=R A

CRAY® COMPUTER SYSTEMS

UNICOS USER COMMANDS
REFERENCE MANUAL

SR-2011

Copyright® 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

R AN

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-2011

Requests for copics of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these publications should
be directed to:

CRAY RESEARCH, INC.
Technical Publications
1345 Northland Drive
Mendota Heights, Mi 55120

Revision Description

March 1986 Documentation to support the UNICOS release 1.0 running on Cray computer sys-
tems. This documentation is derived from UNIX System V under license from
AT&T Technologies, Inc.

July 1986 On-line documentation only to support the UNICOS release 1.1 running on Cray
computer systems.

October 1986 Documentation to support the UNICOS release 2.0 running on Cray computer sys-
tems. This documentation contains the following new commands: cft77, clear, csh,
csim, dda, dispose, drd, ex, expand, fetch, flodump, flow, lastcomm, more, nasa, ps,
premult, printenv, prof, rdrop, rdist, sag, sar, sc, scpgsub, scpreroute, sim, stty, tar-
get, tput, tset, ul, unexpand, uupick, uuname, uustat, uuto, uux, vi, wdrop, and
whereis. See the following commands for revisions: adb, ar, as, asa, awk, cb, cft,
dd, df, finger, Id, nice, pascal, rlogin, segldr, sim, update, units, and qsub. Other
commands have some minor revisions.

The UNICOS operating system is derived from the AT&T UNIX System V operating system.
UNICOS is also based in part on the Fourth Berkeley Software Distribution under license from The
Regents of The University of California.

The UNICOS batch job processing capability is based on the Network Queuing Systems (NQS),
which was developed by Sterling Software for the National Aeronautics Space Administration
(NASA) Numerical Aerodynamic Simulation (NAS) project.

CRAY, CRAY-1, and SSD are registered trademarks and APML, CFT, CFT77, CFT2, COS, CRAY-2,
CRAY X-MP, CSIM, IOS, SEGLDR, SID, SUPERLINK/ISP, and UNICOS are trademarks of Cray
Research, Inc.

NSC and HYPERchannel are registered trademarks of Network Systems Corporation. UNIX is a
registered trademark of AT&T.

Release 2.0 ii SR-2011

The TCP/IP documentation is copyrighted by The Wollengong Group and may not be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, except as provided in the license agreement governing the documentation or
by written permission of The Wollongong Group, Inc., 1129 San Antonio Road, Palo Alto, Cali-
fornia 94303. The Wollongong software and documentation is based in part on the Fourth Berke-
ley Software Distribution under license from The Regents of the University of California. © The
Wollongong Group 1985.

SR-2011 iii Release 2.0

SR-2011

PREFACE

The UNICOS Commands Reference Manual provides descriptions of commands and application
programs for system users of the Cray operating system UNICOS. It supplements the information
contained in the other manuals in the UNICOS documentation set.

This manual describes programs that are invoked directly by the user or by command language pro-
cedures. Commands described in section 1 of this manual generally reside in the directory /bin (for
binary programs). Programs can also reside in /usr/bin to save space in /bin, /usr/ucb (those com-
mands ported from the Fourth Berkeley Software Distribution), and /lib. The /bin, /usr/bin, and
/usr/fuch directories are searched automatically by the command interpreter called the shell (see sh(1)).
You must change the path (or specify the path on the command line) if you want to use a command in
flib. The commands for which this is necessary are specified as such in the SYNOPSIS section on the
man page.

This manual is a reference manual for UNICOS programmers. It is assumed that the reader has a work-
ing knowledge of either the Cray operating system UNICOS or the UNIX Operating System.

Other Cray Research, Inc. (CRI), manuals that may be helpful to the reader are listed below (all other
manuals referred to are CRI publications unless otherwise specified):

e The apppropriate CRI library reference manual:
Programmer’s Library Reference Manual, publication SR-0113
System Libray Reference Manual, publication SM-0114
CRAY X-MP and CRAY-1 C Library Reference Manual, publication SR-0136
CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013

e UNICOS Administrator Commands Reference Manual, publication SR-2022

¢ UNICOS System Calls Reference Manual, publication SR-2012

¢ UNICOS File Formats and Special Files Reference Manual, publication SR-2014
e UNICOS Kemel Error-Message Manual, publication SR-2015

e UNICOS Administrator Commands Reference Manual, publication SR-2022

e Cray C Reference Manual, publication SR-2024

CONVENTIONS

Throughout the UNICOS documentation, the following conventions are used:

command(1) refers to an entry in the UNICOS User Commands Reference Manual, publication

SR-2011.

command(1IM) refers to an entry in the UNICOS Administrator Commands Reference Manual, publi-
cation SR-2022.

routine(2) refers to an entry in the UNICOS System Calls Reference Manual, publication
SR-2012. '

routine(3x) refers to an entry in the appropriate CRI library reference manual. The optional letter
following the number 3 indicates the section reference.

entry(4x) refers to an entry in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014. The optional letter following the number 4 indicates the section
reference.

v Release 2.0

Each manual consists of sections with independent entries of a page or more in length. The name of
the entry appears in the upper comers of its pages. Entries within each section are alphabetized, with
the exception of the introductory entry that begins each section. The page numbers of each entry start
at 1. Some entries may describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its "major” name.

All entries are based on the following common format, not all of whose parts always appear:

NAME gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS summarizes the use of the program being described. The following conventions are
used in the SYNOPSIS:

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names found
elsewhere in the manual.

Square brackets [] around an argument prototype indicate that the argument is optional.
When an argument prototype is given as name or file, it always refers 10 a file name.

Ellipses ... indicate that the previous argument prototype may be repeated.

An argument beginning with a minus, plus, or equal sign (-,+,0r =) is often recognized to be
some sort of flag argument, even if it appears in a position where a file name could appear.
Therefore, it is recommended that files names do not begin with -, +, or =

DESCRIPTION discusses the subject at hand.
EXAMPLES gives examples of usage, where appropriate.
FILES gives the file names that are built into the program.
SEE ALSO gives pointers to related information.

MESSAGES discusses the diagnostic indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

WARNINGS points out potential pitfalls.

LIMITATIONS identifies restrictions of the program being described.

BUGS gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

All entries are available on line through the man(1) command.
A contents list follows this introduction.

Release 2.0 vi SR-2011

USER COMMANDS (1)

intro Introduction to general-utility commands
ACCICOM .cuieeerererensienennenrarssssseessanessesnanssnenteseseessasssntsansanes Searches and prints process accounting files
ACQUITE ..ecrerercrcncscrusassesiansisesessssenssesesescssassssnsssssasase .. Makes a request for a file from a front-end station
T O Invokes the absolute debugger

adminccevereerereeeen. Creates and administers SCCS files

adstape (CRAY X-MP and CRAY-1 only) ..cc.cceceeerereuennne Prepares I0S deadstart tape

apml (CRAY X-MP and CRAY-1 only)cccereerecrereennns Invokes the APML assembler

ar (CRAY-2 only) . - Maintains archives and libraries for portable archives
ar (CRAY X-MP and CRAY-1 0nly) ...ccceveveerrreeveeurenennnes Maintains archives and libraries for portable archives
as ... reesenenerasessannans Invokes the Cray assembler (CAL)

BSA ceeecnirieresnnt st sb st ab e s b s ss e en s sb e bsn et snebeas Interprets ASA carriage control characters

at . reorsasennnesssaserasane Executes commands at a later time

AWK ettt et st et s se e e s ne e se saenens Scans and processes patterns

banner reeseesenenassnenarsnan Makes posters

baSENAMEcoeuvereeeernrrceneceecnranannsnens .. Prints portions of pathnames on standard output
batch (SEE @(1)) .voeveeererereceeriecreeneetenrere e e e sresesnsesersesne Executes commands at a later time

BC ittt st e st s esea e en e e e e eneensaens Invokes the arbitrary-precision arithmetic

language preprocessor

BDAIEE .ooooercteerecnnecssncerenesesessesanassssseresasssesesssssssasesernsseaes Compares very large files for differences

bind (CRAY X-MP and CRAY-1 only)cccecrmeeveenrnnnee Binds APML relocatable modules together
bmxio (CRAY X-MP and CRAY-1 only)ccccereererrrneeces Provides an interface to block mux devices

cal .o eertesseesesssearasssesesernesesnnsensatres eraesanan Prints a calendar

CAlENATcocomirieirisiinnrercarsreserecesereenessaesessesesnsaessenassaans Reminder service

CAL coiireirsisistessssseessssstsananestsonessssnssssessesnasesassssseansssssasenss Concatenates and prints files

(] reeresesassese e sre e saea s sbash s b sh st saa e C program beautifier

cc (CRAY-2 only) Invokes the C compiler

cc (CRAY X-MP and CRAY-1 ONlY)coeveevrereenenverersenaenens Invokes the C compiler
TCO et et seese et et e s e ere e st aeserasaes e ene s snsrenasnsesnes Changes working directory

cde ... reereebereeeie st re s s sas e e SR e e te e st es b saaene seb e e a8 Changes the delta commentary of an SCCS delta
CHOW ettt necencnasscssrestst e e e st etessse sesesaesasnens Generates C flow graph

cft (CRAY-2 only) - .. Invokes the CRAY-2 Fortran compiler

cft (CRAY X-MP and CRAY-1 0nly)cocecervuerevecrrenrnnns Invokes the CFT Fortran compiler

CEUTT ettt st sesesrasesssesnssessasssassnssassssnssassessasesssones CFT77 Fortran compiler, not machine-specific
chgrp (see CAOWR(1)) ..uuueveveereecerrrrnrneeenssreresnsssssessessnees Changes owner or group

chmod eeettereraessnaasneasessaraanas Changes mode

chown ereerresaennens . .. Changes owner or group

chsh (CRAY X-MP and CRAY-1 only)cccceerererurerrreeneee Changes default login shell

clear (CRAY X-MP and CRAY-1 only)ccccceerveccvrnnnen Clears terminal screen

(431 11+ TSP creeeeneranenaeaes Compares two files

COMD ..oeerinisinscnrantnassssnssinstsnssessssassnnneassssesasassssssenssnas Combines SCCS deltas

COMIM ..ccvvnrreienesiossesans “ weeeeene. Selects or rejects lines common to two sorted files
cord (CRAY X-MP and CRAY-1 only)ccoeeverereurueneee. Invokes the core dump program

1151 TR teestereerestessesenessanessanesesnsasen «...... Copies files

CPIO ceerererecrecnreneseassonnnes . eersraressenseasaasasansssareas Copies file archives in and out

cpp .- ereerenesaseasrenenteaesanssentasaenessens Invokes the C language preprocessor

crayl (see machid(1)) . . erennretesseseesstessensnean Provides truth value about processor type

cray2 (see machid(1)) w“ .. Provides truth value about processor type
crayxmp (see machid(1)) Provides truth value about processor type
Crontabcovvmerecureonns cesnereseesensssasansnsns Copies files into the user crontab file

SR-2011 vii Release 2.0

..

csh
csim (CRAY X-MP and CRAY-1 only)
csplit

cut

..................................

.............................

............

................................

cxref

..

..

.....................

.....................

--

...

...

diff .

diff3 (CRAY-2 only)
dircmp
dimame (see basename(1))
dispose .

.....

...

..

.......

............

........................

............

.....

..

edit (see ex(1))
egrep (see grep(1))
env ... -
ex (CRAY X-MP and CRAY-1 only)
exdf (CRAY X-MP and CRAY-1 only)

..............................

...

...................

................................

.............................

.............................

expand
EXPT.cuvenenrreeeenens ; . “

extd (CRAY X-MP and CRAY-1 0nly)cccveevceereveveerennene
factor .. .
false (see true(1))
fetch
fgrep (see grep(1))
file ...
find
finger (TCP/IP NETWORK)
flodump (CRAY-2 only)
flodump (CRAY X-MP and CRAY-1)
flow (CRAY-2 only)
fold (CRAY X-MP and CRAY-1 only)
fpld (see ld(1) on the CRAY-2)
from?2 (see 102(1))
fromvax (see 102(1))
fsplit
ftp (TCP/IP NETWORK)
ftref (CRAY X-MP and CRAY-1 only)
get

...

..

...

..

...

..

..

..

..

..............................

..

............

..

..

..

.............................

...................

.............

Release 2.0

viii

Encodes/decodes files

Invokes a shell (command interpreter) with a C-like syntax

Invokes the hardware simulator for operating systems
Separates files into sections
Cuts out selected fields of each line of a file

.. Converts files between update and scm formats

Generates C program cross reference

Prints and sets the date

Desk calculator

Converts and copies a file to the specified output

.. Invokes the dynamic dump analyzer
.. Invokes the postmortem core analyzer

Makes a delta (change) to an SCCS file
Reports the number of free disk blocks

.. Compares files for differences
.. Performs a 3-way differential file comparison
.. Compares directories

Prints portions of pathnames on standard output
Disposes a file from the Cray computer system
to a front-end station

.. Invokes the dynamic runtime debugger

Summarizes disk usage

Echos arguments

Invokes the ed text editor

Invokes the ex text editor

Searches a file for a pattern

Sets environment for command execution
Invokes the ex text-editor

Transfers files to and from

the IOS partition of the expander disk

Prints files on the expander line printer
Expands tabs to spaces

Evaluates arguments as an expression
Transfers files to and from the I0S expander tape drive
Factors a number

Provides truth values about processor type
Requests a file from a front-end station
Searches a file for a pattern

Determines file type

Finds files

Provides user information

Displays flowtrace data in 132-column format
Displays flowtrace data from a file named core
Displays flowtrace data in 80-column format
Folds long lines of files for finite width output
Invokes the link editor for relocatable files
Copies files between VAX and CRAY-2
Copies files between VAX and CRAY-2

Splits Fortran files

Transfers files to and from a remote network site
Generates Fortran reference listing

Gets a version of an SCCS file

SR-2011

JL210) 1. SO

Parses command options

Searches a file for a pattern

grep ...

head (CRAY X-MP and CRAY-1 0only)cccccrveecrcsaeenne

help

...... Writes the first few lines of a file

Provides explanation of messages and commands

hostid (TCP/IP NETWORKY)cc.vcummncssmsesscesmsssssssrans

hostname (TCP/IP NETWORK)

...... Sets or prints identifier of current host system

Prints the name of current host system

id

Prints user and group IDs

jad (CRAY-2 only)

Job accounting daemon

jar (CRAY-2 only) .

Provides job accounting information

join “ .- Joins specified lines of files

kill . “ . . Terminates a process

last (CRAY X-MP and CRAY-1 0nlY) ...ccccceererecrsenrerenscens Indicates the last logins of users and teletypes
lastcomm (CRAY X-MP and CRAY-1 only)cceeuervenene Shows last commands executed in reverse order
1d (CRAY-2 only) w Invokes the link editor for relocatable files

1d (CRAY X-MP and CRAY-1 only) Invokes the CRAY X-MP and CRAY-1 link editor
lex . Generates programs for simple lexical tasks
line Reads one line

lint Invokes a C program checker

In Links files

login Signs on

logname rertesseettseseaee s nseneensares s sssssestestnanaarerses Gets login name

lorder (CRAY-2 only) Finds ordering relation for an object library

IS et snestsrtasssetentae s sasnssuensessnesesnsrtrssasasas s sana sares Lists contents of directory

INA .ooeeeerereveenenreeenesneeseesaenssseessesasestesnensen st snesnsanestessereareen Invokes a macro processor

MACKIA ...voviierinininniinecintcnnressssaessanessssssssssssasesessensassssssase Provides truth value about processor type

MALL <.eeeeeeerenierieiciseesisstenesneresessrsnsarenessestssosssassssnasesansese Lets you send or read mail

MAIIX eoviireirinsonecnsscseessncessnessasasssssesssssssosssssasssssssasaasssnsass Electronic message processing system

INAKE ...eererrreerneceereresrsestsssessssressessessasssesassrensense Maintains, updates, and regenerates groups of programs
makekey Generates encryption key

INAN ...ooeeeeeerncrsssosesessesosssssssssssarasnsseassansnsnsssssssososssssassasaassase Prints entries in this manual

INESE .ecuvrrrerisressessesssessessassssassasssesssessmsssssesnsessessossasessesessaone Permits or denys messages

mkdir Creates a directory

more (CRAY X-MP and CRAY-1 0nly)cccceeeuevcruereenereas Lets you peruse text one screenful at a time

mv .. eerarestesesnei s st st ssastan et soss st st anessertrasaretsn Moves files

mxm Invokes the mod creation program

nasa.... Adds ASA carriage control characters for printing
netstat (TCP/IP NETWORK)ccccceeverecreesessssnesocasenseasens Displays network status

NEWACCT ..veeveveeerereessacersnesncsrasnes Changes account ID

newgmp Logs in to a new group

DIEWS ccuiiveeererecsrsresssrsnsonssasasnsnesassterasssessesaasssssessssnssasasssens Prints news items

TUCE ..eevveverervernenerersnonsorssssssssestssestosssnsesarasnsenssssssssaresassessasess Runs a command at low priority

NM (CRAY-2 ODLY) ..cceeevriveerernecresnenrecsresesssssneseasens

Prints name list

nm (CRAY X-MP and CRAY-1 only)cccceeereerennnnn.

NMab (CRAY-2 ONLY) ..cceeunrrnrnsensensssenssessssessnenscunnes

nohup ...

PACK ..oeeerererrerecnererenneeeneens
page (see more(1))...

PASCAL ...ueeenrerenecsen e nrenese st s s sase s nssnasnasens

PASSWA ..ccveeeerecenerrccencnsossesnnanens

SR-2011

...... Prints name list
...... Produces a list of names and addresses from executable file
.. Runs a command immune to hangups and quits

Introduction to the Network Queuing System (NQS)
Produces an octal dump

Compresses and expands files

Lets you peruse text one screenful at a time
Invokes Pascal compiler

Changes login password

ix Release 2.0

paste ... - ceseseeusnsasaisenensees Merges same lines of several files or subsequent
lines of one file

PCAL (SE€ PACK(L)) «ooveeeeeeeruecrereeeninmresssossnsssaesessessonsrenssessase Compresses and expands files

pdpll (see machid(1))ccoccmicrneceinernercresenseessenssesenes Provides truth value about processor type

PE covereerrrrrienenssssosonsassissssinnssssmsssssstossorassassssesssssassosssssnssssnns Lets you peruse files one screenful at a time

plcopy (CRAY X-MP and CRAY-1 only)ccocvvuenennee Converts COS PLs into UNICOS PLs

PL ceeeeneenenrenenenrnmsmssasssssesansnssasses . <. Prints files

premult (CRAY X-MP only) Invokes the premult preprocessor

printenv (CRAY X-MP and CRAY-1 only)ccccccuveee-. Prints out the environment

prof (CRAY-2 only) Displays profile data

prs . Prints an SCCS file

ps (CRAY-2 only) ... Reports process status

ps (CRAY X-MP and CRAY-1 0nly) ..c.coccvurereerrcesecrscnenes Reports process status

11, “ crereseacsmaensasnnanens Prints working directory name

QAELovenierrniriniesnermesnnsireisesssssassiaes s sseressasnensssaseaans Deletes or signals NQS requests

QAEY cveeerrerencnrraeressnessnnseessnasesssssssarsensssssonsnons .. Displays the status of NQS devices

qlimit . Shows supported batch limits and shell
strategy for named host

qpr . . ressssssisisasasnasane Submits a hard-copy print request to NQS

gstat . eeetesrerensssserestorassansisssaserssnnesases Displays the status of NQS queues

gsub . Submits an NQS batch request

rcp (TCP/IP NETWORK) . . Copies remote files

rdist (CCRAY X-MP and CRAY-1 Only) ..ccccverermrererrcnceens Remote file distribution program

rdrop (CRAY X-MP and CRAY-1 0nly)cccceevrerererrereennens Reloads a recoverable drop file

red (see ed(1)) Invokes the ed text editor

regcmp Compiles regular expression

remsh (TCP/IP NETWORK) Invokes a remote shell

TESEL (SEE LSEI(1)) cveeeerreerrnrteecereeserenneeeersrsessansesassnessasaes Terminal dependent initialization

rlogin (TCP/IP NETWORK) Invokes a remote login

m . Removes files or directories

rmail (see mail(1)) .. Lets you send or read mail

TMAELeeeeereenrnccnrenseeseressessrnsesseressesssesessasesssesensasssessssnes Removes a delta from an SCCS file

mdir (see rm(1)) eeeesreeseeeseesseanaes .. Removes files or directories

rsh (see sh(1)) .. Shell, the standard/restricted command
programming language

ruptime (TCP/IP NETWORK) Shows host status of local machines

1who (TCP/IP NETWORK)cccocereerernererensncns Indicates who is logged in on local machines

sact . Prints current SCCS file editing activity

sag (CRAY X-MP and CRAY-1 0DlY) ...cccccereerererrervererares System activity graph

sar (CRAY X-MP and CRAY-1 0nly).....cccceerereeveenuecrecrernene Extracts operating system activity information

sc cersererestsnsnanssnns Invokes the front end for the scm source code
control program

sccsdiff eerseesueieneenesteseasasessaenesassssneras .. Compares two versions of an SCCS file

scm ... Invokes the source control program

scpgsub Allows you to submit jobs to NQS from USCP spawned job

SCPIETOULEconvearereene ... Allows you to define station processing of job output

script (CRAY-2 only) w Makes typescript of terminal session

script (CRAY X-MP and CRAY-1 Only)ccoeeecrrenenrunens Makes typescript of terminal session

SAIF ... sesee e seastsssenenssessseresenesesean Side-by-side difference program

SEA .cocurrrresienenisnssstintisienmensenssansosmesasasanssesarsnsasansaresessne Invokes the stream editor

segldr reertesseere e atae s be s ae s ssaesaeaeas Invokes the segment loader (SEGLDR)

Release 2.0 x SR-2011

Sh e sesse st eses e st e assesanenen Shell, the standard/restricted command
programming language
sim (CRAY-2 0nly) ...ccccoveeveuerrecrenccanns Invokes the interactive Cray Simulator
SIZE ceveeecrerencnnennnns Prints section sizes of executable files
sleep ovvvevinnenenna rrsnreesasaneres Suspends execution for an interval
STIO .eceueeereeenesieneresnrnessssissnanesesosssusssstereseessastssaronsassanestsntss Invokes the SNOBOL interpreter
10, o AR ceeseressesienisenanans Sorts and/or merges files
SPLIL < oeeeeceereceeeereecte e e neeneseetesasaesnneseeseasaesuesenssanesasnaen Splits a file into pieces
strings (CRAY X-MP and CRAY-1 0nly)ccccecvveerrervranne Finds the printable strins in a object or other binary file

stty (CRAY X-MP and CRAY-1 0nly)ccoeeveeveenverreneenens Sets the options for a teminal

S creeuiereeueetestnensnnsesesssessessnassasnesas ssesssesassassasenssasassessnsnassnsss Lets you become super user or another user
SUIN ..oveviieueninrennsnsneseosontassaeaseasssssssssstsssnsasassressssssssssaessansas Prints checksum and block count of a file
SYTIC wuierecsussnnesnssssssssssonsessesnsrsstssesssssssnssssensesssssssassassasesnens Flushes file system cache to disk

LF: V1 OO OOV SR VPRI Displays the last part of a file

BAL ooeeeeiceceecie e e e ree e sseesareessss et sresesennsnsesessantannaarssnans Tape file archiver

target (CRAY X-MP and CRAY-1 only)cccccveceeeerncnnaene Verify target CPU characteristics

BEE vueereeeeerersvesienarssororssnssssnsnassastnesessrsassesnsasenssassssnnsasasssases Duplicates output

telnet (TCP/IP NETWORK)coueue.. User interface to the TELNET protocol

EESE ceeerreiererureneenesrsansssnnesaeeseenessessssssssnaseasasasesasossassesnsasease Performs a conditional evaluation

tftp (TCP/IP NETWORK)ccooveiireceneeenreresesesnansseneennns Invokes the trivial file transfer program
tME ..oeeeeerecerereenrerenenennne erereteeataerenareenes Times a command

timex restentet st ettt et s nnanseresae et nenenssresares Time a command; report process data and system activity

to2 (CRAY-2 only)

Copies files between VAX and CRAY-2

touchccceveevernnnen

Updates access and modification times of a file

tovax (see 102(1))ceeun.. rreenesreeenernrrreene Copies files between VAX and CRAY-2
tput (CRAY X-MP and CRAY-1 0nly)ccceerrrereersunrunreene Makes terminfo data available to the shell
BT cceereeretersrescteeereesssssseesseesarassnesessesasresesssassseennessenesnessresen Translates characters

LTUE ooeriiiiircnereirnsecreenesnsrtsassasassasessasnasnssssasssesssassansssanessaes Provides truth values about processor type
tset (CRAY X-MP and CRAY-1 only)ccccecevevmeemreencnnen Terminal dependent initialization

tsort (CRAY-2 only) cerereeseseneenesanenes Performs a topological sort

tty .. .- . .. Gets the name of the terminal

U370 (see MAChIA(1)) ..coeeureereerereeneereerreeesereresnseesesresesenes Provides truth value about processor type
u3b (see MACHIA(1)) .evevoerreereeereerreeeeeentsreceseeee e enneenns Provides truth value about processor type
U3DS (S€€ MACKIA(1)) eeveeeerireereceeererrcresreesissecssssssssnensnes Provides truth value about processor type
ul (CRAY X-MP and CRAY-1 0nly)cuerveerrererereverenne Underlines text

umaskcceeevvenneee

Sets file-creation mode mask

UNAMEoeeeveeerreenreerenesneereeees retsstesarenersaresesranersesarane Prints name of current system
unexpand (see expand(1))ccvevrrnereriererennenseesesenesenne Replaces tabs in data

UNEEL cooeenereriieriicsiectscarentesnsssssasanesssnsasssssassnsessessasansssans Undoes a previous get of an SCCS file
UNEQ .ocovrieninisiieecnienssesistsestressassacstarecsaseresesssssesmsssaserasssans Reports repeated lines in a file

URES <..eecereerececenenenesennasasessesssensessnsscnssssaseresssnsssssesss sassnssssans Unit conversion program

unpack (see PAack(l)) ...cocoerreeerecrrcsvsresreseeseesnsesnanssssnsans Compresses and expands files

UPAALE ..oveveerinirencrrnerisereessoseesssasaesassesssessssessssssssoserassssasssnse Invokes the UPDATE utility

uucp (CRAY X-MP and CRAY-1 only)ccvvvenenerernnenn UNIX system to UNIX system copy

uulog (see uucp(1))

...

auname (S€€ BUCP(1)) coeveveevenerveereeeeniereenesecsesenesssnssenns

uupick (see uuto(1))

...

UUSTAL ...oierieiiiiencaninncisssieentnensnmsinrsssssssssossrasssosessssssssvnsssssssss
uuto (CRAY X-MP and CRAY-1 only)cccvecveveveereernenne
nux (CRAY X-MP and CRAY-1 only)cccceveeveevncrnennene
VAL ittt see s st s s sassasssesesasnaseasen sases s s ssasssense

SR-2011

..

UNIX system to UNIX system copy

UNIX system to UNIX system copy

Public UNIX-to-UNIX system file copy
Uucp status inquiry and job control

Public UNIX-t0-UNIX system file copy
UNIX-to-UNIX system command execution
Validates SCCS file

Provides truth value about processor type

xi Release 2.0

VC revrereenressseeesssnesesssressssnesas .. Version control

vedit (see vi(1)) - .. Invokes the screen-oriented (visual)
display editor based on ex(1)
vi (CRAY X-MP and CRAY-1 only) .. Invokes the screen-oriented (visual)
display editor based on ex(1)
view (see Vi(1)) .cccoverevenen .. Invokes the screen-oriented (visual)
display editor based on ex(1)
WALL ceecnresireriienaisenesnestassstsassesssassnesssasesssnssessessessessessssssnsss Awaits completion of process
WC ererrernresnsrorssaesnessrosessnsssasssstsssantonssasesnsaseess sssnssssssansassssass Counts words, lines, and characters in a file
wdrop (CRAY X-MP and CRAY-1 0only)c.ceeveeerrerecnees Writes recoverable drop file
WHAL ..c.eereniereereienerceresrecanestesssmessasesnssssesnasesss sssssaossesasssssnsos Identifies SCCS files
whereis (CRAY X-MP and CRAY-1 0nly)ccoceeveveurernrnnee Locates source, binary, and/or manual for program
WHO ettt et enesesrarasseseeseesesnarssmasassasanans Reports who is on the system
Wwho am 1 (8€€ WAO(1)) .ceeevrreverserrcenrecnrecnenrensenseeenenneesanes Reports who is on the system
WIELE .o.cnrecieneeeesaneceesnestenesesnesestansseenssmessnsssssssssansssessasesnonans Lets you write to another user
XATES cueueremeereseoneerssaeeassasasosssssesssansssssasasssssssssosssnssnsansonssssesns Constructs argument lists and execute a command
VACC ceuerenemeeerruessaseerasseseenssvesemsscres sesssmarsnssessassssasssossaresssans Yet another compiler-compiler

Release 2.0 xii SR-2011

INTRO(1) INTRO(1)

NAME
intro — Introduction to general-utility commands

DESCRIPTION
This section describes, in alphabetical order, commands that are of general utility for the Cray operating
system UNICOS.

COMMAND SYNTAX

Unless otherwise noted, commands described in this section accept options and other arguments accord-
ing to the following syntax:

name [option] [cmdarg]

name The name of an executable command.
option - noargletter or,
- argletter >optarg

where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.

optarg An argument (character string) satisfying the preceding argletter.
cmdarg Path name (or other command argument) not beginning with a — or, a — by

itself indicating the standard input.

MESSAGES

Upon termination, each command returns two bytes of status, one supplied by the system and giving the
cause for termination, and (in the case of ‘‘normal’’ termination) one supplied by the program (see
wait(2) and exit(2)). The former byte is O for normal termination; the latter is customarily O for suc-
cessful execution and nonzero to indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at hand. It is called variously ‘‘exit code’’, ‘‘exit status™,
or ‘“‘return code’’, and is described only where special conventions are involved.

SEE ALSO
getopt(1)
getopt(3C) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

SR-2011 1 Release 2.0

ACCTCOM(1) ACCTCOM(1)

NAME

acctcom — Searches and prints process accounting files

SYNOPSIS

acctcom [[options J [file 1] . ..

DESCRIPTION

The acctcom command reads file, the standard input, or /usr/adm/pacct , in the form described by
acct(4F) and writes selected records to the standard output. Each record represents the execution of one
process. The output shows the COMMAND NAME, USER, TTYNAME, START TIME, END TIME,
REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without
exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD,
and BLOCKS READ (total blocks read and written).

The command name is prefixed with a # if it was executed with super user privileges. If a process is
not associated with a known terminal, a ? is printed in the TTYNAME field.

If you do not specify files, and if the standard input is associated with a terminal or /dev/null (as is the
case when using & in the shell), /usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file is normally read for-

ward, that is, in chronological order by process completion time. The /usr/adm/pacct file is the current

file to be examined. The options are as follows:

-a Shows some average statistics about the processes selected. The statistics are printed after
the output records.

-b Reads backwards, showing latest commands first. This option has no effect when the stan-
dard input is read.

-1 Prints the fork/exec flag and system exit status columns in the output.

-h Instead of mean memory size, shows the fraction of total available CPU time consumed by

the process during its execution. This ‘‘hog factor’ is computed as:
(total CPU time)/(elapsed time)
-i Prints columns containing the I/O counts in the output

-k Instead of memory size, shows total kcore-minutes; this is an integral of memory usage
over time. One kcore minute is 1024 words used for 1 minute.

~m Shows mean core size (the default)

-r Shows CPU factor (user time/(system-time + user-time)
-t Shows separate system and user CPU times

-V Excludes column headings from the output

-1 line Shows only processes belonging to terminal /dev/line

SR-2011 1 Release 2.0

ACCTCOM(1) ACCTCOM(1)

-u user Shows only processes belonging to user that may be specified by: a user ID, a login name
that is then converted to a user ID, a # which designates only those processes executed
with super user privileges, or ? which designates only those processes associated with unk-
nown user IDs

—g group Shows only processes belonging to group; the group may be designated by either the
group ID or group name.

-s time Selects processes existing at or after time , given in the format hr [:min [:sec 1]

—e time Selects processes existing at or before time

=S time Selects processes starting at or after time

-E time Selects processes ending at or before time. Using the same time for both -S and -E

shows the processes that existed at time.

-n pattern Shows only commands matching partern that may be a regular expression as in ed(1)
except that + means one or more occurrences

—-q Does not print any output records, just prints the average statistics as with the —a option.

-0 ofile Copies selected process records in the input data format to ofile; suppresses standard out-
put printing.

-H factor Shows only processes that exceed factor, where factor is the ‘‘hog factor’’ as explained in
the preceding -h option.

~0 sec Shows only processes with CPU system time exceeding sec seconds

—C sec Shows only processes with total CPU time, system plus user, exceeding sec seconds

~I chars Shows only processes transferring more characters than the cut-off number given by chars

FILES

fetc/passwd
fusr/adm/pacct
fetc/group

BUGS

The acctcom command only reports on processes that have terminated; use ps(1) for active processes.
If time exceeds the present time, time is interpreted as occurring on the previous day.

SEE ALSO

ps(1), su(1),

acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), runacct(1M)
in the UNICOS Administrator Commands Reference Manual, publication SR-2022

acct(2) in the UNICOS System Calls Reference Manual, publication SR-2012

acct(4F), utmp(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

ACQUIRE(1)

NAME

ACQUIRE(1)

acquire — Makes a request for a file from a front-end station

SYNOPSIS

acquire localpath [-nSFN | [—\iTERMID 1 [-mMF] [-dDC] [-fFM } [- TEXT"]
[—uUSER]

DESCRIPTION

SR-2011

The acquire command assures you that the requested file, specified by the localpath argument exists. If
the file exists at the time you invoke the acquire command, the command returns directly with a posi-
tive status. If the file does not already exist, the acquire command creates a request file for USCP (
UNICOS Station Call Processor). If any slot information is associated with the requesting user, it is also
copied into the request file. USCP uses station protocol to make the request for a file from the desig-
nated station (specified by the —m option). The acquire command then waits until the transfer status
has been determined. The transfer status is retumed when a negative reply is received from the station
(requested file did not transfer) or when a positive reply is received from the station (requested file has
been saved on the Cray computer system). It is possible for the station to return a postpone status, in
which case the acquire command resets the request for USCP to find and again waits for the transfer
status. The acquire command accepts the following options:

localpath A path name (either full or relative to current working directory) where the requested file
is to reside when the transfer is complete. The localpath must be a location where the
requesting user has permission to write. This argument is required.

-nSFN The name associated with the requested file on the specified front end. This argument is
stored in the request record PDN field. Only 15 characters are significant. If you do not
specify SFN, the field is filled with the filename from localpath.

—-iTERMID The terminal ID associated with the requested file on the spcified front end. The size
limit is 8 characters. If you do not specify TERMID, the default is the terminal ID associ-
ated with the requesting user on the front-end station that user originated from.

-mMF A two character front-end ID for a station that has access to the requested file. If you do
not specify the mainframe, the stored ID of the station from which the requesting user
originated is used.

—fFM A two character file format code. Valid codes are:
CB Character blocked; the default
CDh Character deblocked
BB Binary blocked
BD Binary deblocked
TR Transparent
UD UNICOS Data

For further descriptions of the valid format codes, see the Front End Pro-
tocol Internal Reference Manual, CRI publication SM-0042.

-dDC A two character dispostion code interpreted by the receiving system. Valid codes are:
IN File is to be executed as a job by the receiving system.

ST File is to be saved by the receiving system.

1 Release 2.0

ACQUIRE(1) ACQUIRE(1)

-t'TEXT Text to be interpreted by the specified station for processing the request. The field can
contain label information, routing, etc., possibly in the form of control statements for the
station. Text field information should be enclosed by single quotes (*). If you do not
specify this option, the request text field is filled with binary 0’s.

-uUSER The user ID associated with the requested file on the specified front end. If you do not
specify USER, this field is left blank for the request.
LIMITATIONS

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether the mainframe ID specified belongs to a
currently active station. If the associated station is not active or has no streams assigned (that is,
interactive only station), the user process waits indefinitely.

SEE ALSO

fetch(1), dispose(1)
Front End Protocol Internal Reference Manual, publication SM-0042

Release 2.0 2 SR-2011

ADB(1)

NAME

ADB(1)

adb - Invokes the absolute debugger

SYNOPSIS

adb [-w] [objfil [corfil 11

DESCRIPTION

The adb command is a general purpose debugging program, which examines files and provides a con-
trolled environment in which to execute UNICOS programs. Requests to adb are read from the standard

input and responses are written to the standard output.
The adb command accepts the following arguments:

objfil An executable program file, preferably containing a symbol table; if it does not contain a
symbol table, the symbolic features of adb cannot be used although you can still examine the
file. The default for objfil is a.out.

corfil Assumed to be a core image file produced after executing objfil; the default for corfil is core.
-w Indicates that both objfil and corfil are created if necessary and opened for reading and writ-
ing so that files can be modified using adb.
The adb command ignores QUIT; INTERRUPT causes adb to return to the next adb command.
In general, requests to adb are of the format:
[address] [, count] [command]

Address and count are expressions (see the EXPRESSION subsection). If address is present, dot is set to
address. Initially dot is set to 0. For most commands, count specifies how many times the command
is executed; default count is 1.

The interpretation of an address depends on the context in which it is used. If a subprocess is being

debugged, addresses are interpreted in the usual way in the address space of the subprocess. For further
details of address mapping see the ADDRESSES section.

Expressions

SR-2011

Expressions have the following meanings:
The value of dot
+ The value of dot incremented by the current increment
The value of dot decremented by the current increment
" The last address typed
integer An octal number. If you have used a $d command, hexadecimal (leading Ox), and octal
(leading 0) bases are accepted.
integer fraction
A 64-bit floating-point number

"ccececee’ The ASCII value of up to 8 characters. A \ may be used to escape a ’ symbol.

< name The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see the VARIABLES subsection) named by single letters or digits. If
name is a register name, the the register value is obtained from the system header in corfil.
The register names on the CRAY-2 computer system are a0 through a7, s0 through s7, p, q,
1, m, v000 through v777. The register names on the CRAY X-MP and CRAY-1 computer
systems are a0 through a7, s0 through s7, p, vl, vim, v000 through v777, b00 through b77,
and t00 through t77.

1 Release 2.0

ADB(1) ADB(1)

symbol A sequence of upper or lowercase letters, underscores or digits, not starting with a digit.
The value of symbol is taken from the symbol table in objfil.

(exp) The value of the expression exp
Monadic operators:
*exp The contents of the location addressed by exp in corfil
@exp The contents of the location addressed by exp in objfil
—-exp Integer negation
~exp Bitwise complement
Dyadic operators are left associative and are less binding than monadic operators.

expl +exp2

Integer addition
expl —exp2

Integer subtraction
expl *exp2

Integer multiplication
expl Yoexp?2

Integer division
expl &exp2

Bitwise conjunction
expl |exp2

Bitwise disjunction
expl #exp2

EI rounded up to the next multiple of e2

Commands
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are

available. (The commands ? and / may be followed by *; see ADDRESSES section for further details.)

f Locations starting at address in objfil are printed according to the format f, and dot is incre-
mented by the sum of the increments for each format letter

If Locations starting at address in corfil are printed according to the format f and dot is incre-
mented as for ?

=f The value of address itself is printed in the styles indicated by the format f

A format consists of one or more characters that specify a style of printing. Each format character may

be preceded by a decimal integer and an asterisk (3*x) that is a repeat count for the format character.

While stepping through a format, dot is incremented by the amount given for each format letter. If no
format is given, the previous format is used. The format letters available are as follows:

o 8 Prints 8 bytes in octal. All octal numbers output by adb are preceded by 0.
O 8 Prints 8 bytes in octal

q 8 Print in signed octal

Q 8 Prints long signed octal

d 8 Print in decimal

D8 Prints long decimal

x 8 Prints 8 bytes in hexadecimal

X 8 Prints 8 bytes in hexadecimal

u 8 Prints as an unsigned decimal number

Release 2.0 2 SR-2011

ADB(1)

SR-2011

ADB(1)

U 8 Prints long unsigned decimal

b1 Prints the addressed byte in octal

c1 Prints the addressed character

C 1 Prints the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in the
range 0100 to 0140. The character @ is printed as @@.

s n Prints the addressed characters until a zero character is reached

S n Prints a string using the @ escape convention; n is the length of the string including
its zero terminator.

Y S8 Prints 4 bytes in date format (see ctime(3C))

i n Prints as instructions; n is the number of instructions.

a 0 Prints the value of dot in symbolic form

p 8 Prints the addressed value in symbolic form using the same rules for symbol lookup as
a (refer back to format in the COMMANDS section)

t 0 When preceded by an integer, it tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

r 0 Prints a space

n 0 Prints a new line

"..." 0 Prints the enclosed string

° Dot is decremented by the current increment; nothing is printed.

+ Dot is incremented by 1; nothing is printed.

- Dot is decremented by 1; nothing is printed.

new line

Repeats the previous command with a count of 1

[2/11 value mask
Words starting at dot are masked with mask and compared with value until a match is found.
If L is used, the match is for 8 bytes at a time instead of 2. If no match is found, dot is
unchanged; otherwise, dot is set to the matched location. If mask is omitted, —1 is used.

[2/1w value ...
Writes the 2-byte value into the addressed location. If the command is W, writes 8 bytes.
Word aligned addresses are required when writing to a subprocess address space.

[2/lm b1 expl f1[2/]
New values for (bl, expl, and fI) are recorded. If less than three expressions are given, the
remaining map parameters are left unchanged. If the ? or / is followed by *, the second seg-
ment (b2 ,exp2, and f2) of the mapping is changed. If the list is terminated by ? or /, then the
file (objfil or corfil, respectively) is used for subsequent requests. (For example, /m? cause / to
refer to objfil.)

>name Dot is assigned to the variable or register named
! A shell is called to read the rest of the line following !

Smodifier
Miscellaneous commands. The available modifiers are as follows:
<f Reads commands from the file f and return
>f Sends output to the file f, which is created if it does not exist
r Prints the general registers. Dot is set to pc. For UNICOS on CRAY-2 computer sys-
tem, r also prints the instruction addressed by pc.
b Prints all breakpoints and their associated counts and commands
c C stack backtrace. If address is given, it is taken as the address of the current frame.

If count is given then only the first count frames are printed. For UNICOS running on
CRAY-2 computer system, if C is used, the values of all automatic variables are

3 Release 2.0

ADB(1)

§<B=-D'=ﬂ-°m1

J
k

smodifier
Manage a subprocess. Available modifiers are as follows:

Variables

bc

k

ADB(1)

printed for each active function

Sets the page width for output to address (default 80)

Sets the limit for symbol matches to address (default 255)

All integers input are regarded as octal

Resets integer input as described in EXPRESSIONS section

Changes to register set address

Exits from adb

Prints all nonzero variables in octal

Prints the address map

Prints vector registers at address for count. (CRAY-2 computer system only)
Prints vector register n; default for n is 0. (CRAY X-MP and CRAY-1 computer system
only)

Prints b registers. (CRAY X-MP and CRAY-1 computer system only)

Prints t registers. (CRAY X-MP and CRAY-1 computer system only)

Sets breakpoint at address. The breakpoint is executed count—1 times before causing
a stop. Each time the breakpoint is encountered, the command ¢ is executed. If this
command sets dot to 0, the breakpoint causes a stop.

Deletes breakpoint at address

Runs objfil as a subprocess. If address is given explicitly, the program is entered at
this point; otherwise the program is entered at its standard entry point. The value
count specifies how many breakpoints are to be ignored before stopping. Arguments
to the subprocess may be supplied on the same line as the command. An argument
starting with < or > causes the standard input or output to be established for the com-
mand. All signals are turned on entry to the subprocess.

The subprocess is continued with signal s (see signal(2)). If address is given, the
subprocess is continued at this address. If no signal is specified, the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same as for r.

As for ¢ , except that the subprocess is single stepped count times. If there is no
current subprocess, objfil is run as a subprocess as for r. In this case no signal can be
sent; the remainder of the line is treated as arguments to the subprocess.

The current subprocess, if any, is terminated

The adb command provides a number of variables. Named variables are set initially by adb but are
not used subsequently. Numbered variables are reserved for communication as follows.

0
1
2

Last value printed
Last offset part of an instruction source.
Previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a
core file, these values are set from objfil.

Release 2.0

~ogeas

Base address of the data segment

Data segment size

Entry point

‘‘Magic’’ number (0405, 0407, 0410, or 0411)
Stack segment size

Text segment size

4 SR-2011

ADB(1)

ADB(1)

P Number of the current register set

q Total number of register sets in the core file
For dumps that do not involve multiprocessing, varflVARP]=0 and var[VARQ]=1.
To change from one register set to another, n$p moves the register and Local Memory
map so that register set n may be examined. The numbering starts from 0. Thus, 0
<= n < var[VARQ)].

Addresses

FILES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples, (bl, expl, and f1) and (b2, exp2, and f2). The
second triple may be specified by following the ? or / with an *. The address file is calculated as fol-
lows:

if ((no ¥*) and (bl <address<expl)), file address=address+fl1-bl
else if ((*) and (b2<address<expl)), file address=address+f2-b2
else address is invalid.

For UNICOS running on CRAY-2 computer system, the second map for the / (core) file is set to permit
accessing Local Memory.

For UNICOS running on CRAY-XMP and CRAY-1 computer systems, the second map for the / (core) file
is the map for the data section if there is split code and data.

If either file is not of the kind expected, bl and fI are set to 0 and expl is set to the maximum file

size; in this way, the whole file can be analyzed with no address translation. All addresses are byte
addresses, except for register number in a $v display for UNICOS running on CRAY-2 computer system.

a.out
core

MESSAGES

BUGS

Exit status is 0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the program.

SEE ALSO

SR-2011

ptrace(2) in the UNICOS System Calls Reference Manual, publication SR-2012
a.out(4F), core(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

5 Release 2.0

ADMIN(1) ADMIN(1)

NAME

SYNOPS

admin — Creates and administers SCCS (Source Code Control System) files

1S

admin [-n] [[name]] [~xrel 1 [-t[name] 1 [-f flag[flag-vall] [-d flag[flag-val]l]1 [-alogin]
[—elogin 1 [-m[mrlist] 1 [-y[comment] |1 [-h] [-z] files

DESCRIPTION

SR-2011

The admin command creates new SCCS files and changes parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with —, and named
files (SCCS file names must begin with the characters s.). If a named file does not exist, it is created,
and its parameters are initialized according to the specified keyletter arguments. Parameters not initial-
ized by a keyletter argument are assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named
file, except that nonSCCS files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the standard input is read; each line of the standard
input is taken to be the name of an SCCS file to be processed. NonSCCS files, unreadable files, and

directories are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be pro-
cessed since the effects of the arguments apply independently to each named file.

-n Indicates that a new SCCS file is to be created

—i[name] The name of a file from which the text for a new SCCS file is to be taken. The text consti-
tutes the first delta of the file (see —r keyletter for delta numbering scheme). If the i
keyletter is used, but the file name is omitted, the text is obtained by reading the standard
input until an end-of-file (EOF) is encountered. If this keyletter is omitted, then the SCCS
file is created empty. ‘Only one SCCS file may be created by an admin command on which
the i keyletter is supplied. Using a single admin to create two or more SCCS files requires
that they be created empty (no —i keyletter). The —i keyletter implies the —n keyletter.

-rrel The release into which the initial delta is inserted. This keyletter may be used only if the
—i keyletter is also used. If the —r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by default initial deltas are named 1.1).

~t[name] The name of a file from which descriptive text for the SCCS file is to be taken. If the —t
keyletter is used and admin is creating a new SCCS file (the -n and/or —i keyletters also
used), the descriptive text file name must also be supplied. In the case of existing SCCS
files: (1) a -t keyletter without a file name causes removal of descriptive text (if any)
currently in the SCCS file, and (2) a -t keyletter with a file name causes text (if any) in the
named file to replace the descriptive text (if any) currently in the SCCS file.

~fflag Specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin command line. The allowable flags and their
values are as follows:

b Allows use of the —b keyletter on a ge#(1) command to create branch deltas

cceil The highest release (that is, ‘‘ceiling’’), a number less than or equal to 9999,
which may be retriecved by a get(1) command for editing; default value for an
unspecified ¢ flag is 9999.

1 Release 2.0

ADMIN(1)

—dflag

~llist

-alogin

Release 2.0

ADMIN(1)

ffloor The lowest release (that is, ‘‘floor’’), a number greater than O but less than 9999,
which may be retrieved by a get(1) command for editing; default value for an

unspecified f flag is 1.
dSID Default delta number (SID) to be used by a ger(1) command

i[str] Causes the "No id keywords (ge6)" message issued by get(1) or delta(l) to be
treated as a fatal error. In the absence of this flag, the message is only a warning.
The message is issued if no SCCS identification keywords (see get(1)) are found in
the text retrieved or stored in the SCCS file. If a value is supplied, the keywords
must exactly match the given string, however, the string must contain a keyword,
and no embedded new lines.

j Allows concurrent get(1) commands for editing on the same SID of an SCCS file.

This allows multiple concurrent updates to the same version of the SCCS file.

Uist A list of releases to which deltas can no longer be made (get —e against one of
these ‘‘locked’’ releases fails). The list has the following syntax:

<list> ::= <range> | <list> , <range>

<range> ::=RELEASE NUMBER | a
The character a in the list is equivalent to specifying all releases for the named
SCCS file.

n Causes delta(1) to create a ‘‘null’’ delta in each of those releases (if any) being
skipped when a delta is made in a new release (such as, in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null deltas serve as ‘‘anchor
points’’ so that branch deltas may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the SCCS file, preventing branch
deltas from being created from them in the future.

qtext User-definable text substituted for all occurrences of the %Q% keyword in SCCS
file text retrieved by get(1)

mmod Module name of the SCCS file substituted for all occurrences of the %M% keyword
in SCCS file text retrieved by get(1). If the m flag is not specified, the value
assigned is the name of the SCCS file with the leading s. removed.

ttype Type of module in the SCCS file substituted for all occurrences of %Y% keyword
in SCCS file text retrieved by get(1)

v[pgm] Causes delta(1) to prompt for Modification Request (MR) numbers as the reason
for creating a delta. The optional value specifies the name of an MR number vali-
dity checking program (see delta(1)). (If this flag is set when creating an SCCS
file, the m keyletter must also be used even if its value is null).

Causes removal (deletion) of the specified flag from an SCCS file. The —d keyletter may be
specified only when processing existing SCCS files. Several —d keyletters may be supplied
on a single admin command. See the -f keyletter for allowable flag names.

A list of releases to be ‘‘unlocked.”” See the —f keyletter for a description of the -1 flag and
the syntax of a list.

A login name (see passwd(4F)), or numerical UNICOS system group ID (see group(4F)), to
be added to the list of users which may make deltas (changes) to the SCCS file. A group ID
is equivalent to specifying all login names common to that group ID. Several a keyletters
may be used on a single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, anyone may add
deltas. If login or group ID is preceded by a !, they are to be denied permission to make

deltas.

2 SR-2011

ADMIN(1) ADMIN(1)

FILES

—elogin A login name, or numerical group ID, to be erased from the list of users allowed to make
deltas (changes) to the SCCS file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e keyletters may be used on a single admin
command line.

—ylcomment]

The comment text is inserted into the SCCS file as a comment for the initial delta in a
manner identical to that of delta(l). Omission of the —y keyletter results in a default com-
ment line being inserted in the form:

date and time created YY/MM /DD HH:MM:SS by login

The -y keyletter is valid only if the —i and/or —n keyletters are specified (that is a new
SCCS file is being created).

-m[mrlist] The list of Modification Requests (MR) numbers is inserted into the SCCS file as the reason
for creating the initial delta in a manner identical to delta(1). The v flag must be set and
the (MR) numbers are validated if the v flag has a value (the name of an (MR) number
validation program). Messages occur if the v flag is not set or (MR) validation fails.

-h Causes admin to check the structure of the SCCS file (see sccsfile(4F)), and to compare a
newly computed checksum (the sum of all the characters in the SCCS file except those in
the first line) with the checksum that is stored in the first line of the SCCS file. Appropriate
error messages are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing files.

-z The SCCS file checksum is recomputed and stored in the first line of the SCCS file (see <h).
Use of this keyletter on a truly corrupted file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name. New SCCS files are given
mode 444 (see chmod(1)). Write permission in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called x.file-name, (see get(1)), created with
mode 444 if the admin command is creating a new SCCS file, or with the same mode as the SCCS file if
it exists. After successful execution of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are made to the SCCS file only if
no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of the directories allows only the owner to modify SCCS files contained in the
directories. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the
owner allowing use of ed(1). Care must be taken! The edited file should always be processed by an
admin -h to check for corruption followed by an admin -z to generate a proper check-sum. Another
admin -h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which prevents simultaneous updates
to the SCCS file by different users. See ger(1) for further information.

SR-2011 3 Release 2.0

ADMIN(1) ADMIN(1)

MESSAGES
Use help(1) for explanations.

SEE ALSO

delta(1), ed(1), get(1), help(1), prs(1), what(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 4 SR-2011

ADSTAPE(1) (CRAY X-MP and CRAY-1 computer systems only) ADSTAPE(1)

NAME

adstape — Prepares I0S deadstart tape

SYNOPSIS

/lib/adstape [-i in] { —0 names 1 [—v overlays]

DESCRIPTION

The adstape command reads in, a collection of APML absolute binary records and writes names.

The adstape command accepts the following arguments:

names A comma-scparated list of file names; there is one for each initial, nonoverlay program in the
input file. In writing the output binary records, the Permanent Dataset Table (PDT) and the
Task Execution Table (TXT) header are removed. The default names is
tape.boot,disk.boot,dsdump,kernel.

-v overlays
If the input file contains overlays, they are written to the overlays file. As above, PDTs and the
TXT header are removed Each overlay is preceded by a word count pointing to the next over-
lay. The default overlays is overlays.

-iin A file containing APMLbinary records ; the file should have been prepared by bind(1). The
default in is a.out.

Error information is written to the standard output file. The operational procedures for the use of
adstape are considerably different in COS.

MESSAGES

The exit code is nonzero if any problems are encountered.

SEE ALSO

SR-2011

apml(1)
The Operational Aids Reference Manual, publication SM-0044.

1 Release 2.0

APML(1

NAME

)

(CRAY X-MP and CRAY-1 computer systems only) APML(1)

apml — Invokes the APML assembler

SYNOPSIS

Nib/apml [=t bsys] [-r xref 1 [—g sym 1 [- listing 1 [-m tmwords 1 [-L] [~s text(s)]
[][-list][—o binary 1 name.s

DESCRIPTION

The apml command assembles the file you specified in name.s and places the binary object file in
name.o, unless you have specified the —o option. The listing is written to the file listing if specified.
The error messages and statistics information are written to standard error.

FILES

SR-2011

~t bsys
-r xref

-g sym
-1 listing
~-m tmwords

-L

-8 text(s)
~h

=i nlist

-0 binary

name.s

binary

stderr

sym

name.s

xref

bsys

listing

text(s)
ftmp/APML.?

Names the output file to which gpml writes the binary system text. There is no
default.

Names the output file to which apml writes the binary cross-reference text. You must
supply xref. If you omit xref, apml ignores the —r option.

Names the output file to which apm! writes the Symbol Table. You must supply the
name of the output file. If you omit sym, apml ignores the —g option.

Names the output file to which apml writes the assembler listing. The default is no
listing.

Specifies an integer number of memory words to be reserved for the table manager
work area. The default is 65,476 words.

Requests output of the statistical ‘logfile’ messages to stderr. If the —L option is used,
the amount of excess work area is reported as UNUSED: nnnnn. It should not be
necessary to increase this except on very large assemblies, such as I/O Subsystem. The
work area is not expandable at runtime; therefore if sufficient space is not preallocated
for the assembly to complete, apml aborts.

Any number of system texts; must be separated by commas.

Causes all list pseudos to be processed regardless of the location of the field name (the
default is not enabled). If -h is enabled, i is ignored.

Processes list pseudos whose location field names you specify in nlist. The nlist argu-
ment can be a single name or a list of names separated by commas.

Names the binary object file. The default is name.o if name.s is the input.
Specifies the file containing the assembler source code.

Binary object file

Warning, error, and statistics messages (statistics are provided only if requested by -L)
Symbol table

Assembler input

Binary cross-reference

Binary systems text; there is no default name

Assembler listing (only if requested)

Any number of systems texts (must be separated by commas)

Temporary intermediate files

1 Release 2.0

APML (1) (CRAY X-MP and CRAY-1 computer systems only) APML(1)

BUGS
The —g option occasionally causes an assembly to fail.
SEE ALSO
The APML Assembler Reference Manual, CRI publication SM-0036

Release 2.0 2 SR-2011

AR(1)

NAME

(CRAY-2 computer systems only) AR(1)

ar — Maintains archives and libraries for portable archives

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

The ar command maintains groups of files combined into a single archive file. It primarily creates and
updates library files as used by the link editor.
The ar command accepts the following arguments:

Key One character from the set d, r, q, t, p, m, and x that can be optionally concatenated with one
or more of the following: v, u, a, i, b, ¢, or 1. The meanings of the key letters are as fol-

SR-2011

lows:

d
r

Deletes the named files from the archive file

Replaces the named files in the archive file. If the optional u character is used with
r, then only those files with dates of modification later than the archive files are
replaced.

Quickly appends the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check if the added members are
already in the archive. It is useful only to avoid quadratic behavior when creating a
large archive piece-by-piece.

Prints a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

Prints the named files in the archive

Moves the named files to the end of the archive. If a positioning character is present,
the posname argument must be present and, as in r, specifies where the files are to be
moved.

Extracts the named files. If no names are given, all files in the archive are extracted.
In neither case does x alter the archive file,

Gives a verbose file-by-file description of the making of a new archive file from the
old archive and the constituent files. When used with t, gives a long listing of all
information about the files. When used with x, precedes each file with a name.

Suppresses the message that is produced by default when afile is created

Places temporary files in the local current working directory /tmp; this option causes
them to be placed in the local directory.

Suppresses the feature of putting the filename into the PDT name

posname Specifies that new files are to be placed after (a) or before (b or i) posname. Otherwise, new
files are placed at the end. Posname must be used with the abi key arguments.

dfile Specifies the archive file
name Constituent files in the archive file, afile.

1 Release 2.0

AR(1) (CRAY-2 computer systems only) AR(1)

FILES
ftmp/ar* Temporary files

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice. The module
name from the PDT should be the same as the file name.

SEE ALSO

1d(1), lorder(1)
a.out(4F), relo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

AR(1)

NAME

(CRAY X-MP and CRAY-1 computer systems only) AR(1)

ar — Maintains archives and libraries for portable archives

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

The ar command maintains groups of files combined into a single archive file. The magic string and
the file headers used by ar consist of printable ASCII characters. If an archive is composed of printable
files, the entire archive is printable.

The portable archive format and structure is described in detail in ar(4F).

The ar command accepts the following arguments:

Key An optional -, followed by one character from the set drqtpmx, optionally concatenated with
one or more of vuaibcls. The meanings of the key characters are:

d

r

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with dates of modification later than the archive files are
replaced.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are
to be moved.

Extract the named files. If no names are given, all files in the archive are extracted.
In neither case does x alter the archive file.

Give a verbose file-by-file description of the making of a new archive file from the
old archive and the constituent files. When used with t, give a long listing of all
information about the files. When used with x, precede each file with a name.

Suppress the message that is produced by default when afile is created.

Place temporary files in the local current working directory, rather than in the direc-
tory specified by the environment variable TMPDIR or in the default directory /tmp.

posname Specifies that new files are to be placed after (a) or before (b or i) posname. Otherwise, new
files are placed at the end. Posname must be used with the abi key arguments.

dfile Specifies the archive file
name Constituent files in the archive file, afile.

SR-2011

1 Release 2.0

AR(1) (CRAY X-MP and CRAY-1 computer systems only) AR(1)

FILES
Jtmp/ar* Temporary files

SEE ALSO
ar(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

NOTES

This archive format is not compatible with UNIX System V. It was changed in anticipation of the day
when segldr(1) will be able to read archives.

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Release 2.0 2 SR-2011

AS(1)

NAME

AS(1)

as — Invokes the Cray assembler CAL

SYNOPSIS

as [-o objfile] [l istfile] [-L msgfile] [-b bdflist] [-B] [~ bdfile] [-D micdef]
[-g symfile] [-G] [-C cpu] [-h] [-H] [-i nlisf] [-I options]
[-m mlevel]l [-n number] [-f] [-F] [-j] [-J] [-V] filename

DESCRIPTION

The as command assembles the named file. The following options, each a separate argument, can
appear in any order but must precede the filename argument. If errors are encountered during assembly,

a diagnostic message is issued to stderr.

—o obffile Relocatable assembly output; stored in objfile file. By default, the relocatable output file
name is formed by removing the path name and the .s suffix, if they exist, from the input file
and appending a .0 suffix. Objfile must be processed by a link editor or loader.

-1 Istfile Assembly output source listing; stored in Istfile file; default, the output source listing is
suppressed.

~L msgfile
Assembly output message listing; stored in msgfile file; default, the output message listing is
suppressed.

-b bdflist Reads the binary definition files stored in one or more files. The files named in bdflist can
be designated using one of the following forms:

e List of files separated from one another by a comma
o List of files enclosed in double quotes and separated from one another by a comma
and/or one or more spaces

Reads the default binary assembler definitions found in the file /lib/asdef unless suppressed
with the -B option. The remaining files listed in bdflist are then read in the order in which

they are specified.

-B Suppresses /lib/asdef as the default binary assembler definition file

—c bdfile Creates the binary definition file bdfile; by default, the creation of a binary definition file is
suppressed.

=D micdef
Defines a globally-defined constant micro mname as follows:

micdef ::= mname[=[string]]

mname must be a valid identifier. If the = character is specified, it must immediately follow
mname. The string that immediately follows the = character, if any, is associated with
mname. If you do not specify the string, mname is associated with an empty string.

~g symfile Assembly output symbol file; stored in symfile. Symfile is used by the system debuggers. By
default, the output symbol file is suppressed.

-G Forces all symbols to symfile if the —g option is used. Normally, nonreferenced symbols are
not included.

SR-2011 1 Relcase 2.0

AS(1)

AS(1)
-C cpu Code is generated for the specified CPU. The default is that code is generated for the
characteristics of the host machine. The cpu option has the following syntax:
cpu ::= [primary] {, [charac]}
or
cpu:=, [charac] {,[charac]} -
primary Primary can be one of the following Cray computer systems:
Primary Computer system Primary | Computer system
cray-2 CRAY-2 cray-lm | CRAY-IM
cray-x4 CRAY X-MP models 48 and 416 cray-1s | CRAY-1S
cray-x2 CRAY X-MP models 22, 24, and 28 cray-lb | CRAY-1B
cray-x1 CRAY X-MP models 11, 12, 14, and 18 || cray-la | CRAY-1A
cray-xmp | CRAY X-MP crayl CRAY-1
charac Features of the primary computer. CRAY-2 computer systems have no
special characters.
The CRAY X-MP and CRAY-1 computer systems let you specify the
following logical and numeric traits:
Logical traits Description Logical traits Description
avl Additional vector logical nocori No control operand range interrupts
noavl No additional vector logical ema Extended memory addressing
bdm Bidirectional memory noema No extended memory addressing
nobdm No bidirectional memory hpm Hardware performance monitor
cigs Compressed index and gather/scatter || nohpm No hardware performance monitor
nocigs No compressed index and Pc Programmable clock
gather/scatter
cori Control operand range interrupts nopc No programmable clock
Logical traits Description Logical traits Description
readvl Read vector length vpop Vector pop count
noreadvl Do not read vector length || novpop No vector pop count
statrg Status register vrecur Vector recursion
nostatrg No Status register novrecur No vector recursion
Release 2.0 2 SR-2011

AS(1)

SR-2011

AS(1)

In the following table, n represents an unsigned decimal number.

Numeric traits Description Numeric traits Description
bankbusy=n Bank busy time in clock periods | memsize=n Memory size in words
banks=n Number of memory banks memspeed=n Memory speed in clock periods
clocktim=n Clock time in picoseconds numclstr=n Number of cluster registers
ibufsize=n Instruction buffer size in words numcpus=n Number of cpus

-h Enables all list pseudo instructions, regardless of the location field name.

~-H Disables all list pseudo instructions, regardless of the location field name

-i nlist Restricts list pseudo instruction processing to those pseudo instructions whose location field
names are given in nlist. The names specified by nlist can take one of the following forms:

e List of names separated from one another by a comma

e List of names enclosed in double quotes and separated from one another by a
comma and/or one or more spaces

-I options List options. A list of more than one option must be specified without intervening blanks. It
is not permitted to specify conflicting options (the same character in upper case and lower
case) in the -I list. Options can be any of the following:

Enables source statement listing (default)

Disables source statement listing

Enables edited statement listing (default)

Disables edited statement listing

Enables text source statement listing

Disables text source statement listing (default)

Enables listing control pseudo instructions

Disables listing control pseudo instructions (default)

Enables macro/opdef expansion

Disables macro/opdef expansion (default)

Enables dup/echo expansion

Disables dup/echo expansion (default)

Enables macro/opdef/dup/echo expansion binary only

Disables macro/opdef/dup/echo expansion binary only (default)
Enables macro/opdef/dup/echo expansion conditionals
Disables macro/opdef/dup/echo expansion conditionals (default)
Enables macro/opdef/dup/echo expansion of preedited lines

WT A® W T O e ZTEMNTS "m0 0@

Disables macro/opdef/dup/echo expansion of preedited lines (default)

3 Release 2.0

AS(1)

-m mlevel

AS(1)

x Enables cross-reference listing (default)

X Disables cross-reference listing

n Enables nonreferenced local symbols included in the cross reference (default)
N

Disables nonreferenced local symbols included in the cross reference

Message priority level for output source, message, and standard error file. Mlevel can be one
of the following:

comment

note

caution

warning

error

By default, the message priority level is warning.

-n number

-f

-F

-v

filename
FILES

/lib/asdef

tmpdirfas.?

SEE ALSO

Maximum number of messages to be inserted into the output source, message, and standard
error file. Number must be 0 or greater; the default is 100.

Enables the new statement format. By default, the old format is used when targeting for a
CRAY X-MP or CRAY-1 computer system; otherwise, the new format is used. Statement
format reverts to the format specified on the invocation statement at the end of every
assembler segment.

Disables the new statement format. By default, the old format is used when targeting for a
CRAY X-MP or CRAY-1 computer system; otherwise, the new format is used. Statement
format reverts to the format specified on the invocation statement at the end of every
assembler segment.

Enables editing; the default is enabled. Editing status reverts to the status specified on the
invocation statement at the end of every assembler segment.

Disables editing; the default is enabled. Editing status reverts to the status specified on the
invocation statement at the end of every assembler segment.

Causes the version number of the assembler being run and other statistical information
(diagnostic messages of priority comment) to be written to the stderr.

Files to be assembled; all options must precede the filename argument.

Assembler binary definition file
Temporary file; tmpdir is a directory defined by $STMPDIR. Otherwise, a system
default temporary directory is used.

cc(1), 1d(1), nm(1)

tmpnam(3C) in the CRAY X-MP and CRAY-1 C Library Reference Manual, publication SR-0136
tmpnam(3S) in the CRAY-2 Computer System CRAY-2 UNICOS Libraries, Macros, and Opdefs
Reference Manual, publication 2013

CAL Assembler Version 2 Reference Manual, publication SR-2003

Symbolic Machine Instructions Reference Manual, CRI publication SR-0085

CRAY X-MP and CRAY-1 CAL Assembler Version 2 Ready Reference, publication SQ-0083

CRAY-2 Computer System Functional Description, publication HR-2000

CRAY-2 CAL Assembler Version 2 Reference Card, publication SQ-2002

Release 2.0

4 SR-2011

ASA(1)

NAME

ASA(1)

asa - Interprets ASA carriage control characters

SYNOPSIS

asa [files]

DESCRIPTION

The asa command interprets the output of Fortran programs that utilize ASA carriage control characters.
It processes either the files whose names are given as arguments or the standard input if you do not sup-
ply any file names. The first character of each line is assumed to be a control character; the control
characters have the following meanings:

T (blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line

Lines beginning with other than the above characters are treated as if they began with * . The first
character of a line is not printed. If any such lines appear, an appropriate diagnostic will appear on
standard error. This program forces the first line of each input file to start on a new page.

To correctly view the output of Fortran programs that use ASA carriage control characters, asa could be
used as a filter thusly:

a.out | asa | Ipr

and the output, properly formatted and paginated, would be directed to the line printer. Fortran output
sent to a file could be viewed by:

asa file

SEE ALSO

SR-2011

fsplit(1) nasa(1)

1 Release 2.0

AT(1) AT(1)

NAME
at, batch — Executes commands at a later time

SYNOPSIS

at time [date)1 [+ increment]
at -r job ...
at - [job ...]

batch

DESCRIPTION

At and batch read commands from standard input to be executed at a later time. At allows you to
specify when the commands should be executed, while jobs queued with batch execute when system
load level permits. At -r removes jobs previously scheduled with ar. The -1 option reports all jobs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are redirected elsewhere.
The exported shell environment variables, current directory, umask, and ulimit are retained when the
commands are executed. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file /usr/lib/cron/at.allow. If that file does
not exist, the file /usr/lib/cron/at.deny is checked to determine if the user should be denied access to
at. If neither file exists, only root is allowed to submit a job. The null file at.allow would mean no user
is allowed to use at; a null file at.deny would mean no user is denied the use of at. The allow/deny
files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One-digit and two-digit numbers are taken to be hours,
four digits to be hours and minutes. The time may alternately be specified as two numbers separated by
a colon, meaning hour :minute. A suffix am or pm may be appended; otherwise a 24-hour clock time
is understood. The suffix zulu may be used to indicate GMT. The special names noon, midnight,
now, and next are also recognized.

An optional date may be specifiéd as either a month name followed by a day number (and possibly
year number preceded by an optional comma) or a day of the week (fully spelled or abbreviated to
three characters). Two special ‘‘days’’, today and tomorrow, are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and tomorrow is assumed if it is
less. If the given month is less than the current month (and no year is given), next year is assumed.
The optional increment is simply a number suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24

at 8:15am Jan 24

at now + 1 day

at 5 pm Friday
At and batch write the job number and schedule time to standard error.
Batch submits a batch job. It is almost equivalent to "at now,” except that it goes into a different
queue. Also, "at now" responds with the error message "too late."”
At -r removes jobs previously scheduled by at or batch. The job number is the number given to you
previously by the at or batch command. You can also get job numbers by typing at -1. You can only
remove your own jobs unless you are the super user.

SR-2011 1 Release 2.0

AT (1) AT(1)

EXAMPLES
The at and batch commands read from standard input the commands to be executed at a later time.
Sh(1) provides different ways of specifying standard input. Within your commands, it may be useful to
redirect standard output.

This sequence can be used at a terminal:

batch
make filename >outfile
<Control-D> (hold down ’control’ and depress 'D’)

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a shell procedure
(the sequence of output redirection specifications is significant):

batch <<!

make filename 2>&1 >outfile | mail loginid

!

To have a job reschedule itself, invoke at from within the shell procedure by including code similar to
the following within the shell file:

echo "sh shellfile" | at 1900 thursday next week

FILES
Jusr/lib/cron Main cron directory
Jusr/lib/cron/at.allow List of allowed users
fust/lib/cron/at.deny List of denied users
Jusr/lib/cron/queue Scheduling information
fusr/spool/cron/atjobs Spool area
MESSAGES
At complains about various syntax errors and times out of range.
SEE ALSO

kill(1), mail(1), nice(1), ps(1), sh(1)
cron(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 2 SR-2011

AWK(1)

NAME

AWK(1)

awk — Scans and processes patterns

SYNOPSIS

awk [-Fc] [prog 1 [—f file 1 [parameters] [files]

DESCRIPTION

SR-2011

Awk scans each input file for lines that match any of a set of patterns specified in prog. With each pat-
tern in prog there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog, or in a file specified as -f file. The prog
string should be enclosed in single quotes (") to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name — means the stan-
dard input. Each line is matched against the pattern portion of every pattem-action statement; the asso-
ciated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
see below). The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence of
statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands
for the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, —, *, /, %, and concatenation (indicated by a blank). The C operators ++, —, +=, —=, *=,
/=, and %= are also available in expressions. Variables may be scalars, array elements (denoted x[i])
or fields. Variables are initialized to the null string. Array subscripts may be any string, not neces-
sarily numeric; this allows for a form of associative memory. Each variable and field can be either a
string or a number at any time. When a variable is set by the assignment v = expr its type is sct to
that of expr. (This includes +=, ++, etc.) An arithmetic expression is of type string, and so on. If the
assignment is a simple copy, as in vl = v2, then the type of vl becomes that of v2. String constants

are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is present),
separated by the current output field separator, and terminated by the output record separator. The
printf statement formats its expression list according to the format (see printf(3S)).

The expression in an action may contain any of several built-in functions. The built-in function length
returns the length of its argument taken as a string, or of the whole line if no argument. There are also

1 Release 2.0

AWK(1) AWK(1)

built-in functions exp, log, sqrt, and int. The last truncates its argument to an integer; substr(s, m, n)
returns the n-character substring of s that begins at position m. The function
sprintf(fmt, expr, expr, ...) formats the expressions according to the printf(3S) format given by fint and
returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expressions and
relational expressions. Regular expressions must be surrounded by slashes and are as in egrep (see
grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns separated by a comma; in
this case, the action is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains) or !~
(for does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean

combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with:
BEGIN { FS=c }
or by using the -Fc¢ option.
Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output

field separator (default blank); ORS, the output record separator (default new-line); and OFMT, the out-
put format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=8%1}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; —i) print $i }

Print all lines between start/stop pairs:
[start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1)

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

Release 2.0 2 SR-2011

AWK(1) AWK(1)

command line: awk —f program n=5 input

WARNINGS

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate the null string ("") to it.

SEE ALSO

grep(1), lex(1), sed(1)
UNICOS Support Tools Guide, publication SG-2016

SR-2011 3 Release 2.0

BANNER(1) BANNER(1)

NAME
banner — Makes posters

SYNOPSIS

banner string ...

DESCRIPTION

Banner prints the string arguments (each up to 10 characters long) in large letters on the standard out-
put.

SEE ALSO
echo(1)

SR-2011 1 Release 2.0

BASENAME(1) BASENAME(1)

NAME
basename, dirname — Prints portions of pathnames on standard output

SYNOPSIS
basename string [suffix]
dirname string
DESCRIPTION

The basename command deletes any prefix ending in / and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution marks (™) within
shell procedures.

The dirname command delivers all but the last level of the pathname in string.

EXAMPLES

The following example, invoked with the argument /usr/sr¢/cmd/cat.c, compiles the named file and
moves the output to a file named cat in the current directory:

cc $1
mv a.out “basename $1 .c’

The following example will set the shell variable NAME to /usr/src/cmd:
NAME-="dirname /usr/src/cmd/cat.c’

BUGS
On CRAY-2 UNICOS the basename of root (/) is null and is considered an error.

SEE ALSO
sh(1)

SR-2011 1 Release 2.0

BC(1)

NAME

BC(1)

bc —~ Invokes the arbitrary-precision arithmetic language preprocessor

SYNOPSIS

bc[—<]1[-1][file..]

DESCRIPTION

SR-2011

Bc is an interactive processor for a language that resembles C but provides unlimited precision arith-
metic. It takes input from any files given, then reads the standard input.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —¢ (compile only)
option is present. In this case the dc input is sent to the standard output instead.

The bc command accepts the following arguments:
- Specifies compile only
-1 Specifies the name of an arbitrary precision math library.

In the bc language, assignment to scale influences the number of digits to be retained on arithmetic
operations in the manner of dc(1).

The same letter may be used as an array, a function, and a simple variable simultaneously. All vari-
ables are global to the program. ‘‘Auto’’ variables are pushed down during function calls. When using
arrays as function arguments or defining them as automatic variables

The following table shows the syntax and functions of the bc language. The letters in the table (the
syntax for bc programs) is as follows:

L A letter a—z,
E An expression
S A statement

1 Release 2.0

BC(1)

BC(1)

Type Syntax/Function Notes

Comments strings enclosed in /* and /#*

simple variables - L
array elements - L [E]

Names The words “‘ibase’’, ‘‘obase’’, and ‘‘scale’’ | Assignments to ibase or
obase set the input and out-
put number radix respec-
tively.

Arbitrarily long numbers with
optional sign and
decimal point
E) ®
sqrt
Other operands Length (E) Number of significant decimal
digits
Scale (E) Number of digits right of
decimal point
L(E,..,E)
+-*/%" % is remainder; ~ is power
Operators ++ - Prefix and postfix;
==+ =-=*=/=% =" apply to names
E Either semicolons or
{S; ...; S} new-lines can separate
if (E) S statements.
while (E) S
Statements for(E;E;E)S The value of an expression
null statement statement is printed unless
break the main operator is an
quit assignment.
define L (L ,...,L) {
aatoL, ... ,L
Function S;..S
definitions } return ()
s(x) sine All function arguments
c(x) cosine are passed by value.
Functions in e(x) exponential
-L math library | 1(x) log
a(x) arctangent
j(n,x) Bessel function

Release 2.0

SR-2011

BC(1) BC(1)

EXAMPLE
scale = 20
define e(x){
auto a, b, c, 1, s
a=1
b=1
s=1
for(i=1; 1==1; i++){
a=a*x
b =b#*i
c=ah
if(c == 0) return(s)

S =S8+C

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i++) e(i)
prints approximate values of the exponential function of the first ten integers.

FILES

fust/lib/lib.b Mathematical library

/usr/bin/dc Desk calculator proper
LIMITATIONS

No &&, | | yet.

A for statement must have all three E’s.

Quit is interpreted when read, not when executed.
SEE ALSO

de(1)
UNICOS Support Tools Guide, publication SG-2016

SR-2011 3 Release 2.0

BDIFF(1) BDIFF(1)

NAME

bdiff — Compares very large files for differences

SYNOPSIS

bdiff filel file2 [n][=S]

DESCRIPTION

FILES

The bdiff command is used in a manner analogous to diff(1) to find which lines must be changed in two
files to bring them into agreement. Its purpose is to allow processing of files that are too large for diff.
The bdiff command ignores lines common to the beginning of both files, splits the remainder of each
file into n-line segments, and invokes diff upon corresponding segments. The value of n is 35,000 by
default. The bdiff command accepts the following arguments:

filel One of the files to compare

file2 The other file to compare. If filel or file2 is —, bdiff reads the standard input.

n If n is numeric, it is useful in those cases in which 35,000-line segments are too large for diff,
casuing it to fail.

—S Specifies that no diagnostics are to be printed by bdiff (however, this does not suppress possible
exclamations by diff.)

If both optional arguments are specified, they must appear in the order indicated above.

Bdiff’s output is exactly that of diff, with line numbers adjusted to account for the segmenting of the
files (that is, to make it look as if the files had been processed whole). Because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file differences.

MESSAGES

Use help(1) for explanations.

SEE ALSO

SR-2011

diff(1)

1 Release 2.0

BIND(1) (CRAY X-MP and CRAY-1 computer systems only) BIND(1)

NAME
bind - Binds APML relocatable modules together

SYNOPSIS
Mlib/bind [—i inputfile 1 [-0 outputfile]

DESCRIPTION

Bind reads inputfile, a collection of APML binary records containing external references, and writes
outputfile, a copy of the binary records with external references resolved.

The default inputfile is a.0. The default outputfile is a.out. Error information regarding duplicate or
undefined symbols is written to standard output.

The exit code is nonzero if any undefined symbols were encountered during the binding process.

SEE ALSO
The COS Operational Aids Reference Manual, publication SM-0044

BUGS
Bind does not accept an archive as input.

SR-2011 1 Release 2.0

BMXIO(1)

NAME

(CRAY X-MP and CRAY-1 computer systems only) BMXIO(1)

bmxio — Provides an interface to block mux devices

SYNOPSIS
bmxio [-io] [-t type] [-d dens] [-v vsnO:vsnl:...] fn

DESCRIPTION

NOTES

SR-2011

Bmxio provides a means to move data between a file and a block mux device (most often a tape).

Bmxio selects a device of the requested type; if it is a tape device, bmxio issues a mount message on
the system console. The device is then read or written according to arguments you specify; any of the
following:

-i
-0
-t
-d
-V

fn

Input is taken from the block mux device and written to the specified output file
Input is taken from the provided file and written to a block mux device

Generic device type (the default is TAPE)

Tape density; default is 6250 b/i; may specify 1600.

List of volume names (vsn) separated by colons (:); required on input.

File name (me default is stdin/stdout)

Bmxio supports multivolume, single file tape handling. On output, when the end of tape is detected,
bmxio selects another device, issues a mount message, and continues output until EOF is detected on the
input file. On input, when the end of volume is detected, bmxio checks for the next volume (vsn) in the
list provided and continues reading until all volumes are processed.

Labelled tapes are not currently supported.

Block mux devices are treated as system resources and are opened and closed by the super user upon
initiazation.

1 Release 2.0

CAL(1) CAL(1)

NAME
cal — Prints a calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION

The cal command prints a calendar for the present month, if you do not specify a year and a month. If
you specify a year, cal prints a calendar for all twelve months of the year. If you also specify a month
with the year, a calendar just for that month is printed.

Following are the specifications for the arguments:
year A number representing a year, between 1 and 9999.
month A number between 1 and 12, representing a month.

The calendar produced is that for England and her colonies. Note that “‘cal 85" refers to the early
Christian era, not the 20th century. The year is always considered to start in January even though this
is historically naive.

Try 9 (for September) 1752.

SR-2011 1 Release 2.0

CALENDAR(1) CALENDAR(1)

NAME

calendar — Reminder service

SYNOPSIS

calendar [-]

DESCRIPTION

The calendar command consults the calendar file in your current directory and prints out lines that
contain today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
““Aug. 24, “‘august 24, or ‘‘8/24° are recognized, but not ‘24 August’’ or ‘24/8’’. On weekends
““tomorrow’’ extends through Monday.

When you specify the argument, calendar does its job for every user who has a file calendar in their
login directory and sends them any positive results by mail(1). Normally, this is done daily by facili-
ties in UNICOS.

FILES
fusr/lib/calprog Program to figure out today’s and tomorrow’s dates
fetc/passwd List of login directories
/tmp/cal* Temporary files
BUGS
Your calendar must have public permission (see chmod(1)) for you to get reminder service.
Calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.
SEE ALSO

SR-2011

mail(1)

1 Release 2.0

CAT(1)

NAME

CAT(1)

cat — Concatenates and prints files

SYNOPSIS

cat [-u] [-s][-v[-t] [-e]]file ...

DESCRIPTION

The cat command reads each file you specify on the command line in sequence and writes it to stan-
dard output. Thus:

cat file

prints file, and:

cat filel file2 >file3

concatenates the first two files and places the result in the third.

If you do not specify an input file, or if cat encounters the argument —, cat reads from standard input.
The following options are available;

-u
=S

-V

WARNING

Causes the output to be unbuffered
Makes cat silent about nonexistent files

Prints nonprinting characters (with the exception of tabs, new-lines and form-feeds) visibly. Here,
control characters are printed as "X (CONTROL-X); the DEL character (octal 0177) is printed as
“? . Non-ASCIH characters (with the high-order bit set) are printed as M-x, where x is the charac-
ter specified by the 7 low-order bits.

When used with the —v option, —t causes tabs to be printed as “I’s and form feeds to be printed as
“L’s; Cat ignores this option if you do not specify the —v option.

Prints a $ character at the end of each line (prior to the new-line). Cat ignores this option if you
do not specify the —v option.

Command formats such as

cat filel file2 >filel

cause the original data in file! to be lost.

The cat command may hang if the file it attempts to write to the terminal is a binary file.

SEE ALSO

cp(1), pg(1), pr(1), more(1)

SR-2011

1 Release 2.0

CB(1) CB(1)

NAME
cb — C program beautifier

SYNOPSIS
cb [-s1[—=j][-llength][file.. 1

DESCRIPTION

The ¢b command reads C programs either from its arguments or from the standard input and writes
them on the standard output with spacing and indentation that displays the structure of the code. Under
default options, cb preserves all user new-lines.

The cb command accepts the following arguments:

~s Changes the style of the code to conform to the style of Kernigham and Ritchie in The C Pro-
gramming Language

—j Causes split lines to be put back together

-1 length
Causes cb to split lines that are longer than length

WARNING

Punctuation that is hidden in preprocessor statements causes indentation errors.

SEE ALSO
ce(l)

SR-2011 1 Release 2.0

CC(1)

NAME

(CRAY-2 computer systems only) CC(1)

cc — Invokes the C compiler

SYNOPSIS

cc [option 1 file ...

DESCRIPTION

SR-2011

Cc is the UNICOS system C compiler. It accepts several types of arguments.

Arguments whose names end with .c are taken to be C source programs. They are compiled, and each
object program is left on the file whose name is that of the source with .o substituted for .c. The .o file
is normally deleted, however, if a single C program is compiled and linked all at one go.

In the same way, arguments whose names end with .s are taken to be assembly source programs and are
assembled, producing a .o file. The assembler used is not as(1) but a limited-purpose assembler
intended for the output of the compilation phase of the C compiler (see the —S option).

The following options are interpreted by cc. See Id(1) for link editor options and cpp(1) for more
preprocessor options.

—0 outfile
Produce an object file by the name outfile. The default name is a.out.

- Suppress the link edit phase of the compilation and force an object file to be produced even if
only one program is compiled.

-f Compile C code into object code that does not use floating-point instructions, and link with
appropriate library.

-0 Invoke an object-code optimizer.

-S Compile the named C programs and leave the assembler-language output on corresponding

files suffixed .s.
-E Run only cpp(1) on the named C programs and send the result to the standard output.

-P Run only ¢pp(1) on the named C programs and leave the result on corresponding files suffixed
JA.

—Dname[=def}
Define name as if a #define directive. If no =def is given, name is defined as 1.

~Ldir Change the algorithm for searching for #include files whose names do not begin with / to
look in dir before looking in the directories on the standard list. Thus, #include files whose
names are enclosed in "" are searched for first in the directory of the file argument, then in
directories named in -I options, and last in directories on a standard list. For #include files
whose names are enclosed in <>, the directory of the file argument is not searched.

—Uname Remove any initial definition of name, where name is a reserved symbol that is predefined.
The predefined symbols on the CRAY-2 Computer System are CRAY, CRAY2, and unix.

-C By default, cpp strips C-style comments. If the —C option is specified, all comments (except
those found on cpp directive lines) are passed along.
—# Produce information-only output indicating the actions cc would take based on the arguments

provided. Note that # is the shell sh(1) comment character, but the adjacent — causes it to be

treated differently.

-Bstring Construct path names for substitute preprocessor, compiler, optimizer, assembler and link edi-
tor passes by concatenating string with the suffixes cpp, ccom, cci, ccas, and Id. If string is
empty it is taken to be /lib/o. By default, only ccp, ccom, and cci are modified by this option

(see the —t option).

1 Release 2.0

CC(1)

FILES

NOTES

(CRAY-2 computer systems only) CC(1)

—t[p02al]
Find only the designated preprocessor (p), compiler (0), optimizer (2), assembler (a), and link
editor (I) passes in the files whose names are constructed by a —B option. In the absence of a
~B option, the string is taken to be /lib/n. The value -t " is equivalent to ~tp02.
-Wc,argl[,arg2...]
Hand off the arguments to pass ¢ where c is one of [p02al] indicating preprocessor, compiler,
optimizer, assembler, or link editor, respectively.

Other arguments are taken to be either link-editor option arguments, C-preprocessor option arguments,
or C-compatible object programs, typically produced by an earlier cc run, or perhaps libraries of C-
compatible routines. These programs, together with the results of any compilations specified, are linked
(in the order given) to produce an executable program with the name a.out.

The AT&T C language standard was extended to include arbitrary length variable names. This portion
of the standard has not been implemented on the CRAY-2 compiler.

file.c input file

file.o object file

a.out linked output

ftmp/ctm* temporary

fusr/tmp/ctm* temporary

flib/cpp C preprocessor cpp(1)

flib/ccom compiler

flib/ccas Cray C compiler

Mib/pci optional optimizer

fusr/lib/Oc* backup compiler, Occ

/bin/as assembler, as(1)

/bin/1d link editor, Id(1)

Mlib/crt0.0 runtime startoff

Mlib/libc.a standard C library, see the CRAY-2 UNICOS Libraries, Macros and Opdefs
Reference Manual, publication SR-2013

/lib/libm.a math library, see the CRAY-2 UNICOS Libraries, Macros and Opdefs
Reference Manual, publication SR-2013

Mlib/lmset local memory definitions input to link editor

The location of compiler and temporary files can be controlled by setting and exporting the environ-
ment variable TMPDIR (see sh(1) and tmpnam(3)).

By default, the return value from a C program is completely random. The only two guaranteed ways to
return a specific value are to explicitly call exit(2) or to leave the function main() with a return
expression ; construct.

MESSAGES

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or the link editor.

SEE ALSO

adb(1), cpp(1), as(1), 1d(1).
exit(2) in the UNICOS System Calls Reference Manual, publication SR-2012

Release 2.0 2 SR-2011

CC(1)

NAME

(CRAY X-MP and CRAY-1 computer systems only) CC(1)

cc — Invokes the C compiler

SYNOPSIS

cc [-ooutfile] [—¢] [-hoptions] [-W] [-S] [-g] [-Dname[=def]] [-E] [-directory] [-O] [-P]
[-Uname} [-C] ... file ...

DESCRIPTION
The cc command invokes the UNICOS C compiler.

Cc expects several optional arguments followed by a list of one or more files. Files whose names end
with .c are taken to be C source programs; they are compiled, and each object program is left in the file
whose name is that of the source with .0 substituted for .c. The .o file is normally deleted.

Similarly, all files whose name ends with .s are taken to be CAl; they are assembled, and each object
program is left in the file whose name is that of the source with .o substituted for .s.

Any files whose name ends with .0 are passed on to /d(1) and are loaded with all other .o files that
were compiled or assembled to produce an executable program with the name a.out.

The cc command accepts the following options:

SR-2011

—ooutfile
-

-W

-hoptions

Passed to Id. Override the default output file name, a.out, to be outfile.

Do not call ld. Force the object files to be produced and leave them in their respective .0
files.

Passed to as(1)

Pass the C compiler code generation options on the the C compiler. The following options
can be used, with multiple arguments separated by a comma and no intervening spaces:

ema (noema)
This option causes the compiler to generate code sequences which will allow

memory references up to addresses requiring a full 24-bits. The default is noema,
which disables 24-bit addresses.

fastmd (nofastmd)
This option generates code sequences for int variables which are shorter when
doing multiply or divide operations but allow for only 46 bits of significance.
Without this option, int variables use the much longer (for 64 bits of significance)
code sequences used by long variables for multiply and divide operations. The
default is fastmd, which requires int variables to use the long multiply/divide code
sequences.

abort (noabort)
This option controls whether a compilation does or does not abort if a fatal error is
detected. The default is abort.

btreg (nobtreg)
This option generates optimization code sequences involving B and T register sets
in specific instances. The default is btreg.

varargs (novarargs)
This option is not presently implemented.

Compiles the named C programs and leaves their assembly language output in the
corresponding files suffixed .s.

1 Release 2.0

CC(1) (CRAY X-MP and CRAY-1 computer systems only) CC(1)
-g Create a debug symbol table to be used with symbolic debuggers. Deferred implementation
—Dname[=def]

Passed to the C preprocessor. Define name as if by a #define directive. If no =def is
given, name is defined as 1.

-E Run only the C preprocessor and send the result to standard output. .

—Idirectory Passed to the C preprocessor. Change the algorithm for searching for #include files whose
names do not begin with / to look in directory before looking in the directories on the stan-
dard list. Thus, #include files whose names are enclosed in "" will be searched for first in
the directory of the input file, then in directories named in -I options, and finally in the
standard directories. For #include files whose names are enclosed in <>, the directory of
the input file is not searched.

-0 Invoke the optimizer. Deferred implementation

-P Run only the C preprocessor, and leave the result in the corresponding file suffixed with .i.

—Uname Passed to the C preprocessor. Undefine name as if by a #undef directive.

-C Passed to the C preprocessor. By detault, the C preprocessor strips C comments. If the —-C
options is specified, all comments are passed along to the C compiler. Only those com-
ments on preprocessor directive lines are not passed along.

—# Produce information-only output indicating the actions cc¢ would take based on the argu-
ments provided. Note that # is the shell (sh(1)) comment character, but the adjacent —
causes it to be treated differently.

FILES
file.c Input C source file
file.s Assembly language file
file.o Object file
a.out Executable output file
CAL Temporary file for compiler output
/in/cpp C preprocessor
fbin/comp Cray C compiler
/libflibc.o C compiler library
/bin/as CRAY X-MP and CRAY-1 assembler
/bin/1d CRAY X-MP and CRAY-1 loader

MESSAGES
The error messages produced by the C compiler are intended to be self-explanatory. If further explana-
tion is required, please see the COS Message Manual, publication SR-0039.

SEE ALSO

as(1), 1d(1), segldr(1)
Cray C Reference Manual, publication SR-2024.

Release 2.0

2 SR-2011

CD(1) CD(1)

NAME
cd - Changes working directory

SYNOPSIS
cd [directory]

DESCRIPTION

If directory is not specified, the value of the shell parameter $SHOME (your home directory) is used as
the new working directory. If directory specifies a complete path starting with /, ., or .., directory
becomes the new working directory. If neither case applies, cd tries to find the designated directory
relative to one of the paths specified by the $CDPATH shell variable. If $CDPATH is not defined, the
search path defaults to . (dot). $CDPATH has the same syntax as, and similar semantics to, the $PATH
shell variable. Cd must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective if it were written
as a normal command; therefore, it is recognized and is built in to the shell (see sh(1)).
SEE ALSO

pwd(1), sh(1)
chdir(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

CDC(1)

NAME

CDC(1)

cdc — Changes the delta commentary of an SCCS delta

SYNOPSIS

cde -rSID -m [mrlist 11 =y [comment 1] files

DESCRIPTION

The c¢dc command changes the delta commentary, for the SID specified by the —r keyletter of each
named SCCS file. A delta commentary is defined to be the Modification Request (MR) and comment
information normally specified via the delta(l) command (-m and -y keyletters).

If you specify a directory, cdc behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments and file names.
All the described keyletter arguments apply independently to each named file:

-r [SID] Used to specify the SCCS IDentification (SID) string of a delta for which the delta com-
mentary is to be changed.

-m [mrlist] If the SCCS file has the v flag set (see admin(1)) then a list of MR numbers to be added
and/or deleted in the delta commentary of the SID specified by the —r keyletter may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of delta(l). In
order to delete an MR, precede the MR number with the character ! (see EXAMPLES). If
the MR to be deleted is currently in the list of MRs, it is removed and changed into a
‘“‘comment’’ line. A list of all deleted MRs is placed in the comment section of the
delta commentary and preceded by a comment line stating that they were deleted.

If —m is not used and the standard input is a terminal, the prompt MRs? is issued on the
standard output before the standard input is read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always precedes the comments? prompt (see -y
keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line
character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name of a pro-
gram (or shell procedure) which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

—y [comment] Arbitrary text used to replace the comment(s) already existing for the delta specified by
the —r keyletter. The previous comments are kept and preceded by a comment line stat-
ing that they were changed. A null comment has no effect.

~ If -y is not specified and the standard input is a terminal, the prompt comments? is
issued on the standard output before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped new-line character terminates the
comment text.
The exact permissions necessary to modify the SCCS file are documented in the Source Code Control

System (SCCS) User’s Guide. Simply stated, they are either (1) if you made the delta, you can change
its delta commentary; or (2) if you own the file and directory you can modify the delta commentary.

SR-2011 1 Release 2.0

CDC(1) CDC(1)

EXAMPLES

cdc —11.6 —-m"bl78-12345 b177-54321 bl79-00001" —ytrouble s.file

adds bl78-12345 and b179-00001 to the MR list, removes bl77-54321 from the MR list, and adds the
comment trouble to delta 1.6 of s.file.

cdc -r1.6 s.file
MRs? !b177-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS

If SCCS file names are supplied to the cdc command via the standard input (- on the command line),
then the —-m and -y keyletters must also be used.

FILES

xfile (see delta(1))

zfile (see delta(1))
MESSAGES

Use help(1) for explanations.
SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014
the UNICOS Source Code Control System (SCCS) User’s Guide, publication SG-2017

Release 2.0 2 SR-2011

CFLOW(1) CFLOW (1)

NAME

cflow — Generates C flow graph

SYNOPS

IS
cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

Cflow analyzes a collection of C, YACC, and LEX files and attempts to build a graph charting the exter-
nal references. Files suffixed in .y, ., .c, and .i are YACC’d, LEX’d, and C-preprocessed (bypassed for
. files) as appropriate and then run through the first pass of /int(1). (The -I, -D, and -U options of the
C-preprocessor are also understood.) The output of all this nontrivial processing is collected and turned
into a graph of external references, which is displayed on standard output.

Each line of output begins with a reference (that is, line) number, followed by a suitable number of tabs
indicating the level. Then the name of the global (normally only a function not defined as an external
or beginning with an underscore; see below for the —i inclusion option) a colon and its definition. For
information extracted from C source, the definition consists of an abstract type declaration (for example,
char #), and, delimited by angle brackets, the name of the source file and the line number where the
definition was found.

Once a definition of a name has been printed, subsequent references to that name contain only the refer-
ence number of the line where the definition is found. For undefined references, only <> is printed.

EXAMPLES

SR-2011

Given the following in file.c:

int i

main()

{
O,
g0;
O,

}

f0

{
i =h0;

}

the command
cflow —ix file.c
produces the output
1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <
4 i: int, <file.c 1>
5 g <

1 Release 2.0

CFLOW(1) CFLOW (1)

When the nesting level becomes too deep, use the —e option of pr(1) to compress the tab expansion to
something less than every eight spaces.

The following options are interpreted by cflow:

-r Reverses the “‘caller:callee” relationship producing an inverted listing showing the callers of
each function. The listing is also sorted in lexicographical order by callee.

—ix Includes external and static data symbols. The default is to include only functions in the
flowgraph.
—i Includes names that begin with an underscore. The default is to exclude these functions (and
data if —ix is used).
—dnum Indicates the depth at which the flowgraph is cut off. By default, num is a very large number.
Attempts to set the cutoff depth to a nonpositive integer are met with contempt.
MESSAGES
Complains about bad options. Complains about multiple definitions and only believes the first. Other
messages may come from the various programs used (for example, the C-preprocessor).
BUGS
Files produced by lex(1) and yacc(1) cause the reordering of line number declarations which can con-
fuse cflow. To get proper results, feed cflow the yacc or lex input.
SEE ALSO
cc(l), cpp(1), lex(1), lint(1), pr(1), yacc(1)

Release 2.0 2 SR-2011

CFT (1)

NAME

(CRAY-2 computer systems only) CFT(1)

cft — Invokes the CRAY-2 Fortran compiler

SYNOPSIS

cft [-b binfn] [-c calfn] [t trncnt] [-d oplist] [—e oplist] [-i intsize] [listfn] [-m mlev]
[-M maxblock} [-0 optist] [- -] [fname.f]

DESCRIPTION

SR-2011

The CRAY-2 Fortran compiler is loaded and executed when a ¢ft command is encountered in the stdin
file.

You can specify options in any order. If you omit an option from the statement, the compiler uses the
default value indicated in the following explanation. The compiler input file (see frname.f) is not
optional; it must appear as the last item on the command line. Options are:

-b binfn Binary object code file name; fname.o is the default (see fname.f).

—c calfn Alternate CAL listing file. The —eC option writes pseudo CAL to fname.s. The default is
no file.

—t trncnt Specifies the number of bits to be truncated for floating-point results (0-47)

—d —e oplist
Option argument list for use with the —d and —e options. Arguments in oplist following the
—d option are disabled; those in oplist following the -e option are enabled. Oplist
arguments must not appear in both a -d and —e argument list. If more than one argument
appears in oplist, the argument list can be delimited by quotation marks for readability;
arguments within the quotation marks can be separated by commas and blanks, or not
separated at all. If oplist is not delimited by quotation marks, arguments can be separated
by commas for readability; no other separator can be used. If an option argument is not
specifically enabled or disabled, the compiler uses the default. Specific oplist arguments
and defaults are:

a Aborts job after compilation if any program unit contains a fatal error; disabled by
default.

b Lists beginning sequence number of each code generation block (g implies b);
disabled by default.

B Controls generation of binary file to fname.o in the current directory or to binfn, if b
is specified; enabled by default.

Lists common block names and lengths after each program unit; enabled by default.

¢

C Creates pseudo CAL filename fname.s in the current directory unless an alternate
filename is given by the —c option; disabled by default.

d Lists DO loop table; disabled by default.

e Controls recognition of compiler directive lines; enabled by default.

f Enables flowtrace processing

g Lists generated code for each program unit (see CODE/NOCODE directives); disabled

by default.

h Lists the first statement of each program unit and error messages; all other list options
in oplist are ignored or disabled. The h argument is disabled by default.

1 Release 2.0

CFT(1)

r‘ e

~ Un » o

[

z

(CRAY-2 computer systems only) CFT(1)

Enters compiler-generated statement labels in the symbol table; disabled by default.
Causes at least one execution of all DO loops; disabled by default.
Controls recognition of output listing control directives; enabled by default.

Controls generation of a listing file to fname.l in the current directory or to listfn if
the -1 option is specified; enabled by default.

Enters null symbols in symbol table (defined but not referenced); disabled by default.

Allows double precision; enabled by default. Disabling p (that is, specifying p in
oplist following —d) at compile time causes the following:

1. All double-precision declaratives to be treated as real.

2. Double-precision functions to be changed to corresponding single-precision
functions.

3. Double-precision constants to be converted as double precision and truncated to
real.

4. D format edit descriptors to be changed to E edit descriptors.

Aborts compilation when 100 fatal error messages are counted; enabled by default.
Lists Fortran source code; enabled by default.

Causes compilation to proceed as if a SAVE statement was in every program unit.
Lists symbol table after each program unit; enabled by default.

Vectorizes inner DO loops; enabled by default.

Lists symbol table with cross references after each program unit (x overrides t);
disabled by default.

Causes output of debug symbol table to binary fname.o.

-i intsize Integer size; default is 32 bits. Valid options are 32 (integer) and 64 (long integer).

-1 listfn File to which the output listing is written. Listing options (for example, cross references,
symbol tables, source code) are controlled by arguments in oplist. The default listing file
name is fname.l.

~-M maxblock

Length of code block being optimized or vectorized; default is 2560 words of intermediate
text. Values greater than 2560 may increase optimization and internal compiler errors. A
value of 1 eliminates vectorization and optimization between Fortran source statements.

-m mlev Message level; the highest severity level of CRAY-2 Fortran-produced messages to be
suppressed (0<mlev<4). For example, -m 2 allows CAUTION, WARNING, and ERROR
messages to be issued. —-m 0 means no suppression takes place. The default is ~m 3. The
severity levels are defined as follows:

Release 2.0

2 SR-2011

CFT (1)

—0 optlst

fnamef

FILES

fname.o

fname £
fname.l

fname.s

SR-2011

(CRAY-2 computer systems only) CFT(1)

Message Severity

level type Description
0 COMMENT Comments on
programming inefficiencies.
1 NOTE May cause problems
with other compilers
2 CAUTION Possible user error

{example: no path to
this statement)

3 WARNING Probable user error
(example: using an array
with too few subscripts)

4 ERROR Fatal error. Fatal errors
cannot be suppressed.

Specifies optimization option. When selecting multiple options, separate values by
commas. The options are:

nozeroinc Assumes constant increment integers are not incremented by variables with
value 0. This is the default option.

zeroinc Assumes constant increment integers can be incremented by variables with the
value 0. This option inhibits the vectorization of any DO loop with CIIs of the
form CII=CII + VARIABLE.

Imlv Assigns local variables to local memory saved variables, equivalenced
variables; variables used as actual arguments are excluded. This is the default
option.

nolmlv Disables the Imlv option.

noifcon Disables conditional replacement optimization (default)

partialifcon Optimizes conditional replacement statements.

Optional symbol used to delimit the end of the options; the compiler considers whatever
follows this symbol to be frame.f.

Compiler input file containing the Fortran source code to be compiled. The input file name
must end in f. If the -I option is omitted and the —d option does not contain the L option
argument, the compiler output listing is written to the file fname.l. Similarly, if the -b
option is not specified and B is not an argument to option —d, the binary object file is
written to fname.o. The input file name must follow all other command line options.

Compiler binary object code output file. This file may be redirected using the —b option.
The —d option with the oplist argument B enables the writing of this file.

CRAY-2 Fortran input Fortran source code file.

Compiler listing output file. This file may contain a source listing, cross references,
generated code listing, error messages and diagnostics, and other listing options controlled
by the —e and —d options. The listing file may be redirected using the -1 or disabled using
the L argument with the —d option.

Pseudo CAL filename; not written by default.

3 Release 2.0

CFT(1) (CRAY-2 computer systems only) CFT (1)

stderr Command line errors are written to stderr. If the compiler listing is disabled (with —d 1),
compile time errors and diagnostics are written to stderr.

MESSAGES

A full list of compiler diagnostics can be found in the CRAY-2 Fortran Reference Manual, publication
SR-2007.

EXAMPLES

cft in.f
In this example, the file in.f is compiled and a binary object file is written to the file in.o. A
listing file including source code, fatal and warning messages, symbol table, and list of common
block names and length is written to the file in.l. The default optimization option nonzeroinc is
set. Vectorization of inner DO loops, DOUBLE PRECISION, and recognition of compiler directive
lines is enabled. Floating-point operation results are not truncated. Compilation terminates if
more than 100 fatal errors are found.

cft —b binary —dLelpv —e"j q" -m 4 —ozeroinc — file.f
In this example, the file file.f is compiled, creating the binary object file name binary. Only fatal
errors are written to stderr. No listing file is created. All compiler directive lines are ignored.
All DO loops execute at least once, but do not vectorize. DOUBLE PRECISION is treated as
REAL. The optimization option zeroinc is assumed.

cft ~d B,L -m O input.f
In this example, the file input.f is compiled. No listing file or object file is created. All levels of
compiler messages are written to stderr. Listing options are disabled, and all other compiler
options are set to their default setting.

Release 2.0 4 SR-2011

CFT (1) (CRAY X-MP and CRAY-1 computer systems only) CFT (1)

NAME
cft — Invokes the CFT Fortran compiler

SYNOPSIS

cft [-a alloc] [-b binfile] [—c calfile] [-d oplist] [-e oplist] [intlen] [~ listfile] [-m mlev]
[-o options] [~t trunc] [—u unroll] [-v msgs] [-A aids] [-C type,characteristic] [-E errfile]
[-M maxblock] [- -} filename

DESCRIPTION

The symbol — — may be used to delimit the end of the options. The Fortran source code to be compiled
must be filename. Filename must end in .f. If the -b option is omitted, the default binary file is writ-
ten to filename.o. The error messages and statistics information are written to standard error, stderr,
unless —eE or -E errfile is specified. The ¢ft command accepts the following options are:

-a alloc Allocation mode; alloc can be equal to static or stack. Static allocation is the default.
-b binfile Alternate binary object file. Default is filename.o. —d B disables binary object creation.
—c calfile Alternate CAL listing file. —e C writes pseudo CAL to filename.s. Default is no file.

—{dle} oplist :
Arguments in oplist following the —d option will be disabled, those in oplist following the
-e option will be enabled. The arguments in the oplists must not appear in both the d and e

oplists. The options are:

A Enables non-ANSI messages to be printed at compile time. Disabled by default.
Creates binary object file filename.o. Enabled by default.

Creates pseudo CAL file filename.s. Disabled by default.

Writes sequence number labels at each executable Fortran statement to the Debug
Symbol Table, allowing Breakpoints to be set with SID at statement sequence
numbers. This option forces —e iz and -M 1. Disabled by default.

Creates an error listing file in filename.e. Disabled by default.
Sets all uninitialized stack variables to an undefined value. Disabled by default.
Creates a listing file filename.l. Disabled by default.

Saveall option allows compilation to occur as if a SAVE statement with an empty
list were in each program unit. This option overrides —0 btreg. Disabled by
default.

a Aborts job after compilation if any program unit contains compilation errors. Dis-
abled by default.

b Lists beginning sequence number of each code generation block (g implies b).
Disabled by default.

¢ Lists common block names and lengths after each program unit. Enabled by
default.

Lists DO-loop table. Disabled by default.
Enables recognition of compiler directive lines. Enabled by default.
Enables the flowtrace option. Disabled by default.

Lists generated code for each program unit (see CODE and NOCODE compiler
directives). Disabled by default.

C aw

L R

@ = o Q

SR-2011 1 Release 2.0

CFT(1) (CRAY X-MP and CRAY-1 computer systems only) CFT(1)

h Causes listing of the first statement of each program unit and error messages. All
other list options in oplist are ignored or disabled. Disabled by default.

i Enters compiler-generated statement labels in the symbol table. Disabled by
default.

Causes all DO loops to execute at least once. Disabled by default.

— e

Enables recognition of output control directives. Disabled by default.
Generates a table of machine characteristics. Disabled by default.

Enters null symbols in symbol table (defined but not referenced). Disabled by
default.

Prints a message identifying any array references with out-of-bounds subscripts
found during execution. Enables the BOUNDS compiler directives. Disabled by
default.

P Allows double precision. Enabled by default. Disabling p causes at compile time:
1. All double precision declarations to be treated as real.

2. Double precision functions to be changed to corresponding single precision
functions.

3. Double precision constants to be converted as double precision and trun-
cated to real.

4. D format edit descriptors to be changed to E format descriptors.

-]

q Aborts compilation when 100 fatal error messages have been issued. Enabled by
default.

Rounds results on multiply operations. Enabled by default.
Lists Fortran source code. Enabled by default.

Lists symbol table after each program unit. Enabled by default.
Controls int24 usage. Enabled by default.

Attempts to vectorize inner DO loops. Enabled by default.

Lists symbol table with cross reference after each program unit (x overrides t).
Disabled by default.

z Writes the Debug Symbol Table. Disabled by default.

—iintlen Specifies length of integers. "64" implies 64-bit integers. This is the default option. "24"
implies 24-bit integers.

-l listfile Alternate source listing file. Default is no source listing. —e L enables a source listing file
with the name filename.l.

-m mlev Highest message level to be suppressed; default is 3. Fatal errors are not suppressed.

-y

< = e

Level Severity Description
0 COMMENT Comments on programming inefficiencies
1 NOTE May cause problems with other compilers
2 CAUTION Possible user error
3 WARNING Probable user error
4 ERROR Fatal error

Release 2.0 2 SR-2011

CFT (1)

SR-2011

(CRAY X-MP and CRAY-1 computer systems only) CFT(1)

-0 options Specifies optimization options. Only one from each group of options may be selected. If
more than one argument is specified, arguments must be separated by commas. The option

groups are:
nozeroinc

zeroinc

noifcon

partialifcon

fullifcon

fastmd
slowmd

safedorep

fulldorep
nodorep

invmov
noinvmov
unsafeif
safeif

bl

nobl
btreg

nobtreg

Assumes constant increment integers are not incremented by variables with
the value O (default option).

Assumes constant increment integers can be incremented by variables with the
value 0. This option inhibits the vectorization of any DO loop in which there
are CIIs of the form ClI=CIl+variable.

Disables optimization of conditional replacement statements of the form
IF(logical exp) var=expression except where CFT replaces these statements
with MIN/MAX intrinsic functions (default option).

Allows CFT to optimize conditional replacement statements of the form
IF(logical exp) var=expression if var is of type real, integer, or logical, and
expression does not involve division or an external function reference. The
optimization causes CFT to generate code similar to
var=CVMGx(expression,var,condition). If the optimization is performed, the
IF statement will not inhibit vectorization or break an optimization block.
Allows CFT to optimize conditional replacement statements as described for
PARTIALIFCON, except conditional replacement statements involving division
and external functions are also optimized.

Causes CFT to use the fast integer multiply and divide algorithms. Operands
and results are limited to 46 bits; there is no overflow detection.

Causes CFT to generate the full 64 bit integer multiply and divide (default
option).

Enables replacement of 1-line DO loops with a call to a $SCILIB routine per-
forming the same operation more efficiently . Replacement does not occur
when a one-line DO loop contains potential dependencies or equivalenced
variables (default option).

Enables replacement of 1-line DO loops with a call to a $SCILIB routine.
Potential dependencies and equivalences are ignored.

Disables replacement of 1-line DO loops. Nodorep has no effect on vectori-
zation of loops in the program.

Enables movement of invariant code from DO loops (default option).
Disables movement of invariant code from DO loops.

Enables instructions to move over a branch instruction.

Disables instructions moving over a branch instruction (default option).
Enables scalar loops to be bottom loaded (default option).

Disables bottom loading of scalar loops.

Causes CFT to allocate specific scalar variables in a program unit to a T regis-
ters.

Causes CFT to allocate all user variables to memory. Nobtreg does not affect
the allocation of compiler-generated variables to B or T registers or the use of
B or T registers temporarily holding values during expression evaluation
(default option).

3 Release 2.0

CFT(1) (CRAY X-MP and CRAY-1 computer systems only) CFT (1)

cvl Enables compilation of conditional vector loops (default option).
nocvl Disables compilation of conditional vector loops.
keeptemp Updates scalar temporary variables in DO loops (default option).

killtemp Does not update scalar temporary variables in DO loops. The variable values
will be undefined when the DO loop terminates.
~t trunc Number of bits truncated for floating-point results. Truncated bits are zeroed. Range is
O<=trunc<=47. Default is 0.

—u unroll Specifies that inner DO loops with constant limits iterating unroll times or less may use
DO-loop unrolling. The maximum value for unroll is 9. Default is 3. —u 0 tumns off DO-

loop unrolling.

-v msgs Enables the LOOPMARK utility. If msgs is messages an explanation as to what was done to
the loop will be printed. If msgs is nomessages no explanation is given. Msgs is required.
The LOOPMARK utility is disabled by default.

—-A aids Determines the number of vectorization inhibition messages to be printed when the aids
argument is equal to :

loopnone No messages
looppart 3 per compiler block; 100 per compilation. (default)
loopall All messages are issued

—C type,characteristics
Specifies the mainframe type running the binary object. This defaults to the CPU type of
the current machine ’

cray-1m Generates code for the CRAY-1 M computer systems.
cray-1, cray-1a, cray-1b, cray-1s Generates code for the CRAY-1 S computer systems.

cray-xmp, cray-x1, cray-x2, cray-x4
Generates code for the CRAY X-MP computer systems.

Optional machine characteristics can be specified following the machine type. Specifying a
machine characteristic requires specifying a machine type.

[no]avl Target machine does/does not have two vector logical
functional units.
[no]bdm Target machine does/does not have bidirectional
memory.
[no]cigs Target machine does/does not have compressed index
gather/scatter hardware.
[no]ema Enables/disables extended addressing capability.
[no]vpop Enables/disables vector pop count capability.
[no]vrecur Target machine does/does not have vector recursion.
ibufsize=words Instruction buffer size in words (16 or 32).
memspeed=cps Memory speed in clock periods.
-E errfile Alternate error listing file. —e E writes errors to filename.e. Default is stderr.
-M maxblock

Length of code block being optimized or vectorized. Default is 4000 words of internal
intermediate text. Values greater than 4000 may increase optimization and internal com-
piler errors. Maxblock=1 eliminates optimization and vectorization.

Release 2.0 4 SR-2011

CFT(1)

FILES

filename.e
filename £
filename.l
filename.o

filename.s

MESSAGES
The full range of CFT diagnostics can be found in the Fortran (CFT) Reference Manual, publication

SR-0009.

SEE ALSO
The Fortran (CFT) Reference Manual, publication SR-0009

SR-2011

(CRAY X-MP and CRAY-1 computer systems only)

Error listing file

Fortran source file; must always be specified.
Source listing filename; default is no filename.
Binary object filename

Pseudo CAL file name; default is no filename.

CFT(1)

Release 2.0

CFT77(1) (Deferred Implementation on CRAY X-MP and CRAY-1 computer systems) CFT77(1)

NAME

cft77 — Fortran compiler, not machine-specific

SYNOPSIS

cft77 [-aalloc] [-b binfile] [-d offstrng 1 [-e onstrng 1 [-i intlen 1 [-1 listfile]
[-m msglev)[-0 optim]1 [-s calfile] { -t trunc][-C cpuhaw] [-- 1 filef

DESCRIPTION

SR-2011

The ¢ft77 command invokes the CFT77 compiler. Keywords in the ¢ft77 command can be in any order.
If a keyword and option are omitted from the statement, the compiler uses a default value. If an entry
in the command is not a recognized keyword, the job is aborted. If a keyword option is unrecognized,
duplicated, or in conflict with another option, the job is usually aborted.

The command showing all default values is as follows (file,f must be specified, and other appearances
of file use the same name. —s defaults to no file.):

cfi77 -a static -b fileo —d ADLSacfgjosx —e Bpqr -i46 -1 -m3 -0 full,nozeroinc -t0 -C
cray-xmp,nocigs,noema,novpop — file.f

If conflicting list output options appear on a control statement, a warning message appears in the logfile
and the option is used with the highest precedence (1 being the highest) as follows:

10

<L

-eh

-e CgsX

-d cgsx

CDIRS

Thus, if ON=S and the NOLIST directive is compiled, the directive is ignored.

—a alloc Memory allocation scheme for entities in memory. alloc can be either static (the default),

AR S ol

or stack. :

static All memory is statically allocated; a stack is not used, except automatic arrays
and array temporaries, which are allocated on the heap.

stack Constants and entities in a DATA statement, SAVE statement, or a common

block are statically allocated. All other entities are allocated on the stack,
except automatic arrays and array temporaries, which are allocated on the heap.

-b binfile Creates file binfile (if it does not already exist), on which the compiler writes binary object
modules. With -b 0, no binary load files are written. The default is file.o.

—d eoplist Disables or enables up to 12 compiler options. The options establish settings throughout an
executable program. Compiler directives can turn many options on or off within programs,
but only those options not included in the —e or —d string. If an option appears in one of
the strings, directives for that option are ignored. —d ADLSacfgjosx —e Bpqr. The —d
options are as follows.

L —eL enables all available kinds of listings to the output file (file.l or the file specified
by the -1 parameter). These include generated code, cross reference listing, common
blocks, and vectorization information. L supersedes c, g, s, and x, which supersedes
compiler directives. The default is disabled (output is enabled by ¢, g, s, and x
options).

1 Release 2.0

CFT77(1)

—i intlen

-1 listfile

Release 2.0

(Deferred Implementation on CRAY X-MP and CRAY-1 computer systems) CFT77(1)

Generates a symbol table for the debugger on the file specified by -b binfile. The
default file is file.o, where file is specified by filef in the command. The default for
the D option is disabled. ’

Enables creation of a binary object file; that is, —dB disables the object file. See
parameter =b. The default is enabled.

Generates messages to note all non ANSI usages. The default is disabled.

Creates CAL file file.s, where file is specified by file.f in the command. Parameter —s
creates a file with a non-default name, which overrides option S. The default is dis-
abled.

Aborts job after compilation if any program unit contains a fatal error. The default is
disabled.

Lists common block names and lengths in file listfile after each program unit. Not
needed if —eL is used. The default is disabled.

—ef generates flowtrace for the entire compilation unit. The option supersedes FLOW
and NOFLOW directives. The default is disabled.

—eg enables listing of generated code to the output file (file.l or the file named by -I).
This option is superseded by —eL; it supersedes CODE and NOCODE directives. The
default is disabled.

Enables listing of first statement in each program unit and error messages. & is super-
seded by LIST; it supersedes c, g, s, and x. The default is disabled.

Causes at least one execution of each DO loop whose DO statement is executed. The
default is disabled.

—eo generates bounds checking for entire compilation unit, and also enables runtime
conformance checking in array syntax expressions. —eo supersedes the BOUNDS direc-
tive. The default is disabled.

Allows double-precision. If —dp is specified, the following occurs during compile
two (the default is enabled):
e All double-precision declaratives are treated as real
e Double-precision functions are changed to the corresponding
single-precision functions
e Double-precision constants are converted as double-precision and
truncated to real
e D in FORMAT statement is changed to E

Aborts compilation when 100 fatal error messages are counted. The default is
enabled.

Rounds the results on multiply operations. The default is enabled.

—es enables listing of source code to the output file (file.l or file named by -I). This

option supersedes LIST, NOLIST, and EJECT directives; it is not needed if -eL is
specified. The default is disabled

Enables cross reference listing to the output file (file.o or the file named by -I). Not
needed if —eL is specified.

intlen can be either 64 or 46, to specify 64-bit or 46-bit integer arithmetic. The default is

Creates file listfile to receive list output. Output is enabled by —e options /fIL, c, g, s, or x.
The default, file.l uses file from file.f on the command.

2 SR-2011

CFT77(1)

SR-2011

(Deferred Implementation on CRAY X-MP and CRAY-1 computer systems) CFT77(1)

-m msglev Level of CFT77 messages; msglev indicates the highest message level to be suppressed. For

-0 optim

—s calfile

~t trunc

example, -m2 allows Caution, Warning, and Fatal messages to appear. O<msglev<4. For
example, -m0 allows all messages, and fatal errors are never suppressed. The default is 3
(only warning and error messages will be issued). The message levels are as follows:

Level Severity
Comment | Comments on programming inefficiencies
Note May cause problems with other compilers
Caution Possible user error.
Warning Probable user error.
Error Fatal error (never suppressed)

Specifies optimization options. optim can be off, full, or novector; and zeroinc or nozeroinc.
With full (default), compiler directives for vectorization are recognized. nozeroinc, the
default, improves execution time by assuming that constant increment variables (CIVs) are
not incremented by variables with the value 0. zeroinc adds runtime checks for zero incre-
ments of CIV increments in DO-loops.

Creates file calfile (if it does not already exist) to receive Cray Assembly Language (CAL)
output. This file can be manually modified to be input to the CAL assembler. DATA state-
ments are not supported. The default is no file or option s

Number of bits to be truncated. Range is O<trunc<47. -t specifies truncation for all
floating-point results; it does not truncate double-precision results, function results, or con-
stants. Truncated bits are set to 0. The default is 0.

-C cpu,hdw

Specifies the mainframe type and optional characteristics of the hardware running the gen-
erated code. This parameters does not apply to CRAY-2 computer systems. The cpu value
assumes the minimum characteristics for that mainframe. Unspecified hardware is assumed
to be disabled. The cpu and hdw options are as follows (the default value is cray-xmp,
nocigs,noema,mova,movpop):

3 Release 2.0

CFT77(1)

filef

FILES

filef
file.o

file.l

file.s

SEE ALSO

(Deferred Implementation on CRAY X-MP and CRAY-1 computer systems) CFT77(1)

Hardware Description
cray-1m CRAY-1M computer systems
cray-1 CRAY-1 computer systems
cray-la CRAY-1S computer systems
cray-1b
cray-1s
cray-xmp CRAY X-MP computer systems
cray-x1
cray-x2
cray-x4

ema” noema Target machine does/does not have
extended memory addressing.
cigs™nocigs Target machine does/does not have
gather-scatter hardware with
compressed index hardware.

vpop novpop | Target machine does/does not have a
vector population count.

Name of file containing source input. This option does not have an option. The file must
be specified.

Fortran source file; must always be specified.

Binary object file name. The default name derived from file.f. parameter —~b can be used to
specify a different name.

Source listing file name. The default name derived from file.f, parameter —e can be used to
specify a different name.

Pseudo CAL file; default is derived from filef, parameter —e can be used to specify a
different name.

UNICOS CFT77 Reference Card, publication SQ-0138
CFT77 Reference Manual, publication SR-0018, and UNICOS CFT77

Release 2.0

4 SR-2011

CHMOD(1)

NAME

chmod — Changes mode

SYNOPSIS

chmod mode files

DESCRIPTION

CHMOD(1)

The permissions of the named files are changed according to mode, which may be absolute or sym-
bolic. An absolute mode is an octal number constructed from the OR of the following modes:

4000
2000
0400
0200
0100
0070
0007

Set user ID on execution

Set group ID on execution

Read by owner

‘Write by owner

Execute (search in directory) by owner
Read, write, execute (search) by group
Read, write, execute (search) by others

A symbolic mode has the form:
[who 1 op permission { op permission]

is a combination of the letters u (for user’s permissions), g (group) and o (other). The
letter a stands for ugo (for the rwx permissions); ugo is the default if who is omitted

can be + to add permission to the file’s mode, - to take away permission, or = to
assign permission absolutely (the bits associated with the specified who will be reset).

Who

(also for the rwx permissions).
Op
Permission

is any combination of the letters r (read), w (write), x (execute), s (set owner or group
ID) and t (save text). The t permission is associated with the 1000 bit; only a super
user can alter the t permission. The t permission is not operable in UNICOS. Omit-

ting permission is only useful with = to take away all permissions.

The letters u, g, and o are allowable as permissions. For example,

chmod g+u file

makes group permissions the same as user permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s only works with u or g; t only works with u (t is not operable in
UNICOS).

Only the owner of a file (or the super-user) may change its mode. In order to set the group ID,

the group of the file must correspond to your current group ID.

SR-2011

Release 2.0

CHMOD(1) CHMOD(1)

EXAMPLES
The first example denies write permission to others, the second makes a file executable:
chmod o-w file
chmod +x file
SEE ALSO
1s(1)

chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

Release 2.0 2 SR-2011

CHOWN(1) CHOWN(1)

NAME

chown, chgrp — Changes owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION

Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login
name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or a
group name found in the group file.

If either command is invoked by someone other than the super user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000, respectively, are cleared.
FILES
fetc/passwd
fetc/group
SEE ALSO

chown(2) in the UNICOS System Calls Reference Manual, publication SR-2012
group(4F), passwd(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

SR-2011 1 Release 2.0

CHSH(1) (CRAY X-MP and CRAY-1 computer systems only) CHSH(1)

NAME
chsh — Change default login shell

SYNOPSIS

chsh name [shell]

DESCRIPTION

The chsh command is similar to passwd(1) except that it changes the login shell field of your password
file rather than the password entry. You can specify one of the following for shell: /bin/csh,
/bin/oldcsh, or /usr/mew/csh. If you do not specify shell, it defaults to the login shell /bin/sh. Only
the super user can specify a shell other than one of these.

Name is your login name.
An example use of this command would be
chsh bill /bin/csh

SEE ALSO

csh(1), passwd(1)
passwd(4F) the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

CLEAR(1) (CRAY X-MP and CRAY-1 computer systems only) CLEAR(1)

NAME
clear — Clears terminal screen

SYNOPSIS

clear

DESCRIPTION

The clear command clears your screen. It looks in the environment for the terminal type and then in
/usr/lib/terminfo to figure out how to clear the screen.

FILES
fust/lib/terminfo Terminal capability data base

SR-2011 1 Release 2.0

CMP(1) CMP(1)

NAME

cmp — Compares two files

SYNOPSIS
cemp [1] [-s] filel file2

DESCRIPTION

Filel and file2 are compared. (If filel is —, the standard input is used.) Under default options, cmp
makes no comment if the files are the same; if they differ, cmp displays the byte and line number at
which the difference occurs. If one file is an initial subsequence of the other, that fact is noted.

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argu-
ment.

Options for cmp are as follows:

-1 Prints the byte number (decimal) and the differing bytes (octal) in three columns for each
difference.

—s Prints nothing for differing files; return codes only.

SEE ALSO
comm(1), diff(1)

SR-2011 1 Release 2.0

COMB(1) COMB(1)

NAME

comb — Combines SCCS deltas

SYNOPSIS

comb [-o0] [-s] [-psid] [-clist] files

DESCRIPTION

Comb generates a shell procedure (see sh(1)) which, when run, reconstructs the given SCCS files. The
reconstructed files are, hopefully, smaller than the original files. The arguments may be specified in
any order, but all keyletter arguments apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the input is taken to be the name of an SCCS
file to be processed; non-SCCS files and unreadable files are silently ignored. If no keyletter arguments
are specified, comb will preserve only leaf deltas and the minimal number of ancestors needed to
preserve the tree.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to be pro-
cessed, but the effects of any keyletter argument apply independently to each named file.

—pSID Provides the SCCS IDentification string (SID) of the oldest delta to be preserved. All older
deltas are discarded in the reconstructed file.

—clist Prints a list (see get(1) for the syntax of a lisf) of deltas to be preserved. All other deltas are
discarded.

-0 For each get —e generated, this argument causes the reconstructed file to be accessed at the
release of the delta to be created, otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the —o keyletter may decrease the size of the reconstructed SCCS
file. It may also alter the shape of the delta tree of the original file.

- Causes comb to generate a shell procedure which, when run, will produce a report giving, for
each file: the file name, size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 # (original — combined) / original
It is recommended that before any SCCS files are actually combined, one should use this
option to determine exactly how much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file
comb??7?? Temporary file

MESSAGES

SR-2011

Use help(1) for explanations.

1 Release 2.0

COMB(1) COMB(1)

BUGS

Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possible
for the reconstructed file to actually be larger than the original.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014
The Source Code Control System (SCCS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

COMM(1) COMM(1)

NAME

comm — Selects or rejects lines common to two sorted files

SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCI collating sequence (see sort(1)), and pro-
duces a three-column output: lines only in filel; lines only in file2; and lines in both files. The file
name - means standard input is used.

Arguments 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the
lines common to the two files (column 3); comm -23 prints only lines in the first file but not in the
second; comm -123 is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1)

SR-2011 1 Release 2.0

CORD(1) (CRAY X-MP and CRAY-1 computer systems only) CORD(1)

NAME

cord — Invokes the core dump program

SYNOPSIS
cord [-btvs] [—{wla} addrl,addr2]

DESCRIPTION

Cord is a core dump formatter. The program reads the local file core and formats selected portions for
dumping to standard output. Cord dumps the exchange package by default but can dump b, t, or v
registers, the stack (s), and memory by argument selection.

The options b, —t, and —v select the respective saved registers for dumping. The —s option selects a
stack dump. This is possible only if the stack is in tact. The memory dump can be invoked by either
the —w or —a option. The dual option is to provide compatibility both with earlier versions of cord and
fdmp(1). The parameter addrl is the starting dump word address, and the parameter addr2 is the end-
ing dump word address. The word dump mode is from program address zero, not core file address zero.

BUGS

Input can only be from the file core.
The stack dump often appears to be bashed.
Cord is extremely sensitive to the format of the core file.

There is currently no option for formatting the user structure.

SR-2011 1 Release 2.0

CP(1)

NAME

CP(1)

cp — Copies files

SYNOPSIS

cp filel [file2 ...] target

DESCRIPTION

Filel is copied to target. Under no circumstance can filel and target be the same (take care when
using sh(1) metacharacters). If target is a directory, then one or more files are copied to that directory.
If target is a file, its contents are destroyed.

If target is not a file, cp creates a new file that has the same mode as filel except that the sticky bit is
not set unless you are super user (the sticky bit is not operable in UNICOS); the owner and group of tar-
get are those of the user. If target is a file, copying a file into target does not change its mode, owner,
or group. The last modification time of farget (and the last access time, if target did not exist) and the
last access time of filel are set to the time the copy was made. If rarget is a link to a file, all links
remain and the file is changed.

SEE ALSO

SR-2011

cpio(1), In(1), mv(1), rm(1)
chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

1 Release 2.0

CPIO(1) CPIO(1)

NAME

cpio — Copies file archives in and out

SYNOPSIS

cpio —o [acBv]
cpio —i [BedmrtuvfsSbé 1 [patterns]
cpio —p [adlmuv] directory

DESCRIPTION

SR-2011

The c¢pio —o command (copy out) reads the standard input to obtain a list of path names and copies
those files onto the standard output together with path name and status information. Output is padded
to a 4096-byte boundary.

The cpio —i command (copy in) extracts files from the standard input, which is assumed to be the pro-
duct of a previous cpio —0. Only files with names that match patterns are selected. Patterns are given
in the name-generating notation of sh(1). In patterns, meta-characters ?, *, and [...] maich the slash /
character. Multiple patterns may be specified and if no patterns are specified, the default for patterns
is * (that is, select all files). The extracted files are conditionally created and copied into the current
directory tree based upon the options described below. The permissions of the files will be those of the
previous cpio —0. The owner and group of the files will be that of the current user unless the user is
super-user, which causes cpio to retain the owner and group of the files of the previous cpio —o.

The cpio —-p command (pass) reads the standard input to obtain a list of path names of files that are
conditionally created and copied into the destination directory tree directory based upon the options
described below.

The available arguments are as follows. The hyphen preceding the following options can be omitted if
the options are concatenated without spaces.

a Reset access times of input files after they have been copied.

B Block input/output at 5,120 bytes to the record (does not apply to the pass option; useful only
with data that will be stored on tape).

d Creates directories as needed.

c Writes header information in ASCII character form for portability. This option is necessary to
transfer a cpio archive between a CRAY mainframe and a front end machine.

r Interactively rename files. If the user types a null line, the file is skipped. This option is

usable only with the ~i option.

Prints table of contents of the input. No files are created.

Copies unconditionally (normally, an older file will not replace a newer file with the same
name).

v Verbose: causes a list of file names to be printed. When used with the t option, the table of
contents looks like the output of an Is -1 command (see Is(1)).

Whenever possible, link files rather than copying them. Usable only with the —p option.
Retains previous file modification time. This is ineffective on directories that are being copied.
Copies in all files except those in patterns.

Swaps bytes. Use only with the —i option.

Swaps halfwords. Use only with the —i option.

Swaps both bytes and halfwords. Use only with the —i option.

Processes an old (that is, UNIX System Sixth Edition format) file. Only useful with the —i
option (copy in).

=ﬁ

QT wne "iE"‘

1 Release 2.0

CPIO(1) CPIO(1)

EXAMPLES
The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:
Is | cpio -0 >/archive/file
cd olddir
find . —depth —print | cpio —pdl newdir

CAVEATS
Only the super user can copy special files.

BUGS

Path names are restricted to 256 characters. If there are too many unique linked files, the program runs
out of memory to keep track of them and, thereafter, linking information is lost.

SEE ALSO

ar(1), find(1), 1s(1), tar(1)
cpio(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

CPP(1)

NAME

CPP(1)

cpp — Invokes the C language preprocessor

SYNOPSIS

Nib/epp [-P 1 [=C 1 [“Uname 1 [-D {[name=def] [=T 1 [-Idir 1 [ifile [ofile 1]

DESCRIPTION

SR-2011

Cpp is the C language preprocessor, which is invoked as the first pass of any C compilation using the
cc(1) command. Thus, the output of ¢pp is in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of the C compilation package will be modified
to follow these changes. Therefore, the use of cpp other than in this framework is not suggested. The
preferred way to invoke cpp is through the cc(1) command since the functionality of cpp may someday
be moved elsewhere.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively the input and out-
put for the preprocessor. They default to standard input and standard output if you do not supply these
arguments.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by the next pass of
the C compiler.

-C Strips, by default, the C-style comments. If the —C option is specified, all comments (except
those found on ¢pp directive lines) are passed along.

—Uname
Removes any initial definition of name, where name is a reserved symbol that is predefined.
The predefined symbols on the CRAY-2 Computer System are CRAY, CRAY2, and unix.

-D [name=def]

Defines name as if by a #define directive. If no =def is given, name is defined as 1.

-T Causes preprocessor symbols to not be restricted to 8 characters. The -T option forces cpp to
use only the first 8 characters for distinguishing different preprocessor names. This behavior is
the same as previous preprocessors with respect to the length of names and is included for
backward compatibility.

-Idir Change the algorithm for searching for #include files whose names do not begin with / to look
in dir before looking in the directories on the standard list. Thus, #include files whose names
are enclosed in quotes (" ") will be searched for first in the directory of the ifile argument, then
in directories named in -I options, and last in directories on a standard list. For #include files
whose names are enclosed in <>, the directory of the ifile argument is not searched.

Two special names are understood by cpp. The name __LINE__ is defined as the current line number
(as a decimal integer) as known by c¢pp, and __FILE_ _ is defined as the current file name (as a C
string) as known by cpp. They can be used anywhere (including in macros) just as any other defined
name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string .

1 Release 2.0

CPP(1)

NOTES

FILES

CPP(1)

#define name(arg, ..., arg) token-string
Notice that there can be no space between name and the (. Replace subsequent instances of

name followed by a (, a list of comma-separated tokens, and a) by token-string where each
occurrence of an arg in the foken-string is replaced by the corresponding token in the comma-
separated list.

#undef name
Cause the definition of name (if any) to be forgotten.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be run through cpp). When the

<filename> notation is used, filename is only searched for in the standard places. See the -I
option above for more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the C compiler. Integer-
constant is the line number of the next line and filename is the file where it comes from. If
"filename" is not given, the current file name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test directive

must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has been the subject of a pre-

vious #define without being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of a

previous #define without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-expression evaluates to
non-zero. All binary non-assignment C operators, the ?: operator, the unary —, !, and = opera-
tors are all legal in constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined, which can be used in
constant-expression in these two forms: defined (name) or definedname. This allows the util-
ity of #ifdef and #ifndef in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In particular, the sizeof opera-
tor is not available.

#ielse Reverses the notion of the test directive which matches this directive. So if lines before this
directive are ignored, the following lines will appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

In previous versions of cpp, when new-line characters were found in argument lists for macros to be
expanded, new-lines were put out as they were found and expanded. The current version of cpp
replaces these new-lines with blanks to alleviate problems that the previous versions had when this

occurred.

fusr/include Standard directory for #include files

Release 2.0 2 SR-2011

CPP(1) CPP(1)

MESSAGES

The error messages produced by cpp are intended to be self-explanatory. The line number and filename
where the error occurred are printed along with the diagnostic.

SEE ALSO

cc(l)

SR-2011 3 Release 2.0

CRONTAB(1) CRONTAB(1)

NAME

crontab — Copies files into the user crontab file

SYNOPSIS

crontab [file]
crontab -r
crontab -1

DESCRIPTION

SR-2011

Crontab copies the specified file, or standard input if no file is specified, into a directory that holds all
users’ crontabs. The —r option removes a user’s crontab from the crontab directory. Crontab -1 lists

the crontab file for the invoking user.

A user is permitted to use crontab if his or her name appears in the file /usr/lib/cron/cron.allow. If that
file does not exist, the file /usr/lib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. The null file cron.allow
would mean no user is allowed to use cron; a null file cron.deny would mean no user is denied the use
of cron. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The ficlds are separated by spaces or tabs. The first
five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (06 with O=Sunday).

Each of these pattems may be either an asterisk (meaning all legal values), or a list of elements
separated by commas. An element is either one number, or two numbers separated by a minus sign
(meaning an inclusive range). Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each month, as well as on
every Monday. To specify days by only one field, the other field should be set to * (for example, 0 0 *
* 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the specified times.
A percent character (%) in this field (unless escaped by V) is translated to a new-line character. Only
the first line (up to a % character or end of line) of the command field is executed by the shell. The
other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire to have their
profile executed must explicitly do so in the crontab file. Cron supplies a default environment for
every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and PATH(=:/bin:/usr/bin:/usr/Ibin). You
will probably want to set the TZ variable.

NOTE: Users should remember to redirect the standard output and standard error of their commands! If
this is not done, any generated output or errors is mailed to the user.

1 Release 2.0

CRONTARB(1)

FILES

/fusr/lib/cron
fust/spool/cron/crontabs
fusr/lib/cron/log
fusr/lib/cron/cron.allow
fust/lib/cron/cron.deny

SEE ALSO
sh(1)

Main cron directory
Spool area

Accounting information
List of allowed users
List of denied users

CRONTARB(1)

cron(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0

SR-2011

CRYPT (1)

NAME

CRYPT(1)

crypt — Encodes/decodes files

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transformation. If no password is given, crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:
crypt key <clear >cypher
crypt key <cypher | pr
will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or
a derivative. The choice of keys and key security are the most vulnerable aspect of crypt.

[dev/ity Typed key

LIMITATIONS

If two or more files encrypted with the same key are concatenated and an attempt is made to decrypt
the result, only the contents of the first of the original files will be decrypted correctly.

SEE ALSO

ed(1), makekey(1)

SR-2011 1 Release 2.0

CSH(1) CSH(1)

NAME
csh — Invokes a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [—cefinstvVxX] [arg ...]

DESCRIPTION

The csh command is the first implementation of a command language interpreter that incorporates a his-
tory mechanism (see the History Substitutions subsection), job control facilities, and a C-like syntax.

A session with csh begins by executing commands from the file .cshre in your home directory. If this
is a login shell, csh also executes commands from the files /etc/cshre, .cshre, and .login (in that order).

The shell begins reading commands from the terminal after the ‘% ° prompt; it then repeatedly per-
forms the following actions:

1. Reads a line of command input

2. Breaks the line of command input into words (described under Lexical structure)

3. Puts the sequence of words in the command history list (described under History substitution)

4. Parses the command history list

5. Executes each command on the current line

When a login shell terminates, csh executes commands from the .logout file in the users home direc-
tory.

If argument O to the shell is ‘—’, then this is a login shell. The csh command accepts the following
options:

— Reads commands from the (single) following argument, which must be present. Any remaining
arguments are placed in the argv variable.

—e Exits if any invoked command terminates abnormally or yields a nonzero exit status

—f Starts faster, because it neither searches for nor executes commands from the .cshre file in your
home directory.

—i Specifies an interactive shell and prompts for its top-level input, even if it appears to not be a ter-
minal. Shells are interactive without this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This helps check for accuracy in syntax of shell scripts.
-s Takes command input from the standard input

-t Reads and executes a single line of input Use a \’ to escape the newline at the end of this line
and continue onto another line.

—v Sets the verbose variable, so that command input is echoed after history substitution
-x Sets the echo variable, so that commands are echoed immediately before execution
-V Sets the verbose variable even before .cshre is executed

-X Isto-xas-Visto-v.

SR-2011 1 Release 2.0

CSH(1) CSH(1)

After argument processing, if arguments remain but you did not specify any of the —c, —i, —s, or ~t
options, the first argument is taken as the name of a file of commands to be executed. The shell opens
this file, and saves its name for possible resubstitution by ‘$0°. Since many systems use either the stan-
dard version 6 or version 7 shells whose shell scripts are not compatible with this shell, the shell exe-
cutes such a ‘standard’ shell if the first character of a script is not a ‘#’, that is, if the script does not
start with a comment. Remaining arguments initialize the variable argv.

Lexical structure
The shell splits input lines into words at blanks and tabs with the following exceptions. The characters

‘& P4 < ST Y ¢) form separate words. If the characters ‘&&’, ‘I I, ‘<<’ or ‘>>’ are doubled,
the pairs form single words. You can use these parser metacharacters as part of other words or override
their special meaning by preceding them with °\'. (A newline preceded by a “\’ is equivalent to a
blank.)

In addition, strings enclosed in matched pairs of quotations, ‘”, **’, or ‘’, form parts of a word; meta-
characters in these strings, including blanks and tabs, do not form separate words. Quotations have
semantics to be described subsequently (see the Quotations with * and " subsection). Within pairs of ‘*
or ‘"’ characters, a newline preceded by a \’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment, which continues to the
end of the input line. To override this special meaning, precede the ‘#’ with a \’ and use **°, *”, and
‘™ in quotations.

Commands
A simple command is a sequence of words, the first of which specifies the command you want to exe-

cute. A simple command or a sequence of simple commands separated by ‘I’ characters forms a pipe-
line. The output of each command in a pipeline is connected to the input of the next. You can
separate sequences of pipelines with “;’. The piped commands are then executed sequentially. You can
execute a sequence of pipelines without immediately waiting for the sequence to terminate by following
it with an ‘&’.
You can put any of the above characters in ‘(’ ‘)’ to form a simple command (which can be a com-
ponent of a pipeline). You can also separate pipelines with ‘| I’ or ‘&&’ indicating, as in the C
language, that the second is to be executed only if the first fails or succeeds respectively. (See the
Expressions subsection.)
Built-in commands
The csh command accepts the following list of built-in commands (execution of nonbuilt-in commands
is described later). If a built-in command occurs as any component of a pipeline except the last then it
is executed in a subshell.
alias
alias name
alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final form
assigns the specified wordlist as the alias of name,; wordlist is command and filename substituted.
Name can not be alias or unalias.
break
Causes execution to resume after the end of the nearest enclosing foreach or while. The remain-
ing commands on the current line are executed. Multilevel breaks are thus possible by writing
them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below (see the default command).

Release 2.0 2 SR-2011

CSH(1)

SR-2011

CSH(1)

od

cd name

chdir

chdir name
Changes the shell’s working directory to directory name. If no argument is given, it changes to
the home directory of the user. If name is not found as a subdirectory of the current directory
(and does not begin with ‘/°, *./’ or ‘../), then each component of the variable cdpath is checked
to see if it has a subdirectory name. Finally, if all else fails but name is a shell variable whose
value begins with ‘/’, then this is tried to see if it is a directory.

continue
Continues execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case labels.

dirs
Prints the directory stack; the top of the stack is at the left, the first directory in the stack is the
current directory.

echo wordlist

echo -n wordlist
Writes the specified words to the shell’s standard output, separated by spaces, and terminated with
a newline unless the —n option is specified.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s) are exe-
cuted in the context of the current shell. This is usually used to execute commands generated as
the result of command or variable substitution, since parsing occurs before these substitutions.
See tset(1) for an example of using eval.

exec command
Executes the specified command in place of the current shell.

exit

exit (expr)
Exits the shell either with the value of the status variable (first form) or with the value of the
specified expr (second form).

foreach name (wordlist)

end
Successively sets the variable name to each member of wordlist and executes the sequence of
commands between this command and the matching end. (Both foreach and end must appear
alone on separate lines.)

3 Release 2.0

CSH(1)

CSH(1)

continue may be used to continue the loop prematurely a break to terminate it prematurely.
When this command is read from the terminal, the loop is read up once prompting with ‘?’ before
any statements in the loop are executed. If you make a mistake typing in a loop at the terminal
you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null characters in the out-
put. Glob is useful for programs that wish to use the shell to filename expand a list of words.

goto word
The specified word is a filename and command expanded to yield a string of the form ‘label’,
The shell rewinds its input as much as possible and searches for a line of the form ‘label:’ possi-
bly preceded by blanks or tabs. Execution continues after the specified line.

history

history n

history -r n

history -h n
Displays the history event list. If n is given, only the n most recent events are printed. The -r
option reverses the order of printout to be most recent first instead of the oldest first. The -h
option causes the history list to be printed without leading numbers. This is used to produce files
suitable to the source command using the =h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution (described later) on command happens simultaneously with the rest of the if
command. Command must be a simple command (not a pipeline), a command list, or a
parenthesized command list. Input/output redirection occurs even if expr is false, when command
is not executed (this is a bug).

if (expr) then
else if (expr2) then

else

endif
If the specified expr is true, then the commands up to the first else are executed; else if expr2 is
true then the commands up to the second else are executed, and so on. Any number of else-if
pairs are possible; only one endif is needed. The else part is likewise optional. (The words else
and endif must appear at the beginning of input lines; the if must appear alone on its input line or
after an else.)

jobs

jobs -
Lists the active jobs. The -l option lists the process ID’s in addition to the normal information.

kill %job

kill -sig % job ...

kill pid

kill -sig pid ...

kill -1

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes.
Signals are either given by number or by names (as given in /usr/include/signal.h, stripped of the
prefix ‘‘SIG’"). The signal names are listed by *“kill -I’>. There is no default, saying just ‘kill’
does not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue) signal as well.

Release 2.0 4 SR-2011

CSH(1)

SR-2011

CSH(1)

login
Terminates a login shell, replacing it with an instance of /bin/login. This is one way to log off; it
was included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if the ignoreeof variable is set.

newgrp

newgrp —

newgrp group

newgrp — group
Changes a user’s group identifation by replacing the current shell with an instance of
/bin/newgrp. The first form changes the group ID back to the group you specified in your pass-
word file entry. The second form changes the environment to what would be expected if the user
logged in again. The third form changes the group ID to group. The last form combines the
actions of the second and third forms. You may be prompted for a password.

nice

nice +number

nice command

nice +number command
The first form adds 4 to the current nice value for this shell. for this shell to 4. The second form
adds number to the current nice value. The final two forms run command at priority 4 plus the
current nice value, and number plus the current mice value, respectively. The super user may
specify negative niceness by using ‘nice —number ...". The command is always executed in a
sub-shell, and the restrictions placed on commands in simple if statements apply. The system
imposes a maximum nice value of 39 and a minimum nice value of 0.

nohup

nohup command
The first form can be used in shell scripts to ignore hangups for the remainder of the script. The
second form causes the specified command to run with hangups ignored. All processes detached
with ‘&’ are effectively ignored.

notify

notify %job ...
Causes the shell to notify the user asynchronously when the status of the current or specified job
changes; normally notification is presented before a prompt. This is automatic if the shell vari-
able notify is set.

onintr

onintr -

onintr label
Controls the action of the shell on interrupts. The first form restores the default action of the
shell on interrupts, which is to terminate shell scripts or to return to the terminal command input
level. The second form, ‘onintr -’, causes all interrupts to be ignored. The final form causes the
shell to execute a ‘goto label’ when it receives an interrupt or when a child process terminates
because it was interrupted.

If the shell is running detached and interrupts are being ignored, all forms of onintr have no
meaning, and interrupts continue to be ignored by the shell and all invoked commands.

5 Release 2.0

CSH(1)

CSH(1)

popd

popd +n
Pops the directory stack, returning to the new top directory. With an argument, ‘+n’, popd dis-
cards the nth entry in the stack. The elements of the directory stack are numbered from O start-
ing at the top.

pushd

pushd name

pushd +n
The first form, without arguments, exchanges the top two elements of the directory stack. The
second form changes to the new directory (ala cd) and pushes the old current working directory
(as in csw) onto the directory stack. The last form with a numeric argument, pushd rotates the
nth argument of the directory stack around to be the top element and changes to it. The
members of the directory stack are numbered from the top starting at 0.

rehash

Recomputes the internal hash table of the contents of the directories in the path variable. This is
needed if new commands are added to directories in the path while you are logged in. This
should only be necessary if you add commands to one of your own directories, or if a systems
programmer changes the contents of one of the system directories.

repeat count command
Executes the specified command, which is subject to the same restrictions as the command in the

one line if statement above, count times. I/O redirections occur exactly once, even if count=0.

set

set name

set name=word

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell variables. Variables that have other
than a single word as value, print as a parenthesized word list. The second form sets name to the
null string. The third form sets name to the single word. The fourth form sets the index’th com-
ponent of name to word; this component must already exist. The final form sets name to the list
of words in wordlist. In all cases, the value is command and filename expanded.

You can repeat these arguments to set multiple values in a single set command. Note that vari-
able expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most commonly
used environment variable LOGNAME, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path, there is no need to use setenv for these.

shift

shift variable
Shifts the members of argv to the left, discarding argv[1]. It is erroneous to not have argv set or
to have less than one word as value. The second form performs the same function on the

specified variable.

source name
source -h name
Reads commands from name. Source commands can be nested; if they are nested too deeply, the
shell may run out of file descriptors. An error in a source at any level terminates all nested
source commands. Input during source commands is not placed on the history list; the option
causes the commands to be placed in the history list without being executed.

Release 2.0 6 SR-2011

CSH(1)

SR-2011

CSH(1)

switch (string)
case strl:

breaksw
default:

breaksw
endsw
Matches each case label successively, against the specified string, which is first command and
filename expanded. The file metacharacters ‘*’, ‘?’ and ‘[...]” may be used in the case labels,
which are variable expanded. If none of the labels match before a ‘default’ label is found, then
execution begins after the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after the endsw. Other-
wise control may fall through case labels and default labels as in C. If no label matches and no
default exists, execution continues after endsw.

time

time command

This command is only available on CRAY X-MP and CRAY-1 computer systems. With no argu-
ment, the shell prints a summary of time used by this shell and its children. If the argument is
given, the shell times the specified simple command and prints a time summary as described
under the time variable. If necessary, an extra shell is created to print the time statistic when the
command completes.

umask

umask value
Displays (first form) or sets the file creation mask to the specified value (second form). The mask
is given in octal. Common values for the mask are 002 giving all access to the group and read
and execute access to others or 022 giving all access except no write access for users in the group
or others.

unalias pattern
Discards all aliases whose names match the specified pattern. Thus all aliases are removed by
‘unalias *°. It is not an error for nothing to be unaliased.

unhash
Disables use of the internal hash table. The internal hash table speeds up locating executed pro-
grams.

unset pattern
Removes all variables whose names match the specified pattern. To remove all variables, use
‘unset *’; this has noticeably distasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment. See also

the setenv command above and printenv(1).
wait
Waits for all background jobs. If the shell is interactive, an interrupt can disrupt the wait.

which name ...
Takes the specified name and searches for the file that would be executed had this name been

given as a command. Name is expanded if it is aliased, and searched for along your path.

7 Release 2.0

CSH(1) CSH(1)

while (expr)

end

While the specified expression evaluates nonzero, the commands between the while and the
matching end are evaluated. The break and continue built-in commands may be used to ter-
minate or continue the loop prematurely. (The while and end must appear alone on their input
lines.) Prompting occurs here the first time through the loop as for the foreach statement if the
input is a terminal.

@

@ name=expr

@ name[index]=expr
The first form prints the values of all the shell variables. The second form sets the specified
name th the value of expr. If the expression contains ‘<’, *>’°, ‘&’, or ‘I’, then at least this part of
the expression must be put in parentheses (O). The third form assigns the value of expr to the
index'th argument of name. Both name and its index’th component must already exist.

The operators ‘*=’, ‘+=", etc. are available as in C. The space separating the name from the
assignment operator is optional. Spaces are, however, mandatory in separating components of
expr which would otherwise be single words.

Special postfix ‘++’ and ‘--* operators increment and decrement name respectively (that is, ‘@
i++).
Nonbuilt-in command execution
When a command to be executed is found not to be a built-in command, the shell attempts to execute
the command using execv(2). Each word in the variable path names a directory from which the shell
will attempt to execute the command. If it is not given a —¢ or a —t option, the shell hashes the names
in these directories into an internal table so that it only tries an exec in a directory if there is a possibil-
ity that the command resides there. This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has been turned off (using unhash), or if
the shell was given a —¢ or ~t argument (and in any case, for each directory component of path that
does not begin with a ‘/’), the shell concatenates with the given command name to form a path name of
a file, which it then attempts to execute.

Parenthesized commands are always executed in a subshell. For example,
(cd ; pwd) ; pwd

prints the home directory; leaving you where you were (printing this after the home directory), while
cd ; pwd

leaves you in the home directory. Parenthesized commands are most often used to prevent chdir from
affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, it is assumed to be a
file containing shell commands, and a new shell is spawned to read it.

If there is an alias for shell, the words of the alias are prepended to the argument list to form the shell
command. The first word of the alias should be the full path name of the shell (for example, $shell).
This is a special, late occurring, case of alias substitution, and only allows words to be prepended to the
argument list without modification.

Release 2.0 8 SR-2011

CSH(1) CSH(1)

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs com-

mand, and assigns them small integer numbers. When a job is started asynchronously with ‘&’, the
shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously, was job number 1 and had one (top-level)
process, whose process ID was 1234.

The shell redirects standard input to /dev/null for a job being run in the background, this will result in
the receipt of an end-of-file if such a job tries to read from the terminal. Background jobs are normally
allowed to produce output.

There are several ways to refer to jobs in the shell. The character ‘%’ introduces a job name. If you
wish to refer to job number 1, you can name it as ‘%1’. Jobs can also be named by prefixes of the
string typed in to start them, if these prefixes are unambiguous. It is also possible to say ‘%?string’
which specifies a job whose text contains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the current
job is marked with a ‘+’ and the previous job with a ‘~’. The abbreviation ‘%+’ refers to the current
job and ‘%-’ refers to the previous job. The characters ‘%%’ is a synonym for the current job.

Status reporting
This shell learns immediately whenever a process changes state. It normally informs you whenever a
job becomes blocked so that no further progress is possible, but only just before it prints a prompt.
This is done so that it does not otherwise disturb your work. If you set the shell variable notify, the
shell notifies you immediately of changes of status in background jobs. There is also a shell command
notify which marks a single process so that its status changes are immediately reported. By default
notify marks the current process; simply say ‘notify’ after starting a background job to mark it.

Substitutions
The following subsections describe the various transformations the shell performs on the input. The

shell performs these in the following order:

History substitution
Alias substitution
Variable substitution
Command substitution
Filename substitution

History substitution

History substitutions place words from previous command input as portions of new commands, making
it easy to repeat commands, repeat arguments of a previous command in the current command, or fix
spelling mistakes in the previous command with little typing and a high degree of confidence. History
substitutions begin with the character ‘!’ and may begin anywhere in the input stream (with the
provison that they do not nest.) The ‘!’ can be preceded by a \’ to override its special meaning; for
convenience, a ‘!’ is passed unchanged when it is followed by a blank, tab, newline, ‘=" or ‘(". (History
substitutions also occur when an input line begins with a carat (*); which will be described later.) Any
input line that contains history substitution is echoed on the terminal before it is executed as it could
have been typed without history substitution.

Commands input from the terminal consisting of one or more words are saved in the history list. The
history substitutions reintroduce sequences of words from these saved commands into the input stream
(the size of which is controlled by the history variable). The previous command is always retained,
regardless of its value. Commands are numbered sequentially from 1.

SR-2011 9 Release 2.0

CSH(1) CSH(1)

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use event numbers,
but the current event number can be made part of the prompt by placing an ‘!’ in the prompt string.

With the current event 13, we can refer to previous events by event number ‘!11°, relatively as in ‘-2’
(referring to the same event), by a prefix of a command word as in ‘!d’ for event 12 or ‘!wri’ for event
9, or by a string contained in a word in the command as in ‘!?mic?’, which also refers to event 9.
These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case ‘!!’ refers to the previous command; thus ‘!!” alone is
essentially a redo.

To select words from an event, we follow the event specification by a “:” and a designator for the
desired words. The words of an input line are numbered from 0, the first (usually command) word
being 0, the second word (first argument) being 1, etc. The basic word designators are:

0 first (command) word

n n’th argument

- first argument, that is, ‘1’
$ last argument

% word matched by (immediately preceding) ?s? search
x=y range of words
-y abbreviates ‘0-y’

* abbreviates “°-$’, or nothing if only 1 word in event
x* abbreviates ‘x—$’
x— like ‘x*’ but omitting word ‘$’

The ‘;’ separating the event specification from the word designator can be omitted if the argument
selector begins with a “*’, ‘$°, ‘¥’ ‘-’ or ‘%’. After the optional word designator you can place a
sequence of modifiers, each preceded by a ‘:’. The following modifiers are defined:

Remove a trailing pathname component, leaving the head.
Remove a trailing ‘.xxx’ component, leaving the root name.
Remove all but the extension ‘.xxx’ part.

Ir/ Substitute r for [
Remove all leading pathname components, leaving the tail.
Repeat the previous substitution.
Apply the change globally, prefixing the above, for example, ‘g&’.
Print the new command but do not execute it.
Quote the substituted words, preventing further substitutions.
Like g, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. With substitu-
tions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but are strings.
Any character may be used as the delimiter in place of ‘/’; a °\’ quotes the delimiter into the / and r
strings. The character ‘&’ in the right hand side is replaced by the text from the left. A \’ quotes ‘&’
also. A null uses the previous string either from a / or from a contextual scan string s in ‘!?57’. The
trailing delimiter in the substitution may be omitted if a newline follows immediately as may the trail-
ing ‘?’ in a contextual scan.

A history reference may be given without an event specification, for example, ‘!$’. In this case the
reference is to the previous command unless a previous history reference occurred on the same line in

~

*XoTWRPE~Yon

Release 2.0 10 SR-2011

CSH(1) CSH(1)

which case this form repeats the previous reference. For example,‘!?foo?” !$’ gives the first and last
arguments from the command matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an input line
is a carat (*). This is equivalent to ‘!:s™ providing a convenient shorthand for substitutions on the text
of the previous line. For example, “Ib"lib’ fixes the spelling of ‘lib’ in the previous command. Finally,
a history substitution may be surrounded with ‘{’ and ‘}’ if necessary to insulate it from the characters
which follow. For example, after ‘Is -1d ~paul’ we might do ‘!{1}a’ to do ‘Is -1d ~paula’, while ‘!la’
would look for a command starting ‘la’.

Quotations with “ and "

You can put quotations around strings (‘" and ‘"’) to override all or some of the remaining substitu-
tions. Strings enclosed in ‘” are prevented any further interpretation. Strings enclosed in ‘"’ may be
expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case (see the
Command Substitition subsection) does a ‘"’ quoted string yield parts of more than one word; *~
quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias and
unalias commands. After a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which
is the alias for that command is reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the command and argument list. If no refer-
ence is made to the history list, then the argument list is left unchanged.

For example, if the alias for ‘Is’ is ‘Is -1’ the command ‘Is /usr’ would map to ‘Is -1 fusr’, the argument
list here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !* /etc/passwd’ then ‘lookup
bill’ would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing process
repeats on the reformed input line. Looping is prevented if the first word of the new text is the same as
the old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

The mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias print “pr \!+ | Ipr”
to make a command which pr’s its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For instance, the argv variable is an image of
the shell’s argument list, and words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the
variables referred to by the shell a number are toggles; the shell disregards what their value is, and is
only concerned if they are set or not. For instance, the verbose variable is a toggle which causes com-
mand input to be echoed. The setting of this variable results from the —v command line option.

Other operations treat variables numerically. The @ command permits numeric calculations to be per-
formed and the result assigned to a variable. Variable values are, however, always represented as (zero
or more) strings. For the purposes of numeric operations, the null string is considered to be zero, and
the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable substitution is
performed keyed by ‘$’ character. This expansion can be prevented by preceding the ‘$’ with a \’
except within ‘"’s where it always occurs, and within ‘”’s where it never occurs. Strings quoted by “*’
are interpreted later (sece Command substitution below); ‘$’ substitution does not occur there until later,
if at all. A ‘$’ is passed unchanged if followed by a blank, tab, or end-of-line.

SR-2011 11 Release 2.0

CSH(1) CSH(1)

Input/foutput redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It is possi-
ble for the first (command) word to this point to generate more than one word, the first of which
becomes the command name, and the rest of which become arguments.

Unless enclosed in “"” or given the ‘:q” modifier, the results of variable substitution may eventually be
command and filename substituted. A variable within *"’, whose value consists of multiple words
expands to a (portion of) a single word, with the words of the variables value separated by blanks.
When the ‘:q” modifier is applied to a substitution, the variable expands to multiple words, with each
word separated by a blank and quoted to prevent later command or filename substitution.

The following metasequences introduce variable values into the shell input. Except as noted, it is an
error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a blank. Braces
insulate name from following characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters and digits starting with a letter. The underscore charac-
ter is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is returned (but :
modifiers and the other forms given below are not available in this case).

$name[selector]

${name[selector] }
May be used to select only some of the words from the value of name. The selector is subjected
to ‘$’ substitution and may consist of a single number or two numbers separated by a ‘~’. The
first word of a variables value is numbered ‘1’. If the first number of a range is omitted, it
defaults to ‘1°. If the last member of a range is omitted, it defaults to ‘$#name’. The selector ‘*’
selects all words. It is legal for a range to be empty if the second argument is omitted or in

range.
$#name
${#name)
Gives the number of words in the variable. This is useful for later use in a ‘[selector]’.
$0 .
Substitutes the name of the file from which command input is being read. An error occurs if the
name is unknown.
$number
$ {number})
Equivalent to ‘$Sargv[number]’.
$=

Equivalent to ‘Sargv[*]’.
The modifiers “:h’, “t’, “r’, “:q’ and “:x’ may be applied to the substitutions above as may ‘:gh’, “:gt’
and “:gr’. If braces ‘{’ ’})’ appear in the command form, then the modifiers must appear within the
braces. The current implementation allows only one ;> modifier on each ‘$’ expansion.
The following substitutions may not be modified with ‘:* modifiers.

$7name
${Mame)
Substitutes the string ‘1° if name is set, ‘0’ if it is not.

$70
Substitutes ‘1’ if the current input filename is known, ‘0’ if it is not.

Release 2.0 12 SR-2011

CSH(1)

CSH(1)

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation thereafter. It can be used
to read from the keyboard in a shell script.

Command and filename substitution

Command and filename substitution are applied selectively to the arguments of built-in commands.
This means that portions of expressions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name is substituted separately from the
argument list. This occurs very late, after input-output redirection is performed, and in a child of the
main shell.

Command substitution

Command substitution is indicated by a command enclosed in ©’. The output is broken into separate
words at blanks, tabs and newlines, with null words being discarded, this text then replaces the original
string. Within ‘"’s, only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that this makes it possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters ‘*’, ‘?’, ‘[* or ‘{’ or begins with the character *~°, then that
word is a candidate for filename substitution (also known as ‘globbing’). This word is then regarded as
a pattern, and replaced with an alphabetically sorted list of file names which match the pattern. In a list
of words specifying filename substitution it is an error for no pattern to match an existing file name, but
it is not required for each pattern to match. Only the metacharacters ‘*’, ‘?” and ‘[* imply pattern
matching, the characters *"’ and ‘{’ are more ‘akin to abbreviations.

In matching filenames, the character ‘. at the beginning of a filename or immediately following a ‘/’, as
well as the character ‘> must be matched explicitly. The character ‘** matches any string of characters,
including the null string. The character ‘?° matches any single character. The sequence °[...]" matches

any one of the characters enclosed. Within °[...]°, a pair of characters separated by ‘-’ matches any
character lexically between the two.

The character "’ at the beginning of a filename is used to refer to home directories. Standing alone,
ie. “’ it expands to the user’s home directory as reflected in the value of the variable home. When fol-
lowed by a name consisting of letters, digits and ‘~’ characters the shell searches for a user with that
name and substitutes their home directory; for example, ‘“"ken’ might expand to ‘fusr/ken’ and
‘“ken/chmach’ to ‘/usr/ken/chmach’. If the character *’ is followed by a character other than a letter
or /> or does not appear at the beginning of a word, it is left undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved, with
results of matches being sorted separately at a low level to preserve this order. This construct may be
nested. For example, “~source/sl/{oldls,ls}.c’ expands to ‘/usr/source/sl/oldls.c /usr/source/s1/ls.c’
whether or not these files exist without any chance of error if the home directory for ‘source’ is
‘fust/source’. Similarly ‘../{memo,*box}’ might expand to ‘../memo ../box ../mbox’. (Note that ‘memo’
was not sorted with the results of matching ‘*box’.) As a special case ‘{’, ‘}” and ‘{}’ are passed undis-
turbed.

Input/output

SR-2011

The standard input and standard output of a command may be redirected with the following syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard input.

13 Release 2.0

CSH(1)

CSH(1)

<< word
Read the shell input up to a line which is identical to word. Word is not subjected to variable,
filename or command substitution, and each input line is compared to word before any substitu-
tions are done on this input line. Unless a quoting °\’, *"°, *”’ or **’ appears in word variable and
command substitution is performed on the intervening lines, allowing \’ to quote ‘$’, " and “’.
Commands which are substituted have all blanks, tabs, and newlines preserved, except for the
final newline which is dropped. The resultant text is placed in an anonymous temporary file
which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist it is created; if the file exists,
it is truncated, losing its previous contents.
If the variable noclobber is set, then the file must not exist or be a character special file (e.g. a
terminal or ‘/dev/null’) or an error results. This helps prevent accidental destruction of files. In
this case the ‘!’ forms can be used and suppress this check.
The forms involving ‘&’ route the diagnostic output into the specified file as well as the standard
output. The name is expanded in the same way as ‘<’ input filenames are.

>> name

>>& name

>>! name

>>&! name

Uses file name as standard output like ‘>’ but places output at the end of the file. If the variable

noclobber is set, then it is an error for the file not to exist unless one of the ‘!” forms is given.

Otherwise similar to *>’.
A command receives the environment in which the shell was invoked as modified by the input-output
parameters and the presence of the command in a pipeline. Unlike some previous shells, commands
run from a file of shell commands have no access to the text of the commands by default; rather they
receive the original standard input of the shell. The ‘<<’ mechanism should be used to present inline
data. This permits shell command scripts to function as components of pipelines and allows the shell to
block read its input. Note that the default standard input for a command run detached remains as the
original standard input of the shell. If this is a terminal and if the process attempts to read from the
terminal, then the process will block and the user will be notified

Diagnostic output may be directed through a pipe with the standard output. By using the form ‘I&’
rather than just I,
Expressions

A number of the built-in commands take expressions, in which the operators are similar to those of C,
with the same precedence. These expressions appear in the @, exit, if, and while commands. The fol-
lowing operators are available:

H&& | "& == I== " <=><><x>»>+-*x[% !~ ()
Here the precedence increases to the right, ‘=="‘I=" ‘="" and ‘I"’, ‘<=" ‘>=" ‘<’ and ‘>’, ‘<<’ and ‘>>’,
‘+” and ‘-’, ‘*’ ‘/ and ‘%’ being, in groups, at the same level. The ‘==" ‘I=" ‘="" and ‘!~’ operators
compare their arguments as strings; all others operate on numbers. The operators ‘="" and ‘!"’ are like
‘=" and ‘==" except that the right hand side is a pattern (containing, for example, ‘*’s, ‘?’s and
instances of ‘[...]") against which the left hand operand is matched. This reduces the need for use of
the switch statement in shell scripts when all that is really needed is pattern matching.

Strings that begin with ‘0’ are considered octal numbers. Null or missing arguments are considered ‘0.
The result of all expressions are strings, which represent decimal numbers. Note that no two

Release 2.0 14 SR-2011

CSH(1) CSH(1)

components of an expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser (‘&’ ‘I’ ‘<’ >’ ‘(’ “)’) they are surrounded
by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{’ and ‘}” and
file enquiries of the form ‘-4 name’, where [is one of the following:

read access
write access
execute access
existence
ownership
zero size
plain file

d directory

The specified name is command and filename expanded and then tested to see if it has the specified
relationship to the real user. If the file does not exist or is inaccessible then all enquiries return false,
that is, ‘0’. Successful command executions return the value ’1’ if true or 0’ if false. If more detailed
status information is required then the command should be executed outside of an expression and the
variable status examined.

~mNO G X g

Control flow
The shell contains a number of commands that can be used to regulate the flow of control in command
files (shell scripts) and (in limited but useful ways) from terminal input. These commands all operate
by forcing the shell to reread or skip in its input and, due to the implementation, restrict the placement
of some of the commands.

The foreach, switch, and while statements, as well as the if-then—else form of the if statement require
that the major keywords appear in a single simple command on an input line as shown below.

If the shell’s input is searchable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto’s will succeed on non-seekable inputs.)

Predefined and environment variables
The following variables have special meaning to the shell. Of these, the shell always sets argv, cwd,
home, path, prompt, shell and status. Except for cwd and status, these variables are only set at ini-
tialization; therefore, if you wish to modify these, you must explicitly do so.

The shell copies the environment variable LOGNAME into the variable user, TERM into term, and
HOME into home, which are copied back into the environment whenever the normal shell variables are
reset. The environment variable PATH is likewise handled; you do not need to worry about its setting
other than in the .cshre file as inferior csh processes will import the definition of path from the
environment, and re-export it if you change it.

argv Sets the arguments to the shell, it is from this variable that positional parameters are
substituted, for example, ‘$1° is replaced by ‘$argv[1].

cdpath Gives a list of alternate directories searched to find subdirectories in chdir commands.

cwd Gives the full pathname of the current directory.

echo Sets when the —x command line option is given. Causes each command and its argu-

ments to be echoed just before execution. For nonbuilt-in commands all expansions
occur before echoing. Built-in commands are echoed before command and filename
substitution, since these substitutions are then done selectively.

histchars Can be given a string value to change the characters used in history substitution. The
first character of its value is used as the history substitution character, replacing the
default character !. The second character of its value replaces the character ~ in quick

SR-2011 15 Release 2.0

CSH(1)

history

home
ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

Release 2.0

CSH(1)

substitutions.

Can be given a numeric value to control the size of the history list. Any command
that has been referenced in this many events will not be discarded. Too large values
of history may run the shell out of memory. The last executed command is saved on
the history list.

The user’s home directory, initialized from the environment. The filename expansion
of =’ refers to this variable.

If set, the shell ignores end-of-file from input devices, which are terminals. This
prevents shells from accidentally being killed by CONTROL-D’s.

The files where the shell checks for mail. This is done after each command comple-
tion, which results in a prompt, if a specified interval has elapsed. The shell says
“You have new mail.’ if the file exists with an access time not greater than its modify
time.

If the first word of the value of mail is numeric it specifies a different mail checking
interval, in seconds, instead of the default, which is 10 minutes.

If multiple mail files are specified, the shell says ‘New mail in name’ when there is
mail in the file name.

As described in the section on Input/output, restrictions are placed on output redirec-
tion to ensure that files are not accidentally destroyed, and that ‘>>’ redirections refer

to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts that are not
dealing with filenames, or after a list of filenames has been obtained and further
expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing files;
rather the primitive pattern is returned. It is still an error, however, for the primitive
pattern to be malformed, that is, ‘echo [’ still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to rather
present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to be
sought for execution. A null word specifies the current directory. If there is no path
variable, only full path names will execute. The usual search path is ‘.”, ‘/bin’ and
‘fusr/bin’, but this may vary from system to system. For the super-user the default
search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell that is given neither the —c nor the
-t option will normally hash the contents of the directories in the path variable after
reading .cshre, and each time the path variable is reset. If new commands are added
to these directories while the shell is active, it may be necessary to give the rehash
or the commands may not be found.

The string that is printed before each command is read from an interactive terminal
input. If a ‘!’ appears in the string, it will be replaced by the current event number
unless a preceding °\’ is given. Default is ‘% ’, or ‘# ’* for the super user.

Given a numeric value to control the number of entries of the history list that are
saved in ~/.history when the user logs out. Any command that has been referenced in
this many events will be saved. During start up, the shell sources ~/.history into the
history list enabling history to be saved across logins. Too large values of savehist
will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to interpret files that
have execute bits set, but that are not executable by the system. (See the description

16 SR-2011

CSH(1)

CSH(1)

of Nonbuiltin Command Execution.) Initialized to the (system-dependent) home of the
shell.

status The status returned by the last command. If it terminated abnormally, then 0200 is
added to the status. Built-in commands that fail return exit status ‘1°, all other built-
in commands set status ‘0’.

time Controls automatic timing of commands. If set, any command that takes more than
this many cpu seconds prints a line giving user, system, and real times and a utiliza-
tion percentage, which is the ratio of user plus system times to real time to be printed
when it terminates.

verbose Set by the —~v command line option, which prints the words of each command after
history substitution.

Signal handling

The shell ignores quit signals. Jobs running detached (by ‘&’) are immune to signals generated from
the keyboard, including hangups. Other signals have the values, which the shell inherited from its
parent. Onintr can control the shells handling of interrupts and terminate signals in shell scripts.
Login shells catch the terminate signal; otherwise this signal is passed on to children from the state in
the shell’s parent. In no case are interrupts allowed when a login shell is reading the file .logout.

FILES
~ /.cshrc Read at beginning of execution by each shell
~ [login Read by login shell, after ‘.cshrc’ at login
~[.logout Read by login shell, at logout
fbin/sh Standard shell, for shell scripts not starting with a ‘#’
Jtmp/sh* Temporary file for ‘<<’
fetc/passwd Source of home directories for ‘" name’

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists to 5120 characters on
the CRAY X-MP and CRAY-1 computer systems. The system limits argument lists to 50,000 characters
on the CRAY-2 computer system. The number of arguments to a command involving filename expan-
sion is limited to 1/6’th the number of characters allowed in an argument list. Command substitutions
can substitute no more characters than are allowed in an argument list. To detect looping, the shell res-
tricts the number of alias substitutions on a single line to 20.

BUGS
Alias substitution is most often used to clumsily simulate shell scripts; shell scripts should be provided
rather than aliases.
Commands within loops, prompted for by ‘?°, are not placed in the history list. Control structure
should be parsed rather than being recognized as built-in commands. This would allow control com-
mands to be placed anywhere, to be combined with ‘I’, and to be used with ‘&’ and *;” metasyntax.
It should be possible to use the ‘:’ modifiers on the output of command substitutions. All and more
than one ‘:* modifier should be allowed on ‘$’ substitutions.

SEE ALSO

SR-2011

sh(l),

access(2), execve(2), fork(2), kill(2), pipe(2), signal(2), umask(2), wait(2), in in the UNICOS System
Calls Reference Manual, publication SR-2012

a.out(4F) in in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

17 Release 2.0

CSIM(1) (CRAY X-MP and CRAY-1 computer systems only) CSIM(1)

NAME
csim — Invokes the hardware simulator for the CRAY X-MP and CRAY-1 operating systems

SYNOPSIS
csim [~iifile 1 [-llfile] [-t time 1 [=s symfile] [—-m fwi]

DESCRIPTION

The csim command invokes the Cray hardware simulator for the CRAY X-MP, CRAY-1, and I/O Subsys-
tems. The csim command lets you test several versions of an operating system at the same time, without
affecting the production-level operating system. You control input to the simulated system, track perfor-
mance, and observe reactions at selected points. See the Cray Simulator (CSIM) Reference Manual for

details.

The following options are available:
-i ifile Input file name. The default is standard input.
-1 [file List file name. The default is standard output.

~t time Time limit of simulation. The default is 100. You can override -t by using the T keyword
on the RUN command.

-s symfile Name of symbol file.

-m fwi CSIM message level. —m is one of the following:
f Fatal errors
w Warning errors

i Informative errors

EXAMPLE

In this example, CSIM is started with the default time limit. Only fatal and warning messages are
printed from the interpreter.

csim -m fw

FILES
VMEMn Virtual memory files

BUGS
The file system and system binary must be in the users current directory.
The DSU command does not default properly. You must specify the NS keyword for a new disk.
Checkpoint/reload facilities do not work.
The COS station does not work. Attempts to use it will produce unpredictable results.
Symbol tables are not implemented yet.

SEE ALSO
Cray Simulator (CSIM) Reference Manual (SR-0073)

SR-2011 1 Release 2.0

CSPLIT(1) CSPLIT(1)

NAME
csplit — Separates files into sections

SYNOPSIS
csplit [—s] [-k] [prefix] file argl [... argn]

DESCRIPTION
Csplit reads file and separates it into n+1 sections, defined by the arguments argl... argn. By
default the sections are placed in xx00 ... xxn (n may not be greater than 99). These sections get
the following pieces of file:

00: From the start of file up to (but not including) the line referenced by argl.
01: From the line referenced by argl up to the line referenced by arg2.

n+l: From the line referenced by argn to the end of file.
If the file option is a hyphen (-), then the standard input is used.
The options to csplit are:

-s Csplit normally prints the character counts for each file created. If the —s option is
present, csplit suppresses the printing of all character counts.
-k Csplit normally removes created files if an error occurs. If the —k option is present,

csplit leaves previously created files intact.

—f prefix 1If the —f option is used, the created files are named prefix00 . . . prefixn. The default
isxx00 ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the following:

frexp/ A file is to be created for the section from the current line up to (but not including) the
line containing the regular expression rexp. The current line becomes the line contain-
ing rexp. This argument may be followed by an optional + or — some number of lines
(e.g., /Page/-5).

%rexp% This argument is the same as frexp/, except that no file is created for the section.

Inno A file is to be created from the current line up to (but not including) /nno. The
current line becomes Inno.

{num} Repeat argument. This argument may follow any of the above arguments. If it fol-
lows a rexp type argument, that argument is applied num more times. If it follows
Inno, the file will be split every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful to the Shell in the
appropriate quotes. Regular expressions may not contain embedded new-lines. Csplit does not affect
the original file; it is the users responsibility to remove it.

EXAMPLES
csplit —f cobol file “/procedure division/” /par5./ /parl6./

This example creates four files, cobol00 ... cobol03. After editing the ‘‘split’ files, they can be
recombined as follows:

cat cobol0{0-3] > file

SR-2011 1 Release 2.0

CSPLIT(1) CSPLIT (1)

Note that this example overwrites the original file.
csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k option causes the
created files to be retained if there are less than 10,000 lines; however, an error message would still be
printed.

csplit -k prog.c “%main(%’ ‘/'}/+1’ {20)

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the begin-
ning of the line, this example will create a file containing each separate C routine (up to 21) in prog.c.
MESSAGES

Diagnostic messages are self-explanatory, except for the following:
arg — out of range
which means that the given argument did not reference a line between the current position and the end
of the file.
SEE ALSO

ed(1), sh(1)

Release 2.0 2 SR-2011

CUT(1)

NAME

cut — Cul

SYNOPSIS

CUT(1)

ts out selected fields of each line of a file

cut —clist [filel file2 ...]
cut —flist [-d char 1 [=] [filel file2 ...]

DESCRIPTION

Use cut

to cut out columns from a table or fields from each line of a file; in data base parlance, it

implements the projection of a relation. The fields as specified by list can be fixed length, that is, char-
acter positions as on a punched card (-c option) or the length can vary from line to line and can be
marked with a field delimiter character like tab (—f option). Cut can be used as a filter; if no files are
given, the standard input is used.

The meanings of the options are (either —¢ or —f must be specified:

list

—clist

~flist

~dchar

-

HINTS

Comma-separated list of integer field numbers (in increasing order), with optional - to indicate
ranges such as, 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3— (short for third through last field).
The list following —c (no space) specifies character positions (such as, —1-72 would pass the
first 72 characters of each line).

The list following —f is a list of fields assumed to be separated in the file by a delimiter charac-
ter (see —d); such as, -f1,7 copies the first and seventh field only. Lines with no field delim-
iters will be passed through intact (useful for table subheadings), unless —s is specified.

The character following —d is the field delimiter (—f option only). Default is tab. Space or
other characters with special meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of —f option. Unless specified, lines with
no delimiters will be passed through untouched.

Use grep(1) to make horizontal ‘‘cuts’” (by context) through a file, or paste(l) to put files together
column-wise (that is, horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES

cut —d: —f1,5 /etc/passwd

Maps user IDs to names; a colon (:) is used as a ficld separator.

name="who am i | cut -1 d" ™

MESSAGES

Sets name to current login name.

line too long A line can have no more than 1023 characters or fields.
bad list for c/f option Missing —¢ or —f option or incorrectly specified /ist. No error occurs if a line

no fields

SEE ALSO

has fewer fields than the list calls for,
The list is empty.

grep(1), join(1), paste(1)

SR-2011

1 Release 2.0

CVT(1) (CRAY-2 computer systems only) CVT(1)

NAME
cvt — Converts files between update and scm formats

SYNOPSIS
cvt toscm
cvt toupdate

DESCRIPTION
Cvt converts update(1l) source files to scm(1) .m format, and files in scm .m format to update source
format. It reads standard input and writes to standard output. The argument tells cvs what type of
conversion to perform; cvt toscm converts an update file to scm format, while cvt toupdate converts
an scm file to update format.
Both update and scm tag each line with identifiers that are used to describe the locations of
modifications. Each identifier is made up of a program or modification name followed by a °.’, fol-
lowed by a line number (for example, init.1, CFT77.1086, or HISTORY.3). Update source files have
line identifiers on the right hand side after column 72; the identifiers are adjusted so that the °.’ always
appears in column 81. Scm .m files have line identifiers on the left hand side between columns 1 and
24; the identifiers are left justified and are generally lower case.

BUGS
If the input to cvt is a file not in update or scm .m format or a file already in the desired format, cvt
may write nonsense in the output file or produce a core file with no error messages.

SEE ALSO

SR-2011

scm(1)

1 Release 2.0

CXREF(1) CXREE(1)

NAME

cxref — Generates C program cross reference

SYNOPSIS

cxref [options] files

DESCRIPTION

Cxref analyzes a collection of C files and attempts to build a cross-reference table. Cxref utilizes a spe-
cial version of cpp to include information in #define directives in its symbol table. It produces a listing
on standard output of all symbols (auto, static, and global) in each file separately, or with the —c option,
in combination. Each symbol contains an asterisk (*) before the declaring reference.

In addition to the ~D, I and -U options, which are identical to their interpretation by cpp(1), the fol-
lowing options are interpreted by cxref:

— Print a combined cross-reference of all input files.

—w<num>
Width option which formats output no wider than num (decimal) columns. This option will
default to 80 if num is not specified or is less than 51.

—o file Direct output to named file.
- Operate silently; does not print input file names.
~t Format listing for 80-column width.

FILES

fust/lib/xcpp Special version of C-preprocessor

fust/lib/xpass Executable file for cross-reference pass

MESSAGES

Error messages are unusually cryptic, but usually mean that you cannot compile these files.

BUGS

Cxref considers a formal argument in a #define macro definition to be a declaration of that symbol.
For example, a program that has #include ctype.h contains many declarations of the variable c.

SEE ALSO
cpp(1)

SR-2011 1 Release 2.0

DATE(1) DATE(1)

NAME

date — Prints and sets the date

SYNOPSIS

date [mmddhhmm([yy]l 1 [+ format]

DESCRIPTION

If you do not specify an argument, or if the argument begins with +, the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day number in
the month; Ah is the hour number (24 hour system); the second mm is the minute number; yy is the last
2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The system
operates in GMT. Date takes care of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user. The format for the
output is similar to that of the first argument to printf(3S). All output fields are of fixed size (zero-
padded if necessary). Each field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. All other characters are copied to the output
without change. The string is always terminated with a new-line character.

Format Field Descriptors:

Day of year — 001 to 366

Day of week — Sunday = 0
Abbreviated weekday — Sun to Sat
Abbreviated month — Jan to Dec
Time in AM/PM notation

n Insert a new-line character
t Insert a tab character

m Month of year — 01 to 12
d Day of month - 01 to 31
y Last 2 digits of year — 00 to 99
D Date as mm/dd/yy

H Hour - 00 to 23

M Minute - 00 to 59

S Second - 00 to 59

T Time as HH:MM:SS

J

w

a

h

r

EXAMPLE

date +DATE: %m/%d/%y%nTIME: %H:%M:%S’
would have generated as output:

DATE: 08/01/76

MESSAGES

SR-2011

TIME: 14:45:05
no permission Only the super user can change the date.
bad conversion The date specified is syntactically incorrect.

bad format character A field descriptor is not recognizable.

1 Release 2.0

DATE(1) DATE(1)

WARNING
It is a bad practice to change the date while the system is running in multi-user mode.
SEE ALSO
printf(3S) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013

Release 2.0 2 SR-2011

DC(1)

NAME

DC(1)

dc — Desk calculator

SYNOPSIS

dc [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained. (See bc(1)).
The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following constructions are recog-

nized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the digits 0

through 9. It may be preceded by an underscore () to input a negative number. Numbers may
contain decimal points.

+-/*%"
The top two values on the stack are added (+), subtracted (=), multiplied (*), divided (/), remain-
dered (%), or exponentiated (). The two entries are popped off the stack; the result is pushed
on the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may be any charac-
ter. If the s is capitalized, x is treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered. All registers start
with 0 value. If the I is capitalized, register x is treated as a stack and its top value is popped
onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

interprets the top of the stack as an ASCII string, removes it, and prints it.

All values on the stack are printed.

exits the program. If executing a string, the recursion level is popped by 2.

The top value on the stack is popped and the string execution level is popped by that value.

Treats the top element of the stack as a character string and executes it as a string of dc com-
mands.

X Replaces the number on the top of the stack with its scale factor.
[...] Puts the bracketed ASCI string onto the top of the stack.

<X >xX =x
The top two elements of the stack are popped and compared. Register x is evaluated if they
obey the stated relation. The exclamation point indicates negation.

v Replaces the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

! Interprets the rest of the line as a UNICOS command. Control returns to dc when the command
terminates.

c All values on the stack are popped.

* o8 =™ mT o

SR-2011 1 Release 2.0

DC(1)

O O M o=

?
HH

EXAMPLE

DC(1)

The top value on the stack is popped and used as the number radix for further input.
Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.
Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of decimal places are printed on output, and maintained during multiplica-
tion, division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

Pushes the value of the scale factor onto the stack.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and executed.
Are used by bc for array operations.

This example prints the first ten values of n!:

[lal+dsa*plalO>y]sy
Osal
lyx
MESSAGES
x is unimplemented x is an octal number.
stack empiy Not enough elements on the stack to do what was asked.
Out of space Free list is exhausted (too many digits).
Out of headers Too many numbers being kept around.
Out of pushdown Too many items on the stack.
Nesting Depth Too many levels of nested execution.
SEE ALSO
be(i)
Release 2.0 2 SR-2011

DD(1)

NAME

DD(1)

dd — Converts and copies a file to the specified output

SYNOPSIS

dd [option=value] ...

DESCRIPTION

SR-2011

The dd command copies the specified input file to the specified output with possible conversions. The
standard input and output are used by default. The input and output block size may be specified to take
advantage of raw physical I/O.

OPTION VALUES

if=file Inputs file name; standard input is default

of=file Outputs file name; standard output is default

ibs=n Inputs block size -n bytes (default 4096)

obs=n Outputs block size (default 4096)

bs=n Sets both input and output block size, superseding ibs and obs; also, if you do not

specify a conversion, it is particularly efficient since no in-core copy need be done
cbs=n Conversion buffer size

skip=n Skips n input blocks before starting copy; th skipped blocks are actually read, so this
can take a considerable amount of time.

iseek=n Secks n input blocks from beginning of input file before starting copy. (this option is
invalid on the CRAY X-MP and CRAY-1 computer systems)

seek=n Seeks n output blocks from beginning of output file before copying

count=n Copies only n blocks

conv=ascii Converts EBCDIC to ASCII

ebedic ConvertsASCII to EBCDIC (does not match the COS conversion exactly)

ibm Slightly different map of ASCII to EBCDIC

Icase Maps alphabetics to lower case

ucase Maps alphabetics to upper case

swab Swaps every pair of bytes

noerror Do not stop processing on an error

sync Pads every input block to ibs

«ee 5 ++. Several comma-separated conversions
Where sizes are specified, a number of bytes is expected. A number may end with b, s, k, or w to
specify multiplication by 4096, 4096, 1024, or 8, respectively; a pair of numbers may be separated by x
to indicate a product.
Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line added before
sending the line to the output. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

1 Release 2.0

DD(1) DD(1)

EXAMPLE

This following command reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into
the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. The dd command is especially suited to I/O on the raw physical devices
because it permits reading and writing in arbitrary block sizes.

MESSAGES

J+p records in(out) Numbers of full and partial records read (written)

BUGS

The ASCI/EBCDIC conversion tables are taken from the 256-character standard in the CACM Nov,
1968. The ibm conversion corresponds better to certain IBM print train conventions.

New-lines are inserted only on conversion to ASCI; padding is done only on conversion to EBCDIC.
These should be separate options.

SEE ALSO
cp(1)

Release 2.0 2 SR-2011

DDA(1)

NAME

DDA(1)

dda — Invokes the dynamic dump analyzer

SYNOPSIS

dda [-i ‘[s=symfile] [dblog=logfile 1 [echo=echofile 1.’]

DESCRIPTION

The dda command invokes the dynamic dump analyzer. It is a programming tool for interactively
debugging program memory dumps.

For specific information about dda directives and debugging, see the Symbolic Debugging Package
Reference Manual. The dda command accepts the following arguments if you specify the —i option
(surrounded by quotes and terminated with a period):

s=symfile The symfile argument names the file containing the symbol tables. The default is a.out.

dblog=logfile Name of the log file that receives a copy of all input to and all output from the debugger.
The default is log.db. Your program cannot use Fortran I/O unit 99 because dda uses it
to write log.db.

echo=echofile
Name of the echo file that receives a copy of all input to the debugger. The default is
echo.db. Your program cannot use Fortran I/O unit 98 because dda uses it to write

echo.db.

SEE ALSO

SR-2011

as(1), cft(1), pascal(1), segldr(1)
symdebug(3.16) in the Programmer’s Library Reference Manual, publication SR-0113
Symbolic Debugging Package Reference Manual, publication SR-0112

1 Release 2.0

DEBUG(1) DEBUG(1)

NAME

debug — Invokes the postmortem core analyzer

SYNOPSIS

debug [-i ‘options list.”]

DESCRIPTION

SR-2011

The debug command provides a traceback of a program, and interprets the program memory dump in
terms of source language symbols. It is normally used after a program has aborted and a core file has
been written. The debug command reads a symbol file that is created by compilers and the loader.
Refer to the command descriptions of the compiler and loader you are using to find out what options
are necessary to produce this information.

The debug command optionally processes a set of input arguments. These are specified on the -i option
as a quoted string. The string must be terminated by a dot (.). All arguments are optional and must be
separated with commas; the list may consist of any subset of the following:

calls=n The n argument specifies the number of routine levels to be displayed in the symbolic dump.
For each task reported, debug traces back through active subprograms the number of levels
specified by n. Routines for which no symbol table information is available are not counted
for purposes of the calls count. The default is 50.

tasks Traces back through all existing tasks; the default is to trace back only through tasks that were
running when the dump file was written. Deferred implementation

s=symfile
The symfile argument names the file containing the DEBUG symbol table. The default is a.out.

With regard to case, symfile must be entered exactly as it appears to the system.

syms=sym{ :sym)
List of symbols to be dumped by debug. You can specify up to 20 symbols and there is no
limit on the length of the symbol name; symbols are separated by a colon (:). The default is
that all symbols are skipped. The syms argument applies to all blocks dumped.

notsyms=nsym{ :nsym}
List of symbols to be skipped. You can specify up to 20 symbols and there is no limit on the
length of the symbol’s name; symbols are separated by a colon (). The default is that no sym-
bols are skipped. This argument takes precedence over the syms argument.

maxdim=dim{ :dim}
Maximum number of elements from each dimension of the arrays to be dumped. The maxdim
allows you to sample the contents of arrays without creating huge amounts of output. When
the maxdim argument is specified, arrays are dumped in storage order (row, column for C and
Pascal; column, row for CFT and CFT77). No more than 7 dimensions can be specified.

blocks=blk{:blk}
List of common blocks to be included in the symbolic dump. You can specify a maximum of
20 blocks separated by colons. All symbols (qualified by syms and notsyms arguments) in the
named blocks are dumped. The default is to dump no common blocks. If you specify blocks
with any blk values, all blocks are dumped.

notblks=nblk{:nblk}
List of common blocks to be excluded from the symbolic dump. You can specify a maximum
of 20 blocks separated by colons. This argument takes precedence over the blocks argument.

1 Release 2.0

DEBUG (1) DEBUG (1)

rptblks Repeat blocks; when this option is used, the contents of common blocks that you specified
using the blocks and notblks arguments are displayed for each subroutine in which they are
declared. The default displays common blocks only once.

mtbuf=m
Number of entries in the multitasking history trace buffer to list. If you do not specify m, the
whole buffer is displayed. If you do not specify this argument and the buffer is present, the
last 25 entries are displayed. Deferred implementation.

pages=np
Under UNICOS, debug does not format output in pages; This argument can still be used to
regulate the amount of output that debug generates. Every page is worth 45 lines of output
from debug, so page=10 limits the output to 450 lines. The default for np is 70.

FILES
SYMBOLS Symbolic information
DBSYM Temporary use by debug
DBBLK Temporary use by debug
core Program memory dump
BUGS
Support for multitasked programs is not yet available.
SEE ALSO

as(1), cft(1), pascal(1), segldr(1)
symdebug(3.16) in the Programmer’s Library Reference Manual, publication SR-0113.
Symbolic Debugging Package Reference Manual, publication SR-0112.

Release 2.0 2 SR-2pl 1

DELTA(1) DELTA(1)

NAME

delta — Makes a delta (change) to an SCCS file

SYNOPSIS

deta [-r SID]1[-s]1[-n)(-g list]1[-m [mrlist 1] [=y [comment 11 [-p] files

DESCRIPTION

SR-2011

The delta command is used to permanently introduce into the named SCCS file changes that were made
to the file retrieved by get (1) (called the g-file, or generated file).

The delta command makes a delta to each named SCCS file. If a directory is named, delta behaves as
though each file in the directory were specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read (see WARNINGS); each line of the standard input is taken to be the
name of an SCCS file to be processed.

The delta command may issue prompts on the standard output depending upon certain keyletters
specified and flags (see admin(1)) that may be present in the SCCS file (see -m and -y keyletters
below).

Keyletter arguments apply independently to each named file.

-r SID Uniquely identifies which delta is to be made to the SCCS file. The use of this keyletter is
necessary only if two or more outstanding gets for editing (get —e) on the same SCCS file
were done by the same person (login name). The SID value specified with the —r keyletter
can be either the SID specified on the get command line or the SID to be made as reported
by the ger command (see ger(1)). A diagnostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

- Suppresses the issue, on the standard output, of the created delta’s SID, as well as the
number of lines inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally removed at completion of delta process-
ing).

-g list Specifies a list (see get(1) for the definition of list) of deltas which are to be ignored when
the file is accessed at the change level (SID) created by this delta.

-m [mrlist]
If the SCCS file has the v flag set (see admin(1)) then a Modification Request (MR) number
must be supplied as the reason for creating the new delta.
If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the
standard output before the standard input is read; if the standard input is not a terminal, no
prompt is issued. The MRs? prompt always precedes the comments? prompt (see -y
keyletter).
MRs in a list are separated by blanks and/or tab characters. An unescaped new-line charac-
ter terminates the MR list.
Note that if the v flag has a value (see admin(1)), it is taken to be the name of a program
(or shell procedure), which will validate the correctness of the MR numbers. If a nonzero
exit status is returned from MR number validation program, delta terminates (it is assumed
that the MR numbers were not all valid).

1 Release 2.0

DELTA(1) DELTA(1)

=y [comment]
Arbitrary text used to describe the reason for making the delta. A null string is considered

a valid comment.
If -y is not specified and the standard input is a terminal, the prompt comments? is issued
on the standard output before the standard input is read; if the standard input is not a termi-
nal, no prompt is issued. An unescaped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the SCCS file differences before and after the
delta is applied in a diff(1) format.

FILES

All files of the form ?-file are explained in the Source Code Control System (SCCS) User’'s Guide. The
naming convention for these files is also described there.

gfile Existed before the execution of delta; removed after completion of delta.

pfile Existed before the execution of delta; may exist after completion of delta.

qfile Created during the execution of delta; removed after completion of delta.

xfile Created during the execution of delta; renamed to SCCS file after completion of delta.
zfile Created during the execution of delta; removed during the execution of delta.

dfile Created during the execution of delta; removed after completion of delta.
/usr/bin/bdiff Program to compute differences between the ‘‘gotten’’ file and the g-file.

WARNINGS

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the SCCS file unless the
SOH is escaped. This character has special meaning to SCCS (see sccsfile(4F)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided when the ger generates
a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (<) is specified on the delta command line, the —m (if necessary) and -y keyletters
must also be present. Omission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

MESSAGES
Use help(1) for explanations.

SEE ALSO

admin(1), bdiff(1), cde(1), get(1), help(1), prs(1), rmdel(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014
The Source Code Control System (SCCS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

DE(1)

NAME

DF(1)

df — Reports the number of free disk blocks

SYNOPSIS

df [-t 1 [-f][-p][file-systems]

DESCRIPTION

The df command prints out the number of free blocks and free i-nodes available for on-line file systems
by examining the counts kept in the super-blocks; you can specify file-systems either by device name
(such as /dev/dsk/0s0 on the CRAY-2 computer system and /dev/d4901 on the CRAY X-MP and CRAY-1
computer systems) or by mounted directory name (such as /usr). If you do not specify the file-systems
option, the free space on all of the mounted file systems is printed.

The following options are available:

-t
-

-p

FILES

Reports the total allocated block figures.

Reports only an actual count of the blocks in the free list (free i-nodes are not reported). With
this option, df reports on raw devices.

The —p option is only available on the CRAY X-MP and CRAY-1 computer systems. It displays
partitions on the filesystem in the following format:

Part Start Total Free Frags Device
0 0 100 50 (50%) 10 (40%) A131

Where, part is the relative partition number, start is the starting block number, fotal is the total
block count of partitions, free is the free block count of partitions, frags is the count of uncon-
tiguous areas in the partition, and device is the ASCII name of the device on which the partition
resides.

/dev/dsk/* Disk devices on the CRAY-2 computer system
/dev/d* Disk devices on the CRAY X-MP and CRAY-1 computer systems
fetc/mnttab List of currently mounted file systems

SEE ALSO

fs(4F), mnttab(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011

1 Release 2.0

DIFF(1) DIFF(1)

NAME
diff — Compares files for differences

SYNOPSIS
diff [—efbh] filel file2

DESCRIPTION

The diff command indicates what lines must be changed in two files to bring them into agreement. If
filel (file2) is —, the standard input is used. If filel (file2) is a directory, then a file in that directory
with the name file2 (filel) is used. The normal output contains lines of these forms:

nl a n3.nd
nln2 d n3
nl.,n2 ¢ n3.né

These lines resemble ed commands to convert filel into file2. The numbers after the letters pertain to
file2. In fact, by exchanging a for d and reading backward one may ascertain equally how to convert
file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines is a list of all lines that are affected in the first file flagged by <, then all
the lines that are affected in the second file flagged by >.

Options for diff follow.
-b Causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to compare
equal.

—e Produces a script of a, c, and d commands for the editor ed, which will recreate file2 from filel .

—f Produces a script similar to that of option —e but in the opposite order. This script is not useful
with ed.

-h Does a fast, half-hearted job. It works only when changed stretches are short and well separated,
but does work on files of unlimited length. Options —e and -f are not available with -h,

In connection with —e, the following shell program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3,...) made by diff need be on
hand. A ‘‘latest version’’ appears on the standard output.

(shift; cat $*; echo “1,$p") | ed - $1
Except in rare circumstances, diff finds a smallest sufficient set of file differences.

FILES

/usr/lib/diffh For -h option

MESSAGES
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Missing newline at end of file x
The last line of file x did not have a newline character. If the lines are different, they are flagged
and output; however the output will indicate they are the same.

SR-2011 1 Release 2.0

DIFF (1) DIFF(1)

BUGS
Editing scripts produced under the —e or —f option are naive about creating lines consisting of a single
period (.).

SEE ALSO

bdiff(1), cmp(1), comm(1), diff3(1) (CRAY-2 only), ed(1), scm(1)
The Source Code Control System (SCCS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

DIFF3(1) (CRAY-2 computer systems only) DIFF3(1)

NAME
diff3 — Makes a 3-way differential file comparison

SYNOPSIS
diff3 [—ex3] filel file2 file3

DESCRIPTION

The diff3 command compares three versions of a file, and publishes disagreeing ranges of text flagged
with these codes:

m— All three files differ
=== filel is different
==== file2 is different
=== file3 is different

The type of change suffered in converting a given range of a given file to some other is indicated in
one of these ways:

f:nl a Text is to be appended after line number »n/ in file f, where f = 1, 2, or 3.

f:inl ,n2c¢ Text is to be changed in the range line nl to line n2. If nl = n2, the range
may be abbreviated to nl.

The original contents of the range follow immediately after a ¢ indication. When the contents of two
files are identical, the contents of the lower-numbered file are suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incorporate into filel all changes
between file2 and file3; that is, the changes that normally would be flagged === and ====3. Option
-x (-3) produces a script to incorporate only changes flagged ==== (===3). The following command
will apply the resulting script to filel :

(cat script; echo “1,$p") | ed - filel

FILES

Jtmp/d3+
fust/lib/diff3prog

BUGS

Text lines that consist of a single . will defeat the —e option.
There is an arbitrary limit of 200 on the total number of disagreeing ranges of text.

SEE ALSO
diff(1)

SR-2011 1 Release 2.0

DIRCMP(1) DIRCMP(1)

NAME
dircmp — Compares directories

SYNOPSIS
dircmp [d][-][-wn] dir] dir2

DESCRIPTION

The dircmp command examines dir! and dir2 and generates various tabulated information about the
contents of the directories. Listings of files that are unique to each directory are generated for all the
options. If you do not specify an option, a list is output indicating whether the files common to both
directories have the same contents. Options are:

—d Compare the contents of files with the same name in both directories and output a list telling
what must be changed in the two files to bring them into agreement. The list format is
described in diff(1).

-S Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is 72.

SEE ALSO
cmp(1), diff(1)

SR-2011 1 Release 2.0

DISPOSE(1)

NAME

DISPOSE(1)

dispose — Disposes a file from the Cray computer system to a front-end station

SYNOPSIS

dispose localpath [-nSFN 1 [—-iTERMID 1 [-mMF 1 [dDC 1 [-fFM]| [-t TEXT"]
[—=sSPECIAL] [-uUSER]

DESCRIPTION

The dispose command creates a request file for USCP (UNICOS Station Call Processor). If any slot
information is associated with the requesting user, it is also copied into the request file. USCP uses sta-
tion protocol to negotiate the file transfer from the Cray computer system to the designated station
(specified by the —m option). The dispose command then waits for the transfer to complete.

SR-2011

localpath

-nSFN

—iTERMID

-mMF

—fFM

-dDC

The path name (either full or relative to the current working directory) of the file to be
disposed. This must be a path name from which the requesting user has permission to
read.

The name to be associated with the file when it is received by the front end. Only 15
characters are significant. If you do not specify SFN, the field is filled with the filename
from the localpath.

The terminal ID to be associated with the file on the specified front end. If you do not
specify TERMID, the default is the stored terminal ID associated with the requesting user
on the front-end station from which the user originated.

A two character front-end ID for the station that is to handle the file transfer. If you do
not specify the mainframe, then the stored ID of the station from which the requesting
user originated is used.

A two character file format code. Valid formats are:

CB Character blocked; the default
CD Character deblocked

BB Binary blocked

BD Binary deblocked

TR Tranisparent

UD UNICOS Data

For further descriptions of the valid format codes, see the Front End Protocol Internal
Reference Manual, CRI publication SM-0042.

A two character disposition code. Valid codes are:

IN ‘ File is executed as a job.

ST File is saved.

MT File is disposed to a magnetic tape.
PR File is disposed to a printer.

PU File is disposed to a card punch.
PT File is disposed to a plotter.
IT File is flagged as intertask data and handled by the receiving station.

1 Release 2.0

DISPOSE(1) DISPOSE(1)

-t TEXT Text to be interpreted by the specified station for dispose processing. The field can con-
tain label information, routing, etc., possibly in the form of control statements for the sta-
tion. Text field information should be enclosed by single quotes (’). If you do not
specify this option, the dispose text field is filled with binary 0’s.

—sSPECIAL The station-defined special forms option. If you do not specify this option, the special
forms field is filled with binary 0’s.

~uUSER The user ID associated with the requested file on the specified front end. If you do not
specify USER, the field is left blank.
LIMITATIONS

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether the mainframe ID you specified belongs to a
currently active station. If the associated station is not active or does not have streams assigned (that is,
interactive only station), then the user process wait indefinitely.

SEE ALSO

fetch(1), dispose(1)
Front End Protocol Internal Reference Manual, publication SM-0042

Release 2.0 2 SR-2011

DRD(1) DRD(1)

NAME
drd - Invokes the dynamic runtime debugger
SYNOPSIS
drd [i ‘[s=symfile], [dblog=logfile 1, [echo=echofile], [maxbp=n],
[prog="command" 1.’]
DESCRIPTION
The drd command invokes the dynamic runtime debugger to use as a programming tool for debugging
executing programs. You can use the drd command in either interactive or batch mode. The drd com-
mand accepts the following options:
s=symfile Symfile names the file containing the symbol table. The default is a.out. With
regard to case, symfile must be entered in exactly as it appears to the system,
dblog=logfile logfile names the debug log file; the default is log.db. Your program cannot use
Fortran I/O unit 99 because drd uses it to write the debug log file.
echo=echofile echofile names the echo file; the default is echo.db. Your program cannot use For-
tran I/O unit 98 because drd uses it to write the echo file.
maxbp=n n names the maximum breakpoint limit; by default, there is no breakpoint limit.
prog=command command invokes the user program, including all options. The default is a.out.
Enclose all input entered in the command portion in double quotes (").
SEE ALSO

as(1), cft(1), pascal(1), segldr(1)
symdebug(3.16) in the Programmer’s Library Reference Manual, publication SR-0113
Symbolic Debugging Package Reference Manual, publication SR-0112

SR-2011 1 Release 2.0

DU(1) DU(1)

NAME

du — Summarizes disk usage

SYNOPSIS

du [—ars] [names]

DESCRIPTION

The Du command gives the number of blocks contained in all files and (recursively) directories within
each directory and file specified by the names argument. The block count includes the indirect blocks
of the file. If names is not supplied, the current directory is used.

The du command accepts the following arguments:
-S Causes only the grand total (for each of the specified names) to be given

-a Causes an entry to be generated for each file. Absence of either this argument or —s causes an
entry to be generated for each directory only.
-r Causes du to generate messages about directories that cannot be read, files that cannot be

opened, and the like. The du command is normally silent about such things.
A file with two or more links is only counted once.

BUGS

If you do not use the —a option, nondirectories given as arguments are not listed.
If there are too many distinct linked files, du counts the excess files more than once.
Files with holes in them will have an incorrect block count.

SR-2011 1 Release 2.0

ECHO(1) ECHO(1)

NAME

echo — Echos arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

The echo command writes its arguments separated by blanks and terminated by a new-line on the stan-
dard output. It also understands C-like escape conventions; beware of conflicts with the shell’s use of \:

Backspace

Print line without new-line

Form-feed

New-line

Carriage return

Tab

Vertical tab

Backslash

The 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number r, which
must start with a 0.

The echo command is useful for producing diagnostics in command files and for sending known data
into a pipe.

§2<&44g4€6¢

NOTES
csh(1) has a built-in echo with slightly different characteristics. See csh(1)

SEE ALSO
sh(1)

SR-2011 1 Release 2.0

ED(1)

NAME

ED(1)

ed, red — Invokes the ed text editor

SYNOPSIS

ed [-1[-pstringl[ddir][—=x]][file]
red [-][-pstringl [ddir] [x]1][file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e command (described
later) on the named file; that is to say, the file is read into ed’s buffer so that it can be edited. The
optional — (hyphen) suppresses the printing of character counts by e, 7, and w commands, of diagnos-
tics from e and ¢ commands, and of the ! prompt after a !shell command. The —p option allows the
user to specify a prompt string. If —x is present, an x command is simulated first to handle an
encrypted file. The —d option allows temporary files to be created in file systems with large free space.
Ed operates on a copy of the file it is editing; changes made to the copy have no effect on the file until
a w (write) command is given. A copy of the text being edited resides in a temporary file called the
buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the current directory. It prohibits
executing shell commands via !shell command. Attempts to bypass these restrictions result in an error
message (restricted shell).

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses specify
one or more lines in the buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This
text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Regular Expressions

SR-2011

Ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (such as s) to specify portions of a line that are to be substituted.
A regular expression (RE) specifies a set of character strings. A member of this set of strings is said to
be matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2) is a one-character RE that matches
itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

a. ., % [, and \ (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([]; see 1.4).

b. “ (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 3.2),
or when it immediately follows the left of a pair of square brackets ([]) (see 1.4).

1 Release 2.0

ED(1)

13
14

ED(1)

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2).

d. The character used to bound (that is, delimit) an entire RE, which is special for that RE (for
example, see how slash (/) is used in the g command, described later.)

A period (.) is a one-character RE that matches any character except new-line.

A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string. If, however, the first character of the string is a
circumflex () the one-character RE matches any character except new-line and the remaining
characters in the string. The ~ has this special meaning only if it occurs first in the string. The
minus (-) may be used to indicate a range of consecutive ASCII characters; for example, [0-9] is
equivalent to [0123456789]. The — loses this special meaning if it occurs first (after an initial =,
if any) or last in the string. The right square bracket (]) does not terminate such a string when it
is the first character within it (after an initial =, if any); for instance, [Ja-f] matches either a right
square bracket (]) or one of the letters a through f inclusive. The four characters listed in 1.2.a
above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

21
22

23

24

25

26

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (*) is a RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest leftmost string that permits a match is
chosen.

A one-character RE followed by \{m\}, \{m)\}, or \{m,n\} is a RE that matches a range of
occurrences of the one-character RE. The values of m and » must be non-negative integers less
than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m occurrences;
\{m,n\} matches any number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched by each
component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever the una-
domed RE matches.

The expression W\ maiches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For example,
the expression “\(.*\\\1$ matches a line consisting of two repeated appearances of the same
string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a line (or

both).

3.1

32

A circumflex (*) at the beginning of an entire RE constrains that RE to match an initial segment
of a line.

A currency symbol ($) at the end of an entire RE constrains that RE to match a final segment of
a line.

The construction “entire RE$ constrains the entire RE to match the entire line.
The null RE (such as, //) is equivalent to the last RE encountered.

Release 2.0

2 SR-2011

ED(1) ED(1)

Addressing
To understand addressing in ed, it is necessary to know that at any time there is a current line. The

current line is the last line affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.
4

’x addresses the line marked with the mark name character x, which must be a lower-case letter.
Lines are marked with the £ command described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching forward from the line
following the current line toward the end of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is searched. See also the
last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching backward from
the line preceding the current line toward the beginning of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line. See also the last paragraph before
FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number
specifies that address plus (or minus) the indicated number of lines. The plus sign may be omit-
ted.

8. If an address begins with + or —, the addition or subtraction is taken with respect to the current
line; such as, -5 is understood to mean .-5.

9. If an address ends with + or —, then 1 is added to or subtracted from the address, respectively.
As a consequence of this rule and of rule 8 immediately above, the address — refers to the line
preceding the current line. (To maintain compatibility with earlier versions of the editor, the
character ~ in addresses is entirely equivalent to —.) Moreover, trailing + and — characters have a
cumulative effect, so — refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for
the pair .9$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the

presence of an address as an error. Commands that accept one or two addresses assume default

addresses when an insufficient number of addresses is given; if more addresses are given than such a

command requires, the last ones are used.

Typically, addresses are separated from each other by a comma (,). They may also be separated by a
semicolon (;). In the latter case, the current line (.) is set to the first address, and only then is the
second address calculated. This feature can be used to determine the starting line for forward and back-
ward searches (see rules 5 and 6 above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command (except
e, f, r, or w) may be suffixed by /, n, or p, in which case the current line is either listed, numbered or
printed, respectively, as discussed below under the /, n, and p commands.

SR-2011 3 Release 2.0

ED(1)

(.)a

<text>

(e

<text>

(.,.d

e file

E file

f file

ED(1)

The append command reads the given text and appends it after the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. Address O is legal for this
command: it causes the ‘‘appended’ text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is 256 per line (including
the new-line character).

The change command deletes the addressed lines, then accepts input text that replaces these
lines; . is left at the last line input, or, if there were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer,
the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and then the named
file to be read in; . is set to the last line of the buffer. If no file name is given, the currently-
remembered file name, if any, is used (see the f command). The number of characters read is
displayed; file is remembered for possible use as a default file name in subsequent e, 7, and w
commands. If file is replaced by !, the rest of the line is taken to be a shell (sh(1)) command
whose output is to be read. Such a shell command is not remembered as the current file name.
See MESSAGES.

The Edit command is like e, except that the editor does not check to see if any changes have
been made to the buffer since the last w command.

If file is given, the file-name command changes the currently-remembered file name to file;
otherwise, it prints the currently-remembered file name.

(1,$)g/RE/command list

In the global command, the first step is to mark every line that matches the given RE. Then,
for every such line, the given command list is executed with . initially set to that line. A sin-
gle command or the first of a list of commands appears on the same line as the global com-
mand. All lines of a multi-line list except the last line must be ended with a \; a, i, and ¢
commands and associated input are permitted. The . terminating input mode may be omitted if
it would be the last line of the command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the command list. See BUGS
and the last paragraph before FILES below.

(1,$)G/RE/

Release 2.0

In the interactive Global command, the first step is to mark every line that matches the given
RE. Then, for every such line, that line is printed, . is changed to that line, and any one com-
mand (other than one of the a, c, i, g, G, v, and V commands) may be input and is executed.
After the execution of that command, the next marked line is printed, and so on; a new-line
acts as a null command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of the execution of
the G command may address and affect any lines in the buffer. The G command can be ter-
minated by an interrupt signal (ASCII DEL or BREAK).

4 SR-2011

ED(1)

(i
<text>

ED(1)

The help command gives a short error message that explains the reason for the most recent ?
diagnostic message.

The Help command causes ed to enter a mode in which error messages are printed for all sub-
sequent ? diagnostics. It will also explain the previous ? if there was one. The H command
alternately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; . is left at the last inserted
line, or, if there was none, at the addressed line. This command differs from the a command
only in the placement of the input text. Address O is not legal for this command. The max-
imum number of characters that may be entered from a terminal is 256 per line (including the
new-line character).

(.y.+1)j

(.)kx

(.s. 0

The join command joins contiguous lines by removing the appropriate new-line characters. If
exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a lower-case letter.
The address ‘x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing char-
acters (such as tab and backspace) are represented by (hopefully) mnemonic overstrikes. All
other non-printing characters are printed in octal, and long lines are folded. An ! command
may be appended to any other command other than e, f, r, or w.

(.,.)ma

(es.)n

(s)p

SR-2011

The move command repositions the addressed lines after the line addressed by a. Address 0 is
legal for a and causes the addressed lines to be moved to the beginning of the file. It is an
error if address a falls within the range of moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by its line number and a
tab character; . is left at the last line printed. The n command may be appended to any other
command other than e, f, 7, or w.

The print command prints the addressed lines; . is left at the last line printed. The p command
may be appended to any other command other than e, f, r, or w. For example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P command alternately
turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done (but sce MESSAGES
below).

The editor exits without checking if changes have been made in the buffer since the last w
command.

5 Release 2.0

ED(1)

($)x file

ED(1)

The read command reads in the given file after the addressed line. If no file name is given,
the currently-remembered file name, if any, is used (see e and f commands). The currently-
remembered file name is not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at the beginning of the
buffer. If the read is successful, the number of characters read is displayed; . is set to the last
line read in. If file is replaced by !, the rest of the line is taken to be a shell command whose
output is to be read. (Refer to !shell command below.) For example, $r !Is appends current
directory to the end of the file being edited. Such a shell command is not remembered as the

current file name.

(., .)s/RE[replacement] or
(.,.)s/RE[replacement/g or
(.,.)s/RElreplacement/n n = 1-512

(.y.)ta

The substitute command searches each addressed line for an occurrence of the specified RE. In
each line in which a match is found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string is replaced. If a
number n appears after the command, only the n-th occurrence of the matched string on each
addressed line is replaced. It is an error for the substitution to fail on all addressed lines. Any
character other than space or new-line may be used instead of / to delimit the RE and the
replacement; . is left at the last line on which a substitution occurred. See also the last para-
graph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the RE on
the current line. The special meaning of & in this context may be suppressed by preceding it
by \. As a more general feature, the characters W1, where n is a digit, are replaced by the text
matched by the n-th regular subexpression of the specified RE enclosed between \(and \).
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its special meaning when it is in
a replacement string of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the replace-
ment must be escaped by preceding it by \. Such substitution cannot be done as part of a g or
v command list.

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0); . is left at the last line of the copy.

u
The undo command nullifies the effect of the most recent command that modified anything in
the buffer, namely the most recent a, ¢, d, g, i,j, m,r, s, t, v, G, or V command.
(1,$)V/IRE/command list
This command is the same as the global command g except that the command list is executed
with . initially set to every line that does not match the RE.
(1,$)V/RE/
This command is the same as the interactive global command G except that the lines that are
marked during the first step are those that do not match the RE.
(1,$)w file

Release 2.0

The write command writes the addressed lines into the named file. If the file does not exist, it
is created with mode 666 (readable and writable by everyone), unless your umask setting (see

6 SR-2011

ED(1)

LIMITATIONS

FILES

SR-2011

($)=

ED(1)

sh(1) and umask(1)) dictates otherwise. The currently-remembered file name is not changed
unless file is the very first file name mentioned since ed was invoked. If no file name is given,
the currently-remembered file name, if any, is used (see e and f commands); . is unchanged. If
the command is successful, the number of characters written is displayed. If file is replaced by
!, the rest of the line is taken to be a shell command whose standard input is the addressed
lines. (Refer to !shell command below.) Such a shell command is not remembered as the
current file name.

A key string is demanded from the standard input. Subsequent e, r, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly empty
key turns off encryption.

The line number of the addressed line is typed; . is unchanged by this command.

'shell command

The remainder of the line after the ! is sent to the UNICOS system shell (sh(1)) by default or to
the value of the SHELL environment variable, if set and exported, to be interpreted as a com-
mand. Within the text of that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus, !! will repeat the last shell command. If
any expansion is performed, the expanded line is echoed; . is unchanged.

(.+1)<new-line>

An address alone on a line causes the addressed line to be printed. A new-line alone is
equivalent to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Size limitations: Large files generate larger editor temporary files and cost many processor cycles on
entry to ed. The buffer is limited to approximately 17 gigabytes (on the CRAY-2 Computer System).
Reasonable editing sessions should be kept under 10 megabytes. Lines are limited to 4096 characters.

When reading a file, ed discards ASCII NUL characters and all characters after the last new-line. Files
(such as a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (such as, /) would be the last character before
a new-line, that delimiter may be omitted, in which case the addressed line is displayed. The following
pairs of commands are equivalent:

ftmp/e#
ed.hup

s/s1/s2 s/s1/s2fp
g/sl g/slfp

751 7s1?

Temporary; # is the process number.
Work is saved here if the editor is killed with signal 1; see signal(2).

7 Release 2.0

ED(1) ED(1)

MESSAGES
? Command errors.
?file An inaccessible file.

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed
wams the user if an attempt is made to destroy ed’s buffer via the e or ¢ commands. It prints ? and
allows one to continue editing. A second e or ¢ command at this point will take effect. The —
command-line option inhibits this feature.

BUGS

A / command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, 7, and w commands cannot be used if the the editor is
invoked from a restricted shell (see sh(1)).

The sequence \n in a RE does not match a new-line character.
The ! command mishandles DEL.

Files encrypted directly with the crypt(1) command with the null key cannot be edited.
Characters are masked to 7 bits on input.

If the editor input is coming from a command file (that is, ed file < ed-cmd-file), the editor will exit at
the first failure of a command that is in the command file.

For UNICOS running on CRAY X-MP or CRAY-1 mainframes, ed truncates large files without warning.

SEE ALSO

crypt(1), grep(1), sed(1), sh(1)
regexp(3C) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication

SR-2013
The UNICOS Primer, publication SR-2010

Release 2.0 8 SR-2011

ENV(1) ENV (1)

NAME

env — Sets environment for command execution

SYNOPSIS

env [~] [name=value] ... [command args]

DESCRIPTION

Env obtains the current environment, modifies it according to its arguments, then executes the command
with the modified environment. Arguments of the form name=value are merged into the inherited
environment before the command is executed. The — flag (hyphen) causes the inherited environment to
be ignored completely, so that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed, one name-value pair per line.

SEE ALSO

sh(1)
exec(2) in the UNICOS System Calls Reference Manual, publication SR-2012
profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

EX(1)

NAME

(CRAY X-MP and CRAY-1 computer systems only) EX(1)

ex — Invokes the ex text editor

SYNOPSIS

ex[-1[~v][-ttagl[—x[filel]l][-R]I[+command 1 [-1] [—x 1] name ..

DESCRIPTION

SR-2011

The ex command invokes the ex editor. Ex is a line-based editor that you can use alone or as an exten-
sion of the screen-based visual editor, vi. If you are not familiar with these editors, please refer to
ed(1), and vi(1).

Ex can perform functions that vi alone cannot. Ex is useful for making large-scale changes to more
than one part of a file, such as performing global text changes, moving text between files, or other
advanced editing procedures. You can also perform functions like writing your file without having to
quit the file. (However, many commands in ex duplicate commands in vi.)

You can access ex in one of two ways: on the command line, or from within vi.

Ex can be invoked on the command line like any other command. You will want invoke ex in this way
if you are using it alone. — Suppresses all interactive-user feedback. This is useful in processing editor
procedures.

-V Invokes the vi editor

-t tag Allows you to edit the file containing the tag and position the editor at its definition

—r [file] Recovers file after an editor or system crash. If file is not specified, a list of all saved
files is printed.

-R Sets read-only mode and prevents you from accidentally overwriting the file.

+command Allows you to begin editing by executing the specified editor search or positioning com-
mand.

-1 Invokes LISP mode. Indents appropriately for lisp code, the () {} [{ and }] commands in
ex are modified to have meaning for lisp.

- Invokes encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

name Indicates files to be edited

Once you have opened a file with ex, you will get a colon () prompt, which indicates you are in com-
mand mode. At this point, you must give ex a command (see the Commands subsection).

Ex can be in one of the following modes at a time:

Command Normal and initial state. Input prompted for by :. Your kill character cancels a partial
command.

Insert Entered by a i and c. You can enter arbitrary text once in this mode. Insert is normally
terminated by entering a . on a line by itself, or abnormally terminated with an interrupt.

Visual Invokes viby entering vi, terminates with Q or e.

To invoke ex once you've opened a file with vi (you must be within vi’s command mode), type a colon
(). At this point, a colon appears in the lower right-hand comner of the screen. Now you are in ex and
can type any ex command (see the Commands subsection). Ex returns control to vi after every com-
mand has completed. The syntax of an ex command is as follows:

: [m],[nlcommand [argument] newline

1 Release 2.0

EX(1)

(CRAY X-MP and CRAY-1 computer systems only) EX(1)

where, m and n are the optional line numbers on which to perform the command, command is the com-
mand name from the list in the next subsection, argument specifies a file or text for some commands,
and newline is the newline character you need to enter to invoke the command. If you do not specify
line numbers on the commands that require them, the command performs the action on the current line.

Commands

Following is a list of command names and their aliases that ex accepts.

abbrev word string

alias: ab
Uses the abbreviation word for the character string string. When in visual mode, if word is typed
as a complete word, it is changed to string.

append
alias: a
Appends text and places it after the specified line. Terminated by a . (dot).
args
alias: ar
Prints the members of the argument list. The current argument is delimited by brackets ([]).
change
alias: ¢
Replaces specified lines with text. Terminated by . (dot).

copy
alias: co
Copies the specified lines. For example, :1,10c020 copies lines 1 through 10 after line 20.
delete
alias: d
Deletes the specified line numbers. For example, :1,10d deletes lines 1 through 10.
edit
alias: e
Edits either the current file, disregarding any changes made so far (:e!), or edits a new file (:e
file). Changes are not lost in the current file and control returns to the shell after editing the new

file.

file

alias: f
Prints the current file and line number.

global

alias: g
Prints certain lines; makes global searches and changes. For example, :g/text moves the cursor to
the last line in the file that contains fext. You can also use g to print certain lines of the file:
:g/text/p or nu prints all lines containing text (if you specify nu instead, it prints the line numbers
also.
The following command can be used to list, one at a time, each line containing text and change
to newtext as required (the editor prompts you if you want the change made. Respond with a y or
n): :gltext/s//newtext/c

insert

alias: i

Places text before the specified line. Terminated with . (dot).

Release 2.0 2 SR-2011

EX(1) (CRAY X-MP and CRAY-1 computer systems only) EX(1)

join

alias: j
Places text from specified lines on one line (that is, joins lines of text).

list

alias: 1
Prints the specified lines with tabs shown as "I and the end of the line marked with a trailing $.
This does not change the contents of the edit buffer.

map lhs rhs

alias: map
Defines macros for use in visual mode. lhs is a single character; ras is a sequence of ex com-
mands. When lhs is typed, it behaves as if ris has been typed.

mark x

alias: ma
Marks the specified line with character x.

move

alias: m
Moves the specified line numbers. For example, :1,10m32 moves line numbers 1 through 10
after line 32.

number
alias: nu
Prints the specified lines; each line is preceded by its (buffer) line number.
preserve
alias: pre
Preserves the buffer.
print
alias: p
Prints the specified line numbers. For example, :1,10p prints lines 1 through 10. :p with no line
specifications prints the current line.

put
alias: pu
Puts back previously deleted or yanked lines (with delete and yank, respectively.
quit
alias: q
Exits the editor. Use :q! to quit without saving your changes.
recover
alias: rec
Recovers the buffer after a system crash, :pre, or disconnect.

rewind
alias: rew
Rewinds the argument list and edits the first file in the list.

set

alias: se
Sets editing initialization options. Options set with set last only while you are in the editor. Set
has the following syntax:

:set [argument] [option]

Set with no arguments shows the options you have changed. :set all shows the state of all

SR-2011 3 Release 2.0

EX(1)

shell
alias:

stop
alias:

(CRAY X-MP and CRAY-1 computer systems only) EX (1)

options. :set x enables the x option. :set nox disables the x option. :set x=val gives the x option
the value of val. :set x? shows the value of the x option.

A list of options follows (the alias, if one exists is in parentheses):

autoindent(ai)
autowrite(aw)
ignorecase(ic)
lisp

list

magic
number(nu)
paragraphs(para)
redraw

scroll
sections(sect)
shiftwidth(sw)
showmatch(sm)
showmode(smd)
slowopen(slow)
window
wrapscan(ws)
wrapmargin(wm)

sh

Supply indent

Write before changing files

Ignore case when scanning

0 {) are s-expressions

Print "I for tab, $ at end of line

Turn on the normal metacharacter meaning of ., [, *.

Number lines

Option’s value is the name of the macros that start paragraphs
Redraw the screen

Command mode lines

Specifies section macro names ...

Gives the width of a software tab stop used in reverse tabbing
Shows the matching to) and { as typed

Show insert mode in vi

Stop updates during insert

Visual mode lines

Searches using regular expressions will wrap around past eof
Automatically splits line n characters from right

Escapse to the shell without writing your file. Which shell you get is specified by the $SHELL

environment variable.

st

Suspends ex and returns control to the calling shell.

substitute

alias:

Substitutes one string for another. For example, :s/y/x/[gcp] substitutes string y for string x. g.c,
andp respectively, change every occurrence in the line, confirm each change before it’s made, and

print changed lines.

unabbrev word

alias:

read
alias:

una

Deletes word from the abbreviation list.

r

version

alias:

ve

visual

alias:

Release 2.0

vi

4 SR-2011

EX(1) (CRAY X-MP and CRAY-1 computer systems only) EX(1)

write
alias: w

xit

alias: x
Writes changes if any have been made and not written, then quits.

yank buffer

alias: ya
Places specified lines in a buffer named buffer. These lines can be retrieved with the put com-
mand.

window

alias: (

escape
alias: !

undo
alias: u

print next
alias: <CR>

source
alias: so

rshift
alias: >

scroll
_alias: CONTROL-D

Line Addressing Symbols
Ex accepts the following command addresses:

n
Line n
(dot)
Specifies the current line

Ipat
Goes to the next line containing the string pat

l’
?pat
Goes to the previous line containing the string pat

SR-2011 5 Release 2.0

EX (1) (CRAY X-MP and CRAY-1 computer systems only) EX (1)

FILES
fust/lib/ex?.?strings Error messages
fust/lib/ex?.?recover Recover command
fust/lib/ex?.?preserve Preserve command
fust/lib/*/* Describes capabilities of terminals
$HOME/.exrc Editor startup file
J.exrc Editor startup file
[tmp/Exnnnnn Editor temporary
/tmp/Rxnnnnn Temporary files for ex
fusr/preserve Preservation directory
BUGS
The undo command causes all marks to be lost on lines changed and then restored if the marked lines
were changed.
Undo never clears the buffer modified condition.
The z command prints a number of logical rather than physical lines. More than a screenfull of output
may result if long lines are present.
File input/output errors do not print a name if the command line ‘-’ option is used.
There is no easy way to do a single scan ignoring case.
The editor does not warn you if you put text in named buffers and do not use the text before exiting the
editor.
Null characters are discarded in input files and cannot appear in resultant files.
SEE ALSO

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).
term(4F), terminfo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 6 SR-2011

EXDF(1

NAME

) (CRAY X-MP and CRAY-1 computer systems only) EXDEF(1)

exdf — Transfers files to and from the IOS partition of the expander disk

SYNOPSIS

exdf [-{ilo} dirname/filename 1 [—r]

DESCRIPTION

Exdf can read or write a file on the IOS partition of the expander disk. The program determines from
the command line whether it is reading or writing an expander disk file. The —i option indicates input
from the expander disk, and the —o option indicates output to a disk file. The dirname/filename is the
directory/file name entry as known to the I0S. All I0S directory file name combinations are automati-
cally forced to upper case letters. Standard input or output is used for the UNICOS file. UNICOS direc-
tory and file names can be specified through the normal redirect methods. Exdf can easily be used as a
link in a pipe to move files onto or off of the expander disk.

The —r option indicates whether a file being output to the expander disk can replace an existing file.
The default is to abort a transfer when the file already exists. The option is ignored.for files being read
from the expander disk.

WARNING

BUGS

SR-2011

The IOS has its own conventions for directory names, and file names. Please observe the conventions.

The I0S and Cray computer systems force full words to be transferred. This results in null characters
added to the end of files. This will be a problem with text files that you want to compile. The C
preprocessor blows up when it runs into the nulls. Exdf cannot filter the data because the last bytes in a
file are not always accompanied by the end of file status.

Character files on the I0S do not have carriage return and line feed as end of lines, but apparently just a
carriage return. Develop your own filter if this is a problem.

If exdf cannot write a file to the expander disk because the disk is write-protected, no error messages
are displayed.

1 Release 2.0

EXLP(1

NAME

) {CRAY X-MP and CRAY-1 computer systems only) EXLP(1)

exlp — Prints files on the expander line printer

SYNOPSIS

exlp [pl[-—r][-s]l[-w]lfile..]

DESCRIPTION

The exlp command takes standard input, a file, or a file list and prints the files on the expander printer,
/dev/lp. If a list of files is specified, the files are printed in the order specified with a blank page
between each file.

The —p option switches the expander printer into plot mode. The -r option prints the files rotated 90
degrees on the paper. The -s option is the silent switch, and will tumn off warning messages. The -w
option is useful when the rotated option, —r, is also specified. The —w option specifies that the files are
to be printed in 132 column mode. The default setting when only the rotate option is set is 80
columns. The maximum number of columns is 132 for all files printed without the rotate option set.

WARNING

BUGS

SR-2011

The exlp command ignores attempts to redirect output to other files or devices.

The exlp command can be terminated by the normal interrupt character (control-C) or the eof character
(control-D), but it takes a little while for the printer to be closed.

1 Release 2.0

EXPAND(1) EXPAND(1)

NAME
expand, unexpand — Expands tabs to spaces, and vice versa

SYNOPSIS

expand [—tabstop] [—tabl,tab2,....tabn] [file ...]
unexpand [—-a] [file ...]

DESCRIPTION

The expand command changes tabs into blanks in the named files (or the standard input if you do not
specify any files) and writes the files to standard output. Expand preserves backspace characters into
the output and decrements the column count for tab calculations. Expand is useful for pre-processing
character files (for example, before sorting, looking at specific columns,) that contain tabs.

If you specify a single tabstop argument, tabs are set rabstop spaces apart instead of the default 8. If
you specify multiple tabstops, then the tabs are sct at those specific columns.

The unexpand command puts tabs back into the data from the standard input or the named files and
writes the result to the standard output. By default, only leading blanks and tabs are reconverted to
maximal strings of tabs. If you specify the -a option, tabs are inserted whenever they would compress
the resultant file by replacing two or more characters.

SR-2011 1 Release 2.0

EXPR (1) EXPR(1)

NAME

expr — Evaluates arguments as an expression

SYNOPSIS

expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Terms of the expression must be separated by blanks. Characters special to the shell must be escaped.
Note that 0 is retumned to indicate a zero value, rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 64-bit, twos complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by \.
The list is in order of increasing precedence, with equal precedence operators grouped within { } sym-
bols.

expr \| expr Returns the first expr if it is neither null nor 0, otherwise returns the second expr.

expr \& expr
Returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =,\>, o=, \, <=, != } expr
Returns the result of an integer comparison if both arguments are integers, otherwise returns
the result of a lexical comparison.

expr { +, =} expr
Addition or subtraction of integer-valued arguments.
expr {\&, [, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second argument, which must be
a regular expression. Regular expression syntax is the same as that of ed(1), except that all
patterns are ‘‘anchored’” (that is, begin with °) and, therefore, ~ is not a special character in
that context. Normally, the matching operator returns the number of characters matched (0 on
failure). Alternatively, the \(...\) pattern symbols can be used to return a portion of the first
argument.

EXAMPLES

SR-2011

a="expr $a + I' Adds 1 to the shell variable a.
For $a equal to either "/usr/abc/file" or just "file"”

expr $a : “#\(#) \| $a
Returns the last segment of a path name (that is, the filename). Watch out for /
alone as an argument; expr will take it as the division operator (see BUGS).

A better representation of example 2.

expr /f$a : “.#/\(:#\)" The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

expr $VAR : “*° Returns the number of characters in $VAR.

1 Release 2.0

EXPR(1)

EXPR (1)

MESSAGES

BUGS

syntax error Operator/operand errors
non-numeric argument Arithmetic is attempted on a non-integer string

As a side effect of expression evaluation, expr returns the following exit values:
0 The expression is neither null nor 0
1 The expression is null or 0
2 Invalid expressions

After argument processing by the shell, expr cannot tell the difference between an operator and an
operand except by the value. If $a is an =, the command:

o

expr $a = ‘=
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The following
works:

expr X%a = X=

SEE ALSO

Release 2.0 2

ed(1), sh(1)

SR-2011

EXTD(1

NAME

) (CRAY X-MP and CRAY-1 computer systems only) EXTD(1)

extd — Transfers files to and from the I0S expander tape drive

SYNOPSIS

extd [—{ilo} message 1 [-r 1 [—n filenumber]

DESCRIPTION

The Extd command can read or write a file on an expander tape. The program determines from the
command line whether it is reading or writing an expander tape. The —i option indicates input from an
expander tape, and the —o0 option indicates output to a tape. Message is the mount message to be
displayed on the IOS console. The mount message can be up to 7 characters long. All I0S mount mes-
sages are automatically forced to upper case letters. Standard input or output is used for the UNICOS
file. UNICOS directory and file names can be specified through the normal redirection methods. The
extd command can easily be used as a link in a pipe to move files onto or off of an expander tape.

The —r option is the "remain in position" option; it forces the drive to not rewind on close. This option
can be used to read or write multiple files to a tape. The option should be used in conjunction with the
—n filenumber to specify which file is being read or written. The -r option should not be used on the
last invocation of extd because the drive remains reserved in the I0S. The next user of the drive will be
denied access to the IOS.

The —n option specifies the number of the file to be read or written on the tape. The first file is number
0, the second is 1, etc.

WARNING

SR-2011

The IOS has its own conventions for mount messages. Please observe the conventions.

Be aware that the drive does stay reserved for the pid of the user who invokes extd with the —r option
until the drive has been opened with rewind specified by that pid, or aborted at the I0S console. This
does provide some interlocking for the tape, but should be used with caution.

1 Release 2.0

FACTOR(1) FACTOR(1)

NAME

factor — Factors a number

SYNOPSIS
factor [number]

DESCRIPTION

‘When factor is invoked without an argument, it waits for a number to be typed in. If you type in a
positive number less than or equal to 1.0 X 10", it will factor the number and print its prime factors;
each one is printed the proper number of times. Then it waits for another number. It exits if it
encounters a 0 or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.
Maximum time to factor is proportional to yn and occurs when n is prime or the square of a prime.

MESSAGES

Ouch! Input out of range or garbage input

SR-2011 1 Release 2.0

FETCH(

NAME

1) FETCH(1)

fetch - Requests a file from a front-end station

SYNOPSIS

fetch localpath [-nSFN] [\iTERMID 1 [-mMF 1 [-dDC 1 [-fFM] [-t'TEXT]
[—uUSER]

DESCRIPTION

SR-2011

The fetch command creates a request file for USCP (UNICOS Station Call Processor). If any slot infor-
mation is associated with the requesting user, it is also copied into the request file. USCP uses station
protocol to make the request for a file from the designated station (specified by the —m option). The
fetch process then waits until the transfer status has been determined. The transfer status is returned
when a negative reply is received from the station (requested file did not transfer) or when a positive
reply is received from the station (requested file has been saved on the Cray computer system). It is
possible for the station to return a postpone status, in which case the fetch process resets the request for
USCP to find and again waits for the transfer status.

localpath A path name (either full or relative to current working directory) where the requested file is
to reside when the transfer is complete. The localpath must be a location where the request-
ing user has permission to write. This is a required argument.

-nSFN Name associated with requested file on the specified front end. This argument is stored in

the request record PDN field. Only 15 characters are significant. If you do not specify SFN,
this field is filled the filename from the localpath.

—TERMID The terminal ID associated with the requested file on the specified front end. The size limit
is 8 characters. If you do not specify TERMID, the default is the stored terminal ID associ-
ated with the requesting user on the front-end station from which the user originated.

-mMF MF is a two character front-end ID for a station that has access to the requested file. If you
do not specify the mainframe, the stored ID of the station from which the requesting user

originated is used.
-fFM FM is a two character file format code. Valid formats are :
CB Character blocked; the default
CDh Character deblocked
BB Binary blocked
BD Binary deblocked
TR Transparent
UD UNICOS Data

For further descriptions of the valid format codes, see the Front End Protocol Internal
Reference Manual, CRI publication SM-0042.

-dDC A two character disposition code interpreted by the receiving system. Valid codes are:
IN File is executed as a job.
ST File is saved.

1 Release 2.0

FETCH(1) FETCH(1)

-t'TEXT" Text to be interpreted by the specified station for processing of the request. The field can
contain label information, routing, etc., possibly in the form of control statements for the
station. Text field information should be enclosed by single quotes (’). If you do not
specify this option, the request text field is filled with binary 0’s.

~-uUSER User ID associated with the requested file on the specified front end. If you do not specify
USER, this field is left blank for the request.
LIMITATIONS

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether the mainframe ID specified belongs to a
currently active station. If the associated station is not active or has no streams assigned (that is,
interactive only station), the user process waits indefinitely.

SEE ALSO

dispose(1), acquire(1), uscpintro(1)
Front End Protocol Internal Reference Manual, publication SM-0042.

Release 2.0 2 SR-2011

FILE(1)

NAME

FILE(1)

file — Determines file type

SYNOPSIS

file[<c][-fffile][-mmfile] arg ..

DESCRIPTION

FILES

File performs a series of tests on each argument in an attempt to classify it. If an argument appears to
be ASCIL, file examines the first 512 bytes and tries to guess its language. If an argument is an execut-
able a.out, file will print the version stamp, provided it is greater than O (see ld(1)).

File uses the file /etc/magic to identify files that have some sort of magic number, that is, any file con-
taining a numeric or string constant that indicates its type. Commentary at the beginning of /etc/magic
explains its format.

Options for file are:
—f The next argument is taken to be a file containing the names of the files to be examined.
-m Instructs file to use an alternate magic file.

—c Causes file to check the magic file for format errors. This validation is not normally carried out
for reasons of efficiency. No file typing is done under —c.

Jetc/magic

SEE ALSO

SR-2011

1d(1)

1 Release 2.0

FIND(1)

NAME

find — Finds files

SYNOPSIS
find path-name-list (expression)

DESCRIPTION

Find recursively descends the directory hierarchy for each path name in the path-name-list (that is, one
or more path names) seeking files that match a boolean expression written in the primaries given below.
In the descriptions, the argument n is used as a decimal integer where +n means more than n, -n
means less than n, and n means exactly n.

—-name file

—perm onum

-type ¢

~links n

—user uname
—group gname
-size n[c]
—-atime n

~mtime n
—ctime n
—exec ¢cmd

—ok cmd

—print
—cpio device

—newer file
—depth

(expression)

SR-2011

FIND(1)

True if file matches the current file name. Normal shell argument syntax may be
used if escaped (watch out for [, ? and #).

True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (07777, see stat(2))
become significant and the flags are compared.

True if the type of the file is ¢, where ¢ is b, ¢, d, p, or f for block special file,
character special file, directory, fifo (named pipe), or regular file, respectively.
True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not appear
as a login name in the file /etc/passwd, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does not
appear in the file /etc/group, it is taken as a group ID.

True if the file is n blocks long (512 bytes per block). If n is followed by a c, the
size is in characters.

True if the file has been accessed in n days. The access time of directories in path-
name-list is changed by find itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a O value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument {} is replaced by the
current path name.

Like —exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

Always true; causes the current path name to be printed.

Always true; write the current file on device in cpio (4F) ascii format (5120-byte
records). Device can be a file.

True if the current file has been modified more recently than the argument file.
Always true; causes descent of the directory hierarchy to be done so that all entries
in a directory are acted on before the directory itself. This can be useful when find
is used with cpio(1) to transfer files that are contained in directories without write
permission.

True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

1 Release 2.0

FIND(1) FIND(1)

The primaries may be combined using the following operators (in order of decreasing precedence):
1. The negation of a primary (! is the unary not operator).

2. Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).
3. Alternation of primaries (—o is the or operator).

EXAMPLE
To remove all files named a.out or *.0 that have not been accessed for a week:
find / \(-name a.out —0 —name "*.0" \) —atime +7 —exec rm {} \;

FILES N

[etc/group
[etc/passwd

SEE ALSO

chmod(1), cpio(1), sh(1), test(1) .
stat(2) in the UNICOS System Calls Reference Manual, publication SR-2012
cpio(4F), fs(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

FINGER (1) (TCP/IP Network) FINGER(1)

NAME

finger — Provides user information

SYNOPSIS
finger [options | name ...
finger @host
DESCRIPTION

FILES

SR-2011

By default, finger lists the login name, full name, terminal name, and write status (as an asterisk (*)
before the terminal name if write permission is denied), idle time, login time, and office location and
phone number (if they are known) for each cumrent user. (Idle time is represented in minutes if it is a
single integer, hours and minutes if a colon (:) is present, or days and hours if a "d" is present in the
date field.)

The finger command accepts the following options:

-b Briefer long form list of users

—f Suppress heading in the short and quick output format
-h Suppress printing of the .project file

—i Same as quick list but includes idle time

-1 Force long output format

—-m Match arguments only on user name

—p Suppress printing of the .plan file

—q Quick list with only login name, terminal name and login time
—s Short list of users

—w Suppress printing of the full name in the short list format

A longer list format also exists; .I finger uses it whenever a list of names is given. (Account names as
well as first and last names of users are accepted.) This format is multi-line, and includes all the infor-
mation described above as well as the user’s home directory and login shell, any plan that the person
has placed in the file .plan in their home directory, and the project on which they are working from the
file .project (note that text must begin on line 1 of the file or /fIfinger/fR will not read it) also in the
home directory.

The finger command can also be used as a network protocol by specifying a hostname or address or a
specific user at a host. The finger command displays information about a user or users on that host.
Instead of the username, any of the above options can be specified at a host.

fetc/utmp Who file
fetc/passwd For user names, phone numbers, ...
~/.plan Plan file
~/.project Projecct file
1 Release 2.0

FLODUMP(1) (CRAY-2 computer systems only) FLODUMP(1)

NAME

flodump — Displays flowtrace data in 132-column format

SYNOPSIS

flodump [-rATC] [flowdata_file]

DESCRIPTION

The flodump command interprets the flowdata_file file that is produced by executing a program with
flowtrace turned on. If you do not specify a flowdata_file file, flodump uses flow.data by default (if you
want to specify a different default file, you can set the environment variable FLOWDATA to the name
of the file to which the data should be written). For each function that is flowtraced, the following
statistics are kept: name, entry point, number of times called, who called it and how many times
(parents), who it called and how many times (children), time spent in the function exclusive of children,
and time spent including children. In addition, flodump records the time spent executing FLOWENTER
and FLOWEXIT code.

The flodump command prints the output in the same format as that provided under COS. It expects a
132-column display that understands form control in column 1.

The following options are available:

-r Reverses the order of the sort

—A Sorts alphabetically; the default.

-T Sorts by time spent in function

~C Sorts by time spent in function and children

Enable the flodump command by supplying the flowtrace option at compile time. Use the —ef option
with ¢ft(1) and the —F option with cc(1).

SEE ALSO

SR-2011

cc(l), cft(1), flow(1)

1 Release 2.0

FLODUMP(1) (CRAY X-MP and CRAY-1 computer systems only) FLODUMP(1)

NAME
flodump — Displays flowtrace data from a file named core

SYNOPSIS
flodump

DESCRIPTION
Flodump automatically prepares a flow trace report, on standard output, from a file named core (which

must be in the current directory) produced by abnormal program termination. Flodump only produces
the report under the following conditions:

e If your program was compiled with the flow trace compiler option turned on
o If the report was generated with the same version of the flow trace subroutines as were the programs
in the core dump file

The report will be less accurate than if the programs terminated normally. Flodump assumes that the
program termination occurred at the last subprogram entry or exit it processed. The distortion intro-
duced by this assumption can occasionally produce bizarre results, such as apparently negative runtimes.

FILES

core Program memory dump
BUGS

Support for multitasked programs is not yet available.
SEE ALSO

cft(1), debug(1), pascal(l)

SR-2011 1 Release 2.0

FLOW(1) (CRAY-2 computer systems only) FLOW(1)

NAME
flow — Displays flowtrace data in 80-column format

SYNOPSIS
flow [-rATCpctis] [flowdata_file]

DESCRIPTION

The flow command interprets the specified flowdata_file file that is produced by executing a program
with flowtrace turned on. The data from the flowtrace is written in the flow.data file by default; how-
ever, you can specify a flowdata_file on the command. You can also override the default file name by
setting the environment variable FLOWDATA to the name of the file to which the data should be writ-

ten.

For each function that is flowtraced, the following statistics are kept: name, entry point, number of
times called, who called it and how many times (parents), who it called and how many times (children),
time spent in the function exclusive of children, and time spent including children. In addition,
flowtrace records the time spent executing FLOWENTER and FLOWEXIT code.

The flow command prints the output so it may be viewed on an. 80-column screen. The flow command
also provides information about its children that is not provided by flodump(1).

The following options are available:
-r Reverses the order of the sort
—A Sorts alphabetically
-T Sorts by time spent in function; the default.
—-C Sorts by time spent in function and children
—p Does not print parents
—c¢ Does not print children
-t Does not print call tree
—-i Does not print data about functions
-5 Does not print totals
Enable the flow command by supplying the flowtrace option at compile time. Use the —ef option with
¢ft(1) and the -F option with cc(1).
SEE ALSO
cc(1), cft(l), flodump(1)

SR-2011 1 Release 2.0

FOLD(1) (CRAY X-MP and CRAY-1 computer systems only) FOLD(1)

NAME
fold - Folds long lines of files for finite width output device

SYNOPSIS
fold [—width 1 [file ...]

DESCRIPTION

The fold command acts as a filter that folds the contents of the specified files, or the standard input (if
you do not specify files), breaking the lines to have maximum width width. The default for widrh is 80.
If tabs are present, or if they need to be expanded (using expand(1) before coming to fold), the width
should be a multiple of 8.

BUGS
If underlining is present, it may-be messed up by the fold command.

SEE ALSO
expand(1)

SR-2011 1 Release 2.0

FSPLIT(1) FSPLIT(1)

NAME
fsplit — Splits Fortran files

SYNOPSIS
fsplit options files

DESCRIPTION

Fsplit splits the named files into separate files, with one procedure per file. A procedure includes the
following program segments: blockdata, function, main, program, and subroutine. Procedure X is
put in file X.f, X.r, or X.e depending on the language option chosen, with the following exceptions:
main is put in the file MAIN.[efr] and unnamed blockdata segments in the files blockdataN .[efr] where
N is a unique integer value for each file.

The following options are available:

—f Input files are f77(default)

-r Input files are ratfor

- Input files are ¢f!

—s Strip f77 input lines to 72 or fewer characters with trailing blanks removed
LIMITATIONS

Ratfor and efl are not supported on UNICOS.
F77 is supported on UNICOS running on a CRAY X-MP or CRAY-1 Computer System. However, the f77
option is useful for any Fortran program.

SEE ALSO
csplit(1), split(1)

SR-2011 1 Release 2.0

FTP(1) (TCP/IP Network) FTP(1)

NAME

ftp — Transfers files to and from a remote retwork site

SYNOPSIS
fp [v][d][4][-n][-g]l[host]

DESCRIPTION

Fip is the user interface to the ARPANET standard File Transfer Protocol (FTP). The program allows a
user to transfer files to and from a remote network site.

The client host with which fip is to communicate may be specified on the command line. If this is
done, fip will immediately attempt to establish a connection to an FTP server on that host; otherwise,
Jftp will enter its command interpreter and await instructions from the user. When ftp is awaiting com-
mands from the user the prompt ftp> is provided the user. If insufficient command arguments are sup-
plied by the user, ftp will prompt for them.

Fip may be interrupted, typically by striking the DELETE key or control-C key. If this is done while fip
is attempting to carry out a command, fip will revert to the command interpreter and display the "ftp>"
prompt. Otherwise, fip will be terminated.

Options may be specified at the command line or to the command interpreter.

The —v (verbose on) option forces ftp to show all responses from the remote server, as well as report on
data transfer statistics.

The —n option restrains fip from attempting autologin upon initial connection. If auto-login is enabled,
ftp will check the .netrc(4F) file in the user’s home directory for an entry describing an account on the
remote machine. If no entry exists, fip will use the login name on the local machine as the user iden-
tity on the remote machine, and prompt for a password and, optionally, an account with which to login.

" The —i option turns off interactive prompting during multiple file transfers.
The —d option enables debugging.
The —g option disables file name globbing.

The following commands are recognized by fip. They may be given aliases as long as they remain
unique.

! Invoke a shell on the local machine.

append local-file [remote-file]
Append local-file to a file on the remote machine. If remote-file is left unspecified, the name
of local-file is used in naming remote-file. File transfer uses the current settings for type, for-
mat, mode , and structure.

ascii Set the file transfer type to network ASCII. This is the default type.
bell Sound a bell after each file transfer command is completed.

binary Set the file transfer zype to support binary image transfer.

bye Terminate the FTP session with the remote server and exit fip.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

close Terminate the FTP session with the remote server and retumn to the command interpreter.

delete remote-file
Delete the file remote-file on the remote machine.

SR-2011 1 Release 2.0

FTP(1) (TCP/1IP Network) FTP(1)

debug Toggle debugging mode. When debugging is on, fip prints each command sent to the remote
machine, preceded by the string -->. For a list of the commands, see fipd(8).

dir [remote-directory 1 [local-file]
Print a listing of the contents of remote-directory and, optionally, place the output in local-file.
If no directory is specified, the current working directory on the remote machine is used. If
local-file is not specified, output comes to the terminal.

form format
Set the file transfer form to format. The default format is "non-print”. At this printing, only

the default form is supported.

get remote-file [local-file]
Retrieve remote-file and store it on the local machine. If the name of local-file is not specified,
it is given the same name it has on the remote machine. The current settings for type, form,
mode, and structure are used while transferring the file.

hash Toggle hash-sign (‘“‘#’”) printing for each data block transferred. The size of a data block is
4096 bytes.

glob Toggle local file name globbing. With file name globbing enabled, each local file or path
name is processed for the sh(l) metacharacters *, ?, [, An additional pair of metacharacters,
{}, is also processed. This pair may enclose several comma-separated strings for each of
which a match is sought. With globbing disabled all local files and path names are treated
literally. Globbing is always on with reference to remote files.

help [command]
Print an informative message about the meaning of command. If no argument is given, fip
prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If directory is not specified, the user’s
home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If remote-
directory is left unspecified, the current working directory is used. If local-file is not specified,
the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled, the specification of
remote-files will first be expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place the result in local-

file.

mget remote-files
Retrieve the specified files from the remote machine and place them in the current local direc-
tory. If globbing is enabled, the specification of remote files will first be expanded using Is.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and place the result in
local-file.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is stream mode. At this printing,
only the default is supported.

Release 2.0 2 SR-2011

FTP(1) (TCP/TIP Network) FTP(1)

mput local-files
Transfer multiple local-files from the current local directory to the current working directory on

the remote machine.

open host [port]
Establish a connection to the specified host FTP server. An optional port number may be sup-
plied, in which case, ftp will attempt to contact an FTP server at that port. If autologin is
enabled (default), fip will also attempt to automatically log the user in to the FTP server (see
below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to
allow the user to selectively retrieve or store files. If prompting is turned off (default), a mget
or mput command will transfer all files.

put local-file [remote-file]
Store local-file on the remote machine. If remote-file is left unspecified, the name of local-file
is used in naming remote-file. File transfer uses the current settings for type, format, mode, and
Structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server. A single FTP reply
code is expected in return.

recv remote-file [localfile]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If command-name is specified it is supplied to the
server as well.

rename [from] [to]
Rename the file from on the remote machine to the file to.

rmdir directory-name
Delete a directory on the remote machine.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, fip will attempt to use a PORT command
when establishing a connection for each data transfer. If the PORT command fails, fip will use
the default data port. When the use of PORT commands is disabled, no attempt will be made
to use PORT commands for each data transfer. This is useful for certain FTP implementations
which do ignore PORT commands but, incorrectly, indicate they’ve been accepted.

status Show the current status of fip.

struct [struct-name]
Set the file transfer structure to struct-name. By default, file structure is used. At this print-

ing, only the default is supported.
tenex Set the file transfer sype to that needed to talk to TENEX machines.
trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If type is not specified, the current type is printed. The
three valid types are "tenex”, "binary” and "ascii”, which is the default.

SR-2011 3 Release 2.0

FTP(1) (TCP/1P Network) FTP(1)

user user-name [password] [account]
Identify yourself to the remote FTP server. If password is not specified and the server requires
it, fip will prompt you for it (after disabling local echo). If account is not specified, and the
FTP server requires it, you will be prompted for it. Unless fip is invoked with autologin dis-
abled, this process is done automatically on initial connection to the FTP server.

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the
efficiency of the transfer are reported. By default, verbose is off.

? [command] ,
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

File Naming Conventions
Files specified as arguments to fip commands are processed according to the following rules.

1. If the file name - is specified, stdin (for reading) or stdout (for writing) is used.

2. If the first character of the file name is |, the remainder of the argument is interpreted as a shell
command. Fip then forks a shell with the argument supplied, and reads (or writes) from stdout
(or stdin). If the shell command includes spaces, the argument must be quoted; for example, "|
Is -1t". A particularly useful example of this mechanism is dir < directory name> |pg.

3) Failing the above checks, if ‘‘globbing’’ is enabled, local file names are expanded as per the
glob command.
BUGS
Many FTP server implementations do not support operations such as "print working directory".
The mget and mdelete commands should be used with caution. Specifying a directory where a plain file
name is expected could produce unexpected results.
SEE ALSO
ftpusers(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 4 SR-2011

FTREF(1) (CRAY X-MP and CRAY-1 computer systems only) FTREF(1)

NAME

ftref — Generates Fortran reference listing

SYNOPSIS

ftref [—ccb 1[—ttree 1[-rroot 1[—eend 1[-dnm] filename

DESCRIPTION

The firef command generates a listing that contains several forms of information about a Fortram pro-
gram. The ftref command reports on the common block variables used in the subroutines within the
program. It provides tabular information that consists of entry names, calling routines, and called rou-
tines for each subroutine. This information is displayed as a static calling tree. For multitasked pro-
grams, firef summarizes the use of multitasking subroutines and reports whether a common variable or a
subroutine is locked when it is referenced or redefined.

The ftref command requires the output produced when —e is specified in a previous CFT statement. The

dataset to be processed by firef may contain any number of modules used by the program. The more
program modules included in the dataset, the more complete the information output by firef.

The following arguments are available:

—ccb Global common block cross references. The default is pars. The cb argument can use the fol-
lowing routines:

part Identifies the routine names using a common block
full Details the use of the variables of a common block in a routine
none No output information

~ttree Produces information about the routines called and the static calling tree for the program. The
value ‘**LOOP**’ indicates that an apparently recursive program exists. The tree argument can
use the following routines:

part Reports entry names, external calls, other routines that call the routine, and common
block names from the input dataset; the default.

Sfull Reports the information that the part option provides plus the static calling tree

none No output information

~rroot If you specified —tfull, the —r directs root to be the root of the tree. The -r option can be used
to get a subtree for the program; it can also be used to request multiple subtrees, each beginning
at a different root. If you do not specify the —r argument, a routine that has not been called by
another routine is chosen by default. If there is more than one uncalled routine, the first routine
(by alphabetic order) is chosen as the root.

—eend If you specified -tfull, the —e argument directs routine end to terminate any branch of the tree in
which end is encountered. The value “**STOP**’ is printed whenever the routine is found, and
that branch of the tree is terminated. By default, firef generates a tree containing all subroutines
in the program.

-In If you specified —tfull, the -1 argument indicates that the maximum length of any branch is n
levels deep. The default is the entire program. If both -1 and —e are specified, ftref terminates a
branch of the tree at which ever state is encountered first.

-d Selects modules to process or common blocks for firef to check to determine whether a variable
is in a locked area. The standard input contains a set of directives that controls the processing
or check. The directives are taken from standard input. The default is no directives to be read.

SR-2011 1 Release 2.0

FTREF(1) (CRAY X-MP and CRAY-1 computer systems only) FTREF(1)

-n Lists the subroutines in input order instead of alphabetic order. The default is alphabetic order.

-m Examines the source for uses of the multitasking subroutines and generates tables summarizing

the subroutine’s use within the program. Refer to the CRAY X-MP Multitasking Programmer’s
Manual for more information.

Release 2.0 2 SR-2011

GET(1)

NAME

SYNOPS

GET (1)

get — Gets a version of an SCCS file

IS

get [-rSID] [~ccutoff]l [-ilisf] [-xlisf] [-wstring] [-aseq-no] [-k] [—e] [-1[p]] [—p] [-m] [-n] [-s]
[-b] [-g] [~t] file

DESCRIPTION

SR-2011

Get generates an ASCII text file from each named SCCS file according to the specifications given by its
keyletter arguments, which begin with a dash (=). The arguments may be specified in any order, but all
keyletter arguments apply to all named SCCS files. If a directory is named, get behaves as though each
file in the directory were specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the name of an SCCS file to be pro-
cessed. Again, non-SCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from the SCCS
file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS file is to be processed, but
the effects of any keyletter argument applies independently to each named file.

-rSID The SCCS IDentification string (SID) of the version (delta) of an SCCS file to be retrieved.
Table 1 below shows, for the most useful cases, what version of an SCCS file is retrieved (as
well as the SID of the version to be eventually created by delia(1) if the —e keyletter is also
used), as a function of the SID specified.

—ccutoff Cutoff date-time, in the form:

YYIMMIDD[HHIMM([SS]]1]]

No changes (deltas) to the SCCS file which were created after the specified cutoff date-time
are included in the generated ASCII text file. Units omitted from the date-time default to
their maximum possible values; that is, 7502 is equivalent to —750228235959. Any
number of non-numeric characters may separate the various 2-digit pieces of the cutoff date-
time. This feature allows one to specify a cutoff date in the form: "-c77/2/2 9:22:25". Note
that this implies that one may use the %E% and %U% identification keywords (see below)
for nested gets within, say the input to a send(1C) command:

~lget "¢%E% %U%" s.file

- Indicates that the ger is for the purpose of editing or making a change (delta) to the SCCS
file via a subsequent use of delta(1). The —e keyletter used in a get for a particular version
(SID) of the SCCS file prevents further gets for editing on the same SID until delta is exe-
cuted or the j (joint edit) flag is set in the SCCS file (see admin(1)). Concurrent use of get
—e for different SIDs is always allowed.

If the g-file generated by get with an —e keyletter is accidentally ruined in the process of
editing it, it may be regenerated by re-executing the get command with the -k keyletter in
place of the —e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in the
SCCS file (see admin(1)) are enforced when the —e keyletter is used.

1 Release 2.0

GET (1)

—ilist

—xlist
-k

-1[p]

-p

-2
=,

~w string

-aseq-no.

GET (1)

Used with the —e keyletter to indicate that the new delta should have an SID in a new branch
as shown in Table 1. This keyletter is ignored if the b flag is not present in the file (see
admin(1)) or if the retrieved delta is not a leaf delta. (A leaf delta is one that has no suc-
cessors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf delta.

A list of deltas to be included (forced to be applied) in the creation of the generated file.
The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in the ‘‘SID Specified’’
column of Table 1. Partial SIDs are interpreted as shown in the ‘SID Retrieved’’ column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the creation of the generated file.
See the —i keyletter for the list format.

Suppresses replacement of identification keywords (sece below) in the retrieved text by their
value. The -k keyletter is implied by the —e keyletter.

Causes a delta summary to be written into an /-file. If -lp is used then an l-file is not
created; the delta summary is written on the standard output instead. See FILES for the for-
mat of the Il-file.

Causes the text retrieved from the SCCS file to be written on the standard output. No g-file
is created. All output which normally goes to the standard output goes to file descriptor 2
instead, unless the —s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output. However, fatal error mes-
sages (which always go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded by the SID of the delta that
inserted the text line in the SCCS file. The format is: SID, followed by a horizontal tab, fol-
lowed by the text line.

Causes each generated text line to be preceded with the %M% identification keyword value
(see below). The format is: %M% value, followed by a horizontal tab, followed by the text
line. When both the -m and —n keyletters are used, the format is: %M% value, followed by
a horizontal tab, followed by the —m keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is primarily used to generate an
I-file, or to verify the existence of a particular SID.

Used to access the most recently created (‘‘top’’) delta in a given release (such as, —r1), or
release and level (such as, -r1.2).

Substitute string for all occurrences of "% w%" when using the get command on a the file.

The delta sequence number of the SCCS file delta (version) to be retrieved (see sccsfile(4)).
This keyletter is used by the comb(1) command; it is not a generally useful keyletter, and
users should not use it. If both the —r and —-a keyletters are specified, the —a keyletter is
used. Care should be taken when using the —a keyletter in conjunction with the —e keyletter,
as the SID of the delta to be created may not be what one expects. The —r keyletter can be
used with the —-a and —e keyletters to control the naming of the SID of the delta to be
created.

For each file processed, get responds (on the standard output) with the SID being accessed and with the
number of lines retrieved from the SCCS file.

Release 2.0

2 SR-2011

GET(1) GET(1)

If the —e keyletter is used, the SID of the delta to be made appears after the SID accessed and before the
number of lines generated. If there is more than one named file or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is processed. If the —i keyletter is
used included deltas are listed following the notation ‘‘Included’’; if the —x keyletter is used, excluded
deltas are listed following the notation ‘‘Excluded’’.

TABLE 1. Determination of SCCS Identification String

SID* -b Keyletter Other SID SID of Delta
Specified Usedf Conditions Retrieved to be Created
nonei no R defaults to mR mR.mL mR.(mL+1)
none} yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R, J#**

R no R=mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R=mR mR.mL mR.mL.(mB+1).1
R < mR and

R - R doos ma‘t‘exist hR.mL** hR.mL.(mB+1).1
Trunk succ.#

R - in release > R R.mL R.mL.(mB+1).1
and R exists

RL no No trunk succ. R.L R.(L+1)

RL yes No trunk succ. RL RL.(mB+1).1

RL - e suoc RL RL.(mB+1).1

RL.B no No branch succ. R.L.B.mS R.L.B.(mS+1)

RL.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

RLB.S no No branch succ. R.L.B.S R.L.B.(S+1)

RL.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1

RL.B.S - Branch succ. RLB.S R.L.(mB+1).1

* “R”, “L”, “B”, and *‘S’’ are the ‘‘release’, “‘level’’, ‘‘branch’’, and ‘‘sequence’’ components

of the SID, respectively; ‘‘m’’ means ‘‘maximum’’. Thus, for example, “R.mL’’ means ‘‘the
maximum level number within release R”’; ‘‘R.L.(mB+1).1’” means ‘‘the first sequence number
on the new branch (that is, maximum branch number plus one) of level L within release R”’.
Note that if the SID specified is of the form “R.L’’, ‘‘RL.B”’, or ‘“R.L.B.S’’, each of the
specified components must exist.

** “hR” is the highest existing release that is lower than the specified, nonexistent , release R.

*** This is used to force creation of the first delta in a new release.

Successor.

The -b keyletter is effective only if the b flag (see admin (1)) is present in the file. An entry of -

means ‘‘irrelevant’’.

i This case applies if the d (default SID) flag is not present in the file. If the d flag is present in
the file, then the SID obtained from the d flag is interpreted as if it had been specified on the
command line. Thus, one of the other cases in this table applies.

-+

SR-2011 3 Release 2.0

GET(1) GET(1)

Identification Keywords

Identifying information is inserted into the text retrieved from the SCCS file by replacing identification

keywords with their value wherever they occur. The following keywords may be used in the text stored

in an SCCS file:

Keyword Value

%M % Module name: either the value of the m flag in the file (see admin(1)), or if absent, the
name of the SCCS file with the leading s. removed.

%1% SCCS identification (SID) (%R %.%L%.%B%.%S%) of the retrieved text.

90 R % Release.

% L % Level.

% B % Branch.

% S %0 Sequence.

%D % Current date (YY/MM/DD).

%H % Current date (MM/DD/YY).

% T % Current time (HH:MM:SS).

% E % Date newest applied delta was created (YY/MM/DD).

% G % Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y % Module type: value of the t flag in the SCCS file (see admin(1)).

%F % SCCS file name.

%P % Fully qualified SCCS file name.

% Q% The value of the q flag in the file (see admin(1)).

% C % Current line number. This keyword is intended for identifying messages output by the pro-
gram such as “‘this should not have happened’’ type errors. It is not intended to be used on
every line to provide sequence numbers.

% Z% The 4-character string @(#) recognizable by what(1).

%W% A shorthand notation for constructing what(1l) strings for CX-OS system program files.
%W % = %Z%%M%<horizontal-tab>%I%

% A% Another shorthand notation for constructing what(1) strings for non-CX-OS system program
files.

%A% = %Z%%Y % %M% %0l%%Z%

FILES

Several auxiliary files may be created by ger. These files are known generically as the g-file, l-file, p-
file, and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from
the SCCS file name: the last component of all SCCS file names must be of the form s.module-name, the
auxiliary files are named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c, the auxiliary file names
would be xyz.c, lxyz.c, pxyz.c, and zxyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the —p keyletter
is used). A g-file is created in all cases, whether or not any lines of text were generated by the get. It
is owned by the real user. If the -k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current directory.

The l-file contains a table showing which deltas were applied in generating the retrieved text. The I-file
is created in the current directory if the -1 keyletter is used; its mode is 444 and it is owned by the real
user. Only the real user need have write permission in the current directory.

Release 2.0 4 SR-2011

GET(1)

GET(1)

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or was not applied and ignored;
* if the delta was not applied and was not ignored.
c. A code indicating a ‘‘special’’ reason why the delta was or was not applied:
“I"’: Included.

“X’’: Excluded.
““C’’: Cut off (by a —¢ keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
Blank.
i Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character.
A blank line terminates each entry.

The p-file is used to pass information resulting from a ger with an —e keyletter along to delta. Its con-
tents are also used to prevent a subsequent execution of get with an —e keyletter for the same SID until
delta is executed or the joint edit flag, j, (see admin(1)) is set in the SCCS file. The p-file is created in
the directory containing the SCCS file and the effective user must have write permission in that direc-
tory. Its mode is 644 and it is owned by the effective user. The format of the p-file is: the gotten SID,
followed by a blank, followed by the SID that the new delta will have when it is made, followed by a
blank, followed by the login name of the real user, followed by a blank, followed by the date-time the
get was executed, followed by a blank and the —i keyletter argument if it was present, followed by a
blank and the —x keyletter argument if it was present, followed by a new-line. There can be an arbi-
trary number of lines in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary pro-
cess ID of the command (that is, get) that created it. The z-file is created in the directory containing the
SCCS file for the duration of get. The same protection restrictions as those for the p-file apply for the
z-file. The z-file is created mode 444.

Fmomo A

MESSAGES

BUGS

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory containing the
SCCS files, but the real user does not, then only one file may be named when the —e keyletter is used.

SEE ALSO

SR-2011

admin(1), delta(l), help(1), prs(1), what(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

5 Release 2.0

GETOPT (1) GETOPT (1)

NAME

getopt — Parses command options

SYNOPSIS
set — getopt optstring $*

DESCRIPTION

Getopt breaks up options in command lines for easy parsing by shell procedures and checks for legal
options. Opistring is a string of recognized option letters (see getopt(3C)); if a letter is followed by a
colon, the option is expected to have an argument which may or may not be separated from it by white
space. The special option — is used to delimit the end of the options. If it is used explicitly, getopt
will recognize it; otherwise, getopt will generate it; in either case, gefopt will place it at the end of the
options. The positional parameters of the shell ($1 $2 ...) are reset so that each option is preceded by
a — and is in its own positional parameter; each option argument is also parsed into its own positional
parameter.

EXAMPLE

The following shell procedure fragment shows how one might process the arguments for a command
that can take the options a or b, as well as the option 0, which requires an argument:

set — getopt abo: $*

if[$?2 =0

then
echo $USAGE
exit 2

fi

for i in $*

do
case $i in
-a | -b) FLAG=S$i; shift;;
-0) OARG=$2; shift 2;;
—) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd —aoarg file file

cmd —a -0 arg file file
cmd —oarg -a file file
cmd -a —oarg — file file

MESSAGES
Getopt prints an error message on the standard error when it encounters an option letter not included in
optstring.

SEE ALSO

sh(1)
getopt(3C) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

SR-2011 1 Release 2.0

GREP(1) GREP(1)

NAME
grep, egrep, fgrep — Searches a file for a pattern

SYNOPSIS
grep [options] expression [files]
egrep [options] [expression 1 [files]
fgrep [options] [strings] [files]

DESCRIPTION

Commands of the grep family search the input files (standard input default) for lines matching a pat-
tern. Normally, each line found is copied to the standard output. Grep patterns are limited regular
expressions in the style of ed(1); grep uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; egrep uses a fast deterministic algorithm that sometimes needs exponential
space. Fgrep patterns are fixed strings. The following options are recognized:

All lines but those matching are printed.

(Exact) Only lines matched in their entirety are printed (fgrep only).

Only a count of matching lines is printed.

Ignore upper/lower case distinction during comparisons.

Only the names of files with matching lines are listed (once), separated by new-line characters.

Each line is preceded by its relative line number in the file.

Each line is preceded by the block number on which it was found. This is sometimes useful in

locating disk block numbers by context.

-s The error messages produced for nonexistent or unreadable files are suppressed (grep only).

—e expression
Same as a simple expression argument, but useful when the expression begins with a — (does
not work with grep).

—f file The regular expression (egrep) or strings list (fgrep) is taken from file.

In all cases, the file name is output if there is more than one input file. Care should be taken when
using the characters $, *, [, *, |, (,), and \ in expression, because they are also meaningful to the shell.
It is safest to enclose the entire expression argument in single quotes ...’

L LLALL

Fgrep searches for lines that contain one of the strings separated by new-lines.
Egrep accepts regular expressions as in ed(1), except for \(and \), with the addition of the following:

A regular expression followed by + matches one or more occurrences of the regular expression
A regular expression followed by ? matches zero or one occurrences of the regular expression
Two regular expressions separated by | or by a new-line match strings that are matched by either
A regular expression may be enclosed in parentheses () for grouping

The order of precedence of operators is [], then # ? +, then concatenation, then | and new-line.

NOTES
Contrary to expectation, fgrep is the slowest of the three commands. Grep is the fastest.

SR-2011 1 Release 2.0

GREP(1) GREP(1)

MESSAGES

Exit status is O if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if
matches were found).

BUGS
Ideally there should be only one grep, but there is not a single algorithm that spans a wide enough
range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is defined in
/usr/include/stdio.h.)
Egrep does not recognize ranges, such as [a-z], in character classes.
If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it will
print the entire line.

SEE ALSO

ed(1), sed(1), sh(1)

Release 2.0 2 SR-2011

HEAD(1) (CRAY X-MP and CRAY-1 computer systems only) HEAD(1)

NAME
head — Prints the first few lines of a file

SYNOPSIS
head [— count] [file ...]

DESCRIPTION

The head command writes the first count lines of each of the specified files, or of the standard input if
you do not specify any files. If you omit count, head defaults to 10,

SEE ALSO
tail(1)

SR-2011 1 Release 2.0

HELP(1) HELP(1)

NAME

help — Provides explanation of messages and commands

SYNOPSIS
help [arg ...]

DESCRIPTION

The help command finds information to explain a message from a command or explain the use of a
command. Zero or more arguments may be supplied. If no arguments are given, help will prompt for
one. "

The arguments may be either message numbers (which normally appear in parentheses following mes-
sages) or command names, of one of the following types:

Type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is usually
an abbreviation for the program or set of routines which produced the message
(for example, ge6, for message 6 from the get command).

Type 2 Does not contain numerics (as a command, such as get)
Type 3 Is all numeric (for example, 212)

The response of the program will be the explanatory information related to the argument, if there is
any.

When all else fails, try ‘‘help stuck’’.

FILES
fusr/lib/help Directory containing files of message text.
/ust/lib/help/helploc File containing locations of help files not in /usr/lib/help.
SEE ALSO

man(1)

SR-2011 1 Release 2.0

HOSTID(1) (TCP/IP Network) HOSTID(1)

NAME
hostid — Sets or prints identifier of current host system

SYNOPSIS
hostid [identifier]

DESCRIPTION

The hostid command sets or prints the identifier of the current host in hexadecimal. By default, the
value of identifier is 0. This numeric value is expected to be unique across all hosts and is normally set
to the host’s Internet address. The super user can set the identifier by giving a hexadecimal argument;
this is usually done in the startup script /etc/rc2.net.

SEE ALSO

gethostid(3W), sethostid(3W) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual,
publication SR-2013

SR-2011 1 Release 2.0

HOSTNAME(1) (TCP/IP Network) HOSTNAME(1)

NAME

hostname — Prints the name of current host system
SYNOPSIS

hostname [nameofhost]

DESCRIPTION

The hostname command prints the name of the current host. A user with super user privileges can set
the host name by giving an argument to hostname.

SEE ALSO
gethostname(2), sethostname(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

ID(1) ID(1)

NAME
id ~ Prints user and group IDs

SYNOPSIS
id

DESCRIPTION
The id command writes a message on the standard output giving the user and group IDs and the
corresponding names of the invoking process. If the effective and real IDs do not match, both are
printed.

FILES

fetc/passwd
fetc/group

SEE ALSO

logname(1)
getuid(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

JAD(1)

NAME

(CRAY-2 computer systems only) JAD(1)

jad - Job accounting daemon

SYNOPSIS

jad

DESCRIPTION

BUGS

The jad daemon collects selected accounting records from the system accounting file (fusr/adm/pacct)
and writes them to a job/session-related accounting file. The selection is done upon the job ID of the
calling process. Data collection is done in the background.

The jad daemon creates three files in the users HOME directory. Their names are generated using the
job ID, thus they are unique. The jad command creates the following files :

<job id>.prot: job accounting file

<job id>.prec: jad input pipe (for synchronization)

<job id>.psnd: jad output pipe (for synchronization)
Upon normal termination (SIGTERM or SIGHUP) jad removes all its files. However, files may not
get deleted immediately upon non-normal termination of jad.

During initialization jad removes old jad files (see above) in the HOME directory of the calling user.

If jad is started from a batch process, it is not notified about the termination of the batch job, thus it is
the user’s responsibility to terminate jad (see jar(1)).

Until the job ID concept has been implemented in UNICOS, jad will use the process group ID instead of
the job ID.

SEE ALSO

SR-2011

jar(1), kill(1), HOME variable in sh(1)
signal(2)

1 Release 2.0

JAR(1)

NAME

(CRAY-2 computer systems only) JAR(1)

jar — Provides job accounting information

SYNOPSIS
jar [—acdfhimst) [-1 file [-G gid] [-U wid] [=J job id]]

DESCRIPTION

The jar command provides information about job/session-related accounting information. Upon normal
operation (-I not specified) input is taken from the job accounting file provided by jad(1). Due to the
asynchronous operation of the jad command, a synchronization has to take place to ensure that the
job/session accounting file holds current information. If you specify -I , jar takes input from the given
file and no synchronization with jad(!) is performed.

Ther jar command can produce three kinds of reports by specifying different options (described below):

SR-2011

-a
-
|

-f
-h
-

-m

-t
-1 file

-G gid
~U uid

Same as specifying —chs together.
Produces the command statistics report.

Provides information about device-specific I/0 (if available); this results in multiple lines per
command, if —c is set also.

Produces the process flow chart report
Precedes each report with a header.
Provides addition information for the command statistics and the process flow chart reports.

If you specify this in addition to —¢, the output includes a user CPU time breakdown for 1,
2, 3, and 4 that are running parallel.

Produces the summary statistics report. This is default (with a header) if you do not specify
a report type.

Sends a termination request to jad. Other options are ignored and jad does not produce a
report.

Takes input from the given file and performs no synchronization with jad. If you specify
this option, see the -GUJ options.

Provides the group ID.

Provides the user ID.

-J job id Provides th job ID. During normal operation ~GUJ are ignored.

The following information may be output from jar:

Command statistics per process (—c):

Command name (first 8 characters)

Starting time as hh:mm:ss

CPU time spent in user mode in seconds (4 fields if —m)
CPU time spent in system mode in seconds

I/O wait time in seconds

Elapsed time in seconds

Average execution-memory size in MegaWords (-1 only)
Average I/O-wait-memory size in MegaWords (-1 only)
No. of MegaBytes transfered (-1 only)

No. of logical 1/O requests (-1 only)

1 Release 2.0

JAR(1) (CRAY-2 computer systems only) JAR(1)

No. of real I/O requests (-1 only)

Exit status (-1 only)

Nice value (-1 only)

Accounting Flags (-1 only)

System Billing Units (SBUs)

Device I/O breakdown (—d only); one line per major device number; each line gives the no. of
bytes transfered and the the number of logical I/O requests.

Process Flow Chart (-f)
Relations between processes
SBUs (-1 only)

Summary statistics (-S):
Input file name (-I only)
Selective gid (-G only)
Selective uid (-U only)
System identification
Job name (from NQS-supplied SUBMIT_REQNAME environment variable)
User ID
Group ID
Accounting ID Name
Job ID
Least recent command starting time
Most recent command ending time
Accumulated CPU time in user mode
Accumulated CPU time in system mode
Accumulated CPU time for 1,2,3 and 4 CPUs (for multitasked processes)
Average CPU usage (for multitasked processes)
Accumulated I/O wait time
Total elapsed time
CPU time memory integral
1/O wait time memory integral
Accumulated MegaBytes transferred
Accumulated logical I/O requests
Accumulated real 1/O requests
Number of commands
System Billing Units

BUGS

Until the job id concept has been implemented in UNICOS, jad will use the process group id instead of
the job id.

SEE ALSO
acctcom(1),jad(1),sh(1)

Release 2.0 2 SR-2011

JOIN(1) JOIN(1)

NAME
join — Joins specified lines of files

SYNOPSIS
join [options 1 filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of filel and file2.
If filel is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join fields.
The output line normally consists of the common field, then the rest of the line from filel, then the rest
of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, multiple separators count as
one field separator, and leading separators are ignored. The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or a 2 referring to either
filel or file2, respectively. The following options are recognized: :

—an In addition to the normal output, produce a line for each unpairable line in file n, where n is 1
or2.

—e s Replace empty output fields by string s.

—jn m Join on the mth field of file n. If n is missing, use the mth field in each file. Fields are num-
bered starting with 1.

—o list Each output line comprises the fields specified in lis¢, each element of which has the form n.m,
where n is a file number and m is a field number. The common field is not printed unless
specifically requested.

~tc Use character ¢ as a separator (tab character). Every appearance of ¢ in a line is significant.
The character ¢ is used as the field separator for both input and output.
EXAMPLE

The following command line joins the password file and the group file, matching on the numeric group
ID, and outputting the login name, the group name and the login directory. It is assumed that the files
have been sorted in ASCI collating sequence on the group ID fields.

join —j1 4 —j2 3 —0 1.1 2.1 1.6 —t: /etc/passwd /etc/group

BUGS

With default field separation, the collating sequence is that of sort —b; with —t, the sequence is that of a
plain sort.
The conventions of join, sort, comm, and uniq are wildly incongruous.

File names that are numeric may cause conflict when the -0 option is used right before listing file
names.

SEE ALSO
comm(1), sort(1), uniq(1)

SR-2011 1 Release 2.0

KILL(1) KILL(1)

NAME

kill — Terminates a process

SYNOPSIS
kill [—signo] PID ...

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This will normally kill processes that do not
catch or ignore the signal. The process number of each asynchronous process started with & is
reported by the shell (unless more than one process is started in a pipeline, in which case the number of
the last process in the pipeline is reported). Process numbers can also be found by using ps(1).

The details of the kill process are described in kill(2). For example, if process number O is specified,
all processes in the process group are signaled.

The process to be killed must belong to the current user; the super user can kill any process.

If a signal number preceded by — is given as first argument, that signal is sent instead of the terminate
signal (see signal(2)). In particular, “‘kill -9 PID"’ is a kill signal that cannot be caught or ignored.

NOTE
The csh(1) command has a built-in kill command with slightly different characteristics. See csh(1).
SEE ALSO

ps(1), sh(1)
kill(2), signal(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

LAST(1

NAME

) (CRAY X-MP and CRAY-1 computer systems only) LAST(1)

last — Indicates the last logins of users and teletypes

SYNOPSIS

last [num 1 [name ...] [tty ...]

DESCRIPTION

The last command looks in the wtmp file, which records all logins and logouts, for information about a
user, a teletype, or any group of users and teletypes. Arguments specify names of users or teletypes of
interest. Names of teletypes can be given fully or abbreviated. For example, last 0 is the same as last
1ty0. If you specify multiple arguments, last prints the information applying to any of the arguments.
The last command prints the sessions of the specified users and teletypes, most recent first, indicating
the times at which the session began, the duration of the session, and the teletype on which the session
took place. If the session is still continuing or was cut short by a reboot, last so indicates.

If you specify num, the last command limits the report to N lines.

The pseudo-user reboot logs in at reboots of the system, thus
last reboot

gives an indication of mean time between reboots.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted with a quit
signal (generated by a control-\), last indicates how far the search has progressed so far, and the search
continues.

EXAMPLES

FILES

To list all of "root’s" sessions as well as all sessions on the console terminal:
last root console

To print a record of all logins and logouts in (in reverse order), use
last

with no arguments.

fetc/wtmp Login data base

SEE ALSO

SR-2011

wtmp(4F)

1 Release 2.0

LASTCOMM(1) (CRAY X-MP and CRAY-1 computer systems only) LASTCOMM(1)

NAME

lastcomm — Shows last commands executed in reverse order

SYNOPSIS

lastcomm [command name] ... [user name 1 ... [terminal name] ...

DESCRIPTION

The lastcomm command gives information on previously executed commands. With no arguments,
lastcomm prints information about all the commands recorded during the current accounting file’s life-
time. If called with arguments, only accounting entries with a matching command name, user name, or
terminal name are printed. So, for example,

lastcomm a.out root tty00
would produce a listing of all the executions of commands named a.out by user root on the terminal
tty00, and
lastcomm root
would produce a listing of all the commands executed by user root.
For each process entry, the following are printed (in the order given).

The command name under which the process was called

The name of the user who ran the process

Flags, as accumulated by the accounting facilitites in the system
The tty name from which the command was executed

The amount of cpu time used by the process (in seconds)

The time the process exited

The flags are encoded as follows: ‘‘S’’ indicates the command was executed by the super-user, ‘‘F”’
indicates the command ran after a fork, but without a following exec, and “M” indicates additional
accounting records were written for this process.

SEE ALSO

SR-2011

last(1)
acct(4F), core(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

1 Release 2.0

LD(1)

NAME

(CRAY-2 computer systems only) LD(1)

1d, fpld — Invokes the link editor for relocatable files

SYNOPSIS

Id [options 1 [files 1 [options with files]
fpld [options 1 [files 1 [options with files]

DESCRIPTION

SR-2011

The Ild or fpld commands combine several relocatable files into one executable file. The difference
between their output files is that with fpld, the output file is intended for execution by the foreground
processor. Specifically, the foreground processor has smaller memory sizes, initialized data in a
separate memory, and has separated code and data areas. The services performed include relocating
code and data blocks, resolving external references, and writing symbol information for debugging.

With the exception of the —q option, all input files, libraries and options are processed in the order
listed. The distinction between hard and soft extemnal references (see relo(4F)) is supported; a module
is loaded from a library only if it resolves an outstanding hard external reference.

There are six character strings built into Id. First, "$start” is the default starting point for the resulting
executable. Second, any entry point with the primary entry bit set (see relo(4F)) will be entered twice;
once with the specified entry name and once with the current primary entry name, which defaults to
main. The remaining four generate entry points that permit the program and the debugger to locate
various areas within the program. These entry points are as follows:

0 thru the value of "zzzzzztx" Program text

"zzzzzztx" thru "zzzzzzdt" Initialized data blocks
"zzzzzzdt" thru "zzzzzzecm" Uninitialized data blocks

0 thru the value of "zzzzzzlm" All allocations of local memory

Because zzzzzz symbols are added after the libraries have been searched, any user attempt to define one
of them fails.

The following options are recognized by Id family.

-a Calls the module align subroutine to cause the local code blocks from the next module to
be loaded on an instruction buffer boundary.

-A Toggles the module align flag. If the flag is one, the module align subroutine is called
before each relocatable module is processed.

-dx Uses the character string x to define a global symbol. The following four formats are possi-
ble.

—d =n2 The name n2 is entered as the second name for all symbols with the primary
entry bit set. ‘

—d nl The name nl is entered as defined variable with value zero.
—d nl=nnn The name nl is entered as a defined variable with integer value nnn.
~d nl=n2 The name »n! is entered as a variable aliased to n2.

—e name Sets the entry point address for the output file to be the address of the symbol name.

1 Release 2.0

LD(1)

—Ix

-m

—qfn
-rfn
-s

-u nl

SEE ALSO

as(1), cc(1)

(CRAY-2 computer systems only) LD(1)

Produces a global variable for each local block in each module. For local block "xxx" in
module "yyy", the name of the global variable is "#yyy#xxx". The size of the block is in
the pdtecl field of the mlis_h structure where it may be accessed by future debuggers or by
the namelist library routine.

Identifies a library to be conditionally loaded. Symbol x represents a character string. If x
begins with a . or /, the library is the file named x. If x begins with any other character, the
library /lib/libx.a is searched for the library file. If it is not found, the library
{usr/lib/libx.a is then searched for the file.

Identifies a library to be conditionally loaded. The processing is as detailed above except
that the library is scanned repeatedly until no further modules in the library resolve
currently outstanding hard externals.

Toggles the map request flag. This flag is off at the beginning of pass 1 and pass 2. Plac-
ing a single —-m as the first option gives a complete map listing on stdout. Placing a single
—m as the last option gives only the symbol listing. Using repeated -m options can pro-
duce partial maps.

Using fn as the name of the output file overrides the default of a.out.

Identifies an initial definition file. This file will be processed first. It may be used to sup-
ply base addresses and global locations for the load step.

Identifies a file name to contain a summary of the load. The -r file from one /d run may
be used as the —q file for the next.

Indicates that the debug symbol information is to be stripped from the end of the output
module.

Enters name n! in the symbol table as an outstanding hard external.

Fortran programs can initialize common blocks more than once and can use common block
names that are the same as subroutine names. Both of these are direct violations of the
Fortran 77 standard. However, if multiple initializations are permitted for common blocks,
no common blocks will be loaded into the bss space. Thus, it is important to have the -6
option off if disk space is important. The —6 option is implemented to permit Fortran 66
programs to run.

Argument names without a preceding dash character are taken to be names of input files to
be included unconditionally.

relo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0

2 SR-2011

LD(1) (CRAY X-MP and CRAY-1 computer systems only) LD(1)

NAME
1d — Invokes the CRAY X-MP and CRAY-1 link editor

SYNOPSIS
Id [—ooutfile] [-L dir][-Ix 1 [-m] files ...

DESCRIPTION

Ld combines several object programs into one, resolves external references, and searches libraries. The

object file names must end in .0. In the simplest case, several object files are given; /d combines them,

producing an executable program.

Segldr(1) is used to link the object files into one executable program. A load map summary is pro-

duced in a file whose name has .map appended to outfile.

The options to Id are as follows:

—ooutfile
Override the default output file name, a.out, to be outfile.

-L dir Change the algorithm of searching for libx.a to look in the directory dir before looking in /lib
and /usr/lib. This option is only effective if it preceeds the -1 option on the command line.

~Ix Search a library libx.o; x is up to nine characters. A library is searched when its name is
encountered, so the placement of the -1 option is significant. By default, libraries are located
in /lib and /usr/lib.

-m Produce a load map in the file outfile. map (a.out.map by default)

FILES
file.o Input object file
a.out Executable output file
Mlib/fortlib.o FORTRAN library
/lib/libp.o Pascal library
lib/libc.o C library
Mlib/libf.o FORTRAN library
/lib/libm.o FORTRAN math library
Mlib/libu.o FORTRAN utility library
Mlib/libio.o FORTRAN /O library
MESSAGES
The error messages produced by segldr are self-explanatory. If further explanation is required, refer to
the Segment Loader (SEGLDR) Reference Manual, publication SR-0066.
SEE ALSO

as(1), cc(1), cft(1), segldr(1)

SR-2011 1 Release 2.0

LEX (1)

NAME

LEX(1)

lex — Generates programs for simple lexical tasks

SYNOPSIS

lex [-retvn] [file] ...

DESCRIPTION

SR-2011

Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input by default) contain strings and expressions to be searched for, and C text
to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output except
when a string specified in the file is found; then the corresponding program text is executed. The actual
string matched is left in yytext, an external character array. Matching is done in order of the strings in
the file. The strings may contain square brackets to indicate character classes, as in [abx-z] to indicate
a, b, x, y, and z; and the operators #, +, and ? mean respectively any non-negative number of, any
positive number of, and either zero or one occurrences of, the previous character or character class.
The character . is the class of all ASCII characters except new-line. Parentheses for grouping and verti-
cal bar for alternation are also supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than |, but lower than *, 7, +, and concate-
nation. The character ~ at the beginning of an expression permits a successful match only immediately
after a new-line, and the character $ at the end of an expression requires a trailing new-line. The char-
acter / in an expression indicates trailing context; only the part of the expression up to the slash is
returned in yyfext, but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within " symbols or preceded by \. Thus
[a-zA-Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character; unput(c) to replace a
character read; and output(c) to place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named yylex(), and the library contains
a main() which calls it. The action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function yymore() accumulates additional characters
into the same yytext; and the function yyless(p) pushes back the portion of the string matched begin-
ning at p, which should be between yytext and yytext+yyleng. The macros input and output use files
yyin and yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes % % it
is copied into the external definition area of the lex.yy.c file. All rules should follow a % %, as in
YACC. Lines preceding % % which begin with a non-blank character define the string on the left to be
the remainder of the line; it can be called out later by surrounding it with {}. Note that curly brackets
do not imply parentheses; only string substitution is done.

The following options must appear before any files:

-r Indicates RATFOR actions.

— Indicates C actions and is the default.

-t Causes the lex.yy.c program to be written instead to standard output.

-v Provides a one-line summary of statistics of the machine generated.

-n Will not print out the — summary.

Multiple files are treated as a single file. If no files are specified, standard input is used.

1 Release 2.0

LEX(1) LEX(1)

Certain table sizes for the resulting finite state machine can be set in the definitions section:
%p n number of positions is n (default 2000)
%n n number of states is n (500)
%t n number of parse tree nodes is n (1000)
%a n number of transitions is n (3000)
The use of one or more of the above automatically implies the —v option, unless the —n option is used.

EXAMPLE
D [0-9]
%%
if printf("IF statement\n");

[a—z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");
" printf("binary op\n");
WAl { loop:
while (input() != "*’);
switch (input())
(
case ‘/": break;
case “*": unput(’*’);
default: go to loop;
}
}

The external names generated by lex all begin with the prefix yy or YY.

LIMITATIONS
RATFOR is not supported on Cray systems.

SEE ALSO

yace(1)
The UNICOS Support Tools Guide, publication SG-2016.

Release 2.0 2 SR-2011

LINE(1) LINE(1)

NAME

line — Reads one line

SYNOPSIS
line
DESCRIPTION

Line copies one line (up to a new-line) from the standard input and writes it on the standard output. It
returns an exit code of 1 on EOF and always prints at least a new-line character. It is often used within
shell files to read from the user’s terminal.

SEE ALSO

sh(1)
read(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

LINT(1) LINT(1)

NAME

lint — Invokes a C program checker

SYNOPSIS

lint [—abhlnpuvx] file ...

DESCRIPTION

SR-2011

Lint attempts to detect features of the C program files that are likely to be bugs, non-portable, or waste-
ful. It also checks type usage more strictly than the compilers. The following are currently detected:
unreachable statements, loops not entered at the top, automatic variables declared and not used, and log-
ical expressions whose value is constant. Moreover, the usage of functions is checked to find functions
which return values in some places and not in others, functions called with varying numbers of argu-
ments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked for mutual compatibility. By
default, lint uses function definitions from the standard lint library llib-lc.ln; function definitions from
the portable lint library Ilib-port.In are used when lint is invoked with the —p option.

Any number of lint options may be used, in any order. The following options are used to suppress cer-
tain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs produced by
lex or yacc will often result in a large number of such complaints.)

-h Do not apply heuristic tests that attempt to intuit bugs, improve style, and reduce waste.

-u Suppress complaints about functions and external variables used and not defined, or defined
and not used. (This option is suitable for running lint on a subset of files of a larger program.)

-V Suppress complaints about unused arguments in functions.

-X Do not report variables referred to by external declarations but never used.

The following arguments alter lint’s behavior.

—Ix Include additional lint library llib-lc.In. For example, you can include a lint version of the
Math library Hib-lm.In by inserting -lm on the command line. This argument does not
suppress the default use of Illib-Ic.In. This option can be used to keep local lint libraries and is
useful in the development of multi-file projects.

-n Do not check compatibility against either the standard or the portable lint library.
-p Attempt to check portability to other dialects (IBM and GCOS) of C.

The -D, -U, and -I options of cc(1) are also recognized as separate arguments.

Certain conventional comments in the C source will change the behavior of lint:
/*NOTREACHED*/ At appropriate points, stops comments about unreachable code.

[*VARARGSn*/ Suppresses the usual checking for variable numbers of arguments in the
following function declaration. The data types of the first n arguments
are checked; a missing n is taken to be 0.

[*ARGSUSED*/ Turns on the —v option for the next function.
[*LINTLIBRARY*/ At the beginning of a file, shuts off complaints about unused functions in
this file.

1 Release 2.0

LINT(1) LINT (1)

Lint produces its first output on a per source file basis. Complaints regarding included files are col-
iected and printed after all source files have been processed. Finally, information gathered from all
input files is collected and checked for consistency. At this point, if it is not clear whether a complaint
stems from a given source file or from one of its included files, the source file name will be printed fol-
lowed by a question mark.

FILES
fusr/lib/lint1 Programs
fusr/lib/lint2 Programs
fusr/lib/llib-lc.ln Declarations for standard functions (binary format; source is in /usr/lib/llib-Ic)
fusr/lib/llib-port.In Declarations for portable functions (binary format; source is in /usr/lib/llib-port)
fust/lib/llib-Im.In Declarations for standard Math Library functions (binary format; source is in

/usr/lib/llib-lm)

fusr/tmp/*lint* Temporary files

BUGS
Exit(2) and other functions that do not return are not understood; this sometime causes incorrect
analysis.

SEE ALSO
ce(1), epp(1)

Release 2.0 2 SR-2011

LN(1) LN(1)

NAME
In — Links files

SYNOPSIS
In [-f] filel [file2 ...] target

DESCRIPTION

The file filel is linked to rarget. Under no circumstance can filel and target be the same (take care
when using sh(1) metacharacters). If target is a directory, then one or more files are linked to that
directory. If target is a file, its contents are destroyed.

If In determines that the mode of targer forbids writing, it will print the mode (see chmod(2)), ask for a
response, and read the standard input for one line. If the line begins with y, the In occurs, if permissi-
ble; if not, the command exits. No questions are asked and the In is done when the —f option is used or
if the standard input is not a terminal.

CAVEAT

The In command does not link across file systems.

SEE ALSO

cp(1), cpio(1), mv(1), rm(1)
chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

LOGIN (1) LOGIN(1)

NAME

login — Signs on

SYNOPSIS

login { name [env-var ...]]

DESCRIPTION

SR-2011

The login command is used at the beginning of each terminal session and lets you identify yourself to
the system. It may be invoked as a command or by the system when a connection is first established.
Also, it is invoked by the system when a previous user has terminated the initial shell by typing a
CONTROL-D to indicate an end-of-file.
If login is invoked as a command it must replace the initial command interpreter. This is accomplished
by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password, so it will not appear on the
written record of the session.

After a successful login, accounting files are updated, the procedure /etc/profile is performed, the
message-of-the-day, if any, is printed, the user-ID, the group-ID, the working directory, and the com-
mand interpreter (usually sh(1)) is initialized, and the file .profile in the working directory is executed,
if it exists. These specifications are found in the /etc/passwd file entry for the user. The name of the
command interpreter is — followed by the last component of the interpreter’s path name (that is, —sh).
If this field in the password file is empty, then the default command interpreter, /bin/sh, is used. If this
field is *, then a chroot(2) is performed to the directory named in the directory field of the entry. At
that point, login is re-executed at the new level, which must have its own root structure, including
/bin/login and /etc/passwd.

The basic environment (see sh(1)) is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/mail/your-login-name
LOGNAME=your-login-name

The environment may be expanded or modified by supplying additional arguments to login, either at
execution time or when login requests your login name. The arguments may take either the form xxx
or xxx=yyy. Arguments without an equal sign are placed in the environment as:
La=xxx

where n is a number starting at 0 and is incremented each time a new variable name is required. Vari-
ables containing an = are placed into the environment without modification. If they already appear in
the environment, then they replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. People logging into restricted shell environments are thus prevented from
spawning secondary shells that are not restricted.

Login understands simple single-character quoting conventions. Typing a backslash in front of a char-
acter quotes it and allows the inclusion of such characters as spaces and tabs.

1 Release 2.0

LOGIN(1)

FILES

/bin/passwd
fbin/sh
/dev/tty*
fetc/dialups
[etc/d_passwd
fetc/passwd
fetc/utmp
[fetc/wtmp

LOGIN (1)

Program to change passwords

Standard shell

Login devices

List of devices that need a dialup password
Dialup passwords for /etc/dialups
Password file

Accounting file

Accounting file

fusr/mail/SLOGNAME Mailbox for account SLOGNAME

MESSAGES

Login incorrect

No shell
or

The user name or the password cannot be matched.

Cannot open password file

or
No directory
No utmp entry.

SEE ALSO

Account may not be set up correctly; consult a CRI site analyst.

You must execute login from the lowest level sh. You attempted to exe-
cute login as a command without using the shell’s exec internal command
or from other than the initial shell.

mail(1), passwd(1), sh(1), su(1)
chroot(1M), getty(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022
passwd(4F), profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication

SR-2014

Release 2.0

2 SR-2011

LOGNAME(1) LOGNAME(1)

NAME

logname — Gets login name

SYNOPSIS

logname

DESCRIPTION
The logname command uses cuserid(3S) to find the login name of the user and prints that name on the
standard output.

SEE ALSO

env(1), login(1), sh(1)
cuserid(3S) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

SR-2011 1 Release 2.0

LORDER(1) (CRAY-2 computer systems only) LORDER(1)

NAME
lorder — Finds ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

The input is one or more object files. The standard output is a list of pairs of object file names. The
first file of the pair refers to external identifiers defined in the second. The output may be processed by
tsort(1) to find an ordering of a library suitable for one-pass access by /d(1). The lorder(1) command
may allow for a more efficient access of the archive during the link edit process.

EXAMPLES
The following example builds a new library from existing .o files.
ar cr library ‘lorder *.0 | tsort¢

FILES
*symdef Temporary file
*symref Temporary file
SEE ALSO

ar(1), 1d(1), tsort(1)

SR-2011 1 Release 2.0

LS(1)

NAME

SYNOPS

LS(1)

Is — Lists contents of a directory

IS
Is [-RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION

SR-2011

For each directory argument, Is lists the contents of the directory; for each file argument, Is repeats its
name and any other information requested. The output is sorted alphabetically by default. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments appear before directories and their contents. When no
arguments are given, files are listed one per line.

There are three major listing formats. The default format is to list one entry per line, the —-C and —x
options enable multi-column formats, and the —m option enables stream output format in which files are
listed across the page, separated by commas. In order to determine output formats for the —C, —x, and
-m options, Is uses an environment variable, COLUMNS, to determine the number of character posi-
tions available on one output line. If this variable is not set, the terminfo database is used to determine
the number of columns, based on the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

The following options are available:

-R Recursively lists subdirectories encountered.

-a Lists all entries; including entries whose names begin with a period.

-d If an argument is a directory, lists only its name (not its contents); often used with -1 to get
the status of a directory.

-C Multicolumn output with entries sorted down the columns.

-X Multicolumn output with entries sorted across rather than down the page.

-m Stream output format.

-1 Lists in long format, giving mode, number of links, owner, group, size in bytes, and time of

last modification for each file (see below). If the file is a special file, the size field will instead
contain the major and minor device numbers rather than a size.

-n The same as -1, except that the owner’s UID and group’s GID numbers are printed, rather than
the associated character strings.

-0 The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-r Reverses the order of sort to get reverse alphabetic or oldest first as appropriate.

~t Sorts by time modified (latest first) instead of by name.

-u Uses time of last access instead of last modification for sorting (with the —t option) or printing
(with the -1 option).

- Uses time of last modification of the i-node (file created, mode changed, etc.) for sorting (-t)

or printing (-1).
-p Puts a slash (/) after each filename if that file is a directory.

-F Puts a slash (/) after each filename if that file is a directory and put an asterisk (*) after each
filename if that file is executable.

1 Release 2.0

LS(1)

-b

—f

LS(1)

Forces printing of nongraphic characters to be in the octal \ddd notation.
Forces printing of nongraphic characters in file names as the character (?).
For each file, print the i-number structure in the first column of the report.

For CRAY X-MP computer systems, give size in blocks, including indirect blocks (an approxi-
mation), for each entry. For CRAY-2 computer systems, give size in sectors for each entry.

Forces each argument to be interpreted as a directory and list the name found in each slot.
This option turns off -1, —t, —s, and —r, and turns on —a; the order is the order in which entries
appear in the directory.

The mode printed under the -1 option consists of 10 characters that are interpreted as follows:

The first character is:

If the entry is a directory;

If the entry is a block special file;

If the entry is a character special file;

If the entry is a fifo (named pipe) special file;

If the entry is an ordinary file.

The next 9 characters are interpreted as three sets of 3 bits each. The first set refers to the
owner’s permissions; the next to permissions of others in the user-group of the file; and the last
to all others. Within each set, the three characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a directory, ‘‘execute’’ permission is inter-
preted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r If the file is readable;

w If the file is writable;

x If the file is executable;

— If the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID mode; like-
wise, the user-execute permission character is given as s if the file has set-user-ID mode. The
indication of set-ID is capitalized (S) if the corresponding execute permission is not set.

v 6o

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is

printed.

FILES

Jetc/passwd Contains user IDs forIs -1 and Is -0 .
[fetc/group Contains group IDs forIs -1 and Is -g .

BUGS

Unprintable characters in file names may confuse the columnar output options.

SEE ALSO

chmod(1), find(1)

Release 2.0

2 SR-2011

M4(1)

NAME

M4(1)

m4 — Invokes a macro processor

SYNOPSIS

m4 [options] [files]

DESCRIPTION

SR-2011

The M4 command invokes a macro processor intended for use as a general-purpose front end for any
programming language. Each of the argument files is processed in order; if there are no files, or if a
file name is —, the standard input is read. The processed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered. Using this mode
requires a special state of mind.
- Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199. The size should be
prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, and
non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any -D or -U flags:

~Dname[=val]
Defines name to val or to null in val’s absence.

~Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)
The (must immediately follow the name of the macro. If the name of a defined macro is not followed

by a (, it is deemed to be a call of that macro with no arguments. Potential macro names consist of
alphabetic letters, digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments. Left single
quotes (grave accent, ascii 96) and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing arguments are
taken to be null. Macro evaluation proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the value of a nested call are as effective
as those in the original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is done the
original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first argu-
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by
the n-th argument. Argument O is the name of the macro; missing arguments are

1 Release 2.0

M4(1)

undefine
defn

pushdef

popdef
ifdef

shift

changequote

changecom

divert

undivert

divnum
dnl
ifelse

incr

decr

eval

len

index

Release 2.0

M4(1)

replaced by the null string; $# is replaced by the number of arguments; $+ is replaced by
a list of all the arguments separated by commas; $@ is like $*, but each argument is
quoted (with the current quotes).

Removes the definition of the macro named in its argument.

Returns the quoted definition of its arguments. It is useful for renaming macros, espe-
cially built-ins.

Like define, but saves any previous definition.

Removes current definition of its arguments, exposing the previous one if any.

If the first argument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is null. The words unix and CRAY are predefined
on all UNICOS systems. Additionally, one of the words CRAY2, CRAY1, or CRAYXMP
is predefined.

Returns all but its first argument. The other arguments are quoted and pushed back with
commas in between. The quoting nullifies the effect of the extra scan that will subse-
quently be performed.

Change quote symbols to the first and second arguments. The symbols may be up to five
characters long. Changequote without arguments restores the original values (that is,
~ 1)'

Change left and right comment markers from the default # and new-line. With no argu-
ments, the comment mechanism is effectively disabled. With one argument, the left
marker becomes the argument and the right marker becomes new-line. With two argu-
ments, both markers are affected. Comment markers may be up to five characters long.
M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of
the streams in numerical order; initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

Causes immediate output of text from diversions named as arguments, or all diversions if
no argument. Text may be undiverted into another diversion. Undiverting discards the
diverted text.

Returns the value of the current output stream.
Reads and discards characters up to and including the next new-line.

Has three or more arguments. If the first argument is the same string as the second, then
the value is the third argument. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

Returns the value of its argument incremented by 1. The value of the argument is calcu-
lated by interpreting an initial digit-string as a decimal number.
Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, -, *, /, %, ~ (exponentiation), bitwise &, |, ~, and ~; relationals; parentheses.
Octal and hex numbers may be specified as in C. The second argument specifies the
radix for the result; the default is 10. The third argument may be used to specify the
minimum number of digits in the result. i}

Returns the number of characters in its argument.

Returns the position in its first argument where the second argument begins (zero origin),
or -1 if the second argument does not occur.

2 SR-2011

M4(1)

substr

translit

include
sinclude
syscmd
sysval
maketemp
mdexit
m4wrap
errprint
dumpdef

traceon

traceoff

SEE ALSO

SR-2011

cc(1), cpp(l)

M4(1)

Returns a substring of its first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

Transliterates the characters in its first argument from the set given by the second argu-
ment to the set given by the third. No abbreviations are permitted.

Returns the contents of the file named in the argument.

Identical to include, except that it says nothing if the file is inaccessible.

Executes the UNICOS command given in the first argument. No value is returned.
Return code from the last call to syscmd.

Fills in a string of XXXXX in its argument with the current process ID.

Causes immediate exit from m4. Argument 1, if given, is the exit code; the default is 0.
Argument 1 will be pushed back at final EOF; example: m4wrap(* cleanup()~)

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named items, or for all if no arguments are
given.

With no arguments, turns on tracing for all macros (including built-ins). Otherwise, turns
on tracing for named macros.

Tumns off trace globally and for any macros specified. Macros specifically traced by tra-
ceon can be untraced only by specific calls to traceoff.

UNICOS Support Tools Guide, publication SG-2016

3 Release 2.0

MACHID(1) MACHID(1)

NAME
crayl, cray2, crayxmp, pdpl1, u370, u3b, u3b5, vax — Provides truth value about processor type
SYNOPSIS
crayl
cray2
crayxmp
pdpll
u370
u3b
u3bs
vax
DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on a processor that the
command name indicates.
pdpll True if you are on a PDP-11/45 or PDP-11/70.
u3b True if you are on a 3B20S.
vax True if you are on a VAX-11/750 or VAX-11/780.
u370 True if you are on a UNIX/370 System.
u3bs True if you are on a 3BS System.
crayl True if you are on a CRAY-1 Computer System with an I/O Subsystemn.
cray2 True if you are on a CRAY-2 Computer System.
crayxmp True if you are on a CRAY X-MP Computer System.
The commands that do not apply will return a false (non-zero) value. These commands are often used
within make (1) makefiles and shell procedures to increase portability.
SEE ALSO

SR-2011

sh(1), test(1), true(1)

1 Release 2.0

MAIL(1)

NAME

MAIL(1)

mail, rmail - Lets you send or read mail

SYNOPSIS
mail [—-epqr] [-f file]
mail [-t] persons

rmail [-t] persons

DESCRIPTION

SR-2011

The mail command without arguments prints a user’s mail, message by message, in last-in, first-out
order. For each message, the user is prompted with a ?, and a line is read from the standard input to
determine the disposition of the message. The following commands are recognized:

<new-line> Go on to next message.

+ Same as <new-line>.

d Delete message and go on to next message.

p Print message again.

- Go back to previous message.

s [files] Save message in the named files (mbox is default).

w [files] Save message, without its header, in the named files (mbox is default).

m [persons] Mail the message to the named persons (yourself is default).

q Put undeleted mail back in the mail file (/usr/spool/$LOGNAME) and stop.

EOT <control-D> Same as q.

x Put all mail back unchanged in the mail file (/usr/spool/$LOGNAME) and
stop.

!command Escape to the shell to execute command.

* Print a command summary.

The optional arguments alter the printing of the mail:

—e

-p
_q
-r
~ffile
~t

causes mail not to be printed. An exit value of O is returned if the user has mail; otherwise, an
exit value of 1 is returned.

causes all mail to be printed without prompting for disposition.

causes mail to terminate after interrupts. Normally an interrupt only causes the termination of
the message being printed.

causes messages to be printed in first-in, first-out order.

causes mail to use file (such as mbox) instead of the default mail file.

Causes the message to be preceded by all persons the mail is sent to. Person is usually a user
name recognized by login(1). If a person being sent mail is not recognized, or if mail is inter-
rupted during input, the file SHOME/dead.letter will be saved to allow editing and resending.
This is a temporary file in that it is recreated each time it is needed, erasing the previous con-
tents of dead.letter . When persons are named, mail takes the standard input up to an end-of-
file (or up to a line consisting of just a .) and adds it to each person’s mailfile. The message is
preceded by the sender’s name and a postmark. Lines that look like postmarks in the message,
(that is, ‘‘From ...””) are preceded with a >.

1 Release 2.0

MAIL(1)

FILES

MAIL(1)

The mailfile may be manipulated in two ways to alter the function of mail. The other permissions of
the file may be read-write, read-only, or neither read nor write to allow different levels of privacy. If
changed to other than the default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person
which will cause all mail sent to the owner of the mailfile to be forwarded to person. This is especially
useful to forward all of a person’s mail to one machine in a multiple machine environment. In order
for forwarding to work properly, the mailfile should have "mail" as group ID and the group permission
should be read-write.
Rmail only permits the sending of mail.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is made if new mail
arrives while using mail..

fetc/passwd To identify sender and locate home directory of user
fusr/mail/user Incoming mail for user; that is, the mailfile
$HOME/mbox Saved mail

ftmp/ma* Temporary file

fusr/mail/*.Jock Lock for mail directory

$HOME/dead.letter Unmailable text

BUGS

Race conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced by typing a p.
SEE ALSO

login(1), write(1)

Release 2.0 2 SR-2011

MAILX (1) MAILX(1)

NAME

mailx — Electronic message processing system

SYNOPSIS

mailx [-deFHinNU] [-f filename] [=h number] [—r address 1 [=s subject]
[-u user] [name...]

DESCRIPTION

SR-2011

The mailx command invokes an electronic mail system. When reading mail, mailx lets you save,
delete, and respond to messages. When sending mail, mailx lets you edit, review, and perform other
madifications to the message as you enter them.

Mailx stores incoming mail in a standard file for each user, called the system mailbox for that user.
When you call mailx to read messages, the mailbox is the default place to find them. As mailx reads
messages, it marks them to be moved to a secondary file for storage, unless you specify that you want
something else done with them. This secondary file is called the mbox and is normally located in the
user’s HOME directory (see MBOX in the (ENVIRONMENT VARIABLES section) for a description of
this file). Messages remain in this file until you remove them.

Any arguments to options are assumed to be destinations (or recipients). If yow do not specify reci-
pients, mailx attempts to read messages from the system mailbox. The following command line options
are available:

—-d Turns on debugging output. Neither particularly interesting nor recommended.

- Tests for presence of mail. Mailx prints nothing and exits with a successful return
code if there is mail to read.

—f [filename] Reads messages from filename instead of mailbox. If no filename is specified, the

mbox is used. '

-F Records the message in a file named after the first recipient. Overrides the record
variable, if set (sce the ENVIRONMENT VARIABLES subsection).

-h number The number of network "hops" made so far. This is provided for network software to
avoid infinite delivery loops.

-H Prints header summary only.

-i Ignores interrupts. See also ignore in the ENVIRONMENT VARIABLES subsection.

-n Does not initialize from the system default Mailx.rc file.

-N Does not print initial header summary.

-r address Passes address to network delivery software. All tilde commands are disabled.

-s subject Sets the Subject header field to subject.

—u user Reads user’s mailbox. This is only effective if user’s mailbox is not read protected.

-U Converts uucp style addresses to internet standards. Overrides the conv environment
variable.

When reading mail, mailx is in command mode. A header summary of the first several messages is
displayed, followed by a prompt indicating mailx can accept regular commands (see the COMMANDS
subsection). When sending mail, mailx is in input mode. If you do not specify a subject on the com-
mand line, a prompt for the subject is printed. As you type the message, mailx reads the message and
stores it in a temporary file. You can enter commands by beginning a line with the tilde () escape
character followed by a single command letter and optional arguments. See TILDE ESCAPES subsection

1 Release 2.0

MAILX (1) MAILX(1)

for a summary of these commands.

At any time, mailx’s behavior is governed by a set of environment variables. These are flags and
valued parameters that are set and cleared using the set and unset commands. Sec the ENVIRONMENT
VARIABLES subsection for a summary of these parameters.

Recipients listed on the command line may be of three types: login names, shell commands, or alias
groups. Login names may be any network address, including mixed network addressing. If the reci-
pient name begins with a pipe symbol (I), the rest of the name is taken to be a shell command to pipe
the message through. This provides an automatic interface with any program that reads the standard
input, such as Ip(1) for recording outgoing mail on paper. Alias groups are set by the alias command
(see the COMMANDS subsection) and are lists of recipients of any type.

Regular commands are of the form:
[command] [msglist] [arguments]

If you do not specify a command in command mode, print is assumed. In input mode, commands are
recognized by the escape character, and lines not treated as commands are taken as input for the mes-
sage.

Each message is assigned a sequential number, and at any time the notion exists of a ’current’ message,
marked by a ’>’ in the header summary. Many commands take an optional list of messages (msglist) to
operate on, which defaults to the current message. A msglist is a list of message specifications
separated by spaces, which may include:

n Message number n.

. The current message.

- The first undeleted message.
$ The last message.
* All messages.

n-m An inclusive range of message numbers.
user All messages from user.
Istring All messages with string in the subject line (case ignored).

:c All messages of type ¢, where c is one of:

d Deleted messages

n . New messages

0 Old messages

r Read messages

u Unread messages
Note that the context of the command determines whether this type of message specification
makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command involved. File
names, where expected, are expanded via the normal shell conventions (see sa(1)). Special characters
are recognized by certain commands and are documented with the commands below.

At start-up time, mailx reads commands from a system-wide file (/usr/lib/mailx/mailx.rc) to initialize
certain parameters, then from a private start-up file (SHOME/.mailrc) for personalized variables. Most
regular commands are legal inside start-up files, the most common use being to set up initial display
options and alias lists. The following commands are not legal in the start-up file: !, Copy, edit, fol-
lowup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. Any errors in the start-up file

Release 2.0 2 SR-2011

MAILX (1) MAILX (1)

cause the remaining lines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

shell-command
Escapes to the shell. See SHELL in the ENVIRONMENT VARIABLES subsection.

comment
Null command (comment). This may be useful in .mailrc files.

Prints the current message number.

-~

Prints a summary of commands.

alias alias name ...
group alias name ...
Declares an alias for the given names. The names will be substituted when alias is used as a

recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a message, these names

are removed from the list of recipients for the response. With no arguments, alternates prints
the current list of alternate names. See also allnet in the ENVIRONMENT VARIABLES subsec-

tion.

cd [directory]
chdir [directory]
Changes directory. If directory is not specified, SHOME is used.

copy [filename]
copy [msglist] filename
Copies messages to the file without marking the messages as saved. Otherwise equivalent to

the save command.

Copy [msglist]
Saves the specified messages in a file whose name is derived from the author of the message to
be saved, without marking the messages as saved. Otherwise equivalent to the Save command.

delete [msglist]
Deletes messages from the mailbox. If autoprint is set, the next message after the last one
deleted is printed (see the ENVIRONMENT VARIABLES subsection).

discard [header-field ...]

ignore [header-field ...]
Suppresses printing of the specified header fields when displaying messages on the screen.
Examples of header fields to ignore are "status" and "cc." The fields are included when the
message is saved. The Print and Type commands override this command.

SR-2011 3 Release 2.0

MAILX(1) MAILX (1)

dp [msglist]

dt [msglist]
Deletes the specified messages from the mailbox and prints the next message after the last one
deleted. Roughly equivalent to a delete command followed by a print command.

echo string ...
Echos the given strings (like echo(1)).

edit [msglist]
Edits the given messages. The messages are placed in a temporary file and the EDITOR vari-
able is used to get the name of the editor (see the ENVIRONMENT VARIABLES subsection).

Default editor is ed(1).

exit
xit
Exits from mailx, without changing the mailbox. No messages are saved in the mbox (see also

quit).

file [filename]

folder [filename]
Quits from the current file of messages and reads in the specified file. Several special charac-

ters are recognized when used as file names, with the following substitutions:
% The current mailbox.
%user The mailbox for user.
The previous file.
& The current mbox.
The default file is the current mailbox.

folders
Prints the names of the files in the directory set by the folder variable (see the ENVIRONMENT

VARIABLES subsection).

followup [message]
Responds to a message, recording the response in a file whose name is derived from the author

of the message. Overrides the record variable, if set. See also the Followup, Save, and Copy
commands and outfolder in the ENVIRONMENT VARIABLES subsection.

Followup [msglist]
Responds to the first message in the msglist, sending the message to the author of each mes-
sage in the msglist. The subject line is taken from the first message and the response is
recorded in a file whose name is derived from the author of the first message. See also the fol-
lowup, Save, and Copy commands and outfolder in the ENVIRONMENT VARIABLES subsec-

ton.

from [msglisi]
Prints the header summary for the specified messages.

group alias name ...
alias alias name ...
Declares an alias for the given names. The names will be substituted when alias is used as a

recipient. Useful in the .mailrc file.

Release 2.0 4 SR-2011

MAILX(1) MAILX(1)

SR-2011

headers [message]
Prints the page of headers that includes the message specified. The screen variable sets the
number of headers per page (see the ENVIRONMENT VARIABLES subsection). See also the z

command.

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]
Holds the specified messages in the mailbox.

if slr

mail-commands

else

mail-commands

endif
Conditional execution, where s executes following mail-commands, up to an else or endif, if
the program is in send mode, and r causes the mail-commands to be executed only in receive
mode. Useful in the .mailrc file.

ignore header-field ...

discard header-field ...
Suppresses printing of the specified header fields when displaying messages on the screen.
Examples of header fields to ignore are "status” and "cc." All fields are included when the
message is saved. The Print and Type commands override this command.

list
Prints all commands available. No explanation is given.

mail name ...
Mails a message to the specified users.

mbox [msglist]
Arranges for the given messages to end up in the standard mbox save file when mailx ter-
minates normally. See MBOX in the ENVIRONMENT VARIABLES subsection for a description
of this file. See also the exit and quit commands.

next [message]
Goes to next message matching message. A msglist may be specified, but in this case the first
valid message in the list is the only one used. This is useful for jumping to the next message
from a specific user, since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of possible message
specifications.

pipe [msglist] [shell-command)]

| Imsglist] [shell-command]
Pipes the message through the given shell-command. The message is treated as if it were read.
If no arguments are given, the current message is piped through the command specified by the
value of the cmd variable. If the page variable is set, a form feed character is inserted after
each message (sec the ENVIRONMENT VARIABLES subsection).

5 Release 2.0

MAILX (1) MAILX(1)

preserve [msglist]
hold [msglist]
Preserves the specified messages in the mailbox.

Print [msglist]

Type [msglist]
Prints the specified messages on the screen, including all header fields. Overrides suppression
of fields by the ignore command.

print [msglist]

type [msglist]
Prints the specified messages. If "crt" is set, the messages longer than the number of lines
specified by the "crt" variable are paged through the command specified by the PAGER vari-
able. The default command is pg(1) in the ENVIRONMENT VARIABLES subsection.

quit
Exits from mailx, storing messages that were read in mbox and unread messages in the mail-
box. Messages that have been explicitly saved in a file are deleted.

Reply [msglist]

Respond [msglist]
Sends a response to the author of each message in the msglist. The subject line is taken from
the first message. If record is set to a filename, the response is saved at the end of that file

(see the ENVIRONMENT VARIABLES subsection).

reply [message]

respond [message]
Replies to the specified message, including all other recipients of the message. If record is set
to a filename, the response is saved at the end of that file (see the ENVIRONMENT VARIABLES

subsection).

Save [msglisi]
Saves the specified messages in a file whose name is derived from the author of the first mes-
sage. The name of the file is taken to be the author’s name with all network addressing
stripped off. See also the Copy, followup, and Followup commands and outfolder in the
ENVIRONMENT VARIABLES subsection.

save [filename]

save [msglist] filename
Saves the specified messages in the given file. The file is created if it does not exist. The
message is deleted from the mailbox when mailx terminates unless keepsave is set (see in the
ENVIRONMENT VARIABLES subsection and the exit and quit commands).

set
set name
set name=string
set name=number
Defines a variable called name. The variable may be given a null, string, or numeric value.

Set by itself prints all defined variables and their values. See the ENVIRONMENT VARIABLES
subsection for detailed descriptions of the mailx variables.

Release 2.0 6 SR-2011

MAILX (1) MAILX(1)

shell
Invokes an interactive shell (see SHELL in the ENVIRONMENT VARIABLES subsection).

size [msglist]
Prints the size in characters of the specified messages.

source filename
Reads commands from the given file and returns to command mode.

top [msglist]
Prints the top few lines of the specified messages. If the toplines variable is set, it is taken as
the number of lines to print (see in the ENVIRONMENT VARIABLES subsection). The default

is 5.

touch [msglist]
Touches the specified messages. If any message in msglist is not specifically saved in a file, it
will be placed in the mbox upon normal termination. See exit and quit.

Type [msglist]

Print [msglist]
Prints the specified messages on the screen, including all header fields. Overrides suppression
of fields by the ignore command.

type [msglist]

print [msglist]
Prints the specified messages. If "crt" is set, the messages longer than the number of lines
specified by the "crt" variable are paged through the command specified by the PAGER vari-
able. The default command is pg(1l) in the ENVIRONMENT VARIABLES subsection).

undelete [msglist]
Restores the specified deleted messages. Will only restore messages deleted in the current mail

session. If autoprint is set, the last message of those restored is printed (see in the ENVIRON-
MENT VARIABLES subsection).

unset name ...
Causes the specified variables to be erased. If the variable was imported from the execution

environment (that is, a shell variable) then it cannot be erased.

version
Prints the current version and release date.

visual [msglisi]
Edits the given messages with a screen editor. The messages are placed in a temporary file
and the VISUAL variable is used to get the name of the editor (see in the ENVIRONMENT

VARIABLES subsection).
write [msglist] filename

Writes the given messages on the specified file, minus the header and trailing blank line. Oth-
erwise equivalent to the save command.

7 Release 2.0

MAILX (1) MAILX(1)

xit

exit
Exits from mailx, without changing the mailbox. No messages are saved in the mbox (see also
quit).

z[+]-]

Scrolls the header display forward or backward one screen-full. The number of headers
displayed is set by the screen variable (see the ENVIRONMENT VARIABLES subsection).

TILDE ESCAPES

The following commands may be entered only from input mode, by beginning a line with the tilde
escape character (). See escape (in the ENVIRONMENT VARIABLES subsection) for changing this spe-

cial character.
=1 shell-command

Escape to the shell.
Simulate end of file (terminate message input).
~: mail-command

_ mail-command
Perform the command-level request. Valid only when sending a message while reading mail.

Print a summary of tilde escapes.

“A
Insert the autograph string Sign into the message (see the ENVIRONMENT VARIABLES subsec-
tion).

“a
Insert the autograph string sign into the message (see the ENVIRONMENT VARIABLES subsec-
tion).

~b name ...
Add the names to the blind carbon copy (Bcc) list.

¢ name ...
Add the names to the carbon copy (Cc) list.

~d
Read in the dead.letter file. See DEAD in the ENVIRONMENT VARIABLES subsection for a
description of this file.

“e
Invoke the editor on the partial message. See also EDITOR in the ENVIRONMENT VARI-
ABLES subsection.

~f [msglist]
Forward the specified messages. The messages are inserted into the message, without altera-
tion.

Release 2.0 8 SR-2011

MAILX(1) MAILX (1)

~h
Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with an initial
value, it may be edited as if you had just typed it.

~1i string
Insert the value of the named variable into the text of the message. For example, A is
equivalent to *~i Sign.’

“m [msglisi]
Insert the specified messages into the letter, shifting the new text to the right one tab stop.
Valid only when sending a message while reading mail.

“p
Print the message being entered.

“q
Quit from input mode by simulating an interrupt. If the body of the message is not null, the
partial message is saved in dead.letter. Sec DEAD in the ENVIRONMENT VARIABLES subsec-
tion for a description of this file.

°r filename

~< filename

~< Ishell-command
Read in the specified file. If the argument begins with an exclamation point (!), the rest of the
string is taken as an arbitrary shell command and is executed, with the standard output inserted
into the message.

~s string ...
Set the subject line to string.

“t name ...
Add the given names to the To list.

v
Invoke a preferred screen editor on the partial message. See also VISUAL in the ENVIRON-
MENT VARIABLES subsection.

“w filename
Write the partial message onto the given file, without the header.

“x

Exit as with ~q except the message is not saved in dead.letter.

~| shell-command
Pipe the body of the message through the given shell-command. If the shell-command returns
a successful exit status, the output of the command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment and are not alterable
within mailx.

SR-2011 9 Release 2.0

MAILX (1) MAILX(1)

HOME-=directory
The user’s base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal to mailx. You can import them from the execution environment or
set them via the set command at any time. Use the unset command to erase variables.

allnet
All network names whose last component (login name) match are treated as identical. This
causes the msglist message specifications to behave similarly. Default is noallnet. See also
the alternates command and the "metoo” variable.

append
Upon termination, append messages to the end of the mbox file instead of prepending them.
Default is noappend.

askec
Prompt for the Cc list after message is entered. Default is noaskcc.

asksub
Prompt for subject if it is not specified on the command line with the —s option. Enabled by
default.

autoprint
Enable automatic printing of messages after delete and undelete commands. Default is noau-
toprint.

bang

Enable the special-casing of exclamation points (!) in shell escape command lines as in vi(1).
Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid conversion now is inter-
net, which requires a mail delivery program conforming to the RFC822 standard for electronic
mail addressing. Conversion is disabled by default. See also "sendmail" and the -U command
line option.

crt=number
Pipe messages having more than number lines through the command specified by the value of
the PAGER variable (pg(1) by default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of untimely interrupt or delivery
errors. Default is SHOME/dead. letter.

debug
Enable verbose diagnostics for debugging. Messages are not delivered. Default is nodebug.

Release 2.0 10 SR-2011

MAILX(1) MAILX (1)

dot
Take a period on a line by itself during input from a terminal as end-of-file. Default is nodot.

EDITOR=shell-command
The command to run when the edit or “e command is used. Default is ed(1).

escape=c
Substitute ¢ for the ~ escape character.

folder=directory
The directory for saving standard mail files. User specified file names beginning with a plus
(+) are expanded by preceding the filename with this directory name to obtain the real
filename. If directory does not start with a slash (/), SHOME is prepended to it. In order to
use the plus (+) construct on a mailx command line, folder must be an exported sk environ-
ment variable. There is no default for the "folder" variable. See also "outfolder" below.

header
Enable printing of the header summary when entering mailx. Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of putting them in the standard mbox
save file. Default is nohold.
ignore
Ignore interrupts while entering messages. Handy for noisy dial-up lines. Default is noignore.
ignoreeof
Ignore end-of-file during message input. Input must be terminated by a period (.) on a line by
itself or by the ~. command. Default is noignoreeof. See also "dot" above.
keep
When the mailbox is empty, truncate it to zero length instead of removing it. Disabled by
default.
keepsave

Keep messages that have been saved in other files in the mailbox instead of deleting them.
Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been read. The xit command overrides this

function, as does saving the message explicitly in another file. Default is $HOME/mbox.

metoo
If your login appears as a recipient, do not delete it from the list. Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the "folder” directory. The

default is Is(1).

onehop
When responding to a message that was originally sent to several recipients, the other recipient
addresses are normally forced to be relative to the originating author’s machine for the

SR-2011 11 Release 2.0

MAILX (1) MAILX (1)

response. This flag disables alteration of the recipients’ addresses, improving efficiency in a
network where all machines can send directly to all other machines (that is, one hop away).

outfolder
Causes the files used to record outgoing messages to be located in the directory specified by

the "folder" variable unless the pathname is absolute. Default is nooutfolder. See "folder"
above and the Save, Copy, followup, and Followup commands.

page
Used with the pipe command to insert a form feed after each message sent through the pipe.

Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be used to specify the

options to be used. Default is pg(1).

prompt=string
Set the command mode prompt to string. Default is "? ".

quiet
Refrain from printing the opening message and version when entering mailx. Default is
noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See also "outfolder” above.

save

Enable saving of messages in dead.letter on interrupt or delivery error. See "DEAD" for a
description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen—full of headers for the headers command.

sendmail=shell-command
Alternate command for delivering messages. Default is mail (1).

sendwait
Wait for background mailer to finish before returning. Default is nosendwait.

SHELL=
shell-command The name of a preferred command interpreter. Default is sa(1).

showto
When displaying the header summary and the message is from you, print the recipient’s name

instead of the author’s name.

sign=string
The variable inserted into the text of a message when the ~a (autograph) command is given.
No default (see also ~i (TILDE ESCAPES)).

Sign=string
The variable inserted into the text of a message when the “A command is given. No default

Release 2.0 12 SR-2011

MAILX(1) MAILX (1)

(see also ~i (TILDE ESCAPES)).

toplines=number
The number of lines of header to print with the top command. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(1).

FILES
$HOME/.mailrc Personal start-up file
$HOME/mbox Secondary storage file
Jusr/mail/* Post office directory
fusr/lib/mailx/mailx.help* Help message files
fusr/lib/mailx/mailx.rc Global start-up file
ftmp/R[emqsx]* Temporary files
BUGS
Where shell-command is shown as valid, arguments are not always allowed. Experimentation is recom-
mended.
Internal variables imported from the execution environment cannot be unset.
The full internet addressing is not fully supported by mailx. The new standards need some time to set-
tle down.
Attempts to send a message having a line consisting only of a “*.”” are treated as the end of the message
by mail(1) (the standard mail delivery program).
SEE ALSO

SR-2011

mail(1), pg(1), Is(1).

13 Release 2.0

MAKE(1) MAKE(1)

NAME

make — Maintains, updates, and regenerates groups of programs

SYNOPSIS

make [-f makefile] [-p] [-i] [k] [-s] [-r] [-n] [-D] [-e] [-t] [-d] [-q] [names]

DESCRIPTION

SR-2011

Make executes commands in makefile to update one or more target names. Name is typically a pro-
gram. If no —f option is present, makefile, Makefile, s.makefile, and s.Makefile are tried in order. If
makefile is —, the standard input is taken. More than one —f makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than the target. All prerequisite files of
a target are added recursively to the list of targets. Missing files are deemed to be out of date.

The following is a brief description of all options and some special names:

—f makefile Description file name. Makefile is assumed to be the name of a description file. A file
name of - denotes the standard input. The contents of makefile override the built-in rules

if they are present.
-p Print out the complete set of macro definitions and target descriptions.

—-i Ignore error codes returned by invoked commands. This mode is entered if the fake target
name .IGNORE appears in the description file.

-k Abandon work on the current entry, but continue on other branches that do not depend on
that entry.

- Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name .SILENT appears in the description file.

- Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines beginning with
an @ are printed.

-b Compatibility mode for old makefiles.

- Environment variables override assignments within makefiles.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual com-
mands.

-d Debug mode. Print out detailed information on files and times examined.

—-q Question. The make command retums a zero or non-zero status code depending on

whether the target file is or is not up-to-date.

DEFAULT If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name .DEFAULT are used if it exists.

PRECIOUS Dependents of this target will not be removed when quit or interrupt are hit.
SILENT Same effect as the —s option.
JIGNORE Same effect as the —i option.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank-
separated, non-null list of targets, then a :, then a list (possibly null) of prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab are shell commands to be exe-
cuted to update the target. The first line that does not begin with a tab or # begins a new dependency
or macro definition. Shell commands may be continued across lines with the <backslash><new-line>

1 Release 2.0

MAKE(1) MAKE(1)

sequence. Everything printed by make (except the initial tab) is passed directly to the shell as is. Thus,

echo a\
b

produces:
ab

exactly the same as the shell.
The # symbol starts a comment and a new-line ends a comment.

The following makefile says that pgm depends on two files a.0 and b.o, and that they in turn depend on
their corresponding source files (a.c and b.c) and a common file incLh:

pgm: a.o b.o

cc a.0 b.o -0 pgm
a.o: inclLh ac

cC —C a.c
b.o: inclh b.c

cc — b.c

Command lines are executed one at a time, each by its own shell. The first one or two characters in a
command can be the following: —, @, -@, or @-. If @ is present, printing of the command is
suppressed. If — is present, make ignores an error. A line is printed when it is executed unless the —s
option is present, or the entry .SILENT: is in makefile, or the initial character sequence contains a @.
The -n option specifies printing without execution; however, if the command line has the string
$(MAKE) in it, the line is always executed (see discussion of the MAKEFLAGS macro under Environ-
ment). The -t (touch) option updates the modified date of target files without executing any commands.

Commands returning non-zero status normally terminate make. If the —i option is present, or the entry
JIGNORE: appears in makefile, or the initial character sequence of the command contains —, the error is
ignored. If the —k option is present, work is abandoned on the current entry but continues on other
branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to run without errors.
The difference between the old version of make and this version is that this version requires all depen-
dency lines to have a command (possibly null or implicit) associated with them. The previous version
of make assumed if no command was specified explicitly that the command was null.

An interrupt or quit signal received during execution of a command line causes the associated target to
be deleted unless the target is a dependent of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro definitions and are processed
as such. The environment variables are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables. The —e option causes the environment
to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal input option
(except —f, —p, and -r) defined for the command line. Further, upon invocation, make ‘‘invents’’ the
variable if it is not in the environment, puts the current options into it, and passes it on to invocations
of commands. Thus, MAKEFLAGS always contains the current input options. This proves very useful
for ‘‘super-makes”. In fact, as noted above, when the -n option is used, the command $(MAKE) is
executed anyway; hence, one can perform a make —n recursively on a whole software system to see
what would have been executed. This is because the —n is put in MAKEFLAGS and passed to further
invocations of $(MAKE). This is one way of debugging all of the makefiles for a software project
without actually executing anything.

Release 2.0 2 SR-2011

MAKE(1) MAKE(1)

Macros
Entries of the form stringl = string2 are macro definitions. String2 is defined as all characters up to a

comment character or an unescaped new-line. Subsequent appearances of $(stringl [:substl=[subst2]])

are replaced by string2. (A $$ is a dollar sign.) The parentheses are optional if a single character

macro name is used and there is no substitute sequence. The optional :substl=subst2 is a substitute

sequence. If it is specified, all non-overlapping occurrences of subst! in the named macro are replaced

by subst2. Strings (for the purposes of this type of substitution) are delimited by blanks, tabs, new-line

characters, and beginnings of lines.

Internal Macros

There are four macros maintained internally that are useful in writing rules for building targets.

$+ The $* macro stands for the filename part of the current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for expli-
citly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module
which is out of date with respect to the target (that is, the ‘‘manufactured’’ dependent file name).
Thus, in the .c.o rule, the $< macro would evaluate to the .c file. An example for making optim-
ized .o files from .c files is:

c.0:
cc < -0 $*c

or:

co:
cc < -0 $<
$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the list of
prerequisites that are out of date with respect to the target; essentially, those modules which must
be rebuilt.
The $+, $@, and $< macros can have altemative forms. When an upper case D or F is appended to
any of these macros, the meaning is changed to *‘directory part’ for D and ‘‘file part’” for F. Thus,
$(@D) refers to the directory part of the string $@. If there is no directory part, ./ is generated.
Suffixes
Certain names (for instance, those ending with .0) have inferable prerequisites such as .c, .s, etc. If no
update commands for such a file appear in makefile, and if an inferable prerequisite exists, that prere-
quisite is compiled to make the target. In this case, make has inference rules which allow building files
from other files by examining the suffixes and determining an appropriate inference rule to use.
The internal rules for make are contained in the source file rules.c for the make program. These rules
can be modified locally. To print out the rules compiled into the make on any machine in a form suit-
able for recompilation, the following command is used:

make —fp - 2>/dev/null </dev/null
The only peculiarity in this output is the (null) string which printf(3S) prints when handed a null string.

A rule with only one suffix (that is, .c:) is the definition of how to build x from x.c. In effect, the
other suffix is null. This is useful for building targets from only one source file (such as shell pro-
cedures and simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the first possi-
ble name for which both a file and a rule exist is inferred as a prerequisite. The default list is:

SUFFIXES: .0 .c .y .1 s .h sh

SR-2011 3 Release 2.0

MAKE(1) MAKE(1)

Here again, the above command for printing the internal rules will display the list of suffixes imple-
mented on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.0o b.o
cc a.0 b.o —0 pgm
a.0 b.o: inclh

This is because make has a set of internal rules for building files. The user may add rules to this list by
simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any
resulting commands. For example, CFLAGS and YFLAGS are used for compiler options to cc(1) and
yacc(1) respectively. Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .0 from a file with
suffix .c is specified as an entry with .c.0: as the target and no dependents. Shell commands associated
with the target define the rule for making a .o file from a .c file. Any target that has no slashes in it
and starts with a dot is identified as a rule and not a true target.

FILES

Makefile
makefile
s.Makefile
s.makefile

BUGS

Some commands return nonzero status inappropriately; use —i to overcome the difficulty.

File names with the characters =, :, or @ do not work.

Commands that are directly executed by the shell, notably cd(1), are ineffectual across new-lines in
make .

This release of make does not have library support features built in for UNICOS.

SEE ALSO

cc(1), c¢d(1), lex(1), sh(1), yacc(1)
printf(3S) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013
UNICOS Support Tools Guide, publication SG-2016.

Release 2.0 4 SR-2011

MAKEKEY (1) MAKEKEY(1)

NAME

makekey — Generates encryption key

SYNOPSIS

/usr/lib/makekey

DESCRIPTION

The makekey command improves the usefulness of encryption schemes depending on a key by increas-
ing the amount of time required to search the key space. It reads 10 bytes from its standard input and
writes 13 bytes on its standard output. The output depends on the input in a way intended to be
difficult to compute.

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are
best chosen from the set of digits, ., /, upper-case letters, and lower-case letters. The salt characters are
repeated as the first two characters of the output. The remaining 11 output characters are chosen from
the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096 cryp-
tographic machines all based on the National Bureau of Standards DES algorithm, but broken in 4,096
different ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (such as ed(1) and crypt(1)). Usually, its
input and output will be pipes.

SEE ALSO

SR-2011

crypt(1), ed(1)
passwd(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

1 Release 2.0

MAN(1) MAN(1)

NAME

man - Prints entries in this manual

SYNOPSIS

man [-oulbpr] [section] titles

DESCRIPTION

SR-2011

The man command locates and prints the entry of this manual named title in the specified section.
(The word ‘‘page’ is often used as a synonym for ‘‘entry’’ in this context) The title is entered in
lower case. The section number may have a letter suffix or, for UNICOS running on a CRAY X-MP or
CRAY-1 computer system, a two-digit suffix. If no section is specified, the whole manual is searched
for title and all occurrences of it are printed. The section may be changed before each title. On a
CRAY-2 computer system, the available sections are: 1, 1m, 2, 3c, 3f, 3m, 3n, 3s, 3sci, 3q, 3w, 3z, 4d,
4f, and 4n. On a CRAY X-MP or CRAY-1 computer system, the available sections are: 1, 1m, 2, 3c, 3.1,
3.2, 3.3, 34, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 4d, 4f, and
4n. Sections 3n, 3w, 3.18, and 4n are available only if your site is licensed for the TCP/IP networking
software.

Pre-formatted manual entries are stored in the /usr/man directory hierarchy. The format style is
appropriate for terminals and line printers. The man command further processes the entries to make the
output more suitable for video displays. Options provide control of the processing done by man:

—0 Removes overstrikes intended to produce an emboldened effect.
—u Removes overstrikes intended to produce underlining.

-b Removes all character-backspace sequences. The —0 and —u options remove most of these
sequences, but occasionally overstrike sequences are used to produce symbols that are not in the
ascii character set. The —b option is useful for devices that do not handle the backspace charac-
ter.

-1 Reduce all occurrences of two or more blank lines in sequence to a single blank line.

—p Paginate; print 18 lines of output, print a ’:’ prompt character, and wait for a RETURN or
CONTROL-d to be typed. Backspace-character sequences are used (unless option b is set), to
remove the *:* prompt when the CONTROL-d response is typed.

-r Reset all oulp options. These options are set by default when output is being sent to a terminal
file. If the output of man is not directed to a terminal, no options are set by default. This type of
output is useful for printers.

As an example:
man man

reproduces this entry on the standard output. It also reproduces any other entries named man that may
exist in other sections of the man