Code Character ASCII Code

B 102 y 131

C 103 Z 132

D 104 [133

E 105 \ 134

F 106] 135

G 107
A

136

H 110 137 -
I III • 140

J 112 a 141

K 113 b 142

L 114 c 143

M 115 d 144

N 116 e 145

0 117 f 146

p 120 9 147

Q 121 h 150

R 122 i 151

S 123 j 152

T 124 k 153

U 125 1 154

V 126 m 155

W 127 n 156

X 130 0 157

SR-0013 A-2 E

Character ASCII Code Character ASCII Code

p 160 x 170

q 161 Y 171

r 162 z 172

s 163 { 173

t 164 . 174 I

u 165 } 175

v 166 '" 176

w 167

SR-0013 A-3 E

MESSAGES B

This section contains messages generated by UPDATE. Two categories
exist: UPDATE and AUDPL.

UPDATE MESSAGES

The UPDATE program generates three types of logfile messages:

• Informative: no action is taken

• Error: job aborts when UPDATE execution is finished, unless the
UPDATE statement parameter NA is selected

• Fatal error: aborts execution immediately

Messages are preceded by a code identifier as shown below. Messages in
this section are listed numerically by code identifier. An explanation
follows each message.

UDOOl - PL: dn PL DATE: m/d/y LAST 10: id
dn is the name of the dataset containing the program library, m/d/y
is the creation date of this version of the PL, and id is the name of
the last identifier added to the PL. Class, informative.

UD002 - n UPDATE WARNINGS
n probable user errors were detected by UPDATE. Warning messages are
written to the listing and error datasets if ML<4, E~O, and L~O.
Class, informative.

UD003 - EMPTY INPUT FILE, DN = dn
The next file in dataset dn, specified as an input dataset for UPDATE,
is empty. Determine if the primary input file or READ datasets are
non-null or need to be rewound. Class, informative.

UD004 - DATASET NOT LOCAL, DN = dn
The dataset indicated was not accessed before UPDATE execution. It was
the PL, an input dataset, or was named by a READ directive. Class, fatal
error.

SR-0013 B-1 E

•

UD005 - RECURSIVE READ OF ON = dn
An attempt was made to read dataset dn recursively with the READ
directive. Class, error.

UD006 - INVALID READ DATASET NAME, ON = dn
A READ directive encountered by UPDATE while reading input contains an .
invalid dataset name. Class, error.

UD007 - ERROR IN UPDATE CONTROL STATEMENT
One or more of the following control statement errors exist:

• Both the new PL and the old PL datasets have the same name

•
•
•
•

Class,

Both F and Q were specified
p=o and I=O (PL creation mode and no input)
Invalid comment and/or master character
Invalid OW value
fatal error.

UD008 - MODS WITHOUT IDENTIFIER, NEW PL SUPPRESSED
A new PL cannot be generated with modifications that are not identified
with an IDENT directive. Generation of a new program library has been
suppressed. Class, error.

UDOIO - INVALID PROGRAM LIBRARY, ON = dn
dn is not in a PL format recognized by UPDATE. Class, fatal error.

UDOll - n FATAL UPDATE ERRORS
n fatal errors were detected by UPDATE. Error messages are written to
the listing and error datasets. Class, informative.

UD012 - PL FORMAT CONVERSION COMPLETE
A sequential format program library has been internally rewritten as a
random format PL. (See Appendix C.) Class, informative.

UD013 - SEQUENCE NUMBER EXCEEDS 131071 FOR ID = id
An attempt was made to add more than 131,071 lines with one identifier.
The insertion must be split over two or more identifiers or decks.
Class, fatal error.

UD014 - NUMBER OF IDENTIFIERS EXCEEDS 16383
Too many deck, common deck, and modification set identifiers are defined
for this program library. Before any new identifiers can be added, the
PL must be resequenced by creating a new PL from the source dataset.
Class, fatal error.

UD015 - DECK SPECIFIED BY Q PARAMETER NOT FOUND, DECK=dkname
dkname was listed as a value for the Q control statement parameter but
is not a deck or common deck in this program library. Class, error.

UD016 - PL MASTER CHARACTER IS: m

SR-0013 B-2 E-Ol

•

m is the master character recorded when the program library was
created. It is the default for the master character used in the input
and source datasets. This is only written if the master character is not
the default (*). Class, informative.

UD017 - n MODIFICATION SETS SKIPPED
n modification sets were skipped due to unsatisfied IDENT directive
dependency conditions. Use ML=l on the UPDATE control statement to get a
NOTE message written to the listing and error datasets for each skipped
IDENT. Class, informative.

UD018 - n UNPROCESSED MODIFICATION DIRECTIVES
n modification directives were left unprocessed when UPDATE finished
execution, either because they modified decks and cornmon decks that were
not specified in a quick mode UPDATE run or because they referenced lines
that were not found in the program library. Use the UM option on the
UPDATE control statement to get a list of unprocessed modifications.
Class, informative.

UD019 - n INPUT LINES TRUNCATED TO ptdW CHARACTERS
n input lines longer than p~w characters were truncated to ptdw
characters. ptdw is the number of characters per line stored in the
program library, and is defined by the DW control statement parameter.
The minimum, and default, value for ptdw is 80. Class, informative.

UD020 - MORE THAN 100 FATAL INPUT ERRORS
More than 100 fatal input errors were detected and UPDATE aborted. A DECK
or COMDECK directive may be missing, or the wrong master character may
have been specified. Class, error.

UD021 - n OVERLAPPING MODIFICATIONS
There were n directives that either referenced lines that were inserted
earlier in the same UPDATE run or that deleted a range of text that
included newly inserted lines. Use ML=l on the UPDATE control statement
to get NOTE and CAUTION messages about overlaps to determine if the
overlaps were proper and expected. Class, informative.

UD022 - INVALID DC PARAMETER VALUE
The UPDATE control statement parameter DC is equated to an invalid
value. Valid values are ON and OFF. Class, fatal error.

UD023 - INTERNAL UPDATE ERROR: ID NOT IN SEQUENCE TABLE
An UPDATE internal logic error caused the current identifier name not to
be found in the sequence table. Class, fatal error.

UD024 - INTERNAL UPDATE ERROR: INVALID DIRECTIVE KEY
An UPDATE internal logic error caused an invalid directive key to be
assigned. Class, fatal error.

SR-0013 B-3 E-Ol

•

UD025 - INTERNAL UPDATE ERROR: PL I/O STATUS ERROR
An UPDATE internal logic error caused an I/O status error to occur during
a read of the PL. Class, fatal error.

UD026 - INTERNAL UPDATE ERROR: $UDTI I/O STATUS ERROR
An UPDATE internal logic error caused a n I/O status error in a character
read of temporary dataset $UDTI. Class, fatal error.

UD027 - INTERNAL UPDATE ERROR: $UDT2 I/O STATUS ERROR
An UPDATE internal logic error caused a count exhaustion during a
character read of temporary dataset $UDT2. Class, fatal error.

UD028 - INTERNAL UPDATE ERROR: 10 NAME NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier name to be omitted
from the Identifier Table. Class, fatal error.

UD029 - INTERNAL UPDATE ERROR: DECK NAME NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier name to be missing
from the Identifier Table so it was not found when UPDATE tried to get
the name of the next deck to process. Class, fatal error.

UD030 - INTERNAL UPDATE ERROR: 10 NUMBER NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier to be missing from
the Identifier Table. Class, fatal error.

UD03l - INTERNAL UPDATE ERROR: ERROR IN 10 LIST IN OLD FORMAT PL
UPDATE was unable to read the identifier list in an old format program
library. Class, fatal error.

UD032 - INTERNAL UPDATE ERROR: OLD FORMAT PL IS UNREADABLE
UPDATE was unable to read an old format program library. Class, fatal
error.

UD033 - INTERNAL UPDATE ERROR: PL INFORMATION FILE READ ERROR
UPDATE had a read error on a partial record read of the PL information
file. Class, fatal error.

UD034 - INTERNAL UPDATE ERROR: UNKNOWN PROCESS TYPE
An UPDATE internal logic error caused an invalid process type (INSERT,
BEFORE, DELETE, RESTORE) to be returned from a modification table entry.
Class, fatal error.

UD035 - INTERNAL UPDATE ERROR: DECK DIRECTIVE IN COMDECK
An UPDATE internal logic error caused a DECK directive to be placed in a
common deck instead of starting a new deck. Class, fatal error.

UD036 - INTERNAL UPDATE ERROR: COMDECK DIRECTIVE IN DECK
An UPDATE internal logic error caused a COMDECK directive to be placed in
a deck instead of starting a new common deck. Class, fatal error.

SR-0013 B-4 E-Ol

UD037 - LIST CONTROL STATEMENT PARAMETER IGNORED
The LIST control statement parameter is not supported and is ignored.
Class, informative.

UDO 38 - INTERNAL UPDATE ERROR: NEW PL TABLE IS UNSORTED
A call to library routine ORDERS failed; the new program library is
ordered as specified by the K option, but future program libraries built
from it will revert to the old ordering. Class, informative.

UD039 - INTERNAL UPDATE ERROR: NO SECOND DELETE ENTRY
An UPDATE internal logic error caused the second entry in the
Modification Table for a DELETE or RESTORE range to be missing. Class,
fatal error.

UD040 - INTERNAL UPDATE ERROR: BAD HDC IN PL LINE
When handling deleted lines with bad correction histories, an active line
was found with a header descriptor count of O. Class, fatal error.

UD04l - n MULTIPLE INSERTIONS
There were n locations in which new text was inserted by directives in
more than one modification set. Use ML=2 on the UPDATE control statement
to have CAUTION messages written to the listing dataset for each multiple
insertion. Class, informative.

UD042 - INVALID ML PARAMETER VALUE; MUST BE 0-4
An invalid value was specified for the ML parameter on the UPDATE control
statement. Class, fatal error.

UD043 - INTERNAL UPDATE ERROR: DELETE TABLE ENTRY NOT FOUND
An UPDATE internal logic error caused an entry to be missing from the
Delete Table. Class, fatal error.

UD044 - DATASET dsname USED FOR MORE THAN ONE PURPOSE
Dataset dsname was specified by more than one control statement
parameter, e.g. both C and S. Class, fatal error.

AUDPL LOGFILE MESSAGES

The AUDPL utility generates three classes of logfile messages:

• Informative: no action is taken

• Error: if the NA option was used AUDPL continues processing,
using defaults where necessary, and aborts when it is done.
Otherwise it aborts immediately when the error is detected

• Fatal error: AUDPL aborts immediately when the error is detected

SR-0013 B-5 E-Ol

I

Logfile messages are preceded by a code identifier as shown below.
Messages in this section are listed numerically by code identifier. An
explanation follows each message.

PLOOI - PROGRAM LIBRARY REQUIRED; SPECIFY P OR ACCESS $PL
AUDPL cannot be used without a program library for input. p=o was
specified on the control statement, or the P parameter was not used and
dataset $PL is not local. Class, fatal error.

PL002 - LISTING OPTION k USED MORE THAN ONCE
One of the listing options for the LO parameter was used twice. Class,
error.

PL003 - KEYWORD k MUST BE EQUATED
The keyword k on the control statement was used without being equated to
a value. Class, error.

PL004 - INVALID DATA WIDTH, VALID RANGE IS 1-256
The value used with the DW control statement parameter was not in the
range 1-256. Class, error.

PL005 - INVALID LISTING WIDTH, LW MUST BE 80 OR 132
The value used with the LW control statement parameter was not 80 or
132, optionally preceded by 'ct. Class, error.

PL006 - k IS NOT A VALID LIST OPTION
One of the letters in the string for the LO control statement parameter
was not a valid list option. Class, error.

PL007 - INVALID JUSTIFICATION VALUE, MUST BE C, L, OR U
The value specified for the JU control statement option was not C, L, or
U. Class, error.

PL008 - DATASET dsname USED FOR MORE THAN ONE PURPOSE
The same dataset name is equated to more than one of the control
statement parameters that specify datasets used by AUDPL. Class, fatal
error.

PL009 - PROGRAM LIBRARY NOT LOCAL
The dataset specified with the P control statement parameter is not
local to the job. Class, fatal error.

PLOIO - INPUT DATASET NOT LOCAL
The dataset specified with the I control statement parameter is not
local to the job. Class, fatal error.

PLOIl - OLD PL; RUN THROUGH UPDATE FIRST
The program library in the dataset specified with the P control
statement parameter was written by an UPDATE from before release 1.13.
Write a new program library from the old one with an UPDATE from release
1.13 or later, and use the new PL as input to AUDPL. Class, fatal error.

SR-0013 B-6 E-Ol

I

PLOl2 - PROBLEM READING PL
AUDPL is unable to read the program library in the dataset specified
with the P control statement parameter. Check to see that the dataset
contains a valid PL and if so, report the problem to a Cray analyst.
Class, fatal error.

PLOl3 - NAME IN DK LIST NOT IN PL, ID = idname
One of the names in the list for the DK control statement parameter is
not in the identifier directory for the program library. Check the
spelling of the name listed. Class, error.

PLOl4 - IDENTIFIER IN DK LIST IS NOT A DECK, ID=idname
One of the identifiers in the list for the DK control statement
parameter is a modification set, not a deck or common deck. Class,
error.

PLOl5 - BACKWARD RANGE IN DK LIST: idnamel TO idname2
In the identifier range named in the message the second identifier comes
before the first identifier in the identifier directory for the program
library. Check the identifier list from the L list option for the order
of identifiers in the PL. Class, error.

PLOl6 - SYNTAX ERROR IN DK LIST
The list of identifiers given for the DK control statement parameter

-contains a syntax error, possibly because the two types of list were
combined. Class, error.

PLOl7 - NAME IN PM LIST NOT IN PL, ID = idname
One of the identifiers in the list for the PM control statement
parameter is not in the identifier directory for the program library.
Class, error.

PLOl8 - BACKWARD RANGE IN PM LIST: idnamel TO idname2
In the identifier range named in the message the second identifier comes
before the first identifier in the identifier directory for the program
library. Check the identifier list from the L list option for the order
of identifiers in the PL. Class, error.

PLOl9 - SYNTAX ERROR IN PM LIST
The list of identifiers given for the PM control statement parameter
contains a syntax error, possibly because the two types of list were
combined. Class, error.

PL020 - n INPUT DIRECTIVE ERRORS
There were n errors detected in the AUDPL input directives. Error
messages for input errors are written to the listing dataset. Class,
error.

PL02l - WARNING, NO ACTION REQUESTED OF AUDPL, USE I, LO, PM, OR B
The AUDPL control statement did not specify any actions to be taken
through the LO, PM, or B parameter, and no input dataset was specified.
Class, informative.

SR-OOI3 B-7 E-OI

I

PLIOI - INTERNAL AUDPL ERROR: COMMON DECK NAME NOT FOUND
An AUDPL internal logic error caused the common deck named on a CALL
directive read from the program library to be missing from the
identifier table. Report the problem to a Cray analyst. Class, fatal
error.

PLI02 - INTERNAL AUDPL ERROR: INVALID IDENTIFIER NUMBER
An AUDPL i~ternal logic error caused an invalid identifier number to be
used as the identifier for a text line. Report the problem to a Cray
analyst. Class, fatal error.

PLI03 - INTERNAL AUDPL ERROR: ORDERS ROUTINE FAILED
An AUDPL internal logic error caused The return status from $SCILIB
routine ORDERS indicated that it was unable to sort the table passed to
it by AUDPL. Report the problem to a Cray analyst. Class, fatal error.

SR-OOI3 B-8 E-OI

UPDATE PROGRAM LIBRARY FORMATS

UPDATE accepts two program library (PL) formats. Format 1 PLs can be
read only. These libraries were created with UPDATE version 1.05 or
earlier but are still available to the user. As a preliminary step,
UPDATE always internally converts PL format 1 to PL format 2. When
new PLs are written, the format 2 structure is always used. Formats
are completely under control of UPDATE.

FORMAT 1 - SEQUENTIAL PL STRUCTURE

Format 1 (figure C-l) is a sequential PL structure. Each section of
the PL (decks and lists) is separated by an EOF. Decks consist of
individual line images that are not separated by EOR. Details of each
format follows.

Deck 1

Deck 2

Deck n

Deck List

ID List

Master Word

Figure C-l. PL format 1

SR-0013 C-l

One 2-word entry for
each DECK/COMDECK

One I-word entry for
each identifier name

E

c

PL line format:

o
1

(UDC+2)/

n

Field

S

SEQ

NCHAR

UDC

o
SI

4

8

SEQ

UD2 I

UD n-3 I

Words

o

o

o

o

o

1-(UDC+2)/4

16

UD3

UD n-2

Bits

o

1-24

25-31

32-47

48-63

24

I

32 40

NCHARI UDC

I UD4 I

I UDn-l I

Line image

Description

Line status bit:
o Inactive
1 Active

Sequence number

48 56

I UDI

UD5

UDn

Number of characters in line text

Descriptor count

63

First UPDATE descriptor (identifies
name that introduces the line)

Modification descriptors giving
deletion identifier names

The length of the line image is NCHAR bytes.

Descriptor format:

012

Field Bits

D o

1

ID 2-15

SR-0013

ID
15

Description

Descriptor status:
o Deactivated line
1 Activated line

Reserved

Identifier number or name

C-2 E

Deck list entry format:

o 8 16 24 32 40 48 56 63
NAME

1///

Field Bits

NAME 0-63

(word 2)

ID list entry format:

0 8

I
Field Bits

Name 0-63

Master word format:

0 8

I CC I MC

Field Bits

CC 0-7

MC 8-15

DKCNT 16-39

IDCNT 40-63

Description

Name of DECK or COMDECK (left-justified,
zero-filled)

Reserved

16 24 32 40 48
NAME

Description

56

Identifier name (left-justified, zero-filled)

16 40
DKCNT I DCNT

Description

PL check character (1418=lowercase A)

PL master character

Length of the deck list

Length of the ID list

FORMAT 2 - RANDOM PL STRUCTURE

63

63

Format 2 (figure C-2) is a random PL structure. Each section of the PL is
separated by an EOF record. Line images within each deck are separated by
EOR. The identifier table and PL information contain no EOR. Details of
each format follows.

SR-0013 C-3 E

Comdeck 1

Comdeck 2

Comdeck n

Identifier
Table

PL Information
File

Figure C-2. PL format 2

PL line format:

o 8 16 24 32 40 48 56 63
o SI//////////////I SEQ I HDC I UDl

1 UD2 I UD3 I UD4 I UDS

(HDC+2)/4 UD n-3 I UDn-2 I UDn-1 I UDn

Line image

Field Words Bits Description

S 0 0 Line status:
0 Inactive
1 Active

0 1-16 Reserved

SEQ 0 17-33 Line sequence number

SR-0013 C-4 E

Field Words Bits Description

HDC 0 34-47 Header descriptor count

UDI 0 48-63 First UPDATE descriptor (specifies
name introducing the line)

UDi-UDn 1-(HDC+2)/4 Modification descriptors

The format of each descriptor is identical to the corresponding
descriptor fields in PLs of format 1.

Identifier Table format:

o

Field

NAME

TYPE

T

Y

C

ID

POS

SR-0013

8 16 24 32 40 48 56 63
NAME

I T I//IYICI ID POS

0-63

0-7

8-9

10-15

16

17

18-31

32-63

Description

Identifier name (left-justified, zero-filled)

Identifier type:
o Modification
1 Deck
2 Conunon deck
3 Conunon deck/no propagation

Temporary flag (used internally, always 0 in PL)

Reserved

Yank flag:
o Mod, deck, or conunon deck not deactivated
1 Mod, deck, or conunon deck deactivated

Correction History Good flag:
o Correction history information not attached

to deleted line
1 Correction history present in PL for this

modification

Identifier number

Position of deck within PL (0 if TYPE=O)

C-5 E

PL information file format:

Field

CC

MC

PLMC

IDCNT

IDPOS

DATE

LEVEL

DW

PLDW

o
1

2

3

4

5

SIGNATURE

SR-0013

o 8 16 24 32 40 48 56 63
CC 1 MC ~IJ IDCNT 1 I DPOS

PLMC ~ Reserved DATE

LEVEL

///1 DW 1 PLDW

///1

Words Bits

o 0-7

o 8-15

o 16

0 17

0 18-31

0 32-63

1 0-63

2 0-63

3 0-43

3 44-53

3 54-63

4 0-63

5 0-63

SIGNATURE

Description

PL check character (142 8=b)

Default master character for input
and source datasets

Master Character flag. If set,
master character on directives in PL
is 1258; otherwise MC is used.

Reserved

Number of Identifier Table entries

PL position of start of Identifier
Table

ASCII date of PL creation

Name of last identifier added to PL

Reserved

Default data width for compile and
source datasets; if 0, 72 is used.

Number of characters saved for each
line in the PL; if 0, 80 is used.

Reserved

'HIST OK' if bad correction histories
were removed

C-6 E

•

BINARY INDENTIFIER
DATASET FORMAT

The binary identifier dataset has one file. Each 3-word record in the
dataset has information about one identifier in the program library.

Record format:

o Identifier name

1 Identifier type

2 Yank flag

The identifier name is left-justified with zero fill.

The identifier type is:
o For modification set identfiers
1 For decks
2 For regular common decks
3 For common decks with the NOPROP option

The Yank flag is one for identifiers that are yanked, zero otherwise •

D

SR-0013 D-l E-Ol

I

UPDATE DIRECTIVE SUMMARY

Directive Abbreviation

BEFORE B

CALL CA

COMDECK CDK

COMPILE C

COpy Cy

CWEOF none

DECK DK

DECLARE DC

DEFINE DEF

DELETE D

EDIT ED

ELSE none

ELSEIF none

ENDIF none

SR-0013

Description

Inserts text before
named line

Calls common deck

Defines common text
sequence

Specifies compile dataset
contents

Copies text into new PL or
dataset

Conditionally writes end
of file to compile dataset

Defines text sequence

Declare deck for
modifications

Defines name used by IF

Deletes line or text range

Removes inactive lines
from deck

Determines if following
text is written to compile
dataset

Specifies a condition
previous IFs did not
to determine if following
text is written to compile
dataset

Ends an IF group

E-l

E

3-5

3-5

3-6

3-6

3-7

3-8

3-9

3-9

3-9

3-10

3-10

3-11

3-11

3-12

E-Ol

Directive Abbreviation

I DENT ID

IF none

INSERT I

LIST none

MASTER none

MOVEDK none

NOLIST none

NOSEQ none

PURGE none

PURGEDK none

READ RD

RESTORE R

REWIND none

SEQ none

SKIPF none

UNYANK none

WEOF none

I SR-0013

Description

Defines modification set
identifier

Begins conditional text
range and determines if
following text is written
to compile dataset

Inserts text after named
line

Starts input listing

Changes the master
character for input
directives

Alters deck postition

Stops input listing

Stops sequence number
writing to compile dataset

Permanently removes a
modification set from the
PL

Permanently removes a deck
or common deck from the PL

Reads input from alternate
dataset

Reactivates deleted lines

Rewinds a local dataset

Begins sequence number
writing to compile dataset

Skips over files in dataset

Restores yanked deck or
modification set

writes end of file to the
compile dataset

E-2

3-12

3-14

3-14

3-15

3-15

3-16

3-15

3-18

3-16

3-17

3-17

3-17

3-18

3-18

3-19

3-20

3-19

E-Ol

Directive Abbreviation Description Page

WIDTH none Changes line length in 3-19
compile dataset

YANK none Temporarily removes deck 3-20
or modification set from
a PL

comment none Documentation directive 3-5

I SR-0013 E-3 E-Ol

INDEX

INDEX

* control statement parameter, 2-3
/ control statement parameter, 2-3

ACTIVE directive, 5-13
Active lines, AUDPL, 5-2
Alternative dataset, read from, 4-4
Alternative input, see READ
Associativity of input, 1-10
Asterisk (*) control statement parameter,

2-3
AUDPL (program library audit utility)

control statement, 5-7
directives, 5-13 through 5-16
input, 5-6
logfile messages, B-6
output, 5-1
program library summary, 5-3
restrictions, 5-1

BEFORE directive, 3-5, 1-4, 3-1, 3-6,
3-9

Binary identifier dataset format, D-l
Binary identifier list dataset, 5-6

C control statement parameter, 2-2
CALL directive, 3-5, 1-8, 3-2, 3-6
CD output option, 2-5, 1-11, 1-12
Character set, A-I

3-7,

COMDECK and DECK directives (category), 3-3
COMDECK directive, 3-6, 1-4, 1-5, 3-3, 3-8
Comment, 3-5
Common deck

call, see CALL
definition, 1-3
introduce, see COMDECK
cross reference, AUDPL, 5-4

Compile dataset
decks in, 1-3
definition, 1-5
directives, 3-2, 1-4
example, 4-13, 4-15
from common deck, 4-6
from source, 4-6
generation directives

(DIR), AUDPL, 5-2
generating, 1-8

COND directive, 5-13
Conditional text

beginning, see IF
directive (COND), AUDPL, 5-3
ending, see ENDIF
example, 4-9
in compile datasets, 1-5
reversing condition, see ELSE
summary in listing (IF option), 1-12
testing condition, see ELSEIF

Conditionally write end of file, see CWEOF
Control statement parameters, see Parameters
Control statement, UPDATE, 2-1
Conventions, 1-12
COpy directive, 3-7, 1-10, 3-1
$CPL, 2-2, 2-6, 4-1, 4-7, 4-15
Creating a program library

example, 4-1
procedure, 1-7

Creation run, 1-1
CWEOF directive, 3-8, 1-8, 3-2

Data flow through UPDATE, 1-2
Data width, 1-5

change, 4-8
Dataset

alternative, 4-4
compile, 1-5
contents in UPDATE modes, 1-9
example showing contents, 4-11
files, skipping, see SKIPF
input, 1-5, 4-5
source, 1-5, 4-6

DC control statement parameter, 2-4, 1-10
Deck

common, 1-3
definition, 1-3
deleting, see YANK
editing, see EDIT
example for removing and positioning,

4-7
for a source dataset, 4-6
for compilation (no source), 4-7
for mod application, see DECLARE
introducing, see DECK
line counts, 5-4
moving, see MOVEDK
regular, 1-3
removing, see PURGEDK Compile dataset, specify, see COMPILE

COMPILE directive, 3-6, 1-8, 1-9, 2-4,
3-2, 4-1

2-6, restoring, see UNYANK

SR-0013

DECK and COMDECK directives (category), 3-3
DECK directive, 3-8, 1-4, 3-3, 3-6, 3-7, 3-8

Index-l E-Ol

DECLARE directive, 3-9, 1-10, 3-2
Declared modifications, 1-10
DEFINE directive, 3-9, 1-10, 3-2
Delete decks and modification sets, see YANK
DELETE directive, 3-10, 1-4, 3-1, 3-6, 3-7
DIR directive, 5-14
Directive

categories, 3-1
definition, 1-4
examples, 3-4
format, 3-2, 3-3

Directives, 3-5
AUDPL

ACTIVE, 5-13
CONO, 5-13
DIR, 5-14
HISTORY, 5-14
INACTIV, 5-15
PULIMOD, 5-15

UPDATE
/ (comment), 3-5, 3-2, E-l
BEFORE, 3-5, 1-4, 3-1, 3-6, 3-7, 3-9,

E-l
CALL, 3-5, 1-8, 3-2, 3-6, E-l
COMDECK, 3-6, 1-4, 1-5, 3-3, 3-6, 3-8

E-l
COMPILE, 3-6, 1-8, 1-9, 2-4, 2-6, 3-2

E-l
COPY, 3-7, 1-10, 3-1, E-l
CWEOF, 3-8, 1-8, 3-2, E-l
DECK, 3-8, 1-4, 3-3, 3-6, 3-8, E-l
DECLARE, 3-9, 3-2, 1-10, E-l

DEFINE, 3-9, 1-10, 3-2, E-l
DELETE, 3-10, 1-4, 3-1, 3-6, 3-7, 3-9,

E-l
EDIT, 3-10, 1-10, 3-2, 4-8, E-l
ELSE, 3-11, 1-12, 3-2, E-l
ELSEIF, 3-11, 1-12, 3-2, E-l
END IF , 3-12, 1-12, 3-2, E-l
I DENT , 3~12, 1-4, 1-8, 1-10, 3-1, 3-6,

3-9, E-l
IF, 3-14, 1-12, 3-2, E-l
INSERT, 3-14, 1-4, 3-1, 3-6, 3-7, 3-9

E-2
LIST, 3-15, 3-2, E-2
MASTER, 3-15, 3-2, E-2
MOVEDK, 3-16, 3-2, 4-7, E-2
NOLIST, 3-15, 3-2, E-2
NOSEQ, 3-18, 1-5, 3-2, E-2
PURGE, 3-16, 1-4, 3-2, E-2
PURGEDK, 3-17, 1-10, 3-2, 4-7, E-2
READ, 3-17, 3-2, E-2
RESTORE, 3-17, 1-4, 3-1, 3-6, 3-7, 3-9

E-2
REWIND, 3-18, 3-2, E-2
SEQ, 3-18, 1-5, 3-2, 3-6, E-2
SKIPF, 3-19, 3-2, B-2
UNYANK, 3-20, 1-4, 3-2, E-2
WEOF, 3-19, 1-5, 1-8, 3-2, E-2
WIDTH, 3-19, 1-5, 3-2, E-2
YANK, 3-20, 1-4, 3-2, E-2

DW parameter, see Data width

SR-0013 Index-2

E control statement parameter, 2-2
ED output option, 2-5, 1-11, 1-12
EDIT directive, 3-10, 1-10, 3-2, 4-8
Edit directives, input, 3-2
ELSE directive, 3-11, 1-12, 3-2
ELSEIF directive, 3-11, 1-12, 3-2
End of file write, see WEOF
ENDIF directive, 3-12, 1-12, 3-2
Examples, 4-1

alternative dataset, read from, 4-4
compile dataset

from a common deck, 4-6
from source, 4-6

conditional text, 4-9
data width change, 4-8
dataset

alternative, 4-4
contents shown, 4-11
input, 4-5
source, 4-6

deck
for a source dataset, 4-6
for compilation (no source), 4-7
removal and positioning, 4-7

IF range, 4-9
input dataset

multiple, 4-5
not $IN, 4-5

program library
creating, 4-1
editing, 4-8
modifying, 4-3
resequencing, 4-7

resequencing, 4-7
width change, 4-8

F control statement parameter, 2-4, 1-8, 1-9
Format, directive, 3-2 through 3-4
Full mode, 1-8, 2-4

Header lines, 1-11
HISTORY directive, 5-14

I control statement parameter, 2-1
ID output option, 2-5, 1-11, 1-12
IDENT directive, 3-12, 1-4, 1-8, 1-10, 3-1,

3-6, 3-9
Identification, line, 3-3, 1-6
Identifier list, AUDPL, 5-3
Identifier ranges, AUDPL, 5-12
Identifier names, 3-4
Identifier Table, C-5, 1-8, 3-7
Identify modification set, see IDENT
IF directive, 3-14, 1-12, 3-2

example, 4-9
name definition, see DEFINE

IF output option, 2-5, 1-11, 1-12
IN output option, 2-5, 1-11, 1-12, 3-15
INACTIV directive, 5-15
Inactive lines, 5-2

Input
alternative, see READ
associativity of, 1-10
control statement, 5-7
dataset, see Input dataset
declared modifications, 1-10
directives (AUDPL), 5-10
edit directives, 3-2, 1-4
example, 4-5
edit directives, 3-2, 1-4
master character change, see MASTER
organizing, 1-9
overlapping modifications, 1-10
scope of list options and directives,

5-6
Input dataset

multiple, 4-5
not $IN, 4-5
definition, 1-5

Insert before a line, see BEFORE
INSERT directive, 3-14, 1-4, 3-1, 3-6, 3-7,

3-9

K output option, 2-5, 1-9, 3-7

L control statement parameter, 2-2, 3-15
Line format, program library, C-4
Line identification, 3-3
Line width change, see WIDTH
Lines, deleting, see DE~TE
LIST directive, 3-15, 3-2
Listable output, 1-11

messages, 1-11
options, 1-11
page header lines, 1-11

Listing dataset
output format, 5-2
output from text line options and

directives. 5-2
Local dataset, rewinding, see REWIND
Logfi1e messages

AUDPL, B-6
UPDATE, B-1

Master character, input, see MASTER
MASTER directive, 3-15, 3-2
Messages

AUDPL, B-6
listing, 1-11
UPDATE, B-1

ML control statement parameter, 2-4, 1-10,
1-11

Mod application, see DECLARE
Modes

dataset contents, 1-9
description, 1-8

Modification
declared, 1-10
directives, 3-1, 1-4
history directive (HISTORY),

5-14

SR-0013 Index-3

Modification (continued)
histories, 5-3
overlapping, 1-10
run, 1-1

Modification set
definition, 1-4
deleting, see YANK
identifying, see IDENT
removing, see PURGE
restoring, see UNYANK
summary, 5-4

Modifications dataset, AUDPL, 5-6
Modifying a program library, 1-7

example, 4-3
procedure, 1-7
processing, 1-8

MOVEDK directive, 3-16, 3-2, 4-7

N control statement parameter, 2-2
NA output option, 2-5
Names, defining, see DEFINE
New PL, 1-1, 1-7
.NOID., 3-12
NOLIST directive, 3-15, 3-2
Normal mode, 1-9, 2-4
NOSEQ directive, 3-18, 1-5, 3-2
$NPL, 2-2, 4-1
NR output option, 2-5
NS output option, 2-5

OPTION control statement, 1-11
Option directives, run, 3-2, 1-4
Options

output, 2-5, 1-11
run option directives, 3-2, 1-4

$OUT, 2-2
Output

listing options, 1-11
format, AUDPL, 5-2
from summary options, AUDPL, 5-3
from text line options and

directives, 5-2 through 5-5
AUDPL, 5-1

Overlapping modification set list, AUDPL,
5-4

Overlapping modifications, 1-10

P control statement parameter, 2-1, 1-7, 4-1
Page header lines, 1-11
Parameters, control statement 2-1

*, 2-3
/, 2-3
asterisk (*), 2-3
C, 2-2
DC, 2-4
DC, 2-4, 1-10
OW, see Data width
E, 2-2
F, 2-4, 1-8, 1-9
I, 2-1
L, 2-2, 3-15

Parameters, control statement (continued)
ML, 2-4, 1-10, 1-11
N, 2-2
P, 2-1, 1-7, 4-1
Q, 2-4, 1-8, 1-9
S, 2-2, 4-1

Program libraries, 1-6
Also see Examples
audit utility see AUDPL
creating

example, 4-1
procedure, 1-7

editing, 4-8
format 1, C-1
format 2, C-4
identifier table, 3-7
line format, C-4
modifying, 1-7

example, 4-3
procedure, 1-7
processing, 1-8

new, 1-1, 1-7
resequencing, 4-7
restrictions, 1-6
sequence of decks and tables, 1-6
structure, C-1

PULLMOD directive, 5-15
PURGE directive, 3-16, 1-4, 3-2
PURGEDK directive, 3-17, 1-10, 3-2, 4-7

Q control statement parameter, 2-4, 1-8, 1-9
Quick mode, 1-9, 2-4

Range specification formats, AUDPL, 5-11
Reactivate lines, see RESTORE
READ directive, 3-17, 3-2
Reconstructed modification sets, 5-5
Regular deck, 1-3
Remove deck, see PURGEDK
Remove modification set, see PURGE
Resequencing a program library, 4-7
Restore decks and modification sets, see

UNYANK
RESTORE directive, 3-17, 1-4, 3-1, 3-6,

3-7, 3-9
Resume listing, see LIST
Reverse condition, see ELSE
REWIND directive, 3-18, 3-2
Run option directives, 3-2, 1-4

S control statement parameter, 2-2, 4-1
Scope of list options and directives, 5-6
SEQ directive, 3-18, 1-5, 3-2
Sequence number writing, see SEQ and NOSEQ
SKIPF directive, 3-19, 3-2
Slash (/) control statement parameter, 2-3
Sorted identifier list, 5-4
Source dataset

example, 4-14
decks in, 1-3
definition, 1-5
generating, 1-8

SR-0013 Index-4

Source dataset, specify, see COMPILE
Source decks

definition, 1-4
Source or compile dataset, specify, see

COMPILE
SQ output option, 2-5
$SR, 2-2, 4-6
Status of AUDPL modification sets, 5-4
Stop listing, see NOLIST

Test condition, see ELSE IF
Text copying, see COPY
Text ranges (AUDPL), 5-11

OM output option, 2-5, 1-11, 1-12
UNYANK directive, 3-20, 1-4, 3-2
UPDATE

control statement, 2-1
directives, see Directives
messages, B-1

WEOF directive, 3-19, 1-5, 1-8, 3-2
Width change, data, 4-8
WIDTH directive, 3-19, 1-5, 3-2, 3-18
Write end of file, see WEOF

YANK directive, 3-20, 1-4, 3-2

E-Ol

READERS COMMENT FORM

UPDATE Reference Manual SR-0013 E-Ol

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________________________ ___

JOB TITLE _________________ _ c::r ,.,.".. 'V
FIRM ____________________________________ ___

RESEARCH, INC.
ADDRESS __________________________ ___

CITY ____________ STATE ___ ZIP ___ _

----------------------------------~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POST AGE WILL BE PAID BY AnORESSEE

RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A .

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

. _-----------------------------------,

(')

C
-4
> ro
Z
~

-4
:I:
en
c
Z
m

